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Abstract

Model Reduction for Treatment of Neurological Diseases and Cardiac Arrhythmias

by

Daniel David Wilson

For more than half a century, phase reduction techniques have been a remarkably pow-

erful tool to aid in the understanding of oscillatory nonlinear dynamical systems, with a

wide array of examples spanning the biological, physical, and chemical sciences. In the

first part of this dissertation, we draw on the utility of phase reduction to investigate

three problems with neuroscientific applications. Chapter 2 details a strategy to effi-

ciently desynchronize a population of pathologically synchronized limit cycle oscillators

which could represent a low energy treatment for Parkinson’s disease. Chapter 3 gives

theoretical details and experimental validation of a strategy to entrain a noisy and hetero-

geneous population of limit cycle oscillators with potential applications to the treatment

of pathological conditions such as hearing loss and circadian dysfunction. Also, Chapter 4

details a general methodology which could make the implementation of control strategies

from Chapters 2 and 3 more feasible in an in vivo setting.

While phase reduction has been exceedingly useful for systems with limit cycle so-

lutions, analogous methodologies are not similarly developed for systems with excitable

dynamics. The second part of this dissertation (Chapters 5 and 6) remedies this situation

by developing a reduction methodology for excitable systems which approach a stable

stationary solution. This reduction method relies on the notion of isostables, which are

defined as sets of points in phase space that approach a stationary solution together, in

a well-defined sense. An adjoint method is derived for calculating infinitesimal isostable

response curves and this strategy is used to devise and implement sophisticated control
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strategies in complex dynamical systems of neurological and cardiological behavior. Em-

phasis is given to the problem of eliminating cardiac alternans which has been implicated

as a precursor to fibrillation, a leading cause of death in the industrialized world. It is

envisioned that this new reduction strategy could be as useful as a phase reduction has

been in the past decades as it shows tremendous promise as a tool for the understanding

and control of nonlinear systems.
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Chapter 1

Introduction

This dissertation investigates model reduction and optimal control techniques in the con-

text of both the single cell and network behavior of neurons and cardiac cells. Motivation

for the neuroscience aspects of this work come from Parkinson’s disese, a neurological

disease characterized by the progressive loss of motor function. Motivation for the car-

diological aspects of this work come from the treatment of alternans, the beat-to-beat

alternation of electrochemical cardiac dynamics which has been implicated as a precursor

to cardiac arrest.

Phase reduction methods have fruitfully applied to many physical, chemical and bi-

ological systems [1–12]. Such methods are useful for understanding the dynamics of

perturbed nonlinear oscillators because they allow for the reduction of potentially com-

plicated and high dimensional systems of ordinary differential equations (ODEs) and

partial differential equations (PDEs) to a system with a single phase variable. Phase re-

duction is particularly powerful in conjunction with Hamilton-Jacobi-Bellman, calculus

of variations, or dynamic programming [13] control frameworks, since the computational

effort for finding the desired control input grows exponentially with the number of state

variables.
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As a concrete example of the power of phase reduction, the first part of this disser-

tation examines a control strategy with relevance to neurological networks. Pathological

synchronization among bursting neurons in the basal ganglia-cortical loop within the

brain has been hypothesized to play a contributing role in the tremors seen in patients

with Parkinson’s disease [14–19]. Deep Brain Stimulation (DBS) is a well-established

technique for alleviating these tremors and has been hypothesized to desynchronize these

neurons through the injection of a high-frequency, pulsatile input into an appropriate

region of the brain [14], [20], [21]. As shown in Chapter 2, phase reduction is an essential

step in formulating a numerically tractable control strategy to desynchronize a population

of pathologically synchronized neural oscillators in an energy-efficient manner.

The merits of phase reduction extend beyond the theoretical and computational

realm, and have also been useful for systems for which the state dynamics are not

fully known. For example, in vitro experiments on biological tissue have successfully

controlled spike timing in periodically firing neurons using inputs computed from phase

models [22], [23]. The full neural models are not required in this context. Instead these

control strategies only require a measurement of the phase response curve which can be

obtained experimentally using the so-called “direct method” [24], [25] (see Appendix B).

Given the wide applicability of phase reduction, it is quite surprising that analogous

methodologies are not similarly developed for the study of systems with dynamics that

asymptotically approach a fixed point (for ODEs) or a stationary solution (for PDEs).

In Chapters 5 and 6, we describe a general method of model reduction for excitable

systems based on the notion of isostables [26], defined as sets of points in phase space

that approach a fixed point together, in a well-defined sense. Here, a system is said

to be excitable if it contains a stable fixed point for which perturbations above a given

threshold yield a response that is well beyond that threshold.

One motivation for isostable reduction comes from cardiology, where the muscular
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tissue of the heart, the myocardium, is modeled by electrically coupled excitable cells.

Under certain conditions, the myocardium can become susceptible to cardiac fibrillation,

the uncoordinated contraction of the cardiac muscle, which can be deadly in an otherwise

healthy heart if not treated within minutes of onset. Most researchers agree that atrial

fibrillation is caused by the presence of unwanted spiral waves [2] within the myocardium

which interfere with the normal sinoatrial rhythm [27], [28], [29]. Cardiac fibrillation can

be the final step in an increasingly complex series of events that begins with a phenomenon

known as cardiac alternans. Alternans is the beat to beat alternation of electrochemical

cardiac dynamics at a constant rate of pacing and has been implicated as a precursor

to fibrillation [30]. In recent decades, researchers have looked into ways of suppressing

alternans as a way of preventing cardiac fibrillation, obviating the need for painful and

damaging defibrillating shocks. Many of these methods, such as those described in [31]

and [32], attempt to suppress alternans by monitoring the action potential duration

(APD), or the length of time that the tissue remains depolarized (i.e., at elevated voltage),

and appropriately modifying the time at which the next action potential is elicited.

These methods have been shown to be successful in real cardiac tissue [33], [34], [35].

In this dissertation, we will show how isostable reduction can aid in the development of

control strategies to eliminate cardiac alternans. While the applications considered in

this dissertation mostly pertain to cardiological applications, this reduction strategy could

have wide applicability to other physical, chemical and biological systems. We envision

that this new reduction strategy could prove to be as useful as phase reduction has been

in the past decades, as it shows tremendous promise as a tool for the understanding and

control of nonlinear systems.

The outline of this dissertation is as follows. In Chapter 2, we consider the problem

of desynchronizing a pathologically synchronized population of neurons. A procedure

is developed for finding an energy-optimal stimulus which gives a positive Lyapunov
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exponent, and hence desynchronization, for a neural population. Not only does this

strategy achieve desynchronization for each model we consider, but it also does so using

less energy than recently proposed methods, suggesting a powerful alternative to pulsatile

stimuli for deep brain stimulation. Furthermore, we calculate error bounds on the optimal

stimulus which will guarantee a minimum Lyapunov exponent and develop a related

strategy for desynchronizing neurons based on the population’s phase distribution.

In Chapter 3, in collaboration with the Netoff laboratory at the University of Min-

nesota, we develop a methodology to design an efficient stimulus to entrain nonlinear,

noisy limit cycle oscillators with uncertain properties. Conditions are derived which guar-

antee that the stimulus will entrain the oscillators despite uncertainty in the individual

neural parameters. Using these conditions, we devise an energy optimal control strategy

for entrainment and apply it to numerical models of noisy phase oscillators and to in vitro

hippocampal neurons. In both instances, the optimal stimuli outperform other similar

but suboptimal entraining stimuli. Because this control strategy explicitly accounts for

both noise and inherent uncertainty of model parameters, it could have experimental

relevance to neural circuits where robust spike timing plays an important role.

In Chapter 4, we present a simple yet novel methodology to calculate PRCs of individ-

ual oscillators using an aggregate signal from a larger population. Current experimental

techniques for inferring PRCs require data from individual oscillators, which can be im-

practical to obtain when the oscillator is part of a much larger population. The proposed

methodology is shown to be accurate in the presence of inter-oscillator coupling and noise

and can also provide a good estimate of an average PRC of a heterogeneous population.

We also find that standard experimental techniques for PRC measurement can produce

misleading results when applied to aggregate population data.

In Chapter 5, using the notion of isostables we present a general method for isostable

reduction for excitable systems. We also devise an adjoint method for calculating in-
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finitesimal isostable response curves, which are analogous to infinitesimal phase response

curves for oscillatory systems. Through isostable reduction, we are able to implement

sophisticated control strategies in a high-dimensional model of cardiac activity for the

termination of alternans. Results based on numerical simulation indicate that this con-

trol strategy requires many orders of magnitude less energy to implement than other

recently proposed alternans elimination strategies.

In Chapter 6, we present a general method for isostable reduction of partial differential

equations, with the potential to reduce the dimensionality of a nonlinear system from

infinity to one. We illustrate the utility of this reduction by applying it to two different

models with biological relevance. In the first example, isostable reduction of the Fokker-

Planck equation provides the necessary framework to design a simple control strategy

to desynchronize a population of pathologically synchronized oscillatory neurons. In

the second example, the reduction of a partial differential equation describing a ring

of cardiac tissue allows one to develop an energy optimal control strategy to eliminate

cardiac alternans. We also propose a strategy for measuring isostable response curves in

vitro which could pave the way for experimental validation of these results.

Supporting Publications This work is supported by results originally documented

in the following peer reviewed publications:
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heterogeneous noisy neurons. Frontiers in Neuroscience. 9: Art. No. 192, 2015.

5



Introduction Chapter 1

• [38] D. Wilson and J. Moehlis. Extending phase reduction to excitable media:
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• [39] D. Wilson and J. Moehlis. Isostable reduction with applications to partial
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Chapter 2

Optimal Chaotic Desynchronization

for Neural Populations

2.1 Introduction

Pathological synchronization among spiking neurons in the basal ganglia-cortical loop

within the brain is thought to be one factor contributing to the tremors exhibited by

patients with Parkinson’s disease [40]. Deep Brain Stimulation (DBS), a well-established

technique for mitigating these tremors, has been hypothesized to desynchronize these

neurons through the injection of a high-frequency, pulsatile input into an appropriate

region of the brain [14], [20], [21]. Typically, DBS is implemented with a permanent,

high frequency, pulsatile signal which is administered in an open-loop fashion. This has

motivated researchers to search for alternative stimuli that consume less energy in order to

prolong battery life and to mitigate side effects of DBS such as aggregate tissue damage.

Control methods that employ feedback control are of particular interest because they

can be used only when needed. For example, in [41], double-pulse stimulation was shown

to desynchronize a population of noisy phase oscillators and prevent resynchronization.
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Nonlinear, time-delayed feedback is used in [42] to experimentally desynchronize a system

of electro-chemical oscillators. In [43], a minimum time desynchronizing control based on

phase resetting for a coupled neural network was established using a Hamilton-Jacobi-

Bellman approach, which was later extended by [44] to desynchronize neurons using an

energy-optimal criterion. In [45], an energy-optimal, charge-balanced stimulus was used

to control neural spike timing. More recently, [46] developed a model to control neural

networks using a light sensitive protein, instead of electrical stimuli.

In this chapter, we present a procedure for finding an energy-optimal DBS stimulus

which exponentially desynchronizes a population of coupled neurons. Unlike the methods

in [43] and [44], it does not need the full model for the dynamics, and unlike [47] and

[45], it only requires a single input. Methods presented in [48–53] use delayed-feedback

stimulation to counter the effects mean field coupling on an ensemble of heterogeneous

oscillators, and the method presented in this chapter notably differs from these methods

because it is applicable to networks without mean-field coupling, and does not require

simultaneous stimulation and measurement. We compare this method to other recently

proposed methods, not only to show its desynchronizing capabilities for many types of

neural models, but also its ability to do so with comparatively small control inputs.

Furthermore, we compute error bounds on the optimal stimulus that will guarantee a

resulting signal that will have the required properties to desynchronize a network of

neurons, and propose a control strategy for desynchronizing a population based on its

phase distribution.

The organization of the chapter is as follows. In Section 2.2, we derive an expression

for the Lyapunov exponent for two neurons with similar initial phases and use the result to

develop a control method. Section 2.3 uses the optimal stimulus calculated from methods

in Section 2.2 to develop sufficient conditions to yield a stimulus with a predetermined

guarantee on its Lyapunov exponent. In Section 2.4 we develop a control methodology
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based on a population’s phase distribution. Section 2.5 examines the control methodology

applied to three neural models in order to make comparisons with previous work. Section

2.6 gives concluding comments. This chapter is based on work originally appearing

in [10].

2.2 Derivation of the Lyapunov Exponent and Opti-

mal Control

We present a procedure for finding an energy-optimal DBS stimulus which exponen-

tially desynchronizes a population of neurons. An advantage of this approach is that it

only requires knowledge of a neuron’s phase response curve (PRC), which is experimen-

tally measurable by perturbing an oscillatory neuron at different phases, and determining

the change in spike timing (see, for example, Appendix B or [25]). The PRC can also be

calculated numerically if all equations and parameters in the neural model are known,

e.g. [54]. Through phase reduction, as illustrated, for example, in [54], we can obtain a

reduced model for a single neuron of the form

dθ

dt
= ω + Z(θ)u(t), (2.1)

where θ is the phase of the neuron and is 2π-periodic on [0, 2π) and, by convention, θ = 0

corresponds to the spiking of the neuron. Here, ω gives the neuron’s baseline dynamics

which are determined from its natural period T as ω = 2π/T , Z(θ) is the PRC, and

u(t) = I(t)/C with I(t) being the control input and C = 1µF/cm2 is the constant neural

membrane capacitance.

Lyapunov exponents are commonly used to describe the rate at which nearby tra-

jectories diverge, and have proven useful in other problems, for example, by serving as
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biomarkers for seizure prediction and control [55–57]. We now derive an expression for the

Lyapunov exponent for (2.1) by considering two identical neurons subject to a common

stimulus:

dθi
dt

= ω + Z(θi)u(t), i = 1, 2. (2.2)

Here we assume that the neurons are nearly in-phase, so that θ1 ≈ θ2. Letting φ ≡

|θ2 − θ1|, we obtain

dφ

dt
= Z ′(θ)u(t)φ+O(φ2). (2.3)

Since we have linearized the equation, we assume that solutions are of the form φ ∼ eΛt,

which yields the finite time Lyapunov exponent (cf. [58])

Λ(τ) =
log(φ(τ))

τ
=

∫ a+τ

a
Z ′(θ(s))u(s)ds

τ
. (2.4)

We now consider a population of neurons, each described by an equation of the form

(2.1). Suppose for some time t1, for all stimuli u(t) that advance θ from θ(0) = 0 to

θ(t1) = ωt1 (that is, stimuli that do not create any net change of phase), we want to

find the stimulus that minimizes the cost function G[u(t)] =
∫ t1

0
[u(t)2−βZ ′(θ(t))u(t)]dt.

Here,
∫ t1

0
[u(t)2]dt corresponds to the power associated with the stimulus, and β > 0 is

a scaling parameter that determines the relative importance of minimizing the energy

versus maximizing the Lyapunov exponent, Λ(t1). We apply calculus of variations to

minimize [59]

C[u(t)] =

∫ t1

0

{
u(t)2 − βZ ′(θ)u(t) + λ

(
dθ

dt
− ω − Z(θ)u(t)

)}
dt, (2.5)

where the Lagrange multiplier λ forces the neural dynamics to obey equation (2.1). The
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resulting Euler-Lagrange equations are

u(t) = [βZ ′(θ) + λZ(θ)]/2, (2.6)

θ̇ = Z(θ) [βZ ′(θ) + λZ(θ)] /2 + ω, (2.7)

λ̇ = − [βZ ′(θ) + λZ(θ)] [βZ ′′(θ) + λZ ′(θ)] /2, (2.8)

where ′ = d/dθ. To find the optimal control, u(t), equations (2.7) and (2.8) must be

solved subject to the boundary conditions θ(0) = 0, θ(t1) = ωt1. This can be done by

numerically finding the initial condition λ(0) ≡ λ0 that satisfies the boundary conditions,

for example, by using a shooting method. We note that the above conditions are only

necessary and not sufficient for global optimality. However, the phase reduction (2.1)

requires inputs of small amplitude so that solutions remain close to the periodic orbit.

Since u(t) is directly proportional to λ in equation (2.6), we can limit our search to

include solutions obtained with reasonably small values of λ(0) in order to find a feasible

solution.

While the previous procedure will produce an energy-optimal stimulus, it will not

necessarily be charge-balanced (CB). The importance of CB stimuli in DBS has been

known for many years. Over time, non-charge-balanced (NCB) stimuli can create an ac-

cumulation of charge and cause harmful Faradaic reactions that may damage surrounding

neural tissue or the DBS electrode [60]. If we consider the total charge q imparted to

a neuron to be the integral of the current, then q̇(t) = Cu(t), and we can derive an

optimal CB stimulus by optimizing the same cost function as in the NCB case, G[u(t)],

subject to the additional constraints q(0) = 0 and q(t1) = 0, the latter ensuring that

the stimulus will be charge neutral at t1. We again apply calculus of variations [59] to

minimize C[Φ(t), Φ̇(t), u(t)] =
∫ t1

0
M[u(t)]dt where

11



Optimal Chaotic Desynchronization for Neural Populations Chapter 2

M[u(t)] = u(t)2 − βZ ′(θ)u(t) +

[
λ1(t) λ2(t)

]


dθ
dt
− ω − Z(θ)u(t)

dq
dt
− u(t)


 , (2.9)

and Φ(t) = [θ(t), q(t), λ1(t), λ2(t)]T . The Lagrange multipliers λ1 and λ2 force the dy-

namics to satisfy the evolution equations for θ and q given above. The associated Euler-

Lagrange equations are

∂M
du

=
∂

dt

(
∂M
du̇

)
,

∂M
dΦ

=
∂

dt

(
∂M
dΦ̇

)
. (2.10)

With the above boundary conditions, this is a two-point boundary value problem for u(t)

which is solved using a double bisection algorithm described in [45]. As with the NCB

formulation, (2.10) is only necessary and not sufficient for global optimality, but we can

limit our search for λ1(0) and λ2(0) so that the resulting solutions yield optimal stimuli

that are small enough so that the phase reduction (2.1) is still valid.

2.3 Guaranteed Lyapunov Exponents

In an experimental setting, errors in measuring the PRC will induce errors in the

calculated optimal stimulus. An important question to ask is whether or not these errors

will stifle the desynchronizing efforts of the electrical signal, and how large these errors

need to be before they completely degrade its desynchronizing capabilities. To answer

these questions, we consider an NCB optimal stimulus, Iopt(t), found using methods from

Section 2.2. Consider another stimulus Ic(t) that is different from Iopt(t). We define the

12
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error signal as Ie(t) = Ic(t)− Iopt(t) and the infinity norm of Ie(t) as

||Ie(t)||∞ = sup
0≤t≤t1

|Ie(t)|, (2.11)

where t1 is the duration of the optimal signal. As we will demonstrate in Section 2.5,

a signal with a larger Lyapunov exponent will desynchronize two neurons with similar

initial phase more quickly. For this reason, we use the Lyapunov exponent from (2.4) as

a measure of the desynchronizing capabilities of a signal. In order to identify a bound

on ||Ie(t)||∞ which can guarantee desynchronization, we must find the worst possible

Lyapunov exponent for any signal with ||Ie(t)||∞ ≤ E, where E is a constant. To do

so, we define the cost function L[Ie(t)] =
∫ t1

0
[Iopt(t) + Ie(t)]Z

′(θ(t))dt subject to (2.1),

θ̇ = ω + Z(θ)[Iopt(t) + Ie(t)], with the additional constraint −E ≤ Ie(t) ≤ E for all

t ∈ [0, t1]. Here, L[Ie(t)] corresponds to the Lyapunov exponent for a stimulus Ic(t).

The inequality constraint ensures that ||Ie(t)||∞ ≤ E. Using Pontryagin’s Minimum

Principle [13], a necessary condition for the control that minimizes L[Ie(t)] is that the

control minimizes the Hamiltonian

H(θ(t), Ie(t), p1(t)) = [Iopt(t)+Ie(t)]Z
′(θ(t))+ωp1(t)+[Iopt(t)+Ie(t)]p1(t)Z(θ(t)), (2.12)

and is given by Ie(t) = −Esign(Z ′(θ) + p1(Z(θ)) where ’= d/dθ, and p1 is a Lagrange

multiplier. Furthermore,

θ̇ = ω + Z(θ)[Iopt(t) + Ie(t)], (2.13)

ṗ1 = −[Iopt(t) + Ie(t)]Z
′′(θ)− p1Z

′(θ)[Iopt(t) + Ie(t)], (2.14)

with the boundary condition θ(0) = 0. From the problem formulation, we only have
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one boundary condition, and in order to find the global minimum of L[Ie(t)], we must

simulate equations (2.13) and (2.14) for all plausible values for p1(0) to determine the

minimum (worst case) Lyapunov exponent of the associated signals. Using this approach,

we can find boundaries on a stimulus that are sufficient, but not necessary, to yield a

given Lyapunov exponent.

2.4 Optimal Control of the Phase Distribution

θ

ρ(
θ)

(θ
M

,ρ
M

)

Figure 2.1: The maximum value, ρM for a large distribution of neurons.

The methods from Section 2.2 are optimal for desynchronizing two neurons with close

initial phase. However, brain regions can contain on the order of billions of neurons [61].

For large populations of neurons, rather than examining individual neurons, which can

be too large to simulate in silico, it is appropriate to monitor the probability density of

neurons with phase θ at a given time, ρ(θ, t). For an uncoupled population that obeys

equation (2.1), the probability density evolves according to the advection equation as

14
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described in [20]:

∂ρ(θ, t)

∂t
= − ∂

∂θ
[{ω + Z(θ)u(t)} ρ(θ, t)] = −ρ∂ν

∂θ
− ν ∂ρ

∂θ
, (2.15)

where ν(θ, t) = ω + Z(θ)u(t). In Section 2.5, we show that the CB and NCB optimal

signals obtained using methods from Section 2.2 can effectively desynchronize a network

of 100 coupled neurons for many different neural models. Therefore, it is no surprise that

the same signal is effective at desynchronizing a population evolving according to (2.15)

(not shown).

However, we wish to approach this problem from a neural population perspective, to

see if we can find an effective control strategy to desynchronize large neural populations.

Suppose we are interested in the evolution of the maximum of the distribution, ρM , at

θ ≡ θM . Noting that the total time derivative of the distribution is dρ
dt

= ∂ρ
∂t

+ ∂ρ
∂θ

dθ
dt

, and

that ∂ρ
∂θ

= 0 at the local maximum, we find

dρM
dt

= −ρM
∂ν

∂θ
(θM , t) = −Z ′(θM)u(t)ρM . (2.16)

Note the similarity of (2.16) to equation (3.4). From the two-neuron optimal control

formulation, Z ′(θ)u(t) > 0 corresponds increasing the phase difference, whereas here, it

corresponds to a decreasing value of ρM . In order to find an equation for the evolution of

θM , we again make use of the relation ∂ρ
∂θ
|θM = 0. Taking the total time derivative yields
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0 =
∂

∂θ

dρ

dt
,

=
∂

∂θ

[
ρθ
dθM
dt

+ ρt

]
,

=
∂

∂θ

[
ρθ
dθM
dt
− νθρ− ρθν

]
,

ρθθ
dθM
dt

=νθθρ+ 2νθρθ + ρθθν. (2.17)

All expressions in the above equation are evaluated at ρM and θM , thus ρθ = 0. Also,

since ρM is a local maximum, ρθθ < 0, and equation (2.17) becomes

dθM
dt

= ω + Z(θ)u(t) +
ρM
ρθθ

Z ′′(θ)u(t). (2.18)

Equations (2.16) and (2.18) are special cases of the equations derived in [62]. In order

to effectively use (2.18), we must find some function κ(θM , ρM) ≈ ρθθ. One such κ,

which works well in practice, can be obtained by starting with a Gaussian distribution

and assuming that the distribution remains Gaussian for all time. We note that while

the phase reduction is valid for θ ∈ [0, 2π), a Gaussian distribution is defined for all θ.

However, because we are considering synchronized systems with a small variance, the

values of the Gaussian distribution that we are ignoring are insignificant. Using this

strategy, one can easily show that κ(ρM) = −2πρ3
M .

Equation (2.16) is separable, and we can solve explicitly to determine the change in

the value of ρ over some time interval of length T

∫ a+T

a

1

ρM
dρM = −

∫ a+T

a

Z ′(θM)u(t)dt,

=⇒ log

(
ρM(a+ T )

ρM(a)

)
= −

∫ a+T

a

Z ′(θM)u(t)dt. (2.19)
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If we want to minimize ρM while taking into account the energy expended, we can use

calculus of variations [59] to minimize C[Φ(t), Φ̇(t), u(t)] =
∫ t1

0
G[u(t)]dt where

G[u(t)] = u(t)2 − βZ ′(θ)u(t) +

[
λ1(t) λ2(t)

]


dθ
dt
− ω − Z(θ)u(t)− ρM

κ(θM ,ρM )
Z ′′(θ)u(t)

dρM
dt

+ ρMZ
′(θ)u(t)


 ,

(2.20)

and Φ(t) = [θM(t), ρM(t), λ1(t), λ2(t)]T . Lagrange multipliers λ1 and λ2 force the dynam-

ics to satisfy (2.16) and (2.18). Note the similarity of (2.20) to the NCB cost function

(2.5). When κ(θM , ρM) � ρMZ
′′(θ)u(t) (as might be the case for a highly synchro-

nized network) the function that minimizes (2.20) is approximately the same function

that minimizes (2.5). Taking κ(ρM) = −2πρ3
M as previously mentioned, the associated

Euler-Lagrange equations are

u(t) =

[
βZ ′(θM) + λ1

(
Z(θM)− 1

2πρ2
M

Z ′′(θM)

)
− λ2ρMZ(θM)

]
/2, (2.21)

˙ρM =− ρMZ ′(θM)u(t), (2.22)

˙θM =ω + Z(θM)u(t)− 1

2πρ2
M

Z ′′(θM)u(t), (2.23)

λ̇1 =λ1u(t)

[
1

2πρ2
M

Z ′′′(θM)− Z ′(θM)

]
+ Z ′′(θM)u(t) [ρMλ2 − β] , (2.24)

λ̇2 =u(t)

[
−λ1Z

′′(θM)

πρ3
M

+ λ2Z
′(θm)

]
. (2.25)

Unlike the problem for finding the maximum Lyapunov exponent, the distribution

minimization problem depends on the initial height of the distribution, ρM(0). We will

take θM(0) = 0 which leaves two initial conditions to be determined later.
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2.5 Results and Discussion

2.5.1 Maximizing Lyapunov Exponents for the Thalamus Model

Because pathological neural synchronization in the thalamus is thought to play an

important role in Parkinson’s disease [40], we consider a three-dimensional model to

describe thalamic neural activity [63]:

V̇i = (−IL(Vi)− INa(Vi, hi)− IK(Vi, hi)− IT (Vi, ri)

+ ISM +
1

N

N∑

i=1

αij(Vj − Vi) + u(t) + ηi(t))/C,

ḣi = (h∞(Vi)− hi)/τh(Vi), (2.26)

ṙi = (r∞(Vi)− ri)/τr(Vi), i = 1, . . . , N.

We have augmented the voltage equation by additively including electrotonic coupling

[64], DBS input, and Gaussian white noise. Here, N is the total number of neurons,

Vi, hi, and ri are membrane voltage and gating variables for neuron i, αij characterizes

the coupling strength between electrotonically coupled neurons i and j, with αij = αji

and αii = 0 for all i, ηi(t) =
√

2DN (0, 1) is the i.i.d. noise associated with each neuron, as-

sumed to be zero-mean Gaussian white noise with variance 2D, and u(t) = I(t)/C repre-

sents a common control input. In this equation ISM represents the baseline current which

we take to be 5µA/cm2. For a full explanation of the functions IL, INa, IK , It, h∞, τh, r∞

and τr, we refer the reader to [63].

The baseline current causes the neuron to fire with period T = 8.395ms. To obtain

the optimal control, we take t1 = 7.35ms (corresponding to θ = 5.5 on the limit cycle) and

β = 40. Note that t1 sets the duration of the stimulus, and could be chosen differently
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provided that it is sufficiently smaller than T , and β has been chosen so that a positive

Lyapunov exponent is favored, but that the magnitude of the control input is small

enough so that the phase reduction from equation (2.1) is still valid. We solve equations

(2.7) and (2.8) numerically with a fourth order Runge-Kutta solver and the optimal

control is found from (2.6). We do the same for the Euler-Lagrange equations from

(2.10).
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Figure 2.2: (A-B) Numerically computed PRC and its derivative for the thalamus
model (2.26). (C) The CB and NCB optimal stimuli are shown as a dashed and solid
line, respectively.

Panels A and B of Figure 2.2 show the PRC and its first derivative for (2.26), nu-

merically obtained using the software X-Windows Phase Plane (XPP) [65]. Panel C of

Figure 2.2 shows the optimal CB and NCB stimuli. Both stimuli are similar because the

NCB stimulus is nearly charge-balanced. We note that the optimal stimulus is strikingly

similar to Z ′(θ) for θ ≤ 5.5 and explain this occurrence by noting that the equation for

the optimal stimulus from (2.6) depends directly on the sum of βZ ′(θ(t)) and λ(t)Z(θ(t)).

The optimal stimulus has a relatively small magnitude, so θ(t) ≈ ωt and, numerically,

we find that λ(t) is relatively small compared to β.
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Figure 2.3: The NCB optimal stimulus uopt and 5 instances of uopt that have been
corrupted by noise. Indeed, out of the 5 stimuli, uopt yields the smallest value of
C[u(t)] (2.5), but the other stimuli give values that are close to optimal.

In order to numerically verify that the NCB stimulus is optimal for minimizing the

cost function, we analyze five other stimuli given by ui(t) = uopt(t) + 0.5Wi(t), i = 1 . . . 5

where uopt is the optimal NCB stimulus shown in Figure 2.2, and Wi is a Wiener process,

added to corrupt the optimal stimulus. We note that each of these stimuli are subject to

the same end point conditions described in Section 2.2. Figure 2.3 shows these stimuli

as well as the NCB optimal stimulus for reference. We find that uopt does have the

best performance in terms of overall cost, but the other stimuli still yield comparable

Lyapunov exponents. This prompts the question of how robust this procedure is to

errors, which will be addressed later.

The Lyapunov exponents calculated using equation (2.4) for NCB and CB stimuli

are 0.066 and 0.060 respectively. We find that requiring the CB constraint decreases the

Lyapunov exponent, and hence, the rate of desynchronization. Figure 2.4 shows the phase

separation of two neurons which obey equation (2.2) for the PRC found in Figure 2.2

subject to repeated iterations of both the NCB (Panels A and B) and CB (Panels C and
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Table 2.1: Stimulus properties from Figure 2.3

stimulus Λ(T ) Energy C[u(t)]
uopt 0.066 11.66 -10.43
u1 0.055 8.80 -9.68
u2 0.062 10.7 -10.03
u3 0.058 9.66 -9.89
u4 0.061 10.44 -10.06
u5 0.086 19.98 -8.95

D) stimuli. We find that the neurons exponentially desynchronize at a rate determined

by their Lyapunov exponent until they are nearly π radians out of phase. At this point,

the assumption that the neurons are close in phase is no longer valid, and no further

desynchronization occurs.

Results from Figure 2.4 only apply to neurons obeying the phase reduction (2.1).

In order to determine the validity of the phase reduction for (2.26), we simulate the

deterministic version of equations (2.26), i.e. with D = 0, using a fourth order Runge-

Kutta solver. The top panel of Figure 2.5 shows time histories of three neurons with

initial conditions that correspond to θ = −0.1, 0, and +0.1. on the periodic orbit. The

control is applied every time the reference neuron, with initial phase θ = 0, fires. We find

that after 70 ms, the neurons no longer show any evidence of their initial synchronization.

We now apply the NCB optimal control found above to a network of N = 100 coupled,

initially synchronized, noisy neurons, with an identical coupling strength of αij = 0.1

and i.i.d. noise with D = 1, in order to test the desynchronizing effects on the full neural

model. We define the mean voltage as our system observable, V̄ (t) = 1
N

∑N
i=1 Vi(t).

The controller has two states: active and inactive. When the controller is active, a new

stimulus is triggered when V̄ > −45mV and ˙̄V < 0 with the caveat that a new stimulus

cannot occur until the previous stimulus is either finished, or within 0.3ms of finishing.

This last condition is included to give the controller flexibility in when to start the next
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Figure 2.4: A-B show phase difference between two neurons over time for the NCB
optimal stimulus (giving Λ = 0.066) applied repeatedly to two neurons with nearly
identical initial phases. (C-D) give the same plots for the CB stimulus (Λ = 0.060).
In both cases the neurons desynchronize at a rate determined by Λ, calculated from
equation (2.4), until φ ≈ 2 at which point the solution begins to asymptote to φ ≈ π,
i.e. the anti-phase state. Dashed lines show exponential functions based on the
Lyapunov exponents.

stimulus because the system is sensitive to the time when the stimulus is presented. Once

V̄ no longer spikes above −45mV, the controller changes to an inactive state. It changes

back to the active state if V̄ registers above −40mV. We use the algorithm presented

in [66] to simulate the noisy system (see Figure 2.6). The desynchronizing effect of the

stimulus can clearly be seen in the raster plot. We call this event-based control because

the controller is only triggered when the mean voltage crosses a certain threshold. It is

worth noting that the optimal stimulus works equally well for a network of neurons that

are synchronized by a common pulsatile input, which [21] suggests is the mechanism that

yields synchronization. Results for such a system are qualitatively similar to the results

presented in this chapter.

