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Abstract

Stochastic 2D Navier-Stokes Equation and Applications to

2D Turbulence

Shahab Karimi

We will consider the 2-dimensional Navier-Stokes equation for an incompress-

ible fluid with periodic boundary condition, and with a random perturbation that

is in the form of white noise in time and a deterministic perturbation due to the

large deviation principle. Our ultimate goal is to find appropriate conditions on

the initial data and the forcing terms so that global existence and uniqueness

of a mild solution is guaranteed. We will use the Picard’s iteration method to

prove existence of local mild solution and then prove the existence of a maximal

solution which then leads to global existence. The result is applied to the back-

ward Kolmogorov-Obukhov energy cascade and the forward Kraichnan enstrophy

cascade in 2D turbulence.
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Chapter 1

Stochastic 2D Navier-Stokes

Equation

1.1 Introduction

The first paper on Stochastic Navier-Stokes equation was published in 1973,

see [2]. Almost every paper on the local existence in the literature of stochastic

Navier-Stokes uses the Galerkin Approximations. We will use Picard’s iteration

which makes the proof much easier. Also we will not restrict ourselves to H1

and will work with a broader range of spaces. Finally we will find conditions

that guarantee the existence of a unique global solution. This chapter is greatly

influenced by the following: [4], [5], [7], [11], [19].
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1.2 Functional Analysis Foundation

Throughout this chapter we assume that dimension is 2.

Let M be a bounded domain in R2 with smooth boundary ∂M . Define :

H = {u = (u1, u2)|u1, u2 ∈ L2(M),∇.u = 01, u.n = 0 on ∂M}

Then H is a closed subspace of (L2(M))
2

. We equip H with the L2 - norm.

So < u, v >=
∫
M
u.v dx and |u| =< u, u >1/2. Also define 2

V = {u = (u1, u2) | u1, u2 ∈ H1
0 (M), ∇.u = 0}

Then V is closed in H1(M) and dense in H. We use the following inner product:

� u, v �=

∫
M

(∇u1.∇v1 +∇u2.∇v2) dx

So ||u|| =� u, u�1/2. Notice that this norm is well-defined because by Poincare

inequality given u1, u2 ∈ H1
0 (M) we have that

∫
M
u1

2 dx ≤ C1

∫
M
|∇u1|2 dx and∫

M
u2

2 dx ≤ C2

∫
M
|∇u2|2 dx and so there exists a constant c such that for all

u ∈ V , |u| ≤ c||u||. We have the continuous and dense embeddings V ⊂ H ⊂ V ′.

The Stokes operator is A = −P∆ with the domain D(A) = H2(M)∩V where

P is the Leray projection from L2(M)
d

onto H 3. It can be extended to an

1in the distributional sense
2H1

0 (M) = clH1(M)(C
∞
0 (M))

d

3P (u) = u−∇∆−1(∇.u)
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unbounded operator on H. It is well known that :

i) < Av, u > = � u, v � for u, v ∈ V. So A can be viewed as a map from

V to V ′. In fact, A : V → V ′ is an isomorphism

ii) A is a strictly positive definite, self − adjoint operator on H and so

there exists an orthonormal basis {ej}j∈N for H of eigenfunctions

of A with {λj}j∈N being the corresponding eigenvalues such that

0 < λ1 ≤ λ2 ≤ ... and λj → +∞ as j → +∞ (see [8] page 49− 51).

iii) − A is the infinitesimal generator of an analytic semigroup

S(t) = e−tA. We have ||S(t)|| ≤ e−tλ1

Any u ∈ H can be expressed in the form of u =
∑∞

j=1 ujej where uj =< u, ej >.

By Parseval’s identity we have |u|2 =
∑
uj

2. Also ||u||2 =< Au, u >=
∑
λjuj

2.

In order to define fractional powers of the Stokes operator, first define D(Aα)

(α ∈ R) as follows:

D(Aα) = {u ∈ H |
∑
|λ|2αj uj

2 <∞}

We equip D(Aα) with the norm |u|D(Aα) = (
∑
λ2αj |uj|

2)
1/2

. We have D(A0) = H,

and D(A1/2) = V . It can be shown that D(Aα) is a Banach space (and in fact a

3



Hilbert space). Now define Aαu =
∑
λj

αujej, for u ∈ D(Aα). One can show that

D(A−α) is isomorphic to D(Aα)
′

and D(Aα) ⊂ H ⊂ D(Aα)
′
. Finally define the

nonlinear term Bu = P ((u.∇)u). It will be useful to define the trilinear operator

b on V × V × V as follows:

b(u, v, w) =

∫
((u.∇)v).w dx =

2∑
i,j=1

∫
ui
∂vj
∂xi

wj dx

Then b is continuous and b(u, v, v) = 0 ∀u, v ∈ V 4. Also < Bu, v >= b(u, u, v).

Periodic Case.

Let T2 = [0, 2π]2. First let us define L2
per(T2) and H1

per(T2). They are the

spaces of T2-periodic functions defined on R2 which belong respectively to L2(O)

and H1(O) for every bounded open set O ⊂ R2. We will assume zero space average

and will work with the following two spaces:

Ḣper = {u = (u1, u2) | u1, u2 ∈ L2
per(T2),

∫
T2

u dx = 0, ∇.u = 0}

V̇per = {u = (u1, u2) | u1, u2 ∈ H1
per(T2),

∫
T2

u dx = 0, ∇.u = 0}

We use the same inner products as before here (Poincare inequality holds for

periodic functions with vanishing space average). We have A = −∆ and eigen-

functions of A can be found explicitly (λk = |k|2). Therefore we can find an

4see [19], page 12-13
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explicit basis for Ḣper. Let Z2
0 = Z2\(0, 0) and (Z2

0)+ = {(k1, k2) ∈ Z2|k1 >

0 or (k1 = 0 ∧ k2 > 0} and (Z2
0)− = Z2

0\(Z2
0)+.

Define ek as follows:

ek(x) =


cos(k.x)√

2π|k| k
⊥ k ∈ (Z2

0)+

sin(k.x)√
2π|k| k

⊥ k ∈ (Z2
0)−

where k⊥ = (−k2, k1). Then {ek}k∈Z2
0

is an orthonormal basis for Ḣper
5. Define

Vs = D(As/2) = {u =
∑
k∈Z2

0

ckek |
∑
|k|2s|ck|2 <∞}

The Hs-norm |.|s on Vs is equivalent to |.|Vs
6, so we use the notation |.|s for both

the Hs-norm and Vs-norm. We have V0 = Ḣper and V1 = V̇per. Also we have :

u =
∑
k∈Z2

0

ûkek 7→ Aαu =
∑
k∈Z2

0

|k|2αûkek

So |u|Vs = |As/2u|. One can show that

S(t)(
∑
k∈Z2

0

ûkek) =
∑
k∈Z2

0

e−t|k|
2

ûkek

Remark 1. From this point on, everything will be restricted to the context of

periodic case.

5see [8], page 52
6see [19] page 10
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1.3 Formulation of the Stochastic Navier-Stokes

Equation

The stochastic Navier-Stokes equation for incompressible fluid with zero mean

condition on T2 reads as follows:

du = (ν∆u− (u.∇)u+∇p)dt+ Ldt+ dW (t) (1.1)

∇.u = 0

ū = 0

u(x, 0, ω) = u0(x, ω)

where u is the velocity of an incompressible fluid, ν is the viscosity, p is the

pressure field, the deterministic term L explains the large deviation from mean

velocity, and W (t) is the noise. Also u0 is a random variable in L2(T2 × T2). For

simplicity we assume ν = 1 (It is possible to restore the general case). One good

model is as follows:7

L =
∑
k∈Z2

0

ηkdke
ik.x (1.2)

where dk’s are constant vectors in C2 and d−k = dk and they represent the bias in

a particular direction in Fourier space. The ηk’s are the rates in the kth direction8.

7see [1] chapter 1
8Usually ηk = |k|1/3 is chosen.
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Also

W (t) =
∑
k∈Z2

0

ck
1/2bt

keik.x (1.3)

where the bkt ’s are mutually independent standard Brownian motions on a fixed

measure space with a right continuous filteration, (Ω,F , {Ft}t≥0,P). The ck’s are

defined in C2 and c−k = ck and the series is convergent for almost every ω ∈ Ω.

