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ABSTRACT 

 

High-Temperature Growth of Gallium Nitride Using the Ammonothermal Method with 

Ammonium Chloride Mineralizer 

 

by 

 

Thomas Franklin Malkowski 

 

Gallium nitride (GaN) has become an important semiconductor for the optoelectronics and 

power electronics fields in the pursuit of high efficiency devices. However, the lack of a 

natural native GaN substrate has forced growth of GaN devices on foreign substrates such as 

sapphire, silicon carbide, and silicon. To further enhance efficiency and develop devices with 

longer lifetimes, the number of defects present in devices must be reduced. The development 

of a native GaN substrate of high crystalline quality would directly enable defect reduction.  

The ammonothermal method of GaN growth has shown significant promise as a technique 

for the production of high quality GaN crystals of industrially significant size (crystals on the 

order of centimeters in the largest dimension). The ammonothermal method is a solvothermal 

method that uses a mineralizer (here ammonium chloride) with supercritical ammonia to 

transport GaN from a source material from one temperature zone to grow a seed crystal in 

another temperature zone. High pressures, high temperatures, and the presence of a highly 

corrosive chemistry make development of an economical growth reactor challenging. This 



 

ix 

 

body of work outlines the development of a growth reactor capable of high temperature 

ammonothermal growth of GaN using ammonium chloride mineralizer. 

Initial development of the ammonothermal reactor required identification of suitable 

reactor materials. A materials stability study was conducted by exposing samples of materials 

to the ammonothermal environment and measuring mass loss as well as any chemical or 

mechanical changes that occurred. An Inconel 625 alloy reactor was employed, although the 

reactor itself was somewhat susceptible to corrosion from the ammonothermal environment. 

The study yielded a subset of materials that may be suitable for use as gaskets and other single 

use items which include niobium, molybdenum, titanium, vanadium, tungsten, gold, and 

platinum. Alloys of molybdenum and cobalt may also be useful. High strength titanium-

zirconium-molybdenum (TZM) was also identified as a corrosion resistant material and was 

selected for reactor design. 

A TZM reactor was then designed and fabricated. Subsequent high pressure, high 

temperature tests indicated that TZM was essentially inert and growth of GaN crystals 

followed. All GaN growth was accomplished at or above 650°C using seed crystals grown by 

hydride vapor phase epitaxy. Seeds were characterized by micrometer measurements for 

growth thickness, x-ray diffraction (XRD) for crystalline quality, and secondary ion mass 

spectrometry (SIMS) for impurity concentrations. The growth quality appeared to match the 

seed quality as measured by XRD. Growth coloration ranged from slightly gray to green or 

yellow with growth rates up to 191 µm/day. Most seeds exhibited significant faceting at the 

edges of the sample, forming semipolar planes. SIMS was performed on a couple of samples 

which indicated oxygen concentrations of ~1018 cm-3. 
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1. Gallium Nitride as an Optoelectronic Material 

“But what can be the attraction of getting to know such a tiny section of nature so 

thoroughly, while one leaves everything subtler and more complex shyly and timidly alone?” 

-Albert Einstein, Address on the occasion of Max Planck’s 60th birthday  

Gallium nitride (GaN) is a compound semiconductor that has found significant use in the 

last three decades following the demonstration of the first bright blue light-emitting diode 

(LED). It is generally alloyed with aluminum nitride (AlN) or indium nitride (InN) to achieve 

the desired bandgap and thus the desired emission wavelength. Using the indium nitride-

gallium nitride (InGaN) alloy system, light emitters with wavelengths spanning the entire 

visible spectrum can be achieved.1 The impact of the blue GaN LED has had such a significant 

impact that a Nobel Prize was awarded to Isamu Akasaki, Hiroshi Amano, and Shuji 

Nakamura for its invention.2 Much has happened in the development of GaN devices since 

the invention of the blue LED and GaN technology has spread to use in laser diodes (LDs) as 

well as power electronics.1,3,4 

The expansion of GaN into all of these technological sectors initially proceeded without 

the use of native GaN substrates (substrates made out of GaN). Early LEDs and LDs were 

grown on sapphire, silicon carbide (SiC), or silicon.5–9 GaN does not exist naturally and thus 

any native GaN substrate must be created artificially. Heteroepitaxial GaN, GaN grown on 

any substrate that is not GaN, was thus preferred. Although native substrates are now 

somewhat available, they are still quite expensive. The most common method to enable high 

quality GaN layers on non-native substrates is to grow a low temperature buffer layer. These 

buffer layers are either AlN or GaN.5,8,10,11 The buffer layer is grown at low temperature and 

starts as an amorphous material, eventually recrystallizing as the GaN is grown on top. In the 

case of AlN, the buffer layer begins as a partially amorphous film that recrystallizes as the 
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temperature is increased to begin GaN growth.12 In the case of a GaN buffer layer, the 

metastable cubic phase and the thermodynamically stable hexagonal phase initially form 

mixed together with a huge number of defects. Heating of the film to the growth temperature 

allows reorientation of the grains as well as coalescence.11 In both cases, the buffer layer 

serves to partially break the coherence between the sapphire (or other non-native substrate) 

and the resulting GaN film, thus relaxing some of the strain.13 Another method to allow highly 

strained coherent layers to be grown is the use of superlattices.14 Such a practice is common 

for multi-quantum well (MQW) structures for LDs and LEDs. Superlattice structures are 

commonly used in the active region (the light emitting region) of optoelectronic devices 

because the In that is used to reduce the bandgap to achieve the desired emission/absorption 

wavelength also induces strain.1,7,15,16 As the native GaN substrate is still in development, we 

will begin with a discussion of the common non-native substrates. But first we must 

understand the native structure of GaN to identify how it will interact with a given substrate. 

A. The GaN Unit Cell 

The phrase “epitaxial growth” by its very definition requires that there is a definite 

relationship between the crystal structure of the substrate and the material grown on top of it. 

Thus, the choice of substrate can have a very dramatic impact on the quality of the resulting 

growth. The substrate and the epitaxial film (the “epi-film”) should then have the same or at 

least similar crystal structure. The 2D nature of the interface between the substrate and the 

epi-film relaxes this constraint a bit further and allows epitaxial growth as long as the 

symmetry of the interfacing planes is the same. Gallium nitride has the wurtzite crystal 

structure while sapphire and Si have the corundum and diamond crystal structures, 

respectively. SiC has many different crystal structures, but they are essentially stacks of 
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hexagonal packing and zinc blende regions. Zinc blende (more appropriately called sphalerite) 

is the cubic analog to the wurtzite structure and metastable GaN can be grown in the zinc 

blende structure. 17–19 From here forward, referencing the GaN crystal structure will be 

referring to the wurtzite crystal structure unless it is specifically stated otherwise. Because of 

the different structures and symmetries possible, it is prudent to analyze the GaN crystal 

structure before we consider how it would interact. 

The wurtzite crystal structure is a hexagonal crystal structure and can be defined by two 

lattice constants, c and a. The c-axis (which has a repeat distance of c) is orthogonal to the 

hexagonal symmetry, while the a1, a2, and a3 axes (all of which have a repeat distance of a) 

form the plane containing the hexagonal symmetry. An image of the conventional GaN unit 

cell is shown Figure 1a. Figure 1b details the primitive unit cell for GaN. The unit cells convey 

the same information, but do so in different ways. The conventional unit cell is easier for the 

human to analyze the structure and see which atoms are placed where. The primitive unit cell 

is the smallest true repeat unit of the crystal structure. Note that the primitive unit cell contains 

two Ga and two N and has only one lattice point while the conventional unit cell contains 

eight Ga and eight N. It is important to note that the a3 axis is actually redundant in naming 

of planes. If one considers the hkil plane (formed by considering where the plane intersects 

each axis and then taking the reciprocal of that to get the number that would correspond to h, 
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k, i, or l), then based on the symmetry of the cell, i is always defined by –(h+k). 

 

Figure 1. a) Conventional unit cell for wurtzite GaN. b) Primitve unit cell for wurtzite 

GaN. Note for both images, a3 goes into the page at an angle of 120° to a1 and a2 and at 

90° to c. 

 

There are several major families of planes that are commonly discussed in GaN. These are the 

{101̅0} (or m-plane), {112̅0} (or a-plane), and {0001} (or c-plane). The spontaneous 

polarization is in the c-direction and thus c-plane has the highest polarization. This 

spontaneous polarization field can affect devices in the form of the quantum confined Stark 

effect (QCSE), where the polarization field serves to separate electrons and holes. In light-

emitting devices, this spatial separation of holes and electrons reduces the efficiency of the 

radiative process and thus reduces the efficiency of the device. The QCSE also serves to shift 

wavelength at low current densities, but at higher current densities the impact of the 

polarization field is reduced and an effective blue shift occurs.20 Both m-plane and a-plane are 

orthogonal to c-plane and have no spontaneous polarization field, although they can have a 

piezoelectric polarization field due to lattice strain. Obviously, many other planes exist but 

some important semipolar planes (planes with an inclination less than 90° to c-plane) include 
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{202̅1} and {112̅2}.1,20 The spontaneous polarization field occurs due to the polar bonding 

between Ga and N as well as the lack of symmetry normal to the c-plane. Within the c-plane 

we have layers of either Ga or N atoms that are symmetric as shown in Figure 2a and 2b. The 

symmetry of these sheets prevents any polarization field from forming, thus any direction that 

is orthogonal to the c-direction has no polarization field. However, if we look in the c-direction 

in m-plane, for example, we see that there is an uneven spacing between Ga and N. This 

uneven spacing allows dipole moments that exist in the same direction and thus create a 

polarization field (see Figure 2c). 

 

Figure 2. Polarity and symmetry in c-plane and the c-direction. Slices of the c-plane 

are shown at different z-heights in a) and b). The red hexagon is to show the hexagonal 

symmetry of this plane. Panel c) shows the m-plane. The yellow arrows indicate the 

direction of the dipole moment between the N and nearest Ga atom. Note that the dipole 

moments all face in the same direction, leading to a spontaneous polarization field. 

 

Although often polarization fields can be a hindrance, they can also serve a purpose. One 

major use is the polarization locking of the emitted photons. This can be found most readily 
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in light-emitting devices on planes such as (112̅2).21,22 The polarization field here is actually 

a piezoelectric field induced by the strain in the heterojunctions. GaN is a piezoelectric crystal, 

which means as GaN is strained it develops an internal electric field. The field serves to 

separate the three valence bands that are primarily formed by the sp3 hybridization of the N 

p-orbitals. The separation of the valence bands causes a preferential transition which yields a 

particular polarization of the photon. The degree of separation between bands strongly impacts 

the ratio of the photon polarization and thus determines how polarized the emitted photons 

are.21,23,24 The piezoelectric properties of GaN means it can be used in microphones or 

piezoelectric sensors to convert electrical signals into sound and vice versa as well as function 

as a filter.25,26 While certain planes are mentioned above, the formation of the piezoelectric 

polarization is not a special case. Any device with regions that contain heterojunctions will 

almost certainly have lattice mismatch and thus lattice strain leading to polarization fields.  

B. Non-Native Substrates 

The prior discussion has given some overview of the natural structure of GaN and the way 

it alters its behavior based on strain. Lattice mismatch, the difference in lattice constant 

between an epi-film and the preceding layer, can cause strain that results in piezoelectric fields 

as well as cause dislocations to relax this strain. Thermal coefficient mismatch (the difference 

in thermal expansion coefficients (TECs) between GaN and substrate) can also induce strain. 

Due to the lack of a bulk GaN substrate, much work has been done to engineer the strain 

developed in these heteroepitaxial structures. The most common non-native substrates include 

single crystals of sapphire (aluminum oxide or Al2O3), silicon carbide (SiC), gallium arsenide 

(GaAs), or silicon (Si).27 Each substrate material will be discussed in further sections below, 

but each of these materials has a plane in which hexagonal symmetry can be found. Sapphire 
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has hexagonal symmetry in the (0001) plane, SiC in the 6H polymorph has it in the (0001) 

plane or in the 3C polymorph it has it in the (111) plane, GaAs in the (111) plane, and Si has 

hexagonal symmetry in the (111) plane. Other materials include Ti metal, TiN, and HfN.28–31 

However, only sapphire, SiC, GaAs, and Si have been used to an appreciable extent. 

Sapphire 

The crystal structure of sapphire with an emphasis on the hexagonal (0001) plane is shown 

in Figure 3. Sapphire single crystals are grown using the Czochralski method, where a small 

seed crystal is dipped into a melt and slowly withdrawn. The melt pulls up with the seed via 

surface tension and cools, solidifying and continuing the crystal.  

Although the corundum and wurtzite crystal structures are different, the shared symmetry 

has allowed high quality growth of GaN on sapphire to occur. The lattice constants of sapphire 

are 4.76 Å in the a-direction and 12.99 Å in the c-direction.32 It is important to note that this 

is dramatically different from GaN, which has 3.189 Å in the a-direction and 5.185 Å in the 

c-direction.33 As a result, the equivalent directions between GaN and sapphire (for example, 

[1000]) would be rotated 30° with respect to each other. This serves to reduce the lattice 

mismatch, making epitaxy possible.27 The TEC for GaN is ~4 ppm/°C while the TEC for 

sapphire is ~5 ppm/°C.27,34 This leads to a rather high compressive stress in the GaN when 
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cooling.35

 

Figure 3. C-plane view of the sapphire (Al2O3) unit cell. The black hexagon is drawn 

in to demonstrate the hexagonal symmetry of the c-plane. 

 

Epitaxial growth of GaN on sapphire is still making progress toward more advanced 

techniques. Within the last few years, GaN on patterned sapphire has become of interest as it 

improves the crystal quality while remaining less costly than some other alternatives.36,37 

However, other techniques such as epitaxial lateral overgrowth (ELOG) and pendeoepitaxy 

(PE) are also of interest as they can dramatically reduce the dislocation density in small 

regions. Epitaxial lateral overgrowth achieves this by first depositing a highly defective GaN 

buffer layer and then masking portions of the substrate with a material such as SiO2 before a 

regrowth. The mask prevents nucleation of GaN while in the open regions the GaN will grow 

out, eventually also growing laterally over the mask. This lateral overgrowth does not 

propagate the threading dislocations (TDs) that originate at the heterojunction and thus it has 



 

9 

 

a much lower dislocation density. The final result is a substrate with regions of very high 

dislocation density (where the GaN grew up through the mask) with regions of low dislocation 

density (where the GaN grew laterally over the mask).37–43 However, sometimes a buffer layer 

is not used.42 PE is a method similar to ELOG but lacks a mask. Instead, the buffer layer of 

GaN is etched to create open regions between stripes of GaN. The lack of any substrate or 

mask in the open regions allows the GaN grown laterally to have very low dislocation density, 

similar to the effect found in ELOG.40,44 The low defect regions may have dislocation densities 

several orders of magnitude lower than the high defect regions, enabling sensitive devices 

such as lasers to be fabricated in the low defect regions.9,14,42 Many LEDs have been grown 

on sapphire substrates even without the use of ELOG or PE with good results.6,23,45 

Silicon Carbide (SiC) 

SiC is another wide bandgap semiconductor similar to GaN. It has a bandgap of ~3 eV 

(although this will depend upon the polytype). The bandgap is indirect (meaning the electron 

states with a minimum energy difference in the conduction and valence bands have different 

momenta), which reduces radiative efficiency. This precludes SiC acting as an optoelectronic 

material, but it can still function in an electronic device or act as a substrate.46,47 The stable 

crystal structure of SiC is somewhat less well defined than that for most systems. A polytype 

defines a particular crystal structure by indicating the number of layers that exist in a unit cell. 

The polytypes have very little energy difference and thus many different polytypes can exist 

at room temperature. A few of the more common types include 4H-SiC (4 layers of Si atoms 

per unit cell), 6H-SiC (6 layers of Si atoms per unit cell, shown in Figure 4), and 3C-SiC. The 

H and C indicate the type of symmetry, H meaning hexagonal and C meaning cubic. To put 

this in perspective with GaN, 3C-SiC has the zinc blende structure of the cubic form of GaN 
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with Si replacing Ga and C replacing N. The above mentioned 4H-SiC and 6H-SiC are mixed 

forms of wurtzite and cubic. It is important to note here the similarity between the wurtzite 

and zinc blende crystal structures, as the difference is a simple stacking sequence difference. 

Moving in the c-direction, there are two different possible stacking sequences for layers of Ga 

that can occur. They are usually referred to as ABCABC (zinc blende) or ABAB (wurtzite).48 

Figure 5 depicts the three possible layers (a green layer, or A, a blue layer, or B, and a magenta 

layer, or C). The wurtzite unit cell only has A and B, or the green and blue, while the zinc 

blende has A, B, and then C. It is then obvious how 3C-SiC has the 3 in it, the three refers to 

the A, B, and C layers. Taking this to the extreme, 2H-SiC has the wurtzite crystal structure. 

The lattice constant of 6H-SiC is 3.081 Å, making the lattice mismatch to GaN rather small.49 

 

Figure 4. C-plane view of the SiC unit cell. The image shown is of the 6H-SiC 

polytype. Again, the red hexagon is to illustrate the hexagonal symmetry of the plane. 
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In spite of the relatively small lattice mismatch, some strain engineering is typically used 

in GaN on SiC growth. This usually comes in the form of ELOG for LDs.46,50 More 

fundamental studies of growth have demonstrated very high quality ELOG films using PE or 

ELOG with defect densities as low as 104 cm-2, down from 108-1010 cm-2.51,52 Edmond et al. 

attempted growth of  a laser without any sort of defect reduction but found the device failed 

to lase.46 This illustrates that even with a relatively small lattice mismatch, defect densities 

can dramatically degrade the performance of high power density devices. 

 

Figure 5. C-plane view of GaN in either the wurtzite or zinc blend form with N 

removed. Wurtzite GaN has only the green and blue Ga atoms, whereas the stacking 

sequence for the zinc blende GaN is green, blue, magenta, and then back to green. 

 

Gallium Arsenide (GaAs) 

GaAs is another group III-V compound semiconductor, similar to GaN. However, it has 

been in use for a while longer and it is thus a more mature technology. The growth method of 



 

12 

 

GaAs is liquid-encapsulated Czochralski, similar to the Czochralski method mention above 

where a seed is dipped into a melt of GaAs. As the surface tension holds the melt and seed in 

contact, the melt nearest the seed cools and solidifies, continuing the GaAs crystal. The liquid-

encapsulation concept comes from a liquid boron oxide (B2O3) that covers the melt surface as 

well as the seed. The encapsulant serves to prevent decomposition of GaAs. The pressure 

required to prevent GaAs from decomposing into As gas and Ga metal is 2.2 bar at the melting 

point.53 The GaAs crystal has cubic symmetry with the zinc blende structure (the same as 

metastable GaN). However, the lattice constant is largely mismatched with the effective “a” 

lattice constant (the distance between Ga in the GaAs surface) being 4.0 Å (calculated by 

𝑎ℎ𝑒𝑥 = 𝑎𝑐𝑢𝑏𝑖𝑐/√2) compared to GaN at 3.189 Å.27 The unit cell of GaAs is shown in Figure 

6. In spite of the large lattice mismatch, GaN can be grown on GaAs (111) as long as either 

the growth temperature is kept relatively low (below 850°C) or a low temperature GaN is 

grown at or below 850°C before device growth occurs.27 ELOG of GaN on GaAs has also 

been reported for both wurtzite as well as zinc blende GaN.54,55 However, it is also common 

for research on zinc blende GaN to use GaAs substrates.19,54,55 
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Figure 6. The unit cell of zinc blende GaAs a) without the (111) plane and b) with the 

(111) plane (shown in gold). 

 

Silicon 

Silicon (Si) may be the most mature semiconductor material. Similar to other substrates 

discussed, Si is grown via the Czochralski method. Boules as large as 300 mm in diameter 

and weighing as much as 300 kg can be drawn.56 It has been demonstrated as well that these 

boules are nearly perfect, lacking any microdefects such as dislocation loops.57 Silicon has the 

diamond crystal structure, similar to the zinc blende crystal structure except all atoms are Si. 

Thus, we again have a (111) plane that has the required symmetry to match c-plane GaN. The 

a lattice constant of Si is 5.431 Å, leading to an effective “a” lattice constant of 3.84 Å.27 

Similar to the case of GaAs, this leads to significant strain in the grown GaN. Unfortunately, 

the TEC of Si is also smaller than GaN, so as the epi-film and substrate cool from growth 

temperature to room temperature, the tensile stress on the GaN increases.27,34 However, 

patterning of the Si, ELOG, and PE are all avenues to allow GaN devices to be grown on 

Si.27,58,59 Buffer layers involving SiNx, AlN, and GaN have also been used to develop GaN 
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with sufficient quality for LEDs, micromechanical resonators, filters, as well as high quality 

high electron mobility transistors (HEMTs).25,60–62 Armitage et al. also demonstrated GaN on 

Si using a HfN buffer layer in both Si (001) and Si (111).63 Carburizing of the surface has also 

been used, as it has been noted above SiC has a closer lattice constant.64,65 Zinc blende GaN 

has also been grown on (001) Si, although this is a less common use.19,64 Si substrates are 

notoriously cheap due to the size and maturity of the industry, making use of Si substrates 

attractive. 