22



Optimal Chaotic Desynchronization for Neural Populations Chapter 2

0 10 20 30 40 50 60 70
−80

−60

−40

−20

0

time (ms)

V

0 10 20 30 40 50 60 70
−4

−2

0

2

time (ms)

u 
(µ

A
/µ

F
)

Figure 2.5: Time histories of three neurons with initial conditions θ = −0.1, 0, and+0.1
on the periodic orbit. A new stimulus is applied each time the reference neuron with
initial phase θ = 0 (shown as the black curve) fires.
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Figure 2.6: Results for a population of N = 100 noisy, coupled neurons. The first
panel shows the network in the absence of control. The second and third panels show
results for the same network with the event-based control applied. The traces give
the mean voltages for the system and the horizontal dotted line shows the control
activation threshold. Substantial desynchronization can be seen from the raster plot.
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Figure 2.7: (A) Obtaining the PRC from a noisy system with the direct method.
Data points associated with noise level D = 1 and 0.25 are shown as dots and x’s,
respectively, with 6th order polynomial fits given as a dashed and dot-dashed line,
respectively. Pearson Correlation coefficients of the polynomial fits for D = 1 and 0.25
are 0.3617 and 0.6638, respectively. For comparison, the numerically computed (exact)
PRC is shown as a solid line. (B) NCB optimal stimuli computed with experimentally
determined PRC’s with D = 1 and 0.25 are shown as dot-dashed and dashed lines,
respectively. The true NCB optimal stimulus from Figure 2.2 is shown as a solid line
for reference. (C-D) Phase differences between two neurons over time for the optimal
stimulus obtained from systems with noise level D = 1, 0.25, and 0 applied repeatedly
to two neurons with dynamics governed by the exact PRC and with close initial phase
differences are shown as dot-dashed, dashed, and solid lines, respectively.
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Figure 2.8: Results for a population of N = 100 noisy, coupled neurons with optimal
stimulus found using the direct method for a noisy (D = 1) neuron. The top and
bottom panels show results for the network with the event-based control applied. The
traces give the mean voltages for the system and the horizontal dashed line shows the
control activation threshold.

The critical advantage of using this control strategy is that it only requires knowledge

of the PRC for the system. Methods for controlling neurons that require precise knowl-

edge of the neural model (see [44], [43]) are difficult to implement because, despite recent

progress [67], it is challenging to obtain accurate full scale models of real neurons for

control purposes. Methods that rely on the PRC are attractive because it is experimen-

tally measurable. To illustrate the effectiveness of this method, we employ the following

method which we will refer to as the direct method [24] (see also Appendix B)to obtain

a PRC for a single neuron obeying equation (2.26). In order to obtain one data point,

a short-duration pulse of current is applied to a neuron at a random phase θ, and the

resulting phase change is measured by observing the change in spike time. The resulting

value Z(θ) is ∆θ
Qp/C

where Qp is the total charge imparted to the neuron from the pulse,

and ∆θ is the change in phase. An experimentally reasonable sampling size of 300 data

points were obtained for noise levels of both D = 1 and 0.25, and the data was fit to a

6th order polynomial constrained to be zero at both θ equals 0 and 2π, as in [25]. The

results are shown in panel A of Figure 2.7. As expected, a larger noise value yields a
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larger spread in the data, and a less reliable PRC. The optimal stimuli obtained using

the fit PRC are shown in panel B. Finding the PRC with a D value of 0, 0.25, and 1

yields an optimal stimulus with Λ = 0.066, 0.055, and 0.046, respectively. When we do

not know the PRC exactly, the performance of the desynchronizing stimulus is somewhat

degraded as evidenced in panels C, and D, but the stimulus still performs remarkably

well. We note that for a noise level of D = 1, the spread in the collected data for the

PRC is similar to data previously collected for in vitro neurons [25].

Figure 2.8 shows results from a simulation using the optimal stimulus obtained from

this data applied to 100 coupled neurons obeying equation (2.26) with the same noise

and coupling parameters as the test shown in Figure 2.6. The stimulus still shows desyn-

chronizing capabilities similar to the stimulus obtained from the true PRC.
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Figure 2.9: (A) Normal distributions of the coupling strengths with αij ∈ N (0.1, 0.02).
(B) Normal distributions of the baseline currents with Ib,j ∈ N (5, 0.25).

To model more realistic neural networks, we include network heterogeneities. For

comparison, our homogeneous network simulations will use N = 100, αij = 0.1 and

Ib = 5. Other simulations will consider network heterogeneities in coupling strength

by drawing αij values from a normal distribution with mean ᾱ = 0.1 and a standard

deviation σα = 0.02; panel A of Figure 2.9 shows the specific distribution used for each

simulation. Network heterogeneities in Ib are also considered by simulating a system with
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baseline currents drawn from a normal distribution (shown in panel B of Figure 2.9). In

each N = 100 neuron simulation, we use the same control logic as the simulation with

results shown in Figure 2.7 to determine when to apply each new stimulus. Again, we

use the algorithm presented in [66] to simulate the noisy system.

Results of each simulation are shown in Figure 2.10. The top panel shows the result for

the network with homogeneous baseline current and coupling. The second panel shows

results for a neural network with homogeneous baseline currents Ib = 5 and coupling

strengths drawn from a random distribution (shown in panel A of Figure 2.9) and the

third panel shows results for a network with homogeneous coupling αij = 0.1 and baseline

currents drawn from a random distribution (shown in panel B of Figure 2.9). We find

that when we include heterogeneity the network requires fewer applications of the optimal

stimulus to desynchronize. The bottom panel shows results for a network with both

heterogeneous coupling and baseline currents. Overall, we find that heterogeneity in a

network decreases its tendency to resynchronize, which increases the effectiveness of the

optimal control.

Clearly the optimal stimulus works well for desynchronizing a neural network, even

when only an approximation to the true PRC is known. This prompts the search for

error bounds on the optimal stimulus that can still guarantee desynchronization. In an

ad hoc manner using methods from Section 2.3, we fix a particular value of E for the

signal Ie and minimize (2.12) to find the minimal (worst case) Lyapunov exponent. We

then simulate (2.26) to with the associated signal to determine if it can affect network

desynchronization. Using this strategy with different E values, we find that for a network

of 100 neurons with homogeneous coupling αij = 0.1 and baseline current, Ib = 5µA/cm2

we require a Lyapunov exponent of at least, Λ = 0.024, corresponding to E = 0.8, in order

to achieve sufficient desynchronization so that spikes of V̄ remain below -40mV. Thus,

||Ie(t)||∞ ≤ 0.8 will guarantee Λ ≥ 0.024. To illustrate the utility of this measure, we
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Figure 2.10: Results for a population of N = 100 coupled neurons with i.i.d. noise
strength D = 1. The top panel shows a network with homogeneous coupling strength
αij = 0.1 and baseline current Ib = 5µA/cm2. In the second panel, coupling strengths
drawn from a distribution as shown in panel A of Figure 2.9 but baseline current is the
same for all neurons, Ib = 5µA/cm2. In the third panel baseline currents are drawn
from a distribution as shown in panel B of Figure 2.9, but coupling is the same for
all neurons, αij = 0.1. The bottom panel shows a network with both heterogeneous
baseline currents and coupling strengths drawn from the corresponding distributions
in Figure 2.9. Once the network is sufficiently desynchronized, the controller will only
activate once the voltage has crossed the threshold, shown as a horizontal line.

choose a simple, piecewise linear signal which is nearly contained entirely in the boundary

||Ie(t)||∞ ≤ 0.8.

u(t) =

{
t, 0 ≤ t ≤ 2.2

−4.4− t, 2.2 < t ≤ 7.35. (2.27)

The signal in (2.27) is used in a simulation of the same homogeneous network with the

same control logic described previously. The results are shown in Figure 2.11. Numeri-

cally, we find the Λ = 0.0577 for this stimulus. We note that even though the stimulus
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is not entirely contained within the shaded region shown in the top panel of Figure 2.11,

and therefore, not guaranteed to desynchronize the system, it still produces a sufficiently

high Lyapunov exponent to achieve desynchronization.

Figure 2.11: Results for the population of N = 100 coupled neurons from Figure 4 with
the simple, piecewise linear stimulus from (2.27). The top panel shows the stimulus as
well as a shaded boundary that will ensure sufficient desynchronization. The traces in
the middle panel give the mean voltages for the system and the horizontal line gives
the control activation threshold. We see in the third panel that desynchronization
occurs, but requires more applications of the stimulus than the optimal stimulus,
which is expected due to a smaller Lyapunov exponent.

2.5.2 Optimally Decreasing the Peak of a Distribution for the

Thalamus Model

We now turn our attention to controlling populations of neurons using the methods

described in Section 2.4 to optimally decrease the peak of their phase distribution. Here,

we attempt to provide reasonable values for the still undetermined parameters in the

Euler-Lagrange Equations (2.21)-(2.25). Because we have undetermined parameters, we
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cannot claim to have found an optimal stimulus to minimize our cost function, but we

can still gather powerful insight about stimuli that will affect network desynchronization.

In order to make explicit comparisons with the optimal stimulus which maximizes the

Lyapunov exponent, we take t1 = 7.35ms and β = 40. We take our initially synchronized

distribution to be a normal distribution with standard deviation σd = 0.2 centered at

θ = 0, which corresponds to a spiking event. These conditions were chosen as a reasonable

approximation of the observed distribution for simulations of network (2.26) just before

the control threshold V̄ = −40mV is reached. This gives θM(0) = 0 and ρM(0) = 1.995

as initial conditions to (2.22) and (2.23); however, we still need to determine λ1(0) and

λ2(0). In order to find the best choice of the remaining initial conditions, we minimize

the cost function for reasonable choices of λ1(0) and λ2(0). Using this approach we find

λ1(0) = 18 and λ2(0) = 2 approximately minimizes the cost function, and gives the

stimulus shown in Figure 2.12, which will be referred to as uD.

0 1 2 3 4 5 6 7

−4

−3

−2

−1

0

1

2

t (ms)

u 
(µ

A
/µ

F
)

Figure 2.12: The optimal stimulus uD for decreasing the peak of the phase distribution
is shown as a solid, black line. For reference, the NCB optimal stimulus for maximizing
the Lyapunov exponent is shown as a grey, dashed line.
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We apply uD to (2.15) and (2.26) with N = 250, D = 0 and αij = 0 to determine

the validity of the results found using the phase reduction. Throughout the simulation,

we infer the phase of each of neuron in (2.26) by simulating each neuron separately in

the absence of DBS input and noise to determine when its next spiking event occurs.

Figure 2.13 shows three snapshots from this simulation. In order to clearly present the

results, the mapping θ ∈ (π, 2π) → (−π, 0) is used, e.g., θ = 3π
2

is plotted as θ = −π
2
.

Theoretical and numerical evolutions are shown in black and blue, respectively. The

red curve gives the theoretical evolution of the distribution in the absence of stimulus

and is shown for reference. Throughout the simulation, the dynamics of the 250 neuron

system is well approximated by (2.15), and the optimal stimulus brings ρM from 1.995 to

0.776. We now see utility of the approach which minimizes the peak of the distribution

compared to an approach which maximizes the NCB Lyapunov exponent (producing a

stimulus we will refer to as uΛ). From (2.22), we see that a stimulus has the potential

to greatly decrease a distribution when |Z ′(θM)| is relatively large. For the Thalamus

model, this can be done by applying a large negative stimulus when θM ≈ 5.8. As shown

in Figure 2.12, uD and uΛ are nearly identical for 0 ≤ t < 2 but from about 2 ≤ t < 6,

uD > uΛ at a time when Z(θM) > 0 and Z ′(θM) ≈ 0. This has the effect of speeding up

the distribution, but not decreasing the peak height. The extra effort used in speeding

up the peak is repaid when θM ≈ 5.8, when a large negative stimulus decreases the peak

rapidly at a time when Z ′(θ) < 0. The distribution deforms in such a way that ρM

remains at θM ≈ 5.8 longer than we would expect for a system of only two neurons,

which is reflected in the inequality uD < uΛ for t ≈ 6.

We have found stimuli for desynchronizing neural networks using two different ap-

proaches. Both approaches produce similar results, but we would like to know if one is

better than the other. To answer this question, we simulate (2.26) with N = 250, D = 1,

and αij = 0.1 for 1000ms using the same control strategy as the simulations from Figure
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Figure 2.13: Three snapshots from simulations of (2.26) and the associated model
(2.15). In order to clearly present the results, the mapping θ ∈ (π, 2π) → (−π, 0) is
used, e.g., θ = 3π

2 is plotted as θ = −π
2 . Theoretical and numerical evolutions are

shown in black and blue, respectively. The red curve gives the theoretical evolution
of the distribution in the absence of stimulus and is shown for reference.

2.10. The initial phase distribution is drawn from a normal distribution with σd = 0.2

centered at θ = 0. A representative portion of the comparison is shown in Figure 2.14.

When we use uD as the control, the overall energy use is 533 units, while for uΛ, the

energy consumption is 460 units. In terms of energy, uD performs slightly worse than

uΛ, most likely because the neuron distribution is not quite Gaussian throughout the

simulation as we had assumed to derive uD, but both strategies yield an effective control

input using a comparable amount of energy. We also note that uD desynchronizes the

network more quickly than uΛ, which is expected because it has a higher Lyapunov ex-

ponent than uD as calculated from (2.4), Λ = 0.107 and 0.066, respectively, but requires

more energy per application of the stimulus.
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Figure 2.14: Comparing uD to uΛ. Representative excerpts from a 1000 ms simulation
using uD to uΛ as the control are shown in the top and bottom panels, respectively.

2.5.3 Maximizing Lyapunov Exponents for the Reduced Hodgkin-

Huxley Model

We next apply our optimization method to a population of neurons, each described

by a two-dimensional reduction of the renowned four-dimensional Hodgkin Huxley (HH)

model [68] that reproduces the essential characteristics of a neuron’s dynamical behavior

(cf., [69], [9]). An alternative strategy for desynchronizing a populations of such neurons

was investigated in [44]; we will make comparisons with that method later in the present

chapter. The population of neurons is modeled as follows:
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V̇i = fV (Vi, ni) +
1

N

n∑

i=1

αij(Vj − Vi) + u(t) + ηi(t),

ṅi = fn(Vi, ni).

(2.28)

Here, i = 1, . . . , N where N is the total number of neurons, Vi and ni are membrane

voltage and gating variables for neuron i, αij characterizes the coupling strength between

electrotonically coupled neurons i and j [64], with αij = αji and αii = 0 for all i,

ηi(t) ∈
√

2DN (0, 1) is the noise associated with each neuron, assumed to be zero-mean

Gaussian white noise with variance 2D, u(t) = I(t)/C represents a common control

input where I(t) is a DBS input current in µA/µF , and C = 1µF/cm2 is the membrane

capacitance. Furthermore,

fV = (Ib − ḡNa[m∞(V )]3(0.8− n)(V − VNa)− ḡKn4(V − Vk)− ḡL(V − VL))/C,

fn = an(v)(1− n)− bn(V )n.

Other functions and parameters for the reduced model are
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m(V ) =
am(V )

am(V ) + bm(V )
,

am(V ) = 0.1(V + 40)/(1− exp(−(V + 40)/10)),

bm(V ) = 4 exp(−(V + 65)/18,

an(V ) = 0.01(V + 55)/(1− exp(−(V + 55)/10)),

bn(V ) = 0.125 exp(−(V + 65)/80,

VNa = 50mV, VK = −77mV, VL = −54.4mV,

ḡNa = 120mS/cm2, ḡK = 36ms/cm2,

ḡL = 0.3mS/cm2, c = 1µF/cm2,

Ib = 10µA/cm2.

Here, ḡNa, ḡK , and ḡL represent the conductances of the sodium, potassium and leakage

channels, respectively, and VNa, VK , and VL are their respective reversal potentials. Note

that Ib, the neuron’s baseline current, represents the effect of the surrounding brain

regions on the neuron. This is a bifurcation parameter, with the value Ib = 10µA/cm2

chosen to ensure that the neuron is in an oscillatory (periodically spiking) regime. The

natural period, T of oscillation is 11.81ms.

The PRC, Z(θ), for this system is computed numerically with the software X-Windows

Phase Plane (XPP) [65] and is shown in Figure 2.15. To perform computations with the

PRC, we approximate it as a Fourier series with 1200 terms. We take this many terms

to get a reasonably non-oscillatory estimate of Z ′′′(θ) when solving (2.24).

The bottom panel of Figure 2.15 shows the result of the optimization process with

and without the charge-balanced constraint for the choice of parameters t1 = 10.34 ms
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Figure 2.15: Top panels show the numerically computed PRC and its derivative for the
reduced Hodgkin-Huxley model. The bottom panel shows The CB and NCB optimal
stimuli as a dashed and solid line, respectively.

(corresponding to θ = 5.5 on the limit cycle) and β = 9. Note that t1 sets the duration

of the stimulus and could be chosen differently provided that it is sufficiently smaller

than the natural period, T , of the neuron, and β is chosen so that a positive Lyapunov

exponent is favored, but the magnitude of the control input will be small enough so that

the phase reduction is still valid. We find that the CB stimulus looks nearly identical to

the NCB stimulus except for a downward shift. This is to be expected since, as is the

case in the Thalamus model, the NCB stimulus is nearly charge balanced. Also, we find

that the optimal control looks similar to the derivative of the PRC as shown in Figure

2.15. An explanation for this phenomenon is given in Section 2.5.1

Panels A and B in Figure 2.16 show the phase difference between two neurons with

nearly identical initial phases, subject to the NCB optimal stimulus as shown in Figure

2.15. The optimal stimulus is event-based, and is applied every time the phase of the

trailing neuron crosses θ = 0. Panels C and D show the results of a similar test with the
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CB stimulus. The Lyapunov exponents, Λ, for the NCB and CB stimuli are found to be

0.0823, and 0.0782, respectively. Dashed lines show exponential functions based on the

Lyapunov exponents. We find that all of the plots match closely until φ ≈ 1, with the

NCB stimulus performing slightly better than the CB stimulus. In this case, balancing

charge comes at the cost of degrading performance.
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Figure 2.16: A-B show the phase difference between two neurons over time for the NCB
optimal stimulus (giving Λ = 0.0823) applied repeatedly to two neurons with nearly
identical initial phases. (C-D) show the same plots for the CB stimulus (Λ = 0.0782).
In both cases the neurons desynchronize at a rate determined by Λ, calculated from
(2.4) until φ ≈ 1. Dashed lines show exponential functions based on the Lyapunov
exponents.

It is natural to wonder to what degree the optimal control found from the phase

model will desynchronize neurons that obey the set of equations with which we started.

To this end, we simulate the deterministic version of equations (2.28), i.e., with D = 0,

using a fourth order Runge-Kutta solver. The top panel in Figure 2.17 shows the time

histories of three neurons with initial conditions that correspond to θ = −0.1, 0, and+0.1

on the periodic orbit. The control is applied every time the reference neuron, with initial
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phase θ = 0, fires. Figure 2.17 also shows the input for reference. We find that after 90

milliseconds, the neuron that started at θ = +0.1 now fires approximately 6 milliseconds

after the reference neuron, while the neuron that starts at θ = −0.1 fires approximately 2

milliseconds before the reference neuron. The reason for this discrepancy can be explained

by noting shape of the PRC. We see in Figure 2.15, the PRC has a local minimum at

θ ≈ 4. After approximately 9 ms after the optimal stimulus is first presented, the

remaining stimulus has negative sign, the reference neuron has a phase corresponding to

a positive value on the PRC, and the neuron which starts behind has a phase of θ ≈ 4.

Because of these conditions near the end of the cycle, the optimal stimulus to brings the

phases closer together, negating the desynchronization achieved earlier in the cycle.
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Figure 2.17: Time histories of three neurons with initial conditions
θ = −0.1, 0, and + 0.1 on the periodic orbit. A new stimulus is applied each
time the reference neuron with initial phase θ = 0 (shown as a black line) fires.
Once the neurons are no longer close in phase, the neuron which started ahead of
the reference neuron desynchronizes faster than the neuron that starts behind the
reference neuron which can be explained by the shape of the PRC, as described in
the main text.

We now apply this optimal control to a network of N = 100 coupled, initially syn-
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chronized, noisy neurons, with an identical coupling strength of αij = 0.05 and i.i.d. noise

with D = 0.7. The control logic used is similar to the logic presented in Section 2.5.1,

with the controller switching to the inactive state if spikes remain below -40mV and

switching back to the active state if a spike registers above -30mV.

Figure 2.18: Results for a population of N = 100 noisy, coupled neurons obeying
the reduced Hodgkin-Huxley model. The first panel shows results in the absence
of control. The second and third panels show results for the same network with the
event-based control applied. The traces give the mean voltages for the system and the
horizontal line shows the control activation threshold. Substantial desynchronization
can be seen from the raster plot.

Figure 2.18 shows the result of this simulation. The top panel shows voltages of

each neuron as well as the average voltage of the coupled, noisy system without control.

We find that V̄ peaks near 0 mV throughout the simulation, and the neurons stay
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synchronized. The second panel shows the individual neuron voltages and mean voltage

for the same coupled system with both noise and control input. The horizontal line in

this panel represents the threshold voltage of −30mV . The control input is shown in the

third panel. Clearly the control input desynchronizes the network of neurons, as seen

from the raster plot, and since the control is event-based, it only needs to be turned on

once V̄ crosses the threshold line.

In an experimental setting, it is unlikely that the optimal desynchronizing stimulus

Iopt(t) can be found exactly. For this reason, we would like to calculate bounds on

Ie(t), where I(t) = Iopt(t) + Ie(t) with I(t) found using an experimentally obtained PRC

such that we can guarantee a given Lyapunov exponent. Using the strategy developed

in Section 2.3, we can determine a worst case Λ for a particular ||Ie||∞. Here, we use a

shooting method to determine that in order to guarantee stimuli with Λ ≥ 0.06, 0.04, 0.02,

and 0, we require ||Ie(t)|| ≤ 0.242, 0.44, 0.615, and 0.797, respectively, for all t. Graphical

representations of these error bounds are shown in Figure 2.19. We emphasize that these

are only bounds that will guarantee a certain value of Λ. As in Section 2.5.1, even if a

stimulus falls outside of a shaded region, the associated Λ may still be larger than the

value guaranteed for that shaded region. For a network of neurons without coupling or

noise, any stimuli with Λ > 0 should be able to desynchronize an initially coupled neural

network. However, for real networks, the value of Λ required for desynchronization will

depend on the strength of the coupling and noise.

We now compare the energy used by our NCB, event-based control shown in Figure

2.15 (which we will refer to as the exponential control) to the energy used by a control

that will desynchronize a system of neurons by optimally driving them to a phaseless set

as developed by Nabi et al. in [44] (which we will refer to as the phaseless control). For

a system obeying Ohm’s law, the power P applied by an input is given by P ∼ u2. A

representative portion of a comparison over 1500ms is shown in Figure 2.20. The top two
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Figure 2.19: The optimal NCB stimulus, shown as a solid line, yields Λ = 0.0823.
In order to guarantee a stimulus with Λ ≥ 0.06, 0.04, 0.02, and 0, we require
||Ie(t)|| ≤ 0.242, 0.440, 0.615, and 0.797, respectively, for all t. Darker shaded regions
on the plot correspond to regions with larger guaranteed Lyapunov exponents.

panels show a noisy system of coupled neurons stimulated by the exponential control,

while the bottom two panels show the same system stimulated by the phaseless control.

For a single application of the exponential control,
∫ t1

0
u2(t) ≈ 2.32 while for one

application of the phaseless control,
∫ Tend

0
u2(t) ≈ 194. Throughout the simulation, the

exponential control is active for more time than the phaseless control; however, one cycle

of the exponential control costs much less than one cycle of the phaseless control. Over

the entire 1500ms simulation, we find that the total power used is proportional to 236

and 1904 for the exponential control and the phaseless control, respectively. Not only

is the maximum applied control much less for the exponential control, but it also uses

nearly an order of magnitude less energy.
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Figure 2.20: Comparing the NCB optimal (exponential) control to the control pre-
sented in [44] (phaseless). Representative excerpts from a 1500 ms test of the exponen-
tial and phaseless control are shown in the top and bottom panels, respectively. The
exponential control fires more often than the phaseless control, but uses less energy
because the magnitude of the stimulus is much smaller.

2.5.4 Optimally Decreasing Distribution Peak Height for the

Reduced Hodgkin-Huxley Model

Finally, we look from the perspective of controlling distributions by using the strategy

described in Section 2.4 to see if we can find a more effective control to desynchronize

(2.28) than the control that maximizes the Lyapunov exponent. Here, we attempt to

provide reasonable values for the still undetermined parameters in the Euler-Lagrange

Equations (2.21)-(2.25). Because we have undetermined parameters, we cannot claim to

have found an optimal stimulus to minimize our cost function, but we can still gather
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powerful insight about stimuli that will affect network desynchronization. In order to

make explicit comparisons to the optimal stimulus which maximizes the Lyapunov expo-

nent, we take t1 = 10.34ms. We choose β = 8 this time because β = 9 gives a solution

which is too large in magnitude, and invalidates the phase reduction. As in Section 2.5.2,

we take our initially synchronized distribution to be a normal distribution with standard

deviation σd = 0.2 centered at θ = 0. These conditions were chosen as a reasonable

approximation to observed distributions for simulations of the network (2.28) just before

the control threshold V̄ = −30mv is reached. This gives θM(0) = 0 and ρM = 1.995

as initial conditions to (2.22) and (2.23). We optimize the cost function over reasonable

values of λ1(0), λ2(0) in order to find the best choice for the remaining initial conditions.

Using this approach we find λ1(0) = 6 and λ2(0) = 0 approximately minimizes the cost

function, and gives the stimulus shown in Figure 2.21, which will be refered to as uD.
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Figure 2.21: The optimal stimuli for decreasing the peak of a distribution is shown
as a solid, black line. For reference, the NCB optimal stimulus for maximizing the
Lyapunov exponent is shown as a grey, dashed line.

We apply uD to (2.15) and (2.28) with N = 250, D = 0 and αij = 0 to determine the
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validity of the results found using the phase reduction. For a given neuron, we can deduce

its phase at a given time by integrating the reduced Hodgkin-Huxley equations without

input or noise until the neuron’s next spike. Figure 2.22 shows three snapshots from this

simulation. In order to clearly present the results, the mapping θ ∈ (π, 2π) → (−π, 0)

is used, e.g., θ = 3π
2

is plotted as θ = −π
2
. Theoretical and experimental evolutions are

shown in black and blue, respectively. The red curve gives the theoretical evolution of the

distribution in the absence of stimulus and noise and is shown for reference. Throughout

the simulation, the phase reduction well approximates the dynamics of the 250 neuron

system, and the optimal stimulus takes ρM from 1.995 to approximately 0.7. The stimuli

uD and uΛ are nearly identical for the reduced Hodgkin-Huxley mode, with discrepancies

in the two answers most likely due to the more restrictive constraints on uΛ. The similar

answers are of interest because we approached the desynchronization problem from two

different perspectives.
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Figure 2.22: Three snapshots from simulations of (2.28) and the associated model
(2.15). In order to clearly present the results, the mapping θ ∈ (π, 2π) → (−π, 0) is
used, e.g., θ = 3π

2 is plotted as θ = −π
2 . Theoretical and numerical evolutions are

shown in black and blue, respectively. The red curve gives the theoretical evolution
of the distribution in the absence of stimulus and is shown for reference.

To gauge whether uD is an improvement over uΛ, we simulate (2.28) with the same

parameters and control strategy as the simulations from Figure 2.18. When we use uD
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as the control, the overall energy use is 270 units, while for IΛ, the energy consumption

is 214 units. The cause of this discrepancy is most likely due to the assumption that uD

is Gaussion is no longer valid near the end of the cycle, which wastes a small amount of

energy. Results for this simulation do not differ significantly from the results in Figure

2.18, and are not shown.

2.5.5 Comparison to Pulsatile Input

As mentioned in Section 2.1, clinical DBS is currently implemented with a high fre-

quency pulsatile input. While the exact mechanism by which this waveform mitigates

the symptoms of Parkinson’s disease is unknown, Wilson et al postulated that DBS may

be effective because it chaotically desynchronizes neurons in the Thalamus region of the

brain [21]. They used phase reduction to show that for certain stimulus intensities with

frequencies that are approximately twice the natural frequency (2 × 1
T

) of a neuron,

pulsatile stimuli can effectively desynchronize a population of neurons. Using the same

conventions as [21], we take θ ∈ [0, 1) with θ = 0 corresponding to the spiking of a neuron

and scaled to 1 time unit. We use the same PRC as [21], and apply our NCB and CB

optimization process with β = 1.5 and t1 = 0.85. The PRC, its first derivative, and the

resulting optimal stimuli are shown in Figure 2.23.

The respective Lyapunov exponents for the NCB and CB optimal stimuli from (2.4)

are 1.429 and 1.937, with respective power consumptions (
∫ t1

0
u2dt) 1.11 and 1.99. We

note that the CB stimulus outperforms the NCB stimulus at the expense of using almost

twice as much energy. Figure 2.24 shows the phase separation of two neurons which

obey equation (2.2) for the PRC shown in Figure 2.23 subject to repeated iterations of

both the NCB (Panels A and B) and CB (Panels C and D) stimuli. As seen in previous

sections, the neurons exponentially desynchronize at a rate determined by their Lyapunov
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Figure 2.23: Top panels show the PRC and its derivative for the model used in [21].
The bottom panel shows the CB and NCB optimal stimuli as a dashed and solid line,
respectively.

exponents until the neurons are nearly antiphase.

We now apply the NCB optimal stimulus to a population of 100 noisy neurons:

θ̇i = ω + Z(θi) [u(t) + Aγi(t) +Bζ(t)] +
A2 +B2

2
Z(θi)Z

′(θi), i = 1, . . . , 100, (2.29)

where ω = 1 gives the neural baseline dynamics (recall that θ ∈ [0, 1)), γ and ζ are

individual and common white noise processes with strength A =
√

0.2 and B =
√

0.3

respectively, and u(t) is the common DBS input. The final term in equation (2.29)

corresponds to the Ito term for the phase reduction [70]. In order to determine when the

optimal stimulus should be presented, we need to know when the average phase of the

system of neurons is θ = 0. In real neurons, a spiking event is defined to be θ = 0, and

can be observed as a sudden increase in voltage. For the model under consideration, we

are simulating a phase reduced model, with no observable voltage spikes. In lieu of V̄
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Figure 2.24: A-B show the phase difference between two neurons over time for the NCB
optimal stimulus (giving Λ = 1.429) applied repeatedly to two neurons with nearly
identical initial phases. (C-D) give the same plots for the CB stimulus (Λ = 1.937). In
both cases the neurons desynchronize at a rate determined by Λ, calculated from (2.4)
until φ ≈ 0.25 at which point the solution begins to asymptote to φ ≈ 0.5, i.e., the
anti-phase state. Dashed lines show exponential functions based on the Lyapunov
exponents.

for the system of neurons, we monitor the average phase of the system, θ̄ = 1
N

∑N
i=1 θi.

Note that θ̄ is equivalent to ψ in the first order Kuramoto parameter, reiψ = 1
N

∑N
j=1 e

iθj .

For a completely synchronized network, θ̄ varies between 0 and 1, while for a network in

the splay state, θ̄ remains constant at 0.5. This gives a continuum from which we can

qualitatively gauge the level of synchronization by noting the maximum value of θ̄ on a

particular cycle. To determine when to apply a new stimulus, a flag is set when θ̄ > 0.65,

indicating that the network is still sufficiently synchronized, and a new stimulus begins

if the flag is set and θ̄ < 0.5, indicating that a majority of the neurons have phase θ ≈ 0.

To characterize the desynchronization of the neural network, following [21] we use the
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entropy

Ent =
B∑

j=1

p(ψj) log(p(ψj)),

where p(ψj) is the probability of being in bin j of B total bins. The splay state has the

highest entropy for a population of 100 neurons at 4.6.

We note that the results from [21] were computed using a mapping based on the

PRC to determine the effect of a DBS pulse. In our trials, we found that adding pulse

width somewhat degraded the effectiveness of the pulsatile stimulus. In order to replicate

Wilson’s results and make comparisons, we use equation (2.29) with u(t) = 0 for all time,

and instead iterate when a pulse stimulus is presented as follows:

θi+1 = θi + Z(θi)δ,

where δ is the amplitude of the stimulus. For the simulation, we choose δ = 0.63 at a

frequency of 1.92 Hz. These are in the range with the best desynchronization capabilities

for this model [21]. We use an Euler-Maruyama method [71] to solve (2.29) for both the

optimal and pulsatile stimulus, with results shown in Figure 2.25. We find that both

stimuli are able to desynchronize the population to similar levels as characterized by the

entropy of the system. However, the pulsatile input takes approximately 15 seconds and

29 pulses for the entropy to reach a reasonably steady entropy value of 3.5, while it only

takes 5 seconds and three applications of the optimal stimulus to increase the entropy

to 3.5. Assuming the power usage P ∼ u2, we cannot directly approximate the energy

required by the pulsatile input since it has no pulse-width (PW). However, in human

trials, [72] and [73] used pulsatile inputs with a PW to period ratio of 7.8 × 10−3 and

9.5 × 10−3 respectively. We take the average of these two ratios to estimate a pulse-

width and require PW · u = δ, and find that PW ∼ 0.0045 and u ∼ 155 in order to
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be therapeutically effective. Letting the power consumption, P = u2 · PW, we find that

P ∼ 108 units. Conversely, for the optimal stimulus,
∫ t1

0
u2dt ∼ 1.11. As a very rough

estimate of total energy used to achieve steady desynchronization, three applications

of the optimal stimulus use 3.33 units of energy while 29 applications of the pulsatile

stimulus use 3132 units of energy. Both stimuli are able to desynchronize the neural

network, but the optimal stimulus is able to do so using three orders of magnitude less

energy.
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Figure 2.25: Left panels show the entropy of 100 neurons and the applied stimulus
for the exponentially desynchronizing control. The right panel shows entropy of 100
neurons for the pulsatile input applied at 1.92 Hz. Note that the bottom-right panel
shows the map amplitude, δ, and not the stimulus intensity to emphasize that the
stimuli are simulated as delta functions. Each pulse uses 108 units of energy.

2.6 Conclusion

We have described two methods for desynchronizing neural networks: by optimally

maximizing the Lyapunov exponent (2.4) and optimally decreasing the peak height of
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the phase distribution. Most notably, while both of these methods are based on different

perspectives, they produce answers that are quite similar. We find that this method

uses three orders of magnitude less energy than a method that uses pulsatile stimuli to

achieve desynchronization, which represents an enormous potential savings in battery

life of a pacemaker and could also mitigate some of the negative side-effects of DBS. We

have also shown that the approach for maximizing the Lyapunov exponent is robust to

inaccuracies in finding the optimal stimulus and found bounds for a stimulus derived from

a network without coupling that will guarantee a minimum Lyapunov exponent required

to give desynchronization for a given network with coupling. Because this method is

robust to inaccuracies, it has potential to work well in an in vitro setting, and could

realistically provide an effective treatment for Parkinson’s disease. As a final note, the

results presented in this chapter were later extended in [11] to investigate exponential

desynchronization using extracellular stimulation.
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Chapter 3

Optimal Entrainment of

Heterogeneous Noisy Neurons

3.1 Introduction

Precise timing of synchronized oscillators is an important aspect of many biological

functions. For example, entrainment of circadian oscillators to a 24-hour light-dark cycle

is necessary in nearly all organisms for the maintenance of rhythmic physiological function

[2], [74]; irregularities in circadian regulation can contribute to a wide variety of diseases

[75–77]. Furthermore, pancreatic cells can be entrained to periodic variations in blood

glucose levels, synchronizing the activity of the insulin secreting cells [78], [79]. Also,

synchronized patterns of firing neurons give rise to macro scale brain rhythms which are

thought to be relevant to cognition and perception [80–83], and in specific examples lack

of synchrony can contribute to hearing loss in animals [84], [85].

