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Abstract

Exotic, Topological, and Many Body Localized Quantum Phase Transitions

by

Kevin Jacob Slagle

In this thesis we will study recent examples of exotic, topological, and many body

localized quantum phase transitions. In Chapter 2 we study the quantum phase transition

between the Z2 spin liquid and valence bond solid (VBS) orders on a triangular lattice.

We find a possible nematic Z2 spin liquid intermediate phase and predict a continuous

3d XY∗ transition to the neighboring columnar and resonating-plaquette VBS phases.

In Chapter 3 we demonstrate that an extended Kane-Mele Hubbard model on a bilayer

honeycomb lattice has two novel quantum phase transitions. The first is a quantum phase

transition between the weakly interacting gapless Dirac fermion phase and a strongly

interacting fully gapped and symmetric trivial phase, which cannot be described by

the standard Gross-Neveu model. The second is a quantum critical point between a

quantum spin Hall insulator with spin Sz conservation and the previously mentioned

strongly interacting fully gapped phase. We argue that the first quantum phase transition

is related to the Z16 classification of the topological superconductor 3He-B phase with

interactions, while the second quantum phase transition is a topological phase transition

described by a bosonic O(4) nonlinear sigma model field theory with a Θ-term. In

Chapter 4 we propose that if the highest and lowest energy eigenstates of a Hamiltonian

belong to different SPT phases, then this Hamiltonian can’t be fully many body localized.

In Chapter 5 we study the disordered XYZ spin chain and its marginally many body

localized critical lines, which we find to be characterized by an effective central charge

c′ = ln 2 and continuously varying critical exponents.
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Chapter 1

Introduction

Condensed matter physics involves the study of matter that is sufficiently condensed

(e.g. liquids or solids) such that quantum mechanics plays an important role. The

microscopic degrees of freedom (e.g. electrons) of condensed matter interact with each

other and result in profoundly different emergent physics at macroscopic length scales.

(E.g. Liquid water and solid ice bare little resemblance to their molecular components

H2O.) Remarkably, it turns out that distinct microscopic degrees of freedom can result

in very similar macroscopic physics. (E.g. water (H2O) and ethanol (C2H6O) molecules

can both form liquids, and both copper and silver can be metallic.)

An important problem in theoretical condensed matter is to classify all possible kinds

of emergent macroscopic physics, which are known as phases of matter (e.g. solid or

liquid, metal or insulator). Another important problem is the study of the phase transi-

tions between different phases of matter. It is again remarkable that the phase transitions

also exhibit universal physics. In this thesis, we will study examples of new and exotic

phase transitions where quantum mechanics, topology, and many body localization play

important roles.

1



Introduction Chapter 1

1.1 Spontaneous Symmetry Breaking

1.1.1 Landau Theory

Landau theory describes phases and phase transitions that result from spontaneous

symmetry breaking. [1] In Landau theory, the long range physics of a system with a sym-

metry is described by an effective Lagrangian L written in terms of an order parameter

φ (e.g. average magnetic field) which transforms non-trivially under the symmetry.

For the case of a Z2 symmetry, φ→ −φ and the most relevant terms in the effective

Lagrangian can be written as

L =

∫
x

(∂φ)2 + rφ2 + gφ4 + vφ6︸ ︷︷ ︸
V (φ)

+ · · · (1.1)

where φ(x) is a real valued function. The physics of the above Lagrangian can be under-

stood from the potential V (φ). If V (φ) has its minimum at φ = 0, then r > 0; the Z2

symmetry is not broken; and the system is in the trivial phase. If r < 0, then there are

minima at φ = ±φ0 and the system spontaneously breaks the Z2 symmetry.

If we take g > 0 and v = 0, and consider decreasing r from r > 0 to r < 0, then

there will be a phase transition (at r = 0) from the trivial phase (r > 0) to the ordered

(symmetry breaking) phase (r < 0). When r < 0, the minima of V (φ) will be at φ ∼ ±rβ

with critical exponent β = 1/2. However, this mean field description and calculation of

critical exponents is only accurate when the number of dimensions is greater than or

equal to the upper critical dimension, which is 4 in this case: d ≥ duc = 4. Below the

upper critical dimension, the full renormalization group and Landau-Ginzburg-Wilson

theory must be applied for an accurate description [2, 3]. Since φ (and therefore also

the free energy) changes continuously across the phase transition, the phase transition

is a continuous (2nd order) phase transition. At the critical point (r = 0), the system

exhibits critical behavior in the form of power-law decaying connected correlators and

2
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long range mutual information.

If however we take r > 0 and v > 0, and consider decreasing g from g = +∞ to

g = −∞, then there will be a discontinuous (first order) phase transition from the trivial

phase to the ordered phase. This will occur at some critical g = gc < 0 at which there

are three global minima of V (φ): φ = 0,±φ0. When g > gc, φ = 0 is the global minima,

while φ = ±φ0 is the global minima when g < gc. Thus, φ (and therefore also the free

energy) changes discontinuously across the phase transition, and the phase transition

is discontinuous. This phase transition will not show critical behavior, but can instead

exhibit metastable states and hysteresis effects. (The steam ↔ water ↔ ice transitions

are of this kind.)

1.1.2 Correlation Functions

The spontaneous symmetry breaking is often diagnosed using long range correlation

functions of order parameters. For the Lagrangian described above, the expectation

value C(|x − x′|) = 〈φ(x)φ(x′)〉 can be measured. In the trivial phase, the correlator

decays exponentially with distance C(x) ∼ e−x/a (with a non-universal length scale a),

which shows that the order parameter φ has no long range correlations. In the symmetry

breaking phase, the correlator asymptotes to a constant C(x) ∼ 1. In the critical phase

in the case of a continuous phase transition, the correlator shows long range correlations

with a power-law decay C(|x− x′|) ∼ x−d+2−η for some universal critical exponent η (in

d spacetime dimensions).

1.1.3 Long Range Mutual Information

However, for some systems trying to determine which order parameter to investigate

can be difficult. Additionally, it can also be difficult to prove that a system breaks no

3
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symmetry since checking all order parameters can be very tedious. Ideally, one could

measure a single observable to check if any symmetry is broken. This can be done using

long range mutual information (LRMI) [4].

The mutual information between two non-overlapping subsystems A and B is defined

to be I(A,B) ≡ SE(A) + SE(B) − SE(A ∪ B) where SE(A) ≡ −Tr ρA ln ρA is the

entanglement entropy of the subsystem A, and ρA is the reduced density matrix of a

subsystem A. For a system described by a Hamiltonian, the reduced density matrix can

be calculated from the density matrix ρ by tracing out degrees of freedom not in the

subsystem A: ρA ≡ TrA ρ. An inverse temperature β, the density matrix is ρ = Z−1e−βH

where Z ≡ e−βH . Note that for a system at zero temperature with multiple degenerate

ground states |ψn〉, ρ includes all of the ground states: ρ = N−1
∑N

n=1 |ψn〉 〈ψn|.

Let I(x) be the long range mutual information (LRMI) between two subsystems of

constant shape and size separated by a distance x. Then in a trivial phase the LRMI

decays exponentially I(x) ∼ e−x/a (for some non-universal length scale a). Furthermore,

I(x) ∼ e−x/a implies that there is no spontaneous symmetry breaking of any kind. In

the symmetry breaking phase, the LRMI must asymptote to a constant I(x) ∼ 1 since

mutual information can be used to compute a an upper bound for connected correlation

functions. In the critical phase in the case of a continuous phase transition, the LRMI

decays according to a power law I(x) ∼ x−d+2−η′ which we later exemplify in Fig. 5.7.

1.2 Topological Order and Deconfined Criticality

In the previous section, we reviewed how Landau theory can describe spontaneous

symmetry breaking phases and the phase transitions between such phases. However,

not all phases can be fully understood in terms of spontaneous symmetry breaking.

Furthermore, it is also possible for a phase transition between symmetry breaking phases

4
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to fall outside of the Landau-Ginzburg-Wilson (LGW) paradigm.

1.2.1 U(1) Gauge Theory

An example of a phase beyond spontaneous symmetry breaking is a deconfined or

topological phase. The simplest example of such a phase is a U(1) gauge theory

L =

∫
x

g−1F 2
µν where Fµν ≡ ∂µAν − ∂νAµ (1.2)

where Aµ is a real valued function (or technically a connection form). (This field theory

also describes electromagnetism and U(1) spin liquids [5].) This phase has long range

power-law correlations and therefore also power-law long range mutual information. The

phase also has a certain kind of topological order [6] which can also be observed through

long range mutual information [4]. This theory has a local U(1) symmetry; however the

phase (with interactions) is stable to arbitrary perturbations, even those that break the

local U(1) symmetry [6]. If the gauge field A is compact (so that ei
∮
A is observable while∮

A is not), then monopole configurations of A are allowed (e.g. A = 1
2

cos θdφ) and the

above Lagrangian also exhibits a trivial confined phase when g is large. The deconfined

(small g) to confined (large g) phase transition is an example of a phase transition beyond

LGW.

1.2.2 Z2 Gauge Theory

Another phase beyond the Landau paradigm is the Z2 gauge theory, which describes

Z2 spin liquids. This phase can be described using the following lattice Hamiltonian:

H =
∑
p=�

∏
`∈p

σz` +
∑
i=+

∏
`∈i

σx` (1.3)

where the Pauli matrices σ live on the links of a square lattice. The first term is a sum

over plaquettes p of products of σz operators around the edges of p; the second term is a

5
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sum over sites i of products of σx operators on the links neighboring the site i. This model

has Z2 topological order and has very important applications to quantum computation

in the form of the surface code quantum error correction scheme [7]. The field theory for

this model can be obtained from Eq. 1.2 by condensing matter with charge 2.

Because this model has no explicit local Z2 gauge symmetry, it is very difficult to

detect the topological order using correlation functions when interactions are present.

This is because the naive Wilson loop composed of σz or σx operators obeys an area law

in both the confined and topological phase. If there is an explicit local gauge symmetry

can one easily write down a Wilson loop operator that decays according to a perimeter

law in the deconfined phase. However, without an explicit local gauge symmetry, one

would have to determine an “ideal” Wilson loop that corresponds to the emergent local

symmetry, which is difficult.

Long range mutual information (LRMI) is again a useful alternative to correlations

functions. To detect topological order, one can consider the LRMI I(x) between two

noncontractible subsystems (of constant size and shape) separated by a distance x. In

the trivial phase the LRMI decays exponentially while in the deconfined phase the LRMI

asymptotes to a constant. This behavior can be understood for the case when the two

subsystems are noncontractible loops. The perimeter of these loops is constant while

the area enclosed by them is proportional to their separation x (since the loops are of

constant size and shape). Now recall that the LRMI is an upper bound for all connected

correlation functions, including the correlation function of an “ideal” Wilson loop opera-

tor (discussed in previous paragraph) along the two subregions. This “ideal” WIlson loop

decays according to a perimeter (area) law in the deconfined (confined) phase. Therefore

the LRMI satisfies the “area” and “perimeter” laws which correspond to exponential and

power-law decaying LRMI.

6



Introduction Chapter 1

1.2.3 Critical Phenomena

A phase transition can be beyond LGW even if the two neighboring phases are sym-

metry breaking phases. This is the case in deconfined criticality [8, 9], for which the

phase transition between a (O(3) symmetry breaking) Néel antiferromagnet to a (Z4

square lattice rotation symmetry breaking) valence bold solid (VBS) was originally stud-

ied. Since neither broken symmetry is a subgroup of the other, LGW predicts that this

phase transition must be first order (assuming no fine tuning or intermediate phase tran-

sitions). However, numerical evidence shows that the transition is continuous [10, 11].

The physics of the phase transitions between the Néel antiferromagnet, VBS, Z2 spin liq-

uid, and a spiral order can be understood using a mutual Chern-Simons theory [12, 13].

In Chapter 2 we study in detail the quantum phase transition between the Z2 spin liquid

and valence bond solid on a triangular lattice. We find a possible nematic Z2 spin liq-

uid intermediate phase 1 and predict a continuous 3d XY∗ transition to the neighboring

columnar and resonating-plaquette VBS phases.

1.3 Symmetry Protected Topological Order

A new recently discovered class of phases is the symmetry protected topological (SPT)

order [15], which generalize topological insulators and topological superconductors. SPT

phases are trivial in the absence of symmetry. However, when protected by a symmetry,

SPT phases are characterized by a short range entangled bulk and a boundary that

is anomalous (when the symmetry in imposed) [16]. That is, a d dimensional SPT

with symmetry G has a d − 1 dimensional boundary which can not exist on a d − 1

dimensional lattice with symmetry G. A number of methods have been used to classify

SPT phases, including group cohomology [17, 18], Chern-Simons theory [19], nonlinear

1See [14] for possible recent DMRG numerical evidence for a nematic spin liquid.

7
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sigma models [20], cobordisms [21], and anomalous symmetry action on the edge [16].

The classification of SPTs using nonlinear sigma models [20] is particularly convenient

when phase transitions are of interest since it makes use of a well-understood field theory.

The Lagrangians considered are of the form

S[~n] = g−1

∫
x

(∂µ~n)2 + Stop[~n] + · · · (1.4)

Stop[~n] =
iΘ

Ωd

∫
n∗ω (1.5)

=


iΘ
Ω2

∫
τ,x
εabcn

a∂τn
b∂xn

c d = 1 + 1

iΘ
Ω3

∫
τ,x,y

εabcdn
a∂τn

b∂xn
c∂yn

d d = 2 + 1

(1.6)

where ~n(x) is a d + 1 component field in d spacetime dimensions. (∂µ~n)2 restricts ~n to

smooth configurations and the topological Θ-term Stop[~n] ∈ iΘZ is an integer multiple

of iΘ and depends only on the topology of ~n. More precisely, 1
iΘ
Stop[~n] ∈ Z counts the

number of times ~n wraps around the d-sphere. This can be calculated via the pullback

(n∗) of the volume form (ω) of the d-sphere by the field (n) (Eq. 1.5), and expanded

using Cartesian coordinates as in (1.6). Ωd =
∫
ω is the volume of a d-sphere. The “· · · ”

in Eq. 1.4 denote extra terms that can be added to reduce the onsite symmetry from

O(d+ 1) to a subgroup of O(d+ 1).

When g is small and the number of spacetime dimensions is d ≥ 3, there will be

spontaneous symmetry breaking and the topological term will not play a role [22]. If

there is no symmetry breaking (large g) and Θ = 0, then the system is in the trivial

phase. If Θ = 2π (and g is large), then the topological term will be an integer multiple

of 2πi so that eStop[~n] = 1, which makes the role of the topological term subtle. If no

symmetry is enforced, then Θ = 2π is in the same phase as Θ = π. However, with

certain symmetries and spacetime dimensions d, Θ = 2π can be in a nontrivial symmetry

protected topological phase. When Θ = π (and g is large), then the system can be in a

8
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critical phase.

In Chapter 3 we use determinant quantum Monte Carlo simulations to study an

extended Kane-Mele Hubbard model on a bilayer honeycomb lattice. This model hosts

a quantum spin hall (QSH) SPT phase. We show that the phase transition between

the QSH to the trivial phase is naturally described by a nonlinear sigma model with a

topological Θ-term (Eq. 1.4). We also show that this model hosts a new exotic quantum

phase transition between a weakly interacting gapless Dirac fermion phase and a strongly

interacting fully gapped and symmetric trivial phase. This phase transition can not be

described using LGW theory nor the standard Gross-Neveu model.

1.4 Many Body Localization

It has recently been discovered that in the presence of strong disorder an interacting

system that isn’t coupled to a heat bath can fail to thermalize [23]. That is, such a

quantum system will not reach thermal equilibrium, and is therefore said to be many

body localized (MBL).

More precisely, an MBL system does not satisfy the eigenstate thermalization hypoth-

esis (ETH) [24], which attempts to explain and make precise the notion of thermalization.

In a nutshell, a system is thermal and satisfies ETH if for any initial state |ψ〉, all local

observables approach their thermal expectation values

ρA(t) ' ρA(β) (1.7)

where ρA(t) ≡ Tr A |ψ(t)〉 〈ψ(t)|

ρA(β) ≡ Tr A ρ(β)

ρ(β) ≡ e−βH

Tr e−βH

〈ψ|H|ψ〉 = TrHρ(β) (1.8)

9
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after a large time t and for large system sizes. ρA(t) is the reduced density matrix of

the time evolved state |ψ(t)〉 over a finite subsystem A. ρA(β) is the reduced thermal

density matrix over the same subsystem A evaluated at the inverse temperature β which

corresponds to the thermal energy of |ψ〉 (Eq. 1.8).

A Hamiltonian is said to be fully many body localized (MBL) if all eigenstates in

the many-body spectrum are localized [25] and therefore violate ETH (Eq. 1.7). It is

believed that any fully MBL Hamiltonian H can be diagonalized by some finite local

unitary transformation U :

Heff = UHU † (1.9)

=
∑
i

h
(1)
i τ zi +

∑
ij

h
(2)
ij τ

z
i τ

z
j +

∑
ijk

h
(3)
ijkτ

z
i τ

z
j τ

z
k + · · ·

where the τ zi are local integrals of motion (LIOM). The fact that U is a finite local

unitary transformation means that U can be written as a finite time evolution of a time

dependent local Hamiltonian with a bounded spectrum. This implies that the LIOM

Uτ zi U
† must be local operators (with exponentially decaying tails). This implies that

the eigenstates of an MBL Hamiltonian display an area law entanglement, as opposed to

the volume law seen in excited states of thermal systems. Furthermore, the h
(n)
ijk... decay

exponentially with n and distance max(|i − j|, |i − k|, |j − k|, . . . ). This implies that in

an MBL system, the time evolution of a direct product state displays an entanglement

entropy which increases only logarithmically with time [26, 27, 28], instead of linearly

with time as in thermal systems. This implies that an MBL system can’t efficiently

spread entanglement, and thus can’t act as its own heat bath.

In Chapter 4 we demonstrate a possible obstruction to making a system fully MBL.

The obstruction occurs when the lowest and highest energy states of a Hamiltonian

belong to different SPT phases. In this case, we find that there is a phase transition in

the energy spectrum, at which the energy eigenstates are delocalized.

10
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In Chapter 5 we study in detail the disordered XYZ spin chain and its marginally

MBL critical phase, which is a kind of non-thermal critical phase that can occur at a phase

transition between two MBL phases. A marginal MBL phase doesn’t obey Eq. 1.9 with

the same restrictions for the unitary transformation U and coefficients h
(n)
ijk.... Marginal

MBL phases instead show long range correlations, as demonstrated in Chapter 5. In

the XYZ spin chain, we find critical lines which are characterized by an effective central

charge c′ = ln 2 and continuously varying critical exponents.

11



Chapter 2

Quantum Phase Transitions between

the Z2 Spin Liquid and Valence

Bond Solids

In this chapter we study the quantum phase transition between the Z2 spin liquid and

valence bond solid (VBS) orders on a triangular lattice. With a fully isotropic triangular

lattice, the transition from a columnar or resonating-plaquette VBS order can be either

first order or there could be two transitions with an intermediate phase. If the transition

splits into two, then the Z2 spin liquid will first experience a first order q = 3 Potts

transition to a new nematic Z2 spin liquid that breaks the 2π/3 lattice rotation symmetry

(but retain translation symmetry unlike the VBS states). The second transition will

then take this new nematic Z2 spin liquid to a columnar or resonating-plaquette VBS

state through a second order 3d XY∗ transition. On a distorted triangular lattice, the

degeneracy between some of the different columnar VBS orders is lifted, and the phase

transition can reduce to a single 3d XY∗ transition.

12
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2.1 Introduction

Tremendous progress has been made in the last two years in searching for spin liquid

states in quantum frustrated spin models by various numerical methods [29, 30, 31, 32,

33]. Using the topological entanglement entropy [34, 35], the Z2 topological liquid phase

was identified in the phase diagram of frustrated spin and quantum boson models on

the square lattice [30] and Kagome lattice [29, 31]. Although the Z2 liquid phase itself

does not break any symmetry, it was confirmed numerically that a Z2 spin liquid phase

can be very close in energy to a valence bond solid (VBS) state which breaks translation

symmetry [29]. Thus it is conceivable that under weak perturbations the Z2 spin liquid

can be driven into a VBS phase. This liquid-VBS quantum phase transition is what we

will discuss in the current chapter. In previous works, this liquid-VBS transition was

thoroughly studied on the square lattice [36, 37], honeycomb lattice [37], and Kagome

lattice [38]. The universality class of the liquid-VBS transition in general depends on the

nature of the VBS pattern. On the square and honeycomb lattice, the quantum phase

transitions between a Z2 liquid and simple VBS phases such as the columnar, resonating-

plaquette, and staggered VBS phases have all been well-understood [37, 39]. However,

on the triangular lattice, starting from a Z2 liquid phase, previous studies only obtained

the transition into a
√

12×
√

12 VBS pattern with a large unit cell [40, 41, 42, 43, 44] 1,

while a direct transition between the Z2 liquid and the simple columnar or resonating-

plaquette VBS patterns was never understood in previous theoretical analysis. This is

precisely the gap that we will fill in this paper.