C. Hydride Vapor Phase Epitaxy (HVPE) of GaN 

HVPE has become a main workhorse of GaN production for pseudo-bulk substrates of 

GaN.66 The substrates are not truly bulk, as they are still seeded on non-native substrates. This 

heteroepitaxy leads to an initial stress that eventually cracks the grown material, creating a 

limitation of how large the crystal can be. However, boules several millimeters thick are 

available and can be sliced to yield non-polar and semi-polar GaN.67,68 If this were a true bulk 

process, the growth should be able to continue until the growth equipment itself is the limiting 

factor.  

HVPE, as its name suggests, is a vapor growth method. Carrier gases include N2 and H2 

while reactive gases include NH3 and a Cl source such as HCl or Cl2. Although the details of 

optimization can become rather involved, the process itself is relatively simple. A source of 

Ga, often a container of molten Ga metal, is heated and hot HCl gas is flowed over it. The 

HCl gas reacts with the Ga, forming volatile GaCl or GaCl3. The GaCl is channeled into a 

growth chamber where a substrate that is heated with a susceptor sits. A separate channel 

brings NH3 into the growth chamber and the NH3 and GaCl reactor to form GaN on the 

substrate. A schematic of an HVPE reactor is shown in Figure 7. Parasitic deposition is also 
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common, causing growth of GaN in areas other than the substrate.69 There is also excess NH3 

and HCl that pass out of the growth chamber and into exhaust. This results in a buildup of 

solid NH4Cl as the gases cool enough to react and solidify.70 The use of these boules as 

substrates for devices requires the removal of the substrate and with the thickness being 

several millimeters, non-polar and semi-polar oriented GaN can be sliced from the boule. 

Non-polar GaN has a normal orthogonal to the c-direction, so its width (at least on one side) 

is limited to the thickness of the boule. Similarly, semi-polar GaN is limited to 
𝑡

𝑐𝑜𝑠𝜃
 where 𝑡 

is the thickness of the GaN boule and 𝜃 is the angle between the c-direction and the normal 

of the surface. Thus, at the moment there exists no straightforward method for large non-polar 

or semi-polar substrates. 

 

Figure 7. Schematic of an HVPE reactor. The growth chamber is made of a high 

temperature ceramic, often quartz. 

 

The quality of the HVPE grown material is limited by the fact that is still is initiated on a 

foreign substrate, but the material quality is still rather high. Similar to MOCVD, foreign 

substrates for HVPE GaN include GaAs and sapphire. Material with threading dislocation 

densities (TDDs) as low as 106 cm-2 have been reported.69,70 The high quality material is grown 

either by reducing dislocations using ELOG, which will allow regions of high TDD to exist, 
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or by growing thick material. Growing thick material allows bending of the dislocations which 

tend to cease propagating upwards with the growth interface.71 The interface between the 

sapphire and GaN still initially has TDDs as high as 108-109 cm-2, similar to MOCVD 

mentioned previously.72,73 Sumitomo Electric developed a method very similar to ELOG 

which they referred to as dislocation elimination by the epitaxial-growth with inverse-

pyramidal pits (DEEP), where dislocations are concentrated in a specific region. Like ELOG, 

a SiO2 mask is placed on the substrate with small openings in the mask where the GaN can 

grow through and then coalesce. Around these mask openings, faceting occurs and the 

faceting of the GaN forms “V-pits”, inverse hexagonal or inverse dodecahedral pyramids. The 

dislocations tend to cluster around the V-pits, leaving high quality material in-between. TDDs 

were estimated to be as low as 2×105 cm-2.72  

For the use of HVPE grown GaN as device substrates, the non-native substrate must also 

be removed. Sumitomo Electric simply mechanically polished away the GaAs substrate.72 

Void-assisted separation (VAS) has also been used. The process starts by growing a GaN 

template several hundred nanometers thick and then depositing a thin layer of Ti metal. The 

GaN and Ti are then annealed in N2 and NH3 at high temperature, causing the Ti layer to 

nitride and form a porous network instead of a continuous film. The H2 that forms from 

decomposing NH3 also etches the GaN in the regions not covered by the TiN layer. GaN is 

then grown on top of the TiN. Although some of the void areas through the TiN have GaN 

grow up through them, not all do. These voids are eventually overgrown by lateral growth of 

nearby GaN islands. The high temperature growth of the GaN and lack of N2 in the void can 

also cause some decomposition of the GaN, leading to voids above the TiN template as well 

as below. Eventually, the islands coalesce into a thick film with a weakly bonded interface to 
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the initial substrate. Removal of the substrate can be achieved by separation with a knife and 

is assisted by the thermal stress induced by the difference in TEC between the substrate and 

the GaN. GaN boules as large as 3.2 inches in diameter have been made with this method. 

Dislocation densities are reduced to ~106 cm-2 via dislocation bending through GaN island 

facets and void filling.71 Laser-assisted separation has also been used, where a laser rapidly 

heats the GaN/substrate interface causing delamination.74 Unfortunately, laser-assisted 

separation did not appear to be reproducible enough for industry.66 

D. The Sodium (Na) Flux Method 

The Na flux method of GaN growth was pioneered by Yamane et al. in 1997, although Na 

flux had been used for other nitrides prior to this.75 The method is a solvent based method 

where molten Na metal is the solvent and Ga and N are the solutes. The method is rather 

straightforward: Ga and a Na source are mixed together and heated in a N2 gas environment. 

As long as the N2 gas pressure is greater than the equilibrium N2 pressure over GaN at the 

growth temperature, GaN growth will proceed. It is important here to note that this implies 

the chemical driving force for growth of GaN is controlled by the N2 pressure, as the system 

is generally almost isothermal. This is in contrast to other solvothermal methods such as the 

ammonothermal method (see Chapter 1, section E: The Ammonothermal Method), where the 

system is transporting material and the chemical driving force is determined by the 

temperature difference. Early work used NaN3 as the sodium source and as a source of N, but 

Na metal can also be used.75–77 The N2 pressures are rather mild, around 5 MPa, while 

temperatures range from 700°C to 1000°C.78 There are some hazards in the process, however. 

Na is chemically reactive with almost any O containing species including air and water. The 

reaction rate is relatively slow for large chunks, as the surface simply oxidizes, but Na metal 
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is pyrophoric in nature. Thus, ethanol and isopropyl alcohol have been used to react with the 

Na more controllably.75,76,79 This method does pose some risk as well; if the Na should 

somehow get hot enough (for example, if it was accidentally exposed to water), then an 

alcohol fire could ensue. However, the violent reaction with water precludes the oxidation of 

the Na without some sort of mediator. Recent work by Lakshmanan et al. has found that the 

use of Epsom salt solutions (Mg(SO4)2∙7H2O) are highly effective in rapidly and safely 

dissolving Na in the correct concentrations (1.4-2.4 M). Higher concentrations led to slower 

dissolution and sometimes incomplete dissolution of the Na while less concentrated solutions 

led to violent reactions.80 

While the reactivity of Na metal is an inherent danger that must be mitigated, the low 

pressures and moderate temperatures make this process for bulk GaN rather appealing. 

Stainless steel shells can be used as pressure vessels and the gas handling equipment doesn’t 

need to be highly corrosion resistant as long as it is not in contact with the growth environment 

at temperature, which would expose it to Na vapor. Stainless steel (in particular, 316 stainless 

steel) has been used by the pioneers of the Na flux method for GaN, making the material for 

reactor construction relatively cheap.75,81–83 

The Na flux method has also shown great signs of success in the ability to grow high 

quality GaN in terms of both purity and crystal quality. Early growths indicated feasibility 

with polycrystalline growth. The method was actually used to grow ternary nitrides such as 

Ba2ZnN2, Sr2ZnN2, Ba3Ga2N4, Ba5Si2N6, and Ba3GeN2 before the growth of GaN was 

developed.75 Seeded growth proceeded shortly thereafter on an AlN template growth on 

sapphire. Interestingly, other substrates such as Si (111), sapphire, and SiC were also tested 

in the flux but only AlN yielded seeded GaN growth. The authors suggested (although they 
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did not prove) that the AlN template served to reduce the surface energy for GaN nucleation, 

again indicating the importance of the substrate for GaN growth.81 The bare stainless steel 

appeared to react with the Na-Ga mixture, thus crucibles of boron nitride (BN) were tested. 

No significant reaction was found while columnar GaN was found to nucleate on the walls.76 

The change in growth habit from changing the Na/Ga ratio indicates that a significant change 

in chemical driving force may be taking place. With growths at 750°C, Yamane et al. found 

that the GaN growth habit changed from granules at very high Na concentrations to platelets 

at intermediate concentrations to GaN prisms at small concentrations. The change is likely 

due to a change in the chemical driving force for growth (or free energy change) which 

indicates that increasing the Na concentration increases this driving force when going from 

moderate to high Na concentration.79 As early as 2001, Aoki et al reported growing clear GaN 

needles.84 That same year, Aoki et al. also reported growing 5 mm by 3mm platelets using a 

shaped crucible (the 5 mm and 3 mm were the largest dimensions).85 The role of nucleation 

and growth has been investigated to some extent in early studies attempting to use low 

supersaturation to nucleate and then increasing the chemical driving force for growth after. 

This was achieved by increasing the N2 pressure during the growth period, which resulted in 

larger GaN crystals. In the same study, the authors found that the addition of a small amount 

of NH3 to the growth environment increased the growth rate.86 The thermodynamics of 

nitrogen solubility in Na-Ga melts is not yet well understood, however. Aoki et al. performed 

a study to determine GaN dissolution into Na at multiple temperatures and N2 pressures, but 

no direct measurement of nitrogen in the melt was made. The ion-coupled plasma (ICP) 

method was used to determine the Ga dissolved in the melt, which yielded 0.5 mol%. Aoki et 

al. assumed that some 0.25 mol% of N stayed in solution, but no direct measurement was 
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made.87  The dissolution of the Ga could have been solely due to the formation of the Ga 

dissolved species with no increase in N dissolved. The very small amount of GaN 

decomposition would lead to very small changes in pressure which may have not been 

detected. If their assumption is correct, however, then the solubility of N in Ga-Na fluxes is 

orders of magnitude higher than in either pure Na or pure Ga. The Na flux method actually 

can dramatically benefit from the addition of small amounts of other elements. The addition 

of Li, for example, increases the yield of GaN and allows a lower N2 pressure to be used while 

increasing the Li content changes the crystal habit to flat platelets instead of hexagonal 

prisms.88–90 However, Li does incorporate in the crystal, which can be detrimental to electronic 

devices grown on a Li contaminated substrate.88,91 The addition of Ca also helps increase the 

transparency in the Na flux, as crystals grown in pure Na tended to be black.92–95 The addition 

of C in the form of graphite has also been shown to decrease polycrystalline GaN (polyGaN) 

nucleation on the walls and flux surface. It was also found that the C did not significantly 

incorporate, thus proving itself as a very valuable additive.83,96,97 Suppression of polyGaN is 

necessary due to the high pressures of N2 gas used. The higher N2 pressures are used to 

increase growth rate and the carbon additive allows higher growth rate without sacrificing Ga 

to polyGaN. With the addition of C and Ca, high quality crystals as large as 2 inches in 

diameter and several millimeters thick have been grown.83 The crystal quality has also been 

shown to have dislocation densities as low as 2.3×105 cm-2.98 Attempts were made to grow on 

4 inch Si (111), but the strain in the growth caused cracking.97 An apparatus was also 

developed to increase the growth rate by allowing mechanical mixing of the flux by swinging 

the entire reactor system.95 
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The thermodynamics of the Na flux method are still unclear. As mentioned above, it is 

known that the addition of different elements can change the crystal growth habit in ways 

similar to the way in which changing the temperature and N2 pressure modify the growth 

habit. High chemical driving force (given by lower temperature or high N2 pressure) tend to 

favor very small GaN granules with moderate driving force leading to platelets with large c-

plane surfaces and small driving forces leading to hexagonal prisms.84,99 Similarly, the Na 

concentration also affects the morphology with similar morphology changes. High ratios of 

Na/(Na+Ga) led to GaN granules, intermediate values led to GaN platelets, while low ratios 

led to prisms at 750°C.79 Interestingly, this is trend appears to be somewhat reversed when C 

is added. Mori et al. report more platelet like growth at lower Ga (or higher Na) along with 

increased growth rate.96,97 The addition of small amounts of C (0.5 mol%) increased the 

growth rate while higher concentrations (1-3 mol%) decreased growth rate, although it was 

still higher than no C, and >3 mol% C almost completely suppressed growth at 860°C.96 It is 

speculated that the C exists as the cyanide ion (CN-) due to the low solubility of C in Na-Ga.83 

The charged ion may interact with the polar faces of a GaN crystal including c-plane as well 

as semipolar faces. This charged ion interaction may change the surface energy rather than 

the chemical driving force, as the addition of C reduces polyGaN nucleation. However, the 

shift of prism or pyramidal GaN to platelet GaN indicates an increase in chemical driving 

force (in the absence of any surfactants or surface modifiers). An explanation of the effect of 

C on morphology could then be that C changes the surface energy of the GaN, lowering the 

c-plane surface energy relative to the non-polar planes.  
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E. The Ammonothermal Method 

The ammonothermal method of GaN growth is another method that uses a solvent. 

However, in the ammonothermal method supercritical ammonia is used as a solvent and 

different chemical species called mineralizers are added to increase the solubility of GaN in 

solution. Supercritical fluids are in a temperature and pressure regime where there are no 

distinct vapor and liquid phases. Compression of the heated fluid will only result in a higher 

pressure but no liquid will condense. Supercritical fluids have significant dissolving power 

but also have very low viscosity, making them useful in transporting material in a dissolved 

state. A typical ammonothermal system will have two temperature zones, one for dissolving 

source material and one for growth of the seed crystal. One or more baffles will separate the 

two temperature zones such that convection is disrupted, allowing better defined temperatures 

in the zones. The baffles, source, and seed will be held up by some internal structure, here 

referred to as the furniture. Although internal heating may be possible, external heaters are 

often used because of the high pressures involved. Figure 8 shows a schematic of such a 

reactor used at UCSB with Na mineralizer. 
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Figure 8. Schematic of a basic ammonothermal reactor used at UCSB. 

 

 Typical pressures for the basic mineralizers are >200 MPa while acidic systems tend to 

be lower in pressure, between 80 and 150 MPa. The ammonothermal method uses either basic 

mineralizers such as Na or K or acidic mineralizers such as Cl and F. The mineralizer types 

are named basic or acidic because of the manner in which they interact with NH3. Basic 

mineralizers tend to form NH2
- ions, akin to bases forming OH- in aqueous solutions. 

Similarly, acidic mineralizers form NH4
+ ions, akin to the H3O

+ (usually described as H+) ions 

formed in aqueous solutions. It has not been directly verified that these ions do form at the 

temperatures of ammonothermal growth, but each the mineralizer classes act somewhat 

differently regardless. 

Basic Ammonothermal Growth 

Basic ammonothermal growth uses alkali metals, but even within the basic regime the type 

of mineralizers used can alter many important parameters of the growth environment. For 



 

24 

 

example, Dwiliński et al. found that LiNH2 gave rise to GaN particles with photolumenscence 

shifted towards higher energy compared to KNH2 when synthesizing GaN from Ga metal.101 

Retrograde solubility is the behavior when an increase in temperature results in a decrease in 

solubility, whereas normal solubility is the behavior when an increase in temperature results 

in an increase in solubility. Although basic mineralizers exhibit this behavior in the growth 

regime, it should be noted that at lower temperatures the solubility of GaN may be normal. 

Thus, a peak solubility occurs with normal solubility at temperatures below the peak and 

retrograde solubility above the peak. Figure 9 shows a plot of the measured solubility of GaN 

in the basic system with Na and K as mineralizers. It is important to note, however, that more 

recent studies have shown that Ga can leach into the reactor body, thus rendering these 

solubility plots incorrect. The principle of retrograde solubility is illustrated though and the 

plot of NH4Cl shows only normal solubility. In theory, retrograde solubility can be a helpful 

phenomenon. In the case of retrograde solubility the growth occurs at the highest temperature 

the system experiences. If the temperature is limited by the reactor then the retrograde system 

will be able to have growth occurring at the highest temperature where diffusion is faster and 

thus defects are less likely to be generated (all other things being the same).  
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Figure 9. Solubility vs temperature for ammonothermal systems with Na, K, or Cl 

mineralizers. Data is from ref. 102. 

 

Early reports of ammonothermal GaN growth go back as far as Dwiliński et al.’s report 

on growth of GaN powder in 1995.103 Although the crystallites were small, they had very low 

strain. These crystallites also exhibited yellow coloration, a trait that will be seen in growth in 

the decades to come as well.104,105 Early work also used Li as a mineralizer which has the 

advantage of lowering the reaction temperature quite significantly (300°C vs closer to 

500°C).103,106 Crystallites that were obtained with Li mineralizer at lower temperature (300°C) 

also had the yellow coloration but increasing the temperature to 400-500°C yielded white 

powder.106 The possibility of growing small crystallites implies that growth of larger crystals 

is possible, but it also creates the possibility of self-nucleated seed crystals, which will 

probably be of much higher crystal quality than seeds grown from non-native substrates. 

Mixing of mineralizers is also possible and usually a “neutral” mineralizer that does not 
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change the balance of NH4
+ or NH2

-, such as NaI or KI, will be mixed with either a basic or 

acidic mineralizer.107–110 This was more common in earlier research but appears to have fallen 

from favor.  

While small crystallites dominated early research, the end goal of any bulk crystal growth 

technique is large crystals with perfect quality. Seeded growth has thus become common, 

often using HVPE grown seeds. A major issue that has been very common is the incorporation 

of impurities, especially O, into the crystal. An early report by Callahan et al. gave O 

concentrations as high as 1020 cm-3 for N-face GaN and high 1019 cm-3 for Ga-face GaN grown 

in the c-direction. This can be contrasted with the actual atom density of GaN, which is around 

9×1022 cm-3. However, Fe, Ni, and C also contaminated the crystal in high concentrations 

(1019-1020 cm-3).111 The use of a silver capsule has been found to mitigate the incorporation of 

transition metals that may come from the reactor walls, but O and Na (the mineralizer used) 

are still present in concentrations of around 1018 cm-3.100 Thus, the search for ultrahigh purity 

GaN crystals is still underway. However, different impurities lead to different negative effects 

and sometimes these effects don’t matter. Transition metals, such as Ni and Fe, as well as C 

cause significant coloration of the crystal. These impurity atoms often act as optical absorbers 

but can also be electrically active. For example, Fe and C both act as deep acceptors which 

may be useful in the growth of semi-insulating GaN.112 Alternatively, power electronics have 

no requirements for optical properties but a conductive substrate might be useful so high O 

concentrations (which would increase broadband optical absorption) would not only be 

tolerable but may be desirable. Such optical absorption would not be tolerable in a device such 

as an LED. Another common optical feature of ammonothermal GaN is yellow 

coloration.106,113,114 It is suspected that one source of the coloration is Ga-vacancies (VGa). VGa 
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tend to be stabilized by hydrogen and can form a VGa-hydrogen complex with one or more 

hydrogen atoms present (hydrogenated VGa or VGa-H) with different absorption peaks for the 

different H occupancies.105 VGa-oxygen complexes may also give rise to the yellowish color. 

Adekore et al. doped ammonothermal GaN with Er and a significant amount of erbium 

oxynitride was found in the reactor afterwards. The doping of Er was also found to reduce the 

yellow coloration, possibly relating VGa-O complexes to yellowish coloration as well. It 

cannot be ruled out that both VGa-H and VGa-O give rise to the yellow coloration. 

The question of the feedstock of GaN in any system is of interest for multiple reasons 

including the chemical driving force as well as impurities. The main contaminant for Ga 

sources is usually O, possibly in the form of water or O2 gas. GaN grown from polyGaN with 

high O concentrations is unlikely to have an O concentration lower than the feedstock. 

Although a few metals were tried, it has been found that many oxides are not stable in the 

presence of Na mineralizer.115 If the oxide is not stable then one would expect the parent metal 

would fail to act as an O getter. Thus, a clean source of Ga or GaN is required for high purity. 