Promoting synchrony by means of entrainment to an external stimulus could facilitate

physiological processes where synchronization is important. Optimal control frameworks

can be used to achieve specific control objectives where timing is the control variable
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and entrainment is the goal [42], [86], [87]. However, these approaches fall short when

heterogeneity in the oscillator properties is large with respect to intensity of the entraining

stimulus. Furthermore, most optimal control techniques cannot explicitly account for

strong noise in the system, which is often inherent in biological systems (especially in

neurons [88], [89]) degrading the efficacy of an optimal stimulus.

We use standard phase reduction techniques to model the response of an oscillator

to external perturbations. A phase response curve (PRC) is fit to the phase advance as

a function of the phase at which the stimulus is applied [4], [24], [2]. Phase reduction

techniques are advantageous because they characterize much of the system’s input-output

function without the full nonlinear dynamical equations. Using the PRC, we are able

to derive sufficient conditions for a stimulus to entrain a noisy, heterogeneous ensemble

of phase oscillators. Furthermore, once the sufficient conditions are identified, we can

then design efficient external stimuli for entrainment. This strategy does not require the

explicit properties of any single oscillator, but only requires the bounds within which

all the oscillators’ PRCs and natural frequencies must be contained. Using stochastic

averaging techniques [90], we can design a stimulus which creates a potential well of

minimum depth near the in-phase solution between a nominal oscillator and any other

oscillator within the heterogeneous ensemble. Deeper potential wells will be harder to

escape from when the noise is present in the system, ensuring entrainment. Unlike other

approaches we have used [91], the innovation proposed in this strategy is that the control

design explicitly accounts for noise and heterogeneity present in the biological system.

We test the efficacy of the optimal synchronizing stimulus on coupled phase oscillator

models compared to other entraining stimuli. We then design optimal stimulus waveforms

from previously collected PRCs and test the resulting optimized stimulus in vitro on

pyramidal neurons from the CA1 region of the hippocampus. The organization of this

chapter is as follows. In Section 3.2 we derive the necessary framework for designing
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stimuli to entrain a heterogeneous population of oscillators. In Section 3.3, we apply this

control strategy to a numerical model of a population of heterogeneous phase oscillators.

In Sections 3.4 and 3.5 we provide experimental methods and results, respectively, for

entrainment of in vitro neurons, and finally in Section 3.6 we discuss our findings and

make concluding remarks. This chapter is based on work origionally appearing in [37].

The experiments in this chapter were devised and implemented in collaboration with the

Netoff laboratory at the University of Minnesota.

3.2 Efficiently Maximizing the Depth of the Poten-

tial Well

Consider the following deterministic phase oscillator

θ̇1 = ω0 + Z(θ1)εu(t). (3.1)

Here, θ1 ∈ [0, 2π) is the phase of a nominal reference oscillator with natural frequency

ω0 and period T = 2π/ω0, Z(θ) is the phase response curve, u(t) is an external input,

and 0 < ε � 1. Note that we assume that ε is small enough so that higher order noise

terms are negligible (c.f. [92], [93]). A second noisy oscillator, θ2, whose parameters are

not fully known, can be represented as follows:

θ̇2 = ω0 + ∆ω + [Z(θ2) + ∆Z(θ2)] εu(t) + [Z(θ2) + ∆Z(θ2)] εη(t). (3.2)

This function is illustrated in panel A of Figure 3.1. The variable ∆ω ∈ [−εω−, εω+]

represents some uncertainty in the natural frequency, ∆Z represents uncertainty in the

phase response curve, and η(t) = N (0, 1) is i.i.d zero mean white noise with vari-
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ance 1. However, for the population, we can determine bounds for the range of the

PRCs −E−(θ) ≤ ∆Z(θ) ≤ E+(θ) with strictly nonnegative functions E−(θ) and E+(θ).

Intuitively, θ1 in equation (3.1) represents the nominal parameters of an oscillator while

θ2 in equation (3.2) accounts for the uncertain terms, which may not be fully known, as

well as noise that might be present in the system. Alternatively, θ2 can represent a range

of properties for a heterogeneous population of oscillators.

We assume that the reference oscillator is entrained to the external stimulus so that

∫ T

0

[ω0 + Z(θ1)εu(t)] dt = 2π. (3.3)

Therefore, to guarantee that the noisy, uncertain oscillator is also entrained, our goal is to

design u(t) such that the phase difference between the two oscillators is small. Defining

φ = θ2 − θ1, we may write

φ̇ = ∆ω + [Z(θ1 + φ)− Z(θ1) + ∆Z(θ1 + φ)] εu(t) + [Z(θ1 + φ) + ∆Z(θ1 + φ)] εη(t).

(3.4)

Here, φ gives the phase difference between the nominal oscillator and the noisy, unknown

oscillator so that when φ = 0, both oscillators are in phase. Asymptotically expanding

θ1 in powers of ε yields

θ1 = θ
(0)
1 (t) + εθ

(1)
1 (t) + ε2θ

(2)
1 (t) + . . . (3.5)

Note that all terms of equation (3.4) are O(ε), which implies that θ
(0)
1 (t) = θ1(0) + ω0t

so that θ1(t) = θ1(0) + ω0t + O(ε). For convenience, we take θ1(0) = 0, but note that

the analysis to follow could still be performed for θ1(0) 6= 0. Substituting (3.5) into (3.4)
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and Taylor expanding terms of the form Z(·) in powers of ε yields

φ̇ = ∆ω + [Z(ω0t+ φ)− Z(ω0t) + ∆Z(ω0t+ φ)] εu(t)

+ [Z(ω0t+ φ) + ∆Z(ω0t+ φ)] εη(t) +O(ε2). (3.6)

Through stochastic averaging [94], [90] in the limit of small ε, we can approximate φ in

equation (3.4) by ϕ where

ϕ̇ = ∆ω +
1

T

∫ T

0

[Z(ω0t+ ϕ)− Z(ω0t)] εu(t)dt

︸ ︷︷ ︸
f(ϕ)

+
1

T

∫ T

0

[∆Z(ω0t+ ϕ)] εu(t)dt

︸ ︷︷ ︸
e(ϕ)

+εση(t) +O(ε2)

= ∆ω + f(ϕ) + e(ϕ) + εση(t) +O(ε2), (3.7)

where f(ψ) represents the known part of (3.4), e(ψ) represents the uncertain part of

(3.4), and

σ2 =
1

T

∫ T

0

[Z(ω0t+ ϕ) + ∆Z(ω0t+ ϕ)]2 dt

=
1

T

∫ T

0

[Z(ω0t) + ∆Z(ω0t)]
2 dt (3.8)

determines the strength of the noise. Note that equivalence in equation (3.8) comes from

periodicity in the PRC. The equation for the probability distribution function associated

with equation (3.7) is given by the Fokker-Planck equation [70]

∂ρ

∂t
= − ∂

∂ϕ
[A(ϕ)ρ(t, ϕ)] +

1

2

∂2

∂ϕ2
[Bρ(t, ϕ)] , (3.9)
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where ρ(t, ϕ) is a probability density function, A(ϕ) = ∆ω + f(ϕ) + e(ϕ) and B = ε2σ2.

From this perspective, it is not possible to maintain indefinite entrainment of the noisy

neuron, because there is always a chance that noise in the system could push the neuron

arbitrarily far from ϕ ≈ 0. However, to reduce the likelihood of this event, the problem

of entraining a noisy neuron to a periodic stimulus can be viewed as maximizing the

average escape time from ϕ = 0 over a potential barrier. From this perspective, for an

oscillator whose probability density obeys (3.9),
∫
−A(ϕ)dϕ can be viewed as a potential

function. Therefore, our goal is to design a stimulus so that there is a potential barrier

with a minimum near ϕ ≈ 0. The escape time from this barrier can be expected to be

proportional to the exponential of the height of the potential barrier [70].
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(ϕ

)d
ϕ
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Figure 3.1: Panel A gives a visual representation of the uncertainty allowed in the
phase response curve from equation (3.1), i.e. any PRC that can be drawn inside the
shaded region is allowable. Panel B shows an example of A(ψ). In order to meet the
requirements (3.10) and (3.11), for any oscillator with any allowable PRC, the area
of each shaded region in panel B must be at least β. If this is the case, the resulting
potential well in panel C will be at least β high by the time ψ is smaller than −θ− or
larger than θ+.

To maximize the escape time we want to design a stimulus u(t) such that the change

in a potential trough near ϕ = 0 and a potential peak located at either ϕ = θ+ > 0 or
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ϕ = −θ− < 0 is greater than or equal to β. This requirement can be stated as:

∫ θ+

0

−A(ϕ)dϕ ≥ β, (3.10)

∫ −θ−
0

−A(ϕ)dϕ ≥ β. (3.11)

Here β can be thought of as the minimum height required for the potential well near

ϕ = 0. Alternatively, β in panel B of Figure 3.1 represents the minimum area in each

shaded region required to produce a potential well with a size of at least β between −θ−
and θ+, as in panel C.

Recall that to leading order in ε, A(ϕ) = ∆ω + f(ϕ) + e(ϕ), and substituting these

terms from equation (3.7) into (3.10) gives

∫ θ+

0

[
∆ω +

1

T

∫ T

0

[Z(ω0t+ ϕ)− Z(ω0t)] εu(t)dt

+
1

T

∫ T

0

[∆Z(ω0t+ ϕ)] εu(t)dt

]
dϕ ≤ −β,

1

T

∫ T

0

[
∆ωθ+ +

(∫ θ+

0

[Z(ω0t+ ϕ)− Z(ω0t)] dϕ

)
εu(t)

+

(∫ θ+

0

[∆Z(ω0t+ ϕ)] dϕ

)
εu(t)

]
dt ≤ −β. (3.12)

By noting that

∫ θ+

0

−E−(ω0t+ ϕ)dϕ ≤
∫ θ+

0

∆Z(ω0t+ ϕ)dϕ ≤
∫ θ+

0

E+(ω0t+ ϕ)dϕ, (3.13)

we can use this inequality in (3.12) to conclude that if

1

T

∫ T

0

[εω+θ+ + [g+(t) + Ep(t, u)] εu(t)] dt ≤ −β, (3.14)
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where

Ep(t, u) =





∫ θ+
0
E+(ω0t+ ϕ)dϕ if u ≥ 0,

∫ θ+
0
−E−(ω0t+ ϕ)dϕ if u < 0,

(3.15)

g+(t) =

∫ θ+

0

[Z(ω0t+ ϕ)− Z(ω0t)] dϕ, (3.16)

then (3.12) and hence (3.10) must also hold. Using similar logic, (i.e. manipulating (3.11)

so it is in the same form as (3.12) then using the inequality (3.13)) we can conclude that

1

T

∫ T

0

[−εω−θ− + [g−(t) + Em(t, u)]εu(t)] ≥ β, (3.17)

where

Em(t, u) =





∫ 0

−θ− −E−(ω0t+ ϕ)dϕ if u ≥ 0,

∫ 0

−θ− E+(ω0t+ ϕ)dϕ if u < 0,

(3.18)

g−(t) =

∫ 0

−θ−
[Z(ω0t+ ϕ)− Z(ω0t)] dϕ, (3.19)

is a sufficient condition for (3.11) to be true.

Thus, the control objective of creating a potential well that is at least β deep can

be accomplished by designing a stimulus such that (3.14) and (3.17) are satisfied. We

can solve for an energy-optimal stimulus which accomplishes this goal with a Hamilton-

Jacobi-Bellman (HJB) approach [13] by defining the auxiliary state vector z such that

ż =




ȧ

ḃ

θ̇




=




1
T

(εω+θ+ + [g+(t) + Ep(t, u)] εu(t))

1
T

(−εω−θ− + [g−(t) + Em(t, u)]εu(t))

ω0 + Z(θ)εu(t)



, (3.20)
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where a and b are auxiliary variables which come from the constraints (3.14) and (3.17),

respectively. The variable θ is included so that we can specify the end point conditions

θ(0) = 0 and θ(T ) = 2π, (3.21)

requiring the noiseless oscillator with nominal properties, θ1, to be perfectly entrained to

the external stimulus. Hence, the true noisy uncertain oscillator θ2 will also be entrained

to the external stimulus when it is inside the potential well at ϕ ≈ 0.

For the initial state z = [0, 0, 0]T , the energy optimal stimulus will minimize

J(z, u(t)) =

∫ T

0

u2dt+ q(z(T )), (3.22)

where
∫ T

0
u2dt represents the energy consumed by the stimulus, and q(z(T )) is an end-

point cost function where q(z([a(T ), b(T ), θ(T )]T )) is small for final states states where

a(T ) ≤ −β, b(T ) ≥ β and θ(T ) = 2π, and large otherwise. This endpoint cost is chosen

to give a prohibitive penalty if the stimulus u(t) does not satisfy the required constraints

(3.14), (3.17), and (3.21). The energy optimal stimulus, u∗(t), can be found with standard

HJB techniques, and a related example is given in greater detail in [91].

As a final note, we examine how the optimal stimulus changes when the natural

frequency ω0 changes and both θ− and θ+ = 0. To this end, suppose that we have already

solved (3.22) for the optimal stimulus u∗(t) when the natural frequency is ω0 = 2π/To.

Suppose that u∗(t) = ε1uo(t), to leading order, the requirement (3.3) is

∫ To

0

[ω0 + Z(ω0t)ε1uo(t) +O(ε21)]dt = 2π. (3.23)
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Now consider a different natural frequency ω1 = 2π/T1. The requirement (3.3) is

∫ T1

0

[ω1 + Z(ω1t)ε1u1(t) +O(ε21)]dt = 2π. (3.24)

Changing variables so that τ = To
T1
t we can rewrite (3.24) as

∫ To

0

[
ω0 +

T1

To
Z(ω0τ)ε1u1(τ) +O(ε21)

]
dτ = 2π

∫ To

0

[
T1

To
Z(ω0τ)ε1u1(τ) +O(ε21)

]
dτ = 0

∫ To

0

[
ω0 + Z(ω0τ)ε1u1(τ) +O(ε21)

]
dτ = 2π. (3.25)

Notice that (3.25) is equivalent to (3.23). One can verify that using the same change

of variables, the constraints (3.14) and (3.17) can be made identical for the two natural

frequencies. Thus the auxiliary state dynamics ż = [ȧ, ḃ, θ̇]T will be the same, which

implies u0(t) = u1(τ) = u1

(
To
T1
t
)

, which is a useful property from an experimental

perspective.

3.3 Numerical Results

For numerical validation of the theory, we apply the methods from Section 3.2 to a

large population of N = 1000 noisy phase oscillators,

θj = ωj + Zj(θj)u(t) + ηj(t), j = 1, . . . , N. (3.26)

Here, Zj(θ) is constrained to be within the envelope from the left panel of Figure 3.2,

which is determined from experimental calculations of pyramidal neurons from the CA1

region of the hippocampus. We choose the envelope in this way to mimic the in vitro
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experiments performed in the sections to follow. To determine the PRC for each oscillator,

11 control points are randomly chosen at equally spaced intervals within the envelope,

and Zj(θ) is linearly interpolated between the control points. Example PRCs are shown

in Figure 3.2. We note that this envelope is relatively large, so the variance in ωj is taken

to be relatively small with ωj = ω0 + ∆ω, with ∆ω ∈ [−0.004ω0, 0.004ω0] chosen from

a uniform distribution. A larger variance in the natural frequencies could be chosen if

the envelope of possible PRCs is smaller. We also take nj(t) =
√

0.05νjN (0, 1) to be

i.i.d. zero mean white noise with variance 0.05 νj, where νj = 1
2π

∫ 2π

0
Z2
j (θ)dθ.

For calculation of the optimal stimulus, we take the nominal PRC to be the average of

the PRCs taken from multiple CA1 pyramidal cells, which is close to the average between

the top and bottom curves in panel A of Figure 3.2. We take θ+ = θ− = 0.94, β = 10−4,

and T = 24 ms. The optimal control is shown as u∗(t) in panel B of Figure 3.2 with the

other applied stimuli shown in panels C-E. Generally, the optimal control seeks to apply a

positive (resp. negative) stimulus when the slope of the PRC is negative (resp. positive)

and when the derivative is large in magnitude relative to the size of the envelope. For

example, a large positive stimulus is given near the end of the cycle when the derivative

is very negative and the uncertainty is relatively small; conversely, no stimulus is given

near the beginning of the cycle when the slope is small in magnitude and the uncertainty

is high. We also compare the resulting entrainment when using the optimal stimulus to

the entrainment using a sine wave, square wave, and square pulse, usin, usq, and upul,

respectively, each using an equivalent amount of power. We simulate the system (3.26)

for 60T with u(t) taken to be one of these four stimuli applied periodically and report the

time at which the cells spike (i.e. cross θ = 2π) as a probability distribution ρ relative to

the phase of the periodic stimulus. Results are shown in panel F of Figure 3.2. We find

that the optimal stimulus gives the sharpest distribution of spike times. The coefficient

of variation (CV) from a sample of 60000 spike times are reported in Panel G of Figure
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3.2 with error bars representing a 95 percent confidence interval assuming that the spike

time distribution is well approximated by a normal distribution.
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Figure 3.2: Panel (A) shows the envelope in which the PRCs of each of the phase
oscillators fit, shown as thick lines. Examples of individual PRCs are shown as thin
lines. The optimal entraining stimulus u∗ and three other stimuli usin, usq, and upul

(shown in panels (B-E)) are applied periodically to test their entrainment of the noisy
ensemble (3.26). Panel (F) shows a probability density of spike times relative to the
phase of the entraining stimulus, ρ(tspike − t̄ ), where t̄ is the average spike time. We
find that the optimal stimulus yields a significantly tighter distribution of spike times,
as reflected in the coefficient of variation shown in panel (F) calculated from their
distribution of spike times. We note that the coefficient of variation for the pulsed
stimulus is 0.091, and do not show it on the graph because it is much larger than the
other values.

3.4 Experimental Methods

To test the efficacy of the optimized stimulus waveform in a biological system, we

designed stimulus waveforms to entrain hippocampal CA1 pyramidal neurons in a brain

slice preparation. PRCs were first measured from several pyramidal neurons to estimate

the variability in the PRC waveform. Then, optimized stimulus waveforms were designed

and applied to neurons using patch clamp recording techniques. Experimental protocol

was developed in collaboration with the Netoff laboratory at the University of Minnesota

and patch clamp experiments were performed by the Netoff laboratory. All experimen-
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tal procedures were performed following guidelines from Research Animal Resources of

the University of Minnesota and approved by the Institutional Animal Care and Use

Committee.

3.4.1 Electrophysiology Recordings

Hippocampal brain slices were prepared from Sprague Dawley rats aged 14-21 days

old. Rats were deeply anesthetized using isoflurane before decapitation and extraction

of the brain. Following extraction, the brain was chilled in artificial cerebral spinal

fluid (aCSF) composed of (in mM): 125 NaCl, 25 NaHCO3, 11 D-glucose, 3 KCl, 1.25

NaH2PO4, 2 CaCl2, and 1 MgCl2. Transverse slices of the hippocampus were sectioned

400 µm thick using a Vibratome. Slices were oxygenated with 95% O2 and 5% CO2

and incubated at 37 ◦C for at least one hour. Slices were visualized using differential

interference contrast optics (Olympus, Center Valley, PA) while in a chamber with circu-

lating aCSF. Patch-clamp electrodes (3-6 MΩ) were pulled from borosilicate glass (P-97

micropipette puller; Sutter Instrument) and filled with intracellular recording fluid com-

posed of (in mM): 120 K-gluconate, 10 HEPES, 1 EGTA, 20 KCl, 2 MgCl2, 2 Na2ATP,

and 0.25 Na3GTP. Recordings from whole-cell patch clamped CA1 pyramidal neurons in

the hippocampus were made using a current-clamp amplifier (MultiClamp 700B; Axon In-

struments, Molecular Devices, Sunnyvale, CA). Data were collected using the Real-Time

eXperimental Interface (RTXI) software publicly available (www.rtxi.org) and sampled

at 5 kHz.

3.4.2 Estimating PRCs from neurons

To estimate PRCs from CA1 pyramidal neuron neurons, stimuli were applied at

different phases of the neuron’s interspike interval and deviations from the unperturbed
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period was measured. PRCs were estimated as previously described in [23], c.f. [25] (see

also Appendix B). Briefly, short-duration (0.02-0.4ms) current pulses (300-400pA) were

injected into the periodically firing neuron through the patch clamp electrode to elicit

a significant phase change without inducing an action potential. Each data point was

obtained using a direct method (see Appendix B) by stimulating at a random phase θ,

and measuring the change in spike time with the resulting value Z(θ) equal to ∆θ/Q,

where ∆θ is the change in phase and Q is the charge injected by the pulse. Constant drive

or an oscillatory input to these neurons causes them to fire periodically. To compensate

for drift in the neuron’s natural firing rate over the experiment, a proportional-integral

(PI) controller was used to adjust the current applied to the neuron slowly to maintain

the neuron at a target firing rate [95]. Spike advance as a function of the stimulus phase

was fit with a low order polynomial constrained to zero at the beginning and end of the

phase by minimizing least squares error (Matlab’s fminsearch). Examples of PRCs are

shown in Figure 3.3. We note that the waveform optimization presented in Section 3.2

requires the mean phase advance estimated by the PRC to be within the envelope, but

the phase advance on any particular cycle can be outside the envelope, due to noise.

3.4.3 Stimulus Waveform

PRCs from ten CA1 pyramidal cells, collected for previous experiments under similar

conditions described here [23,96], were used to design optimal stimulus waveforms. The

PRCs used for optimization had slightly different shapes, so four envelopes and their

corresponding stimulus waveforms were calculated; shown in Figure 3.3. The parameters

used in this optimization were θ+ = θ− = 1.89, and β = 0.0024. We assume that we

have direct control over the natural frequency of the neuron with the PI controller and

set ∆ω = 0. Each optimal waveform was defined by an envelope containing all PRCs
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within that group of cells. For each envelope, one optimal and two suboptimal stimulus

waveforms with equal energy were generated. The suboptimal waveforms were created by

either inverting and time-shifting the optimal waveform, or by stretching out the positive

portion of the optimal waveform and renormalizing to preserve the total energy. For the

in vitro experiments, whole-cell patch clamp recordings were made from CA1 pyramidal

neurons. For each cell, Matlab was used to determine which envelopes the measured

PRC fit within. The stimuli for the envelope with the best margins for each cell were

applied as current through the patch clamp electrode. For some cells, PRCs fit within

multiple envelopes, and all were tested if possible. Each of the three waveforms were

applied continuously for at least 30 seconds to a few minutes. The stimulus waveform

was applied at the target frequency of the neuron, set at 10 Hz using the PI controller,

for the duration of the experiment. The peak-to-peak amplitude of the waveform was less

than 1nA. The sequence in which the waveforms were applied was selected at random.

In most cases the PI controller to hold the neuron at the target firing rate was on while

the stimuli were being applied, however in a few cases the PI controller was turned off

to ensure it was not affecting the synchrony. The amplitude of stimulation was chosen

so that the stimulus waveform could be seen in the baseline membrane potential without

eliciting a spike. The experimenter was blinded to which stimulus was optimal until after

completion and analysis of all experiments.

3.4.4 Entropy Estimation

Entropy values calculated from spike density histograms (Figure 3.5) were used to

compare how well a stimulus entrained the neuron. Data were analyzed using Matlab.

For entropy calculations, we subdivide phases into B equally spaced bins and denote P (i)

as the probability that a spike occurs in bin i. An entropy bias term was used to correct
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for the different number of spikes in each trial [97]:

Entropybias =
B − 1

2N
, (3.27)

where N is the total number of spikes. To calculate the unbiased normalized entropy

measure from each spike density histogram, the entropy, accounting for the bias, was

normalized by the maximum possible entropy:

Entropy =

B∑
i=1

P (i) logP (i)− Entropybias

B ln 1
B

. (3.28)

The standard error of the entropy was estimated as follows [97]:

SEM =

√√√√ 1

N

B∑

i=1

(log(1− P (i)) + Entropy)2P (i)(1− P (i)). (3.29)

Statistical comparisons between entropy values were made using the Student’s t-test, and

p values < 0.05 were considered significant.
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Figure 3.3: Four envelopes with separate optimal waveforms were used to determine
which stimuli to use on a given cell. The left panels show envelopes in gray with
corresponding optimal stimulus waveforms directly below. On the right panel, a PRC
(blue) calculated from individual measurements of ∆θ/Q (dots) from a CA1 pyramidal
neuron fits within the black curves of envelope 1.

3.5 Experimental Results

Stimulus waveforms were applied to ten CA1 pyramidal neurons. An example cell

can be seen in Figure 3.4. The PRC from this example neuron fit within envelope 3 best.

For each stimulus the coefficient of variation of the interspike intervals, and the entropy

of the spike times with respect to the phase of the stimulus waveform was measured.

In this cell, the optimal stimulus waveform resulted in the lowest coefficient of variation

in the interspike intervals, indicating that the cell fires more periodically than with the

suboptimal waveforms. Furthermore, the optimal stimulus waveform had the lowest

entropy of spike times with respect to the stimulus phase, indicating that the neurons

phase locked to the optimal stimulus better than the suboptimal stimulus waveforms.

The optimal stimulus was the best, compared to the suboptimal waveforms with the

same amount of power, at entraining across all recorded neurons where the stimulus had

a significant effect on the entropy. Figure 3.5 shows the entropy values for stimuli across
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Figure 3.4: Example cell using envelope 3. Response to optimal stimulus is plotted
in left column and two suboptimal stimuli applied in right columns. Top Row: volt-
age trace (black) and applied stimulus waveform (red). Second row: Histograms of
inter-spike-intervals. Coefficient of variation (CV) values are indicated. Third row:
phase of the stimulus at each action potential (black dots) with stimulus waveform
(red). Bottom row: spike density histogram with respect to stimulus phase. Entropy
values ± SEM are indicated.
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all cells. Stimuli from envelope 1 were applied to seven cells. For six out of the seven

cells, the entropy values for the optimal waveform were significantly lower (p < 0.05)

than the non-optimal waveforms, as tested with a Student’s T-test. For cell number 1,

the entropy remained high across all stimuli without any noticeable effect from any of the

waveforms, perhaps because the stimulus amplitude was too low. Stimuli from envelope

2 were applied to one cell, from envelope 3 were applied to four cells, and from envelope 4

were applied to one cell. For each of these cells, the entropy values were significantly lower

for the optimal waveform than the suboptimal waveforms. We conclude that the optimal

stimulus waveform was the most effective at entraining the neurons to the stimulus. In

three cells experiments were done without the PI controller to control the firing rate to

confirm that the PI controller was not affecting the findings; the results in these cells

were consistent with the experiments done with the PI controller.
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Figure 3.5: The optimal stimulus waveform is significantly better at entraining neurons
to the stimulus across cells. Entropy values for each stimulus applied are shown for
10 cells. Some cells had stimuli from more than one envelope applied. Envelopes are
indicated by different patterns, with envelope 1 being the solid fill. For each envelope,
three stimuli were applied: the waveform optimized for entraining the neuron (dark
gray) and two sub-optimal waveforms (gray and white). Certain cells did not have
the PI controller on to control the firing rate of the neuron (underlined). Significant
differences between the optimal stimulus waveform and the other waveforms at p
values<0.05 are indicated by ∗.
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3.6 Discussion

In this chapter we have developed an approach to generate an optimal stimulus wave-

form to achieve entrainment of a noisy, heterogeneous group of phase oscillators. The

waveforms were tested in computational models and in vitro neurons. The optimal wave-

form for entrainment was determined by maximizing the average escape time from a

potential well near the entrained solution for any oscillator within the ensemble. We

note that this optimal control methodology only requires bounds, (3.14) and (3.17), in

which all oscillators in the population must be contained. While a stimulus waveform

may be designed to entrain a particular oscillator in the population, the resulting stimulus

may not entrain another oscillator within the population resulting in poor entrainment

overall. Our method uses a worst case scenario approach to optimization which guaran-

tees that each individual oscillator will be well entrained by the resulting stimulus leading

to better entrainment at an ensemble level rather than optimizing the waveform for a

single representative cell within the population. Allowing for uncertainty in PRCs could

be particularly useful in neurons because there is often a great degree of variability in

PRCs between samples, as seen in this study as well as in [98] and [99].

While the numerical methodology developed in this chapter generates energy-optimal

stimuli to achieve entrainment of an ensemble, it is difficult to experimentally prove that

a given stimulus is truly optimal. However, the experimental evidence suggests that the

resulting stimuli are probably at least close to optimal. Experimental results in silico

in Section 3.3 demonstrate that our optimized stimulus resulted in better entrainment

in a heterogeneous population of oscillators than other waveforms. We also tested this

method in vitro using CA1 pyramidal neurons from the hippocampus. In neurons the op-

timal stimulus performed better than the other suboptimal stimuli with the same power

for every cell recorded. This is reassuring because the optimal stimulus is only guaran-
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teed to be optimal for heterogeneity of neurons within an ensemble, but not necessarily

for heterogeneity of dynamics within an individual neuron over time. To reconcile the

differences between intracellular vs intercellular heterogeneity, we postulate that the in-

trinsic properties of the CA1 hippocampal cells, and hence their PRCs, might be slowly

changing throughout each trial. Another recent study [100] suggested that the natural

frequencies of periodically firing neurons can drift over time. A methodology that explic-

itly accounts for uncertainty in the PRCs across time can help ensure entrainment over

the entire duration of the experiment.

In this study, we have performed optimization just for energy minimization but note

that strategy could be modified to account for other important constraints by adding

terms to the cost function (3.22). For example, as we have done in other work, a cost

function could be modified to require charge balanced stimuli [23] or to limit harmful

Faradaic reactions [11]. These and other considerations could be handled on an applica-

tion specific basis.

A major benefit of this optimization is that it only requires knowledge the phase

response properties of an oscillatory system, which can be measured experimentally. The

full dynamics of the CA1 hippocampal neuron results from a complex interaction of ionic

currents flowing across a cell membrane [88]. While it may one day be possible to estimate

the full dynamics of neurons in vitro to design an better controller, for example with a

Kalman filter [101], [102], phase reduction provides a convenient and experimentally

obtainable means of understanding an oscillatory system, even when underlying system

dynamics are inaccessible. Furthermore, because the methodology developed in this

chapter explicitly accounts for heterogeneity in model parameters, different stimuli could

be designed accounting for variability across the a small sampling of PRCs.

While this method was tested using electrical stimulation of neurons, the approach

could be generalized to many different kinds of stimulation modalities and oscillators.
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With an optimal stimulation waveform tailored to the dynamics of the system’s response

to the stimulus, entrainment of the oscillators may be done with greater reliability and less

energy than other stimulus waveforms, such as periodic pulsing or sine wave stimulation.
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Chapter 4

Determining Individual Phase

Response Curves from Aggregate

Population Data

4.1 Introduction

Collective oscillation in populations of limit cycle oscillators is a widely observed

phenomenon in nonlinear biological sciences [2], [4], [24], [6]. To understand the collective

behavior of these systems, it is often useful to reduce the dynamics of the constituent

oscillators through phase reduction [88], [6], [54], so that each oscillator obeys an equation

of the form

θ̇ = ω + Z(θ)u(t), (4.1)

where the phase θ ∈ [0, 2π) describes an oscillator’s position in the basin of attraction of

a limit cycle, ω is the natural frequency so that the natural period T = 2π/ω, and Z(θ)

is the infinitesimal phase response curve (PRC) which captures the oscillator’s response
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to a small perturbation, u(t). We note that (4.1) can be appended to include additional

terms such as noise and coupling in a population. Phase reduction has been applied

fruitfully to many applications to both understand and control populations of phase

oscillators [103], [21], [88], [37], [104], [105].

Essential to the understanding of these oscillatory group dynamics is the ability to

accurately compute PRCs, which for systems in silico has been rendered nearly trivial

with modern computing algorithms and software [65], [106], [107]. For living systems,

however, the model equations are not usually known, and calculating PRCs is more

difficult. For example, accurately measuring PRCs in neurons using the “direct method”

[24], [108], [25] requires current to be injected through a dynamic clamp, piercing the

cell membrane and ultimately killing the neuron in the process. While recordings from

individual neurons can be difficult to measure, readings from populations of neurons are

readily available in experimental neurology, for example, in the form of the local field

potential, which represents a filtered sum of current traveling across the cell membranes

of a population of nearby cells [109].

When it is difficult or impractical to obtain data from an individual oscillator for

calculating its PRC, it may be more convenient to study the macroscopic behavior of

the population. To this end, [110–113] investigate the relationship between the phase

sensitivity of a individual limit cycle oscillators and the phase sensitivity of their collec-

tive oscillation which arises due to coupling. Also, [12] derived a method to calculate

phase response curves for the collective oscillations in excitable systems. These methods,

however, require that the population oscillation approaches a limit cycle, which can be a

relatively strict assumption.

In this chapter, we propose a methodology that can calculate individual PRCs using

only an aggregate signal produced by the collective oscillation of a population of homoge-

neous oscillators which does not require the collective oscillation itself to approach a limit
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cycle. While this methodology is developed for a homogeneous uncoupled population, we

find that it is robust to both heterogeneity in the individual oscillators, uncertainty in the

signal being measured, and terms which are unaccounted for such as noise and coupling.

Furthermore, we find that the standard methods used to calculate PRCs in individual

oscillators can produce misleading results when directly applied to populations of oscil-

lators. This methodology could make control strategies such as [42], [87], and [10] more

feasible for in vivo testing when the individual elements in the population are difficult to

observe. This chapter is based on work originally appearing in [36].

