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Abstract

Improving Location Accuracy And Network Capacity
In Mobile Networks

by

Zengbin Zhang

Todays mobile computing must support a wide variety of applications such as

location-based services, navigation, HD media streaming and augmented reality.

Providing such services requires large network bandwidth and precise localization

mechanisms, which face significant challenges. First, new (real-time) localization

mechanisms are needed to locate neighboring devices/objects with high accuracy

under tight environment constraints, e.g. without infrastructure support. Second,

mobile networks need to deliver orders of magnitude more bandwidth to support

the exponentially increasing traffic demand, and adapt resource usage to user

mobility.

In this dissertation, we build effective and practical solutions to address these

challenges. Our first research area is to develop new localization mechanisms that

utilize the rich set of sensors on smartphones to implement accurate localization

systems. We propose two designs. The first system tracks distance to nearby

devices with centimeter accuracy by transmitting acoustic signals between the

devices. We design robust and efficient signal processing algorithms that measure

distances accurately on the fly, thus enabling real-time user motion tracking. Our

second system locates a transmitting device in real-time using commodity smart-

phones. Driving by the insight that rotating a wireless receiver (smartphone)

ix



around a users body can effectively emulate the sensitivity and functionality of a

directional antenna, we design a rotation-based measurement algorithm that can

accurately predict the direction of the target transmitter and locate the transmit-

ter with a few measurements.

Our second research area is to develop next generation mobile networks to sig-

nificantly boost network capacity. We propose a drastically new outdoor picocell

design that leverages millimeter wave 60GHz transmissions to provide multi-Gbps

bandwidth for mobile users. Using extensive measurements on off-the-shelf 60GHz

radios, we explore the feasibility of 60GHz picocells by characterizing range, atten-

uation due to reflections, sensitivity to movement and blockage, and interference

in typical urban environments. Our results dispel some common myths on 60GHz,

and show that 60GHz outdoor picocells are indeed a feasible approach for deliv-

ering orders of magnitude increase in network capacity.

Finally, we seek to capture and understand user mobility patterns which are

essential in mobile network design and deployment. While traditional methods

of collecting human mobility traces are expensive and not scalable, we explore

a new direction that extracts large-scale mobility traces through widely avail-

able geosocial datasets, e.g. Foursquare “check-in” datasets. By comparing raw

GPS traces against Foursquare checkins, we analyze the value of using geosocial

datasets as representative traces of human mobility. We then develop techniques

to both “sanitize” and “repopulate” geosocial traces, thus producing detailed mo-

bility traces more indicative of actual human movement and suitable for mobile

network design.
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Chapter 1

Introduction

We are witnessing an explosive growth of mobile networks. With the pene-

tration of mobile devices, such as smartphones, tablets, smart glasses/watches,

smart cars and Internet of things, innovations in mobile applications have taken

place to deliver a wide range of services to users on the go.

• Location based services. Location based services take a user’s current loca-

tion as input and provide her with information about services or objects in

vicinity, e.g. restaurants or products. These applications have been growing

rapidly in recent years. For instance, Yelp, one of the most popular loca-

tion based services for browsing local businesses, now has 80 million active

business accounts and serves 138 million queries every month [7]. How-

ever, limited by the accuracy of localization techniques, existing services

mainly target outdoor scenarios driven by GPS-based localization mecha-

nisms. This triggers many research projects on indoor localization [28, 26,

96, 87, 151, 40, 43, 65], e.g. to allow a store to recommend products in

proximity to a customer based on her physical location.
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• Interactive or collaborative applications. Various interactive or collaborative

applications are expected to appear in the near future. The collaborator can

be among humans [33, 63, 121, 139, 142], e.g. in a multi-player game mobile

devices can sense each other’s location or motion, and feed the information

into the game. The interaction can also be between a human and a device.

For instance, a user can use motions to command a device [113, 108, 72, 44];

a car can locate nearby pedestrians by capturing the signal transmitted from

their mobile devices [49]. Similarly, one can find a malfunctioned wireless

device or locating a lost item (with a wireless transmitter attached to it).

• Augmented reality. Augmented reality applications [27, 146, 18, 11] are

expected to recognize the surrounding objects based on the information

captured by sensors, and then link digital information to them. These ap-

plications rely on sensors to accurately capture the position of these objects,

and leverage the information to assist the user, e.g. to avoid collisions in

a navigation system for the blind. They also need high speed mobile con-

nections to transmit the captured data to the cloud, e.g. to enable object

recognition, and download the related digital information from the cloud.

• Real-time video communication & HD media streaming. These applications

are the biggest consumer of mobile traffic. Recent market research predicts

that in 2018, 80% of total mobile data traffic will be produced by video/audio

applications [9], thanks to the popularity of HD screens on mobile devices.

The penetration of smart glasses or smart car systems will further increase

the traffic demand in the future.
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To support these services, technical advancements are required in many areas.

In this dissertation, we focus on two key elements.

Highly Accurate Localization Mechanisms. Most of these services require

highly accurate localization systems to locate the device itself as well as other de-

vices or objects. For instance, in the multi-player game scenario, players normally

operate in a room-size space (e.g. several meters), thus the location accuracy

should be in sub-meter level or even centimeter level to accurately capture user

motion. Similarly, to smart car systems, the localization accuracy must be high

enough to effectively avoid accidents. In addition to accuracy, certain applica-

tions have additional constraints. For example, a collision avoidance system for

the blind must work anywhere they go, thus the localization mechanism can not

assume the existence of external infrastructures. In some applications, the tar-

geted device can only transmit wireless signal, but is unable to actively participate

in the localization process, e.g. a lost item with a wireless tag.

These requirements lead to significant challenges to existing localization mech-

anisms, i.e. GPS-, Cellular- or WiFi-based systems. First, in these systems the

location of a device is measured based on either signal strength or propagation

time of wireless signal, which can not reach high accuracy due to the physical

nature. Therefore, even the state-of-the-art solution can only reach meters of

median error, and tens of meters of maximum error [96, 87]. Second, all these

methods require localization infrastructures, like multiple basestations or a group

of satellites. For instance, GPS devices are required to be visible to five or more

satellites in order to provide an accuracy of 50 meters median error [88].
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High-capacity Mobile Networks. Almost all these services require high-

bandwidth connections between a device and the cloud, or among devices. Given

the exponential growth of mobile devices, our mobile networks need to provide

orders of magnitude more bandwidth in the near future. Industry research has

predicted that aggregate mobile bandwidth requirements will increase by 1000-fold

by 2020 [1].

Our existing networks can not meet this demand as well. First, LTE, WiFi or

the new TV White Space only possess hundreds of MHz spectrum. The spectral

efficiency is slowly approaching the Shannon limit [46], while acquiring more spec-

trum facing regulatory hurdles and high monetary costs [2]. Second, the benefit

of shrinking cell size is fundamentally limited by interference constraints for the

carrier frequencies employed in these systems [115]. Third, the physical size of

antennas in these low frequency bands (1 to 5GHz) constrains the maximum num-

ber of antennas in mobile devices, thus the benefit provided by MIMO technology

is also limited [115]. Therefore, large capacity gains in these networks cannot be

seen in the near future.

Finally, user mobility can cause high dynamics in mobile networks. The traffic

demand can be significantly different for different locations, or even the same

location at different time of a day [14]. To deliver a smooth connectivity, mobile

networks need to adapt resource allocation in real time according to user mobility

patterns. However, due to privacy and security concerns, existing studies can only

hire a limited number of users [157, 156] or rely on coarse-grained registration

data from cellular or WiFi networks [144, 32, 152], while large scale, detailed user

mobility traces are very hard to acquire.
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1.1 Overview

To address the above challenges, we make significant contributions in this dis-

sertation by proposing practical systems and tools in both localization mechanisms

and mobile network deployment.

The thesis statement of this dissertation is as follows: To support a wide

variety of mobile applications at scale, we need to develop highly ac-

curate device localization systems, design new mobile networks that

achieve orders of magnitude more capacity, and adapt network usage

to user mobility. This dissertation addresses these challenges by devel-

oping novel and practical localization mechanisms leveraging the rich

set of smartphone sensors, by initiating a drastically new cellular design

using millimeter wave technologies, and by engineering a data analy-

sis tool that extracts large-scale human mobility traces from geosocial

datasets.

1.1.1 Precise Device Localization

Our first goal is to build localization systems that not only can locate a target

device in high accuracy (centimeter-level), but also can work in situations when

the target devices don’t cooperate in the localization process. We also remove the

dependency on localization infrastructures in order to make the proposed systems

operate ubiquitously. In particular, we propose the following two systems.

Accurate Mobile Device Localization. This localization system aims to lo-

cate another mobile device in centimeter level accuracy, as well as to capture user

motion in real time, i.e. with measurement delay less than 100ms. To reach such
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performance, we use acoustic signals to measure the distance, and design efficient

sound processing algorithms to boost the measurement speed. We also design

specialized algorithms to handle issues caused by ambient noise, multipath propa-

gation and Doppler effect. Our implementation runs on commodity smartphones

and does not require any external infrastructure. Moreover, distance measurement

accuracy is comparable to that of Kinect, a fixed-infrastructure motion capture

system. This system can enable lots of innovative applications like interactive

games, collaborative applications and augmented reality.

Accurate Wireless Transmitter Localization. In many applications, the

target devices don’t cooperate in the localization process, e.g. a misbehaving

wireless transmitter. Our second localization system targets to locate such a

wireless device using smartphones. This work makes an intuitive observation that

the blocking effect of human bodies could significantly degrade the signal strength.

Leveraging this effect, we accurately identify the direction of the wireless device by

a rotation-based signal strength measurement and a direction analysis algorithm.

To make the system fast and energy efficient, we also add a driver level design to

boost the measurement speed by 10 times while reducing energy consumption by

10 times. The final system can locate the target device on the fly with a small

number of measurements even in rich multipath environments.

1.1.2 Boosting Network Capacity

To supply orders-of-magnitude more network bandwidth, we explore a dras-

tically different alternative in the form of 60GHz millimeter wave picocells with

highly directional links. We believe that 60GHz links truly reap the spatial reuse
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benefits of small cells while providing high network capacity with 7GHz-wide spec-

trum band.

Using extensive measurements on off-the-shelf 60GHz radios and system-level

simulations, we explore the feasibility of 60GHz picocells by characterizing range,

attenuation due to reflections, sensitivity to movement and blockage, and inter-

ference in typical urban environments. Our results dispel some common myths,

and show that there are no fundamental physical barriers to high-capacity 60GHz

outdoor picocells. We also identify open challenges and associated research op-

portunities to release the full potential of the design.

1.1.3 Capturing User Mobility at Scale

Finally, we answer whether we can acquire representative user mobility traces

from existing location-based services, such as Foursquare, to further improve net-

work performance. Our approach is to crawl the ground-truth GPS locations of a

group of users along with their “check-in” traces exposed in the social networks.

By comparing the traces in parallel, we seek to understand the discrepancies be-

tween them. The results are astonishing: we found large numbers of users lying

about their own locations, while lots of context-important locations (e.g. Home,

Work) were not checked in. A deeper analysis reveals that the faked checkins are

due to the rewarding system of this kind of social networks, which were designed to

improve user engagement, while the missing checkins are mainly due to personal

preferences. Based on these observations, we use machine learning algorithms to

filter the faked checkins and design interpolation methods to recover the missed

ones.
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1.2 Contributions

Our contributions in this dissertation are three-fold. We identify key require-

ments of mobile networks, and propose novel algorithm designs and data analytic

tools to address them. We also verify our designs by solid system implementations

while considering practical issues in real world deployments.

Identifying Fundamental Problems. We identify several fundamental prob-

lems in mobile networks. In Chapter 2 and 3, our proposed localization systems

break some key limitations of previous solutions on localization accuracy, infras-

tructure support and device cooperation, thus could enable a wide variety of new

applications. In Chapter 4, we are the first to propose a outdoor picocell design

using 60GHz links, and identify the potentials and challenges of the system using

real-world measurements. In Chapter 5, we reveal the limitations of mining mas-

sive location data from location-based social networks, and propose sanitization

methods to address the limitations.

Novel Algorithm Designs. We leverage key observations about the system

or the data, and propose effective designs to solve the problems. In Chapter 2,

our observation on acoustic signal processing help us improve the computation

efficiency by 10-fold, enabling the system to capture user motion in real time. In

Chapter 3, we build an accurate localization algorithm based on the observation

of the blocking effect caused by human body. In Chapter 4, we utilize our ob-

servations on some distinctive temporal and spatial features of faked Foursquare

checkins and apply machine learning algorithms to filter them out.

Solid Implementation. We also validate our designs with real implemen-

tations. In Chapter 2 and 3, along with the algorithm design, we propose com-
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ponents to improve system robustness and energy efficiency. Both localization

systems have been implemented on one or more smartphone platforms and tested

by real users. In Chapter 4, we evaluate our picocell design by two types of off-the-

shelf 60GHz radios, and perform the experiments under real world environments.

In Chapter 5, we verify the effectiveness of our sanitization tools by applying it

on a secondary dataset obtained from another location-based social network.

1.3 Thesis Organization

The rest of the dissertation is organized as follows.

Chapter 2 and Chapter 3 present our localization system designs. In particular,

Chapter 2 describes the highly accurate device localization method that can reach

centimeter level accuracy in real time. Chapter 3 presents our device localization

system which does not require the target device to cooperate.

In Chapter 4, we summarize our work on the next generation mobile network

design using 60GHz technology. We conduct a series of measurements to validate

our design and point out future research directions. In Chapter 5, we describe

our work of extracting large-scale human mobility data from location based social

networks.

We finally summarize and talk about future directions in Chapter 6.
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Chapter 2

Accurate Mobile Device
Localization

2.1 Introduction

Mobile gaming constitutes a large and fast growing industry. Estimates on

the total worldwide market size differ, but typical numbers are in the order of $10

billion for 2011 [16]. Furthermore, continued growth in the underlying forces –

smartphone and tablet sales, mobile Internet subscribers and app downloads – all

point to a bright future for the industry.

The landscape of today’s mobile games is rich and varied. However, one com-

monality among existing multiplayer games is that they invariably require the

players to be physically passive, look at the screen, and conduct game action

via interaction with the screen. The success of Nintendo Wii or Xbox Kinect in

console gaming on the other hand, has demonstrated a demand for much more

interactive games in which gameplay directly involves the user’s physical activity.

In this chapter, we report on the development of a novel class of Phone-to-Phone
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Mobile Motion Games (MMG) that achieve a similar level of physical interactivity.

These games are characterized by the fact that the position, location, orientation,

or movement of the phone is an integral part of game play. In some cases, the

phone may even serve as the equivalent of a Wii-stick, and players may not even

need to look at the screen while playing. However, in contrast to Wii or Kinect, we

do not rely on any external infrastructure such as a microphone array or cameras;

MMG games are played purely phone-to-phone.

Consider for example the following SwordFight game. The rules are simple:

Two players wield their phones, and try to attack each other. A player can attack

the opponent by tapping the screen. If player A attacks, and her phone is within

20cm of the opponent’s phone, she wins. However, attacking costs energy, and

an attack can only be sustained for 4 seconds before the energy has completely

depleted. Energy can be regained over time when the player remains in non-attack

mode. Thus, one strategy to win is for a player to survive the opponent’s attack

by quickly moving his phone in such a way that it maintains sufficient distance

from the opponent’s phone; and then counter-attack while the opponent’s energy

is depleted.

The key enabling technology for a game like SwordFight is the ability to con-

duct very fast, accurate, and robust distance measurements between the phones, so

that at any moment during play, both phones have precise distance information.

Studies have shown that in order to sustain high-speed action games a lag of more

than 100ms decreases user satisfaction and degrades player performance, and a

lag of 200ms is unacceptable [34]. Therefore, we need to be able to conduct phone-

to-phone distance measurements at a rate of at least 10Hz. The measurements

also have to be accurate – with no more than a few centimeters of error – and
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robust in the face of mobility, noise, and networking issues. In the absence of any

external infrastructure, the combination of these three requirements constitutes

a significant technical barrier on commodity phones, and no existing solution is

able to meet them simultaneously.

It is well-known that acoustic sound can be used for distance measurements.

Works such as [107, 114] have demonstrated that under ideal circumstances (e.g.,

no mobility) and with sufficient computation time, accurate ranging can be achieved

even on commodity phones. The problem is that in an motion game scenario, the

circumstances are far from ideal and the requirements substantially more chal-

lenging. First, existing ranging protocols are based on the assumption that phone

positions remain static during the process of taking a measurement. For a game

like SwordFight, this is not a valid assumption as human hand speed can be

as high as 2m/s. Furthermore, with two phones moving towards or apart from

each other at high speed, aspects such as the Doppler effect need to be consid-

ered and dealt with. Secondly, acoustic ranging requires the use of expensive

cross-correlation algorithms in order to determine the precise time-of-arrival of

the sound signal. Cross-correlation algorithms are computationally intensive and

cannot be run without modification on phones at sufficient speed to enable a

SwordFight game. Third, not only computation, but also the communication

(acoustic tone exchanges, protocol handshakes, etc) incurs a fundamental and

significant delay.

In this work, we address these challenges in a systematic manner. Our first

contribution is to enable real time distance measurement by replacing the standard

computationally intensive cross-correlation algorithm for finding sound peaks with

a more sophisticated and efficient multi-stage algorithm. Our algorithm employs

12



Chapter 2. Accurate Mobile Device Localization

autocorrelation to fundamentally reduce computational complexity while preserv-

ing accuracy by targeting cross-correlation to a very narrow search window. Our

second contribution is to employ a new pipelined streaming execution strategy

that overlaps protocol communication and algorithm computation. While over-

lapping communication and computation is a well-known technique, in our case,

this overlapping comes with a twist – we overlap the sound waves of the ranging

protocol in addition to the typical networking data packets. It turns out that

both pipelining and streaming are critical in order to realize real time measure-

ments. Our third contribution is to understand and tackle the practical sources of

measurement error during motion gaming for increased robustness. The first set

of robustness optimizations addresses mobility and the effects of Doppler shift on

the underlying ranging protocol. The second set of optimizations addresses envi-

ronmental robustness from effects such as ambient noise, multipath and acoustic

tone loss.

Combining these techniques, we develop FAR – a Fast, Accurate and Robust

localization system that enables two potentially fast moving phones to keep ac-

curate distance estimates to each other. Distance measurements can be taken at

a rate of 12Hz with 2cm median error while withstanding up to 0dB noise (e.g.,

players or spectators talking while playing), multipath (e.g. as encountered in

small rooms) and the Doppler effect. To practically demonstrate the system’s

ability to enable novel gaming concepts, we develop two prototype MMG games:

SwordFight and ChaseCat.1 In both isolated-player and in-situ gameplay exper-

iments, we find that FAR’s distance measurements are comparable to Kinect, a

1See http://research.microsoft.com/mobile-motion-gaming for a video illus-
trating the gameplay of SwordFight.
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dedicated fixed-infrastructure motion capture system. We have publicly tested

our games at various locations with real players; and our experience shows that

the games are fun and intuitive to play. We anticipate that with the high-speed

ranging API we provide in this system, many more MMG games can be developed.

2.2 Assumptions & Requirements

Enabling a game like SwordFight requires a distance ranging subroutine that

allows two phones to keep accurate and up-to-date distance information between

each other even in the face of noise and high mobility. This poses a unique set of

challenges:

• Phone-to-Phone: MMG games should be playable everywhere at any time.

We do not rely on any external infrastructure beyond the two phones.

• Commodity phones: We want MMG games to run on commodity hardware

and OSs. This implies handling issues of on-phone sensor sampling rates,

computation capacity, or audio playing and recording capabilities, whether

they arise from the hardware, (typically closed source) audio driver, or OS.

• Measurement Frequency: To create the sensation of continuous real-time

distance information, the ranging infrastructure must sample user movement

as frequently as possible, at a rate of 10Hz or more [34].

• High Accuracy: Gameplay relies on the high accuracy of distance measure-

ments even at a high degree of phone mobility. Specifically, we aim for a target

accuracy of within 2-3cm up to a normal range of human social interaction of

up to approximately 3m with line of sight.
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• User Mobility: In a game like SwordFight, players should be able to play

without artificial restrictions on their body or hand movement. The underlying

ranging infrastructure must be capable of supporting the speed of natural

human hand movement (up to 2m/s) [71].

• Practical in Most Environments: As it is natural for players and spec-

tators to talk during a game, and because a game may be played indoors or

close to walls, the underlying distance measurement framework must be robust

against the impact of high ambient noise levels, multi-path effects and tone

loss.

2.3 Background

In this section, we review the well-known time-of-flight acoustic ranging princi-

ple that we share in common with prior phone-based acoustic localization work [107,

114], and we outline why these existing approaches are unsuited for enabling Mo-

bile Motion Gaming.

2.3.1 Acoustic Distance Measurement

The essential idea is to have two phones A and B play and record known

audio tones one after another. These tones are often based on some form of

pseudorandom sequences. Each phone records its own emitted tone as well as the

tone originating from the remote phone. Suppose A emits a tone first and records

this tone’s arrival at its microphone at time tA1. B records the arrival of this tone

at time tB1. Next, B emits a tone, which is recorded at the microphones of B and
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A at times tB2 and tA2, respectively. The distance d between the phones can now

be calculated as

d =
1

2
· c · [(tA2 − tA1)− (tB2 − tB1)], (2.1)

where c is the speed of sound.

Existing schemes [107, 114] follow a traditional execution strategy of Play/Record

then Compute and Exchange (see Figure 2.2(a)). The figure shows that the two

phones start the Recording step at the same time, and then send out the tones one

after another (Tone Playing step). Guard periods are inserted prior to and follow-

ing each tone to guarantee that the tones do not overlap, and that the Recording

is complete.

Upon completion of the recording, the next step is for each phone to determine

the exact local time when each tone was received. This is done by applying a cross-

correlation algorithm to each of its recorded sound samples (Computation step).

Cross-correlation is a standard signal processing technique that searches for the

best match between a recorded sample and a reference signal (the best match is

indicated by a sharp peak in the cross-correlation). It has been widely used in

various ranging systems, e.g. [53, 58, 79, 107, 114, 125, 149] and is computed as

CC(t0)=

∑
t∈W [X(t)−X(t)][T (t− t0)−T (t− t0)]√∑
t∈W [X(t)−X(t)]2

∑0
t=1−L[T (t)−T (t)]2

where X(t) is the recorded sound sequence, T (t), t ∈ [−L + 1, 0] is the reference

signal of length L, X(t) =
∑

t∈W X(t)

L
, T (t) =

∑
0

t=1−L T (t)

L
, W = [t0 − L + 1, t0].

For each t0, the computation complexity is O(|W |)=O(L), and thus O(B ∗ L) if

we have B recorded sound samples. Finally, once the cross-correlation peaks are

found at each phone, the corresponding tone arrival time-stamps are exchanged
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between the two phones e.g., via 3G or WiFi (Measurement Exchange step), and

the distance can be computed.

2.3.2 Limitations

As pertains to MMG, existing phone-to-phone acoustic localization schemes

all have the same drawbacks: they are too slow to serve the needs of MMG games

due to the large measurement delay, and they are not designed for highly-mobile

systems.

• The traditional execution strategy of Play/Record then Compute and Exchange

is unsuited for high frequency measurements, as it takes too much time.

• Cross-correlation is well-known to be computationally expensive, as it grows

super-linearly in the size of the reference signal L and the recorded sound

sequence T . For example, although [114] applied an energy detection module

to reduce the search space in the sound sequence T , the reported time for one

measurement is still 800ms.

• Existing protocols are not designed for highly-mobile systems. They assume

that during the course of a measurement, the phones remain stationary and if

they are not, results will be erroneous.

Finally, in addition to these more fundamental reasons, there are also purely

practical system design issues that prevent us from building MMG games on top

of existing ranging infrastructure:

• Commodity phones do not offer tight timing guarantees on the operation of

the playing and recording controls, and thus systematically incur large and
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Figure 2.1: FAR Architecture

unpredictable delays. Specifically, as we show in §2.8, there is a lag of high

magnitude and high variance between the time a playback is initiated and the

actual time the tone is played. For example, the lag is 60-90ms for both Nexus

One phone running Android 2.3.4 and Samsung Focus phone running Windows

Phone 7.5. This caps the frequency at which phones can emit tones. Based

on our empirical observations, this lag occurs so commonly among commodity

smartphones that we cannot simply discount it as a software- or device-specific

phenomenon.

2.4 FAR System Design

In this section, we introduce FAR, our fast, accurate, and robust distance mea-

surement system that serves as an API to phone-to-phone MMG games like Sword-

Fight. Meeting the requirements in §2.2 in the face of the limitations in §2.3.2 is
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not easy and drives us to a novel system design as well as numerous optimizations

at both the algorithm and systems level.

The key goal of the FAR system is to systematically improve upon existing

phone-to-phone ranging schemes in two directions – i) by making them faster

and reducing delays (See §2.5); and ii) by making them more robust in the face

of mobility (See §2.6) – while at the same time keeping the required degree of

accuracy.

Figure 3.6 illustrates the FAR architecture that achieves these goals. Upon

initiation, each of the major stages Playing, Recording, Computation and Ex-

change happen continuously. §2.5 discusses the dynamic arrangement of these

stages. Computation contains the main algorithmic contributions of our work. It

is sequenced as follows.

1. An ambient noise filter mitigates environmental noise such as from shouting,

talking and crowd noise common during gameplay.

2. One or more lightweight autocorrelators work in tandem to detect the pres-

ence of tone signatures.

3. Smoothing reduces the impact of anomalous local minima which are the

result of sound distortion played and captured by commodity hardware.

4. Multipath readings (e.g. reflection from nearby objects) are filtered out to

identify the actual tone received. If no tones are detected, expensive cross-

correlation is not engaged.

5. The cross-correlator identifies the tone reception time stamp for accurate

timing information.
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Figure 2.2: Execution Strategies

6. The phones exchange their measured time stamps via WiFi. Failure to

receive data here (due to signal jamming or tone misdetection in the auto-

correlation step) over prolonged durations results in the loss detector auto-

matically signaling a protocol reset.

7. The exchanged data is used in distance calculation. The distance calculation

also informs the Doppler predictor, which adjusts the number of autocor-

relators to use in the next round. This enhances measurement accuracy at

high mobility.

8. A final low pass filter smooths the calculation before emitting the distance

value to the game.

2.5 Fast Distance Measurements

In this section, we present the set of techniques that allows FAR to conduct

distance measurements at high frequency and with low lag. To see how our tech-
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niques impact lag and frequency, it is useful to again consider the traditional

execution strategy as illustrated in Figure 2.2(a). In the traditional execution

strategy, the lag of each individual measurement is comprised of the following

components:

• Tone Length: Time spent on sending out each tone. Since one measurement

requires that both phones send out tones, the measurement lag includes two

tone lengths.

• Audio Playing Lag: Delay between the time of calling the Play() API and

the time when the tone is actually sent out from the speaker. This delay is

observed across platforms on both Android and Windows Phone.

• Sound Propagation Delay: Time it takes for the sound to reach the other

phone over the air.

• Buffering Delay: Time from when the tone has been fully recorded until

when the audio driver passes the recorded buffer to the application layer. The

reason for the delay is that the audio driver delivers a buffer only when the

buffer is full, regardless of whether the tone has arrived.

• Tone Detection Computation Time: Time required to compute a recorded

buffer and determine the exact time-stamp when the tone arrived.

• Measurement Exchange & Distance Calculation: Time it takes for the

two phones to exchange their time-stamps, and compute the final distance

measurement result using Equation (2.1).