PolyGaN is a very common GaN source, but because the solvent contains ample N the source 

only needs to have Ga that is accessible. For example, Ga metal has also been used as a Ga 

source.106,116 Wang and Callahan also used Ga-containing intermediates such as 

NaGa(NH2)4.
116 It is interesting to note that the use of these different Ga sources will alter the 

Ga chemical potential, thus changing the chemical driving force for growth. This has the 

potential to change growth rate as well as growth morphology but it has not been significantly 

studied. Tuning the chemical potential by altering the Ga source will also add another layer 

of complexity in controlling the system. Perhaps as ammonothermal growth becomes better 

understood, the use of alternative sources of Ga will become a significant research topic. 
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The pressure of the system also is indicative of the N chemical potential, which very well 

may alter GaN growth. The pressure is usually dictated by the amount of NH3 and the 

temperature profile of the reactor, although potentially other gases could be added. The free 

energy of the NH3, H2, and N2 will determine the chemical potential of N in the gas phase. As 

the GaN free energy is largely pressure independent, the chemical potential of N in GaN will 

be also largely pressure independent. Thus, the change in N chemical potential will directly 

affect change in free energy of the formation of GaN from the intermediates. Equivalently, 

we can write: ∆𝐺𝐺𝑎𝑁 =  ∆𝐺𝐺𝑎 + ∆𝐺𝑁, where  ∆𝐺𝐺𝑎 and ∆𝐺𝑁 are the changes in the Ga 

chemical potential and N chemical potential, respectively. It has been observed that NH3 

decomposes at ammonothermal growth temperatures, leading to a pressure increase. Further 

loss of H2 gas via diffusion through the reactor walls continues to drive decomposition via Le 

Châtelier’s principle.100 This leads us to the inevitable conclusion that the driving force for 

growth is not constant for long-term growth. 

Average growth rate is another important metric for bulk crystal growth, as the economics 

of the industry requires low cost for the method to be viable. Initial growth rates were 

respectable, on the order of ~100 µm/day.114,117 Significant improvements have been made on 

this with the addition of a Ag liner leading to growth rates as high as 344 µm/day.100 These 

growth rates are on the (0001) planes (a sum of growth on the (0001) and (0001̅) surfaces). 

Growth rates on the non-polar planes are usually lower, closer to 50 µm/day.100  

High crystal quality is also of great importance. Perfect crystal quality may be the most 

important argument for the requirement of a truly bulk growth technique. The ammonothermal 

technique has shown exceptional crystal quality. Often, seed quality is replicated or somewhat 

improved upon as dislocations grow together. Pimputkar et al. showed replication of crystal 
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quality in the Ag liner system.100 The ideal is to self-nucleate a seed that will have no defects 

and grow it to large scales. Such a seed would have properties similar to those published by 

the Ammono Company. The Darwin width is the smallest peak width that is attainable given 

the structure of the crystal and the particular reflection that one is observing. The material 

grown by the Ammono Company has XRD FWHMs of around 10 arcseconds for the (0002) 

peak, essentially the Darwin width.118 This implies that the crystal quality is not necessarily 

limited by the technique, rather the growth is only as good as the seed from which it starts. 

However, this applies more to seeds that are already of high quality, as some improvement 

can be made from seeds that have higher defect densities by dislocation bending.119 Dwilinski 

et al. measured etch-pit densities (a measure the of TDD by pit formation at the TDs) as low 

as 5×103 cm-2. They measured no dark spots in CL (TDs also are suspected to act as non-

radiative recombination sites and thus would produce dark spots in CL).118 However, Meissner 

et al. showed that high Fe concentrations (or possibly other deep level acceptors) could create 

significant error in CL dark spot measurements.120 Regardless, exceptional crystal quality has 

been demonstrated with basic ammonothermal growth. 

Acidic Ammonothermal Growth 

Acidic ammonothermal growth employs halide compounds (such as NH4Cl or HCl) to 

form a higher concentration of NH4
+ ions. Presumably, the ion concentration is higher but 

direct measurements of ion concentration do not appear to be available in literature. The most 

explored of the halides is Cl-, but I- has also been significantly explored. F- has become a 

major topic of interest as Bao et al. published impressive m-plane growth rates using NH4F 

mineralizer, with growth rates as high as ~300 µm/day.121 The effect of mineralizer type is 

more profound in the acidic system. Ehrentraut et al. crystallized GaN out of solution and 
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found significant variation in the phase of GaN (zinc blende vs wurtzite) depending on 

whether Cl-, Br-, or I- was present. I- gave rise to essentially pure zinc blende GaN at the 

temperatures probed whereas Cl- only gave a small amount at very low temperature and 

yielded pure wurtzite GaN at higher temperatures.122 Similarly, the addition of LiCl at low 

temperature to a NH4Cl mineralizer lead to significant changes in mass transport.123 

Solubility with acidic mineralizers has been researched more than with basic mineralizers, 

but a consensus does not appear to have been reached. Again, Cl- has been investigated the 

most and that is the mineralizer that has had the largest spread in data. Regardless of the 

mineralizer, the solubility has been normal in all cases below 600°C.124–127  Unfortunately, 

this is limited to temperatures of about 550°C and growth data from Yoshida et al. (as well as 

data that will be discussed in Chapter 3, section C of this thesis) indicates that this trend does 

not continue much past 600°C. Yoshida et al. grew in a retrograde solubility regime using 

NH4Cl with a growth temperature of 700-720°C and a dissolution temperature of 650-

700°C.128 It does not appear that there is any high temperature data for any acidic mineralizer 

available at the moment. Even the Cl- data that is available strongly conflicts. At a temperature 

of 550°, ratios of GaN/NH4Cl are 0.44, 2.2, or 0.051 depending on the data source.124,126,127 

This spread in data may come from contamination, as the spring in Schimmel et al.’s work 

wasn’t mention being coated and Tomida’s entire reactor was uncoated.126,127 As both of those 

components are Ni alloys, corrosion of the components could poison the environment and 

alter the measured solubility.115,129,130 Without reference data of a clean environment, the 

impact of the contamination could range from having essentially no effect to drastically 

altering the behavior.  
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Contamination is also a common problem in the acidic environment. Many of the 

engineering metals used for high temperature, high pressure reactors are not stable in the 

acidic environment. Early work actually used quartz capsules that were pressure balanced with 

water.131,132 Brittle materials such as quartz can tolerate high compressive loads, but pressure 

balancing adds another layer of complexity to the system. One could imagine that having such 

a capsule present would also act as another thermal barrier, making precise temperature 

control of the zones more difficult for an externally heated reactor. A more common practice 

is the use of a precious metal liner (usually Pt, but not necessarily, which is highly effective 

but also very expensive).133–136 Early work lacked the liner technology or had liners which did 

not cover all components that might corrode. The result was significant transition metal 

contamination leading to optically absorbing crystals.137 Higher purity crystals have been 

fabricated using precious metal capsules or better lined reactors, leading to highly transparent 

crystals such as those reported by Jiang et al., Mikawa et al., and Yoshida et al.128,136,138 The 

grown material is transparent, but is still strongly colored. This coloration appears to have a 

significant yellowing, similar to the absorption ascribed to the VGa-H or VGa-O complexes 

described for the basic ammonothermal growth. This is at least partially supported by the 

significant presence of both H and O in acidic systems. Even with the removal of the transition 

metals from the impurity list, often O is a very prevalent contaminant. SIMS values for O 

concentrations tend to be around 1018-1019 cm-3.121,138 Jiang et al. instead report a free carrier 

concentration of 1-3×1018 cm-3, which indicates some shallow donor impurity such as O or Si 

is present in similar concentrations.136 As discussed in the basic ammonothermal section, this 

contamination of O isn’t necessarily a problem. 
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The feedstock issues discussed in the basic ammonothermal section are also present for 

the acidic system. The use of Ga metal has been explored, but the use of Ga metal consumes 

some of the NH3 solvent and leads to increased pressure from the produced H2.
123,139,140 It is 

more common for feedstock to be polyGaN, leading to the same requirement of clean 

polyGaN for high purity growth. Other Ga intermediates have also been explored, such as 

GaI3 and {Ga(NH)3/2}n, but were mainly employed in an effort to produce cubic GaN.131,141 

The same problems may also arise with controlling the chemical potential difference as 

discussed previously.  

Growth rates in the acidic system tend to be comparable or faster than those found in the 

basic system. Extreme growth rates as high as 40 µm/h (960 µm/day) have been reported, with 

10-30 µm/h (240-720 µm/day) being more typical, although the actual mineralizer is not 

specified.142 Bao et al. has reported growth rates of ~300 µm/day on m-plane and 200 µm/day 

on c-plane on HVPE grown seeds or 465 µm/day and 410 µm/day in the m- and c-directions, 

respectively, on a self-nucleated seed using NH4F mineralizer.121,143 Growth rates for c-plane 

GaN of ~150 µm/day and ~100 µm/day for NH4I and NH4Br, respectively, have been reported 

as well.121 It would seem that NH4F is an extremely promising mineralizer for fast growth. 

However, caution should be exercised when interpreting this data. Growth rate will be a 

complex function of mass transport, mineralizer content, mineralizer type, as well as reactor 

design and the temperatures involved. These values simply indicate what is known to be 

possible, but may not be the limit of what is possible.  

Also similar to the basic ammonothermal growth, acidic growth of GaN has shown 

exceptional quality crystals. XRD FWHM of <50 arcseconds for the (0002) and TDDs in the 

range of 7×104-1×106 or FWHM of 10 arcseconds for the (0004) and TDDs in the range 102-
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103 have been reported.136,138 This is again indicative that exceptionally high crystal quality 

can be attained by both types of chemistry in the ammonothermal method and likely will be 

limited more by the seed than the chemistry.  
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2. Corrosion of Materials in the Ammonothermal Environment 

“It is true that in human thought the particular precedes the general. Accordingly, the 

philosophy will not advance until the branches of science have made independent progress.” 

-Alfred North Whitehead, Principle of Relativity 

Design of a chemical reactor can arguably start from two major constraints: the desired 

environment to be used (pressure, temperature, chemistry, etc.) and the materials that can 

provide this environment. If one does not know the material properties of the reactor then it 

cannot be safely designed for use in the specified manner. Many physical properties of 

materials are known, such as the elastic modulus, density, yield strength, etc., but the chemical 

corrosion aspect is environment specific. In fact, not only does it depend on the chemicals 

present, it also depends on the temperature and sometimes pressure. This chapter discusses 

the examination of a set of materials often used in engineering applications and their behavior 

in basic and acidic ammonothermal environments. Because the ammonothermal method is 

fairly niche, corrosion in this environment is not highly established. The extent of the 

examination is mainly restricted to the extent of corrosion or failure of the materials in an 

effort to determine whether or not they are safe to use. However, some trends will be 

discussed, perhaps lending themselves to further research which may clarify the corrosion 

mechanisms. 

A. Basic Ammonothermal Corrosion with Na Mineralizer 

“Mechanistically, dissolving alkali metals in water is a strongly exothermic process in 

which electrons move from the metal into the aqueous solution where they react to form 

hydroxide and hydrogen. The related heat release can be sufficient for melting of the metal, 

massive steam formation and ignition of the hydrogen gas, which leads to an explosive 

behavior”  

-Ref. 144 
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The use of alkali metals or their amides, imides, hydrides, or any salt that only included 

only the alkali metal, N, and H as a mineralizer is the earmark of the basic ammonothermal 

technique. In early work, azides (N3
-) were often used. This, however, produced significant 

amounts of N2 gas and the purity of the chemicals was also somewhat lacking.103,108 Later 

work switched over to amides (NH2
-), but the most recent work tends to use Na metal that 

forms NaNH2 in contact with liquid NH3.
100,111,113,117,145 Regardless, the formation of NH2

- 

species is likely, as is the formation of Na+ (or other alkali metal ions). For all samples 

discussed in this section, Na metal was the mineralizer used. The materials investigated are 

categorized here as pure elements (ie Au, Ag, Fe, etc.), metal alloys (Mo alloys, precious 

metal alloys, etc.), carbides, nitrides, and oxides. At the end of each section, the general trend 

of useful stability will be summarized. 

The corrosion runs of each sample were set up as follows. René 41 reactors were used and 

pressures of ~250 MPa were targeted. Reactors were stored in an oven to try to reduce water 

adsorption on the inner surface. The samples were cleaned in deionized water, acetone, and 

isopropyl alcohol (IPA) for 3 minutes each and characterized by weighing as well as visual 

inspection and taking pictures, thickness measurements using either a micrometer or calipers, 

as well as optical microscope images. The sealing bolts on the reactor were lubricated with a 

high temperature nickel antiseize. The samples were loaded into the reactor and placed in a 

glovebox where 1.5-1.7 g of sodium metal were loaded after the oxidized and mineral oil 

outside of the sodium was cleaved off using a knife. The reactor was sealed using a torque 

wrench with a Ni-200 gasket and then removed from the glovebox. Final torques were set on 

the sealing bolts to seal at high pressure and the reactor was weighed. The reactor was then 

evacuated and cooled using liquid nitrogen and filled with 30-35 L of gaseous NH3 as 
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measured by a mass flow controller. The reactor valve was then closed and the reactor was 

allowed to warm up and dry (as the cold body condenses significant ice and then water). The 

reactor was weighed again before it was loaded into the containment vessel where heaters, 

thermocouples, and a pressure transducer were placed to control and monitor the reactor 

during the run. The containment vessel was then sealed to provide a hermetic and explosion 

proof barrier between the lab and the reactor. A N2 purge was used while the run was going. 

After the run was over, the reactor was removed from the containment vessel and vented 

through a dedicated exhaust line. The produced pyrophoric materials (likely NaNH2) were 

slowly reacted in a fumehood with H2O/IPA mixtures of increasing H2O content (starting from 

5% H2O and eventually cleaning with pure H2O). The samples were then cleaned in H2O, 

acetone, and IPA in an ultrasonic bath and subsequently characterized by weighing, optical 

photographs, as well as optical microscopy and sometimes scanning electron microscopy 

(SEM) including EDX. 

Pure Elements 

Many metals are known to be chemically active with oxygen (and thus why many metals 

oxidize). However, nitriding does not follow exactly the same trend. Our investigation of the 

pure elements is not fully restricted to metals, but it is strongly focused on it. In general, the 

pure elements don’t have a positive stability trend in the basic environment.  

Transition metals such as Co, Mo, Nb, Ni, V, W, and Fe tended to do rather well in the 

environment with Na mineralizer. Cu, Y, Ti, Zr, and Ta faired quite poorly. Significant 

degradation tended to occur as either dissolution of the material, as was the case with Cu and 

Y, or as chemically driven degradation of the physical properties of the material. Ti and Zr 

appeared to nitride or hydride and significantly embrittled, leading to cracking of the plates. 
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Copper does not form a stable nitride, as the crystalline form has a positive enthalpy of 

formation (and is thus likely to have a positive free energy).146 One may speculate that Cu is 

dissolved in the form of Cu(NH3)n
2+, an ammoniate that is found in aqueous solutions of 

ammonium hydroxide and is generally quite stable.147 Y does form a stable nitride. The 

formation of the nitride, however, does not protect Y in this case. Kempter et al. at first tried 

to directly nitride Y in N2 at 900°C but found that it was more efficient to first hydride it at 

550°C in H2 and then nitride it at 900°C in N2, yielding a cubic sodium chloride crystal 

structure with a lattice constant of 4.88 Å.148 With Na mineralizer a substantial amount of H2 

is formed via the reaction 𝑁𝑎 + 𝑁𝐻3 → 𝑁𝑎𝑁𝐻2 + 
1

2
𝐻2, giving credence to this line of 

thought. The change in lattice structure is rather harsh in this scenario. Y has the hexagonal 

close-packed (HCP) crystal structure and YH2 has a cubic structure, presumably the fluorite 

structure, and YN has the sodium chloride structure. The equivalent lattice distance for the 

HCP Y (taking 𝑎 =
𝑐∗√3

2
) yields a lattice constant of 4.96 Å or (taking 𝑎 = 𝑎ℎ𝑐𝑝 ∗ √2) 5.16 

Å.149 In contrast, YH2 has a lattice constant of 5.20 Å and YN has a lattice constant of 4.88 

Å.148,150 The strain from going from YH2 to YN is quite dramatic (lattice mismatch of 6.6%), 

which may cause stress buildup and eventually spalling of the surface and the formation of a 

powder. It would be expected, however, that tensile stress would be more destructive, leading 

to the possibility that the hydriding process, which also causes significant swelling, could 

cause the damage. Ti and Zr failed less from a corrosion perspective and more from 

embrittlement. Both metals actually fractured from the stress of the embrittlement and 

swelling. It is expected that the samples hydrided and possibly nitrided.146 However, dramatic 

failure of the material in the form of spalling or powder formation was not observed. If the 

hydride and nitride process is the failure mechanism for all of these samples, then the 



 

38 

 

explanation for the why Ti and Zr did not spall as badly could be related to the nitridation. 

Both samples had significant gold coloration (attributable to the both ZrN and TiN) as well as 

black coloration (attributable to ZrH2 and TiH2) which is consistent with Ti being heated in 

NH3 yielding TiH2 and TiN.151 Nitriding would help prevent hydriding, which may have 

protected the Zr and Ti. It is known that TiN can act as a H barrier and forms rapidly.152,153 Ta 

also forms a weakly stable hydride (Ta2H) and stronger nitrides and suffered a similar fate to 

Ti and Zr: significant embrittlement and darkening of the surface.146 Again, the lattice change 

from the absorption of H is rather small and initially compressive (3.303 Å for Ta, 3.296 Å 

for TaH0.2, and ~3.35 Å for Ta2H), although swelling occurs for the Ta2H along with a loss 

of cubic symmetry.154,155 The question of why the other metals did not corrode is a more 

difficult question to answer with certainty. Co and Mo may be somewhat stable as they are 

fairly weak nitride formers, although MoN and Mo3N2 were observed later. Nb likely hydrided 

and formed NbHx, leading to the observed swelling of the sample as well as the brittle 

behavior, but no chemical characterization was done to determine if a surface nitride had 

formed.156 Ni doesn’t form a stable nitride, but a stable hydride may be possible. However, Ni 

alloy 718 has been found to have a nitride layer that forms at the surface, but it should be 

noted that this alloy contains 18 wt% Cr which is a strong nitride former.129 V did pick up a 

golden color, indicating nitridation. V has a similar strain of ~5 % (comparing V-V distance) 

compared to Ti when nitriding, both of which are compressive strains.157,158 Fe also does not 

form a stable nitride, although it will absorb some hydrogen even in liquid NH3.
159 The Fe 

sample did embrittle and picked up some white coloration. A reasonable theory then remains 

that transition metals simply hydride and subsequently nitride in the basic ammonothermal 

system. 
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Another class of pure elements examined was the group II, group III, and group IV 

elements. Although these are really not a coherent classification, the elements discussed are 

not readily attached to other groupings. The elements examined include Al, Ge, Si, and Mg. 

The main reason for choosing these materials was not originally for reactor structural 

components, but rather to look into doping. None of these materials pass the stability test. Al 

could have been ruled out initially, as work had already been demonstrated showing growth 

of AlN from Al shavings with KN3.
160 A white powder resulted from this run, presumably 

AlN powder. Ge and Si were co-loaded in the same run and were corroded to a lesser extent. 

Both also had white powder present, although this may have been from the Al sample, and 

fracture of the samples indicated stress. SiH4 is known to be used as a Si source for MOCVD 

and HVPE and Si3N4 is also stable, corroborating the possibility of the hydriding and nitriding 

corrosion mechanism. Thermodynamically, GeH4 is similar to SiH4 and has been used in 

MOCVD as a Ge source.161 Although only the enthalpy is available, Ge3N4 may also be stable 

in a strongly nitriding environment. Mg forms a stable nitride, Mg3N2, which reacts with water 

as well as a stable hydride and was also found to be highly unstable.146,162 Mg also forms 

amides under ammonothermal conditions.163 The failure came in the formation of a large 

amount of surface roughening and material loss through dissolution in either the NH3 or the 

H2O as well as embrittlement. 

The last classification of pure elements was the precious metals. With the exception of 

Ag, all of the transition metals corroded very significantly. Ag, Au, Pt, and Pd were all 

investigated. None of these metals are known to form any stable nitrides. Unfortunately, the 

hydriding effects are not well known either. Pd is known to have a significant H solubility.164 

It should be noted though that for Au, Pt, and Pd, blackened surfaces and spalling were 
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common. In fact, in the case of Pt, a black powder was formed that had exceptionally high 

catalytic activity. During the cleaning process, a thin surface layer of isopropyl alcohol 

actually began burning in the presence of this black powder. Although no more 

characterization was done, this is consistent with the catalytic activity of Pt black (very fine 

Pt powder).  

Pure elements tend to suffer degeneration from what appears to be hydriding and 

subsequent nitriding in the presence of Na mineralizer under ammonothermal conditions. 

Although the true thermodynamic free energies are not available for the compounds in 

question, the corrosion mechanism is at least reasonable and consistent with the little data 

available.  

Metal alloys 

Metal alloys can be stabilized by the interaction energy of one metal reacting with another. 

Compared to the ionic bonding (such as to O), this energy is usually lesser. However, alloying 

can significantly stabilize a material against attack, as can be found in the case of stainless 

steel. The Cr assists in protecting the austenite by forming a surface oxide that acts as a 

passivating layer. The oxide of Fe spalls off and thus if it was allowed to oxidize then the 

metal would corrode continually in the form of rust. In this section we will discuss the effects 

of alloying on Co, Cu, Fe, Ni, Pt, and W alloys in the ammonothermal basic system. 