4.2 Numerical Procedure

To begin, consider a large group of N identical, uncoupled phase oscillators [2], [24]:

θ̇i = ω + Z(θi)ψδ(t− τ) +O(ε). (4.2)

Here, θi ∈ [0, 2π) is the phase of oscillator i = 1, 2, . . . , N , Z(θ) is the PRC, and ψδ(t−τ)

is a δ-function impulse of strength ψ ∈ R applied identically to each oscillator. In (4.2),

we allow for unknown but small O(ε) perturbations. Suppose we have no information

about any individual oscillators, but that each cell emits a phase dependent signal s(θ)

so that the aggregate signal

s(t) =
1

N

N∑

i=1

s(θi(t)) (4.3)

can be measured from the distribution.

When N is very large, we can characterize the distribution of phase oscillators with
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a probability density ρ(t, θ) [20]:

∂ρ

∂t
= − ∂

∂θ
[(ω + Z(θ)ψδ(t− τ) +O(ε))ρ(t, θ)]

= −ωρθ − ψ[Z(θ)ρθ + Zθ(θ)ρ]δ(t− τ) +O(ε). (4.4)

Equation (4.4) implicitly assumes that the first derivative of ρ is O(1) and the O(ε)

terms are small. In the absence of δ-function forcing and O(ε) terms, equation (4.4)

admits periodic traveling wave solutions. This knowledge can be exploited to calculate

the probability density immediately prior to and after a δ-function pulse, which will be

necessary for calculating phase response curves.

4.2.1 Estimating the Population Distribution from the Aggre-

gate Signal

Consider the one dimensional Fokker-Planck equation (4.4). For all times t 6= τ ,

we asymptotically expand the solution of (4.4) in orders of ε as ρ(t, θ) = ρ(0)(t, θ) +

ερ(1)(t, θ) + ε2ρ(2)(t, θ) . . . , and find that, ∂
∂t
ρ(0)(t, θ) = −ωρθ so that

ρ(t, θ) = ρo(θ − ωt) + ερ(1)(t, θ) +O(ε2), (4.5)

where ρo(θ) = ρ(0, θ). For the moment, we will neglect the O(ε) and O(ε2) terms so that

s̄(t) =
1

2π

∫ 2π

0

ρo(θ − ωt)s(θ)dθ. (4.6)

If we take ∆θ small enough, errors in the following approximation of (4.6) are negligible:

s̄(∆tm) =
1

M

M∑

j=1

ρo(∆θj − ωm∆t)s(∆θj). (4.7)
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Assuming that we have carefully chosen ∆θ so that the sampling rate ∆t = ∆θ/ω, letting

s̄(∆tm)→ s̄m, ρo(∆θm)→ ρom , and s(∆θm)→ sm, we may write

s̄m =
1

M

M∑

j=1

ρoj−msj, (4.8)

where s̄, s, and ρo now represent vectors in RM and M = 2π/∆θ = T/∆t. Defining

s̄cx = s̄M−x and scx = sM−x, and letting m = M−k and j = g+M−k, we can manipulate

the previous equation to give

s̄cM−m =
1

M

M∑

j=1

ρoj−ms
c
M−j,

s̄ck =
1

M

M∑

j=1

ρoj−M+k
scM−j,

s̄ck =
1

M

M∑

g=1

ρogs
c
k−g,

=⇒ s̄c =
1

M
(ρo ∗ sc) (4.9)

where ∗ is the convolution operator. Note here that we are using periodicity in s so that,

for example, if k − g ≤ 0, sck−g = scM+k−g. Thus, letting F represent the discrete Fourier

transform, ρo can be found using the relation

ρo
M

= F−1

(F(s̄c)

F(sc)

)
. (4.10)
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If we account for the leading order ε terms in equation (4.5) we can rewrite (4.8) as

s̄m =
1

M

M∑

j=1

(ρoj−m + ερ
(1)
j,m)sj

=
1

M

M∑

j=1

ρoj−msj +
1

M

M∑

j=1

ερ
(1)
j,msj, (4.11)

where ρ
(1)
j,m ∈ RM is a vector representing the discretized distribution ρ(1)(m∆t, j∆θ).

With the same manipulations we used in equation (4.9), we arrive at the relation

s̄ck =
1

M

M∑

g=1

ρogs
c
k−g +

ε

M

M∑

j=1

(ρ
(1)
j,M−ks

c
M−j), (4.12)

and therefore,

F(ρo)

M
=
F(s̄c)

F(sc)
− εF(W )

MF(sc)
, (4.13)

where Wk = 1
M

∑M
j=1(ρ

(1)
j,M−ks

c
M−j). Thus, the term εF(W )

MF(sc)
adds order ε error to each

of the Fourier coefficients. Generally, F(sc) will be close to zero for contributions from

higher order Fourier coefficients, which can amplify error in calculating higher order

modes of the distribution ρo. For this reason, we truncate the calculated distribution in

the main text to include only the lowest order Fourier modes.

4.2.2 Phase Response Functionals of the Advection Equation

Consider the advection equation, which might describe the probability density ρ(t, θ)

of a large group of identical phase oscillators, each with phase θ ∈ [0, 2π), on a one

dimensional ring, c.f [20]:

∂ρ

∂t
= −ω∂ρ

∂θ
+ P (t, θ). (4.14)
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Here, ω is the natural frequency of each oscillator so that the natural period T = 2π/ω

and P (t, θ) is a time and phase dependent perturbation. When P ≡ 0, equation (4.14)

has a T -periodic traveling wave solution

ρ(t, θ) = ρo(θ − ωt), (4.15)

where ρo = ρ(0, θ). In the analysis to follow, we will define this periodic solution as γ.

It will be useful to define a group phase, Θ, such that when P ≡ 0, dΘ/dt = ω. To

this end, we define Θ ∈ [0, 2π) as

Θ(ρ(t, θ)) = arctan2(a, b),

a(t) =
1

π

∫ 2π

0

ρ(t, θ) sin θdθ,

b(t) =
1

π

∫ 2π

0

ρ(t, θ) cos θdθ, (4.16)

where arctan2 is the signed arctangent function, so that the first Fourier mode of the

distribution ρ(t, θ) is given by
√
a2 + b2 cos(θ − Θ). Notice that this definition of the

group phase allows us to not only define phase in relation to the traveling wave solution,

γ, but also for any perturbed solution of (4.14).

Changing to group phase coordinates using the chain rule, we find

dΘ

dt
=

〈
∇Θ(ρ),−ω∂ρ

∂θ
+ P (t, θ)

〉

= ω + 〈∇Θ(ρ), P (t, θ)〉. (4.17)

Here, ∇Θ is the group phase response functional (GPRF) which represents the gradient

of the group phase field and 〈·, ·〉 is the L2 inner product. Note that equivalence in (4.17)

comes from the fact that dΘ/dt = ω when P ≡ 0. In order to use (4.17) we need an
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explicit expression for the GPRF. Following a similar derivation of an adjoint equation

for the calculation of GPRFs for limit cycle oscillators [12], evaluating the vector field

at ργ(Θ) which we define as the intersection of the Θ level set and the trajectory γ, we

have

dΘ

dt
= ω + 〈∇Θ(ργ(Θ)), P (t, θ)〉. (4.18)

To proceed, we assume that P ≡ 0 for t > 0 and give a small perturbation ∆ρ at time

t = 0 to the trajectory ρ(t, θ) ∈ γ. Letting ρε(t, θ) = ργ(t, θ) + ∆ρ(t, θ) be the perturbed

initial condition, we have

∂∆ρ(t, θ)

∂t
= J(ρ(t, θ)) ·∆ρ(t, θ) +O(||∆ρ(t, θ)||2)

= −ω ∂

∂θ
·∆ρ(t, θ) +O(||∆ρ(t, θ)||2), (4.19)

where J ≡ −ω ∂
∂θ

. We also define the phase shift associated with the perturbation ∆ρ(t, θ)

as ∆Θ = Θ(ρε(t, θ))−Θ(ρ(t, θ)) and write

∆Θ = 〈∇ρ(t,θ)Θ,∆ρ(t, θ)〉+O(||∆ρ(t, θ)||2), (4.20)

where ∇ρ(t,θ)Θ is the gradient of Θ evaluated at ρ(t, θ). After the initial perturbation at

t = 0, ∆Θ is independent of time, and taking time derivatives of (4.20) and neglecting

O(||∆ρ(t, θ)||2) terms gives

〈
∂∇ρ(t,θ)Θ

∂t
,∆ρ(t, θ)

〉
= −

〈
∇ρ(t,θ)Θ,

∂∆ρ(t, θ)

∂t

〉

= −
〈
∇ρ(t,θ)Θ,−ω

∂

∂θ
·∆ρ(t, θ)

〉

= −
〈
ω
∂

∂θ
· ∇ρ(t,θ)Θ,∆ρ(t, θ)

〉
. (4.21)
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Equivalence in the last line comes from the fact that ω ∂
∂θ

is the adjoint of −ω ∂
∂θ

on the

periodic domain. Equation (6.9) holds for arbitrary perturbation ∆ρ(t, θ) and therefore

gives the relation

∂∇ρ(t,θ)Θ

∂t
= −ω ∂

∂θ
· ∇ρ(t,θ)Θ. (4.22)

Equations of the form (4.22) are sometimes referred to as “adjoint equations” for calcu-

lating phase response functionals (or phase response curves) [12], [54]. The GPRF for this

system will be a T -periodic solution to (4.22) which also satisfies 〈∇ρ(t,θ)Θ,−ω∂ρ/∂θ〉 =

ω, as was required by (4.17). Furthermore, because the phase Θ was defined to be a func-

tion of the first Fourier mode of the distribution ρ, any perturbations to higher modes

will not effect the group phase. Therefore,

〈∇ρ(t,θ)Θ, p sin(nθ) + q cos(nθ)〉 = 0, ∀ p, q ∈ R, ∀n = 2, 3, 4, . . . , (4.23)

which means that the GPRF must be of the form

∇ρ(t,θ)Θ = α sin(θ − ϑ), (4.24)

with α ∈ R and ϑ ∈ [0, 2π). Recalling that when P ≡ 0, dΘ/dt = ω, one can verify that

for the group phase defined in (4.16), the GPRF is given by

∇ρ(t,θ)Θ =
sin(θ −Θ)

π
√
a2 + b2

. (4.25)
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4.2.3 Connecting the Fokker-Planck Phase Response Functional

to the Individual Neuron Phase Response Curve

Again, neglecting O(ε) terms, (4.4) admits traveling wave solutions allowing us to

study its solution in terms of a group phase Θ, defined here so that Θ ∈ [0, 2π) and

κ cos(θ − Θ) is the first Fourier mode of the distribution ρ(t, θ). With this definition of

group phase, we may view the network (4.4) itself as a phase oscillator which evolves

according to

Θ̇ = ω +

〈
G(θ,Θ),−ψ[Z(θ)ρθ + Zθ(θ)ρ]δ(t− τ) +O(ε)

〉
, (4.26)

where G(θ,Θ) is the group phase response functional, and 〈·, ·〉 is the L2 inner product.

As we show in Section 4.2.2 by using techniques similar to those in [12], G(θ,Θ) = sin(θ−Θ)
κπ

,

where κ is the magnitude of the first Fourier mode of ρ(t, θ). Therefore, the change in

group phase ∆Θ due to the δ-function impulse is

∆Θ = − ψ

κπ
〈sin(θ −Θ), Z(θ)ρθ + Zθ(θ)ρ〉. (4.27)

Because ρ(t, θ) can be determined by through measurements of s̄(t) using (4.10), and

∆θ is defined so that it can be found with knowledge of ρ(t, θ), equation (4.27) allows

us to use these observable values in order to infer the phase response curve of the indi-

vidual oscillators. It should be noted that if ρ(t, θ) = δ(θ − θo) equation (4.27) reduces

to ∆Θ(θo)/ψ = Z(θo), i.e. the PRC can be measured precisely with a direct method.

However, when ρ is not a δ-function, we will find that simply using the direct method

to calculate PRCs can yield misleading and incorrect results. To proceed, we define two
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new functions

ρf (t, θ) = ρ(t, θ)−
∞∑

k=q+1

Bρ,k sin(k(φρ,k − θ)),

Zf (θ) = Z(θ)−
∞∑

k=q+1

BZ,k sin(k(φZ,k − θ)), (4.28)

where Bρ,k sin(k(φρ−θ)) and BZ,k sin(k(φZ−θ)) represent the kth Fourier modes of ρ(t, θ)

and Z(θ), respectively. If we take q large enough so that |ρ− ρf |, |Z−Zf | and their first

derivatives with respect to θ are small, it is reasonable to assume that

∆Θ = − ψ

κπ
〈sin(θ −Θ), Zfρ

′
f + Z ′fρf〉+O(ε), (4.29)

where ′ ≡ ∂/∂θ. Here we have assumed that using the truncated terms for ρf and Zf

in (4.27) only lead to O(ε) errors in the inner product. The Fourier coefficients of the

phase distributions immediately preceding and following a δ-function pulse, ρ(τ−, θ), and

ρ(τ+, θ), respectively, can be determined from (4.10). For instance, ρ(τ−, θ) can be found

taking s̄c = [s̄(τ − T/M), s̄(τ − 2T/M), . . . , s̄(τ − T )], with sc = [s(2π(1− 1
M

)), s(2π(1−
2
M

)), . . . , s(0)]. We can then use the recordings after the δ-function stimulus to calculate

ρ(τ+, t) and hence calculate ∆Θ. Finally, we are in a position to present a strategy to

obtain Z(θ):

1. Record s̄(t) on the interval t ∈ [τ − T, τ + T ], where a δ-function pulse is given at

t = τ .

2. Repeat p times where p ≥ 2q + 1. Recall that q determines the number of Fourier

modes of Z that we wish to estimate.

3. Using the data from steps 1 and 2, construct the matrix A ∈ Rp×(2q+1) and vector

b ∈ Rp, as defined below.
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4. Solve for the best fit of the Fourier coefficients c = A†b, where † denotes the

pseudoinverse [114].

Here bi corresponds to the ith measurement of ∆Θ. For the kth set of recordings, we

use the first q modes of ρ(τ−, θ) to construct ρf,k. Using the notation Zf (θ) = c1 +
∑q

v=1 c2v sin(vθ) +
∑q

w=1 c2w+1 cos(wθ), we can rewrite equation (4.29) as:

[Ak,1, Ak,2, . . . , Ak,2q+1][c1, c2, · · · , c2q+1]T = bk +O(ε)

Ak,1 = − ψ

κπ
〈sin(θ −Θ), ρ′f,k〉

Ak,2v = − ψ

κπ
〈sin(θ −Θ), sin(vθ)ρ′f,k + v cos(vθ)ρf,k〉

Ak,2w+1 = − ψ

κπ
〈sin(θ −Θ), cos(wθ)ρ′f,k − w sin(wθ)ρf,k〉. (4.30)

In the equation above, we calculate Θ from ρ(τ−, θ). An estimate of the Fourier coeffi-

cients of Z can then be determined by taking A†b. We note that the O(ε) terms from

(4.30) will not cause the estimate of the true Fourier coefficients of Z to deviate by more

than O(ε) because A does not depend on ε, and ||A†||, while potentially large, will be

bounded if we take enough independent measurements so that A has full rank.

4.2.4 Measuring Phase Response Curves in an Almost Advec-

tive Equation

Here, we will show that using this methodology to estimate phase response curves,

Z(θ), will yield results that are accurate to leading order ε regardless of whether the true

dynamics evolve according to

∂ρ

∂t
= −ωρθ − [Z(θ)ρθ + Zθρ]ψδ(t− τ) (4.31)
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or

∂ρ

∂t
= −ωρθ − [Z(θ)ρθ + Zθρ]ψδ(t− τ) +O(ε), (4.32)

where the O(ε) terms represent small but unknown perturbations. In the main text, all

results are obtained using (4.31), and those results will be used for comparison here.

To begin, in the presence of the O(ε) terms, suppose that at t = τ−T the probability

distribution is ρo(θ). Using the asymptotic expansion (4.5) from Section 4.2.1 of the main

text, at time t = τ− the solution of (4.32) will be

ρ(τ−, θ) = ρo(θ) + ε

∫ τ

τ−T
[ρ(1)(t, θ) +O(ε)]dt. (4.33)

Therefore, ρ(τ−, θ) = ρo(θ) + O(ε). To calculate G(θ,Θ1), where Θ1 ≡ Θ(τ−), we need

to know Θ(τ−), which can be found by calculating Fourier coefficients of (4.33):

a =
1

π

∫ 2π

0

ρo(θ) sin(θ)dθ +
ε

π

∫ 2π

0

{∫ τ

τ−T
[ρ(1)(t, θ) +O(ε)]dt

}
sin(θ)dθ = a∗ +O(ε),

b =
1

π

∫ 2π

0

ρo(θ) cos(θ)dθ +
ε

π

∫ 2π

0

{∫ τ

τ−T
[ρ(1)(t, θ) +O(ε)]dt

}
cos(θ)dθ = b∗ +O(ε),

(4.34)

where a∗ and b∗ are the Fourier coefficients if we were using (4.31). Therefore, the group

phase is Θ1 = arctan2(a∗+O(ε), b∗+O(ε)) which through Taylor expansion can be shown

to be equal to arctan2(a∗, b∗) +O(ε) = Θ∗1 +O(ε), where Θ∗1 would be the group phase

if we were using (4.31). Then from (4.25),

G(θ,Θ1) =
sin(θ −Θ∗1 +O(ε))

π
√
a∗2 + b∗2 +O(ε)

=
sin(θ −Θ∗1)

π
√
a∗2 + b∗2

+O(ε). (4.35)

Note that equivalence in (4.35) comes from Taylor expansion and assumes that
√
a∗2 + b∗2

is large compared to ε. Using the phase reduction for (4.32), the effect on the δ-function
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pulse on the group phase will be

∆Θ = − ψ

π
√
a∗2 + b∗2

〈
sin(θ −Θ∗1) +O(ε),

∂

∂θ

(
ρo(θ) + ερ(1)(τ−, θ)+

O(ε2)
)
Z(θ) +

∂

∂θ
Z(θ)

(
ρo(θ) + ερ(1)(τ−, θ) +O(ε2)

)〉

=⇒ ∆Θ +O(ε) = − ψ

π
√
a∗2 + b∗2

〈sin(θ −Θ∗1), ρ′o(θ)Z(θ) + Z ′(θ)ρo(θ)〉 , (4.36)

where ′ ≡ ∂/∂θ. Note that equivalence in the last line of (4.36) requires that the deriva-

tives of the O(ε) terms are still O(ε). We observe that the right hand side of (4.36) is of

the same form as (4.27). Therefore, including the O(ε) terms from (4.32) will cause the

effect of the δ-function pulse to differ by O(ε).

In Section 4.2.1, we show that to leading order ε, we can measure the phase of a

distribution that evolves according to (4.32) by measuring s̄(t) for one period. Therefore,

for an initial distribution ρ(τ − T, θ), if we apply the methodology to measure the phase

response curve of the system,

Θ1 = Θ∗1 +O(ε). (4.37)

Using the coefficients from (4.34) the true value of the group phase at τ−, Θ̃(τ−), is equal

to Θ∗1 +O(ε), and using (4.36) we can say that after the pulse Θ̃(τ+) = Θ∗1 +∆Θ∗+O(ε),

where ∆Θ∗ is the change in group phase if the distribution evolved according to (4.31).

Again, we will be able to measure the group phase of ρ(τ+, θ) to leading order ε, so that

Θ2 = Θ∗1 + ∆Θ∗ +O(ε) (4.38)

and

∆Θ = Θ2 −Θ1 = ∆Θ∗ +O(ε). (4.39)

Therefore, b = b∗ + O(ε), where b is a vector of readings of ∆Θ, and b∗ is what would
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have been measured if the distribution evolved according to (4.31).

We now turn our attention to the values in the A matrix given by (4.30). In equation

(4.13) from Section 4.2.3, we show that we can calculate the Fourier coefficients of ρo

to leading order in ε. Therefore, the truncated distribution from equation (4.28) of the

main text can be written as

ρf (θ) = ρo(θ)−
∞∑

k=q+1

Bρ,k sin(k(φρ − θ)) +O(ε)

= ρ∗f (θ) +O(ε), (4.40)

where Bρ,k sin(k(φρ − θ)) is the kth Fourier mode of ρo(θ) and ρ∗f (θ) is the function

ρf (θ) that would have been calculated if the probability distribution evolved according

to (4.31). Therefore, the values in A calculated from equation (4.30) become

Ak,1 = −ψ〈G(θ,Θ∗) +O(ε), (ρ∗f,k +O(ε))′〉 = A∗k,1 +O(ε)

Ak,2v = −ψ〈G(θ,Θ∗) +O(ε), sin(vθ)(ρ∗f,k +O(ε))′ + v cos(vθ)(ρ∗f,k +O(ε))〉

= A∗k,2v +O(ε)

Ak,2w+1 = −ψ〈G(θ,Θ∗) +O(ε), cos(wθ)(ρ∗f,k +O(ε))′ − w sin(wθ)(ρ∗f,k +O(ε))〉

= A∗k,2w +O(ε), (4.41)

where A∗i,j is the value of Ai,j that would have been calculated if the probability distri-

bution evolved according to (4.31). Therefore, to calculate the Fourier coefficients c of

Z(θ) we must solve

(A∗ + εE)c = b∗ + εβ (4.42)

so that c = (A∗+ εE)†b∗+ ε(A∗+ εE)†β. Here, εE represents the O(ε) terms from (4.41)

and εβ represents the O(ε) terms from (4.39).
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Consider the difference between c and c∗ = A∗†b∗, and let D = (A∗ + εE). Then

c− c∗ = D†b∗ + εD†β − A∗†b∗

||c− c∗|| = ||(D† − A∗†)b∗ + εD†β − εA∗†β + εA∗†β||

= ||(D† − A∗†)(b∗ + εβ) + εA∗†β||

≤ ||D† − A∗†|| · ||b∗ + εβ||+ ε||A∗†|| · ||β||. (4.43)

Because the difference between the true Fourier coefficients and c∗ is O(ε), if we can show

that ||D† − A∗†|| is an order ε term, then the difference between c and the true Fourier

coefficients will also be O(ε).

To proceed, we assume that we have taken enough independent measurements of ∆Θ

so that A∗ has full rank. Then, let UΣV T be the singular value decomposition of A so

that

Σ =




Σ11

0


 , UTEV =



E11

E21


 , UTDV =



D11

D21


 =




Σ11 + εE11

εE21


 . (4.44)

Using a combination of Theorem 2.2 and Theorem 3.8 from [115], if we assume εE is

small enough so that it is an acute perturbation of A∗, as defined in [115], we can write

||D† − A∗†|| ≤ ε||Σ−1
11 ||2||A

∗† ||(||E11||+ ||E21||)
1− ε||E11||2||Σ−1

11 ||2
. (4.45)

Therefore, ||D† − A∗†|| can be bounded as an O(ε) term, and from (4.43), c is at most

O(ε) away from c∗ which is in turn O(ε) away from the true Fourier coefficients of Z(θ).
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4.3 Numerical Results for a Network of Oscillatory

Neurons

We now test the utility of this method on a model which exhibits periodic neural

spiking behavior. First consider a model of N = 1000 periodically spiking thalamic

neurons [63]:

CV̇i = −IL(Vi)− INa(Vi, hi)− IK(Vi, hi)

− IT (Vi, ri) + Ii,SM + ζiu(t) +Dηi(t) +
αc
N

N∑

j=1

(Vj − Vi),

ḣi = (h∞(Vi)− hi)/τh(Vi),

ṙi = (r∞(Vi)− hi)/τr(Vi), i = 1, . . . , N. (4.46)

Here, Vi, hi, and ri are transmembrane voltage and gating variables for neuron i, u(t) =

I(t)/C represents a control input common to all neurons, ζi is a constant representing

the proximity to the stimulus electrode, Ii,SM represents a baseline current chosen so

that each neuron fires periodically, ηi(t) = N (0, 1) is i.i.d. noise with zero mean and

variance 1, D and αc are constants determining the strength of the noise and electrotonic

coupling [64], respectively, and all other functions and parameters are given in [63]. We

note that this network could be generalized to include, for instance, chemical synaptic

coupling with more complicated coupling structures. In our first example, we take the

network to be homogeneous with Ii,SM = 5µA/cm2 and ζi = 1 for all i. We also set

D = αc = 0 so that the distribution evolves according to (4.4) with no O(ε) terms.

When u(t) ≡ 0, each neuron settles to the same stable limit cycle, and we take s(θ)

to be the transmembrane voltage along this cycle, shown in panel A of Figure 4.1. We

take p = 70 measurements taking u(t) to approximate a δ-function with ψ = 0.025 using
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the methodology described above. Panel B shows an example of s̄(t) centered at t = τ ,

the time at which the perturbation is applied. Panel C shows raw measurements of

∆Θ/ψ plotted against the phase that the stimulus was applied, similar to how PRCs are

typically measured in single neuron recordings [108], and panel D gives the estimated

PRC using the methodology detailed above with M = 1000 and q = 4 (black line) with

the exact PRC (grey line) measured using XPPAUT [65]. Note that while there is a

strong, seemingly sinusoidal, correlation between Θ and ∆Θ, this does not capture the

phase response properties of the individual neurons.

0 2 4 6

−60

−40

−20

0

θ

s(
θ)

−1 −0.5 0 0.5 1
−53

−52

−51

−50

−49

(t − τ)/T

s̄

0 2 4 6

−0.5

0

0.5

Θ

∆
Θ
/
ψ

0 2 4 6
−0.05

0

0.05

0.1

0.15

0.2

θ

Z
(θ
)

D

B

C

A

Figure 4.1: Panel A shows the transmembrane voltage as a function of θ on the limit
cycle, which we take to be s(θ). Panel B shows an example measurement of s̄ for
a perturbation at t = τ . Panel C shows a strong, potentially misleading correlation
between the initial phase and ∆Θ which does not accurately reflect the true PRC in
Panel D. The PRC calculated from the data using the methods of Section 4.2 is shown
in black in Panel D with the true PRC in grey.

4.3.1 Including Heterogeneity, Coupling and Noise

In the derivation of the phase response calculation methodology from Section 4.2,

we assume that the phase response curves and natural frequencies of each oscillator are
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identical. In all but the simplest applications, this is an overly restrictive assumption.

Here, we provide numerical evidence that in a heterogeneous network, the proposed

methodology can accurately estimate the average phase response curve of the system.

Furthermore, while we show in Section 4.2.4 that this methodology is guaranteed to

be accurate when each oscillator is subject to small unknown external perturbations

(e.g. noise and coupling), we find that this methodology can still yield accurate results

when external perturbations are large.

To include heterogeneity in the neural network (4.46), we draw the parameters ISM ,

ζ and the leak current conductance, (gL from [63]) in (4.46) from normal distributions,

with histograms for the chosen values shown in Figure 4.2. For this choice of parameters,

both the PRCs and the natural periods of each neuron in the population are no longer

identical. We take s(θ) to be voltage along the limit cycle, averaged over each neuron

which gives a similar s(θ) to what was used in the homogeneous population example (we

note that this calculation of s(θ) would not be feasible in a real experiment, and provide

a discussion about robustness with respect to the choice of s(θ) in the next section).

In order to apply the numerical procedure from Section 4.2.3 to the heterogeneous

population, we need to determine an appropriate value of T , the natural period of oscilla-

tion for our system. When the network is homogeneous, T from steps 1 and 2 can simply

be taken as the natural frequency of each oscillator. In this case, however, we assume that

we do not have a priori knowledge of T for the heterogeneous population, and implement

steps 1 and 2 by continuously recording s̄(θ), and intermittently perturb the system with

δ-function pulses. We then take T to be the period corresponding to the largest mode of

the Fourier transformed data s̄(θ), taken over the entire duration of the simulation. By

recording the time at which the pulses were presented, we can then extract the portions

of the measurement s̄(t) necessary to implement the numerical procedure. We illustrate

this strategy for both a noiseless and uncoupled (D = 0, αc = 0) and a noisy and coupled
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Figure 4.2: The top panels show histograms representing the number of neurons with
each value of baseline current (ISM ), leak current conductance, and relative stimulus
magnitude, ζ, applied to each neuron. The bottom left panel shows the spread of
ζiZi(θ) which represents the effective PRC for each neuron. The boundaries of the
shaded region represent maximum and minimum resulting values, the dashed lines
represent boundaries of the 25th and 75th percentiles, and the thick black line gives
the average value for the 1000 neuron population. A histogram representing the
natural periods of oscillation for each neuron is shown in the bottom-right panel.

network (D = 2, αc = 0.1), with results shown in panels A-C and D-F of Figure 4.3,

respectively. In the noiseless, uncoupled simulations, we take q = 1 to estimate the first

Fourier mode of the individual phase response curves, and in Panel C we see that the

result agrees well with the average effective PRC of the population. For the network with

both noise and coupling, we find in panel F that the magnitude and phase of the first

Fourier mode are slightly worst than the result from the noiseless, uncoupled network,

but the estimate is still quite good. We note that in both examples, the raw phase data

from panels B and E do not come close to matching the shape or the magnitude of the

individual phase response curves.
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Figure 4.3: Panels A-C show results for a population of heterogeneous, uncoupled,
noiseless neurons. Panels D-F show results for a population of heterogeneous, coupled,
noisy neurons. Panels A and D show an individual neural trace from each population.
Panels B and E show the raw data using ψ = 1 as black dots (p = 105 and p = 137
measurements, respectively) while the red line gives a five mode Fourier fit of the raw
data. Panels C and F show the resulting PRCs (black lines) and the averaged effective
PRC (grey line) for reference.

4.3.2 Choosing a Signal for Robust Measurement of PRCs

The signal s(θ) which each oscillator contributes to the population observation is

necessary for determining the distribution before and after the application of the pulsatile

stimulus and hence, for finding the PRC. For experimental applications, it is likely that

s(θ) cannot be obtained with absolute certainty. In this section, we show that PRCs can

still be obtained rather robustly if an approximation to the true value of s(θ) is known.

To begin, consider the infinite time average of (4.3)

lim
T→∞

1

T

∫ T

0

s(t)dt = lim
T→∞

1

T

∫ T

0

[
1

N

N∑

i=1

s(θi(t))

]
dt. (4.47)
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We assume that external perturbations are small so that θi(t) is well approximated by

θi(0) + ωit. We may then manipulate (4.47) as follows:

lim
T→∞

1

T

∫ T

0

s(t)dt = lim
T→∞

(
1

T

∫ T

0

[
1

N

N∑

i=1

s(θi(0) + ωit)

]
dt

)
,

=
1

N

N∑

i=1

lim
T→∞

(
1

T

∫ T

0

[
s(θi(0) + ωit)

]
dt

)
,

=
1

2π

∫ 2π

0

s(θ)dθ

(
1

N

N∑

i=1

1

)
,

=
1

2π

∫ 2π

0

s(θ)dθ. (4.48)

Therefore, when choosing the signal s(θ), its mean is well approximated by s(t), provided

a long enough measurement is taken. Therefore, it is only necessary to estimate the shape

and magnitude of the signal s(t), as the mean can be determined from the experimental

data. Figure 4.4 replicates the results from Section 4.3 using the homogeneous network

and the heterogeneous, noisy, coupled network for two different choices of s(θ). For

the first choice, we take s(θ) to be the true transmembrane voltage, to which we add

a Wiener process. The second choice is a simple piecewise linear approximation to an

action potential. For both signals, we vertically shift the resulting s(θ) so that (4.48) is

satisfied. As long as s(θ) is reasonably close to the true signal, s∗(θ), the PRC calculation

results are not significantly degraded.
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Figure 4.4: Left (resp. Right): Replicating the PRC calculation results using the
noiseless, homogeneous, uncoupled, (resp. noisy, heterogeneous, coupled) network
from Section 4.3 using different values of s(θ). Top panels show two different choices
of s(θ) as bold lines with the true (resp. population average) s∗(θ) shown as a dashed
line. Bottom panels show the calculated PRCs in black using the s(θ) function directly
above. Grey lines represent the true (resp. population average) PRC.

4.4 Bursting Neuron PRCs

For a second test, we consider a more complex network of 400 bursting Hindmarsh-

Rose model [116] neurons which was modified in [117] to include a synaptic current:

V̇i = ni − aV 3
i + bV 2

i − hi + I

+ εsyn

N∑

j=1

ξj(Vi − Vsyn) + εηηi(t) + u(t),

ṅi = c− dV 2
i − ni(t),

ḣi = r(σ(Vi − V0)− hi),

ξ̇i = αsynT∞(Vi)(1− ξi)− βsynξi, i = 1, . . . , 400. (4.49)

Here, Vi, ni, and hi represent transmembrane voltage and gating variables, ξi is a synaptic

variable which could represent a neurotransmitter, ηi(t) = N (0, 1) is i.i.d. noise with zero
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mean and variance 1, and u(t) is an external input. We take εsyn = 0.03, εη = 0.01 and

all other parameters identical to those in [117] except for βsyn = 0.0304 and αsyn = 1.304

which were modified so that the synaptic variable ξ(θ) changed on a slower time scale

as compared to the transmembrane voltage V (θ). For this choice of parameters, in the

absence of synaptic coupling and noise, each neuron settles to a limit cycle with a period

of T =430 ms consisting of nine-spike bursts followed by a period of quiescence. Here,

we use pulses of u(t) = 0.4 for 5 ms so that ψ = 2. We take s(θ) to be the synaptic

variable, which is shown in Panel A of Figure 4.5, but note that similar results can also

be achieved by using the transmembrane voltage. Panel B shows s̄(t) for one of p = 106

measurements, centered about t = τ . We note that because of the small noise and

coupling terms, s̄(t) is not perfectly T -periodic for t 6= τ . Panel C shows a fit of five

Fourier modes to raw data of ∆Θ/ψ plotted as a function of Θ. In panel D, the true

PRC calculated using the direct method [24] on a single neuron is shown in grey, and

the PRC estimated from the methodology above with M = 1000 and q = 5 is shown in

grey. The structure of the true PRC is much more complex than in the previous model,

but the estimated PRC accurately captures the slowly varying part. To capture the

rapid fluctuations in the earlier part of the cycle, we would need to include more Fourier

modes in the calculation, but because of noise and network coupling structure, it is not

possible to accurately calculate these modes for this model. In panel E, we show that the

calculated PRC (black) is very close to the first five Fourier modes of the true PRC (grey).

