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Abstract

Optimal Execution with Order Flow

Kyle Bechler

In this thesis we examine optimal execution models that take into account both

market microstructure impact and informational costs. Informational footprint is

related to order flow and is represented by the trader’s influence on the expected

order flow process, while microstructure influence is captured by instantaneous price

impact. Indeed, a key piece of information missing from many execution models in

the literature is the temporal summary of recent order flow which is known to have

an impact on the behavior of liquidity providers. Instead, execution and limit order

book models often consider only the limited information summarized by a snapshot of

the limit order book. Excluded then, are the important mesoscopic trends in market

order flow as well as the informational impact made when an executed order perturbs

the expected order flow process.

In the following chapters, we propose several continuous-time stochastic control

problems that balance between microstructure and informational costs. Incorporat-

ing the trade imbalance leads to the consideration of the current market state and

specifically whether one’s orders lean with or against the prevailing order flow. Sev-

eral objective functions are treated, as we account for both symmetric and asymetric
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execution costs that arise when trading under differing market conditions. We then

initiate statistical analysis on Nasdaq limit order book data to investigate the links

between market order flow, price impact and liquidity at the mesoscopic timescale.

We find that temporal measures of order flow play a key role in the price formation

process and show how these features can be incorporated into an execution model for

which closed-form solutions can be obtained.
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Chapter 1

Introduction

1.1 Background

More than half of the markets in today’s financial world are electronic in nature

and utilize some form of limit order book (LOB) mechanism to facilitate trading. The

speed, efficiency and transparency resulting from this market structure means that

market participants are provided real-time access to the full LOB, and with it an

extensive level of detail. This has contributed to the significant growth of automated

or algorithmic trading, which now accounts for the majority of executed orders in

many markets. Algorithms are developed via quantitative methods in order to satisfy

the particular objective of some market participant. Possible objectives include the

optimal liquidation of an asset while minimizing market impact, or providing liquidity
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to the market (market making) while controlling for various risks. Once deployed, an

algorithm incorporates a variety of real-time inputs from markets and executes orders

automatically, without direct human involvement.

In practice, the development of strategies and algorithms relies heavily on the

approach and corresponding assumptions in modeling market dynamics. The com-

plexity of today’s market micro-structure has led to a wide variety of approaches

with ideas from a number of disciplines including economics, statistics, mathematics

and physics. Countless contributions have been made to the literature that focus on

only a narrow slice of the overall LOB system. Such a limited scope is a necessary

concession resulting from the high dimensionality of the LOB, complex interactions

between many heterogeneous agents and interconnectedness of numerous exchanges

and other trading venues, and other factors.

Work from the economics literature including early work Foucault et al. [29],

Parlour et al. [47] and Easley et al. [25] tended to focus on the behavior of individual

agents making rational choices, i.e. utility maximization, thus presenting the LOB as a

type of sequential game. Not surprisingly, it is often difficult to recover many stylized

features of actual markets when following this convention. An alternative approach

from a math/physics perspective directly assigns stochastic dynamics to order flows

or prices providing a convenient structure from which to analyze the features of the

resulting system. The seminal work by Almgren and Chriss [5] for example originated
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the framework of diffusive mid-price models, and others including Cont et al. [18],

Alfonsi et al. [1] and Cartea et al. [17] have modeled price or order flow directly in

lieu of building from the ground up with rational individuals. This second approach,

which draws on a wealth of empirical studies into the statistical properties of price

and order flow data, is often helpful in reducing the state-space complexity of the

LOB and proves convenient for the purpose of designing algorithms.

Generally with a particular problem in view, one proposes a quantitative micro-

structure model with features such as price, order arrival or LOB shape governed

by stochastic processes, and then standard control techniques are utilized to solve

for optimal strategies. There are two main classes of problems. The first is optimal

liquidation, which is concerned with realizing the best value for the asset traded via

optimization with respect to the incurred trading costs which are highly dependent

on the method of execution. A traditional institutional investor with a large position

in some asset would be acutely interested in the liquidity profile, average volume and

price volatility of the asset over the course of multiple trading days. The second,

is the problem facing a liquidity provider. Market making firms providing liquidity

for a given asset are concerned with issues such as latency, and intricacies of order

flow on a very short time scale on the order of a millisecond or less. The majority of

quantitative academic work in algorithmic or high frequency trading are concerned

with some variation of one of these two problems. A notable third objective is the
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issue of market stability (see work by Kirilenko et al. [37] and Easley et al. [23]).

The present work fits within the optimal liquidation context, but also explores in

detail the assumptions and previous results from the literature related to the optimal

behavior of liquidity providers.

1.2 The Limit Order Book

Prior to the introduction of LOB markets financial transactions took place in

quote-driven environments in which a few designated market makers posted their

bid and ask levels, respectively those prices at which they were willing to buy or

sell. The market makers set the ask price higher than the bid price in exchange for

supplying liquidity to the market and therefore assuming the risk of an unwanted long

or short inventory position and the risk of adverse selection. Adverse selection has

traditionally been described as a market maker’s encounter with an informed trader,

one with better information about the fundamental value of the asset, but can also

be described more generally as the instance when the price moves against the market

maker following a trade. In a quote-driven market, traders are only able to trade

immediately at the posted bid/ask levels. The LOB market structure on the other

hand offers all market participants the ability to place buy and sell orders at any

price.
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Buy Orders Sell Orders

Price Volume Price Volume

49.99 200 50.01 130

49.98 220 50.02 240

49.97 190 50.03 230

49.96 140 50.04 180

49.95 170 50.05 150

49.94 180 50.06 200

Table 1.1: Hypothetical limit order book.

A limit order represents the interest to buy or sell a specific quantity of an asset

at a specific price. The LOB is defined as the collection of all active limit orders and

is discretized in terms of the tick size, typically 1 cent for US equities. The state of

the LOB changes throughout the trading day as participants place new limit orders,

cancel existing limit orders, or as market orders arrive and are matched to active

limit order(s) through execution. Table 1.1 shows a snapshot of the synthetic LOB

and Figure 1.1 shows the corresponding graphical representation.

While a limit order specifies the agent’s desired quantity and price, the timing of

the execution is left uncertain if it occurs at all. On the other hand, a market order
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Figure 1.1: Left: Graphical depiction of the limit order book. Right: A market sell order (yellow)
is matched against limit orders at the best bid levels.

represents the agent’s desire to buy or sell a certain quantity of the asset immediately.

Upon arrival of a buy (respectively, sell) order for O shares, the trade-matching

mechanism governing the LOB matches the order against the lowest (respectively,

highest) priced active limit orders. Figure 2 illustrates one such interaction between

a market sell order and the first O shares worth of active limit buy order(s).

For the right to guarantee immediate execution, the agent placing a market order,

referred to as liquidity taker, receives slightly worse than the mid-price, at least one

half of the bid-ask spread, depending on the volume of the order. The bid-ask spread

is the difference between the highest priced limit buy order and the lowest priced limit

sell order. Conversely, for supplying liquidity to the market, the agent placing the
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limit order, the liquidity provider, receives slightly better than the mid-price, which

in theory is compensation for taking on the associated adverse selection costs.