The Leray-Hopf projection in dimension 2 acts as follows:

P (aeik.x) = Pk(a)eik.x

where

Pk(a) = (a.
k⊥

|k|
)
k⊥

|k|

(see [3] page 199). Then one can show that:

P (
∑
k∈Z2

0

cke
ik.x) =

∑
k∈(Z2

0)+

√
2π

(ck + c−k).k
⊥

|k|
ek +

∑
k∈(Z2

0)−

√
2πi

(ck − c−k).k⊥

|k|
ek

(1.4)

By applying the Leray-Hopf projection to equation (1.1), the pressure term

drops out. Let Γ = P (L) and WH(t) = P (W (t)). By (1.4) we can assume that:

Γ =
∑
k∈Z2

0

dkek (1.5)

and

WH(t) =
∑
k∈Z2

0

c
1/2
k bkt ek (1.6)

7



We are abusing notation here. Now dk’s and ck’s are in R and are different from

what previously were defined in (1.2) and (1.3). Hence, we will obtain the following

SDE in V

du(t) + [Au(t) +Bu(t)]dt = Γdt+ dWH(t)

u(x, 0, ω) = u0(x, 0, ω) (1.7)

Suppose that 1 ≤ p < ∞. By a local mild solution of equation (1.7) in the

space Vα, we mean a pair (u, τ) where τ is a strictly positive stopping time (a.s.)

and u(. ∧ τ) ∈ Lp(Ω;C([0, τ ];Vα)) is an Fu0t -adapted process such that:

u(t) = S(t)u0 −
∫ t

0

S(t− s)B(us)ds

+ f(t) +WA(t) a.s. for all t ∈ [0, τ ] (1.8)

where

f(t) =

∫ t

0

S(t− s)Γds =
∑
k∈Z2

0

1− e−t|k|2

|k|2
dkek (1.9)

and

WA(t) =

∫ t

0

S(t− s)dWH(s) (1.10)

We say that a local mild solution (u, τ) in Vα is unique if for any other local mild

solution (u′, τ ′) in Vα, we have u(t∧τ ∧τ ′) = u′(t∧τ ∧τ ′) almost surely. Definition

of a maximal mild solution is not a trivial one and it is as follows:

8



Definition 1. We say that a local mild solution (u, τ) in Vα is maximal provided

that:

i) if (u′, τ ′) is a local mild solution in Vα then τ
′ ≤ τ a.s.

ii) There exists a sequence {τn}n of stopping times such that τn ↑ τ and

for all n ∈ N, (u, τn) is a local mild solution in Vα

In definition (1), if τ =∞ almost surely, then we say that the solution is global.

1.4 Local Existence and Maximal Solution

The next two lemmas are important tools to make connections between norms

in different Vα’s and in particular we will use them to prove that the nonlinear

operator B is locally Lipschitz. We will use the notation |.|(1) . |.|(2) between two

norms on a space X if there exists a constant C so that |x|(1) ≤ C|x|(2) for all

x ∈ X. If the two norms are equivalent we will use the notation ≈.

Lemma 1. (Interpolation Inequality) If α < β, 0 ≤ θ ≤ 1 and u ∈ Vβ, then we

have :

|u|(1−θ)α+θβ . |u|
1−θ
α |u|

θ
β (1.11)

Proof. cf. [10].

9



Theorem 2. (Gagliardo-Nirenberg Inequality) Suppose M is a smooth bounded

domain in Rn and also 1 < p, p0, p1 < ∞, s, s1 ∈ R, and 0 ≤ θ ≤ 1. Then the

following holds :

|u|Hs
p
. |u|1−θLp0 |u|

θ
H
s1
p1

(1.12)

if and only if
n

p
− s = (1− θ) n

p0
+ θ(

n

p1
− s1), s ≤ θs1

Proof. cf. [13].

Lemma 3. For n = 2 we have the following:

|u|Hs
p
. |u|1−θHs0 |u|

θ
Hs1

if
2

p
− s = (1− θ)(1− s0) + θ(1− s1), 0 ≤ s0, s ≤ θs1

Proof. In Theorem (2), let s = 0, θ = 1, and s1 = 1 − 2
p
. Then we obtain the

following:

|u|Lp . |u|H1− 2
p

iff p ≥ 2 (1.13)

Now again in Theorem (2), let p1 = 2 and p0 = 2
1−s0 and use (1.12) to complete

the proof.

10



Lemma 4. i) |u|L∞ . |u|
1−θ
α |u|

θ
β where 0 ≤ α < n

2
< β and (1− θ)α + θβ = n

2

ii) |∇u|L4 . |u|1/22 .||u||1/2

Proof. For part (i) see [19] page 11. Part (ii) is Ladyzhenskaya’s inequality.

Proposition 1. i) If (α > 1 and δ ≥ 0), or (α = 1 and δ > 0), and u ∈ Vα then

Bu ∈ V−δ and in fact we have the following:

|Bu−Bv|−δ . (|u|α + |v|α)|u− v|α (1.14)

In other words, B : Vα → V−δ is locally Lipschitz.

ii) If u ∈ V2, then Bu ∈ V and we have the following:

||Bu−Bv|| . (|u|2 + |v|2)|u− v|2 (1.15)

Proof. i) We have that |b(u, v, w)| . |u|α.|v|α.|w|δ for d = 2, (α > 1, and δ ≥ 0) or

(α = 1 and δ > 0). 9. Now we have < Bu−Bv,w >= b(u, u−v, w)+b(u−v, v, w).

So:

| < Bu−Bv,w > | . |u|α|u− v|α|w|δ + |u− v|α|v|α|w|δ

9see [19] page 12

11



Therefore:

|Bu−Bv|−δ = sup06=w∈Vδ
| < Bu−Bv,w > |

|w|δ

≤ C |u− v|α(|u|α + |v|α)

ii) We have Bu−Bv = P [(u.∇)u− (v.∇)v] = P ([(u− v).∇]u)−P ((v.∇)(u− v)).

By virtue of Lemma (4) we have:

||P [(u− v).∇)u]|| ≤ ||(u− v).∇)u|| = {
∫ ∑

[∂m((ui − vi)∂iuj)]2dx}
1/2

≤
∑
|∂m[(ui − vi)∂iuj]|

≤
∑
|∂m(ui − vi)∂iuj|+

∑
|(ui − vi)∂m∂iuj|

. |∇(u− v)|L4 .|∇u|L4 + |u− v|L∞ .|u|H2 (1.16)

. |u− v|1/22 .||u− v||1/2.|u|1/22 .||u||1/2 + |u− v|1/22 .|u− v|1/2.|u|2

12



On the other hand, we have the following:

||P [(v.∇)(u− v)]|| ≤
∑
|∂m(vi∂i(uj − vj))|

≤
∑
|∂mvi.∂i(uj − vj)|+

∑
|vi∂i∂m(uj − vj)|

. |∇v|L4 .|∇(u− v)|L4 + |v|L∞ .|u− v|H2

. |v|1/22 .||v||1/2.|u− v|1/22 .||u− v||1/2 + |v|1/22 .|v|1/2|u− v|2

So using the fact that |z| ≤ |Az| and ||z|| ≤ |Az| we obtain the following:

||Bu−Bv|| . (|u|2 + |v|2)|u− v|2

It is well known that when 1 < p < ∞ and s > 0, the Triebel-Lizorkin space

F s
p,2 coincides with the Sobolev space Hs

p
10. On the other hand it was proven in

[6] that the fractional derivative norm |Dαf |p is equivalent to |f |F sp,2 and also the

following theorem:

Theorem 5. Suppose that α > 0, 1 < p1, p2, r < ∞, 1 < q1, q2 ≤ ∞, and

1
r

= 1
p1

+ 1
q1

= 1
p2

+ 1
q2

. Then :

|Dα(fg)|Lr . |D
αf |Lp1 |g|Lq1 + |Dαg|Lp2 |f |Lq2 (1.17)