The fit from panel C (red) is also shown for comparison and is not a good approximation

of the true PRC. While we cannot calculate the higher order modes which give rise to the

rapidly varying part of the PRC, these are not necessary in many applications. In one such

example, we use the calculated PRC to predict entrainment of individual neurons from

(4.49) to the external stimulus u(t) = 0.0025 cos(ωot) + 0.005 sin(ωot), where ωo = 2π/T ,

shown in panel F. If we assume that u(t) is small enough so that θ(t) ≈ θ(0) +ωot, using
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standard averaging techniques [118], we can reduce the dynamics of individual cells from

(4.49) to

ϕ̇ = Γ(ϕ), (4.50)

where ϕ ≡ θ/ωo − t (mod T ) and Γ(ϕ) = 1
T

∫ T
0
Z(ωot + ϕ)u(t)dt. Panel G shows Γ(ϕ)

calculated using the PRC obtained from the methodology described in Section 4.2 as a

black line, which predicts three stable fixed points of (4.50) marked by ∗’s. These fixed

points are verified in panel H from numerical simulations of individual, noiseless neurons

from (4.49). For comparison, using the red curve from panel C to calculate Γ(ϕ) predicts

only one stable fixed point.
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Figure 4.5: Panel A shows the synaptic variable, ξ, as a function of θ, which we take
to be s(θ) in (4.49). Panel B shows an example measurement of s̄ for a perturbation at
t = τ . Panel C shows raw data of ∆Θ/ψ plotted against Θ with a five mode Fourier fit
to the data in red. In panel D, The true PRC is shown in grey with the PRC calculated
from the data using q = 5 in black. Panel E shows the first five Fourier modes of the
true PRC, the calculated PRC, and the fit from the raw data in grey, black, and red,
respectively. We predict the entrainment of (4.49) to the signal u(t) shown in panel
F. In panel G, Γ(ϕ) is calculated using the red and black curves from panel E, with
resulting functions shown in red and black, respectively. Predicted stable fixed points
are denoted with ∗’s for each curve. The stable fixed points predicted from the black
curve accurately predict entrainment as verified from simulations of individual cells
from (4.49) in panel H.

100



Determining Individual Phase Response Curves from Aggregate Population Data Chapter 4

4.5 Conclusions

This study provides an experimentally feasible methodology for calculating PRCs of

individual components from aggregate population data. We have applied this methodol-

ogy to a model of both periodically spiking and bursting neurons and show that it can

accurately calculate the slowly varying modes of the PRCs in the constituent elements.

We explicitly show in Section 4.2.4 that in the limit as the truncated order ε terms from

(4.4) are small, the Fourier coefficients are also accurate to leading order ε. Nevertheless,

when noise and coupling in the system is relatively large, we can still obtain accurate

results. Furthermore, using techniques based solely on the direct method [24] (see also

Appendix B), as is typically used to measure PRCs, can yield potentially misleading

results in the examples presented here.

In each of the examples given here, we are only able to calculate the first few modes of

the individual PRCs before either noise, heterogeneity or truncated order ε effects from

the phase reduction begin to significantly degrade the calculation. We do not provide

analytical limits on the number of modes we can take, but heuristically we find that

as we continue to take more and more modes, the solution becomes dominated by the

higher order modes (i.e. the methodology produces PRCs that oscillate rapidly). In a

setting where the individual phase PRCs are unknown, the procedure could be repeated

for increasing values of q (yielding solutions with different numbers of Fourier modes)

until the higher order Fourier begin to dominate the solution, indicating that the results

are no longer valid.

The proposed methodology is shown to work well for the systems tested here, but

modifications could improve the accuracy of the calculation. For example, we have chosen

a Fourier basis functions to calculate the probability distribution and PRC in (4.28)

because of the intrinsic periodicity of the solutions, and the effect of using different bases
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has not been investigated here. Furthermore, for simplicity of implementation, we have

used a least-square fitting technique to determine the Fourier coefficients, and have not

investigated the effect of using different curve fitting techniques. When we considered

heterogeneity, coupling and noise in the periodically spiking population of neurons, we

were still able to obtain a reasonably accurate estimate of the average phase response

curve of the system. It may be possible to improve this estimate by explicitly accounting

for these effects in the underlying partial differential equation (4.4). Most likely this

would require specific estimates of the underlying coupling structure and noise strength.

It may be interesting to adapt the proposed methodology for use in excitable systems

which through coupling may admit stable periodic oscillations [12]. The constituent

elements of these populations are excitable, not periodic, so that perturbations to the

individual elements can be understood in terms of isostable response curves [38]. Such

systems have relevance to problems in cardiology [29], [28], [119], [34], systems of chemical

oscillators [120], waves of spreading depression in the brain [121], [122]. It is possible that

isostable response curves could be calculated using a similar strategies for these excitable

systems.

Phase reduction has a rich history in the nonlinear sciences, and has led to a greater

understanding of many physical, chemical, and biological systems. The methodology

presented in this chapter could allow for the use of phase reduction in large systems

where it is not feasible to directly observe the individual elements, allowing for their

study in a more useful coordinate system. In addition, the algorithm presented here is

relatively simple and can be readily implemented with modern mathematical software.

102



Chapter 5

Extending Phase Reduction to

Excitable Systems

5.1 Introduction

Phase reduction methods have fruitfully applied to many physical, chemical and bi-

ological systems [1–11]. Such methods are useful for understanding the dynamics of

perturbed nonlinear oscillators because they allow for the reduction from a system

ẋ = F (x) +G(x, t), x ∈ RN , (5.1)

where x ∈ RN is a vector of states and G ∈ RN is the effect from an external stimulus,

to a system with a single variable

θ̇ = ω + Z(θ)TG(x(θ), t), θ ∈ S1. (5.2)
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Here θ ∈ [0, 2π) describes the oscillator’s phase, ω is the oscillator’s natural frequency,

and Z(θ) ∈ RN is the oscillator’s infinitesimal phase response curve (iPRC) (also called

the PRC in previous chapters) which describes the change of the oscillator’s phase from a

small external stimulus. Phase reduction is particularly powerful with control frameworks

such as Hamilton-Jacobi-Bellman, calculus of variations, or dynamic programming [13],

since the computational effort for finding the desired control input grows exponentially

with the number of state variables. Phase reduction methods have also been useful

for systems for which the state dynamics are not fully known. For example, in vitro

experiments on biological tissue have successfully controlled spike timing in periodically

firing neurons using inputs computed from phase models [22], [23]. The calculation

of iPRCs is central to the utility of phase reduction. iPRCs can be calculated using a

direct method [123] (see also Appendix B), which entails perturbing the system at a given

phase and measuring the resulting phase change, or numerically using a so-called “adjoint

method” [5], c.f. [54]. Previously, the notions of phase and iPRCs have been extended

to excitable systems with a stable fixed point [124], [125], but those methods relied on

the existence of slow-fast dynamics, and required response curves to be calculated with

a grid-based approach.

In this chapter, we propose a more general method of phase reduction for excitable

systems based on the notion of isostables, which as shown in [26], can be defined in

relation to level sets of the eigenfunctions of the Koopman operator. Here, a system

is said to be excitable if all initial conditions within a small neighborhood of a stable

fixed point give trajectories that decay directly to it, but some initial conditions further

away from the stable fixed point give trajectories that undergo large excursions before

approaching the fixed point. Isostables of excitable systems are analogous to isochrons

for asymptotically periodic systems. Isochrons can be understood as an extension of the

phase of oscillation to the basin of attraction of the limit cycle [2]; they represent surfaces
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of constant phase. In this way, two locations in phase space which start on the same

isochron will asymptotically approach the same location on a periodic orbit as time tends

toward infinity. For excitable systems, it is not possible define a phase because there is

no periodic orbit. Instead, isostables can be defined as sets of points in phase space

that approach a fixed point together, in a well-defined sense described below. Figure 5.1

highlights the similarities and differences between isochrons for a two dimensional system

with a periodic orbit (left) and isostables for an excitable system with a stable fixed point

(right). The left panel shows a system with equations found in [69], [126], and two initial

conditions which start on the same isochron asymptotically converge to the same phase

on the limit cycle. The right panel shows an excitable system (5.18); initial conditions

which start on the same isostable approach the stable fixed point together.

The calculation of an isostable field, I(x), exploits the linear nature of nonlinear

dynamics near a fixed point xo. For a linear system

ẋ = A(x− xo), (5.3)

and solutions φ(t,x(0)) (also known as the flow) approach the fixed point as

φ(t,x(0))− xo =
n∑

j=1

sj(x(0))vje
λjt, (5.4)

where sj(x) are the coordinates of the vector x in the basis {vj, j = 1, . . . , n} of unit

eigenvectors of A, with associated eigenvalues {λj, j = 1, . . . , n}, sorted so that λ1

corresponds to a unique slowest direction of the stable manifold, i.e., Re(λj) < λ1 <

0, ∀ j > 1. Here, we assume that λ1 is real and unique, and as shown in [26], the

magnitude of s1(x) determines the infinite time approach to the origin. In other words,

hyperplanes of constant isostables, Iτ ≡ {x ∈ Rn|I(x) = τ}, near a fixed point are

105



Extending Phase Reduction to Excitable Systems Chapter 5

V

n

Isochron Portrait

 

 

−100 −50 0 50
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1

2

3

4

5

6

V

w

Isostable Portrait

 

 

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 5.1: Isochrons and isostables in two different systems. Isochrons can be used
to analyze a system with a periodic orbit, while isostables are appropriate to analyze
systems with a stable fixed point. The left panel shows isochrons for a system with
a stable periodic orbit shown as the gray curve, with the phase ranging from 0 to
2π. Black lines show isochrons equally spaced in time in the sense that the time
required to go from one of the displayed isochrons to the next is always the same.
Two trajectories shown as red, dashed lines, start on the same isochron and approach
the periodic orbit with the same phase. Snapshots are shown as white dots. The
right panel shows an isostable field for a system with a stable fixed point shown as
the gray dot, and black lines show isostables which are equally spaced in time. Three
trajectories, shown as red, dashed lines start on the same isostable will approach the
fixed point together. Snapshots are shown as white dots. Isostables are calculated
on a grid of initial conditions using (5.5). Isochrons are calculated using a similar
grid-based approach but can also be calculated in finer detail using methods detailed
in [126].

parallel to the faster directions v2, . . . ,vn.

For nonlinear systems, the calculation of isostable field within the fixed point’s entire

basin of attraction, I(x), can be calculated by monitoring the infinite time approach of

φ(t,x) to the fixed point, xo, by computing

I(x) = lim
t→∞

e−λ1t||φ(t,x)− xo||, (5.5)

where || · || can be any norm, but for this chapter, we will be working with the 1-norm

on Rn. Intuitively, Equation (5.5) compares the asymptotic approach to the fixed point
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along the slowest direction of the stable manifold, v1, to an exponential function governed

by the associated eigenvalue, λ1. We emphasize that Equation (5.5) is valid for systems

with a stable fixed point where λ1 is real and unique. In other cases, such as when λ1 is

complex or the fixed point is unstable, isostables can still be calculated, and we refer the

interested reader to [26] for a more complete discussion.

As mentioned previously, phase reduction is particularly useful to make complicated

problems in nonlinear dynamics analytically and computationally tractable. In this chap-

ter, we choose a problem from cardiology for which we will apply the aforementioned

isostable reduction, but first we give a brief overview of the heart from a dynamical

systems point of view.

The heart beats roughly three billion times during a typical human lifetime to trans-

port blood containing oxygen, nutrients, immune cells, regulatory molecules, and waste

products to keep the body functioning. The heart is driven by a small area of specialized

cardiac muscle cells known as the sinoatrial node, which acts as pacemaker, producing a

propagating wave of electrical activity which spreads through the four chambers of the

heart (right atrium, left atrium, right ventricle, and left ventricle) in a coordinated fash-

ion. From a modeling perspective, the propagation of electrical activity throughout the

heart is often viewed as a reaction-diffusion equation on a one, two, or three dimensional

representation of the myocardium, the muscular tissue of the heart. This cardiological

medium is made up of individual cells, or myocytes, which are specialized muscle tissue

which coordinate the action of a heart beat.

Myocytes are excitable cells: a large enough positive perturbation to the transmem-

brane voltage of a myocyte will elicit a depolarizing action potential and a contraction

of the muscle tissue [2]. Cardiac action potentials last for a significant amount of time,

allowing the elevated transmembrane voltage to spread to nearby cells, and creating a

wave of action potentials. After this wave propagates through the myocardium, under
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normal conditions, the cells repolarize and remain quiescent until the pacemaker elicits

another pulse.

Ideally, this healthy pattern of coordinated activity occurs throughout the host’s

lifespan. However, under certain conditions, the myocardium can become susceptible

to cardiac fibrillation, the uncoordinated contraction of the cardiac muscle, which can

be deadly in an otherwise healthy heart if not treated within minutes of onset. Most

researchers agree that atrial fibrillation is caused by the presence of unwanted spiral

waves [2] within the myocardium which interfere with the normal sinoatrial rhythm [27],

[28], [29].

Cardiac fibrillation can be the final step in an increasingly complex series of events

that begins with a phenomenon known as cardiac alternans. Alternans is the beat to beat

alternation of electrochemical cardiac dynamics at a constant rate of pacing and has been

implicated as a precursor to fibrillation [30]. These alternations include the strength of

cardiac muscle contraction, action potential duration, and intracellular calcium concen-

tration dynamics. In particular, the phenomenon known as discordant alternans, where

cardiac tissue in different spatial locations exhibit alternans of action potential duration

of opposite phase, can produce particularly favorable conditions for initiating spiral wave

reentry required for fibrillation [119,127–130]. Spiral waves are more likely to be initiated,

for instance, with a premature beat when there is a large degree of spatial heterogeneity

in the refractory cells in the heart. For a review of alternans from a dynamical systems

perspective, we refer the reader to [131].

In recent decades, researchers have looked into ways of suppressing alternans as a way

of preventing cardiac fibrillation, bypassing the need for painful and damaging defibril-

lating shocks. Many of these methods, such as those described in [31] and [32], attempt

to suppress alternans by monitoring the action potential duration (APD), or the length

of time that the tissue remains depolarized (i.e., at elevated voltage), and appropriately
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modifying the time at which the next action potential is elicited. These methods have

been shown to be successful in real cardiac tissue [33–35].

Using isostable reduction techniques we are able to work in a more useful coordi-

nate system to devise a novel and energy-efficient approach for terminating alternans.

In Section 5.2 we develop the mathematical framework required for an isostable reduc-

tion for excitable systems (analogous to phase reduction for periodic systems), and the

corresponding infinitesimal isostable response curve (iIRC) (analogous to the iPRC for

periodic systems). We also develop an “adjoint method” to calculate an iIRC, requiring

only the knowledge of the trajectory along which the system approaches the fixed point.

Section 5.3 illustrates the isostable reduction for a relatively simple, two-dimensional

model of excitability. We devise an energy optimal control technique to eliminate car-

diac alternans in Section 5.4, and illustrate this technique for the 13 dimensional Fox

model of canine cardiac activity [132] in Section 5.5. We find numerically in Section 5.6

that we can eliminate alternans using many orders of magnitude less energy than with

a pulsatile strategy, which may be important from a clinical perspective to maximize

the battery life of an implantable device and limit tissue damage. We give concluding

remarks in Section 5.7. This chapter is based on work which originally appeared in [38].

5.2 Infinitesimal Isostable Response Curves

Following the derivation of the adjoint method for calculating infinitesimal phase

response curves (iPRC’s) set forth in, for example, [54], we consider a general, N -

dimensional differential equation

ẋ = F (x) +G(x, t); x ∈ RN , (5.6)
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where F (x) is the vector field, G(x, t) is an external stimulus, and x1, x2, . . . , xN are the

state variables. For a given set of initial conditions, suppose that the system follows the

known trajectory γ to the stable fixed point xo.

Our objective is to simplify (5.6) to a one-dimensional equation by defining scalar

isostable coordinates, ψ(x) ∈ (−∞,∞], for all x in some neighborhood U of xo within

its basin of attraction. It will be convenient to take ψ(x) = − log(I(x)), where I(x) is

defined in (5.5). Changing to isostable coordinates, from the chain rule we find

dψ(x)

dt
= ∇ψ(x) · (F (x) +G(x, t)) . (5.7)

In order to simplify equation (5.7), first consider any trajectory φ(t,x) in the basin of

attraction of the fixed point for which the external stimulus G is set to zero. Using (5.5),

we have

dψ(x)

dt
= lim

∆t→0

ψ(φ(t+ ∆t,x))− ψ(φ(t,x))

∆t

= lim
∆t→0

(
− log

[
limt→∞

(
e−λ1t(φ(t+ ∆t,x)− xo)

)]

∆t

+
log
[
limt→∞

(
e−λ1t(φ(t,x)− xo)

)]

∆t

)

= lim
∆t→0

− log
[
ϑe−λ1teλ1(t+∆t)

]
+ log

[
ϑe−λ1teλ1t

]

∆t

= −λ1, (5.8)

where ϑ is a positive constant determined by the direction of v1. In the second to last line,

we use the fact that the trajectory will eventually approach the fixed point along slowest

direction of the stable manifold, and the last line is obtained solely through algebraic

manipulation. Recall that Equation (5.8) was derived for G = 0, which, using (5.7),
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implies that

∇ψ(x) · F (x) = ω, (5.9)

and thus

dψ(x)

dt
= ω +∇ψ(x) ·G(x, t), (5.10)

where ω = −λ1 (recall that λ1 is negative), and is similar to the natural frequency term

in the classic phase reduction (5.2). We note that the isostable field can be scaled by

a constant if desired, which will yield a different value of ω. In the absence of external

stimuli, dψ
dt

= ω, i.e., ψ(x) increases at a constant rate. By definition, ψ(x) = ∞

corresponds to x = xo, meaning that in the absence of external control, all trajectories

in the domain of attraction of xo approach the fixed point in infinite time.

Evaluating the vector field at xγ(ψ), which we define as the intersection of the tra-

jectory γ and the ψ(x) level set (i.e. isostable), we have

dψ(x)

dt
= ω +∇ψ(xγ(ψ)) ·G(xγ(ψ, t)), (5.11)

where we have dropped an error term of order (|G|2), c.f. [7], so that (5.11) is valid

for perturbations with small |G|. For phase reductions of systems with limit cycles,

the analog of the term ∇ψ(xγ(ψ)) can be calculated experimentally using the “direct

method” [123] as well as the numerically using the “adjoint method” [5], c.f. [54]. Here

we detail an extension of the adjoint method for calculation of ∇ψ(xγ(ψ)) for systems

with a stable fixed point.

Suppose for the following analysis that G = 0 for t > 0. Consider an infinitesimal

perturbation ∆x to the trajectory x(t) ∈ γ at time t = 0. Let xε(t) = xγ(t) + ∆x(t) be
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the trajectory starting at the perturbed initial condition. Then

d∆x(t)

dt
= DF (x(t))∆x(t) +O(||∆x||2), (5.12)

where DF is the Jacobian matrix . Furthermore, for the associated isostable shift defined

as ∆ψ = ψ(xε(t))− ψ(x(t)), we have

∆ψ = (∇x(t)ψ)T ·∆x(t) +O(||∆x||2), (5.13)

where ∇x(t)ψ is the gradient of ψ evaluated at x(t). Let 〈·, ·〉 denote the standard Eu-

clidean inner product on Rn. Following the derivation presented in [54], after the initial

perturbation at t = 0, ∆ψ is independent of time. Therefore, taking the time derivative

of (5.13) yields, to lowest order in ||∆x||,

〈
d∇x(t)ψ

dt
,∆x(t)

〉
= −

〈
∇x(t)ψ,

d∆x(t)

dt

〉
,

= −〈∇x(t)ψ,DF (x(t))∆x(t)〉,

= −〈DF T (x(t))∇x(t)ψ,∆x(t)〉. (5.14)

The matrix DF T (x(t)) is the transpose, or adjoint, of the real-valued matrix DF (x(t)).

Equation (A.9) holds for arbitrary perturbations ∆x(t), which gives

d∇x(t)ψ

dt
= −DF T (x(t))∇x(t)ψ. (5.15)

In order to use (5.11) we need the isostable gradient at the intersection of γ and the ψ(x)

level set, but (5.15) gives the isostable gradient along γ. However, one can readily be

inferred from the other with knowledge of the map x(t)→ ψ(t).

The solution of (5.15) requires N initial conditions. Recalling that G = 0 for t > 0 in
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∇ψ

level sets of ψ(x)

stable fixed point

v1

v2

Figure 5.2: Level sets of ψ(x) for a two dimensional system are shown as dashed lines.
The faster and slower directions of the stable manifold are with two and one arrows,
respectively.

the present analysis, we note that close to the fixed point, we can rewrite equation (5.6)

as

ẋ = A(x− xo) +O((x− xo)
2), (5.16)

where A = DF (xo). Neglecting higher order terms, equation (5.16) is linear. We assume

that each eigenvalue λi = σi+iκi of A has negative real part, geometric multiplicity of one,

and corresponds to the right eigenvector vi. For convenience, we sort the eigenvalues so

λ1 has the smallest magnitude of its real part, i.e. |σ1| < |σ2| ≤ · · · ≤ |σN |. Note that |σ1|

must be strictly less than |σ2| and that dx(t)
dt
·v1 6= 0 near the fixed point for the following

analysis. From linear systems theory, we know that trajectories φ(t,x(0)) will approach

the fixed point in a manner given previously by equation (5.4), with sj(x(0)) = 〈x(0),vj〉.

The infinite time approach to the fixed point will be governed by the value of s1(x(0)),

and any perturbation to sj(x(0)) for j ≥ 2 will not have any effect on the trajectory’s

infinite time approach to the origin. Thus,

〈
∇x(t)ψ,vj

〉
= 0 ∀ j ≥ 2. (5.17)
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Equation (5.17) mandates that close to the fixed point, ∇x(t)ψ must be orthogonal to the

subspace spanned by {v2, . . . ,vn}; in other words, ∇x(t)ψ is orthogonal to hyperplanes

of constant isostables. Because the geometric multiplicity for each eigenvector is one,

this defines a unique direction for ∇x(t)ψ near the fixed point. The isostable portrait is

summarized in Figure 5.2 for a two-dimensional system. The magnitude can be obtained

by noting that (5.10) must hold at all points along x(t). Using (5.17) and (5.10), we

can choose any point x1 along γ, close enough to the fixed point so that the system is

described accurately by its linearization, to serve as an appropriate end point condition

to equation (5.15) and solve by integrating backwards in time to determine ∇ψ at all

points close to γ. For convenience, we will scale the isostable coordinates ψ(x) so that

ψ(x1) = 1, which means that ω in equation (5.11) is determined by the time it takes to

reach ψ = 1 from ψ = 0, where ψ = 0 is chosen to be another location on γ as convenient.

Intuitively, ∇ψ does not exist for ψ =∞ since any perturbation from the fixed point will

take an infinitely long time to reach the fixed point again. We can, however, evaluate

∇ψ arbitrarily close to the fixed point.

We note that the preceding analysis is valid for stable fixed points with strictly real

λ1. If λ1 is complex, the iIRC can still be calculated by a similar analysis, but instead of

∇ψ being orthogonal to the slower directions of the stable manifold near the fixed point,

as in (5.17), ∇ψ will be perpendicular to a cylindrical hypersurface of constant isostable.

We refer the interested reader to [26] for a discussion of isostables for the case when λ1

is complex.
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5.3 Illustration For a Simple FitzHugh-Nagumo Based

Model

We first illustrate the calculation of ∇ψ(xγ(ψ)), which we will refer to as the in-

finitesimal isostable response curve (iIRC), for FitzHugh-Nagumo based equations as a

prototypical model for excitability [133]:

V̇ = c1V (V − a)(1− V )− c2V w, (5.18)

ẇ = b(V − dw).

Non-dimensionalized variables V and w represent, for example, voltage and gating vari-

ables, respectively, of an excitable cell membrane. We will take a = 0.13, b = 0.013,

c1 = 0.26, c2 = 0.1, and d = 1. We can see from Figure 5.3 that trajectories follow a

similar path as they approach the stable fixed point (V,w) = (0, 0); [124] and [125] would

call this a transient attractor. When the system is linearized around this fixed point, we

find |λ1| = 0.0130 and |λ2| = 0.0338. The top-right panel of Figure 5.3 shows nullclines

for this system. The bottom-left panel shows the global isostable portrait for (5.18), and

the bottom-right panel gives a zoomed-in isostable portrait near the fixed point.

We choose (V,w) ≈ (0.91, 0.24) to correspond to ψ = 0, and integrate forward until

the final condition is close enough to the origin for the linearization to be a good model.

The initial condition is chosen because most trajectories that start around (V,w) ≈

(1, 0.1) pass close to here, as shown in the top-left panel of Figure 5.3. For this model,

integrating for 1000 time units is sufficient, and we take the resulting trajectory to be

γ, and the end point condition to correspond to ψ = 1. We use γ to calculate the

iIRC for (5.18) using the adjoint method presented in Section 5.2. For this choice of γ,

ω = 1
1000

. Results are shown in Figure 5.4. The top-right panel shows γ, with the bottom-
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Figure 5.3: In the top-left panel, trajectories of (5.18) follow a similar path toward the
fixed point; this path is shown as a bold line. The top-right panel shows the V and
w nullclines of (5.18), as dashed lines. The bottom-left panel gives a global isostable
portrait for (5.18) with black lines showing constant isostables, equally spaced in
time. The bottom-right panel shows a close-up near the fixed point where the system
is well-approximated by a linear system, and the isostables are parallel to v2, the
fastest direction of the stable manifold. In all panels, the stable fixed point is shown
as a grey dot.

right panels showing V (ψ) and w(ψ). The left panels show iIRCs for each variable at

different levels of zoom. As might be expected, as the trajectory approaches the fixed

point, the magnitude of the iIRC becomes very large, because even small perturbations

will significantly affect the asymptotic approach to the fixed point. Bottom-left panels

show zoomed in plots of the iIRC as well as numerical verification at various points,

for example, by perturbing by ∆V at a given value of ψ, and measuring the resulting

difference ∆ψ. The iIRC can then be approximated by ∂ψ
∂V
≈ ∆ψ

∆V
.
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Figure 5.4: Calculation of the iIRC for the FitzHugh-Nagumo based model using the
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V (ψ) and w(ψ). iIRCs calculated using the adjoint method are given in the left panels,
with dots calculated according to ∆ψ

∆V and ∆ψ
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5.4 An Energy-Optimal Control Strategy For Termi-

nating Cardiac Alternans

As mentioned in Section 5.1, cardiac alternans, the beat-to-beat alternation between

long and short action potentials, have been implicated as a precursor to cardiac fibrilla-

tion. In order to understand how alternans develop in cardiac tissue, one must examine

the relationship between action potential duration (APD), diastolic interval (DI), and

basic cycle length (BCL) in cardiac cells. The APD is defined as the amount of time

an action potential lasts, i.e. the amount of time the cell remains depolarized (i.e. at

elevated voltage) after it is excited, and the DI is the amount of time the cell remains

quiescent before the next action potential. The BCL is the amount of time between suc-

cessive action potentials and can be thought of as a constant “heart rate”, for example

as generated by pacemaker cells. The APD of a cardiac cell is typically a monotoni-
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cally increasing function of DI, and the left panel of Figure 5.5 shows the APD plotted

against the DI (commonly referred to as the APD restitution curve) for the Fox model

of cardiac activity [132], which we will consider further in Sections 5.5 and 5.6; the solid

curve uses nominal parameters, and the dashed curve is obtained when the value of the

L-type Ca2+ channel permeability to Ca2+ is reduced by 20 percent. As originally shown

in [134], when the APD restitution curve has a slope greater than 1, alternans can de-

velop in cardiac tissue. To understand how alternans may develop, we first examine the

dashed APD restitution curve, which has a slope that is strictly less than one. The plot

in the bottom-right panel of Figure 5.5 uses this curve and can be interpreted as follows.

Suppose for a constant BCL of 185 ms, an action potential is elicited when the DI is

around 42 ms. From the APD restitution curve we can see that the following APD will

be around 115 ms. Because BCL = APD + DI, the next DI will be about 70 ms. The

arrows show the result when this procedure over multiple iterations, and the successive

iterations spiral towards an APD of about 125 ms. Conversely, the solid APD curve in

the left panel of Figure 5.5 has a slope larger than one in places, and the top-right panel

shows that for the same BCL of 185 ms, a stable orbit develops with APDs alternating

between 118 and 156 ms; this is called a period-2 orbit because it takes two BCLs to

repeat. Note that in the top-right panel, every fifth transition is shown for clarity of the

figure; also note that there is an unstable period-1 orbit, meaning that it repeats every

BCL, at the intersection of APD restitution curve and the dashed line, represented by

an open circle.

As might be expected, the APD restitution curve is not strictly a function of the

preceding DI. The APD can be affected by other things such as pacing history or interac-

tions between neighboring cells [135–137]. Nevertheless, the goal of “flattening” the APD

restitution curve by reducing its slope provides a basis for developing drug interventions

that make it less likely for alternans and cardiac fibrillation to develop [138–140].
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Figure 5.5: The left panel shows APD restitution curves for two different parameter
sets for the Fox model and a dot-dashed line with a slope of 1 for reference. The solid
APD restitution curve curve has slope greater than one in places, and the associated
top-right panel shows how a stable period-2 orbit develops when the BCL is a constant
185 ms (represented by the grey dashed line plotting 185 = DI + APD). For the dashed
APD restitution curve, with slope strictly less than one, the period-1 orbit is stable
for a constant BCL of 185 ms as shown in the bottom-right panel.

Other strategies to terminate alternans have focused on stabilizing the unstable

period-1 rhythm through the application of external stimuli [32], [31], and have been

useful in designing experimentally successful, model-independent control techniques [33],

[34], [35]. Some other control techniques have attempted to control alternans using

model-based, feedback control [141], [142]. While model-independent control techniques

are certainly more directly applicable to in vivo experiments, they must sacrifice knowl-

edge of the underlying dynamics which makes them, most likely, not optimal from an

energy perspective. On the other hand, model-based control strategies which use feedback

control make use of the underlying dynamics of the system, but can be hard to imple-

ment accurately in real time experiments, especially when the underlying models for the

experiment are of high dimension. Here, we propose an energy optimal, model-based

control approach that only requires knowledge of a system’s iIRC. Control techniques
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based on response curve reduction are useful in high order models because they do not

require the full dynamics, only the one-dimensional dynamics near a trajectory. Further-

more, infinitesimal phase response curves have been successfully measured for neurons for

control purposes [23], and we expect these methods to be readily adaptable to measuring

infinitesimal isostable response curves for cardiac systems.

In a common experiment to test control algorithms for alternans, in vitro cardiac

tissue is excited by an artificial pacemaker at a prescribed BCL which is known to pro-

duce action potential duration alternans. The action potential duration of each beat is

measured as the length of its action potential. Previous, model-independent methods to

suppress alternans have operated by adjusting the pacemaker’s cycle length according to

the following control algorithm (c.f. [34], [35]):

Tn =





BCL + ∆Tn if ∆Tn < 0,

BCL if ∆Tn ≥ 0,

(5.19)

where

∆Tn = (β/2)(APDn − APDn−1), (5.20)

Tn is the control-perturbed (external) pacemaker cycle length, β is the feedback gain,

APD is the action potential duration, and n is the beat number. In this chapter, we will

use β = 1. Typically, as the DI increases, so will the following APD, and intuitively, this

control strategy works by giving a premature pulse after the short APD, reducing the DI

of the upcoming long APD, and subsequently increasing the DI of the of the next short

APD. See panels C and E of Figure 5.11 for a numerical example of the control strategy

from equations (5.19) and (5.20) applied to a single cardiac cell.

We devise a new alternans suppression methodology in the context of the 13-dimensional

Fox model for canine cardiac activity [132]. We emphasize that the following results are
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point.

not limited to this model, and we expect that this control strategy could be applied

successfully to other models which display alternans. For a BCL of 175 milliseconds,

cardiac cells from the Fox model will display beat-to-beat alternans with successive APD

differences of approximately 36 ms. Figure 5.6 shows the associated stable (solid line)

and unstable (dashed line) periodic orbits in the V − [Ca2+]i plane, where V is the trans-

membrane voltage and [Ca2+]i is the intracellular Ca2+ concentration. We note that the

control strategy from (5.19) is sufficient to suppress alternans in this model, but our

goal is to devise a control strategy that accomplishes the same objective while using

less energy and without artificially modifying Tn. To this end, following [9] we adapt

the energy-optimal methodology proposed for spike-timing control in neurons for use in

cardiac cells.
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Consider an isostable model for a cardiac cell

ψ̇ = ω +∇ψ ·G(t). (5.21)

We assume that we only have control over the voltage variable, which we take to be the

first of the 13 components of x, so that G(t) = [u(t), 0, · · · , 0]T , where u(t) = i(t)/C

represents the control input, i(t) is the applied current, and C is the cell capacitance.

Equation (5.21) becomes

ψ̇ = ω +
∂ψ

∂V
(ψ)u(t) = ω + I(ψ)u(t), (5.22)

where I ≡ ∂ψ
∂V

. Note that explicit x dependence has been dropped for notational simplic-

ity. While cardiac alternans are caused by a period-2 rhythm in the presence of periodic

forcing, the iIRC must be calculated by removing the forcing and letting the state ap-

proach a fixed point. Recall from Section 5.2 that the values ψ = 0 and ψ = 1 can be

chosen as is convenient, to define the iIRC. In a numerical setting, we can take ψ = 1

as sufficiently close to the fixed point, but in an experimental setting, this may not be

possible. Therefore, we take I(ψ) = 0 ∀ ψ > 1.