If we want to achieve measurement frequency above the 10Hz required for

MMG games, we must address these delays across the board. FAR accomplishes

this through an efficient system architecture and set of core acoustic signal process-

21



Chapter 2. Accurate Mobile Device Localization

✁✂�

✄
☎
✆✝
✞
✝
✟
✟
✠
✡☛
✆☞
✝
✌

✍✎✏✑✏✒✓✔ ✎✕✖✗✎✘✕✘ ✙✚✎✕✓✛

✜✕✔✓✢✕✘ ✙✚✎✕✓✛

✣✤✥✤✦✧✤★
✩✦✧✧✤✪✫

✬✭✪✮✧
✩✦✧✧✤✪✫

✣✤✥✤✦✧✤★
✩✦✧✧✤✪✫

✬✭✪✮✧
✩✦✧✧✤✪✫

✯✰✱✭✫✲
✳✰✪✪✤✴✦✧✭✰✫
✵✭✫★✰✶

✚✏✛✕

✳✰✭✫✷✭★✤★ ✩✦✧✧✤✪✫✮
✸✤✫✤✪✦✧✤ ✹✭✲✺ ✩✤✦✻

Figure 2.3: Autocorrelation-based Tone Detection. When sliding the correlation
window, at a certain time, the repeated pattern in the original stream will coincide
with the first pattern of the delayed stream, which generates a high correlation
peak.

ing algorithms. §2.5.1 discusses how we substantially reduce the tone-detection

computation time by a very efficient algorithm. §2.5.2 introduces pipelining to

further improve measurement frequency, and streaming to circumvent widespread

system lags. Lastly, §2.5.3 summarizes how we reduce other components of delay.

2.5.1 Fast Tone Detection Algorithm

As discussed in §2.2, the problem of relying upon cross-correlation for tone de-

tection is that its computation overhead is high. To find the start time of a tone

of length L in a buffer of size B, a total of O(B ∗L) multiplications are required.

Our key observation is that instead of running the cross-correlation directly, we

can first use a computationally much more efficient autocorrelation primitive. Au-

tocorrelation’s strength is that it is much more efficient than cross-correlation at

finding repeating patterns in data sequences. However, autocorrelation does not

give us an exact estimate of the tone’s location because of its much flatter peak

style. Therefore, after applying autocorrelation, we employ (as a second and third
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Figure 2.4: Fast Tone Detection Algorithm. (a) Recording of received tone
with repeating patterns. (b) While cross-correlation peaks are sharp, the auto-
correlation peak is flat and has an offset to the pattern’s actual location. (c)
Cross-correlation is used in a small window around the autocorrelation peak to
find the precise location of the pattern.

step) a simple smoothing algorithm and then a small-scale cross-correlation in a

narrow search window centered around the smoothed autocorrelation peak. We

now discuss these steps in detail.

Step 1: Autocorrelation-based Tone Detection. The basic methodology of

autocorrelation we use is shown in Figure 2.3. Autocorrelation can only detect

correlation of a signal to itself. Therefore, we let each phone send out a tone
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consisting of a pseudorandom sequence followed immediately by an exact copy of

this sequence. To detect this tone, the receiver phone records the incoming stream

X(t), and then generates a second stream Y (t) which is an identical copy of X(t),

except that it is delayed by half the tone length L, i.e, Y (t) = X(t − L/2). The

receiver now correlates X(t) and Y (t) (i.e., the incoming steam is correlated with

a copied, delayed version of itself) in a moving correlation window of length L/2.

This is done by incrementally computing for each time step t0 the function

R(L/2, t0) =

∑
t∈W [X(t)−X(t)][Y (t)− Y (t)]√∑

t∈W [X(t)−X(t)]2
∑

t∈W [Y (t)− Y (t)]2

where X(t) =
∑

t∈W X(t)

L/2
, Y (t) =

∑
t∈W Y (t)

L/2
, and W = [t0 − L/2 + 1, t0]. Higher

autocorrelation values correspond to closer correlations of X(t) and Y (t) at t0.

The idea is that because phones send two identical sequences in each tone, at a

certain time slot, one of the repeated patterns in X(t) will match a first pattern

in the delayed stream Y (t), thus generating a large autocorrelation peak as shown

in Figure 2.3.

The benefit of the above method is that we can compute R(L/2, t0) in O(1)

time. To see this, consider that the above expression can be rewritten as follows.

R(L/2, t0) =
L
2
X̂Y − X̂Ŷ√

[L
2
X̂X − X̂X̂][L

2
Ŷ Y − Ŷ Ŷ ]

where

X̂Y =
∑

t∈W

[X(t)Y (t)], X̂X =
∑

t∈W

[X(t)X(t)]

Ŷ Y =
∑

t∈W

[Y (t)Y (t)], X̂ =
∑

t∈W

X(t), Ŷ =
∑

t∈W

Y (t).

Note that all these variables can be computed in O(1) time with a standard moving

window method. Taking X̂ as an example, given X̂(t0), we can compute X̂(t0+1)
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as follows.

X̂(t0+1) = X̂(t0) +X(t0 + 1)−X(t0 − L/2 + 1).

Since X̂(t0), X(t0+1) and X(t0−L/2+1) are all known, X̂(t0+1) is computed

in O(1). The other variables can also be updated in the same way. R(L/2, t0 +1)

can thus be obtained in O(1) time based on the variables at t0. For a buffer of

size B, this autocorrelation solution has complexity O(B), which is much faster

than O(B ∗ L) via traditional cross-correlation.

Inaccuracy of Autocorrelation based Tone Detection. Unfortunately, we

cannot rely solely on autocorrelation to find the tone peak as the result will be

inaccurate. Figure 2.4(b) shows the output of the autocorrelation step. As can

be seen, there is a noticeable offset between the autocorrelation peak and second

cross-correlation peak (a sharp line). In an ideal scenario, these two peaks should

perfectly align. The reason for this discrepancy is twofold. First, autocorrelation

fundamentally has a much flatter peak. Intuitively, if a time slot’s autocorrelation

value is high, its neighboring time slots’ values are also high. Second, the offset

can arise due to signal distortion of the tone after propagation. This can result

in up to 10cm error in the final result even in quiet environments as we show in

the evaluation. For these reasons, we cannot rely exclusively on autocorrelation

for tone detection. Rather, we seek to combine the respective benefits of cross-

correlation and autocorrelation.

Step 2: Smoothing of Autocorrelation Peak. In order to obtain cleaner

peaks, we smooth the autocorrelation curves within a 10ms window. Note that

this smoothing process is necessary as the raw autocorrelation output can have

many local maxima due to environmental noise.
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Step 3: Small Scale Cross-correlation. We interpret the smoothed autocor-

relation curve as an indicator for the location of the tone, then we search in a

small window S around the autocorrelation peak using standard cross-correlation

to detect the precise tone location (see Figure 2.4(c)). The computation overhead

of the combined algorithm now is O(B + |S| ∗ L), which is still much smaller

than O(B ∗ L), assuming that the autocorrelation indicator allows us to choose

sufficiently small |S|.

Choosing the Search Window Size |S|. The above discussion reveals an

interesting design trade-off concerning the selection of the window size |S|. A

smaller |S| yields faster cross-correlation computation, but risks mis-detecting a

tone altogether because it is outside the searching window. This is especially true

in noisy environments where the offset between cross-correlation and autocorrela-

tion peaks can be large. Based on our empirical measurements, we set our window

size to a very conservative size of 100 samples (offset by −80 to +20 around the

detected peak), which is sufficient even at high noise. The fact that the search

window is not symmetric around the detected peak is probably due to reflected

signals, which may generate higher autocorrelation peaks after the direct signal’s

peak.

2.5.2 Pipelined Streaming Execution Strategy

With the preceding reductions in tone detection computation time, we next

introduce FAR’s pipelined streaming execution strategy for boosting measurement

frequency. Its two key improvements upon the traditional execution strategy are

that (1) it employs pipelining to increase measurement frequency by overlapping
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computation time with tone transmission, and (2) it employs streaming to mini-

mize measurement lag by removing Audio Playing Lag. Figure 2.2(b) illustrates

the FAR execution strategy.

Pipelined Execution to Mask Computation Time. We devise a pipelined

execution strategy that uses separate threads to handle Playing, Recording, Tone-

Detection Computation, andMeasurement Exchange (Figure 2.2(b)). In the record-

ing thread, the Audio Recorder periodically fills in a predefined audio buffer. For

example, the minimum required buffer size for Nexus One running Android 2.3.4

is 1024 Bytes, which corresponds to 512 sound samples. Once the buffer is filled,

the computation thread processes the buffered sound samples, while the recording

thread waits for the next buffer. Once computation is finished, the measurement

exchange thread exchanges the detected tone arrival times with the other phone

using WiFi and outputs the final distance measurement. The net effect is that

tone-detection computation is now fully overlapped with the exchange of sound

waves (including recording delay, playing delay and signal propagation delay).

Given that in our system, these two sets of operations take approximately equal

amount of time, the pipelined execution strategy effectively doubles FAR’s mea-

surement frequency.

Note that when pipelining, it is of critical importance that the tone-detection

computation time is tightly bounded. If the computation on one buffer is not

finished before the next buffer arrives, the computation overhead will accumulate

over time, resulting in buffer overflows and lost sound samples.

Streaming Execution to Mitigate Audio Playing Lag. Instead of blocking

on computation completion as the traditional strategy does, FAR implements a
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streaming mode to continuously send and record tones. The Play() API of the

Audio Driver is called at a frequency similar to the tone length, thus one tone

will be sent right after another. This helps in eliminating the Audio Playing

Lag from the overall measurement time. Similarly, we also implement the Audio

Recorder to work in a streaming fashion, continuously recording sound samples

for computation. As a result, if there is no lag between tones, measurements can

theoretically be conducted at a frequency equal to 1/L, provided tone detection

is fast enough to support such a rate.

2.5.3 Further Optimizations

In addition to the techniques discussed in the previous sections, our system

implements several additional optimizations to reduce delay.

Tone Length Minimization. Choosing the right Tone Length is important. Choos-

ing a small value can negatively affect measurement accuracy, but choosing a

large value not only adds lag to the overall execution, but also increases the com-

plexity of the cross-correlation computation, thereby reducing the measurement

frequency. We conducted extensive experiments over different tone lengths and

found that using a tone length of 512 sound samples (corresponding to 46.4ms at

a 11.025kHz sampling rate) achieves good accuracy and stability (see Figure 2.5),

while still allowing us to keep the measurement frequency above 10Hz. The tone

of 46.4ms is similar to that used in [107].

Buffering Delay Minimization. The buffer is pushed to the application layer when-

ever it is full. The buffering delay is therefore a random period in (0, B). To min-
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Figure 2.5: Impact of Different Tone Length. A tone length of 46.4ms has good
accuracy and low variance.

imize this delay in FAR, we use the phone’s minimum buffer size (which is 46.4ms

(1024Bytes) on Nexus One).

Networking Operation. We use UDP over WiFi, adding a delay of around 2-4ms

per exchange.

Tone Overlapping. One attempted optimization that we were unable to execute in

practice. Instead of spacing the two phone’s tones over time, we tried to overlap

them in time, but send them on different audio frequencies. Unfortunately, this

approach failed because the local speaker’s high power masks the remote phone’s

signal, which generates detection errors.

2.6 System Robustness

Besides measurement frequency and accuracy, another important challenge we

need to tackle is the robustness of the system. A real-time motion game can not be

fun if there are frequent measurement errors. In this section, we tackle the possible

vulnerabilities a practical system could suffer in real game play environments.
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Figure 2.6: Doppler Effect and Recovery. (a) The autocorrelation peak is de-
stroyed by the Doppler effect. The interval between the two cross-correlation
peaks is L/2 + 1 rather than L/2. (b) Given player speed is limited, Lrecv falls
into a limited range. (c) Changing the offset of the autocorrelation to L/2+1 can
detect the peak.

2.6.1 Mobility Robustness

One unique challenge to distance estimation of motion gaming is the Doppler

effect caused by player movement. Doppler effect happens when there is a relative

movement between the sound player and recorder. Intuitively, when two phones

are moving towards each other, the sound wave arrives at the recorder earlier than
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expected, so it appears compressed. However, since the recorder is recording the

sound at a constant rate, the recorded sound samples are fewer than expected,

which means in the recorded version of the tone, the repeating pattern has a

shorter length. Thus, the offset used in the autocorrelation calculation needs to

be shortened. Similarly, when the phones are moving further away, the tone is

diluted, and thus a longer offset is needed.

We define the term Doppler offset Doffset as the number of samples between

the two cross-correlation peaks i.e. the locations of the repeating patterns. In

a scenario without Doppler effect, the Doppler offset should be equal to the re-

peating pattern’s length, which is exactly half of the tone length, Doffset = L/2,

and the autocorrelation of X(t) and X(t − L/2) should be calculated to detect

the tone. If Doppler shift occurs, the repeating pattern will be separated by a

Doffset not equal to L/2. In these cases, the autocorrelation of X(t) and its de-

layed stream X(t − Doffset), which is R(Doffset, t), should be calculated to find

the tone.

In Figure 2.6(a) we show an example of a dilution, in which the tone does

not show an autocorrelation peak. A careful diagnosis uncovers that the offset

is L/2 + 1 rather than the expected L/2. This means that an extra sample has

appeared in the tone because of Doppler sound dilution. Thus Doffset = L/2 + 1

is appropriate in this case.

Assume Phone 1 is sending the tone, Phone 1’s velocity is vp1 (relative to

earth), Phone 2’s velocity is vp2, Tone Length is L (so the repeated pattern length

is L/2), and c is the speed of sound. The delay between the repeating pattern of
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received sound sequence Doffset can be expressed as

Doffset =
c+ vp2
c+ vp1

∗ L/2.

Figure 2.6(b) shows the relationship between Doffset and the relative velocity of

the two phones. We assume the maximum speed of a player’s hand is 2m/s, as

we have observed from our experiments that a higher speed is extremely hard

to reach. This is in accord with previous work [71] on human hand functions.

Since this speed is not negligible compared to the speed of sound (c = 343.2m/s),

we can see from the figure the possible range of the Doppler offset as Doffset ∈

[L/2− 3, L/2 + 3].

Recovery from Doppler Effect with parallel autocorrelators. To recover

the correct autocorrelation peaks, a simple method is to calculate the autocor-

relation with the appropriate offset. As an example, in Figure 2.6(c), we show

that we can recover the peak by calculating R(L/2 + 1, t), rather than R(L/2, t).

Given that Doffset ∈ [L/2 − 3, L/2 + 3], we can set up a maximum of 7 parallel

autocorrelators to catch any practical case of Doppler shift.

Parallel autocorrelators have both advantages and disadvantages. The advan-

tage is that more autocorrelators increase the detection ratio. The disadvantage is

that more autocorrelators lead to longer computation time. Therefore, one prob-

lem is to find the optimal number of autocorrelators x̂ that maximizes the tones

detected per unit time for a given velocity v, i.e.,

x̂ = argmin x [Dv(x)max(b, T (x))] ,

where b is the communication bound,Dv(x) is the detection ratio with x autocorre-

lators at velocity v, and T (x) is the completion time for x parallel autocorrelators.
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Unfortunately, each additional autocorrelator causes an additive increase in

computation time. In response, we apply a predictive Doppler estimate procedure.

The idea is to predict the likely Doppler shift based on the recent history of

distance measurements, and only execute the autocorrelators likely to match the

predicted velocity shift.

Figure 2.8 shows a fast movement case with a maximum player hand speed of

2m/s (and thus phone-to-phone relative speed reaches 4m/s). We show the two

phones’ distance change over time, and mark the tones affected by the Doppler

effect. The Doppler-shifted tones are divided into two groups: diluted cases,

and compressed cases. As evident from the figure, compressed cases occur when

the distance is decreasing, and diluted cases happen when distance is increasing.

Exceptions to this rule happen rarely.

✁�✄☎✂✝✞✟ ✡☛

✁�✄☎✂✟ ✡☛

✁�✄☎✂☞✞✟ ✡☛

✌✆✎✡✏✑✒✓

✔✠✖✗✘✡✏✡✆✠✑

✁✓✒✠✙✚✓✚

✛�✡☛

✌✆✎✡✏✑✒✓

✜✆✎✡✠✙✢

✍
✍
✍

✍
✍
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Figure 2.7: Predictive Parallel Autocorrelators. The distance history is leveraged
to predict whether sound will be diluted or compressed, and subsequently which
group of autocorrelators to use.

Thus, we can use two groups of autocorrelators to deal with the two groups

of Doppler effect cases: one group of autocorrelators R(L/2 − 1, t), R(L/2 −

2, t), R(L/2 − 3, t) for compressed cases, and the other group of autocorrelators

R(L/2 + 1, t), R(L/2 + 2, t), R(L/2 + 3, t) for diluted cases. For each buffer of
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recorded samples, we always run the original autocorrelator R(L/2, t). At the

same time we predict the players’ relative velocity based on the recent distance

change history, then apply the appropriate group of autocorrelators, as shown in

Figure 2.7. We can reduce the total overhead by nearly half with this method. In

fact, our evaluation suggests that almost all of Doffset are within [L/2+2, L/2−2],

and thus only 3 parallel autocorrelators are needed to recover from the vast ma-

jority of Doppler shifts.
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Figure 2.8: Doppler effect causes sound dilution and compression errors. How-
ever, we are able to predict these errors based on recent velocity.

The prediction based method might not be correct when the player is changing

direction. However, the user’s speed naturally slows when changing direction,

which will decrease the likelihood of experiencing Doppler shifts. As shown in

Figure 2.8, almost all of the tones at the peaks or troughs are good cases.

2.6.2 Environmental Robustness

There are several environmental factors which can impair distance measure-

ments. We address these presently.

Robustness to Ambient Noise. To study the character of ambient noise,

we recorded sound from both indoor and outdoor noisy scenarios. One finding is
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Figure 2.9: Impact of Filtering. The frequency map of a recording of ambient
sound from a crowded area before and after filtering.

that the frequency for these sound usually is below 2kHz. Thus, in our system

we apply a high pass filter (a 9-th order Butterworth filter) to filter out ambient

noise. Figure 2.9 shows the spectrum density map of a 1-minute recording of a

crowded place, before and after applying our filter respectively. It is clear that

the high pass filter functions well in eliminating ambient noise.
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Figure 2.10: Impact of Multipath Components. A multipath component gener-
ates a smaller autocorrelation peak (at around 100ms) after the correct peak, but
with a much lower power level.

Robustness to Multipath. Multipath effects can also impact the robustness of

tone detection if the players are in a relatively small room or hallway. The reflected

signal may generate correlation peaks or degrade the main component. Figure 2.10

shows a tone with an observable multipath effect. There is a lower autocorrelation
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peak at around 100ms which is caused by the multipath components. We observe

that the multipath components usually have low power and signal quality after

reflection or scattering. Note that the power threshold might not work well if

there is high ambient sound. However, after applying the high pass filter, we

can efficiently reduce the ambient sound power level. In our implementation, we

empirically set the power threshold to 0.02 and peak level threshold to 0.4, which

we show to be sufficient to filter out the multipath components experienced when

playing in actual scenarios. In our evaluation section, we conduct experiment in

a small room to show the performance.

Robustness to Occasional Tone Loss. FAR also provides failsafe methods

to deal with occasional tone losses. Since the distance calculation requires the

tone measurement from both phones’ computation result, it is important to keep

the two measurements synchronized. In particular, if a tone is not detected, the

phone should be alerted of the situation. We achieve this by a binary coding

method: we assign a unique pseudorandom sequence for each phone. If detection

is flawless, each phone will see alternating codes. Thus if a phone receives any

two consecutive tones whose codes are the same, the phone detects a missed tone

condition and accounts for this in the distance calculation.

Coding beyond binary (e.g. ternary) is not necessary, because multiple con-

secutive missing tones are detected by simple threshold on the arrival interval

between two consecutive tones. When such cases arise, the system will enter Fail-

safe mode. In Failsafe mode, one phone will send two tones separated by a much

larger interval, e.g. 250ms. Both phone will then observe the large interval and

reset their state.
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2.7 Game Design

In this section, we briefly describe two novel games we have developed on FAR

to date.

SwordFight. In SwordFight, the core gameplay works as described in the intro-

duction. In order to ensure that attacks are oriented toward the opponent, the

digital compass is used. At the start of a fight round, the players are instructed to

point their phones toward one another and the phones’ digital compass orienta-

tions are recorded. During the fight round, the digital compass is read to ensure

that movements are actually oriented toward the opponent.

ChaseCat. ChaseCat is a fast round-based game. In each round, one player is

randomly chosen as the Cat and the other player is chosen as the cat chaser, the

Dog. The Dog player attempts to get her phone as close to the Cat player’s phone

as possible, while the Cat player tries to get her phone as far from the Dog player’s

phone as possible.2 A random 15-25 seconds after the round starts, players are

instructed to Freeze by an audio cue. If the Cat is within 30 centimeters of the Dog

during Freeze, then the Dog catches the Cat and scores a point. Otherwise the

Cat escapes and scores a point. Movement during Freeze is detected by distance

and acceleration measurements.

Note that in the case of both games, distance measurements are expected to

be accurate up to several centimeters. Our evaluation results in the next section

show that FAR is accurate at this resolution. The maximum distance that can

be supported is a function of the maximum volume of the phone speakers and

the sensitivity of microphones. The current platforms we use happen to have

2We recommend players plant their feet during the game, but this has proven difficult to
enforce.

37



Chapter 2. Accurate Mobile Device Localization

an effective measurement range of 2 meters, so this is the current effective limit

of gameplay. Out-of-range occurrences can be detected by sequences of dropped

tones and low SNR.

2.8 Implementation

We implement both our games on two phones: Nexus One running Android

2.3.4 and Samsung Focus running Windows Phone 7.5.
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Figure 2.11: Audio Playing Lag Distribution

Randomness of Audio Playing Lag. As mentioned in §2.5.2, the Stream-

ing Execution Strategy mitigates Audio Playing Lag. However, it turns out that

the commodity devices we have encountered exhibit an additional random audio

playing lag artifact. Figure 2.11 shows that the audio playing lag is randomly

distributed between 64ms (5%-tile) and 99ms (95%-tile). Thus, to prevent two

consecutive tones from overlapping with each other, we add a 35ms guard period

when playing each tone. The interval between two consecutive Play() calls is then

L+35ms = 46.4ms+35ms = 81.4ms. In fact, given our reductions in computation

and communication overhead which are no longer the bottleneck, it is this ran-
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dom system artifact that currently prevents us from increasing the measurement

frequency from 1/81.4ms ≈ 12Hz to a theoretical 1/L = 1/46.4ms = 21.6Hz.

2.9 Evaluation

We demonstrate through our evaluation that FAR is fast, accurate and robust,

and that it is suitable for MMG games. The primary metrics are as follows.

• Measurement Frequency. Is FAR efficient enough to support fast measurement?

How fast can FAR make measurements?

• Measurement Accuracy. How accurate are the measurements?

• Measurement Robustness. How well does FAR handle noise and motion?

• Gameplay. Do games based on FAR work in practice?

We conducted experiments with two Nexus Ones in a room measuring 14m

by 7m by 2.5m that typically serves as a conference room. Static measurements

are verified against manual ruler measurements. For dynamic measurements, the

main comparable system used is the Xbox Kinect, a dedicated fixed-infrastructure

motion tracking system for console gaming. Lastly, as real world validation, we

invited public users to play SwordFight and ChaseCat on four separate occasions.

The highlights of the evaluation are as follows.

• FAR achieves a measurement frequency of at least 12 Hz. In fact, FAR is fast

enough to reach the limits imposed by the phone’s audio driver.

• The median measurement error is 2cm. During times of rapid movement, FAR

compare favorably to Kinect for both isolated player measurements and in-situ

gameplay player measurements.
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Figure 2.12: Compute time needed to process a 512-sample audio recording.

• Doppler effects, high noise and multipath and are effectively neutralized.

• Experiences of over fifty game players suggest that FAR is a good match for

motion gaming, and that SwordFight and ChaseCat are fun to play.

2.9.1 Measurement Frequency

We show that FAR is efficient enough to take measurements as fast as the phone

audio driver can support. We evaluate FAR’s feasibility in supporting the pipelined

streaming execution strategy, and then report on the achieved frequency.

Feasibility. The fundamental limitation of previous approaches is that the de-

tection of tones requires intensive computation, and thus is not feasible within

a pipelined streaming execution strategy bound by tight deadlines. Figure 2.12

illustrates that FAR is able to comfortably satisfy the strict deadline of 46.4ms

corresponding to a recording of 512 samples. The traditional cross-correlation

method is by far the slowest at 70ms.3 Missing the computation deadline in-

curs serious buffer overflow problems, leading to loss of sound samples and thus

measurements.

3Note that this is much smaller than as claimed in [114] because we only process a 512-sample
recording, while [114] requires a much larger recording due to its traditional execution strategy.
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Figure 2.13: Measurement Update Distribution. More than 80% of the time, a
new update arrives within 84ms of the previous update.

Measurement Frequency. Figure 2.13 shows the distribution of measurement

updates for over 400 individual measurements as generated by FAR. The effective

measurement frequency is 12Hz over 80% of the time. As noted in §2.8, a ran-

dom audio playing delay of [64ms,99ms] inhibits us from achieving a theoretical

frequency of 21.6Hz.

Measurement Lag. For each distance measurement, the lag is comprised of the

following components: Tone Length, Propagation Delay, Buffering Delay, Compu-

tation Time and Measurement Exchange Delay. For motion gaming, the distance

between two phone does not exceed 2 meters. Therefore, the Propagation Delay is

less than 6ms. Figure 2.14 shows the lag of 400 distance measurements when the

phones are placed 50cm apart. The measurements are sorted by their total delay.

With the exception of the last 5% of cases with large network delays, the majority

of measurements exhibit a total lag of around 100ms. As expected, the delay due

to the length of the tone is constant, and the network delay and propagation delay

are very small. The buffering delay is uniformly distributed in (5ms, 46ms).
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Figure 2.14: Measurement Lag Composition. Several individual delays con-
tribute to the time between when a tone is played and when a distance measure-
ment is completed.

2.9.2 Measurement Accuracy

Next we juxtapose the measurement accuracy of autocorrelation (Auto Only)

and FAR. We statically position the two phones in three typical phone-to-phone

orientations at different distances. Figure 2.15 illustrates the measurement accu-

racy of the two methods, each computed from over 400 experimental cases. It

is clear that autocorrelation exhibits measurement error that is severe, whereas

FAR’s error is very low with a median of 2cm and standard deviation of 1cm. The

figure also highlights that FAR is robust across varying phone orientations and

distances.

2.9.3 Impact of Player Movement

We next investigate whether our system is capable of accurate measurements

while players are moving. After exploring several possibilities including a studio

motion capture system, we settled upon Kinect, an off-the-shelf motion capture
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Figure 2.15: Measurement Accuracy in a Large Room.
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Figure 2.16: Isolated Player Measurements. Simultaneous distance measure-
ments of FAR and Kinect when a single player is moving her hands freely with a
phone in each hand.

system for the Xbox console gaming system, as the candidate comparable system.
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Figure 2.17: In-Situ Gameplay Measurements. Simultaneous distance measure-
ments with FAR and Kinect of players engaged in SwordFight.

The reason Kinect is appealing is because it is commercially available, practical

to use, and has already proven successful for infrastructure-based console gaming.

Kinect measurements were obtained with the Kinect SDK which is a Kinect-

to-computer interface that allows programmatic collection of the human skeleton

coordinates as seen by the Kinect camera. We employed both isolated player

experiments and in-situ real player experiments.