The only Co alloy tested was a Co-W-Al alloy with the composition Co80W10.6Al9.4. 

Similar to pure Co, the alloy showed very little to no corrosion. Although Co and W would 

not be expected to corrode any differently here, one might suspect that Al could be leached 

out of the sample, causing roughening. The Co and W may act as N barriers, preventing 
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nitriding of the Al except at directly at the surface. However, no significant characterization 

was done other than mass measurements and visual inspection. 

Two Cu alloys were tested in the system: brass 260 (Cu71Zn29) and Constantan (Cu53Ni47). 

Brass 260 blackened and lost significant mass while also embrittling. Constantan was much 

less affected. The surface took on a dull, matte finish but did not blacken or suffer any spalling. 

It would appear that the Ni does stabilize the Constantan alloy, although the reason for this is 

not known. 

Fe alloys are the most common engineering material and thus were of great interest. Three 

alloys of stainless steel were examined: 15-5 PH, 17-4 PH, and 316L. All three had some level 

of success and had substantial amounts of Cr. This provides the passivated oxide surface. A 

golden surface coloration and mass gain of the 15-5 PH steel as well as EDX data indicate 

nitiriding of the surface, possibly the Fe but likely the Cr has a more stable nitride.146 Both 

17-4 PH steel and 316L steel behaved very similarly as well.  

The only alloy of Mo that was investigated was titanium-zirconium-molybdenum (TZM). 

By most standards, this is barely an alloy, as the alloying percentage is very small, ~0.5 wt% 

Ti, ~0.08 wt% Zr, and 0.02 wt% C.165 Similar to the pure Mo, TZM showed essentially no 

degradation. Later growths performed in a basic environment with GaN indicated that less of 

the molybdenum nitrides formed from TZM than pure Mo. It is not clear why this might be 

the case, but one could speculate that the alloying elements cause small amounts of lattice 

strain in grains. In the strained lattice the swelling from the introduction of N would be more 

energetically costly and, coupled with Mo being a weak nitride former in the first place, could 

reduce nitriding. There is no significant evidence to support this speculation at the moment. 
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Ni alloys were also of great interest. The chromel/alumel thermocouple alloys (type K), 

Hastelloy C-276, and Nicrosil/Nisil thermocouple alloys (type N) were investigated. All 

appeared mostly stable. The chromel (Ni88Cr12) and alumel (Ni92Mn2Al4Si2) picked up a light 

golden tint which would be consistent with nitriding of the Cr. Hastelloy C-276 

(Ni58.9Cr18.7Mo10.4Fe6.2Co2.7W1.3Mn1.1V0.4Si0.2P0.1S0.1C0.1) also experienced surface 

discoloration, but subsequent EDX indicated no surface nitride. If the surface was an oxide 

layer, then perhaps it was dissolved thus removing the oxide and the parent metal to which it 

was bonded. Discussion of oxides can be found in the next section. Nicrosil (Ni81.2Cr15.7 

Si2.8Mg0.2) and Nisil (Ni91.2Si8.8) behaved similarly to the chromel/alumel junction, taking on 

a grayish to golden coloration. Again, it would seem likely that the Cr present is nitriding. It 

should be noted as well that both thermocouple alloy sets appeared to give accurate 

temperature measurements after the experiment. 

Two Pt alloys were tested, Pt78Rh22 and Pt91Ru9. The Pt78Rh22 was slightly stabilized by 

the Rh present, but it still lost appreciable weight and embrittled. EDX of the sample indicated 

a non-uniform distribution of Rh with a high Rh inner core (26 %) and a surface of low Rh 

content (4 %). However, as the Pt sample that massively corroded was present in the same 

reactor as these samples, it is possible that Pt was deposited on the surface and Rh was not 

etched. Regardless, the Rh did not fully stabilize the alloy. The Ru did stabilize the Pt when 

alloyed. A slight weight gain was measured, possibly due to H absorption but also black spots 

were found on the sample. Unlike most metals, the Pt91Ru9 sample even retained its ductility 

which would indicate that if H was absorbed it was likely only a small amount. 

Three W alloys were tested: W74.7Ni15.6Cu9.6, W74Re26, and W95Re5. The W74.7Ni15.6Cu9.6 

alloy did darken slightly and take up a matte finish but no significant mass loss was observed. 
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Due to the form factor of the alloy, ductility observations were not possible. Both W-Re alloys 

behaved very similarly and took up a graying surface but also remained malleable. 

Carbides, Nitrides, and Oxides 

Carbides are often used in machining as they can significantly increase the hardness of the 

parent metal. However, the two materials investigated here are SiC and WC which are not 

generally used in machining. SiC is actually a wide bandgap semiconductor and rivals GaN 

as a research topic for power electronics. It has some potential as a GaN substrate as mentioned 

in chapter 1. In the basic system, the SiC did suffer some etching (evidenced by mass loss) as 

well as crystallographic features on the unpolished side of a single side polished sample. 

Interestingly, the slightly brown sample also became more colorless during the run. It is 

possible that impurities were removed from the sample, but this seems unlikely as diffusion 

would have to be extremely rapid. WC, which was really only 90-94 % WC, 6-10 % Co, and 

0-4 % Fe, suffered only from slight surface pitting. The reason for the pitting is unknown, but 

loss of C to CH4 formation and Fe4N formation are two possibilities. 

Hot-pressed boron nitride (HP-BN), pyrolytic boron nitride (PBN), and Si3N4 were also 

investigated. None of these fared well in the basic ammonothermal environment. Both forms 

of BN suffered from etching, but degradation of the physical structure of PBN also occurred. 

The HP-BN appeared to take up crystallographic faceting, as the initially matte surface 

sparkled afterwards which may indicate facets. Flakes of PBN came off of the PBN sample 

and black coloration was present. Si3N4 was etched and lost some mass. It is not that unlikely 

that the different nitrides are soluble, as the addition of mineralizer is designed to increase the 

solubility of GaN.  
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Oxides are a very common class of materials both for the ease of formation (many 

elements naturally oxidize in our atmosphere) as well as their usefulness as electrical and 

thermal insulators. The oxides examined here are relatively common and were partly chosen 

because of that reason. Single crystal aluminum oxide (sapphire), polycrystalline aluminum 

oxide, and machinable alumina (aluminum oxide with binder) were investigated and all 

suffered from significant dissolution. The single crystal sapphire wafer had macroscopic holes 

forming and suffered dramatic thinning while the machinable alumina sample crumbled from 

loss of structural integrity. Fused silica (amorphous SiO2), quartz (single crystal SiO2), and 

soda lime glass (Si24.4Al0.5K0.6Mg2.3Na10.0Ca2.5O59.7) were also investigated and were all 

completely dissolved. Alumina silicate (Al13.1Si21.0Fe0.8K0.6Ti0.4O64.1) did not suffer quite as 

dramatically, but its structure was certainly compromised. Significant mass loss as well as 

swelling, spalling, and cracking characterized the sample. A glass ceramic 

(Si20.7Al7.9Li3.2Mg1.9Ca1.4Na0.6Ti0.6Zn0.6Ba0.5K0.4Zr0.4O61.8) and glass mica 

(Si15.4Mg8.5F4.2Al3.2K2.1B2.0O64.5) both suffered similarly. The glass ceramic suffered a 

dramatic visible change where the sample changed from transparent and lightly brown tinted 

prism to an opaque, dark brown prism with significant cracks covering the entire surface. The 

glass mica only suffered surface effects which included loss of some of the surface due to 

spalling. MgO also showed crystallographic etching, but the dissolution was far less dramatic 

than most of the other oxides. Single crystal yttria-stabilized zirconia (Zr29Y5O66) lost very 

little mass but did have evidence of crystallographic etching when viewed in difference 

interference contrast microscopy and the originally polished surfaces became diffuse. ZrO2 

also appeared to only lose a very small amount of mass with no other significant signs of 

etching or failure. Overall, oxides tend to be unstable in the presence of Na mineralizer. Given 
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the high H2 pressure and the stability of water, one might speculate that the formation of H2O 

and nitriding of the metal ions is a general corrosion method. Neither SiO2 nor Al2O3 were 

stable and many of the samples tested may have failed due to the lack of stability in SiO2 or 

Al2O3. The superior stability of MgO and ZrO2 is not understood, but one possible explanation 

lies in the stability of sodium silicate and sodium aluminate species, which have very high 

formation enthalpy and negative free energy of formation.146 Figure 10 displays the absolute 

mass loss as well as the relative mass loss of the oxides in the basic ammonothermal 

environment. Note that the trends show increasing Al2O3 and SiO2 contents increases mass 

loss, with SiO2 being more severe than Al2O3. 

 

Figure 10. Absolute mass loss (top) and relative mass loss (bottom) of oxides in Na-

NH3 solution. 
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B. Acidic Ammonothermal Corrosion 

“The potential for each of the component substances must have a constant value in all 

parts of the given mass of which that substance is an actual component, and have a value not 

less than this in all parts of which it is a possible component.” 

-J. Willard Gibbs, On The Equilibrium of Heterogeneous Substances 

The use of halogens is the most common form of the acidic ammonothermal technique. 

Technically, anything that can produce NH4
+ ions would be considered an acidic mineralizer, 

but usually either a halogen gas such as HCl or HF or an ammonium salt such as NH4Cl or 

NH4F are used. This section describes the observed corrosion of materials in the acidic system 

using NH4Cl as a mineralizer. It will be noted here and throughout the section that often one 

finds materials that are very suitable for use in the basic system are very much unsuitable for 

use in the acidic system and vice-versa.  

Loading of the reactor was very similar to the basic corrosion runs and thus only the 

differences will be highlighted here. Inconel 625 reactors were used with NH4Cl because René 

41 corrodes much more dramatically. It is important to note, however, that Inconel 625 was 

not in any way inert. Reactor bodies lost over 1 g of wall material for runs where the samples 

were found to be stable. Images of this corrosion are pictured in Figure 11. The samples were 

prepared in the same manner as in the basic runs, but instead of Na metal, ~1.40 g of NH4Cl 

was measured out using a stainless steel spatula and placed in the reactor. An NH3 fill of 

around 18-20 L was used to target a pressure of 100 MPa. All other closing procedures were 

the same. Unloading sometimes required allowing the reactor to leak into exhaust for as much 

as several days when reactor corrosion clogged the nozzle. On more than one occasion, 

leaking of the reactor by breaking the main gasket seal was necessary. For cleaning, no 

pyrophoric materials were generated so H2O was used immediately. Machining was necessary 

to remove some metal deposits for several runs. It is also important to note that Ni-200 gaskets 
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were used and also corroded very significantly, losing more than 1 g of material. EDX of some 

of the red crystallites on a Co sample indicated CrClx. One theory is that the Cr(NH3)6Cl2 

forms, as very significant nitrogen (nearly 4:1) was also detected. Light elements such as N2 

also tend to be detected at lower concentrations than is actually present. A later scan of HVPE 

grown GaN indicated Ga67N29, which is likely an artifact of the measurement method. 

 

Figure 11. Inconel 625 reactor body after a run with NH4Cl mineralizer. Yellow 

powder that was highly soluble in water was often found (left) as were red crystallites 

(right). The red crystallites were water soluble but took much longer to dissolve than the 

yellow powder. Note also the scaling and spalling of the walls on the right. 

Pure elements 

As mentioned previously, materials that fared well in the basic system tended to do rather 

poorly in the acidic system. Of the transition metals, only Mo was truly unscathed. Later work 

with thin wires indicated some embrittlement, but initial samples appeared essentially 

completely unchanged. V and Nb also resisted significant corrosion but more significantly 

embrittled and swelled which is consistent with hydriding. The surface of the V sample 

became a light gold color and EDX analysis indicated VN formation. Nb did not change color 

but did increase in weight. Ti had mixed results. The initial results with Ti plate showed 

surface discoloration with a blackened surface. This is consistent with a hydrided surface, but 
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the black surface did not react with water. Oxygen contamination may have played a part, but 

the black color potentially could be a very rough surface that was nitride. No extra 

characterization was done with that sample. However, later a capsule was made solely of grade 

5 Ti (6 wt% Al and 4 wt% V). The capsule suffered what looked like a pressurization and 

explosive event from within and the pressure in the reactor underwent a massive increase (+30 

MPa). This is consistent with a hydriding event as observed by Baymakov and Lebedev.166 

TiN seems to be relatively stable, and thus it is possible that strongly nitrided Ti could be used 

in acidic ammonothermal systems. The nitride would even serve to protect the Ti underlayer 

from H absorption. Bare Ti, however, appears to suffer rather catastrophically. W appeared to 

have some small minor corrosion, but this may also have been deposition of reactor wall on 

the sample. The other transition metals investigated include Ta, Y, Zr, Fe, Co, Cu, and Ni. 

Two major types of corrosion can be characterized in the case of transition metals: the 

formation of hydrides or nitrides, as was theorized for corrosion in the basic environment, or 

the dissolution of the metal as a chloride. The formation of hydrides and nitrides was mainly 

addressed in the basic system and many of the elements that were stable in the basic system 

are not stable in the acidic. Ta, Y, and Zr appeared to suffer similar nitriding or possibly 

hydriding events. The Ta sample picked up a distinct golden color and literature reports 

cracking and “corrosion phenomena,” including cracking and roughening of the surface. 

Cracking could be due to swelling from hydriding, although they report no chemical analysis 

at the fractures and our data also lacks any chemical characterization. Y was completely 

disintegrated in a similar way to the sample in the basic system. Zr also disintegrated and 

formed a powder very similar to the Ti capsule that hydrided and nitrided. With a similar 

propensity to form hydrides and nitrides, the similar Zr corrosion result indicates that it also 
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probably formed hydrides and nitrides. Fe, Co, Cu, and Ni all suffered dramatic corrosion. 

The Fe embrittled, cracked, and oxidized upon exposure to air. This is consistent with iron 

chloride formation as iron chloride will oxide upon exposure to both air and water. Co 

appeared to also partially go into solution with significant discoloration. EDX of the Co gave 

small Cl signals in regions where Fe and Co were detected, making it unclear if the Cl was 

bound to Co or Fe. Cu likely went into solution and formed an amalgam with the other samples 

present, making it indistinguishable from the brass 260 and Constantan that it was loaded with. 

Ni similarly corroded and had a porous surface afterwards, which indicates local corrosion. 

This could also point to Cl corrosion but is not definitive. 

The group II, group III, and group IV elements also corroded very significantly. Al was 

disintegrated, forming a brown powder that could be AlN, although this was not verified. Ge 

and Si both gained mass, indicative of either deposition from the walls or the other samples 

that were co-loaded with them (co-loaded samples include Fe and Al). The Si sample has 

brown spots which could also be Si3N4. Mg completely dissolved and no sample was 

recovered post-run. 

In stark contrast to the basic ammonothermal environment, Ag was the only precious metal 

that showed corrosion. Pd and Pt both had a slightly darkened surface which could be 

corrosion or reactor wall deposition but neither lost their ductility. Au had no surface 

discoloration and also did not lose its ductility. The reduced H2 pressure may reduce hydrogen 

embrittlement but no effort was made to characterize this effect.  

A straightforward theory for the difference in corrosion phenomenon is simply the 

formation of soluble chloride intermediates. However, essentially all of these transition metals 

form stable chlorides, including Mo, V, and Nb which suffered no significant chemical 
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degradation. From transition metal ligand theory, we can instead consider the effect of the 

NH3 molecules as ligands and see what effect one might expect. Although free energies are 

not available in these cases, one can use the enthalpy as a metric to compare. Figure 12 shows 

a bar graph indicating which samples showed corrosion effects consistent with Cl attack vs 

enthalpy of the chloride formation. Note that these enthalpies are at room temperature and 

atmospheric pressure and may approximate the reaction in the ammonothermal environment 

but will not be reliable for the calculation of any thermodynamic quantities. The enthalpies 

are also normalized to the number of Cl atoms in the molecule, thus characterizing the 

interaction on a per metal-Cl bond basis.  

 

Figure 12. Plot of enthalpy change per Cl  

atom present in chloride crystals known to form. The light blue bar is the enthalpy of 

the NH4Cl mineralizer, the reference for corrosion. It would be suspected that enthalpies 
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with a less negative value are unlikely to form while more negative enthalpies are likely 

to form. The red line is a guide to the eye indicating the value of the NH4Cl enthalpy. All 

cations left of NH4Cl on the graph were not found to degrade by a chloride formation 

while those to the right are suspected to form chlorides in situ. 

The enthalpy change with the different cations indicates the strength of the M-Cl bond 

(where M is the metal). Only compounds that solids (and thus the enthalpies of the solids) are 

displayed, as in our experiments any gases would escape and be undetectable. Elements that 

did not appear to corrode or only formed nitrides or possibly hydrides are displayed left of 

NH4Cl. Elements to the right formed powders or were found to directly form chlorides. The 

exception is Zr, which is displayed on the left. Although a more direct chemical measurement 

would be desirable, the similarity to the TiN/TiH2 formation found for the Ti capsule as well 

as the similar propensity to form a hydride or nitride between Ti an Zr indicates that the Zr 

powder formation was most likely due to hydriding and subsequent nitriding and may not 

have required any chloride intermediate. Subsequent EDX of the powder removed from the 

surface indicated similar amounts of N and Zr with less Cl (32% and 33% for N and Zr, 23% 

for Cl). It may be ZrCl2, but it may also have been ZrN and NH4Cl. It has been determined 

through measurements of GaN that the N concentration (presumably due to the small atom 

size) is often underestimated (stoichiometric HVPE GaN was measured at 67% Ga, 32% N). 

One can see that the graph displays a somewhat convincing trend, where the enthalpy of 

known chloride and chloride ammoniates at room temperature is an indicator as to whether 

the metal will corrode significantly or not. Pt and Pd are exceptions to this, but the formation 

method for the chlorides of these precious metals requires a very strong oxidizer, such as nitric 

acid in aqueous solutions.167 This could be an improved method for corrosion resistance in 

these systems. If TiN or ZrN are truly stable against chloride attack, then capsules or even 

reactors may be suitable as long as a significant nitride layer is formed. The nitride will 



 

52 

 

permeate into the metal and be self-regenerating while also acting as a H2 barrier to prevent 

hydride formation. Perhaps Ta could also be used in a similar capacity, forming TaN. This 

suggestion neglects thermal expansion mismatches and stresses from the nitriding, but the 

formation of a compressive stress at the inner wall is actually a useful method for reactor 

design and is used in autofrettage.  

Metal Alloys 

In this section the stability of alloys is discussed in the acidic system. Most of the alloys 

behaved very similarly to the parent elements, indicating that any new phases developed by 

the alloying do little to prevent corrosion. However, there are a few exceptions.  

The Co-W-Al alloy showed very small amounts of corrosion in contrast to both Co and 

Al. A small mass loss was measured, however, and subsequent EDX indicated a significant 

change in the surface. Bulk concentrations of the cations were 80 % Co, 10.6 % W, and 9.4 

% Al or ratios of 68:9:8 for Co:W:Al. EDX of the post-run sample showed a dramatic loss of 

Co and a significant loss of Al with relative ratios of 28:41:20. It should be noted that EDX 

indicated a much higher fraction of O (55 mol %) on the sample surface. This is the only 

example in which alloying indicated a highly significant effect, but it does not rule out other 

alloys as possible stabilizing agents. 

In contrast to the Co alloy, Cu alloys corroded in a manner similar to Cu. In fact, the alloys 

formed an amalgam that could not be distinguished from the pure Cu present.  

The stainless steel alloy system is often protected by an oxide layer which is similar 

throughout most of the stainless steels. Cr is usually the oxide former and the alloys tested 

include 15-5 PH, 17-4 PH, and 316L stainless steel, all of which have significant Cr. It is not 

surprising then that each of the Fe alloys performed rather poorly. In each case, the sample 
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originally appeared black post-run and oxidized upon exposure to water. This is consistent 

with iron chloride, which appears dark green-black.168 Although Cr was not directly tested in 

any of our samples, this is also consistent with CrClx forming from Cr in the reactor walls. 

The Cr surface layer is then removed and the exposed Fe matrix is also attacked by the Cl. 

The only Mo alloy tested was TZM. As mentioned previously, this is very nearly pure Mo 

and it is not surprising that it behavior similarly. The sample experienced no weight or 

thickness changes, but did take on a blue, leopard-stripe pattern. This could have been 

oxidation, as the NH4Cl is known to have oxygen contamination, but subsequent runs did not 

have this issue. A definitive reason for this discoloration is not known. 

