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Abstract

Computational studies of barrier-crossing in polymer field

theory

Michael Francis Carilli

This dissertation is primarily a survey of the zero-temperature string method,

a minimum energy path search algorithm, applied to novel barrier-crossing prob-

lems in polymer field theory. I apply the method to both self-consistent field the-

ory (SCFT) and a phase-field model (the Landau-Brazovskii model). In the case

of SCFT, the focus is on defect annealing problems in homo+copolymer melts;

in the case of the Landau-Brazovskii model, the focus is on finding critical nuclei

for the disorder-to-lamellar transition, which is known to be a fluctuation-induced

first-order phase transition.

In SCFT, applying the string method is computationally demanding in both

processing time and memory, especially for fully 3-dimensional simulations at in-

dustrially relevant system sizes. I successfully address these challenges on state-of-

the-art massively parallel computing architectures (NVIDIA graphics processing

units). As a result our group is able to identify free energy barriers and transition

mechanisms for a wide variety of defect annealing problems relevant to industrial

directed self-assembly (DSA).
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Nucleation in the Landau-Brazovskii model presents its own challenges. The

string method as originally formulated is inefficient for nucleation problems, since

many images are wasted tracing out unphysical configurations once the nucleus

grows to the edges of the simulation cell. I devise a new truncation-based energy

weighting (TBEW) scheme that resolves this issue, and will prove valuable to

future researchers using the string method to find critical nuclei.

Since the bare Landau-Brazovskii model predicts a second-order transition

between disorder and lamellae at a mean-field level, naive application of the zero-

temperature string method to this model fails to find a barrier. To circumvent

this, I instead apply the string method to a renormalized model that incorporates

fluctuations at a mean-field level. Using TBEW and the renormalized model,

I investigate nucleation pathways for the disorder-to-lamellar transition, finding

anisotropic nuclei in agreement with previous predictions and experimental ob-

servations. I also conduct a comprehensive search for experimentally observed

nuclei containing various exotic defect structures.

Finally, I evaluate the validity of the nucleation pathways obtained from the

renormalized model by numerically simulating the bare model with explicit fluc-

tuations. I find that the renormalized model makes good predictions for certain

quantities, including the location of the order-disorder transition. However, due

to sharp dependence of critical nucleus size on proximity to the order-disorder

x



transition, even slight errors in the predicted ODT lead to large errors in pre-

dicted nucleus size. I conclude that the renormalized Landau-Brazovskii model

is a poor tool for predicting critical nuclei in the fully fluctuating bare theory at

experimentally accessible parameters, and recommend that future studies work

with the fluctuating bare theory directly. I recommend several strategies to ex-

tract barriers and rates.
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Chapter 1

Introduction

1.1 Diblock copolymers

Figure 1.1: Diblock copolymer.

Diblock copolymers consist of 2 chemically bonded chains of distinct monomer

species (Figure 1.1). Chains of like species act as entropic springs, thus there is an

effective attraction between like monomers; however, an enthalpic contact penalty

exists for contact between unlike monomers. At high temperatures entropy dom-

1



Chapter 1. Introduction

S C G L

Figure 1.2: Phase diagram for diblock copolymers according to self-consistent
field theory (SCFT), with several example microphases shown. Known preferred
quasicrystalline structures are lamellae (L), gyroid (G), interpenetrating double-
diamond with O70 space group, hexagonally packed cylinders (C), body-centered-
cubic-packed spheres (S), and face-centered-cubic-packed spheres (Scp). Images
adapted from [1] and http://chemeng.uwaterloo.ca/mwmatsen/research/mc.

html.

inates and the average composition is homogeneous in space. At low tempera-

tures, chains of unlike species would prefer to phase separate, but cannot since

the chains are chemically bonded. This frustrated repulsion leads to “microphase

separation,” where the system phase-separates into a regular pattern of A-rich

and B-rich domains. The A-rich and B-rich domains tend to pack according to a

quasicrystalline structure. The favored structure or “microphase” depends on the

2
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Chapter 1. Introduction

block fraction f (the fraction of, e. g., type A monomers in the chain) and the ef-

fective segregation strength χN , where N is the number of “statistical segments”

in the chain and χ is the energy penalty for contact between segments of unlike

species.1 For example, if the diblock chains are roughly symmetric (f ≈ 1/2) the

system prefers to form A-rich lamella alternating with B-rich lamellae. Even for

such a simple system as diblocks, the phase diagram of favored microphases is

quite rich (Fig. 1.2). For more complicated copolymers like linear triblocks (com-

posed of sequentially tethered chains of 3 distinct species), the set of preferred

morphogies explodes into an even wider range of exotic structures [2].

1.2 Directed self-assembly and defects

This fascinating self-assembly behavior is not a mere academic curiosity. Block

copolymers can form regular, patterned nanoscale structures on length scales

smaller than those accessible to photolithography. This spontaneous pattern for-

mation can be influenced by placing the copolymer on a substrate with a pre-

existing topographic pattern (“graphoepitaxy”) or compositional pattern where

different substrate domains are more attractive to one monomer species or an-

1In a sense χN is an effective inverse temperature. High χN corresponds to low tempera-
ture, at which enthalpic effects dominate and the system orders; low χN corresponds to high
temperature where entropy dominates and the system disorders. χ and N will be explained
more rigorously in Chapter 2.

3
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other (“chemoepitaxy”). Pattern formation can also be guided by the application

of electric fields, shear, temperature gradients, and other external control param-

eters. The use of patterned substrates, electric fields, shear, etc. to influence

nanoscale copolymer self-assembly into desired structures is known as “directed

self-assembly” (DSA). The point is that a larger-scale prepattern can guide the

formation of smaller-scale structures. Say, for example, a lamella-forming block

copolymer has preferred domain spacing d. A substrate with topographic chan-

nels of width 4d can be prepared, e.g., by optical lithography, and coated with

copolymer. The copolymer then self-assembles into lamellae along the direction

of the channels.2 One monomer species or the other can then be chemically

etched away, resulting in a topography with channels 4× smaller than the orig-

inal prepattern; in the language of DSA we would say a “pitch multiplication”

of 4 has been achieved. Self-assembling copolymer has also been shown to help

rectify moderate errors in prepattern placement; in other words, if the prepattern

admits some positional error, the resulting self-assembled structures will arrange

themselves with improved regularity. Good introductions to DSA can be found in

[3] and [4]; in Chapter 3 we present a survey of previous DSA literature relevant

to this thesis.

2The use of guiding prepatterns is also important to prevent long-range bending of self-
assembled structures; we will discuss this in more detail in Chapter 3.

4



Chapter 1. Introduction

Figure 1.3: A defect-free configuration of lying-down cylinders. Image
adapted from http://on-demand.gputechconf.com/gtc/2015/posters/GTC_

2015_Computational_Physics_23_P5308_WEB.pdf.

Nanoscale lithography enabled by DSA is a promising tool for a wide range of

applications, including integrated circuit patterning [6], quantum dots [7], high-

density memory storage [8], photonic crystals [9], and nanofiltration membranes

[10]. However, many practical applications require that copolymer reliably self-

assembles into regular nanoscale structures over a macroscopically significant area

(micrometers or more) or a large number of patterning attempts. When scaling up

DSA to these industrially relevant system sizes, thermodynamics and the dynam-

ics of the copolymer’s structure formation often result in the copolymer becoming

trapped in metastable defect-containing morphologies, even in the presence of a

good guiding prepattern. An example of a defect-free self-assembled morphology

can be seen in Figure 1.3. Defect structures typically observed in attempts to

generate this morphology are shown in Figure 1.4. A recent review of defectivity

5
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Chapter 1. Introduction

Figure 1.4: Typical defects observed during the self-assembly of lying-down
cylinders. The system is less ordered at higher temperature, but even at low
temperature, metastable defects remain. Image adapted from [5].

in directed self-assembly can be found in [11]. In Chapter 3 we present a survey

of previous literature on defectivity in DSA as it relates to this thesis.

DSA admits a wide range of tunable experimental parameters: copolymer

block fraction, monomer species segregation strength, homopolymer admixture,
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dimensions and regularity of topographic prepatterns, wetting affinity and place-

ment of chemical prepatterns, and so on. From an experimental perspective, to

avoid costly trial and error, it is valuable to develop computational tools capable

of predicting parameters that minimize the incidence of defects and facilitate their

rapid removal. In Chapter 2, I present an introduction to self-consistent field the-

ory (SCFT), the workhorse field-theoretic model capable of predicting preferred

and metastable morphologies of copolymer melts, blends, and solutions, option-

ally in grapho- or chemo-epitaxial confinement. SCFT can also predict the free

energy of self-assembled structures at a mean-field level, enabling us to predict

the energy penalty incurred by defective morphologies and thus approximate their

incidence according to Boltzmann statistics. This particular use case of SCFT

has been fairly standard for the last decade or more.

However, when combating defectivity in DSA, there is another aspect to con-

sider: When metastable defective morphologies do form, how difficult are they

to remove? A metastable defect, by definition, lies at a local minimum of the

system’s potential energy landscape, and an energy barrier must be crossed to

transition to a defect-free state. This means that the system will fluctuate in

the metastable state until random thermal forces cause it to diffuse across the

barrier. A reasonable approximation is to assume that the transition will occur

by way of the “minimum energy path” or MEP, which can be visualized as a

7
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mountain pass in the free energy landscape. The peak energy along the MEP

represents the energy barrier EB that must be crossed. Locating the MEP in the

high-dimensional space of an SCFT model can be accomplished using the numer-

ical string method; the annealing time required for defective→perfect transition

can then be estimated as ∼ exp (−EB/kBT ). The string method requires simul-

taneously evolving multiple system configurations. When each configuration is an

SCFT model, this process can become computationally demanding. Only in re-

cent years have computers become fast enough to make string SCFT calculations

feasible, especially for large 3D systems. In Chapter 2, I present an introduc-

tion to barrier-crossing theory, explain the MEP concept, and describe the string

method in detail. In Chapter 3, I describe how I developed a GPU-accelerated

version of the string method combined with SCFT and applied it to several in-

dustrially relevant DSA systems. Useful, practical guidance on how to minimize

defectivity in these systems was obtained.

1.3 Disorder→lamellar nucleation

The disorder→lamellar (dis→lam) transition of diblock copolymers is of par-

ticular scientific interest. At a mean-field level, commonly used workhorse models

for diblocks like the Leibler model [12], as well as SCFT, predict the transi-

8
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??

Figure 1.5: How does a fluctuating disordered morphology (left) transition to a
fluctuating lamellar morphology (right)?

tion to be second-order. This second-order character does not admit a region

of metastable disorder, and predicts that the transition takes place via spinodal

decomposition. The experimental phase diagram for a diblock melt near the

dis→lam ODT differs significantly from these predictions, however (Fig. 1.6). In-

terestingly, if fluctuations are explicitly included, SCFT, the Leibler model, and

its derivative phase-field models do predict a first-order dis→lam transition at

increased χN across a window of block fractions, in improved agreement with

the experimental phase diagram. In this sense the disorder→ lamellar transition

is considered a “fluctuation-induced first order phase transition,” a concept that

will be discussed further in Chapters 2 and 5.

An additional intriguing feature of the dis→lam transition is that disorder-

lamellar interfacial surface tension is highly anisotropic, favoring interfaces normal

to lamellar planes [14]. As a result, a number of authors have predicted or ob-

9



Chapter 1. Introduction

Figure 1.6: Left panel: Mean-field SCFT phase diagram for a diblock melt.
Right panel: Experimental phase diagram for a diblock melt. Qualitative differ-
ences include 1. SCFT only predicts a direct dis→lam transition at f = exactly
1/2, while experimentally, a direct dis→lam transition is observed across a range
of f . 2. The dis→lam transition is second-order in the mean-field SCFT diagram,
while experiments show it to be weakly first-order [13]. 3. The dis→lam phase
boundary occurs at a higher χN than predicted by mean-field SCFT. Images
adapted from http://chemeng.uwaterloo.ca/mwmatsen/research/mc.html.

served exotic shapes and structures for the critical nucleus. Balsara et al. predict

ellipsoidal grains [15], Hohenberg and Swift predict nuclei containing focal conic

defects [16], and Chastek and Lodge experimentally observed needlelike, twinned,

2-fold twinned, and spherulite-shaped lamellar grains growing from a disordered

diblock copolymer solution [17]. Important results are reviewed in Chapter 5.

However, prior to my work no systematic computational attempt has been made

to clarify the specific mechanism of the dis→lam transition.

In Chapter 2 I introduce the phase-field models used to study this problem.

In Chapter 4 I introduce the truncation-based energy weighting (TBEW) string

method, my own modified string method that is ideally suited to large-cell nucle-

10
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Chapter 1. Introduction

ation problems. In Chapter 5, I use the string method to investigate nucleation of

the lamellar phase from the disordered phase of a renormalized phase-field model,

at parameters connected to those of an experimentally accessible diblock melt.

I find anisotropic critical nuclei in qualitative agreement with previous experi-

mental and analytic predictions; I also find good quantitative agreement with the

predictions of a single-mode approximation analysis. I then conduct a thorough

search for critical nuclei containing various predicted and experimentally observed

defect structures.

I evaluate the predictions of the renormalized model by simulating the bare

Landau-Brazovskii model with explicit fluctuations. I find that the renormalized

model makes reasonable predictions for several important quantities, including

the order-disorder transition (ODT). However, the critical nucleus size depends

sharply on proximity to the ODT, so even moderate errors in the ODT predicted

by the renormalized model lead to large errors in predicted critical nucleus size.

I conclude that the renormalized model is a poor tool to study nucleation in the

fluctuating Landau-Brazovskii model, and recommend that future studies work

with the fluctuating bare model directly. I recommend several strategies to extract

free energy barriers and rates.
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Chapter 2

Theory and Tools

2.1 A brief review of diffusive barrier-crossing

When investigating a barrier-crossing problem, three of the most important

objects to discover are 1. a measure of the transition’s progress, 2. an estimate

of the rate at which the transition occurs, and 3. some physical intuition as to

how the transition takes place. One can describe the system in terms of its fully

microscopic degrees of freedom or some reduced-dimensional space of collective

variables. However, one must take care that the chosen collective variables do

not obscure the mechanism of the transition. A “reaction coordinate” is a single

variable that quantifies the progress of a barrier-crossing event [18], for example,

the size of a growing nucleus, or the arc length coordinate along the path traced

out by the string method (a technique that will be discussed in Section 2.2).

It should be mentioned that time is not in general a good reaction coordinate,

12
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because the system may spend a long time waiting in a metastable state before the

transition occurs at random and proceeds quickly. The “committor probability,”

the probability that in the future the system will visit (commit to) the product

well before visiting the reactant well, is considered the ideal reaction coordinate

[19].

In this section, I will outline how the the committor probability can be ob-

tained, make more precise the idea of a good reaction coordinate, show how

a good reaction coordinate can be used to compute transition rates, and review

some computational techniques commonly used to attack diffusive barrier-crossing

problems.

2.1.1 Dynamics of probability distributions

Our starting point is a system with coordinates x evolving in time according to

overdamped Langevin dynamics. x may represent either the system’s microscopic

coordinates or a set of coarse-grained collective variables. The equation of motion

[20, 21] is the following:

xi(t+ δt) = xi(t) + δt
∑
j

(
−βDij

∂V

∂xj
+
∂Dij

∂xj

)
+
√

2δt
∑
j

σij(x)Rj (2.1)

≡ xi(t) + Aiδt+Ni (2.2)

13
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where V (x) is the energy of the system, Dij(x) is the (position-dependent) matrix

of diffusion coefficients, σ is chosen such that

Dij =
∑
k

σikσjk (2.3)

(a choice we will justify shortly) and Rj are Gaussian random variables with

〈Rj〉 = 0 and 〈RiRj〉 = δij. In (2.2), Aiδt ≡ δt
∑

j

(
−βDij

∂V
∂xj

+
∂Dij

∂xj

)
repre-

sents the average drift of the system and Ni ≡
√

2δt
∑

j σij(x)Rj represents the

stochastic motion due to thermal fluctuations.

The dynamics (2.1) is appropriate for the systems considered in later chapters,

because the collective variables typically used to describe nucleation phenomena

(for example, some measure of the nucleus size, potentially coupled with some

measure of its internal structure [22–25]), as well as the 1D reaction coordinate

obtained by the string method, are inertialess. The microscopic field values asso-

ciated with self-consistent field theory and the Landau-Brazovskii model are also

inertialess coordinates.

Consider the probability density ρ(x, t) of a system evolving according to (2.1).

Intuitively, the integral of ρ(x, t) over some volume V is the probability that the

system is present in V at time t. We can derive an equation describing the time

14
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evolution of ρ by constructing a Chapman-Kolmogorov equation [26] and carrying

out a Kramers-Moyal expansion (see, e.g., Chapter 11 of Ref. [27]).1

The Chapman-Kolmogorov equation expresses the probability density ρ(x, t+

δt) in terms of the probability density at t and the transition probability density

W (δx, x − δx, δt) that the system started at x − δx at time t, then moved a

distance δx during time interval δt to end up at x at time t + δt. We integrate

over all possible starting positions x − δx by integrating over all possible moves

δx that could have taken place:

ρ(x, t+ δt) =

∫
dδxW (δx,x− δx, δt) ρ(x− δx, t) (2.4)

then expand both sides to first order in δt and second order in δx:

ρ(x, t) + δt
∂ρ

∂t
=

∫
dδx

{
W (δx,x, δt) ρ(x, t)−

∑
i

δxi
∂

∂xi

(
W (δx,x, δt) ρ(x, t)

)

+
∑
ij

1

2
δxiδxj

∂

∂xi

∂

∂xj

(
W (δx,x, δt) ρ(x, t)

)}
(2.5)

W (δx,x, δt) is the probability that the system moves a distance δx in time δt

starting at x. Therefore, using (2.2) to express δxi as xi(t+ δt)−xi(t) = Ai +Ni,

recalling that 〈Rj〉 = 0 and 〈RiRj〉 = δij, and keeping terms only to first order in

1This is a fairly familiar derivation. I’m showing it here to set up later, similar derivations
of the committor probability distribution and the propagator for a diblock copolymer, which
use the same technique but may not be so familiar.
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δt, we have

∫
dδxW (δx,x, δt) = 1 (2.6)∫
dδx δxiW (δx,x, δt) = 〈δxi〉 = 〈Ai +Ni〉 = Aiδt∫
dδx δxjδxjW (δx,x, δt) = 〈δxiδxj〉 = 〈(Aiδt+Ni)(Ajδt+Nj)〉

= 〈NiNj〉 = 2δtDij .

Substituting these results back into (2.5) yields

ρ(x, t) + δt
∂ρ

∂t
= ρ(x, t)− δt

∑
i

∂

∂xi

(
Aiρ(x, t)

)
+ δt

∑
ij

∂

∂xi

∂

∂xj

(
Dijρ(x, t)

)
∂ρ

∂t
=
∑
ij

− ∂

∂xi

(
− βDij

∂V

∂xj
ρ+

∂Dij

∂xj
ρ

)
+

∂

∂xi

∂

∂xj

(
Dijρ

)
∂ρ

∂t
=
∑
ij

∂

∂xi

(
βDij

∂V

∂xj
ρ+Dij

∂ρ

∂xj

)
≡ L̂+(ρ) . (2.7)

(2.7) is the Smoluchowski or “forward Kolmogorov” equation for overdamped

Langevin dynamics, and the operator L̂+ is the “generator” of the forward Kol-

mogorov process [28]. (2.7) may be written in the suggestive form

∂ρ(x, t)

∂t
=
∑
i

∂

∂xi

(∑
j

Dijρeq(x)
∂

∂xj

(
ρ−1
eq (x)ρ(x, t)

))
(2.8)
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where ρeq(x) = 1
Z

exp (−βV (x)) is the Boltzmann distribution. This form high-

lights that ρ(x, t) = ρeq(x) is a steady-state (∂ρ/∂t = 0) solution of (2.8), which

can be regarded as proof that the Langevin equation (2.1) samples the physically

correct stationary distribution. The fact that choosing the noise strength accord-

ing to (2.3) results in correct sampling of the Boltzmann distribution is known as

the fluctuation-dissipation theorem.

Additionally, (2.8) has the form of a continuity equation ∂ρ/∂t = −∇·j, which

allows us to identify the “probability current”

ji = −
∑
i

ρeq(x)Dij
∂

∂xj

(
ρeq(x)ρ(x, t)

)
(2.9)

Intuitively, for a volume element V bounded by surface S, the surface integral∫
S

j · n̂ dS represents the rate of change of the probability that the system is

present in V , in other words, the rate of escape from or entrance into V .

As previously noted, the ideal coordinate measuring the progress of a reaction

in a stochastic barrier-crossing system is the committor probability. For a system

evolving according to (2.1) with initial microscopic coordinates x, we can also

derive an equation governing the committor probability q(x). Langevin dynamics

are a continuous, not a discrete, Markov process. A system obeying Langevin

dynamics cannot magically appear in one well or the other but must traverse a
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continuous trajectory of intermediate states to get there. Therefore, if the system

starts at x and moves a (small) distance δx in time δt, the original committor

probability q(x) must be equal to the integral over “probability of each possible

δx” × “committor probability at the new position:”

q(x) =

∫
dxW (δx,x, δt) q(x + δx) . (2.10)

(2.10) has two crucial differences from (2.4). First, the committor probability is

independent of time; second, the transition probability density W is evaluated at

x rather than x− δx. The solution method is identical, however. We expand the

right-hand side to second order in δx to give

q(x) =

∫
dδx

{
W (δx,x, δt) q(x) +

∑
i

δxiW (δx,x, δt)
∂q(x)

∂xi

+
∑
ij

1

2
δxiδxjW (δx,x, δt)

∂2q(x)

∂xi∂xj

}
. (2.11)

Performing the moment integrals (2.6) yields

q(x) = q(x) +
∑
i

Aiδt
∂q(x)

∂xi
+
∑
ij

δtDij
∂2q(x)

∂xi∂xj

0 =
∑
i

∂q

∂xi

(∑
j

−βDij
∂V

∂xj
+
∂Dij

∂xj

)
+
∑
ij

Dij
∂2q

∂xi∂xj
≡ L̂−(q) . (2.12)
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(2.12) is also known as the “backward Kolmogorov equation” and the operator

L̂− is the generator of the backward Kolmogorov process [28].

In principle, the backward Kolmogorov equation can be solved to give the

committor probability for all x (imposing boundary conditions of q = 0 along

the border of what is deemed the reactant well and q = 1 along the border of

the product well). In practice, this is computationally intractable for problems of

high dimensionality, and simply solving the equation for all possible configurations

x may not yield much physical insight about the mechanism of the transition.

Ideally, we would like to identify a single or small number of reaction coordinates

that first of all, predict monotonic increase of the committor probability, and

secondly, provide a physically intuitive picture of how the transition actually

takes place. For example, for nucleation problems, the size of the nucleus (or the

size of the largest nucleus present in the system) is a reaction coordinate that

constitutes a good rough guess (the actual means by which the size is measured

may be subject to refinement [25]). The defect-annealing problems presented in

Chapter 3 of this thesis provide another example: The string method obtains

an effective 1D reaction coordinate. By examining how a defective self-assembled

polymer configuration changes to a defect-free configuration along this coordinate,

we discover how the transition physically proceeds.
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2.1.2 1-dimensional barrier crossing

It is helpful to consider the consequences of (2.8) and (2.12) for a 1-dimensional

system. First of all, for a 1D system with potential V (x), the reactant state’s

border at xR, and the product state’s border at xP , the committor equation (2.12)

can be integrated explicitly with boundary conditions q(xR) = 0 and q(xP ) = 1

to yield

q(x) =

∫ x
xR
dxD(x)−1 exp[βV (x)]∫ xP

xR
dxD(x)−1 exp[βV (x)]

(2.13)

(2.13) is fully general regardless of the potential’s structure.

x

V
(x
)

B

R

P

C

Figure 2.1: 1D potential with reactant well R, product well P, barrier B,
and rescue-and-replace boundary condition imposed at C. The system fluctu-
ates within well R; if it ever manages to reach C, it is intercepted by the ghost of
Hans Kramers and thrown back into (rethermalized within) R.
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Secondly, for systems with a single barrier peak higher than a few kBT where

that peak is the dynamical bottleneck (a reasonable assumption unless diffusion

varies very strongly with position) Kramers theory [29] yields a straightforward

expression for the transition rate.2 Consider the potential shown in Figure 2.1.

For an ensemble of N systems that begin in well R, we seek a constant k such

that dN/dt = −kN at the moment the system is released. The Kramers argument

accesses k by imposing a “rescue and replace” boundary condition: At a certain

value of x past the barrier (far enough that the system’s probability of return

to the reactant well is small, for example, at C in Figure 2.1), we impose the

condition that all trajectories reaching C are stopped and instantly returned to

R (conceptually, fed back into the left-hand side of R at low x). This boundary

condition, along with the system’s natural Langevin dynamics (2.1), results in

a quasi-steady-state distribution ρSS(x) where systems within well R obey the

Boltzmann distribution, but the product well P remains empty, and a constant

flux (probability current) of systems attempt to cross into the product well only

2If the barrier is lower than a few kBT , and therefore easily accessible by thermal fluctuations,
or if the barrier is rough without a single peak that forms the dynamical bottleneck, a mean
first passage time calculation [27, 30, 31] can be used to derive a general expression for the
rate. However, I thought this presentation, which more closely resembles the arguments of
Kramers and Langer, was more straightforward, and the Kramers result applies to the majority
of systems considered in this thesis. For singly-peaked barriers higher than a few kBT , the mean
first passage time result is equivalent to the Kramers result.

21



Chapter 2. Theory and Tools

to be intercepted at C. The constant current jSS may be calculated from (2.9):

jSS = −ρeq(x)D(x)
∂

∂x

(
ρeq(x)ρSS(x)

)
−jSS

eβV (x)

D(x)
=

∂

∂x

(
eβV (x)ρSS(x)

)
jSS = −eβV (x)ρSS

∣∣∣∣x2

x1

/∫ x2

x1

eβV (x)

D(x)
dx (2.14)

where x1 and x2 are any two points we choose; for this purpose we choose x2 = C

and x1 = some value less than (to the left of) R’s minimum. But ρSS(C) = 0 by

construction of the rescue-and-replace condition. Near R, ρSS(x) = e−βV (x)/ZR,

since ρSS is essentially the probability distribution of particles thermalized in

well R; ZR =
∫

near R
e−βV (x)dx is the partition function of the system confined

to well R. Therefore, the numerator of (2.14) becomes −eβV (x)ρSS|Cx1 = 0 +

eβV (x1)e−βV (x1)/ZR = 1/ZR. The denominator is dominated by the portion of

the integral near the barrier peak B:
∫ x2

x1
eβV (x)/D(x) dx ≈

∫
near B

eβV (x)/D(x) dx.

Putting all the pieces together, we find

jSS =

[ ∫
near R

e−βV (x)dx

∫
near B

eβV (x)

D(x)
dx

]−1

. (2.15)
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This expression can be further simplified by expanding V (x) in a power series

about the bottom of well R and the peak of barrier B:

Vnear R ≈ V (xR) +
1

2
V ′′(xR)(x− xR)2 , Vnear B ≈ V (xB) +

1

2
V ′′(xB)(x− xB)2

(2.16)

where xR and xB are the x-values of the minimum of well R and the peak of

barrier B. Inserting these into (2.15), taking D(x) ≈ D(xB) and performing the

resulting Gaussian integrals (given that V ′′(xB) < 0) yields

jSS =
βD(xB)

2π

√
V ′′(xR)|V ′′(xB)| e−β[V (xB)−V (xR)] (2.17)

At the moment the rescue-and-replace condition is released, the time rate of

change that the system will be present in R is
∫
C

j·n̂ dS which for a 1 dimensional

system is simply jSS. Therefore for a 1-dimensional system the current jSS is

exactly the desired rate constant k.

2.1.3 Generalization to higher dimensions; good and bad

effective 1D coordinates

Langer [32–34] generalized the Kramers result to arbitrarily high dimensions.

First, he confirmed that the transition is most likely to proceed across saddle
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y

x

Figure 2.2: Saddle point regions on the 2D Mueller potential (Image of Mueller
potential adapted from https://github.com/rmcgibbo/mullermsm.)

points regions, and that these saddle points are the dynamical bottlenecks that

play the greatest role in determining the rate.3 A saddle point is a point in the

energy landscape xSP where ∇·V = 0 and the Hessian matrix Hij = ∂2V
∂xi∂xj

has a

single negative eigenvalue whose corresponding eigenvector is the unstable direc-

tion. Conceptually, saddle points can be visualized as mountain passes in V (x)

(Figure 2.2). Langer’s calculation proceeded in a manner similar to Kramers’

1D argument. Under the assumption that Dij was position-independent, he ex-

panded V (x) to second order about the reactant well and saddle point in terms

of the corresponding Hessians Hij(xR) and Hij(xSP ), performed the multidimen-

sional Gaussian integrals corresponding to (2.17), and integrated the resulting

3This is usually a good assumption. For strongly anisotropic diffusion the system may exhibit
saddle point avoidance [35].
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expression for j across a surface spanning the saddle point to obtain the rate

constant:

k =
β

2π

(
detH(xR)

|detH(xSP )|

)1/2

λ+ exp[−β(V (xSP )− V (xR))] (2.18)

where λ+ is the only positive eigenvalue of the matrix −D · H(xSP ). He also

identified the direction of the probability current at the saddle point, jSP , as

pointing along the eigenvector corresponding to this eigenvalue.

The Langer result is accurate as long as Dij is independent of position and the

barrier is characterized by a single saddle point of height greater than a few kBT

that constitutes the dynamical bottleneck. However, we would like to describe

the reaction’s progress with a single reaction coordinate c(x), an appropriate

many-to-one mapping of the system’s multiple microscopic or collective variables

that predicts the committor. It may not be obvious why this reaction coordinate

must be carefully chosen. It seems reasonable that one could project the sys-

tem’s multiple variables onto an arbitrary (perhaps physically guessed) reaction

coordinate c, then sample the free energy F (c) along that coordinate (e.g. by

umbrella sampling or metadynamics, described shortly). The diffusion coefficient

D(c) can be found by exploiting the third equation of (2.6), 〈δc2〉 = 2δtD [36]:

For a given value of c, say c0, generate an ensemble of system configurations x
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such that c(x) = c0 and launch a swarm of short trajectories of length δt from

each of these configurations. For each trajectory, compute cfinal and the quantity

δc2 = (cfinal − c0)2; average δc2 over all tested trajectories to obtain 2δtD(c).

Performing this procedure for a sequence of c0 values yields the effective diffusion

coefficient D(c) along the reaction coordinate.4 Once F (c) and D(c) have been

obtained, (2.13) and (2.17) give the committor and rate (to obtain the rate alone,

only D(c) at the barrier peak is required), assuming the projection onto c was

valid.

Unfortunately it is not that easy. A poorly chosen coordinate may not show

a clear barrier. Also, the Kramers result assumes that c obeys the Smoluchowski

equation. For a 1D reaction coordinate (obtained by projection of a higher-

dimensional system whose dynamics obey the Smoluchowski equation) to itself

obey a Smoluchowski equation, it must exhibit dynamical self-consistency [39]:

For any two initial configurations x1 and x2 that map to the same value of c

(c(x1) = c(x2)), ρ(c, t) launched from x1 must be the same as ρ(c, t) launched

from x2.

Another pitfall is that the chosen coordinate may not be a good indicator of

the committor probability (Figure 2.3). The histogram test, described in [40] and

formalized in [41], can be used to evaluate how well a given reaction coordinate

4A similar procedure can be used to obtain effective diffusion tensors in higher-dimensional
systems [37]. Also, a more refined procedure is outlined in [38].
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y

x

1 2

A

B

Figure 2.3: Under stochastic dynamics, a system starting at point 1 is much
more likely to commit to well A, while a system starting at point 2 is much more
likely to commit to well B, even though point 1 and 2 share the same y value. This
indicates that y is a poor reaction coordinate to describe the transition between
A and B on the 2D energy landscape.

RC corresponds to the committor. Basically, at a given isosurface of RC (say

RC = RC1), an ensemble of x configurations such that RC(x) = RC1 is chosen,

and N trajectories are launched from each of those configurations. The number

of trajectories Np that reach the product well from each x is determined, giving

an estimate of the committor probability q at each x as Np/N . The estimated

q values (one for each tested x) are then histogrammed. This histogram (once

normalized) approximates ρ(q|RC1), the probability distribution of committor

values on the isosurface RC1. If RC is a perfect reaction coordinate and N is

very large, all x on the isosurface should yield the same q, and the histogram
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should resemble a delta function. In practice, since N is finite, the histogram is

subject to sampling error, and for a perfect reaction coordinate will resemble a

binomial distribution peaked about the value of q at RC1 (the sharpness of the

distribution increases with the number of per-x samples N). By constructing the

histogram and observing how closely it resembles a binomial distribution, one can

quantify how closely the isosurface RC1 resembles an isosurface of q. Histograms

should also be constructed at several other isosurfaces of RC, to make sure the

predicted value of the committor at different values of RC varies monotonically

as expected along RC (Figure 2.4). The histogram test is a stringent and reliable

measure of reaction coordinate fitness, but requires constructing a new histogram

for several isosurfaces of any reaction coordinate, and each histogram typically

requires determining the long-time fate of tens of thousands of trajectories. It is

usually impractical to test large numbers of trial reaction coordinates this way.

Berezhkovskii and Szabo [42] considered a reaction coordinate e consisting

of the distance away from the saddle point along a linear vector e (specifically,

e(x) = ê · (x−xSP ), where xSP is the location of the saddle point). They defined

the free energy along this coordinate as

F (e) = − 1

β
ln

∫
δ(e− e(x)) e−βU(x) dx (2.19)
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Figure 2.4: Illustration of what the committor distribution ρ(q|RC) should
look like at several points along a good effective 1D reaction coordinate RC.
For RC=RC1 near the reactant well, the distribution of q values for the ensem-
ble of microscopic configurations corresponding to RC = RC1 should resemble a
binomial distribution peaked about a value q < 0.5 (left panel); for RC = RC2
“midway” between the reactant and product wells (the transition state ensemble,
center panel), the q value distribution for the corresponding ensemble of micro-
scopic configurations should be peaked about q = 0.5; for RC = RC3 nearer to the
product well, the distribution of q values should be peaked about a value q > 0.5
(right panel).
A more detailed depiction of committor distributions for “good” and “bad” effec-
tive 1D coordinates is provided in Figure 9 of Ref. [40].

where U(x) is the system’s energy in terms of the dynamical variables x (U(x)

is a free energy if x are collective variables). To compute the rate according

to Kramers theory, the effective 1-dimensional diffusion projected onto e at the

saddle point is also required, and is given by Deff = êiDij(xSP )êj, which can be

seen by considering a short-time displacement of the system launched from the
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saddle point:

2δtDeff = 〈δe2〉 = 〈êi(x− xSP )i êj(x− xSP )j〉 = êi〈δxiδxj〉êj

2δtDeff = 2δt êiDij(xSP )êj (2.20)

Assuming a position-independent but potentially anisotropic diffusion tensor Dij

as in Langer’s argument, they then computed the rate constant keff along e using

(2.19), (2.20), and (2.17), and compared it to the result kexact of the full high-

dimensional Langers theory obtained via (2.18). They showed that keff > kexact

unless eopt points along the single eigenvector of −H(xSP ) ·D whose eigenvalue is

positive, in which case keff = kexact. They also showed that this optimal direction

eopt is normal to the stochastic separatrix (isocommittor surface with q = 0.5)

near the saddle point. Thus e along eoptis a good reaction coordinate in the twin

senses that projection onto e yields an accurate rate and that isosurfaces of e are

isosurfaces of q near the saddle point.5

These important results, which together with the Langer result are known as

Kramers-Langer-Berezhkovskii-Szabo (KLBS) theory, firstly prove that a poorly

or arbitrarily chosen 1D reaction coordinate overestimates the transition rate, and

5Recall that Langer identified the direction of probability current jSP at the saddle point as
the single eigenvector of −D ·H(xSP ) whose eigenvalue is positive (as opposed to −H ·D as is
used for eopt). In general, if D is anisotropic, jSP and eopt do not point in the same direction,
that is, the direction of maximum flux is not normal to the isocommittor surfaces.
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secondly, provide an analytic expression for a good reaction coordinate when the

diffusion tensor and (free) energy landscape are known.