Isolated Player Movement. In isolated player experiments, we positioned the

Kinect camera statically, and placed a subject in front of the camera with a phone

running FAR in each hand. The subject was then asked to vary her hand position

at her discretion. FAR performed phone-to-phone distance measurements while

Kinect independently tracked the hands.

Figure 2.16 illustrates the distance measurements simultaneously measured by

Kinect and FAR for two representative traces. For the most part, FAR matches

the Kinect motion path closely. In both traces, there are only 5 measurements

out of 700 that deviate significantly from the Kinect estimate. In some instances,

Kinect and FAR measurements can be offset from one another by up to 12cm.
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The reason for this is actually a reflection of the Kinect SDK, which can exhibit

5-15cm variance of the reported hand coordinate because it is ambiguous as to

whether it measures distance from the base or tip of the hand. While an ideal

ground truth would not have such issues, the results are encouraging enough to

suggest that FAR compares favorably to a commercially successful motion gaming

system.

In-Situ Gameplay Player Movement. In the in-situ gameplay experiments,

six players were invited from the UC Santa Barbara Link Lab to conduct nine

in-situ rounds of measurement. Players were each given a phone and asked to

try out the SwordFight MMG game. During the game, FAR provided the in-game

distance measurements while Kinect independently recorded their skeletal hand

positions.

Figure 2.17 compares the corresponding FAR and Kinect measurements for two

representative traces. There are occasionally slightly more mismatches between

FAR and Kinect during in-situ gameplay than during isolated player experimenta-

tion. This is due to the fact that players – in the heat of competition – tend to

grip or orient the phones such that mics or speakers may be temporarily blocked.

Interestingly, we have found that our system can in fact be more accurate than

Kinect because Kinect cannot accurately track the hand when the player’s hand

is obstructed from the camera’s view (e.g. by her own body or the opponent’s

body). These situations happen frequently in SwordFight and similar games. For

example, two right-handed players facing off will often mean one player is poorly

oriented toward Kinect. In these situations, FAR measures distance better because

there are typically no obstructions between the two phones in the players’ hands

for games in which opponents are facing each other. In the in-situ experiments
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presented in Figure 2.17, we asked that the players compensate for this Kinect

limitation for the sake of experimentation: one player was instructed to play with

the left hand, the other player was instructed to play with the right hand, and

both players were instructed to not obstruct the line-of-sight between the Kinect

and their phones. These patently artificial constraints on gameplay highlight why

FAR may be potentially even more suitable than fixed infrastructure measurement

systems for certain styles of motion gaming, regardless of infrastructure availabil-

ity.

2.9.4 Measurement Robustness

We quantify FAR’s effectiveness at handling three sources of measurement error:

Doppler effect, multipath and noise.

Robustness to Doppler Effect. FAR detects Doppler shifts with the use of

parallel autocorrelators. Our experimental setup consisted of recording FAR and

Kinect measurements simultaneously while instructing the players to swing hands

at varying rates, including as fast as possible. We collected fifteen motion traces,

each consisting of over 400 distance measurements. We calculated a phone-to-

phone relative velocity from the Kinect data (which is not affected by Doppler

shift). We group motion traces according to the maximum velocity reported by

Kinect.

Figure 2.18(a) and Figure 2.18(b) show the detection performance of parallel

autocorrelators (without prediction and with prediction respectively) for repre-

sentative traces with motion speeds of 0.5m/s, 1m/s and 2m/s where the Doppler

shift does occur. As expected, even one autocorrelator performs reasonably for
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Figure 2.18: Parallel Autocorrelators. (a) 90+% of the tones can be detected by
five parallel autocorrelators, which corresponds to offset range [L/2− 2, L/2 + 2]
(b) With predictive parallel autocorrelators, only three autocorelators are needed.
85+% of the tones can be detected even at 2.0m/s hand movement speed. (c)
Three parallel autocorrelators can still meet the computation deadline.

0.5m/s but more autocorrelators are needed as the velocity increases. Most of

the tones affected by Doppler shift can be recovered by five parallel autocorrela-

tors as shown in Figure 2.18(a). This means the Doppler offset is usually within

[L/2− 2, L/2 + 2].

Figure 2.18(b) shows that after applying prediction, only three parallel auto-

correlators can recover most of the errors, and achieve 85+% detection ratio even

in a high speed scenario of 2m/s. The detection ratio gain for more than three

autocorrelators is marginal. Figure 2.18(c) shows the computation time required
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Figure 2.19: Accuracy In A Small Room. The impact of the reflection is not
noticeable.

for increasing numbers of parallel autocorrelators. Three correlators can be run

simultaneously while maintaining or just barely exceeding the computation dead-

line required for the fastest measurement frequency. Our empirical observations

indicate that sustained velocities of 2m/s or even 1m/s are very hard for players

to maintain due to physical human limits; there is a natural opportunity to detect

and complete measurements after sudden bursts of fast movement. Therefore, FAR

uses three parallel autocorrelators which work well in practice.

Robustness to Multipath and Ambient Noise. To test robustness to re-

flected sounds, we ran FAR in the smallest contained space we could find, a private

room measuring 3m by 2m. Figure 2.19 illustrates the performance in the small
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Figure 2.20: Measurement accuracy when injecting heavy noise (SNR=0). The
accuracy drops a little but can still achieve an accuracy of 5cm in average.

room with various phone orientations and distances. While the variance of mea-

surement error is 5cm and larger than in the original room, the measurement error

is again very small, with a median error of 2cm.

We injected an ambient sound to evaluate the anti-noise property of FAR. In

order to ensure repeatability, the ambient sound is a 1-minute recording from a

very crowded area, with people talking and laughing loudly. We define the SNR

of the signal as the energy of the sound recorded by the remote phone over the

energy of the ambient sound. While we tested over different scenarios, we report

only the performance of the back to back position result with SNR=0 here in

Figure 2.20 due to the similarity of the results. As expected, the ambient sound

degrades the accuracy, but the impact is manageable. Recall that SNR=0 means

a noise energy level equal to the tones’, which is high.

2.9.5 Deployment Experiences

We have prepared SwordFight and ChaseCat for public play on multiple oc-

casions: at the SenSys 2011 conference for any conference participant [154]; in

Beijing for interns working at the Microsoft Research Asia building late at night;
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in Redmond for office colleagues taking a work break, and; at UC Santa Barbara

for officemates, friends and family. Qualitatively, the public reception has been

positive. Just as the Wii and Kinect ushered in a new class of console game-

play, SwordFight and ChaseCat introduce an element of physical action to mobile

gaming that players seem to enjoy.

2.10 Related Work

Motion Gaming. Recently, non-mobile console gaming systems have embraced

player motion-based gameplay, developing a variety of schemes for player localiza-

tion. The Wii remote [100] uses an infrared camera to track the relative position

of the TV-mounted sensor bar which emits two infrared light sources. The PS3

Move controller [138] has a light-emitting ball affixed which is tracked by a TV-

mounted video camera. The TV-mounted Kinect [95] projects an infrared mesh

and tracks its time-of-flight back to the Kinect camera. These console gaming sys-

tems demonstrate the compelling nature of motion gaming, but are unfortunately

tethered to fixed console-based infrastructure.

The idea of phone-to-phone motion gaming was first mentioned in the recent

work of Qiu et al. [114], described in that paper’s introduction as high-speed,

locational, phone-to-phone (HLPP)-gaming. [114] was the first to propose phone-

to-phone localization as a primitive for mobile gaming. The authors developed a

3D acoustic localization system that utilizes each device’s two microphones, one

speaker, 3-axis accelerometers and 3-axis magnetometers to calculate coordinates

of one phone in three dimensions relative to the other. However, the scheme

proposed in [114] is not actually applicable to high-speed motion games such as
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SwordFight since the reported update interval is over 800ms. Nevertheless, their

3D positioning algorithm may in the future serve as a complement to the high-

speed ranging techniques presented in this work.

Acoustic Ranging. The authors of [107] developed an earlier method for acous-

tic ranging between two phones but its update rate can be arbitrarily slow since

the two devices are not synchronized, and the applications are unclear.

Much research exists on infrastructure-based localization algorithms (see [82]

for a survey). ActiveBat [57] and Cricket [112] are two representative infrastructure-

based systems. Each is capable of achieving centimeter resolution, but dense ultra-

sonic infrastructure requirements are not compatible with ad hoc mobile gaming.

Infrastructure-based acoustic localization includes [35, 89, 133]. These systems

achieve resolution in meters, which is insufficient for action gaming. Several sys-

tems have reported achieving centimeter resolution [53, 59, 78] with custom-built

hardwares which makes them less appealing in light of the pervasiveness of com-

modity mobile phones.

Components of our algorithm’s signal processing techniques have been used

previously in the communication systems but not in the context of localization.

[132] proposed using autocorrelation to reduce the complexity of frame and carrier

synchronization. [93] uses a technique similar to running multiple parallel detec-

tors for handling Doppler effects underwater, but does not consider predicting

Doppler shifts.
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2.11 Discussion and Conclusion

In this chapter, we report on the design and implementation of a new class of

phone-to-phone games: Mobile Motion Games (MMG). The key underlying tech-

nology is a new highly-accurate and real-time phone-to-phone distance measure-

ment substrate, which provides the API on top of which games such as SwordFight

and ChaseCat are built. Our experience with having people play these games is

positive. They are intuitive and fun to play. However, our work here is a starting

point. There remain open challenges that could affect the game experience. One

issue is that continuous acoustic tones are noticeable, since mics and speakers

on commodity phones only support the audible frequency range. A possible ap-

proach is to embed these tones in game music. A second issue is that line-of-sight

blockage between the phones degrades the measurement accuracy, and players can

accidentally or purposefully block the mics and speakers. Future work includes

creation of a blockage warning or cheat detection protocol. In addition, we are

interested in extending the API to permit simultaneous ranging between more

than two phones. Lastly, we are working on designing and prototyping additional

MMG games on top of our phone-to-phone gaming API.
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Accurate Wireless Transmitter
Localization

3.1 Introduction

WiFi networks today are ubiquitous in our daily lives. WiFi access points

(APs) extend the reach of wired networks in indoor environments such as homes

and offices, and enable mobile connectivity in outdoor environments such as sports

stadiums, parks, schools and shopping centers [12, 19]. Even cellular service

providers are relying on outdoor WiFi APs to offload their 3G traffic [19, 20].

As Internet users become reliant on these APs to connect their smartphones,

tablets and laptops, the availability and performance of tomorrow’s networks will

depend on well tuned and managed access points.

A critical part of managing access points is the ability to locate individual

access points based on their signal [81, 104, 123]. Doing so allows network admin-

istrators to identify APs causing excessive interference to others, or unauthorized

APs that may provide easy entry for malicious attackers [111]. For individual

users, it allows them to locate and get closer to neighborhood WiFi hotspots,
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build war-driving databases, or pinpoint neighboring APs so they can better po-

sition their own basestations.

Unfortunately, much of this is not possible today, because current techniques

to locate outdoor WiFi access points require either extensive wardriving mea-

surements, followed by significant offline computation [55], or complex hardware

components such as steerable directional phased array antennas [140]. For the

wardriving scenario, locating each AP requires measurements from a large num-

ber (35+) of locations, making the process extremely time and energy intensive.

For the directional antenna solution, the specialized hardware components cost

several thousand dollars each, which clearly limits their availability to only a small

portion of system administrators for large enterprises.

In this work, we ask the question: “is there a cost- and time-efficient alter-

native to perform accurate outdoor location of WiFi access points?” A potential

solution using common-off-the-shelf (COTS) hardware would break access point

location out of a small niche market of enterprise administrators, and make it

available to home users and small businesses managing their own local hotspots.

Our solution is derived from a key insight: “by rotating a standard wireless

receiver around a blocking object, we can effectively emulate the sensitivity and

functionality of a directional antenna.” We exploit the property that the signal

strength observed by a wireless receiver drops most significantly when there is

a large obstacle directly between it and the transmitter. Such a drop in signal

strength is strongest when the receiver is directly adjacent to the obstacle, and

should be observable as long as the obstacle is large enough to block a significant

portion of the reception angle. Therefore, by “rotating” the receiver’s position

with respect to the obstacle (and the signal “void” it produces), and observing
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the received signal strength, we can determine the approximate direction of the

transmitter. We refer to this process as directional analysis.

While this is a general observation potentially applicable to a variety of wireless

transmissions on different frequencies and hardware, we focus our attention in

this work on a single use case: outdoor location of WiFi access points using

smartphones. Applying our insight, we hypothesize that a user can accurately

locate WiFi APs using common-off-the-shelf smartphones as receivers, and her

own body as the blocking obstacle. To perform a directional analysis operation,

she slowly rotates her body around 360 degrees, while keeping the smartphone in

front of her and performing periodic received signal strength (RSS) measurements.

The observed RSS should be at its lowest point when the user’s body is directly

between the smartphone and the wireless AP. By walking towards the predicted

direction of the AP, and periodically repeating the directional analysis, a user

should be able to zone in and locate any specific AP.

To validate our hypothesis, we first perform detailed experiments to see if such

dips in signal strength can be observed using today’s smartphones and standard

WiFi access points. We run tests on several different environments on the UC

Santa Barbara campus, target both 802.11b/g and 802.11n (MIMO) APs, and

use three different smartphone platforms, Android, WindowsMobile, and Apple

iPhone4. Using a large number of real measurements, we do in fact observe the

expected dip in signal strength when the tester’s body blocks the smartphone

from the access point. We consistently observe the artifact across both platforms,

environments with different levels of obstructions, and for users of different heights

and weights.
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Borealis. These measurement results lead us to develop Borealis, a system for

locating outdoor WiFi access points using software on commodity smartphones.

Borealis users can perform robust directional analysis by turning their bodies on a

360◦ axis, and use this technique to locate a transmitting access point. We address

several challenges in the process of building Borealis, most significant of which is

that errors in directional analysis are impacted by environmental conditions, and

particularly exacerbated by multipath propagation around areas with multiple

buildings. Our solution is to build a model that predicts the impact of blocking

obstacles on signal strength at the receiver, use it to identify large blocking ef-

fects, and in doing so, produce more accurate predictions of the AP’s direction.

Combined with prior techniques on direction-guided user navigation [54, 75, 76],

we produce a system that efficiently guides users to an AP. In scenarios where the

AP is housed indoors, our system guides the user to an outdoor location closest

to the AP.

We implement and deploy Borealis as a user application and a set of kernel

modifications on the Android platform. We modify the WiFi driver to focus

scans on specific channels, thus allowing more frequent RSS measurements while

reducing energy usage. Our user application assists the user in directional analysis

by logging each RSS measurement along with data from the orientation sensor,

and using it to compute the most likely direction of the access point along with

a prediction confidence. The user can repeat the process with success until she is

within 2 meters of the AP.

We perform detailed experimental evaluation on Motorola Droid and HTC G1

phones. Our results show that Borealis produces significantly more accurate AP

direction values than GUIDE [54], the recent system using triangle gradients to
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(a) Facing AP. (b) Back facing AP. (c) The user rotating in

place.

Figure 3.1: Illustrations of users facing the AP, with back to the AP, and rotating
while holding a smartphone.

compute AP direction. We also find that running Borealis in real-time produces

similar accuracy compared to an offline version using learning techniques on a large

number of RSS measurements. Finally, our results show that using our direction

predictions, Borealis leads the user on a path that reasonably approximates the

shortest path to the AP.

Our work shows that with small software modifications, today’s smartphones

can effectively replace directional antennas to locate outdoor WiFi access points.

Borealis is the first example of a potential class of systems that approximate

directional antenna systems using rotation around signal-blocking obstacles, and

its underlying principle can potentially be applied to build location systems for

other wireless transmissions.

3.2 Preliminaries

In this section, we briefly describe the problem scenario and assumptions. We

then summarize existing work that is most relevant to our target scenario.
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Our focus is to accurately locate outdoor WiFi AP using common off-the-shelf

smartphones as receivers. This functionality is a critical part of managing WiFi

access networks for both small business and home users. The problem scenario

is simple – a user, holding a smartphone, seeks to find the physical location of a

WiFi AP from its BSSID. Note that our AP location problem is different from

the general wireless localization problem [29, 37, 60]. The user seeks to locate a

transmitting AP rather than determining her own location.

3.2.1 Related Work

In general, a receiver locates a transmitter by examining received signal strength

(RSS), time of arrival (TOA) [39], time difference of arrival (TDOA) [62], or angle

of arrival (AOA) [105]. The latter three methods all require simultaneous mea-

surements at multiple receivers or antenna array. They are commonly used in

cellular networks where neighboring basestations collaborate to locate a mobile

device. They are, however, not feasible in our target scenario. Thus we focus our

discussion on the RSS based method.

We categorize the RSS based solutions into three groups.

Model-based. Solutions in this category consider absolute values of RSS. Using

RSS values measured at one [128] or multiple [48] locations, existing designs seek

to derive the physical distance between the tester and the transmitter or the

exact transmitter location, based on a radio propagation model. This solution,

however, is fundamentally limited by the inaccuracy of propagation models for

practical environments [60].
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Gradient-based. This type of solution compares the RSS values obtained

from different locations. Based on the assumption that a location closer to the

AP will have a higher RSS value, existing designs estimate the AP direction by

computing the gradient of the RSS value across different locations. This is done

either online [54, 141] using a small set of local measurements, or offline [55] by

integrating the results of a large number of measurements. The problem with

this line of solution is its idealized assumption that RSS values increase as the

receiver moves closer to the transmitter. Our own measurements show that this

assumption often breaks in practice, leading to large errors.

Directional Antennas. The use of directional antenna, either at transmit-

ter [97, 134] or receiver [75, 76, 99, 140], can significantly boost localization perfor-

mance. For example, by rotating the beam of its antenna, a receiver can pinpoint

the direction of the AP as the direction that provides the highest receive signal

strength [140]. The drawback is that it requires specialized hardware.

Among the above solutions, the directional antenna based solution achieves

most of our system requirements: it is accurate, uses a single radio, and operates

online with a small measurement overhead. However, directional antennas are

prohibitively expensive for home users and not portable enough for personal use.

3.3 The Blocking Obstacle Effect

The key insight that enables our approach to locating access points is surpris-

ingly simple. We hypothesize that when placed next to a large obstacle, the signal

strength perceived by a wireless receiver will be highly dependent on where the

obstacle is relative to the position of the receiver. The closer the obstacle is to
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Figure 3.2: Observed signal strength profiles with user rotation. We mark the
user direction facing the AP as 60◦, the direction with user’s back to the AP as
240◦ (marked by BF). (a)-(b) When a user holds the phone with Droid and G1
phones in a simple LOS environment, the signal profile displays a clear low signal
artifact. (c)-(d) The artifact is consistently visible in the complex LOS and NLOS
environments. (e)-(f) The artifact is easily visible using iPhone 4 and Windows
Mobile phones with both 802.11b/g and 802.11n APs.

blocking line-of-sight between the AP and the receiver, the more of the signal is

blocked, and the weaker the signal strength seen by the receiver.

We apply this hypothesis to our context of smartphone based AP location.

The body of a user holding a smartphone will block a portion of the incoming

WiFi signal. The closer the user is to being on the straight line between the

smartphone and the AP, the weaker the signal perceived by the phone. This

blocking effect of the human body has been observed on a variety of frequencies

and radio hardware [52, 124, 148], even in indoor environments [29]. Consider

figure 3.1(a)-(b). When her back is towards the AP, the user’s body becomes an
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obstacle and blocks the signals from reaching the smartphone. When facing the

AP, the body is no longer an obstacle. Therefore, we expect that as a user rotates

herself in place, as in figure 3.1(c), the phone’s received signal strength will display

an interesting artifact: a peak when she faces the AP and a dip when her back

faces the AP. Thus by measuring signal strength at different rotational angles, a

user can gain a hint of which direction points towards the AP.

In this section, we verify our hypothesis using detailed smartphone experi-

ments. Our experiments seek to study the impact the body as an obstacle has on

signal strength as the user rotates herself. We seek to understand the factors that

cause this artifact, and the impact on this artifact by factors such as propagation

environment, phone hardware and WiFi standards.

3.3.1 Smartphone Experiments

Our experiments use four popular smartphones: Motorola Droid, HTC Dream/G1,

Apple iPhone 4, and LG Fathom (WindowsMobile 6.5). The first two phones sup-

port 802.11b/g and the last two support 802.11b/g/n. We program each smart-

phone to poll its RSS reports, and record the received WiFi signal strength from

a given AP. Using its built-in compass, each phone records its relative orienta-

tion1 as the user rotates in a clockwise direction. To diminish the impact of fast

fading, we smooth the RSS values using a moving average window of 20◦ along

the measured angle.

Our experiments will answer five key questions:

a) Is there a clear observable artifact?

b) What is the source of this artifact?

1Relative to the initial direction the user was facing.
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c) Is it a function of the propagation environment?

d) Is it sensitive to different phone hardware or AP configurations, i.e. 802.11b/g

vs. 802.11n?

e) Is it sensitive to the height/weight of users, or how they position the phone

with respect to their body?

Experiment 1: Signal Patterns during Rotation. Our first experiments

examine the signal strength artifacts during user rotation. At each test location,

a user holds a smartphone in the hand and rotates her body by 360◦ at a speed

of 6◦ per second. Each experiment records the instantaneous RSS values and the

phone/user orientations. We set up the AP in an open space area where a direct

line-of-sight path exists between the AP and the phone. In the rest of the chapter,

we refer to this environment as Simple LOS. This basic configuration allows us to

study the impact of body position with minimum impact from other factors.

The results confirm our hypothesis. figure 3.2(a) and (b) plot instances of the

signal strength distribution as a function of the user orientation, for both Droid

and G1 phones. For easy illustration, we mark the direction of user facing the

AP as 60◦ and the direction with back to the AP as 240◦. The results, marked as

“w/ human shield”, show a clear dip pattern. When the user has her back facing

(BF) the AP, the received signal strength is about 10-15dB lower than that when

the user faces the AP. We observed similar patterns as we varied the distance

between the phone and the AP. We observed up to 18dB difference in RSS values

even when the user was only ≈2 meters away from the AP. We also varied the

height of the AP between 2 and 18 meters, and observed no difference in results.

Finally, in each graph, we mark the angle representing back-facing the AP with a

vertical line (BF), and mark the point of lowest signal strength with a blue dot.
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Experiment 2: Source of the Artifact. Our next question is to identify

whether the signal strength artifacts are caused by the position of the user’s

body, or the orientation of the phone antenna [126]. First, we repeat Experiment

1 multiple times, each time changing the orientation of the phone antenna, and

observe no change in the results. Next, we repeat the same experiment, but remove

the human body as an obstacle by placing the phone flat on top of a small chest-

high table. We shift the orientation of the phone in 20◦ increments, and measure

the signal strength for 30 seconds with the phone in each orientation. The results

are plotted in figure 3.2(a) and (b) as “w/o human shield,” and show that the

low-signal artifact is clearly gone. Thus we conclude that the low signal artifact

is mainly caused by position of the human body, and its impact in blocking the

AP’s signal.

Experiment 3: Dependency on Environments. We also repeat the above

experiments under different propagation environments. In addition to Simple

LOS, we include an open area with surrounding buildings and moving objects

(Complex LOS), and an environment with multiple buildings and objects and

thus no line-of-sight paths between the phone and the AP (NLOS). We show

illustrations of these three measurement areas in borealis/figure 3.3. We perform

multiple measurements at different positions in each environment, and plot two

sample results for Complex LOS and NLOS in figure 3.2(c) and (d). We see that

the low signal artifact still exists, while the magnitude of the dip may vary between

different positions. This is expected, since reflections from surrounding objects

can create multipath signals that reduce the impact of the user body blocking

signals.
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Simple Line-of-Sight(LOS) Complex Line-of-Sight(LOS) No Line-of-Sight(NLOS)

Grassy Area

Parking Lot 

W
a
lk

in
g
 P

a
th

Biking Path

20 m 10 m10 m

AP Measurement Region Office Trailer 

Figure 3.3: Graphical illustration of the three propagation environments used.
all located on the UC Santa Barbara campus. For both Complex LOS and NLOS,
the AP was mounted right below the roof of an office trailer, and there are many
static and moving obstacles nearby, including trees, cars, bikers and pedestrians.
For NLOS, the path between the AP and the measured region is blocked by office
trailers.

Experiment 4: Impact of Phone and AP Configuration. These exper-

iments measure the low signal artifact under different phone hardware and AP

configurations. figure 3.2(e) and (f) show the standard experiment results using

both iPhone4 and WindowMobile phones in a Simple LOS environment. We see

that both phones exhibit the same artifacts for both 802.11b/g and 802.11n APs.

The AP hardware results are notable, since it means that even connecting to

802.11n APs who use multiple antennas, the low signal artifact still comes across

clearly in measurement results.

Experiment 5: Impact of User Posture and Body Shape. We re-

peat the above experiments with 6 additional users, with varying heights and
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weights, ranging from 5’4”, 100lbs to 6’, 160lbs. Each user holds the phone using

a slightly different posture. The same artifact consistently appears in all results,

thus demonstrating that the low signal effect is prevalent across users.

3.3.2 Key Observations

Overall, our experiments lead to two key findings. First, our experiments con-

firm that the position of the user’s body can significantly affect the smartphone’s

received WiFi signal strength. When the user has her back facing the AP, her

body becomes an obstacle and significantly degrades the received signal strength.

Second, for each of our result graphs, we use BF (for back facing AP) to mark

the opposite AP direction where the blocking effect should be at its strongest. We

also mark the point of lowest signal strength with a large blue dot. It is clear that

across all of our experiments with different phones and different environments,

the angle with the lowest signal strength does not capture the predicted direction

away from the AP. The “error” between the angle showing the lowest signal and

the ideal angle can be as low as near zero (WindowsMobile, 11n), or as high as

≈ 40◦ (Sample 2, Droid NLOS). Clearly, an accurate AP location system cannot

simply rely on finding the angle with lowest signal strength, and must use more

sophisticated techniques to determine the AP direction.

3.4 Accurate Access Point Location

Motivated by our findings, we propose Borealis, a new AP localization system

for smartphones that leverages signal strength artifacts to compute the direction of

an AP. Unlike conventional solutions that either require sophisticated radio hard-
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ware (i.e. directional antennas) [140], or extensive war-driving measurements [55],

our solution uses off-the-shelf smartphones and produces real-time results with a

small number of measurements.

3.4.1 Borealis Overview and Challenges

The concept behind our design is simple. At a fixed location, a user rotates

herself and records the signal strength profile of the target AP. Based on the

observed signal artifact, she estimates the direction of the AP from her current

location. She moves towards the AP, occasionally repeating the measurement

step, until she arrives at the AP.

Borealis has two key requirements. First, given the limited resources on smart-

phones, Borealis must use minimal energy and computational resource in its di-

rectional analysis. Second, Borealis must produce results in real-time, and its

directional measurements should be minimized to conserve user effort. We can

meet both of these goals by designing a system that minimizes computation while

producing accurate results. The more accurate the result, the fewer number of

direction analysis measurements are necessary, thereby saving both device battery

power and user effort.

Our biggest challenge is how to reliably determine the AP direction based on

the measured signal strength profile. Our initial experiments in Section 3.3 show

that simply using the angle with lowest signal strength to estimate AP direction

can generate large estimation errors (as indicated in Figure 3.2 by the distance

on the x-axis between BF and the dot representing minimum signal strength).
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Figure 3.4: An abstract model of the human shield effect. (a) A simple model of
a user holding a smartphone, with body width b and phone/body distance p. (b)
The signal propagation condition as the user rotates. When the user orientation is
between ~d1 and ~d2, the LOS path will be blocked by the human body. This range
of orientation is referred to as the blocking sector. (c) A geometric representation
of the blocking sector.