10e.g. see [18] chapter 3
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Now we can prove the following proposition:

Proposition 2. Assume that 0 < α < 1. Then we have the following:

|Bu|2α . |u|2α+1(|u|α + |u|α+1) + |u|α|u|α+1 (1.18)

Proof. . We have |Bu|2α ≈
∑2

i,j=1 |ui∂iuj|H2α ≈
∑2

i,j=1 |D2α(ui∂iuj)|L2 . In (1.17),

set f = ui, g = ∂iuj, r = 2, p1 = 2
α
, q1 = 2

1−α , p2 = 2, and q2 =∞. Then using

Lemma (3) for each i, j we have the followings:

|D2αui|p1 ≈ |ui|H2α
p1
. |ui|H1+α (θ = 1, s1 = 1 + α)

|∂iuj|q1 . ujH1
q1

. |uj|Hα (θ = 1, s1 = α)

|ui|q2 ≤ |u|q2 . |u|
α
α |u|

1−α
α+1 (by interpolation inequality)

|D2α∂iuj|p2 . |D
2α+1uj|p2 ≈ |uj|H2α+1

So far we have proven the following:

|Bu|2α . |u|α+1.|u|α + |u|αα |u|
1−α
α+1.|u|2α+1 (1.19)

Recall the Young inequality: for all a, b, κ > 0, r > 1, and r′ = r
r−1 ,

ab ≤ κ

r
ar +

1

r′κ
r′
r

br
′

(1.20)

14



By applying the Young inequality (r = 1
α

) we get the following:

|u|αα |u|
1−α
α+1 ≤ c1|u|α + c2|u|α+1

So we obtain (1.18).

Proposition 3. Let 0 ≤ δ < 1
2

+ n(1− 1
p
)/2. Then we have

|A−δBu|Lp . |A
θu|Lp |A

ρu|Lp (1.21)

provided that δ + θ + ρ ≥ n
2p

+ 1
2
, θ > 0, ρ > 0, ρ+ δ > 1

2

Proof. cf. [10].

Corollary 1. In Proposition (3), if n = p = 2 and 0 < δ < 1, then we have the

following:

|Bu|−2δ . |u|
2
1−δ (1.22)

The following theorem will be used frequently throughout this chapter. Notice

that by proposition (1), the nonlinear operator B is locally Lipschitz between

two different spaces. In essence, B maps Vα into V−δ which is a bigger space. In

order to be able to use a fixed point argument to prove local existence of a (mild)

solution, one has to work with a map from a space X into itself. One important

15



property of the semigroup S(t) is that when it acts on B, it pulls it back into a

smaller space and this will be very useful for Picard’s iteration.

Theorem 6. Let X be a Banach space and A be a linear operator on X (not neces-

sarily bounded). Also set ρ(A) = {λ ∈ C : (λI − A)−1exists and is bounded on X}11.

If 0 ∈ ρ(A) and −A is the infinitesimal generator of an analytic semigroup S(t),

then we have the following:

i) For every t > 0 and α ≥ 0, S(t) : X → D(Aα).

ii) For every x ∈ D(Aα) we have S(t)Aαx = AαS(t)x.

iii) For every t > 0 and x ∈ X we have |AαS(t)x| ≤ Mαt
−α|x|; so AαS(t) is

bounded and ||AαS(t)|| ≤Mαt
−α

iv) For 0 < α ≤ 1 and x ∈ D(Aα) we have |(S(t)− I)x| ≤ Cαt
α|Aαx|.

Proof. cf. [17] page 74-75.

Remark 2. Obviously the Stokes operator satisfies all the conditions of Theorem

(6).

Proposition 4. Suppose 1 ≤ α < 3, u ∈ C([0, T ];Vα) and define:

X(t) =

∫ t

0

S(t− s)B(us)ds

11This is called the resolvent set.

16



Then X(.) ∈ C([0, T ];Vα).12

Proof. If 1 ≤ α < 2, then choose β and γ so that α ≤ β < γ < 2. If 2 ≤ α < 3,

then choose β and γ so that α − 1 ≤ β − 1 < γ < 2. Then by Proposition (1),

u ∈ C([0, T ];Vα) implies Bu ∈ C([0, T ];Vβ−γ). Now we have that:

Aβ/2(X(t+ h)−X(t)) = Aβ/2
∫ t+h

t

S(t+ h− s)B(us)ds+ Aβ/2(S(h)− I)X(t)

(1.23)

By virtue of Theorem (6), part (iii) we have the following:

|Aβ/2
∫ t+h

t

S(t+ h− s)B(us)ds| ≤
∫ t+h

t

|Aγ/2S(t+ h− s)A(β−γ)/2B(us)|ds

.
h1−

γ
2

1− γ
2

sup
t≤s≤t+h

|A(β−γ)/2B(us)| (1.24)

In (1.24) if we set t = 0 and h = t, we get X(t) ∈ Vβ. So we can assume that in

particular X(t) ∈ Vγ. Therefore Aβ/2X(t) ∈ Vγ−β and by Theorem (6) part (iv)

for the second term in (1.23) we have:

|(S(h)− I)Aβ/2X(t)| . h(γ−β)/2|Aγ/2X(t)|

Hence limh→0 |X(t+ h)−X(t)|β = limh→0 |Aβ/2(X(t+ h)−X(t))| = 0 and there-

fore X(.) is continuous in Vβ.

12see [2] page 254
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The following lemma is a Gronwall type lemma which will be used to prove

uniqueness of local mild solution.

Lemma 7. Let −1 < r < 0 and f and g be two continuous non-negative functions

on [0, T ]. If

f(t) ≤
∫ t

0

(t− s)rf(s)g(s)ds for t ∈ [0, T ]

then f ≡ 0 on [0, T ].

Proof. Choose p ∈ (1,−1/r) and then define q = p
p−1 . By Holder inequality we

have

∫ t

0

(t− s)rf(s)g(s)ds ≤ [

∫ t

0

(t− s)rpds]
1/p

.[

∫ t

0

(fg)qds]
1/q

= (
t1+rp

1 + rp
)
1/p

.[

∫ t

0

(fg)qds]
1/q

Now let F = f q and therefore we have :

F (t) ≤ (
t1+rp

1 + rp
)
q/p

.

∫ t

0

Fgqds

So by the Gronwall’s Lemma, F ≡ 0 and hence f ≡ 0 on [0, T ].

From this point on, we will use f and WA as defined in (1.9) and (1.10).
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Theorem 8. Suppose 1 ≤ α < 3, 1 ≤ p < ∞, u0 ∈ Lp(Ω;Vα), f ∈ C([0, T0];Vα)

and WA(.) ∈ Lp(Ω ; C([0, T0];Vα)) for some fixed T0 > 0. Then there exists a

unique mild solution to equation (1.7) in Vα.

Proof. Define :

a(t, ω) = S(t)u0(ω) + f(t) +WA(t, ω)

g(ω) = 1 + |u0(ω)|α

and

β =


1 if 2 ≤ α < 3

α− 1 if 1 ≤ α < 2

(1.25)

Then by Proposition (1), we have u ∈ Vα implies Bu ∈ Vβ and there exists a

constant K such that:

|Bu−Bv|β ≤ K(|u|α + |v|α)|u− v|α (1.26)

Also by Theroem (6) , part (iii), there exists a constant C such that:

|A(α−β)/2S(t)x| ≤ Ct−(α−β)/2|x| (1.27)

Define two stopping times on (Ω,F , (Ft)) as follows:

τ1(ω) = inf {t : sup
0≤s≤t

|a(s, ω)|α > g(ω)} (1.28)

and

τ2(ω) = inf {t : CK
t1+(β−α)/2

1 + (β − α)/2
>

1

8 g(ω)
} (1.29)
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In (1.28) if for a particular ω the set is empty, define τ1(ω) to be T0. Now let

τ = τ1 ∧ τ2 ∧ T0. Since limt→0+ a(t, ω) = u0(ω) (almost surely in Vα), we conclude

that τ > 0 (a.s.). Without loss of generality assume limt→0+ a(t, ω) = u0(ω) for

all ω ∈ Ω. Let H = Lp(Ω;C([0, τ ];Vα)). From the assumptions we conclude that

u0, WA, f ∈ H and hence, a ∈ H.