Refs. [18, 43] describe an approach to evaluate reaction coordinates using

the data-science-inspired technique of likelihood maximization. It is applicable

to systems with diffusive (high-friction) and non-diffusive (low-friction/ballistic)

dynamics. Likelihood maximization takes a set of trajectories (launch points x

along with their fate, i.e. whether they ended up committing to the reactant or

product well) and compares this data to the predictions of reaction coordinate

formed by a some combination of whatever (collective) variables are deemed dy-

namically important. The functional form of this combination can be established

as an ansatz, for example, r(x) = α0 +
∑

i αi x, where the reaction coordinate is

formed as a linear combination of x variables with free parameters {α}. Likelihood

maximization can be used to optimize the free parameters of the ansatz. Alter-

natively, if a set of trial reaction coordinates is known, likelihood maximization

can evaluate how reliably each trial coordinate predicts the fate of trajectories.

A significant advantage of likelihood maximization is that the trajectories need

only be harvested once; this data can then evaluate any number of trial RCs.

However, for very high-dimensional systems like field theories the memory cost

of saving all sampled trajectories may become prohibitive. For these types of
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systems one must first identify a low-dimensional set of dynamically important

collective variables.

Peters et al. [39] showed that either dynamical self-consistency or likelihood

maximization can be used to identify good reaction coordinates from a candidate

set. They also showed that the reaction coordinate obtained from KLBS theory

exhibits dynamical self-consistency. In other words, any of these three criteria

may be used to identify good reaction coordinates, either by evaluating fitness

of candidates, optimizing a variational ansatz, or analytically constructing the

coordinate from a known diffusion map and free energy surface. Only then can one

confidently project the system’s dynamics onto the good coordinate and compute

committor probabilities and rates using the 1D results (2.13) and (2.17). It should

be emphasized that none of these techniques are feasible if one wishes to obtain a

reaction coordinate directly in terms of a very high-dimensional set of microscopic

variables.

2.1.4 Classical nucleation theory

Classical nucleation theory [44–46] uses the size of the nucleus r as the reaction

coordinate, and models the extensive free energy of the nucleus as the sum of bulk
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and interfacial terms:

F (n) = −αV r3∆µ+ αSr
2γ . (2.21)

where ∆µ = µmetastable − µstable is the difference between the intensive bulk free

energy densities of the metastable and stable phases, αV is the (shape-dependent)

factor relating r3 to the nucleus volume, γ is the surface energy per unit area, and

αS is the factor relating r2 to the surface area. For nucleation from a metastable

phase, the interfacial term is energetically unfavorable (γ is positive) and the bulk

term is energetically favorable (−∆µ is negative). For smaller nuclei, the surface

term dominates, resulting in a positive free energy of formation. Within classical

nucleation theory, this is the source of the barrier that must be crossed. After

the nucleus reaches a critical size, the bulk term begins to take over; it becomes

energetically favorable for the nucleus to grow rather than shrink. The critical

nucleus size can be found by maximizing (2.21) with respect to r:

rcrit =
2αSγ

3αV ∆µ
. (2.22)

The free energy barrier is F (rcrit). To obtain rates, classical nucleation theory

models the growth process in terms of the rate at which (discrete) free particles in

solution attach and detach themselves to a growing nucleus (details can be found
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in [46]). This particular analysis is irrelevant for present purposes, because all

reaction coordinates we consider are inertialess and continuous and can therefore

be treated using Kramers-Langer theory. However, in Chapter 5 we will draw on

(2.21) and (2.22) to predict the size of critical nuclei for the disorder-to-lamellar

transition of the Brazovskii model.

2.1.5 Methods for determining rates and free energy bar-

riers

Systems in which an energy barrier must be crossed to transition from one state

to another are difficult to tackle with brute-force simulations due to separation

of timescales. The system may wait in a metastable configuration for a long time

before a barrier-crossing event occurs due to thermal fluctuations. It is often more

effective to use numerical techniques that bias or force the system to cross the

barrier in some way. One useful family of techniques is the string method and

its derivatives, which will be explained in detail in the next subsection. Only the

string method is used in this thesis, but for completeness I mention several other

important approaches often used for diffusive barrier-crossing problems.

The nudged elastic band (NEB) method [47] is a saddle-point-finding algo-

rithm that operates (like the string method) by evolving a discrete chain of config-

urations that connects two locally stable states. To ensure that the configurations
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remain roughly evenly spaced, an artificial stretching force (e.g., a Hookian spring

force with adjustable spring constant) is imposed that penalizes distance between

consecutive configurations. To avoid the elastic band “cutting corners” in the

energy landscape due to its tension, the component of the stretching force normal

to the string and the component of the physical force parallel to the string are

both projected out. The resulting motion of the chain converges to a minimum

energy path (MEP, described in detail in the next section) that crosses a saddle

point.

Umbrella sampling [23, 24, 48, 49] and metadynamics [50–52] are two pop-

ular techniques to map out free energy surfaces for a a low- (1-, 2-, perhaps

3-)dimensional set of collective variables. In umbrella sampling, a restraining

potential V is imposed to confine the system to a particular region of collective

variable space. The probability distribution of the collective variables within this

confining window under the influence of V is then sampled. This procedure is

performed for a grid of windows in the collective variable space; the system’s

full free energy surface in the absence of V can be analytically reconstructed as

described in [49]. Metadynamics begins by letting the system evolve freely, but

adds a small biasing potential in the space of collective variables at each point

the system visits, thus encouraging the system to explore elsewhere in the free

energy landscape. Once the system’s motion has continued long enough, the (bi-
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ased) free energy surface in collective variable space is effectively flat (the biasing

potential has exactly “filled in” the topography of the underlying physical free

energy surface). The physical free energy surface can then be obtained as the

negative of the accumulated biasing potential.

Transition path sampling [40, 53, 54] is a Monte Carlo technique to sample re-

active trajectories (the ensemble of trajectories that start in the reactant basin R

and end in the product basin P). In contrast to metadynamics and umbrella sam-

pling, it requires no a priori identification of a few important collective variables.

Typically, transition path sampling is accomplished via the shooting algorithm,

which begins by launching a single trajectory from a microscopic configuration m0

estimated to lie near the transition (q = 0.5) surface. Two short trajectories (one

forward-time, one backward-time) are launched from m0; if the forward-time tra-

jectory reaches P and the backward-time trajectory reaches R, the trajectory as

a whole (forward + backward, which I will denote fbm0) is considered reactive.

A new configuration m′0 is selected at some timeslice along fbm0. m′0 is per-

turbed slightly to generate a new shooting point m1, and new forward+backward

trajectories are launched from m1 to generate a new trajectory fbm1. If fbm1

is reactive, it is accepted with some probability based on detailed balance (see

[53]), in which case a point m′0 is picked from a timeslice of fbm1, perturbed

slightly to generate the next shooting point m2, and the process continues. If
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fbm1 was rejected, m2 is picked from a perturbed point along the most recently

accepted trajectory (in this case fbm0) instead. The ensemble of shooting points

{m} collected this way characterizes the probability of reactive paths to visit dif-

ferent microscopic configurations. Many different methods of perturbing points

along old reactive trajectories to generate new shooting points have been pro-

posed, and prove more or less efficient for different physical systems. For diffusive

barrier-crossing problems aimless shooting, in which the perturbation consists of

freshly randomizing the microscopic momenta according to the Boltzmann distri-

bution, has proven particularly efficient at generating new trajectories with high

acceptance rates while injecting sufficient randomness to thoroughly sample the

reactive trajectories [25, 54]. By itself, transition path sampling does not supply

physical insight about the transition mechanism, or a single important reaction

coordinate, but the transition path ensemble can be used to compute the tran-

sition rate as described in [53]. Also, the set of sampled shooting points {m}

along with their fates can supply the data for a likelihood maximization analysis

to evaluate candidate reaction coordinates or construct optimal coordinates from

a set of collective variables, as described in Section 2.1.3.

Transition interface sampling (TIS) [53, 55], forward flux sampling (FFS) [53,

56, 57], and milestoning [53, 58] are three techniques for computing rates that

begin by dividing configuration space between R and P into n consecutive bins
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Bi with interfaces λi defined by monotonically increasing values of an assumed

1D reaction coordinate. TIS estimates the reaction rate as

k = Φ0PR(λn|λ1) (2.23)

where Φ0 is the flux of trajectories leaving R (bounded by λ0) and PR(λn|λ1) is

the probability that a trajectory leaving R will reach λn (which forms the border

of P). PR(λn|λ1) can be decomposed into a sequence of discrete interface-crossing

probabilities:

PR(λn|λ1) =
n−1∏
i=1

PR(λi+1|λi) (2.24)

where PR(λi+1|λi) is the probability that a trajectory coming from R and crossing

λi will cross λi+1 before returning to R. For a given i, TIS uses a shooting pro-

cedure similar to transition path sampling to sample the ensemble of trajectories

that start in R and cross λi, taking note of whether each such trajectory reaches

λi+1 or returns to R to obtain PR(λi+1|λi). PR(λi+1|λi) is determined this way

for each i and PR(λn|λ1) is reconstructed from (2.24). FFS also estimates k using

(2.23), but instead of a shooting procedure, FFS computes PR(λi+1|λi) by first

launching a set of trajectories from R to see where they impact λ1, then launching

a set of trajectories from the recorded λ1 impact points to see how many impact

λ2 rather than return to λ0 (recording λ2 impact points in the process), then
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launching a set of trajectories from the recorded λ2 impact points to see what

fraction manage to impact λ3, and so forth. Milestoning does not use (2.23) and

(2.24); rather, it prepares a constrained equilibrium ensemble confined to each λi

and launches trajectories from a large number of configurations in this ensemble

to determine the distribution of times required for systems beginning at λi to

reach λi+1 or λi−1. The distribution of times for each i can be used to reconstruct

the overall transition rate. Note that since TIS, FFS, and milestoning measure

fluxes directly from a sampled set of microscopic trajectories, without making

any attempts to collapse the system’s evolution to a 1D Smoluchowski equation,

accurate rates can be obtained even if the assumed reaction coordinate used to

defined the interfaces is not optimal.

2.2 The String Method

2.2.1 The MEP and the zero-temperature string method

The zero-temperature string method [59, 60] is an algorithm designed to find

the minimum energy path (MEP) connecting two locally stable wells in a high-

dimensional energy (or free energy) landscape. For the case of isotropic diffusion,

and if the effective width [61] of a transition pathway is neglected, the MEP

represents the most probable transition path according to the Freidlin-Wentzell
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theory of large deviations [62], and the peak of the MEP represents the criti-

cal barrier state. The MEP peak also corresponds to the saddle point used by

Kramers-Langer-type theories of barrier-crossing problems [29, 34]. Also, if diffu-

sion is isotropic and the energy landscape is not rough on a scale smaller than a

few kBT , arc length travelled along the MEP is a good reaction coordinate in the

sense of Section 2.1.3, and the direction of the MEP across the saddle point is both

the direction of probability current and the direction normal to the isocommittor

surface q = 0.5.

For clarity we repeat the exposition of the string method found in Refs. [59,

60].

Let φ represent a configuration of a system’s degrees of freedom, and V (φ)

represent the potential energy corresponding to that configuration. Also let V (φ)

have at least two local minima, labelled A and B, separated by a barrier, and

let φ(α) represent a continuous path between A and B parametrized by some

distance measure α. Minimum energy paths connecting A and B are defined as

follows: The path φ(α) is an MEP if the force is parallel to the path along the

path’s entire length, in other words if

(∇V )⊥(φ(α)) = 0 (2.25)
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where (∇V )⊥ denotes the component of the force ∇V normal to the path φ(α).

The string method is an algorithm designed to take a path (“string”) between

A and B, discretize it into a sequence of N system configurations (“images”)

φ1 . . . φN , and converge this sequence to a path satisfying (2.25). The full, smooth

(non-discretized) path, φ(α), can be recovered by assigning each image φi a dis-

tance coordinate αi, then using cubic splines or some similar interpolation method

to define a smooth parametric curve connecting them. The distance measure α,

conventionally normalized to vary between 0 and 1 from φ1 to φN , can be defined

as the absolute (2.26a) or energy weighted (2.26b) arc length between the images:

αi+1 = αi +
|φi+1 − φi|

T
(2.26a)

αi+1 = αi +W (V (φi+1), V (φi))
|φi+1 − φi|

T
, (2.26b)

where |φ| represents the L2 norm of φ, W is a positive definite weighting function,

and T is a constant that enforces normalization of α. T is the total non-normalized

arc length, e.g., T =
∑N−1

i=1 |φi+1 − φi| for (2.26a). To maintain resolution along

the string, and ensure that images do not simply evolve to the lowest-lying state of

their respective basins of attraction, images are forced to maintain equal spacing

along the distance coordinate: αi = i−1
N−1

.
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Energy weighting causes points to cluster more strongly in regions of higher

energy, improving resolution of barrier peaks (placing more images in a region

increases the string’s accuracy in that region; see Fig. 1 of Ref. [60]). Typically,

W is a continuous, positive, monotonically increasing function of its arguments,

which provides weighted coverage of the entire MEP from A to B. An example

is the choice W (Ei) = Ei, where

Ei =
(V (φi+1)− Vmin) + (V (φi)− Vmin)

2
, (2.27)

and Vmin is some low energy value such that V (φi) − Vmin is positive for all

i. This choice weights each arc length interval by the (averaged) energy of its

nearest images relative to Vmin; more aggressive schemes like W (Ei) = E2
i can

also be employed. In the following text we will refer to schemes for which W

is a continuous, positive, monotonically increasing function of its arguments as

“conventional energy weighting” (conventional EW).

2.2.2 Algorithm

To calculate the MEP between A and B, the string is initialized such that φ1

lies within A’s basin of attraction and φN lies within B’s basin of attraction. The

intervening images are initialized according some scheme that gradually makes
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them less similar to φ1 and more similar to φN (this scheme could be simple

linear interpolation between φ1 and φN , or it could be motivated by some physical

intuition as to how the converged MEP will eventually appear). The initialization

scheme should loosely, but need not stringently, satisfy the requirement of spacing

the images equally along α; this criterion will soon be enforced by the evolution

algorithm.

Once initialized, the string is evolved according to the following dynamics:

φ̇(α) = −[∇V (φ(α))]⊥ + λt̂(α) (2.28)

where [∇V (φ(α))]⊥ denotes the force projected into the plane normal to the path:

[∇V ]⊥ = ∇V − (t̂(α) · ∇V )t̂(α) (2.29)

and t̂(α) = ∂φ(α)/∂α
|∂φ(α)/∂α| is the unit tangent to the path at α. This dynamics becomes

φ̇i = −[∇V (φi)]
⊥ + λt̂i (2.30)

for the discretized string. The λ term is a Langrange multiplier designed to

ensure equal-α spacing by forcing each image tangentially along the string in one
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direction or the other. It is clear that a string corresponding to a steady state of

(2.28) will satisfy (2.25), as desired.

In practice, the terms on the right-hand side of (2.30) are time-split into 2

half-steps, which are repeated until convergence (stationarity).

Step 1: Independently evolve each image.

Each image is independently evolved according to φ̇i = −[∇V (φi)]
⊥ for a single

discrete timestep. This can be done using any desired ODE or PDE integrator.

It was shown in Ref. [60] that projecting the force into the transverse plane is

actually unnecessary, since any motion along t̂ can be incorporated into the second

term in (2.30). Therefore, it is equally suitable and usually more computationally

convenient to evolve each image according to the full force, φ̇i = −∇V (φi).

Step 2: Interpolate and reparametrize.

During Step 1, images on each side of the barrier will evolve away from the

barrier, in the direction of their respective basins of attraction. To compensate

and maintain resolution along the string, the images are repositioned to enforce

equal spacing along α. This operation encodes the action of the λt̂ term in (5).

First, an arc length coordinate αi is assigned to each image φi according to the

chosen definition of α, e.g., (2.26a) or (2.26b). Then, a smooth, non-discretized
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Figure 2.5: Upper panel: Step 1 of the string algorithm. Beads represent images.
The white beads with a line through them represent the state of the string at the
beginning of the timestep. Each image is evolved independently according to the
full force (simplified string method). After this step, images are no longer evenly
spaced across the barrier, resulting in nonuniform resolution of the MEP.
Lower panel: Step 2 of the string method. An interpolation (magenta line) is
drawn between the recently evolved images (white beads) and the images at the
end of the full timestep (magenta beads) are created by spacing them evenly along
this interpolation, ensuring that coverage of the barrier region remains uniform
as the string evolves.

path φ(α) is recovered by interpolation. Finally, the discrete images are reposi-

tioned at uniform α-intervals along the smooth path. Note that for conventional

energy weighting the endpoints φ1 and φN are unaffected by the reparametriza-

tion, and eventually evolve to stationary configurations corresponding to A and

B respectively.
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Steps 1 and 2 are illustrated in Figure 2.5 for a 2D energy landscape. Figure 2.6

illustrates a converged MEP found by the string method for a 2D energy landscape

with a twisting barrier region. The endpoints of the string naturally seek local

minima, since they are unaffected by the interpolation and reparametrization step.

Figure 2.6 also demonstrates how energy weighting helps to concentrate images

near the barrier peak.
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Figure 2.6: Initialized (white) and converged (gold) strings on an example 2D
energy landscape with a twisting barrier region. Upper panel: energy weighting
not used.
Lower panel: using energy weighting with W (E) = exp(4E).
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Figure 2.7: Upper panel: Initialized (white) and converged (gold) string for
images initialized at y = 0.5 on a 2D free energy surface that offers multiple local
MEPs.
Lower panel: Initialized (white) and converged (gold) string for images initialized
at y = −0.5.
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2.2.3 Initialization dependence

One important feature of the string method is that the converged MEP is a

local MEP, and is not necessary unique. If the free energy landscape offers multiple

MEPs between two locally stable wells, the MEP to which the string converges

will depend on how it is initialized (Figure 2.7). We exploit this property in

Chapters 3 and 5 to search for multiple MEPs. For example, in Chapter 3 we find

that if the string is initialized in a spatially symmetric way, the returned MEP is

also spatially symmetric, but if the MEP is initialized in a spatially asymmetric

way, the returned MEP is spatially asymmetric with different qualitative and

quantitative features. In Chapter 5, we search for critical nuclei that are expected

to contain certain defect structures by seeding images with the anticipated defects.

2.2.4 Image climbing

The converged string traces out a discretized minimum energy path. Due to

discretization error, simply taking the highest-energy image to give the barrier

peak is likely to give an approximate, but inexact, estimate of the actual critical

barrier state. A computationally efficient means to obtain a more precise estimate

of the critical barrier state starting from an already-converged string is presented

in [60]. The algorithm proceeds as follows:
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First, use the initial converged string to estimate the string’s tangent vector in

the vicinity of the peak. This could be done, for example, by setting the tangent

vector near the peak t̂∗ according to

t̂∗ =
φb+1 − φb
|φb+1 − φb|

(2.31)

where φb and φb+1 are the two images along the initial converged string that

immediately straddle the barrier.

Next, create a test image φt and initialize it near the barrier peak estimated

by the initial converged string. This can easily be done by setting, e.g., φt = φb

or φt = φb+1. φt is then evolved according to the following dynamics:

φ̇t = −∇V (φt) + 2
(
∇V (φt) · t̂∗

)
t̂∗ (2.32)

The 2
(
∇V (φt) · t̂∗

)
t̂∗ term reverses the component of the force −∇V (φt) that is

tangent to the MEP near the saddle point. Conceptually, what this dynamics

accomplishes is to force φt to remain within the MEP valley but climb up the

MEP instead of relaxing down along it.

If t̂∗ provides a good estimate for the MEP tangent vector in the vicinity of

the peak (that is, if the initial string used to obtain t̂∗ is sufficiently well-resolved)
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the test image will converge to a state where it undergoes infinitesimal oscillations

about the exact barrier peak.

This technique is known as image climbing. It is computationally inexpensive

once the initial converged string has been obtained, because it only involves up-

dating a single image and requires no further interpolation or reparametrization

steps.

Although image climbing is a helpful technique for users of the string method

to keep in mind, in practice we usually find that for well-resolved strings, using

image climbing does not significantly change the estimated barrier state or the

barrier’s energy. For the simulations presented in Chapters 3, 4, and 5, we do not

employ image climbing, and take the highest-energy image found by the discrete

string across a given barrier to represent the barrier state and energy height of

that barrier.

2.2.5 Variants of the zero-temperature string method

As previously mentioned, since its original formulation the string method has

been applied to a wide variety of physical systems. Many variants of the zero-

temperature string method have been introduced that enhance its utility for dif-

ferent types of problems.
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In [60] the authors note that projecting the force into the tangent hyperplanes

is unncessary. Simply evolving images according to the full force yields the same

converged MEP, and in fact demonstrates superior convergence characterstics in

addition to favorable computational simplicity.

In [63], Peters et al. introduces the growing string method, which begins with

endpoints in two separate wells (reactant or product states) then successively

adds images further into the interior as the string evolves, enabling efficient blind

exploration of a energy landscape where only the reactant and product states

are known. The growing string method has received a good deal of attention

as a tool for exploring unknown energy landscapes, and numerous incremental

improvements have been devised [64–70].

Ren and Vanden-Eijnden [71] introduce a climbing string method that starts

entirely within a single metastable well; the force on one endpoint is reversed

in a manner similar to that of image climbing, which causes that endpoint to

climb to the nearest (initialization-dependent) saddle point, while the remainder

of the string traces out the path back down to the well. This method is useful for

exploring saddle points around a known minimum without needing to compute

the full path to a different well.

Behn et al. [72] introduce a freezing string method that grows into the interior

of an unknown energy landscape in a manner similar to the growing string method,
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except that images are fixed in place and no longer evolved once they have been

used to compute the growth directions. Chaffey-Millar et al. [73] introduce the

searching string method, which progressively adds images into the region of the

string estimated to bracket the barrier state. Du and Zhang [74] introduce a

string method to handle Hamiltonians with constraints.

Backofen and Voigt [75] introduce a fixed arc length string method to study

nucleation in phase-field crystals. Their method begins by running a coarse string

method calculation of the full MEP between the metastable and stable states.

They use this calculation to estimate the arc length necessary to resolve the

barrier region, then run a fine calculation where one endpoint is fixed in the

metastable well and the remaining images are draped across the barrier, but

constrained to trace out an arc length equal to the estimated arc length from the

prior coarse calculation. This procedure successfully focuses all images within the

barrier region.

In Chapter 4, I describe “truncation-based energy weighting,” (TBEW) my

own contribution to this literature. Truncation-based energy weighting actively

truncates the string as it evolves, forcing all images to remain within and cover

uniformly a desired barrier region. TBEW is ideally suited to problems with small

energy barriers, and nucleation problems in particular. It is more convenient than

the fixed arc length string method proposed in [75], because the fixed arc length
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method requires a preliminary coarse string calculation to estimate the arc length

required to resolve the nucleation barrier, while a TBEW calculation can proceed

in one step.

2.2.6 The string method beyond mean-field theory

The string method as described above determines a minimum energy path

purely at a mean-field level. It does not take into account the influence of

anisotropic or position-dependent diffusion on system’s motion, nor does it ac-

count for fluctuations about the minimum energy path (the “width” of the tran-

sition pathway). The physical behavior of a system in the presence of fluctua-

tions may exhibit significant qualitative differences from its behavior predicted by

mean-field theory; for example, the system may prefer to fluctuate its way across

a high, broad saddle point in the free energy landscape rather than a lower but

narrower saddle point. Also, if the mean-field energy landscape contains rough-

ness on the scale of thermal fluctuations, a zero-temperature string calculation

may easily find its endpoints trapped in spurious small wells, and the barriers it

traces out will be affected by small rough features that in reality do not have a

significant impact on the system’s dynamics (see e.g., Figure 1 of Ref. [76]).

Numerous extensions of the string method have been devised to quantify the

influence of fluctuations and anisotropic diffusion, as well as to allow operation of
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the string method in reduced-dimensional spaces of collective variables (although

to my knowledge, a string method that simultaneously accounts for both diffusive

and fluctuation effects has not been devised).

Hyperplane sampling to obtain free energy along a converged zero-

temperature string

The simplest such extension is the observation of E and coworkers [59] that by

starting with a converged zero-temperature string and sampling a certain quan-

tity in the hyperplanes normal to the string at each image, the free energy in

these hyperplanes can be determined, giving the free energy barrier (not just the

mean-field energy barrier) along the string’s arc length and thus a measure of the

effective width of the transition pathway. The procedure is briefly explained but

not explicitly derived. I rederive it here since it involves some tricks the authors

do not mention.

E and coworkers begin by defining the free energy difference between a given

arc length coordinate α and the start of the string α = 0 as

F (α)− F (0) = − 1

β
ln[Z(α)/Z(0)] (2.33)
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where H(x) is the Hamiltonian as a function of the microscopic coordinates x (x

here represents a large set of microscopic variables, not a single variable). Z(α)

is the system’s partition function constrained to the hyperplane normal to the

string at point α, and is given by

Z(α) =

∫
S∗(α)

e−βH(x)dx (2.34)

in which S∗(α) represents the normal hyperplane. (2.34) may equivalently be

written as

Z(α) =

∫
e−βH(x)δ

(
t̂(α) · (x− φ)

)
dx (2.35)

where the integral is now carried out over all space and the hyperplane constraint

is supplied by the delta function. φ represents the microscopic coordinates x(α)

along the string, and as before, t̂(α) represents the unit tangent vector ∂φ
∂α
/| ∂φ
∂α
|.

To streamline notation, as in Ref. [59] we will occasionally write derivatives with

respect to α as a subscripted α, e. g., ∂φ
∂α

is φα.

To determine the free energy difference along the string, a thermodynamic-

integration-like procedure may be employed starting from the identity F (α) −

F (0) =
∫ α

0
∂F
∂α
dα. From 2.35, we have

∂F

∂α
= − 1

β

1

Z(α)

∫
e−βH(x) ∂

∂α

(
δ
(
t̂(α) · (x− φ)

))
dx (2.36)
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or equivalently, defining u ≡ t̂(α) · (x− φ) and using the chain rule,

∂F

∂α
= − 1

β

1

Z(α)

∫
e−βH(x)∂δ(u)

∂u
uα dx . (2.37)

To deal with the ∂δ(u)
∂u

term, we note that

∂δ(u)

∂xi
=
∂δ(u)

∂u

∂u

∂xi
= t̂i

∂δ(u)

∂u
(2.38)

in which xi represents the ith microscopic coordinate and t̂i represents the ith

component of t̂. We then take the dot product of both sides of (2.38) with t̂:

∑
i

t̂i
∂δ(u)

∂xi
=
∂δ(u)

∂u

∑
i

t̂2i =
∂δ(u)

∂u
(2.39)

in other words

t̂ · ∇δ(u) =
∂δ(u)

∂u
(2.40)

where ∇ is the gradient in the space of x, i.e., ∇i = ∂
∂xi

. Meanwhile, the uα term

of (2.37) is simply

uα = t̂α · x− (t̂ · φ)α . (2.41)
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Substituting (2.40) and (2.41) back into (2.37), we obtain

∂F

∂α
= − 1

β

1

Z(α)

∫
e−βH(x) t̂ · ∇δ(u)

[
t̂α · x− (t̂ · φ)α

]
dx . (2.42)

Integrating by parts on each ∂
∂xi

of the ∇ yields

∂F

∂α
= − 1

β

1

Z(α)

∫
dx
{
β (t̂ · ∇H(x)) e−βH(x) δ(u)

[
t̂α · x− (t̂ · φ)α

]
− e−βH(x) δ(u) t̂α · t̂

}
. (2.43)

This expression can be simplified by noting that since t̂ · t̂ = 1, (t̂ · t̂)α = 2t̂a · t̂ =

0 =⇒ t̂α · t̂ = 0, so the term on the second line of (2.43) drops out, giving

∂F

∂α
=

1

Z(α)

∫
(t̂ · ∇H(x)) e−βH(x)

[
(t̂ · φ)α − t̂α · x

]
δ(u) dx . (2.44)

Recalling that δ(u) = δ
(
t̂(α) · (x− φ)

)
serves to confine the system to the hyper-

plane normal to the string at α, we recognize that the right-hand side of (2.44) is

simply the thermal average of the quantity (t̂ · ∇H(x))
[
(t̂ · φ)α − t̂α · x

]
in that

hyperplane:

∂F (α)

∂α
=
〈 (
t̂ · ∇H(x)

) [
(t̂ · φ)α − t̂α · x

] 〉
S∗(α)

(2.45)
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in agreement with Eq. (9) of Ref. [59].6 By sampling this quantity in the

tangent hyperplane at each discrete image along the string (through a constrained

Langevin dynamics, for example), ∂F
∂α

at that image can be computed. The free

energy difference between the beginning of the string and a given image i at arc

length coordinate αi can be approximated according to

F (αi)− F (0) =

∫ αi

0

dα′
∂F (α′)

∂α′
≈

i∑
j=2

(αj − αj−1)
∂F

∂α

∣∣∣∣
at image j

(2.46)

where images are indexed from 1 and αi is the arc length coordinate of image i

(the integral is approximated as a Riemann sum along the images).

Finite-temperature string method

As mentioned in Section 2.1, the ideal reaction coordinate is the committor

probability. It would be helpful to have a string method that yielded a reaction

coordinate corresponding to the committor probability, taking into account the

width of the transition path as well as any roughness that might exist on the

scale of thermal fluctuations. In Refs. [61, 76–78] Vanden-Eijnden, E, Ren and

coworkers outline a method to find a string whose normal hyperplanes are isocom-

mittor surfaces (to within a planar approximation near the string, at least). This

6If you happen to look up equation (9) of Ref. [59], in their presentation one of the α
subscripts is primed while the other is unprimed. This is a typo on their part; both alpha
subscripts should be primed. Eq. (10) of Ref. [77] displays a correct version.
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means that the committor probability increases monotonically along the string’s

arc length α, and the committor probability for a system configuration φ on or

near the string can be determined by identifying the arc length coordinate of the

normal hyperplane in which φ resides (this is accomplished by simply picking out

the point on the string nearest to φ in configuration space).

Vanden-Eijnden and coworkers show that the string whose normal hyperplanes

are isocommittor surfaces is a “principle curve,” a curve that is everywhere equal

to the equilibrium thermal average of the system’s position in the curve’s tangent

hyperplanes (in other words, if the system is confined to one of those hyperplanes

and allowed to fluctuate, its resulting thermally averaged position will be exactly

the spot at which the principle curve intersects the plane). They propose several

algorithms to find this curve in a space of high-dimensional variables. The hy-

perplane formulation [77] fixes the string at timestep t, initializes a test system

confined to the tangent hyperplane at each image, allows each of those test sys-

tems to fluctuate until the approximate thermal average position in each tangent

hyperplane is obtained, then moves each image to the thermally averaged posi-

tion in its corresponding tangent hyperplane to generate the string at t+ 1. The

Voronoi cell formulation [76] is similar, but instead of confining the test systems

to hyperplanes, it confines the test system for image n to the Voronoi cell region

of configuration space closest to image n, and the test system finds the thermal
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averaged position within the Voronoi cell. The replicas formulation [61] takes a

collection of M replica strings and evolves each of their images according to ∇V+

noise, and defines the nth image of the “finite temperature string,” φ
(FT )
n as the

average of the nth images of the replicas, φ
(FT )
n = 1

M

∑M
i=1 φ

(i)
n .

Once the principle curve has been obtained, the free energy along the curve can

be computed using (2.45) and (2.46). In the case of the Voronoi cell formulation,

free energy differences between consecutive cells can also be obtained by counting

fluxes across cell boundaries (the number of times each test system attempts to

cross the boundaries of its cell during the confined thermal average). As long as

diffusion is isotropic and position-independent, arc length along a converged finite

temperature string is guaranteed to be a good reaction coordinate in the sense of

Section 2.1.3, even if the energy landscape is rough on the scale of kBT .

A weakness of the finite-temperature string algorithm is that since its evolution

is dictated by thermal averages, diffusive effects are washed out, and do not affect

the string’s motion or the converged pathway. In fact, the math shown in [78]

indicating that the principle curves’ normal hyperplanes are also (approximately)

isocommittor surfaces is only guaranteed to work in the case of isotropic, position-

independent diffusion.
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String method in collective variables

Another variant is the string method in collective variables [79, 80], which

treats images as points in a reduced-dimensional space of CVs. Images are evolved

according to a potential of mean force multiplied by a mobility tensor arising from

the curvilinear nature of the CVs (see [79] for details). The string method in col-

lective variables converges to a local minimum free energy path (MFEP) in the

space of the chosen CVs. The method can feasibly treat large numbers of CVs

(unlike metadynamics or umbrella sampling, which become computationally in-

tractable for more than 2 or 3). This gives researchers flexibility in choosing what

CVs to use, and to what extent the system’s microscopic degrees of freedom should

be coarse-grained. As a result, the method has found popularity in exploring free

energy barriers for a variety of problems, including conformational changes in

myosin [81], hydrophobic collapse of a hydrated chain [82], self-assembly of block

copolymers into a network morphology [83], and membrane fusion [84].

String method with swarms of trajectories

The string method in collective variables and the finite-temperature string

method succeed in capturing free-energy barriers, but fail to account for anisotropic

diffusion. The string method with swarms of trajectories, introduced by Pan et al.

[85], takes the opposite approach, emphasizing diffusion over free energy. At each
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timestep, it launches a swarm of short trajectories from each image to determine

the average diffusive drift, then moves the images in the direction of the drift

(reinterpolating as usual after each move to maintain equal spacing of images).