Across roughly 40% of all our experiments, using minimum RSS to estimate the

AP direction leads to an error between 40◦ and 120◦.

This error comes from two factors. First, as the user rotates, we measure

the signal strength of various directions sequentially, not simultaneously. Thus

time dynamics in signal propagation produces variance in signal strength values

across different directions. Second, the measurement time duration at each angle is

limited, which leads to measurement noise. Extending the per-angle measurement

time can help reduce noise, but also increases user effort, power consumption, and

gap between sequential measurements.

3.4.2 Modeling the Body as a Signal Obstacle

Borealis addresses the significant error introduced by time dynamics and prop-

agation effects using a model-driven approach. We first study the smartphone

measurement traces to understand the relationships between signal strength pro-

file, user orientation, and AP direction. We build a model to capture these rela-
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tionships and predict the impact of blocking obstacles on signal strength. We use

this model to develop an accurate AP direction prediction mechanism, along with

a way to estimate the confidence of each estimate.

Our first observation from our experiments is that as the user rotates, not only

does her body block the wireless signal and reduce its strength, but also that this

signal degradation occurs at a range of angles, not just when the user is facing

away from the AP.

To better understand this phenomenon, we introduce a simplified object-

blocking model. Consider a simple propagation environment without any ob-

stacles blocking the signal; a line-of-sight (LOS) path is the dominant signal path

between the AP and the phone. We model the human body and the phone in a

diagram in Figure 3.4(a), where the human body has width b and the distance

between the phone and the body is p. Next, Figure 3.4(b) illustrates the signal

propagation condition as the user rotates herself. We see that when the orien-

tation of the user and phone is within an angular sector between ~d1 and ~d2, no

LOS path will reach the phone. We refer to this angular sector as the blocking

sector. Because the dominating path is blocked, the signal strength observed in

this sector will be significantly lower than that of the other orientations.

Modeling the Blocking Sector. Using simple geometry, we can further

characterize the blocking sector, particularly its size in degrees.

Theorem 1. When line-of-sight is the dominant propagation path between the AP

and the smartphone, the angular size β of the blocking sector is defined by

β = 180◦ − 2(arctan
2p

b
− arcsin

bp

d
√
4p2 + b2

). (3.1)

68



Chapter 3. Accurate Wireless Transmitter Localization

where p is the distance between the human body and the phone, b is the body width,

and d is the distance between the AP and the user.

Proof. As shown in Figure 3.4(c), line l passes the AP (denoted by A) and the

center of human body (denoted by B). Assume the rightmost point of human body

is C and consider the triangle △ABC. By the sine law, we have b
2 sin θ

= d
sin γ

, where

θ and γ are marked in Figure 3.4(c). Similarly, we have γ = θ + α
2
. Given that

γ = arctan 2p
b
, we arrive at α = 2(arctan 2p

b
−arcsin bp

d
√

4p2+b2
). Since β = 180◦−α,

we prove that Equation (3.1) holds.

In practice, the distance between the AP and the user is much longer than the

human body width (≈ 0.4m), namely d >> b, d >> p. Furthermore, when a user

holds the smartphone in a natural posture, the smartphone is roughly half of the

body width away, namely b ≈ 2p. Then we can reduce (3.1) to

β ≈ 180◦ − 2 arctan
2p

b
= 90◦. (3.2)

Summary of Findings. The objective of our analysis is not to model the

exact impact of the human shield effect, but to capture the large-scale trend of

the signal strength profile, and its relationship with the user orientation and the

AP direction. Along these lines, our analysis leads to two key insights:

• During user rotation, the signal strength degrades heavily when the user orien-

tation is within a range, defined by the blocking sector. The angular size of the

sector is roughly 90◦ under general configurations.

• We can derive an estimate of the direction to the AP, by taking the opposite

direction of the center angle of the blocking sector β, as in Figure 3.4(c).
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Figure 3.5: Borealis’ directional analysis. (a) Deriving the AP direction based
on the blocking sector.(b) Choosing the blocking sector size. (c) Predicting the
confidence of our direction analysis by computing the cross-correlation between
the measured and ideal signal strength profiles.

3.4.3 Directional Analysis via Blocking Sector

Motivated by the insights from our model, we propose to estimate AP direction

by locating the blocking sector within the signal strength profile. In essence, we

organize the observed signal strength profile into overlapping sectors of size β, and

locate the candidate sector that displays the largest relative signal degradation.

The opposite direction from the center of the blocking sector is then the AP

direction.
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We now describe the detailed procedure of our proposed directional analysis.

The input to our analysis is the raw RSS value (in dBm) corresponding to each

measured user orientation. Here we do not apply any data smoothing, unlike the

results shown in Section 3.3. We represent the measured RSS profile during a user

rotation by

R = {(RSS(θi), θi)|i ∈ [1, N ]} (3.3)

where N is the number of measurement points, RSS(θi) represents the raw RSS

reading (dBm) at point i, and θi is the user orientation at point i (the clockwise

angle from the North orientation).

Organizing Candidate Sectors. We first form candidate sectors of width

β. This is done by applying a sliding window of width β on the cyclic version of

the signal strength profile, and shifting the window by ∆ after forming a sector.

The jth sector contains measurement points whose θ satisfies: (j − 1)∆ ≤ θ <

(j − 1)∆+ β. As a result, we create a total of K = 360/∆ overlapping candidate

sectors. The value of ∆ directly affects the accuracy and computation overhead.

From our experiments, we did not observe noticeable gain of using ∆ < 20◦. Thus

we chose ∆ = 20◦ in this work.

Locating the Blocking Sector. For each candidate sector Sj, we compute

the relative signal degradation by subtracting the average signal strength of the

sector from the average signal strength outside the sector:

Diff(j) =

∑
θ/∈Sj

RSS(θ)

N − |Sj|
−

∑
θ∈Sj

RSS(θ)

|Sj|
(3.4)

where |Sj| is the number of measurement points within the sector Sj and N is the

total measurement points in the signal profile. By considering the signal strength

distribution within and outside the sector, this relative degradation metric helps to
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mitigate the negative impact of non-uniform distribution of measurement points

within the signal profile. While (3.4) may not be an optimal function for identi-

fying the blocking sector, it works sufficiently well for our purposes.

Using the Diff function, the blocking sector S∗ is then

S∗ = argmax
Sj

Diff(j), (3.5)

the sector that suffers the heaviest signal strength degradation. After locating S∗,

we mark the opposite direction of the center orientation of S∗ as the AP direction.

Figure 3.5(a) demonstrates our proposed direction analysis in terms of the RSS

signal profile, the function Diff, the center angle of the detected blocking sector

(marked by the red triangle), and the actual direction opposite to the AP direction

(marked by BF). In this example figure, we smooth the RSS profile using a 20◦

sliding window average to show the general trend. We see that Borealis obtains

an estimate within 10◦ from the actual direction. Yet if we use the MinR method,

the estimated direction will be 30◦ away from the ideal result. The gain of our

solution comes from the fact that we examine the signal strength distribution at

the sector level, which not only captures the key effect of body blocking, but is

also robust against low levels of statistical variance in the measured data.

Impact of β. The above discussion also leads to another question: How

important is the chosen value of β? While this is difficult to study analytically,

we performed experiments to verify the impact of β on the direction estimation.

Figure 3.5(b) plots the percentage of measurement locations whose estimation

angular error is less than 30◦, as a function of β, for all three environmental

settings in Figure 3.3. We see that the value of β that produces the least amount
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of error is between [80◦, 100◦] for all three settings. For simplicity, we use β = 90◦

in subsequent experiments.

3.4.4 Confidence of Directional Analysis

Borealis’ directional analysis provides another result, by providing a confidence

level associated with each estimate of AP direction. Since no direction estimate is

perfectly accurate, an associated confidence value gives the user additional useful

information. As we show in Section 3.4.5, Borealis uses this confidence value of

each estimate to control how often a user needs to repeat the direction estimate.

Therefore, Borealis can bound the impact of directional analysis errors during user

navigation.

We compute the confidence by comparing the signal strength profile to an

idealized profile derived from our abstract model on body blocking. That is,

ideally, the measured signal strength profile should display a dip pattern, where

the signal strength is significantly lower for a range of angles. Based on this

insight, we build an ideal profile using a square-waveform-like curve, shown in

Figure 3.5(c). The width of the dip is β (β = 90◦ in our system), and the center

of the dip is set to the opposite of the (estimated) AP direction. The amplitude

of the square is Ap for the peak and Ad for the dip, Ap > Ad.

We use the confidence to capture the similarity between the measured signal

strength profile and the ideal profile. It can be computed as the cross-correlation

coefficient of the two profiles [106], a widely used similarity metric for any two

waveforms [36]. The correlation coefficient seeks to capture the similarity between

the measured and ideal dip patterns, assuming both patterns produce the same
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AP direction estimation. Hence before computing the correlation, we first align

the center of the dip in the ideal profile to the opposite direction of the estimated

AP direction, as shown in Figure 3.5(c). Next, let T = [t0, ..., tm−1] and R =

[r0, ..., rm−1] denote the vectors of RSS values for the idealized (and aligned) profile

and the measured profile, respectively. The confidence value ρ is:

ρ =
1

m
·
∑

i∈[0,m−1](ti − t)(ri − r)

σT · σR

, (3.6)

where t, r are the mean values of T,R respectively, and σT, σR are the standard

deviations of T,R. The larger ρ is, the more confident Borealis is about its

estimate. It is easy to prove that the values of Ap and Ad do not affect ρ, as long

as Ap > Ad. Thus we set Ap=1 and Ad=0.

3.4.5 Direction-Guided User Navigation

While direction analysis provides a good estimate of the AP’s direction relative

to a location, the goal of Borealis is to allow users to determine the AP’s physical

location. We choose to adopt methodology similar to prior work [54, 75, 76],

where a user moves towards the AP and performs periodic direction estimates to

tune its direction. Navigation ends when she reaches the AP.

We modify prior approaches by leveraging our prediction confidence results to

determine how frequently a user should update her direction of movement. Doing

so less frequently, i.e. longer distances between measurements, reduces the number

of measurements required. But this means error from a single measurement will

have a greater impact on the efficiency of the path taken. We dynamically select

the step size based on the confidence value predicted for each direction estimate. A

high confidence implies a reliable estimate and means the user can travel a longer
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distance before repeating the estimate. In contrast, a direction estimate with

low confidence means the user is likely in a location with complex propagation

conditions, and should repeat the estimate after moving a short distance along the

predicted direction. We use detailed experiments to evaluate this in Section 3.6.

3.5 A Borealis Prototype

We implemented a prototype of Borealis on both Motorola Droid and HTC

Dream/G1 phones, running the Android 2.2 Froyo OS. In the application layer, we

implemented Borealis’ directional analysis (with confidence prediction) and user

navigation using Java and Android SDK. In the OS layer, we modified the WiFi

driver to perform faster and more efficient RSS measurements. The architecture

of our prototype is shown in Figure 3.6.

Application Layer. Our program allows the user to identify a target AP

based on its SSID, and directs the user to start the rotation. During each rota-

tion, our program continues to collect user orientation and RSS values by polling

the compass sensor and WiFi RSS reports. Because the smartphones report ori-

entation data at a finer granularity than RSS, we pair each RSS reading with

an orientation reading based on their time stamps. Our program then analyzes

the measured signal profile, and computes the AP direction and the confidence

value of the current estimation. The direction is then displayed on the phone to

guide the user navigation. During navigation, our program also determines online

whether the next measurement point is reached, and informs the user accordingly.

OS Layer. While our main development effort lies in the application layer,

in the OS layer we modified the Android WiFi driver to boost the speed and
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Phone Hardware

Application Layer

OS Layer

Directional Analysis

Modified WiFi Driver

Navigation

Compass SensorWiFi

Figure 3.6: Borealis architecture overview.

efficiency of WiFi signal measurements. Android offers a native “Scan” function

to collect RSS reports of a target AP. However, this operation scans all 13 WiFi

channels sequentially, wasting both time and energy. To fix this, we modified the

WiFi driver to only scan and report RSS on requested channels. This change

reduces the RSS report time by a factor of 10.

For our current prototype, each user rotation takes 1 minute to obtain a smooth

RSS profile. We are currently working on understanding the minimum duration

that produces an accurate result. Our preliminary results show that rotation

duration of 10 seconds produces similar results to those of 1 minute durations.

In addition, we are also investigating techniques that would allow us to measure

RSS signal profiles opportunistically using users’ natural movements, rather than

forcing them to perform in-place rotation.

3.6 Evaluation

In this section, we evaluate our Borealis prototype using experiments on five

Motorola Droid and HTC G1 phones. We use a Linksys WRT54GL 802.11b/g

router as the WiFi access point, with a transmit power of 200mW. Our experi-

ments were conducted over multiple days by seven users with different body shapes
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Figure 3.7: The performance of Borealis directional analysis. (a) The CDF
of the angular error for the three propagation environments. Borealis is fairly
accurate for most of the test locations. (b) When Borealis produces larger errors,
the signal profile often displays multiple dips, which creates multiple peaks in
the Diff function. In this case, Borealis chooses the highest peak to estimate AP
direction. (c) We observe a general trend where the confidence value of a direction
estimation scales inversely with the angular error.

and ways of holding phones. Because G1 and Droid display similar results, we

only show the Droid results for brevity.

We evaluate the impact of radio propagation by experimenting in three rep-

resentative environments, as illustrated by Figure 3.3. In Simple LOS, we placed

the AP on top of a shelf 2 meters in height, on a 100m×200m lawn. All the ex-
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periments were on the lawn and away from large buildings. In Complex LOS, we

placed the AP on top of a trailer building (5-meter in height) and experimented in

the nearby parking lot surrounded by trailer buildings of similar height. In these

locations, we could still see the AP. For NLOS, we used the same configuration

of Complex LOS but experimented along the hidden walking paths where the AP

was no longer in sight. For each environment, we experimented with at least 400

locations for each phone. There were random human movements throughout our

experiments, e.g. people walking or biking.

To evaluate Borealis, we compare four systems for deriving AP direction via

signal measurements.

• MinR – The baseline algorithm for our proposed directional analysis. It treats

the opposite direction of the weakest signal as the AP direction.

• Borealis – Our proposed directional analysis.

• Offline Analysis – An offline version of our directional analysis using a

clustering-based learning algorithm. It first collects the signal strength pro-

file from roughly 360 locations in each environment, along with the actual

direction of the AP in each case, and uses clustering techniques to build an

optimized model, which is then applied to the remaining 60 locations for each

environment to generate accuracy results.

• GUIDE [54] – A prior work that measures signal strength at three locations

(forming a triangle) and computes the signal strength gradient to determine

the AP direction. This method is the most comparable to Borealis since it is

online and requires a very small set of measurements.
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Figure 3.8: Comparing Borealis to Offline Analysis, MinR, and GUIDE in the
three environments. Borealis significantly outperforms MinR and GUIDE, and is
within a small distance from its offline version (Offline Analysis).

In the following, we evaluate Borealis’ accuracy in AP direction estimates

using both per-location measurements and user navigation experiments. We also

examine the energy consumption of Borealis on both Droid and G1 phones.

3.6.1 Accuracy of Borealis Direction Estimation

We start from examining the accuracy of Borealis’ direction analysis. Fig-

ure 3.7(a) shows the cumulative distribution of the angular error in AP direction
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estimation. The angular error is the absolute difference in angular degree, between

the estimated AP direction and its true direction. The results show that Borealis

is fairly accurate in the Simple LOS environment – in 80% of locations, Borealis

produces no more than 30◦ angular error. For the Complex LOS and NLOS en-

vironments where multipath propagation becomes dominating, Borealis can still

maintain an error of no more than 50◦ and 65◦ for 80% of locations, respectively.

Sources of Large Errors. The above results show that occasionally, Borealis

does produce large errors in direction estimation, particular for the Complex LOS

and NLOS environments. To understand the cause of such errors, we studied the

signal strength profile of locations with error higher than 60◦. We observed that

in most cases, the signal profile displays multiple dips, creating multiple peaks in

the Diff function used in the directional analysis. In this case, Borealis’ direction

analysis uses the highest peak to estimate AP direction (based on eq. (3.5)).

Figure 3.7(b) plots the probability of having multiple peaks in Diff, as a function

of the angular error. Clearly, the larger the angular error, the more likely that it

is caused by multiple dips in the measured signal profile. We also examined the

spatial measurement locations with large estimation errors (> 80o), and did not

find any strong correlation between the two.

Confidence Prediction. Different from conventional solutions, Borealis also

measures the confidence of its direction estimation. Figure 3.7(c) plots the rela-

tionship between the angular error of the direction estimation and the confidence

value, using measurement data from all three environments. We observe a general

trend that the angular error scales inversely with the confidence value.
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An interesting question is whether the pattern observed in Figure 3.7(b), i.e.

multiple dips in the signal profile or multiple peaks in Diff, can be used to re-

fine the confidence estimation. The answer is no. This is because having large

errors always maps to having multiple peaks in Diff, but not vice versa. From

Figure 3.7(b) we see that the pattern appears even for cases with small angular

errors.

3.6.2 Comparison to MinR & Offline Analysis

To examine the optimality of Borealis within the proposed directional analysis,

we now compare Borealis’ sector-based estimation to MinR, a simple estimation

method, and Offline Analysis, the offline version of Borealis that uses training

data to optimize direction decision. The comparison to MinR allows us to under-

stand the gain of sector-based analysis, while the comparison to Offline Analysis

allows us to understand the distance between Borealis and the “upper bound”

performance of our directional analysis. The comparison is shown in Figure 3.8

in terms of the statistical distribution of the angular error.

We make two key observations. First, there is a large performance gap between

MinR and Borealis. For example, for 80% of locations, the bound on angular error

of MinR is 60◦ for Simple LOS, 120◦ for Complex LOS, and 135◦ for NLOS. This

is roughly 2 times the Borealis’ estimation error. As we have discussed earlier,

such large error is because inherent signal variations create random ripples in

signal strength profile. Thus a single point based direction analysis is highly

sensitive to such random variations, leading to large errors. These errors are

further exacerbated by multipath propagation in complex environments.
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Second, the gap between Borealis and its offline-trained version is rather small,

and even negligible in Simple LOS. We note that the offline version has the advan-

tage of optimizing the direction estimation mechanism based on training data, so

that it is able to recognize certain patterns in complex environments and produce

a more accurate decision. On the other hand, the cost of such small improvement

is the large measurement overhead and the fact of being an offline learning so-

lution requires actual knowledge of the AP direction. Overall, because the gap

between the two methods is small, we conclude that Borealis is a practical and

effective solution for determining AP direction in real time.

3.6.3 Comparison to GUIDE

We now turn our attention to GUIDE [54] , the most relevant work in AP

direction prediction using signal measurements. Similar to Borealis, GUIDE op-

erates online, uses only a single receiver and requires a small set of measurements

(at three locations). Different from Borealis, GUIDE applies a triangle-gradient

based solution to estimate the AP direction.

We implemented GUIDE on our smartphones and experimented it in the three

environments. Figure 3.8 compares the performance of GUIDE to that of Borealis.

We see that for all three environments, Borealis significantly outperforms GUIDE.

The key reason behind such large performance gap is that GUIDE (and other

gradient based solutions) assumes that received signal strength degrades with the

distance between the transmitter and receiver. In practice, this does not always

hold, even in the simple LOS environment. Our own experiments show that the

above assumption breaks in roughly 30% of the measurement cases.
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For fairness, we did not compare Borealis to other AP localization methods,

such as [140] and [55] . This is because these designs either require sophisticated

directional antenna [140] or large measurements [55].

3.6.4 Locating Indoor APs

We also examined the scenario where the AP is placed indoors and an out-

door user collects signal measurements to estimate AP direction. Specifically, we

consider the complex LOS setting in Figure 3.3 but place the AP inside the office

trailer so that the wall of the trailer blocks all paths from the AP to the measured

locations. The AP is located in the center of the trailer, away from windows and

doors. We repeat the experiments at the same measurement locations used in our

previous experiments.

In Figure 3.9, we compare the performance of both Borealis and GUIDE to

prior results when the AP is placed outdoors. We see that multipath propagation

in the indoor AP scenario does degrade the accuracy of direction estimation.

However, the degradation is nearly negligible for Borealis. More importantly,

Borealis still significantly outperforms GUIDE when locating indoor APs. These

results show that Borealis is effective, and more accurate for locating indoor APs

using outdoor signal measurements than GUIDE.

3.6.5 Borealis Navigation Efficiency

We also evaluate Borealis’ end-to-end performance in terms of user navigation.

We randomly selected 40 starting points in the three environments. They are

within 60-140 meters from the AP and have RSS values around -90dBm. Further
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Figure 3.9: The performance of directional analysis when outdoor users locate
an indoor AP using Borealis or GUIDE. The accuracy is comparable to the cases
where the same AP is placed outdoors.

locations are not considered because no AP is detected. This range is similar to

those used by prior work on outdoor AP location [54, 55].

We compare two Borealis navigation designs: i) navigation with periodic direc-

tional analysis (e.g. the tester rotates every 20 meters), and ii) confidence-guided

adaptive navigation which determines the next location of directional analysis

using the confidence of the current estimation. Specifically, if the confidence is

above 0.8, the user rotates again after walking 30 meters. If the confidence is less

than 0.3, she rotates after 10 meters.

We use two performance metrics: navigation overhead and measurement fre-

quency. The navigation overhead is the normalized extra distance traveled to

locate the AP: navigation distance
shortest distance

− 1. We compute the navigation distance using

GPS records of the navigation, and the shortest distance from GPS coordinates

of the AP and the starting point. Because the shortest path might be blocked by

obstacles, this metric serves as the upper bound on the extra distance traveled

to locate an AP. On the other hand, the measurement frequency defines average
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distance between two consecutive user rotations. It should be close to 20 meters

for the periodic method, but larger for the adaptive design.

Table 3.1 lists both metrics averaged from the 40 experiments, using the pe-

riodic and adaptive methods. We see that in both Simple and Complex LOS

environments, the adaptive design not only reduces the navigation overhead but

also the measurement frequency. In particular, even in Complex LOS, it reduces

the navigation overhead by half, and only invokes user rotation every 30+ meters.

The gain is smaller in NLOS due to lower confidence in our directional analy-

sis. Note that navigation overheads are very high in the NLOS case because we

compared real physical walking paths taken by Borealis against shortest possible

point-to-point distance to the AP. The high navigation overhead is from the user

walking around obstacles such as buildings, trees and cars.

Figure 3.10 plots three sample navigation paths for the NLOS environment.

We see that the navigation paths generally follow feasible walk paths, which

demonstrates the efficiency of our proposed solution. Buildings and trailers do

affect the accuracy of Borealis’ direction estimates. But such errors are easily

avoided by the user moving to a different location. An interesting observation

is that multipath propagation is not always harmful. Often the strongest signal

component comes from a path circumventing the obstacle, and the measured sig-

nal profile will indicate a strong dip near the direction of the open path. While it

might not point to the exact AP direction, it certainly helps the user to identify

a feasible path to the AP.

Borealis vs. GUIDE. We repeat the above experiments using GUIDE and its

navigation procedure presented in [54]. For practical reasons, we stop GUIDE’s

navigation process when its navigation overhead is greater than 200% for Simple
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Navigation Measurement
Overhead Frequency

Simple LOS
Periodic 48% 22.59m
Adaptive 15% 31.26m

Complex LOS
Periodic 74% 21.63m
Adaptive 37% 30.62m

NLOS
Periodic 134% 20.45m
Adaptive 107% 21.47m

Table 3.1: Performance of Borealis’ navigation in the three propagation envi-
ronments. Adaptive navigation guided by the confidence value not only reduces
measurement frequency, but also shortens navigation distance.

LOS and 500% for Complex LOS and NLOS. Note that under this constraint,

Borealis, using both periodic and adaptive navigation, can always reach the AP

within a distance of 2m. But GUIDE’s navigation rarely finds the AP. Only for

15% of all cases is GUIDE able to approach the AP within 11m. For all other cases,

the user is still 35-184m away from the AP and does not have an accurate angular

direction to the AP location. This result is consistent with the results offered

by [54]. It is not surprising, since Borealis significantly outperforms GUIDE in

direction analysis (Figure 3.8).

3.6.6 Energy Consumption

We now evaluate Borealis’ battery consumption using both Droid and G1

phones. Our analysis leverages the battery usage summary tool offered by An-

droid. In addition to identifying the total battery usage of each Borealis’ direc-

tional analysis operation, we also study the distribution of energy costs across the

different components involved.
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C
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Figure 3.10: Sample navigation paths of Borealis in the NLOS environment.
Points A, B, C mark the three starting points, and squares mark the locations of
user rotation.

We configure our energy experiments as follows. Because the Android battery

report has a coarse granularity (per 1% battery usage for G1 and 5% for Droid), we

use a brand new, fully charged battery for each phone and run Borealis repeatedly

to drain the battery. For each experiment, we also call the Android PowerManager

API to log the phone battery level every 10 minutes. We verified offline that this

API has negligible impact on battery usage. Using the battery log and the Borealis

trace, we compute the energy consumption of each Borealis operation. We use

two Droid and two G1 phones in our experiments, and show the average results

for each phone category.

Table 3.2 summarizes the results of our energy experiments, including a de-

tailed breakdown to five major components (as reported by the Android battery

usage summary). The total energy consumption of a single Borealis directional

analysis takes 0.36% of the total battery for Droid phones and 0.78% for G1

phones. The majority of energy cost comes from Display (for both phones) and
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Droid G1
% of battery consumed
per Borealis operation 0.36% 0.78%
% of battery consumed

ignoring Display and Standby 0.15% 0.29%

Distribution of Energy Usage across Components
Display 54% 32%

Cell Standby 3% 31%
WiFi Radio 5% 12%

OS 21% 11%
Other Borealis Activity 17% 13%

Table 3.2: Energy consumption analysis of Borealis’ directional analysis on Droid
and G1 phones.

Cell Standby (for G1). If we remove these factors, the battery use of a Bore-

alis direction analysis operation reduces to 0.15% for Droid and 0.29% for G1.

The OS component of Borealis consumes a substantial bit of energy. This is not

due to computation, but the fact that each Android app must run inside its own

lightweight virtual machine.

Finally, we note that WiFi uses much less energy compared to other compo-

nents, because Borealis’ signal measurements are passive and do not involve packet

transmission. More importantly, Borealis only requires signal measurements dur-

ing user rotation, and each navigation only requires a user rotation every 20-30m.

Therefore, we conclude that normal usage of Borealis will not significantly impact

the battery life of a smartphone.
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Figure 3.11: Sample signal strength profiles as a user rotates, measured using
USRP2 GNU radios operating on 2.4GHz and 5GHz. We observe the same signal-
blocking artifact. As before, BF marks the direction where the user has her back
facing the AP.

3.7 Conclusion

In this chapter, we described Borealis, a smartphone-based system for locating

WiFi access points in real time. While our tests show Borealis to be effective on

Android phones in different environments, earlier measurements suggest that the

same techniques would be effective on other smartphone platforms as well.