Beyond the idealized LOB framework presented above, various complicating nu-

ances exist depending on the trading venue. Many exchanges allow participants to

place fully or partially hidden orders, subject to certain rules varying by venue. This

hidden liquidity is not visible to other participants but can be executed against arriv-

ing market orders. Other examples include the method for establishing priority for

limit orders with the same price (eg price-time, pro-rata etc) and rebates, in which a

small fixed fee is earned or paid for liquidity providers or takers respectively upon an

execution. While each of these factors can have significant impact on trading strate-

gies and the profit/loss of market participants, it is not uncommon to ignore many of

these issues for the sake of mathematical tractability.

The LOB and related quantities will be defined more carefully in the empirical

study in Chapter 3. For the moment it suffices to understand the general framework

of the LOB mechanism and note that most problems on the topic are concerned with

solving for optimal placement of limit and market orders given a specified model and

objective.

7



1.3 Liquidity and Price Impact

The study of LOB dynamics is the study of trading frictions that are largely ig-

nored by classical mathematical finance models. Though market dynamics clearly

operate in discrete quantities, both in time (order arrivals, executions) and space

(LOB, tick sizes), it is common to assume that trading, prices or liquidity dynam-

ics are continuous. This approach often simplifies the mathematics and allows for

tractable strategies and solutions to be computed via stochastic calculus methods.

For a given asset, the amount of shares available for immediate purchase or sale

at a given price, is limited. The result is that trading a large volume of the asset

moves the price, usually in an unfavorable direction. The ease with which an asset

can be bought or sold is referred to as the liquidity of the asset.

In the LOB context, an asset is said to have a high level of liquidity if a relatively

large amount can be purchased or sold immediately (depth), the difference between

the best bid and best ask prices is small (spread), and one can expect to buy or sell

a large portion of the asset over time at a price not too much worse than the current

price (resiliency) (Kyle, [39]). Yet, even for the most liquid of assets, transacting

efficiently requires one to consider and model the asset’s liquidity dynamics.

There are several approaches in the math-finance literature to modeling liquidity

from the perspective of the execution trader. For a large class of stocks, the bid-ask

spread remains relatively constant (often at one tick) and is often assumed fixed in
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order to simplify the model (See Dayri and Rosenbaum [20]). The depth and resilience

of the LOB are typically captured through the model assumptions made related to

price impact. Price impact links the volume of an executed order to the resulting

change in price, and is often decomposed in the following categories:

Temporary Impact

Temporary or instantaneous price impact consists of the immediate effects of an

executed market order. This impact is called temporary because it is assumed that

the LOB will replenish quickly leaving the future price of the asset unchanged. Figure

1.1 highlights the consumption of limit buy orders that takes place upon arrival of a

large market sell order. Clearly the average price received per share decreases as the

order size increases, with the functional relationship dependent on the precise shape

of the LOB. It is common for execution models [5] [4] [31] [16] to assume a continuous

box shaped LOB (linear impact) which gives rise to the following transaction price

P̌t = Pt − καt,

where Pt is the fundamental price, αt is the order size and κ is a nonnegative constant.

Note that impact in α affects only the current order, and does not affect Pt. The

total revenue of the trade is αtP̌t, yielding an execution “cost” of g(αt) = αt(Pt −

P̌t) = κα2
t . This assumption is roughly consistent with empirical studies which have

concluded that g, is well approximated by g(α) = |α|1+γ, where γ ∈ [.2, .6], see [7],
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[41]. Therefore, g must be convex to encourage the splitting of large orders into

smaller pieces to be executed incrementally over time to reduce execution costs.

Permanent Impact

Permanent price impact on the other hand refers to the long term effects on the

asset price. The size and frequency of market order arrivals conveys information that

causes other traders to behave differently in the future. Of course, it is not possible to

precisely measure the long-term impact of an action as it would require a comparison

between a scenario that happened with one that did not. Studies focusing on the

impact of individual trades or metaorders1 report concave (e.g. the so-called “square

root law”) impact in the size of the order, see for example Lillo et al. [41], [45]. An

alternate approach approximates permanent impact on an aggregate basis by relating

trade imbalance, the difference between executed market buy and sell volume, with

the corresponding price change over a set time interval. Price and trade imbalance

often exhibit a linear relationship [13], [16]. Indeed, within the well known Almgren-

Chriss framework, permanent impact must in fact be assumed linear for the model to

be free of price manipulation2 [30]. For these reasons and for tractability it is common

for optimal execution models to incorporate linear permanent price impact.

1A large order executed incrementally over time
2Defined as a round trip trade, that is a series of trades with sum zero, with negative expected

costs.
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Transient Impact

Transient impact refers to price impact that decays over time. In contrast to the

above, transient impact evolves over time capturing elements of both temporary and

permanent impacts. Implicit in the temporary framework discussed above, is that

the LOB recovers instantly to its previous shape and subsequent transactions are

not affected. Transient impact relaxes the instant recovery assumption by directly

modeling the resilience of the limit order book. Linear transient impact was first

considered by Obizhaelva and Wang [46] with several later extensions; Alfonsi et al.

[3], Gatheral et al. [32] considered various decay kernels and Alfonsi et al. in [1]

allowed for general LOB shape functions.

To sum up, most models that address the “optimal execution of a large investor”

problem incorporate one or more of these price impacts. On the other side of the

trade is the problem of how best to supply liquidity to the market. Several recent

studies focus on the optimal order posting strategy for liquidity providers, including

Cartea et al. [17] and Guilbaud and Pham [34]. In general, HFT market makers

profit through the posting of buy and sell limit orders simultaneously and earning the

spread whilst avoiding adverse price movements. A market maker strategy then might

consider the depth (relative to the mid-price) or size of her limit order, the duration

until cancellation (assuming execution does not occur immediately), and might adapt

to the changing state of the LOB or the arriving market order activity. As market
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maker strategy determines the shape and behavior of the LOB, understanding key

factors that contribute to this strategy are crucial to properly model liquidity.

1.4 Information and Order Flows

It is well established in classic microstucture research [39], [25] that arriving order

flows3 convey information to other market participants. Indeed, Bouchaud et al.

[13] argue that endogenous changes in supply and demand, which are manifested

in order flows, are more influential in the price formation process than exogenous

information. Thus an understanding of how order flow is received and processed by

markets and consequently asset prices is a requirement for efficient execution. The

two base classes of trades are market orders and limit orders. Market orders indicate

actual transactions taking place and hence ultimately drive traders’ P&L. Due to their

intrinsic nature of “putting money on the table”, they carry the most information

and are typically viewed as influential by other participants. Limit orders are posted

by liquidity providers and serve as reference points in the price discovery process.