The algorithm eventually converges to a pathway that is everywhere parallel to

the average diffusion current; this is also the pathway of maximum reactive flux

or “most probable transition path” (MPTP). Like the finite temperature string

method, in principle the string method with swarms of trajectories can operate

either in a space of collective variables or in the full Cartesian space of a system’s

microscopic coordinates. Pan et al. showed that the MPTP constituted a good

reaction coordinate for two model systems, provided suitably chosen collective

variables (or a suitably high number of collective variables) were used.

The swarms-of-trajectories method and the finite-temperature string method

can in a sense be considered complementary approaches, because the former ac-

counts for diffusion but not path width while the latter accounts for path width

but not diffusion.

2.3 Self-consistent field theory

The interesting length scales one would like to capture in simulations of

(co)polymer melts and solutions are typically those associated with copolymer
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microphase domains (10s to 100s of nanometers). Particle-based modeling of

polymer melts and solutions on these length scales is difficult [86]. Direct atom-

istic molecular dynamics simulations are computationally infeasible. Even if a

coarse-grained particle-based model is used, a number of challenges remain, e.g.,

the lack of access to an explicit free energy functional, and slow kinetics associated

with self-assembly processes.

Self-consistent field theory (SCFT) [87, 88] is a field -based model of polymer

fluids capable of simulating polymer melts and solutions on the interesting meso-

scopic length scales mentioned above. SCFT has established itself as a powerful

tool to study both directed and non-directed self-assembly. SCFT offers a num-

ber of advantages over particle-based models, for example, the field-based model

transparently handles issues like chain crossing, and actually becomes more accu-

rate with increasing polymer molecular weight and chain density. Additionally,

SCFT offers explicit access to an analytic Hamiltonian. Within the saddle point

approximation (i.e, if one assumes that the dominant contribution to the parti-

tion function Z =
∫
Dφ exp (−βH[φ]) comes from some field configuration φ∗ that

minimizes H), the partition function may be approximated as Z ≈ exp (−βH[φ∗])

and the free energy may be accessed directly as F ≈ H[φ∗].

SCFT is based on the Hubbard-Stratonovich transformation. This procedure

begins with a partition function whose Hamiltonian is expressed in terms of ex-
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plicit microscopic particle coordinates {rj}, and reexpresses that partition func-

tion as a functional integral over a set of density fields ρK(r) and conjugate aux-

iliary fields wK(r). K is an index running from 1 to i, where i is the number

of monomer and solvent molecule species present in the fluid. The transforma-

tion from a particle-based to a field-based representation of the partition function

is mathematically exact, and yields a Hamiltonian expressed as a functional of

ρK(r), wK(r). In many cases of practical interest, the functional integrals over

the set of one or more density fields ρK may be performed analytically, leaving a

Hamiltonian that is a functional of the auxiliary fields wK(r) alone.

2.3.1 The diblock copolymer + homopolymer melt

To illustrate the Hubbard-Stratonovich transformation more explicitly, and to

set up future discussions of the computational challenges associated with SCFT

as well as the subtleties associated with applying the string method to SCFT, I

derive the SCFT Hamiltonian for an AB+A+B diblock copolymer+homopolymer

melt starting from the microscopic Hamiltonian for a Gaussian chain, as expressed

in [87].

All subsequent SCFT calculations (presented in Chapter 4) use the Hamil-

tonian derived here, either with or without the inclusion of added A- and B-

homopolymer.
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Single-chain machinery

The microscopic Gaussian chain Hamiltonian describes a single polymer chain

as a sequence of N statistical segments. Each statistical segment is assumed to

consist of a sufficient number of monomer repeat units such that the segment

as a whole acts like an entropic spring, with a harmonic penalty for stretching.

Therefore, the polymer can be thought of as a discrete sequence of beads connected

by springs (“discrete Gaussian chain model”), and its Hamiltonian can be written

as

U0 =
N∑
i=1

3kBT

2b2
i

b2 (2.47)

where the bond vector b is the distance between bead i and bead i − 1 (beads

are indexed from 0). b is the statistical segment length or Kuhn length associated

with our choice of statistical segment size. A useful quantity based on U0 is

the transition probability density Φ(ri − ri−1; ri−1), the normalized conditional

probability density that bead i lies at position ri given that bead i − 1 lies at

position ri−1:

Φ(ri − ri−1; ri−1) =

(
3

2πb2

)3/2

exp

[
−3|ri − ri−1|2

2b2

]
=

(
3

2πb2

)3/2

exp

[
−3|b|2

2b2

]
(2.48)
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Similarly, if the chain is considered to be continuous, its Hamiltonian can be

written as

U0[r(s)] =
3kBT

2b2

∫ N

0

ds

∣∣∣∣dr(s)

ds

∣∣∣∣2 (2.49)

where the contour variable s can be thought of as a “mass distance” along

the chain that is linearly proportional to the number of statistical segments (or

monomer repeat units) contained in the interval 0 to s. U0 is now a functional of

the continuous function r(s). (2.49) is known as the Edwards Hamiltonian. For

the Edwards Hamiltonian, the transition probability density that a contour point

s lies at position r given that point s−∆s lies at position r−∆r is given by

Φ(∆r; r−∆r) =

(
3

2πb2∆s

)3/2

exp

(
−3|∆r|2

2b2∆s

)
(2.50)

Since (2.50) is a transition probability, we may build up the probability density

p0(r, s) that the contour point s lies at position r using a Chapman-Kolmogorov

prescription [26, 27]:

p0(r, s+ ∆s) =

∫
d(∆r) Φ(∆r; r−∆r)p0(r−∆r, s) (2.51)

The transition probability for a short jump depends only on the jump distance

∆r and not on the initial position r, so is straightforward to expand (2.51) to first
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order in ∆s and second order in ∆r:

p0(r, s) + ∆s
∂

∂s
p0(r, s) =

∫
d(∆r) Φ(∆r)p0(r, s) (2.52)

−
∫
d(∆r) Φ(∆r) ∆ra

∂

∂ra
p0(r, s)

+

∫
d(∆r) Φ(∆r) ∆ra∆rb

∂

∂ra

∂

∂rb
∇p0(r, s)

a and b run over the Cartesian indices x, y, z. The ∆r integrals are now Gaussian

integrals that may be performed explicitly, yielding

∫
d(∆r) Φ(∆r) = 1 ,

∫
d(∆r) Φ(∆r) ∆rx,y,z = 0 , (2.53)∫

d(∆r) Φ(∆r) ∆ra∆rb =
b2∆s

3
δab

Substituting eqs. 2.53 into eq. 2.52, we find the Fokker-Planck equation associ-

ated with the Chapman-Kolmogorov equation:

∂

∂s
p0(r, s) =

b2

6
∇2p0(r, s) . (2.54)

which can be solved to find the desired probability density subject to a given

initial condition (the spatial probability distribution p0(r, s = 0) associated with

the beginning of the chain).
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To proceed from these concepts to a full SCFT model of a melt of interacting

chains, we must first consider the behavior of a single Gaussian chain in an exter-

nal field w(r). This field, and the form in which it is imposed, can be considered

artificial for the moment; it anticipates terms that will arise when evaluating the

partition function for an interacting melt, as we will see later. Specifically, for a

continuous Gaussian chain we consider the Hamiltonian

U = U0 + Uext =
3kBT

2b2

∫ N

0

ds

∣∣∣∣dr(s)

ds

∣∣∣∣2 + kBT

∫
drw(r)ρ̂(r) , (2.55)

where

ρ̂(r) =

∫ N

0

ds δ(r− r(s)) (2.56)

is the segment density. A useful quantity to compute (again, because it will

become important later) is the normalized single-chain partition function

Q[w] =
Z[w]

Z0

=

∫
Dr exp(−βU0 − βUext)∫
Dr exp(−βU0)

(2.57)

68



Chapter 2. Theory and Tools

Q is a functional of the imposed field w(r). If the continuous chain is discretized

into Ns + 1 beads and Ns springs of length ∆s, (2.57) can be written as

Q[w] =
1

V

∫
drNs+1

{
exp[−∆sw(rNs)] Φ(rNs − rNs−1) exp[−∆sw(rNs − 1)]

× Φ(rNs−1 − rNs−2) . . . exp[−∆sw(r2)] (2.58)

× Φ(r2 − r1) exp[−∆sw(r1)] Φ(r1 − r0) exp[−∆sw(r0)]

}

If we define the quantities

q(r, 0; [w]) = exp[−∆sw(r)] (2.59)

and

q(r, s+ ∆s; [w]) = exp[−∆sw(r)]

∫
dr′Φ(r− r′)q(r′, s; [w]) , (2.60)

then (2.58) can alternatively be written as

Q[w] =
1

V

∫
dr q(r, N ; [w]) . (2.61)

(2.60) is a Chapman-Kolmogorov equation, therefore we can derive a Fokker-

Planck equation for q(r, N ; [w]), Expanding (2.60) to first order in ∆s and second
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order in ∆r, and following the same sequence of steps used to obtain (2.54), we

find

∂

∂s
q(r, s; [w]) =

b2

6
∇2q(r, s; [w])− w(r)q(r, s; [w]) (2.62)

which can be solved to give q(r, s; [w]) subject to the initial condition q(r, 0; [w]) =

exp[−δsw(r)] = 0 in the continuous-chain (∆s → 0) limit. q(r, s; [w]) is called

the propagator. Intuitively, it can be interpreted as the probability that the end

of the chain s = N lies at position r.

The only remaining quantity we will later need is the average single-chain

monomer density in the presence of w, ρ(r; [w]) = 〈ρ̂(r)〉w, given by

ρ(r; [w]) =

∫
Dr ρ̂(r) exp(−βU0 − βUext)∫

Dr exp(−βU0)
(2.63)

From the form of (2.55), we see that δ
δw(r)

(U0 +Uext) = kBT ρ̂(r); using Q[w] from

(2.57) we can write

δ lnQ[w]

δw(r)
=

1

Q[w]

δQ[w]

δw(r)
=

∫
Dr ˆρ(r) exp(−βU0 − βUext)∫

Dr exp(−βU0)
= −ρ(r; [w]) . (2.64)

It is shown in [87] that

− δ lnQ[w]

δw(r)
= ρ(r; [w]) =

1

V Q[w]

∫ N

0

ds q(r, N − s; [w])q(r, s; [w]) (2.65)
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From (2.65) and (2.61) we see that both the average single-chain density ρ(r; [w]

and Q[w] can be obtained by appropriately integrating the propagator q(r, s; [w]).

This highlights the importance of computing q via the propagator equation (2.62).

It turns out that solving the propagator equation is the most computationally

costly step of the SCFT method.

Up to this point, the results we obtained apply to a homopolymer chain of

a single monomer species (say A). The only difference when considering a chain

composed of multiple monomer species is that different species may be acted upon

by a different realization of the external field, i.e., wA acts on monomer species

A and wB acts on monomer species B. For a diblock chain of length N and block

fraction f , where 0 ≤ s ≤ fN consists of species A and fN < s ≤ N consists of

species B, the microscopic single-chain densities and Hamiltonian become

ρ̂A(r) =

∫ fN

0

ds δ(r− r(s)) , ρ̂B(r) =

∫ N

fN

ds δ(r− r(s)) (2.66)

and

U = U0 + Uext (2.67)

=
3kBT

2b2

∫ N

0

ds

∣∣∣∣dr(s)

ds

∣∣∣∣2 + kBT

∫
drwA(r)ρ̂A(r) + kBT

∫
drwB(r)ρ̂B(r) .
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The potential U is now a functional of both wA and wB. The propagator equation

becomes

∂

∂s
q(r, s; [wA, wB]) =

[b(s)]2

6
∇2q(r, s; [wA, wB])

−w(r, s)q(r, s; [wA, wB]) (2.68)

where

w(r, s) =


wA(r), 0 ≤ s ≤ fN

wB(r), fN < s ≤ N

(2.69)

b(s) represents the Kuhn length along the chain, which may change as we pass

from species A to species B; in practice it is often assumed to be the same for

both monomer species: b(s) = b = const.

To compute the densities ρA and ρB, it is also convenient to define the com-

plementary propagator q†(r, s; [wA, wB]), whose s = 0 point is defined to start at

the B-species end instead of the A-species end:

∂

∂s
q†(r, s; [wA, wB]) =

b2

6
∇2q†(r, s; [wA, wB])

−w†(r, s)q†(r, s; [wA, wB]) (2.70)
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where

w†(r, s) =


wB(r), 0 ≤ s ≤ (1− f)N

wA(r), (1− f)N < s ≤ N

(2.71)

(2.70) is solved subject to the same initial condition as (2.68): q†(r, 0; [wA, wB]) =

1. The single-chain partition function may be computed from either the q or q†:

Q[wA, wB] =
1

V

∫
dr q(r, N ; [wA, wB])

=
1

V

∫
dr q†(r, N ; [wA, wB]) (2.72)

and the densities may be expressed in terms of q and q† as

ρA = −δ lnQ[wA, wB]

δwA(r)
(2.73)

=
1

V Q[wA, wB]

∫ fN

0

ds q†(r, N − s; [wA, wB]) q(r, s; [wA, wB])

ρB = −δ lnQ[wA, wB]

δwB(r)

=
1

V Q[wA, wB]

∫ N

fN

ds q†(r, N − s; [wA, wB]) q(r, s; [wA, wB])

as described in [87].

73



Chapter 2. Theory and Tools

From single chains to an interacting melt

With the above single-chain results in hand we can derive the SCFT Hamilto-

nian of an AB+A+B diblock plus homopolymer melt. Assume that the melt con-

tains nAB diblock chains of lengthNAB with A-block fraction f , nA A-homopolymer

chains of length NA, and nB B-homopolymer chains of length NB. The micro-

scopic densities of the two species are given as a sum over chains by

ρ̂A(r) =

nAB∑
i=1

∫ fNAB

0

ds δ(r− rAB,i(s)) +

nA∑
j=1

∫ NA

0

ds δ(r− rA,j(s)) (2.74)

ρ̂B(r) =

nAB∑
i=1

∫ NAB

fNAB

ds δ(r− rAB,i(s)) +

nB∑
k=1

∫ NB

0

ds δ(r− rB,k(s))

and the contribution to the total Hamiltonian stemming from chain stretching is

given by

U0[{rAB(s)},{rA(s)}, {rB(s)}] =

nAB∑
i=1

U0AB[rAB,i(s)] +

nA∑
j=1

U0A[rA,j(s)]

+

nB∑
k=1

U0B[rB,k(s)]

=

nAB∑
i=1

3kBT

2b2

∫ NAB

0

ds

∣∣∣∣dri(s)ds

∣∣∣∣2 +

nA∑
j=1

3kBT

2b2

∫ NA

0

ds

∣∣∣∣drj(s)ds

∣∣∣∣2
+

nB∑
k=1

3kBT

2b2

∫ NB

0

ds

∣∣∣∣drk(s)ds

∣∣∣∣2 (2.75)
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(in which chains of different species are assumed to have identical Kuhn lengths).

rAB,i(s) denotes, e.g., the position at contour variable s along the ith AB diblock

chain; U0 is a functional of the set {rAB(s)}, {rA(s)}, {rB(s)} of these configura-

tions for all the individual chains present in the melt.

The Hamiltonian must also account for the interaction between different monomer

species. Typically, this interaction is modeled using a repulsive local (Flory-

Huggins [89]) contact potential of the form

βU1 = v0χAB

∫
dr ρ̂A(r)ρ̂B(r) (2.76)

where v0 is the volume occupied by a single statistical segment.

Finally, the melt is assumed to be incompressible everywhere, i.e., ρ̂A(r) +

ρ̂B(r) = ρ0 ≡ 1/v0.

Including both U0 and U1, the partition function for the AB+A+B melt can

be written as

Z = (2.77)

1

nAB!nA!nB!(λ3
T )nABNAB+nANA+nBNB

nAB∏
i=1

∫
DrAB,i

nA∏
j=1

∫
DrA,j

nB∏
k=1

∫
DrB,j(

exp (−βU0 − βU1)× δ(ρ̂A(r) + ρ̂B(r)− ρ0)
)
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The anterior constants account for the identical nature of the chains and the ther-

mal de Broglie wavelength λT of individual segments; however, they are unimpor-

tant, since we are only interested in finding the Hamiltonian that appears in the

exponential. Also, from a general statistical mechanics perspective, quantities of

physical interest (e.g., the thermal average of some operator O over the system’s

degrees of freedom φ) are expressed as a ratio:

〈O〉 =

∫
dφO e−βH[φ]

Z
(2.78)

in which any multiplicative constants will cancel. Subsequently, these and other

multiplicative constants attached to the partition function will be ignored.

The Hubbard-Stratonovich transformation introduces an auxiliary field that

serves to decouple the ρ̂A(r)ρ̂B(r) interaction contained in U1. It is carried out as

follows.

First, for convenience, we define two linear combinations of the microscopic

density fields

ρ̂+(r) = ρ̂A(r) + ρ̂B(r) , ρ̂−(r) = ρ̂A(r)− ρ̂B(r) . (2.79)
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In terms of ρ̂+ and ρ̂−, the incompressibility condition becomes δ(ρ̂+ + ρ0), and,

noting that 4ρ̂Aρ̂B = ρ̂2
+ − ρ̂2

− = ρ2
0 − ρ̂2

−, we can rewrite U1 as

βU1 =
1

4
v0χAB

∫
dr
(
ρ2

0 − ρ̂2
−(r)

)
=

1

4
χABN −

1

4
v0χAB

∫
dr ρ̂2

−(r) (2.80)

where N = nABNAB + nANA + nBNB is the total number of statistical segments

present in the system. Then

e−βU1 = const · exp

(
1

4
v0χAB

∫
dr ρ̂2

−(r)

)
(2.81)

To introduce the auxiliary field, consider the Gaussian functional integral identity

∫
Df exp

[
−(1/2)

∫
dx
∫
dx′ f(x)A(x, x′)f(x′) +

∫
dx J(x)f(x)

]∫
Df exp

[
−(1/2)

∫
dx
∫
dx′ f(x)A(x, x′)f(x′)

] (2.82)

= exp

(
1

2

∫
dx

∫
dx′ J(x)A−1(x, x′)J(x′)

)

from Appendix C of [87]. Comparing (2.81) with the right-hand side of (2.82),

we can identify A−1(x, x′) with (1/2)v0χABδ(r− r′). Since the functional inverse

A−1 of A is defined via

∫
dx′A(x− x′)A−1(x′ − x′′) = δ(x− x′′) (2.83)
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we can also identify A(x, x′) with 2
v0χAB

δ(r − r′) = 2ρ0
χAB

δ(r − r′), and substitute

into the left-hand side of (2.82) to write (2.81) as

e−βU1 = const ·
∫
Dw− exp

(
ρ̂−w− −

ρ

χAB
w2
−

)
(2.84)

where w− is the newly introduced auxiliary field (the denominator of (2.82) is a

constant). Since w− is conjugate to ρ̂−, the difference between the densities of the

two species, w− is conventionally referred to as the exchange field. Note that the

remaining microscopic density term in (2.84) is linear; in other words, the contact

interaction has been decoupled.

We may also write the delta-functional incompressibility condition as a func-

tional integral over another auxiliary field:

δ(ρ̂+(r)− ρ0) = const ·
∫
Dw+ exp

(
−i
∫
drw+(ρ̂+(r)− ρ0)

)
(2.85)

The second newly introduced auxiliary field w+ is conjugate to the sum of the

microscopic densities of the two species and enforces incompressibility; it is con-

ventionally referred to as the pressure field.

These steps may seem to have complicated rather than clarified the partition

function, but we will find that everything collapses in a clean and satisfying way.

Substituting (2.74), (2.75), (2.84), and (2.85) into (2.77), we find that the sums
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over individual chains yield independent terms in the Hamiltonian that factor:

Z = const ·
∫
Dw−

∫
Dw+

{
(2.86)

nAB∏
i=1

∫
DrAB,i exp

(
− βU0AB[rAB,i(s)]−∫

dr

∫ fNAB

0

dswA(r)δ(r− rAB,i(s))−
∫
dr

∫ NAB

fNAB

dswB(r)δ(r− rAB,i(s))

)
nA∏
j=1

∫
DrA,j exp

(
− βU0A[rA,j(s)]−

∫
dr

∫ NA

0

dswA(r)δ(r− rA,j(s))

)
nB∏
k=1

∫
DrB,k exp

(
− βU0B[rB,k(s)]−

∫
dr

∫ NB

0

dswB(r)δ(r− rB,k(s))

)

exp

(
−
∫
dr

ρ0

χAB
w2
−(r)− iω+(r)ρ0

)}

= const ·
∫
Dw−

∫
Dw+

{
nAB∏
i=1

∫
DrAB,i exp

(
− βU0AB[rAB,i(s)]−∫ fNAB

0

dswA(rAB,i(s))−
∫ NAB

fNAB

dswB(rAB,i(s))

)
nA∏
j=1

∫
DrA,j exp

(
− βU0A[rA,j(s)]−

∫ NA

0

dswA(rA,j(s))

)
nB∏
k=1

∫
DrB,k exp

(
− βU0B[rB,k(s)]−

∫ NB

0

dswB(rB,k(s))

)

exp

(
−
∫
dr

ρ0

χAB
w2
−(r)− iω+(r)ρ0

)}
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where we have defined wA = iw+−w− and wB = iw+ +w−. Comparing with the

expression for the partition functions of single chains in external fields (2.57), we

see that the three products are simply (Z0ABQAB[wA, wB])nAB , (Z0AQA[wA])nA ,

and (Z0BQB[wB])nB respectively, leading to the following compact expression for

the partition function:

Z = const ·
∫
Dw+

∫
Dw− e−H[w+,w−] (2.87)

H[w+, w−] = ρ0

∫
dr

(
1

χAB
w−(r)− iw+

)
(2.88)

− nAB lnQAB[wA, wB]− nA lnQA[wA]− nB lnQ[wB]

w−(r) and w+(r) are fields that can be discretized on a lattice of computationally

tractable dimensionality. In practice, roughly 10 discretization points per charac-

teristic microphase domain length is sufficient. For example, simulating a system

of size 8×8×8 lamellar periods would require 80×80×80 = 512, 000 grid points.

QA, QB, and QAB can be found by solving the single-chain propagator diffu-

sion equations for a homopolymer (2.62) or diblock (2.70) to obtain qA(r, s; [wA]),

qB(r, s; [wB]) and qAB(r, s; [wA, wB]), then plugging those into (2.72) and (2.61).

To compute the average value of the density of a given monomer species, say

ρA, we add to the Hamiltonian of (2.77) a source term S = (1/β)
(∫

dr JA(r)ρ̂A(r)
)

with an artificial field JA(r) conjugate to the microscopic density of the desired
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species (such that exp (βU0 − βU1) becomes exp (βU0 − βU1 − βS)). Next, we

note that

〈ρ̂A(r)〉 = − 1

Z[JA]
· const ·

∫
Dw+

∫
Dw−

{
δH[w+, w−, JA]

δJA(r)
e−H[w+,w−]

}∣∣∣∣
JA=0

(2.89)

If we retrace the steps that led from (2.77) to (2.87), but this time with S

present in the Hamiltonian, we find that JA ultimately appears in the Hamiltonian

as follows:

H[w+, w−, JA] = ρ0

∫
dr

(
1

χAB
w−(r)− iw+

)
(2.90)

− nAB lnQAB[wA + JA, wB]− nA lnQA[wA + JA]− nB lnQ[wB]

so that

δH[w+, w−, J ]

δJ(r)

∣∣∣∣
JA=0

=
δH[w+, w−, 0]

δwA(r)
(2.91)

= −nAB
δ lnQAB[wA, wB]

δwA(r)
− nA

δ lnQA[wA]

δwA(r)

≡ ρ̃A (r; [wA, wB]) (2.92)

Therefore, to find the thermally averaged averaged value of the microscopic A-

segment density ρ̂A, dealing with an artificial source term is unnecessary; we can
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simply compute the thermal average of the segment density operator ρ̃A (r; [wA, wB]).

To compute the instantaneous value of ρ̃A (r; [wA, wB]), the second term of (2.91)

can be constructed by solving the propagator equation (2.62) for the A-homopolymer

to obtain qA(r, s;wA), then plugging into (2.65). The first term can be constructed

by solving the forward and backward propagator equations (2.68), (2.70) for the

AB-diblock to obtain qAB(r, s; [wA]) and q†AB(r, s; [wA, wB]), then plugging into

(2.73).

To model graphoepitaxy, as presented in Chapter 3, the polymer melt can

be simulated in the presence of confining sidewalls. Walls are implemented by

considering an additional polymer-excluding “wall density” field ρW that is fixed

in space, and rises rapidly from zero to ρ0 wherever a wall is present. To model

a combination of grapho- and chemoepitaxy, it is also necessary to make the

wall locally attractive to one species or another. This is implemented in the

Hamiltonian by including contains contact terms for interactions between the

wall density field and the microscopic polymer density fields ρ̂A and ρ̂B.

The use of an artificial wall density field to simulate confinement was originally

proposed by Matsen [90]. Further details can be found in [91, 92].
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2.3.2 SCFT relaxation equations

SCFT makes use of the saddle point approximation mentioned earlier; in other

words, it attempts to find configurations w∗+, w
∗
− that (locally) dominate the path

integral (2.87). It then assumes Z ≈ exp−H[w∗+, w
∗
−], such that the free energy

is given by F ≈ H[w+, w−] and the thermally averaged microscopic density of

species K is given by 〈ρ̂K〉 ≈ ρ̃K (r; [w∗A, w
∗
B]).

For a real-valued Hamiltonian H[φ], finding field configurations that give lo-

cally dominant contributions to the Hamiltonian is straightforward. One must

simply find local minima of H with respect to φ. In SCFT, finding configurations

that give locally dominant contributions to the Hamiltonian is more subtle be-

cause the Hamiltonian is complex-valued; specifically, the pressure field enters H

through the purely imaginary term iw+. We can account for this by appealing to

the method of steepest descent and stationary phase [93]. Ostensibly, the func-

tional integrals over w+ and w− in (2.87) are along the real axes between ±∞

for each w(r); however, since e−H is analytic, in principle we may deform these

integration paths (individually, as desired) to any contours in the complex plane

whose endpoints are at ±∞ on the real axis. The method of steepest descent

considers integration along a contour where the imaginary part of the Hamilto-

nian HI (the “phase”) is constant, and uses the fact that the integrals along such

contours are dominated by “saddle points” where the real part of the Hamiltonian
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HR along the constant-phase contour is minimized. Due to certain analytic prop-

erties of complex-valued functions, detailed in [93], two constant-phase contours

intersect at each saddle point, and both of these contours are also paths along

which the real component of H is changing most rapidly; thus, a constant-phase

contour in the vicinity of a saddle point S is also a contour of steepest ascent or

steepest descent as one moves away from S. Along one of these two contours, HR

at S is a local minimum; along the other contour, HR at S is a local maximum.

We can combine these general insights about complex-valued functions with

intuition about the specific analytic structure of H[w+, w−], to come up with a

set of relaxation equations to search for the saddle point. First of all, the Hamil-

tonian at the saddle point H[w∗+, w
∗
−] should be real-valued. Since w+ enters the

Hamiltonian only through iw+, we anticipate that w∗+ is purely complex; similarly,

since w− enters the Hamiltonian without factors of i attached, we anticipate that

w∗− is purely real.

We compute the purely real saddle point by a simple gradient descent scheme

that minimizes HR:

∂w−(r)

∂t
= −λ−

δH[w+, w−]

δw−(r)
(2.93)

= −λ−
[

2ρ0

χAB
w−(r)− ρ̃A (r; [wA, wB]) + ρ̃B (r; [wA, wB])

]
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where as usual wA = iw+ − w− and wB = iw+ + w− and we have recognized,

for example, that −nAB δ lnQAB

δw−
− nA

δ lnQA

δw−
= nAB

δ lnQAB

δwA
+ nA

δ lnQA

δwA
= ρ̃A. λ+

controls the size of the effective relaxation timestep, and should be made as large

as possible while maintaining stability of whatever scheme is used to discretize

(2.93) in time. The “time” here is fictitious and has no connection to physical

dynamics of the polymers. To find the purely imaginary saddle point, we relax

w+ along the imaginary axis:

∂(iw+(r))

∂t
= +λ+

δH[w+, w−]

δ(iw+(r))
(2.94)

= +λ+ [−ρ0 + ρ̃A (r; [wA, wB]) + ρ̃B (r; [wA, wB])]

It turns out that along this search axis, HR is a local maximum at the saddle

point w∗+. Therefore, while (2.93) represents a gradient descent scheme, (2.94)

represents a gradient ascent scheme.

Equations (2.93) and (2.94) can be integrated forward in fictitious time using

any desired discretized algorithm. The simplest choice is forward Euler; how-

ever, a number of methods have been proposed that offer improved accuracy and

stability (details of several useful examples can be found in [87, 94–97]).

Because the density operators ρ̃A and ρ̃B must be constructed using the prop-

agators for each chain type, and the propagators themselves depend on the fields
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w+ and w− at a given timestep, in order to advance w+ and w− the propagators

must be recomputed at each timestep. This is accomplished by solving the prop-

agator diffusion equations for each chain type present in the melt (AB diblock, A

homopolymer, and B homopolymer; for the diblock, the complementary propaga-

tor equation (2.70) must also be solved). Solving these diffusion equations is by

far the most expensive step of the SCFT relaxation prescription, since the prop-

agator is an M ×NS dimensional object, where M is the number of spatial grid

points and Ns is the number of contour steps used to discretize the propagator.

Ns depends on chain length; for the systems we study later it is typically around

∼ 100 for the longest chain type present.

Again, a number of methods have been proposed to solve the diffusion equa-

tions [87, 98]. The simulations presented in Chapter 3 use a pseudo-spectral

method described in [87, 99, 100] to integrate q0(r, s) forward from 0 to N along

the contour variable s, which proceeds as follows:

The diffusion equation for a generic propagator is

∂

∂s
q(r, s) =

b2

6
∇2q(r, s)− w(r, s)q(r) (2.95)
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which may be discretized in ∆s as

q(r, s+ ∆s) = exp (L∆s)q(r, s) (2.96)

where L = (b2/6)∂2/∂r2 − w(r, s)2. L as a whole is not diagonal in either real

space or Fourier space, but the first term LD = (b2/6)∂2/∂r2 is diagonal in Fourier

space and the second term LW = −w(r, s) is diagonal in real space. The basic

idea behind the pseudospectral method is to apply LD and LW separately using

a combination of Fourier transforms and elementwise operations. First, we apply

Strang splitting [101] to the operators, expressing exp(L∆s) as

exp(L∆s) = exp(LW∆s/2) exp(LD∆s) exp(LW∆s/2) +O(∆s3) , (2.97)

an identity that can be shown by Taylor expansion. Next, beginning with q(r, s) in

real space at contour point s, we determine q(r, s+δs) via a three-step procedure:

1. Compute q(r, s + ∆s/3) ≡ exp(LW∆s/2)q(r, s). Since LW is diagonal in

real space, this involves a simple elementwise multiplication.

2. Take the Fourier transform of q(r, s+ ∆s/3) and compute q(k, s+ 2∆s/3 ≡

exp(LD∆s)q(k, s + ∆s/3). Again, since LD is diagonal in Fourier space,
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applying exp(LD∆s) to q(k, s + ∆s/3) involves only elementwise multipli-

cation.

3. Third and finally, perform an inverse Fourier transform on q(k, s + 2∆s/3

and compute q(r, s+ ∆s) = exp(LW∆s/2)q(r, s+ 2∆s/3).

The algorithm may be summarized as

q(r, s+ ∆s) = exp(LW∆s/2)FT−1
[

exp(LD∆s)FT
[

exp(LW∆s/2)q(r, s+ ∆s)
]]

(2.98)

where FT and FT−1, respectively, represent forward and inverse Fourier tran-

forms. The initial condition is q(r, 0) = 1.

Overall, the pseudo-spectral algorithm requires one forward and inverse Fourier

transform pair per contour step; computationally, the corresponding fast Fourier

transforms (FFTs) consume most of the algorithm’s required wall time. The com-

putational order of the FFTs isM logM , whereM is the number of grid points; for

Ns contour steps, the overall computational order of the pseudospectral method

is then NsM logM .

Computing propagators is also the most memory-intensive step of the SCFT

procedure. The propagator’s dimensionality Ns ×M , for a typical calculation,

might come out to 100 × 128 × 48 × 48 = 29, 491, 200 complex double-precision

values. Each complex double-precision value requires 16 bytes of storage, mean-
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ing that such a propagator would consume 16× 29, 491, 200 bytes = 0.472GB of

memory. Furthermore, a separate propagator must be computed for each chain

type present in the melt (in our case AB diblock, A homopolymer, and B ho-

mopolymer). Finally, the string method requires ∼ 20 − 30 separate images to

be effective, and each image is a fully independent SCFT model. When attempt-

ing to pair the string method with SCFT calculations on GPUs, the memory

requirements can become challenging, as discussed in Chapter 3.

2.3.3 The string method and the partial saddle point ap-

proximation

SCFT is effective at modeling the mean-field behavior of polymer melts,

and the string method is effective at finding minimum energy paths in high-

dimensional systems. To explore annealing pathways for defect-containing or

otherwise metastable configurations of polymer melts, combining the two meth-

ods is a natural choice. In principle, since the evolution step and reparametriza-

tion step of the zero-temperature string method are carried out independently,

any field-based model with a well-defined force and Hamiltonian can be made to

work with the string method. However, SCFT presents the unique difficulty that

the configurations of its evolving fields (w+ and w−) away from saddle points are

not guaranteed to produce real-valued, physical Hamiltonians. When performing
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SCFT on a single model this is not a problem, because the relaxation equations are

specifically intended to reach equilibrium at a saddle point. In the string method,

by contrast, the string reaches an equilibrium configuration where only the two

endpoints are guaranteed to lie at saddle points, while the interior images trace

out a sequence of configurations along the minimum energy path between them

(in the context of a complex-valued Hamiltonian, even the concept of “mininum

energy path” is not physically relevant).

To deal with this issue, we make use of the partial saddle point approximation,

described in [87, 102, 103]. We noted earlier that since the pressure field w+ enters

the Hamiltonian only through iw+, the saddle point configuration of the pressure

field w∗+ is purely imaginary; similarly, since the exchange field w− enters the

Hamiltonian without any factors of i attached, the saddle point configuration of

the exhange field w∗− is purely real. In the partial saddle point approximation, the

pressure field is slaved to the exchange field, and is considered to lie at its (w−-

dependent) saddle point configuration w∗+ for whatever realization of the exhange

field is currently being considered. Within the partial saddle point approximation,

the partition function (2.87) becomes

Z ≈ const ·
∫
Dw− exp (−Hp[w−]) (2.99)

Hp[w−] ≡ H[w∗+, w−] (2.100)
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Note that Z now involves a functional integral over the w− fields only. The w+

fields are constrained to lie at their partial saddle point w+(r, [w−]), which for a

given realization of w−(r) is defined via

δH[w+, w−]

δw+(r)

∣∣∣∣
w+=w∗+

= 0 (2.101)

through which w∗+ is a functional of w−. In practice, the partial saddle point is

found by fixing w− and integrating w+ in fictitious time according to using Eqn.