More importantly, the underlying principle behind Borealis, using signal dips

from blocking obstacles to locate wireless transmitters, is general and could be

applied to locate other types of transmitters. For example, Figure 3.11 plots two

sample signal strength profiles obtained from a rotating user holding a USRP2

GNU radio operating on 2.4GHz and 5GHz. It is clear that the same signal-

blocking artifact exists for these frequencies as well. For transmitters on lower

frequencies that penetrate deeper and exhibit more multipath propagation behav-

ior, users can potentially “rotate” or move around larger obstacles such as trees,

vehicles, or buildings. Development of these systems could address significant
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network management issues in the future, such as the enforcement of authorized

transmissions in dynamic spectrum networks.
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Chapter 4

Boosting Network Capacity via
60GHz Picocells

4.1 Introduction

We are all witness today to an explosion in mobile broadband usage. Thanks

to bandwidth-hungry HD/3D video applications, industry research predicts that

aggregate bandwidth requirements will increase by 1000-fold by 2020 [1]. This

staggering growth is taxing mobile cellular networks past their limits and creating

a capacity crisis [2]. Existing methods to increase capacity have reached their lim-

its: spectral efficiency is slowly approaching the Shannon limit [46]; and acquiring

more spectrum provides limited capacity gains, while facing regulatory hurdles

and high monetary costs [2].

To deliver the three orders of magnitude bandwidth growth required by mobile

applications, we need to consider dramatically different approaches for delivering

wireless content. A viable approach must meet several key requirements. First,

it must provide total capacity that scales with the number of base stations in

a given region. This means base stations must support dense deployments with
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minimal mutual interference. Second, it must increase capacity per base station by

increasing amount of spectrum used and minimizing intra-cell interference between

nearby mobile users. Finally, per-user data rates must be at least an order of

magnitude higher than currently available rates, while providing robustness and

reliability that match or exceed current standards in mobile and static scenarios.

Going Small. To minimize incremental deployment costs, cellular operators

are exploring techniques to deploy smaller, denser cells for higher capacity, e.g.

LTE picocells on lampposts or WiFi hotspots [3, 31], which augment existing LTE

macrocells. Shrinking cell radii from several kilometers down to 100s (or even 10s)

of meters is necessary to improve link quality and increase cell capacity. However,

this approach is fundamentally limited by interference constraints for the carrier

frequencies employed in today’s cellular systems [115]. Specifically, at carrier

frequencies of 1-5 GHz, physical form factor constraints put a hard limit on the

number of antennas that can be accommodated on a picocellular basestation and a

mobile device. Thus, even MIMO technologies can only mitigate interference to a

limited degree, and picocell systems based on low carrier frequencies (LTE, WiFi,

TV whitespaces) are unlikely to ever deliver the capacity increase we need [115].

The Promise of mmWave. But there is hope. Higher carrier frequencies,

particularly millimeter-wave (mmWave) bands (30-300GHz), offer an attractive

alternative. Using highly directional beams that drastically reduce interference,

they enable small cells to truly deliver on their promise. Take 60GHz for exam-

ple. First, the 60GHz band provides 7GHz of unlicensed spectrum for bandwidth

hungry mobile applications, and is supported by the IEEE 802.11ad standard [13]

(currently targeting indoor multiGigabit wireless networks) that defines multiple
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data rates between 385Mbps and 6.76Gbps. Second, since 60GHz has a much

shorter carrier wavelength, i.e. 5mm, it is possible to pack large antenna arrays

into relatively small form factors. A 100-element 60GHz array easily fits in no

more than a square inch1, which can be easily integrated into today’s mobile de-

vices. Third, the high density of elements allows very high aggregate bandwidth,

while the narrow directional beams limit interference and provide potentially “un-

limited” levels of spatial reuse. Finally, low-cost 60GHz radio chips are already

available on the mass market [4, 5], e.g. Dell Latitude 6430u laptops can be

ordered with multi-Gbps WiloCity 60GHz chips for an additional $37.5.

Clearly, 60GHz links offer an attractive and practical solution that satisfies

many of the requirements we mentioned. The goal of this work is to show that,

while most of the attention in academia and industry focuses on 60 GHz for indoor

applications, it is also a strong candidate for delivering the 1000-fold capacity

increase demanded for outdoor cellular networks in dense urban environments.

A 60GHz Picocell Architecture. We propose a picocell architecture using

60GHz links, as depicted in Figure 4.1. We envision picocellular base stations

densely deployed on lampposts or building ledges, with each station mounting

multiple antenna arrays on each of its “faces.” Properly tuned, each array can

transmit independently to a different mobile user. To see the potential of this

approach, consider a face which is 6x6 square-inches to a side. This can accom-

modate up to 36 60GHz 100-element arrays. If each array transmits at 2Gbps,

the maximum data rate per face is 72 Gbps. Thus a single base station with 4

faces could support up to 288 Gbps downlink! Augmenting existing LTE cells

1In theory, this is hundreds of times smaller than arrays with the same number of elements
for frequencies at or below 5GHz.
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with such a high-capacity picocell deployment provides a path to future-proofing

our cellular networks.

Despite the immense potential of 60GHz outdoor picocells, so far, both in-

dustry and academia have explicitly precluded 60GHz from outdoor cellular de-

signs [109, 120]. For example, Samsung’s recent outdoor mmWave attempts

demonstrated a device prototype for transmission at 28GHz (a licensed band) [109].

Key concerns include propagation loss due to oxygen absorption, which peaks at

60GHz, and increase in propagation loss at higher carrier frequencies (unless highly

directional antennas are correctly aligned at both endpoints). Another concern

is blockage (diffraction around obstacles is more difficult at higher frequencies).

These worries led to the limited use of outdoor 60GHz links in static backhauls,

where manually adjusted high-gain antennas are positioned high above to avoid

potential blockages.

Our Contributions. Our first contribution is to dispel common myths about

60GHz via extensive measurements and simulations, showing that the potential

for 60GHz outdoor picocells can be realized without bending the laws of physics.

Unlike prior efforts that focus on propagation models [90, 45, 94, 119], we exper-

iment with off-the-shelf 60GHz radios, and study key questions such as transmis-

sion range, robustness to blockage and user motion, and spatial reuse. We explore

how these issues are affected by future hardware upgrades (especially in terms of

increasing the number of antenna elements). Unlike proposals for cellular systems

in other mmWave bands [109], design and evaluation of our outdoor network can

leverage extensive efforts already put into 60GHz PHY hardware and standards

for indoor networks. Our second contribution is to point out the cross-layer archi-
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60GHz BS1 60GHz BS2

60GHz  BS3

Control Plane 

(e.g. LTE network) Backbone Network

Figure 4.1: A potential 60GHz picocell architecture for outdoor mobile broad-
band augmenting existing LTE networks for significant increase in capacity. Each
basestation contains many antenna arrays, each containing a large number of ele-
ments. Leveraging an LTE uplink as the feedback loop, each basestation can track
and form highly directional beams simultaneously to multiple users. The beams
follow users through direct or reflected paths, creating high-bandwidth downlink
transmissions. Users can form beams in the reverse direction to build 60GHz
uplinks, or use existing LTE uplinks.

tectural innovations required to truly deliver on this potential, and identifying an

interdisciplinary research area spanning the PHY, MAC and networking layers.

We now provide a quick preview of the myths we dispel.

• Myth #1: 60GHz’s range is too small for outdoor picocells. Within

FCC’s power regulations, and taking into account oxygen absorption and heavy

rain, 60GHz offers coverage area that exceeds 130m for 385Mbps and 79m for

2+Gbps. A propagation loss of 36 dB/km due to oxygen absorption and heavy

rain makes it difficult to achieve kilometer-long links. But these factors only

produce a 3.6 dB loss in signal strength at 100 m.

• Myth #2: 60GHz is highly sensitive to blockage, hence robust out-

door connectivity is not feasible. Indeed, 60 GHz links can be blocked
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easily by a human body (20-50 dB of loss), and we do not have enough trans-

mit power to burn through obstacles. However, an electronically steerable

antenna array can point its beam towards one of several reflected paths avail-

able off of outdoor surfaces. The additional reflection loss of 5-7 dB can be

handled within our desired link budget. We show that this, together with the

concept of “picoclouds” (multiple base stations serving a given mobile user),

can provide robust connectivity even in obstacle-rich urban environments.

• Myth #3: User motion will easily break 60GHz links. Detailed mea-

surements show that electronically steerable antennas in off-the-shelf radios

can easily keep up with outdoor pedestrian motion, and only need to realign

once every few seconds to maintain high rate connections. In essence, the time

constant of electronic adaptation is small compared to the time constants of

human mobility.

• Myth #4: Interference will significantly limit network capacity for

small cells. While this is indeed true at lower carrier frequencies [115],

60GHz’s small interference footprint means that 60GHz picocells can be densely

deployed with significant overlap but minimal interference, leading to a signif-

icant boost in spatial reuse. The reduced interference results from two factors:

highly directional links that reduce interference between nearby users, and

oxygen absorption and blockage from buildings that severely attenuate inter-

ference from distant cells.

In the rest of the chapter, we elaborate on these results, and show that 60GHz

outdoor picocells are indeed a feasible approach for delivering orders of magnitude

increase in network capacity.

96



Chapter 4. Boosting Network Capacity via 60GHz Picocells

Limitations and Future Work. As an exploratory study, our work has sev-

eral limitations that need to be addressed in future work. First, the preceding

myths correspond to physical properties of 60 GHz communication. Thus, dis-

pelling them amounts to saying that, while the characteristics of 60 GHz are very

different from those at lower carrier frequencies, there are no fundamental barri-

ers in realizing its immense potential. However, as we discuss in §4.6, there are

significant design challenges (and hence research opportunities) across a range of

research disciplines, including hardware, signal processing and cross-layer protocol

design. Second, our measurement experiments are constrained by limitations of

available 60 GHz hardware, hence these results are supplemented by projections

and simulation-based predictions (see §4.6 for a discussion on the role of such tech-

niques for future research). Third, while picocellular deployments may be used to

add capacity in a number of environments, our focus here for 60 GHz picocells is

restricted to dense urban environments with high availability of reflecting surfaces

such as walls. These are also locations likely to first experience full utilization of

LTE capacity. Some of our conclusions may not apply, for example, to picocells

covering large open spaces, where lower carrier frequencies may be a better choice.

4.2 Background and Methodology

In this section we introduce background on 60GHz communications and de-

scribe our experimental methodology.
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4.2.1 60GHz Background

Directional Transmissions. To overcome attenuation and reduce interference,

60GHz links use beamforming to concentrate transmission energy in a desired di-

rection. Today, 60GHz beamforming radios are readily available and affordable,

either using horn antennas or antenna arrays. Radios with horn antennas use a

flaring metal horn to direct radio waves, but require mechanical rotators to achieve

fine-grained directional control [158]. On the other hand, radios with antenna ar-

rays implement directional transmissions using electronic beamsteering [98, 4],

employing signal processing at RF and baseband to adjust beam directions with

minimal delay (e.g. a few ns). Such instantaneous beam adaptation makes an-

tenna arrays an ideal fit for picocells.

The performance of antenna arrays scales with the number of antenna el-

ements. The more the elements, the stronger the beam and the less the signal

leakage. Today’s low-cost 60GHz consumer products use 2×8 arrays (16 elements),

while researchers have demonstrated 60GHz 16×16 array prototypes (total of 256

elements) [101]. Furthermore, recent breakthroughs make it computationally fea-

sible to adapt even larger arrays (1000+ elements, but still fitting in palm-sized

form factors!) [116], which puts us in a position to take advantage of future hard-

ware advances to synthesize even narrower beams to further increase spatial reuse.

Oxygen Absorption and Rain Loss. At longer ranges, the advantages of

directionality are offset by signal strength losses from oxygen absorption, which

peaks at 60GHz, causing a loss of about 16 dB/km [6, 150]. While this makes

realizing long-range (kilometers) 60 GHz link very difficult, it is actually an advan-

tage for picocellular networks because it significantly enhances spatial reuse while
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having relatively small impact on the link budget at the link ranges of interest to

us, as also confirmed by our testbed experiments in §4.3. For example, the net

loss due to oxygen absorption and very heavy rain of 2 inches/hour is 36 dB/km,

which works out to a modest 3.6 dB for a typical link range of 100m.

Impact of FCC Regulations. The emitted power at 60GHz is constrained by

the Federal Communications Commission (FCC) as follows: the transmit power

plus beamforming gain, termed Effective Isotropic Radiated Power (EIRP), is

limited to 40 dBm. For antennas that are extremely directional (e.g., using

parabolic dishes), the FCC has relaxed its specifications to permit further in-

crease of EIRP [10], but we are unable to take advantage of this in the operating

regime of interest to us: our architecture is based on highly directional, elec-

tronically steerable beams, but the beamwidth is still too large for the new FCC

regulations to permit an EIRP higher than 40 dBm. Thus, increasing the number

of elements in the transmit array does not improve link range if we already at an

EIRP of 40 dBm, hence enhancements in link range must come from the receiver,

by decreasing the receiver’s noise figure or by increasing its antenna directivity. Of

course, increasing the number of transmit elements has a big impact on network

performance, narrower transmit beams reduce interference and enhance spatial

reuse.

Leveraging IEEE 802.11ad. The IEEE 802.11ad standard for 60GHz [13] de-

fines a number of modulation and coding schemes to adapt to different range-rate

tradeoffs. In our envisioned picocellular architecture, we leverage this 802.11ad

physical layer on the downlink, and show that link ranges of the order of 100m

are attainable (see Table 4.1). Of course, our MAC and network layers will be
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different from that of 802.11ad, given the need to adapt to a far more dynamic out-

door environment than the indoor networks the 802.11ad standard was currently

intended for.

The link budget calculations resulting in these ranges use conservative assump-

tions (measurements from our testbed lead to more optimistic predictions). The

receiver sensitivity for each data rate (i.e., minimum received power required to

sustain that data rate), obtained from the 802.11ad standard, already accounts

for large values of implementation loss (5 dB) and noise figure (10 dB). The link

budget accounts for the FCC EIRP restriction of 40 dBm and loss due to free

space propagation and oxygen absorption. On top of that, we add a link margin

of 15 dB, which is more than enough to account for reflection loss (in case we are

using a bounce rather than a LoS path, which typically leads to at most 5-7 dB

loss) and for for rain (even for heavy rain, the additional loss on top of oxygen

absorption is about 20 dB/km, hence the rain loss over 100m is 2 dB). That is,

the receiver sensitivity as a function of range R (in meters) is computed as

PRX(dBm) = EIRP (dBm) +GRX(dBi)− Lploss(R)− Lmargin (4.1)

where GRX(dBi) = 10 log10 NRX is the receiver antenna directivity as a function

of the number of receive elements NRX (we consider NRX = 16, 64, 100 for the

4× 4, 8× 8 and 10× 10 arrays). The path loss Lploss in dB is

Lploss(R) = 10 log10
16π2R2

λ2 + αR (4.2)

with α = 0.016 dB/m (16 dB/km) accounting for oxygen absorption, and λ =

0.005m at 60 GHz.
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H=6m

h2=1.54m

h1=1.8m

Figure 4.2: Controlled environment:
a picocell system with 60GHz radios at
both basestations and mobiles.

BS1
BS2

Figure 4.3: Real-life environment:
a downtown street area with random
pedestrians.

Figure 4.4: Radiation patterns of our testbed’s horn antenna and a 10x10 rect-
angular array.

4.2.2 Measurement Methodology

Unlike prior efforts that focus on propagation models using custom equip-

ment [45, 90, 94, 119], we experiment with commercial off-the-shelf 60GHz radios.

We study key issues regarding the feasibility of 60GHz picocells, including range,

sensitivity to motion and blockage, and interference footprint.

Measurement Environments. We perform experiments in two types of

environments.
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• Controlled Environments. These are environments without any uncontrolled

pedestrian. We use these measurements to evaluate the impact of individual

factors in isolation. To emulate a picocell, we place a radio on a second floor

balcony (6m high), representing a basestation fixed on a lamppost (Figure 4.2).

A second radio represents the end user.

• Real-Life Environments. We also performed experiments in a downtown street

walkway (Figure 4.3) and a campus plaza during busy hours with uncontrolled

pedestrian. The basestation is placed on a second floor balcony (6m high).

Data rate RX sensitivity 4× 4 RX 8× 8 RX 10× 10 RX
385 Mbps -68 dBm 63m 114m 138m
1.155 Gbps -64 dBm 41m 77m 94m
2.31 Gbps -61 dBm 30m 57m 70m

Table 4.1: Outdoor range/rate tradeoffs with 802.11ad PHY

60GHz Radio Platforms. We consider two types of 60GHz radios with

antenna arrays, representing today’s off-the-shelf hardware and high-performance

radios for future deployments. By comparing their results, we also seek to identify

issues that can be addressed by reasonable hardware upgrades, and those that are

fundamental to 60GHz picocells and hence require careful network design. For

both platforms, each radio operates on a single 60GHz channel of width 2.16GHz.

• Wilocity 2×8 Antenna Arrays. We use pairs of Dell 6430u laptops (as users)

and D5000 docks (as basestations), designed for indoor usage. Each has a

Wilocity 60GHz radio chipset with a 2×8 rectangular antenna array, oper-

ating according to IEEE 802.11ad. Because Wilocity does not provide any

information on the beamwidth, we apply the antenna array theory [56] to
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compute the lower bound on the beamwidth: the horizonal 3dB beamwidth

is 13o and the vertical 3dB beamwidth is 60o. Each radio adapts link rate

between 385Mbps and 3.85Gbps, and maintains directional connectivity over

time (e.g., if the LoS path is blocked, it seeks a reflected path and beamforms

along it). Currently, the radio does not provide external control of link di-

rections, hence we rely on its built-in algorithm to manage link directionality.

The radio does not report signal strength values but link rates, so we monitor

link performance using fine-grained reports on TCP/UDP throughput and link

rate.

• Emulating 10×10 Antenna Arrays. There are no suitable 60GHz radios with

large antenna arrays on the market. Instead, we emulate the performance

of a large antenna array using a horn antenna. For experiments that do not

consider interference, this can provide accurate results. This is because 60GHz

link performance is largely determined by directionality and signal patterns of

the main beam lobe2. In this regard, large antenna arrays and horn antennas

are very close except for differences in antenna gain.

Specifically, we use two HXI Gigalink 6451 radios with 0dBm transmit power

and 1Gbps link rate, operating on a proprietary (non-802.11ad) configuration.

Each radio has a horn antenna of 10o 3dB beamwidth and 25dBi gain. Its main

lobe pattern closely align with that of a 10x10 array with 1dBi elements with

21dBi gain (Figure 4.4). We set each radio on a mechanical rotator and adjust

its beam direction in units of 0.5o. Each measurement records the received

2Antenna arrays produce side lobes (i.e. unwanted transmissions in undirected directions)
aside from the main lobe. The side lobes are at least 13.26dB weaker than the main lobe and
thus not responsible for data communication [73].
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signal power level (RSS), repeated once every 50ms. The measured noise level

is -80dBm.

Since HXI radios use a proprietary physical layer and only support a single data

rate, they cannot fully capture the performance of a picocell operating based

on 802.11ad. However, we can extrapolate the attainable range to 802.11ad

settings: increasing the EIRP to 40 dBm from the 25 dBm in our testbed

leads to a 15-4=11dB increase in RSS (counting the 4dB gain difference of

horn antenna and 10×10 arrays). This provides us with a practical means of

using our testbed to verify link budget calculations as in eq. (4.1), and also

to predict the supported data rate for each RSS measurement following the

802.11ad receiver sensitivity table. Specifically, we use the 802.11ad receiver

sensitivity table to derive the required SNR for each data rate, and use it

to derive the data rate supported by each RSS measured by our testbed. A

similar methodology has been used in prior work on 60GHz systems [158].

4.3 Single-User Feasibility Study

Using testbed measurements, we perform initial evaluation on the feasibility of

60GHz picocell systems, focusing on dispelling the four myths discussed in §5.1.

Assumptions. Due to hardware limitations, our measurement study makes a

few assumptions. First, our experiments emulate a single array forming a beam to

serve a single user, using either 2×8 WiloCity arrays at both ends or 10×10 arrays

at both the base station and the user. Our envisioned picocellular base stations

would have multiple such arrays, one for each user, as discussed in §5.1. Second,

we assume the target user is stationary (sitting or standing), although her body
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Radio Type Weather
Minimum Link Rate (Mbps)
385 1155 2310

Wilocity 2x8 clear 23m 15m 10m
EIRP=23dBm heavy rain 22m - -
HXI 10x10 clear 178m 124m 93m

EIRP=40dBm heavy rain 139m 102m 79m

(c) Ranges of 60GHz Arrays

Figure 4.5: Measurements on 60GHz range and throughput. (a) The RSS results
collected by HXI radios show that 60GHz outdoor propagation follows the Free-
Space Friis model with 16dB/km oxygen absorption loss. (c) CDF of per-minute
TCP throughput measured over 10 days using the Wilocity radios. (b) Downlink
LoS ranges when 60GHz radios operate in the 802.11ad single carrier modulation
(SC) setting, with 2×8 and 10×10 antenna arrays. The Wilocity 2×8 results
are based on actual measurements, while the HXI 10×10 results are projected by
increasing EIRP to 40dBm and mapping a data rate to each measured RSS value
based on the 802.11ad specification.

may rotate or move a short distance due to natural posture changes. Finally,

basestations do not coordinate in these measurements. We study the benefits of

coordination via simulations in §4.4.
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4.3.1 Measurements in Controlled Environments

We begin by verifying the framework for the link budget calculations in §4.2.1.

Our measurements use the HXI radios since they report detailed receiver RSS

values. Figure 4.5(a) plots the RSS values at different link distances under clear

weather, along with the well-known Friis model [50] on 60GHz free space propa-

gation with and without oxygen absorption (16dB loss per km). The results show

that 60GHz outdoor LoS propagation does follow the classical Friis model with

oxygen absorption loss, i.e. eq. (4.2).

Range & Throughput

Our first task is to evaluate the range and throughput of 60GHz transmissions

in the context of outdoor picocells.

Picocell LoS Range. Figure 4.5(b) lists the measured LoS range of the

Wilocity 2×8 array under different link rate targets. On a clear day, it can reach

23m at 385Mbps, and 9m at 2.31Gbps. While this is clearly insufficient for 60GHz

outdoor picocells, we can easily extrapolate beyond the hardware limitations of

the Wilocity platform, which is designed for indoor short-range usage and has an

EIRP of 23dBm. When we increase the EIRP from 23dBm to 40dBm, the path

loss formula in (4.2) can be used to translate the 17 dB increase in signal strength

to a corresponding increase in range. Because of the mixture of free space loss

of 1/R2 and exponential decay of e−αR, the actual range increase depends on the

initial value of range. While this is easy enough to calculate numerically, it is

instructive to separately address these two effects via an example. Specifically,

can we get a data rate of 385 Mbps at 100 m using 2× 8 arrays as in the Wilocity
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radios in heavy rain (e.g., 2 in/hr, where the loss due to rain and oxygen absorption

is about 36 dB/km)? The exponential loss is 3.6 dB at 100 m, and ignoring the

baseline loss under the clear conditions for our measurements at the starting range

of 23 m, we still have 17-3.6=13.4 dB signal strength increase to compensate for

free space loss, leading to 13.4/2=6.7 dB, or 4.67X, increase in range relative to

the baseline of 23 m. This yields a range of 100+ m. The point of this calculation

is to show that, for the moderate ranges of interest, oxygen absorption and rain

have a relatively small effect on the link budget.

In order to quantify the effect of using larger arrays, we project the measure-

ments using our HXI radios, which we using as a proxy for 10 × 10 arrays, by

adding 15 dB to the EIRP (going from 25 dBm to 40 dBm), and subtracting 4

dB in receiver directivity (25dBi horn replaced by 10×10 receive array with 1 dBi

elements). If we keep the EIRP fixed, then increasing the number of transmit

elements does not help the link budget (it only decreases the emitted power per

element), hence the source of performance gain is the increase in receiver direc-

tivity. Based on this projection, the range in clear weather is as high as 178 m at

385 Mbps.

Figure 4.5(b) also lists transmission ranges under heavy rain (0.38in/h). The

measured range of Wilocity radios remains the same while that of 10×10 arrays,

projected from our HXI measurements, drops to 139m at 385Mbps and 102m at

1.15Gbps. This is as expected, since the additional loss due to rain impacts longer

links. However, the range (100+m) is still sufficient to support picocell operations.

Link Throughput over Time. We also measured 60GHz link throughput

over 10 days (February 2014) to examine its long-term performance in outdoor
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Radio
Path
Length

Flat steel, Exterior Building Walls
Aluminum, Brick, Coarse Coarse
Plastic Paint, paint concrete
board Whitewash

Wilocity 10m 0% 0% 16% 16%
(2x8) 15m 0% 17% 33% 33%
HXI 30m 0% 17% 33% 46%

(10x10) 50m 0% 19% 25% 25%
RSS Loss 0dB 3dB 4.5dB 5dB

Table 4.2: The reflection loss of eight different materials measured using both
Wilocity and HXI radios.

environments. The weather condition for the first 9 days was clear and the last

day we had heavy rain (0.38in/h). We used the Wilocity radios, set the link

distance to 20m, close to its maximum range of 23m, and recorded per-minute

TCP throughput using Iperf. Figure 4.5(c) plots the CDF of the per-minute TCP

throughput of the first 9 days and that of the last 1 day. We see that the Wilocity

60GHz link offers 638+Mbps TCP throughput continuously over time (and 700
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Mbps 80% of the time). The minor rate fluctuations (638-700 Mbps) are randomly

distributed across the measurement period, and may be the result of occasional

structure vibrations caused by wind and/or pedestrians walking on the balcony.

We see no difference in throughput between clear weather and heavy rain, which

confirms that, at short distances, 60GHz is highly robust to weather conditions.

We also confirm this observation using the HXI radio measurements. At 50m,

heavy rain (0.38in/h) only introduces 0.86dB RSS loss, which did not introduce

any degradation to the link.

Robustness to Blockage

Outdoor 60GHz transmissions experience blockage from various obstacles in-

cluding buildings, trees, pedestrians and vehicles. Our experiments focus on pedes-

trians, because they are moving obstacles commonly seen in outdoor settings. We

also examine the effectiveness of switching to reflected paths on addressing block-

age.

Impact of Pedestrian Blockage. Our experiments show that when holding

a 60GHz radio and facing away from a basestation, the user herself will block

the LoS signal. This observation triggers another important question: “will the

connection to a user, either LoS or via reflection, be constantly blocked by nearby

pedestrians?” To answer this question, we measure for both radios the LoS peer

impact region, i.e. the area around a user where a peer of similar height blocks the

LoS path between the basestation and the user. For Wilocity radios, we placed

RF absorber around the radio to prevent it from switching path. We also derive

the impact region of reflection paths following the same method. Figure 4.6 shows
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the LoS impact regions for the HXI radio at different link distances (the Wilocity

radio result is similar and thus omitted for brevity).

We see that the observed impact regions are all small areas with a narrow

cone shape, and the width (y-axis) is significantly smaller than its length (x-

axis). The region also enlarges linearly with the link distance. This is because

the basestation is placed in a high location (6m in our experiments, representing

a lamppost placement) and the peer must be quite close to the user to block the

signal.

Overall, our results imply that in outdoor environments, surrounding static

peers can potentially block paths to a user. The impact, however, is limited be-

cause the peer has to be in a small region near the user. On the other hand, our

measurements in busy walkways (§4.3.2) show that groups of moving pedestrians

have a heavier impact on connectivity. However, such blockage can be effectively

addressed by either switching to another reflection path (discussed next) or con-

necting to another basestation (see §4.3.2).