Several pathways have been proposed between order flow and liquidity/price move-

ment. First, one-sided market order flow (MOF) is typically associated with a mov-

ing market. Indeed, heavy market selling will intrinsically tend to depress prices,

mechanically by consuming the top queues of the LOB, and potentially by reveal-

3The cumulative volume of buy/sell market and/or limit orders
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ing new information about the fundamental value of the asset. As a result, extreme

MOF would increase adverse selection and tends to reduce liquidity provision by mar-

ket makers. Consequently, extreme MOF is expected to lead to scarce liquidity and

increased price impact. Consider the following from Easley et al. [27]:

“...market makers adjust the range at which they are willing to pro-
vide liquidity based on their estimates of the probability of being ad-
versely selected by informed traders. Easley, Lopez de Prado and OHara
[2012] show that, in high frequency markets, this probability can be ac-
curately approximated as a function of the absolute [market ] order im-
balance...suppose that we are interested in selling a large [position] in a
market that is imbalance towards sells. Because our order is leaning with
previous orders, it reinforces market makers fears that they are being ad-
versely selected, and that their current (long) inventory will be harder
to liquidate without incurring a loss. As a result, market makers will
further widen the range at which they are willing to provide liquidity,
increasing our orders market impact...Thus, order imbalance and market
maker behavior set the stage for understanding how orders fare in terms
of execution costs.”

Market maker strategies must incorporate expected order flows (specifically MOF)

and make adjustments in order to account for adverse selection costs or else risk lower

profits. A similar result is obtained by Cartea et al. [17], who solve the optimal order

placement problem for an HFT market maker. In response to rising adverse selection

costs that coincide with increasingly one-sided MOF, the optimal strategy for the

HFT market maker is to cancel any current orders and re-post deeper in the LOB.

Second, there are opinions that order flows summarize market sentiment and

changing information set. Consequently, market news are encoded in order flow and

the latter can be used to measure the influence of a given trade. For example, sudden
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“news surprises” might manifest itself in rapid reversal of MOF, which in turn tends

to depress liquidity as liquidity providers step back to reduce risk. This concept has

been the motivation for defining toxicity indices, namely Easley et al. [23],[24], [26].

Third, order flow may indicate manipulative behavior of other participants. For

example, the widely cited practice of “order fading” supposedly consists of rapid

posting and cancellation of limit orders, to create a mirage of market activity and

depth, in order to bait market orders and ultimately generate extra profits from round-

trip profits. Similar strategies can be employed to front-run slower traders if the agent

has speed advantages. The proliferation of latency arbitrage (see Kirilenko et al. [38])

suggests that these actions are quite profitable. In consequence, regular traders (and

market regulators) are urged to monitor order flows to detect such patterns and

manipulative actions.

To sum up, order flows can be used to estimate market trends (which would create

asymmetric price impact), to detect increased market risk (that increases volatility

or symmetric price impact), and to avoid manipulation (which implies that the LOB

snapshot is not necessarily indicative of true market state due to latency arbitrage).

All of this is crucially important to the execution trader who wishes to efficiently

liquidate or acquire many shares via execution of a metaorder. Rather than simply

assuming static liquidity or price impact function(s) described above, an execution

algorithm ought to consider the typical behavior of HFT market makers and the state
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of the liquidity provision process at the time of execution. How the trader’s executed

metaorder compares to, and assimilates with the existing MOF process appears to be

quite relevant to the liquidity and price impact trades will encounter.

1.5 Outline and Contributions

In Chapter 2, taken primarily from the recently submitted paper Optimal Exe-

cution with Dynamic Order Flow Imbalance [11], the above concepts of information

and order flows are bridged within a combined dynamic model. The basics of the

Almgren-Chriss setup are maintained, including continuous trading and instanta-

neous price impact that arises from market microstructure. However, also included is

a novel stochastic factor (Yt) for (expected) market order flow, which is similarly im-

pacted from executed trades. The transient impact on Y represents the informational

footprint of the trader and introduces a feedback loop into the problem. It allows the

trader to react to changing market conditions, in particular markets changing from

being buy-driven to ask-driven and vice versa. The model is used to examine the

dynamic problem of Optimal Execution Horizon that was introduced in a 1-period

version by Easley et al. [27]. Thus, in contrast to Almgren-Chriss and typical exe-

cution models, the execution horizon is endogenized, optimally chosen depending on

market liquidity.
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Intuitively, trading should slow down when informational costs are high, and speed

up when they are low. From that point of view, rather than a pure optimization

problem, optimal execution is about trading-off price impact and information leakage

against timing risk. Moreover, endogenizing execution horizon generates dynamic

execution strategies even if the underlying asset value is a martingale. This allows

for inherently adaptive trading in contrast to early models with deterministic strate-

gies (e.g. [2, 5, 8]) that consider only price impact. Some more recent extensions by

Gatheral and Schied [31] and Almgren and Lorenz [6, 43] do produce dynamic strate-

gies which are “aggressive-in-the-money”, accelerating when the price is rising. The

approach in Chapter 2 on the other hand adapts to the changing state of liquidity

and informational costs.

Chapter 3 then investigates several of the assumptions related to liquidity and

execution costs made in [27] and Chapter 2 through an empirical study on Nasdaq

data. Much of the recent literature on LOB dynamics operates in the extremely short

timescale (� 1 second), analyzing the predictive power available by conditioning on

the state of the LOB (e.g. Huang et al. [35], Donnelly [21], Cont et al. [18] and Lipton

et al. [42]. Indeed, part of what makes the analysis of LOBs so challenging are the

multiple timescales that apply, ranging from millisecond dynamics up to inter-day

trends which span days or weeks. The analysis in Chapter 3 focuses on the minutes

timescale at which optimal execution scheduling takes place. At this level, rather
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than the state of the LOB, order flows are the main driver in price formation. This

chapter aims, through statistical analysis, to understand the link between order flows

and liquidity, with a particular focus on periods of scarce liquidity.

Finally, Chapter 4 revisits the optimal execution problem with several of the em-

pirical results from Chapter 3 in mind. When the asset is a liquid stock, the model

in Chapter 2 can be refined so that the informational costs related to expected trade

imbalance (Yt) can be made more precise. Where costs are initially left general

and not directly mapped to the profit/loss of the trader, in Chapter 4 we explic-

itly include the asset price and solve the optimal control problem with the trader’s

wealth process as the objective function. Expected order flow enters the model in

two places: (1) Through an additional cost when competing for scarce liquidity, and

(2) In price dynamics, capturing the effect on the mid-price of limit order flow and

LOB resilience/fading.

Ultimately we find that limit order flow is a key element in the price formation

process. In contrast to the picture of a stationary LOB that replenishes following each

execution, we instead observe periods of strong resilience (limit additions) and other

periods characterized by little to no resistance in the LOB (rapid cancellations). It

is shown that limit order flow is strongly linked with the arriving market order flow.

Therefore, incorporating the expected trade imbalance Yt offers key insights into the

liquidity provision process yielding a tractable and more realistic execution model.
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Chapter 2

Optimal Execution with Expected

Trade Imbalance

The concept of optimal execution in financial markets is concerned with realiz-

ing the best value for the asset traded via optimization with respect to the incurred

trading costs. These costs are driven by two fundamental components: market mi-

crostructure frictions and informational asymmetries. Market microstructure implies

that market liquidity is finite and trades generate price impact. Informational costs

reflect the fact that trades are observed by other participants who will then adjust

their own strategies and views of the asset value and create adverse selection.