(2.94) until (2.101) is satisfied.

From the perspective of the string method, the key point is that w∗+ found

through (2.101) is purely imaginary, which means that H[w∗+, w−] = Hp[w−] is

purely real. If we impose the partial saddle point approximation on all interior

images at each timestep, the string will trace out a sequence of real-valued ener-

gies. Therefore, we apply the string method to SCFT using the following sequence

of steps:

1. For each image, relax the w+ field by integrating (2.94) (holding w− fixed)

until a partial saddle point is reached.

2. For each image, relax the w− field by integrating (2.93) for one timestep.

3. Perform the interpolate and reparametrize step on the w− fields only.
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The restring operations should only be performed on the exchange field because

the pressure field is slaved to the exchange field through (2.101).

2.4 Phase-field models for the diblock melt

SCFT is a powerful tool that reproduces much of the qualitative phase diagram

and sequence of phase transitions observed in experiments. However, constructing

the propagator is computationally costly. To study the dis→lam transition in

Chapter 5, we only require a model that is accurate near the dis→lam ODT.

Near the ODT the melt may be considered weakly segregated; that is, the local

overdensity of a given monomer species is relatively small. In this section we

introduce several phase-field models that express the Hamiltonian of a diblock

melt directly in powers of local monomer concentration variations. These models

are valid in the weak-segregation limit, and demonstrate the expected fluctuation-

induced first-order character. In sections 2.4.2 and 2.4.3 we introduce the models

that will be used in Chapter 5. In many of the expressions below χ serves as

shorthand for the unlike-segment enthalpic contact penalty χAB defined in Section

2.3.
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2.4.1 The Leibler model

The Leibler model [12] is the canonical model for a diblock melt in the weak-

segregation limit. It is expressed in terms of the local concentration fluctuation

(local overdensity of, say, A-type monomers) ψ(r) = ρA(r)
ρ
− f , where ρA(r) is the

number density of A monomers at position r, ρ = NpN/V is the total monomer

density in the melt (Np = number of chains, N = number of monomers per chain,

V = system volume) and f is the block fraction. The average value of ψ over

the entire system is zero. The Hamiltonian for this model (as written in [104]) in

Fourier space is the following:

H[ψ] =
1

2!

∫
k

γ2(k,−k)ψ(k)ψ(−k) (2.102)

+
1

3!

∫
k1

∫
k2

γ3(k1,k2,−k1 − k2)ψ(k1)ψ(k2)ψ(−k1 − k2)

+
1

4!

∫
k1

∫
k2

∫
k3

γ4(k1,k2,k3,−k1 − k2 − k3)ψ(k1)ψ(k2)ψ(k3)ψ(−k1 − k2 − k3)

where
∫
k

=
∫

dk
(2π)3

and ψ(k) =
∫
dx exp(ik·x)ψ(x). The vertex γ2, γ3, and γ4 can

be found in [12] or [104]. Ref. [87] describes how γ2 can be derived by applying

a weak inhomogeneity expansion (also called a random phase approximation or

RPA) to the SCFT model for a diblock. An important qualitative feature is that

γ2(k) is minimized for |k| = some specific magnitude q∗. This indicates that

the system’s ordered phases prefer composition fluctuations with some particular

93



Chapter 2. Theory and Tools

wavelength q∗, i.e., quasicrystalline mesophases similar to those found in the

SCFT phase diagram (Figure 2.8).

Figure 2.8: Phase diagram of the Leibler model. DIS = disorder, BCC = body-
centered cubic spheres, HEX = hexagonally packed cylinders, LAM = lamellae.
Note that the only direct transition between disorder and lamellae occurs across
the critical point at f = 0.5, χN = 10.495. This transition is second-order. Figure
adapted from [104].

2.4.2 The Brazovskii model

Brazovskii [105] considered a mean-field Hamiltonian of the form

H[φ(r)] =

∫
dr a[(∇2 + q2

0)φ]2 + bφ2 + cφ3 + dφ4 (2.103)

with a > 0. The a term is positive definite, and zero if φ contains only modes

of magnitude q0, so the model prefers periodic ordered phases with wavelength
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q0. The preferred amplitude of the periodic spatial variation of φ in the ordered

phases is set by b, c, and d. Brazovskii showed on the basis of a one-loop Hartree

approximation (see, e.g., [106] or Chapters 3-5 of [107]) that this model exhibits

a fluctuation-induced first-order phase transition between the disordered phase

and a periodic lamellar phase. The parameter c introduces asymmetry between

negative and positive values of φ. The system will only form BCC and hexagonally

packed cylinders if c 6= 0. If c = 0, the system will form either disorder or lamellae.

Fredrickson and Helfand (FRH) showed that by considering γ3 ≈ const and

γ4 ≈ const (approximations they justify), and expanding γ2 about the preferred

wavenumber q∗, the Leibler model could be written as a mean-field Brazovskii

model.7 Applying Brazovskii’s fluctuation analysis to this model, they showed

that the dis→lam transition became first-order in the presence of fluctuations,

and that the system showed a direct first-order dis→lam transition across a range

of f values, in improved agreement with the experimental phase diagram. They

also showed that fluctuation corrections acted to stabilize the disordered phase,

causing the dis→lam ODT to shift to a higher value of χN , given by χNODT =

10.495+41.0N̄−1/3, where 10.495 is the mean-field ODT and N̄ is a dimensionless

parameter related to chain density that will be explained shortly.

7The Brazovskii model has also been shown to describe weakly anisotropic ferromagnets
[105], fluids near the Rayleigh-Bénard instability [108, 109], and liquid crystals near the nematic-
smectic C transition [109, 110].
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In this thesis we are only concerned with the dis→lam transition for symmetric

diblocks, for which the coefficient of the ψ3 term is zero. Fredrickson and Binder

(FRB) restate the mapped mean-field Brazovskii model for symmetric diblocks

as follows:

βH[ψ(x)] =

∫
dx

(
e0

2
[(∇2 + (q∗)2)ψ]2 +

τ0

2
ψ2 +

u0

4!
ψ4

)
,

∫
ψ dx = 0

τ0 = 2ρc[χsN − χN ] , e0 = (3c2/2x∗)ρcR
4
g , u0 = ρcNΓ4(0, 0) (2.104)

Physically, τ0 functions as an effective temperature: for τ0 < 0, a stable ordered

phase will exist, while for τ0 > 0, disorder is favored. u0 is > 0 and provides

an amplitude cutoff for the ordered phase. q∗ is the wavenumber that minimizes

the Leibler structure factor γ2(k). Rg, the “radius of gyration,” is the root-

mean-square distance of statistical segments from the chain’s center of mass; for

a Gaussian chain, R2
g = Nb2/6. x ≡ (q∗)2R2

g, and c and NΓ4(0, 0) are O(1)

functions of the block fraction f , given in [104], evaluated at f = 1/2 (relevant

numerical values will be given shortly). χsN = 10.495 is the mean-field value of

the dis→lam ODT, and ρc = (num chains)/(system volume) is the chain density.

The constraint
∫
ψ dx = 0 enforces global conservation of volume fraction f ; the

same constraint exists on the order parameters of (2.105), (2.106), and (2.107)

presented subsequently.
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To expose the dimensionless parameter N̄ that dictates the significance of fluc-

tuations, FRB define N̄ ≡ 63(R3
gρc)

2 and perform the rescalings r ≡ 6−1/2R−1
g x,

φ(r) ≡ cN̄1/4ψ(r) to express (2.104) as

βH[φ(r)] =

∫
dr

(
e

2
[(∇2 + q2

0)φ]2 +
τ

2
φ2 +

u

4!
φ4

)
(2.105)

τ = 2(χsN − χN ] , e = 1/(24x∗) , q2
0 = 6x∗ , u =

NΓ4(0, 0)

c4N̄1/2
≡ λN̄−1/2

For a symmetric (f = 1/2) diblock, c = 1.1019, x∗ = 3.7852, χsN = 10.495, and

λ = 106.18. To make the role of N̄ explicit, we can define a further rescaled field

φs ≡ φ/N̄1/4 and write

βH(φs(r)) = N̄1/2

∫
dr

(
e

2
[(∇2 + q2

0)φs]
2 +

τ

2
φ2
s +

λ

4!
φ4
s

)
(2.106)

In this form it is clear that N̄ dictates the strength of the overall Hamiltonian

relative to thermal fluctuations; the greater N̄ is, the closer to mean-field theory

the fully fluctuating phase diagram will appear. Since N̄ increases with increasing

Rg and ρc, the physical interpretation is that mean-field theory becomes more

accurate for denser melts of longer chains. N̄ also dictates the accuracy of the FRH

one-loop Hartree corrections to the Leibler phase diagram, which are rigorously

valid for N̄ >≈ 1010. Realistic diblock melts typically have N̄ in the range 200-
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20,000, so 1010 is highly unrealistic. However, the FRH analysis has been shown

to predict the fluctuation-induced shift of the dis→lam ODT with reasonable

accuracy for values of N̄ down to ≈ 104 [111], which is experimentally accessible.

(2.106) is the form we use in Chapter 5 for Langevin trajectories with explicit

fluctuations.

2.4.3 The renormalized Brazovskii model

We would like to use the zero-temperature string method to investigate dis→lam

nucleation. However, the z.-t. string method is only applicable when an metastable

region of dis and a stable region of lam, separated by an energy barrier, are ac-

cessible on a mean-field level. Therefore (2.105) is unsuitable. We would like to

derive an effective free energy functional Heff that folds in fluctuations such that

a mean-field treatment of Heff implicitly captures the influence of fluctuations.

One method to derive Heff for a Landau-type field theory is detailed in Chapter

4 of [107]. Fredrickson and Binder [112], using a one-loop Hartree approximation

for the propagator, derive Heff for (2.105) as follows:

βHeff [φ̄(r)] =

∫
dr

(
e

2
[(∇2 + (q0)2)φ̄]2 +

τR
2
φ̄2 +

uR
4!
φ̄4 +

wR
6!
φ̄6

)
(2.107)
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with τR, uR, wR given by

τR = τ + du τ
−1/2
R , uR = u

(
1− 1

2
du τ

−3/2
R

1 + 1
2
du τ

−3/2
R

)
, wR =

9 du3

2τ
5/2
R

(
1 + 1

2
du τ

−3/2
R

)3

where d ≡ 3x∗/2π. The renormalized parameters τR, uR, wR all depend on tem-

perature (through τ) and N̄ . The field configuration is written as φ̄ instead of

φ because the field configurations φ̄∗(r) that minimize Heff are the anticipated

thermally averaged field configurations, φ̄∗ = 〈φ〉, while the field configurations

φ∗(r) that minimize (2.105) are mean-field solutions.

The fluctuation-induced first-order character of the dis→lam transition can be

verified by considering a single-mode approximation to a lamellar morphology, a

sinusoidal concentration variation along, say, the z axis with preferred wavenum-

ber q0
8:

φ(r) (or φ̄(r)) = 2A cos(ẑ · r) (2.108)

8In the high χN/low τ regime where A- and B-type monomers are strongly segregated,
concentration fluctuations will be sharper and higher harmonics would be needed to accurately
capture the morphology; however; in the weak-segregation regime near the ODT, which is our
current region of interest, the single-mode approximation is reasonable.
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Substituting 2.108 into (2.105) and (2.107) and averaging over 1 lamellar period

yields

βH(A) = V
(
τ A2 +

u

4
A4
)

, βHeff (A) = V
(
τRA

2 +
uR
4
A4 +

wR
36

A6
)

(2.109)

Minimizing H(A) with respect to A yields the predicted mean-field amplitude

of a (single-mode) lamellar configuration; minimizing Heff (A) with respect to

A yields the predicted thermally averaged amplitude of a fluctuating lamellar

configuration. If A = 0 minimizes H or Heff , disorder is favored by that model;

if A 6= 0 minimizes H or Heff , lamellae are favored. Figure 2.9 shows H(A)

and Heff (A) for several ranges of the (bare) effective temperature parameter τ ,

showing that Heff (A) admits a region of metastable disorder while H(A) does

not. For the renormalized model, when lamellae are stable or metastable their

optimal amplitude (within the single mode approximation) is given by

A2
opt = −3ūR +

√
9ū2

R − 12τ̄R (2.110)

where τ̄R, ūR ≡ τR/wR, uR/wR and their predicted free energy is βHeff (Aopt). The

dis→lam ODT for Heff is determined by Heff (Aopt) = Heff (0) = 0; this occurs
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at τ̄R = (9/16)ū2
R, or equivalently at χNODT = 10.495 + 37.823N̄−1/3, similar to

the FRH prediction of χNODT = 10.495 + 41.0N̄−1/3.

Τ<0

HLAM stableL

Τ=0 Τ>0

HDIS stableL

Τ<ΤODT

HLAM stable, DIS metaL

Τ=ΤODT Τ>ΤODT

HDIS stable, LAM metaL

Τ>>ΤODT

HDIS stableL

Figure 2.9: Upper row: H(A) ∝ τ A2 + (u/4)A4 for three distinct regimes
of bare τ . u is always > 0. At τ < 0 (low temperature) H is minimized at
Aopt 6= 0, indicating stable lamellae. However, Aopt goes smoothly to zero as
τ → 0, indicating a second-order transition. Above τ = 0, disorder is stable.
Lower row: Heff (A) ∝ τRA

2 + (uR/4)A4 + (wR/36)A6 for four distinct regimes
of bare τ . τR and wR are always > 0, but in the regime near the renormalized
ODT uR may be < 0, allowing lamellae with free energy Heff (Aopt) and disorder
with free energy Heff (0) to be relatively metastable.

2.4.4 Numerical methods: mean-field and Langevin

In Chapter 5 we treat 1. mean-field dynamics of the renormalized model

(2.107) and 2. Langevin dynamics of the bare model (2.106). φ and φ̄ are dis-

cretized on Cartesian grids with periodic boundary conditions. Several different

grid resolutions are tested, as described in Chap. 5.
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The mean-field dynamics of (2.107) are given by

∂φ̄(r)

∂t
= ∇2 δH

δφ̄(r)

φ̄t+∆t(r) = φ̄t + ∆t∇2

(
e(∇2 + q2

0)2φ̄t + τRφ̄t +
u

6
φ̄3
t +

wR
5!
φ̄5
t

)
(2.111)

For the mean-field dynamics, we only care about the final converged solution, so

timestepping accuracy is not as important as stability. For this reason, we employ

a semi-implicit evolution in Fourier space:

φ̄t+∆t(k) = (2.112)

φ̄t(k)− k2∆t

(
e(−k2 + q2

0)2φ̄t+∆t(k) + τRφ̄t+∆t(k) + FT
[u

6
φ̄(r)3 +

wR
5!
φ̄t(r)5

])

where “FT” represents a Fourier transform. The “semi-implicit” nature is due to

the fact that the linear e and τR terms are treated at timestep t+ ∆t. Solving for

φ(k)t+∆t, we find

φ̄t+∆t(k) = (2.113)

1

1 + k2∆t [e(−k2 + q2
0)2 + τR]

(
φ̄t(k)− k2∆t FT

[uR
6
φ̄(r)3 +

wR
5!
φ̄t(r)5

])
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This scheme has the advantage of unconditional stability, allowing us to choose

large timestep sizes. The Fourier transform convention in our code is

φ(k) =
1

V

∫
dr e−ik·x φ(r) =

1

N

∑
r

e−ik·x φ(r) ≡ “FT [φ(r)]”

φ(r) =

∫
dk eik·x φ(k) =

∑
r

eik·x φ(k) ≡ “FT−1[φ(k)]” . (2.114)

According to (2.1), the Langevin dynamics for (2.106) are given by

∂φs(r)

∂t
= −M δ βH

δφs(r)
+ ξ (2.115)

where ξ is the thermal noise and M is a mobility; we take M = 1 for simplicity

as in [106]. Here we do not use a Laplacian to conserve φ as in (2.111) because it

introduces too much stiffness; instead, we enforce
∫
φ dr = 0 by zeroing the k = 0

mode at each timestep (this is found not affect the evolution of other modes).

Writing the discretized version of (2.115) with the correct noise strength

is slightly subtle. The fluctuation-dissipation theorem expects that δ βH
δφ(r)

rep-

resents the physical change in energy associated with a change in φ(r) for a

single grid point. That physical change in energy is actually δ βH
δφ̄(r)

∆V , where

∆V = ∆rx∆ry∆rz is the volume associated with a single grid point. Therefore

a lattice-discretized version of (2.115) that satisfies the fluctuation-dissipation
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theorem, and thus samples the Boltzmann distribution of H, is

φs,t+δt(r) = ∆V δt N̄1/2

(
e[∇2 + q2

0]2φs,t + τ φs,t +
u

6
φ3
s,t

)
+
√

2δt η(r, t) (2.116)

η(r, t) is Gaussian random noise with 〈η(r, t)η(r′, t′)〉 = δr,r′δt,t′ where δ is the

Kronecker delta, r, r′ are discrete grid sites, and t, t′ are discrete timesteps. We

may also define a rescaled timestep ∆t = V δt and write

φs,t+∆t(r) = ∆t N̄1/2

(
e[∇2 + q2

0]2φs,t + τ φs,t +
u

6
φ3
s,t

)
+

√
2∆t

∆V
η(r, t) (2.117)

2.117 is the version used in our code.

For Langevin dynamics, timestepping accuracy and stability are both impor-

tant, since thermal averages are computed as time averages over long trajectories.

Using a timestep that is too large may cause the simulation to diverge or, at

best, result in inaccurate thermal averages. A range of timesteps must be ex-

plored by examining the time average of some test quantity f(φ), and finding

∆tmax such that 〈f(φ)〉 does not change significantly for ∆t < ∆tmax. ∆tmax

should then be used as the simulation timestep size. To evolve (2.117), we use

the Fourier-space exponential time differencing scheme described in [98], which

provides second-order accuracy in time.
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Because the noise strength in (2.117) depends on ∆V , the largest accept-

able timestep depends on the resolution. Finer resolutions tend to require smaller

timesteps. In Chapter 5, for example, we find that at N̄ = 104, 7 grid points/lamellar

period requires ∆t = 0.00005 while 10 grid points/lamellar period requires ∆t =

0.00002.

2.4.5 Invariance of physical control parameters

Concerning the SCFT and phase-field models’ control parameters, one subtle

point deserves clarification. Physically, a polymer chain consists of a well-defined

number of monomer repeat units Nm. However, in constructing the above models,

we lumped sections of monomer repeat units into N “statistical segments,” each

of which consists of enough monomer repeat units to act as an entropic spring,

then used this value of N to derive Hamiltonians. Thus N for a given physical

diblock is essentially arbitrary, and depends on our choice of statistical segment

length. However, we also considered the enthalpic penalty χAB for contact be-

tween statistical segments of unlike monomers. For a physical chain with fixed

Nm, choosing to lump, e. g., a larger number of monomers into our definition

of a single statistical segment will reduce N but increase χAB, so that the com-

bination χABN does not depend on our (arbitrary) choice of statistical segment

length. For our Hamiltonians to make physical sense, then, we anticipate they
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will depend on χAB only through the combination χABN , which fortunately is the

case. (The other control parameter, the block fraction f , has a direct physical

interpretation.)

A similar situation occurs with the control parameter N̄ = 63(R3
gρc)

2. Rg =√
Nb2/6 is physically well-defined because for a given Nm, choosing smaller sta-

tistical segments will increase N but decrease the statistical segment length b2

to compensate, and ρc = num chains/volume is also physically well-defined for a

given melt. Therefore, N̄ is physically well-defined.
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Application of the string method
to SCFT
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3.1 Implementation of the string method on NVIDIA

GPUs

As mentioned in the Introduction, metastable defects present a major ob-

stacle against scaling up directed self-assembly to the system sizes and produc-

tion volumes required for industrial semiconductor patterning. The International

Technology Roadmap for Semiconductors (ITRS) has established a desired tar-

get defect density of < 0.01 defects/cm2 [113, 114]. Theoretical tools capable of

predicting the incidence of defects, as well as the kinetic barriers and annealing

times associated with their removal, are a valuable asset. Such tools can be used

to evaluate the qualitative and quantitative effects of experimentally controllable

parameters like χN , trench width in grapho-epitaxy, sidewall/substrate wetting

conditions, polydispersity, and the presence of added homopolymer, and suggest

parameters that suppress the formation of defects and facilitate their removal.

Self-consistent field theory by itself is an effective tool to investigate the forma-

tion energy of defects, and predict their incidence; the string method used in

conjuction with SCFT can find minimum energy paths that provide an estimate

of the kinetic barriers for transitions between metastable defect states and stable

defect-free states.
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Because of the computational horsepower required to relax multiple SCFT

models (images), especially in 3 dimensions, and the relatively recent develop-

ment of the string method itself, it is only within the last several years that the

string method in conjuction with SCFT has become practical. It was first used by

Cheng et al. to calculate minimum energy paths for lamellar-to-cylinder, lamellar-

to-gyroid, cylinder-to-gyroid, and gyroid-to-cylinder transitions in an AB diblock

melt [115]. Takahashi et al. [116, 117] performed an SCFT study of defect for-

mation energies for diblock melts in confining channels. His study explored the

effects of sidewall wetting, substrate wetting, and polydispersity in both 2 and 3

dimensions. He also used the string method to calculate minimum energy paths

for defect annealing in the 2D case. He did not extend the string calculations to 3

dimensions, citing high computational cost. However, his 3D SCFT calculations

for individual models revealed that substrate wetting caused significant quantita-

tive changes in the energies of defects as well as qualitative changes in the types of

defects that most readily formed. These effects could not be captured by a purely

2D model. Therefore, for realistic studies of defect annealing in confined polymer

melts, the capability to perform fully 3-dimensional string method SCFT simula-

tions is highly desirable, provided a sufficiently powerful computing platform can

be found.
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Figure 3.1: Block diagram of an Nvidia GF100 GPU, whose Fermi archi-
tecture is similar to the GPUs present on Knot and Braid. The device is
organized into 16 “streaming multiprocessors” or SMs, each of which con-
tains 32 cores for standard arithmetic instructions. Figure adapted from
http://images.anandtech.com/reviews/video/NVIDIA/GF100/GF100.png .

Graphics processing units (GPUs) are one platform with the necessary at-

tributes. Modern GPUs contain hundreds to thousands of lightweight cores ca-

pable of processing data in parallel (Figure 3.1), allowing the GPU overall to

achieve high throughput of arithmetic instructions. For example, the recently

released NVIDIA Titan X contains 3,072 cores, with an arithmetic throughput of

up to 7 trillion single-precision or 200 billion double-precision floating-point oper-

ations (FLOPS) per second [118]. In addition to their high throughput, modern

GPUs also possess a sizeable amount of onboard dedicated RAM (“device mem-
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ory”) which the cores can access at relatively high bandwidth (336 gigabytes/sec

for the Titan X; bandwidth for earlier-generation boards also tends to be in the

range of hundreds of GB/s). These characteristics make GPUs an ideal choice for

problems where a significant amount of data must be processed, as long as an algo-

rithm can be chosen that allows different data elements to be processed in parallel

(choosing such an algorithm is known as “exposing parallelism”). Additionally,

since the primary market for GPUs is gaming PCs, GPUs are designed with a

relatively small form factor and power requirements. Individual GPUs can be

installed on a single workstation, conveniently delivering “cluster-on-a-desktop”

performance. Finally, in 2007 Nvidia released the Compute Unified Device Archi-

tecture (CUDA) framework [119], an API for C, C++, and Fortran that allows

researchers to write general-purpose GPU code without needing to package their

calculations in the language of graphics processing, as was necessary earlier [120].

Other APIs that facilitate general-purpose GPU computing, like OpenACC [121]

and OpenCL [122], are also easily accessible to researchers. These combined fac-

tors have led to an explosion in the use of GPUs for scientific computation over

the last decade. In 2008 roughly 4,000 academic papers had been written with

the the aid of GPUs; by 2015 that figure had risen to 60,000 [118]. Current scien-

tific applications for GPUs include molecular dynamics [123], computational fluid
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dynamics [124], combustion [125], protein folding [126], quantum chemistry [127],

and many others, including polymer field theory [128, 129].

Over the past several years, our group has developed a comprehensive software

suite (PolyFTS) capable of performing SCFT calculations for a variety of different

polymer chain architectures, blends, and solutions. PolyFTS can impose arbi-

trary confinements and sidewall wetting conditions in 1, 2 and 3 dimensions. As

mentioned in Chapter 2, the most memory- and processing-time-intensive aspect

of SCFT is solving the propagator equations via the pseudo-spectral algorithm

(2.98), in which the most expensive component is the sequence of forward and

backward FFTs required to advance q(r, s) along the contour variable s. To offset

this computational cost, PolyFTS can be compiled to run on multiple nodes and

multiple cores per node using the MPI and OpenMP libraries, or compiled to run

on individual Nvidia GPUs using CUDA. The MPI-OpenMP configuration makes

use of FFTW, a highly optimized, (optionally) parallel open-source FFT library

[130, 131]. The GPU configuration makes use of cuFFT, an optimized library

provided by Nvidia [132]. In the MPI-OpenMP configuration of PolyFTS, field

data is distributed across multiple nodes, meaning that internode data transfer

is necessary to perform certain global operations (tranposes, etc) required by the

FFTs. By contrast, in the GPU configuration of PolyFTS, all the data required

for a single model resides in the global memory of a single GPU, and no internode
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communication is required. In practice we find that the global communications

required by the FFTs scales poorly across multiple nodes in the MPI-OpenMP

configuration of PolyFTS [133]. In typical tested cases, increasing the number of

MPI cores from 8 to 64 reduces the wall time only a factor of approximately 2.

By comparison, for systems with a large (>∼ 200, 000) number of plane waves,

SCFT calculations on a single GPU run roughly twice as fast as equivalent cal-

culations on 64 MPI cores. Also, as system size increases, the performance of the

single-GPU configuration is observed to improve relative to the multinode MPI

configuration: the bigger the system, the more favorable it becomes to run on

a GPU. All these factors indicate that GPUs are an advantageous platform for

large-cell 3-dimensional SCFT calculations.

Although the FFTs typically dominate the wall time of our SCFT code, we

note that other operations frequently appearing in the SCFT equations are highly

amenable to the massively parallel architecture of GPUs. Elementwise field arith-

metic like adding, subtracting, or multiplying two fields parallelizes trivially, and

reduction operations like summing a particular value across a field or taking the

L2 norm of two fields can be implemented using well-known, efficient parallel

algorithms [134].

I set out to write a GPU-accelerated string method into PolyFTS capable

of interfacing with the existing AB+A+B copolymer+homopolymer melt model
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(this was the system of greatest interest to my colleagues and our industrial

partners). From an algorithmic perspective, the task was straightforward.

The update step of the string method is performed independently for each im-

age. The w+ field is iterated to a partial saddle point and the w− field is advanced

for one timestep using the standard SCFT relaxation equations. Therefore, in my

code, this step trivially makes use of functionality already present in PolyFTS,

and allows the user to choose any desired timestepping scheme already present

in the code. Although the updates for each image are serialized, each image’s

update step is a full SCFT iteration which internally takes advantage of the large

amount of parallelism over grid points inherent to SCFT, and thus makes efficient

use of the GPU.

The interpolation and reparametrization step, as described in Chapter 2, con-

sists of considering each grid point individually, constructing a spline through the

values at that grid point possessed by the sequence of images, and redistributing

the values associated with that grid point at even arc length values along the

spline. To construct the spline, first we must calculate the L2 norm of the differ-

ence between each image (and possibly the energy of each image as well, if energy

weighting is being used) to obtain the images’ initial arc length coordinates. For

each pair of consecutive images, the L2 norm can be computed using an efficient

parallel reduction operation. However, the same initial arc length coordinates are
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Update step:

parallel over 

images

(serialized on the GPU in our implementation)

Interpolate and 

reparametrize:

Parallel over 

grid points

Figure 3.2: Parallelism exposed by the string method. The update step is
performed independently for (is parallel over) different images; however, we choose
to perform this step in serial for each image on the GPU, taking advantage of the
internal parallelism exposed by individual SCFT updates to make efficient use of
the GPU’s many-core architecture.
The interpolation and reparametrization step is parallel over grid points.

Figure 3.3: To perform the interpolation and reparametrization steps of the
string method, each grid point is assigned to a single thread, and each thread
runs on a single GPU core.
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used to construct the splines for each grid point, meaning that once the initial

arc length coordinates have been obtained, the remaining operations required to

construct the spline for each grid point, as well as the reinterpolation of that

grid point’s values for each image along the spline, are completely parallel over

grid points (Figure 3.2). I wrote a kernel in which each thread handles a single

grid point (Figure 3.3). Each thread accepts an array of initial arc length values

and grid point values, then performs the remaining steps of spline construction

and reinterpolation independently, using a cubic spline and spline interpolation

routine from Numerical Recipes in C [135].

The most significant challenge associated with integrating an efficient GPU-

accelerated string method SCFT code into PolyFTS was the high memory demand

of placing multiple models on the GPU. In order for the string method to accu-

rately trace out minimum energy paths between locally stable states, typically at

least 20 images are required. However, PolyFTS was originally written to sim-

ulate individual models in isolation. A given model allocation includes memory

for its propagator, w+ and w− fields, and a significant number of internal utility

fields. Each model also contains forces and an associated field updater, and each

of these in turn allocates additional utility fields. All these fields are complex-

valued double precision, with dimensionality equal to the number of grid points.

Many of the fields must be FFTable, and the cuFFT API requires that a unique
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“cuFFTplan” object be assigned to each of these. The cuFFTplans themselves

require a significant amount of memory to allow out-of-place operations. As an

example, the model for a single image used in the simulations of lying-down cylin-

ders presented in Section 3.2 requires 231 internal field allocations for a total of

2.4 GB per model. Our available GPUs contain at most 6.14 GB of onboard

device memory, meaning that if PolyFTS’ original memory allocation strategy is

used, only 2 images can fit in onboard memory for that particular model and grid

size. Needless to say, this is insufficient for string method calculations.

In principle, for a given model, the memory demands of the propagator can be

alleviated by transferring each field along the contour from device (GPU) to host

(CPU) RAM as the propagator is computed, then, once the finished propagator

resides on the CPU, computing the density fields purely on the CPU. However, the

bandwidth of the PCI-Express bus, through which the GPU accesses CPU RAM,

is roughly a factor of 10 less than the bandwidth at which GPU is able to access

its onboard device memory. Overall, swapping out the propagator from device

to host memory increases wall time by roughly a factor of 2 for individual SCFT

models, as described in [133]. I decided on a more elegant approach, inspired by

four points:

1. The field updates for each image are performed independently.
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2. The underlying parameters of each image (plane wave grid, system size and

composition, wall configuration, etc.) are identical.

3. The w+ field is recomputed from the w− field at each timestep using the

partial saddle point approximation, and the propagators in turn are recom-

puted from the w− and w+ fields at each timestep.

4. At each timestep, once computed, the propagator is used only to obtain the

density fields and timestep the w− fields.

Points 3 and 4 indicate that, since all quantities relevant to the SCFT relaxation

equations are recomputed from the w− fields timestep to timestep, within the

partial saddle point approximation the w− field contains all information associated

with a given model (aside from external parameters like the wall density). Thus, in

principle, for a given image only the w− field needs to be stored persistently. The

w+ field, density fields, and most importantly, the propagator can be computed in

a scratch space, then ignored or overwritten once they have been used to advance

the w− fields. The w− field is a relatively lightweight object, and for complex-

valued double-precision fields requires only M × 16 bytes of storage, where M is

the number of plane waves, in contrast to the Ns ×M × 16 bytes required by

the propagator. For a system size of 128 × 128 × 40 grid points with Ns = 100
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contour points, for example, the w− field consumes only 10.5 MB of GPU global

memory, while the propagator consumes 1.05 GB.

Points 1 and 2 indicate that, since the plane wave grid is identical for each

image, different images can use the same scratch space.

With these points in mind, a obviously beneficial strategy is to allocate scratch

memory for the propagator computation and any other quantities that are recom-

puted at each timestep, and allow all images to share this memory. For conve-

nience, I accomplished this by writing two constructors for the AB+A+B model

class in our code, one of which built the model normally, allocating memory for

all internal objects including the propagator, and one of which accepted scratch

memory from another model, storing references to this external memory instead

of making new internal allocations. The first image along the string (“image 0”)

is built using the former constructor; the other images are built using the latter

constructor and references to the internal memory of the first image. In this way

the memory of the first image devoted to the propagator and other overwriteable

objects becomes the scratch space used by all images. The propagators are by far

the most important object for which to implement a shared scratch space; how-

ever, I also reuse memory for as many of the AB+A+B model’s internal utility

fields as is convenient. Figure 3.4 shows the conceptual implementation of the

memory-sharing scheme. During the update step of the string method, images
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Image 1 
(Model object):

2.4 GB

w fields

Densities

Q fields

Propagators

Forces

Image 2 
(Model object):

135 MB

w fields

Q fields&

Propagators&

Densities

Forces&

Figure 3.4: Memory sharing scheme implemented for the system considered in
Section 3.2, with grid dimensionality 128 × 128 × 40. The first image allocates
memory for all internal fields, including the propagator, and consumes 2.4 GB.
The second image, and all subsequent images, accept references to first images’
memory for many fields that are overwritten at each timestep (e.g., the propa-
gator, forces, and utility fields used for internal calculation like the “Q fields”).
These later images consume only 135 MB apiece. The density fields (ρA, ρB) and
the w+ fields are retained as independent allocations because, even though they
are overwritten based on the w− fields, storing them persistently is helpful when
writing the string’s data to files.

are updated individually, one after the other. Their propagators are recomputed

in the scratch space, which overwrites the propagator of the previous image, but

this is not a problem.
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The results of my memory-sharing strategy are dramatic: The first model

(unavoidably) consumes a relatively large amount of memory, but each additional

image requires roughly 95% less memory than the first, allowing enough images to

fit in GPU global memory to make the string method feasible without resorting to

costly CPU-GPU transfers. For the system studied in Section 3.2, the first image

consumes 2.4 GB while subsequent images consume only 135 MB. This means

that we can fit up to 27 images in the 6.14 GB of onboard memory possessed by

our available GPUs. In addition, since I take care to share the memory only for

quantities that had to be recomputed at each timestep, there is no computational

penalty for this memory optimization.

My implementation of the string method is capable of either advancing the

w− field for each image according to the full force or projecting the force into

the hyperplane tangent to the string; it can also perform the interpolation and

reparametrization step in either real or Fourier space. In practice, we find that

these choices do not significantly affect the converged barrier states; however,

restringing in real space appears to offer improved stability over restringing in

Fourier space. My implementation is also capable of image climbing, as described

in Chapter 2. For well-resolved strings, we typically find that image climbing is

unnecessary, and using the highest-energy image directly to estimate the barrier

peak is sufficiently accurate to establish qualitative and quantitative trends.
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Colleagues in the Fredrickson group applied my GPU string method code

to several industrially relevant systems. The following three sections present

an overview of three such studies, which resulted in four published papers. In

all cases, I added functionality to the code as requested and supplied technical

guidance; in the case of [136, 137] I also co-wrote and extensively edited the

manuscripts.