Handling Blockage via Reflection. 60GHz signals are reflected by most

surfaces with losses of the order of 5-7 dB [83]. Thus, when the LoS path (or an

existing path) to a user is blocked, the basestation can adjust link directionality

to create another reflection path. In fact, our measurements show that Wilocity

radios can already switch to reflected paths in real time upon LoS blockage (see

Figure 4.7).

Next, we study the impact of reflection on link performance. We experimented

with eight surfaces, commonly seen in outdoor street environments. These include

three flat surfaces and five exterior building surfaces. We repeated our experiments

with different incident angles (10o-80o), and found that the angle has a very minor
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impact on the result3. For brevity we only show the results of 45◦. Table 4.2 shows

the normalized throughput loss (compared to a LoS path of the same length) for

both 2×8 and 10×10 arrays at different path lengths. The HXI radio experiments

also report the amount of RSS loss due to reflection. For both radios, the first

three flat (and smooth) materials are perfect reflectors with negligible signal loss.

The five building surfaces introduce 3-5dB signal loss and up to 46% throughput

loss. The throughput loss varies with the link distance while the signal loss (in

dB) remains constant. We noticed that in our results with the HXI radios the

measured reflection losses were slightly smaller (i.e. better) that those reported

in [83]. This might be due to the subtle difference in the reflection materials.

Overall, these results show that reflection paths are good alternatives to LoS

paths, offering ample opportunities for picocell coverage.

Robustness to User Motion

In practice even a “stationary” user will naturally make local movements, such

as change her posture, or move a small distance (e.g. up to a few meters). These

minor movements could change 60GHz link directionality and thus performance.

We now present some initial results on their impact on link performance and

implication on picocell design.

Specifically, we seek to examine whether 60GHz radios can re-align their arrays

to maintain a LoS connection. To do so, we place absorber around the transmitter

radio to prevent the use of any reflection path, and measure TCP (or UDP)

throughput continuously during the motion to study its impact. We consider four

3Our results align with existing results: for thick materials (≥3cm), the reflection loss de-
creases as the incident angle increases [83].
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Figure 4.8: Measured throughput using our Wilocity testbed (2x8) when the
receiver moves in three different motion patterns.

types of user motion: rotating the body, moving closer/further to the basestation4,

moving perpendicularly to the basestation, and moving in a circular motion. Each

experiment starts with the basestation and user radio directly facing each other

and separated by 10m (Wilocity) or 40m (HXI). While the absolute results depend

on factors like link distance and user body shape, our goal is to understand the

general trend and its implication, as well as how the two 60GHz radios react to

these motions.

4Since the basestation is placed higher than the user radio, moving further/closer to the
basestation does change link directionality.
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Figure 4.9: Measured RSS values using our HXI testbed (10x10) when the re-
ceiver moves in three different motion patterns. We consider three types of align-
ment methods: no alignment, partial alignment (RX only) and full alignment
involving both TX and RX (TX+RX).

Wilocity 2×8 Array Results. Since 802.11ad already enables radio realign-

ment via beam tracking, we expect that the Wilocity radios can realign with each

other to a certain degree. Thus the goal of our measurements is to understand

the speed of realignment and the robustness against user motion.

Because Wilocity radios do not expose any information on beam directionality,

we first performed a set of UDP experiments to understand their array alignment

behaviors. In each experiment, we first let the basestation and user radios face
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each other and record UDP throughput, and then move/rotate the user radio

locally for 1-3s and stop for 15s (to allow re-alignment).

From both UDP and link rate reports, we see that the low-cost Wilocity radios

already adapt beam direction on-the-fly to cope with changes in link directionality.

But the adaptation has two limitations. First, the adaptation is not instantaneous:

in our experiments, it takes 2-7s for UDP/link rate to fully recover. Such delay

can come from the time for adjusting the array and that for coordinating both

ends. Second, the amount of beam adjustment is limited, i.e. the array cannot

tune to all the directions, possibly due to the hardware enclosure and/or low-cost

array design.

With these observations in mind, we now study the impact of user motion on

TCP performance. Each experiment starts from the two radios being perfectly

aligned with TCP throughput at 900Mbps. First, we experimented on user rota-

tion at different rotation speeds (40o/s - 100o/s). We found that until the rotation

angle reaches 85o, the TCP throughput remains at 600Mbps. After that, the link

breaks down.

Next, for the other three patterns, Figure 4.8 shows the TCP throughput

during motion, as a function of the receiver’s deviation distance from the original

position. We make two observations. First, a user moving further/closer or in a

small circle at moderate speeds (Figure 4.8(a)-(b)) lead to a minor degradation

in TCP throughput. Second, moving perpendicular to the LoS has more impact

since it introduces larger/faster directionality changes. During the movement,

TCP throughput fluctuates and gradually degrades to 400Mbps as the deviation

reaches 8m. Specifically, when the user moves at 1.5m/h, the throughput first

drops due to array misalignment, then rises as both radios align their arrays, and

114



Chapter 4. Boosting Network Capacity via 60GHz Picocells

d

interfering link

Angular

separation

D

BSaBSb

(a) Scenario 1

interfering 

link

Angular

separation

D

l

BSa BSb

D/2

(b) Scenario 2

interfering 

link

Angular

separation

D

BSa BSb

D/2 l

(c) Scenario 3

 0

 20

 40

 60

 80

 100

 8  10  12  14  16  18  20  22T
C

P
 T

hr
ou

gh
pu

t L
os

s 
(%

)

Basestation separation (m)

d=9m, 2x8
d=6m, 2x8
d=3m, 2x8

d=9m, 10x10

(d) Scenario 1: TCP thpt loss

 0

 20

 40

 60

 80

 100

 6  8  10  12  14  16  18  20  22T
C

P
 T

hr
ou

gh
pu

t L
os

s 
(%

)

Basestation separation (m)

2x8
10x10

(e) Scenario 2: TCP thpt loss

 0

 20

 40

 60

 80

 100

 6  8  10  12  14  16  18  20  22T
C

P
 T

hr
ou

gh
pu

t L
os

s 
(%

)

Basestation separation (m)

2x8
10x10

(f) Scenario 3: TCP thpt loss

Figure 4.10: Three sample “worst-case” interference scenarios for a sidewalk en-
vironment and the TCP throughput loss due to interference. Two 60GHz bases-
tations are deployed on lampposts (6m in height) on the edge of the side walk,
each serving a user on the sidewalk.

repeats the same pattern. By examining the patterns of peak/valley across all the

speeds tested (1.5-5mph), we see that the radio alignment frequency aligns with

the above UDP results, e.g. once every 2-7s.

In summary, our experiments on Wilocity radios show that today’s low-cost

60GHz radios already offer online array alignment to handle moderate user mo-

tions. However, these radios are designed for quasi-static indoor environments,

and the speed and amount of their beam adjustments are not enough to handle

certain motion patterns that introduce fast/large changes in link directionality.

Alignment Requirements for 10×10 Arrays. The above discussion triggers

another question: “As the link becomes more directional by using larger arrays,

how fast should array alignment take place to handle user motion?” As already

discussed, the horn antennas on the HXI radios serve as a good proxy for 10×10
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arrays. Hence, to answer this question, we mount the HXI radios on mechanical

rotators (with a precision of 0.5o) and manually adjust beam directions as the

user moves. Each experiment starts with the two radios perfectly aligned. As

the user moves, we measure the RSS values of three scenarios: adjusting both

TX and RX arrays (full alignment), only adjusting RX array (partial alignment),

and no alignment. From these results we estimate the alignment speed required

to support typical user motion. Figure 4.9 plots the link rate projected from the

RSS values measured during motion. We make two key observations.

• Full alignment is required to handle user motion, which is particularly true for

movements towards and perpendicularly to the basestation. It involves both

ends and requires a coordination channel between the basestation and the user.

• Re-alignment once every second is sufficient for local movements. Again per-

pendicular movements lead to the fastest signal degradation. Without align-

ment, the transmitter and receiver beams deviate from each other gradually,

e.g. 3.6o when the user moves 2.5m. The RSS drops by 2.47dB and the link

throughput to half. At a moderate motion speed of 3-5mph, moving 2.5m

takes 1.8s-3s. Thus at a link distance of 40m, re-aligning once every second

should maintain quality connections during local movements. We also study

the re-alignment frequency at other link distance values, and obtain similar

findings.

Interference and Spatial Reuse

We now study the spatial reuse provided by 60GHz links. While averaged

performance over large-scale deployments is required to accurately quantify spatial
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reuse, we use testbed measurements to explore several worst-case interference

scenarios when 60GHz picocells are deployed in a street environment. We also

examine how the choice of arrays affects the degree of spatial reuse.

Interference Scenarios. Intuitively, two directional links interfere when their

directions are too similar to each other. Hence, in the context of 60GHz picocells,

we consider in our experiments three example “worst-case” downlink interference

scenarios, shown in Figure 4.10. All three scenarios involve 2 basestations (BSa,

BSb) deployed on lampposts at the edge of the side walk next to the street, each

serving a user (a and b) on the sidewalk, using the same 60GHz channel. In each

scenario, the interference condition depends heavily on the angular separation

between the two links, which is defined by the distance between the two basesta-

tions (D), user a’s horizontal distance to BSa (d) in scenario 1, and the sidewalk

depth (l) in scenario 2 and 3. In our experiments, we consider l = 7m, modeling

major urban streets like those in Manhattan.

Since these interference measurements require at least two links, we used

Wilocity radios in our measurements (we only have two HXI radios or one link due

to cost constraints). To estimate the performance of larger arrays (thus narrower

beams), we mount a metal horn-shaped case on the Wilocity device to reduce

its beamwidth to roughly approximate a 10×10 array. However this also elimi-

nates side-beams so our larger-array results are rather optimistic. Later in §4.4

we use network simulations to further study this issue. Finally, for all the exper-

iments, we place radio absorbers to ensure that both links do not change their

path directions.
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Findings. We plot in Figure 4.10(d-f) the normalized TCP throughput loss due

to interference. We make two key observations. First, the low-cost 2×8 arrays

have wide beams that result in large interference. The two basestations must be

widely separated to avoid inter-basestation interference: 20-22m for scenario 1

and 2, and >>22m for scenario 3. But upgrading to a larger array can potentially

reduce basestation separation to 12-14m for scenario 1 and 2, and 22m for scenario

3, enabling dense basestation deployment. Second, the use of reflected paths

(for overcoming blockage) creates diverse interference conditions beyond those of

LoS. In certain scenarios, even using a narrow beam array may not eliminate

interference. This calls for coordinated scheduling, where basestations coordinate

user scheduling to proactively avoid heavy interference.

4.3.2 Measurements in Real-life Environments

Our experiments took place in two sites: a downtown street walkway area

and a campus plaza area, both during busy hours with many moving pedestri-

ans. These “in the wild” experiments differ from the “controlled” experiments as

follows. First, the user is surrounded by random moving pedestrians that create

unpredictable blockage. Second, we use Wilocity radios and leverage its built-in

array adaptation mechanisms to maintain link connectivity. Third, we deploy

multiple basestations around the area to study whether switching between bases-

tations can effectively improve connectivity. At both sites, we placed basestations

on a 2nd floor balcony of 6 meters in height, and experimented at 10 user loca-

tions (6 at downtown, 4 at campus) and 2 basestation locations. At each location,

we let the user face the basestation(s), thus her own body did not block the LoS
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Figure 4.11: The impact of pedestrian blockage in real-life environments. (a)
A 10-minute segment of TCP/ link rate traces at a downtown sidewalk location.
(b) A full 1-hour trace at a campus plaza location. (c) Link availability at 10
locations w/ and w/o basestation switching.

path. We then recorded TCP throughput and link layer rate (reported by the

radio driver) for 1 hour per location.

Single user, single basestation. We first consider the scenario where a

single user is being served by a single basestation. To illustrate the impact of

pedestrian blockage on link connectivity, we plot in Figure 4.11(a)-(b) the TCP

and link rate traces at two sample user locations at the edge of the walkway,

with a roughly 12m link distance. In Figure 4.11(a), the connection experienced

outage (both link rate and TCP rate drop to 0) several times during the first 250s.
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During this time period, we observed a continuous crowd of pedestrians passing

by, creating prolonged blockage to the user. After that, the link rate fluctuates

(due to transient pedestrian blockage and subsequent rate adaptation), but the

TCP throughput remains stable5. In fact, when a small group of 2-3 pedestrians

pass by the user, they only create transient blockage. The link rate drops largely

but quickly recovers.

In Figure 4.11(b), between minute 13 and 23, there is a 2-minute outage fol-

lowed by a period of rate fluctuations. This 10-minute period was in between two

class sessions, thus large groups of students passed by our user location. Differ-

ent from the last example, the link was able to recover and sustain high TCP

throughput after the two-minute outage, despite the prolonged blockage. This

is because the radios switched to a reflected path (via a nearby building wall)

to avoid blockage, and the frequent fluctuation was the result of rate adaptation

to mitigate reflection loss. As a result, the link didn’t fail repeatedly like in the

previous example. In the rest of the hour, the pedestrian density was moderate

and only caused transient blockage thus zero outage.

Figure 4.11(c) shows the link availability, i.e. (1-outage), over the busiest 300s

across all the measured user locations (thus the period with the lowest availabil-

ity), for the two basestation locations. The availability varies largely across user

locations, and can be as low as 50%. The low availability scenarios are those where

the user was on a crowded walkway and blocked by many moving pedestrians.

Single user, multiple basestations. We then examine scenarios where two

basestations coordinate to serve a single user. To do so, we place the second

5The Wilocity TCP throughput is capped to 1Gbps, due to the 1Gbps Ethernet interface
that connects the radio to the laptop.
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basestation 10m-20m away from the first basestation6. Because Wilocity radios

do not allow clients to switch between basestations on-the-fly, we emulate real-time

switching by connecting a second receiver (co-located with the first receiver) to the

second basestation on a different 60GHz channel. This allows us to simultaneously

measure for each location its link availability to each basestation, and calculate

the link availability when enabling real-time switching. Results in Figure 4.11(c)

confirm that serving a user with a picocloud consisting of multiple basestation

can effectively boost link availability.

4.3.3 Summary of Observations

Our detailed measurements dispel the four common myths about 60GHz out-

door picocells listed in §5.1. We now summarize our findings and their implications

on picocell design.

• Range: While today’s low-cost radios have limited outdoor range due to its

low EIRP and small array size (designed for indoor scenarios), larger antenna

arrays, e.g. 10×10, can support a range up to 100+m at 385Mbps even in

heavy rain conditions.

• Blockage: The user body, other pedestrians, and other obstacles can all block

connections to a user. Hence it is critical to maintain a rich path inventory

for each user by continuously tracking both LoS and various reflection paths.

When necessary, users can be served using a picocloud comprising of multiple

basestations (supported by results in §4.4).
6We did not observe any notable impact of the separation distance.
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• User Motion: Local user motion changes 60GHz link directionality and de-

grades performance, unless both endpoints realign their arrays in real time.

Since they were designed for quasi-static indoor settings, realignment onWiloc-

ity radios can take up to 7 seconds, making them less robust against certain

motion patterns. For larger arrays (10×10) with narrower bandwidth, re-

alignment frequency needs to be at least once per second.

• Spatial Reuse: Today’s low-cost 2×8 arrays have wide beams that limits

the degree of spatial reuse. Using larger arrays up to 10×10 can significantly

reduce interference footprints, but the large variety of path directions can still

lead to considerable interference in certain scenarios. Handling these requires

intelligent user scheduling and basestation coordination. While we will provide

initial insights on these issues in §4.4, far more research is needed in this area.

4.4 Simulation Results

In this section, we perform detailed simulations to further examine 60GHz

picocells in terms of blockage and interference.

Simulation Setup. We consider a street in a typical urban environment: two

basestations are deployed on opposite sides of the street (at lamppost height of

6m), forming a picocloud to serve users on both sidewalks. Figure 4.12 plots

the geometry of a typical Manhattan street observed from the Google map. Our

simulation considers pedestrians, cars and trees as obstacles that can potentially

block or attenuate 60GHz links. We model each pedestrian as a cylinder of ra-

dius 0.3m with height uniformly distributed between 1.5m and 2m, and trees

as cyclinders with radius 0.4m and height 3m. We model cars as rectangular
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Figure 4.12: Simulation environment: a typical street in New York City (ob-
served from the Google Map), where two basestations serve users on both side-
walks along the street.

cuboids of size 2m× 4.5m× 1.5m. We consider a moderate pedestrian density of

0.08person/m2 [91].

The link budget in our simulations is as in eq. (4.1)-(4.2) defined in §4.2.1, also

consistent with the measurement-based feasibility analysis in §4.3. We consider

regular square arrays with standard radiation patterns [56], varying the size of

the transmit and receive arrays around default settings of 10 × 10 at each end.

We fix the EIRP to 40dBm. Thus, the size of the transmit array does not impact

the link budget, but can have a significant effect on interference. The receive

array size impacts both link budget and interference. The 60 GHz channel is

well characterized by a small number of dominant rays (see [153] and references

therein), with path strengths decaying rapidly with multiple bounces. Hence, in

our model, we consider the LoS ray and one-bounce paths.

4.4.1 Link Availability

We consider several factors that may affect link availability. The first is user

orientation, e.g. when facing basestation 1, the user’s body blocks the LoS path
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from basestation 2. We study its impact by comparing link availability among

four possible orientations: north (facing far wall), south (facing near wall), east

(facing basestation 1), and west (facing basestation 2). In general, the wall-facing

orientations do not have LoS blockage, and the LoS availability is impaired mainly

for the east-west orientations. We omit orientation-specific results for brevity; our

later results are averaged over these four orientations. The second factor affecting

link availability is blockage by other obstacles, e.g. other pedestrians, trees, and

cars. We consider a moderate pedestrian density of 0.08 per square meter7. We

find that, in general, cars are not tall enough to block LoS and wall reflections to

users on sidewalks, but may disrupt ground reflections. Hence our simulations do

not utilize any ground reflections from the street or sidewalk. Finally, the third

factor is the presence of gaps between buildings (see Figure 4.12), which may

eliminate possible reflected paths.

Taking into account these factors, we run simulations to estimate the dis-

tribution of RSS at different receiver locations, accounting for different receiver

orientations and locations of other pedestrians and cars. We use this to compute

the availability rate for three 802.11ad data rates listed in Table 4.1 (a data rate

is “available” if the RSS exceeds its required receiver sensitivity).

Benefits of Picoclouds and Reflected Paths. Table 4.3 summarizes the

availability rates for four scenarios: a mobile is served by (i) only the LoS path

from basestation 1, (ii) a path among the LoS and 2 wall-reflected paths (if feasi-

ble) from basestation 1, (iii) only the LoS paths from basestation 1 and 2, and (iv)

a path among the total 6 possible paths from basestation 1 and 2. This result as-

7We obtain similar results for much higher densities since it turns out that blockage of user
body is the key source of link impairment.
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Data rate (Mbps) 385 1155 2310
LoS (BS1) 66.0% 66.0% 66.0%

LoS + 2 NLoS (BS1) 94.2% 93.8% 93.5%
LoS (BS1& BS2) 94.5% 94.5% 94.5%

6 paths (BS1&BS2) 100% 99.95% 99.95%

Table 4.3: Effect of picocloud and reflection paths on availability, 10×10 RX
array, 100m separation between the two basestations.

Clear Rainy
RX BS Data rate (Mbps)
array spacing 385 1155 2310 385 1155 2310

4×4
100m 99.9% 99.5% 99% 99.8% 99.4% 98%
200m 99.4% 94.6% 85% 98.3% 89.2% 75.7%

8×8
100m 99.9% 99.75% 99.6% 100% 99.75% 99.7%
200m 99.5% 99.45% 98.9% 99.5% 99% 97.2%

10×10
100m 100% 99.95% 99.95% 99.9% 99.9% 99.8%
200m 99.5% 99.5% 99.3% 99.5% 99.5% 98.8%

Table 4.4: Availability rates (blockage scenario).

sumes a basestation spacing of 100m, but we observe similar conclusions for 150m

and 200m. This result shows that using LoS path from a single basestation cannot

provide robust connectivity. But when both basestations are involved, the link

availability jumps from 66% to 94.5% at 385Mbps. Adding just two wall-reflected

paths further increases the availability rate to 99.95-100%.

Basestation Spacing and RX Array Size. Assuming a picocloud of two

basestations and the use of both LoS and reflected paths, Table 4.4 reports the

availability rate for different basestation spacing and RX array size. We see that

even heavy rain (50mm/hr) barely has any impact. For the 10×10 RX array and

a BS spacing of 200m, we have high availability even at 2 Gbps (99.3% in clear,
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and 98.8% in rainy conditions). This implies that even with a sparse deployment,

the network offers robust connectivity and coverage.

4.4.2 Interference and Spatial Reuse

We report on some preliminary results that indicate the massive spatial reuse

achievable in our architecture. To this end, we lower the basestation spacing to

20m, and consider mutual interference between two users, each served by one of

two basestations forming a picocloud. In addition to using different receive arrays,

we also consider 10×10 and 32×32 transmit arrays. The EIRP is fixed, hence the

transmit array size does not impact the link budget, but can have a significant

effect on interference.

We first consider a scenario with “multiuser diversity”: there are five users,

out of which two are picked at any time. We consider two strategies (neither of

these is optimal, but they suffice to illustrate the impact of interference). In the

first, termed without coordination (WoC), the basestations do not account for

interference in scheduling: the first basestation serves the user to which it has the

best path, and the second chooses the user to which it has the best path among

the remaining 4 users. In the second strategy, termed With Coordination (WC),

the first basestation chooses the user for which it has the best path (as before), but

the second basestation chooses a user to maximize the minimum SINR among the

two chosen users. Our simulations of availability are as before, except that we now

also account for the presence of interference in determining receiver sensitivities.

We find that the availability is 100% for all antenna combinations, with or without

coordination! Basically, noise is not a limiting factor at this shorter range, and
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TX array 10×10 TX array 32×32
RX Mode Data rate (Mbps)
array 385 1155 2310 385 1155 2310

4×4
WoC 70% 60% 55% 89.5% 79.5% 72%
WC 75% 68% 62% 89.8% 82.6% 76%

10×10
WoC 94.3% 91% 81% 98% 96.8% 93%
WC 94.7% 91% 84% 98% 96.8% 94.8%

Table 4.5: Availability rates with blockage and interference, where the user pair
are co-located in between the two basestations.

TX array 10×10 TX array 32×32
RX Mode Data rate (Mbps)
array 385 1155 2310 385 1155 2310

4×4
WoC 59% 48% 46% 73% 58% 52%
WC 66% 59% 56% 77% 66% 61%

10×10
WoC 90% 81% 75% 92.5% 90% 85%
WC 91% 85% 81% 93% 91% 88%

Table 4.6: Availability rates in the offset geometry.

a user configuration that is “bad enough” (to produce large interference despite

beamforming at both ends) is a rare event. We plan to develop an analytical

framework for understanding the probabilities of such rare events in future work.

Next, we consider a “worst-case” scenario where two users next to each other

are being served by the two base stations. Table 4.5 shows availability rates,

averaging over the location of the user pair between the basestations, and their

individual orientations. Here the transmit array size has a large effect. Using the

larger array drops the outage rate from 30% to 10.5% for the smallest 4×4 receive

array. For the 10×10 receive array, the main effect of using a larger transmit array

is to increase the availability rate for the 2 Gbps rate.

The performance gets slightly worse in the “offset” geometry depicted in Figure

4.10(a), where the user pair is no longer between the two basestations. The
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availability in Table 4.6 drops to 93% even for the largest transmit and receive

arrays considered. Of course, these worst-case settings are unlikely for randomly

placed users, and can be avoided if we have multiuser diversity (so the picocloud

does not have to simultaneously transmit to pairs of nearby users).

These results, despite their preliminary nature, indicate the promise of massive

spatial reuse provided by the use of narrow beams at both transmit and receiver,

and motivate more detailed analysis and simulations for characterizing the nature

of interference in both average and worst cases.

4.5 Related Work

mmWave Cellular Networks. Picocellular networks in the mm wave bands

have attracted significant attention recently. Much recent effort has focused on

trying to attain ranges of the order of 200m or even more, thus considered bands

such as 28GHz, 38GHz and 73GHz to avoid oxygen absorption that peaks at

60GHz (see [110] and a recent survey [117]). Recent work also proposed to

increase range by combining signals from many NLoS paths incoherently [24].

Our proposed 60GHz picocell design differs from existing efforts by taking a

different perspective. Aiming for short links (50-100m)8, the oxygen absorption at

60GHz barely dents the link budget while still cutting down on interference from

far-away basestations and hence significantly increasing spatial reuse. Together,

the large per-user data rate and large spatial reuse can potentially enable the 1000-

fold increase in network capacity. Furthermore, our proposal leverages current and

8Mobility management becomes difficult at short ranges. This can be potentially addressed
by the picocloud architecture, but still remains an open challenge that demands further research
study.
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ongoing 60GHz hardware technologies and the IEEE 802.11ad standard developed

for indoor applications, while the unlicensed nature of 60GHz bands lowers the

entry barrier and promotes innovation.

Outdoor 60GHz Systems. The outdoor use of 60GHz is not new: there

are point-to-point Gigabit links on the market today (e.g., [8]), attaining link

ranges of kilometers using carefully installed parabolic dishes. These fixed beam

antennas have significantly higher directivities than the electronically steerable

antenna arrays envisioned in our architecture. Recent work has examined 60GHz

mesh networks with electronically steerable links for backhaul [135, 136]. Finally,

the impact of blockage on short-range outdoor 60 GHz links has been explored in-

dependently in [21, 22] using ray-tracing simulations. Unlike our work, this study

is not grounded in measurements, and does not consider the detailed tradeoffs in

the picocloud architecture.

60GHz Measurements. There have been significant efforts in 60 GHz

channel measurement and modeling both for indoor [92, 51] and outdoor set-

tings [137, 145, 83, 119], confirming the accuracy of quasi-optical propagation

models on 60GHz propagation. Most measurements used channel sounding and

probing hardware, while others have cleverly adapted commercial radios to indoor

measurements [143, 158].

While prior measurement campaigns focus on link level characterization and

propagation modeling, to the best of our knowledge, our work is the first measurement-

centric study aimed specifically at design and validation of outdoor 60GHz picocell

architectures.
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4.6 Conclusion

Our measurements and simulations dispel some common myths on 60 GHz

outdoor mobile communication, and show that outdoor 60 GHz picocells aug-

menting existing cellular networks indeed have the potential to deliver orders of

magnitude increase in network capacity. Our findings lead us to identify the need

for new, novel architectures and system designs such as “picoclouds,” as part of a

new research area on 60GHz outdoor networks. We conclude by discussing some

of the significant challenges that remain.

Cross-layer Modeling. In our experiments, off-the-shelf hardware provides

insight into propagation, blockage and interference in simple scenarios. However,

today’s hardware limitations imply that future research involving more complex

scenarios must rely on simulations until more capable platforms (e.g., with exter-

nally programmable beamsteering) become available. Therefore, significant effort

is necessary to develop models at different layers accurate enough to capture the

cross-layer interactions unique to 60 GHz communication.

Specifically, the lowest layer involves tying the physics of propagation and

diffraction to link-level models. This includes link availability and data rate as a

function of pedestrian configurations, for group motion as well as independent in-

dividual motion. Another layer involves signal processing models and algorithms

that account for hardware constraints, e.g., RF beamforming with a large number

of antenna elements. We can then build to higher layers, including abstractions

for user tracking and basestation coordination, and network-level resource man-

agement for seamless support of TCP flows.
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User Tracking. To establish/maintain links, basestations must track users

continuously and build a rich path inventory. GPS location works only for LoS

paths, but its localization error is too large to enable highly directive beams.