Specifically, trading in a LOB leaves a double footprint, both in space and in time.

In space, an executed sell order consumes the matching standing limit orders on the
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bid side. (In our framework since there is no fill risk all trades are assumed to be

market orders.) This shortens the respective queues on the bid side of the book and

hence can move the best-bid. This is the previously mentioned temporary price impact

represented by g(·). Temporally, the executed order is recorded by other participants

on the exchange message ticker affecting the observed order flow. The effect is both

direct (the immediate fact that a sell order of αt shares was executed), and indirect

(the fact that market participants adjust their statistical view of the order flow over

time). Thus, to the extent that market participants monitor the ticker (rather than

just observe the snapshots of the LOB), an order generates informational footprint.

There is a lot of anectodal evidence that many HFT algorithms indeed track the

time series of orders placed (for example to detect temporal trading patterns) and

hence will react to this footprint. This implies that information costs are at least as

important as instantaneous liquidity consumption.

Modelling order flow remains in its early stages. Indeed, while spatially the LOB

can be easily summarized as a collection of queues (modeled via say the depth function

[2]), the time series of the exchange ticker are much more complicated as market

participants process multiple streams of information. There are both executed trades

(i.e. trades triggered from market orders) and limit orders, which themselves can

be added, cancelled, or modified in other ways depending on the exchange. Orders

further carry volume, time stamp and possibly participant type (and limit orders can

19



be entered at any level of the LOB). These multi-dimensional data is moreover coupled

in nontrivial ways, with temporal links both within series (e.g. auto-correlation in the

inter-order durations) and across series (e.g. executed market orders tend to increase

the arrival rate of limit orders at the touch). See for example a recent model of Cartea

et al. [17] who fitted cross-exciting Hawkes processes to the basic order flow at the

best-bid and best-ask queues. See also [36] and Cartea and Jaimungal [16] which we

revisit in Chapter 4.

In the optimal liquidation literature, very few models consider costs related to tem-

poral order flows and the resulting informational costs. A notable exception is the

paper by Easley et al. [27], in which the optimal execution horizon is obtained by min-

imizing information leakage (the amount by which the trader perturbs the expected

market order flow process) subject to timing cost (see Section 2.3.3 for further discus-

sion). The current chapter aims to extend this model [27] to a dynamic, continuous-

time framework comparable to popular approaches such as Almgren-Chriss, while

capturing both microstructure frictions and informational costs.

2.1 The Optimal Execution Problem

The problem in view is liquidation of a position of size x0 = x. We assume a

continuous-time setup, with trading taking place continuously and via infinitesimal

amounts. Namely, the trader trades ẋtdt shares at time t, so that his inventory xt
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follows the dynamics

dxt = ẋt dt. (2.1)

Execution ends at the random horizon

T0 := inf{t ≥ 0 : xt = 0},

whereupon inventory is exhausted. Throughout, time is supposed to be in traded-

volume units.

Beyond the inventory xt, the main state variable of our model is the expected trade

imbalance Yt. The trade imbalance captures the intrinsic fluctuations among supply

and demand for the security realized by the unequal amounts of buyer- and seller-

initiated trades. On the short time-scale (intra-day to several days) it is empirically

quasi-stationary, in the sense that the observed volume is several orders of magnitude

larger than the deviations in net imbalance, cf. Section 2.4.1. Moreover it is highly

noisy and appears to be mean-reverting to zero. Therefore, we choose to model (Yt)

in terms of a mean-zero stationary process.

Let Y 0 represent the flow imbalance in the absence of the trader. As a start-

ing point we take (Y 0
t ) to be an Ornstein-Uhlenbeck process with mean-reversion

parameter β,

dY 0
t = −βY 0

t dt+ σ dWt. (2.2)
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The mean-reversion strength β controls the time-scale of the memory in flow imbal-

ance, while the volatility σ controls the size of fluctuations in flow imbalance. Since

imbalance is intuitively in the range [−1, 1] (representing markets with 100% buyers,

and 100% sellers respectively), the fraction σ2/(2β), which is the stationary variance

of Y 0, should be on the order of σ2/(2β) ∈ [0.01, 0.2].

The execution program of the trader introduces a downward pressure on the ex-

pected trade imbalance process as a result of his selling. The information leaked

by the trader’s action creates a drift in the realized order imbalance Yt, pushing it

below Y 0
t . By displacing other orders, the trader impacts expectations regarding fu-

ture order flows and generates adverse selection. A more precise description of this

mechanism using (more realistic) discrete-time setup and discrete trades is presented

in Section 2.4.3. We postulate that

dYt = −βYtdt+ φ(ẋt)dt+ σdWt, (2.3)

where φ(·) captures the information leakage. Observe that

Yt = Y 0
t +

∫ t

0

eβ(s−t)φ(ẋs) ds, (2.4)

so the execution program generates an exponentially decaying impact on Y 0. We

assume that φ : R+ → R+ is non-decreasing with φ(0) = 0. The three main cases we

consider are: φ(ẋt) ≡ 0 corresponding to zero informational footprint; φ(ẋt) = φt cor-

responding to deterministic (but non-zero) impact; and proportional (linear) impact
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φ(ẋt) = ηẋt. Linear impact is computationally convenient, though not necessarily

the most realistic reflection of how a trader’s activity might influence expectations

regarding order flow. Impact that depends on the current value of the flow imbalance

is investigated in Section 2.4.3.

Remark 1. Below we restrict our attention to pure selling strategies, so that xt is non-

increasing. As such all our cost functionals are only defined for positive selling rates.

Depending on the strength of information leakage, it is possible that the constraint

−ẋt ≥ 0 is binding, i.e. execution is suspended until market conditions improve.

It is beyond the scope of this paper to extend the framework to two-sided trading

algorithms that raise the issue of potential market manipulation [3, 32].

The information leakage is “abstract” in the sense that it does not generate trading

costs per se. However, in line with [27] we assume that there are adverse selection

costs associated with trading in an unbalanced market. Here we assume that this

cost is symmetric in Yt (but note that agent’s actions induce only one-sided effects of

Yt); for tractability we take it quadratic. Whether the sign of Yt should more heavily

influence costs is a valid question that we revisit in Chapter 4.

In addition, we carry through two usual costs from the literature. The Almgren-

Chriss model [5], detailed in Lemma 2.2.1 below, serves as a baseline strategy in our

analysis. This classical model is characterized by two execution costs which we also

adopt: instantaneous impact g(ẋt) of trading at rate ẋt, and inventory cost λ(xt) for
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carrying a position of xt at t. In this chapter we make the assumption (as in [5])

that the asset price is a martingale and therefore does not enter the proceedings.

Permanent market impact is modelled via the informational effect on Yt rather than

on the asset price directly.