Now define the following sequence:

z0 = a

zn = z0 −
∫ t

0

S(t− s)B(zn−1(s))ds 0 ≤ t ≤ τ

Notice that by Proposition (4) we conclude that for each ω ∈ Ω, zn(t, ω) ∈

C([0, τ(ω)];Vα).

claim. For almost all ω ∈ Ω and t ∈ [0, τ(ω)] we have the following:

|zn(t, ω)− zn−1(t, ω)|α ≤
g(ω)

2n
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proof. We proceed by induction. For n = 1 we have:

|z1 − z0|α ≤
∫ t

0

|A(α−β)/2S(t− s)Aβ/2B(z0)|ds

≤
∫ t

0

CK(t− s)(β−α)/2|Aα/2z0(ω)|2ds

≤ CK g(ω)2
t1+(β−α)/2

1 + (β − α)/2
≤ g(ω)

2
by (1.29)

Suppose that the claim is true for 0, 1, ..., n. For any i ≤ n we have

|zi|α ≤ |z0|α +
i∑

j=1

|zj − zj−1|α

≤ g(ω) +
i∑

j=1

g(ω)

2j
< 2g(ω) (1.30)

Now we have

|(zn+1 − zn)|α ≤
∫ t

0

|A(α−β)/2S(t− s)Aβ/2[B(zn)−B(zn−1)]|ds

≤
∫ t

0

(t− s)(β−α)/2CK |zn − zn−1|α(|zn|α + |zn−1|α)ds

≤ CK
t1+(β−α)/2

1 + (β − α)/2

4g(ω)2

2n
≤ g(ω)

2n+1
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So we conclude that for each ω, {zn(., ω)} is a Cauchy sequence in C([0, τ(ω)];Vα])

and hence it is convergent to some z(., ω) ∈ C([0, τ(ω)];Vα]). Note that z is

an Fu0t -adapted process because it holds for every zn. Since the convergence is

uniform, z satisfies

z = a−
∫ t

0

S(t− s)B(z(s))ds 0 ≤ t ≤ τ

In (1.30) we proved that |zn(., ω)|α ≤ 2k(w). So |z(., ω)|α ≤ 2k(w). For 0 ≤ t ≤ τ

we have the following :

|Aα/2(z − a)(t, ω)| ≤
∫ t

0

|A(α−β)/2S(t− s)Aβ/2B(z(s))|ds

≤
∫ t

0

CK(t− s)(β−α)/2|Aα/2z(s)|2ds

≤ CK
t1+(β−α)/2

1 + (β − α)/2
4g(ω)2 ≤ g(ω)

Thus

||z − a||pH = E[ sup
0≤t≤τ

|Aα/2(z − a)|p]

≤ E[gp] <∞ (since u0 ∈ Lp(Ω;Vα))
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Since a ∈ H, we conclude that z ∈ H.

To prove uniqueness, suppose (z′, τ) is another local solution. So we will have

(almost surely on Ω):

|(z − z′)(t)|α ≤ CK

∫ t

0

(t− s)(β−α)/2|(z − z′)(s)|α(|z(s)|α + |z′(s)|α)ds

for all 0 ≤ t ≤ τ(ω) (1.31)

So by Lemma (7) we conclude that |(z − w)(t)|α = 0 for all 0 ≤ t ≤ τ(ω).

Therefore z = z′ almost surely.

In the next theorem we will prove existence of maximal solution. Note that it

is not an automatic result of the Zorn’s Lemma because supremum of a collection

of stopping times may not be measurable.

Theorem 9. (Existence of Maximal Mild Solution) Given the assumptions of

Theorem (8), there exists a unique (up to null sets) maximal mild solution in Vα.

Proof. 13 Let ΓN be the class of all stopping times such that τ ∈ ΓN iff τ ≤ N and

there exists a local mild solution u ∈ Lp(Ω;C([0, τ ];Vα)) (by Theorem 8, ΓN 6= ∅).

claim For every k ∈ N, there exists a τ ∈ ΓN such that

|{ω : σ ≥ τ +
1

k
}| < 1

k
for all σ ∈ ΓN (1.32)

13see [15] pages 71-72
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proof. Start with any τ1 ∈ ΓN . If (1.32) does not hold, then there exists σ1 ∈ ΓN

s.t. |{ω : σ1 ≥ τ1 + 1
k
}| ≥ 1

k
. Now let τ2 = τ1

∨
σ1. If (1.32) does not hold for

τ2, then there exists an σ2 ∈ ΓN s.t. |{ω : σ2 ≥ τ2 + 1
k
}| ≥ 1

k
, and so on. This

process has to stop at most at n = Nk number of steps because at this step we

have {σn ≥ τn + 1
k
} ⊂ {σn ≥ σ1 + Nk

k
}, which has measure zero (by definition

of ΓN). Therefore the process will stop after a finite number of steps and that is

when (1.32) holds.

�

Now for every k ∈ N, choose τk such that (1.32) holds. Since ΓN is closed under
∨

we can replace τi by
∨
j<i τj to get an increasing sequence of stopping times in ΓN .

It is easy to check that the new sequence still satisfies (1.32). Let us denote this

sequence by τN,1 ≤ τN,2 ≤ .... For each N ∈ N we obtain an increasing sequence

{τN,n} ⊂ ΓN which satisfies (1.32):

τ1,1 ≤ τ1,2 ≤ τ1,3, ...

τ2,1 ≤ τ2,2 ≤ τ2,3, ...

τ3,1 ≤ τ3,2 ≤ τ3,3, ...
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Now let τN =
∨
n≤N τn,N . Thus, {τN}N is an increasing sequence and for each N ,

τN satisfies the following:

i) τN ≤ N a.s.

i) Corresponding to each τN there exists a mild solution uN ∈

Lp(Ω;C([0, τN ];D(Aα)))

iii) {ω : σ ≥ τN +
1

N
} < 1

N
for all σ ∈ ΓN (1.33)

Define τ = sup τN . For t < τ , define u(t, ω) = uN(t, ω) if t < τN . By uniqueness

of solutions, u is well-defined (almost surely). If (u, τ) is a mild solution to the

NS equation, one can prove that :

{σ ≥ τ} =
⋂
N∈N

∞⋃
n=N

{σ ∧N ≥ τN +
1

N
}

By (1.33) we conclude that |{σ ≥ τ}| = 0 and therefore σ ≤ τ , almost surely. So

far we have proved that (u, τ) is a maximal solution. Now if (u′, τ ′) is another

maximal solution with the corresponding sequence {τ ′N}, then by definition 1, for

each N , τ ′N ≤ τ and therefore τ ′ = sup τ ′N ≤ τ a.s.. Similarly, τ ≤ τ ′ a.s..

1.5 a Priori Estimates and Global Existence

Unlike deterministic differential equations that we have finite-time blow up

criterion for maximal interval of existence, the stochastic equations show a very
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different kind of behavior. Namely, the maximal time of existence could depend

on the sample space and be completely random. The solution could sometimes be

global in time and other times have a finite time blow up. In the next few theorems

we will develop some tools (exclusively for equation 1.7) similar to finite-time blow

up criterion in order to prove global existence of mild solution to equation (1.7).

Proposition 5. Fix ω ∈ Ω and suppose that 1 ≤ α < 3 and that u(t, ω) ∈

C([0, T );Vα) satisfies equation (1.8). Also assume that f, WA(., ω) ∈ C([0, T ];Vα).

Then limt→T− u(t, ω) exists (in Vα) if sup0≤t<T |u(t, ω)|α−δ < ∞ for some 0 ≤

δ < min{1, α/2}.