Brute-force beam scans incur large overhead, which prevent online adaptation. A

potential solution is compressive adaptation [116], where basestations periodically

send 60GHz beacons in random beam directions, and then leverage user feedback

to estimate directions of available paths to each user. However, significant effort

is required to translate such ideas to practical system designs.

Control Plane. A robust control plane is needed for coordination between

basestations and users during bootstrapping, handoff and array (re)alignment. A

potential candidate is to use existing LTE services (Figure 4.1) for this purpose.

The resulting control channel is reliable, but the design must be robust to latencies

as high as 80ms [66], especially if LTE bands are congested.

Picocloud Architecture & Protocol Design. In the picocloud architecture,

basestations must coordinate to maintain user connectivity and minimize interfer-

ence. This requires new, cross-layer design spanning the PHY, MAC and network

layers. Frequent switching between basestations to handle blockage and mobility,

together with rate adaptation switching between different paths, requires care-

ful coordination to support applications such as TCP. Given the high frequency

of blockages, it is particularly important to avoid naive handoff strategies that

could lead to ping-pong effects and race conditions. Such considerations, together

with the large per-user rate, call for careful designs that account for backhaul and

storage constraints.
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Hardware Design. Advances in system-on-chip design enable packing multiple

radios into mobile devices. The integration of 60GHz radios poses little difficulty

in terms of interference with existing radios, since the frequency band is so far

from current WiFi and cellular frequencies. However, another consideration is

the integration of (possibly multiple) antenna arrays to receive signals effectively

regardless of the device orientation. Limiting radio energy cost for mobile devices

is another. While signal processing and RF design for high-speed mmwave links

are challenging, our advantage lies in leveraging existing and ongoing hardware

development for IEEE 802.11ad.
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Chapter 5

Capturing User Mobility at Scale

5.1 Introduction

For quite some time, the holy grail of mobile networking research has been

the search for large-scale, fine-grained mobility traces of human movement. Such

traces can provide the basis for a large range of applications, ranging from practi-

cal applications like traffic prediction, urban planning, and network management,

to research applications like input for mobile network simulations and design of

cellular protocols and smartphone energy management systems. Unfortunately,

access to such mobility traces has been elusive for both privacy and logistical rea-

sons. This has led to numerous alternatives, including synthetic mobility models

ranging from random waypoint [70] to obstacle-based models [69], to adoption

of unconventional sources of mobility datasets, e.g. movement traces from the

SecondLife virtual reality platform [80].

Most recently, attention has turned towards geosocial mobility traces, traces

of “check-in” events gathered from location based social networks (LBSN) such

as Foursquare, Gowalla and Brightkite [41, 102]. These datasets are attractive
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as mobility traces, because they are easy to obtain, and provide data for large

user populations, e.g., Foursquare has 40 million users with more than 4 billion

checkins. In fact, researchers are already relying on geosocial mobility traces to

predict human movement [42, 130, 103], infer friendships based on visited loca-

tions [25, 129], and improve the efficiency of content delivery networks [131].

So is this it? Have we solved our long running quest for realistic mobility

traces? Before accepting these geosocial traces as ground truth, we need to address

critical questions of validity and representativity. For example, just how reflective

are “check-in” traces of our true mobility patterns, and how significantly would

any potential discrepancies impact applications and systems that rely on these

datasets? Furthermore, can we correct any inherent biases and produce realistic

mobility traces for public consumption?

In this chapter, we take concrete steps towards addressing these questions.

First, we examine potential biases in geosocial traces, by comparing a GPS-

generated mobility trace to a Foursquare checkin trace1 for identical users in a

large user mobility study. Surprisingly, by comparing Foursquare “checkin” events

to visits in the GPS trace, we find that there is only a small subset of common

events in two traces: 75% of all Facebook checkins are extraneous or fake events

that do not match real mobility, and validated Foursquare checkins only cover

roughly 10% of all “visit events” in a user’s actual movements.

Our next step is developing an automated two-phase sanitization process to

correct these biases and produce mobility traces much more representative of true

mobility patterns. First, we characterize distinctive features of extraneous (fake)

checkins and apply machine learning techniques to identify and filter extrane-

1We focus on Foursquare checkins due to its popularity.
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ous checkins. Second, we leverage interpolation techniques to fill in the missing

locations visited by but not reported by users. By applying it to a publicly avail-

able trace of geosocial checkins from the Gowalla network, we demonstrate that

our two-phase sanitization can effectively mitigate the negative impact of biased

geosocial traces and produce realistic human mobility traces.

The key contributions of this work are as follows:

• First, we perform a large user mobility study on Foursquare to quantitively

examine the discrepancies between geosocial checkin traces and ground-truth

user mobility (GPS traces). We find geosocial traces are heavily biased, with

75% of all checkins being extraneous (fake), and real checkins only capturing

10% of users mobility events. We also find clear correlations between extrane-

ous checkins and Foursquare’s social incentives, i.e. Badges and Mayorships.

• Second, we propose a two-phase sanitization technique to correct biases in

geosocial traces, including machine learning models to identify and filter extra-

neous checkins, and interpolation techniques to statistically “recover” missing

user visit events. We use a trace-driven application to show that these biases

have significant impact on applications, and that they are effectively removed

by our sanitization process.

• Third we empirically apply our data sanitization mechanism onto a differ-

ent geosocial dataset from Gowalla. This is possible because our sanitization

process uses high level principles gathered from our measurement study: a)

observations of general behavioral patterns that generate extraneous checkins,

and b) general statistics of human mobility patterns and distributions. We

demonstrate that our techniques can be used by third-parities to sanitize their

own geosocial traces in practice.
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• Finally, we recognize that our approach of capturing user mobility via modified

geosocial traces is not suitable for all mobile applications. We explore this

limitation in detail and discuss the suitability for a range of applications.

Our study follows our preliminary work [155] on the discrepancies between geoso-

cial datasets and GPS datasets, but makes significant new contributions on how

to sanitize the geosocial datasets for the good of third party applications and re-

search communities. To the best of our knowledge, this is the first deep study

of such problems and the first to offer both tools and sanitized datasets to the

research community.

5.2 Methodology & Datasets

Here, we briefly introduce background on LBSNs, explain our methodology,

and describe datasets used in our study.

5.2.1 Background & Motivation

Today’s LBSNs allow users to share their social activities along with their

locations, e.g. checking in to nearby Points-of-Interest (POI). The most popular

LBSN is Foursquare, with over 40M registered users and 4 billion “checkins” (as

of September 2013). Other popular sites include US-based Yelp and Gowalla (now

defunct), and China-based JiePang.

LBSNs incentivize user checkins using (virtual) rewards. For example, the

FourSquare user who checks-in to a location most frequently over a 60-day window

is designated the “Mayor.” In addition, users obtain “badges” for achieving certain
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requirements, e.g. checked-in to five different coffeeshops. Other LBSNs have

similar incentives.

Despite their growing acceptance as substitutes for large-scale mobility traces,

little is known about how well these datasets actually reflect our true mobility

patterns. Recent work has raised concerns of fake checkins and user biases, but

there is no data on the severity of the problem [17, 86, 47]. Our goal is to not

only use detailed measurements to examine potential biases in geosocial mobility

traces, but to develop techniques to correct these biases, thus producing a realistic

mobility trace that matches physical movement. Specifically, we answer four key

questions.

• How well do datasets of LBSN check-in events reflect users’ true mobility

patterns?

• What caused any discrepancies between the trace and real mobility?

• How do we sanitize the geosocial datasets to make them useful to these appli-

cations and systems?

• Can our techniques be generalized and applied to “curate” existing LBSN

datasets?

5.2.2 Methodology

Our approach consists of three steps: collecting real-world checkins and true

mobility traces, identifying discrepancies between the two datasets, and finally

sanitizing the checkin datasets to reflect true mobility patterns. We summarize

our methodology, corresponding challenges, and our solutions.
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Collecting checkins & true mobility traces. Our first step is to collect

parallel physical mobility (GPS) traces and Foursquare checkin traces for a single

set of users. For this, we developed a smartphone app that simultaneously collects

a user’s Foursquare checkins and her fine-grained (i.e. per-minute) GPS location

data (with consent). In six months, our app attracted 200+ Foursquare users

worldwide, with nearly 3 million GPS entries and 14,000+ checkin entries. We

discuss more details on the dataset in §5.2.3.

Identifying & understanding discrepancies. Next, we compare “checkin”

events from the Foursquare dataset to “visit” events extracted from the GPS

trace (§5.3). We develop a spatio-temporal matching algorithm that identifies a

matching visit event for each checkin event. We ensure that the algorithm is robust

against measurement noise and human artifacts, and validate its accuracy using

data from a controlled user group. Our analysis reveals that 75% of Foursquare

checkins do not match any visits in the GPS dataset (i.e. extraneous checkins),

while 90% of actual visited locations in the GPS dataset are missing from the

checkin trace (missing checkins).

Next, we identify potential causes and motives for both extraneous and missing

checkins. By examining the data, we find that “extraneous checkins” are easily

explained by a small number of prototypical “cheating” behaviors that are well

motivated by FourSquare incentives. Similarly, data analysis reveals intuitive

reasons for why users neglect to checkin to “missing checkins.”

Curating LBSN traces. Our goal is to “curate” LBSN datasets to remove its

biases and making it representative of real user mobility. This is highly challeng-

ing, given the small overlap between the checkin and GPS datasets. Our approach
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is a two-phase process, where we first detect and remove extraneous checkins

(§5.4), then interpolate the remaining checkin dataset to recover missing checkins

(§5.5). Detection involves identify a list of promising features that distinguish

extraneous checkins from honest ones, and use these features to build an effec-

tive classifier. Interpolation requires accurately predicting the number of missing

checkins given the current dataset, and then interpolating new visit events, such

that the temporal and spatial distributions of the interpolated dataset matches

distributions in the GPS trace.

5.2.3 Datasets

Our study uses three groups of datasets, two collected by us, and one publicly

available online.

Data Collection. Our goal is to collect matching physical mobility (GPS)

traces and Foursquare checkin traces for a single set of users. We built a measure-

ment smartphone app for both Android and iOS which generates two matching

traces: a per-minute GPS trace of the user’s location, and a trace of the user’s

checkin events polled using Foursquare’s open API. We process the GPS trace to

detect “visits” to points of interest (POI), and define a visit as the user staying

at one location for longer than some period of time, e.g. 6 minutes2. When GPS

signals are not available, e.g. indoors, the app uses the phone’s WiFi radio and

accelerometer to determine if the user is stationary or moving, similar to [74]. We

obtained human subject IRB approval for our study.

2While our mobile app can only detect stays longer than 6 minutes, we found that using larger
thresholds, e.g. 7−20 minutes just reduces the number of stays slowly, and have negligible impact
on our later findings.
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Datasets # of Avg days # of # of GPS
users per user checkins visits points

Primary 244 14.2 14K 31K 2.6M
Baseline 47 20.8 665 6.3K 558K
Gowalla 107K 90.0 6.4M N/A N/A

Table 5.1: Statistics of the datasets.

Primary Datasets. Our main dataset comes from Foursquare users who

installed our app from Google Play and Amazon App stores. Between January

and July 2013, we received data from 244 users worldwide, where each user’s

measurement data covered an average of 14 days. This produced two mobility

traces (Table 5.1):

• Checkin Trace contains 14,297 Foursquare checkins events. Each event in-

cludes a timestamp, the name of a POI, its venue category and GPS coordi-

nates.

• GPS Trace contains 2,600,000 sets of GPS coordinates. It captures each

user’s GPS location on a per-minute basis, and a list of 30,835 POI “visits.”

These users are “organic,” i.e. Foursquare users who started to use our app

voluntarily. Their geographic distribution matches those of Foursquare, i.e. the

top 3 areas (USA, Brazil and South Asia) contribute to 90%+ of the total users

in both datasets [15]. Furthermore, we compared our checkin trace with existing

Foursquare checkin traces collected by prior work [23, 102], and found consistent

statistical properties, including distributions of per-user checkins, inter-checkin

times, numbers of badges, numbers of friends, and user nationality. This lends

support to our belief that our dataset is reasonably representative.

Baseline Dataset. We also collected a smaller dataset (also 2 parallel traces)

by recruiting 47 undergraduate volunteers from the communication department at
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Checkin Trace GPS Trace

Extraneous

10772

Missing

27310
Honest

3525

Figure 5.1: Matching results of the
Primary dataset.
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Checkin Type
Correlation

#Friends #Badges #Mayors #Checkins/Day
Superfluous 0.22 0.07 0.34 0.15
Remote 0.18 0.49 0.16 0.15
Driveby -0.10 -0.21 -0.08 0.21

Honest -0.09 -0.42 -0.23 -0.40

Table 5.2: Correlation between users’ profile features and ratio of each type of
checkins.

our university. These students installed our smartphone app and used FourSquare

normally. Later, we will use this dataset as a control group to validate the results

of our checkin classification mechanisms.

Gowalla. Gowalla is a LBSN similar to Foursquare, allowing users to check

in at the places they visit. The dataset3 contains 6M checkins from 107K users

collected from Feb 2009 to Oct 2010. It does not contain any true mobility trace

data. We will use this dataset to further examine our data curation mechanism

(§5.6).
3http://snap.stanford.edu/data/loc-gowalla.html
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5.3 Validating Checkins

Using our checkin and GPS datasets, we now validate how well Foursquare

checkins correspond to each user’s physical mobility patterns. For this we de-

velop a spatio-temporal matching algorithm that “matches up” each Foursquare

checkin POI to a visit in the GPS trace, and use the matching result to quantify

the discrepancies between the two datasets. We also perform detailed analysis

to identify driving reasons behind these discrepancies, and describe our plan to

correct them.

5.3.1 Matching Checkins to Visits

We first introduce the matching algorithm, and then discuss the matching

results and our findings.

Matching Algorithm. Our algorithm matches a user’s Foursquare checkins

to her GPS visits based on the associated GPS coordinates and timestamps. To

minimize the impact of measurement noises due to inaccurate GPS reports and

minor time offset between a checkin and the corresponding physical visit, we apply

thresholds to control the precision of data matching.

• Spatial Matching: For each checkin event Ci in a user’s Foursquare trace,

we identify from the same user’s GPS trace a set of visits {V } whose physical

locations are within α meters from Ci’s location. {V } can contain one or

multiple visits, or the null set.
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• Temporal Matching: If {V } is non-null, find the visit vj from {V } whose

timestamp is closest to that of checkin Ci. If the difference between the two

timestamps4 is less than β, then vj matches ci.

Ideally, there would be a one-to-one mapping between checkin events and GPS

visits. Our algorithm ensures that each checkin event has at most one matching

visit. If multiple checkins are matched to the same visit vj, (i.e. a user checks

in at multiple POIs when visiting one), we match vj to the geographically closest

checkin event.

We have experimented with a wide range of α and β values, and found that the

results are most consistent for values α = 500m and β = 30min. Our approach

is designed to capture an upper limit on possible event matches. Thus both

values are intentionally generous to increase the probability of matching checkins

to visits.

Matching Results. We first ran the matching algorithm on the Primary

dataset with ordinary Foursquare users. Its checkin trace contains 14297 checkins

while the GPS trace includes 30835 visits. Figure 5.1 shows the matching result

as a Venn diagram.

• Honest Checkins: 3525 checkins events match up with GPS visits. These

checkins events correspond to GPS readings that show the user was indeed at

the physical location matching her Foursquare checkin event. This represents

a very small portion of both checkins and GPS visits.

• Extraneous Checkins: 10772 checkin events (75% of total checkins) do not

match any visits in the GPS trace.

4Each visit has a start time Ts and an end time Te. We calculate ∆t, the timestamp difference
between v and a checkin with timestamp (Tc) as follows: if Ts ≤ Tc ≤ Te, ∆t = 0; Otherwise,
∆t = min(|Tc − Ts|, |Tc − Te|).
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• Missing Checkins (or Unmatched Visits):27310 visits in the GPS trace

(89% of all visits) do not match any Foursquare checkins.

We wish to validate that our “honest checkins” are an accurate representation

of real checkin activity. For this, we compare it against our Baseline dataset of

undergraduate volunteers. Since these volunteers were participating to fulfill a

research requirement, they were much less likely to be influenced by Foursquare

rewards. We use several mobility metrics to compare the two datasets, including

inter-arrival time distribution, movement distance distribution, event frequency,

speed distribution and POI entropy [42, 41].

Figure 5.2 plots the inter-arrival time distribution results of GPS and checkin

traces from both datasets, as well as the honest checkins from the Primary dataset.

It shows that GPS traces from both datasets match up near perfectly. In addition,

the entire checkin trace from the baseline matches up perfectly with the honest

checkin set from the primary dataset, while the set of all checkins from the primary

data shows significant differences. Other metrics led to the same conclusions

(results omitted for brevity), thus confirming that our matching algorithm did

accurately identify the set of honest Foursquare checkin events.

Overall, our matching result reveals shockingly large discrepancies between

the checkin and GPS datasets. The discrepancies appear in both the raw data

(Figure 5.1) and the statistical mobility patterns they represent (Figure 5.2). We

confirm later in §5.5.3 that these discrepancies translate to signicant deviations in

results of applications using these traces. Next, we study the underlying causes

of both extraneous and missing checkins.
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5.3.2 Extraneous Checkins

Extraneous checkins (those without a matching visit) occur when users misrep-

resent their physical location. Here, we categorize observed extraneous checkins

based on user behavior, then try to infer possible incentives motivating them.

Types of Extraneous Checkins. We manually inspected our pool of 10772

extraneous checkins, and found that 90% could be classified into one of three types

of user behavior. The remaining 10% do not display any distinctive features.

• Superfluous Checkins. When visiting and checking in to one POI, some

users also check in to multiple nearby POIs from the same physical location.
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We found 2176 superfluous checkins in our dataset (15% of all checkins and

20% of extraneous checkins).

• Remote Checkins. These are checkins to POIs more than 500 meters away

from a user’s actual GPS location. 500m is beyond any reasonable GPS or

POI location error, and the user is clearly falsifying her location. Our dataset

has 5715 remote checkins (40% of all checkins and 53% of extraneous checkins

).

• Driveby Checkins. These occur when users checkin to nearby POIs while

moving at a moderate or high speeds. Computing speed from our GPS trace,

we treat a checkin as driveby if its speed exceeds 4mph. There are 1782 driveby

checkins (13% of all checkins).

Incentives for Extraneous Checkins. There could be many potential causes

for extraneous checkins. To infer the key causes, we measure the correlation be-

tween a user’s extraneous checkins and her user features, i.e. number of friends,

number of badges, number of mayorships, and number of checkins per day. Ta-

ble 5.2 lists the Pearson’s correlation score between each user’s features and the

ratios of her checkins (superfluous, remote, driveby and honest). The score is be-

tween -1 and 1, where -1 means perfect negative correlation and 1 means perfect

positive correlation.

We observe that both remote and superfluous checkins correlate strongly with

Foursquare’s reward mechanisms (badge and mayorship). This suggests that so-

cial rewards are key incentives for extraneous checkins. For example, to collect

badges, Foursquare users need to checkin at various new POIs that could be far

from their actual location. Similarly, mayorship of a POI requires more frequent

checkins at that location than other users. This motivates her to check in even
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when not physically visiting the POI. Foursquare allows remote checkins to count

towards badges, but not mayorships. This is clearly visible from the correlation

results. Since badges require checkins at specific POIs, superfluous checkins do

not help. Finally, we note that honest checkins have negative correlation with all

four features. This indicates that “honest” users tend to be less active (i.e. less

checkins per day, less badges).

Our results show that superfluous and remote checkins dominate extraneous

checkins, and are likely motivated by Foursquare’s user badges and mayorships.

Since these rewards play a large role in encouraging user engagement in Foursquare

and other LBSNs, superfluous and remote checkins will likely remain a key com-

ponent of geosocial traces.

Per-user Prevalence. If extraneous checkins are endemic to specific subsets

of users, then we can focus on removing those users. We compute for each user

the portion of her checkins that are extraneous. To our surprise, the CDF in Fig-

ure 5.3 shows that extraneous checkins are widespread. Nearly all users produced

extraneous checkins, and for 20% of users, extraneous checkins accounted for up

to 80% of their checkin events.

These results raise serious concerns about the prevalence of unreliable checkins

in the user population. They also mean we cannot target specific users in an effort

to filter out extraneous checkins, unless we are willing to sacrifice a significant

number of honest checkins. Filtering out users who generate 80% of all extraneous

checkins would also filter out 53% of honest checkins!
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5.3.3 Missing Checkins

For missing checkins, the obvious question is which locations are missing, and

why? Our intuition is that users typically forget to check in at specific (perhaps

routine) places that they visit frequently, e.g. home, office, and gas stations. If

so, then a small number of places could account for the large majority of missing

checkins. To validate this, we identify for each user the top-n most visited POIs,

and examine the portion of her missing checkins attributable to these top POIs.

Figure 5.4 plots the CDF of this ratio across all users for their top-5 visits. The

results confirm our hypothesis. For roughly 60% of all users, 5 locations account

for more than half of their missing checkins. For 20% of users, just a single location

accounts for more than 40% of missing checkins.

We also looked at the types of POIs in those missing checkins. Figure 5.5

shows the break down of missing checkins locations into 9 categories based on

Foursquare’s POI classification. The three POI categories with the most missing

checkins are Professional, Shops and Food. These are related to people’s routine

activities: going to work, grocery shopping and meals. According to prior stud-

ies [47, 86], users typically do not checkin at places that they think are “boring”

or “private.” However, these frequently visited places are critical parts of a user’s

mobility pattern.

Overall, our analysis shows that missing checkins often cover frequently visited

locations in a user’s daily life, and are therefore critical components in a human

mobility trace. Their absence means geosocial traces are missing a large majority

of each user’s mobile history.
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5.3.4 The Need for Sanitization

The prevalence of missing and extraneous checkins raises serious concerns on

whether checkin traces truly reflect human mobility, significantly devaluing these

geosocial mobility traces. Our second goal is to develop sanitization techniques to

correct these biases in geosocial traces, thereby producing “clean” checkin traces

that truly reflect human mobility patterns, i.e. stastistically resemble ground-

truth GPS traces in key mobility metrics. We propose and validate a two-phase

checkin sanitization process, first detecting and filtering out extraneous check-

ins (§5.4) and then statistically recovering the missing locations (§5.5). We also

show empirically that our techniques can be applied to other datasets such as the

Gowalla dataset (§5.6).

5.4 Detecting Extraneous Checkins

Recall from §5.3.2 that extraneous checkins are prevalent in the user popula-

tion, and cannot be removed by removing specific users. A closer look reveals that

extraneous checkins display distinct features that distinguish them from honest

checkins. More importantly, we can efficiently extract and quantify these features

by collecting checkin and GPS traces from a small number of Foursquare users.

Here, we first describe key features identified by our analysis, and then use them

to build machine learning based detectors that filter out extraneous checkins.
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Figure 5.6: Example features of checkins.

5.4.1 Features

We identified four groups of features that could distinguish extraneous check-

ins: temporal features, spatial features, venue categories and user information.

We have both features based on the checkin events themselves, and also based on

the users who performed the checkins.

Temporal Features. Extraneous checkins are likely to display distinct tem-

poral features from normal user checkins, e.g., bursts, daily or weekly patterns,

and checkin frequency. Take burstiness for example. Figure 5.6(a) plots the CDF

of the inter-arrival times for all extraneous checkins and honest checkins. Most
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extraneous checkins are separated by small inter-arrival times (< 10 minutes), and

35% of the checkins arrive less than a minute after the previous checkin! In con-

trast, most honest checkins arrive well beyond 10 minutes after the prior checkin.

This result is quite intuitive. Our features include Arrival Delay after Previous

Checkin, Hour of Day of Checkin, and Day of Week of Checkin.

Spatial Features. Similarly, extraneous checkins also display unique move-

ment features, some specific to the checkin event, and some specific to the user

who generated the checkin. Take for example Distance from Last Checkin and

Movement Speed since Last Checkin. Figure 5.6(b) shows the CDF of distance

between consecutive checkins. As expected, superfluous checkins, i.e. user check-

ing in to multiple nearby venues, show small inter-checkin distances. In contrast,

remote checkins display large movement speeds between two consecutive checkins

(not shown here for brevity), because remote checkins are often generated between

two far away locations in a short amount of time. Driveby checkins also shows

higher speed because users’ didn’t stay in these checkin venues. Our spatial fea-

tures include Distance from Last Checkin, Movement Speed from Last Checkin,

and Distance from User’s Daily Center of Checkins as our spatial features.

Venue Preference. We observe that people tend to make extraneous check-

ins in certain venue categories – users tend to fake checkins more frequently at

Food, Travel and Outdoor places (see Figure 5.6(c)). Besides Venue Category,

we also consider how frequently a user checkins at each venue, i.e. Venue Revisit

Frequency.

User Information. Our previous analysis suggests that extraneous checkins

have strong correlations with user’s Number of Badges and Number of Mayors.
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in the resulting data.

In addition, we also consider Total Number of Checkins, Average Daily Checkins,

and Daily Distance Traveled.

5.4.2 Detection and Results

Our goal here is to remove as many extraneous checkins as possible regardless

of the checkin type. With all the features we build for the checkins, we test a se-

ries of machine learning algorithms including k-Nearest Neighbor (kNN), Support

Vector Machines (SVM), Naive Bayes, Classification Tree, Regression Tree and

its improve versions i.e. Bagged Trees and Random Forest. Since Random For-
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est and Bagged Tree generally perform similarly, we only present Random Forest

results for brevity.

We utilize 1/3 of our dataset as training set to find the best settings. In

Figure 5.7 we show the accuracy of multiple detectors. Here we limit the False

Positive (FP) rate to be 10%. Among all the approaches, random forest performs

the best, with a False Negative (FN) rate of just above 30%.

Breakdown of Results. While we were able to remove close to 70% of

extraneous checkins, we need to understand the composition of the extraneous

checkins that avoided detection. Figure 5.9 compares the number of different

types of checkins before and after applying the detection algorithm (fixing FP to

be 10%). The results show that the number of remote checkins and superfluous

checkins are significantly reduced, by 77% and 74% respectively. Driveby checkins

are the ones with smallest detection ratio (49%). This is not surprising. By

definition driveby checkins share the most similarities with honest checkins, since

the users are actually near the physical vicinity of the checkin location. Unless we

can capture in real time the travel speed when a user checks in, driveby checkins

are the hardest to identify. On the other hand, the presence of driveby checkins

in a sanitized dataset is somewhat tolerable, because they do correctly mark the

user’s location at a particular point in time. Later in §5.5.3 our results show that

the unfiltered portion of checkins only has minor impact on our sanitization result.

We observe that several features have a heavier impact on the detection pro-

cess, namely Total Number of Checkins, Average Daily Checkins, Daily Distance

Traveled by User, Arrival Delay after Previous Checkin and Movement Speed from

Last Checkin. This means that a user’s average behavior and a checkin’s tempo-

ral/spatial properties can serve as good indicators of extraneous checkins.
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In summary, we find that just applying popular machine learning models can

significantly reduce the number of harmful extraneous checkins, while preserving

most of the honest checkins. Among all the models tested, Random forest is the

best, possibly because it trains multiple trees to capture different types of extrane-

ous checkins. This means that we can potentially improve filtering accuracy with

more advanced models, e.g., multi-level or ensemble classifiers, which we leave to

a future work.