Now that the iIRC has been found, we return to the case of periodic forcing. We

define t = 0 to be the time that the present action potential started and t1 as the

time when ψ(x(t1)) next reaches 0. Suppose that, at a time determined by the BCL

(when the next action potential will start), for all stimuli u(t) which evolve ψ(t1) = 0

to ψ(BCL) = α > 0 for some phase α which will be chosen later, we want to find the

stimulus u(t) which minimizes the cost function M[u(t)]2 =
∫ BCL

t1
u2(t) dt, that is, the

power associated with the stimulus. (Other costs including derivative of the current, and

Faradaic charge transfer [60] can also be handled by other suitable cost functions.) This
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is now in the form of an optimal control problem. We apply calculus of variations to

minimize [59]

C[u(t)] =

∫ BCL

t1

[
u2(t) + λ1

(
dψ

dt
− ω − I(ψ)u(t)

)]

︸ ︷︷ ︸
M[u(t)]

dt, (5.23)

where λ1 is a Lagrange multiplier, forcing the dynamics to satisfy (5.22). Associated

Euler-Lagrange equations are

u(t) = λ1(t)I(ψ)/2, (5.24)

ψ̇ = ω + (λ1I
2(ψ))/2, (5.25)

λ̇1 = −λ2
1I(ψ)I ′(ψ)/2, (5.26)

where ′ = d/dψ. The optimal control u(t) can be found by solving (5.25) and (5.26)

subject to ψ(t1) = 0, ψ(BCL) = α. This requires finding the initial condition λ1(t1)

which satisfies the boundary conditions, e.g. numerically with a shooting method. To

examine the uniqueness of such an optimal control, we first note that the Hamiltonian

for this system,

Ho = λ2
1I

2(ψ)/4 + λ1ω, (5.27)

is conserved along trajectories of (5.25) and (5.26). With this in mind, we find that

ψ(BCL) =

∫ BCL

t1

ψ̇dt =

∫ BCL

t1

ω + λ1I
2(ψ(t))

2
dt =

∫ BCL

t1

√
ω2 + I2(ψ)Hodt,

∂ψ(BCL)

∂Ho

=

∫ BCL

t1

I2(ψ(t))

2
√
ω2 + I2(ψ)Ho

dt. (5.28)

Note that in order for ψ(BCL) to be real-valued, Ho > −ω2/ sup[I2(ψ)]. Therefore, for

all valid choices of Ho,
∂ψ(BCL)
∂Ho

> 0. Thus ψ(BCL) increases monotonically with Ho and
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implies that if a solution to (5.25) and (5.26) exists, it must be unique.

To implement the control strategy, we choose α to be

α∗ ≡ ω(BCL− t1)− ω(APDn − APDn−1)/2. (5.29)

This particular choice for α∗ is explained in Figure 5.7, which shows zoomed-in orbits

from Figure 5.6. We note that our proposed control strategy is functionally identical

to the strategy in equations (5.19) and (5.20), but the means of achieving the goal are

different. In (5.19) and (5.20), the time of the next pulse is modulated, which requires

a large amount of energy to elicit a premature pulse, while our new control strategy

modifies the cell’s phase when the next pulse arrives. Assume the next action potential

will be a long APD; in the absence of control, the trajectory will reach the location

corresponding to the short APD at precisely t = BCL, and a short APD will occur after.

If we wanted to drive the trajectory to another long APD, we would need to advance ψ by

an extra −ω(APDn−APDn−1) with an external control (recall that before a long action

potential, APDn − APDn−1 < 0). Note that the above control strategy is only valid

until the cell’s next action potential at t = BCL. At this point, the time can be reset to

t = 0, and if alternans persist, the control can be reapplied in order to gradually drive the

system to the unstable period-1 orbit. We emphasize that it is implicit in the preceding

analysis that the state of the system remains close to the trajectory γ from which the

iIRC was derived. If the applied control creates a large excursions from γ, it will degrade

the performance of the controller, and in extreme cases, can elicit a premature excitation.
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Figure 5.7: Illustration of the alternans termination control strategy showing zoomed
in orbits from Figure 5.6. Assuming the next action potential will be a long APD, the
trajectory will reach the short APD curve at exactly t = BCL, and the ensuing APD
will be short. Advancing the phase by an extra −ω(APDn −APDn−1) will cause the
ensuing APD to be long again. The control strategy is only valid until the cell’s next
action potential at t = BCL. At this point, the time can be reset to t = 0, and if
alternans persist, the control can be reapplied in order to gradually drive the system
to the unstable period-1 orbit. For reference, the stable fixed point is shown as a grey
dot.

5.5 Optimal Control Illustrated for the Fox Model

of Cardiac Activity

We now illustrate the optimal control strategy for terminating cardiac alternans for

the 13 dimensional Fox model [132]. The Fox model is particularly attractive because

it considers ionic currents within canine cardiac cells and produces action potentials

that are consistent with experimental observations. Furthermore, it produces stable

electrical alternans at fast BCLs, making it ideal to test our optimal control strategy. This

model has one slowly changing variable, the sarcoplasmic reticulum Ca2+ concentration,

[Ca2+]SR, which does not change much on a beat-to-beat basis for BCLs in which the

model exhibits alternans. This allows for the reduction of the dimensionality through
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averaging [143], assuming that [Ca2+]SR = 318µmol. For reference, when the reduced

system is linearized around its stable fixed point, |λ1| = 0.0015, and |λ2| = 0.0043.

The Fox model exhibits alternans for BCLs between 150 and 210 ms. Using a Poincaré

map, shown in Figure 5.8, we visualize the approach γ toward the fixed point for many

action potentials. We stimulate the reduced model for BCLs of 150, 160, 170, 180, 190,

200, and 210 and record the state during repolarization when V crosses -40, and -80, as

well as when dV
dt

= 0. Variables (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) correspond to

(V, [Ca2+]i, f, d,m, h, j, fCa, XKr, XKs, Xto, Yto) from the reduced model. Note that each

variable has been normalized as the fraction of its maximum value during stimulation;

see [132] for the definitions of these variables and equations for their dynamics.

In order to implement the control strategy from Section 5.4, we restrict our attention

to the relaxation to the fixed point. The reason for this is two-fold: first, as shown in

Figure 5.7, the state variables follow a similar trajectory towards the fixed point during

repolarization so that the iIRCs will be expected to be similar on a beat-to-beat basis.

Second, the initial upstroke of the action potential occurs on a rapid time scale, which

would make it difficult to apply the control at the precise time it is required. During

the last moments of repolarization as the transmembrane potential approaches its resting

potential of about −94 mV, the beat-to-beat trajectories tend to follow a similar path,

but it is not as clearly defined as it is for the FitzHugh-Nagumo based model (5.18).

There is some natural variance in the preferred approach in the Fox model, and for this

reason, we calculate the iIRC for multiple action potentials, which in the absence of an

external depolarizing stimulus, take different paths toward the fixed point. We define

the state at which V is largest during its final approach to the fixed point on the long

alternan as ψ = 0 (i.e. xγ(0) ≡ x | dV
dt

= 0 and dV
dt
< 0 ∀ ψ ≥ 0), and simulate for 2000

ms to obtain xγ for each approach toward the fixed point. We emphasize that there are

multiple possible trajectories toward the stable fixed point, and the curve xγ between
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trials are different. Results are shown in Figure 5.9. The black line give the mean iIRC for
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Figure 5.8: State variables in the Fox model at various points during the long alternan
action potential, stimulated using multiple BCLs that produce alternans. Trajectories
become closer as the transmembrane voltage approaches the resting potential of about
-94 mV.

the voltage variable, and the grey band gives an interval in which 90 percent of calculated

iIRCs reside. We find that perturbing later in the cycle will have a much smaller effect

than perturbing earlier. Note that the iIRCs for the other 11 variables were calculated

but are not shown.

Using average values of ∂ψ
∂V

from Figure 5.9, we employ the control strategy on the

phase reduction (5.22) and illustrate for a BCL of 175 ms, the cycle length at which

alternans are most pronounced. Also, we only apply control on the long alternan because

the iIRC from Figure 5.9 was calculated for long alternan trajectories. Results are shown

in Figure 5.10. The top panel shows the voltage trace of the cell during a time when

the controller is turned on. We see that the control eliminates alternans by the next

action potential. We note that once the alternans are eliminated, it takes relatively little

control effort compared to the first control application to keep the cell in an alternan-free
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Figure 5.9: iIRC for the transmembrane voltage in the Fox model reduction using the
adjoint method. Ninety percent of values lie within the grey band, with the mean
value plotted as a thick solid line. The transmembrane voltage is within 95 percent
of its resting potential at ψ ≈ 0.025.

trajectory. The bottom two panels give plots of the beat-to-beat action potentials, as

well as |APDn−APDn−1|. Times when the controller is turned on are denoted by shaded

regions marked with a “C”. When the controller is on, the cell remains alternan-free.

When the controller is turned off, the cell gradually displays alternans that become more

and more pronounced, which are quickly alleviated once the controller is turned back on.
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Figure 5.10: Control of alternans in the Fox model. The top and middle panel shows
the voltage traces for the cell and the applied control, respectively. The bottom two
panels show plots of APD and |APDn − APDn−1|, with the shaded sections showing
when the controller is on. The control strategy is quickly able to eliminate alternans
in the model. Note that the control applied at t ≈ 8100 is much smaller in magnitude
than the first control application. Also, the action potential that begins at t ≈ 7350
corresponds to APD42.

5.6 Alternan Control with iIRCs Determined by the

Direct Method

A marked advantage of this control strategy over other model-based strategies is that

it only requires knowledge of the iIRC of the system. In neuroscience, methods that rely

on analogous iPRCs are attractive because the iPRC can be approximated experimen-

tally using the direct method [123], [25], [23]. We note that the direct method can be

used to measure the iPRC along the entire periodic orbit in neuroscience applications,

because a neural spike, which can be measured as a sudden rise in the transmembrane

voltage, is a clear marker of a particular phase. In cardiological applications, the primary

observable (transmembrane voltage) only changes during repolarization, after which, an-
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other observable would be necessary to obtain a full iIRC. Nevertheless, here, we devise

a feasible means of using the direct method to obtain at least part of a cardiac cell’s iIRC

for control purposes.

First, ψ = 0 is defined to be some marker voltage during repolarization; we will

illustrate this using the Fox model, and as in the above, we take the marker ψ = 0

to be the final local maximum during repolarization, i.e. at x for which dV
dt

= 0 and

dV
dt
< 0 ∀ ψ ≥ 0. Note that the phase resets upon each APD. Further, we define ψ = 1

to be when the transmembrane voltage reaches 95 percent of its resting potential. The

value ω can be obtained by determining t0→1, the average time it takes a cell to travel

from ψ = 0 to ψ = 1. For the Fox model, we average over BCLs ranging from 150 to

210 to find t0→1 = 105.06 ms, and calculate ω = 1/t0→1. In order to obtain one data

point for the iIRC, a short-duration pulse of current can be applied to a cardiac cell at

a random isostable ψ, and the resulting isostable change is measured by observing the

change in the time it takes to reach ψ = 1. The resulting value I(ψ) is ∆ψ
Qp/C

where

Qp is the total charge injected through the cell membrane, and ∆ψ is the change in

isostable. An experimentally reasonable sampling size of 300 data points were calculated

according to I(ψ) = ∆ψ
Qp/C

+ 0.025N (0, 1) where uncertainty is included to mimic the

undesired, but unavoidable noise in experimental measurements. The data was fit to a

6th order polynomial, as is customary in calculation of iPRCs for neurons [25], [23], and

constrained so that I(1) = 0 and dI
dψ

(0) = 0. Note that these constraints are consistent

with the qualities of the iIRC shown in Figure 5.9. Recall that we assume I(ψ) = 0 for

ψ > 1, and we enforce these extra constraints so that the iIRC is smooth in at least the

first derivative at ψ = 1.

In an experimental setting, an additional concern is that a control strategy that must

calculate a new optimal control on every application would be difficult to implement

because by the time the optimal control is calculated, the window to implement it would
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have already passed. Indeed, a Matlab routine on a good workstation takes on the order

of one second to solve the boundary value problem given by (5.25) and (5.26), and the

processing power of an implantable device will certainly be less than that of a computer.

For this reason, we seek an approximate solution to the boundary value problem when

α ≈ ω(BCL −t1). First, notice that the line λ1 = 0 is invariant for (5.25)-(5.26), and

corresponds to dψ
dt

= ω, thus α = ω(BCL − t1). For α ≈ ω(BCL − t1), we Taylor

expand ψ(BCL) with respect to initial condition λ1(0), yielding α = ω(BCL − t1) +(
∂α

∂λ1(0)

∣∣∣
λ1(0)=0

)
λ1(0) to lowest order in α − ω(BCL − t1). Recalling that α = ψ(BCL)

and using α∗ from (5.29) for α, we have

λ1(0) =
α− ω(BCL− t1)

∂α
∂λ1(0)

∣∣∣
λ1(0)=0

=
−ω(APDn − APDn−1)

2 ∂ψ(BCL)
∂λ1(0)

∣∣∣
λ1(0)=0

. (5.30)

Let APDn − APDn−1 = O(ε). Asymptotically expanding λ1(t) and ψ(t) yields

λ1(t) = λ
(0)
1 (t) + ελ

(1)
1 (t) + ε2λ

(2)
1 (t) + . . . , (5.31)

ψ(t) = ψ(0)(t) + εψ(1)(t) + ε2ψ(2)(t) + . . . . (5.32)

From equations (5.25) and (5.26), we see that λ
(0)
1 (t) = 0, λ

(1)
1 (t) = λ1(0)/ε +O(ε), and

ψ(0)(t) = ω(t − t1). In order to further simplify equation (5.30), we use the asymptotic

expansion from (5.31) and recall that λ1(0) is of order ε to yield,

∂ψ(BCL)

∂λ1(0)

∣∣∣∣
λ1(0)=0

= lim
λ1(0)→0

∫ BCL

t1
[λ1(0) +O(ε2)](I2(ψ)/2)dt

λ1(0)
=

∫ BCL

t1

I2(ψ)

2
dt. (5.33)

Using (5.30), this implies that λ1(0) = −ω(APDn−APDn−1)∫ BCL
t1

I2(ψ)dt
. Finally, substituting (5.31) and
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(5.32) into (5.24), we find

u(t) =
1

2
λ1(0)I(ψ(0)) +O((APDn − APDn−1)2)

=
−ω(APDn − APDn−1)I(ω(t− t1))

2
∫ BCL

t1
I2(ω(τ − t1))dτ

+O((APDn − APDn−1)2). (5.34)

Using the iIRC computed using the direct method on noisy data, we illustrate the

use of the approximation to the optimal control strategy (5.34), and compare to the

method from (5.19). For the pulsed control strategy, as in [132] we use a -80 µA/µF

pulse of duration 1 ms to elicit a premature action potential, and note that for pulse

intensities much below this, the pulse will not always elicit an action potential. Further,

we take the threshold for the control applications to be |APDn−APDn−1| ≥ 5. We note

that both control strategies work equally well with a smaller threshold, but we choose

5 in order to better illustrate small differences between strategies. We choose a BCL

of 175 ms and begin applying control after n = 30 action potentials for a total of 150

action potentials. Results are shown in Figure 5.11. Panel A shows each data point

in the numerical calculation of the iIRC, as well as the 6th order polynomial fit (black

line), and the iIRC calculated from the adjoint method (grey dashed line), scaled by

ωdir/ωadj, where ωdir and ωadj are the natural frequency for the iIRC calculated for the

direct method and adjoint method, respectively. Panels B and D show a portion of the

applied optimal control and the associated APD history, respectively. In panel B, the

first applied control is the largest, with the following control applications being smaller in

magnitude, because required alterations to the action potential are much smaller. While

the approximately optimal control strategy does not perform quite as well as before,

because we are using both a polynomial fit for ∂ψ
∂V

and an approximation of the optimal

control, it is still sufficient to terminate alternans. Panels C and E show a portion of the

pulsed control and the associated APD history, respectively. The most notable difference
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between these control strategies is the energy consumption as measured by
∫
u(t)2dt.

The energy-optimal control strategy uses approximately 0.7097 units of energy while the

pulsed control strategy uses 44800 units. We emphasize that while this is not actual

experimental data, and that we are neglecting the power consumption of the processor

required to implement our control logic. Nevertheless, our numerical simulations suggest

that the optimal control strategy may be able terminate alternans at a cellular level using

several orders of magnitude less energy than a pulsed method.
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Figure 5.11: Comparison of a pulsed versus approximately optimal control strategy.
Panel A shows the polynomial fit iIRC (black line) along with an appropriately scaled
iIRC calculated from the adjoint method (grey dashed line). Panel B (resp., C) gives
a portion of the applied optimal (resp., pulsatile) control associated with the APD
history in the dashed rectangular box from Panel D (resp., E). Panel D (resp., E)
gives the APD history using the optimal (resp., pulsatile) control strategy.
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5.7 Conclusion

This chapter extends the notion of phase reduction to systems with a stable fixed

point through the development of an adjoint method for the efficient calculation of in-

finitesimal isostable response curves (iIRCs). This method of reduction is particularly

useful for excitable systems that take similar trajectories towards their fixed point, so

that the iIRCs between trajectories are similar. This novel method of phase reduction

has been illustrated for both a simple, two-dimensional model of excitability, and for

a more complicated, higher dimensional model. Sections 5.4-5.6 of this chapter display

the strength of this new reduction method, as it allows us to work with a complicated,

high-dimensional model in a more useful coordinate system.

With only the knowledge of a system’s iIRC, one can design a control strategy to

eliminate cardiac alternans, which has been implicated as a precursor to fibrillation, that

outperforms a pulsatile, model-independent strategy by several orders of magnitude in

terms of energy. Even though the processor for a complicated control strategy will likely

use more energy than a processor for a simple controller, there is still the potential for

a significant energy savings compared to a pulsatile strategy. While model independent

control strategies are attractive from an experimental standpoint, forfeiture of the state

dynamics almost certainly comes at the price of using a non-optimal control strategy in

terms of overall energy consumption, as we have shown here. Furthermore, the proposed

control strategy does not require premature excitation of cardiac cells to eliminate alter-

nans, but rather gently perturbs cells during an action potential to eliminate alternans.

Certainly there are other considerations that need to be addressed before this control

strategy can be used in real experiments. For instance, it takes a non-trivial amount of

time to calculate the optimal control for a given sequence of action potentials, and the

processor must be reasonably quick at calculating the control and determining the precise
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time at which it should be applied. However, some of these challenges could be addressed

by using the approximation to the optimal control derived in Section 5.6. Also, it may

be challenging to both stimulate cardiac tissue and record APDs simultaneously. Never-

theless, we believe that this control strategy holds promise for successful implementation

in real cardiac systems.

Phase reduction is particularly attractive when the full dynamics of a system are

unknown, as is the case for biological tissue in a experimental setting. Control strategies

based on phase reduction have been successful in the control of in vitro neurons [23], [22],

and we expect that similar techniques to experimentally measure iIRCs will carry over

to excitable biological systems. We imagine that this control strategy could ultimately

be applied to hearts in vivo with a grid of independent pairs of sensors and actuators,

each using this control strategy to locally eliminate alternans. While not as elegant as a

strategy that eliminates alternans from a single point source control, a control strategy

that employs reduction using iIRCs to view cardiac action potentials in a more natural

coordinate system allows for lower-amplitude, lower-energy perturbations, and thus may

be desirable from a clinical standpoint in terms of maximizing the battery life of an

implantable device and mitigating the risk of tissue damage.

Phase reduction has proven to be a powerful tool for the analysis of complex sys-

tems with periodic orbits and has led to many interesting and important results. This

new method of isostable reduction could be of similar use by allowing for the study of

complicated excitable systems in a more natural and convenient coordinate system.
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Chapter 6

Isostable Reduction with

Applications to Time Dependent

Partial Differential Equations

6.1 Introduction

Phase reduction provides a convenient means of changing variables in the neighbor-

hood of a stable limit cycle, distilling the essence of a nonlinear system into a phase in

relation to the location on the limit cycle, and a phase response curve which describes the

effect of an external input on the phase. However, it can only be applied to dynamical sys-

tems with periodic orbits, excluding a large number of nonlinear systems with dynamics

that approach an equilibrium solution. For such systems, the notion of isostables, which

are sets of initial conditions that share the same asymptotic convergence towards a fixed

point [26] (similar to the notion of stable foliations of an attracting manifold, which can

also be used when the system dynamics do not approach a fixed point [144], [145]), pro-

vides an analogous set of coordinates from which the intrinsic dynamics of the system
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can be more conveniently understood.

For example Chapter 5, (c.f. [146]) develops the necessary framework for an isostable

reduction (analogous to a phase reduction) for finite dimensional ordinary differential

equations (ODEs) with dynamics that approach a fixed point. Here, we extend this

framework to systems described by time dependent partial differential equations (PDEs)

with dynamics that approach stationary solutions by deriving a methodology to calculate

isostable response curves, which allows for the understanding of the effect of a pertur-

bation on a system’s approach to the stationary solution. Using this reduction strategy

allows us to understand a complicated nonlinear PDE in terms of its isostables, reducing

the dimensionality of the system from infinity to one and making complicated problems

in nonlinear science more computationally and analytically tractable.

Because the isostable reduction proposed in this chapter is valid near a single trajec-

tory that approaches a stationary solution, it is perhaps most similar to PDE reduction

methods that involve the use of inertial manifolds [147–150], which represent exponen-

tially attracting, finite dimensional manifolds that can be used to understand an infinite

dimensional PDE. However, inertial manifolds can be difficult to identify, and further

analysis must be performed in order to understand the response to an external pertur-

bation. Also, as we find in Section 6.4, isostable reduction does not necessarily require

the dynamics to collapse to a lower dimensional manifold, as multiple trajectories can

display similar reduced dynamics.

This isostable reduction methodology looks to be a promising tool for the understand-

ing and control of PDEs, particularly when the rate and timing of the system’s approach

to a stationary solution are of interest. We showcase its utility in two different systems

with biological applications. The first is in the reduction of a Fokker-Planck equation

with the goal of desynchronizing a large population of pathologically synchronized neu-

rons, as might be relevant in the treatment of Parkinson’s disease. The second is in the
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reduction of a reaction-diffusion system that describes the electric activity of a ring of

cardiac cells, with the goal of eliminating and suppressing cardiac alternans which are

widely regarded as a possible precursor to cardiac arrest. Some parts of this chapter also

appear in [39].

6.2 Isostable Reduction and Numerical Calculation

of Infinitesimal Isostable Response Curves in In-

finite Dimensions

In this section we detail a method for calculating infinitesimal isostable response

curves (iIRCs) in time dependent partial differential equations which asymptotically ap-

proach a stationary solution. To begin, consider a weakly perturbed system on the

domain Ω

∂

∂t
X(r, t) = F(X(r, t), r) + G(X(r, t)) + p(r, t). (6.1)

Here, X(r, t) ∈ Rm represents the local state in the medium at point r and time t,

F(X(r, t), r) describes the local dynamics at point r, G(X(r, t)) represents spatial cou-

pling (e.g. advection or diffusion) throughout the medium, and p(r, t) represents a weak

spatiotemporal perturbation. For given boundary conditions, we assume that both J

and J† exist, where J ≡ ∇[F(X(r, t), r) + G(X(r, t))] with ∇ ≡ ∂/∂X and † denotes the

adjoint associated with 〈·, ·〉, the L2 inner product. For a given initial condition, in the

absence of perturbation (i.e. p(r, t) = 0), suppose that the system follows a known tra-

jectory γ towards a stationary solution Xo(r) which satisfies F(Xo(r), r)+G(Xo(r)) = 0

with all eigenvalues having negative real part and bounded away from both the imaginary

axis and the continuous part of the spectrum if it exists.
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For nonlinear systems near a stationary solution, the equations can be linearized so

that eigenfunctions and eigenvalues can be calculated. Suppose φj are the eigenfunctions

of the linearized system, ordered so that φ1 is associated with the eigenvalue λ1 whose

real part has smallest magnitude. In the simplest case λ1 is real and unique; then near

the stationary solution, functions of constant isostable, Iτ , are given by

Iτ =

{
X(r) ∈ Rm|X(r) = ±eλ1τφ1 +

∞∑

j=2

αjφj, ∀ αj ∈ R

}
. (6.2)

Intuitively the magnitude of φ1 determines the isostable, as all other eigenfunctions will

decay much faster. As we will show, in the limit of weak forcing isostables provide a

convenient means of understanding a system described by a PDE in terms of a single ODE

through means of an isostable reduction. Following the adjoint method for calculating

infinitesimal phase response curves (iPRCs) as used in [54], (c.f. [38], [12]), our goal is

to simplify (6.1) to a one-dimensional equation by defining scalar isostable coordinates,

ψ(X) ∈ (−∞,∞], for all X in a neighborhood U of Xo within its basin of attraction.

Because X takes values over a spatial domain, this introduces a phase functional, ψ =

Ψ{X} that maps the state X to a scalar isostable. In general, the isostable field will have

a more complicated structure than (6.2), because (6.1) is not guaranteed to be linear.

It will be convenient to define the isostable field Ψ{X} so that

〈
∇ψ(X),F(X(r), r) + G(X)

〉
= κ. (6.3)

Explicit time dependence has been dropped for convenience of notation. Equation (6.3)

mandates that in the absence of external control, the value of the isostable coordinate

associated with the state of the system changes at a constant rate κ. Such an isostable

field can be obtained along γ, for instance, by integrating the initial condition forward in
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time with p(r, t) = 0 and choosing ψ(X(t)) = κt. By definition ψ(X) = ∞ corresponds

to X = Xo, meaning that in the absence of external control, all trajectories in U approach

the stable stationary solution in infinite time. We assume that near the trajectory γ, we

can take the gradient of the isostable field so that changing to isostable coordinates using

the chain rule we find

dψ(X)

dt
=
〈
∇ψ(X),F(X(r, t), r) + G(X(t)) + p(r, t)

〉

= κ+
〈
∇ψ(X),p(r, t)

〉
. (6.4)

Here we have used (6.3) in the last line of (6.4). Evaluating the vector field at Xγ(ψ),

which we define as the intersection of the trajectory γ and the ψ(X) level set (i.e. isostable),

we have

dψ(X)

dt
= κ+

〈
∇ψ(Xγ(ψ)),p(r, t)

〉
. (6.5)

To proceed, we assume that p(r, t) ≡ 0 for t > 0. Consider a small perturbation ∆X at

time t = 0 to the trajectory X(r, t) ∈ γ. Letting Xε(r, t) = Xγ(r, t) + ∆X(r, t) be the

perturbed initial condition, we have

∂∆X(r, t)

∂t
= J(X(r, t)) ·∆X(r, t) +O(||∆X(r, t)||2), (6.6)

where J is the Jacobian and (Y · X)(r, t) ≡ Y(r, t)X(r, t) for any X and Y in Ω. We

define the isostable shift associated with the perturbation ∆X(r, t) as ∆ψ = ψ(Xε(r, t))−

ψ(X(r, t)) and can also write

∆ψ =
〈
∇X(r,t)ψ,∆X(r, t)

〉
+O(||∆X(r, t)||2), (6.7)

where ∇X(r,t)ψ is the gradient of ψ evaluated at X(r, t). Both Equations (6.6) and (6.7)
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are accurate to leading order in ∆X(r, t). After the initial perturbation at t = 0, ∆ψ is

independent of time. Taking the time derivative of (6.7) yields

〈
∂∇X(r,t)ψ

∂t
,∆X(r, t)

〉
= −

〈
∇X(r,t)ψ,

∂∆X(r, t)

∂t

〉

= −
〈
∇X(r,t)ψ, J(X(r, t)) ·∆X(r, t)

〉

= −
〈
J(X(r, t))†∇X(r,t)ψ,∆X(r, t)

〉
. (6.8)

Here, J(X(r, t))† is the adjoint of the real-valued operator J(X(r, t)). Equation (6.8)

holds for arbitrary perturbations ∆X(r, t), which gives the relation

∂∇X(r,t)ψ

∂t
= −J(X(r, t))†∇X(r,t)ψ. (6.9)

In practice when J† is difficult to derive analytically, and it can be estimated nu-

merically by first discretizing (6.1) and solving for the adjoint of the resulting system of

ODEs with appropriate boundary conditions [151]. In this case, the Hermitian transpose

of the Jacobian of the discretized ODE system provides an estimate of the adjoint. In

order to use (6.9) one must have knowledge of ∇X(r,t)ψ (i.e. the iIRC) at some initial

time. In general, it is possible to determine the iIRC exactly near the stationary solution

where (6.1) can be well approximated by linearization. Full details of this process are

given in Section 6.2.2. An initial condition can be taken from this linear regime, and

(6.9) can be solved by integrating backwards in time to determine ∇ψ for the iIRC in the

fully nonlinear regime at all points close to γ. The resulting iIRC will vary depending

on the specific trajectory γ which must be chosen appropriately for a given application.

If the underlying system has fast-slow dynamcs that quickly converges to, for instance,

an inertial manifold [147], [148], this manifold could be taken to be γ. However, fast

convergence to a known trajectory is not required, a point which is illustrated in Section
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6.4, where the iIRC for a cardiac system is similar for many reasonable choices of γ.

6.2.1 Higher Dimensional Reductions

While isostables and the associated iIRC describe the infinite time approach towards

the stationary solution, in practice, most engineering applications can only consider finite

time. Therefore, for the one dimensional reduction (6.4) to be of practical use, |λ1|− |λ2|

multiplied by the time scale of interest must be large enough so that higher order modes

becomes negligible. If the time scales are too short for a one dimensional reduction to

be effective, one can also use (6.9) to calculate response curves which characterize the

infinite time decay of higher order modes in response to the perturbation p(r, t). Here, we

illustrate a reduction to N dimensions for the simplest case where |λ1| < |λ2| < · · · < |λN |

and λ1, . . . , λN are real and negative, but situations with repeated or complex eigenvalues

could be considered.

For the PDE (6.1) on the domain Ω with given boundary conditions, isostables

describe the asymptotic convergence of a solution, X(r, t) to Xo. We can define an

isostable field in terms of a functional Ψ1 that maps the state X(r, 0) to a scalar isostable

(c.f. [38], [26])

Ψ1{X(r, 0)} ≡ lim
t→∞

e−λ1t
∫

Ω

∣∣X(r, t)−Xo

∣∣dΩ. (6.10)

Here
∫

Ω
· dΩ denotes integration over the entire domain Ω. In infinite time, projections

of the solution X(r, t) onto the eigenfunctions φ2, φ3, . . . become infinitesimally small

compared to the projection of X(r, t) onto φ1, so that we can give an equivalent definition

of (6.10)

Ψ1{X(r, 0)} = lim
t→∞

e−λ1t
∫

Ω

∣∣w1(X(r, t))−Xo

∣∣dΩ, (6.11)

where w1 gives projection of X(r, t) onto φ1. We can characterize the asymptotic behavior

142



Isostable Reduction with Applications to Time Dependent Partial Differential Equations Chapter 6

of the projection onto any other eigenfunction φj, by defining additional functionals

Ψj{X(r, 0)} = lim
t→∞

e−λjt
∫

Ω

∣∣wj(X(r, t))−Xo

∣∣dΩ, (6.12)

where wj gives the projection of X(r, t) onto φj. Because wj(X(r, t)) −Xo ∝ φje
λjt as

t → ∞, one can verify (c.f. equation (2.3) from [38]) that functionals (6.11) and (6.12)

are defined so that ψj ≡ log(Ψj)/λj defines fields for which

〈
∇ψj(X),F(X(r), r) + G(X)

〉
= 1. (6.13)

The analysis from Section 6.2 can be applied to any of these fields so that for a given

trajectory γ, an infinitesimal response curve ∇X(r,t)ψj, the gradient of ψj evaluated at

X(r, t), can be calculated using (6.9). Near the stationary solution, any perturbation

in the direction φk for k 6= j will not affect the infinite time behavior of the projection

of X(r, t) onto the eigenfunction φj. Therefore, near the stationary solution ∇X(r,t)ψj

satisfies

〈∇X(r,t)ψj, φk〉 = 0 for k = 1, 2, . . . , j − 1, j + 1, j + 2 . . . . (6.14)

Equations (6.13) and (6.14) determine an initial condition for each response curve, and

(6.9) can be used to calculateN response curves for theN eigenfunctions of interest. Even

though eigenfunctions do not carry any meaning for the fully nonlinear equations, these

response curves still describe how a perturbation will affect the infinite time approach to

the stationary solution when the perturbation is applied in the nonlinear regime. This

yields the N -dimensional reduction:

dψj
dt

= 1 +
〈
∇ψj(Xγ(ψj)),p(r, t)

〉
, j = 1, . . . , N. (6.15)
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For N = 1, (6.15) is equivalent to the one-dimensional isostable reduction considered

in Section 6.2. When N > 1, the reduction characterizes the decay of the projection

of the solution X(r, t) onto the eigenfunctions φ1, . . . , φN and ignores the higher order

modes. Thus, for an N -dimensional reduction we require |λ1| − |λN | multiplied by the

time scale of interest to be large enough so that the truncated modes become negligible.

This is in direct contrast to inertial manifold reductions, which require the gap between

consecutive eigenvalues to be large [148], [152].

6.2.2 Isostable Fields Near a Stationary Solution

In order to solve (6.9) in the calculation of iIRCs we must know∇X(r,t)ψ at some initial

time. This can be accomplished by linearizing around the stable stationary solution,

Xo where in many cases we can determine the isostable field exactly for the linearized

equation. We emphasize that the linearization is only required to determine an initial

condition for the solution to (6.9). Upon solving (6.9), the isostable response curve is

valid for the reduction of the full nonlinear equations.

Consider a linearization of (6.1) near a stationary solution Xo:

∂

∂t
X = J(Xo)(X−Xo) +O

(
(X−Xo)2

)
. (6.16)

Neglecting higher order terms, we can write its solution as an infinite sum of eigenfunc-

tions:

X−Xo =
∞∑

j=1

sj(X(0))φje
λjt. (6.17)

Here, φj corresponds to an eigenfunction of J with the associated eigenvalue λj, and

sj(X) gives the coordinates of function X in the basis of eigenfunctions {φj, j = 1, . . . ,∞}.

Furthermore, we sort the associated eigenvalues {λj, j = 1, . . . ,∞} so that |Re(λj)| ≤
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|Re(λj+1)|.