Proof. It suffices to show that u(t, ω) is uniformly continuous on [0, T ). Since

S(t), f , and WA are all uniformly continuous on [0, T ] we will only need to prove

that the following is uniformly continuous in Vα:

F (t) =

∫ t

0

S(t− s)B(us)ds

Now consider the following cases :

case I. 1 ≤ α < 2 : So min{1, α/2} = α/2. Choose δ1 ∈ (max{0, 1
2

+ δ −

α, 1−2(α− δ)}, 1−α/2) and then choose δ2 ∈ (δ1, 1−α/2). Then by Proposition

(3) we have |A−δ1Bu| . |Aα−δu|2. So sup0≤s<T |A−δ1Bu(s)| <∞. Now invoking
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lemma (6) we will obtain the following:

|Aα/2(F (t1)− F (t2))| ≤
∫ t2

t1

|Aα/2+δ1S(t2 − s)A−δ1B(us)|ds

+

∫ t1

0

|Aα/2+δ2S(t1 − s)[S(t2 − t1)− I)]A−δ2B(us)|ds

.
∫ t2

t1

(t2 − s)−(α/2+δ1)ds+

∫ t1

0

(t1 − s)−α/2−δ2(t2 − t1)δ2−δ1ds

=
(t2 − t1)1−α/2−δ1

1− α/2− δ1
+

t
1−α/2−δ2
1

1− α/2− δ2
.(t2 − t1)δ2−δ1

which can be arbitrarily small provided that t1, t2 ∈ [0, T ] and |t1 − t2| is small

enough.

case II. 2 ≤ α < 3 : Let ζ = (α − δ − 1)/2 and ζ ′ = (ζ + α
2
− 1)/2. One can

show that 0 < ζ ′ < ζ < 1. If we use inequality (1.18) for ζ, the dominant term on

the right hand side of the inequality would be |A2ζ+1us| which is bounded by the

assumption. So we conclude that sup0≤s<T |A2ζB(us)| < ∞. Now using Lemma
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(6) parts (iii) and (iv) we have the following :

|Aα/2(F (t1)− F (t2))| ≤
∫ t2

t1

|Aα/2−2ζS(t2 − s)A2ζB(us)|ds

+

∫ t1

0

|Aα/2−2ζ′S(t1 − s)[S(t2 − t1)− I)]A2ζ′B(us)ds|

.
∫ t2

t1

(t2 − s)−(α/2−2ζ)ds

+

∫ t1

0

(t1 − s)−(α/2−2ζ
′)(t2 − t1)2(ζ−ζ

′)ds

=
(t2 − t1)2ζ−α/2+1

2ζ − α/2 + 1
+

tζ1
ζ
.(t2 − t1)2(ζ−ζ

′)

This could be arbitrarily small provided that t1, t2 ∈ [0, T ] and |t1 − t2| is small

enough. Thus the proof is complete.

Remark 3. Reading through the proof of Proposition (5) we notice that it is also

valid for α ∈ (0, 1).

The following is another Gronwall type inequality which will be used in The-

orem (10).
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Proposition 6. Let f be a continuous nonnegative function on [0, T ], 1 ≤ p <∞,

and

f(t) ≤ A+B (

∫ t

0

fp(s)ds)
1/p

0 ≤ t ≤ T

Then f(t) ≤ Ag(t)
g(t)−1 where g(t) = (1− exp(−Bpt))−1/p for 0 ≤ t ≤ T .

Proof. cf. [21].

Theorem 10. Fix ω ∈ Ω and suppose that the assumptions of proposition (5)

hold, except that α 6= 1, 2. Then limt→T− u(t) exists if :

sup
0≤t<T

|u(t)|α−1 +

∫ T

0

|u(t)|α
2dt <∞

Proof. By Proposition (5) it suffices to prove that sup0≤t<T |u(t)|α−δ < ∞ for

some 0 ≤ δ < min{1, α/2}. Let M = sup0≤t<T |u(t)|α−1. Notice that |u(t)|r is

also bounded for any r ≤ α− 1.

case I. 1 < α < 2: We will prove that ||u(t)|| is bounded on [0, T ). Define

δ1 = 1
2
− α

4
, and q = 4

2−α . Choose p ∈ ( 4
2+α

, 4
4−α) and then choose r such that

1
p

+ 1
q

+ 1
r

= 1. Obviously δ < α/2. By Proposition (3), we have:

|A−δ1Bu| . |Aα/4u||A1/2u| (1.34)

On the other hand, by Lemma (1) we have:

|Aα/4u| . |A
α−1
2 u|

α/2
|Aα/2u|1−

α
2 (1.35)
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So by (1.34) and (1.35) we conclude that:

|A−δ1Bu| . |A
α−1
2 u|

α/2
|Aα/2u|1−

α
2 |A1/2u| (1.36)

Since u(t) satisfies equation (1.8), we have the following:

||u(t)|| ≤ A+

∫ t

0

|A1−α/4S(t− s)A−δ1B(us)|ds (1.37)

where

A = ||u0||+ sup
0≤t≤T

||f(t)||+ sup
0≤t≤T

||WA(t)|| <∞

By inequality (1.36), and Holder inequality for three functions, we have the fol-

lowing:

∫ t

0

|A1−α/4S(t− s)A−δ1B(us)|ds ≤
∫ t

0

(t− s)α/4−1|A
α−1
2 u|

α/2
|Aα/2u|1−

α
2 ||u||ds

≤ {
∫ t

0

((t− s)
α
4
−1|A

α−1
2 u|

α/2
)
p

ds}
1/p

.{
∫ t

0

|Aα/2u|2ds}
1/q

.{
∫ t

0

||u||rds}
1/r

≤ B{
∫ t

0

||u||rds}
1/r

(1.38)

where

B = ( sup
0≤t<T

|A
α−1
2 u|)

pα
2 T

1
p
−1+α

4

1
p
− 1 + α

4

{
∫ T

0

|Aα/2u|2ds}
1/q

<∞

By (1.37), (1.38), and proposition (6), we conclude that sup0≤t<T ||u(t)|| <∞.
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case II. 2 < α < 3 : Choose any δ ∈ (0, 1). Define δ1 = α − 2, q = 2
α−2 , and

p = 2
α

. By Proposition (2) we have that :

|Bu|2δ1 . {|u|2α−3(|u|α−2 + |u|α−1) + |u|α−2|u|α−1} (1.39)

By the interpolation inequality (Lemma 1) we have that |u|2α−3 . |u|3−αα−1|u|
α−2
α .

Every other term in (1.39) is bounded. Therefore we conclude that :

|Bu|2δ1 ≤ K1|u|α−2α +K2

for some K1 and K2 independent of t. Therefore:

|Bu|q2δ1 ≤ 2q−1(Kq
1 |u|

q(α−2)
α +Kq

2) = 2q−1(Kq
1 |u|

2
α +Kq

2)

Hence
∫ T
0
|Bu|q2δ1ds <∞. Now similar to the first case we have that :

|A(α−δ)/2
∫ t

0

S(t− s)B(us)ds| ≤
∫ T

0

|A(α−δ)/2−δ1S(t− s)Aδ1B(us)|ds

≤ {
∫ T

0

(t− s)−p(
α−δ
2
−δ1)ds}

1/p

{
∫ T

0

|Aδ1B(us)|
q
ds}

1/q

Both terms are finite and thus the proof is complete (since u0, f , and WA are

already bounded in Vα)

Corollary 2. Under the hypotheses of Theorem (10), we conclude that if

sup0≤t<T |u(t)|α−1 +
∫ T
0
|u(t)|2αdt <∞ then sup0≤t<T |u(t)|α <∞.
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Theorem 11. Suppose the assumptions of Theorem (5) hold, except that α 6= 1, 2.

In addition suppose that WA ∈
⋂
T>0 L

p(Ω;C([0, T ];Vα)) and f ∈ C([0,∞);Vα).