3.2 Application to cylinder-forming diblocks in

graphoepitaxial channels

For linear one-dimensional structures like lamellae or cylinders, long-range

phonon (bending) modes require negligibly low energy to excite, meaning that

creating such structures with long-range (millimeters to centimeters) order is dif-

ficult. In previous experimental work, electric fields [138], shear application [139],

flow [140], and guiding chemical or lithographic templates [3, 141, 142] have all

been shown to help overcome this difficulty and facilitate long-range order. In this

section, we review a recent publication [143] in which SCFT is used to explore

the formation energies of dislocation and disclination (Fig. 3.5) defects appear-

ing in lying-down cylinder morphologies in a grapho-epitaxial guiding channel.

The string method is then used to find the minimum energy paths by which
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these defects anneal out. The polymer system under consideration is a neat AB

diblock melt, which can be simulated within the scope of PolyFTS’ AB+A+B

model. In an attempt to find the most favorable conditions for defect-free lying-

down cylinders, we explore a variety of segregation strengths, channel widths, and

A-monomer volume fractions. Both neutral and preferentially wetting sidewalls,

substrates, and top surfaces are considered, although each surface’s attractiveness

to one monomer species or the other is taken to be spatially homogeneous (not

chemo-epitaxially patterned). For the purpose of determining free energies, the χ

value for repulsion of statistical segments of differing monomer species is assumed

to be that of polystyrene-b-methymethacrylate (PS-b-PMMA). This particular

composition is commonly used in experiments [142] and is consistent with our

group’s previous theoretical studies [116].

3.2.1 Commensurability windows for A-attractive sidewalls,

neutral top and bottom surfaces

First, we consider confinements where the top and bottom surfaces are neu-

tral while the sidewalls are attractive to PMMA (which I will also refer to as

monomer species “A”). Here and subsequently in this section, PMMA is the

minority-block, cylinder-forming species. This wetting configuration has been

experimentally shown to favor the formation of lying-down cylinders with long-
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Figure 3.5: Top view of a dislocation defect (a) and a disclination defect (b) as
they appear in lying-down cylinders. Initially, these dislocation and disclination
defects are obtained by relaxation from random seeds.

range order [144], and theoretically shown to favor the formation of standing-up

lamellae [116]; therefore, it is a logical starting point when attempting to stabilize

horizontal cylinder morphologies.

We sweep the height Lz of the channel to determine optimal thickness for

a monolayer of lying-down cylinders, then sweep the width, establishing that

morphologies with different numbers of adjacent lying-down cylinders each have

distinct favorable channel widths (Figure 3.6) at which their elastic stress is min-

imized. If the channel width is increased (decreased) too significantly relative to

the favorable channel width for a given number of cylinders, a morphology with

one cylinder added (removed) becomes energetically favorable. The free energies

in Figure 3.6 are reported relative to the free energies of corresponding stress-free
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Figure 3.6: Commensurability windows for morphologies with 3 to 8 (from left
to right) defect-free lying-down cylinders at χN = 25, fA = 0.3. The sidewalls
are A-attractive with χwA = −32. Note that each morphology has a well-defined
favorable channel width window. The “excess free energy” is defined relative to
a bulk (unconfined) configuration with the same number of cylinders.

bulk morphologies; the difference between the free energies of bulk and confined

stress-free configurations is due to the surface tension in confinement.

Since our emphasis is on the elimination of defects, we investigate the forma-

tion energy of dislocation and disclination defects as a function of channel width

at several different block fractions at the optimal monolayer height Lz = 3.75Rg.

Here and subsequently, we focus on the range of channel widths in which a mor-
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Figure 3.7: Excess free energy (relative to defect-free morphologies) of dislo-
cation defects (red) and disclination defects (blue) in a confining geometry with
A-wetting sidewalls, a neutral top surface, and a neutral bottom surface (sub-
strate) for χN = 25, Lz = 3.75Rg, and χwA = −32. Triangles denote fA = 0.23,
circles denote fA = 0.24, and squares denote fA = 0.25. Note that the disloca-
tion defect is only observed to be metastable for fA = 0.25. Important trends
to note are 1. there clearly exists a commensurability width that maximizes the
formation energy of defects and 2. the formation energy of defects increases with
increasing fA.
The inset shows an interesting effect for the dislocation: the terminus of the un-
connected cylinder “tongue” branches out to the neutral top and bottom surfaces.

phology containing 4 adjacent lying-down cylinders is favored. This width is suffi-

cient to contain the two defect types under investigation and capture their excess
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free energy relative to a defect-free 4-cylinder morphology. Results are summa-

rized in Figure 3.7. It happens that the dislocation defect is only stable for one of

the tested block fractions, fA = 0.25. One interesting effect we observe is that the

terminus of the unconnected cylinder “tongue” in the dislocation branches out to

the neutral top and bottom surfaces (inset of Fig. 3.7). In general, the observed

disclination defects have higher excess free energies than the dislocation defects

at the same channel widths. This is because the four right-angle bends required

to form disclinations incur a higher energy penalty than the bending required to

form dislocations.

Importantly, the energies for both types of defects exhibit clear maxima at

specific channel widths. Also, for fA = 0.25, where both disclinations and dislo-

cations are observed, this width is roughly the same for both types of defects. We

conclude that there is a specific commensurable channel width that maximizes the

free energy of defects relative to the free energy of perfect cylinders. The commen-

surable channel width depends noticeably on the minor-block fraction, ranging

from ∼ 19 Rg for fA = 0.23 to ∼ 20 Rg for fA = 0.25. The range of defect excess

free energies, 2− 7 kT for the dislocation and ≈ 5− 20 kT for the disclinations,

is significantly smaller than the range of excess defect free energies for similar

defects occuring in lamellae at similar system sizes. Dislocations appearing in

lamellae had excess free energies in the range of 55− 90 kT and disclinations ap-
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pearing in lamellae had excess free energies in the range of 95−120 kT [116]. This

could be because those defects in lamellae extend all the way from the top to the

bottom of the channels; for the dislocation it could also be because the branches

coming out of the disconnected cylinder act to stabilize the defect, as observed in

[145]. Another observed trend is that the formation energy of dislocation defects

increases with increasing minor block fraction fA.

3.2.2 Commensurability windows for A-attractive sidewalls

and bottom surfaces, B-attractive top surfaces

We repeat the commensurable width analysis for confinements with a B-

attractive top surface and A-attractive sidewalls and substrate. This setup is ex-

pected to remove the stabilizing branches protruding from the disconnected cylin-

der of the dislocation; it also corresponds to the setup used in [5]. The A-attractive

sidewalls and substrate (bottom surface) are taken to have χwAN = −32, and the

B-attractive top surface is taken to have χwBN = −32.

First, to extract the trends associated with changing the minor block fraction,

we fix the AB interaction at χN = 30 and sweep through fA = 0.23, 0.24, 0.25, 0.27

(Figure 3.8). Formation energies of defects are plotted in terms of the strain per-

centage 100 × width−widthoptimal

widthoptimal
, where widthoptimal is the commensurable width

that maximizes the free energy associated with that particular defect type. Also,
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Figure 3.8: Excess free energy (relative to defect-free morphologies) of disloca-
tion defects (a) and disclination defects (b) in a confining geometry with A-wetting
(χwAN = −32) sidewalls and substrate and a B-wetting (χwBN = −32) top sur-
face. χN is fixed at 30, and Lz = 5.6 Rg. Triangles denote fA = 0.23, circles
denote fA = 0.24, squares fA = 0.25, and diamonds denote fA = 0.27. As in 3.7,
there is a clear commensurability width, and also, the formation energy of both
types of defects increases with increasing fA.

the wetting condition (B-attractive top surface and A-attractive sidewalls and

substrate) successfully removes the branches coming out of the dislocation’s dis-

connected cylinder. As in Subsection 3.2.1, the disclination defects demonstrate

higher formation energy than the dislocation defects at all widths, and the trend

of increasing defect formation energy with increasing minor block fraction con-
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tinues to hold. However, comparing Figures 3.7 and 3.8, we see that the defect

formation energies for this setup are significantly higher than those observed in

neutral top and bottom surfaces, indicating that the wetting conditions consid-

ered here represent a more promising setup for producing defect-free morphologies

in experiments.

In Figure 3.7, for the neutral top surface and substrate, the commensurable

width changes with block fraction. This effect also occurs in the presence of

an A-wetting substrate and B-wetting top surface, but it is obscured in Figure

3.8 because we plot energy as a function of the strain percentage instead of the

absolute width. The commensurable width varies from ≈ 19 RG to ≈ 21 Rg as

fA is increased from 0.23 to 0.25.

Second, to extract the trends associated with changing χN , we fix fA at 0.25

and sweep through χN = 25, 27, 30, 33 (Figure 3.9). Again, clear commensurable

widths are observed, and the disclinations generally possess higher formation en-

ergies than dislocations at the same conditions. The observed trend is that defect

formation energy increases with increasing χN .

Changes in commensurable width with χN are once more not displayed by 3.9

because formation energies are plotted as a function of relative strain; however,

there is a mild change (from ≈ 20 RG to ≈ 20.7 Rg) in the observed width that

maximizes the free energy of disclination defects as χN increases from 25 to 33.
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Figure 3.9: Excess free energy (relative to defect-free morphologies) of disloca-
tion defects (a) and disclination defects (b) in a confining geometry with A-wetting
(χwAN = −32) sidewalls and substrate and a B-wetting (χwBN = −32) top sur-
face. fA is fixed at 0.25, and Lz = 5.6 Rg. Triangles denote χN = 25, circles
denote χN = 27, squares denote χN = 30, and diamonds denote χN = 33. A
clear commensurability width exists in all cases. The formation energy of both
types of defects increases monotonically with increasing χN ; however, the discli-
nation defects are not stable for χN = 25.

3.2.3 Sweeps over χN and fA for various wetting condi-

tions

Having established that channel width, χN , minor block fraction fA, and wet-

ting conditions all play an important role in the formation energy of defects, we
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conduct a comprehensive set of sweeps over the former three parameters at four

different wetting conditions:

1. Top A-attractive, sides+bottom B attractive

2. Sides+bottom A-attractive, top B attractive

3. Sides, bottom, and top all A-attractive

4. Sides A-attractive, bottom+top neutral

For brevity, at each tested value χN and fA, we report only the maximum value of

the defect’s formation energy found at the commensurable channel width; that is,

for each value of χN and fA we sweep the width to determine where the formation

energy of the defect is maximized and report that maximal value. Results are

summarized in Figures 3.10 and 3.11.

The general trends we extract are as follows:

From Figure 3.10, we see that higher χN values tend to increase the forma-

tion energy of defects and thus should reduce their incidence. In experimental

applications, χN can be increased either by using longer chains (larger N), or

by using a diblock whose monomer species are more strongly repulsive (larger

χ). Using longer chains is not ideal because first of all, the increased number

of entanglements results in slow annealing kinetics, and secondly, longer chains
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Figure 3.10: Formation energies of dislocations (a) and disclinations (b) at
commensurable widths for several different wetting conditions, as a function of
χN . fA is fixed at 0.25. Triangles, squares, circles, and diamonds correspond to
wetting conditions 1, 2, 3, and 4 respectively. Wetting condition 1 (triangles, Top
A-attractive, sides+bottom B attractive) produces the highest observed defect
formation energies for both defect types.

result in larger domain spacings, which runs counter to the intention of DSA (cre-

ating regular patterns on length scales as small as possible). A better strategy

is to use a diblock with a higher χ value, like polystyrene-b-2-polyvinylpyridine

(PS-b-P2VP) as in [5, 144] or polystyrene-b-polydimethylsiloxane (PS-b-PDMS)

[8, 146].
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Figure 3.11: Formation energies of dislocations (a) and disclinations (b) at
commensurable widths for several different wetting conditions, as a function of
fA. χN is fixed at 30. Triangles, squares, circles, and diamonds correspond to
wetting conditions 1, 2, 3, and 4 respectively. As for the sweeps over χN in Fig.
3.10, wetting condition 1 (triangles, Top A-attractive, sides+bottom B attractive)
produces the highest observed defect formation energies for both defect types.

From Figure 3.11, we see that increasing the block fraction of the minority

species tends to increase the formation energy of both defect types. Since this

does not change the overall length of the chains, it should not slow the defect

annealing kinetics or significantly increase domain spacing. However, if fA is

increased above 0.33, the cylindrical phase will no longer be favored, and the

system will form lamellae instead [147].
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3.2.4 The string method: Annealing pathways and mech-

anisms

Figure 3.12: (a) Converged MEP for the dislocation-to-perfect-cylinders tran-
sition at χN = 30, fA = −0.3 in a channel of width 18 Rg and height 6 Rg.
The MEP passes through an intermediate metastable state. (b) Polymer den-
sity profiles corresponding to each of the metastable and barrier states along the
MEP. The barrier at α = 0.12 corresponds to disconnected cylinder attempting to
connect; the intermediate metastable state at α = 0.53 corresponds to connected
cylinders with a single bridge (single-bridge-double contact or SBDC); the barrier
at α = 0.59 corresponds to the pinching off of this bridge.
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When choosing experimental parameters that are optimal for DSA, it is de-

sirable not only to maximize the free energy of defects, but also to minimize the

estimated time required for defects to anneal out if they happen to form. Ac-

cording to Kramers-like theories of barrier crossing [29], the rate of escape from

a metastable well corresponding in this case to a defective morphology is pro-

portional to exp[−Eb/kT ], where Eb is the free energy difference between the

metastable state and the peak of the nearest kinetic barrier. To estimate these

barriers we use the string method to find the MEP(s) by which disclinations and

dislocations may anneal to perfect structures. We concentrate on wetting condi-

tion 1 (top surface A-attractive, sidewalls+bottom surface B-attractive) because

this condition was shown in the previous section to maximize the formation en-

ergy of defects across a range of block fractions and χN values. The surfaces’ A

and B affinities are taken to be χwA = −32 and χwB = −32.

First, we run several example string calculations to clarify the qualitative

means by which the two defect types may anneal. Figure 3.12 shows the result for

a dislocation defect at χN = 30, fA = −0.3 in a channel of width 18 Rg and height

6 Rg. Images were initialized as a linear interpolation between the dislocation

and the perfect structure (more specifically, the w− fields of interior images were

initialized along a linear interpolation between the w− field of the dislocation and

the w− field of the defect-free cylinders). An interesting feature to note is that the
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annealing pathway is two-step, proceeding through an intermediate metastable

state. For the purposes of later discussion, we refer to this intermediate metastable

configuration of two adjacent lying-down cylinders connected by a single bridge

as a “single-bridge-double-contact” (SBDC) defect.

Figure 3.13 shows the result for a disclination defect at χN = 30, fA = −0.3 in

a channel of width 18 Rg and height 6 Rg. Images (w− fields) were again initial-

ized along a linear interpolation between the disclination structure and the per-

fect structure. Again, the annealing pathway proceeds through an intermediate

metastable configuration, this time with two bridges between adjacent cylinders

instead of one. For the purposes of later discussion, we refer to this intermedi-

ate metastable configuration as a “double-bridge-double-contact” (DBDC) defect.

Another important feature to note about this pathway is that it is symmetric

about the defect core.

In [116], the authors discovered two MEPs associated with the annealing of

disclination defects in standing-up lamellae: a symmetric pathway proceeding

through a DBDC defect similar to that of Figure 3.13 and an asymmetric path-

way proceeding through an intermediate dislocation defect. It is sensible to expect

that an asymmetric MEP may exist for our system of lying-down cylinders as well.

To search for this pathway, we initialized a string according to a two-step linear

interpolation that passed through a dislocation defect. This was accomplished
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Figure 3.13: (a) Converged symmetric MEP for the disclination-to-perfect-
cylinders transition at χN = 30, fA = −0.3 in a channel of width 18 Rg and height
6 Rg. The MEP passes through an intermediate metastable state. (b) Polymer
density profiles corresponding to each of the metastable and barrier states along
the MEP. The barrier at α = 0.13 corresponds to the two disconnected cylinders
attempting to connect; the intermediate metastable state at α = 0.55 corresponds
to connected cylinders with two bridges (double-bridge-double contact or DBDC);
the barrier at α = 0.62 corresponds to the pinching off of these bridges.

by setting the w− field of one interior image to the w− field of a dislocation de-

fect. Images preceding the dislocation image were initialized according to a linear
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Figure 3.14: (a) Converged asymmetric MEP for the disclination-to-perfect-
cylinders transition at χN = 30, fA = −0.3 in a channel of width 18 Rg and
height 6 Rg. The MEP passes through several intermediate metastable states,
including a dislocation. (b) Polymer density profiles corresponding to each of the
metastable and barrier states along the MEP up to the dislocation. The barrier
at α = 0.08 corresponds to one disconnect cylinder attempting to connect; the
intermediate metastable state at α = 0.26 corresponds to one connected cylinder
with two bridges (double-bridge-single-contact or DBSC); the barrier at α = 0.36
corresponds to the pinching off of one of these bridges, resulting in a dislocation
defect (α = 0.54). Once the dislocation defect is reached, the remainder of the
MEP is identical to the dislocation-annealing pathway shown in Figure 3.12.
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interpolation between the disclination and the dislocation; images following the

dislocation image were initialized according to a linear interpolation between the

dislocation and the perfect structure. The converged MEP resulting from this

initialization is shown in Figure 3.14. As expected, the MEP is an asymmetric

pathway proceeding through a dislocation. Before the MEP reaches the disloca-

tion, it first encounters an intermediate defect with one connected cylinder and

two bridges (double-bridge-single-contact or DBSC). Once the MEP reaches the

dislocation defect, the remainder of the MEP is identical to that of Figure 3.12.

While all barriers along the asymmetric and symmetric paths for annealing of

the disclination are relatively low, the first encountered barrier is lower for the

symmetric pathway, indicating the the physical system is more likely to anneal

by way of the asymmetric path at these conditions.

3.2.5 The string method: Effect of commensurability on

barrier heights

Since commensurability has been shown to affect the formation energy of de-

fects, it is reasonable to expect that the kinetic barriers will also change with

channel width. To quantify these effects, we compute MEPs for both the symmet-

ric and asymmetric pathways at a range of different channel widths while holding

χN and fA fixed. There are six barriers in total to examine, two for the symmetric
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pathway and four for the asymmetric pathway. For the symmetric pathway, the

first barrier corresponds to the transition between the disclination (DISC) and

DBDC; the second barrier corresponds to the transition between DBDC and the

perfect structure (P). For the asymmetric pathway, the first barrier corresponds

to the transition between DISC and DBSC, the second corresponds to the tran-

sition between DBSC and the dislocation (DISL), the third corresponds to the

transition between DISL and SBDC, and the fourth corresponds to the transition

between SBDC and P.

Note that the annealing pathway for the dislocation is a subset of the asym-

metric annealing pathway of the disclination.

The heights of the six barriers as a function of channel width are summarized

in Figure 3.15. For reference, the commensurable width that maximizes the free

energy of disclination defects at these conditions is 17.9 Rg. All barriers are

observed to be minimized at a certain channel width, but that optimal width is

different for each barrier; that is to say, there appears not to be an overall ideal

channel width that minimizes all barriers.
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Figure 3.15: Barrier heights as a function of channel width. Commensurable
width at these conditions is 17.9 Rg. (a) shows barrier heights for the symmetric
pathway. Squares correspond to the first barrier (DISC→DBDC); circles corre-
spond to the second barrier (DBDC→P). (b) shows barrier heights for the asym-
metric pathway. Black squares correspond to the first barrier (DISC→DBSC),
black circles correspond to the second barrier (DBSC→DISL), red squares corre-
spond to the third barrier (DISL→SBDC), and red circles correspond to the fourth
barrier (SBDC→P). The red barriers are also those associated with annealing of
dislocations. Neither (a) nor (b) exhibits an “ideal” width that minimizes all
barriers.
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3.2.6 Barrier-crossing: Time evolution of defect popula-

tions

Since there is no ideal channel width that minimizes the height for all barriers,

when attempting to choose a channel width that will minimize the overall anneal-

ing time of a certain defect structure, there are tradeoffs that must be considered.

Different barriers become more or less important at different widths. To illustrate

these tradeoffs, we use a simple reaction-rate kinetic model to estimate the total

annealing time for a disclination defect at three different channel widths (16.4 Rg,

18 Rg, and 19.4 Rg). 18 Rg is relatively close to the commensurate channel width

of 17.9 Rg. We choose to investigate the disclination defect specifically because

the barriers associated with annealing of dislocations (Figure 3.15, lower panel,

red) are generally lower than the other barriers required to anneal disclinations;

therefore, dislocations are expected to anneal out more quickly than disclinations

at all tested conditions. Additionally, dislocations appear along the asymmetric

path for annealing disclinations; therefore, information on the lifetime of disloca-

tions will also be obtained by modeling the lifetime of disclinations.

We assume the system begins containing a single disclination, and at any later

time has either annealed to a perfect structure (P) or contains an isolated defect,

whose type is one of the five defect types (DISC, DBDC, DBSC, DISL, or SBDC)
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identified along the disclinations’ symmetric and asymmetric paths. The following

reactions must be considered:

DISC ⇐⇒ DBDC ⇐⇒ P (3.1)

DISC ⇐⇒ DBSC ⇐⇒ DISL⇐⇒ SBDC ⇐⇒ P (3.2)

(3.1) corresponds to the symmetric path, and (3.2) corresponds to the asymmetric

path. The time evolution of the population of each defect type in an ensemble

of systems (or equivalently, the time evolution of the probability that a system

contains a given defect type) obeys a set of coupled differential equations; for

example, if PDISC represents the probability that the system contains the discli-

nation, then

dPDISC
dt

=− kDISC→DBDCPDISC − kDISC→DBSCPDISC (3.3)

+ kDBDC→DISCPDBDC + kDBSC→DISCPDBSC

where kDISC→DBDC , represents the the transition rate from DISC to DBDC, and

so forth. The estimated rate of each transition is modeled using a 1-dimensional

Kramers-like approach [29], given by

k = τ−1
0 exp [−Eb/kT ] (3.4)
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where Eb is the energy of the barrier that must be overcome and τ−1
0 is a kinetic

prefactor. The kinetic prefactors are not immediately accessible because SCFT

obscures information about physical dynamics of the polymers (for finding saddle

points, that is a feature of SCFT, not a bug; SCFT does not suffer from the slow

kinetics associated with entangled chains that bog down other methods [86]).

Determining the proper kinetic prefactor would require calculating the diffusion

coefficient along the string’s arc length at the barrier peak, using a model known to

capture the polymer melt’s physical dynamics; candidates include dynamical self-

consistent field theory [148–150], dynamical density functional theory [151], and

molecular dynamics [152]. For a diblock melt of the size, chain density, and chain

length considered here, this would be a state-of-the-art calculation in its own right,

and is an intriguing direction for future work. For present purposes, following

[116], we estimate τ0 as the time necessary for a single chain to diffuse over a

distance comparable to the defect size in a direction parallel to a microdomain

interface. For PS-PMMA at χN = 25, τ0 ≈ 9 sec. This same value of τ0 is used

for all barriers.

Figure 3.16 shows results for the three different tested widths. Estimated

annealing times are presented in units of τ0. For a channel width of 16.4 Rg, we see

from Figure 3.15 that the first barrier along the asymmetric path (black squares)

is roughly equal to the first barrier along the symmetric path (blue squares),
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Figure 3.16: Estimated time evolution of defect populations during the an-
nealing of a disclination. Pie chart insets show relative defect populations (or
probabilities) at given times. Upper panel: channel width = 16.4 Rg. Middle
panel: channel width = 18 Rg, near commensurability. Lower panel: channel
width = 19.4 Rg.
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meaning that the system will take either path with roughly equal probability.

The second barrier along the symmetric path (blue squares) is relatively low,

so in Figure 3.16 we see that the initial population spike and lifetime of DBDC

defects on the symmetric path is lower than the initial spike and lifetime of DBSC

defects along the asymmetric path. The total time for a disclination to anneal

with 99% probability is ≈ 500τ0.

For a channel width of 18 Rg, close to the commensurability width of 17.9

Rg, we see from Figure 3.15 that the first barrier along the asymmetric path

(black squares) is lower than the first barrier along the symmetric path (blue

squares). Therefore, the asymmetric path is favored, and in Figure 3.16 we see

an initial spike in the population of DBSC defects. This population gradually

anneals because the second barrier along the asymmetric path (black circles) is

relatively high. The total time required for a disclination to anneal with 99%

probability is ≈ 100τ0.

For a channel width of 19.4 Rg, the first barrier along the symmetric path

is significantly lower than the first barrier along the asymmetric path, meaning

that the asymmetric path is favored. Correspondingly, in Figure 3.16 we see

an initial spike in the population of DBDC defects. This population anneals

relatively slowly because the second barrier along the symmetric path (Fig. 3.15,
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blue circles) is relatively high. The total time required for a disclination to anneal

with 99% probability is 3000τ0.

In all three cases, the rates appear to be governed by the first and second

barriers along both paths. The dislocation defect, and subsequent SBDC defect,

anneal relatively quickly and their populations/probabilities remain low.

The overall lessons are first of all, that channel width has a significant effect

not only on the free energy of defect formation, but also on the kinetics of defect

annealing, and secondly, that using a channel width close to commensurability

appears to minimize the annealing time for disclination defects.

3.2.7 The string method: Effect of χN on barrier heights

Finally, we study the effects of changing χN on barrier heights while holding

fA and channel width fixed. Results are summarized in Figure 3.17. Once again,

there appears not to be an ideal χN that minimizes all barriers, and the tradeoff

of different barriers heights increasing or decreasing will cause populations of

different defect types to become more or less important at different values of χN .

We do not carry out a systematic study of defect population evolution at different

values of χN , but it would be straightforward to implement in a similar manner

to that of Section 3.2.6.
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Figure 3.17: Barrier heights as a function of χN with width fixed at 18 Rg. (a)
shows barrier heights for the symmetric pathway. Squares correspond to the first
barrier (DISC→DBDC); circles correspond to the second barrier (DBDC→P).
(b) shows barrier heights for the asymmetric pathway. Black squares correspond
to the first barrier (DISC→DBSC), black circles correspond to the second barrier
(DBSC→DISL), red squares correspond to the third barrier (DISL→SBDC), and
red circles correspond to the fourth barrier (SBDC→P). The red barriers are also
those associated with annealing of dislocations. Neither (a) nor (b) exhibits an
“ideal” χN that minimizes all barriers.
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3.3 Application to chemo-epitaxial prepatterns

In the previous section we reported the results of study quantifying defect

formation energies and channel confinement corresponding to a grapho-epitaxial

experimental setup. Chemo-epitaxy, the use of substrates prepatterned with do-

mains attractive to one monomer species or the other, is another approach that

has been experimentally shown to facilitate the formation of long-range order in

self-assembling block copolymer systems [6, 11, 114, 153–160]. Chemo-epitaxial

prepatterns can guide copolymer to self-assemble into regular structures several

times smaller than the prepattern itself (“pitch multiplication”). The copolymer

can rectify roughness and placement errors present in the prepattern, up to a

point; when attempting to form defect-free self-assembled structures, matching

the prepattern spacing to a multiple of the copolymer domains’ commensurability

width remains desirable.

As with grapho-epitaxy, the formation of metastable defects in chemo-epitaxy

remains a significant challenge, especially when scaling the method up for indus-

trial lithographic applications (the defect density level set by ITRS for commercial

production is < 0.01 defects/cm2 [113, 114]; for a defect of size ≈ 30 nm, this

corresponds to defect energies >≈ 30 kT [161]). One source of defects is gel par-

ticles in the block copolymer solutions; these can in some instances be removed
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by filtration [162]. However, even when filtration is used during the manufac-

turing process, dislocation-pair (DP, see Figure 3.18) and single dislocation (SD)

defects are still observed in attempts to generate line-and-space morphologies via

self-assembly [163], likely as a result of the system’s natural annealing kinetics.

Figure 3.18: Top view of a dislocation-pair defect and perfect lamellae.

The large amount of experimental attention received by chemo-epitaxial di-

rected self-assembly in recent years has been supplemented by several compu-

tational studies, many of which use the theoretically informed coarse grained

(TICG) Monte Carlo method developed by Detcheverry et al. [164]. Nagpal et

al. [165] use this framework to investigate free energies of defects in standing-

up lamellae on a chemically patterned substrate and find jog, 1/2 disclination,

and single dislocation defects with extraordinarily high formation energies (hun-

dreds of kT). Liu et al. [159] and Detcheverry et al. [166] observe that for a

PS-b-PMMA diblock melt self-assembling on a surface with PS-attractive stripes,

defect-free standing-up lamellae with long range order form more reliably if the
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substrate background (“background” meaning the relatively wide regions be-

tween PS-attractive guiding domains) is made weakly attractive to the oppo-

site monomer species (PMMA). Ruiz et al. [157] reach a similar conclusion for

self-assembling vertical cylinders. Detcheverry et al. [167], demonstrate that self-

assembling cylinder-forming diblock copolymer can rectify placement defects in a

substrate patterned with a hexagonal lattice of minor block-attractive spots. In

all of these studies, it is observed that at suboptimal substrate conditions, compli-

cated defect structures can form in the bulk of the system even if the top surface

(free surface) appears defect-free from above; this highlights the importance of

3D modeling.

To date we are aware of relatively few computational studies of defectivity in

these system using SCFT. Ginzburg et al. [168, 169] use 2-dimensional SCFT to

investigate “registration defects” in which a PMMA-rich domain, rather than a

PS domain, overlays a PS-attractive stripe on the substrate. They find that at

higher attempted pitch multiplication, the PS domains neighboring the attrac-

tive strip will tilt rather than exchange places with the PMMA domains. At an

attempted pitch multiplication of 1 (1 PS-attractive stripe per lamellar period),

they obtain an estimated registration defect density of ≈ 1 × 10−4 defects/cm2;

at an attempted pitch multiplication of 5 (1 attractive stripe for every 5 lamel-

lar periods), they obtain an estimated registration defect density of to ≈ 5000
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defects/cm2. Izumi et al. [161] conduct 3D SCFT simulations, finding metastable

dislocation-pair defects with formation energies up to 110 kT near commensura-

bility.

To our knowledge only a single prior computational study (external to our

group) has investigated kinetic pathways for defect annealing on a chemo-epitaxially

patterned surface. Li et al. [170] apply the string method in conjuction with SCFT

to a lamellae-forming diblock melt containing disclination-pair (DP) defects (Fig-

ure 3.18) similar to the dislocation-dipole defects observed in experiments [156].

They find a melting mechanism (minimum energy path) along which the bridges

forming dislocations initially break near the wetting surface, and the break “zip-

pers” upwards (this mechanism will be illustrated in further detail later in this

section). Furthermore, they report a region of χN close to the ODT (but still

within the lamellar ordered phase) where kinetic barriers are predicted to vanish

entirely but defect formation energies remain high, suggesting a useful tempera-

ture regime for thermal annealing of defects.

The study of Li et al., however, focused on a neat diblock melt. In experi-

mental synthesis of PS-b-PMMA diblock copolymer by living anionic polymeriza-

tion, some living A-block (PS) ends are terminated prior to initiating polymer-

ization of the B-block (PMMA), leaving residual PS homopolymer in the melt

[171]. This residual homopolymer can affect both the spacing (pitch) of self-
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assembled line-and-and-space structures as well as the energy and stability of

defect morphologies. Hashimoto et al. [172, 173] investigate bulk (unconfined)

self-assembly of lamellae on a non-patterned substrate, finding that the distri-

bution of homopolystyrene within the PS-rich domains depends on the molec-

ular weight and volume fraction of added PS. This inhomogeneous distribution

of homopolystyrene produces variations in domain size and spacing of lamellae.

Matsen [174] investigates the phase behavior and domain spacing of an AB+A

diblock+homopolymer melt, finding that high-molecular-weight A-homopolymer

tends to localize n the central region of A-rich domains, while lower-molecular-

weight A homopolymer distributes itself more homogeneously within A-rich do-

mains. As in Hashimoto’s experiments, this behavior affects the preferred domain

spacing. Stoykovich et al. [154] add homopolymer to an AB-diblock melt to facil-

itate self-assembly of a periodic array of bent lamellae. Homopolymer aggregates

at the corners of the bent periodic pattern, which mitigates the free energy cost of

forming the desired frustrated structure. This example demonstrates that intro-

ducing homopolymer can stabilize unusual morphologies that may not be observed

in pure AB-diblock melts; therefore, when attempting to form lamellar structures

using DSA, we should determine if blended homopolymer acts to stabilize defect

structures. Williamson et al. [175] report that adding 2.5% PS homopolymer

to an AB-diblock melt on a chemo-epitaxially patterned substrate causes com-
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mensurability widths to increase relative to the pure diblock case. In a recent

SCFT study of directed self-assembly of vertical cylinders in confinement [176],

our group shows that the presence of added homopolymer in a diblock melt acted

to reduce the free energy of defects and increase the process window for proba-

ble formation of perfect self-assembled cylinders. All these results indicate that

the presence of residual homopolymer is important to consider when designing

industrial DSA processes.

In this section we review a pair of recent publications [136, 137] in which

PolyFTS is used to explore the formation energies of dislocation-pair (DP) defects

for an AB-diblock+homopolymer melt on a chemo-epitaxially pattered substrate.

For brevity I focus on reporting the results of [137]; [136] studies essentially the

same system A comprehensive study of the kinetic annealing pathways, and how

various barriers are influenced by the presence of homopolymer, is carried out

using my string method SCFT code. Finally, we estimate total annealing times

using the method of Section 3.2.6.

3.3.1 Simulation geometry

We consider a lamellae-forming symmetric (fA = 0.5) AB-diblock copoly-

mer with AB segregation strength χN = 0.5. This corresponds to a symmetric

PS-b-PMMA diblock with a molecular weight of 70,000, a radius of gyration
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Figure 3.19: (a) Schematic of diblock copolymer + homopolymer melt. (b)
Simulation cell geometry for 3D simulations.

Rg ≈ 7.2 nm, and preferred (in the absence of confinement) lamellar domain

spacing l0 ≈ 4.2Rg. To describe the blend composition, α denotes the ratio of

molecular weight (chain length) of the homopolymer to that of the copolymer (e.

g., α = 0.5 denotes a system where the homopolymers chains are half as long as
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the diblock chains), and φ denotes the volume fraction of each species of added

homopolymer (e.g., for φ = 0.1, when A- or B-homopolymer alone is added, the

total homopolymer volume percentage is 10%, but when A and B are both added,

the total homopolymer volume percentage is 20%).

In Section 3.3.2 we present 2D bulk simulations. In addition to pure diblock,

we consider three different molecular weight ratios, α = 0.25, 0.50, and 0.75, as

shown schematically in Figure 1a, at volume fraction φ = 0.1 for each homopoly-

mer species. In Section 3.3.3, we present 3D simulations in confinement with

chemo-epitaxial stripes. The physical system consists of polymer forming a thin

film of width LX and height h above a chemically-modified bottom surface (sub-

strate) composed of A-attractive bands alternating with neutral stripes. LA and

LB denote the width of individual A-attractive stripes and neutral stripes, respec-

tively, and we define the ratio SA = LA/(LA + LB). Two repeats of A-attractive

and neutral stripes are contained in the simulation cell so that LX = 2(LA +LB).