The Ni alloys had some improvement but were still fairly vulnerable to corrosion. The 

chromel/alumel and Nicrosil/Nisil thermocouple wires were heavily corroded and lost most 

of their ductility. Hastelloy C-276 initially appeared to be fairly stable. It took on a black 

coloration, but there did not appear to be significant degradation. A follow up experiment was 

done were a capsule was made from the Hastelloy C-276 and the mineralizer was placed 

inside. The capsule, which was not hermitically sealed but did have a cap, was placed inside 

the reactor and filled with NH3. The capsule inside experienced significant corrosion and the 

8.99 g cap lost .1 g of material (see Figure 13). It is speculated that without other, less stable 

alloys present, Hastelloy C-276 corroded due to the formation of chromium and nickel 

chlorides.  
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Figure 13. Hastelloy C-276 capsule before (left) and after (right) acidic 

ammonothermal run. NH4Cl powder was placed directly inside the capsule and the cap 

was placed on top before the capsule was placed inside the reactor. Crystallites formed 

on the inner walls and bottom of the cap and pitting was clearly visible.  

The precious metal alloys also behaved similar to their parent metals. Both Pt alloys tested 

showed a slight increase in thickness but remained ductile. They also showed a slight 

darkening of the surface, which may by deposition of the reactor wall. However, this was not 

characterized.  

The W alloys were mostly stable in the acidic environment. The W74Re26 and W95Re5 both 

showed not significant change in mechanical properties. A slight dulling of the surface was 

visible, but this also could have been reactor wall deposition. However, the W74.7Ni15.6Cu9.6 

alloy did corrode. A brown surface layer coated the sample with some isolated red and green 

spots. The red spots may be Cr(NH3)6Cl3 deposition from the reactor wall. The green spots 

may be CuCl with CuCl2 impurities or possibly NiCl2.
169–171 

Carbides, Nitrides, and Oxides 

In general, the carbides, nitrides, and oxides respond rather well to the acidic 

ammonothermal environment. MgO is one major counterexample to this trend, but it certainly 

seems that oxides are far more stable with NH4Cl rather than Na minerazlier. 
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SiC and WC both appeared to suffer little to no effect. The SiC underwent a significant 

color change which may have been due to surface deposition from the reactor walls. No mass 

or thickness change was detected. WC exhibited patches of blue similar to those seen on the 

TZM sample (although these samples were not co-loaded) and lost a small amount of mass 

while slightly swelling. Given that both Fe and Co are alloyed with this WC, a reasonable 

assumption would be that these metals were leached out of the sample. However, no chemical 

characterization was done to confirm this. 

Chloride chemistry is known to have a higher solubility of GaN compared to Na 

chemistry, but in the case of HP-BN, PBN, and Si3N4, the solubility would appear to be much 

less compared to the Na system. However, HP-BN and PBN both suffered mass loss in spite 

of visible rust-colored deposition present on both samples. The roughness of the sample 

surfaces prevented removal of the deposition without also abrading away sample mass. Si3N4 

also took on rust-colored deposition while still losing a small amount of mass, indicating some 

solubility.  

While most oxides were heavily corroded in the basic system, most oxides showed very 

little to no corrosion in the acidic system. Single crystal aluminum oxide, polycrystalline 

aluminum oxide, and machinable alumina all exhibited the same rust-colored deposition but 

appeared chemically stable. The machinable alumina rust-colored deposition sometimes came 

off in flakes when agitated, but the material was an unfired ceramic and was thus already fairly 

fragile. Further testing of polycrystalline aluminum oxide in a capsule (a tube of Al2O3 with 

two spheres of Al2O3 to encapsulate the mineralizer) indicated that some etching may be 

present. However, the mass loss was 0.95 mg. If this loss is true and from only Al2O3, then 

this much material loss could result in 1.7×1019 cm-3 for a 1 cm3 piece of GaN which would 
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indicate that Al2O3 in an acidic system has the potential for significant oxygen contamination. 

Fused silica and single crystal quartz showed no significant corrosion and even in the capsule 

design the fused silica increased in mass (single crystal quartz was not tested in a capsule). 

The mass gain was on the order of 2 mg and the capsule did appear to have rust-colored 

deposition which could not be abraded away without damage to the capsule. Soda lime glass 

(Si24.4Al0.5K0.6Mg2.3Na10.0Ca2.5O59.7) became a deep red and the initially smooth surface 

became wavy on mm length scale. Given the high content of Na as well as the presence of Ca 

and K, it is not surprising that some interaction occurred. The oxides of the alkali metals may 

very well be soluble in supercritical NH3 and leaching of these elements from the glass could 

have driven the observed changes. The alumina silicate (Al13.1Si21.0Fe0.8K0.6Ti0.4O64.1) sample 

also appeared to suffer no corrosion and was subsequently tested in the capsule design. The 

sample within the capsule picked up 4 mg of mass, likely reactor wall deposition. However, 

the possibility remains that some etching occurred since the Al2O3 capsule had a significantly 

higher surface area and lost a very small amount of mass. Glass ceramic 

(Si20.7Al7.9Li3.2Mg1.9Ca1.4Na0.6Ti0.6Zn0.6Ba0.5K0.4Zr0.4O61.8) changed color dramatically, 

picking up a dark brown coloration and exhibited internal cracking throughout the sample. It 

should be noted with the glass ceramic that it even exhibited changes in pure NH3, picking up 

a yellowish coloration. Glass mica (Si15.4Mg8.5F4.2Al3.2K2.1B2.0O64.5) exhibited rust-colored 

stains on the surface and still lost mass, indicating some etching was occurring. Under acidic 

conditions, MgO dissolved and no sample was recovered from the run. Yttria-stabilized 

zirconia and zirconia both fared quite well. Yttria-stabilized zirconia took on the rust-colored 

stains and showed mass loss, but during the run a corner of the sample was chipped thus 
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obfuscating reason for the mass loss. The zirconia, however, lost mass and also changed color 

from white to a dark purple. The reason for this coloration is unknown. 

C. Conclusions on the Corrosion Study 

“The first of these tasks, namely, that of establishing the principles which are to serve as 

the starting point of his deduction, is of an entirely different nature… The scientist has to 

worm these general principles out of nature by perceiving certain general features which 

permit precise formulation, amidst large complexes of empirical facts.” 

-Albert Einstein, Inaugural Address to the Prussian Academy of Sciences 

From a practical standpoint, a material does not need to be fully corrosion resistant to be 

useful. As long as the corrosion does not inhibit or contaminate the growth or cause safety 

concerns then it can be deemed acceptable. Such is the case with materials that may be applied 

as single use gaskets. With this in mind we can state that many of the pure elements are 

reasonable materials to at least investigate. For the basic system these include Co, Mo, Ni, 

Nb, Ag, Ta, W, V, and Fe. Useful alloys include Co80W10.6Al9.4, Constantan (Cu53Ni47), the 

stainless steels (15-5 PH, 17-4 PH, and 316L), TZM, chromel/alumel 

(Ni88Cr12)/(Ni92Mn2Al4Si2), Hastelloy C-276 (Ni58.9Cr18.7Mo10.4Fe6.2Co2.7W1.3Mn1.1V0.4-

Si0.2P0.1S0.1C0.1), Nicrosil/Nisil (Ni81.2Cr15.7Si2.8Mg0.2)/(Ni91.2Si8.8), Pt91Ru9, W74.7Ni15.6Cu9.6, 

W74Re26, and W95Re5. For the acidic system the useful pure elements include Au, Mo, Nb, Pd, 

Pt, W, V, and Ti while the useful alloys include Co80W10.6Al9.4, TZM, Pt78Rh22, Pt91Ru9, 

W74Re26, and W95Re5. In the case of carbides, nitrides, and oxides, the basic system has proven 

highly corrosive. SiC and WC along with yttria-stabilized zirconia and ZrO2 appear stable 

while essentially all oxides with Al2O3, SiO2, or MgO components corrode significantly. In 

the acidic system, nearly the opposite is true: Al2O3, SiO2, and ZrO2 are all fairly stable. SiO2 

shows the least changes, while Al2O3 may vaguely dissolve and ZrO2 shows discoloration but 

not significant failure from an engineering perspective. MgO also corrodes in the acidic 
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system. It should be kept in mind that “useful” here is a term that is applied to structural 

components in the system. For use as dopant sources or some other chemical interaction, the 

act of corrosion may indicate a use that is not highlighted here. 
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3. Design of a TZM Reactor and Bulk Growth of GaN with NH4Cl 

Mineralizer at High Temperature 

“In the temple of Science are many mansions, and various indeed are they that dwell 

therein and the motives that have led them thither.” 

-Albert Einstein, Address on the occasion of Max Planck’s 60th birthday 

The previous two chapters seem to have little to do with one another. One is concentrating 

on growth of GaN and the other focuses on the effect of mineralizers on materials in 

supercritical ammonia at high temperature. The intersection of these topics comes together in 

an effort to design a robust reactor that is capable of growing high purity, high quality GaN 

controllably. This goal has an added constraint that is not previously mentioned which is the 

structural material of the reactor must have high strength (and hopefully resistance to creep) 

at high temperature. The ammonothermal environment requires somewhat high pressures 

(usually described as moderate in lieu of the high nitrogen pressure method which uses >1 

GPa pressure). For acidic growth, the standard pressures for growth are around 80-120 MPa 

and thus the reactor designed and described in this chapter targets that pressure range as a 

standard operating pressure. The first section will describe some of the important mechanical 

properties of TZM and the design of the reactor. The second section will discuss the GaN 

grown in the reactor and the characteristics as well as general behavior trends observed. 

A. Design of a Tube Reactor Made of TZM 

“The study of material behavior under pressure is of interest to investigators in a wide 

variety of disciplines. However, regardless of the specific area of interest, the first 

requirements of any investigation in this field are a suitable vessel to contain the required 

pressure and the specific experiment, and a means of generating the pressure.” 

-Ref. 172 

TZM is a pseudo-ductile material at room temperature. This really means that the ductility 

of TZM depends on how it is stressed. In tensile stress, TZM can elongate and shows some 
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signs of ductility at temperatures as low as -50°C. However, using the fracture strength as the 

ductility criteria, where the ductile-to-brittle-transition is indicated by a sudden and significant 

increase in the fracture strength, the ductile region doesn’t begin until 100-150°C. This ductile 

behavior also depends on the orientation of the stress with respect to the grains, as TZM often 

has sheet-like grains.173,174 TZM is also a high strength, refractory alloy with a 

recrystallization temperature of 1400°C (the temperature at which grains grow and defects are 

eliminated).175 TZM is also known for being creep resistant (<10-6 h-1 at 1100°C and 200 

MPa).175 A stress of 200 MPa is comparable to the stress on the inner wall of a reactor with a 

2.5:1 outer to inner diameter ratio and an internal pressure of 140 MPa. However, 1100°C is 

also significantly higher than the temperatures where ammonothermal growth has been done. 

Oxidation is also a significant problem for the molybdenum alloys. Smolik and Petti have 

performed mass loss measurements on TZM samples in air and found that a loss rate of 6.24 

µm/h at 599°C occurred due to oxidation and volatization of the oxide.176 Ammonothermal 

growth runs can last hundreds to thousands of hours and such an etch rate could be 

catastrophic. Even if the oxide is not volatilized, internal oxidation of the Zr and Ti can further 

embrittle the TZM.165 This can be combated by either removing oxygen from the environment 

or coating the TZM with an oxidation resistant material such as TiN. In the first reactor body, 

both methods were applied but the second reactor body is not TiN coated.  

The original inspiration for the tube reactor design was the simple high pressure tubing 

design with a cone-in-cone seal. Standard seals for pressurized systems often use elastomers 

(commonly o-rings) but at very high pressures and temperatures elastomers can decompose 

or simply be extruded. Thus, metal-metal seals are required. Metal cone-in-cone seals are 

common for high pressure applications and are still commonly used today with stainless steel 
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tubing.172 The design is straightforward and simple: two mating parts consist of a male cone 

and a female negative cone in a solid metal (see Figure 14). The male and female cones have 

a slight mismatch in angle (although this is not strictly required) and the line at which the 

cones first contact will form the seal. The ideal situation is to have highly polished surfaces 

and only elastic deformation occurs, thus making the seal completely reusable. However, 

slight imperfections in the machining usually requires that plastic deformation also takes place 

to form a strong seal. Since the pressure inside will force the male cone outward, the seal will 

be somewhat reinforced by an internal pressure. This is referred to as a self-energizing seal, 

where the pressure involved reinforces the seal, and is generally necessary for exceptionally 

high pressures. The required elastic/plastic deformation that occurs requires some initial 

sealing force that is supplied by the bolts also used to hold the sealing surfaces together.  

 

Figure 14. Cone-in-cone seal design. The light gray is a male component with a male 

cone, the dark blue is the female component with the female cone. The collar creates a 
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surface that the gland can employ a force against to press the male component into the 

female component. 

One important thing to remember with this sealing method is the requirement that the 

sealing components have a certain amount of ductility. One could imagine the extreme, where 

a completely brittle material such as glass, is squeezed by being forced into a cone shape (the 

male component being forced upwards into the female component in Figure 14). A brittle 

material will not deflect inward but instead either chip or crack. With this sealing method, the 

result was similar with TZM. The seal also required a compliant layer between the cones. 

Initial tests with the bare cone-in-cone failed to provide any significant seal. A Nb washer was 

cut to fit around the tip of the cone to provide the compliant layer and successfully created a 

high pressure seal. However, high pressure and temperature runs lead to failure of the tip of 

the reactor body. The male cone began to crack. After remachining and completely removing 

the crack from the body, several more high pressure runs indicated that this cracking 

phenomena was repeatable and thus not sustainable for a long-term reactor design. Figure 15 

shows an optical photograph of the male cone post-run with both visible surface cracks and 

plastic deformation. 
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Figure 15. Photograph of reactor male cone leading to the head assembly. Both 

plastic deformation (essentially an indentation of the metal surface due to compressive 

stress) as well as surface cracks are present. The surface cracks propagate around much 

of the cone and are suspected to be either due to the unsupported cone or compressive 

stress upon sealing. 

The clear signs that a standard cone-in-cone design would not work were followed by the 

concept of using a stress intensifying feature to increase the pressure at the seal point while 

not placing a large force on the reactor body itself. For the sake of being simple to machine, 

this feature needed to be small and mechanically robust. A small bead was decided upon with 

a radius of curvature of 1/16th of an inch and a total height of .02 inches (later changed to 

1/32th of an inch and a height of .02 inches). The bead with a curvature circumvents the issues 

of being sharp and potentially fragile when compared to a knife edge. When pressed against 

a flat surface the bead also has a tangent line around it that can form a small sealing surface 
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that will sustain a high pressure with only a moderate force on the reactor body. Figure 16 

shows a model view and the machined reactor body with the seal design. 

 

Figure 16. Bead seal design. The schematic (left), the cone-in-cone body adapted to 

the bead seal with a 1/16th radius (middle), and the top view of the bead seal (right). The 

bead design requires a compliant gasket to plastically deform to create the seal. 

The bead design itself (without a gasket) is difficult to seal because the bead would need 

to be exceptionally well polished and nearly perfectly aligned, thus a compliant metal gasket 

is used to enable a lower force seal. This also reduces the wear on the bead by allowing the 

gasket to flow rather than deforming the bead. However, the bead will still wear and need 

remachining occasionally. Some of the design features from the cone-in-cone design are still 

used. The method for producing an upward sealing force was kept, which is the reason why 

the reactor body is still threaded. It is interesting to note that the gasket and bead design is 

actually not a self-energizing seal but the design is still quite effective. 

Sealing is one of two major design constraints for a safe reactor. The second constraint is 

that the reactor can handle the required pressure and temperature (note that we are already 

assuming that chemical corrosion is not an issue). While 100 MPa seems like a high pressure, 

by the standards of extreme pressure systems it is actually rather mild. Davidson and Kendall 

wrote a technical report in 1969 that detailed extremely useful information on the practical 

theory of high pressure vessel design. Their discussion is applicable for vessels designed for 
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operating pressure as high as 55 kbar (~5570 MPa). However, their work is still highly 

applicable to the ammonothermal regime and was consulted in pressure containment design. 

Many TZM reactors have also been used in geological research, including William’s design 

that used copper gaskets and coned connections and was usable up to temperatures of 1200°C 

at 100 MPa.177–181 The most straightforward design is to have multiple components that are 

solid, monolithic pieces. As TZM is brittle at room temperature, this reduces the likelihood of 

crack formation as only joints will have bends. The pressure rating for the reactor body is 

shown in Figure 17. Although the data is the best available, it should be noted that TZM from 

different manufacturers has had yield and tensile strength values that differ by as much as 

25%.  
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Figure 17. Pressure ratings for a cylindrical body with an outer to inner diameter 

ratio of 16:7. The different methods for calculating the safe pressure are shown by using 

Faupel’s burst pressure formula, the ASME pressure guideline for monoblock cylinders, 

and the Von Mises stress calculation to ensure the inner wall stress is less than the yield 

stress of the material. The Faupel burst pressure includes a safety factor of 4. 

All of the pressure ratings in Figure 17 assume the reactor body is the pressure limiting 

component.  Faupel’s formula considers both the ultimate tensile strength of the body material 

as well as its yield strength in the equation 𝑝𝑏𝑢𝑟𝑠𝑡 =
2

√3
∗ 𝜎𝑦 ∗ (2 −

𝜎𝑦

𝜎𝑈𝑇𝑆
) ∗ ln (𝑘) where 𝜎𝑦 

and 𝜎𝑈𝑇𝑆 are the yield strength and ultimate tensile strength of the material, respectively, and 

k is the outer to inner diameter ratio. The calculation above displays ¼ of the burst pressure, 

as safety factor of 4 was used. The inner wall must also not reach the yield point as it is not 

desirable to generate defects in the reactor by yielding the reactor wall. Yielding the inner wall 

is actually used in the case of autofrettage. However, those materials are ductile materials and 
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thus are acceptable to approach the yield point in a controlled manner. The other components 

of the reactor are standard components made by High Pressure Equipment Company and are 

made of 316 stainless steel. The stainless steel parts are rated to 30,000 psi (200 MPa). As the 

body does not approach this pressure rating, the body and the seals are considered the pressure 

limiting components. 

The usefulness of the modular reactor design extends beyond the simplicity of calculating 

strength and failure scenarios and extends into reactor maintenance. Testing of components 

can be done with separate pieces to determine leak points and replacement parts can be more 

easily fabricated. The use of a tube with a sealed end requires knowledge of the radius of 

curvature at the bottom of the bore to know the stress and potential cracking or failure events 

that may follow. An open tube with seal points at both ends doesn’t require this knowledge. 

The open bore also facilitates cleaning as well as visual inspection of the reactor walls in the 

bottom zone.  

Testing of the reactor design really has three major steps, the first of which is a high 

pressure cold test. To accomplish this task, a high pressure generator from High Pressure 

Equipment Company (model 31-5.75-5 extra capacity high pressure generator) was used. Care 

must be used when doing this with a brittle material such as TZM. Small crack propagation 

may lead to catastrophic failure. However, TZM works well in tensile loading and in this case 

no bending stresses are involved, thus testing was deemed reasonable. To prevent the 

possibility of explosive decompression of the pressurized fluid, water was used. Leakage of 

high pressure gases will lead to a very large volume expansion while a fluid such as water will 

only expand slightly to alleviate the pressure. Thus, no explosion hazard exists because little 

momentum can be imparted. Testing of the TZM occurred at room temperature and 150-175 
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MPa. The pressure was left for a minimum of 30 minutes, but generally longer times were 

used. The leakage of water also allows the experimenter to determine where the leak is coming 

from. Again, this is extremely useful as the junction of each section of the reactor is a potential 

leakage source. A He detector with a vacuum source was also used occasionally, but this lacks 

the pressure component of the leak scenario for a running reactor.  

The second leak test is the high temperature leak test. This is accomplished by ensuring 

the reactor is leak tight consistently using the cold leak test method first and then running the 

system with NH3 gas. The reactor is sealed and pumped out and filled with N2 gas and then 

pumped out again before filling with NH3 gas. The system is filled with NH3 in the same way 

as for a normal growth run (see section C of this chapter). The reactor is loaded into resistive 

heaters with silica ceramic insulation and taken up to growth temperatures (generally 600°C) 

at growth pressures (~125 MPa). The pressure and temperature are maintained for three days 

to ensure that no leak forms from creep. TZM is highly resistant to creep, especially at lower 

temperatures, but the gasket may be made of a softer metal, such as Nb, which may not be as 

tolerant. And even though TZM is creep resistant, it is still advisable to monitor creep in the 

system. Periodic checks of the reactor body design described above indicate no creep (with 

strain measurable to around .0004) at average temperatures around 600-700°C and pressures 

around 100 MPa after nearly 2000 hours of operating time. The small variations in the 

diameter of the body may mask small creep, however, and thus periodic monitoring is highly 

recommended.  