If (u, τ) is a maximal solution, then:

sup
0≤t<τ

|u(t)|α−1 +

∫ τ

0

|u(t)|2αdt =∞

almost surely on {ω : τ(ω) <∞}

Proof. Define:

Em,k = {ω : τ(ω) ≤ m and sup
0≤t<τ(ω)

|u(t, ω)|α−1 +

∫ τ(ω)

0

|u(t, ω)|2αdt ≤ k}

and

ũ0 =


limt→τ(ω)− u(t, ω) in Vα if ω ∈ Em,k

0 otherwise

The Em,k’s are measurable. Also By Theorem (10), ũ0 is well-defined and obvi-

ously it belongs to Lp(Ω, Vα) (because the limit is always less than or equal to

k). In Theorem (8), we assumed that initial condition was given at t = 0. It is

possible to extend the theorem to a more general case where the initial condition

is given at a bounded stopping time τ0. Let τm = τ ∧ m. Then, there exists a

unique local mild solution (ũ, τ̃) (with τ̃ > τm) to the following :

ũ(t) = S(t− τm)ũ0 + f̃(t− τm)

+ W̃A(t− τm)−
∫ t

τm

S(t− s)B(us)ds τm ≤ t ≤ τ̃
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where

f̃(t) = f(t+ τm)− S(t)f(τm)

and

W̃A(t) = WA(t+ τm)− S(t)WA(τm)

The reason that this local solution exists is that f̃ , W̃A ∈ Lp(Ω;C([0,m+1];Vα)).

Define :

τ ′ = τ + τ̃ .1Em,k∩{τ≤τ̃}

and

u′(t) = u(t)1t<τ + ũ(t)1Em,k∩{τ≤t≤τ̃}
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When t < τ , u′ = u and so it satisfies equation 1.8. If t ≤ m and t ∈ [τ , τ̃ ], then

we have:

∫ t

0

S(t− s)B(u′s)ds =

∫ τ

0

S(t− s)B(us)ds +

∫ t

τ

S(t− s)B(ũs)ds

= S(t− τ)

∫ τ

0

S(τ − s)B(us)ds +

∫ t

τ

S(t− s)B(ũs)ds

= S(t− τ)[S(τ)u0 + f(τ) +WA(τ)− ũ0)]

+ [S(t− τ)ũ0 + f̃(t− τ) + W̃A(t− τ)− ũ(t)]

= S(t)u0 + f(t) +WA(t)− ũ(t)

Also suppose that {τ (n)}n is a corresponding sequence of stopping times for

the maximal solution (u, τ). Define

τ ′(n) = τ (n) + 1Em,k∩{τm≤τ̃}. τ̃

Then (u′, τ ′) together with {τ ′(n)}n satisfy the conditions of a maximal mild

solution (definition 1). Therefore, τ ′ = τ almost surely. It implies that |Em,k| = 0

because |{τm < τ̃}| = 1. And since m, k ∈ N were arbitrary, we conclude that
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sup0≤t<τ |u(t)|α−1 +
∫ τ
0
|u(t)|2αdt is almost nowhere finite on {ω : τ(ω) <∞}.

Lemma 12. The followings hold:

i) Aα
∫ t
0
S(t− s)Xsds = Aα−1Xt − d

dt
Aα−1

∫ t
0
S(t− s)Xsds.

ii) AαS(t)x = − d
dt
Aα−1S(t)x

iii) < d
dt

(Aα−1v(t)) , Aαv(t) > = 1
2
d
dt
|Aα− 1

2v(t)|
2

Proof. All cases can easily be proven.

Proposition 7. Suppose u is a mild solution to equation (1.7) and let v = u− ϕ

where ϕ = WA. Then we have the following :

|Aαv(t)|2 +
1

2

d

dt
|Aα−

1
2v(t)|

2
= − < Aα−1B(v(t) + ϕ(t)) , Aαv(t) >

+ < Aα−1
∑

dkek , A
αv(t) > (1.40)

Proof. v(t) satisfies the following:

v(t) = S(t)u0 + f(t)−
∫ t

0

S(t− s)B(vs + ϕs)ds
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Applying Aα to both sides of this equation and using Lemma (12) parts (i) and

(ii) we will obtain the following:

Aαv(t) =− d

dt
[Aα−1(S(t)u0 −

∫ t

0

S(t− s)B(vs + ϕs)ds+ f(t))]

− Aα−1B(vt + ϕt) + Aα−1
∑

dkek

=− d

dt
(Aα−1v(t))− Aα−1B(vt + ϕt) + Aα−1

∑
dkek

Now dot both sides of the equation (in L2) by Aαv(t) and use Lemma (12) part

(iii) to get (1.40).

Proposition 8. If 1
2
≤ r < 3

2
and r 6= 1, then we have the following We have the

following inequality:

i) < B(z1 + z2), A
2r−1z1 > ≤ 1

2
|A

r
2 z1|

2
+ Cr (|Ar−

1
2 z1|

2
.Fr +Gr)

where F and G are define as follows:

Fr =



|A 1
4 z2|

4
if r = 1

2

||z1||2 if 1
2
< r < 1

∑
i |A

r
2 zi|

2
+
∑

i |A
r−1
2 zi|

2
if 1 < r < 3

2
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and

Gr =


|A r

2 z2|
4

if 1
2
≤ r < 1

|Ar− 1
2 z2|

2
(
∑

i |A
r
2 zi|

2
+
∑

i |A
r−1
2 zi|

2
) +

∑
i,j |A

r
2 zi|

2 |A r−1
2 zj|

2
if 1 < θ < 3

2

Proof. case I. r = 1/2: cf. [4] pages 292-294 (They have proved it for |z|4 instead

of |A1/4z|. Use the fact that |z|4 ≤ |A1/4z| when n = 2.)

case II. 1/2 < r < 1: By corollary 1, we have that |A−(1−r)Bu| ≤ C|A r
2u|2.

Also since r − 1
2
< r

2
< 1

2
, by interpolation inequality (Lemma 1), we have

|A r
2u|2 ≤ C ′ |Ar− 1

2u|.||u||. Hence:

| < B(z1 + z2) , A
2r−1z1 > | . |B(z1 + z2)|D(A−(1−r))|A

2r−1z1|D(A1−r)

. |A
r
2 (z1 + z2)|

2
.|Arz1|

. |A
r
2 z1|

2
.|Arz1|+ |A

r
2 z2|

2
.|Arz1|

. |Ar−
1
2 z1|.||z1||.|Arz1|+ |A

r
2 z2|

2
.|Arz1| (1.41)
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For each term in (1.41) use the Young inequality with r = 2, a = |A 1+θ
2 z1| and κ

small enough, to complete the proof.

case III. 1 < r < 3
2

: In (1.18), let α = r − 1 and we will obtain the following:

| < B(z1 + z2) , A
2r−1z1 > | . |Arz1|.{|Ar−

1
2 (z1 + z2)| (|A

r
2 (z1 + z2)|+ |A

r−1
2 (z1 + z2)|)

+ |A
r
2 (z1 + z2)|.|A

r−1
2 (z1 + z2)|}

And similar to part (ii) using the Young inequality will complete the proof.

Theorem 13. Let 1
2
< r < 3

2
and r 6= 1 and fix ω ∈ Ω and suppose that

u(t) is a mild solution to equation (1.7) on [0, T ). Then sup0≤t<T |Ar−
1
2u(t)| +∫ T

0
|Aru(t)|2dt <∞ if the following terms are finite:

|Ar−
1
2u0| (1.42)

|Ar−1
∑

ηkdkek| (1.43)∫ T

0

|ArWA|2 (1.44)

sup
0≤t≤T

|AβWA(t)| (1.45)

where β = max{r
2
, r − 1

2
}

Proof. Let us use ϕ for WA in this proof and let v = u−ϕ. Since (1.44) and (1.45)

are finite it suffices to show that sup0≤t<T |Ar−
1
2v(t)| +

∫ T
0
|Arϕ|2 < ∞. Notice
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that because we have the zero mean condition, If r ≤ β, then |Arz| ≤ |Aβz|; and

even in the absence of the zero mean condition, if |Aβz| is finite then |Arz| would

also be finite. By (1.40) we have :

|Arv(t)|2 +
1

2

d

dt
|Ar−

1
2v(t)|

2
= − < B(v(t) + ϕ(t)) , A2r−1v(t) >

+ < Ar−1
∑

dkek , A
rv(t) > (1.46)

By Young inequality we have:

< Ar−1
∑

ηkdkek , A
rv > ≤ |Ar−1

∑
dkek|.|Arv|

≤ |Ar−1
∑

dkek|
2

+
1

4
|Arv|2 (1.47)

Also by Proposition (8) we have:

| < B(v + ϕ), A2r−1v > | ≤ 1

2
|Arv|2 + Cr [|Ar−

1
2v|

2
.Fr +Gr] (1.48)

By (1.46),(1.47), and (1.48) we conclude that (provided that |Arv(t)| < ∞ on

[0, T )):

1

4
|Arv|2 +

1

2

d

dt
|Ar−

1
2v|

2
≤ Cr [|Ar−

1
2v|

2
.Fr +Gr] + |Ar−1

∑
dkek|

2
(1.49)

Omitting the term 1
4
|Arv|2 momentarily and using Gronwall’s Lemma we obtain :

|Ar−
1
2v|

2
≤ (|Ar−

1
2v(0)|

2
+ 2t|Ar−1

∑
dkek|

2
+ 2Cr

∫
Gr).exp(2Cr

∫
Fr) (1.50)
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Relations (1.49) and (1.50) hold as long as 1
2
≤ r < 3

2
, r 6= 1, and |Arv(t)| < ∞

on [0, T ). Denote by Mr the supremum of the right hand side of (1.50) on [0, T ].