We choose to study spin systems on the triangular lattice because the spin-1/2 or-

ganic materials with a triangular lattice are the best experimental candidates for a spin

liquid [45, 46, 47, 48, 49, 50, 51, 52, 53, 54], and some of the organic materials in the same

1 This VBS pattern has 12 sites in one unit cell on the triangular lattice [43]. However, in terms of
the dual quantum Ising model on the honeycomb lattice, this pattern has 48 sites per unit cell [41].
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family indeed have a columnar VBS order [55]. Our analysis predicts that on an isotropic

triangular lattice, the Z2 liquid to the 12-fold degenerate columnar/plaquette VBS order

can be either first order or there could be two transitions with an intermediate phase

(Fig. 2.5). The possibility of having either a single first order transition or two continu-

ous transitions with an intermediate phase has been observed previously in Fe-pnictide

materials [56, 57, 58, 59, 60]. In the case of two transitions, the Z2 liquid first undergoes

a first order q = 3 Potts transition to a new nematic Z2 spin liquid which breaks the

120◦ lattice rotation symmetry. A second transition will then take this nematic Z2 spin

liquid to a columnar or plaquette VBS state through a 3d XY∗ transition. On a distorted

triangular lattice, the VBS pattern becomes either 2-fold or 4-fold (depending on the

details of the distortion), and the liquid-VBS transition can reduce to one single 3d XY∗

transition. All of these 3d XY∗ transitions should have a very large anomalous dimension

of the VBS order parameter, which can be tested by future numerical simulations.

2.2 Model

Motivated by the recent discovery of the Z2 spin liquid on the square and Kagome

lattices, we expect that the same Z2 spin liquid can be realized with a certain spin-1/2

Hamiltonian on the triangular lattice as well. In order to analyze a spin liquid, it is

standard to introduce the slave particles: ~Si = 1
2
f †i,α~σαβfi,β where fi,α can be either a

bosonic or fermionic spin-1/2 excitation, but either choice is subject to a local constraint,∑
α f
†
i,αfi,α = ni = 1, in order to match the slave particle Hilbert space with the spin

Hilbert space. This local constraint introduces a continuous gauge symmetry (U(1) for

bosonic spinons and SU(2) for fermionic spinons), which at low energy can be broken

down to a Z2 gauge symmetry by the mean field state of fi,α. The low energy physics

of this state is described by a pure Z2 gauge field. In this paper we assume that the Z2
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spin liquid itself respects all symmetries of the lattice, which is possible on the triangular

lattice [61].

In both the Z2 spin liquid and VBS phases, the spin excitation fi,α is fully gapped.

Therefore we can “integrate out” the spin excitations and focus on the spin singlet channel

of the system. The spin singlet channel of the system should be described by the standard

Z2 gauge theory on the triangular lattice:

H =
∑
4,5

−K
∏

<ij>∈4,5

σzij −
∑
<ij>

hσxij + · · · (2.1)

where σz and σx are ordinary Pauli matrices and < ij > denotes the link on the triangular

lattice between sites i and j. σx = −1 roughly corresponds to a valence bond while σx =

+1 indicates the absence of a bond. σz is therefore the operator that creates/annihilates

a bond. The first term in Eq. 2.1 is a ring product of σz on every triangle plaquette

on the lattice; we will keep K > 0 so that the Hamiltonian (Eq. 2.1) favors the ring

product to be +1 on every plaquette. The ellipsis in Eq. 2.1 include all the terms that

are allowed by the Z2 gauge symmetry and lattice symmetry. In particular, we will

add terms that are a product of σx operators along a string of neighboring links. The

Hamiltonian Eq. 2.1 is invariant under the local Z2 gauge transformation: σzij → ηiσ
z
ijηj

where ηi = ±1. The Hilbert space of this system is also subject to a local constraint,

which is analogous to the familiar Gauss law constraint of an ordinary U(1) gauge field:

~∇ · ~E =
∑

α f
†
i,αfi,α = ni = 1. Once the U(1) gauge symmetry is broken down to Z2, the

gauge constraint reduces to

∏
j=1···6 around i

σxij = (−1)ni = −1 (2.2)

where j = 1 · · · 6 are the six nearest neighbors of site i on the triangular lattice. Physi-

cally, this constraint forces each site to only share an odd number of bonds. In addition,

h > 0 will favor only a single bond per site over three or five bonds. Together, the gauge
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Figure 2.1: The dual honeycomb lattice on which Eq. 2.4 is defined. η = 1 on
the solid black links, while η = −1 on the dashed green-black links. Every unit cell
(gray diamond) has eight sites 1 · · · 8. In order to obtain the columnar VBS order,
we consider the quantum Ising model defined on this honeycomb lattice with Ising
couplings between sites up to 7th nearest-neighbor. (One pair of 7th neighbor sites is
shown in red.)

constraint and h > 0 therefore roughly implement a “hard dimer constraint” (one site

shares exactly one bond).

The VBS phase is a confined phase of the slave particle fα; and in 2+1d Z2 gauge

theory, the confinement is driven by the condensation of vison excitations. A vison is a

plaquette where
∏
σz = −1. A vison is not a local excitation of σz and σx. Therefore,

in order to describe its dynamics and hence its condensation using a Landau-Ginzburg-

Wilson (LGW) framework, we need to go to the dual picture where the vison becomes

a local excitation. In the dual language, quantities are defined on the triangular lattice
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plaquettes, which form a honeycomb lattice (Fig. 2.1). The duality mapping is

τxq=4 =
∏

<ij> around 4

σzij

σxij = ηpqτ
z
p τ

z
q where p, q share < ij > (2.3)

The dual Hamiltonian is a quantum Ising model on the honeycomb lattice:

H =
∑
<p,q>

−Kτxp − hηpqτ zp τ zq + · · · (2.4)

Here p and q denote the sites of the dual honeycomb lattice (plaquettes of the triangular

lattice). In this dual representation, τa are operators while ηpq = ±1 are pure numbers.

τxp is the vison density (τxp = −1 means there is one vison at the dual site p), and τ zp

creates/annihilates a vison on the dual site p. The ellipsis in Eq. 2.4 can contain arbitrary

further neighbor Ising couplings allowed by the PSG (described below).

Because of the constraint Eq. 2.2, ηpq must also satisfy a constraint:
∏

pq∈hexagon ηpq =

−1, which makes the dual quantum Ising model a fully frustrated one. Here we choose

ηpq = −1 on the dotted links in Fig. 2.1, while ηpq = +1 otherwise. The choice of

ηpq we have made on the dual lattice is just a “gauge” choice, which apparently has to

break the lattice symmetry; hence each unit cell on the dual lattice contains eight sites

(1 · · · 8). Due to the reduced lattice symmetry in the dual theory, the correct lattice

symmetry transformation for the dual vison τ z must be combined with a nontrivial Z2

gauge transformation of ηpq to recover the full symmetry of the original triangular lattice;

this combined transformation is called the projective symmetry group (PSG) [62]. The

dual quantum Ising model has to be invariant under the PSG.

The liquid-VBS phase transition corresponds to the Ising disorder-order phase tran-

sition in the dual Hamiltonian (Eq. 2.4), which is driven by the condensation of τ zp .
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Because Eq. 2.4 is a fully frustrated quantum Ising model, τ z can condense at nonzero

momenta in the dual Brillouin zone (BZ). If Eq. 2.4 only has nearest neighbor hopping

(which is the case studied in [41]), then there are four different minimum modes in the

BZ (Fig. 2.2a), and the vison condensate corresponds to a
√

12×
√

12 VBS pattern with

a large unit cell [40, 41, 43]. The PSG guarantees that this liquid-VBS transition belongs

to a 3d O(4)∗ universality class.

2.3 Landau-Ginzburg Analysis

Our goal is to study the quantum phase transition between the Z2 liquid and the

simple columnar/plaquette VBS order on the triangular lattice (Fig. 2.3). With nearest

neighbor Ising couplings only, the dual Hamiltonian (Eq. 2.4) will not produce the colum-

nar/plaquette VBS order. We have to turn on further neighbor couplings in Eq. 2.4 that

are allowed by the PSG. We have thoroughly explored the possible phases of Eq. 2.4. A

negative 2nd neighbor Ising coupling on the dual lattice will destabilize the original order

in Fig. 2.2a at the cost of a ring degeneracy. This ring degeneracy is not broken until

seventh neighbor couplings are added. With the seventh neighbor couplings, the minima

of Eq. 2.4 are then stabilized by six different minimum modes (Fig. 2.2b) with momenta:

~Q1 = ~Q2 = (
π

2
√

3
, −π

6
)

~Q3 = ~Q4 = (
π

2
√

3
, +

π

6
)

~Q5 = ~Q6 = (0,
π

3
) (2.5)

Each of these momenta correspond to two orthogonal modes; there are therefore six

minimum modes. To analyze the low energy physics, we expand the Ising operator τ z
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about these six minimum modes:

τ zr,n =
6∑

a=1

ψa(r)va,ne
i ~Qa·~r (2.6)

r takes on values at the center of the unit cell diamonds (Fig. 2.1) and n = 1 · · · 8 denotes

the eight sites in each unit cell. ψa with a = 1 · · · 6 are the real fields corresponding to

the six low energy modes and will play the role of our order parameters. The eight

component vectors va,n (given in Appendix 2.A) are the wave functions of τ zn at each

momentum ~Qa. The action of the PSG on τ za,n will induce the action of the PSG on

ψa(r). ψa will therefore carry a six dimensional representation of the PSG which will

enable us to calculate the lowest order symmetry allowed Lagrangian.

The PSG is generated by the following transformations (assume the lattice constant

of the original triangular lattice is
√

3):

T1 : x→ x+
√

3, ψa → T1,abψb

T2 : x→ x+
√

3
2
, y → y + 3

2
, ψa → T2,abψb

Px : y → −y, ψa → Pabψb

Rπ/3 : rotation by π/3 ψa → Rabψb

TR : t→ −t, ψa → ψa (2.7)

Rπ/3 is a rotation by π/3 around a hexagon center. The PSG representation matrices

(T1,ab, T2,ab, Pab, Rab) are given in Appendix 2.A. The low energy physics of the dual

Hamiltonian (Eq. 2.4) can be completely described by ψa and its effective Lagrangian,
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(a)

(b)

Figure 2.2: The contour plot of the lowest band in the band structure of the dual
quantum Ising model (Eq. 2.4). Darker regions correspond to lower energy. (a), the
band structure with only nearest neighbor Ising coupling (the case studied in [41])
which has four degenerate minimum modes. (b), the band structure with further
neighbor Ising couplings (up to 7th neighbor) which has six degenerate minimum
modes which are stable against perturbations and weak symmetry reduction. In both
(a) and (b), each colored dot indicates a degenerate minima with two different modes
(i.e. two orthogonal eigenvectors).
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which must be invariant under the PSG. The PSG allowed Lagrangian reads

L =
3∑

a=1

(
|∂µΨa|2 + r |Ψa|2

)
+ g

(
3∑

a=1

|Ψa|2
)2

+ u

3∑
a=1

|Ψa|4 + v

3∑
a=1

|Ψa|2|Ψa+1|2 cos(2θa) sin(2θa+1)

+ v8

3∑
a=1

|Ψa|8 cos(8θa) +O(Ψ6) (2.8)

where Ψa = |Ψa|eiθa . The complex fields Ψa are defined as Ψ1 = ψ1 + iψ2, Ψ2 = ψ3 + iψ4,

Ψ3 = ψ5 + iψ6 with Ψa+3 = Ψa. The first three terms in L (Eq. 2.8) are invariant under

an enlarged O(6) rotation of ψa, while the u, v, and v8 terms break this O(6) symmetry

down to a discrete symmetry. There are other 6th and 8th order terms that are allowed

by the PSG, however they are unimportant to both the critical points and ordered phases

considered in this paper. We always assume that g is the dominant 4th order term in L

(Eq. 2.8). Under this assumption, there is a competition between u and v, and in the

ordered phase (r < 0) these coefficients will determine the VBS pattern (see Fig. 2.4 for

a phase diagram).

For example, if u < −|v|/2, then only one of the three 〈Ψa〉 will be nonzero. The v

term is therefore irrelevant in this case and the sign of the 8th order v8 term is necessary to

fully determine 〈Ψa〉 in the ordered phase. The negative and positive v8 correspond to the

columnar and plaquette VBS orders on the triangular lattice respectively, both of which

are 12 fold degenerate. For example, Ψ3 = eiπn/4 and Ψ1 = Ψ2 = 0 for n = 0, 1, 2, 3 are

four examples of columnar VBS orders. These examples correspond to four VBS patterns

with bonds (links with 〈σx〉 ∼ −1) aligning in the horizontal direction (Fig. 2.3d,f).

Eight more examples are given by taking Ψ1 or Ψ2 to be nonzero instead of Ψ3. Note
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Figure 2.3: Plot of 〈σx〉 on the triangular lattice based on the ground state of our
Lagrangian L (Eq. 2.8) with u < −|v|/2. Green bonds indicate valence bonds with
〈σx〉 < 0 while orange bonds indicate links with 〈σx〉 > 0. (a, c, d, f) show columnar
VBS order while (b, e) show resonating-plaquette VBS order. In (b) and (e), the
resonating-plaquettes are the diamonds highlighted in green.

that although taking n = 4, 5, 6, 7 in Ψ3 = eiπn/4 would give different condensations of

Ψ, they are actually physically equivalent to n = 0, 1, 2, 3. This is because although τ z

and Ψa differ, σx is equivalent in these two cases since the vison fields τ z and Ψa are only

defined up to an arbitrary Z2 gauge transformation Ψa → −Ψa.

2.4 RG Analysis

Now let us study the nature of the quantum phase transition of L (Eq. 2.8). All of the

6th and 8th order terms will clearly be irrelevant at any critical points and can therefore

be safely ignored. A standard ε-expansion in d = 4−ε dimensions of the remaining terms
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Figure 2.4: Phase diagram of our Lagrangian L (Eq. 2.8) in the ordered phase where
r < 0. Green bonds indicate valence bonds with 〈σx〉 < 0 while orange bonds indicate
links with 〈σx〉 > 0.
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gives us the following β-functions:

−βr = 2r − 4

3
rg − 2

3
ru

−βg = gε− 7

3
g2 − 4

3
gu− 1

6
v2

−βu = uε− 2gu− 5

3
u2 +

1

12
v2

−βv = vε− 2gv − 2

3
uv (2.9)

To simplify the equations, the above β-functions and the table of fixed points below are

calculated using rescaled coefficients as in the following rescaled (and schematic) version

of L (Eq. 2.8):

LRG =
1

2

(
|∂Ψa|2 + r |Ψa|2

)

+
Ω−1
d

4!

(
g |Ψ2

a|2 + u |Ψa|4 + v [· · · ]
)

(2.10)

where Ωd = dπd/2

Γ( d2+1)
(2π)−d is the surface area of a d dimensional ball, divided by (2π)d.

The above β-functions have four fixed points which are given in the following table

fixed points r g u v

gaussian 0 0 0 0

Ising −1
5
ε 0 3

5
ε 0

Wilson-Fisher −2
7
ε 3

7
ε 0 0

cubic − 3
11
ε 3

11
ε 3

11
ε 0

However, expansion of the β−functions around these fixed points shows that v is relevant

at each of these fixed points. This implies that none of the ε-expansion fixed points can

harbor a second order phase transition without fine tuning. Thus, there is likely a
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run-away flow which suggests that the transitions described by the dual Lagrangian L

(Eq. 2.8) are first order. 2 In the next section, we will describe why this does not appear

to be the complete story for the columnar or plaquette VBS phase transitions.

2.5 Intermediate Phase

So far, we have assumed that there is only one phase transition when a VBS state

is driven into a Z2 liquid state. However, it is possible that there are two transitions

with an intermediate phase in between that breaks less symmetry than the VBS phase.

Without v and v8, L (Eq. 2.8) has an emergent U(1)3 × S3 symmetry in these phases.

The three copies of U(1) rotate the phases of the three Ψa while S3 will permute the three

Ψa. With a run-away flow under RG, the S3 and U(1) symmetry can break separately.

Since we are mainly interested in the case with only one of the Ψa condenses (the case

with negative u) which corresponds to the columnar or plaquette VBS order, there could

be an intermediate nematic phase which only breaks the S3 symmetry. We introduce an

additional complex nematic order parameter σ to describe the S3 symmetry breaking (in

addition to the three Ψa which will describe U(1)3 symmetry breaking). Thus, the full

2In principle there is a chance that higher order ε−expansion can lead to a different result, but we
will proceed under the assumption that the first order result is qualitatively correct.
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Landau-Ginzburg dual Lagrangian is

L̃ =
3∑

a=1

(
|∂µΨa|2 + r |Ψa|2

)
+ g

(
3∑

a=1

|Ψa|2
)2

+ u

3∑
a=1

|Ψa|4 + v [· · · ] + v8 [· · · ]

+ |∂µσ|2 + r̃ |σ|2 + g̃ |σ|4 − ũ3(σ3 + c.c.)

− ũ

(
σ∗

3∑
a=1

e−2πia/3|Ψa|2 + c.c.

)
+ · · · (2.11)

with ũ3, ũ > 0 so that in the ordered phase only one of Ψa condenses.

We will now do a mean field analysis of L̃ (Eq. 2.11), tentatively neglecting the v and

v8 terms. L̃ can then be minimized by Ψ1 = Ψ2 = 0 with Ψ3 = ψ ≥ 0 and σ ≥ 0 real

valued. With this substitution, L̃ simplifies to

L̃MF = (r − 2ũ σ)ψ2 + r̃ σ2 + (g + u)ψ4 − 2ũ3 σ
3 + g̃ σ4 (2.12)

The mean field phase diagram of L̃MF (Eq. 2.12) is shown in Fig. 2.5.

The nature of the phase transition as r + r̃ is varied roughly depends on the sign of

r − r̃. If r ≈ r̃, then r + r̃ will drive the system through a first order transition from

a Z2 spin liquid to a columnar or plaquette VBS. However, if r � r̃ then mean field

predicts a second order transition, while the RG analysis in the previous section implies

that the v term in Eq. 2.8 will drive this transition first order. On the other hand, if

r � r̃ then σ will want to order before Ψa which will give rise to an intermediate phase.

Starting from the disordered phase (Z2 spin liquid), as r + r̃ decreases there will be a

phase transition to an intermediate ordered phase with 〈σ〉 ∼
〈∑3

a=1 e
−2πia/3|Ψa|2

〉
6= 0.
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Figure 2.5: Phase diagram of L̃ (Eq. 2.11) and L̃MF (Eq. 2.12) when u < 0. Solid
lines and dotted lines stand for second and first order transitions respectively. The
nature of the phase transition as r+ r̃ is varied roughly depends on the sign of r− r̃.
For example, if r � r̃, then starting in the Z2 spin liquid phase, as r + r̃ decreases
there will be a first order transition to an intermediate phase, and then a second order
3d XY∗ transition to a VBS phase.

This phase transition will spontaneously break the S3 symmetry but keep the U(1)3

symmetry, and the ũ3 term in Eq. 2.12 will drive the transition to a first order q = 3

Potts transition. Physically, this intermediate phase will be a nematic Z2 spin liquid

that breaks the 2π/3 lattice rotation symmetry. As r + r̃ is decreased further, there will

be another phase transition which will break the remaining U(1) symmetry. This phase

transition is described by the following theory:

L3 = |∂µΨ3|2 + r |Ψ3|2 + g |Ψ3|4 + g6 |Ψ3|6

+ v8 |Ψ3|8 cos(8θ3) +O(Ψ8) (2.13)

If we view Ψ3 as an order parameter, this transition is in the 3d XY universality class

because v8 is strongly irrelevant.

We have yet to discuss the effects of the topological nature of the Z2 liquid on any
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second order phase transitions to a VBS phase. These effects can be understood by noting

that any physical order parameter must be bilinear of ψa. This is required because if

ψa → −ψa then τz → −τz (Eq. 2.6) but σx and σz will remain invariant. Thus there

is a global Z2 gauge redundancy in the definition of ψa and so only quantities that are

quadratic in ψa will be gauge invariant. For example, the columnar and plaquette VBS

order parameters are Va ∼ Ψ2
a. Being quadratic in ψ, this order parameter will have an

enormous anomalous dimension η where

〈Va(x) Va(x
′)〉 ∼ 1

|x− x′|1+η
(2.14)

Note that η must be greater than 1 (η = 1 in a free field theory with a bilinear order

parameter), which is much larger than any ordinary Wilson-Fisher fixed point. Therefore,

a 3d XY transition in the dual theory is referred to as a 3d XY∗ transition in the original

theory in order to denote the difference. Thus, the above 3d XY∗ transition should

have the same dynamical exponent z = 1 and critical exponent ν as an ordinary 3d XY

transition, but with a much larger anomalous dimension η ∼ 1.49 [33] for the VBS order

parameter.