The final test before a reactor is officially commissioned for standard use is a chemistry 

test. Similar to the high temperature test, the chemistry test has the corrosive mineralizer added 

into the system. This test really ensures that the gasket is not only pressure ready, but that the 
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mineralizers do not cause additional swelling or corrosion that may induce leaks. The reactor 

is loaded as in the high temperature test but with mineralizer (in this case NH4Cl) and then 

heated up for three days. Assurance that the mineralizer does not cause leaks is not strictly 

required if all reactor materials, including the gasket, are known to be inert or highly corrosion 

resistant. However, even mild corrosion can cause leaks if the material is not truly inert.  

Although most of the chemicals used in a growth run are already present in the “final” test 

mentioned above, the true test of whether a reactor will function for growth is in the actual 

growth runs. The presence of whatever gallium transport species exist (which will be called 

Ga intermediates) may also alter the behavior of the gasket and reactor. Energy dispersive x-

ray spectroscopy (EDX) of TZM components exposed to hundreds of hours at growth 

temperatures with Ga intermediates indicated no Ga absorption into the TZM, making reactor 

body-Ga intermediate interactions unlikely. The growth runs also are the initial steps toward 

understanding what temperature differentials and gradients are required to drive growth. The 

theory of growth and the physics of the growth event will be discussed in the next section of 

this chapter. But the reactor plays a very significant role in the physical environment. The 

baffles partially determine fluid flow by blocking some, but not all, mass transport between 

zones. They must prevent the development of an isothermal system between the growth and 

dissolution zones while still allowing significant mass transport to allow growth to occur. The 

thermal conductivity of the reactor wall and the thermal transport of the fluid (H2, N2, NH3, 

and NH4Cl) will determine the maximum sustainable temperature difference between zones. 

TZM has a very high thermal conductivity and thus it is expected that the temperature of the 

walls is very similar to the fluid at the walls. If TZM were a poor thermal conductor, the fluid 

could potentially cool the walls faster than heat could pass in, creating a significantly different 
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zone temperature than would be specified by external thermocouples. Internal thermocouples 

would certainly be advantageous, but the engineering required to realize this for the TZM 

reactor is difficult and has not yet been done. Heaters with power outputs of 300 W that are 

three inches tall were used. One can approximate the maximum temperature difference one 

could expect radially by using the steady-state heat equation �⃑� = 𝜅 ∗ 𝐴 ∗ ∇⃑⃑ 𝑇 where �⃑�  is the 

heat flow in, 𝜅 is the thermal conductivity of the reactor wall, 𝐴 is the surface area, and ∇⃑⃑ 𝑇 is 

the temperature gradient. This can be rearranged by considering only the radial direction in 

cylindrical coordinates and noting that the area is simply the circumference multiplied by the 

height of the reactor. It then simplifies to a scalar equation ∆𝑇 =
𝑄∗ln

𝑟𝑜
𝑟𝑖

𝜅∗2∗𝜋∗ℎ
 where Δ𝑇 is the 

temperature difference between the outer and inner reactor walls, 𝑟𝑜 is the outer wall radius, 

𝑟𝑖 is the inner wall radius, h is the height, and the other variables are as stated before. With 

𝑟𝑜

𝑟𝑖
=

16

7
 and a thermal conductivity of 120 W/m*K, the largest Δ𝑇 one would expect is 4°C. 

This, of course, is an oversimplification, but it should give a somewhat reasonable estimate as 

a maximum wall temperature difference.  

One drawback of the TZM reactor is heat loss. This can be accommodated by using robust 

insulation and powerful heaters, but it must be considered when designing the heating 

infrastructure for the reactor. Many reactor alloys such as the Ni superalloys have thermal 

conductivities of 10-20 W/m*K.182,183 TZM has a thermal conductivity nearly an order of 

magnitude higher and thus will suffer significantly higher heat loss. In the design that 

eventually came to be used, the head assembly (the top portion of the reactor that seals to the 

body) was party stainless steel and thus needed to be kept cooler to avoid both corrosion as 

well as softening of the metal (see Figure 18 below). Forced convection using simple mounted 
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equipment fans served to cool these components and a significant section of unused internal 

reactor volume was kept to create a smaller temperature gradient. The fluid within will also 

carry significant heat and so four baffles with tight tolerances to the reactor walls were placed. 

The open area of the bore was reduced to 10% at the baffles and the series of four baffles 

together appeared to dramatically reduce fluid flow from the growth and dissolution zones to 

the head assembly. This was concluded by the lack of any GaN deposition in the head 

assembly during the runs in spite of an external temperature of less than 300°C.    
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Figure 18. Schematic of TZM reactor used to grow GaN with NH4Cl. The top baffles 

are used to separate the cold zone from the head assembly and the bottom baffle is used 

to separate the hot and cold zones. The brown components are the valve (left) and the 

pressure transducer (right) and are made of stainless steel. Dashed regions indicate 

where insulation is present outside the reactor. 
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The brittle nature of TZM also requires a certain level of care to protect the reactor from 

damage due to sharp impact, such as collision with a corner. Although TZM has a high yield 

strength, its low fracture toughness necessitated the design of certain infrastructure to prevent 

flaws that may act as crack initiation points. The plates that the reactor interfaces with in its 

stands are generally aluminum due to the low elastic modulus. Steel is used where temperature 

prevents the use of aluminum, specifically the heated stand where growth occurs. For transport 

when the reactor is loaded with NH3 and other chemicals, protective aluminum plates were 

also fabricated. These plates are each ¼ of an inch thick and encompass the body by clamping 

to the head and base using steel ½-13 bolts. This prevents accidental damage to the reactor 

body by giving another mechanism to absorb impact energy. However, this mechanism was 

not rigorously tested. Aluminum and steel can also be used in cryogenic temperatures, which 

allows the protective plates to be used during the NH3 fill rather than being placed afterwards.  

The above outlined procedures and protective infrastructure are highly important but one 

of the most important features is the use of a secondary containment vessel. This infrastructure 

was adapted from use with Ni alloy reactors using basic mineralizers, but the function of the 

secondary containment is the same. The containment vessel (CV) serves as a hermetic barrier 

to shield the lab from shrapnel, in the case of a catastrophic failure, as well as containing any 

leaking NH3. The TZM reactors have not yet suffered any catastrophic failures and in no case 

has a shrapnel producing event occurred, but often the reactors have leaked potentially 

hazardous NH3. The CVs were essential in protecting the lab occupants as they allow the 

leaking gases to be safely exhausted without ever contacting the breathable air in the lab. And 

while the CVs acted only to protect the lab occupants for the Ni reactors, TZM has a high 

propensity to oxidize in the form of MoO3, which is volatile above 400°C.176 Thus, the CV 
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also protects the TZM from oxidation by creating an environment where there is no oxygen. 

As part of the growth process, the CV is pumped out and filled with N2 gas. 

B. The Theory of Solvothermal Growth 

“Only I must observe that the vulgar conceive those quantities under no other notions but 

from the relation they bear to sensible objects. And thence arise certain prejudices, for the 

removing of which, it will be convenient to distinguish them into absolute and relative, true 

and apparent, mathematical and common.”  

–Sir Isaac Newton, The Mathematical Principles of Natural Philosophy 

Solvothermal growth is a very useful and common technique for growth of crystals that 

are difficult to obtain from a melt. Several reasons may exist for the difficulty in producing a 

melt such as decomposition of the compound or excessively high temperatures to produce the 

melt. GaN actually suffers from both of these problems as the pressure and temperature to 

form a melt while also preventing decomposition are as high as 12 GPa and 2000°C.184 The 

extreme conditions make large scale formation of GaN crystals unfeasible for economic and 

safety reasons. Solvothermal growth allows the transport of material and recrystallization at 

significantly lower pressures and temperature by creating an intermediate species (sometimes 

simply a solvated molecule of the compound and sometimes a chemical complex). 

The simplest setup for a solvothermal system is a chamber with two zones that are 

separated by a volume. Each chamber is defined by walls with a given temperature which will 

provide the power to determine the temperature of the zone and each zone will have a 

temperature distinct from the other. In one zone, the dissolution zone, feedstock of the crystal 

compound of interest will dissolve. In the dissolution zone, the solubility of the compound 

will be higher than the crystallization zone. The crystallization zone will have a seed crystal 

upon which the supersaturated solution can deposit the excess material. Fluid will transport 

between zones, where fluid from the dissolution zone will become supersaturated by changing 
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temperature and then approaching saturation by depositing excess material onto the seed. The 

saturated fluid can then return to the dissolution zone and change temperature, becoming 

undersaturated. Dissolution of the feedstock then occurs and the fluid becomes saturated 

again. The fluid then returns to the crystallization zone where the temperature change again 

makes the fluid supersaturated, restarting the process. This process can occur as long as the 

temperature difference is maintained and both seed and source exist. 

Solvothermal growth is usually assumed to be occurring close to thermal equilibrium. The 

system can never reach equilibrium if growth is occurring, otherwise growth and mass 

transport would not occur. However, if the mass transport from one zone to the other is slow 

and the kinetics of attachment of Ga and N are fast enough then a near equilibrium condition 

will occur where there is a small chemical potential gradient from the fluid to the crystal. The 

larger the chemical potential gradient, the farther from equilibrium the growth. If the growth 

kinetics are too slow, a steep chemical potential gradient will occur near the surface of the 

crystal. Similarly, if mass transport is very rapid then the growth kinetics will not keep up and 

again a steep chemical potential gradient will form. These two scenarios are actually the same, 

as “fast” and “slow” are terms relating the growth kinetics to the mass transport between 

zones. The kinetics and mass transport may also have different functions of temperature. 

Although neither have been directly measured, the kinetic factor of chemical reactions (here 

the breakdown of the Ga intermediates into GaN) tends to be Arrhenius with the form 𝑘 =

𝐴𝑒−𝑄/𝑘𝐵𝑇, where 𝑘 is the kinetic factor, 𝐴 is a prefactor, 𝑄 is the energy barrier of the reaction, 

𝑘𝐵 is Boltzmann’s constant, and 𝑇 is the absolute temperature. Mass transport between zones 

is far more complicated, but it can be stated that mass transport will be dominated by 

convection and thus be a function of the temperature difference between zones as long as the 
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thermal expansion coefficient of the fluid is nearly constant. With passive reactor designs, like 

the one used in this research, only buoyancy effects are used to mix the fluid. Thus, the mass 

flow between zones is a convoluted function of the temperature difference between zones as 

well as solubility and viscosity, both of which also have a temperature dependence. Simulation 

of the ammonothermal environment using computational methods is an ongoing research 

topic, but the physical parameters of the fluid are still not well known at the appropriate 

conditions and extrapolations of known data are used instead.185 

Growth Far From Equilibrium 

Many different techniques exist as methods of growth far from equilibrium. The better 

known epitaxial methods, including metal organic chemical vapor deposition (MOCVD), 

molecular beam epitaxy (MBE), and sputtering are occurring far from equilibrium.186 

Although there are some advantages to these growth methods, such as precise control of film 

thickness, the far from equilibrium growth also has some drawbacks. By definition, far from 

equilibrium means that there is a large chemical potential gradient present that drives growth. 

This large chemical potential gradient allows the defects to more readily form, as defects 

require some energy to form. If the chemical potential gradient is very small, defects are very 

unlikely to form because there is a positive chemical potential change going from the 

intermediate to the defect state. One can think of this as a three level system: the chemical 

potential of the intermediate, the chemical potential of a defect state, and the chemical 

potential of the perfect crystal. The driving force for growth is always the difference between 

the chemical potential of the intermediate state and the perfect crystal. If there is a large 

difference, the defect state may also have a lower chemical potential than the intermediate 

state (and thus a lower energy) and therefore both the perfect crystal and the defect state may 
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form. If the driving force is small, the defect state may have a higher chemical potential than 

the intermediate state, thus only the perfect state has a lower energy and can form.  

Mass transport of far from equilibrium growth methods tend to be in gaseous states, as 

one would expect spurious reactions to occur with unstable molecules in more dense media. 

The chemical reactions are therefore designed to occur at a surface when the unstable 

molecules impinge. Often, the surface of interest (the substrate) is heated to cause rapid 

decomposition of the molecule as well as preferential deposition. Substrate temperatures in 

MOCVD can be greater than 1000°C while the input gases are close to room temperature.186  

Growth Near Equilibrium 

As mentioned in the prior section, growth near equilibrium has the advantage of having a 

reduced rate of defect formation. This, of course, does not preclude defects. However, highly 

perfect crystals can be grown near equilibrium to very large size. Near equilibrium growth 

generally means that a small supersaturation exists, meaning only a small fraction of material 

will be deposited from the transport media. So to increase growth rate, it is desirable to have 

a dense media. Near equilibrium growth should then occur in liquids or supercritical fluids.  

The thermodynamics of near equilibrium growth can be approximated by assuming each 

zone is actually in thermal equilibrium and the intermediates do not decompose until they 

reached the seed surface. If this is true and we assume that one enthalpy and entropy change 

govern the intermediates, Δ𝐺(𝑇) = Δ𝐻 − 𝑇Δ𝑆, where Δ𝐺(𝑇) is the chemical driving force or 

Gibbs free energy of the reaction going from the intermediate to GaN, Δ𝐻 is the enthalpy of 

the reaction, 𝑇 is the absolute temperature, and Δ𝑆 is the entropy change. Note that here we 

are using Δµ and Δ𝐺 interchangeably. We can also recall from statistical mechanics that the 

true free energy is modified by the activity of reactants and products, thus we can have a Δ𝐺0 
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at saturation and upon supersaturation it is modified with the form Δ𝐺(𝑇) = Δ𝐺0 +

𝑅𝑇𝑔𝑙𝑛 (
𝑐𝑔𝛾𝑔

𝑐𝑑𝛾𝑑
), where 𝑐𝑔 and 𝑐𝑑  are the equilibrium concentrations at the growth and 

dissolution temperatures, respectively, and 𝛾𝑔 and 𝛾𝑑 are the activity coefficients of the 

intermediate at the growth and dissolution temperatures. If the reference state is GaN itself, 

then Δ𝐺0 = 0 (this implies that if 𝑐𝑔𝛾𝑔 and 𝑐𝑑𝛾𝑑 are equal then there is no driving force for 

growth). Only the logarithmic term remains. If a singular Δ𝐺 governs the reaction, then 𝑐𝛾 =

𝑒−Δ𝐺/𝑅𝑇 regardless of the temperature so the driving force can be simplified to 𝑅𝑇𝑔 ∗

(−
Δ𝐻−𝑇𝑔Δ𝑆

𝑅𝑇𝑔
+

Δ𝐻−𝑇𝑑Δ𝑆

𝑅𝑇𝑑
) = Δ𝐻

𝑇𝑑−𝑇𝑔

𝑇𝑑
= Δ𝐻

Δ𝑇

𝑇𝑑
. This indicates that even with a fixed 

temperature difference between zones, the chemical driving force for growth decreases with 

increasing temperature.  

Unfortunately, no consensus exists on the solubility of GaN in the ammonothermal 

environment. The chlorides are plagued with a lack of reproducibility. Three significant 

studies have been published and each differs by between a factor of five and forty near 

600°C.124,126,127 The research outlined below has some circumstantial data indicating that the 

solubility is actually very high, but no careful study of solubility was conducted. A careful 

study of solubility and its temperature dependence would allow the calculation of Δ𝐺 and thus 

be useful in determining the chemical driving force for growth during a run.  

C. Ammonothermal Growth of GaN in a TZM Reactor Using NH4Cl Mineralizer 

“Give me a place to stand, and I can move the earth.” 

-Archimedes 

The main thrust of this research was to enable acidic ammonothermal growth of GaN at 

UCSB. The obvious conclusion to this is a new research initiative of acidic growth to further 
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understand ammonothermal growth in general. After the successful development of the TZM 

reactor, NH4Cl mineralizer was added to the NH3 fluid to enable transport of GaN. Initial tests 

were at relatively high temperatures with cold temperatures of 575°-600°C and hot 

temperatures of 600-650°C. Dissolution of GaN was obvious, and high NH4Cl masses were 

used (from 0.6-0.9 g). However, under the assumption of normal solubility, seeds were 

continually etched. There were several possibilities for such a result due to a lack of data. 

Inconclusive solubility data means that the seeds may etch and then grow slowly, leading to 

effective etching. Unfortunately, in situ monitoring has not been developed making this 

difficult to directly measure. The other possibility, which was eventually realized, is that the 

system in this temperature regime exhibits retrograde solubility.  

Although the system was tested for retrograde solubility, it took several months to realize 

the error. The reactor always leaked upon cooling due to the thermal expansion mismatch of 

the gasket and gland with the reactor body. Small GaN crystallites were found around a TZM 

plug that was used to adjust the height of the reactor furniture (the stands for the seeds, baffles 

and source material). The leak always occurred through the hot zone gasket, and the 

presumption was that the NH3 rapidly supersaturated at that zone and precipitated the GaN. 

However, upon removal of the standoff and another growth run with the seed in the hot zone 

and the source in the cold zone, growth was confirmed. The plug was acting to reduce fluid 

flow around the reactor walls, creating an artificially hot region. The rest of the fluid in the 

hot zone could mix with fluid from the cold zone. The high temperature fluid acted as a sink 

for incoming GaN, thus masking the nature of the solubility. Figure 19 shows the hot zone 

after a run. Literature supports this conclusion, but higher temperatures with growth occurring 

at 700-720°C and dissolution occurring at 650-700°C.128 Based on the temperatures where 



 

80 

 

growth was performed under normal and retrograde solubility, the likely changeover 

temperature is somewhere between 600°C and 650°C. 

 

Figure 19. Hot zone after a growth run. Tcold = 500°C, Thot = 650°C, P~100 MPa. 

Polycrystalline GaN and Heteronucleation 

The general goal of bulk crystal growth is the synthesis of large, perfect crystals. However, 

even seeded growth often has parasitic polycrystalline growth on non-seed surfaces, such as 

reactor walls or furniture. Such growth can give clues as to what is happening in the growth 

environment. The roughness of a wall, for example, can result in many nucleation sites and 

cause massive parasitic nucleation. However, if the chemical driving force is small enough 

then no nucleation will occur because the formation of nuclei will have an associated energy 
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cost. A significant portion of this energy cost can come from the solid-solid interface of GaN 

on reactor wall. Thus, the extent of wall nucleation can indicate where large chemical driving 

forces for growth exist. The continuation of a GaN crystal has no such nucleation energy cost 

because the same surface is created when material is deposited. Thus, even very small 

chemical driving forces can induce growth, although the growth will likely be slow as well.  

Table 1. Growth summary of seeded growths in TZM reactor using NH4Cl mineralizer. 

Red indicates the reactor leaked. Orange indicates a different reactor body was used for 

growth. 

All growth runs with GaN source material exhibited polycrystalline GaN (polyGaN) 

deposition on the walls. This is not entirely unexpected, as temperature differences of 25°C 

or greater were used. However, nearly all of these runs also had polyGaN on the walls already. 

It would be advisable to prevent parasitic nucleation in some manner and in most cases 0.25-

0.5 g of GaN were removed from the walls after the run (although this was not all that was 

present). As the surface area of the polyGaN gets larger, it will more quickly deplete the 

solution of supersaturated GaN. Large quantities of polyGaN growth have occurred, though 

this is likely more akin to seeded growth once nuclei are established. Although smaller 

Growth run 

Growth 

temperature 

(°C) 

Dissolution 

temperature 

(°C) 

NH4Cl (g) 

Parasitic 

polyGaN 

(g) 

Growth rate 

(µm/day) 

160415I 650 500 .625 .14 24 

160517I 650 500 .638 .06 19 

160604I 700 650 .638 .50 60 

160614I 750 697 .640 .58 82 

160630I 700 650 .205 .49 57 

160707I 700 675 .206 .70 99 

160714I 700 650 .640 .09 30 
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depositions of around 10-20 mg have occurred on the reactor walls, as much as 700 mg has 

been deposited over a 4 day stretch.Table 1 shows the correlation of seeded growth rate, 

temperature, and parasitic polyGaN growth. The masses of polyGaN growth were calculated 

by measuring the mass change of the reactor body.  

GaN deposition is a very important phenomena to track for growth, but other compounds 

present can also yield useful information. EDX of powder deposition in the head assembly of 

the reactor indicated a type of GaClx present. The measured ratios indicated GaCl2.4, but this 

could be a mix of GaCl and GaCl3. There is no strong consensus as to the form of the Ga 

intermediates, but Zhang et al. has proposed the formation of an ammoniated gallium chloride 

cation [Ga(NH3)5Cl]2+ with counterbalancing Cl- ions.187 Figure 20 shows the white powder 

from run 150627I which initially indicated a GaClx compound. However, no N was detected. 

This may be due to NH3 being a relatively weakly bonding ligand and evaporation occurring 

during evacuation of the chamber, but this cannot be said with certainty. 
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Figure 20. Scanning electron micrograph of white powder collected from the head 

assembly of a growth run. Ga and Cl atomic concentrations were measured at 29% and 

71%, respectively. 