5.5 Interpolating Missing Checkins

After filtering out extraneous checkin events, our next goal is to design an

interpolation algorithm to recover real visit events missing from the trace. Our

goal here to interpolate the sparse Filtered Set to make it statistically consistent

to the GPS dataset in several meaningful metrics, including temporal and spatial

statistics. These temporal and spatial statistics of human mobility are widely

used in many models and applications [70, 69, 122].

In this section, we present details of our interpolation algorithm, including

components for both temporal and spatial interpolation, and discuss two im-

plementations, one based on a greedy algorithm and one based on conditional

probability. We evaluate their performance by comparing the resulting dataset

(Sanitized Set) with our GPS dataset over temporal, spatial and time-distance

joint distributions. Finally, we also demonstrate its efficacy for trace-driven ap-

plications by using it and our GPS data to drive simulations of a mobile ad hoc

network.
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5.5.1 Interpolation Methods

Our interpolation approach includes two steps, i.e. temporal interpolation and

spatial interpolation. In temporal interpolation, we modify the sanitized dataset

to match the GPS dataset, by estimating the number of missing visits between

two successive checkins, and the visiting time and stay duration of each missing

visit. In spatial interpolation, we assign a movement distance between any two

successive visits generated from the temporal interpolation, to ensure that the two

datasets also match in spatial distributions.

Note that we assume prior knowledge of some statistical distributions of user

movement, which we can draw from a small GPS ground-truth dataset5. Our

targeted distributions include movement time6, movement distance and stay du-

rations. We perform the interpolation using a subset of our GPS dataset (GPS

Training Set) to train the method, and the rest for testing (GPS Testing Set).

We repeat the experiments using the Geolife dataset [156] as the training set,

and observe the consistent result (omitted for brevity). We further discuss the

generality of this approach in §5.6.

We explain the interpolation algorithm by example. In Figure 5.10, we show

two successive checkins in the temporal domain, i.e. CA at time TA and CB at

time TB. Since checkins do not have stay duration information, we assign CA

and CB each with a stay duration (DA and DB as shown) randomly drawn from

the stay duration distribution of GPS Training Set. Thus, we get two visits

VA = {TA, DA} and VB = {TB, DB}, which start at time TA (TB) and stays for

5This small ground-truth dataset can be collected by measurements from a small set of
users or by leveraging existing datasets such as Geolife [156], CRAWDAD GPS [?] and Open-
StreetMap [?].

6Movement time is different from inter-arrival time because it doesn’t include stay duration.
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Figure 5.10: Interpolation methodology.

DA (DB). Then, we carry out the following two steps to interpolate missing visits

between them.

In temporal interpolation, we insert a series of visits V = {Vi|Vi = {Ti, Di}, i ∈

[1, n]} between visit VA and VB. Then, for spatial interpolation, we assign a

movement distance between two successive visits Vi and Vi+1, which is sampled

from a movement distance related distribution of the GPS dataset. By applying

the interpolation method between any two successive checkins in the Filtered Set,

the resulting (Sanitized Set) will show temporal and spatial statistics similar to

those of the GPS dataset.

We consider two possible implementations, i.e. a greedy method and a condi-

tional probability-based method:

Greedy Method (Greedy). We greedily insert visits between VA and VB,

until no visit can be inserted. Specifically, given the stay duration distribution

P (D), movement time distribution P (δ), and the movement distance distribution

P (d) of the GPS Training Set, we first sample a random movement time δ1 from

P (δ) and a random stay duration D1 from P (D), as shown in Figure 5.10. If

TA + DA + δ1 + D1 < TB, we insert the visit V1 at time T1 = TA + DA + δ1;

otherwise, it means no missing visit exists between VA and VB. Whenever a
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Figure 5.11: Interpolation results on filtered set.

visit Vi is inserted, we repeat this process to examine whether a visit Vi+1 exists

between Vi and VB. With the new generated visit list {VA, V1, . . . , Vn, VB}, we

assign a movement distance d (drawn from the movement distance distribution

P (d) of GPS Training Set) to any two neighboring visits.

Greedy method has some shortcomings. First, it tends to interpolate more

visits with short inter-arrival times, since events with shorter inter-arrival times

are more likely fit into any time gap. Second, it cannot reflect the fact that

the movement distance between two visits highly correlates with movement time.

That is, human tend to move further in a larger time period, and vice versa.

Considering these factors, we consider an alternative interpolation method.
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Datasets Filtered Set Greedy Method CPM Method GPS
Visits/day 3.5 16.3 9.0 9.9

Table 5.3: Density of visits in interpolated sets.

Conditional Probability Method (CPM). In temporal interpolation, we

estimate the number of missing visits n before inserting any visits between VA

and VB. Given a time gap ∆ = TB −TA−DA, we estimate the number of missing

checkins n based on conditional probability distribution P (n|∆): the probability

that n missing visits exisit between two successive visits with time gap ∆. We

then start to insert visits Vi (1 ≤ i ≤ m) between VA and VB in way similar to the

greedy method, but limit the maximum number of insertion such that m <= n.

We compute the distribution P (n|∆) also using GPS Training Set.

In spatial interpolation, we estimate a movement distance between two visits

by drawing a distance d from the distance conditional probability distribution

P (d|δ), which is the probability of movement distance d given a movement time

(δ drawn from GPS Training Set) between two neighboring visits. This captures

the property that people tend to travel further in larger time periods.

To train these methods, we randomly choose 50% of our GPS dataset as GPS

Training Set. We then interpolate the Filtered Set using the above methods and

evaluate the performance by comparing with GPS Testing Set.

5.5.2 Interpolation Results

We now examine the performance of both methods. Before we show the distri-

butions, we first examine the density of visits in the resulted datasets, as shown in

Table 5.3. Comparing to the GPS dataset, visit density from the greedy method
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is 60% higher. This confirms that greedy method tends to over-interpolate visits

to the dataset. Conditional probability method recovers a reasonable number of

missing visits, with similar density to GPS dataset.

Spatial and Temporal Features. We now look at whether the interpolated

sets also matches with the GPS dataset in temporal and spatial characteristics, i.e.

inter-arrival time distribution, movement distance distribution, and time-distance

joint distribution.

First, in generating inter-arrival time distribution, CPM outperforms Greedy.

As shown in Figure 5.11(a), compared to Filtered, both interpolation methods

significantly reduce the inter-arrival time between visits. Taking a closer look, we

find that the inter-arrival time distribution of CPM is closer to the distribution

of GPS dataset. This is because the conditional probability method can correctly

predict the number of missing visits using the conditional probability distribution

P (n|∆), unlike the Greedy implementation.

Second, we find that the movement distance distributions from both methods

match well with the GPS dataset (Figure 5.11(b)). Greedy here is slightly bet-

ter, because the movement distances used in Greedy are directly drawn from the

distribution of GPS Training Set, whereas in CPM, the distance also relies on

movement time.

Third, CPM accurately captures the relation between movement time and

movement distance in human mobility, as shown in Figure 5.11(c). Here we fit

the movement time and movement distance in each dataset with t = kd(1−ρ) [122],

where t is the movement time, d is the movement distance, and k and ρ are

constants. We see that Greedy’s movement distance is independent of movement
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Figure 5.12: MANET performance.

time. In CPM, we use the conditional probability P (d|δ) in spatial interpolation,

thus its distribution is similar to the GPS dataset.

In summary, the conditional probability method generates a trace that matches

the actual GPS trace in nearly all respects. Thus, we use the conditional proba-

bility method to generate the Sanitized Set for the remaining of the paper.

5.5.3 Application Level Impact

We study whether applications dependent on mobile traces can use our sani-

tized dataset, and produce results identical to using real, physical GPS traces. For

our application, we choose mobile ad hoc network (MANET) model simulations,

160



Chapter 5. Capturing User Mobility at Scale

Datasets
90%-tile Performance

Path Availability Reroute Frequency Route Overhead
Honest 0.15 0.37 20
All 0.25 0.23 17

Sanitized 0.06 0.50 34
User GPS 0.03 0.42 30

Table 5.4: Simulation results of MANET on different dataset.

because it is an application whose performance is highly dependent on low level

properties of its input mobility traces. A popular application in MANETs is to

drive a network simulator using one of several built in traffic models. In our case,

we preserve the existing simulation process, and provide as input to the models

our four traces: the sanitized dataset (Sanitized Set), GPS dataset (GPS), all our

Foursquare checkins (All-Checkin) and honest checkin dataset (Honest-Checkin).

MANET Simulation Setup. We obtain node/user movement traces directly

from each of the above four traces. Each resulting node trace contains user move-

ment direction and distance, movement time and speed, pause time when staying

at a place, and total travel time. We feed the node traces into a NS-2 AODV simu-

lator and configure the simulator by placing 200 mobile nodes in a 100km×100km

area, each of which has an 1km communication range. These nodes form 100 ran-

dom node pairs and each node pair communicates using constant bit rate (CBR)

streams.

MANET Simulation Results. As stated earlier, our goal here is to exam-

ine whether the sanitized dataset is statistically consistent to the GPS dataset in

mobility patterns, thus producing similar application-level results. We use three

metrics to compare their application-level performance: reroute frequency, route
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availability ratio, and routing overhead. Figure 5.12 plots the cumulative distri-

bution and Table 5.4 lists the 90%-tile result. We make three key observations.

First, compared to GPS, All-Checkin shows lower update frequency, higher avail-

ability and fewer routing overhead. This is due to the compound effect of missing

and extraneous checkins. In particular, the existence of superfluous checkins pro-

duces much lower moving speed, which effectively lowers the update frequency

and routing overhead. Second, removing the extraneous checkins is not enough –

the results using honest checkins still deviate from those using GPS. Third, the

results using Sanitized Set closely match that of GPS, confirming the necessarity

of the interpolation on top of filtering out the extraneous checkins.

In summary, our MANET experiment shows that the resulting datasets from

the sanitization process can be used in geosocial-based applications for better

performance, which is similar to using a real GPS dataset from user measurements.

5.6 Public Datasets and Applications

Next, we discuss the generalizability of our techniques beyond our own dataset

to public datasets, and the applications that can benefit from them. First, discuss

our sanitization techniques in the context of general geosocial datasets, and com-

pare some of our parameters against known traces of human movement. We then

apply our methodology on a large-scale public checkin trace from Gowalla, which

has already been widely used for research and applications [25, 42, 129]. Our goals

are to validate our sanitization methodology and to generate a large-scale usable

checkin dataset for the research community. Finally, we discuss limitations of our

work, and consider its suitability for a range of applications.
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Figure 5.13: Comparing feature distributions across multiple GPS traces and
our honest checkin trace.

5.6.1 Generalizing Sanitization for Geosocial Data

The ideal outcome of our work is a robust and accurate sanitizing process for

transforming potentially biased geosocial traces into realistic and useful mobility

traces for the research community. To do so, we must consider the question of

generalizability, i.e., how much can we rely on a sanitization process for third-

party datasets without ground-truth GPS traces for validation?

We believe our observations for detecting extraneous events is relatively gen-

eralizable. A quick look shows that the heaviest weights in classifiers are given

to features on dynamics and user movement, e.g., checkin interarrival times (for

163



Chapter 5. Capturing User Mobility at Scale

 0

 20

 40

 60

 80

 100

 0.1  1  10  100  1000  10000  100000
C

D
F

 (
%

)

Inter-arrival Time (min)

GPS
Gowalla Sanitized

Gowalla
Gowalla Filtered
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Figure 5.15: Movements with speed > 50km/h.

detecting bursts) and movement speed between checkins. More importantly, main

cause of extraneous checkins should be consistent across any location-based social

network with similar incentive models (currently all LBSNs).

The biggest question of generalizability applies to our interpolation using fea-

ture distributions from the GPS trace. We believe that while exact values in

the distribution may vary, inherent distributions of human movement are largely

consistent across datasets. To verify this, we obtained a large GPS trace of 182

users gathered by Microsoft Research Asia (over 48,000 hours of data from April

2007 to August 2012) [156]. We plot key distributions in Figure 5.13. Clearly,

our GPS dataset shows highly consistent distributions in key metrics to the Geo-
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life dataset. The discrepancy between the honest checkin trace and the two GPS

traces is especially clear in inter-arrival time and movement distances.

While a conclusive proof is likely infeasible, we believe this shows our saniti-

zation techniques are sufficiently general for third party traces. Given our goal

of reducing the inherent biases in geosocial traces, we believe a less than perfect

process can still add tremendous value.

5.6.2 Sanitizing the Gowalla Dataset

We sanitize the publicly available Gowalla dataset, by first studying the exis-

tence of extraneous/missing checkins, then sanitizing the data to remove extrane-

ous checkins and interpolating for missing checkins. By analyzing data statistics

before and after, we show the effectiveness of our sanitization process in removing

bias of geosocial traces and generating realistic human mobility data.

First, we check whether extraneous/missing checkins exist in the Gowalla

dataset. Without the GPS traces of Gowalla users, we are empirically search-

ing for clear evidence of extraneous/missing checkins. In particular, we found the

following properties demonstrate the problem very well.

Gowalla Trace Inconsistencies. We start by studying inter-arrival time of

Gowalla checkins in Figure 5.14. The red line shows that ∼ 20% of checkins had

inter-arrival times less than 1 minute, which is clearly too short to be “valid” visits

in the common sense. Users cannot travel between separate PoI’s within a few

seconds. This is very similar to what we observed in our Foursquare checkin trace

(Figure 5.6(a)). While we cannot confirm using measurement data, short inter-
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arrival times (i.e., bursts of checkins) are clear indicators of extraneous checkins

in the Gowalla dataset.

Second, Figure 5.15(a) shows movement speeds of Gowalla users traveling

faster than 50km/h. Normally, people travel at high speed for long-distance trips,

via cars or flights, but generally move at low speeds for local destinations. Fig-

ure 5.15(a) shows that most Gowalla users follow this trend (note the log axes).

However, points in the bottom left corner represent many checkins moving at

extremely high speeds (200km/h or higher). This is reasonable for cars, trains

and air travel over long trips, but highly unlikely for trips less than 3km. These

observations clearly show that extraneous checkins do exist in the Gowalla dataset.

Finally, missing checkins are inevitable in any geosocial trace, because users

often forget to check-in to each location they visit. A simple count of checkins

per-user, per-day demonstrates this. On average, Gowalla users checked in to 1.8

locations per day, while our GPS trace showed 9.9 locations were visited per user

per day.

Sanitizing Gowalla. Since we do not have a matching GPS data for Gowalla

users, we apply general techniques learned from our data sanitization of the

Foursquare checkin trace. First, we filter for extraneous events. We modify

the detector to account for small differences between Gowalla and Foursquare

datasets: the Gowalla data does not include counts of users’ badges and mayor-

ships (even though it uses similar incentives) or categories of locations7. Applying

this detector on Gowalla classifies 23% of all checkins as extraneous. We call the

post-removal dataset “Gowalla filtered.”

7These features have minimal impact on accuracy. Removing them from the detector only
reduces detection accuracy by 1% when applied to the Foursquare dataset.
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Datasets
90%-tile Performance

Path Availability Reroute Frequency Route Overhead
Honest 0.33 0.24 22
All 0.24 0.29 34

Sanitized 0.08 0.38 31
User GPS 0.03 0.43 30

Table 5.5: Gowalla data results in MANET with different datasets.

Without a matching user GPS trace, we validate the effectiveness of the detec-

tion by looking for the inconsistencies we found earlier. First, Figure 5.14 shows

that compared to the original Gowalla trace (in red), our detector successfully

removes all of the short-interval checkins (filtered data in blue). Second, as shown

in Figure 5.15(a) and Figure 5.15(b), our detector filters most of the extraneous

checkins with unrealistically high speeds at short distances (bottom left corner).

While we cannot guarantee we detected all extraneous events, we successfully

filtered out nearly all abnormal checkins observable through our metrics.

Finally, we apply the conditional probability interpolation method on the

Gowalla filtered dataset to recover the missing checkins. After interpolation, av-

erage visits per day in Gowalla Sanitized dataset rises from 1.8 to 8.4, which is

close to the 9.9 we observed from our GPS user trace. Figure 5.14 also shows that

the inter-arrival time distribution of Gowalla sanitized data match very well with

distributions of our GPS dataset. The movement distance and time-distance joint

distribution are also consistent with previous results, but omitted for brevity.

Application Level Impact. We also put Gowalla dataset and the sanitized

set in our MANET simulations, and show the results in Table 5.5. The results

are consistent with our Foursquare dataset results (Table 5.4), despite the fact

that the Gowalla dataset contained less extraneous checkins (23% vs. 75%). The
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Gowalla trace post-sanitization produces similar results to that of our GPS trace

(and significantly different from the original Gowalla trace), thus demonstrating

the effectiveness of the sanitization.

5.6.3 Applications and Limitations

Our approach of capturing user mobility via modified geosocial traces is not

suitable for all mobile applications. We consider three broad classes of applications

and discuss the suitability of our approach for each.

• Some applications require only high-level statistical distributions of human

mobility, and can utilize our traces directly. For example, our traces can easily

drive a wide range of network simulations for MANETs or opportunistic net-

works. This also holds for mobile sensing applications, such as crowdsourced

sensing platforms focused on spatial coverage and frequency of user visits.

• Some applications require specific information like source and destination of

the movements, but only output accumulated results over large populations.

Examples include urban planning, which uses mobility trace to estimate pop-

ulation density at different locations and times, and traffic planning, which

combine user mobility traces to public available information such as maps to

predict specific travel routes. In these cases, we can bound the location error of

the interpolated events, and in turn bound the error of final statistical results

in the applications.

• Finally, for applications that focus on per-user details and require accurate

event information, our datasets are not appropriate. Examples include real-

time, personalized venue recommendations, friend recommendations, and next
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destination prediction. While our interpolation produces statistically correct

results, we cannot provide accuracy at the level of per-user visits.

5.7 Related Work

Human Mobility Tracking. Recently, researchers have been working on

novel ways to gather detailed, timestamped user mobility traces. Recent efforts

leverage the rich collection of sensors on smartphones to improve location accuracy

[74]. But obtaining detailed traces requires significant overhead, and existing

efforts still remain very limited in scale [157, 156]. To obtain large-scale human

movement traces, others proposed relying on registration data from cellular or

WiFi networks [144, 32, 152]. Such data approximates a user’s location as the

coverage area of her registered cellular basestation or WiFi AP. Unfortunately,

since they rely on registrations, they also sample locations unevenly, leading to

biased representations of human mobility [118].

Mobility Models. Many mobility models have been proposed in literature. A

large group of models are random mobility models (e.g. RandomWaypoint, Brow-

nian Motion, Random Walk) and their variants (e.g. Gauss-Markov [38]). These

models are elegant mathematically, but are too simplistic to capture detailed hu-

man mobility features. More realistic mobility models seek to capture different

aspects of human mobility, such as geographical constraints (Obstacle [69], Free-

way and Manhattan [30]) and social context (ORBIT [85], CMM [85]).

Other recent models have been built from real traces such as GPS traces and

WiFi AP registration traces. [122] builds Random Waypoint Models with real

traces. [144, 77, 68] study WiFi registration patterns. Of these, [68] only considers
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registration patterns, but not exact physical mobility. [144, 77] both consider the

problem in a geographical point of view, while [77] also models the hotspot feature

of human mobility. [67, 42] models the regular home-work pattern, while [42] also

considers the impact of social links. In [84], the authors proposed a model to

capture multiple features of human mobility from real traces, including heavy-tail

flights and pause times, power-law inter-contact times and hotspot locations. We

use several of these to drive our simulations [77, 84, 122].

Geosocial Datasets. While prior work has proposed client-side methods

to prevent fake checkins [61, 127], none have studied filtering extraneous events

or interpolating events from samples of human movements. Methods have been

proposed to interpolate human trajectory from sparse data samples, e.g. vehicular

GPS records and cellular records [64, 147].

5.8 Conclusion

In this chapter, we describe a detailed effort to understand and improve the

ability of geosocial human mobilty traces to capture human mobility patterns.

Using a ground-truth GPS dataset from a user study, we identified significant

discrepancies between the two datasets, i.e. that large amount of fake checkins

exist while lots of visited locations are missing in the checkin dataset. To mitigate

these problems, we proposed a two-phase sanitization method to filter out fake

checkins and interpolating missing locations, and validate the effectiveness in a real

application scenario. By applying our techniques to the public Gowalla dataset,

we showed that it is possible to transform geosocial traces into the mobility traces

needed by the research community.
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Conclusion

We conclude the dissertation by summarizing our works, sharing the lessons

learned and discussing future directions.

6.1 Summary

The combination of sensing technology and network communication can en-

able a large variety of novel mobile applications, such as location based services,

interactive games, collaboration applications among co-located users, motion mon-

itoring of elder people and augmented reality. However, the limited localization

capability and network capacity have hindered us from enabling these visions.

To enable such services and scale to millions of people, we need to design highly

accurate localization systems and high-capacity mobile networks.

In this dissertation, we identify the challenges in both areas and propose so-

lutions for them. To be specific, we observe that traditional localization methods

have a low level of accuracy, and requires a localization infrastructure and tar-

get device cooperation, which significantly limits their applicable scenarios. We

propose two designs to address these problems. In the first design, we use acous-
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tic signals instead of radio waves to address the accuracy issue, reaching a much

higher accuracy in centimeter level without the aid of localization infrastructures.

We propose novel signal processing algorithms to significantly improve the local-

ization delay, thus enabling mobile applications to track user motion in real time.

In the second design, we target a malicious scenario in which the wireless device to

locate is uncooperative. To pinpoint the location of the device from the observed

signal, we leverage the human body’s blocking effect on wireless signals and build

an efficient direction analysis algorithm upon it. Both our localization systems

have practical system implementations and real world evaluations to demonstrate

the effectiveness.

To address the network capacity issue, we also make contributions in two folds.

First, we notice that existing mobile networks can hardly scale to provide orders

of magnitude more bandwidth. There are two fundamental reasons: limited spec-

trum resource and high mutual interference. To address the problems, we make a

drastically new design of next generation mobile networks utilizing 60GHz beam-

forming technology, which has 7GHz-wide license-free spectrum band, and highly

directional transmission to avoid interference. Our work reveals the promising

potentials of such a design, and quantify the system performance under real en-

vironments with pedestrian blockage, user mobility and interference. Second, we

observe that user mobility could generate high dynamics in mobile networks, thus

we need to understand large-scale human mobility patterns. We conduct a study

on existing large-scale user mobility traces from popular location based social net-

works, i.e. Foursquare and Gowalla, and aim to understand whether these traces

can reflect actual human mobility. Our work identifies large discrepancies between

these traces and the actual GPS trace, which are probably due to the user incen-
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tive systems of location based social networks such as mayorships or badges. We

then design data analytic tools based on a list of distinctive features to sanitize

the datasets.

6.2 Lessons Learned

Through solving the above problems, we have also learned some lessons on the

research of mobile computing as follows.

Mobility Creates Both Challenges and Opportunities. Mobile com-

puting aims to provide ubiquitous services and connections to mobile users, thus

requiring the systems to handle various environment issues and mobility intro-

duced errors. This is a great challenge to practical system design. For instance,

in Chapter 2, our localization system face several challenges caused by mobility.

First, user motion caused Doppler effect generates lots of measurement errors.

Second, certain environments many have strong signal reflections from the walls

or ambient noise, also causing measurement errors. Thus the impact of mobility

should be always kept in mind while designing mobile systems.

However, we also find that mobility is not always a destructive factor to system

design. In Chapter 3, we leverage the user’s rotation to create a signal pattern that

emulates an directional antenna to find out the location of a device. This design

explores the diversity provided by user motion and build an effective algorithm on

it. In Chapter 4, we find that even when the line of sight path from the basestation

is completely blocked, it’s still possible to build connection by reflection from walls.

This is an example of leveraging the surrounding environment to achieve better

performance.
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Embracing the Power of Sensors. The rich sensor set on mobile devices

are the most important resources to explore when designing mobile applications.

In Chapter 2 and 3, we show that by leveraging different sensors, we can actu-

ally achieve much better performance than traditional solutions. For instance, in

Chapter 2, we utilize the microphone and speaker to achieve high localization ac-

curacy. Leveraging certain sensor information may also help to improve network

performance. For example, in Chapter 4, one of the future works in the basesta-

tion design is to track mobile users and build directional 60GHz links with them.

We can possibly leverage the sensors on mobile devices to assist this process.

6.3 Ongoing and Future Directions

So far our research has been focused on developing accurate localization sys-

tems and high performance mobile networks. Our existing localization systems

focus on wireless/mobile device localization, and we have treated each mobile de-

vice as isolated entities. Moving forward, we plan to first expand our horizon of

device localization to to the exploration of even richer information of surround-

ing environment, not only including devices and but also other objects such as

a tables, buildings or human. We then plan to fusion the information collected

from millions of devices together, utilizing data analytic tools to recognize com-

mon scenarios, and then configuring these device with the right functionality, to

finally enable “intelligent” mobile computing. Our detailed visions and plans are

as follows.

Mining Rich Context Information. In mobile computing, there is a urgent

demand for a system to sense and digitize the surrounding environment of a
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user, not only including the location of each object, but also its speed, shape

and material. Such a system can be very beneficial to many applications. For

example, a visually impaired person can avoid all possible collisions with such

information, going anywhere without others help. For another example, a game

designer can easily reconstruct any environment from the information captured

by a smartphone, and integrate them into virtual reality games.

To meet this demand, we envision a personal RADAR system, which can collect

the information of the objects in the vicinity of the user. By combing observations

from different locations when the user move, the device can ultimately reconstruct

the complete picture of the surrounding environment.

We are currently considering millimeter wave, such as 60GHz, as a candidate.

as 60GHz signal has good reflection properties. We can project directional signal

beams to the object’s surface, and calculate the information from the signal that

is echoed back, such as shape and surface material. Utilizing electrically steered

antenna arrays, this process can be really fast.

To implement such a system is challenging. Traditional RADARs are normally

equipped with large lenses. The larger the lens is, the higher the sensing accuracy

is. However, limited by the size of mobile devices, 60GHz chipsets can not carry

large lenses. One potential solution for this problem is to leverage the user’s

movement. Through capturing information in multiple locations, we can emulate

a large lens by walking. This would require a precise localization system to connect

all the “images” sampled at different location together. At the same time, the

user body’s movement such as shaking could also introduce measurement errors.

We are using our 60GHz platforms to study these.

175



Chapter 6. Conclusion

Empowering Mobile Computing with Big Data. Although mobile com-

puting has been through years of fast growth, our devices are still not as “intelli-

gent” as we expect. The devices are still working on user specified rules and can

not configure themselves intelligently to fit the users need. For a simple example,

whenever someone walks into a meeting room, his/her device should be able to

learn the situation and turn itself into a meeting mode. This sounds like a simple

task, but involves very challenging sensing and learning process, which our devices

are not capable of currently.

To enable it, the device should first be able to tag the situation with sensed

information, , which room it is, whom the user is with, whether it is noisy or

quiet. Second, the device should be able to recognize the situation from its own

previous experience or the experience of other devices which have been in the same

situation. With the information collected from lots of devices, we can leverage

data analytic tools to mine common scenarios, define operation rules based on

the situation, and finally push these rules to each individual device to make it

“intelligent”.

To realize such a system, there are also many obstacles. First, the system

requires every user to upload the sensed information to the cloud, which could be

highly sensitive information. Thus, how to gather large-scale data from the user

without hurting privacy is very challenging. Second, users normally have different

types of behaviors even in the same situation, thus building adaptive models to

fit different users’ needs is another challenge to conquer.
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