Then taking integral from zero to T of (1.49) we obtain:

∫ T

0

|Arv|2 ≤ 4 Mr + 4 Cr(Mr

∫
Fr +

∫
Gr) + 4T |Ar−1

∑
dkek|

2
(1.51)

Therefore sup0≤t<T |Ar−
1
2v|+

∫ T
0
|Arv|2 is bounded by a function of |Ar− 1

2v0|,

|Ar−1
∑
dkek|, and Fr and Gr. Now starting with r = 1/2 we obtain:

sup
0≤t<T

|v(t)|2 ≤ (|u0|2 + |A−
1
2

∑
ηkdkek|

2
+ 2C 1

2

∫ T

0

|A
1
4ϕ|

4
)

× exp(2C 1
2

∫ T

0

|A
1
4ϕ|

4
) = M 1

2
<∞ (1.52)

and

∫ T

0

||v||2 ≤ 4M 1
2

+ 4C 1
2
(1 +M 1

2
)

∫ T

0

|A
1
4ϕ|

4
+ 4T |A−

1
2

∑
ηkdkek|

2
<∞ (1.53)

If 1
2
< r < 1, then (1.52) and (1.53) still hold true and moreover :

sup
0≤t<T

|Ar−
1
2v(t)|

2
≤ (|Ar−

1
2u0|

2
+ |Ar−1

∑
ηkdkek|

2
+ 2Cr

∫ T

0

|A
r
2ϕ|4)

× exp(2Cr

∫ T

0

||v||2) = Mr <∞ (1.54)

40



and

∫ T

0

|Arv|2 ≤ 4Mr + 4Cr(Mr

∫ T

0

||v||2 +

∫ T

0

|A
r
2ϕ|4)

+ 4T |Ar−1
∑

ηkdkek|
2
<∞ (1.55)

And finally if 1 < r < 3
2
, then (1.54) and (1.55) hold true for r′ = r − 1

2
. We

will only need to show that
∫
Fr <∞, and

∫
Gr <∞. We have that Fr and Gr

are combinations of the following terms: |Ar− 1
2ϕ|

2
, |A r

2ϕ|2, |A r−1
2 ϕ|

2
, and |A r

2v|2,

|A r−1
2 v|

2
. The first three are bounded on [0, T ] because r−1

2
< r

2
< r − 1

2
. So we

can pull the supremum of these terms out of the integral while computing
∫
Fr,

and
∫
Gr.

Also since r
2
< 1 by the previous case (1.54), |A r

2v| is bounded (see corollary

2) and we can pull the supremum of it out of the integral. The only problematic

term might be
∫ T
0
|Ar− 1

2v|
2
. However, by (1.55) this terms is also bounded.

Lemma 14. Let
∑

k∈Z2
0
dkek ∈ Vα−2 and f be as defined in (1.9). Then f ∈

C([0,∞);Vα).

Proof. One can easily prove that:

f(t) =
∑
k∈Z2

0

1− e−t|k|2

|k|2
dkek (1.56)
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and

if 0 < t1 < t2 , then
|e−t1|k|2 − e−t2|k|2 |

|t1 − t2|
≤ |k|2e−t1|k|

2

≤ e−1

t1

So 0 < t1 < t2 implies:

|f(t1)− f(t2)|α ={
∑
|k|2α−4(e−t1|k|

2

− e−t2|k|
2

)
2
d2k}

1/2

≤ e−1|t1 − t2|
t1

|
∑

dkek|
α−2

Therefore, f(t) is uniformly continuous on any closed interval in (0,∞). To prove

continuity at zero, notice that

|f(t)− f(0)|2α = |
∑

06=|k|2≤n

1− e−t|k|2

|k|2
dkek|

2

α

+ |
∑
|k|2>n

1− e−t|k|2

|k|2
dkek|

2

α

≤ (1− e−t)2 |
∑

dkek|
2

α−2
+

∑
|k|2>n

|k|2α−4d2k

When t→ 0 and n→∞, the right hand side approaches zero. So f is continuous

at 0.
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Theorem 15. (Global Existence) Let 1 < α < 3, α 6= 2, u0 ∈ Lp(Ω;Vα),
∑
dkek ∈

Vα−2, WA ∈
⋂
T>0 L

p(Ω;C([0, T ];Vα)). Then equation (1.7) has a unique global

mild solution in Vα.

Proof. By Theorem (9), existence of a unique maximal local mild solution (u, τ)

is guaranteed. By the assumptions and Theorem (13), sup0≤t<τ |u(t)|α−1 +
∫ τ
0
|u|2α

is finite almost everywhere on {w : τ(ω) <∞}. So by Theorem (11) and by virtue

of Lemma (14) we conclude that τ =∞ almost surely.

The condition

WA ∈
⋂
T>0

Lp(Ω;C([0, T ];Vα)) (1.57)

in Theorem (15) is difficult to verify. In the next paragraph we will provide some

sufficient and easier conditions to replace (1.57).

Let H be a separable and Q be a symmetric non-negative operator with trQ <

∞. So there exists a complete orthonormal basis {vj}j of eigenvectors of Q with

bounded sequence of corresponding eigenvalues λj. Then there exists a Q-Wiener

process which can be represented in the form ofWt =
∑∞

j=1

√
λjB

j
t vj where {Bj

t }j

is a family of mutually independent 1-dimensional standard Brownian motions.

Let H0 = Im(Q1/2) (which is a Hilbert space). Now suppose that A generates a

contraction semigroup S(t) 14. Also assume that Φ is a Hilbert-Schmidt operator

14i.e. ||S(t)|| ≤ eat for some a ∈ R

43



from H0 to K. Then the stochastic convolution WA is defined as follows:

WA =

∫ t

0

S(t− s)Φ dWs (1.58)

Theorem 16. Let p ≥ 2 and T > 0. Then the stochastic convolution WA(t)

defined in (1.58) has a continuous version and there exists a constant Cp,T such

that :

E( sup
0≤t≤T

|WA(t)|pK) ≤ Cp,T (

∫ T

0

||Φ||2HS)

p/2

where ||Φ||HS denotes the Hilbert-Schmidt norm of Φ.

Proof. cf. [16] page 15.

Proposition 9. Recall the definition of W (t) in (1.6) and WA in (1.10). If p ≥ 2

and for some q, s ∈ R we have
∑
|k|qcsk < ∞ and

∑
|k|2α−qc1−sk < ∞ then the

condition (1.57) holds.

Proof. Define Q(ek) = csk|k|
qek. Then Q is a trace class operator on H and

W (t) =
∑
c
s/2
k |k|

q/2bkt ek is a Q - Wiener process. Then define Φ : H0 → Vα by

Φ(ek) = |k|−q/2c
1−s
2

k ek. The operator Φ is a Hilbert-Schmidt operator because

||Φ||HS =
∑
|k|2α−qc1−sk <∞. On the other hand, we have that :∫ t

0

S(t− s)ΦdWs =

∫ t

0

S(t− s)c1/2k dbksek = WA(t)
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and therefore by Theorem (16) we conclude that for every T > 0:

WA ∈ Lp(Ω;C([0, T ];Vα))
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Chapter 2

Applications in Turbulence

2.1 Introduction

1 The kinetic energy and the means-squared vorticity are both constants of

motion for viscosity zero in two-dimensional turbulence. This implies that there

exist two inertial ranges E(k) ∼ ε2/3k−5/3 and E(k)η2/3 ∼ k−3, where the kinetic

energy per unit mass is
∫∞
0
E(k)dk, ε is the rate of the energy cascade per unit

mass and η is the rate of the mean-square vorticity cascade per unit mass, see [12].