2.6 Anisotropic Triangle Lattices

All of the previous discussions were under the assumption that the triangular lattice

is fully isotropic. In real materials, a triangular lattice is usually distorted. For example,

in the triangular lattice spin-1/2 material Cs2CuCl4 [63, 64], the Heisenberg coupling

is much stronger along one of the three directions. Now let us break the π/3 rotation

symmetry but keep the translation (T1,T2), reflection y → −y (Px), and inversion ~r → −~r

(Rπ/3
3) symmetries. This is precisely the symmetry of the material Cs2CuCl4. The

locations of the minima in the BZ are stable against this symmetry reduction. However,
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although Ψ1 and Ψ2 are still degenerate, they are no longer degenerate with Ψ3; namely

the 12 fold degeneracy between different columnar VBS orders will be lifted.

If Ψ3 is the lowest energy mode (i.e. the spin coupling along the horizontal links on

the triangular lattice is stronger than the other two directions), then the PSG allowed

Lagrangian is precisely Eq. 2.13. Again, depending on the sign of v8, the ground state

of the VBS phase (the phase with r < 0) is either a columnar (Fig. 2.3d,f) or plaquette

(Fig. 2.3e) VBS, both four-fold degenerate. The liquid-VBS phase transition still belongs

to the well-studied 3d XY∗ transition.

If Ψ1 and Ψ2 are the lowest energy modes, then the low energy effective Lagrangian

reads

L12 =
∑
a=1,2

(
|∂µΨa|2 + r |Ψa|2

)
+ g

(∑
a=1,2

|Ψa|2
)2

+ u
∑
a=1,2

|Ψa|4 + v |Ψ1|2|Ψ2|2 cos(2θ1) sin(2θ2)

+ v′
(
|Ψ1|4 cos(4θ1)− |Ψ2|4 cos(4θ2)

)
(2.15)

Again we focus on the case with u < −|v|/2 when exactly one of 〈Ψa〉 is nonzero. (This

eliminates the role of the v term in the ordered phase.) In this case, for either sign of v′,

the vison condensate is a four-fold degenerate columnar VBS state (Fig. 2.3a,c).

Now let us further reduce the symmetry. For example, if the Px (y → −y) symmetry

is broken while inversion is still preserved (this is the symmetry of most organic spin

liquid materials), then the columnar VBS order has only a two-fold degeneracy which

only breaks translation symmetry. Now the PSG allowed Lagrangian reads

L′3 = |∂µΨ3|2 + r |Ψ3|2 + g |Ψ3|4 + v |Ψ3|4 cos(4θ3) (2.16)

For either sign of v, there is a two-fold degenerate columnar VBS order. In this case the
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liquid-VBS transition is still the 3d XY∗ transition because it is well-known that the Z4

anisotropy cos(4θ) on a 3d XY fixed point irrelevant [65, 66].

Close to the liquid-VBS critical point, since v8 in Eq. 2.13 and v in Eq. 2.16 are

both irrelevant, Eq. 2.13 and Eq. 2.16 have an emergent U(1) global symmetry. Thus

we can view the VBS order as a superfluid phase that spontaneously breaks this U(1)

symmetry; therefore the liquid-VBS transition can also be viewed as a liquid-superfluid

phase transition. If we approach this critical point from the superfluid (VBS) side, then

this transition is driven by the proliferation of vortex excitations of the superfluid phase.

In 2+1d space-time, a superfluid phase is dual to a bosonic QED: a scalar boson (vortex

field) coupled to a 2+1d U(1) gauge field. Therefore this liquid-VBS phase transition is

dual to a Higgs transition:

Ldual = |(∂µ − i2aµ)2Φ|+ r′|Φ|2 + g′|Φ|4 +
1

e2
f 2
µν (2.17)

where Φ is a complex field that annihilates a pair of vortices. After condensation (r′ < 0)

Φ breaks the U(1) gauge field to a Z2 gauge field. Hence the condensate of vortex pairs

has a Z2 topological order, which is precisely the topological order of the Z2 spin liquid

state we started with.

2.7 Conclusion

In summary, in this chapter we studied the quantum phase transition between Z2

liquid and columnar VBS orders on both the isotropic and distorted triangular lattices.

The critical theories proposed in this chapter can be checked by future numerical simu-

lations once a Z2 spin liquid phase is identified on the triangular lattice. It would also be

interesting to study the direct quantum phase transition from the magnetic order to the

columnar VBS orders on the triangular lattice, which can be viewed as a triangular lat-
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tice generalization of the deconfined quantum critical point [8, 9]. This transition would

be driven by condensation of skyrmions or vortices of the magnetic order. Eventually

we also plan to understand the global phase diagram around the Z2 spin liquid, which

probably involves a noncollinear spiral spin order, the columnar/plaquette VBS order

discussed in this current paper, and a collinear spin order. A similar global phase dia-

gram was studied in [12] for the case with four vison minima in the BZ, and we plan to

generalize this to our current case with columnar VBS order. We expect to understand

this global phase diagram for both spin-1/2 and spin-1 systems on the triangular lattice.

We will leave these subjects to future study.

2.8 Permissions and Attributions

The content of this chapter is the result of a collaboration with Cenke Xu, and

has previously appeared in [67]. The authors would like to thanks Leon Balents for

pointing out that there could be an intermediate phase between a Z2 spin liquid and

VBS (Fig. 2.5). CX is supported by the Alfred P. Sloan Foundation, the David and

Lucile Packard Foundation, the Hellman Family Foundation, and NSF Grant No. DMR-

1151208.

2.A Appendix

In this appendix we present more details about the dual frustrated quantum Ising

model. With a 7th neighbor Ising coupling, in a finite region of the phase diagram,

the minima of the vison band structure are stabilized at six different minimum modes
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(Fig. 2.2b) with momenta

~Q1 = ~Q2 = (
π

2
√

3
, −π

6
)

~Q3 = ~Q4 = (
π

2
√

3
, +

π

6
)

~Q5 = ~Q6 = (0,
π

3
) (2.18)

To analyze the low energy physics, we can expand the Ising operator τ z at these six

minima:

τ zr,n =
6∑

a=1

ψa(r)va,ne
i ~Qa·~r (2.19)
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where r takes on values at the center of the unit cell diamonds (Fig. 2.1). In this equation,

va,n are six eight-component vectors:

v1 =



+1

+f

+f

−f

+1

+1

+1

+f



, v2 =



−f

−1

+1

+1

+f

−f

+f

+1



, v3 =



+1

+1

+1

+f

+1

+f

−f

+f



v4 =



−f

+f

+f

+1

−f

−1

+1

+1



, v5 =



+1

−1

+f

−1

−f

−1

−f

+f



, v6 =



−f

+f

−1

−f

+1

−f

−1

+1



(2.20)

where f =
√

2− 1.

The low energy modes ψa carry a six dimensional representation of the PSG of the

system. The entire PSG of the system is generated by the transformations in Eq. 2.7.
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The representation matrices are

T1 =



−1 0 0 0 0 0

0 +1 0 0 0 0

0 0 0 +1 0 0

0 0 +1 0 0 0

0 0 0 0 0 +1

0 0 0 0 −1 0


T2 =



0 +1 0 0 0 0

−1 0 0 0 0 0

0 0 +1 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0



Px =



0 0 1√
2

1√
2

0 0

0 0 1√
2
− 1√

2
0 0

1√
2

1√
2

0 0 0 0

1√
2
− 1√

2
0 0 0 0

0 0 0 0 1√
2

1√
2

0 0 0 0 1√
2
− 1√

2


Rπ/3 =



0 0 0 −1 0 0

0 0 +1 0 0 0

0 0 0 0 0 +1

0 0 0 0 −1 0

0 +1 0 0 0 0

−1 0 0 0 0 0


(2.21)
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Chapter 3

Exotic Quantum Phase Transitions

of Strongly Interacting Topological

Insulators

Using determinant quantum Monte Carlo (d-QMC) simulations, we demonstrate that

an extended Hubbard model on a bilayer honeycomb lattice has two novel quantum

phase transitions. The first is a quantum phase transition between the weakly interacting

gapless Dirac fermion phase and a strongly interacting fully gapped and symmetric trivial

phase, which cannot be described by the standard Gross-Neveu model. The second is a

quantum critical point between a quantum spin Hall insulator with spin Sz conservation

and the previously mentioned strongly interacting fully gapped phase. At the latter

quantum critical point the single particle excitations remain gapped, while spin and

charge gap both close. We argue that the first quantum phase transition is related to

the Z16 classification of the topological superconductor 3He-B phase with interactions,

while the second quantum phase transition is a topological phase transition described by

a bosonic O(4) nonlinear sigma model field theory with a Θ-term.
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3.1 Introduction

—

The interplay between topology and interactions can lead to very rich new physics.

For bosonic systems, it is understood that strong interactions can lead to many symme-

try protected topological (SPT) phases [17, 18] that are fundamentally different from the

standard Mott insulator and superfluid phases. In addition to producing various topolog-

ical orders, for fermionic systems strong interactions can also reduce the classification of

free fermion topological insulators and superconductors [68, 69, 70, 71, 72, 73, 74, 75, 76].

That is, interactions can drive free fermion topological superconductors to a trivial phase;

namely the edge states of the free fermion topological superconductor can be gapped out

without degeneracy by a symmetry preserving short range interactions without going

through a bulk quantum phase transition. The most famous example is the 3He-B topo-

logical superconductor protected by time-reversal symmetry, whose boundary is described

by a (2 + 1)d Majorana fermion χ with the Hamiltonian H =
∫
d2x χᵀ(iσz∂x + iσx∂y)χ.

Without interactions, 3He-B has a Z classification; therefore for arbitrary copies of 3He-B,

its boundary remains gapless as long as time-reversal symmetry is preserved [77, 78, 79].

In other words any fermion-bilinear mass term χᵀaσ
yχb at the boundary would break the

time-reversal symmetry. However, once interactions are turned on, the classification of

3He-B is reduced to Z16; i.e., with 16 copies of 3He-B, its boundary can be gapped out

by interactions while preserving the time-reversal symmetry [74, 75]. In other words, the

boundary is fully gapped by interactions with 〈χᵀaσyχb〉 = 0, for a, b = 1 · · · 16.

Although the classification of interacting 3He-B has been understood, the following

question remains: if the interactions are tuned continuously, can there be a direct second

order quantum phase transition between the weakly interacting gapless boundary and the

strongly interacting fully gapped nondegenerate boundary state? Even if such a second
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order phase transition exists, its field theory description is unknown because the standard

field theory that describes a phase transition of interacting Dirac or Majorana fermions

is the Gross-Neveu model [80], which corresponds to the order-disorder phase transition

of a bosonic field φab that couples to a fermion bilinear mass operator: φabχ
ᵀ
aσ

yχb
1.

Therefore in the Gross-Neveu model, the gap of the Majorana fermion is induced by a

nonzero expectation value of a fermion bilinear mass: 〈χᵀaσyχb〉 6= 0, which would break

the time-reversal symmetry at the boundary of 3He-B.

In this paper we will demonstrate that such a novel direct second order transition

indeed exists, which is fundamentally different from the standard Gross-Neveu theory.

But instead of studying the boundary of a 3d system (which is numerically challenging),

we will just study a 2d lattice model, whose low energy field theory Lagrangian is identical

to the boundary of 16 copies of 3He-B, although its fields transform very differently under

symmetry groups (the exact boundary field theory of 3He-B cannot be realized in 2d).

We will demonstrate that in this 2d lattice model there is indeed a direct second order

quantum phase transition between 16 flavors of gapless (2 + 1)d Majorana fermions (8

copies of Dirac fermions) and a fully gapped phase that does not break the symmetry of

the lattice model. This shows that the fermion gap does not correspond to any fermion

bilinear mass.

We will also study another exotic quantum phase transition between the weakly

interacting quantum spin Hall (QSH) insulator with spin Sz conservation and spin topo-

logical numer 2, and the fully gapped and symmetric phase in the strong interaction

limit mentioned in the previous paragraph. In the noninteracting limit, the phase transi-

tion between the topological insulator and trivial insulator is driven by closing the Dirac

mass gap, which requires that the single particle excitation is gapless at the critical

1In the original Gross-Neveu model introduced in Ref. [80], φab is always an identity matrix. Here
we use a generalized definition of the Gross-Neveu model.
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point. However, in this paper we demonstrate that, with interaction, at this quantum

phase transition the spin and charge gap both close, while the single particle excitation

remains gapped. Therefore, this quantum phase transition only involves bosonic degrees

of freedom, which allows this quantum phase transition to be described by a bosonic field

theory. We propose that the field theory for this transition is an O(4) nonlinear sigma

model field theory with a Θ-term. The QSH insulator and the trivial phase correspond

to π < Θ ≤ 2π and 0 ≤ Θ < π respectively, while the quantum critical point corresponds

to Θ = π.

3.2 Model Hamiltonian

—

The Hamiltonian we study is an interacting spin-1/2 fermion system defined on a

bilayer honeycomb lattice (Fig. 3.1):

H = T + T ′ +W

T = −t
∑
〈ij〉

∑
`,s

(
c†i`scj`s + h.c.

)
T ′ = iλ

∑
〈〈ij〉〉

∑
`

νijc
†
i`σ

zcj`

W =
U

2

∑
i,`

(ni` − 1)2

+ J
∑
i

[
Si1 · Si2 +

1

4
(ni1 − 1)(ni2 − 1)− 1

4

]
(3.1)

where s =↑, ↓ and ` = 1, 2 denote the spin and layer index. T + T ′ corresponds to two

layers of the Kane-Mele model[81], and W describes both the on-site and the inter-layer

interactions. We will set t = 1 as the energy unit throughout this paper. We also define

ni` = ni`↑ + ni`↓, S
µ
i` = 1

2
c†i`σ

µci`, and ni`s = c†i`sci`s. 〈〈i, j〉〉 stands for a next-nearest-

neighbor lattice link. νij = ±1 depending on whether the hopping path defined by the
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Figure 3.1: The bilayer honeycomb lattice. In each layer, t and λ are the nearest- and
next-nearest-neighbor hopping. The Hubbard interaction U acts on each site, and the
Heisenberg interaction J acts across the layers.

nearest-neighbor bonds connecting sites i and j bends to the right or to the left. With

only the T term, the low energy limit of this model is described by 8 flavors of (2 + 1)d

massless Dirac fermions (or 16 Majorana fermions) in its Brillouin zone.

In the noninteracting limit, i.e. U = J = 0, a nonzero λ will cause the T ′ term to gap

out T and drive the system into a QSH phase with spin topological numer Cs = ±2 which

corresponds to the quantized spin Hall conductance σspin
H = e

2π
Cs. The U term in the

Hamiltonian W is a Hubbard repulsion while the J term consists of an antiferromagnetic

Heisenberg spin interaction between the two layers and a density-density interaction. In

this paper we will fix J/U = 2 (with positive U and J). The interaction tends to gap

out the charge fluctuations and couples the spins across the layers into the singlet state

on each site. Then in the strong interacting limit, the ground state is simply a product
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Figure 3.2: (Color online.) A schematic phase diagram of the bilayer honeycomb
model. The red line is the phase boundary between the two QSH phases of opposite
spin Hall conductivity, where both the single particle and the spin/charge gaps are
closed. The blue line is the phase boundary between the QSH phase Θ = ±2π
and the trivial gapped phase Θ = 0, where the single particle gap remains open
but the spin/charge gaps are closed. Uc is the tricritical point, above which the
topological number defined in Eq. 3.6 changes inside the trivial phase (without gap
closing) through the dashed line, also see Fig. 3.3.

state of inter-layer spin singlets,

|Ψ〉 =
∏
i

(c†i1↑c
†
i2↓ − c

†
i1↓c
†
i2↑)|0〉, (3.2)

which is a trivial gapped state that respects all of the symmetry. Obviously this strongly

interacting trivial state should not have any spin Hall response, thus it must be separated

from the weak interacting QSH states by phase transitions. The phase diagram of this

model is depicted in Fig. 3.2. Note that the spin topological number Cs shown in the

phase diagram is calculated from the single-particle Green’s function (to be discussed

later in Eq. 3.6), and in the strong interacting regime, Cs is no longer related to the spin

Hall conductance σspin
H . In fact, σspin

H = 0 holds for the entire trivial insulating phase

40



Exotic Quantum Phase Transitions of Strongly Interacting Topological Insulators Chapter 3

1d coupled
chain

2d bilayer
honeycomb
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N

topological number with U=2

Figure 3.3: The topological number defined in Eq. 3.6 as a function of λ for both
models at U = 2. The topological number was calculated at the dots using DQMC
data via the methods discussed in the Topological Number Calculation Methods ap-
pendix. This demonstrates that this topological number Eq. 3.6 is nonzero even in
the strongly interacting trivial phase.

despite of Cs = ±2.

It is also worth mention that if we fix the ratio J/U � 1 and increase the interaction

gradually, then an intermediate antiferromagnetic (AF) phase could set in between the

trivial phase and the QSH phase, because a nearest neighbor AF interaction ∼ t2/U

could be generated through superexchange. However we will leave this intermediate AF

phase for future investigation, and focus on the J/U = 2 case where the trivial and the

QSH phases are separated by only one single phase transition which turns out to be more

exotic.

3.3 Phases and Excitation Gaps

—

Before we present our results for the 2d model, we will first consider a 1d system
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(b) 1d gaps with λ = 0.25

Figure 3.4: Single particle and spin gap for the 1d coupled chain model with J/U = 2.
(a) When λ = 0, the system is gapped out immediately by an infinitesimal interaction
with a gap of the form ea−b/U for small U (dotted black line with a = 2.60 and
b = 2.65). (b) When λ = 0.25, there are no phase transitions when λ 6= 0 and U > 0.

composed of two coupled chains. In this 1d system, T ′ becomes

T ′1d = −λ
2

∑
i,`,s

(−)i
(
c†i+1,`,sci,`,s + h.c.

)
(3.3)

In the noninteracting limit, λ < 0 corresponds to 4 copies of the Su-Schrieffer-Heeger

model of polyacetylene[82] or 8 copies of the Kitaev’s 1d topological superconductor2

with a nontrivial boundary state, while λ > 0 corresponds to a trivial state [68]. We

are interested in connecting the λ < 0 SPT phase to the λ > 0 trivial phase without a

phase transition. (This demonstrates the already known fact that λ < 0 and λ > 0 are

actually in the same phase under interaction [68].) Fidkowski and Kitaev demonstrated

how to do this in one dimension using an interaction term [68] which corresponds to W

but with a simpler J term: +JSi,1 ·Si,2. We modify Fidkowski and Kitaev’s interaction

term slightly so that it can be simulated by quantum Monte Carlo (QMC) without a sign

problem [83]. This modification will not change the qualitative results of the model.

Our results are depicted in Fig. 3.4(a) and Fig. 3.4(b). With λ = 0, the system is

2Eq. 3.3 has four flavors of complex fermions, which can be written as 8 flavors of Majorana fermion
chains up to a basis transformation, i.e. 8 copies of Kitaev’s 1d topological SC.
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gapped out immediately with infinitesimal interaction, because as was computed explic-

itly, the four fermion term is marginally relevant at λ = 0. The gap we measure scales

exponentially with 1/U , which is consistent with the renormalization group calculation.

With finite λ, there is no phase transition at finite U , see Fig. 3.4(b); namely the entire

phase diagram of this 1d system is one trivially gapped phase except for the isolated

gapless point λ = U = J = 0.

Now let us move on to the honeycomb lattice. It is well-known that a weak short range

interaction is irrelevant for a massless (2 + 1)d Dirac/Majorana fermion, which implies

that the interaction can gap out the fermion only when it is strong enough. Thus along

the λ = 0 axis in Fig. 3.2, a semimetal-insulator phase transition is expected at finite U/t.

Indeed, our numerical results suggest that with increasing U/t, there is one continuous

phase transition at finite Uc/t ∼ 1 where the single particle gap opens up gradually from

zero, and the single particle gap increases monotonically afterwards. In the large U/t

limit, this model is exactly soluble, and the ground state is a trivial direct product of

on-site spin singlets between the two layers as in Eq. 3.2. Therefore in the large U/t

limit this gapped phase does not correspond to any fermion quadratic mass term. But

it is still possible that some other symmetry breaking order parameters may emerge for

intermediate U/t. To verify that this is not the case, we performed a mean field analysis

where we focus on the order parameters that minimize the energy of the interaction term

at the mean field level. The details of this mean field analysis are presented in the Mean-

Field Energy of Order Parameters appendix. We identify three order parameters that

could potentially minimize the interaction energy: the antiferromagnetic spin density

wave (SDW) order, the interlayer spin singlet Cooper pairing, and the interlayer exciton

excitation. Among them, the SDW order and the exciton order can be rotated to each

other under an SO(5) symmetry emerged at J = 2U point (see the appendix Continuous

Symmetries). So we only need to check the SDW and the pairing orders. Our numerical
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results suggest that none of these order parameters emerge and stabilize in the entire

phase diagram (spin and charge gap open up continuous from the same critical point

as the single particle gap). Thus we conclude that there can indeed be a continuous

quantum phase transition between the gapless Dirac/Majorana fermion phase in the weak

interacting limit and the fully gapped symmetric trivial phase in the strong interaction

limit.