The continuous-time execution problem is to minimize the sum of the correspond-

ing expected execution costs

inf
(xt)∈X (x)

Ex,Y
[∫ T0

0

(
g(ẋs) + κY 2

s + λ(xs)
)
ds

]
, (2.5)

over admissible execution strategies (xt) ∈ X (x). The above expectation is condi-

tional on an initial value Y0 = Y and initial inventory x which induce the measure

Px,Y . The horizon T0 is part of the solution, so that the optimization is formally tak-

ing place on the whole future s ∈ [0,∞). We assume for the duration that g(ẋ) = ẋ2.

This first term in (2.5) incentivizes the trader to slow down in order to reduce his

immediate liquidity costs while the next two terms of the cost functional are such that

under certain market conditions, it may be optimal to accelerate trading in order to

exit the market sooner.

Let Ft = σ(Ys : s ≤ t) denote the filtration generated by Y . Admissible strategies

(xt) ∈ X (x) consist of (Ft)-progressively measurable, absolutely continuous trajec-

tories t 7→ xt, such that x0 = x, limt→∞ xt = 0 and
∫∞

0
ẋ2
s ds < ∞ P-a.s. We also

require the following assumptions on the model ingredients:

• Instantaneous impact function g : R+ 7→ R+ is strictly convex;
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• The informational cost parameter κ ≥ 0;

• Inventory risk λ : R+ 7→ R+ is non-decreasing in x.

The cost functional in (2.5) is consistent with other approaches taken in the lit-

erature. The assumption that g(ẋ) is convex matches the empirical fact that market

participants like to divide a large “parent” order into smaller orders in order to re-

duce trading costs. In LOBs, g(·) represents the depth of the LOB on the ask-side.

If this depth is constant, the instantaneous trading cost is quadratic g(ẋ) = ẋ2 (by

rescaling κ and λ we assume without loss of generality that the leading coefficient is

1). This assumption also appears in [5, 15, 31] among others. Because our primary

focus is on informational costs, we assume for the moment that there are no other

transient/permanent impacts on the asset value Pt and further posit that strategies

are independent of asset dynamics. In Section 2.4.2 we return to this issue and discuss

extensions that allow for positive correlation between asset price dynamics (Pt) and

order flow (Yt).

Our second cost term κY 2
t is motivated primarily by the model presented in [27]

and captures the cost of information leakage. The main premise is that liquidity

costs (e.g. likelihood of adverse selection) are higher in markets with unbalanced

flow. Unlike [27], our model incorporates stochasticity and mean reversion in the flow

imbalance process (Yt), meaning that the impact modelled with this term is transient.
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Other models incorporating transient impact have focused on LOB resilience [2, 32].

Also see [4] for another example of stochastic liquidity costs.

The last term λ(xt) in (2.5) represents timing risk, penalizing the trader for leaving

his position exposed to adverse price movements. Several risk terms have been applied

within the execution literature. The seminal work by Almgren and Chriss, which

optimizes over a mean-variance cost functional, reduces to a calculus of variations

problem and the risk term λ(x) = cx2. Gatheral and Schied [31] investigated a time-

weighted value-at-risk measure proportional to λ(x) = cx. In the context of timing

risk, λ(x) = c generates costs that are proportional to execution time which is a

non-trivial modification once the horizon T0 is not fixed.

Remark 2. Other authors refer to order imbalance for a different object, namely “spa-

tial” order imbalance. Namely, motivated by queueing notation, they mean the net

difference between standing limit orders at the best-bid and best-ask. As shown by

[42] and [21], order imbalance is predictive of the next price move (i.e. correlated with

the probability of the next price to be an up-tick or a down-tick) and is closely mon-

itored by most HFT algorithms. In this chapter we focus on the temporal order flow

and its associated imbalance that was conjectured by Easley et al. [23, 24, 27] to be

related to market toxicity. While the LOB depth is related to the history of submitted

limit orders, the relationship is highly complicated (due to shifting mid-price, hidden

orders, etc.). Consequently, our trade imbalance is not meant to be tied directly to
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the LOB depth or any immediate LOB properties, but rather provide a temporal sum-

mary of recent orders submitted. Further, we make the important distinction that

process (Yt) is the expected trade imbalance, that is, the trade imbalance that mar-

ket participants are expecting. This quantity is closely related to the observed trade

imbalance that summarizes recent order flows, but the exact relationship between the

two is difficult to pinpoint. Section 2.4.1 discuss further.

2.1.1 HJB Formulation

To minimize (2.5) we adopt the standard stochastic control approach, utilizing the

dynamic programming principle and Hamilton-Jacobi-Bellman (HJB) PDE. Within

this framework strategies are defined by their rate of selling, αt := −ẋt and the class

of admissible strategies A(x) consists of all nonnegative (Ft)-progressively measurable

processes (αt)0≤t≤T0 for which

xαt :=

(
x−

∫ t

0

αs ds

)
+

, 0 ≤ t,

belongs to X (x). The value function of our problem can be expressed as

v(x, Y ) = inf
(αt)∈A(x)

Ex,Y
[∫ T0

0

(
g(αs) + κY 2

s + λ(xαs )
)
ds

]
. (2.6)

If it exists, we define the corresponding optimal strategy as α∗(x, Y ). For each path of

underlying Y 0
t , α∗ induces the realized execution horizon T0(x, Y ) = inf{t : xα

∗
t = 0}

which is a random variable taking values in [0,∞).
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One key point of interest is the realized execution horizon that results from the

optimal dynamic strategy, which can only be obtained by solving (2.6). To this

end, we assume that v is sufficiently smooth, and apply the dynamic programming

principle which says that

t 7→ v(xαt , Yt) +

∫ t

0

(
α2
s + κY 2

s + λ(xαs )
)
ds

ought to be a submartingale for all α and a martingale when α is optimal. Then,

an application of Itô’s formula suggests that the value function v(x, Y ) will satisfy a

Hamilton-Jacobi-Bellman equation of the form

0 =
1

2
σ2vY Y − βY vY + κY 2 + λ(x) + inf

α≥0
{g(α)− αvx − φ(α)vY }, (2.7)

with the boundary condition v(0, Y ) = 0 for all Y . We observe that (2.7) is a nonlinear

parabolic PDE in (x, Y ) for which the corresponding theory (e.g. regarding existence

of classical solutions) is rather limited.

When instantaneous price impact cost is quadratic g(α) = α2 (assumed for the

remainder) and information leakage is linear φ(α) = ηα, the candidate optimizer in

feedback form is

α∗(x, Y ) =
vx + ηvY

2
. (2.8)

Substituting this feedback control into the PDE (2.7) we have

0 =
1

2
σ2vY Y − βY vY + κY 2 + λ(x)−

(
vx + ηvY

2

)2

. (2.9)
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Due to the state dependence of the class of admissible strategiesA(x), the problem

(2.6) is a finite-fuel control problem. As a result, there does not appear to be a

tractable closed form solution which satisfies the zero boundary condition along x =

0. In Section 2.5 we illustrate a relatively straightforward method for solving (2.9)

numerically via a finite difference scheme.

To understand the feedback strategy in (2.8), we pause to consider the derivatives

vx and vY . As we will see, vx is always positive but vY can be either positive or

negative. Consequently, the candidate in (2.8) may fail to be non-negative.