The top layer of the polymer film is assumed to be in contact with air. To

implement a simulation cell corresponding to this physical system, we apply a

polymer-excluding mask at the top and bottom of the cell, effectively creating

walls. Selectivities at the bottom wall (substrate) are set with a Flory-like pa-

rameter, χw = (χwA−χwB)/2, where χwA and χwB describe interactions between

the substrate and blocks A and B, respectively. Here we take χwB = 0, but test
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two different substrate selectivities for the A-attractive stripes, χwAN = −2.5 and

χwAN = −5.0. The top wall (air) interacts neutrally with both monomer species,

so χw = 0 is applied on that surface, as well as on the neutral substrate strips.

The geometry of our simulation cell is summarized in Figure 3.19.

3.3.2 Unconfined 2D bulk films

As a preliminary estimate, we use 2D SCFT simulations seeded from isolated

dislocation-pair defects (DP) and perfect lamellae (PL) as shown in Figure 3.18.

The monomer species forming T-junctions is defined as the A-(segment) block.

Bulk morphologies (in periodic boundary conditions with no wall confinement) are

prepared, corresponding to a 3D system invariant in the z-direction. To evaluate

the formation energies of defects relative to perfect lamellae (∆F = FDP − FPL,

where FDP and FPL are the extensive free energies of DP defects and perfect

lamellae respectively) for later comparison with 3D simulations, we assume the

z-invariant film modeled by the 2D simulations has a thickness of 4 Rg.

We find the dislocation-pair defect to be stable over a wide range of film

widths LX . Figure 3.20 shows the DP formation energy δF over a range of film

widths at χN = 25 for several different added homopolymer conditions. Adding

A-homopolymer (homopolymer of the T-junction-forming species) reduces the

defect formation energy, while adding B-homopolymer increases the defect for-
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Figure 3.20: (a) Top view of a dislocation-pair defect (DP) and perfect lamellae
(PL). (b) Formation energy ∆F of DP defects over a range of channel widths, as-
suming a z-thickness of 4 Rg. Black: Pure AB diblock. Red: 10% volume fraction
of A-homopolymer added. Blue: 10% volume fraction of B-homopolymer added.
Purple: 10% volume fraction of A and 10% volume fraction of B-homopolymer
both added. In all cases χN = 25 and the the fractional length α of added
homopolymer chains relative to the length of diblock chains is 0.5.
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mation energy. This trend is sensible because the dislocation’s bridges must cross

narrower (wider) B-domains when added A-homopolymer (B-homopolymer) is

present. (It is important to note that in a physical system, an “inverse” DP de-

fect where species B forms the T-junctions may be present elsewhere in the melt;

for this inverse defect, the changes in ∆F caused by adding A- or B-homopolymer

are exactly reversed). When both A- and B-homopolymer are present, the maxi-

mum observed ∆F is almost the same as for the pure AB-diblock case.

Figure 3.20 also shows that the system exhibits commensurability widths that

maximize the formation energy of the defect structure, as in Section 3.3. This op-

timal width LX,Opt depends on the presence and species of added homopolymer (in

other words, the presence of homopolymer distinctly affects the commensurability

width, in agreement with [172–174]). We also find that commensurability width

depends on the relative homopolymer chain length α, as seen in the “LX,Opt”

column of Table 3.1. Increasing α (at constant overall homopolymer volume frac-

tion) also increases LX,Opt. Longer A-homopolymer chains tend to gather near

the center of A-block domains, while shorter polymer chains distribute themselves

more homogeneously within the A-block domains, as noted in [172, 174]. This

difference in aggregation behavior results in larger domain sizes for longer added

homopolymer chains, increasing LX,Opt. When both A- and B- homopolymer are

added, the shift in LX,Opt is almost twice as large as when A-homopolymer alone

160



Chapter 3. Application of the string method to SCFT

is added, because homopolymer localization occurs near the centers of both A-

and B-rich domains.

α LX,Opt/Rg ∆Fmax/kT 1st/kT 2nd/kT 3rd/kT

Pure block - 17.0 102 10.2 4.5 -
0.25 17.8 82 21.0 2.6 -

A-homo 0.50 18.2 82 22.0 4.5 0.1
0.75 18.4 79 22.3 5.9 0.4
0.25 17.8 118 5.1 2.2 -

B-homo 0.50 18.2 115 7.5 4.8 0.1
0.75 18.4 111 8.6 5.9 0.3
0.25 18.8 98 15.6 10.5 -

A- and B- 0.50 19.6 95 19.2 14.6 0.4
0.75 20.2 87 21.2 17.1 1.6

Table 3.1: Commensurability widths LX,Opt, DP formation energies at the com-
mensurability width ∆Fmax/kT, and heights of the first, second, and third barriers
for various homopoymer chain lengths α. For the barriers, dashes indicate that a
shoulder, not a barrier, was observed. In all cases the added volume fraction of
A and/or B homopolymer is 10% and χN = 25.

We apply the string method to find kinetic pathways between the metastable

DP state and the stable PL configuration. The DP to PL transition is examined

at the lamellar commensurability width LX,Opt, which we determine by separate

prior bulk SCFT calculations. Each string consists of 100∼150 images (successive

field configurations along the string), which provides sufficient resolution to trace

out the kinetic pathway. As exemplified in Figure 3, all our calculations show a

single kinetic pathway in which DP transitions to PL by passing through a state

containing a single dislocation defect (SD) and a state containing bridged lamellae

(BL). First, connection breaking occurs near one of the DPs T-junctions, and the
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Figure 3.21: (a) Kinetic pathways for the melting of DP defects in the presence
of A and/or B homopolymer for the 2D bulk case. Barrier heights are computed
assuming a film z-thickness of 4 Rg. In all cases the added volume fraction of
A and/or B homopolymer is 10% and χN = 25. (b) A-segment density profiles
along the MEP for a pure AB-diblock melt, showing the various intermediate
states: initial DP, the first barrier, single-dislocation (SD), the second barrier,
bridged lamellae (BL), and finally perfect lamellae (PL).
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system forms a SD as an intermediate metastable morphology. Next, the SD and

the end of a nearby broken lamella reconnect to form BL. As a final qualitative

step, the bridge part of the BL breaks, and the system transitions to PL (Figure

3.21b). For a pure diblock melt, two barriers and a shoulder are visible on the

kinetic pathway between DP and PL (Figure 3.21a). The first barrier corresponds

to the transition between DP and SD, the second to the transition between SD

and BL, and the shoulder to the transition between BL and PL. We summarize

the barrier heights Eb in Table 3.1. For pure symmetric diblock at χN = 25,

the heights of the 1st and 2nd barriers are 10.2 kT and 4.5 kT, respectively.

The first barrier is about twice as high as the second one, indicating that the

DP basin requires more thermal energy to escape than that of SD, and hence

DPs are more difficult to eliminate. Since the BL-PL transition shows no barrier

(only a shoulder), the BL state is not metastable and should relax spontaneously.

These results agree qualitatively with our previous 2D string method calculations

on a grapho-epitaxial setup [116]. Li et al. [170] reported a similar quasi-two-

dimensional melting mechanism.

For blends of AB-diblock copolymers and homopolymers, as seen in Figure

3.21a, the kinetic pathway reflects the same sequence of morphologies (DP→ SD

→ BL→ PL). However, the quantitative nature of the barriers changes markedly.

Table 3.1 shows that when α increases from 0.25 to 0.75, the shoulder along the

163



Chapter 3. Application of the string method to SCFT

MEP between the BL and PL states becomes a full-fledged (albeit small) third

barrier, indicating that BL is metastable under these conditions. The emergence

of this third barrier is observed whether the added homopolymer is of species A,

B, or both A and B. For the first and second barriers, the principle trends are as

follows: Adding A-homopolymer increases the height of both the first and second

barriers relative to the pure diblock case. Adding B-homopolymer reduces the

height of the first barrier (relative to the pure diblock case), but increases the

height of the second barrier slightly (relative to the pure diblock case) if α = 0.5

or 0.75. The presence of A- and B-homopolymer together results in both the first

and second barriers being higher than for the pure diblock case. For all added

homopolymer compositions (A, B, and A+B), the height of the first and second

barriers tends to increase with increasing chain length of added homopolymer α.

Again, results are summarized in Table 1.

These trends can be elucidated by considering the aggregation tendencies of

the homopolymer additives. As shown in Figure 3.22, homopolymers appear to

aggregate anywhere DP, SD, or BL defects form a T-shaped junction. For an A-

homopolymer/diblock blend, the presence of addition A-homopolymer in the two

T-junctions of the initial DP stabilizes the defect, increasing the first barrier’s

height relative to the pure diblock case. For a B-homopolymer/diblock blend,

the initial DP defect contains no B-rich T-junctions in which homopolymer might
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Figure 3.22: A-total and A-homopolymer density profiles along the MEPs for
various compositions. The depicted states correspond qualitatively to those shown
in Figure3.21b. In all cases φ = 10%, α = 0.5, χN = 25. Homopolymer tends to
aggregate near cores of T-junctions.

preferentially aggregate; therefore, the first barrier’s height does not increase, and

in fact decreases relative to the pure diblock case. In the SD defect, both species A

and species B form T-junctions; therefore, added homopolymer of either species

can stabilize the SD defect by localizing in a T-junction core, causing barrier

heights to increase.

165



Chapter 3. Application of the string method to SCFT

Although Figure 3.22 only shows the homopolymer density for relative ho-

mopolymer chain length α = 0.5, we also find that the tendency of homopolymer

to aggregate within T-junctions becomes more pronounced with increasing α.

This explains why barrier heights increase as α is increased from 0.25 to 0.75.

In general, degree of homopolymer aggregation in T-junctions appears positively

correlated with barrier height.

The fact that the first barrier is generally higher (lower) when A (B) ho-

mopolymer is added can also be explained by considering homopolymer aggrega-

tion tendencies. Added A-homopolymer increases the size of A-domains relative

to B-domains, making the A-rich bridges of the DP structure more robust. Added

B-homopolymer increases the size of B domains (which the A-rich bridges of defect

structures must cross), making the A-rich bridges of the DP more fragile.

Our 2D bulk simulations suggest that even a small volume fraction of added

homopolymer can significantly affect 1) the stability of defective morphologies

and 2) barrier heights along the kinetic pathway to defect elimination. Added B-

homopolymer localizing in B-rich domains increases the formation energy of DP

and also reduces the kinetic barrier between DP and SD, which is advantageous

for the defect melting process. On the other hand, homopolymer localization on

cores of T-junctions reinforces stability of the DP defect when A-homopolymer is

present, and of the SD defect when added A- and B-homopolymer are simulta-
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neously present. Therefore, avoiding localization of homopolymer in T-junction

cores of defect structures should be a high priority in DSA processes.

3.3.3 3D simulations on chemically pre-patterned substrates

We next consider kinetic barriers and transition pathways for a fully 3-dimensional

system on a chemically pre-patterned substrate, as described in Section 2. We

fix the homopolymer chain length at α = 0.5 and the homopolymer volume frac-

tion at φ = 0.1. DP defects are converged from random seeds and found to be

metastable.

Figure 3.23 shows the formation energy of DP defects, ∆F , as function of

film width LX for χwAN = −5.0. For pure AB-diblock copolymer, the maximal

∆F , obtained under near-commensurate conditions for perfect lamellae, is 96

kT. As in the 2D case, adding A-homopolymer reduces the maximal ∆F (to 70

kT), while adding B-homopolymer increases it (to 106 kT). (We note that the

effect would be exactly the reverse for the “inverse” DP defect with type B T-

junctions.) Upon weakening the attractiveness of the A-wetting substrate stripes

from χwAN = −5.0 to −2.5, each maximal ∆F decreases by about 3 ∼ 4 kT, due

to decreased surface pinning of the A-blocks. Commensurability widths for pure

AB-diblock are found to be LX,Opt = 16.8 Rg for χwAN = −2.5 and LX,Opt = 16.9

Rg for χwAN = −5.0. Upon adding homopolymer of either species, these shift

167



Chapter 3. Application of the string method to SCFT

Figure 3.23: (a) 3D DP and PL states converged in the chemo-epitaxial geome-
try of Figure 3.19. (b) Formation energy ∆F of DP defects in the chemo-epitaxial
geometry as a function of LX for various homopolymer admixture conditions. In
all cases φ = 10% and the attractiveness of the A-wetting stripe is χwAN = −5.0.

to LX,Opt = 18.0 Rg for χwAN = −2.5 and LX,Opt = 18.1 Rg for χwAN = −5.0.

Overall, we see that the defect formation energies and commensurate film widths

are relatively insensitive to substrate pinning strength for A-attractive stripes

with χwAN < −2.5.

168



Chapter 3. Application of the string method to SCFT

Figure 3.24: (a) Example kinetic pathways found by the string method for the
chemo-epitaxial geometry of Figure 3.19 with various homopolymer admixture
conditions. In all cases φ = 10% and the attractiveness of the A-wetting stripe is
χwAN = −5.0. (b) Enlargement of the kinetic pathway between DP and SD.
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We evaluate transition pathways and kinetic barriers at LX,Opt using the string

method and SCFT. DP defects transition to PL by way of SD for all tested condi-

tions, similar to the 2D results. However, in the 3D case, an additional shoulder

(or barrier, for added A-homopolymer or added A- and B-homopolymer) is ob-

served on the transition pathway between DP and SD (Figure 3.24a). We denote

the first barrier 1a and the shoulder or second barrier 1b (Figure 3.24b). Con-

sidering the z-dependence of the morphology along the kinetic pathway from DP

to SD (Figure 3.25), we see that the DPs T-junction connections begin breaking

near the bottom surface (substrate). As the transition continues, this break zip-

pers up to the top surface. The substrate clearly facilitates the initial breaking of

T-junction connections, reducing the height of the first barrier relative to the 2D

bulk case. The second shoulder or barrier, 1b, along the DP to SD pathway is en-

countered when the system attempts to break the last remaining DP connection

at the top surface. The feature 1b is a barrier for added A-homopolymer and for

added A- and B- homopolymer, and a shoulder for added B-homopolymer. The

subsequent SD-BL transition shows a low kinetic barrier for weak surface pin-

ning; for stronger surface pinning that barrier becomes a shoulder (except if the

system contains both A- and B-homopolymer, which yet again acts to stabilize

the defect). The final BL-PL transition appears free of barriers, displaying only

sloping shoulders for all tested conditions.
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Figure 3.25: Density profiles along the kinetic pathway between DP and SD
(corresponding to the MEPs shown in Figure 3.24b). White circles frame regions
where connection breaking occurs. Red arrows point out regions of homopolymer
localization.

Adding 10% A-homopolymer increases the height of barrier 1a by factor of 5

relative to that for a pure diblock melt, and causes 1b to become a barrier where

for pure diblock it was merely a shoulder. Once again, we attribute this to excess

A-homopolymer aggregating near the dislocation-pairs T-junction cores (Figure

3.25). Although connection breaking begins easily in the presence of A-pinning

substrate domains, two high barriers must still be overcome. Adding 10% B-

homopolymer, by contrast, swells the B domains, facilitating connection breaking

and reducing the 1a barrier. Adding homopolymer of either species increases

the height of the barrier denoted 2, corresponding to the SD to BL transition;

however, barrier 2 is much lower than 1a for all conditions, thus its effect on the

annealing process is likely negligible.
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Figure 3.26: Density profiles along the kinetic pathway between SD (at reaction
coordinate/string arc length coordinate 0.5) and reaction coordinate 0.71 (corre-
sponding approximately to BL) for the case where both A- and B-homopolymer
are present. Red arrows point out regions of homopolymer localization.

When added A- and B-homopolymer are simultaneously present, the height

of barrier 1a is 4 times larger than that for the pure AB-diblock melt (but still

30% smaller than when only A-homopolymer is added). Furthermore, barrier 1b’s

height is also reduced significantly when both homopolymer species are present.

On the other hand, the SD defect becomes more stable when added A- and B-

homopolymer are simultaneously present, and barrier 2 between SD and BL in-

creases by a factor of 10 relative to when A-homopolymer alone is added. This
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is because in the SD defect, both species form T-junctions, so both A- and B-

homopolymer have available T-junctions in which to localize (Figure 3.26).

When the attractiveness of the A-wetting substrate domains is reduced from

χwAN = −5.0 to χwAN = −2.5, the barrier heights change (Table 3.2). Also, in

general, the highest observed barriers along the 3D paths are significantly smaller

than the highest observed barriers for the 2D paths at equivalent homopolymer

volume fraction and chain length. It is clear that a substrate pre-patterned accord-

ing to Figure 3.19 acts to facilitate defect annealing. However, if homopolymer

of the species attracted by the pinning domains (in this case A) remains in the

system, a higher barrier must be overcome to anneal out DP defects. In living

anionic polymerization of PS-b-PMMA copolymer, polystyrene is the species that

is polymerized during the first step and can be present as residual homopolymer

in the resulting diblock melt. Therefore, our work suggests that PMMA should

be the species preferred by the pinning domains of a LiNe chemo-epitaxial prepat-

tern.

Commensurability effects

For the cylinders in grapho-epitaxial confinement studied in Section 3.2, it was

determined that channel width had a significant effect on the heights of barriers

along the kinetic pathway and on estimated annealing times. Therefore, in this
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χwAN LX,Opt/Rg ∆Fmax/kT 1a/kT 1b/kT 2/kT

Pure block -5.0 16.8 96 0.75 - -
-2.5 16.9 93 1.00 - 0.01

A-homo -5.0 18.0 79 4.37 3.23 0.04
-2.5 18.1 77 3.78 4.15 0.25

B-homo -5.0 18.0 108 0.23 - -
-2.5 18.1 106 0.93 - 0.10

A- and B- -5.0 19.6 93 3.06 0.34 2.26
-2.5 19.4 90 3.12 0.46 2.16

Table 3.2: Commensurability widths LX,Opt, DP formation energies at the com-
mensurability width ∆Fmax/kT, and heights of barriers 1a, 1b, and 2 along the
kinetic pathway between DP and SD for various homopolymer admixture condi-
tions at two different values of the A-wetting substrate domains’ A-attractiveness,
χwAN = −5.0 (more strongly attractive) and χwAN = −2.5 (less strongly attrac-
tive). Dashes indicate that a shoulder, not a barrier, was observed. In all cases
α = 0.5 and φ = 10%.

section, we evaluate the effect of commensurability on kinetic barriers 1a and 1b

between DP and SD defects for the chemo-epitaxial setup. We focus on barriers

1a and 1b because these barriers tend to be the highest along the kinetic pathway

and thus are expected to have the most significant effect on the annealing process.

As shown in Figure 3.27, the first barriers’ height changes non-monotonically with

system width, and a minimal barrier height is observed for a particular value of

LX . For a pure diblock melt, the smallest height of barrier 1a is obtained at

LX = 16.4 Rg (we denote this value as LX,min), which is close but not identical

to the commensurability width LX,Opt = 16.8 Rg found in the previous section by

maximizing the defect formation energy of DP. Furthermore, the kinetic barrier

increases as LX increases above 16.6 Rg. This LX dependence of barrier height
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Figure 3.27: Heights of barriers 1a (red) and 1b (blue) as a function of film
width. Notice that for added B-homopolymer (lower left panel) only barrier 1a
is present; 1b becomes a shoulder. The vertical dotted line shows the optimized
film width LX,Opt at which the formation energy of DP, ∆F , is maximized.

is universal for the range of conditions covered by this study. When the system

width is smaller than the commensurability width, lamellae are under compression

[116], which acts to accelerate the elimination of DP defects. The second barrier
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1b, which is seen for added A-homopolymer and added A-and B-homopolymer,

also has minimal height at a smaller LX than LX,Opt. Away from the optimal

LX , however, the height of barrier 1b increases sharply, exceeding that of barrier

1a. For the case where both added A- and B-homopolymer are present, barrier

1b begins to show a pronounced increase when LX exceeds 19.7 Rg. When added

B-homopolymer alone is present, the height of barrier 1b stays roughly constant

for LX < 17.8 Rg.

Transition rate calculations for DP melting

Using the minimum energy paths and kinetic barriers identified by the string

method, we can estimate reaction rates for transitions between DP and PL. We use

the same approach as in our previous study of defect annealing in graphoepitaxy

(see Section 3.2.6 or Ref. [143]). Here the DP defect melting process can be

represented by the following reaction:

DP ⇐⇒ DP2⇐⇒ SD ⇐⇒ PL , (3.5)

where DP, DP2, and SD denote the metastable defects as shown in Figure 7.

The first “⇐⇒” corresponds to crossing barrier 1a in either direction, the second

corresponds to crossing barrier 1b in either direction, and the third corresponds
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Figure 3.28: Time dependence of relative concentration s of DP, DP2, and
SD defects, as well as the defect-free morphology PL, at the optimal channel
width LX,Opt for (a) a pure AB-diblock melt, (b) AB-diblock with added A-
homopolymer, (c) AB-diblock with added B-homopolymer, and (c) AB-diblock
with added A- and B-homopolymer. In all cases φ = 10%, α = 0.5 and χwAN =
−5.

to crossing barrier 2 in either direction. As in Section 3.2.6, we emply a Kramers-

like approach in which the kinetic rate k1→2 for a transition from state 1) to 2) is
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given by the Arrhenius expression

k = τ−1
0 exp [−Eb/kT ] , (3.6)

where Eb is the height of the barrier that must be overcome to transition from

states 1 to 2 and τ0 is the time necessary for diffusion of chains parallel to the

microdomain interface over a distance comparable to the size of defect [143]. In

the case of PS-b-PMMA at a molecular weight corresponding to χN = 25, for

example, τ0 ≈ 9s [143].

Specifically, we consider the annealing rate of DP morphologies formed on a

substrate that is patterned as in Figure 3.19. The barriers summarized in Table

3.2 for the kinetic pathways at LX,Opt (Figure 3.24) are used to calculate the

reaction rates. As shown in Figure 3.28, for pure AB-block copolymer (Figure

3.28b) and blends with added B-homopolymer (Figure 3.28c), the annealing time

to transition from DP to PL with 99% probability is 15τ0, but when only A-

homopolymer is present in the blend, that annealing time (600τ0) is increased by

a factor of 40. When both A- and B-homopolymer are present in the melt (Figure

3.28d), the annealing time (150τ0) is increased by a factor of approximately 10

relative to the pure AB-block case; however, it is still 4 times smaller than the

estimated time of 600τ0 for added A-homopolymer alone.
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Figure 3.29: Schematic of transitions considered in the annealing calculations for
the case of A-homopolymer admixture (a) and A- and B-homopolymer admixture
(B). When added A-homopolymer alone is present, barrier 1a and 1b are both
significant; in fact, if the system lies in the DP2 basin, the reverse transition from
DP2 back to DP is more likely than the forward transition from DP2 to SD.
When A- and B-homopolymer are both present, barrier 1b becomes relatively
small, suppressing this reverse transition and reducing the overall annealing time.

We can clarify the melting mechanism by examining the forward and backward

transition rates among the set of metastable states illustrated in Figure 3.29.

For an A-homopolymer blend (Figure 3.29, case a), after crossing the kinetic

barrier from the initial DP (RC=0) to the metastable DP/SD composite “DP2”
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(indicated in Figures 3.24a and 3.25 at RC=0.2), the system is more likely to

revert from DP2 back to DP than it is to continue forward and transition to

SD. In fact, the reaction rate for the DP2 to DP backward transition is greater

than the reaction rate for the DP to DP2 forward transition, because DP2 lies at

higher energy (closer to the height of barrier 1a). Once the system reaches an SD

configuration it can readily anneal to PL; however, the hindered kinetic nature

of the DP to SD transition results in long annealing times for the overall DP to

PL transformation. On the other hand, for pure AB-diblock and for added B-

homopolymer (cases b and c in Figure 3.29), the free energies of the intermediate

morphologies decrease in an approximately stepwise manner along the kinetic

pathway. The backward reaction rates are negligible compared to the forward

reaction rates in this case; backward transitions from DP2 (SD) to DP (DP2) are

suppressed and thus the total reaction time is reduced.

As shown in Figure 3.24 and Table 3.2, the barriers 1a and 1b are significantly

smaller when added B-homopolymer or pure AB-diblock is present, relative to the

cases where added A-homopolymer or both A- and B-homopolymer are present.

Therefore, we expect the DP to PL transition to proceed more quickly in the

former two cases. The priority should thus be to remove A-homopolymer from

the system. However, if A-homopolymer is present in the AB-diblock melt and is
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impossible to remove from the system, we can reduce the annealing time of DP

defects to an extent by adding B-homopolymer.

3.3.4 Conclusion

We use SCFT simulations and the string method to investigate the self-

assembly of symmetric diblock copolymer/homopolymer blends for both a quasi-

2D bulk system and a fully 3D system on a chemically pre-patterned substrate.

In the 2D simulation of a film not subject to chemo-epitaxy, kinetic pathways and

barriers for the transition from a dislocation-pair defect (DP) to perfect lamellae

(PL) are evaluated at the lamellar commensurability width LX,Opt, which is deter-

mined by separate SCFT calculations. Starting from DP for a pure diblock melt,

the system transitions to PL by way of a single dislocation (SD) and a bridged

lamellar (BL) state, in that order. For 10% added homopolymer of either type, we

observe two barriers and one shoulder along the kinetic pathway, corresponding

to transitions from DP to SD, SD to BL, and BL to PL, respectively. The first

barrier (between DP and SD) is the highest along the kinetic pathway for all con-

sidered homopolymer species, volume fractions and relative chain lengths. The

height of the first barrier increases when homopolymer of the species possessing

T-junctions in the DP is added, since the homopolymer tends to localize near the

T-junction cores of the dislocation, thereby stabilizing it.
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In 3D simulations with wall confinement on a chemically patterned substrate,

the initial DP melts and transitions to PL by way of the SD state at LX,Opt.

Since the system is no longer invariant in the z-direction, the dislocations connec-

tions first break near the periodically A-attractive substrate, and that topological

change propagates vertically in the film. This vertical “unzipping” leads to bar-

rier heights along the kinetic pathway that are reduced relative to those for the

(uniform in z) transformation deduced from the 2D simulations. In the 3D case,

when added homopolymer is able to segregate to the cores of a DPs T-junctions,

barrier heights increase by a factor of 5 or more. However, if the added homopoly-

mer does not correspond to the species forming T-junctions, and therefore cannot

localize in the junctions, additional homopolymer reduces barrier heights.

We investigate the effects of channel width on barrier heights and find that

minimal barrier height tends to occur at smaller system widths than LX,Opt for

all tested conditions.

We estimate the total DP to PL transition time using a Kramers-like ap-

proach, and find that in the presence of 10% added A-homopolymer, the DP to

PL transition takes place with 99% probability after an annealing time of 600τ0,

where τ0 is the time scale for segmental diffusion along A-B microdomain inter-

faces over a distance comparable to the defect size. Adding B-homopolymer to the
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AB-block copolymer/A-homopolymer system reduces the likelihood of backwards

transitions, cutting this predicted annealing time by a factor of 4.

Our findings suggest that, even though residual homopolymer is expected in

some AB-diblock melts synthesized via common living polymerization techniques,

defective morphologies can be suppressed by using a substrate patterned with

alternating domains that are neutral and attractive to the monomer species not

present as residual homopolymer.

3.4 Application to pitch-multiplication in con-

tact holes

A number of recent experimental studies indicate that directed self-assembly

is a feasible technology for creating smaller cylinders within larger cylindrical

prepatterns [177, 178]. This procedure is viewed as a promising method to create

nanoscale contact holes for vertical interconnect access (VIA) in semiconductor

wafers.

The GPU string method code I wrote was also used to calculate minimum

energy paths and kinetic barriers for defects appearing in generalized rounded

(oblong) grapho-epitaxial prepatterns. However, the first author of the study

requested that I not reproduce his figures or data, since he plans to include them
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in his own thesis. Interested readers may consult Iwama et al. [179]. SCFT studies

of the most commonly encountered defects in cylindrical, oblong, rectangular, and

peanut-shaped (“egg-box”) confinement with various wetting conditions can also

be found in [176, 180–182]. The effects of thermal fluctuations on the placement

of self-assembled cylinders are explored in [183–185].
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Truncation-based energy
weighting string method

Reproduced in part with permission from M. Carilli, K. T. Delaney,
and G. H. Fredrickson, “Truncation-based energy weighting string
method for efficiently resolving small energy barriers,” The Journal
of Chemical Physics 143, 054105 (2015). Copyright 2015 AIP Pub-
lishing LLC.

In recent years, the zero-temperature string method has proven successful in

finding and characterizing minimum energy paths for a wide variety of systems

[115, 116, 143, 186–188]. However, it possesses two related drawbacks. First, if

the system contains only one barrier region, and that region is small with respect

to the configurational “distance” between the locally stable wells (in a sense we

will clarify in Secs. 4.2.1 and 4.2.2), many images will be wasted tracing out the

uninteresting path to the lowest-lying configuration of one well or the other and

relatively few will reside within the barrier region, resulting in poor resolution of

the barrier. For high-dimensional systems like polymer field theories where each
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image carries a heavy computational cost, it is essential to focus as many images

as possible near the barrier. Second, for nucleation problems (in which the barrier

region is most important) many later images correspond to the nucleus growing

towards the edge of the computational domain, where unphysical confinement

effects take hold. In fact, it is conventional to discard the later section of the string

when investigating nucleation problems [115, 187]. Energy weighting alleviates

these two difficulties somewhat, but conventional energy weighting schemes (as

defined in Section 2.2) still require significant computational effort to relax images

that will ultimately be discarded.

In this work we demonstrate “truncation-based energy weighting” (TBEW),

a new energy weighting scheme that fully solves both problems by focusing all

images within the barrier region. The string can still be guided to explore a

transition between two specific locally stable states based on how it is initialized.

We demonstrate application of the scheme to a 2-dimensional illustrative test case

as well as a high-dimensional problem involving the disorder-to-lamellar transition

of the renormalized Brazovskii model [104, 105, 112]. We also investigate the new

scheme’s convergence, and verify that its convergence characteristics match those

of conventional energy weighting schemes.
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4.1 Truncation-based energy weighting

For a string using conventional energy weighting as described in 2.2.1, once

converged, the endpoint φ1 will lie at the local minimum A and the opposite

endpoint φN will lie at the local minimum B, while the intervening images trace

out an MEP between them. Truncation-based energy weighting (TBEW) modifies

this by refocusing all images within some region of interest during every iteration

of Step 2; the string does not trace out the full well-to-well MEP but rather the

portion of it that is deemed most important to resolve.

For barrier-crossing problems, the most sensible choice is to pick an energy

cutoff EC , and confine all images to the region V (φi) ≥ EC . Of course, one must

choose EC less than the barrier height. A good initial guess for EC is the energy

of whichever well, A or B, is relatively metastable.

The sequence of initialized images must span the barrier, e.g., φ1 must lie

in the basin of attraction of A and φN must lie in the basin of attraction of B.
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However, it is not essential that the initialized images all satisfy V (φi) ≥ EC , as

that criterion will soon be enforced by the evolution algorithm.

4.1.1 Algorithm

Step 1: Independently evolve each image.

This step is performed identically to Step 1 of a string method using conven-

tional energy weighting, as in 2.2.1.

Step 2: Interpolate, determine truncation points, and reparametrize.

The core idea of TBEW is to change the reparametrization step such that all

images are redistributed only in that portion of the string near the barrier with

energy V (φ(α)) ≥ EC . In the following discussion we use the term “left” (“right”)

to denote the portion the string in the basin of attraction of A (B).

The reparametrization step of TBEW is carried out by first constructing the

smooth interpolated curve φ(α) as in Step 2 of the previous section. Next, we look

for the nearest images to the left and right of the barrier whose energies fall below

EC . If none can be found (in other words if all images possess energies ≥ EC),

then all images are redistributed evenly along α as in Step 2 of the previous

section. If one or more images are found with E < EC , we locate the nearest pair

of images on each side (left and right if necessary) of the barrier that straddle
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Figure 4.1: Step 2 of TBEW represented schematically. Upper panel: String
before truncation and redistribution. Vertical dashed lines are drawn at the α-
values at which the string is to be truncated. Lower panel: String after truncation
and redistribution.

EC . Figure 4.1, upper panel, shows an example in which the left and right pairs

are denoted φk,L, φk′,L and φk,R, φk′,R respectively (unprimed indices correspond

to being nearer to the peak). We then use a suitable root-finding scheme to locate

approximately the left and right crossing points αL and αR where the interpolated

smooth curve φ(α) intersects V (φ(α)) = EC , and, instead of redistributing the

images evenly between α = 0 and α = 1, we redistribute them evenly between

αL and αR. Note that the endpoints are included in this redistribution, placed
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at αL and αR respectively (in conventional EW, by contrast, the endpoints are

unaffected by the redistribution, remaining at α = 0 and α = 1). Finally (after

redistribution), we normalize α once more according to its new terminal values.

The entire process is illustrated schematically in Figure 4.1.

To find αL and αR in practice, we recommend the following one-step secant

method for its effectiveness and low computational cost. Once (up to two) pairs

of images that straddle EC have been located, for each pair, compute the approx-

imate derivative dV/dα between each pair as follows:

dV (φ(α))

dα

∣∣∣∣
αk′

=
V (φk)− V (φk′)

αk − αk′
, (4.1)

then establish a left or right (according to where the pair lies) truncation point

at

αT,L or R = αk′ + (EC − V (φk′))
/ dV

dα

∣∣∣∣
αk′

. (4.2)

The new endpoints placed at αL and αR may still possess energies slightly

less than EC due to inaccuracy of the approximate derivative in Eq. (4.1). If the

energy of a putative new endpoint configuration interpolated at αL or αR falls

below EC to the extent that string resolution in the barrier region will be impaired,

the putative interpolated configuration can be used to perform the second step

of a secant method, and obtain a more accurate value of αL or αR. However,
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each secant method step beyond the first requires constructing and evaluating

the energy of a new interpolated image, which incurs additional computational

cost. For the simulations we present in the following sections, Eqs. (4.1) and

(4.2) were used as written above and found to be satisfactory.

x

y

EC

x

y

EC

Figure 4.2: Motion of endpoints along EC in TBEW. Upper panel: The evolu-
tion step 1, carried out with unconstrained evolution according to the simplified
string method, for a string initially at time tN (white). Black lines represent
equipotential contours; the thick black line represents the cutoff energy EC . Im-
ages evolve along the gradient (normal to the contours). Lower panel: String at
tN+1 (red) after the truncation and reparametrization step 2. Since the endpoint
is created as an interpolation between the rightmost two red images in the up-
per panel, the endpoint’s effective motion is to slide along EC towards the valley
crossing the saddle point.
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As the evolution step 1 and reparametrization step 2 of TBEW are iterated,

the evolution step is unconstrained (or constrained to be normal to the string) for

all images, so endpoints move at least somewhat in the direction of the nearest

MEP valley as they relax towards their respective basins of attraction. Since the

reparametrization step is independent of the evolution step, the reparametrization

step ensures that all images are continually refocused above V ≈ EC in a manner

that still allows them to relax towards the nearest MEP valley over time. The

result is that the string’s endpoints traverse sideways along the contour V ≈ EC

until both endpoints converge to the nearest point on the contour V ≈ EC that

also lies along an MEP, while the interior images lie along an intervening barrier-

region path obeying Eq. (2.25). This motion is illustrated schematically in Figure

4.2.