In experiments and observations in the atmosphere2, the −5/3 range is found to

consist of a backward (towards smaller values of k) energy cascade with a zero

energy flow, whereas the −3 range consists of a forward (towards larger values

1This chapter is heavily based on [1]
2see [9]
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of k) vorticity cascade with zero energy flow. It is conjectured that if energy is

pumped into the systems into a band of wavenumers ∼ k0, then two steady states

result up to viscous corrections. One a −5/3 range for k << k0 and the other

a −3 range for k >> k0. The energy increases steadily with time as the −5/3

channels energy to ever lower scales until large eddies of the range of the whole

fluid are excited. This accounts for the existence of large high and low pressure

zones in the atmosphere on scales of the atmosphere itself.

It was pointed out by Onsager that the −5/3 cascade corresponded to Hölder

continues functions of Hölder index 1/3, whereas the −3 cascade corresponds to

Hölder continuous functions of Hölder index 1/2. In this dissertation the existence

of both of these solutions of the two-dimensional Navier-Stokes equation, in a noisy

environment, will be proven.

2.2 Forward and Backward Cascades in 2D

3 Turbulence phenomenon occurs when the Reynold’s number is large (>

4000). It is a dimensionless quantity which is defined by Re = LU
ν

, where L

is a characteristic length, U is a characteristic velocity of the flow, and ν is the

kinematic viscosity of the fluid. A turbulent flow is highly irregular and chaotic

but in simple terms it consists of many eddies of different sizes. The larger ed-

3some parts borrowed from [14]
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dies are independent of viscosity but the smaller ones are controlled by viscosity.

In essence, as famously quoted by L. F. Richardson (1922), the large eddies are

unstable and eventually break up into smaller eddies, and so on. The energy is

passed down from the large scales of the motion to smaller scales (it is called

energy cascade) until reaching a sufficiently small length scale such that the vis-

cosity of the fluid can effectively dissipate the kinetic energy. Therefore, there are

three length scales: energy-containing scale I, inertia subrange where the energy

is transferred from large eddies to smaller ones, and dissipation scale η. Denote by

E(k) the energy spectrum for scalar wavenumber k (The larger k, the smaller the

eddy). Essentially E(k) represents the density of contributions of to the kinetic

energy per unit scalar wave number. Therefore we have :

E =

∫ ∞
0

E(k)dk

where E represents the kinetic energy.

At equilibrium, the rate of energy transfer from one scale to the next has to

remain the same for all scales, so that no group of eddies sharing the same scale

sees its total energy level increase or decrease over time. So by conservation of

energy we conclude that I the rate at which energy is supplied at the largest scale

is equal to that dissipated at the shortest scale. Let ε be the energy dissipation

rate when the turbulence is fully developed. According to Kolmogorov theory

(1941) the following hypotheses hold true:
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i) For very high Re, the turbulent motions with length scales much smaller than

l are statistically independent of the components of the motion at the energy-

containing scales. The energy-containing scales of the motion may be inhomoge-

neous and anisotropic, but this information is lost in the cascade so that at much

smaller scales the motion is locally homogeneous and isotropic If the energy is

transferred over many stages to the large wave numbers where it is dissipated,

then the time scales characteristic of the interactions at large wave numbers must

be very much smaller than the time scale of the energy-containing eddies. The

motion of these large wave numbers is close to a state of statistical equilibrium.

ii) For very high Re, the statistics of components in the equilibrium range, being

independent of the larger scales, is universally and uniquely determined by the

viscosity ν and the rate of energy dissipation ε.

iii) At very high Re the statistics of scales in the inertial subrange (I−1 � k �

η−1) are universally and uniquely determined by the scale k and the rate of energy

dissipation ε.

Then, in the inertial subrange the energy spectrum E(k) of the turbulence must

be of the following form:

E(k) ∼ ε2/3k−5/3 (I−1 � k � η−1)
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This is called the Kolmogorov’s 5/3 law. Some corrections were added to this law

by Kolmogorov and Obukhov in 1962 to take care of the influence of intermittency.

For example, see [1] pages 48 and 49.

Remark 4. One conclusion of the Kolmogorov’s 5/3 law is that largest eddies

contain the bulk of the kinetic energy.

Remark 5. There has not been a direct proof of the Kolmogorov’s 5/3 law based

solely on the Navier-Stokes equation.

In dimension 2, there is the interesting so-called backward energy cascade

phenomenon which was first explained in the paper Inertial Ranges in Two-

Dimensional Turbulence, by R. H. Kraichnan [12]. In essence, the inertial range is

divided into two subranges: the energy cascade range (backward cascade) and the

enstrophy cascade range (forward cascade). The enstrophy is defined as follows:

C =
1

2

∫
T2

∇× u2dx

One can show that

C =

∫ ∞
0

k2E(k)dk

One very useful tool in the literature of turbulence is structure functions. By

definition, a structure function of order p is the Lp-norm of velocity differences in

equation (1.1). More precisely :

Sp(l) = E[|u(x+ l, t)− u(x, t)|p] (2.1)
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where u is a solution to equation (1.1). One can show that when the second order

structure function is a power law, S2(l) ∝ lξ2 , then the energy spectrum is also a

power law of the form E(k) ∝ k−(1+ξ2) 4.

It can be shown that the solution to equation (1.1) is given as follows5:

u =eK(t)Mtu0 +
∑

c
1/2
k

∫ t

0

eK(t−s)Mt−sdb
k
sek

+
∑

dk

∫ t

0

eK(t−s)Mt−s|k|1/3dtek

where

K = ν∆ +∇∆−1tr(∇u∇)

,

Mt = exp{−
∫
u(Bs, s)dBs −

1

2

∫ t

0

|u(Bs, s)|2ds}

The eigenvalues of the operator K in the inertial range are given by:

λk = 4π2ν|k|2 + C|k|2/3 (2.2)

In (2.2), C is a constant times a Sobolev space norm of u. Now suppose that u is

a solution to equation (1.1) and let us assume that λk ≈ c|k|α. Since there is no

intermittency correction in dimension 2, one can use the computations on page

4see [20] page 56
5see [1] page 42
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98 of [1] to show that:

S2 ≤
4

c2

∑
k∈Z2

0

[d2k(1− e−λkt)
2

+ c/2 ck(1− e−2λkt)]
|k|α

sin2(πk.(x− u)) (2.3)

Now if |x− y| � 1 and t→∞, we obtain the following:

S2 .
∑ sin2(πk.(x− y))

|k|α
∝ |x− y|α (2.4)

In the inertial range, if u is Holder continuous of order 1
2

we will have cascade of

enstrophy and if it is Holder continuous of order 1
3

we will have cascade of energy.

On the other hand, by Sobolev embedding theorem we know that H4/3 ⊂ C1/3

and H3/2 ⊂ C1/2 and for both cases we have the global existence theory from

chapter 1.

Now suppose that we are in the inertial range and that |x − y| � 1. If we

are closer to the dissipation scale, in which cascade of enstrophy occurs, then

the effect of viscosity is significant and therefore ν � 1. Thus, by (2.2) we have

λk ≈ 4π2ν|k|2 and hence by (2.4), S(2) ∝ |k|2 and as a result, E(k) ∝ |k|−3.

On the other hand, if we are closer to the larger scales in which energy cascade

occurs, i.e. ν � 1, then by (2.2) we have λk ≈ C|k|2/3 and therefore by (2.4),

S(2) ∝ |k|2/3 and as a result, E(k) ∝ |k|−5/3. This explains the power laws of

cascades of energy and enstrophy in 2 dimensions.
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