Since the quantum phase transition is continuous, there must be a field theory de-

scription for this phase transition. Furthermore, this field theory must be described by a

Lagrangian with 16 flavors of (2 + 1)d Majorana fermions with four-fermion short range

interactions, but its physics and universality class must be fundamentally different from

the standard Gross-Neveu model. The same field theory Lagrangian must be applicable

to the interaction driven mass gap at the boundary of 16 copies of the 3He-B phase.

The only difference is that, at the 2d boundary of 3He-B a fermion bilinear mass term

is prohibited by time-reversal symmetry only, while in our 2d lattice model crystalline

symmetry is required to prevent fermion bilinear mass terms.

We also note that a similar phase transition between gapless Dirac fermions and a sym-

metric gapped phase was recently also studied in high energy physics communities[84].

Now let us consider the case with finite λ. In the noninteracting limit, a finite λ term

will drive the system into a quantum spin Hall insulator with spin topological numer

Cs = 2; i.e. the Chern number for spin-up (spin-down) fermion is +2 (−2) (see Eq. 3.6

for definition). Because our system has Sz conservation, this state is still a nontrivial

topological insulator with stable boundary states. While increasing U/t, there must be

a quantum phase transition between this topological insulator and the strongly coupled

trivial gapped state (blue line in the phase diagram Fig. 3.2). In the noninteracting

limit, the transition between a topological insulator and trivial insulator is driven by

closing the Dirac fermion gap. In Fig. 3.5(b) we can see that there is indeed a quantum
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Figure 3.5: Single particle gap, spin gap (gap for spin-1 excitation), and charge gap
(gap for charge-2 excitation) on the bilayer honeycomb lattice with J/U = 2. (a)
When λ = 0, there is a single continuous phase transition from a semimetal to a
trivial insulator at Uc ∼ 1, whose field theory also describes the phase transition of
the boundary of 16 copies of the 3He-B phase. (b) When λ = 0.25, only the spin and
charge gap close at the continuous phase transition from an SPT to a trivial insulator
(which is at Uc ∼ 1.5 for λ = 0.25). We propose that this phase transition is described
by a bosonic O(4) nonlinear sigma model field theory with a Θ-term [Eq. 3.5]. These
gaps are calculated as explained in the Gap Calculation Methods appendix. This
involves calculating gaps in finite systems of sizes up to 9x9 unit cells (with 4 sites
each) and extrapolating to the infinite size limit. Error bars on all figures denote one
standard deviation (i.e. ≈ 68% confidence).
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phase transition at finite U/t; but at this quantum critical point the single particle gap

does not close, while our data suggests that the gaps for the SDW fluctuation (N̂x ∼

(−1)i+`c†i,`σ
xci,`, N̂

y ∼ (−1)i+`c†i,`σ
yci,`) and the pairing fluctuation (∆̂ ∼ cᵀi,1iσyci,2)

(referred to as the spin and the charge gaps respectively) both vanish at the critical

point. A similar unconventional phase transition was also found in 1D systems in Ref. [85],

where the gaps also closed in the collective spin/charge excitations rather than in the

single particle excitations. This implies that in the low energy limit this quantum phase

transition only involves bosonic degrees of freedom, allowing the fermionic excitations to

be integrated out from the field theory.

Close to the quantum critical point, we can define a four component unit vector n

with n2 = 1, which couples to the fermions as follows:

n1N̂
x + n2N̂

y + n3Re(∆̂) + n4Im(∆̂). (3.4)

We propose that the phase diagram for λ 6= 0 can be described by the following effective

bosonic field theory:

S =

∫
d2xdτ

1

g
(∂µn)2 +

iΘ

Ω3

εabcdn
a∂xn

b∂yn
c∂τn

d, (3.5)

where Ω3 = 2π2 is the volume of a three dimensional sphere with unit radius. The field

theory Eq. 3.5 can be derived using the same method as Ref. [86], after integrating out

the fermions. The phase diagram and renormalization group flow of the (1+1)d analogue

of Eq. 3.5 were calculated explicitly in Ref. [87, 88, 89]; and it was demonstrated that

the entire phase 0 ≤ Θ < π is controlled by the fixed point Θ = 0, while the entire phase

π < Θ ≤ 2π will flow to the fixed point Θ = 2π. Θ = π is the phase transition between

the two phases. The phase diagram of Eq. 3.5 was studied in Ref. [22], and again in the

disordered phases (phases with large g) Θ = π is the quantum phase transition between

the two phases with 0 ≤ Θ < π and π < Θ ≤ 2π.
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In Eq. 3.5, the fixed point Θ = 2π describes a bosonic symmetry protected topological

(SPT) state with U(1)×U(1) symmetry [90], where the two U(1) symmetries correspond

to charge and Sz conservation respectively. The boundary of Eq. 3.5 with Θ = 2π is a

(1 + 1)d O(4) NLSM with a Wess-Zumino-Witten term at level k = 1, which corresponds

to a (1 + 1)d conformal field theory. In the bulk theory we can define two bosonic rotor

fields b1 ∼ n1 + in2 and b2 ∼ n3 + in4. b1 and b2 carry spin-1 and charge-2 respectively.

The fixed point Θ = 2π in Eq. 3.5 implies that a vortex of (n3, n4) (2π-vortex of b2, also

π-flux seen by the fermions) carries one b1 boson; namely a π-flux for fermions carries

spin Sz = 1, which is precisely consistent with the QSH insulator with spin topological

numer 2 [91, 92]. Thus the fixed point Θ = 2π has all the key properties of the QSH

insulator phase. At the fixed point Θ = 0, the boundary of Eq. 3.5 is trivial. The phase

transition between the quantum spin Hall insulator and the trivial state can be driven

by tuning the parameter Θ, where the quantum critical point corresponds to Θ = π.

3.4 Spin Topological Number and Green’s Function

—

Having mapped out the phase boundaries in the phase diagram, let us discuss the

topological properties of the various phases. The gapped ground states of the bilayer

honeycomb model in Eq. 3.1 belong to the fermion SPT phases protected by both the

charge and the spin U(1) symmetries, which is Z classified (even with interaction). With

this classification, each SPT state is characterized by a quantized topological number,

the spin Chern number, in analogy to the TKNN integer for integer quantum Hall states,

which can be constructed by the following fermion Green’s function [93, 94, 95, 96, 97,
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Figure 3.6: Greens function G(iω,K) as a function of frequency at the K point
with λ = 0 and J/U = 2 on the bilayer honeycomb lattice for various system sizes.
(The largest eigenvalue of G(iω = 0,K) is shown.) (a) In the free fermion limit when
U � Uc ∼ 1.5, the Green’s function shows a pole at zero frequency: G(iω,K) ' 1/(iω)
[Eq. 3.11] (dotted black line). (b) In the strong interacting limit when U � Uc ∼ 1.5,
the Green’s function follows the behavior of G(iω,K) ' (iω)/((iω)2 − ∆2) (as cal-
culated in the appendix Eq. 3.12) (dotted black line) where ∆ is the quasi-particle
gap. Please note that here ImG is the imaginary part of the imaginary-time Green’s
function, which is very different from the spectral function.

98, 99, 100] as

Cs =
1

48π2

∫
d3kεµνλTr[−σzG∂µG−1G∂νG

−1G∂λG
−1], (3.6)

where σz is the spin Sz matrix, G(k) = −〈ckc†k〉 is the fermion Green’s function in the

frequency and momentum space k = (iω,k) with iω being the Matsubara frequency,

and ∂µ here stands for ∂/∂kµ. In the non-interacting limit, the physical meaning of the

topological number Eq. 3.6 is associated to the spin Hall conductance σspin
H = Cse/2π.

Nevertheless, the formula Eq. 3.6 is still well-defined for interacting systems, as long as

we use the full interacting fermion Green’s function [93, 94, 97, 98, 99, 100]. However, for

interacting systems, this topological number defined with full Green’s function no longer

necessarily corresponds to the spin Hall response.

In the weak interaction regime, the spin topological number for the bilayer QSH

state is Cs = ±2, depending on the sign of λ. The two QSH phases are separated by a

topological phase transition at λ = 0 (the red line in Fig. 3.2), where the single-particle
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gap closes, and the Green’s function develops poles at zero frequency and at the K

and K ′ points in the Brillouin zone. Due to this singularity of the Green’s function,

the spin topological number is allowed to change across the gapless phase boundary.

Above the critical point Uc, this phase transition is gapped out by interaction, but the

topological number Eq. 3.6 still changes discontinuously across λ = 0, as proven in

Ref. [101]. The transition of the topological number (dashed violet line in Fig. 3.2)

hidden in the trivial gapped phase implies that the Green’s function must have zeros

(instead of poles) at zero frequency. This is based on the observation that in Eq. 3.6 G

and G−1 are interchangeable, so the topological number can either change through the

poles of G or the zeros of G (which are poles of G−1) [101, 85]. When the fermions are

gapped out by strong interaction, it is impossible to have poles of G at zero frequency,

so the topological number Eq. 3.6 can only change through the zeros of G.

The zeros of the Green’s function is a prominent property of the trivial gapped phase

(U > Uc), in contrast to the poles along the topological phase boundary (U < Uc). It is

found that both the poles and the zeros are located at the K and K ′ points in the Brillouin

zone, and can be verified in our QMC simulation. Along the λ = 0 axis, the Green’s

function at K point G(ω,K) develops a pole as ω → 0 when U < Uc [Fig. 3.6(a)]; while

it approaches zero when U > Uc [Fig. 3.6(b)]. In the strong interaction limit, Ref. [101]

predicts that the Green’s function should follow the behavior G(ω,K) ' ω/(ω2 + ∆2)

(where ∆ ∼ U is the typical scale of the quasi-particle gap), and in the zero frequency

limit G(ω,K) ∝ ω approaches to zero linearly with ω. Our numerical result matches all

these predictions quite well.

3.5 Summary

—
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In this chapter we demonstrate that there exist two novel continuous quantum phase

transitions for 16 copies of (2+1)d Majorana fermions; both cases are very different from

the Standard Gross-Neveu model and Ginzburg-Landau theory. However, a controlled

analytical field theory calculation for the critical exponents is not known yet; we will

leave this to future studies.

3.6 Permissions and Attributions

The content of this chapter is the result of a collaboration with Yi-Zhuang You

and Cenke Xu, and has previously appeared in [102]. We acknowledge support from the

Center for Scientific Computing at the CNSI and MRL: an NSF MRSEC (DMR-1121053)

and NSF CNS-0960316. The authors are supported by the the David and Lucile Packard

Foundation and NSF Grant No. DMR-1151208.

3.A Mean-Field Energy of Order Parameters

In this appendix, we will investigate the order parameters that are favored at the

mean-field level. Since our model only has on-site interactions, we will only consider

on-site order parameters in this appendix.

We start from the free fermion limit. In momentum space, the fermion kinetic Hamil-

tonian takes the following form

T + T ′ =
∑
k

∑
`=1,2

[c†kA` c†kB`]

g(k)σz f ∗(k)

f(k) −g(k)σz


ckA`
ckB`

 , (3.7)

where A and B label the sublattice sites in each unit cell, g(k) = −2λ
(

sin
√

3kx −

2 sin
√

3kx
2

cos 3ky
2

)
, and f(k) = −t

(
e−iky + 2eiky/2 cos

√
3kx
2

)
. Let us first switch to the
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Majorana fermion basis

χk = ( c )KK ′

valley

⊗ ( c )AB
sublattice

⊗ ( c ) 12
layer

⊗ ( c ) ↑ ↓
spin

⊗ ( c ) Re ck Im ck
particle-hole

, (3.8)

then expand the kinetic Hamiltonian T+T ′ around theK = (+ 4π
3
√

3
, 0) andK ′ = (− 4π

3
√

3
, 0)

points in the Brillouin zone,

T + T ′ =
1

2

∑
k

χᵀ−k(vkxσ
31000 + vkyσ

02002 +mσ33032)χk, (3.9)

where σijk··· ≡ σi⊗σj⊗σk⊗· · · stands for the direct product of Pauli matrices, v = 3t/2,

and m = 3
√

3λ. We consider all the fermion bilinear orders ∆vα`σψ = χᵀσvα`σψχ that can

gap out the fermions at the K and K ′ points to gain a kinetic energy benefit, implying

that σvα`σψ must be a 32×32 anti-symmetric matrix that anti-commutes with both σ31000

and σ02002. We found 136 such matrices that are qualified as the fermion mass terms.

Next we consider the interaction effect. Among the 136 potential orders, the interac-

tion W will select out the most favorable ones. To determine the most favorable orders,

we calculate the mean-field (Hartree-Fock) energy of W for the potential orders ∆vα`σψ,

s.t. the interaction term decomposes into that ordering channel as W = wvα`σψ|∆vα`σψ|2

with the mean-field energy wvα`σψ. The orders that can gain an interaction energy benefit

(i.e. wvα`σψ < 0 given U, J > 0) are concluded in Tab. 3.1: the layer-antiferromagnetic

spin density wave, the inter-layer exciton order, and the inter-layer spin-singlet pairing

order. When λ 6= 0, the λ term suppresses the exciton order and the z-component of

the spin density wave. As a result, when λ 6= 0 we only consider the XY component of

the Neel order and the pairing order, which exactly corresponds to the four component

vector n defined in Eq. 3.4.
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Table 3.1: Mean-field energy of the interaction favored fermion bilinear orders. When
J/U = 2, there is an SO(5) symmetry which mixes mix the spin density wave and
exciton order parameters so that these order parameters transform like a vector with
n = (∆03312,∆03320,∆03332,∆03200,∆03102). The degeneracy of the mean-field energies
of the exciton order and the pairing order is not associated to a symmetry.

wvα`σψ ∆vα`σψ physical meaning
−(J + 2U)/4 ∆03312 ∆03320 ∆03332 layer-antiferromagnetic s-wave spin density wave
−J/2 ∆03102 ∆03200 inter-layer s-wave exciton order
−J/2 ∆10121 ∆10123 inter-layer spin-singlet s-wave superconductivity

3.B Green’s Function in Both Free and Strong In-

teracting Limits

In this appendix, we will calculate the fermion Green’s function analytically in both

the free and the strong interacting limits. Suppose that in the Majorana basis, the kinetic

Hamiltonian takes the most general fermion bilinear form T +T ′ =
∑

a,b iuabχaχb, where

a & b are the combined label of site, layer, spin, and particle-hole indices; and χa & χb are

the corresponding Majorana fermion operators. The full Hamiltonian H = T + T ′ + W

also includes the interaction term W =
∑

i

∑
[αk] wα1α2α3α4χiα1χiα2χiα3χiα4 , where i labels

the site and αk labels the rest of the internal degrees of freedoms.

Consider the fermion Green’s function, which is defined as Gab = −〈χaχb〉. In the

free fermion limit, the Green’s function can be simply obtained from the single-particle

Hamiltonian via (G−1)ab = iωδab − iuab. In momentum space (expanded around the K

and K ′ points) and using the Majorana basis, the kinetic Hamiltonian reads (see the

previous appendix section),

T + T ′ =
1

2

∑
k

χᵀ−k(vkxσ
31000 + vkyσ

02002 +mσ33032)χk. (3.10)
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So in the free fermion limit, the Green’s function is

G(iω,k) = (iωσ00000 − vkxσ31000 − vkyσ02002 −mσ33032)−1

=
iωσ00000 + vkxσ

31000 + vkyσ
02002 +mσ33032

(iω)2 − (v2k2 +m2)
,

(3.11)

where v = 3t/2 and m = 3
√

3λ are determined by the hopping parameters. While in the

strong interacting limit, the Green’s function (at low frequency limit) has the form

G(iω,k) ' iωσ00000 +
∑∞

n=0 gn (vkxσ
31000 + vkyσ

02002 +mσ33032)2n+1

(iω)2 −∆2
+O(ω2) (3.12)

=
iωσ00000 +

∑∞
n=0 gn (v2k2 +m2)n(vkxσ

31000 + vkyσ
02002 +mσ33032)

(iω)2 −∆2
+O(ω2),

where gn are coefficients and the single-particle gap ∆ = U/2 + 3J/4 is determined by

the interaction parameters. In our QMC simulation, we set J = 2U , so ∆ = 2U in the

U → ∞ limit. However for finite U in our simulation, the single particle gap ∆ should

generally be softer (∆ < 2U). As one can see, Eq. 3.12 has the same structure on the

numerator as Eq. 3.11, so they should result in the same topological number. It is also

found that g0 = 0 for our model; however, this does not affect the topological number.

At the K (or K ′) point, we set k = 0. Thus from the above results, we conclude

that along the λ = 0 axis (s.t. m = 0) and below Uc ∼ 1.5, the Green’s function shows

a pole at zero frequency: G(iω,K) ' 1/(iω) [Fig. 3.6(a)]; while above Uc, the Green’s

function follows the behavior of G(iω,K) ' (iω)/((iω)2 − ∆2) [Fig. 3.6(b)], where ∆ is

the quasi-particle gap. Away from the λ = 0 axis and at zero frequency, the Green’s

function is expected to decay as 1/λ [Fig. 3.7] in the free fermion limit. Our numerical

results are perfectly consistent with the predictions made above (see Fig. 3.6, Fig. 3.7).

3.C Continuous Symmetries

In this appendix we study the continuous symmetries of our 2d model, which allow us

to simplify our analysis. A summary is given in Tab. 3.2. The symmetries of our model
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Figure 3.7: Zero frequency Greens function G(iω = 0,K) at the K point with
J/U = 2 on the bilayer honeycomb lattice for various system sizes. (The largest
eigenvalue of G(iω = 0,K) is shown.) In the free fermion limit when U � Uc ∼ 1.5,
the Green’s function decays as G(iω = 0,K) ' 1/3

√
3λ (c.f. Eq. 3.11) (dotted black

line).

are easiest to understand in a Majorana basis,

χi = ( c ) 12
layer

⊗ ( c ) ↑ ↓
spin

⊗ ( c ) Re ci Im ci
particle-hole

. (3.13)

Here we have removed the valley and sublattice indices on χi, since χi is written in the

real space on each site i. One can define the following fermion bilinear operators

nai = χᵀi γ
aχi, with γ = (σ312, σ320, σ332, σ102, σ200, σ123, σ121) (3.14)

where n1,2,3
i are the spin density wave (SDW) operators, n4,5

i are the exciton order op-

erators and n6,7
i are the superconductivity (SC) pairing operators. In terms of these

operators, the interaction term Wi can be written (up to a constant energy shift) as:

Wi =
1

64

(
A
∑

a=1,2,3

nai n
a
i +B

∑
a=4,5

nai n
a
i + C

∑
a=6,7

nai n
a
i

)
, (3.15)

where A = −2
3
U , B = 1

6
(2U−3J), C = 1

3
U . Then it becomes obvious that at J = 2U , we

have A = B, such that the SDW and exciton orders are degenerated, and the interaction

term has SO(5) × SO(2) symmetry. There are two other high symmetry points. When
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coupling constants symmetry
J/U = 2, λ = 0 U(1)charge × SO(5)layer charge, SDW ↔ exciton, spin

J/U = 2, λ 6= 0 U(1)charge × SU(2)layer charge, z-SDW ↔ exciton × U(1)z-spin

J/U 6= 2, λ = 0 U(1)charge × U(1)layer charge × SU(2)spin

J/U 6= 2, λ 6= 0 U(1)charge × U(1)layer charge × U(1)z-spin

Table 3.2: A summary of the symmetries of our model for various coupling constants.

U = 0, we have A = C, such that the SDW and SC orders are degenerated, and the

interaction term has another SO(5) × SO(2) symmetry. When J = 0, we have B =

C, such that the exciton and SC orders are degenerated, and the interaction term has

SO(4)×SO(3) symmetry. All the symmetry groups can be embedded in the same SO(7)

group, generated by operators of the form
∑

i
1
8
χTi Γχi, where Γab = 1

2i
[γa, γb].

Now we take into account the hopping terms. When J/U = 2 and λ = 0, this model

has the U(1) × SO(5) symmetry. The U(1) charge symmetry is generated by Γ67 while

the SO(5) symmetry is generated by Γab (for a, b = 1, · · · , 5) with rotates the SDW and

exciton order parameters [Tab. 3.1] like a vector. If J/U = 2 but λ 6= 0 then symmetry

is reduced to U(1)× U(1)× SU(2). The U(1) symmetries are total charge conservation

and spin rotation about the z axis. The SU(2) symmetry is generated by Γ34,Γ45,Γ53

(which will mix the Sz SDW and exciton order parameters).