In the simplest case, λ1 is real and unique, then the magnitude of s1(X) will determine

the infinite time approach to the stationary solution (c.f. [26]). Using this perspective, a

set of isostables, i.e. Ψτ ≡ {X|Ψ{X} = τ}, can be uniquely determined by finding the

magnitude of s1(X). In other words, sets of constant isostables are spanned by the faster

eigenfunctions φ2,φ3,φ4, . . . , and any perturbations to sj(X(0)) for j ≥ 2 will not have

any effect on the infinite time approach to the origin. Therefore,

〈∇X(r,t)ψ, φj〉 = 0 ∀j ≥ 2. (6.18)

In the case that λ1 and λ2 = λ1 are a complex conjugate pair (with corresponding

eigenfunctions φ1 and φ2 = φ1, equation (6.9) is still valid, but the strategy for finding

the initial condition changes slightly. Consider an infinite time approach to the linearized

stationary solution, given in (6.17). Assuming that Re(λ1) > Re(λ3), as time becomes

large, the solution is dominated by the complex eigenfunction pair

X−Xo = s1φ1e
λ1t + s1φ1e

λ1t +O(eλ3t). (6.19)

Using Euler’s formula and algebraic manipulation, equation (6.19) can be rewritten as

X−Xo = AeRe(λ1)t [cos(θo + Im(λ1)t)Re(φ1)− sin(θo + Im(λ1)t)Im(φ1)] +O(eλ3t),

(6.20)

where A and θo are constants which can be determined from s1 and s1. Therefore, near
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the stationary solution, functions of constant isostable can be defined as follows (c.f. [26]):

Iτ =

{
X(r) ∈ Rm|X(r) =eRe(λ1)τ [cos(θ)Re(φ1)− sin(θ)Im(φ1)] +

∞∑

j=3

αjφj,

∀ αj ∈ R, ∀ θ ∈ [0, 2π)

}
.

(6.21)

Thus, similar to (6.18),

〈∇X(r,t)ψ, φj〉 = 0, ∀j ≥ 3 and

〈∇X(r,t)ψ,w(t)〉 = 0 (6.22)

where w(t) = ∂
∂t

[cos(θo + Im(λ1)t)Re(φ1)− sin(θo + Im(λ1)t)Im(φ1)]. The second or-

thogonality condition in (6.22) comes from the fact that the isostable response curve

must be orthogonal to Iτ near the stationary solution. A perturbation in the direction

w(t) will simply speed up or slow down oscillations about the stationary solution, but

will not affect their magnitude (and hence will not affect the isostable).

When λ1 is real and unique (resp. part of a complex conjugate pair) equation (6.18)

(resp. (6.22)) defines a unique shape of the isostable response curve near the stationary

solution, and the magnitude can be obtained from (6.3). Thus, in order to determine

an initial condition for (6.9), we can choose a point X1 along γ, close enough to the

stationary solution so that the O ((X−Xo)2) terms in equation (6.16) are negligible.

With this initial condition, (6.9) can be solved by integrating backwards in time to

determine ∇ψ for the full nonlinear equations at all points close to γ.
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6.3 Application to Parkinson’s Disease and Neural

Networks

We consider a model of pathological neural synchronization, thought to contribute

to the motor symptoms associated with Parkinson’s disease [17–19]. For patients whose

symptoms are drug resistant, Deep Brain Stimulation (DBS) offers an alternative treat-

ment to mitigate these motor symptoms through the injection of a high-frequency, pul-

satile input into an appropriate brain region. It has been hypothesized that the functional

mechanism of DBS is the desynchronization of these pathologically synchronized brain re-

gions [40], [20]. In recent years, researchers have developed alternative desynchronization

strategies [41], [44], [48] that could make DBS more efficient in order to prolong battery

life of the implantable device as well as to mitigate potential side effects of DBS [153]. In

previous work [10], we developed a methodology for chaotically desynchronizing a pop-

ulation of synchronized oscillators which only required knowledge of the neurons’ phase

response curves (PRCs). However, this strategy only guarantees desynchronization when

the neurons are close in phase, and as a consequence cannot guarantee that a population

of will be driven to a splay, or completely desynchronized, state.

Using isostable reduction techniques derived in Section 6.2, we can design an external

stimulus to desynchronize a population of neurons by driving them towards the splay

state. To begin, we assume that each individual neuron from the larger population can

be represented as a noisy limit cycle oscillator:

θ̇j = ω+Z(θj)

(
u(t) +

1

N

N∑

i=1

σ(V (θi)− V (θj)) +
√

2Sηj(t)

)
, j = 1, . . . , N. (6.23)

Equation (6.23) is an example of a phase reduction. Here, θj ∈ [0, 2π) is the 2π-periodic

phase of the jth neuron with θ = 0 corresponding to the neuron firing an action potential,

147



Isostable Reduction with Applications to Time Dependent Partial Differential Equations Chapter 6

0

0.5

1

ρ
(θ
)

0 2 4 6

0

0.5

1
ρ
(θ
)

θ
0 2 4 6

−0.1

0

0.1

+
θ

ρ(
θ
)

0 2 4 6
0

0.1

0.2

0.3

ρ(
θ
)

θ
0 2 4 6

θ
0 2 4 6

θ

A B

C D

E F G

Figure 6.1: Illustration of isostables in the advection-diffusion equation. Panel A
shows an initial distribution in black and several associated Fourier modes as dashed
lines. After some time passes, panel B shows that all other modes except for the first
have decayed substantially. Panel C shows the same initial distribution with the first
mode shown in red for reference, to which we add one of three perturbations given
in panel D. After 4T has elapsed, the distribution resulting from the blue, green, and
red perturbation is shown as a solid line in panels E, F, and G, respectively, with the
unperturbed distribution after 4T has elapsed shown as a dashed line. The perturbed
and unperturbed distributions are indistinguishable in panel G.

ω = 2π/T represents the neuron’s baseline frequency and is determined from its natural

period T , Z(θ) is the phase response curve, which gives the change in phase due to

an infinitesimal impulsive current, σ is the coupling strength in an all-to-all network,
√

2Sηj(t) is i.i.d. zero mean white noise with intensity 2S, u(t) = I(t)/C with I(t) being a

common external current control input and C = 1µF/cm2 the constant neural membrane

capacitance, N is the total number or neurons, and V (θ) gives the transmembrane voltage

as a function of the phase. We assume S is small enough that higher order noise terms are

negligible (c.f. [92]). Also, we assume that the coupling in this network is electrotonic, but

this could be generalized to include, for example, chemical synaptic coupling. Assuming

that the population is large and noise perturbations are small, with stochastic averaging
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[90] we can approximate (6.23) according to its probability density ρ(θ, t) with the Fokker-

Planck equation in one dimension [70]

∂ρ(θ, t)

∂t
= − ∂

∂θ
[(ω + Z(θ)(u(t) + σ(V − V (θ)))ρ(θ, t)] +

1

2

∂2

∂θ2
[B2ρ(θ, t)]

= −ωρθ +
B2

2
ρθθ −[Z(θ)ρθ + Z ′(θ)ρ]u(t)︸ ︷︷ ︸

external input

− ∂

∂θ
[Z(θ)σ(V − V (θ))ρ]

︸ ︷︷ ︸
intrinsic coupling

, (6.24)

where V =
∫ 2π

0
V (θ)ρ(θ)dθ and B2 = 2S

2π

∫ 2π

0
Z2(θ)dθ represent averaged transmembrane

voltage and noise, respectively. For the moment, we will consider (6.24) in the absence of

external input and intrinsic coupling. Without these terms, we have a linear advection-

diffusion equation on a ring, whose eigenfunctions are related to the Fourier modes of the

distribution. Panel A of Figure 6.1 shows an example distribution in black along with

several corresponding Fourier modes, shown as dashed lines. After some time passes, all

but the first mode has significantly decayed, as shown in panel B. The behavior of this

system can be understood from the perspective of isostables, which as outlined in [26]

are sets of initial conditions which share the same asymptotic convergence towards a

stationary solution, in this case the uniform distribution ρ = 1/(2π). As shown for this

advective-diffusive system in Appendix C, the magnitude of the first mode determines the

isostable, and thereby the asymptotic approach of the system to the stationary solution,

because all other modes die out at a faster rate in the presence of noise.

Solutions to (6.24) exist in infinite dimensional space, and for this reason it can be

difficult to work with for control purposes. To reduce the complexity of this equation, one

can instead track the change in isostables in response to an external perturbation, with

examples given in panels C-G of Figure 6.1. Panel C shows the probability distribution

along with the first mode, for reference, to which we add one of the three perturbations

shown in panel D. Panels E, F, and G show the resulting distribution after 4T elapses.
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We find that adding the blue perturbation, which is antiphase to the first mode, results in

a faster approach to the stationary solution, as shown in panel E. Adding a perturbation

orthogonal to the first mode (shown in green) does not affect the isostable, but shifts the

distribution to the right slightly, shown in panel F. Adding a perturbation corresponding

to a higher order mode (shown in red) does not effect the system’s approach to the

stationary solution, shown in panel G.

Using the intuition gleaned from Figure 6.1, one can understand the essence of the

following isostable reduction: in isostable coordinates, (6.24) becomes

ψ̇ = κ+

〈
I(θ, ψ),−[Z(θ)ρθ + Z ′(θ)ρ]u(t)− ∂

∂θ
[Z(θ)σ(V − V (θ))ρ]

〉
,

I(θ, ψ) =
−2κ

A∗1B
2π

cos

(
θ − ϕ∗1 −

ωψ

κ

)
e
B2ψ
2κ . (6.25)

Here, ψ is the isostable of the system with ψ ≡ 0 corresponding to an arbitrary time t∗,

κ ≡ 1 represents the system’s natural rate of approach to the stationary solution, I(θ, ψ)

is the infinitesimal isostable response curve (iIRC), which represents the gradient of the

isostable field, 〈·, ·〉 is the L2 inner product, and A∗1 cos(θ − ϕ∗1) is the first Fourier mode

of ρ(θ, t∗). Complete details of the derivation of this reduction are given in Appendix

C. The iIRC for this system is shown in panel B of Figure 6.2. The magnitude of the

iIRC grows exponentially with increasing ψ so that it requires smaller perturbations to

influence the isostable of the system as it approaches the stationary solution (c.f. [38]).

Equation (6.25) is a one dimensional ODE, and is much easier to work with than the

infinite dimensional PDE from (6.24), yet still retains essential characteristics of original

equation. Equation (6.25) can be understood as follows: if the inner product is zero,

noise will be responsible for driving the system to larger isostables, which are closer to

the stationary, desynchronized distribution. However, the term responsible for internal

coupling, − ∂
∂θ

[Z(θ)σ(V − V (θ))ρ], can counteract the effects of noise, maintaining some
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level of synchrony in the network. Therefore, we can use the term associated with the

external control, −[Z(θ)ρθ+Z
′(θ)ρ]u(t), to reverse the effects of internal coupling, driving

the distribution closer to the stationary solution, thereby desynchronizing the network.

Viewing the network from this perspective leads to a novel control strategy, which would

not be apparent from the full equations (6.24). Assuming each neuron receives the same

input u(t), and assuming that the maximum and minimum input that can be applied

is umax ≥ 0 and umin ≤ 0, respectively, which may be relevant for hardware or tissue

limitations, we can apply the control

u(t) =





umax if 〈I(θ, ϕ1(ρ)),−[Z(θ)ρθ + Z ′(θ)ρ]〉 > 0,

umin otherwise.

(6.26)

When this strategy is implemented, the external control serves to maximize the right

hand side of (6.25), driving the system towards higher values of ψ, which correspond to

less synchronous population distributions.

We apply the control strategy to a population of neurons, each with intrinsic dynamics

characterized by a two dimensional reduction of the Hodgkin-Huxley (HH) equations [68]

that reproduces the essential characteristics of the neuron’s dynamical behavior, [154],

c.f. [155]:

V̇j = fV (Vj, nj) + I +
σ

N

N∑

i=1

(Vi − Vj) + u(t) + ηj(t),

ṅj = fn(Vj, nj). (6.27)

Here, fV and fn are functions which describe the intrinsic neural dynamics, with all terms

and parameters given in [155], I = 10 µA/cm2 is a baseline current given so that each

neuron is in a periodically spiking regime, j = 1, . . . , N where N is the total number of
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neurons, and Vj and nj are the transmembrane voltage and gating variable for neuron

j, respectively. Note that (6.23) can be obtained from (6.27) through phase reduction.

The phase response curve, Z(θ), which gives the change in phase due to an infinitesimal

impulsive current stimulus is calculated using the software XPP [65] and is shown in

panel A of Figure 6.2. To test our control strategy (6.26), we take the coupling strength

σ to be 0.06 and a white noise intensity 2S = 2, (with the resulting value B2 = 0.0251),

and umax = −umin = 0.7µA/µF. The specific values of umax and umin can be changed

without reducing the effectiveness of the control strategy provided they are large enough

to overcome the synchronizing effects of intercellular coupling, but small enough that the

phase reduction (6.23) is valid [4].
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Figure 6.2: Isostable reduction applied to the Fokker-Planck equation. Panel A shows
Z(θ), used in the desynchronizing control strategy. Panel B shows the iIRC, I(θ, ψ)/β
where β ≡ 2κ/A∗1B

2π. Panels C-H show the result of applying the control strategy
to the PDE (6.24). The control input (in µA/µF) in D drives the first mode of the
distribution from 0.5 to 0.05. Panel C gives the amplitude of this mode as a function
of time for the equations with control applied as well as the system without control,
shown as a solid and dashed-dot line, respectively. Panel E gives the location of the
maximum of the distribution, θmax, as a function of time. Panels F-H show a com-
parison of the controlled distribution to the uncontrolled distribution at t = 7.4, 41.8
and 75.8 ms. The horizontal dashed line shows the ideal, uniform distribution.
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In the absence of external control, the internal coupling will cause a large population

of neurons to approach a distribution that is periodic in time, shown at a particular

snapshot in panel F of Figure 6.2. Starting with this distribution, we simulate the

reduced PDE (6.24) with our control strategy. The resulting control is shown in panel

D of Figure 6.2. Panels F-H show snapshots of the controlled distribution as solid lines

with the uncontrolled distribution shown as a dot-dashed line for reference. We find that

the applied control drives the system close to a uniform distribution with a stimulus

that is close to periodic. This is useful because the control strategy (6.26) requires

knowledge of the underlying distribution, which is generally unavailable when simulating

the full neural network (6.27). Instead we can make the following observations about the

desynchronizing control to design a simple closed loop control strategy: 1) The average

voltage of the system achieves a maximum value approximately when θmax = 2π. 2)

Each time θmax = 2π, the external control is at umin. 3) The control transitions from

umin to umax at approximately 6.1 ms after θmax = 2π. 4) The control remains at umax

for approximately 3.7 ms before transitioning back to umin.

These observations allow for the design of the following control strategy for use in

the full neural equations. Monitor the average voltage, V =
∑N

j=1 Vj, of the system. Let

tspike denote the most recent time V reaches a local maximum which is above -50 mV,

denoting that θmax ≈ 2π, and apply the control

u =





umax if 3.7 < t− tspike < 9.8,

0 if t− tspike > 15,

umin otherwise.

(6.28)

Notice that if the average voltage remains low enough, the controller is simply turned

off. We can apply this control when the average voltage spikes above -50 mV, and turn
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the controller off until the population has resynchronized.

We apply (6.28) to a population of N = 300 neurons, shown in the top panel of Figure

6.3 where the black lines give individual neural traces for 30 representative neurons from

the population, and the red line gives the average voltage for the system. We find that

the applied control (middle panel), quickly desynchronizes the system, as can be seen

from the Kuramoto order parameter [4], shown in the bottom panel (for the splay state,

R = 0). Turning off the controller allows the neurons to resynchronize, at which point the

controller can be turned on again to desynchronize the system. We note that the control

strategy which produces chaotic desynchronization from [10] cannot desynchronize the

population with this parameter set. This happens because individual cells tend to break

off from the synchronized population, quickly travel around the limit cycle, and rejoin

the synchronized population before it can desynchronize.
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Figure 6.3: The top panel shows the approximated control strategy (6.28) applied to
a population of Hodgkin-Huxley neurons, with the middle and bottom panels showing
the applied control and the Kuramoto order parameter, R, for the network, respec-
tively.
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6.4 Application to Cardiac Alternans

A single cardiac cell can be viewed as an excitable system: a large enough perturbation

to the transmembrane voltage of an individual cell will result in an action potential and

cause a contraction of the muscle tissue [2]. Cardiac tissue is made up of many individual

cells, electrically coupled through gap junctions, allowing waves of depolarization to

spread through the medium in a coordinated manner, resulting in a heartbeat. Cardiac

fibrillation, also known as cardiac arrest, represents an interruption of this coordinated

activity, and is a leading cause of death in the industrialized world. Fibrillation is caused

by unwanted and self-sustaining spiral waves within the heart which interfere with the

normal rhythm [28], [29].

Cardiac fibrillation can be the final step in a complex series of events beginning with

cardiac alternans, the pathological beat to beat alternation of electrochemical cardiac

dynamics at a constant rate of pacing (see e.g. the bottom panel of Figure 6.4). At a

cellular level, alternans often manifest in alternating long and short action potential du-

rations (APDs), defined as the length of time the transmembrane voltage remains above

resting potential after the cell fires. While alternans can be present during physiological

cardiac conditions, they have been the subject of much attention in recent years because

they produce favorable conditions for initiating fibrillation [30, 119, 128, 129, 131], and

it has been postulated that eliminating alternans in tissue could serve as a method of

prevention for those who are susceptible to cardiac fibrillation.

In [38], using a newly developed methodology of isostable reduction in ODEs, we were

able to eliminate alternans in a model of a single excitable cardiac cell using significant less

energy than other control strategies [34], [35]. However, the control strategy previously

developed in [38] lacked the framework necessary for application in connected cardiac

tissue, which is more relevant to the true problem. Here, we apply our isostable reduction
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method to connected tissue modeled as a PDE.

We consider a ring of connected cardiac tissue

Cm
∂V (r, t)

∂t
= D

∂2

∂r2
V (r, t) + (−Iion(r) + Istim(r, t)), (6.29)

where V represents the transmembrane potential, D = 1.5 cm2/s is the diffusion constant,

Iion(r) gives the membrane current density, Istim(r, t) is an external current controlled

input, Cm = 1µF/cm2 is the membrane capacitance, and r gives the position around

the ring. While the diffusive term in (6.29) is linear, the underlying ionic currents are,

in general, nonlinear functions of the underlying cellular dynamics. In this study, we

consider the Fox model of canine cardiac tissue [132] for membrane current density and

other gating variables. We take all parameters to be nominal. Equation (6.29) has

periodic boundary conditions, V (r + l) = V (r), and for a long enough ring the tissue

admits traveling wave solutions. If we let the length of the ring be l = 10 cm, and create

a traveling wave in the medium, we find alternans develop in the system, as shown in

Figure 6.4.

6.4.1 Isostable Reduction of the Cardiac System

Our goal is to eliminate alternans in the system using an external control Istim(r, t).

At a cellular level, alternans is caused by the existence of a stable period-2 orbit, and in

Chapter 5 we found that it was possible to use a control algorithm based on an isostable

reduction to eliminate alternans by stabilizing the underlying unstable period-1 orbit

(c.f. [31], [34], [35]). Ultimately, terminating alternans is a problem of controlling the

timing of cell repolarization. By appropriately speeding up the repolarization of the long

action potentials, the unstable period-1 orbit can be stabilized to eliminate alternans in

the system; with knowledge of the system’s iIRC, one can know exactly how an external
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Figure 6.4: The top panel shows spatially concordant alternans throughout the ring.
The snapshots V1 and V2 are 175 ms apart, approximately the time it takes for the
wave to travel once throughout the medium. In the snapshot V1, the action potentials
last much longer, while in the snapshot V2, the cells repolarize quickly. The bottom
panel shows the voltage profile of a single cell in the medium at r = 5 cm, showing
that alternans are also present at the cellular level. The bottom panel also shows the
location at which we define ψ ≡ 0 on the long alternan.

perturbation will affect a cell’s repolarization. In this example the stationary solution

occurs when all cells within the ring are completely quiescent (with no traveling pulse).

In the control strategy to follow, alternans will be eliminated by perturbing the system

on its way towards the stationary solution, but the traveling pulse will never die out.

To cast (6.29) in the form of equation (6.1) so that we may calculate isostable response

curves, let X =
[
V, [Ca2+]i, [Ca2+]sr, f, d,m, h, j, fCa, XKr, XKs, Xto, Yto

]T
, consisting of all

cellular state variables. Let F (X(r, t)) correspond to the differential equations for the

cellular dynamics with a nominal parameter set given in [132]. Let G(X(r,t)) be the

diffusive voltage coupling between cells, leaving p(r, t) = [Istim/Cm 0 . . . 0]T . Consider

an isostable model of this cardiac system

ψ̇ = κ+ 〈IV (r, ψ), Istim(r, ψ)〉+ 〈I[Ca2+]i(r, ψ),0〉+ · · ·+ 〈IYto(r, ψ),0〉

= κ+ 〈I(r, ψ), Istim(r, ψ)〉. (6.30)
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Because we can only perturb in the voltage direction, we define I(r, ψ) ≡ IV (r, ψ).

For convenience, we scale the isostable field so that κ = 1. When γ is close to the

stationary solution, we can determine the iIRC for use as an initial condition for (6.9).

Solely for the purposes of calculating the system’s iIRC, we reduce the dimensionality

of the system by averaging [156], taking the slowly varying sarcoplasmic reticulum Ca2+

to be equal to a constant 318 µmol and modify the ionic current IKr (given in [132]) so

that IKr = 0 when the variable XKr < 10−4. These modifications make the eigenfunctions

near the stationary solution easier to calculate without perceptibly altering the dynamics.

With these modifications, when the system is close to the stationary solution, the value

of XKr(r) (the variable associated with the gating variable for one of the potassium

currents) approaches the stationary solution according to XKr(r) = λ1(XKr(r)−XKr,∞)

with XKr,∞ denoting a steady state value of XKr and λ1 denoting the slowest eigenvalue of

the linearized system. Because the rate of approach of XKr(r) is the same at all locations

r, there are an infinite number of eigenfunctions corresponding to the slowest direction

of the stable manifold which span the function space XKr(r)). These eigenfunctions span

XKr(r) and are orthogonal to all other eigenfunctions with no component in XKr(r).

Consider a cell at r = r0. When the system is close to the stationary solution, any

perturbation to XKr(r) for r 6= r0 will have no effect on XKr(r0) as it approaches the

steady state. With this information, and using (6.3), near the stationary solution, the

iIRC associated with a cell at r0, which describes its infinite time approach towards the

stationary solution, is given by

IXKr
(r, ψ) =





1/ẊKr if r = r0,

0 otherwise

. (6.31)

With this definition, the iIRC describes the change in isostable for a cell at a given
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location r0 caused by a small perturbation. Note that (6.31) is only valid near the

stationary solution.

To numerically calculate the iIRC using (6.9), the trajectory γ must approach the

stationary solution so that (6.31) can be used to obtain an initial condition for (6.9).

This can be accomplished, for instance, by taking r0 = 5 cm, and locally setting D = 0

between r = 0 cm and r = 10 cm at a moment immediately after the cell at r0 fires.

This allows the traveling waves to die out so that the system approaches the stationary

solution. With an initial condition determined from (6.31), the iIRC at all other values

in time is determined by integrating (6.9) backwards in time. As represented in Figure

6.5, the resulting iIRC is valid until tD, the time that the cell at r0 would have fired its

next action potential.

−100

−50

0

50

γV (r, t) tD

V
(m

V
)

Figure 6.5: In order to calculate the iIRC, γ must come arbitrarily close to the sta-
tionary solution. By modifying the boundary conditions to allow the traveling wave
to die out, we can numerically calculate an iIRC, which is accurate for the unmodified
system until tD. Here γV (r, t) represents the voltage component of γ at location r
along the ring.

The system does not take the same trajectory γ towards the stationary solution every

time, and we calculate the iIRC 96 times using different initial conditions to determine an

average iIRC, I(r, ψ) shown in the top panel of Figure 6.6, with the associated standard

deviation σI shown in the bottom panel. For the problem of eliminating alternans, each

cell can be thought of as having its own isostable value and iIRC, but because the system

is circularly symmetric, we simply report the iIRC in terms of the effect of a perturbation
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Figure 6.6: Top and bottom panels show the mean and standard deviation of the
iIRC, respectively, taken over 96 trials. Here d is defined so that I(d, ψ) represents
the effect of a perturbation on a cell d cm away.

given at a signed distance d. Also, we define ψ = 0 to correspond to the time at which

∂V
∂t

∣∣
r=r0

= 0, during a long alternan. The effect of an external stimulus is largest when d,

is zero, corresponding to direct stimulation of that cell, and is near zero when |d| > 0.5

cm. The standard deviation of the iIRC at d ≈ 0 is small compared to the magnitude

of the iIRC itself, allowing us to use I(r, ψ) as an approximation of the true iIRC in the

control strategy to follow.

6.4.2 Developing a Control Objective to Eliminate Cardiac Al-

ternans

Recall that if control is applied to a single cell, alternans can be eliminated by driv-

ing the cell dynamics to the unstable period-1 orbit. However, in tissue we must elim-

inate alternans in the connected tissue with control nodes that are sparsely distributed

throughout the tissue. For the following analysis, we consider a single cell isostable re-

duction at each cell on the ring, using methods similar to those of [38]. We assume the
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existence of an alternans free state, ψ0(r, t), throughout the ring which evolves so that

ψ0(r, t) = ψ0(r − ct, 0), with c > 0. Furthermore, we assume that the state of each cell

is close to the alternans-free trajectory, denoted by γa +O(ε||∆x||), where x represents

the state variables of the system. This means that to leading order ε, there is a 1 to 1

relationship between ψ and the state variables.

Panel A of Figure 6.7 shows such a distribution, which can be found by applying the

control strategy (6.54) to the dynamic equations (6.29) until the control effort disappears

[31]. This distribution is an unstable solution to (6.29) which is periodic in both space

and time; the wavefront (located at r ≈ 4.6 cm in the figure) travels at approximately 57

cm/s so that the period of oscillation is approximately 175 ms. Isostables for each cell

are scaled so that at all locations except the wavefront ψ̇ = 1 in the absence of external

stimuli. Here, ψ = 0 is defined to be the time at which a cell has just repolarized

(i.e. reached 95 percent of its resting potential). At the depolarizing wavefront, quiescent

cells are reexcited. The end goal of our control strategy is to guide the system to this

unstable, alternans-free periodic orbit.

If we consider a single cell at location r = x, the dynamics evolve according to (6.29):

Cm
∂V (ψ0)

∂t

∣∣∣∣
r=x

= D
∂2V (ψ0)

∂r2

∣∣∣∣
r=x

− Iion(ψ0)

∣∣∣∣
r=x

+ Istim(x, t). (6.32)

Through single cell isostable reduction, provided the state dynamics are close to γa, we

may write (6.32) as

ψ̇
∣∣∣
r=x

= κ+ Is(ψ|r=x)Istim(x, t). (6.33)

Here, ψ|r=x gives the isostable of the single cell dynamics at the location r = x, and Is is

the single cell isostable response curve. Note that in this reduction, both Iion(ψ)|r=x and

D ∂2V (ψ0)
∂r2

∣∣∣
r=x

guide the cell dynamics along the trajectory γa, and therefore disappear in

the reduction (6.33).
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As derived in Chapter 5, we can calculate Is(ψ) by solving an adjoint equation

dIs
dt

= −∇F T (x(ψ))Is. (6.34)

Here, ∇F is the Jacobian, and ∇F T (x(ψ)) is the transpose, or adjoint, of the real-valued

matrix ∇F (x(ψ)), and F (x) represents state dynamics of the transmembrane voltage

and all auxiliary variables associated with Iion.

Suppose now that the distribution is not exactly at the ideal, ψ0, but rather can be

written as ψ(r, t) = ψ0(r, t) + εψε(r, t), with 0 < ε � 1, so that ψε represents a small

perturbation from the ideal distribution. For clarity of notation in the following equation,

we let P ≡ ψε|r=x, which is a constant with respect to derivatives in space. Suppose also

that there are no external perturbations so that Istim = 0. To leading order, the dynamics

at a given location x, starting with (6.32) can be written as

Cm
∂V (ψ0 + εψε)

∂t

∣∣∣∣
r=x

= D
∂2V (ψ0 + εψε + εP − εP )

∂r2

∣∣∣∣
r=x

− Iion(ψ0 + εψε)

∣∣∣∣
r=x

= D
∂2
(
V (ψ0 + εP ) + ε∂V

∂ψ
· (ψε − P )

)

∂r2

∣∣∣∣∣∣
r=x

− Iion(ψ0 + εψε)

∣∣∣∣∣∣
r=x

+O(ε2)

= D
∂2V (ψ0 + εP )

∂r2

∣∣∣∣
r=x

− Iion(ψ0 + εψε)

∣∣∣∣
r=x

+ εD
∂V

∂ψ
· ∂

2ψε
∂r2

∣∣∣∣
r=x

+O(ε2).

(6.35)

Finally, equation (6.35) is in the same form as (6.32), with the term εD ∂V
∂ψ
· ∂2ψε

∂x2

∣∣∣
r=x

taking the place of Istim(x, t). We may therefore rewrite (6.35) in the form of (6.33):

(
ψ̇0 + εψ̇ε

)∣∣∣
r=x

= κ+

(
Is(ψ0 + εψε)εD

∂V

∂ψ
· ∂

2ψε
∂r2

)∣∣∣∣
r=x

+O(ε2). (6.36)

Finally, subtracting (6.33) with Istim = 0 from (6.36) and Taylor expanding the Is in
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orders of ε, we have

εψ̇ε

∣∣∣
r=x

=

(
εD

∂V

∂ψ
· Is(ψ0)

∂2ψε
∂r2

)∣∣∣∣
r=x

+O(ε2). (6.37)

Equation (6.37) mandates that for all points at which the isostables are continuous in

space, provided that
(
εD ∂V

∂ψ
· Is(ψ0)

)∣∣∣
r=x

> 0, any local isostable gradient will spread

through the system diffusively. Panels C and D of Figure 6.7 shows the term ∂V
∂ψ

(ψ)·Is(ψ0)

plotted as a function of ψ for this system at two different scales, with the transmembrane

voltage shown in panel B for reference. We find that this term is strictly positive, and is

particularly large in magnitude soon after an action potential.

Recall that (6.37) is only valid for points at which the isostable distribution is con-

tinuous in space. For the point at which this distribution is not continuous (i.e. at

the wavefront) the dynamics can be reduced using the action potential duration (APD)

restitution curve which gives the next action potential duration, defined to be the length

of time the transmembrane voltage of the cell remains above resting potential after an

action potential is fired, as a function of the diastolic interval (DI), defined to be the

amount of time the cell stays quiescent before the next action potential is fired:

APDi+1 = f(DIi). (6.38)

Here, because we have a series of action potentials, we refer to them with an index i.

The APD restitution curve and its first derivative are shown in panels E and F of Figure

6.7, respectively. In this case, the basic cycle length (BCL), defined as the time between

succesive action potentials, is fixed, and determined by the wave speed c and the length of

the ring, and therefore BCL = DI + APD. One can show that (6.38) has a fixed point DI0

when BCL = f(DI0) + DI0. As originally shown in [134], this fixed point will be unstable
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if
∣∣ df
dDI

(DI0)
∣∣ > 0, and this instability gives rise to the stable period-2 orbit responsible

for alternans. We have strategically defined the isostables in this system so that positive

and negative isostable values can be used interchangeably with DI and APD in equation

(6.38), respectively. Therefore, when a cell is reexcited, we can write (c.f. [157])

ψεi+1
(x) = −Λψεi(x), (6.39)

where Λ = df
dDI

(DI0), and ψεi(x) and ψεi+1
(x) denote the value of ψε at location r = x

before and after the cell fires its next action potential. Equation (6.37) and (6.39) specify

a reduced system. The diffusive element of the system (6.37) will tend to bring it towards

ψε(r) = ψε, the average value of the initial distribution, and equation (6.39) describes

the inherent instability of each cell. Therefore, our control strategy will be to actively

drive the system to ψ0(r) + εψε(r) where ψε = 0. Provided that the diffusion acts much

faster than the inherent instability at a cellular level, the system will settle close to ψ0. If

the diffusion does not act quickly enough, we can apply the external control a few cycles

later in order to gradually drive the system to ψ0.

Our objective for the elimination of alternans is now to drive the system to a state

ψ(r) = ψ0(r) + εψε(r). Suppose that we have 2M + 1 control nodes, equally spaced at

a distance L. Let uN(t) represent the control applied at node N which is of order ε.

Using the coordinate system presented in Figure 6.8, the local reduced cell dynamics at

position r, which we denote by ψr, are

ψ̇r = κ+
M∑

j=−M

uN+j(t)I(jL− r, ψr) +O(ε2). (6.40)

Here, the summation represents the effect of input from each control node. Suppose that

throughout the tissue, severity of alternans is similar, (i.e. APDn−APDn−1 = α+O(ε)).
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Figure 6.7: Panel A shows an alternans-free solution of (6.29), and an underlying
isostable distribution for each individual location throughout the network. The scales
on the left and right correspond to the solid and dashed curve, respectively. Panels
C and D show the term from equation (6.37) as a function of isostable, with the
transmembrane voltage shown in panel B for reference. Because ∂V

∂ψ (ψ) · Is(ψ) is
predominantly greater than zero, (6.37) shows that the isostable distribution ψε should
spread diffusively through the network. Panels E and F show the APD restitution
curve as well as dAPD/dDI. The BCL in this system is about 175 ms, which gives an
unstable fixed point at DI0 ≈ 42 ms.

Suppose also that the wave speed in this region of tissue is equal to c+O(ε). This means

that if ψr = 0 at t = 0, then ψr+d will reach zero at t = d/c+O(ε).

We assume that each node acts independently, and require that an O(ε) change in the

severity of alternans will lead to an O(ε) change in the applied control. We also assume

that each node will apply control which lasts for a duration of k ms, starting when the

isostable at that node reaches ψ = 0. Under these assumptions, to leading order ε the

external control applied at each node will be identical in shape, but time shifted by the

time it takes for the wave to travel between control nodes. This allows us to rewrite
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Figure 6.8: The reduced cell dynamics at node xN are described by equation (6.40).

(6.40) as

ψ̇r = κ+
M∑

j=−M

u(t− jL/c)I(jL− r, ψr) +O(ε2), (6.41)

where u(t) = 0 when either t < 0 or t > k. Asymptotically expanding ψr in powers of ε,

ψr(t) = ψ(0)
r (t) + εψ(1)

r (t) + ε2ψ(2)
r (t), (6.42)

we find that ψ
(0)
r (t) = ψr(0) + κt. We will define t = 0 to be the time at which ψ0 = 0,

which can be written more concisely as ψ0(0) = 0. Therefore ψr(0) = −κr/c. Substitut-

ing this result into (6.41) yields

ψ̇r = κ+
M∑

j=−M

u(t− jL/c)I(jL− r, κ(t− r/c)) +O(ε2). (6.43)

As shown in Section 6.4.2, if the average distribution of isostables is on the unstable

period-1 orbit, the system will relax to that orbit through a process similar to diffusion.