Note that the repeated refocusing of the images within a particular region

means that the endpoints never reach locally stable configurations if those con-

figurations possess energies < EC . In the limit of long time, a periodic state is

reached in which endpoints are continually attempting to breach the energy region

of interest and being refocused within. However, these movements are infinites-

imal, and the movements of interior (non-endpoint) images are similarly small

oscillations along the converged path. We revisit this issue in Sec. 4.3. Also,

since the path found by TBEW obeys Equation (2.25), but might not place its
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endpoints at A and B, for the sake of rigor we refer to it as a section of steepest

descent path (SDP) rather than MEP.

In the next section, we demonstrate that if a string using TBEW is initial-

ized the same way as a string using conventional EW, the converged section of

steepest descent path found by TBEW will lie along the same MEP found by the

conventionally energy weighted string. The string using TBEW will simply have

all its images focused within the desired energy region (Fig. 4.6).

TBEW may fail in a rough energy landscape, because depending on how the

string is initialized, there is a danger that the endpoints will become trapped

in spurious wells that do not lie along an MEP between the desired metastable

states. However, this is a known shortcoming of conventional EW also (see, e.g.,

Figure 1 of [76]). Additionally, in such a landscape the MEP may provide a

poor description of the physical transition pathway. We expect that any energy

landscape smooth enough to be suitable for conventional EW will also be suitable

for TBEW.

Choosing the cutoff energy

In general, the choice of EC should be motivated by some intuition about

the potential surface V (φ). EC must be less than the barrier height, which is

unlikely to be known a priori. As stated previously, a good initial guess for EC
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is the energy of whichever well, A or B, is relatively metastable. For nucleation

calculations, we find this choice to be effective, as demonstrated in Sec. 4.2.2.

We note that EC can easily be updated on-the-fly as the calculation progresses,

and the estimate of the barrier height relative to the current value of EC improves.

A systematic method for doing so could proceed as follows:

1. Periodically evaluate the resolution of the string according to some error

metric, e.g. Eq. 4.4.

2. When the value of this error metric plateaus for the current EC , estimate

the barrier height as the peak of the current string. Increase EC incre-

mentally towards this peak value, and use the new value of EC for future

reparametrization steps.

3. Repeat 1 and 2 until the value of the error metric for the string drops below

some desired global tolerance.
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Figure 4.3: Upper panel: 2D potential V (x, y) from Equation (4.3). Lower
panel: V (x, y) along y = 0 in the x-direction, showing the potential’s large-scale
double-well structure. Ripples around x = 0 arise as the line y = 0 cuts directly
across the barrier region without attempting to navigate the twisting MEP.

4.2 Comparison of TBEW to conventional en-

ergy weighting

4.2.1 2D example

To illustrate the utility of truncation-based energy weighting, we apply the

string method using both conventional energy weighting and TBEW to a 2D
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Figure 4.4: Upper row: Initialized strings (white) and converged strings on
V (x, y) for conventional (left, gold) and truncation-based (right, red) energy
weighting, each with N = 20 images. Points represent images. Lines represent
the continuous curves φ(α) = (x(α), y(α)), as interpolated in the configuration
space (x, y), that serve as an estimate of the MEP (or SDP segment in the case
of TBEW). The curve φ(α) is constructed in each case by drawing a parametric
cubic spline through the images. W (Ei) = exp(4Ei) is used for conventional EW,
and EC = −0.03 is used for TBEW. The conventionally-weighted string, once
converged, leaves 12 images above EC = −0.03. The TBEW string confines all
20 points within this high-energy region, and traces out a more accurate estimate
of the barrier structure. Lower row: Zoom of barrier peak area for original (left)
and truncated (right) methods.

energy landscape with potential

V (x, y) = −x2−x3 + x4 +
(
a
[
y − be−(cx)2 cos (dx)

])2

(4.3)

V (x, y) for (a, b, c, d) = (2, 0.2, 10, 40) is shown in Figure 4.3. It exhibits a double-

well structure in the x direction and a locally undulating trough in the y direction.
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Figure 4.5: V (α) versus α for conventional EW (left, gold) and TBEW (right,
red) for the strings in Fig. 4.4. The actual energy of the barrier peak, V =
0, is underlaid for reference. The region of the conventionally-weighted string
corresponding to the domain of the truncated string (EC > −0.03) is boxed in
the left graphic and rescaled and underlaid for comparison in the right graphic.
Points represent energy of images. Continuous curves are created via a 1D spline
between points.
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Figure 4.6: Zoom of barrier region showing converged pathways found by well-
resolved (N = 300) strings. Red: SDP in the vicinity of the barrier found by
truncation-based energy weighting with EC = −0.03. Gold: MEP found by
conventional energy weighting with W (Ei) = exp(4Ei). The MEP in the vicinity
of the barrier found by TBEW perfectly overlays the corresponding portion of
the MEP found by conventional EW, even though the end points of the string
subject to truncation do not lie in locally stable configurations.

To escape the metastable well on the left, a system following the MEP on this

potential must negotiate the gentle but twisting barrier centered around x = 0.
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Once the barrier has been crossed, the remainder of the MEP leading to the

stable well on the right is straightforward and uninteresting. To compute, e.g.,

the rate of systems escaping from the well at negative x, the barrier region is

the most important portion of the MEP to resolve. We would like our choice of

energy weighting to place as many images near the barrier as possible. However,

the barrier region only occupies perhaps a third of the (unweighted) arc length

associated with the full well-to-well MEP.

Figure 4.4 shows the results of the calculations for conventional energy weight-

ing and TBEW in a challenging case: both strings have few (N = 20) images.

Figure 4.5 shows the energy V (α) along the corresponding MEP or SDP seg-

ment. For conventional EW, we employ an aggressive energy weighting scheme

W (Ei) = exp(4Ei). At each timestep Vmin is set equal to the energy of the

lowest-energy image along the string minus some infinitesimal value in case two

neighboring images both have the lowest energy. (Vmin is determined this way

for conventional EW schemes used in all our examples that follow.) Many images

of the string using conventional EW fall outside the barrier region and are effec-

tively wasted. By contrast, the string using TBEW focuses all images within the

barrier region and achieves superior barrier resolution with the same number of

total images.
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In Figure 4.6, we confirm that the SDP segment in the barrier region found

by TBEW matches the corresponding section of the MEP found by conventional

EW when the strings employing each scheme are both well-resolved. Both strings

contain the same number of images, N = 300, but the string using TBEW (red)

succeeds in focusing all its images within the twisting barrier region.

In principle it is possible, with an even more aggressive conventional EW

scheme, to focus all images (aside from the 2 endpoints) into the desired barrier

region, but finding a scheme that places enough images in the barrier region

can be an iterative process dependent on both the underlying potential and the

number of images used. The chief virtue of truncation-based energy weighting is

convenience: If one possesses an educated guess a priori of an energy value below

which images become physically uninteresting, truncation-based energy weighting

constitutes a drop-in solution that immediately guarantees uniform coverage of

the region of interest with no images, not even the endpoints, falling (more than

infinitesimally) outside. Such an energy value is often possessed in practice, e.g.,

for nucleation calculations where the energy of the metastable state is known.

Moreover, conventional EW gives weighted coverage of the entire well-to-well

MEP, while TBEW gives uniform coverage of a selected barrier-region segment

of SDP.
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With this result in hand we can clarify TBEW’s domain of usefulness: when

the arc length required to resolve the full MEP from A to B is significantly greater

than the arc length of the MEP within the barrier region, the MEP away from

the barrier is unphysical or uninteresting, and one possesses an estimate of an

energy value below which images are uninteresting.

4.2.2 High-dimensional example:

Disorder → lamellar transition of the renormalized

Brazovskii model

In the previous 2D example, it was clear by construction that the barrier re-

gion was the only portion of the MEP requiring detailed attention, and that

the tails to one or both sides could be safely discarded. We now present a

high-dimensional physical problem, nucleation of the lamellar phase from the

disordered phase of the renormalized Landau-Brazovskii model, which exempli-

fies those traits, and for which truncation-based energy weighting also outper-

forms conventional energy weighting. We consider (2.107) with (ξ, q0, τR, uR, w) =

(3.0425, 1.0, 0.5135,−0.975, 1.0), a region of parameter space where disorder is

metastable and lamellae are stable.
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We seek a nucleus large enough to exhibit nontrivial structure, and require

a simulation cell with sufficient resolution to capture the nucleus’ internal fea-

tures as well as sufficient size to contain the nucleus without compressing it (∼2

times the size of the nucleus itself as estimated in Ref. [187]). We also require

sufficient images to resolve the barrier peak. Satisfying all three criteria simulta-

neously proves computationally challenging with conventional energy weighting,

particularly in 3D problems larger than the 2D nucleation calculations reported

here.

Figure 4.7 shows the results of a conventionally energy weighted calculation

with N = 50 images. We find that the vast majority of images are consumed

tracing out growth in an unphysical regime where the nucleus already impinges

on the cell boundary. These images are a necessary evil with conventional EW

because the calculation will not converge until φN reaches the lowest-energy con-

figuration within its basin of attraction, in this case a fully lamellar simulation

cell. In general, when performing nucleation calculations with conventional EW,

one can only hope enough images remain in the barrier region to estimate the

peak reliably, and that the unphysical tail does not disrupt the barrier-region

MEP estimate.

Figures 4.8 shows the results of a TBEW calculation with N = 25 images.

All images are concentrated within the barrier region, and all images of its SDP
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Figure 4.7: Upper left: Extensive Heff (α) along the converged string for con-
ventional EW with W (Ei) = Ei and N = 50 images. Points represent (effective
free) energy of images. Continous curves are constructed with a 1D cubic spline
between energy values. A spurious bump appears between images 2 and 3 due
to poor resolution. Upper right: Zoom of barrier region. Four images are em-
phasized, and their field configurations displayed in the lower row, to show the
growth of the nucleus along the arc length coordinate α. By image 12, the nucleus
has already reached the edges of the simulation cell, indicating that it and all 38
subsequent images are unphysical and a waste of computational effort.

segment lie along an MEP for a lamellar nucleus growing into a disordered en-

vironment, unaltered by confinement effects. Thus, no computational effort is

wasted. The critical nucleus (Fig. 4.9) and barrier height are captured accu-

rately. The far endpoint of the string does not relax to the fully lamellar state,

but remains within the lamellar state’s basin of attraction, which is sufficient to

maintain “tension” and keep the string spanning the barrier.
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Figure 4.8: Upper panel: Extensive Heff (α) along the converged string for
TBEW with N = 25 images and EC = 0 (red). The corresponding barrier region
of Fig. 4.7 is shown and scaled to the same total (non-normalized) arc length for
comparison (blue). As in Fig. 4.7, four images are emphasized, and their field
configurations displayed in the lower row, to show growth of the nucleus along the
arc length coordinate α. None of the TBEW string’s images, even the endpoint
φN , impinge on the cell boundary.

Due to the smaller number of images required, the TBEW string converges

more quickly in wall time. The TBEW string converges to a steady state in 6

hours on an NVIDIA M2075 GPU, while the barrier region of the string using

conventional EW is nearly converged only after 14 hours on identical hardware.

Unphysical images in the tail of the conventionally energy weighted string continue

to move long after the observed barrier peak settles to its final value, causing
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images in the barrier region to shift along the interpolated MEP (although the

peak does not change).

Figure 4.9: Zoomed-in view of the critical nucleus (barrier peak) obtained from
the TBEW string in Figure 4.8. (For plotting purposes, negative values of φ̄ are
cut off at zero to improve contrast.)

Figure 4.9 shows a closeup view of the critical nucleus (barrier peak) obtained

using TBEW. The needlelike shape and “cupping” near the ends indicate strong

preference for a lamellar-disorder interface normal to lamellar planes, in accord

with the observations of Chastek [17], Milner [14], Balsara [15], and coworkers.

The depicted 2D result may not be identical to the result of 3D calculation, al-

though it is qualitatively similar. To our knowledge this represents the first string

method calculation of a critical nucleus for the disorder-to-lamellar transition of

the Brazovskii model.

To compute the minimum energy paths shown in Figures 4.7 and 4.8, and

the critical nucleus shown in Figure 4.9, we use a 2-dimensional simulation cell

204



Chapter 4. Truncation-based energy weighting string method

with length and width equal to 60 lamellar periods, 640 x 640 plane wave reso-

lution, and periodic boundary conditions. The conventional EW scheme employs

W (Ei) = Ei and the TBEW scheme employs EC = 0. Images are initialized by

embedding progressively larger circular cuts of a lamellar phase within the dis-

ordered phase. During initialization, we perform minor adjustments to the field

values near the perimeter of each circular cut to ensure that the volume average

of φ̄ is zero for each image. Gradient descent with an added Laplacian to con-

serve the volume average of φ̄ is used to relax each image during update steps,

as in Ref. [128]. However, Ref. [128] treats derivatives using finite differences in

real space, while we treat derivatives in Fourier space and employ a semi-implicit

update scheme for improved stability.

4.3 Notes on convergence

For TBEW, either or both of the endpoints may fail to reach a locally sta-

ble configuration in the limit of long time. Rather, the endpoints continuously

attempt to evolve towards the lowest-lying state of their respective basins of at-

traction, only to be truncated and compressed back into the barrier region if their

energies decrease below EC . It is therefore important to establish that, once this

time-periodic state is attained, the images do in fact lie along an SDP in sense
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Figure 4.10: Evolution over time (number of iterations of Steps 1 and 2 of the
string method) of the SDP accuracy criterion ε, Eq. (4.4), for conventional and
truncation-based EW on the 2D potential from Sec. 4.2.1 with N = 300 for both.
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Figure 4.11: Scaling of converged ε value with number of images is linear with
slope ≈ −1 on a log-log plot for both methods; in other words converged ε ∼
N−1. When computing ε via Eq. (4.4) we calculate the tangent vectors using an
upwinding scheme. This upwinding scheme is the dominant source of error, as
discussed in Ref. [60].

of Equation (2.25), and their periodic motion simply corresponds to sliding back

and forth along the path. To this end, we define the following criterion to assess
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how well a given string obeys Eq. (2.25):

ε =
1

NB

NB∑
i=1

∣∣[∇V (φi)]
⊥∣∣ . (4.4)

We test this criterion on the 2D potential from Section 4.2.1, using N = 300

images for both conventional EW and TBEW. To ensure the comparison is of

equivalent quantities, we average over only the NB images that fall within the

barrier region E ≥ EC (TBEW endpoints that occasionally fall infinitesimally

below EC , as described in Section 4.1.1, are also included). For TBEW, NB = N ,

and for conventional EW, NB ≤ N − 2 by the end of the calculation.

Results are displayed in Figures 4.10 and 4.11. Fig. 4.10 shows that both

energy weighting schemes exhibit an almost identical (roughly exponential) con-

vergence rate, reaching converged values in the vicinity of ε = 10−3. TBEW

achieves lower converged error by focusing more images in the problematic twist-

ing region. Fig. 4.11 shows that both schemes exhibit the same linear scaling of

the converged error value with the number of images. Evidently, the convergence

properties of TBEW match those of conventional EW.

Although the endpoints do not reach stable states in TBEW, the truncated

string’s interpolated smooth curve φ(α) approximates the MEP in the vicinity of

the barrier peak more accurately than that of the string using conventional EW
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with the same number of images. All other aspects inherit the accuracy scaling

of conventional EW: the interpolation’s error scales with the number of images,

N , as N−4 for cubic splines, and timestepping accuracy scales with ∆t according

to the chosen ODE or PDE solver.

4.4 Similarities to the fixed length string method

We note that TBEW presents certain similarities to the fixed arc length string

method introduced in Ref. [75]. Backofen and Voigt study nucleation in a phase-

field model and introduce a string method that constrains the string to certain

total arc length. Their method redistributes all images within this fixed arc length

interval at each timestep if the string attempts to elongate. As with TBEW, at

least one endpoint does not evolve to a stationary state, and all images are focused

near a barrier region. However, the fixed length method requires a preliminary

coarse unweighted string calculation of the full well-to-well MEP to estimate the

arc length necessary to resolve the barrier region. TBEW, by contrast, requires

only a single calculation, and focuses the string within the relevant energy region

in a manner unaffected by the arc length of the string changing as it evolves.

208



Chapter 4. Truncation-based energy weighting string method

4.5 Conclusions

We present a useful truncation-based energy weighting (TBEW) scheme for the

zero-temperature string method. It possesses two advantages over conventional

energy weighting:

1. TBEW forces all images to remain near the barrier peak, and provides uni-

form coverage of a selected barrier region. It requires only an estimate of an

energy value below which images are physically uninteresting, and we have

found it more convenient to use in practice than conventional EW, which can

require iteratively deciding upon some problem-dependent weighting func-

tion. TBEW is especially advantageous for barriers that occupy relatively

little arc length in the system’s configuration space.

2. For nucleation problems, conventional EW requires that later images tra-

verse unphysical confinement effects as the nucleus grows to fill the simula-

tion cell. TBEW avoids this issue entirely.

We demonstrate TBEW on a 2D example potential as well as a high-dimensional

field-theoretic representation of nucleation in the renormalized Brazovskii model.

In both cases, TBEW outperforms conventional energy weighting in resolving the

barrier.
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For a string using conventional EW, the endpoints evolve to locally stable

configurations. For a string using TBEW, this may not be the case. We verify

that the rate of convergence, degree of converged error, and scaling of converged

error with number of images for a string using TBEW match or are superior to

those for a string using conventional EW, even when the TBEW string’s endpoints

fail to reach locally stable configurations in the limit of long time.

Truncation-based energy weighting is straightforward to implement alongside

an existing realization of the string method. Its added computational cost entails

only a check on each image’s energy, and the cost of determining truncation points,

which is negligible if the method recommended by Equations (4.1) and (4.2) is

employed.
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Chapter 5

Nucleation of lamellae from
disorder in the Brazovskii model

Reproduced in part with permission from M. Carilli, K. T. Delaney,
and G. H. Fredrickson, “Nucleation of the lamellar phase from the dis-
ordered phase of the fluctuating Landau-Brazovskii model,” In prepa-
ration.

5.1 Previous work

The disorder→lamellar (dis→lam) transition of a melt of symmetric diblock

copolymers is known to be a fluctuation-induced first-order phase transition.

Commonly used workhorse models like the Leibler model [12] and self-consistent

field theory [87, 189] predict the transition to be second-order at a mean-field

level. This second-order character does not admit the existence of a metastable

disordered phase, and predicts that the disordered phase transitions immediately

to the lamellar phase via spinodal decomposition as soon as the phase bound-
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ary (also referred to subsequently as the “order-disorder transition” or ODT) is

crossed. The influence of fluctuations causes the transition to instead become

weakly first-order. The onset of the ordered phase is suppressed by fluctuations,

taking place at a lower temperature than predicted by mean field theory; also,

for shallow quenches to temperatures below the ODT, the disordered phase may

be metastable, and a free energy barrier must be crossed for the system to form

a lamellar phase. This interesting behavior has been the subject of extensive

analytic, experimental, and computational research.

Analytic investigation of this transition can be traced back the work of Bra-

zovskii [105], who identified a Landau-type field theory with periodic ordered

phases whose ODT had fluctuation-induced first-order character. Fredrickson and

Helfand [104] (FRH) showed that the Leibler model (describing diblock copoly-

mers in the weak-inhomogeneity limit near the ODT) could be mapped to the

Brazovskii model. They applied Brazovskii’s analysis to this mapped model and

predicted that the dis→lam transition was weakly first-order. They also derived a

quantitative estimate for the ODT’s shift away from its mean-field value. Fredrick-

son and Binder [112] (FRB) constructed a renormalized effective field theory for

the mapped model that incorporated the effects of fluctuations at a mean-field

level; their renormalized theory also showed that dis→lam transition was weakly

first-order. Hohenberg and Swift [16] investigated nucleation of the lamellar phase
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Figure 5.1: Cutaway view of an ellipsoidal nucleus containing a focal conic
defect, as predicted by Hohenberg and Swift. The defect structure tries to ensure
that lamellar planes are normal to the lamellar-disorder interface as much as
possible, because a configuration with lamellar planes parallel to the interface has
higher surface tension. Figure adapted from [16].

from the disordered phase using a renormalization-group analysis; they verified

the weakly first-order nature of the transition. They also predicted the surface

tension between disordered and lamellar phases to be highly anisotropic, favoring

interfaces normal to lamellar planes and leading to ellipsoidal critical nuclei or,

potentially, to nuclei containing focal conic defects (Figure 5.1). A similar surface

tension anisotropy was predicted by Milner and Morse [14].
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Figure 5.2: Defect-containing nuclei observed by Chastek et al. Figure adapted
from [17].

Important experimental investigations include the work of Bates et al., who

first verified the first-order character of the dis→lam transition [13, 190–192];

a more recent verification for short diblock copolymers was presented by Lee

et al. [193]. Their work [192] and several subsequent experiments [194–197]

presented evidence that the dis→lam transition for a quenched disordered phase

occurred via nucleation and growth of anisotropic, roughly ellipsoidal ordered

grains. Balsara et al. [15], using the surface tension derived by Milner and Morse

and an analytic Wulff construction [198, 199], predicted that these grains would

have an aspect ratio (length/width) of roughly 2.37. He then experimentally
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observed the formation of lamellar grains from a disordered diblock melt, finding

average aspect ratios of roughly 2.0 for short annealing times and 1.5 for longer

annealing times. However, a broad range of droplet shapes and aspect ratios were

observed. Chastek et al. [17] prepared a metastable solution of diblock copolymer

and observed the formation of anisotropic ellipsoidal grains along with variety of

other interesting structures, including twinned ellipsoids, 2-fold twinned grains,

and spherulites (Figure 5.2). Other recent experiments have demonstrated the

formation of anisotropic ordered grains in emulsions containing droplets of diblock

copolymer [200, 201].

From a computational perspective, the dis→lam transition has been investi-

gated using a wide variety of simulation techniques, including SCFT with complex

Langevin dynamics [94, 202–204], SCFT with partial saddle point Monte Carlo

[205], lattice Monte Carlo [206, 207], off-lattice Monte Carlo [164, 208, 209], single-

chain-in-mean-field simulations [210], dissipative particle dynamics [211–213], and

molecular dynamics [111, 214]. The qualitative consensus is that as long as the

simulation incorporates fluctuations in some way, the dis→lam transition appears

first-order, and takes place at a lower temperature than that predicted by mean

field theory.

Other important studies of the Landau-Brazovskii model specifically include

the work of Wickham, Shi, and Wang [198], who used the model to investigate
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the cylinder→lamellar transition of a diblock copolymer melt. They devised a

single-mode approximation analysis that enabled them to predict surface tension

anisotropy, critical nucleus shape, and critical nucleus size, finding flattened, lens-

shaped critical nuclei. Wright and Wickham [128] and Spencer and Wickham [215]

simulated the growth of lamellar nuclei from a metastable cylinder phase, again

finding that the system favored flattened ellipsoidal nuclei, whose sizes showed

good agreement with the single mode approximation. Spencer also found that nu-

clei grew with different velocities along different axes such that the overall shape of

the growing nucleus was preserved. Spencer [216] simulated the disorder→body-

centered-cubic (BCC) transition with explicit fluctuations, finding that fluctua-

tions caused an intermediate disordered micelle morphology to form between the

disordered and BCC phases. Shi [217] constructed a mean-field phase diagram

that considered all of the model’s accessible Fourier modes, using Gaussian fluc-

tuation theory to locate order-order spinodals. Lin et al. [187] used the string

method to find energy barriers for the lamellar→sphere and cylinder→sphere

transition of the Brazovskii model. Hashimoto et al. [196] performed exploratory

2-dimensional Langevin simulations of the Fredrickson and Binder’s renormal-

ized Brazovskii model, and observed the formation of elliptic nuclei, but made

no systematic attempt to quantify this result. Gross et al. [106] simulated the

fluctuating Landau-Brazovskii model near the dis→lam ODT for a wide range of
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relative noise strengths, finding that the Fredrickson-Helfand analysis made good

quantitative predictions for the renormalized structure factor. They observed dis-

ordered phases that did not appear to be metastable: For all tested quenches deep

enough that the lamellar phase was stable, a system initialized in the disordered

phase would spontaneously (albeit slowly) develop ordered domains that even-

tually consumed the simulation cell. However, their simulation parameters were

not connected to the physical parameters of a diblock melt, and they admitted

the possibility of a metastable disordered phase at different parameters. (Also,

in the calculations we present here, the window in which we observe metastable

disorder is relatively narrow, and can only be isolated by a fine, gradual variation

of the quench depth. It is possible that Gross’ calculations used quench depth

steps that were too large, and jumped over the narrow window.)

Despite all this attention, to our knowledge no systematic computational at-

tempt has been made to clarify the specific mechanism of the dis→lam transition

for diblock copolymers. An interesting recent study by Medapuram et al. [111]

used well-tempered metadynamics and a 1-dimensional global order parameter to

extract a free energy barrier between a metastable disordered phase and a sta-

ble lamellar phase in molecular dynamics simulations; however, this calculation

did not provide insight as to how the transition physically took place. In this

work, we use the string method applied to the renormalized Brazovksii model of
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Fredrickson and Binder (FRB) to predict the critical nuclei for this transition, and

conduct a thorough search for several predicted and observed defect structures.

We use parameters explicitly connected to those of an experimentally accessible

diblock copolymer melt. For defect-free nuclei, we find good agreement with the

results of a single-mode analysis similar to that of [198]. We evaluate our results

by simulating the bare Brazovksii model with explicit fluctuations, finding that

the FRB model makes reasonable predictions for both the renormalized struc-

ture factor and the renormalized ODT. However, the critical nucleus size depends

sharply on proximity to the ODT, so even moderate errors in the predicted ODT

lead to large errors in predicted critical nucleus size. We conclude that the FRB

model is a poor tool to study the dis→lam transition at experimentally accessible

parameters, and recommend several directions for future study.

5.2 Predicting critical nucleus size and shape

We seek a window of parameter space where the critical nucleus is big enough

to demonstrate interesting structure (including defects, potentially) but small

enough that the string method can feasibly be applied (bearing in mind that

according to [187], the simulation cell should be at least twice the size of the

critical nucleus to avoid artificial compression effects). To find this window, it is
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useful to develop an approximate analytic prediction of the critical nucleus size.

This can be accomplished using classical nucleation theory (CNT), as outlined

in Section 2.1.4, following the procedure of Ref. [198]. Three ingredients are

required: an estimate of the difference in free energy densities of lamellar and

disordered phases ∆f = fDIS − fLAM , an estimate of the (orientation-dependent)

surface tension for a planar interface between coexisting lamellar and disordered

phases σ, and an estimate of the nucleus shape. The first two can be estimated

within the single-mode approximation, and the shape can be found from a Wulff

construction. The analysis relies on several approximations, including that the

nucleus is large enough for its free energy to be written as the sum of bulk and

interfacial terms. Again, the intended purpose of this analysis is only to locate a

promising window of parameter space, but we find that the single-mode analysis

makes good predictions for the size, shape, and free energy of critical nuclei found

by the string method, even outside the regime where those approximations are

rigorously valid.

We begin with the renormalized FRB free energy functional, with intensive

free energy

f =
βHeff

V
=

1

V

∫
dr

{
e

2

[
(∇2 + q2

0)φ̄
]2

+
τR
2
φ̄2 +

uR
4!
φ̄4 +

wR
6!
φ̄2

}
. (5.1)
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The first step is to find ∆f = fDIS−fLAM . fDIS = 0, and fLAM is given according

to (2.109) by

fLAM = τRA
2 +

uR
4
A4 +

wR
36

A6 , A2 = −3ūR +
√

3
√

3ū2
R − 4τ̄R (5.2)

where ē ≡ e/wR, τ̄R ≡ τR/wR, ūR ≡ uR/wR.

z

x

θ

θ

Figure 5.3: Slice geometry for single-mode analysis, viewed along the y-axis.
Lamellae are parallel to the xy-plane.

The next step is to determine the free energy per unit area of a planar lamellar-

disorder interface (this assumes critical nuclei are large enough that the interface

is locally roughly planar). We consider lamellar planes parallel to the xy plane

and an interface with unit normal n̂ passing through the origin, as in Figure 5.3. σ

will depend on the slice angle θ. Because the lamellae have cylindrical symmetry
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about the z-axis, we may assume n̂y = 0 so that n̂ = (sin θ, 0, cos θ). Within the

single-mode approximation, the interface-containing configuration is

φ̄(r) = 2 a(r · n̂) cos(q0 ẑ · r) = 2 a(s) cos(q0 ẑ · r) (5.3)

where a(s) is a modulating function that varies from 1 at −∞ to 0 at +∞ and

s = r · n̂ is the distance from the interface. Let fi represent the intensive free

energy of the interface-containing configuration. Plugging (5.3) into (5.1) and

averaging over one lamellar period (which assumes that a varies slowly on the

scale of one lamellar period) we find after some algebra

fi =
1

V

∫
dr

{
e (∇2a)2 + 4 e q2

0 (ẑ · ∇a)2 + τR a
2 +

uR
4
a4 +

wR
36
a6

}
. (5.4)

However, a depends only on the distance from the interface s = r · n̂. Following

[198], the interfacial free energy per unit area f̃i for a planar interface with unit

normal n̂ is then

f̃i =

∫
ds

{
e a′′(s)2 + 4 e q2

0 (ẑ · n̂)2a′(s)2 + τR a(s)2 +
uR
4
a(s)4 +

wR
36
a(s)6

}
= wR

∫
ds

{
ē (a′′)2 + 4 ē q2

0 cos2 θ (a′)2 + τ̄R a
2 +

ūR
4
a4 +

1

36
a6

}
(5.5)
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According to [198], we make two final approximations: First, to find σ for a

given set of parameters (τR, uR, wR), we calculate f̃i at coexistence where fLAM =

fDIS = 0 (in other words at the renormalized model’s ODT), and assume that

σ near the ODT can be approximated by σ at the ODT. For a given τR, the

condition for the ODT is τ̄R/ū
2
R = 9/16, and the preferred amplitude at the ODT

is A2
ODT = −3ūR +

√
3
√

3ū2
R − 4τ̄R = |ūR|(3 +

√
9− 12 · 9/16) ≡ |ūR|Ã2 (since

ūR < 0). Also, this means that the excess free energy due to the interface’s

presence is f̃i − fDIS = f̃i. Second, we assume a variational ansatz for a(s):

a(s) =
AODT

2

[
1− h

( s
w

)]
=
Ã
√
|ūR|
2

[
1− h

( s
w

)]
(5.6)

where h(u) = tanhu and w sets the length scale of the interface (w is not to be

confused with wR, which is a parameter of the renormalized model). To find σ(θ)

we plug (5.6) into (5.5), then minimize with respect to w.

f̃i = wR

∫
ds

{
ē
|ūR|Ã2

4

h′′(s/w)2

w4
+ 4 ē q2

0 cos2 θ
|ūR|Ã2

4

h′(s/w)2

w
+ (5.7)

τ̄R
|ūR|Ã2

4

[
1− h

( s
w

)]2

+
ūR
4

|ūR|2Ã4

4

[
1− h

( s
w

)]4

+
1

36

|ūR|3Ã6

4

[
1− h

( s
w

)]6
}

= wR

[
e |ūR|

Ã2

4
· 1

w3

∫
h′′(u)2 du+ ē q2

0 cos2 θ |ūR|Ã2 · 1

w

∫
h′(u)2 du (5.8)

+ w

∫
du

{
τ̄R
|ūR|Ã2

4
[1− h(u)]2 +

ūR
4

|ūR|2Ã4

16
[1− h(u)]4 +

1

36

|ūR|3Ã6

64
[1− h(u)]6

}]
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Recalling that we are working at coexistence so that τ̄R/ū
2
R = 9/16, and that

ūR < 0 so that |ūR| = −ūR, (5.7) can be rewritten

f̃i = wR

[
− ē ūR

w3
g1 −

ē q2
0 ūR
w

g2 + w ū3
R g3

]
, where (5.9)

g1 =
Ã2

4

∫ ∞
−∞

h′′(u)2 du , g2 = Ã2 cos2 θ

∫ ∞
−∞

h′(u)2 du ,

g3 =

∫ ∞
−∞

du

{
− 9

16

Ã2

4
[1− h(u)]2 +

Ã4

64
[1− h(u)]4 − 1

36

Ã6

64
[1− h(u)]6

}

Plugging in h(u) = tanhu and Ã2 = (3 +
√

9− 12 · 9/16) = 9/2, we find

g1 =
1

4
· 9

2
· 16

15
=

6

5
, g2 =

9

2
cos2 θ · 4

3
= 6 cos2 θ , g3 = − 621

1280
. (5.10)

To find the optimal interfacial width w∗ within the tanh ansatz for a(s) we mini-

mize (5.9) with respect to w. The result is

(w∗)2 =
−ē q2

0 g2 −
√
ē2 q4

0 g
2
2 − 12 ē ū2

R g1 g3

2 ū2
R g3

(5.11)

The approximate surface tension is f̃i evaluated at the optimal width w∗.

σ(θ) = wR

[
− ē ūR

(w∗)3
g1 −

ē q2
0 ūR
w∗

g2 + w∗ ū3
R g3

]
(5.12)
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The θ dependence is carried by g2 = 6 cos2 θ. Since uR < 0 and wR > 0, it appears

σ has a maximum at θ = 0 and a minimum at θ = π/2, indicating that interfaces

parallel to lamellar planes are energetically unfavorable and interfaces normal to

lamellar planes are favorable (Fig. 5.4).

0 π/8 π/4 3π/8 π/2
θ

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

σ
(θ

)

−0.2 0.0 0.2
x̃

0.0

0.2

0.4

0.6

0.8

1.0

h̃

Figure 5.4: Left panel: σ(θ) at τ = −3.0, N̄ = 104 (for which (τR, uR, wR) =
(0.332,−0.709, 0.704)). σ is maximal at θ = 0 and minimal at θ = π/2, indicating
that the system prefers interfaces normal to lamellar planes. Right panel: Pre-
dicted interfacial profile in the xz-plane h̃(x̃) for a droplet at these parameters.
Lamellae are parallel to the x-axis. The droplet is highly anisotropic to minimize
area of interfaces parallel to lamellae.

The next step of the single-mode analysis is to determine the droplet shape

using a Wulff construction applied to σ(θ). The Wulff construction minimizes

the surface free energy of a droplet subject to a constraint of constant volume.