When J/U 6= 2 and λ = 0 the symmetry is U(1)×U(1)×SU(2), which corresponds to

separate U(1) charge conservation on each layer and SU(2) spin rotation. If J/U 6= 2 and

λ 6= 0 then the SU(2) spin rotation symmetry reduces to a U(1) spin rotation symmetry

about the z axis.

3.D QMC Methods

The numerical results presented in this paper were calculated using projector quan-

tum Monte Carlo (QMC), which is described in detail in [103]. Projector QMC is a
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kind of determinant QMC which focuses on the zero temperature ground states of non-

degenerate fermion systems. Determinant QMC is a kind of auxiliary field QMC which

uses a (usually discrete) Hubbard-Stratonovich transformation to decouple an interacting

fermion Hamiltonian into a noninteracting Hamiltonian. All of these QMC methods are

unbiased, controlled, and numerically exact numerical methods to calculate expectation

values to arbitrary precision. Ground state expectation values are calculated from the

imaginary time evolution of a trial wavefunction |ΨT 〉

〈A〉 = lim
Θ→∞

〈ΨT |e−ΘH/2Ae−ΘH/2|ΨT 〉
〈ΨT |e−ΘH |ΨT 〉

(3.16)

Θ is a projection parameter which projects the trial wavefunction into the ground state.

In practice, one must use a finite but large value for Θ. We chose to use Θ = 64/t (where

t is the hopping strength), which we found to be sufficient. As is typically done, we chose

|ΨT 〉 to be a Slater determinant in the ground state subspace of the noninteracting part

of our interacting Hamiltonian (T + T ′ from Eq. 3.1).

A Trotter decomposition is then applied to the numerator of Eq. 3.16 to separate the

exponents into three parts:

e−ΘH/2 =
[
e−∆τ (T+T ′)e−∆τHU e−∆τHJ

]Nτ
+O(∆τ )

2

where ∆τ = Θ/2Nτ , HU is the U term of H, and HJ is the J term of H [Eq. 3.1]. In our

simulations we used Nτ ≈ Θ
√
Nsweeps so that the systematic errors due to the Trotter

decomposition remain negligible compared to the statistical error resulting from the finite

number of Monte Carlo sweeps performed: Nsweeps. A sweep has occurred after all field

variables have been given the chance to update. We used between 64 and 4096 sweeps for

the results shown here. All observables have been checked against exact diagonalization

simulations on small lattices. The statistical error due to the finite number of sweeps

is shown on all plots as error bars which denote one standard deviation (i.e. ≈ 68%
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confidence). A Hubbard-Stratonovich transformation is then applied to the interacting

fermion problem to transform it into a free fermion problem at the expense of adding

(discrete) bosonic variables. We used the same Hubbard-Stratonovich as introduced in

[83]. The imaginary numbers due to the Kane-Mele λ term are dealt with as described

in [104].

3.E Gap Calculation Methods

In this appendix we discuss in more detail how the gaps in Fig. 3.4 and 3.5 are

calculated. (We use the same approach that was used in [105].) First, we measure the

rate of exponential decay in imaginary time of correlation functions for various order

parameters [Fig. 3.8]. (QMC is very efficient at making this measurement.) This decay

has the form 〈Q†Q〉 ∼ e−τ∆+c for large separations in imaginary time (i.e. τ � ∆−1)

where ∆ is the energy gap associated with the order parameter Q. We then extrapolate

the finite system size gaps ∆ to the gap for a system with infinite size [Fig. 3.9].

3.F Topological Number Calculation Methods

In this appendix we describe how the topological numbers displayed in Fig. 3.3 are

calculated from the Greens function. In one dimension, the topological number can be

written as

N =
1

2πi

∫
dkTr[ΣG∂kG

−1] (3.17)

where G = G(iω = 0, k) is the zero frequency Greens function and Σ = σ300 in the basis

ci = ( c )AB
sublattice

⊗ ( c ) 12
layer

⊗ ( c ) ↑ ↓
spin

(3.18)

To calculate this number using DQMC, we first measure the zero frequency Greens

function G(iω = 0)k at the discrete (due to the finite lattice) momenta k. We then
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Figure 3.8: The exponential decay in imaginary time of correlation functions (red
line) for various order parameters [Tab. 3.1] on a honeycomb lattice of dimension 3x3
with U = 1.4375, which is nearly at the critical point. The shaded red region denotes
statistical errors. The thick green line indicates the fit to e−τ∆+c while the two thin
green lines denote the uncertainty of the fit. The fit was performed in the region
between the vertical orange lines. The negative of the slope of the fit is the energy
gap for the finite size system, which is used to make Fig. 3.9.
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Figure 3.9: We extrapolate the gaps associated with a single particle (a), spin (b),
and charge (c) [Tab. 3.1] from a system of finite spacial size to one of infinite size.
Extrapolations are shown for λ = 0.25 and interaction strengths below (U = 1), near
(U = 1.4375), and above (U = 2) the gapless critical point at U ∼ 1.5. These results
of these extrapolations are used to make Fig. 3.5b (λ = 0.25 and J/U = 2).
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promote G(iω = 0)k to a continuous function G(iω = 0, k) via interpolation. For example,

one could choose a linear interpolation

G(iω = 0, k) =
k2 − k
k2 − k1

G(iω = 0)k1 +
k − k1

k2 − k1

G(iω = 0)k2 (3.19)

where k1 and k2 are the nearest discrete momenta to the continuous momentum k. The

choice of interpolation method will not affect the topological number as long as the the

lattice is large enough to sample enough momenta. This is because N is a topological

number and therefore insensitive to local perturbations. (Imagine calculating the winding

number of a circle around the origin by approximating the circle as a polygon.) Once

G(iω = 0, k) has been attained via interpolation, it can be inserted into the equation for

N [Eq. 3.17] to attain the topological number via numerical integration.

In two dimensions, the topological number can be written as

Cs =
1

48π2

∫
dωd2k εµνρTr[ΣG∂µG

−1G∂νG
−1G∂ρG

−1] (3.20)

where G = G(iω, k) is the Greens function and Σ = −σ003 in the same basis as above.

Now, we measure Giω,k at discrete Matsubara frequency ω and discrete momenta k and

then interpolate it to G(iω, k). However, the measured Giω,k is only reliable up to ω ∼

2πNτ/Θ. Since G(iω, k) is expected to approach zero for large ω, we choose to let

our interpolation approach zero at a finite ω ∼ 2πNτ/Θ and remain at zero for larger

ω. Again, this will not affect the calculated topological number as long as Nτ/Θ is

sufficiently large. Finally, G(iω, k) is inserted into the equation for Cs [Eq. 3.20] using

numerical integration.
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Chapter 4

Many-Body Localization of

Symmetry Protected Topological

States

We address the following question: Which kinds of symmetry protected topological (SPT)

Hamiltonians can be many-body localized? That is, which Hamiltonians with an SPT

ground state have finite energy density excited states which are all localized by disorder?

Based on the observation that a finite energy density state, if localized, can be viewed as

the ground state of a local Hamiltonian, we propose a simple (though possibly incomplete)

rule for many-body localization of SPT Hamiltonians: If the ground state and top state

(highest energy state) belong to the same SPT phase, then it is possible to localize

all the finite energy density states; If the ground and top state belong to different SPT

phases, then most likely there are some finite energy density states which can not be fully

localized. We will give concrete examples of both scenarios. In some of these examples,

we argue that interaction can actually “assist” localization of finite energy density states,

which is counter-intuitive to what is usually expected.
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4.1 Introduction

Symmetry protected topological (SPT) states and many-body localization (MBL)

are two striking phenomena of quantum many-body physics. A d−dimensional SPT

state is the ground state of a local Hamiltonian whose d−dim bulk is fully gapped and

nondegenerate, while its (d− 1)−dim boundary is gapless or degenerate when and only

when the system preserves a certain symmetry G [17, 18]. An SPT state must have

“short range entanglement”; meaning that the entanglement entropy of its subsystems

scales strictly with the area of the boundary of the subsystem: SA ∼ Ld−1 [106], where

L is the linear size of the subsystem A. MBL refers to a phenomenon of the entire

spectrum of a local Hamiltonian with disorder, including all of the highly excited states

with finite energy density. Localization of single particle states under quenched disorder

is well-understood [107], and recent studies suggest that localization can survive under

interaction [108, 109]. Here, the phrase MBL refers to systems whose all many-body

eigenstates are localized, namely the entanglement entropy of all finite energy density

states obey the same area law as SPT states instead of the usual volume law typically

obeyed by finite energy density states.

These observations imply that in a many-body localized system, any finite energy den-

sity state actually behaves like the ground state of a local parent Hamiltonian. Indeed,

it was proposed that phenomena such as stable edge states and spontaneous symmetry

breaking [110, 111, 112, 106], which usually occur at the ground state of a system, can

actually occur in finite energy density states of MBL systems. In fact, we can define a

MBL system as a system for which any finite energy density eigenstate is a

short range entangled ground state of a local parent Hamiltonian. And if the

system preserves a certain symmetry, then any finite energy density state of the

MBL system should also obey the classification of SPT states. Then we can view
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energy density ε as a tuning parameter between SPT states. Of course, in the thermody-

namic limit, because there are infinite states in an infinitesimal energy density interval

(ε, ε + dε), we expect there exists many 1d curves in the spectrum parameterized by ε

with one state |ψ〉ε at each ε, which is the ground state of an effective SPT Hamiltonian

Hε. And on each such curve |ψ〉ε is (roughly speaking) continuous in the sense that |ψ〉ε

and |ψ〉ε+dε are similar (despite being orthogonal), namely physical quantities averaged

over the entire system change continuously with ε on this curve. In an ergodic system,

the eigenstate thermalization hypothesis [24] implies that most states with similar energy

density ε are similar (their reduced density matrices all behave like a thermal density

matrix); in a MBL state, although states with the same energy density can in principle

be very different, we still expect (assume) that the continuous curves mentioned above

exist, although states in different curves can be very different.

Within one of these curves mentioned above, tuning ε is just like tuning between

the ground states of local Hamiltonians. Furthermore, by tuning ε there may or may

not be a phase transition. In particular, if all excited states belong to the same SPT

phase for arbitrary energy density ε, then there does not have to be any quantum phase

transition when tuning ε, which implies that all of the excited states have short range

correlations and area-law entanglement entropy, i.e. all the finite energy density states

are localized; on the other hand, if states with different energy density ε on the same

curve belong to different SPT phases, then there must be at least one phase transition at

certain critical energy on this curve when tuning ε. This phase transition behaves just

like an ordinary zero temperature quantum phase transition between different quantum

ground states under disorder. For 1d systems this “critical” energy density state could

be in the “infinite-randomness” phase [113, 114, 115, 116], whose entanglement entropy

scales logarithmically with the subsystem size [117], hence it is not fully localized. The

existence of the “infinite-randomness” states at finite energy density have already been
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observed in Ref. [118].

Due to the fact that in a generic nonintegrable Hamiltonian H, the ground state |G〉

and top state |T 〉 (highest energy state of H and also ground state of −H) are usually the

easiest states to analyze, the most convenient way to determine the existence of “critical”

states in the spectrum is to check whether the ground and top states belong to the same

SPT phase or not. In summary, if |G〉 and |T 〉 belong to different SPT phases, and if

we understand that these two SPT states are separated by one or multiple continuous

phase transitions (this will depend on the type of SPT phases |G〉 and |T 〉 belong to),

then there must be some “critical” excited states in the spectrum which cannot be fully

localized 1. We will apply this rule to various examples in the next section.

4.2 Examples

4.2.1 Kitaev’s chain: localization

We first apply our argument to the Kitaev’s chain:

H =
∑
j

−
(
t+ (−)jδt+ ∆tj

)
iγjγj+1, (4.1)

where γj are Majorana fermions and ∆tj is a random hopping parameter with zero mean

and standard deviation σ∆t. The topological superconductor phase (δt > 0) and the

trivial phase (δt < 0) can both be fully localized by disorder, because for either sign of

δt, the ground state |G〉 and top state |T 〉 both belong to the same phase (we choose

the convention that (2j − 1, 2j) is a unit cell). This can be seen in the clean limit with

1Here, the phrase “SPT states” also includes direct product states, we view direct product states as
“trivial” SPT states. So far not all quantum phase transitions between SPT states have been completely
studied, and it is possible that some SPT states are separated by a first order transition. Our statement
only applies to the cases that |G〉 and |T 〉 belong to two different SPT phases that we know are separate
by a continuous phase transition, for example the transition between the topological superconductor and
the trivial state of the Kitaev’s chain (Sec. 4.2).
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∆t = 0. In momentum space H =
∑

k d
x(k)τx + dy(k)τ z, and ~d is a nonzero O(2)

vector in the entire 1d Brillouin zone with δt 6= 0. For either sign of δt, H and −H

have the same topological winding number n1 = 1
2π

∫
dk d̂a∂kd̂

bεab; thus |G〉 and |T 〉

belong to the same phase. Based on our argument, all the finite energy states with

either sign of δt can be fully localized by random hopping ∆t. The only states not

fully localized in the two dimensional phase diagram tuned by ε and δt are located

at the critical line δt = 0. The critical line δt = 0 is in a “infinite-randomness” fixed

point, and it can be understood through the strong disordered real space renormalization

group [115, 116, 117, 119, 120, 118].

Here we confirm the conclusions in Ref. [110, 112, 106] that the finite energy den-

sity excited states of the Kitaev’s chain with δt > 0 are still “topological”. Since the

energy level spacing between two eigenstates vanishes in the thermodynamic limit, the

best way to determine if an excited state is topological or not is to compute its entan-

glement spectrum (the system is defined on a periodic 1d lattice). And because the

system is noninteracting, we will compute the single-particle entanglement spectrum in-

troduced in Ref. [121] for each excited state. The single-particle entanglement spectrum

for the topological phase (δt > 0) is shown in Fig. 4.1(a), where two zero energy modes

can be observed in the spectrum (corresponding to the Majorana zero modes at both

entanglement cuts respectively). This topologically non-trivial feature persists for all

energy eigenstates in the many-body spectrum, including the ground/top states and the

finite energy density states in between. However at the critical line δt = 0, as shown

in Fig. 4.1(b), the zero energy modes are lifted by the long-range entanglement, and

the single-particle entanglement levels become gapless around εE = 0 which leads to the

logarithmic scaling of the entanglement entropy.

The Kitaev’s chain itself is just a free fermion model. But our argument indicates that

under interaction, as long as |G〉 and |T 〉 are still both in the topological superconductor
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phase, all of the excited states can still be localized. Such a generalization is justified

given that the non-interacting Anderson localized states can be adiabatically connected

to the many-body localized states under interaction, as proven in Ref. [106].
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Figure 4.1: Single-particle entanglement spectrum for many-body eigenstates of the
random Kitaev’s chain, at (a) δt = 0.5t and (b) δt = 0. In both cases σ∆t = 0.3t.
We take a 128-site system with periodic boundary condition, which is partitioned
into two 64-site subsystems for the entanglement calculation. εE is the single-particle
entanglement energy (s.t. the reduced density matrix ρA = exp(−c†εEc), as shown
in Ref. [121]). The spectrum of εE is shown as tanh εE , and is calculated for several
many-body eigenstates: including the ground and the top states and other 5 randomly
picked finite energy density states, which are arranged in order of their energy density
ε. The shading denotes the standard deviation of the entanglement energy levels under
a disorder average over the system. Of note are the topologically non-trivial, two-fold
degenerate, zero energy modes throughout the entire spectrum ε in the topological
phase (a).

4.2.2 Modified Kitaev’s chain: critical states and interaction

assisted localization

In this subsection we consider a modified Kitaev’s chain:

H =
∑
j

−
(
t− (−1)jt′σzj + ∆tj

)
iγjγj+1 − hσzj , (4.2)

where again ∆tj is random and t, t′, h > 0. In this model σzj commutes with the Hamil-

tonian, which implies that any energy eigenstate will also be an eigenstate of σzj . In the
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clean limit, the ground state |G〉 of the system has σzj = 1 everywhere, and the fermions

are in the trivial phase; in contrast, |T 〉 must have σzj = −1 everywhere, and hence |T 〉

is in the topological superconductor phase. With disorder, both states can be localized,

and their entanglement entropy shows the area-law scaling (i.e. S ∼ const. for 1d) as in

Fig. 4.2(a). But since the ground state and the top state belong to different SPT phases,

based on our argument, there must be some finite energy density states which cannot be

fully localized. In this model it is easy to visualize these delocalized excited states. An

excited state of the system has a static background configuration of σzj which does not

satisfy σzj = 1. If we consider a random configuration of σzj that has the average σzj = 0,

then one can simply absorb σzj into the random numbers ∆tj, and the effective Hamil-

tonian for Majorana fermions γj reads Heff =
∑

j −
(
t+ ∆t′j

)
iγjγj+1, which is precisely

the random hopping Majorana fermion model Eq. 4.1 tuned to the critical point δt = 0.

And according to Ref. [116, 117], the ground state of Heff (which is a highly excited

state of the original Hamiltonian Eq. 4.2 due to the h term) has a power-law correla-

tion after disorder average, and its entanglement entropy scales logarithmically with the

subsystem size: S ∼ log ` [117]. So the delocalization happens right at the energy scale

Eσ ≡ −h
∑

j σ
z
j = 0. In deed our numerical calculation shows that as long as Eσ 6= 0,

the eigen states are all localized with area-law entanglement entropy as in Fig. 4.2(a,b);

but for Eσ = 0, the eigen states are delocalized with logarithmically-scaled entanglement

entropy as in Fig. 4.2(c). Thus the model Eq. 4.2 cannot be fully many-body localized,

which is consistent with our statement made in the introduction.

The model Eq. 4.2 has a time-reversal symmetry T : γj → (−)jγj and σzj → σzj . It

is known that with this time-reversal symmetry and without interactions, the Kitaev’s

chain has Z classification [77, 78, 79]; that is with an arbitrary number of flavors of

Eq. 4.2, |T 〉 is always a nontrivial topological superconductor, while |G〉 is always a

trivial phase. However under certain flavor mixing four-fermion interaction [68, 69], the
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Figure 4.2: Entanglement entropy S` vs log subsystem length log2 ` vs fermion
energy Eγ (energy of the first term in Eq. 4.2) for various boson energies
Eσ ≡ −h

∑
j σ

z
j = −hL,−hL/2, 0 (a,b,c) (second term in Eq. 4.2). Calculations

are done on a random Majorana chain with L = 1024 sites, and the standard devia-
tion of ∆tj is σ∆t = t. States with Eσ = 0 are the critical excited states which are
delocalized. All states with different Eγ at Eσ = 0 have logarithmic entanglement
entropy, and hence are delocalized.
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classification of Kitaev’s chain with time-reversal symmetry reduces to Z8. Namely under

this four-fermion interaction, for eight copies of Eq. 4.2, |G〉 and |T 〉 become the same

trivial phase, which implies that there does not have to be any phase transition when

increasing ε, and all of the finite energy density excited states can be fully localized under

the interplay between disorder and interaction.

In model Eq. 4.2, the logarithmic entanglement entropy at the critical excited state

comes from the long range effective hopping under renormalization group [115, 116, 117].

We can assume that the four-fermion interaction on each site is random, then when and

only when there are 8k copies of Eq. 4.2, under interaction each site independently pos-

sesses a random set of many-body spectrum without degeneracy. Let δV be the typical

energy level spacing of the interaction Hamiltonian on each site. To create entangled

pairs between distant sites, the effective long-range coupling teff generated under RG

must overcome the energy scale of δV to hybridize the many-body states. However

the effective coupling strength actually falls rapidly with the distance[115, 116, 117] as

teff ∼ te−
√
r, so the long-range coupling can only lead to exponentially small entangle-

ment ∆S ∼ (teff/δV )2 ∼ (t/δV )2e−2
√
r. Therefore even with weak interaction, all of the

eigenstates are short-range entangled area-law states, and can be fully localized. In con-

trast, without interaction, no matter what kind of fermion-bilinear perturbations we turn

on in Eq. 4.2, as long as these terms preserve the time-reversal symmetry defined above

and the topological nature of |G〉 and |T 〉, there must necessarily be some finite energy

density states which cannot be fully localized. Thus in this case interaction actually “as-

sists” many-body localization, which is opposite from what is usually expected for weak

interaction, in for example Ref. [122], and is also different from the strong interaction

reinforced localization studied in Ref. [123, 124, 125].

Notice that this “interaction assisted localization” is only possible with 8k copies of

the Kitaev’s chain with time-reversal symmetry. With 4 copies of the Kitaev’s chain, the
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spectrum on each site contains two sets of two-fold degenerate states even under inter-

action that preserves time-reversal, then the effective long-range coupling teff generated

under RG will still lead to maximal entanglement between distant sites. A detailed RG

analysis about this will be given in another paper [126].