Therefore, our goal is drive the average of the isostable distribution in the shaded region

of interest in Figure 6.8 to the unstable period-1 orbit. Taking the spatial average of
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(6.43) yields

ψ̇ =
1

L

∫ L/2

−L/2
ψ̇rdr = κ+

1

L

∫ L/2

−L/2

[
M∑

j=−M

u(t− jL/c)I(jL− r, κ(t− r/c))
]
dr +O(ε2),

(6.44)

where ψ̇ is the average rate of change in isostables in the shaded region.

We can use (6.44) as part of a strategy to eliminate alternans. Suppose that the

next action potentials will be fired T ms after the present action potentials. Then, we

may guide the system from the stable period-2 orbit to the unstable period-1 orbit by

requiring (c.f. [38])

∫ T

0

ψ̇dt = κT − ζκ(APDn − APDn−1)/2, (6.45)

which implies the following boundary condition

∫ T

0

(
ψ̇ − κ

)
dt = −ζκ(APDn − APDn−1)/2, (6.46)

where 0 < ζ < 2π is a positive constant which reflects the relative distance between

the long and short alternans pathways to the alternans free distribution [34]. Recall

that we apply control when the cells are currently firing long action potentials, so that

APDn − APDn−1 < 0. In equation (6.46), setting ζ = 0 would mean that at the next

action potential, no control would need to be applied, and the next action potentials will

follow a short alternan trajectory. If ζ = 2, the result of the control would be to speed up

the average rate of change of the isostables, and on average, the cells would take another

long alternan path for the next action potential. Intuitively, this control requirement

assumes that the unstable period-1 orbit lies in between these two paths. Recall that for

t < 0 and t > k, u(t) = 0. This allows us to conveniently time shift the terms in the
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integrand of (6.46) after substituting (6.44):

∫ T

0

(
ψ̇ − κ

)
dt =

∫ k

0

[
1

L

∫ L/2

−L/2

[
M∑

j=−M

u(t)I(jL− r, κ(t− r/c+ jL/c))

]
dr

]
dt. (6.47)

For convenience of notation, let f(t) = 1
L

∫ L/2
−L/2

[∑M
j=−M I(jL− r, κ(t− r/c+ jL/c))

]
dr.

By defining an auxiliary equation Ψ̇ ≡ u(t)f(t), we can cast this as an optimal control

problem by minimizing the cost functional M[u(t)] =
∫ k

0
u2(t)dt, which gives the power

associated with the stimulus, and can apply calculus of variations to minimize [13]

C[u(t)] =

∫ k

0

[u2(t) + λ(Ψ̇− u(t)f(t))]dt, (6.48)

where λ is a Lagrange multiplier. The resulting Euler-Lagrange equations are

u(t) = λf(t)/2, (6.49)

Ψ̇ = λf 2(t)/2, (6.50)

λ̇ = 0. (6.51)

The optimal control u∗(t) can be found by solving (6.50) and (6.51) subject to Ψ(0) =

0 and Ψ(k) = −ζκ(APDn − APDn−1)/2. By noting that (6.51) requires λ to be a

constant, and integrating (6.50) directly, we can explicitly solve for the required control

as a function of time:

u∗(t) =
−ζκ(APDn − APDn−1)f(t)

2
∫ k

0
f 2(τ)dτ

. (6.52)

Thus, to leading order ε, the optimal control is proportional to a superposition of appro-

priately time shifted iIRCs.

168



Isostable Reduction with Applications to Time Dependent Partial Differential Equations Chapter 6

6.4.3 Numerical Results

We assume that we can place 2M+1 stimulators equally spaced L cm apart through-

out the ring. With this framework, not all cells receive the same external input, but

as we show in Section 6.4.2, to eliminate alternans it is sufficient to drive system to a

distribution ψ0(r) + εψε(r), where ψ0(r) represents the alternans free isostable distribu-

tion and εψε(r) is any small perturbation such that
∫
ψε(r)dr = 0. Assuming that the

wave travels at a constant speed c throughout the ring, as shown in Section 6.4.2, if each

stimulator acts independently and applies a control that is proportional to the severity

of alternans (i.e. u(t) ∝ APDn − APDn−1 where APDn is the duration of the nth action

potential), then an approximation of the energy optimal control to eliminate alternans is

u(t) =
−ζκ(APDn − APDn−1)f(t)

2
∫ k

0
f 2(τ)dτ

, (6.53)

where t = 0 corresponds to the time at which the controller detects that ψ = 0, k is

the duration of the applied control, ζ is a positive constant which reflects the relative

distance between the long and short alternans pathways to the alternans free distribution

(c.f. [34]), and f(t) can be calculated from the iIRC which effectively gives a summation

of the average control effort applied by each control node. The PDE (6.29) is rather

unwieldy and directly calculating an optimal control for elimination of alternans would

not be possible. However, isostable reduction allows for the derivation of the relatively

simple control scheme (6.53). Panel A of Figure 6.9 shows the calculated optimal control

u(t) when k = 70, and ζ = 1.3 scaled by the severity of alternans. Perhaps not suprisingly,

when the nodes are spaced closer together, the required control at each node is smaller

in magnitude. For comparison, we also test the non-optimal control strategy presented
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in [31]:

u(t) =





ν(V (t)− V (t− δ)) if V (t)− V (t− δ) < 0,

0 otherwise,

(6.54)

where ν is a positive constant and δ is the time between successive depolarizations of

a single cell. Intuitively, (6.54) works similarly to (6.53) by providing a hyperpolarizing

stimulus when a region of tissue has a long alternan, but also requires simultaneous

accurate monitoring of the transmembrane potential.
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Figure 6.9: Using the iIRC, optimal stimuli to eliminate alternans calculated from
(6.53) for and ζ = 1.3 and different node spacings L, are shown in panel A with u
given in units of µA/µF and APDs in ms. Panel B compares the average power (AP)
once the controller reaches a steady state, for the optimal strategy (dots) and the
non-optimal strategy from (6.54) (open circles). At each spacing, the approximately
optimal strategy uses between 2 and 4.5 times less energy than the non-optimal strat-
egy. Panel C shows the total cumulative energy consumption as a function of time
for two different node spacings. Panel D shows the spatial transmembrane voltage as
a function of time with L = 1 cm. Alternans can be seen in the tissue when t < 1000
ms, and are quickly eliminated when the controller is turned on. Panels E and F show
the transmembrane voltage and control effort at r = 3 cm.

We test each control strategy on (6.29) with i.i.d. zero mean, unit intensity white

noise added. For each control strategy, more power is initially consumed because the

controller is driving the system to the period-1, alternans-free orbit (see t = 1 to t = 2 in
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panel C). After this initial period of time, the controller requires considerably less energy
(
E =

∫ ∫
I2

stim(r, t)dtdr
)

to maintain the alternans-free state, making small adjustments

to combat the effects of noise. The approximately optimal control strategy uses 2 to 4.5

times less energy than the non-optimal strategy. Results for choices of ζ ∈ [1.1, 1.5] are

not significantly different.

6.4.4 Possible Experimental Applications

In the previous example, the optimal control strategy requires a reasonably accurate

estimate of the iIRC. If a good approximation of the model is known, an iIRC could be

calculated using the adjoint method given in Section 6.2. However, given the complicated

nature of (6.29) it may be more accurate to measure the iIRC using strategies akin to

the direct method [24], [25], a well established technique for experimentally estimating

phase response curves in periodically oscillating systems. Here, we detail how a direct

method could be used to experimentally implement the control strategy from Section

6.4.1 in e.g. Purkinje fibers [34], [158] which have been used to validate alternans control

strategies in one dimensional tissue. Our approach follows from the interpretation of the

iIRC, I(d, ψ), as the change in the isostable coordinate resulting from a perturbation at

a distance d, with ψ being the isostable coordinate when the stimulus was applied.

One can gauge how a perturbation affects the isostable using the APD restitution

curve [28], which gives the duration of the next action potential as a function of the time

since the cell has been quiescent (also known as the recovery time or diastolic interval).

Generally, longer recovery times will lead longer action potentials. It will be convenient

to define ψ = 0 as the time at which a cell repolarizes (i.e. reaches 95 percent of its

resting potential) with ψ̇ = 1 in the absence of forcing so that

APD = f(ψ). (6.55)
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Note that if we instead define ψ = 0 the same way as in Section 6.4.1 we would ultimately

require measurements that are more difficult to take. The APD restitution curve for this

system is shown in panel B of Figure 6.10. For a constant pacing rate P that does

not produce alternans, the system will settle to a state for which the action potentials

are constant on a beat to beat basis which can be found by solving the equation P =

ψ + f(ψ) = ψ∗ + APD∗ [28] where APD∗ = f(ψ∗). For a given voltage perturbation,

using Taylor expansion, the effective change in isostable can be determined by measuring

the next action potential duration according to

∆APD

f ′(ψ∗)
= ∆ψ +O(∆ψ2), (6.56)

where ∆APD = APD+ − APD∗, with APD+ being the duration of the action potential

following the perturbation (see panel A of Figure 6.10).

Suppose instead of a ring, we have a fiber (6.29) with no-flux boundary conditions.

With multiple recording nodes and a single stimulating electrode the following protocol

can be used to experimentally determine the iIRC: 1) At one end of the fiber, pace at

a constant rate P chosen so that alternans do not develop in the system. 2) After the

APDs are close to the steady state value APD∗, apply a short pulsatile perturbation

at time tp with strength u and duration ∆t with the stimulating electrode. 3) For each

recording node at a distance d from the perturbing electrode, let ψp ≡ tp−ts−APD∗ with

ts defined to be the time at which the recorded cell spiked before the perturbation was

applied. The value of ∆ψ can be determined from (6.56) by measuring the duration of the

next action potential. 4) at each recording electrode obtain a datapoint IV (d, ψp) = ∆ψ
u∆t

.

5) Repeat steps 2-4 until a IV (r, ψ) can be obtained with a fit to the data. Panel C of

Figure 6.10 shows a polynomial fit to the data obtained using the above procedure with

white noise of intensity 0.2 added to the transmembrane voltage equation (6.29) to model
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Figure 6.10: In panel A, once the APDs reach their steady state value, a perturbation
is given. APD+ is measured as on the following action potential. Panel B shows the
APD restitution curve for this system using an S1-S2 pacing protocol [159]. Panel C
shows individual datapoints for the iIRC obtained from (6.56) fitted to a polynomial
(black line). Panels D and E show the resulting iIRCs using data from a noisy and
noiseless system, respectively.

system noise and measurement error. Panel D shows an iIRC interpolated using data

from recording nodes spaced 0.5 cm apart. Panel E shows an iIRC determined without

noise in the system. In both cases the obtained iIRC is similar to the one obtained with

the adjoint equation (6.9), but is less concentrated around d = 0. Because we assumed

that we only have one stimulating electrode, perturbation timing was chosen to give

the best measurement of the system near d = 0 and no data points in the top-left and

bottom-right corners were obtained.

Using the iIRCs obtained from the noisy and noiseless data, we can apply the control

strategy (6.53) to eliminate alternans. In this case, because the definition of ψ = 0 has

changed, we define t = 0 at each stimulator as the time at which ψ ≈ −130 during a long
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action potential, estimated by assuming that when a cell fires a long action potential,

ψ = −APD−L , where APD−L is the duration of the previous long action potential. The

stimuli obtained from the noiseless (resp. noisy) data are shown in the top left (resp.

bottom left) panel of Figure 6.11 with ζ = 1.3. They are qualitatively similar to the

stimuli obtained using the numerically obtained iIRC from Figure 6.6. In an identical

numerical test as the one shown in Figure 6.9, each applied control strategy quickly

eliminates alternans in the system. Using the stimuli associated with the iIRC obtained

using the a direct method requires slightly less power than the stimuli associated with

the iIRC calculated numerically using (6.9). An iIRC obtained from a noisy system using

the direct method only leads to a slight increase in overall power usage.

In an experimental setting iIRCs obtained from the direct method give the change to

APDs themselves in response to a perturbation. When the iIRCs are obtained numeri-

cally using (6.9), they give the change to the approach along the slowest direction of the

stable manifold from a perturbation. Because the control strategy itself uses the APDs

as an indicator of the severity of alternans, this may explain why experimental iIRCs pro-

duce stimuli which are slightly more efficient. As a final note, measurement of the iIRC

using the direct method requires knowledge of the APD restitution curve, which may not

be available in an experimental setting. If this is the case, simply assuming f ′(ψ∗) = 1

in equation (6.56) will yield stimuli for which the shape is correct but the magnitude is

potentially wrong. The appropriate stimulus could be found, for instance, by applying

the resulting control and modifying the magnitude until alternans are eliminated.

6.5 Discussion

State reduction can be a powerful strategy for both understanding and controlling

systems with complicated and high dimensional dynamics. Here, we have developed a
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methodology of state reduction for PDEs which tracks the time it takes for an initial

condition to reach a stable stationary solution in the presence of external inputs. To

illustrate both the power and flexibility of this method, we have applied it to problems

from two different fields of study.

In the first application, isostable reduction allows us to design an input to desynchro-

nize a large population of phase oscillators. This control strategy could have potential

applications to Parkinson’s disease, where excessive synchrony in a network of neurons is

thought to contribute to the motor symptoms of the disease. While this control strategy

represents a significant improvement over previous control strategies, it will certainly

need to be developed further before it can be applied in vivo. For instance, the control

strategy (6.26) requires simultaneous monitoring and stimulation of the network dynam-

ics, an issue that will need to be addressed in practice. While increased synchronization is

not the only pathological change associated with Parkinson’s disease, and desynchroniza-

tion may not alleviate all symptoms, control strategies based on mitigating the excessive

synchrony associated with Parkinson’s disease have shown promise in both human and
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primate studies [160], [161].

In a second application, we were able to use isostable reduction to design a control

strategy to eliminate alternans in model of cardiac tissue. Because alternans can be a

precursor to cardiac fibrillation, eliminating them could prevent fibrillation for those who

are at risk for this life threatening arrhythmia. Here we have found that this new control

strategy eliminates alternans using less energy than a previously proposed methodology

[31]. While we applied this control strategy to a model of a one-dimensional ring of cardiac

tissue, the theory presented in Section 6.2 readily extends to two and three dimensional

models.

The ability to determine iIRCs is essential to the control strategy for eliminating

alternans, a calculation which we have demonstrated by using the adjoint equation (6.9)

in a numerical model. However, in live tissue experiments it is likely that we would

not have access the full dynamic equations required to use the methods from Section

6.2. We present a protocol akin to the direct method for calculating phase response

curves [24], [25] by which an iIRC could be measured in vitro. In this chapter, we

have assumed the ability to directly inject current at a few control nodes, but the iIRC

measurement strategy would be equally applicable for other types of perturbations. Nu-

merically, we find that iIRCs measured directly are similar to those calculated from (6.9),

yielding control stimuli which terminate alternans effectively. This direct method could

be adapted on a per application basis to measure iIRCs in other biological systems.

Isostable reduction is not the only reduction strategy that can be applied to PDEs.

This method of isostable reduction is perhaps most similar to reduction through the use

of inertial manifolds [147–150] which attract solutions of PDEs exponentially quickly.

This reduction strategy may be of use for these examples (particularly for the cardiac

ring example in Section 6.4), however, inertial manifolds can be difficult to approximate,

and it is not guaranteed that a resulting inertial manifold would be low dimensional. Fur-
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thermore, once an inertial manifold is found, further analysis would need to be performed

in order to understand how small perturbations affect the dynamics. The isostable reduc-

tion strategy described in this chapter does not require the state dynamics to collapse

to a one-dimensional manifold. This point is illustrated in the cardiac ring example,

because when we calculate the iIRC shown in Figure 6.6, the state variables differ on

a beat-to-beat basis, but the resulting isostable response curves show little variability

between beats.

Phase reduction has played an important role in the understanding of nonlinear oscil-

latory dynamics in the past half century, and we imagine that isostable reduction could

play a similarly important role in the understanding of nonlinear PDEs by allowing for

the study of complicated systems in a more useful coordinate system. Isostable reduction

allowed us to make progress on two unrelated but important problems in the fields of

neuroscience and cardiology, and we imagine that it could be a useful reduction strategy

in other contexts, especially when the rate and timing of a system’s approach towards a

stationary solution are of interest.
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Conclusions

Phase reduction strategies have been indispensable in the study of nonlinear limit cycle

oscillators. In this dissertation we have investigated applications of phase reduction to

periodically spiking neural models in order to suggest new strategies for deep brain stim-

ulation in the treatment of Parkinson’s disease and to derive optimal control techniques

for entraining a noisy population of neurons. We also develop a related strategy that can

be applied to dynamical systems with stable fixed points in order to understand their

dynamics in terms of their approach to a fixed point. We showed that this strategy was

particularly useful in the study of cardiological alternans, allowing us to devise energy

optimal control strategies to eliminate this arrhythmia.

In Chapter 2 we investigated a strategy to desynchronize a population of patho-

logically synchronized neural oscillators. In this chapter, we designed external stimuli

which balance the trade off between overall energy usage and the magnitude of a positive

Lyapunov exponent. For many different neural models, this strategy was shown to use

orders of magnitude less energy than other strategies for desynchronizing a population of

coupled neurons [44], [21]. This work was later extended in [11] to include extracellular

inputs. The control strategies considered here are most effective when the oscillators are
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close in phase, and do not guarantee that a population of oscillators will approach a uni-

formly distributed state. One approach for improving these strategies could be to design

external perturbations to stabilize the steady state distribution of the underlying Fokker-

Planck equation [70] describing the probability density (c.f. [88], [48]) of a population of

neurons. Recent work in collabroation with researchers at the University of Minnesota

and West Virginia University [162] has shown that finite time Lyapunov exponents can

be used to accurately predict desynchronization in a large network of chemical oscillators.

Recent experimental work [163] suggests that phase reduction could be applied to the

entire Parkinsonian network, and it would be interesting to investigate whether designing

stimuli which optimize the trade-off between power usage and magnitude of Lyapunov

exponents could be used in experimental trials to mitigate the symptoms of Parkinson’s

disease.

In Chapter 3, we used phase reduction to design external stimuli which could effi-

ciently entrain a noisy population of limit cycle oscillators. In vitro experiments were

performed in collaboration with the Netoff lab at the University of Minnesota. The work

from this chapter is an extension of previous work [91] which investigated the problem

of entraining a population of noiseless limit cycle oscillators with applications to circa-

dian rhythms. The strategies presented in this chapter could be adapted for use with

models of glucose secretion in pancreatic cells [78], [79] as well as in animal models of

hearing loss [84], [85]. Future work will be devoted to understanding the emergence of

synchronization in heterogeneous networks of coupled oscillators.

Chapter 4 considers the problem of inferring PRCs in a population of limit cycle

oscillators when only aggregate population data is available. We propose a methodology

which works well for measuring the PRCs of both oscillatory and bursting neurons.

Current measurement strategies (e.g. patch clamp and dynamic clamp techniques [25])

are certainly of great practical use, aiding in the understanding of the nonlinear dynamics
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of neural networks, but ultimately kill the neurons being measured in the process. It

would be of interest to extend the ideas presented in this chapter to measure PRC

data from local field potential data from neural recordings, an advance which could

make control methodologies based on phase reduction techniques more amenable for

experimental testing.

Chapter 5 develops a method for isostable reduction for systems of ODEs which ap-

proach a fixed point. This method of reduction is analogous analogous to phase reduction

for systems which posses a limit cycle orbit. Chapter 6 extends this framework for use in

PDEs. This strategy is particularly useful for control problems where a dynamical sys-

tem’s timing on its approach to a stationary solution is of importance. In these chapters,

we considered the problem of eliminating alternans in ODE and PDE models of cardiac

function and developed control strategies which do so using signiflcantly less energy than

other recently proposed control strategies. Isostable reduction has many other potential

applications and could be used to study waves of spreading depression which have been

associated with aura in migranes [121], [122]. Such reduction strategies could also be

applied to models of traffic flow with the goal of better understanding how congestion

can be reduced.

While phase reduction was originally developed within the context of ODE mod-

els of dynamical systems, recent theoretical work has examined the possibility of phase

reduction in PDEs describing excitable systems [12] which could be useful in the con-

text of problems in cardiology. When compared to ODE models, PDE models of bio-

logical dynamics are more complicated with regard to both the underlying theoretical

considerations as well to the overall computational effort for the associated simulations.

Simulations on graphics processors are a relatively inexpensive way to speed up these

calculations [164] and will be a useful tool as computational complexity of problems

continues to escalate.
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Finally, this dissertation spends much effort on the on the problem of alternans,

but isostable reduction strategies could also be useful in the development of low energy

methods to eliminate the spiral waves which are associated with cardiac arrest [2], [28],

a leading cause of death in industrialized nations. Viewing this problem in terms of

isostables has proven to be effective in solving related control problems [165], [166], and

continued research from this perspective could lead to future insight on new and better

control strategies for low energy defibrillation.
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Phase Models

Consider the ordinary differential equation

ẋ = F (x) + εG(x, t), x ∈ RN , (A.1)

where x ∈ RN is a state vector and G ∈ RN captures the effect from an external

perturbation. We will assume that the system (A.1) has a stable limit cycle γ with basin

of attraction Bγ. In certain instances, it is be useful to analyze (A.1) in reference to its

location along the limit cycle γ. To this end, we define a scalar phase variable θ ∈ [0, 2π)

such that when G(x, t) ≡ 0 and x is on the limit cycle,

θ̇ = ω. (A.2)

With this definition, ω = 2π/T , where T is the unforced period of oscillation of (A.1). We

can extend the notion of phase to Bγ with the concept of isochrons. We define isochrons in

the following way: Let x(0) correspond to a location on γ. Then, the isochron associated
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with x(0) is the set of all initial conditions y(0) such that

lim
t→∞
||x(t)− y(t)|| = 0. (A.3)

By definition, all initial conditions on the same isochron approach the periodic orbit with

the same phase. Here, θ(x) gives the scalar isostable associated with the location x ∈ Bγ.

As a concrete example, we consider a two dimensional reduction of the Hodgkin-

Huxley (HH) equations [68] that reproduces the essential characteristics of the neuron’s

dynamical behavior, [154], c.f. [155]:

V̇j = fV (Vj, nj) + I + u(t),

ṅj = fn(Vj, nj). (A.4)

Here, fV and fn are functions which describe the intrinsic neural dynamics, with all

terms and parameters given in [155], I = 10 µA/cm2 is a baseline current given so that

the neuron is in a periodically spiking regime, and u(t) is an external perturbation.

When we set u(t) ≡ 0, the system approaches the limit cycle shown in grey in Figure

A.1. Black lines show isochrons for this system equally spaced in time, i.e. the time

required to go from one of the displayed isochrons to the next is always the same. Two

trajectories shown as red, dashed lines start on the same isochron and approach the

periodic orbit with the same phase. Snapshots are shown as white dots. Generally, it is

computationally intensive to calculate isochrons within the entire basin of attraction of

the limit cycle (see [126]).

Starting with (A.1), it can be useful to change variables to understand the phase
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Figure A.1: Isochrons for (A.4). Two trajectories with initial conditions that start on
the same isochron approach the periodic orbit (grey line) with the same phase.

evolution of the system. Using the chain rule, we write

dθ(x)

dt
= ∇θ(x) · dx

dt

= ∇θ(x) · (F (x) + εG(x, t))

= ω + ε∇θ(x)G(x, t). (A.5)

Here, ∇ ≡ d/dx. In the last line, we use the fact that by construction dθ
dx
· F (x) = ω

when G(x, t)) ≡ 0. Here, ∇θ(x) is the spatial derivative of the isochron field, also called

that phase response curve (PRC).

If we restrict our attention locations near the orbit γ, we can efficiently calculate the

PRC using an “adjoint method” (c.f. [5], [54]). Evaluating the vector field at xγ(θ), which

we define as the intersection of the trajectory γ and the θ(x) level set (i.e. isochron), we

have

dθ(x)

dt
= ω + ε∇θ(xγ(θ)) ·G(xγ(θ), t), (A.6)
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where we have dropped an error term of order (|εG|2) (c.f. [7]). Suppose that G = 0

for all t > 0 and consider an infinitesimal perturbation ∆x to the trajectory x(t) ∈ γ at

time t = 0. Let xε(t) = xγ(t) + ∆x(t) be the trajectory starting at the perturbed initial

condition. Then

d∆x(t)

dt
= DF (x(t))∆x(t) +O(||∆x||2), (A.7)

where DF is the Jacobian matrix. Furthermore, for the associated isochron shift defined

as ∆θ = θ(xε(t))− θ(x(t)), we have

∆θ = (∇x(t)θ)
T ·∆x(t) +O(||∆x||2), (A.8)

where ∇x(t)θ is the gradient of θ evaluated at x(t). Let 〈·, ·〉 denote the standard Eu-

clidean inner product on Rn. Following the derivation presented in [54], after the initial

perturbation at t = 0, ∆θ is independent of time. Therefore, taking the time derivative

of (A.8) yields, to lowest order in ||∆x||,

〈
d∇x(t)θ

dt
,∆x(t)

〉
= −

〈
∇x(t)θ,

d∆x(t)

dt

〉
,

= −〈∇x(t)θ,DF (x(t))∆x(t)〉,

= −〈DF T (x(t))∇x(t)θ,∆x(t)〉. (A.9)

The matrix DF T (x(t)) is the transpose, or adjoint, of the real-valued matrix DF (x(t)).

Equation (A.9) holds for arbitrary perturbations ∆x(t), which gives

d∇x(t)θ

dt
= −DF T (x(t))∇x(t)θ. (A.10)
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The PRC is the periodic solution of (A.10) subject to the constraint

dθ

dx
· F (x) = ω. (A.11)

Practically, this solution can be obtained numerically by integrating (A.10) backwards

in time with an arbitrary initial condition and periodically renormalizing so that the

solution satisfies (A.11). Using (A.10), we can calculate the phase response curves of the

neural oscillator (A.4).
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Appendix B

The Direct Method for Measuring

Phase Response Curves in Neurons

Consider the dynamical equations of a periodically spiking neuron

V̇ = Iion(V,n) + εu(t)

ṅ = F (V,n) (B.1)

Here, V represents the transmembrane voltage of the neuron, n ∈ Rm denotes a collection

of ancillary variables (e.g. chemical concentrations, gating variables) with dynamics given

by F which determine the ionic current Iion flowing into and out of the cell membrane,

u(t) represents an external voltage perturbation, and 0 < ε � 1. Following the phase

reduction methodology from Appendix A, equation (B.1) can be phase reduced to the

following form

θ̇ = ω + εZ(θ)u(t), (B.2)

where θ ∈ [0, 2π) and ω = 2π/T represent the phase and natural frequency of the

oscillation, respectively, T is the period of oscillation, and Z(θ) represents the neuron’s
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PRC to voltage perturbations. We define θ = 0 to represent the moment the neuron fires

an action potential. If the dynamics (B.1) are known a priori, the phase response curve

can be calculated numerically with the adjoint equation (A.10), a task which has been

rendered nearly trivial with modern computing packages [65], [106], [107].

When the full dynamical equations are not known, a direct method [24], [108], [25]

can be used to determine the PRC. To use the direct method, at a given instant in time,

t = 0 is defined as the time at which the neuron spiked last. A measurement of the PRC

can be obtained by using εu(t) to approximate a δ-function pulse εβpδ(T − τ) where βp is

a positive constant. By comparing the expected time of the next spike Tex ≡ T with the

actual measured time of spiking, Tsp, a measurement of the PRC can be obtained using

Z(θ(τ)) = Z(ωτ) =
2π(T − Tsp)

Tβp
. (B.3)

Equation (B.3) provides a point estimate of the PRC, and this process must be repeated

multiple times over many phases to estimate the full PRC.
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)
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τ

Figure B.1: An illustration of the direct method: a pulsatile perturbation is given at
a time τ . By comparing the expected time of the next spike, Tex, to the measured
spike time, Tsp, a measurement of Z(ωτ) can be obtained using (B.3)

In most practical applications, a nonnegligible amount of noise will be present in

the system. With noise, Tsp can be viewed as a random variable which depends on the
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particular realization of the noise process, and hence, the measurement Z(ωτ) will also

be a random variable. In the case that the noise Gaussian with relatively small intensity,

one can show that (B.3) is an unbiased estimator of the true PRC [93]. For this reason,

in experimental systems many measurements of the PRC are usually obtained and the

PRC can be approximated by fitting a curve to the data.
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Appendix C

Neural Networks and the Isostable

Reduction of Their Associated

Fokker-Planck Equation

Consider a population of neurons represented by a set of noisy limit cycle oscillators

θ̇j = ω + Z(θj)

(
u(t) +

1

N

N∑

i=1

σ(V (θi)− V (θj)) +
√

2Sηj(t)

)
, j = 1, . . . , N. (C.1)

Here, θ ∈ [0, 2π) is the 2π-periodic phase of the neuron, ω = 2π/T represents the neuron’s

baseline frequency and is determined from its natural period T ,
√

2Sηj(t) is i.i.d zero

mean white noise with intensity 2S, u(t) = I(t)/C with I(t) being a common external

current control input and C = 1µF/cm2 the constant neural membrane capacitance,

and V (θ) gives the transmembrane voltage as a function of the phase. We assume S

is small enough that higher order noise terms are negligible [92]. Also, we assume that

the coupling in this network is electrotonic, but this could be generalized to include, for

example, chemical synaptic coupling in the network. The coupling is all-to-all with a
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strength determined by σ. For a large population, it is useful to track the probability

density of neurons with phase θ at a given time, ρ(θ, t). In this case, the coupling in (C.1)

can be written as σ(V −V (θj)), where V =
∫ 2π

0
V (θ)ρ(θ, t)dθ, rather than as a finite sum.

In the limit that noise perturbations are small, through stochastic averaging, [90], we can

approximate (C.1) as

θ̇j = ω + Z(θj)(u(t) + σ(V − V (θj))) +Bηj(t), (C.2)

where B2 = 2S
2π

∫ 2π

0
Z2(θ)dθ. For a population of neurons described by (C.2), and each

receiving an identical input u(t), the probability density evolves according to [70]:

∂ρ(θ, t)

∂t
= − ∂

∂θ
[(ω + Z(θ)(u(t) + σ(V − V (θ)))ρ(θ, t)] +

1

2

∂2

∂θ2
[B2ρ(θ, t)]

= −ωρθ +
B2

2
ρθθ −[Z(θ)ρθ + Z ′(θ)ρ]u(t)︸ ︷︷ ︸

external input

− ∂

∂θ
[Z(θ)σ(V − V (θ))ρ]

︸ ︷︷ ︸
intrinsic coupling

. (C.3)

For the moment, we will analyze (C.3) in the absence of external input or intrinsic cou-

pling in order to perform an isostable reduction on the system, where the stable stationary

solution is ρ(θ) = 1/(2π) = ρ. Without these terms, we have a linear advection-diffusion

equation on a ring:

ρt = Mρ, (C.4)

where M ≡ −ω ∂
∂θ

+ B2

2
∂2

∂θ2
. The eigenfunctions and eigenvalues of (C.4) are

φ2n−1,2n = e±inθ, λ2n−1,2n = −B
2n2

2
∓ ωni. (C.5)
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The infinite time approach to the origin will be governed by the eigenfunctions associated

with eigenvalues with the smallest magnitude real part,

ρ(θ, t)− ρ̄ =
∞∑

n=1

[
s2n−1e

inθe(−B
2n2

2
−ωni)t + s2ne

−inθe(−B
2n2

2
+ωni)t

]
, (C.6)

where the constants {s1, s2, . . . } are determined by the initial distribution ρ(θ, 0). Equa-

tion (C.6) can be rewritten using Euler’s formula and the knowledge that the solution is

strictly real as

ρ(θ, t)− ρ̄ =
∞∑

n=1

[
(an sin(n(θ − ωt)) + bn cos(n(θ − ωt)))e−B

2n2

2
t
]

=
∞∑

n=1

[
An cos(n(θ − ωt)− ϕn)e−

B2n2

2
t
]
, (C.7)

where an and bn ∈ R, tan(ϕn) = an/bn and An =
√
a2
n + b2

n, and the second line of

(C.7) is obtained through trigonometric identities. Equation (C.7) mandates that the

infinite time approach to the stationary solution will be governed by the magnitude of

the first mode of the Fourier expansion of the initial distribution ρ(θ, 0). Here, because

λ1 is complex, the infinite time approach to the stationary solution is governed by two

linearly independent eigenfunctions, sin(θ) and cos(θ) which spiral towards the stationary

solution. A perturbation in the direction − sin(θ − ωt − ϕ1) perturbs in the direction

of the spiral and will not change the isostable on which the function lies. Conversely,

perturbations in the orthogonal direction, cos(θ − ωt − ϕ1), represent the gradient of

the isostable field. Examples of the effect of these types of perturbations are shown in

Panels C-G of Figure 6.1. With this information and using equation (6.3), by arbitrarily
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defining ψ = 0 to correspond to time t∗, we have the initial condition

I(θ, 0) = − 2κ

A∗1B
2π

cos(θ − ϕ∗1), (C.8)

where I(θ, ψ) ≡ ∇ψ is the isostable response curve and A∗1 cos(θ−ϕ∗1) is the first Fourier

mode of the distribution ρ(θ, t∗). The Jacobian is identical to the operator M for the

linear system. Therefore, according to (6.9), the isostable response curve along an un-

perturbed trajectory, γ, will change in time according to

dI
dt

= −M †I = −ωIθ −
B2

2
Iθθ, (C.9)

where M † = ω ∂
∂θ

+ B
2
∂2

∂θ2
is the adjoint of the operator M . Using (C.9) and (C.8) we can

explicitly solve for the iIRC

I(θ, ψ) =
−2κ

A∗1B
2π

cos

(
θ − ϕ∗1 −

ωψ

κ

)
e
B2ψ
2κ . (C.10)

Equation (C.10) is valid provided that an external input is small enough so that it does

not drive the distribution far from γ, the expected trajectory towards the stationary

solution, which in this example is given by equation (C.7). If the input does drive the

system far from γ, the isostable response curve at a given time can be found from the

distribution ρ(θ, t) subject to (C.8).

Using the isostable response curve, we can write an isostable reduction of (C.3) as

ψ̇ = κ+

〈
I(θ, ψ),−[Z(θ)ρθ + Z ′(θ)ρ]u(t)− ∂

∂θ
[Z(θ)σ(V − V (θ))ρ]

〉
. (C.11)
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