Lemma 2.1.1. The map x 7→ v(x, Y ) is strictly increasing for any Y .

Proof. Fix x < x′ = x+ε for a strictly positive ε and consider an (ε-optimal) strategy

αε for v(x′, Y ). Let Tx := inf{t : x′t = ε} be the random period to sell x shares using

αε. Then by absolute continuity of t 7→ x′t, Tx < T0(x′, Y ). Moreover, α′(x, Y ) :=

αεt(x
′, Y )1{t≤Tx} is an admissible strategy for the initial conditions (x, Y ) since it

liquidates exactly x′ − ε = x shares. Using the fact that α′ is sub-optimal for v(x, Y )

and that the second and third terms in (2.5) are strictly positive almost surely, we

find v(x, Y ) ≤ v(x′, Y ;α′) < v(x′, Y ).

In (2.9), the horizon is indefinite and ultimate liquidation is only modelled through

the boundary condition. Thus, understanding the realized execution horizon T0(x, Y )

is only possible implicitly. Moreover, the nonlinearities in (2.9) make analysis in-

tractable. To achieve tractability we consider an approximate two-stage procedure.
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Thus, we first fix a horizon T by imposing the constraint T0 = T . We then solve

the resulting fixed-horizon problem to find the best strategy α∗(T, x, Y ) and value

function v(T, x, Y ). In the second step, we optimize over T , to find the statically

optimal horizon T ∗(x, Y ). Finally, we build the semi-dynamic strategy α̃(xt, Yt) =

α∗(T ∗(xt, Yt), xt, Yt). Thus, α̃ recomputes T ∗ as the state variables (xt, Yt) evolve and

uses the corresponding static trading rate. This approach is analogous to the receding-

horizon setup in nonlinear control [48]. Indeed, the initial use of α∗(T ∗(x, Y ), x, Y )

at t = 0 corresponds to model predictive control and α̃(xt, Yt) then continuously rolls

the initial condition because of the stochastic fluctuations encountered. The above

plan is implemented in Sections 2.2 and 2.3 respectively. In the latter section we also

compare the execution trajectories and resulting costs from the various strategies.

2.2 Linear Quadratic Setup on Finite Horizon

Fix T < ∞. We consider the analogue of (2.6) on [0, T ]. To avoid confusion we

let u denote the value function when defined on the fixed horizon:

u(T, x, Y ) = inf
(αt)∈A(T,x)

Ex,Y
[∫ T

0

α2
s + κY 2

s + λ(xαs ) ds

]
. (2.10)

For expository purposes, we use the time-to-maturity parametrization for u so that

the first argument T represents time until the deadline. Strategies on [0, T ] are defined

in similar fashion to those in Section 2.1 but with a constraint xT = 0 at the terminal
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time T . Forced liquidation by T is achieved by leveling an infinite penalty if not

completed, leading to a singular initial condition of the form

lim
T↓0

u(T, x, Y ) =


0 if x = 0

+∞ if x 6= 0.

(2.11)

To obtain explicit solutions to (2.10), the next section treats the case in which

φ is independent of α over a fixed horizon. In other words, the trader may or may

not impact the order flow process, but any impact can be modelled in a deterministic

fashion. Section 2.2.2 then addresses the proportional footprint φ(α) = ηα case, still

over fixed time horizon. It will be shown that the strategies obtained in Sections

2.2.1-2.2.2 are not too suboptimal compared to the indefinite-horizon model laid out

in Section 2.1.

2.2.1 Myopic Execution Strategies

In classical optimal execution models [2], [5] and [8], optimal execution rates are

deterministic, i.e. αt is pre-determined. In this scenario, informational costs would

also be deterministic. Therefore, we examine the case where φ(α) is independent of

α (but possibly depends on time t). So (Yt) takes on the dynamics

dYt = −βYtdt− φtdt+ σdWt.
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Under this assumption, we can separate the two terms in (2.5) since the dynamics of

(Yt) are not directly affected by the trader; the performance criterion simplifies to

inf
(xt)∈X (x)

(∫ T

0

ẋ2
s + λ(xs)ds

)
+

∫ T

0

κEY [Y 2
s ]1{xs>0}ds. (2.12)

Because (Yt) is independent of the control α, optimal strategies are defined only by the

first term in (2.12). Consequently, the resulting (αt) is independent of Yt and hence

t 7→ x∗t is deterministic. Thus, strategies based on (2.12) are myopic in the sense

that they entirely ignore the potential “footprint” left by the trader’s actions, instead

focusing solely on instantaneous cost and inventory risks. The following Lemma

provides the solution to (2.12) for popular choices of inventory risk.

Lemma 2.2.1. Consider the calculus-of-variations problem of finding

I(T, x) := inf
(xt)

∫ T

0

(ẋ2
t + λ(xt)) dt

where the minimization is over all absolutely continuous curves t 7→ xt with x0 = x,

xT = 0 and under the constraint that xt is non-increasing. Then the optimal “myopic”
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strategies (with αt ≡ −ẋt) are

xML
t =

x(T − t)
T

;

αML
t =

x

T
;

IML(T, x) =
x2

T
,


if λ(x) = 0; (2.13)



xMH
t =

x sinh(
√
c(T − t))

sinh(
√
cT )

;

αMH
t =

√
cx cosh(

√
c(T − t))

sinh(
√
cT )

;

IMH(T, x) =
√
cx2 coth(

√
cT ),


if λ(x) = cx2; (2.14)



xMQ
t =

(
ct2

4
− t

(
cT̂

4
+
x

T̂

)
+ x

)
1{t<T̂};

αMQ
t =

(
cT̂

4
+
x

T̂
− ct

2

)
1{t<T̂};

IMQ(T, x) =

(
−c

2T̂ 3

48
+
cT̂x

2
+
x2

T̂

)
;

where T̂ := min(T,
2
√
x√
c

),



if λ(x) = cx. (2.15)

Proof. See Section 2.5

The superscriptsML,MQ,MH respectively stand for the Myopic Linear, Quadratic

and Hyperbolic models. The first case ML yields linear selling and the TWAP strat-

egy, or if time is parametrized in volume time, the classic VWAP trading strategy.

The second strategy xMH
t and its corresponding rate αMH

t represents exponential sell-

ing, and is the optimal strategy presented in the original Almgren-Chriss model [5].
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This risk term results from the trader’s effort to minimize the variance of liquidation

cost. From the perspective of an inventory risk measure, one natural alternative is

λ(xs) = cxs, which has the attractive property of being proportional to value-at-risk

and results in a selling strategy xMQ
t that is quadratic in t. Yet as explained for a

similar problem in [31], buying might result with position size small relative to T .

Imposing the constraint that xMQ
t is decreasing then leads to the modified solution

(2.15) which in the case T̂ < T causes liquidation to end prior to the terminal time

T .

Time  t
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Figure 2.1: Optimal trajectories from Lemma 2.2.1. Figure drawn for initial inventory x = 3,

horizon T = 3, and c = 2. This leads to T̂ = 2
√
x√
c

= 2.45 in the quadratic scenario xMQ of (2.15).