4.2.3 Bosonic SPT states, Haldane phase

Many bosonic SPT parent Hamiltonians can be written as a sum of mutually com-

muting local terms. For example, the “cluster model” for the 1d SPT with Z2×Z2 sym-

metry [112], the Levin-Gu model [127] and the CZX model [128] for the 2d SPT states

with Z2 symmetry, and the 3d bosonic SPT state with time-reversal symmetry [129] are

all a sum of commuting local operators; thus their ground states are a product of eigen-

states of local operators 2. SPT Hamiltonians written in this form are very similar to

the “universal” Hamiltonian of MBL state proposed in Ref. [130], which is also a sum of

mutually commuting local terms, because a MBL system has an infinite number of local

conserved quantities.

All of the idealized SPT models mentioned above have a Z2 classification, and their

ground and top states belong to the same SPT phase. Obviously there should be no

phase transition while increasing energy density ε. This statement is still valid with

small perturbations which make these models nonintegrable as long as the nature of |G〉

and |T 〉 are not affected by the perturbations. Thus these models (and their nonintegrable

versions) can all be fully localized by disorder.

However, some other bosonic SPT models can not be fully localized. In the following

2Ref. [17] actually proposed a general way of constructing parent Hamiltonians for all bosonic SPT
states within the group cohomology classification. However, in Ref. [17] the local Hilbert space is labeled
by group elements, which implies that for a system with continuous symmetry the local Hilbert space in
Ref. [17]’s construction already has infinite dimension, and hence its excited states can also have infinite
local energy density. We only discuss systems with a finite dimensional Hilbert space and finite energy
density.
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we will give one such example for the Haldane phase [131, 132]:

H =
∑
j

(−1)j(J + ∆Jj)Sj · Sj+1 + · · · (4.3)

Sj are spin-1/2 operators. The ellipsis includes perturbations that break the system’s

symmetry down to a smaller symmetry (such as time-reversal or Z2×Z2) that is sufficient

to protect the Haldane phase, but do not lead to degeneracy in the bulk spectrum, namely

only the boundary transforms nontrivially under symmetry. If the random coupling ∆Jj

is not strong enough to change the sign of J , then the ground state and top state of this

model correspond to two opposite dimerization patterns of the spin-1/2s. Thus one of

them is equivalent to the Haldane’s phase while the other is a trivial phase as long as

we pick a convention of boundary. If we assume the random Heisenberg coupling ∆J

is sufficient to localize most of the excited states, then there must be an unavoidable

phase transition while increasing energy density ε. According to our argument in the

introduction, this phase transition should behave just like an ordinary quantum phase

transition at zero temperature. It is known that the quantum phase transition between

a Haldane phase and a trivial phase is a conformal field theory, and it is equivalent to a

spin-1/2 chain without dimerization. With strong disorder, this quantum critical point

will be driven into the infinite-randomness spin singlet phase [113, 114, 115, 116] with

a power-law decaying disorder averaged spin-spin correlation function and a logarithmic

entanglement entropy [117].

4.2.4 2d interacting topological superconductor: critical states

and interaction assisted localization

In this subsection we will discuss the nonchiral 2d p± ip topological superconductor,

i.e. p+ ip pairing for spin-up fermions, and p− ip pairing for spin-down fermions. On a
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square lattice this TSC can be written in the Majorana fermion basis:

H =
∑
k

χt−k(τ
x sin kx + τ zσz sin ky)χk

+ χt−kτ
y(e− cos kx − cos ky)χk, (4.4)

where σz = ±1 represents spin-up and down, while τ z = ±1 represents the real and imag-

inary parts of the electron operator. Without any symmetry, this system is equivalent to

the trivial state, i.e. its boundary can be gapped out without degeneracy. However, when

0 < e < 2, with a Z2 symmetry which acts as Z2 : χ → σzχ, the system is a nontrivial

TSC. This system can also have another time-reversal symmetry, which is unimportant to

our analysis. The boundary of this system reads: H =
∫
dx χt(−i∂xσz)χ, Z2 : χ→ σzχ.

The Z2 symmetry forbids any single particle backscattering at the boundary for arbitrary

copies of the system, thus the p ± ip TSC with the Z2 symmetry has a Z classification

without interaction.

Without any interaction, for n−copies of the p± ip TSC, |G〉 and |T 〉 belong to differ-

ent SPT phases. This is because for either spin-up or down fermions, the Chern number

of |G〉 and |T 〉 are opposite. And because the system has a Z classification, |G〉 and

|T 〉 must belong to different SPT states. Using our argument in the introduction, this

implies that under disorder that preserves the Z2 symmetry, there must be some finite

energy density states which cannot be fully localized. This is not surprising, considering

that even at the single particle level there are likely extended single particle states under

disorder. The existence of extended single particle states is well-known in integer quan-

tum Hall state [133], and recently generalized to quantum spin Hall insulator with a Z2

index [134, 135].

The situation will be very different with interactions. Once again a well-designed

interaction will reduce the classification of this p± ip TSC from Z to Z8 [70, 71, 73, 72].

Namely n−copies of Eq. 4.4 is topologically equivalent to (n+ 8k)−copies. This implies
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that under interaction |G〉 and |T 〉 actually belong to the same phase when n = 4k. Thus

when n = 4k, the phase transition in the noninteracting limit will be circumvented by

interaction above a certain critical value. Thus once again interaction assists MBL in this

case. When n = 8, |G〉 and |T 〉 are both trivialized by interaction, namely interaction

can adiabatically connect both states to a direct product of local states. When n = 4,

Ref. [136] showed that interaction can confine the fermionic degrees of freedom, and drive

four copies of the p ± ip TSC into a 2d bosonic SPT state with Z2 symmetry, which as

we discussed in the previous section, can also be fully many-body localized.

Please note that in the noninteracting limit the quantum phase transition between 2d

TSC and trivial state is described by gapless (2+1)d Majorana fermions, and since a weak

short range four-fermion interaction is irrelevant for gapless (2 + 1)d Dirac/Majorana

fermions, only strong enough interaction can gap out the quantum phase transition.

Thus unlike the 1d analogue discussed in Sec. 4.2.2, we expect that in this 2d system

only strong enough interaction can “assist” disorder and localize all the excited states

even for n = 4k.

4.3 Summary

In this chapter, we propose a simple rule to determine whether a local Hamiltonian

with symmetry can be many-body localized. Since MBL is a phenomenon for the entire

spectrum, we need to start with a lattice Hamiltonian for our analysis. Therefore the

low energy field theory descriptions and classification of SPT states such as the Chern-

Simons field theory [19] and the nonlinear sigma model field theory [90] will not be able

to address this question. Instead, our argument is based on the nature of the ground

and top states of the same lattice Hamiltonian. Our argument is general enough, that it

can be applied to both free and interacting systems, bosonic and fermionic SPT systems.
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And counterintuitively, we found that because interactions change the classification of

fermionic topological insulators and topological superconductors, in some cases interac-

tions actually assists localization, rather than delocalization.

4.4 Permissions and Attributions

The content of this chapter is the result of a collaboration with Zhen Bi, Yi-Zhuang

You, and Cenke Xu, and has previously appeared in [137]. The authors are grateful to

Chetan Nayak for very helpful discussions. The authors are supported by the the David

and Lucile Packard Foundation and NSF Grant No. DMR-1151208.
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Chapter 5

Disordered XYZ Spin Chain

Simulations using the Spectrum

Bifurcation Renormalization Group

We study the disordered XYZ spin chain using the recently developed Spectrum Bifur-

cation Renormalization Group (SBRG) [138] numerical method. With strong disorder,

the phase diagram consists of three many body localized (MBL) spin glass phases. We

argue that, with sufficiently strong disorder, these spin glass phases are separated by

marginally many-body localized (MBL) critical lines. We examine the critical lines of

this model by measuring the entanglement entropy and Edwards-Anderson spin glass

order parameter, and find that the critical lines are characterized by an effective central

charge c′ = ln 2. Our data also suggests continuously varying critical exponents along

the critical lines. We also demonstrate how long-range mutual information introduced in

[4] can distinguish these phases.
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5.1 Introduction

Quantum phase transitions [139] were previously discussed as transitions between

ground states of quantum many-body systems at zero temperature. The conventional

wisdom is that highly excited states of a many-body system at finite energy density are

typically self-thermalized following the eigenstate thermalization hypothesis (ETH) [140,

24, 141]. However, later it was realized that many-body localized (MBL) systems [142, 23,

143, 28, 144, 25] – typically systems with quenched disorder – can evade thermalization

and exhibit robust quantum coherence and non-ergodic dynamics even at finite energy

density. The phenomenon of many-body localization (MBL) enables quantum phase

transitions to occur at a finite energy density between different MBL quantum phases

[145, 146, 147, 148, 149, 150]. The corresponding quantum critical points are marginally

localized [151] and are thus known as marginal MBL states (or quantum critical glasses)

[152]. Similar to MBL states, marginal MBL states are also non-ergodic, and can be

specified by an extensive number of quasi-local integrals of motion (LIOM) [153, 154,

155]. Unlike the typical MBL states, the marginal MBL states exhibit critical behaviors,

including the logarithmic scaling of entanglement entropy (in 1D) and the power-law

decay of disorder-averaged correlation functions and mutual information.

In this work, we will study the marginal MBL states in a 1D XYZ spin model using

the spectrum bifurcation renormalization group (SBRG) numerical method introduced

in [138]. SBRG is another version of the excited-state real space renormalization group

(RSRG-X) [156, 147, 145, 149], which is specifically designed for the class of MBL models

that has a bifurcating spectrum branching structure at each renormalization group (RG)

step. The idea of SBRG is similar to RSRG-X, which targets the full many-body spectrum

rather than just the ground state. Given a many-body Hamiltonian H with strong

disorder, at each RG step, the leading energy scale term (the strongest local term) H0 in
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the Hamiltonian H is first selected, and the whole Hamiltonian H is rotated to the block

diagonal basis of H0. The block off-diagonal terms, which resonate between different

H0 eigen sectors, are treated as perturbations and are reduced to effective terms within

the diagonal block via second order perturbation. The RG procedure gradually block

diagonalizes the many-body Hamiltonian until it is fully diagonalized. 1 The resulting

effective Hamiltonian Heff can be viewed as the RG fixed point Hamiltonian for the

MBL system [157, 26, 153, 158, 154], which encodes the full many-body spectrum. The

RG transformations can be collected and combined into a unitary quantum circuit URG

(Fig. 5.11, 5.12), which encodes the matrix product state (MPS) approximations for all

eigenstates. Various physical properties of the MBL (and marginal MBL) system can

be calculated based on the data of Heff and URG generated by SBRG. Unlike RSRG-X,

SBRG does not explicitly choose a specific eigen sector at each RG step. Instead, the

spectrum branching is encoded implicitly in the flow of the Hamiltonian, such that the

entire spectrum is targeted during each RG flow.

There has been a long history of using the real space renormalization group (RSRG)

method to study disordered spin chains.[159, 160, 161, 162, 163] RSRG was originally

proposed as a ground state targeting approach, and has been applied to the random

Heisenberg,[159] transverse field Ising,[161, 163] XY and XXZ [162] spin chains. It was

found that ground states of (clean) quantum critical spin chains (e.g. Ising, XX or

Heisenberg) could be unstable to random exchange couplings and flow to the infinite

randomness (strong disorder) fixed-point. Whether the critical phenomena of the infi-

nite randomness fixed-point persists at finite energy density is further discussed in the

context of MBL using RSRG-X and other methods [147, 149, 145, 164]. The current

understanding is that the strong disorder criticality could persist to finite energy density

as marginal MBL states in quantum Ising chains. [147] But for (planar) XXZ and Heisen-

1See Appendix 5.B for details of the SBRG method.
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berg chains, the marginal MBL state is unstable towards thermalization or spontaneous

symmetry breaking [149, 164], due to the extensive number of local degeneracies dictated

by the symmetry group. Take the random XXZ chain for example, the symmetry group

U(1) o Z2 is a product of the spin-Z conservation and the spin-flipping Z2 symmetry.

Following the argument given in [165], the symmetric marginal MBL state, if possible,

should be characterized by a set of quasi-LIOM, which form irreducible representations

of the U(1) o Z2 symmetry group. However, the U(1) o Z2 symmetry enforces a local

degeneracy between states of opposite spin-Z for every quasi-LIOM. As a result, the finite

energy density eigenstates in the many-body spectrum are all exponentially degenerate.

Because the extensive degeneracy is unstable to quantum fluctuations, the eigenstates

must either localize to symmetry breaking spin glass states or thermalize, both of which

destroy the quantum criticality.

So to explore marginal MBL phases in 1D spin systems, we must sufficiently break

the symmetry to remove all local degeneracies. This motivates us to look at the XYZ

spin chain, with independently random XX, YY and ZZ couplings on each bond. The

symmetry is broken down to Z2
2, such that local degeneracies are completely removed

(because Z2
2 has no irreducible representations beyond the one-dimensional representa-

tions). Therefore, marginal MBL states of the XYZ spin chain can be stable at finite

energy density against thermalization and spontaneous symmetry breaking as long as the

disorder is strong enough. Due to the discrete Z2
2 symmetry, at each RG step there is

only one unique leading energy scale term that bifurcates the spectrum. This is precisely

the type of model that SBRG was designed to target.

Apart from the above symmetry considerations, strong disorder is another key ingre-

dient to keep the marginal MBL states from thermalizing. We introduce the standard
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deviation of the logarithmic scale of the coupling strengths

Γ = std(ln |J |) (5.1)

(where J appears as coefficients in the Hamiltonian, e.g. Eq. 5.2) to compare the strength

of three often used disorder distributions: uniform, Gaussian, and the power-law distribu-

tion which will be used in this work. Physically, Γ describes how much different couplings

are separated in their energy scales. Well separbated energy scales in the large Γ limit

suppress the resonance between energy levels, and hence hinders thermalization. Our

finite-size exact diagonalization (ED) study (Appendix 5.D) indicates that Γ ' 1 is not

sufficient to stabilize the marginal MBL phases in the XYZ model against thermaliza-

tion. Therefore, instead of drawing the coupling strengths from uniform distributions

(Γ = 1) or Gaussian distributions (Γ ≈ 1.1), we need to take power-law distributions

(Appendix 5.C.1) whose Γ can be tuned all the way to infinity. We will typically take

Γ = 4 as the initial distribution in our calculation. SBRG is well-suited to study such

strong disorder spin systems, as the SBRG algorithm is asymptotically accurate in the

large Γ limit.

In the following, we will first introduce the model and present the phase diagram.

Then we focus on a high symmetry line in the phase diagram, and investigate the MBL

spin glass phase and marginal MBL critical phase in detail. In particular, we calculate the

entanglement entropy, Edwards-Anderson correlator and long-range mutual information.

We found that the marginal MBL critical line is characterized by an effective central

charge c′ = ln 2. Our data also suggest continuously varying exponents along the critical

line.
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5.2 XYZ Spin Chain Model

We study the XYZ spin chain with large disorder and periodic boundary conditions.

The Hamiltonian is given by

H =
L∑
i=1

∑
µ=x,y,z

Ji,µ σ
µ
i σ

µ
i+1. (5.2)

σµi with µ = 1, 2, 3 are Pauli matrix operators on lattice site i of a 1d chain of length L.

The couplings Ji,µ ∈ [0, Jµ] are randomly drawn from a power-law distribution

PDF(Ji,µ) =
1

ΓJi,µ

(
Ji,µ
Jµ

)1/Γ

, (5.3)

where 0 < Γ < ∞ (see Eq. 5.1) controls the disorder strength (for details see Ap-

pendix 5.C.1). Equivalently, J
1/Γ
i,µ ∈ [0, J

1/Γ
µ ] is uniformly distributed. For later conve-

nience, we define

J̃µ ≡ J1/Γ
µ , (5.4)

and take J̃µ = J̃x, J̃y, J̃z as our primary tuning parameters (see Appendix 5.C.2 for an

explanation). We will be interested in the entire energy spectrum of this model, as

opposed to just the low energy states.

Beside the exact global symmetry Z2
2, the model also has some statistical symmetries,

which are valid only in the statistical sense over the ensemble of the disordered Hamiltoni-

ans. When Jx = Jy (and similarly for Jy = Jz and Jz = Jx), the distribution of Hamilto-

nians H has a Z2 symmetry which swaps Ji,x ↔ Ji,y. When Jx = Jy = Jz, the distribution

of Hamiltonians has an S3 permutation symmetry which permutes Ji,x ↔ Ji,y ↔ Ji,z.

For any Jµ, the distribution of Hamiltonians also has translation symmetry. Imposing

these statistical symmetries can be used to easily fine tune the XYZ model to its critical

phases.

In the existing literature, the RSRG-X approach [147, 149, 145, 164] has been suc-

cessfully applied to analyze various marginal MBL phases in disordered spin systems.
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However, it is challenging to apply the traditional closed-form RSRG-X analysis to the

XYZ model, even near the free fermion soluble points (such as Jx = Jy and Jz → 0).

At the free fermion soluble point, the spin system can be mapped to two independent

Majorana chains with uncorrelated randomness, which allows the standard bond decima-

tion RG scheme to be applied independently on each chain. However, once the fermion

interactions (Jz terms) are introduced to the system, the two Majorana chains are cou-

pled together as a ladder lattice. The independent bond decimation on both chains

will quickly distort the ladder lattice and generate complicated configurations of multi-

fermion interactions, which can not be tracked in closed-form. Therefore, we turn to

the numerical approach of SBRG, which can keep track of all orders of multi-fermion

interactions generated under the RG flow.

In the following, we will study the XYZ model by applying SBRG. We will show results

for Γ = 4 initial randomness, for which SBRG agrees well with exact diagonalization on

small latices (data not shown in this paper), and our approximations appear to be safe

(see Appendix 5.B.1 and 5.D, and Sec. 5.3.2). We will also limit our system sizes to

L ≤ 256 because our current implementation of SBRG does not produce accurate results

for larger system sizes on the critical lines of the XYZ model.

5.3 Phase Diagram

5.3.1 Spin Glass Phases

With large disorder and at finite energy density, there are three spin glass phases

(Fig. 5.1). We find that if J̃z is the largest coupling constant (i.e. J̃z > J̃x and J̃z > J̃y),

then the system is in an MBL spin glass phase where the correlator σzi σ
z
j shows long

range glassy behavior. That is, σzi σ
z
j develops a finite overlap with products of the local
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Figure 5.1: Ternary plot of the disorder and energy averaged entanglement entropy SE

[bit] (≡ SE/ ln 2) (Eq. 5.6) of a subsystem of length L/2 (top) and Edwards-Anderson
correlator (Eq. 5.9) (bottom) vs coupling constants (0 < J̃x,y,z < 1) for the XYZ
spin chain of length L = 256. We use this plot to sketch the phase diagram. When
J̃z > max(J̃x, J̃y), the system is in a Z2 spin glass state. When J̃z < J̃x = J̃y, the
system is in a marginal MBL phase. (The other phases are given by permutations of
x, y, z.) The white dots correspond to the points in the phase diagram that are shown
in Fig. 5.4, 5.5, 5.7.
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integrals of motion (LIOM) τ zs of the MBL phase (see Eq. 5.12 in Appendix 5.A), and

is thus roughly conserved. This finite overlap results in an Edwards-Anderson correlator

that asymptotes to a nonzero constant at large distance, which we take to be the primary

signature of a spin glass phase.

5.3.2 Critical Phases

With sufficiently strong disorder, the spin glass phases appear to be separated by a

critical lines (e.g. J̃z ≤ J̃x = J̃y) consisting of marginal MBL phases, which is evidenced

by the fact that the entanglement entropy diverges logarithmically (Fig. 5.4) in this

phase. In Fig. 5.2 we provide evidence that the critical (J̃z ≤ J̃x = J̃y) to spin glass

(J̃z > J̃x = J̃y) phase transition is continuous and occurs exactly at Jx = Jy = Jz

by showing evidence that the long-range spin glass Edwards-Anderson correlator is zero

when J̃z ≤ J̃x = J̃y and increases continuously for J̃z > J̃x = J̃y. An example of how the

LIOM look in this phase is shown in Fig. 5.11.

Marginal MBL vs Thermal

With sufficiently large disorder, SBRG depicts the critical phase as marginally MBL

as SBRG finds a logarithmically diverging entanglement entropy in this phase. However,

SBRG is not capable of describing thermalization, and so one should worry that resonance

effects may thermalize the critical phase. Indeed, the instability of marginal MBL phase

to thermalization has been demonstrated in other 1D spin models. [149, 164] Thus, it is

crucial to check the approximations made by SBRG, in order to verify that an exact RG

does not flow toward thermalization. In Appendix 5.D we do a brief exact diagonalization

study to check that with strong disorder, the system is not thermal. Below, we will study

the evidence against thermalization by using SBRG.
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Figure 5.2: Disorder and energy averaged Edwards-Anderson correlator (Eq. 5.9)
at separation x = L/2 vs J̃z for different system sizes L in the XYZ spin chain
with J̃x = J̃y = 1. In the critical phase, the Edwards-Anderson correlator decays
algebraically to zero; while in the spin glass phase, the Edwards-Anderson correlator
asymptotes to a constant. Furthermore, as one tunes J̃z from the critical phase to
the spin glass phase, the Edwards-Anderson correlator becomes nonzero continuously
at J̃z = 1, indicating that this marks the location of a continuous phase transition.
(error bar details: [166])
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The core approximation made by SBRG is the validity of the second order pertur-

bation theory used by each RG step. This and other approximations are explained in

detail and accounted for in Appendix 5.B.1. However, even though these approximations

are controlled by strong disorder, one could still worry that errors may build up during

the RG flow and cause SBRG to incorrectly depict the critical phase as a marginal MBL

phase, even if the critical phase is actually thermal.