The necessity of preventing oxygen contamination appears quite dramatically when EDX 

data from early growth attempts are examined. Very high oxygen concentrations are found 

such that the deposited material is really gallium oxide rather than gallium nitride. This 

explains why the mass was not a continuation of the crystal but was rather deposited on the 

surface as show in Figure 21 below. 
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Figure 21. Gallium oxide mesa on a GaN template. The atomic composition as 

measured by EDX are as follows: Ga 31%, O 60%, N 8%, Cl 1%. The material was 

grown in normal solubility conditions with a hot zone at 535°C and a cold zone at 245°C. 

The small lessons learned from the polyGaN growth and early experimental runs pave the 

way forward to develop seeded growth. But demonstration of seeded growth is paramount in 

order to truly prove the viability of the TZM reactor and the growth method. Unforeseen 

problems can potentially develop when trying to extrapolate from polycrystalline wall growth 

to seeded growth. The next section outlines the seeded growth experiments performed in the 

TZM reactor. 
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Methodology and Observations in Seeded Growth 

Growth of GaN in the TZM reactor has been developed into a specific procedure that only 

requires modification of the seeds and furniture. The seeds were prepared by first drilling a 

hole in the center of the seed (which was used to hang the seed in the reactor) with a 0.75 mm 

diameter diamond drill bit. The seeds were clamped in an acrylic mount and the drill was 

manually aligned. The seeds were characterized using x-ray diffraction (XRD) as well as 

optical pictures, mass measurements, and thickness measurements at the corners of the seed. 

After the hole was drilled, the seeds were cleaned in acetone and isopropyl alcohol for three 

minutes each then weighed, pictures were taken, and thickness measurements were made. 

XRD measurements were then made, after which the seeds were cleaned again and stored in 

plastic sample containers until reactor loading.  

The furniture design is meant to be adjustable but is generally kept the same once growth 

has been established. Four legs (rods with holes for wires to pass through) are connected to 

the baffles (discs with holes in them) by passing the legs through the holes. Other than the 

holes for the legs, the baffles have holes to allow fluid flow between regions. Small holes in 

the legs are present to allow a wire to feed through above and below each baffle to hold the 

baffle in place. Similar holes for wires exist in the hot and cold zones for wires that will hang 

the seed crystals and source material. An image of the full furniture setup (left) and zoomed 

in images of the source and seeds (right) are shown in Figure 22. 
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Figure 22. Furniture setup for a growth run. The GaN source and seeds are in 

position for retrograde solubility. Holes similar to the seed mount holes are present 

around each baffle. When wire is fed through these holes around the baffles, the baffle 

is locked in place. The top right and bottom right images show the GaN source and seed, 

respectively. 
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The reactor parts were all kept in vacuum ovens with the TZM parts stored at 80°C and 

stainless steel parts kept at 50°C. The vacuum ovens were used to prevent water adsorption to 

the surfaces. The effect of this storage was not directly measured, but it was found that TZM 

parts left out in ambient conditions without being cleaned (after machining) took on a blue 

coloration after several weeks that was water soluble. The exact origin of this blue substance 

was not verified, but it may be a molybdenum oxide that forms molybdenum blue.188 The 

sealing surfaces of the reactor body (the sealing bead) were polished by hand using the lathe 

at the physics machine shop with 600 grit SiC sandpaper followed by 2000 grit SiC sandpaper. 

The inner surface of the head and base were polished using a custom one inch diameter 

aluminum rod with 600 grit SiC sandpaper attached to the end.  

The following procedure was used to load a reactor for a growth run. First, the seed or 

seeds were prepared as described above. All reactor components were removed from their 

respective ovens and allowed to cool to room temperature. The reactor body was weighed and 

the sealing glands for all connections were lubricated with either a polytetrafluoroethene 

(PTFE) based lubricant or MoS2 dry lubricant. The head assembly parts were connected and 

the reactor base was attached to the body using the appropriate torque (initially 140 ft-lbs with 

the Nb gasket and 1/16th radius sealing bead but this was reduced to 100 ft-lbs later and yielded 

consistent seals with properly polished surfaces; the torque was further reduced to 60 ft-lbs 

with the 1/32nd radius sealing bead with consistent seals). Head assembly connections were 

sealed with 16 ft-lbs of torque. The appropriate polyGaN was weighed out in the source basket 

and then the seeds and source basket were mounted into the furniture which was immediately 

loaded into the reactor body. The reactor body, a weighing tray and spatula (for measuring 

out NH4Cl), the head assembly, two pairs of tweezers, and two gaskets (one extra in case the 
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first is scratched) were loaded into the N2 glovebox. The appropriate mass of NH4Cl was 

placed in the weighing tray. A reactor stand in the glovebox was used to tilt the reactor and 

allow the furniture to be partially pulled out so the NH4Cl could be added to the bottom of the 

reactor. Tweezers were required to pull the furniture out as well as controllably lower it in. A 

torque wrench and a breaker bar with a crowfoot were used to partially seal the reactor in the 

glovebox. While the reactor was always removed from the glovebox and a final torque was 

applied to ensure sealing at high pressure, once the torque was reduced to 100 ft-lbs or below 

the torque was usually fully set in the glovebox. A custom stand was used to keep the flats of 

the head and base aligned such that the ¼ inch thick aluminum protective plates could be 

clamped tightly and relatively straight with respect to the reactor body. The reactor was then 

attached to a gas manifold where it was evacuated and held under vacuum for a minimum of 

fifteen minutes. The pressure was monitored to ensure less than 1 mbar change was detected 

as a leak check. The reactor was then cooled with liquid N2 for four minutes before being 

filled with the appropriate amount of NH3. Initial trials used only one fill of NH3, but it was 

noted that the vapor pressure measured by the pressure transducer was low. Later runs 

included a step where the reactor was vented, allowing the original fill of NH3 to be removed 

and then the reactor refilled with NH3. The reactor was then allowed to warm up with a fan 

blowing air on it. Significant water and ice condensation on the reactor was observed which 

had to melt and evaporate before the reactor was reweighed and then loaded into the CV. The 

reactor was loaded and thermocouples to both monitor temperature as well as control the 

power going into the heaters were pressed against the reactor. Insulation was placed also (see 

Figure 18 earlier in this chapter for where insulation and heaters were placed). The CV was 

then sealed and pumped down to .02 MPa and refilled with N2 gas. The pump and refill process 
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was repeated a total of three times before a purge of N2 gas was continuously pushed through 

the CV at a rate of around 1 cubic foot per minute (CFM). This purge was to remove the 

oxygen from inside the CV in order to protect the reactor. The CV was allowed to purge 

overnight before the run was started. The runs had a ramp rate of 2°C/minute for the hot zone 

with the cold zone having the same ramp time (resulting in a lower ramp rate). The ramp was 

also paused for thirty minutes at a hot zone temperature of 400°C to partially saturate the fluid.  

The unloading procedure is similar to the loading procedure but in reverse order. After the 

heater circuits have been manually switched off, the purge gas is stopped, the CV pressure is 

checked to ensure it is not pressurized with respect to the lab, and the exhaust gas detectors 

are monitored for a minimum of ten minutes. While purge gas is flowing, the NH3 and H2 

detectors are less sensitive to the environment of the CV. Upon cooldown, the reactors leak 

(likely from thermal expansion mismatches in reactor components) and thus it must be 

verified that minimal concentrations of NH3 gas are present. If the NH3 detectors measure a 

concentration less than 75 ppm, the CV is considered safe to open. In all cases, full face 

respirators were used which had a safety factor of approximately ten (meaning 250 ppm in the 

environment would effectively reach the user at 25 ppm). The Occupational Safety and Health 

Administration has a general permissible exposure limit (PEL) of 50 ppm, which means with 

a respirator an individual can work safely in concentrations significantly highly than the 

detectors would be capable of measuring.189 However, the highest NH3 concentration 

measured after a growth run was 37 ppm. Once the CV is ready to be opened, a second NH3 

detector was used to verify the NH3 concentration while maintaining an open exhaust port. A 

separate exhaust line was then attached to the reactor valve and the reactor was vented to 

exhaust to guarantee no pressure remained in the reactor. The reactor was then weighed as a 
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precaution in case gas could not escape because of a clog. It is worth noting that during this 

research, at no point has the TZM reactor ever had a clog that prevented exhausting of the gas. 

The reactor was then transported to a stand where the top seal was broken by loosening the 

head assembly gland and the head assembly was removed with the entire reactor inside a 

fumehood. Pictures were taken of the inside of the head assembly and occasionally some of 

the powder was collected for analysis. The white powder was mildly soluble in water, but it 

often took significant time to fully dissolve. Pure NH4Cl powder appeared to dissolve much 

faster, suggesting that the Ga complexes present are also water soluble but dissolve much 

more slowly. All components were cleaned in an ultrasonic bath with water twice (3-5 minutes 

each time) after the powder was no longer visible. The components were then cleaned in 

isopropyl alcohol for 3-5 minutes and stored in their respective ovens. Seeds were cleaned in 

water, acetone, and then isopropyl alcohol for 3-5 minutes each. Contrary to what was seen in 

the Inconel 625 reactors, only white powder was ever observed in the TZM reactors. However, 

the stainless steel tubing leading to the pressure transducer and valves appeared to have FeCl3, 

as black and sometimes green deposition was rinsed out with water. The dark color would be 

replaced with orange to orange-yellow solutions as the solution sat, which is consistent with 

FeCl3.
168 

Characterization of the seeds was accomplished using several different methods, but the 

most technical methods include SIMS and XRD. SIMS uses an ion beam to mill away material 

of the sample, primarily an oxygen ion beam for positively charged species and a cesium ion 

beam for negatively charged species. The charged species are collected and the mass is 

measured using a mass spectrometer. With the use of substrates that are precisely ion 

implanted (such as have GaN implanted with Si to measure a relative sensitivity factor, the 
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ratio of a substrate ion such as 69Ga or 83GaN to the ion of interest), accurate concentrations 

of impurities can be measured. XRD is useful in measuring the crystal’s structural quality. 

Defects in the crystal alter the diffracted peaks by changing the shape and intensity of reflected 

x-rays. Misalignment in the diffractometer itself can also cause peak broadening. However, 

defects can also broaden the reflected peak by slightly altering when the Bragg conditions are 

satisfied. The Bragg condition is met when 𝑛𝜆 = 2𝑑 sin θ, where 𝑛 is the order of the 

reflection (an integer), 𝜆 is the wavelength of the x-rays, 𝑑 is the spacing of the planes 

responsible for the reflection, and 𝜃 is the angle between the plane and the detector. One can 

see that if there is a range of wavelengths used, then there will be a range of angles where a 

signal will be detected. This would be an example of instrument broadening. Modern XRD 

instruments are highly monochromatic and thus have little instrument broadening, but some 

may still be present. The reflected signal relies on the coherent orientation of atoms with 

respect to each other. Defects break this coherency, thus altering the reflection properties. The 

type of defect also determines which reflections are affected. For example, in GaN the (000𝑙) 

reflections are broadened by screw and mixed dislocations but not edge dislocations (screw 

dislocations are best thought of as a shift in atom positions such that if you trace radially 

around the dislocation line, one revolution will result in a displacement of one Burger’s vector, 

edge dislocations are an inserted or missing plane of atoms). Edge and mixed dislocations 

affect reflections where the first or second indices of the reflection are non-zero.190 However, 

there is a small but finite minimum width of any peak reflection, known as the Darwin 

width.191 The ideal XRD reflection is then a Darwin width peak which may be further 

broadened by instrument broadening. For reference, the Darwin width for a GaN (0002) ω–

scan is around 12 arcseconds.192 
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The facets were identified using the LEO stripes on the seeds (which have been specified 

to be in the a-plane) and then identifying the main m-plane which is perpendicular to both the 

LEO stripes and the c-plane. In all of the LEO seeds, this corresponded to one of the main 

edges of the seed. Optical micrographs of the seed facets were taken using an optical 

microscope and holding the seed with self-clamping tweezers such that the m-plane facet and 

the semipolar facet are collinear with the microscope line of sight. This creates a 2D image of 

the two planes as two intersecting lines such that imaging software can be used to measure the 

angle between the planes. The non-LEO seeds had no such reference and the seeds were 

assumed to facet into m-planes. The facets were then analyzed in the same way as the LEO 

seeds and the measured angles were consistent with semipolar planes of m-plane character 

and not planes of a-plane character. 

Single Crystal Growth in a TZM Reactor Using NH4Cl Mineralizer 

The methods outlined in the previous section led to multiple successful growth attempts 

with a growth temperature range of 650-750°C and a dissolution temperature range of 500-

700°C. All growths were performed under retrograde growth conditions. The baffle separating 

the two temperature zones had an open area of 30% while the baffles separating the cold zone 

from the head assembly had an open area of 10%. In general, the growth was transparent or 

translucent, although there was almost always some level of coloration ranging from a strong 

green color (similar to the work by Yoshida et al. with growth >700°C or the work of Mikawa 

et al. with a growth temperature range of 500-650°C), to a slight yellow or grayish color.128,138 

The quality of the growth is somewhat convoluted with the lack of data on an optimal design 

for the reactor itself. The fluid flow within the reactor is not well understood yet and thus the 

growth may be occurring at suboptimal positioning for temperature as well as mass flow.  
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Early seeds were grown by lateral epitaxial overgrowth (LEO) (also referred to as ELOG 

in Chapter 1) and were supplied by Mitsubishi Chemical Corporation (MCC) while the 

smooth seeds grown on later were supplied by Nanowin Corporation, with the exception of 

an m-plane seed supplied by MCC. All seeds were c-plane with the exception of the single m-

plane seed. NH4Cl powder was purchased from Alfa Aesar with a purity of 99.999% on a 

metals basis. The O concentration of the powder was not available, but it is assumed that H2O 

and O2 are present on the surface in high concentrations. PolyGaN was purchased from MCC 

and fine grains (<1 mm in diameter) were used. The furniture was made from 99.98% pure 

Mo rods from ESPI while the head assembly and base were made from TZM from Eagle 

Alloys Corporation. Two TZM reactor bodies were used, one was made by Plansee 

Corporation and one by Eagle Alloys Corporation. The valve (30-12HF4) and stainless steel 

tubing (60-HM4-2.75) were supplied by High Pressure Equipment Corporation and the 

pressure transducer (PX02S1-30K-G-10T) was supplied by Omegadyne Engineering 

Corporation. Each growth run designation is date encoded in the form of YYMMDDR, where 

Y is the year, M is the month, D, is the day, and R is the reactor. The date indicates the start 

of the growth run. 

160415I 

Growth run 160415I was the first highly successful growth run but had a rather high 

chemical driving force. While growth can be achieved with ΔT as low as 25°C (and likely 

even lower), here ΔT was 150°C with a growth temperature of 650°C and a dissolution 

temperature of 500°C. The NH4Cl content was 0.625 g and the growth time was 96 hours. The 

run was still part of an experimental series to determine where the optimal position for a seed 

was, and thus two seeds were placed in the hot zone, A1 and A2. A1 was further from the cold 
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zone than A2 and exhibited net growth while A2 was significantly etched. XRD ω-rocking 

curves indicate similar crystal quality between the seed and grown material, although it should 

be noted that the beams were not necessarily aligned in the same way with respect to the 

crystal (see Figure 24). Because the LEO stripes break the symmetry of the c-plane, this may 

partially be the reason why the peak shapes are different. The full width at half maximum 

(FWHM) of the peak before and after are comparable, around 110 arcseconds. Optical images 

are shown for both A1 and A2 in Figure 23. Note that A1 has a highly rough surface. The 

surface roughening is suspected to be from the high chemical driving force coupled with a 

low surface mobility due to the lower growth temperature. The seed grew approximately 96 

µm in the c-direction with a growth rate of 24 µm/day. Although this is a rather low growth 

rate, there is no reason to believe that this is optimal. In fact, it is assumed that by changing 

the seed position as well as the furniture in the reactor, growth rates more ten times greater 

can be achieved based on what has been accomplished by other groups. Another very 

discernable feature is the intense green coloration. This is similar to the coloration of the 

crystals grown by Yoshida et al. in 2014 and Mikawa et al. in 2015, which was attributed to 

oxygen related point defects.128,138 A1 also picked up 14.38 mg of material, although it is 

rather evident from the optical images that significant material was lost along the edges of the 

sample perpendicular to the c-direction.  
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Figure 23. Images of 160415I A1 a) before and b) after and 160415I c) before and d) 

after growth. Each small square division is 1 mm on a side. 

 

Figure 24. XRD of sample 160415I A1 before and after growth. Note that the peak 

does not significantly alter its FWHM, indicating that the quality of the seed is 

reproduced in the grown material. 
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160517I 

The growth configuration for 160517I was rather unusual compared to other growth runs. 

This growth was an effort to more dramatically enforce isothermal zones in the reactor. From 

Figure 18, one can see that there will be a temperature gradient along the walls of the reactor 

in the hot zone because the insulated region (outside the reactor) is in contact with the walls 

inside the reactor connected to the fluid in the hot zone. Thus, as these walls cool the fluid in 

contact with the walls will also cool. A second baffle (40% open area) was placed at the height 

of the top of the hot zone heaters and both 160517I A1 and A2 were placed within the hot 

zone. Again, A2 was closer to the cold zone. The NH4Cl mass was 0.638 g and the growth 

time was 96 hours. The temperature profile was as expected in this run with growth and 

dissolution temperatures of 650°C and 500°C but it was found that the power to the heaters 

was greater than what was expected based on two prior runs (for the top heater, runs with only 

the 30% open baffle had power outputs of 35%, this run had a power output of 38%). Although 

this is relatively circumstantial, it was also noted that the sum of the masses of both seeds 

along with the polyGaN deposition in the hot zone was constant before and after the run, 

which implies that the second baffle dramatically reduced mass transport between the hot and 

cold zone. The mass flow from the hot zone would heat the cold zone, thus reducing the power 

required by the cold zone heater to maintain the same temperature. In this case, the cold and 

hot temperatures were again 500°C and 650°C, respectively.  

The transparency of the GaN grown was actually highly improved, suggesting that starting 

with low impurities in the source GaN can yield high purity growth (see Figure 25). The 

growth rate on the large faces of the seed (the c-plane) is also highly non-uniform, ranging 

from 16-26 µm/day. SIMS data is show in  below, but an important note is that the O 



 

97 

 

concentration is around 4×1018 cm-3 (see ). Although this is not reaching the level of semi-

insulating GaN, it appears to be slightly lower than the O concentration of the GaN source 

material (~1019 cm-3). Again, this is circumstantial, but it certainly warrants investigation of 

using high purity source material with these reactors and mineralizers. Of similar interest is 

the very low concentration of Mo and Ti, indicating that even if very small reactor corrosion 

is present, the reactor constituents do not incorporate into the GaN and thus do not poison the 

grown material. It should be noted, however, these elements in solution may still have the 

potential to alter growth rate. Similar to the prior growth, this run also appears to mimic the 

seed quality somewhat. Runs with more precise XRD alignment were done later, but the beam 

did not have a highly specific alignment with the LEO stripes on this seed, which may account 

for the increase in FWHM after growth. However, it is more reasonable to state that seed 

quality is possibly maintained but this is not guaranteed. The seed gained 11.95 mg of material 

and, as seen in the prior seed, slight etching is noted perpendicular to the c-direction. Faceting 

of the edges was noted and optical micrographs were used to measure the angles. The five 

facet to m-plane angles measured were 29.5°, 48.4°, 31.8°, 47.5°, and 29.8 with respect to m-

plane and toward c-plane. These angles are consistent with the {101̅1} planes at 28° from c-

plane and {101̅2} planes at 46.8° from c-plane. 
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Figure 25. Optical images of 160517I A1 a) before growth and b) after growth as well 

as 160517I A2 c) before growth and d) after growth. Note the lack of coloration in the 

grown material on A1, although there is a slight gray tint, likely due to free carrier 

absorption. Panels c) and d) illustrate the etching that occurring, especially around the 

highly defective stripes from the LEO growth. 

 

Figure 26. XRD data for sample 160517I A1. Note that for both sides, the grown 

material has a larger FWHM, which may indicate defect formation. However, the spread 

in where the peaks are centered also indicates that the beam direction is not the same 

for the before and after growth measurements. Due to the LEO stripes present, different 
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beam directions may have significantly different FWHM and even somewhat different 

peak shapes. 

 

Figure 27. SIMS data for 160517I A1 after growth. C, O, and Cl (the data without 

symbols) was taken using a Ce gun. Al, Fe, Mo, Nb, and Ti (data with symbols and lines) 

was taken using an O gun. Note that the depths are estimates, as the seed surface wasn’t 

completely planar and no depth measurement was made to determine the exact etch 

depth. The Al concentration is somewhat anomalous, as no reactor component has Al as 

an alloying element or common impurity. However, the Nb gaskets were polished on an 

Al block, and thus the Al concentration may come from the polishing method and 

therefore the gaskets.  