Details can be found in [199]. The essential result, as described in [198], is the

following: Let the droplet be characterized by its height above the xy-plane h(x⊥),
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x⊥ = (x, y). The optimal height is given by

h̃(x̃⊥) = [g̃(m) + m · x̃⊥]min m , where (5.13)

h̃ =
h

L
, x̃⊥ =

x⊥
L
, m = ∇⊥h0, g̃(m) = (1 + m)1/2σ[θ(m)]

σmax

.

σmax = σ(π/2) is the maximum surface tension, and L is a length scale set by the

volume of the droplet. m, the slope of the nucleus, is a variable to be minimized

over. The lamellar nucleus has cylindrical symmetry, so it is sufficient to find

h(x) in the y = 0 plane and rotate about the z-axis. In the y = 0 plane, m =

∇⊥h =
(
dh
dx
, 0
)

= (mx, 0) and g2 = 6 cos2(arctanmx) = 1/(1 + m2
x), so σ[θ(m)]

is expressed in terms of mx alone. Minimization of (5.13) over mx is performed

numerically; working directly with x̃⊥ and h̃ yields a droplet shape where the

half-length l̃/2 along the droplet’s long axis is 1 (Fig. 5.4). The aspect ratio of

the nucleus is σ(π/2)/σ(0), so the half-width d̃/2 of this droplet along the x-axis

is σ(π/2)/σ(0).

Finally, using σ(θ) and the droplet shape, we can compute the critical nucleus

size using CNT. The droplet shape h̃(x̃) found via the Wulff construction is the

optimal nucleus shape in units where l/2 = 1. First, we compute the surface

energy S̃1 for a nucleus of half-length 1 using σ(θ) and an integral over the droplet’s
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surface (which in practice is discretized as a Riemann sum):

S1 = 2

∫ d̃/2

0

2π x̃ σ[θ(h̃′(x̃))]

√
1 + h̃′(x̃)2 dx̃ (5.14)

We also compute the volume V1 for the nucleus of half-length 1 with a Riemann

sum:

V1 = 2

∫ d̃/2

0

2π x̃ h̃(x̃) dx̃ (5.15)

The surface energy and volume for a nucleus of half-length l/2 in model units are

then S1 (l/2)2 and V1 (l/2)3, respectively, as shown in [198]. The total extensive

free energy of the nucleus is given by CNT (2.21) as

βFn(l) = −V1 ∆f (l/2)3 + S1 (l/2)2 . (5.16)

Although S1 in the preceding analysis is computed at the lamellar-disorder phase

boundary and assumed not to vary significantly (that is, held fixed) for parameters

away from the phase boundary, ∆f in the above expression is allowed to vary,

and is computed directly in terms of τR, uR, wR according to (5.2). Maximizing

(5.16) with respect to l/2 yields the half-length for the critical nucleus at a given
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set of renormalized parameters τR, uR, wR:

lcrit/2 =
2S1

3V1 ∆f
(5.17)

The free energy of the critical nucleus is then βFn(lcrit).

To expose the connection to parameters of a diblock melt, our later results are

presented in terms of the bare τ , or equivalently, in terms of χN , which is linearly

related to the bare τ . To estimate the critical nucleus size and free energy at a

given bare τ , first we compute renormalized parameters τR, uR, wR at τ (assuming

N̄ = 104) using (2.108), then follow the above analysis ending at (5.17).

Figure 5.9 shows the long-axis length l, width d, and extensive free energy

βF of critical nuclei as obtained from the single-mode analysis, along with those

quantities as extracted from critical nuclei obtained by the string method. Good

agreement is observed even for relatively small nuclei, for which the assumptions

of the single mode analysis are not strictly valid.

To aid physical intuition, the length and width are presented in units of lamel-

lar periods. However, (5.17) gives a result in model units, in which a lamellar pe-

riod has length 2π/q0. Therefore , to present the results in Figure 5.9, we divide

lcrit from (5.17) by 2π/q0.
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5.3 String calculations on the renormalized model

5.3.1 Defect-free nuclei

Figure 5.5: Initialization method used to search for defect-free critical nuclei.

In the bare Landau-Brazovskii model, the dis→lam transition is second-order

at the mean-field level, therefore there is no region of metastable disorder and

no energy barrier for the dis→lam transition. Since the zero-temperature string

method is a mean-field technique, it cannot find barriers or critical nuclei for this

transition in the bare model. In the renormalized Brazovskii model of Fredrickson

and Binder, however, the dis→lam transition is first-order; a metastable region

of disorder exists and the zero-temperature string method can be applied. The

single-mode analysis suggests that for N̄ = 104, τ ≤ −3.0 is a feasible regime in

which to find critical nuclei that are large enough to exhibit interesting structure

but small enough to tackle with the string method.
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Figure 5.6: Converged MEP for the string initialized with concentric ellipses
(Figure 5.5) at τ = −3.0. Upper panel: Heff (α)/kT along the converged pathway.
Selected images along the string are labelled and shown in the lower row.

We begin by searching for defect-free nuclei in the renormalized model. Images

are initialized as concentric ellipses with aspect ratios of d/l = 0.3 (Fig. 5.5). An-

ticipating the anisotropy of converged critical nuclei this way significantly reduces

the string method’s convergence time. To economize on the number of required

images, we use truncation-based energy weighting with EC = 0, which focuses all

images within the barrier region. Strings with N = 16 images are used. Smaller

numbers of images (down to N = 10) were also tested; this was found to have

negligible effect on the converged barrier. It should be emphasized that without
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Figure 5.7: Zoomed-in view of the critical nucleus at τ = −3.0, corresponding
to the image labelled 8 in Figure 5.6.

either truncation-based energy weighting or a technique like the fixed arc length

string method [75], a computationally intractable number of images would be re-

quired to resolve the barrier region, even with an aggressive conventional energy

weighting scheme. We use simulation cells of size 28 × 28 × 10 lamellar periods

with a resolution of 196 × 196 × 70 (7 grid points per lamellar period), which is

sufficient to capture the free energy accurately (≈ 7 grid points per period was

also used in [215]).
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Figure 5.8: Left panels: Fitting method used to extract width of defect-free

nuclei. A function of the form A tanh
[
x−d/2
wr

]
is fitted to the nucleus’ amplitude

across the central lamella (red slice in upper panel) to extract the lateral half-
width d/2 and the interfacial width wr (A is also left free as a fit parameter).
Right panels: Fitting method used to extract length of defect-free nuclei. A

function of the form A tanh
[
x−l/2
wl

]
is fitted to the nucleus’ amplitude peaks (red

dots) along its long axis (red slice, upper panel) to extract the half-length l/2 and
the interfacial width wl.

We converge defect-free MEPs for τ = −3.2, -3.15, -3.1, -3.15, and -3.0 (in the

region suggested by the single mode analysis). The result for τ = −3.0 is shown
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Figure 5.9: Left panel: Comparison of the major-axis lengths (l) and minor-
axis diameters (d) extracted by the fitting procedure, alongside the predictions of
the single mode approximation (continuous curves). Right panel: free energies of
critical nuclei obtained by the string method (dots), alongside the prediction of the
single mode analysis (continuous curve). The single mode analysis’ predictions are
surprisingly accurate even for small nuclei, where its underlyings approximations
are not valid. The vertical dotted line at τ = −2.89 is the ODT predicted for the
FRB model with N̄ = 104.

in Figure 5.6. A zoom of the corresponding critical nucleus (Image 8) is shown

in Figure 5.7. The nucleus appears highly anisotropic, as expected, displaying

diffuse “caps” at the long-axis endpoints.

We apply a fitting procedure to extract trends of nucleus size and shape with

varying τ . For quantitative comparison with the single-mode analysis, the fit

function also assumes the lamellar structure is modulated by a tanh function

with characteristic width along the long axis and radial (minor) axis, as shown

in Figure 5.8. Results of the fitting procedure, along with free energies of critical
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nuclei and corresponding quantities computed by the single mode analysis, are

shown in Figure 5.9.

5.3.2 A search for nuclei containing defects

Figure 5.10: Selected images along the strings initialized to search for twinned
nuclei, or nuclei containing grain boundaries. The upper row depicts twinned
nuclei initialized as ellipsoids with gradually increasing size from a fixed join
point in space; we also tested a method where the join point gradually moved
outward from the center of the simulation cell as the ellipsoids’ size increased
(not shown). For each of the three methods, we test strings initialized at
seven different slice angles: θ = π/16, π/8, 3π/16, π/4, 5π/16, 3π/8, and π/2
(11.25◦, 22.5◦, 45◦, 56.25◦, 67.5◦, 78.75◦, and 90◦). The examples above are for
θ = π/4 (90◦).

Having located a regime where relatively large critical nuclei can be found

using the string method, we proceed to conduct a comprehensive search for various

predicted and experimentally observed defect structures. Leveraging the fact that
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Figure 5.11: Selected images along the strings initialized to search for nuclei
containing focal conic defect pairs (upper row) and 4-fold twinned nuclei (lower
row). For the focal conic defect pairs, the displayed initialization pathway corre-
sponds to placing the defect core at r = 10 lamellar periods from the center of
the initialized area; we also test pathways with r = 8, r = 6, and r = 4. For the
4-fold twinned nuclei, we test 4 initialization pathways, in which the initialized
rectangular prisms have depth to width ratios of 0.4 (shown), 0.6, 0.8, and 1.0
(cubes). The simulation cell is adjusted to compensate: 28 × 28 × 12 lamellar
periods for 0.4, 24× 24× 20 for 0.6 and 0.8, and 22× 22× 22 for 1.0.

the string method converges to a local MEP dependent on its initialization, we

search for MEPs with defect-containing critical nuclei by initializing strings with

structures similar to the expected defects. Anticipating that only large critical

nuclei will successfully retain defects, we concentrate our efforts on τ = −3.0.

We test a library of initialization methods with various seeded defect struc-

tures, including twinned nuclei at various angles and nuclei with grain boundaries

at various angles as observed in [17] (Fig. 5.10), nuclei containing 4-fold twinned
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nuclei as observed in [17] (Fig. 5.10, lower row), and nuclei containing focal

conic defects similar to those predicted by [16]. In all cases N = 16 images and

truncation-based energy weighting with EC = 0 are used. For all but the 4-fold

twinned nuclei, a simulation cell of dimension 28 × 28 × 10 lamellar periods is

used. Dimensions for the 4-fold twinned simulation cells are given in Figure 5.11.

None of the tested initialization methods result in a stable MEP with mor-

phologies containing defect structures. Ultimately, all seeded initialized pathways

find their way back to an MEP whose barrier state is a defect-free nucleus. How-

ever, one interesting effect is observed for the twinned nuclei. If twinned nuclei are

initialized at a relative angle ≥≈ 78.75◦, the string finds a long-lived intermediate-

time path showing twinned nuclei. At first this appears to be a stable MEP, but

it turns out to be stabilized by symmetry; eventually, the system spontaneously

chooses to grow along one twinned lobe, as shown in Figure 5.12. For twinned

nuclei initialized with a relative angle ≤≈ 67.5◦, a long-lived symmetry-stabilized

path is not observed during the string’s convergence; instead, the two lobes zipper

together in a gradual, continuous motion as the calcuation proceeds, resulting in

a converged defect-free nucleus lying somewhere between the two lobes (Figure

5.13).
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Figure 5.12: Converged and intermediate-time MEPs for the string initialized
with twinned ellipses growing from a fixed join point (Figure 5.10, upper row) with
join angle θ = 90◦ at τ = −3.0. Upper panel: Heff (α)/kT along the converged
MEP (red) and long-lived symmetry-stabilized intermediate path (blue). Selected
images along each string are shown in the lower two rows. The nuclei along the
converged pathway are tilted because the system spontaneously chooses one of
the twinned lobes along which to grow; the other lobe shrinks and is absorbed.
The nuclei are defect-free, and the energy barrier is essentially identical to that
of Figure 5.6.
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Figure 5.13: Converged and intermediate-time MEPs for the string initialized
with twinned ellipses growing from a fixed join point (Figure 5.10, upper row) with
join angle θ = 56.25◦ at τ = −3.0. Upper panel: Heff (α)/kT along the converged
MEP (red) and along the string at an intermediate point during the calculation
(blue). Selected images along each string are shown in the lower row. For this
join angle, a long-lived symmetry-stabilized string is not observed. Instead, the
two lobes deform continuously into a single lobe through a scissor-like motion
as the calculation proceeds. Once again, nuclei along the converged string are
defect-free, and the energy barrier is essentially identical to that of Figure 5.6.
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5.4 Exploring the fluctuating bare model

We would like to evaluate how well critical nuclei obtained from a mean-

field string method treatment of the renormalized FRB model (2.107) predict

critical nuclei in the bare Brazovskii model (2.106) with explicit fluctuations. As a

preliminary step, we perform a general evaluation of the FRB model’s predictions.

5.4.1 Structure factor and renormalized τ

First, we test the ability of the FRB model to predict the renormalized struc-

ture factor of the fluctuating bare model in the disodered phase near the ODT

at N̄ = 104. We run Langevin trajectories on the bare model with N̄ scaled out

(2.106). For our chosen Fourier transform convention (2.114), the FRB one-loop

Hartree approximation predicts [104]

〈φs(k)φs(k
′)〉 =

δk,−k′

V N̄1/2(τR + e(q2 − q2
0)2)

(5.18)

where τR is given by (2.108) and V is the system volume in model units. From

(5.18) we see that for |k| = q0, τR = 1
V N̄1/2〈φs(k)φs(−k)〉 . Therefore, to extract an

effective renormalized τ from numerical simulations, at each sampling step we

compute the structure factor φs(k)φs(−k) and perform a circular average over

all modes with |k| = q0 to compute S(q0) ≡ V N̄1/2〈φs(k)φs(−k)〉C , where 〈〉C
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represents the circular average. S(q0) is recorded over samples in a long Langevin

trajectory (see Fig. 5.14 text). The effective τR is computed as 〈1/S(q0)〉, where

〈〉 represents the time-average. Results are plotted in Figure 5.14.
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Figure 5.14: Renormalized value of τ as calculated from the one-loop Hartree
approximation (green) and extracted from fluctuating 3D simulations of the dis-
ordered phase (blue) by averaging 1/S(q0) over the shell of modes in k space
with magnitude k∗. Error bars show the standard deviation of the raw data (not
the standard error of the mean) to show the relative spread of the raw data.
The Hartree approximation agrees relatively well with simulation data at higher
τ/lower χN (deeper within the disordered phase); this relative agreement wors-
ens as the system is quenched more deeply below the mean-field ODT (τ = 0).
The FRB model predicts that lamellae rather than disorder will be favored for
τ < −2.89; however, the disordered phase is observed to survive for quenches
down to τ ≈ −4 (see Fig. 5.15). All data was collected in a simulation cell of
size 12 × 12 × 12 lamellar periods with resolution 84 × 84 × 84 grid points. The
average is computed over a Langevin trajectory of length 250, 000 timesteps, with
samples taken every 1000 timesteps.
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5.4.2 The ODT in the fluctuating bare model

Next, we search for the ODT in the fluctuating bare model at N̄ = 104, and

verify that a window of metastable disorder exists. We estimate the ODT as the

point where a system initially in the lamellar phase spontaneously collapses to the

disordered phase, as in Ref. [204]. We also search for the point where a system

initially in the disordered phase spontaneously develops lamellar order. To quan-

tify the system’s lamellar order, we introduce a global orientational persistence

order parameter Φ inspired by [218]. We construct Φ from an instantaneous field

configuration φ as follows: First, smooth φ by subjecting it to a low-pass filter in

Fourier space to zero out all modes with wavelength > 0.5 in model units. The

value of 0.5 corresponds to 0.38 lamellar periods and was somewhat arbitrarily

selected; any cutoff wavelength ≤≈ 0.5 lamellar periods should work. Next, we

take Φ in real space and construct a local director field describing the orientation

of domains:

d̂(r) =
∇φ(r)

|∇φ(r)|
(5.19)

From d̂(r), we construct a local nematic order tensor

Qij(r) = d̂i(r)d̂j(r)−D−1δij . (5.20)
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D is the dimensionality of the system; in this case D = 3. From Qij we construct

the orientational persistence correlation function

g(r) =

∫
dr′ [Qij(r

′) : Qij(r
′ + r)] (5.21)

Finally the instantaneous value of Φ is computed as the spatial average of g(r):

Φ =
1

V

∫
dr g(r) (5.22)

A system with perfect lamellar order will have Φ = 1.0. For fluctuating lamellar

systems, Φ tends to be in the range 0.1 − 0.4. Disordered systems tend to have

Φ ≤ 10−3. Φ is relatively expensive to compute, so when conducting Langevin

simulations, Φ is sampled once every 1000 timesteps.

Figure 5.15 shows the results of a hysteresis sweep tracking Φ as the system is

warmed from a cold start in the lamellar phase (green) and cooled from a hot start

in the disordered phase (red). For system configurations with 7 grid points per

period (A and C), ∆t = 5×10−5 is used and Φ is averaged over 100,000 Langevin

timesteps. For configuration B, with 10 grid points per period, ∆t = 2 × 10−5

and Φ is averaged over 250,000 timesteps. In all cases φ is sampled every 1000

timesteps. We identify a hysteresis window where the disordered phase appears
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Figure 5.15: Hysteresis of the lamellar persistence order parameter Φ when the
system is warmed from a cold start in the lamellar phase (green) and cooled from
a hot start in the disordered phase (red). For the warming trajectories (green)
the system is initialized as a perfect lamellar phase at τ = −4.15 and allowed to
thermalize; a thermal average of Φ is then taken. The final instantaneous config-
uration at τ = −4.15 is then used as the initial configuration at τ = −4.1, and
the process continues in the direction of the green arrow (this chaining of calcu-
lations saves thermalization time). The cooling trajectories (red) are initialized
as a disordered phase at τ = −3.5, and calculations are chained in the opposite
direction (red arrow). Error bars represent the standard deviation of the thermal
average of Φ. Three system configurations are tested: a simulation cell of size
8x8x8 lamellar periods with 7 grid points or plane waves (pw) per lamellar pe-
riod (squares, case “A”), an 8x8x8 cell with 10 pw/per (circles, case “B”), and a
12x12x12 cell with 7 pw/per (triangles, case “C”). A and C show collapse of the
lamellar phase at τ ≈ −3.55; B shows this collapse at τ ≈ −3.6. For cases B and
C, the cooling disordered phases jump to highly defective lamellar morphologies
around τ ≈ −4.1. For case A this transition is observed at τ ≈ −4.05. The defec-
tive morphologies display very slow annealing kinetics; as a result their thermally
averaged Φ values are not shown, but as an example we show an instantaneous
snapshot of a defective lamellar morphology for case A (left, lower image) with its
accompanying Φ value. We do not observe that any of the defective lamellar mor-
phologies manage to recover a defect-free lamellar morphology on the timescale
of the simulation. Examples of instantaneous snapshots of the disordered phase
(right image) and lamellar phase (left, upper image) for case A are also shown.
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N̄ FRB FRH Observed

104 1.755 1.903 2.18± 0.03

106 0.378 0.410 0.44± 0.015

108 0.0815 0.0883 0.091± 0.003

Table 5.1: ∆χNODT predicted by the Fredrickson and Binder effective field
theory (FRB), predicted by the Fredrickson and Helfand analysis (FRH), and
approximated from simulations by the observed collapse of the lamellar phase
(Observed). The ± errors are the range over which collapse of the lamellar phase
is observed for different tested system configurations.

metastable, qualitatively similar to Fig. 6 of Ref. [205] (we attribute the improved

sharpness of our observed transition to our larger system size).

N̄ = 104 is generally considered the lower limit of approximate validity of

the FRB and FRH models, both of which are based on the one-loop Hartree

approximation. Although our search for critical nuclei is focused on N̄ = 104,

we also search for the ODT using a similar procedure at N̄ = 106 and N̄ = 108,

to see if relative agreement with the FRB and FRH predictions improves. For

N̄ approaching 1010, the FRH model should be rigorously accurate. At each N̄

value, we test several different system configurations of size ≥ 83 lamellar periods

and resolution ≥ 6 grid points per lamellar period, and for each configuration,

we perform a hysteresis sweep as in Figure 5.15. All tested configurations show

similar windows of metastable disorder, and collapse of the lamellar phase in a

small range of bare τ (or equivalently, χN) values.
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Figure 5.16: Observed ∆χNODT along with the predictions of FRB and FRH.
For large N̄ , the FRH result should become increasingly accurate. To quantify
deviation from the FRH result, we fit the observed data with a function of the form
10.495+41.0N̄−1/3 +aN̄ b, and find ∆χNODT ≈ 10.495+41.0N̄−1/3 +30.0N̄−0.503.
Since −.503 < −1/3, agreement with the FRH prediction does improve with
increasing N̄ .

Observed values of ∆χNODT ≡ χNODT−10.495 are tabulated in Table 5.1 and

plotted in Figure 5.16. It appears that the relative accuracy of the FRB model’s

predicted ODT improves with increasing N̄ , as expected.

5.4.3 Failure of the renormalized model to accurately cap-

ture critical nuclei

χNODT (or equivalently, τODT ) predicted by the FRB model only differs from

the observed value by roughly 20% at N̄ = 104. However, the FRB model only

predicts appreciably-sized critical nuclei for τ ≥≈ −3.2 (Figure 5.9). Given the

sharp dependence of predicted critical nucleus size on τ , it is unreasonable to ex-
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Figure 5.17: Map of where seeded nuclei tend to grow rather than be consumed
by disorder at N̄ = 104. Nuclei are seeded as ellipsoids of lamellar structure
within disorder. The y−axis of each plot indicates the size of seeded nuclei in
lamellar periods, measured along the long axis. Three different aspect ratios for
the seeded nuclei are tested: length/width = 4 (a), length/width = 3 (b), and
length/width = 2 (c). Red indicates that the seeded nucleus grew to consume the
simulation cell; green indicates that that the seeded nucleus reverted to disorder.
Nuclei seeded with lower aspect ratios, and hence more volume, tend to be more
robust. Note that the range of τ values is well outside the range of appreciably-
sized nuclei as predicted by the single-mode analysis and string calculations on
the renormalized model (Fig. 5.9). As an ad hoc comparison, the continuous red
curve is the single-mode analysis prediction for l rigidly shifted by the difference in
predicted and observed ODTs. For (a), the simulation cell dimension is 32×12×12
lamellar periods with resolution 224×84×84 grid points; for (b) and (c), the cell
dimension is 32× 16× 16 periods with resolution 224× 112× 112 grid points.
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pect the nucleus sizes predicted by the FRB model are accurate near the observed

ODT of τ ≈ −3.6. Note that the range of τ values plotted in Figures 5.9 and

5.15 do not even overlap!

To obtain a coarse estimate of critical nucleus sizes, we seed ellipsoidal nu-

clei of varying lengths with three different aspect ratios, operating within the

observed τ window of Figure 5.15 where disorder is predicted to be metastable.

Amplitudes are seeded according to the single-mode prediction (5.2). We run

Langevin trajectories on these nuclei to see if they grow or shrink. Results are

shown in Figure 5.17. We identify regions where nuclei tend to grow; however,

the results bear no relation to the predictions of the single-mode analysis, due

to the renormalized model’s misjudgment of the ODT. Additionally, fatter nuclei

with lower length/width aspect ratios exhibit a larger region of observed growth,

indicating that aspect ratios in the range of length/width ≈ 4 to 5 predicted by

the renormalized model may not be optimal and that the ideal aspect ratio may

actually be closer to the value of 2.37 predicted by Balsara [15]. As a final ad hoc

approximation, we also show the prediction of the single-mode analysis shifted to

the left by the difference ∆τ = −0.71 between the predicted (τ = −2.89) and

observed (τ ≈ −3.6) ODTs.

246



Chapter 5. Nucleation of lamellae from disorder in the Brazovskii model

5.4.4 Attempts to use the string method beyond mean-

field theory

The hyperplane sampling method (HSM) and finite temperature string method

(FTSM) described in Section 2.2.6 are both advertised to extract free energy

barriers from a fluctuating bare Hamiltonian. The HSM requires an existing con-

verged string; the FTSM generalizes this procedure, starting with an initial rough

guess sequence of images and iterating over multiple thermal average steps until

the string converges to a principle curve. Both require performing constrained

thermal averages in the hyperplanes normal to the string at each image. The

methods claim to be applicable even for high-dimensional systems, and have in

fact been demonstrated for such systems [61, 77]. Additionally, in [78] the con-

verged state of the FTSM is demonstrated to have normal hyperplanes that locally

approximate isocommittor surfaces in a high-dimensional energy landscape for

the case of isotropic, position-independent diffusion. Our Langevin dynamics on

the bare Brazovskii model is a high-dimensional system with isotropic, position-

independent diffusion, so I surmised it was a promising use case for both methods.

I even created my own custom version of PolyFTS with multi-GPU parallelism to

farm out the costly (but independent over images, and therefore trivially parallel)

thermal averages in different hyperplanes to multiple GPUs using MPI.
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My strategy was to perform sampling in the hyperplane normal to the string

at each image by initializing a field in that hyperplane and allowing it to fluctuate,

but at each timestep, subtracting off any component of the motion tangent to the

string. As guess strings used to define the initial normal hyperplanes and tangent

vectors, I tested converged strings from the renormalized model (shifted to lower

τ , with amplitude readjusted according the the single-mode approximation), and

simply sequences of concentric ellipsoids, as was used to initialize the defect-free

renormalized string calculations (Figure 5.5). Unfortunately, I was unable to

confine fluctuating images to normal hyperplanes with any reliability. Images

seeded in the confined hyperplanes tended to either order or disorder over the

course of attempted confined thermal averages, retaining no visible structure of

the corresponding image along the string. I cannot rule out that hyperplane

sampling is a viable strategy if the initial string is chosen with sufficient care, but

it appears to be challenging, and I recommend that other strategies be pursued

to extract rates and free energy barriers, as described in Section 6.1.
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In this thesis, I presented several applications of the zero-temperature string

method to novel barrier-crossing problems in polymer field theory, and also per-

formed an in-depth analysis of the dis→lam transition of the renormalized Bra-

zovskii model.

First, I developed an implementation of the string method compatible with

self-consistent field theory (SCFT), and wrote a version that leveraged the com-

putational horsepower of state-of-the-art massively parallel computing architec-

tures (NVIDIA graphics processing units). Using my code, collaborators in the

Fredrickson group and I were able to identify free energy barriers and transition

mechanisms for a wide range of (previously computationally infeasible) defect an-

nealing problems relevant to industrial directed self-assembly (DSA). Our results

provide concrete, practical guidance for experimentalists and our semiconductor
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industry partners in their efforts to stabilize defect-free self-assembled nanoscale

structures using copolymer DSA.

Second, I investigated nucleation of the lamellar phase from the disordered

phase of the fluctuating Landau-Brazovskii model at parameters connected to

those of an experimentally accessible diblock copolymer melt. I used a combi-

nation of single-mode analysis and string calculations applied to a renormalized

effective free energy functional, and Langevin simulations of the bare Landau-

Brazovskii model. While performing string calculations, I observed that the con-

ventionally energy-weighted string method as employed in previous literature was

computationally inefficient for large-cell nucleation problems, since many images

were wasted tracing out unphysical configurations once the nucleus grew to the

edges of the simulation cell. I developed a novel truncation-based energy weight-

ing (TBEW) string method that completely eliminated this inefficiency; using

TBEW, I performed a thorough search for a library of predicted and experi-

mentally observed anisotropic critical nuclei and critical nuclei containing exotic

defect structures. Stable minimum energy paths were not observed to exist for

any of the tested defect-containing nucleation pathways; however, I did find that

defect-free critical nuclei exhibited expected anisotropic ellipsoidal structure, in

good agreement with the results of the single-mode analysis. To evaluate the

predictions of the string method and single-mode analysis, I simulated the bare
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Landau-Brazovskii model with explicit fluctuations. I found that the renormalized

model made reasonable predictions for various important quantities, including the

disordered-phase structure factor and the dis→lam ODT. However, I showed that

the critical nucleus size depended rather sharply on proximity to the ODT, and

even minor errors in the predicted ODT led to large errors in predicted nucleus

size. I conclude that to avoid this issue, future studies of the dis→lam transition

of the Landau-Brazovskii model should work directly with the fluctuating bare

model rather than the renormalized model.

6.1 Suggestions for future work on dis→lam nu-

cleation

I attempted to extract free energy barriers along converged strings using the

hyperplane sampling technique described in Section 2.2.6, with the ultimate goal

of running a finite-temperature string method calculation, but found that inducing

the required hyperplane confinement was challenging in the full Cartesian space

of the field theory. On this basis I recommend that future studies investigate

the dis→lam transition using low- or 1-dimensional spaces of collective variables,

which are likely to be better behaved.
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Figure 6.1: A local order parameter capable of distinguishing lamella (of known
orientation) from disorder. Left panel: 3D field initialized with an embedded
prolate ellipsoid of lamellae and allowed to fluctuate for a short time (the image
is shown at reduced opacity for a better view of the embedded structure). Right
panel: Qxx of the order parameter Φ, subjected to a low-pass filter to damp out all
modes with wavelength less than 2 lamellar periods, then threshholded at a value
of 0.3. The “lamellar-like” region is clearly differentiated from the surrounding
disorder.

In recent studies of this transition [111, 205], two 1D global order parame-

ters based on the amplitude of the structure factor were shown to distinguish

lamellae from disorder. A free energy barrier along the order parameter of Meda-

puram et al. [111] was obtained using metadynamics. It is reasonable to expect

a similar metadynamics or umbrella sampling treatment of this order parame-

ter can extract a free energy barrier for the dis→lam transition of the fluctuating

Landau-Brazovskii model. However, since these order parameters are global, they

are unlikely to represent “good” reaction coordinates. They are unlikely to be

good predictors of the committor probability, and collapsing these order param-
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eters onto an effective 1D Smoluchowski equation as described in Section 2.1.3

is unlikely to yield an accurate rate. Therefore, an attempt to extract rates us-

ing these parameters should use a rate-finding method less sensitive to reaction

coordinate quality (e. g., forward flux sampling or milestoning).

In this thesis, I defined a global parameter Φ capable of distinguishing fluc-

tuating lamellae from disorder. I observed that Φ is effective at differentiating

large-scale fluctuating lamellae from disorder, but for small nuclei in large cells Φ

does not show sufficient contrast due to its global nature. A better order param-

eter would be a local parameter capable of differentiating regions of lamellae; the

reaction coordinate could be defined as the volume of the largest region of lamel-

lar order present in the system. Such a reaction coordinate would more likely be

“good” in the sense of Section 2.1.3. Figure 6.1 demonstrates that a parameter

constructed from the Qxx component of Φ effectively identifies regions of lamellar

order with known orientation. In principle, this could be used to umbrella sam-

ple large seeded nuclei whose bulk rotation will be relatively slow, and for which

the free energy contribution stemming from bulk rotation is minimal. Ideally,

one would like to construct an anisotropic order parameter that can distinguish

lamellae of arbitrary orientation; such an order parameter could be used to um-

brella sample spontaneously forming nuclei whose orientation will not be known

253



Chapter 6. Conclusions and outlook

a priori. It may be possible to do so using some clever combination of Qxx and

other components of Φ. This merits further investigation.

It should be emphasized that although the dis→lam transition has been stud-

ied for 25+ years, extracting free energy barriers from fluctuating models for this

transition is a very new and active area of research. Medapuram et al.’s result,

which to my knowledge is the first such successful calculation, was published this

year. The work presented in this thesis will provide valuable guidance to future

researchers.
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[45] Becker, R.; Döring, W. Ann. Phys. 1935, 416, 719–752.

[46] Agarwal, V.; Peters, B. Adv. Chem. Phys. 2014, 155, 97–159.

[47] Henkelman, G.; Johannesson, G.; Jonsson, H. In Progress on Theoretical
Chemistry and Physics ; Schwartz, S. D., Ed.; Kluwer Academic: Dordrecht,
Netherlands, 2000.

[48] Berneche, S.; Roux, B. Nature 2001, 414, 73–77.

[49] H., W. Umbrella Sampling. 2006; http://physics.clarku.edu/~hwang/

research/umbrella/umbrella_method/umbrella_method.html.

[50] Barducci, A.; Bonomi, M.; Parrinello, M. Wiley Interdisciplinary Reviews:
Comp. Mol. Sci. 2011, 1, 826–843.

[51] Barducci, A.; Bussi, G.; Parrinello, M. Phys. Rev. Lett. 2008, 100, 020603.

[52] Laio, A.; Parrinello, M. PNAS 2002, 99, 12562–12566.

[53] Dellago, C.; Bolhuis, P. G. Adv. Polym. Sci. 2008, 167–233.

[54] Peters, B. Mol. Sim. 2010, 36, 1265–1281.

257

http://physics.clarku.edu/~hwang/research/umbrella/umbrella_method/umbrella_method.html
http://physics.clarku.edu/~hwang/research/umbrella/umbrella_method/umbrella_method.html


BIBLIOGRAPHY

[55] van Erp, T. S.; Bolhuis, P. G. J. Comp. Phys. 2005, 205, 157–181.

[56] Allen, R. J.; Warren, P. B.; ten Wolde, P. R. Phys. Rev. Lett. 2005, 94,
018104.

[57] Allen, R. J.; Frenkel, D.; ten Wolde, P. R. J. Chem. Phys. 2006, 124,
194111.

[58] Faradjian, A. K.; Elber, R. J. Chem. Phys. 2004, 120, 10880.

[59] E, W.; Ren, W.; Vanden-Eijnden, E. Phys. Rev. B 2002, 66, 052301.

[60] E, W.; Ren, W.; Vanden-Eijnden, E. J. Chem. Phys. 2007, 126, 164103.

[61] E, W.; Ren, W.; Vanden-Eijnden, E. J. Phys. Chem. B 2005, 109, 6688–
6693.

[62] Freidlin, M. I.; Wentzell, A. D. Random Perturbations of Dynamical Sys-
tems ; Springer-Verlag, 1984.

[63] Peters, B.; Heyden, A.; Bell, A. T.; Chakraborty, A. J. Chem. Phys. 2004,
120, 7877–7886.

[64] Quapp, W. J. Chem. Phys. 2005, 122, 174106.

[65] Goodrow, A.; Bell, A. T.; Head-Gordon, M. J. Chem. Phys. 2008, 129,
174109.

[66] Goodrow, A.; Bell, A. T.; Head-Gordon, M. J. Chem. Phys. 2009, 130,
244108.

[67] Goodrow, A.; Bell, A. T.; Head-Gordon, M. Chem. Phys. Letters 2010,
484, 392–398.

[68] Zimmerman, P. M. J. Chem. Phys. 2013, 138, 184102.

[69] Zimmerman, P. M. J. Chem. Th. Comp. 2013, 9, 3043–3050.

[70] Zimmerman, P. M. J. Comp. Chem. 2015, 36, 601–611.

[71] Ren, W.; Vanden-Eijnden, E. J. Chem. Phys. 2013, 138, 134105.

[72] Behn, A.; Zimmerman, P. M.; Bell, A. T.; Head-Gordon, M. J. Chem. Phys.
2011, 135, 224108.

258



BIBLIOGRAPHY

[73] Chaffey-Millar, H.; Nikodem, A.; Matveev, A. V.; Küger, S.; Rösch, N. J.
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