At intermediate RG steps, a cluster of n “LIOM” could resonate and become thermal-

ized by an off-diagonal term that mixes (i.e. anticommutes with) them if the energy of the

off-diagonal term εmix is larger than the smallest energy difference ∆E of the n “LIOM”:

i.e. if εmix > ∆E. The verified assumptions Eq. 5.14 and 5.15 imply that this rarely

occurs for small n. However, one might worry that large clusters of n “LIOM” could

be thermalized by rare off-diagonal terms [167]. But a cluster of n LIOM will describe

2n states, and thus typically have a smallest energy level spacing equal to ∆E ∼ 2−n

(because our model has a small symmetry, there is no symmetry protected degeneracy

in this cluster); while below we argue that off-diagonal terms at intermediate RG steps

will have energies of order εmix . e−Γn, which is much smaller than ∆E ∼ 2−n for large

disorder Γ. Thus, εmix � ∆E and so it seems unlikely that enough clusters of n “LIOM”

could resonate to thermalize the system.

To show that εmix . e−Γn, we note that at intermediate RG steps, the energies of off-

diagonal terms mixing n “LIOM” should be roughly bounded by the the largest n-body

coefficient h
(n)
max of the effective Hamiltonian Heff (Eq. 5.12): εmix . h

(n)
max. And in Fig. 5.3

we show that h
(n)
max decays exponentially with Γn:

h(n)
max ≡ max

ij...
|h(n)
ij...| (5.5)

∼ e−Γn

Thus εmix . h
(n)
max ∼ e−Γn.
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Figure 5.3: Disorder average of log2(h
(n)
max)/Γ vs n for different amounts of disorder

Γ where h
(n)
max ≡ maxij... |h(n)

ij...| (Eq. 5.5) is the largest n-body coefficient h
(n)
max of the

effective Hamiltonian Heff at the critical point J̃x = J̃y = J̃z = 1. As the disorder
Γ increases, the data converges to a single straight line. For large n, the data drops
below the linear fit line. This is expected to be an artifact of dropping terms in SBRG

(see Sec. 5.B.3 for details). Solving for h
(n)
max gives h

(n)
max ∼ e−Γn as in Eq. 5.5, which

completes our argument that the critical line is marginally MBL. (error bar details:
[166])
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5.4 Entanglement Entropy

The entanglement entropy is a useful tool to probe quantum phase transitions from

the entanglement patterns of the many-body state, and has the nice property that one

does not have to pick the right order parameter. Instead, one only has to choose a useful

subsystem geometry. SBRG can efficiently calculate [138] entanglement entropies using

the stabilizer rank algorithm introduced by [168].

The entanglement entropy SE of a subsystem A for a wavefunction |ψ〉 is defined to

be

SE(A) ≡ −Tr[ρA ln ρA] (5.6)

ρA = Tr
A
|ψ〉 〈ψ|

where TrA means that degrees of freedom not in A are traced out. The disorder config-

uration (δ) and energy (E) averaged entanglement entropy is then

avg SE(A) ≡ 1

Nδ

∑
δ

1

NE

∑
E

SE(A) (5.7)

where ψ and thus ρA in Eq. 5.6 depend on δ and E. We average over all energy eigenstates

because we’re interested in the entire spectrum of states. Additionally, in the strong dis-

order limit, the LIOM take the form of products of Pauli matrices, and the eigenstates of

these LIOM (and the Hamiltonian) all have the same entanglement entropies. However,

this is only a special feature of Pauli-like LIOM in the strong disorder limit. Away from

the strong disorder limit, the LIOM will be further dressed by higher order corrections,

such that different eigenstates will not have identical entanglement structures. Neverthe-

less, the difference of entanglement entropies across the spectrum will be relatively small

in the strong disorder regime. So we will neglect the spectral dependence, and consider

the energy averaged entanglement entropy.
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First, we will take the subsystem A to be a line segment of length `. We will be

interested in how the entanglement entropy scales as the subsystem length ` increases.

Later, in Sec. 5.6 we will use more complicated subsystem geometries in order to study

the long range mutual information of the XYZ model. As shown in Fig. 5.4, in the

spin glass phases, the entanglement entropy SE asymptotes to a constant with increasing

subsystem length ` since it is a short range correlated phase. Furthermore, SE ≥ ln 2 due

to the spin glass order. These results can be understood deep in the spin glass phase via

the LIOM in Eq. 5.28 from the stabilizer rank algorithm. [168, 138] See Appendix 5.E

for details.

In the critical phases, the entanglement entropy SE appears to diverge logarithmically

with subsystem length ` (Fig. 5.4):

SE(`) =
c′

3
ln ` (5.8)

c′ = ln 2

The constant c′ is the effective central charge, which is postulated to be related to the

central charge c without disorder by c′ = c ln 2 [169] (for Ising and Heisenberg types of

models). Without disorder, the XYZ model has c = 1 in the critical phase, and so we

expect and observe c′ = ln 2 in our disordered model (Fig. 5.4). The logarithmically

diverging entanglement entropy in Eq. 5.8 is a result of the LIOM becoming nonlocal

(see Fig. 5.11). This causes more LIOM to be cut by the subsystem A and enter the

entanglement entropy equation Eq. 5.29.

5.5 Edwards-Anderson Correlator

A common approach to characterize glassy order is the Edwards-Anderson correlator.

The disorder and energy averaged Edwards-Anderson spin glass correlator of σµ0σ
µ
x is
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Figure 5.4: (top) Disorder and energy averaged entanglement entropy SE [bit]
(≡ SE/ ln 2) (Eq. 5.6) vs subsystem length ` for different J̃z in the XYZ spin chain
with J̃x = J̃y = 1 and system size L = 256. When J̃z > 1, the system is a spin
glass and the entanglement entropy follows an area law for large subsystems. When
J̃z is only slightly larger than 1, e.g. J̃z = 3/2, there appears to be large finite size
effects. When J̃z ≤ 1, the system is critical and the entanglement entropy follows a
log law SE(`) ∼ c′

3 ln `, and the effective central charge c′ is estimated using the slope

of the fit to the ` = 1
2

√
L,
√
L, 2
√
L data points. (bottom) Effective central charge c′

(Eq. 5.8) vs J̃z for different system sizes L in the XYZ spin chain with J̃x = J̃y = 1.
For all J̃z < 1, the effective central charge appears to be consistent with c′ = c ln 2
[169] where c = 1 is the central charge without disorder. (error bar details: [166])
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defined to be

avg 〈σµ0σµx〉
2 ≡ 1

Nδ

∑
δ

1

NE

∑
E

〈E|σµ0σµx |E〉
2
δ (5.9)

It is the average of the square of 〈σµ0σµx〉 over disorder configurations (δ) and energies

(E). σµ0 and σµx are Pauli matrices at lattice sites 0 and x, respectively. We average

over all energy eigenstates because we’re interested in the entire spectrum of states.

Additionally, in the strong disorder limit, the LIOM take the form of products of Pauli

matrices, and the eigenstates of these LIOM (and the Hamiltonian) all have the same

Edwards-Anderson Correlators.

If J̃z > J̃x and J̃z > J̃y, the system is in a σzσz spin glass phase and the σzσz

Edwards-Anderson correlator (Eq. 5.9) asymptotes to a constant for large distance x

(with exponentially small corrections) (Fig. 5.5). Physically, this implies that σzi σ
z
j has

developed a finite overlap with products of the local integrals of motion (LIOM) (Eq. 5.12)

of the MBL phase, and is thus roughly conserved. However, the σxσx and σyσy correlators

decay exponentially with distance x, as expected.

When J̃z < J̃x = J̃y, the system is in a marginal MBL critical phase between σxσx

and σyσy spin glasses (Fig. 5.1). The spin configuration in the marginal MBL state is

dominated by nested domains of σxσx and σyσy Ising spin glass orders. The domains

have fractal structures throughout the lattice, leading to the power-law decay of σµσµ

Edwards-Anderson correlators (µ summation not implied) with critical exponents ηxy

and ηz (Fig. 5.6):

avg 〈σx0σxx〉
2 = avg 〈σy0σyx〉

2 ∼ x−ηxy

avg 〈σz0σzx〉
2 ∼ x−ηz (5.10)

Unlike the effective central charge c′ (Eq. 5.8) which remains fixed, ηxy (ηz) appears to

increase (decrease) continuously with increasing J̃z. The power-law decay of σzσz can
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Figure 5.5: Disorder and energy averaged Edwards-Anderson σxσx (top) and σzσz

(bottom) correlators (Eq. 5.9) vs distance x for different J̃z in the XYZ spin chain
with J̃x = J̃y = 1 and system size L = 256. When J̃z > 1, the system is a σzσz spin
glass phase, and the σxσx correlator decays exponentially while the σzσz correlator
asymptotes to a constant. When J̃z is only slightly larger than 1, e.g. J̃z = 3/2,
there appears to be moderate finite size effects. When J̃z < 1, the system is critical
with power law σµσµ correlators (µ summation not implied) with critical exponents
ηxy and ηz (Eq. 5.10, Fig. 5.6), which were calculated using the slope of the fit to the
x = 1

2

√
L− 1,

√
L− 1, 2

√
L− 1 data points. (error bar details: [166])
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Figure 5.6: Critical exponents ηxy and ηz (Eq. 5.10) vs J̃z with J̃x = J̃y = 1 for
the XYZ spin chain of various system sizes L. ηxy (ηz) appears to increase (decrease)
continuously as J̃z increases. At least for J̃z > 1/2, we do not expect the continuously
varying exponents to be a result of finite size effects because η shows very little system
size dependence in the above plot. The critical exponents were calculated as shown
in Fig. 5.5. (error bar details: [166])
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be understood in the limit Jz = 0, where the system can be mapped to two independent

free random Majorana fermion chains.

5.6 Long Range Mutual Information

In Sec. 5.4 we used the entanglement entropy to diagnose the critical phase as a

marginal MBL phase due to its logarithmically diverging entanglement entropy (Eq. 5.8).

However, only studying the asymptotics of the entanglement entropy SE(`) for large con-

nected subsystem has some limitations. For example, SE(`) can not firmly distinguish a

trivial phase from a spin glass, since both just asymptote to a constant. Instead of study-

ing the entanglement entropy of just a single connected subsystem, it has been proposed

to study the long range mutual information (LRMI) between two disconnected subsys-

tems with large separation [4]. The mutual information I between two non-overlapping

subsystems A and B is defined to be

I(A,B) = SE(A) + SE(B)− SE(A ∪B) (5.11)

We will take subsystems A and B to be lines of length ` with separation given by x as

shown in Fig. 5.7 (bottom). We will be interested in the L =∞ limit of the asymptotics

of the LRMI I`(x) as the separation x tends to infinity while the subsystem length ` is

held fixed. Since the mutual information is also an upper bound of correlation functions,

in principle, the mutual information should decay slower than any correlation function.

In a direct product state with no spin glass order (which doesn’t exist in the XYZ

model), far apart regions share little entanglement, and thus the LRMI should decay

exponentially. In a spin glass phase there is long range glassy order, and the LRMI

asymptotes to a constant (Fig. 5.7). Thus, LRMI can easily distinguish a trival phase

from a spin glass phase. This fact could be very useful in more complicated models where
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Figure 5.7: Disorder and energy averaged long range mutual information (LRMI) I
of two subsystems (of length ` = 1 (top) and ` = 4 (middle)) vs subsystem separation
x for different J̃z in the XYZ spin chain with J̃x = J̃y = 1 and system size L = 256.
Subsystem length ` and separation x are defined as shown in the bottom diagram.
When J̃z > 1, the system is in a spin glass phase, and the LRMI asymptotes to a
constant. When J̃z is only slightly larger than 1, e.g. J̃z = 3/2, there appears to be
moderate finite size effects. When J̃z ≤ 1, the system is in a marginal MBL phase, and
the LRMI decays according to a power law with a critical exponent κ: I`(x) ∼ (x/`)−κ.
The critical exponent κ does not appear to depend on the subsystem length `, but
it does appear to increase continuously with J̃z, unlike the effective central charge c′

which remains fixed (Fig. 5.4). If the above plots were drawn on top of each other,
the critical J̃z ≤ 1 data would very nearly overlap, which implies that changing ` just
rescales x as one would expect in a scale invariant system: I`(x/`) ≈ I`′(x/`′). (error
bar details: [166])

94



Disordered XYZ Spin Chain Simulations using the Spectrum Bifurcation Renormalization Group
Chapter 5

finding the right order parameter is difficult. Finally, in a critical phase in any dimension,

the LRMI is expected to decay according to a power law with some critical exponent κ:

I`(x) ∼ (x/`)−κ. In the XYZ model, a power law is indeed observed (Fig. 5.7). Since the

mutual information should not decay faster than the correlation functions, we at least

expect κ ≤ min(ηxy, ηz), which is also verified within the numerical error. The critical

exponent κ does not seem to depend on the subsystem length `; but κ does appear to

increase continuously with J̃z, unlike the effective central charge c′ which remains fixed.

Thus, the LRMI can efficiently tell if a phase is a trivial, spin glass, or marginal MBL

critical phase; and works as expected in the XYZ model (Fig. 5.7).

5.7 Conclusion

In conclusion, we have studied the XYZ spin chain with independently random XX,

YY, and ZZ couplings on each bond. Unlike the random XXZ or Heisenberg models,

the XYZ model breaks the continuous spin rotational symmetry down to the discrete Z2
2

symmetry, such that the quantum phase transitions between different symmetry-breaking

spin glass phases can persist to finite energy density as marginal MBL critical lines.

We use the SBRG numerical method to calculate the entanglement entropy, Edwards-

Anderson correlator, and long-range mutual information. In the MBL spin glass phase,

the entanglement entropy follows the area-law scaling and quickly saturates to a value of

SE ≥ ln 2. Both the Edwards-Anderson correlator and the long-range mutual information

exhibit long-range behavior, demonstrating spin glass order. Along the marginal MBL

critical line, the entanglement entropy follows the logarithmic scaling SE(`) = (c′/3) ln `,

with a fixed effective central charge c′ = ln 2. Both the Edwards-Anderson correlator

and the long-range mutual information decays in a power-law, and the critical exponents

varies continuously along the marginal MBL line.
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5.A Many Body Localization

A Hamiltonian is said to be fully many body localized (MBL) if all eigenstates in

the many-body spectrum are localized [25]. It is believed that there exists a finite local

unitary transformation U that can diagonalize the MBL Hamiltonian H:

Heff = UHU † (5.12)

=
∑
i

h
(1)
i τ zi +

∑
ij

h
(2)
ij τ

z
i τ

z
j +

∑
ijk

h
(3)
ijkτ

z
i τ

z
j τ

z
k + · · ·

where the τ zi are the LIOM. The fact that U is a finite local unitary transformation means

that it can be written as a finite time evolution of a time dependent local Hamiltonian

with bounded spectrum. This implies that the LIOM Uτ zi U
† must be local operators

(with exponentially decaying tails). This implies that the eigenstates of an MBL Hamil-

tonian display an area law entanglement (Fig. 5.4), as opposed to the volume law seen

in excited states of thermal systems. An example of such a U can be inferred from

Fig. 5.12. Furthermore, the h
(n)
ijk... decay exponentially with n (Fig. 5.3) and distance

max(|i− j|, |i− k|, |j − k|, . . . ). This implies that in an MBL system, the time evolution

of a direct product state displays an entanglement entropy which increases only logarith-

mically with time [26, 27, 28], instead of linearly as in thermal systems. This implies
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that an MBL system can’t efficiently spread entanglement, and thus can’t act as its own

heat bath.

5.A.1 Marginal MBL

If one observes a phase transition between two fully MBL phases, then it’s possible

that the critical point between them is a marginal MBL phase. A margin MBL phase

doesn’t obey Eq. 5.12 with the same restrictions for the unitary transformation U and

coefficients h
(n)
ijk.... For example, the LIOM in the original bases Uτ zi U

† become nonlocal

[138], which implies that U can’t be a finite local unitary transformation. In SBRG, the

unitary transformation U that is found is nonlocal and requires a time evolution that

diverges logarithmically with the system size, as can be inferred from Fig. 5.11.

5.B Spectrum Bifurcation Renormalization Group

In this work, we use the recently developed Spectrum Bifurcation Renormalization

Group (SBRG) [138] to simulate the XYZ model. SBRG is similar to RSRG-X [147],

and behaves similarly to RSRG-X for the models on which RSRG-X can be applied.

However, SBRG differs in that it (approximately) computes the commuting local integrals

of motion (LIOM) (also know as localized-bit [158] stabilizers) of a Hamiltonian, and

therefore targets the entire spectrum at once; while RSRG-X targets a specific eigenstate

energy at a time. That is, given an arbitrary local Hamiltonian H written in terms

of physical spins σµi , SBRG computes the unitary transformation U to a set of LIOM

Pauli operators τµi such that H can be written as the sum of products of commuting τ zi

operators with coefficients (h
(1)
i , h

(2)
ij , h

(3)
ijk, ...) as in Eq. 5.12. The unitary transformation

U is encoded using alternating C4 transformations (see end of Appendix 5.B.1) and small

Schrieffer-Wolff perturbations (Eq. 5.16).
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With this information, SBRG can efficiently compute many quantities of interest such

as Edwards-Anderson spin glass order parameters, the energy spectrum, entanglement

entropies, and other LIOM properties. One advantage of SBRG is that it can handle

Hamiltonian terms which are arbitrary local products of sigma matrices. This should be

contrasted with other real space RG schemes (such as RSRG-X [147]) which require a

specific Hamiltonian that is of closed form under RG. For example, next nearest neighbor

terms often are not allowed to be created by the RG step of other methods. This flexibility

allows SBRG to be applied to a large class of spin systems in all dimensions, including

systems with topological order and symmetry protected topological order.

However, the price paid for this generality is that the Hamiltonian is not of closed

form under RG, which results in exponentially many terms generated by the RG flow.

Many of these terms will need to be dropped in order to preform computations efficiently.

In this work, up to 256 addition off-diagonal terms are allows to be added during each

RG step. This approximation seems to work well for systems with large disorder and

deep in the fully MBL phase; but in marginal MBL phases, very large system sizes can

become problematic. However, for the XYZ chain, it appears that reasonably accurate

simulations can still be performed for systems of roughly 256 spins in the marginal MBL

phase, and at least 10,000 spins deep in the MBL phase.

5.B.1 RG Step and Approximations

In SBRG, the Hamiltonian of a system is written as a linear combination of tensor

products of pauli matrices:

H =
∑
[µ]

h[µ]σ
[µ] =

∑
[µ]

h[µ] ⊗i σµi (5.13)

As described in Appendix A2 of [138], for each RG step, the term h3σ
[µ3] with the largest

coefficient h3 is chosen to be the next local integral of motion (LIOM) since it describes
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the leading energy scale. However, σ[µ3] doesn’t yet commute with the Hamiltonian H.

The Hamiltonian can be split into three parts

H = h3σ
[µ3] + ∆ + Σ

where ∆ commutes with σ[µ3] while Σ anticommutes with σ[µ3]. In order to make σ[µ3]

into a LIOM, we must eliminate Σ. First assume that

|Σ| � h3 (5.14)

max
∆0∈∆,[Σ,∆0]6=0

|∆0| � h3 (5.15)

where |Σ| ≡
√

2−L Tr(Σ · Σ†) and max∆0∈∆,[Σ,∆0]6=0 |∆0| is the absolute value of the

largest pauli matrix coefficient of all terms in ∆ that don’t commute with Σ. Fig. 5.8

provides evidence that these assumptions are valid. (RSRG-X depends on a similar

set of assumptions.) With these assumptions, a Schrieffer-Wolff transformation can be

performed in order to eliminate the off-diagonal component Σ to order O(h−2
3 ):

S = exp

(
− 1

2h3

σ[µ3]Σ

)
(5.16)

= 1− 1

2h3

σ[µ3]Σ− 1

8h2
3

Σ2 +O(h−3
3 )

H → H ′ = S†HS

= h3σ
[µ3] + ∆ +

1

2h3

σ[µ3]Σ2 (5.17)

+
1

2h3

σ[µ3][Σ,∆] +O(h−2
3 )

The first approximation (Eq. 5.14) allows the unitary S to be expanded and implies that

the third term in H is small: 1
2h3
σ[µ3]Σ2 ∼ O(h−1

3 ). Although the first three terms of

H ′ (Eq. 5.17) commute with σ[µ3], the final term ( 1
2h3
σ[µ3][Σ,∆]) does not. This term

must be removed since it’s O(h−1
3 ), which is the leading order in the new terms that

are generated by the RG step. However, this term can be ignored since another unitary
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transformation can eliminate it at the expense of only O(h−2
3 ) terms:

H ′ → H ′′ = U †HU

= h3σ
[µ3] + ∆ +

1

2h3

σ[µ3]Σ2 +O(h−2
3 ) (5.18)

The second approximation (Eq. 5.15) is used to to claim that the last term in Eq. 5.17

is indeed O(h−1
3 ).