160604I 

Run 160604I had a single seed present and had a growth temperature of 700°C and a 

dissolution temperature of 650°C with 0.638 g of NH4Cl. The growth time was 96 hours. The 

non-uniform growth on the surface became even more pronounced, with growth rates at the 

corners nearing a factor of 1.5 that of the growth rate at the center of the seed. However, one 
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can see from the optical images of the grown material that the transparency is largely 

maintained until the very edges of the seed. SIMS has not yet been performed, but one may 

speculate that the O concentration at the edges is significantly higher than at the center. If this 

were the case, then one could conclude that either the grown material is acting as an O getter 

or the higher chemical driving force enables higher O content. Until SIMS or some other 

elemental analysis is performed, this interpretation will remain speculative. However, it can 

be said that the seed edges also have a more significant green coloration than the seed center. 

This could also be from the material thickness difference, but in either case the coloration is 

far less noticeable than for 160415I A1.  

Another important feature of the seed is the formation of new facets. This is found most 

readily at the corners of the seed (see Figure 28d). The angles between the LEO stripes on the 

seed (which are parallel to the a-plane) and the new facets is 30°, indicating that the new facets 

have m-plane character. Optical measurements of the angles of the new planes to c-plane 

indicate {101̅2} planes, no {101̅1} planes were observed. This is in agreement to the quasi-

equilibrium crystal shapes determined by Bryant et al. which indicated that {101̅1} planes 

develop with transient {101̅𝑛} planes where 𝑛 > 1 , although that work was done under HVPE 

conditions rather than ammonothermal conditions.193 

Nucleation phenomena at the surfaces also appears to be highly important for subsequent 

growth. The use of a diamond scribe to mark the seed with A1 led to a deformed surface and 

what looks like possible faceting at the scribed area. Highly polished growth surfaces appeared 

to lend themselves to favorable growth while damaged or scratched surfaces (including the 

defective stripes) may lead to undesirable faceting at the surface (see Figure 28d). 
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Figure 28. Optical images of 160604I A1. Images are taken normal to the c-plane a) 

before and b) after growth. Images inclined to the c-plane c) before and d) after growth. 

Growth rates measured at positions 1-5 are as follows: 1-175 µm/day, 2-97 µm/day, 3-

136 µm/day, 4-148 µm/day, and 5-82 µm/day. Note the faceting at positions 1 and 3. 

 

Figure 29. XRD ω-scan of 160604I A1. The large shift between peaks may be from 

slight misalignment of the sample on the XRD mount or a rotation with respect to the 

LEO grown material. It is interesting to note the increased separation of the peaks after 

growth. The distinct peaks indicate multiple grains are present and are illuminated by 

the x-ray beam.  
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160614I 

Run 160614I had a single sample (A1) present during the run with a growth temperature 

of 750°C and a dissolution temperature of 697°C with 0.640 g of NH4Cl. The growth suffered 

multiple leaks during its 96 day growth run, but it was allowed to continue as no leak was 

catastrophic. The pressure did drop significantly, however, and the average pressure of the 

growth was around 90 MPa. The growth appeared to behave similarly to prior growths at 

700°C. Again, facets appear (see Figure 30d, position 1). The grown material appears to be 

more optically absorbing than prior growths as well. The fact that the absorption is broadband 

leading to a gray color (rather than green as seen in early growths) indicates that free carriers 

may be the cause. However, if a higher free carrier concentration is present then the reason 

for this is unknown. Several runs were attempted at these higher temperatures, but no run 

could be completed without leaks. All other runs attempted at this temperature profile suffered 

catastrophic leaks, venting all of the ammonia in the reactor within a few hours. The loss of 

material through the leak may be the cause for the degradation of the seed toward the right 

(see Figure 30). Post-run examination of the gasket in the hot zone indicated gas leaked 

through the hot zone, possibly due to softening of the gasket due to the high temperature.  

Again, seed faceting is present but the {101̅4} and {101̅5} planes are present in addition 

to the {101̅2} planes. The seeds also showed what appeared to be a second c-plane face that 

formed. The initial c-plane face also showed growth, but to a much smaller extent. It is 

possible that high chemical driving force at the edges initiated significant growth which 

propagated the semipolar facets, leading to the steps seen in Figure 30. It is interesting to note 

that the higher c-plane step surface is smoother than the growth in the sample center.  
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Figure 30. Optical images of 160614I A1 normal to the c-plane a) before and b) after 

growth and tilted from the c-plane c) before and d) after growth. Growth rates for 

positions 1-4 shown in d) are as follows: 1-48 µm/day, 2-32 µm/day, 3-145 µm/day, 4-96 

µm/day. Note the step in d) around the edges of the sample and the smoother surface of 

the thicker step compared to the rounded surface in the sample center. 

 

Figure 31. XRD data for 160614I A1 before and after growth. Note the large 

number of peaks that are present as seen in other samples after growth. 
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Figure 32. XRD data for (𝟐𝟎�̅�𝟏) of 160614I A1. Note that the FWHM is essentially 

the same, but again a new peak appears to be present closer to where the original peak 

was. 

160630I 

Growth 160630I had a single sample present (A1) which was not a LEO c-plane seed but 

was a c-plane seed from Nanowin. The growth and dissolution temperatures were 700°C and 

650°C, respectively. A smaller amount of NH4Cl was used, 0.205 g, and the growth time was 

reduced to 48 hours. Unfortunately, the seed diagonal length exceeded that of the inner 

diameter of the reactor. As the seed was being removed from the reactor after growth it became 

wedged due to the polyGaN present on the walls. Attempts to remove it resulted in fracture of 

the seed. The lower NH4Cl concentration appeared to have little effect on the growth rate 

normal to c-plane which indicated that mass transport of GaN was not the limiting factor for 

growth rate. Given the high polyGaN on the walls and the fact that it was not removed between 

each run, it seems entirely likely that the GaN on the walls removed a significant amount of 

GaN from the fluid.  
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The growth rates were measured at 57 µm/day at the center of the seed and 153 µm/day 

at the edges. The difference in thickness is clear from the optical images (see Figure 33). As 

seen with prior growths, there is little to no coloration near the center of the seed, but the edges 

have a yellowish color. This is indicative of possible C contamination, but it appears to be 

more likely that VGa-H complexes form, as discussed in The Ammonothermal Method in 

Chapter 1. The slight gray in the center of the seed is indicative of a relatively high free carrier 

concentration, although this was not measured. Facets of {101̅2} and {101̅1} planes were 

observed in this sample.  

The XRD data indicated that the seed quality slightly deteriorated through growth. The 

FWHM increased for both (0002) and (101̅1) peaks. However, the change appeared 

noticeable but not drastic.  

 

Figure 33. Optical images of 160630I A1 normal to the c-plane a) before and b) after 

growth and tilted with respect to the c-direction c) before and d) after growth. The seed 

fractured during removal from the reactor rather than before or during the run. 
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Figure 34. XRD of (𝟎𝟎𝟎𝟐) plane of 160630I A1. Due to the fracturing of the seed, the 

front and back side of the sample could not be distinguished. However, it can be seen 

that the red face before (at 18.72°) has essentially the same FWHM as both peaks after 

growth. The peak at 19.2° has two FWHM indicated because the fit was best for two 

Gaussian peaks centered at nearly the same coordinates with similar peak intensity but 

different FWHM. 

 

Figure 35. XRD of (𝟏𝟎�̅�𝟏) plane of 160630I A1. The significant increase in the 

FWHM may be due to deterioration of the crystal quality. 
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160707I 

Growth run 160707I was an exploratory run to determine the impact of chemical driving 

force on growth rate. The growth and dissolution temperatures were 700°C and 675°C, 

respectively, with 0.206 g of NH4Cl. The minimum growth rate measured with a micrometer 

was 99 µm/day and the maximum growth rate was 191 µm/day with a growth time of 48 

hours. Unfortunately, the sample suffered a similar fate to 160630I A1 and was broken during 

retrieval after growth. The seed was a high quality c-plane sample from Nanowin Corporation. 

As observed in earlier growths, a step was formed at the edge of the sample which appears 

smoother than the center of the sample. Also similar to the earlier growths was the slightly 

darkened edges, possibly from higher free carrier concentrations, with the center of the sample 

appearing rather clear. The yellow coloration appeared to be roughly the same as 160630I A1 

or perhaps slightly less pronounced. Again, faceting was present at the edges of the sample. 

As was the case in 160630I A1, only the {101̅2} planes were present.  

The crystal quality in the grown material appears to be rather high, although a secondary 

peak was present with a slightly larger FWHM than the initial peak. Although this doesn’t 

imply superior crystal quality to the initial seed, it is reasonable to deduce that seed quality 

can also be maintained at low chemical driving force. The change of the seed to grown 

material appears more favorable with the lower driving force, but such a conclusion would be 

hasty given this singular data point. 
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Figure 36. Optical images of 160707I A1 normal to the c-plane a) before and b) after 

growth and tilted from the c-direction c) before and d) after growth. Note the step 

formed in panel d, similar to prior growths. 

 

Figure 37. XRD data of (𝟎𝟎𝟎𝟐) peaks of 160707I A1. Note the peak after growth was 

best fit with two Gaussian peaks and thus has two FWHM associated with it. 
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Figure 38. XRD data for (𝟐𝟎�̅�𝟏) peak of 160707I A1. The exceptionally narrow 

peak is indicative of high quality material. 

160714I 

Growth run 160714I was similar to 160604I but had a different reactor body. Although 

not detected until after the run, the body for 160714I was significantly smaller than 160604I. 

Although in absolute terms, the diameter was only smaller by .01 inches, the baffle to inner 

diameter difference was only designed to be .03 inches. With such tight tolerances, the 

diameter difference appeared to dramatically reduce fluid flow between zones, resulting in a 

much smaller growth rate. The growth and dissolution temperatures were 700°C and 650°C 

with 0.640 g of NH4Cl and the run lasting 96 hours. Two seeds were placed in the growth 

zone, both at the same height (approximately .75 inches above the reactor bottom), one a c-

plane seed from Nanowin (A1) and one an m-plane seed from MCC (A2). 

Neither seed exhibited highly desirable growth. Both seeds exhibited significant green 

coloration and A1 was no longer specular. A1 was also somewhat absorbing, leading to a dark 

green coloration. The growth rates were also much smaller and the polyGaN deposition on 
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the walls was a much smaller mass than average leading to the conclusion of reduced mass 

transport between zones. Neither seed appeared to have significant edge growth as seen in the 

earlier growths. However, the seeds only grew by around 100-132 µm (25-33 µm/day) and 

thus perhaps the edge growth did not have enough material to be easily distinguished. The A2 

growth was very small, around 5-16 µm (1.25-4 µm/day). It was specular, unlike the growth 

on A1. Unfortunately due to the very thin growth, XRD of the growth is rather difficult 

because the substrate will also be probed. This doesn’t preclude any analysis using XRD, but 

it does require caution when making conclusions from the results. Possible faceting was 

observed on A1, but the roughness of the growth prevented any measurements on angle. 

 

Figure 39. Optical images of 160714I a) A1 before growth and b) A1 after growth as 

well as c) A2 before growth and d) A2 after growth. Note that the seeds were grown at 

the same position in the reactor and the growth on A1 (panel b) is much thicker than the 

growth on A2 (panel d). 
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General Trends in Growth 

The work presented in this chapter represents a preliminary study of growth and the impact 

of different environmental conditions as well as seed conditions that affect the growth. The 

results certainly warrant a larger and more in-depth study on parameters ranging from 

chemical driving force to absolute temperature to seed quality. It would be suspected that 

larger chemical driving force would increase the probability of defect generation, but certainly 

there is some limit where defects are not generated. Chemical driving force would be expected 

to be positively correlated with growth rate and thus high chemical driving force may be 

desirable. Although baffle design was not varied in this study, the fluid dynamics of the 

transport fluid can dramatically impact growth rate. It would be advisable then to also study 

the effect of baffle design on growth rate as well as the temperature stability of the growth 

and dissolution zones.  

Although preliminary in nature, this study can yield valuable conclusions for future work. 

High transparency, single crystal GaN has been demonstrated in a new reactor design with a 

novel reactor material, indicating that molybdenum and TZM can be used for ammonothermal 

growth without detrimental effects. Reasonable growth rates were achieved while little to no 

optimization of fluid flow in the system was attempted, suggesting that some optimization 

may dramatically increase growth rate. The origin of the non-uniformity of growth on the 

seeds is still not explained, but at least two possible conclusions exist. The proximity of the 

seed edges to the walls may have produced a temperature gradient across the seed, thus 

increasing the chemical driving force at the seed edges resulting in excess growth. 

Alternatively, the fluid passing over the seed must first encounter the edges and with a high 

attachment rate of GaN, much of the supersaturated GaN intermediate reacted at the edges, 
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leaving less to be deposited on the seed center. Faceting may also occur at the seed edges, 

leading to other planes that can preferentially grow out. The higher temperature at the walls 

explanation indicates that the uniformity problem is a reactor design issue. The faceting would 

indicate that the edge growth is actually not a problem, but instead is the evolution of the seed 

to the equilibrium crystal shape.  

Sample 
NH4Cl 

(g) 
Tgrowth (°C) Tdissolution (°C) 

Min. 

Growth 

Rate 

(µm/day) 

Max 

Growth 

Rate 

(µm/day) 

Wall 

growth 

(g) 

Growth 

time 

(days) 

160415I A1 0.625 650 500 24 24 0.14 4 

160517I A1 0.638 650 500 16 26 0.06 4 

160604I A1 0.638 700 650 82 175 0.50 4 

160614I A1 0.640 750 697 32 145 0.58 4 

160630I A1 0.205 700 650 57 153 0.49 2 

160707I A1 0.206 700 675 99 191 0.70 2 

160714I A1 0.640 700 650 25 33 0.09 4 

160714I A2 0.640 700 650 1.25 4 0.09 4 

Table 2. Summary of growth data for seeded growth of GaN. 

Samples 160630I A1, 160614I A1, and 160604I A1 all were larger seeds but 160630I A1 

exhibited reduced edge growth. Sample 160707I A1 also exhibited reduced edge growth while 

also having a smaller seed. All of the samples had comparable growth rates, (see Table 2) but 

the lower NH4Cl samples appeared to have better growth uniformity. This could be related to 

the reduced mineralizer content, but those samples also had a shorter growth time. A thermal 

gradient across the seed should make the edge growth become more pronounced or stay the 

same (at least proportional to the growth rate) as the mineralizer content is reduced, as more 

GaN in solution would either be limited by site attachment (meaning the supersaturation 

would not change by changing the mineralizer content) or by the amount of GaN present in 

solution (meaning that as mineralizer content decreases less GaN is in solution so the same 

amount of GaN precipitated would reduce the supersaturation more so). We see a significant 

contradiction, essentially the opposite trend. Suppose then, that faceting occurs at the edges 
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and attachment at the edges is preferred because less stable planes are formed. The better 

uniformity could be explained by the reduced growth time as the growth step would initiate 

at the edges and grow inward toward the center of the sample. If this is the case, we should 

see inclined planes on the outer edges of all of the samples. This is clear in most of the samples, 

as shown in Figure 40 and Figure 41. The reduced edge growth on the shorter growth runs 

then was not due to a thermal gradient, but rather the transition toward an equilibrium shape 

was not as advanced as in the longer growths. This is also supported by the presence of the 

less stable planes from the {101̅2}, {101̅4}, and {101̅5} families. This conclusion is rather 

interpretive, but more data with varying growth times should elicit a solution to the question. 

Such an experimental growth series should lead to one of two conclusions. Either the edge 

will continue to have significantly higher growth rates leading to a bowl-shaped sample, which 

would indicate that higher supersaturation at the edges is the cause, or the facets growing into 

the center of the sample will meet and form a single, flat face. After the flat face has formed, 

the seed growth will continue in a planar fashion. The formation of a planar growth face with 

time would indicate that the seed was instead simply forming an equilibrium shape. Bryant et 

al. found {101̅1} planes forming by HVPE but there was some mention of transient {101̅𝑛} 

planes, where 𝑛 > 1.193 Similarly, Mikawa et al. found {101̅1} planes when growing out an 

m-plane seed and made no mention of {101̅2} planes were mentioned. However, their growth 

was performed at slightly lower temperature (max of 650°C, although only a range of 500-

650°C was specified) and possibly for much longer (they specify a grow rate of several 

hundred micrometers per day with a crystal thickness of several millimeters).138 Perhaps at 

significantly longer growth times, the {101̅1} facets will emerge and become the dominant 

semipolar plane. It is interesting to note that {101̅4} and {101̅5} appeared in the higher 
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temperature growth. This may be an artifact of the pressure leaks that were observed during 

the run, causing etching or prohibiting the transition toward the less inclined planes. The 

{101̅4} and {101̅5} planes were observed on the high growth corner and on the dissolved 

edge.  
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Figure 40. Optical images of a) 160517I A1, b) 160604I A1, and c) 160614I A1. 

Arrows indicate where the faceting inclined between the m-plane and c-planes is 

occurring. 
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Figure 41. Optical micrographs of facets on a) 160517I A1, b) and c) 160604I A1, d) 

and e) 160614I A1. Note all semipolar planes observed have m-plane character. 

With respect to impurity incorporation, no real conclusion can be drawn yet. The variance 

in seed type as well as the lack of SIMS data precludes any useful quantitative conclusion. 

However, the lack of coloration is a highly encouraging result. The coloration on the new 
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facets forming may be a result of differing oxygen incorporation on different planes. It is 

worth noting that planar growth appears fairly transparent, while the faceted growth is either 

highly absorbing or greenish in color. Care should be taken with this analysis, however, as 

differences in thickness will alter absorption. Longer growths with polished samples surfaces 

would yield more reasonable absorption data than what would be attainable with the current 

samples. Part of the problem is the source polyGaN. The measured oxygen concentration was 

rather high, as measured by a previous researcher using SIMS (~1019 cm-3). Cleaner source 

material would eliminate this source of oxygen. The possibility also exists that the reactor 

walls themselves have some oxygen dissolved into the metal and the oxygen is leached out 

into the growth environment. With a high oxygen presence in the source, such a determination 

is not really possible.  

The TZM reactor still allows for the possibility of even higher growth temperatures and 

the lack of ammonothermal growth data makes this temperature regime an area of high 

interest. This work has been a preliminary step for high temperature growth and should be 

followed by more systematic and directed studies. The impact of chemical driving force and 

temperature on growth is all but unknown, while the demonstration of high quality growth has 

been at least somewhat satisfied. One could suspect that higher temperatures will lead to faster 

growth while maintaining high quality crystals, but until the understanding and a 

demonstration of such a feat is presented it will remain speculation.  

  



 

118 

 

REFERENCES 

1. Denbaars, S. P. et al. Development of gallium-nitride-based light-emitting diodes 

(LEDs) and laser diodes for energy-efficient lighting and displays. Acta Mater. 61, 

945–951 (2013). 

2. Dollen, P. Von, Pimputkar, S. & Speck, J. S. Let There Be Light — With Gallium 

Nitride : The 2014 Nobel Prize in Physics. Angew. Chem. Int. Ed. Engl. 53, 13978–

13980 (2014). 

3. Chowdhury, S., Swenson, B. L., Wong, M. H. & Mishra, U. K. Current status and 

scope of gallium nitride-based vertical transistors for high-power electronics 

application. Semicond. Sci. Technol. 074014 (2013). doi:10.1088/0268-

1242/28/7/074014 

4. Scott, M. J. et al. Merits of gallium nitride based power conversion. Semicond. Sci. 

Technol. 074013 (2013). doi:10.1088/0268-1242/28/7/074013 

5. Keller, S. et al. Influence of sapphire nitridation on properties of gallium nitride 

grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 68, 1525–1527 

(1996). 

6. Keller, S. et al. Growth of bulk InGaN films and quantum wells by atmospheric 

pressure metalorganic chemical vapour deposition. J. Cryst. Growth 170, 349–352 

(1997). 

7. Bulman, G. E. et al. Pulsed Operation Lasing in a Cleaved-Facet InGaN/GaN MQW 

SCH Laser Grown on 6H-SiC. Electron. Lett. 33, 1556–1557 (1997). 

8. Briot, O., Alexis, J. P., Tchounkeu, M. & Aulombard, R. L. Optimization of the 

MOVPE growth of GaN on sapphire. Mater. Sci. Eng. B 5107, 147–153 (1997). 

9. Nakamura, S. The Roles of Structural Imperfections in InGaN-Based Blue Light-

Emitting Diodes and Laser Diodes. Science (80-. ). 281, 956–961 (1998). 

10. Nakamura, S., Senoh, M. & Mukai, T. Highly P-Typed Mg-Doped GaN Films Grown 

with GaN Buffer Layers. Jpn. J. Appl. Phys. 30, L1708–L1711 (1991). 

11. Wu, X. H. et al. Nucleation layer evolution in metal-organic chemical vapor 

deposition grown GaN. Appl. Phys. Lett. 68, 1371 (1996). 

12. Amano, H., Akasaki, I., Hiramatsu, K., Koide, N. & Sawaki, N. Effects of the buffer 

layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate. Thin Solid 

Films 163, 415–420 (1988). 
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