Figure 2.1 details the three execution curves described in Lemma 2.2.1 for x = 3

and T = 3. Compared to the VWAP strategy xML, the non-zero inventory risk terms

in strategies xMH and xMQ lead to higher rates of selling initially. The execution

34



rate in xMH is proportional to x, cf. (2.14) and liquidation occurs exactly at T . In

contrast, as xMQ
t becomes small, the linear risk term cxMQ

t becomes more punitive

and it may be optimal to end liquidation prior to time T . Figure 2.1 shows inventory

xMQ
t reaching 0 at time T̂ =

√
6 as defined in (2.15).

We now turn our attention to the expected execution costs which arise from the

trade imbalance. Fixing (α∗t ), we can view the corresponding information impact

φ(α∗t ) also as a deterministic function of t, allowing direct evaluation of the second

term in (2.12) using the explicitly available Gaussian distribution of Yt.

Lemma 2.2.2. Given a deterministic, time-dependent flow impact φ(αt) = φt, and

Y0 = y, Yt has the second moment

Ey
[
Y 2
t

]
= µ2

t + σ2
t , (2.16)

where 
µt = ye−βt −

∫ t

0

e−β(t−s)φs ds,

σ2
t =

σ2

2β
(1− e−2βt).

(2.17)

Proof. To solve the SDE (2.3), we start with

f(Yt, t) = Yte
βt

which after applying Itô’s formula gives

df(Yt, t) = βYte
βt + σeβtdYt

= eβtφtdt+ σeβtdWt.
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Then integrating each side from 0 to t and dividing through by Yt on each side we

have

Yt = ye−βt +

∫ t

0

eβsφsds+ e−βt
∫ t

0

σeβsdWs

So Yt is clearly Gaussian with mean and variance as given in (2.17).

Putting everything together we obtain the expected total cost for the family of

myopic execution strategies in Proposition 2.2.3. We reiterate that while realized

costs instantaneously depend on the stochastic process (Yt), strategies in this section

are purely deterministic and do not adapt to (Yt). The solutions below are labeled

according to the form of λ(x); while formally the two terms in (2.12) are decoupled, it

is of course logical to match the resulting solution I of the instantaneous price-impact

part with the corresponding expectation of Ey[
∫ T0

0
Y 2
s ds], which is the convention we

follow in Proposition 2.2.3.

Proposition 2.2.3. Suppose that φt(α) = φt. The corresponding value function u is

given by

uM(T, x, Y ) = I(T, x) +O(T̂ , x, Y ), (2.18)
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where I is defined in (2.13)-(2.15) and O = κ

∫ T̂

0

(µ2
t + σ2

t ) dt (with T̂ , µt and σ2
t

from Lemma 2.2.2) is

O0(T, x, Y ) =
κy2

2β

(
1− e−2βT

)
+
κσ2

4β2

(
2βT + e−2βT − 1

)
if φt ≡ 0; (2.19)

OML(T, x, Y ) = O0(T, x, Y ) +
κηxy

β2T

(
2e−βT − 1− e−2βT

)
(2.20)

+
κη2x2

2β3T 2

(
2βT + 4e−βT − e−2βT − 3

)
if φt = ηαML

t

Closed form expressions are also available for OMQ and OMH , see Section 2.5.

Thus, the overall cost of liquidation has two components: the I(T, x) term that

depends only on (T, x), and the informational footprint term O(T0, x, Y ) that also

depends on y. Recall that informational costs accrue only up to T0; in the linear and

hyperbolic cases we always have T0 ≡ T , but in the quadratic case liquidation may be

completed early, T0 = T̂ < T , see Figure 2.1. In terms of x, O is constant if φt = 0,

linear if φt = ηαML, and quadratic otherwise. As a function of y, O is quadratic

thanks to the linear dynamics of (Yt) and quadratic informational cost. Financially,

the y2 term represents higher costs due to trading in an unbalanced market, while the

y-term adjusts to the fact that selling in a market dominated by buyers is favorable

to competing with other sellers for scarce liquidity. The following Corollary shows

that the “best” level of y is positive (or 0 if φt = 0). Intuitively, it is best to begin

trading in an environment with positive order flow so that the trader’s selling activity

pushes the order imbalance towards 0 and reduces informational costs.
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Corollary 2.2.4. Suppose that φt(α) = φt ≥ 0. Then the flow imbalance that mini-

mizes expected execution cost is non-negative, arg minY {u(T, x, Y )} ≥ 0 for any T, x.

Proof. As already discussed, uM(T, x, Y ) is quadratic in y and the coefficient of y2 is

κ
2β

(
1− e−2βT

)
. By inspection it is positive. The dependence on y comes from the O

terms that are of the form

O(T, x, Y ) = κ

∫ T

0

(Y e−βt − At)2 + σ2
t dt

where At ≥ 0 (strictly positive as soon as φt > 0 on an interval of positive measure,

cf. (2.42)). It follows that the coefficient of Y 2 in uM(T, x, Y ) is κ
∫ T

0
e−2βtdt > 0 and

of Y is −
∫ T

0
2κe−βtAtdt ≤ 0. Thus, setting ∂Y u

M(T, x, Y ) = 0 and solving for Y

yields a non-negative result.

2.2.2 Dynamic Execution Strategies

We now return to the problem in (2.10), letting φ(αt) = ηαt. The optimal dynamic

strategy is adapted to the expected trade imbalance process (Yt) and the trader’s rate

of selling directly influences (Yt). To avoid confusion we will denote dynamic strategies

and expected costs by αDt and uD, respectively. The HJB PDE for uD(T, x, Y ) is

uDT =
1

2
σ2uDY Y − βY uDY + κY 2 + λ(x) + inf

α≥0

{
g(α)− αuDx − ηαuDY

}
, (2.21)

with uD(0, x, Y ) = +∞ unless x = 0. Note that (2.21) is identical to (2.6) but for

the time derivative on the left hand side of the equation which is introduced due
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to the time-dependence arising from the constrained horizon T . Additionally, with

the fixed horizon T , there is no boundary condition in x, meaning it is possible that

trading could continue beyond the point at which inventory first reaches 0. Assuming

g(α) = α2, λ(x) = cx2, and inserting the feedback control as in (2.9) yields a semi-

linear, parabolic PDE

uDT =
1

2
σ2uDY Y − βY uDY + κY 2 + cx2 −

(
uDx + ηuDY

2

)2

. (2.22)

with initial condition (2.11). To obtain (2.22), it is necessary to let α be unconstrained

and allowed to become negative. This allows us to find the following candidate

solution by exploiting the linear-quadratic structure. The motivation comes from uM

in Proposition 2.2.3 where we find a similar result: quadratic in x and Y with an xY

term that adds additional costs when Y < 0.