Thus, σ[µ3] is a LIOM of H ′′ at order O(h−2
3 ) if we can assume Eq. 5.14 and 5.15.

In Fig. 5.8 we show that these appear to be safe and controlled approximations for

sufficiently large Γ in the critical phase. (The approximations are even better in the spin

glass phase.) The first approximation (Eq. 5.14) gets better under RG flow, while the

second (Eq. 5.15) does not show a clear trend. If the second approximation is actually

getting worse under RG, this might suggest that the critical phase in the XYZ model is

actually thermal.

Now that σ[µ3] commutes with the Hamiltonian, we may want to perform a change of

basis σ[µ3] → τ 3
j . Any integer j can be used as long as it hasn’t been used before. E.g.

j could be chosen to indicate the RG step number, or the rough position of σ[µ3] on the

lattice. In practice, it is convenient to use the same Hilbert space for σ and τ . This can

be done by rotating σ[µ3] → σ3
j using a unitary transformation composed of one or two

C4 transformations exp
(

iπ
4
σ[µ]
)

as described in [138].

5.B.2 Edwards-Anderson Correlator via SBRG

Given a Hamiltonian H, SBRG calculates the Schrieffer-Wolff transformation Stot =∏
Sj (Eq. 5.16) that rotates (Eq. 5.20) the Hamiltonian into a basis with LIOM σ

[µ3]
j .

Before applying Stot, σ
[µ3]
j are only approximate LIOM of H.

We want to calculate the energy averaged Edwards-Anderson correlator of an operator
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Figure 5.8: Disorder average of |Σ|/h3 (Eq. 5.14) (top) and max |∆0|/h3 (Eq. 5.15)
(bottom) vs amount of RG flow s ≡ log2(L/L′) for different amounts of disorder Γ
where L = 256 is the system size and L′ is the number of remaining spins. These are
the small parameters used in the approximations Eq. 5.14 and 5.15. Data is shown
at the critical point J̃x = J̃y = J̃z = 1; away from this point, these approximations
are even better. As the disorder Γ increases, the plotted values get arbitrarily small,
suggesting that these approximations can be controlled by Γ. In addition, the first
approximation (top) gets better under RG flow (for large Γ); the second (bottom)
does not show a clear trend. Similar to Fig. 5.3, the large Γ data in this plot can
also be collapsed to a single curve if f(y) = y1/Γ is applied to the data, which shows
that |Σ| ∼ max |∆0| ∼ e−Γ decreases exponentially as Γ increases. (error bar details:
[166])
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Q:

avg 〈Q〉2 ≡ 1

NE

∑
E

〈E|Q|E〉2 (5.19)

To do this, we will apply the Schrieffer-Wolff transformation to both σ[µ] and |E〉:

H → H̃ ≡ S†totHStot (5.20)

|E〉 → |Ẽ〉 ≡ S†tot |E〉 (5.21)

Q→ Q̃ ≡ S†totQStot (5.22)

=
∑
[µ]

q[µ]σ
[µ]

for some set of coefficients q[µ]. Now every σ
[µ3]
j takes a definite value for every energy

eigenstate |Ẽ〉 of H̃: σ
[µ3]
j = ±1. This implies that 〈Ẽ|σ[µ]|Ẽ〉 = ±1 if σ[µ] commutes

with all σ
[µ3]
j , otherwise it’s zero. Thus

avg 〈Q〉2 =
1

NE

∑
E

〈Ẽ|Q̃|Ẽ〉2 (5.23)

=
1

NE

∑
E

∑
[µ]

〈Ẽ|q[µ]σ
[µ]|Ẽ〉2

=
∑
[µ]

 q2
[µ] σ[µ] commutes with all σ

[µ3]
j

0 otherwise

In the second line, we were able to pull the
∑

[µ] out of 〈Ẽ| · · · |Ẽ〉2 because cross terms

cancel after the energy average. Thus, the energy averaged Edwards-Anderson correlator

can be calculated from the coefficients q[µ] of Q̃ (Eq. 5.22).

5.B.3 Algorithm and Implementation Details

Unfortunately, the Schrieffer-Wolff transformation generates an exponentially large

number of terms in Σ2 in Eq. 5.18 and Q̃ in Eq. 5.22. Thus, one must drop terms. In this
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work, for each Schrieffer-Wolff transformation, we keep the 256 largest additional terms

in Σ2 and 32 largest additional terms in Q̃.

Most operators σ[µ] in the Hamiltonian will be local. Thus, it is important to make

use of this locality when implementing SBRG. With this optimization, the CPU time

for an SBRG simulation of a Hamiltonian in an MBL phase scales linearly (up to log

corrections) with system size.

For this work, each L = 256 disorder realization data point took a couple minutes of

CPU time. However, reasonable data is achievable with only 1/8th as many additional

terms in Σ2 and Q̃, for which a simulation only takes several seconds. The SBRG data

used in this paper was calculated in roughly two weeks on a quad-core i7-3720QM un-

derclocked to 2GHz. The SBRG data included 1024 disorder realizations for each data

point. However, reasonable data was attainable with less (∼ 100) disorder realizations

and additional terms, for which only a few hours of simulation time is necessary.

For this work, the Haskell programming language was used to implement SBRG in

roughly 1000 lines of code, and the implementation has been published to github [171].

Haskell was chosen because it could produce fast code (potentially faster than C++ due

to very efficient garbage collection) while requiring the smallest amount of developer time

compared to other languages. Development time was minimized using Haskell because

Haskell is very good at dealing with complicated data structures, which were necessary

for making use of the locality of operators mentioned above. This is a result of Haskell’s

strong type system, automatic garbage collection, functional programming paradigm,

and high amount of expressiveness.

Random numbers were generated using a combined linear congruential generator

(System.Random.StdGen in Haskell) with period 261, which is much larger than the

number of random numbers used in this work, which was roughly 229.
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5.C XYZ Model Details

5.C.1 Disorder Distribution

SBRG is a numerical method which relies on large disorder for accuracy. For this

reason, it is important that we choose a disorder distribution with very large randomness.

For the XY (Jz = 0) and XXZ (Ji,x = Ji,y) spin chains, it has been shown that with large

disorder, Ji,µ flows to a power law distribution [161, 162] with a probability distribution

function (PDF) equal to

PDF(Ji,µ) =
1

ΓJi,µ

(
Ji,µ
Jµ

)1/Γ

, Ji,µ > 0 (5.24)

where Γ controls the strength of the disorder, with larger Γ corresponding to stronger

disorder. It’s useful to define βi,µ ≡ − ln
Ji,µ
Jµ
≥ 0. With this definition, βi,µ follows an

exponential distribution with a mean and standard deviation (as in Eq. 5.1) equal to Γ:

PDF(βi,µ) = Γ−1e−βi,µ/Γ , βi,µ > 0 (5.25)

It’s also useful to define J̃i,µ by Ji,µ ≡ J̃Γ
i,µ. With this definition, J̃i,µ is uniformly dis-

tributed in [0, J̃µ] where Jµ ≡ J̃Γ
µ :

PDF(J̃i,µ) = J̃−1
µ , 0 < J̃i,µ < J̃µ (5.26)

We therefore let Ji,µ follow the above (equivalent) distributions so that we can effec-

tively probe closer to the infinite system size limit while using the same physical system

size. (We assume that the disorder becomes stronger under RG in the large disorder

limit.) We will show results for Γ = 4 because this is the smallest Γ for which SBRG

agrees well with exact diagonalization on small latices (data not shown in this paper),

and for which our approximations appear to be safe (see Appendix 5.B.1 and 5.D, and

Sec. 5.3.2).
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5.C.2 Tuning Parameters

We use J̃µ as tuning parameters instead of Jµ because J̃µ are better behaved at large

disorder Γ. For example, our phase diagram in Fig. 5.1 would depend strongly on Γ if

Jµ were used as tuning parameters instead of J̃µ. However, when J̃µ are used as tuning

parameters, the phase diagram has little dependence on Γ when Γ is large; and this allows

the large disorder limit to be well defined.

A simple calculation makes this more transparent. If P (Ji,µ > Ji,ν) is the probability

that Ji,µ > Ji,ν , then P (Ji,µ > Ji,ν) → 1
2

as Γ → ∞ if Jµ is held constant. Thus large

disorder effectively washes out the differences between different Jµ and the J1 = J2 = J3

point effectively dominates the phase diagram if Jµ is held constant as Γ→∞. However,

if we define Jµ ≡ J̃Γ
µ and hold J̃µ constant instead, then P (Ji,µ > Ji,ν) is independent of

Γ. This is because

P (Ji,µ > Ji,ν) = P (J̃i,µ > J̃i,ν) since Ji,µ ≡ J̃Γ
i,µ

=


r
2

if r < 1

1− 1
2r

if r > 1

by Eq. 5.26

where r =
J̃µ

J̃ν
=

(
Jµ
Jν

)1/Γ

5.D Exact Diagonalization Study

We now study the critical point J̃x = J̃y = J̃z = 1 using exact diagonalization to

check that the critical phase is not thermal. In Fig. 5.9 we show the level statistic r of

the XYZ model vs disorder strength Γ. For each disorder realization, the level statistic
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r
(a)
n is defined as a ratio of level spacings δ

(a)
n [143] in a given symmetry sector (a):

r(a)
n ≡

min(δ
(a)
n , δ

(a)
n+1)

max(δ
(a)
n , δ

(a)
n+1)

(5.27)

δ(a)
n ≡ E(a)

n − E
(a)
n−1

E
(a)
n+1 ≥ E(a)

n

For our model, there are four symmetry sectors (a) which are labeled by the eigenvalues

of the symmetry operators of our model:
∏

i σ
x
i and

∏
i σ

y
i . In Fig. 5.9 we average over

disorder realizations, level spacings n, and symmetry sectors (a). We find that with

weak disorder Γ, the level statistic approaches (with increasing system size) the GOE

(Gaussian orthogonal ensemble) level statistic rGOE ≈ 0.53, which is expected for a

thermal system. As the disorder strength increases, the level statistic drops below the

Poisson level statistic rPoisson ≈ 0.39, which suggests that the system is not thermal.

The level statistic continues below the Poisson level statistic because we use a power

law distribution of coefficients in the Hamiltonian (Eq. 5.24), instead of a uniform or

Gaussian distribution. This can be understood most easily in the J̃x = J̃y = 0 and

J̃z = 1 limit (see Fig. 5.9), where the Hamiltonian is already diagonal. When Γ = 1, we

exactly reproduce the Poisson level statistic. However, a simple numerical calculation

shows that as Γ increases, the level statistic decays to zero as a power law with increasing

Γ: r ∼ 1/Γ.

In Fig. 5.10 we show the how the entanglement scales with subsystem size. When

the disorder is weak, the system displays a volume law entanglement, as expected for

a thermal system. But for strong disorder, the entanglement increases very slowly with

subsystem size, which suggests that the strong disorder results in either a MBL phase

with area law entanglement or a marginal MBL phase with log-law entanglement. (In

Fig. 5.4 we SBRG and large system sizes to show that the entanglement follows a log-

law.) Again we see that for weak disorder Γ, the critical point is thermal, but with strong
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disorder the critical point does not appear to be thermal.

It is worth emphasizing that in both ED plots, a disorder strength of Γ = 1 (which

corresponds to uniformly distributed random coefficients Ji) was not sufficient to prevent

thermalization of the XYZ model’s critical point. Therefore, considering disordered sys-

tems with only Gaussian (with Γ ≈ 1.1 via Eq. 5.1) or uniform disorder distributions may

not always be sufficient if one is interested in observing marginal MBL critical phases.

That is, similar to the XYZ model’s critical point, other models may also require large

Γ (defined by Eq. 5.1) in order to prevent thermalizaion.
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level statistic r vs disorder strength Γ

XYZ model: J
˜
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Figure 5.9: Disorder and energy averaged level statistic r (Eq. 5.27) vs disorder
strength Γ for different system sizes L in the XYZ spin chain with J̃x = J̃y = J̃z = 1.
With weak disorder, the system approaches GOE level statistics with increasing sys-
tem size, which indicates that the system is thermal. As the disorder strength in-
creases, the level statistic drops below the Poisson level statistic, which suggests that
the system is not thermal with strong disorder. (error bar details: [166])
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Figure 5.10: Disorder and energy averaged entanglement entropy SE [bit] (≡ SE/ ln 2)
(Eq. 5.6) vs subsystem length ` for different disorder strengths Γ in the XYZ spin
chain with J̃x = J̃y = J̃z = 1 and system size L = 2` with open boundary conditions.
Each entanglement subsystem splits the system in half. We only show even ` in order
to avoid an even-odd effect. As the disorder strength Γ increases, the slope of the
data decreases to roughly zero. This suggests a transition from a thermal phase with
volume law entanglement to a non-thermal phase. (error bar details: [166])
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5.E Spin Glass Entanglement Entropy Calculation

Here we calculate the entanglement entropy of a subsystem A in the spin glass phase

using the stabilizer rank algorithm in [138]. Deep in the spin glass phase where Jz

dominates, the LIOM are given by:

τ zi = σzi σ
z
i+1 with i = 1, 2, . . . L− 1 (5.28)

τ zL =
L∏
i=1


σx if Jx > Jy

σy if Jy > Jx

Assuming i < j. We can see that in this case indeed σzi σ
z
j =

∏j−1
k=i τ

z
k is a product of the

LIOM. Only three of the LIOM will be cut by the subsystem A, which we will take to be

the sites i, i + 1, . . . j where j = i − 1 + `. These LIOM are τ zi−1, τ
z
j , τ

z
L. We then “trace

out degrees of freedom not in A” by removing σ-matrices not in A:

τ zi−1 = σzi−1σ
z
i τ zj = σzjσ

z
j+1 τ zL =

∏
i′

σxi′

↓ ↓ ↓

τ̂ zi−1 → σzi τ̂ zj → σzj τ̂ zL →
j∏

i′=i

σxi′

We then consider the 3x3 anticommutivity matrix of these three τ̂ operators:

M =
(

0 0 1
0 0 1
1 1 0

)
where a 1 denotes anticommutivity while a 0 denotes commutivity. The entanglement

entropy SE is then given by

SE =
ln 2

2
rankM (over Z2) (5.29)

= ln 2
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where the matrix rank is calculated over the field Z2. When one isn’t deep in the spin

glass phase, the LIOM become more complicated (as in Fig. 5.12); more LIOM are

cut by A; and the entanglement entropy increases slightly due to additional boundary

contributions which don’t depend significantly on the size of the subsystem A.
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holographic RG flow

XYZ model: L=256, J
˜
=(1,1,1), Γ=4

Figure 5.11: Approximate RG flow and LIOM for the XYZ spin chain at the critical
point J̃x = J̃y = J̃z = 1. The initial Hamiltonian starts at the boundary of the disk,
with a spin living at the end of each radial line at the edge of the disk. SBRG then
performs an RG which identifies a LIOM at each step of the RG (see Appendix 5.B.1).
In the limit of large disorder, the LIOM can be approximated as a product of σx (red),
σy (green), and σz (blue) matrices (dots connected by an arc line in the figure). Each
LIOM in the figure also marks the end of a radial line to denote that a degree of
freedom has been diagonalized (cf. ”integrated out“) at this RG step. Because we are
in a marginal MBL phase, LIOM exist with sizes at every length scale, which results
in the critical properties of this phase: diverging entanglement entropy (Fig. 5.4),
power-law Edwards-Anderson correlators (Fig. 5.5), and long power-law range mutual
information (Fig. 5.7).
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holographic RG flow

XYZ model: L=256, J
˜
=(1,1,2), Γ=4

Figure 5.12: Approximate RG flow and LIOM for the XYZ spin chain in the spin glass
phase with J̃ = (1, 1, 2). (See the caption of Fig. 5.11.) Because we are in the spin
glass phase, the LIOM are dominated by blue σzσz operators. The very large integral
of motion in the center is just the Z2 spin flip symmetry

∏
i σ

x
i , which is a little messy

in the figure because it has been multiplied by some of the other LIOM to obtain an
operator which is still an integral of motion. This center operator is essential for the
spin glass properties of this phase: finite long range Edwards-Anderson correlators
(Fig. 5.5) and finite long range mutual information (Fig. 5.7).
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Conclusion

In this thesis we have studied a number of exotic, topological, and many body localized

quantum phase transitions in detail.

In Chapter 2 we studied the quantum phase transition between the Z2 liquid and

columnar VBS orders on both the isotropic and distorted triangular lattices. Fig. 2.5

summarizes our most important predictions for the isotropic case, such as the possibility

of a nematic Z2 spin liquid phase 1 with a continuous 3d XY∗ transition to the VBS

phase. For a distorted triangle lattice, the nematic spin liquid intermediate phase is

no longer necessary, and a direct continuous 3d XY∗ transition is possible between the

spin liquid and VBS phases. The critical theories proposed can be checked by future

numerical simulations.

It would also be interesting to study the direct quantum phase transition from the

magnetic order to the columnar VBS orders on the triangular lattice, which can be viewed

as a triangular lattice generalization of the deconfined quantum critical point [8, 9]. This

transition would be driven by condensation of skyrmions or vortices of the magnetic order.

It would also be interesting to understand the global phase diagram around the Z2 spin

1Recent possible DMRG numerical evidence for a nematic spin liquid is given in [14].
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liquid, which probably involves a noncollinear spiral spin order, the columnar/plaquette

VBS order discussed in this current paper, and a collinear spin order. A similar global

phase diagram was studied in [12] for the case with four vison minima in the BZ.

In Chapter 3 we demonstrated that there exist two novel continuous quantum phase

transitions for 16 copies of (2+1)d Majorana fermions. We show that the phase transition

between the QSH to the trivial phase is naturally described by a nonlinear sigma model

with a topological Θ-term (Eq. 1.4). We also show that this model hosts a new exotic

quantum phase transition between a weakly interacting gapless Dirac fermion phase and

a strongly interacting fully gapped and symmetric trivial phase; a field theory description

of this phase transition is currently unknown. Both of these transitions are very different

from the Standard Gross-Neveu model and Ginzburg-Landau theory. A controlled ana-

lytical field theory calculation for the critical exponents is not known yet; we will leave

this to future studies.

In Chapter 4 we proposed a simple rule to determine whether a local Hamiltonian

with symmetry can be many-body localized (MBL): If the ground and top state of a

Hamiltonian belong to different SPT phases, then most likely there are some finite en-

ergy density states which can not be fully localized. Our argument is general enough that

it can be applied to both free and interacting systems, and bosonic and fermionic SPT

systems. And counterintuitively, we found that because interactions change the classifi-

cation of fermionic topological insulators and topological superconductors, in some cases

interactions actually assists localization, rather than delocalization.

In Chapter 5 we studied the XYZ spin chain with independently random XX, YY,

and ZZ couplings on each bond. Unlike the random XXZ or Heisenberg models, the XYZ

model breaks the continuous spin rotational symmetry down to the discrete Z2
2 symmetry,

which allows the quantum phase transitions between the different symmetry-breaking

spin glass phases to persist to finite energy density as marginal MBL critical lines. We
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used the SBRG [138] numerical method to calculate the entanglement entropy, Edwards-

Anderson correlator, and long-range mutual information. In the MBL spin glass phase,

the entanglement entropy follows the area-law scaling and quickly saturates to a value of

SE ≥ ln 2. Both the Edwards-Anderson correlator and the long-range mutual information

exhibit long-range behavior, demonstrating spin glass order. Along the marginal MBL

critical lines, the entanglement entropy follows the logarithmic scaling SE(`) = (c′/3) ln `

with a fixed effective central charge c′ = ln 2. Both the Edwards-Anderson correlator and

the long-range mutual information decay via a power-law with critical exponents that

vary continuously along the marginal MBL line.
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[26] M. Serbyn, Z. Papić, and D. A. Abanin, Universal Slow Growth of Entanglement
in Interacting Strongly Disordered Systems, Physical Review Letters 110 (June,
2013) 260601, [arXiv:1304.4605].

[27] J. H. Bardarson, F. Pollmann, and J. E. Moore, Unbounded Growth of
Entanglement in Models of Many-Body Localization, Physical Review Letters 109
(July, 2012) 017202, [arXiv:1202.5532].
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