Proposition 2.2.5. The solution of (2.22) has the form

uDH(T, x, Y ) = x2A(T ) + y2B(T ) + xY C(T ) + xD(T ) + Y E(T ) + F (T ), (2.23)
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where D(T ) = E(T ) ≡ 0, A,B,C, F solve the matrix Riccati ordinary differential

equations (ODEs) 

A′(T ) = −A2 − ηAC − η2

4
C2 + c

B′(T ) = −η2B2 −B(ηC + 2β) + κ− 1
4
C2

C ′(T ) = −η
2
C2 − C(η2B + A+ β)− 2ηAB

F ′(T ) = σ2B,

(2.24)

and we have the following initial conditions
lim
T↓0

A(T ) = +∞

B(0) = C(0) = F (0) = 0.

(2.25)

The optimal rate of liquidation is

αDHt (T − t, xt, Yt) =
xt(2A(T − t) + ηC(T − t)) + Yt(C(T − t) + 2ηB(T − t))

2
.

(2.26)

Proof. See Section 2.5.

We reiterate that in (2.4.2) A,B,C, F are functions of time remaining and that

we have simplified the notation by omitting the time argument (i.e. A′ = A′(T ), etc.)

on the right side of (2.4.2). Close to the deadline T , the impact from impacting Y

disappears, and (2.22) converges to the myopic linear case of (2.13). This can be
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observed by formally linearizing the Riccati system (2.4.2) in the regime T − t = ε

and using the initial conditions (4.11). We obtain the following expansions in ε:

A(ε) = 1
ε

+O(ε)

B(ε) = κε+O(ε2);

C(ε) = −ηκε+O(ε2);

F (ε) = σ2κε2

2
+O(ε3).

(2.27)

Inserting into (2.26) gives the short term trading rate αDH(ε, xt, Yt) = xt
ε

+O(ε). This

heuristically confirms that the strategy (2.26) is admissible which can also be observed

in Figure 2.4 below: as t → T , the dynamic trading rate stabilizes, resembling a

VWAP strategy.

Remark 3. It is also possible to set up and solve linear quadratic problems for other

functional forms of inventory risk λ(x). In the constant case λ(x) = c the Riccati

system is almost the same as (2.4.2) (again E(T ) = D(T ) ≡ 0) except that the c

term moves to the fourth line: F ′DL(T ) = σ2B(T ) + c. In the linear case λ(x) = cx,

the resulting Riccati system is
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A′(T ) = −A2 − ηAC − η2

4
C2

B′(T ) = −η2B2 −B(ηC + 2β) + κ− 1
4
C2

C ′(T ) = −η
2
C2 − C(η2B + A+ β)− 2ηAB

D′(T ) = c− A(D + ηE)− ηC
2

(ηE +D)

E ′(T ) = −βE − ηB(D + ηE)− ηC
2

(ηE +D)

F ′(T ) = σ2B − 1
4
(ηE +D)2,

with initial conditions as in (4.11) and D(0) = E(0) = 0. However, dynamically

satisfying the constraint x ≥ 0 is not tractable (cf. T̂ in (2.13)) and we found that the

resulting unconstrained strategies tend to lead to wild buying-and-selling. Notably,

inventory xt often becomes negative in which case the inventory risk term loses its

meaning.

The equations in (2.4.2) can be dealt with using a software package such as R. It is

however necessary to replace the singular initial condition (2.11) with the condition

lim
T↓0

uD(T, Y, x) =


0 if x = 0

M if x 6= 0

(2.28)

for a constant M large, essentially allowing for a non-zero position at time T which

must then be liquidated in a single order at some additional cost. This is equivalent
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to introducing a boundary layer [0, ε] and solving on T ∈ [ε,∞] whereupon M = 1/ε

is the right choice based on (2.27).

The optimal trading rate αD in (2.26) is linear in both xt and Yt. The former

feature is similar to the hyperbolic situation in (2.14) where αMH
t is also linear in xt.

We next illustrate how the dynamic strategy αDt compares to its myopic counterpart

αMt . With fixed terminal time T , the incentive for the trader to speed up or slow down

under strategy αDt arises from the trader’s desire for more balanced order flow. Note

that there is no incentive to accelerate one’s trading in order to exit the market prior

to time T since costs from Y accrue until T . For positive trade imbalance, trading

more quickly in the present results in lower execution costs in the future because (Yt)

will be closer to 0 as a result of his activity. Likewise, if imbalance is negative, it is

better to reduce trading speed so as not to pull (Yt) further from 0. For negative Y

and large enough T (or large enough κ, β), αDt may become negative (i.e. it may be

optimal to begin buying), however this happens only under extreme parameters.

Figure 2.2 illustrates the results of Proposition 2.2.5 for a simulated path of (Y 0
t )

comparing the myopic αMH versus the adaptive αDH . As can be observed, both

strategies have a broadly similar shape, with αD “fluctuating” around αMH . We also

observe that αD is less aggressive initially, starting out slower and then speeding up

(relative to αMH) after t > 1.5.
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Figure 2.2: Trading rates αDHt and αMH
t for a sample simulated path of (Yt) shown in the

bottom panel. The figure is drawn for parameter values T = 3, κ = 10, σ = .14, β = .05, η = .05,
λ(x) = 0.1x2, and initial condition x0 = 3, Y0 = 0.

2.3 Optimizing Execution Horizon

We now move to the second step of the approximate solution scheme and remove

the fixed horizon constraint. Given u(T, x, Y ), define

T ∗ := arg min
T

u(T, x, Y ).

The next Lemma shows that T ∗ is finite in all the cases considered so far.

Lemma 2.3.1. For any fixed x, there exists T̄ such that ∂Tu(T, x, Y ) > 0 for all

T > T̄ and all Y .
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Proof. Recall that u = I + O, cf. (2.18). As T → ∞, the variational problem

(2.12) for I becomes independent of T . By inspection, limT→∞ IML(T, x) = 0 and

limT→∞ IMH(T, x) =
√
cx2. In the quadratic case, for T large enough, T̂ = 2

√
x√
c

so

that limT→∞ IMQ(T, x) = 4
3
x3/2
√
c for some function of the initial inventory. In con-

trast, O(T, x, Y ) =
∫ T

0
µ2
t + σ2

t dt grows at least linearly in T since limt→∞ σ
2
t = σ2

2β
.

Also, the first term is non-negative and it follows that ∂TO(T, x, Y ) ≥ σ2

2β
asymptoti-

cally as T →∞ and for any y. Hence, ∂Tu > 0 for all T large enough.

Figure 2.3 illustrates Lemma 2.3.1 for the dynamic hyperbolic strategy with value

function uDH . We observe that uDH(T, x, Y ) appears to be convex in T with a unique

global minimum T ∗(x, Y ). Moreover, T ∗(x, Y ) is largest for Y ' 0 and smallest for

negative y. This matches the intuition that trading is slowest in balanced markets

where informational costs are large, and fastest in sell-driven markets where further

information leakage is minimal.

Given initial (x, Y ) and corresponding T ∗(x, Y ), let αMt (T ∗, x, Y ) (and similarly

αDt (T ∗, x, Y )) be the resulting strategy over the fixed horizon [0, T ∗). This provides

a static or open-loop optimal execution strategy, since T ∗ is fixed and not adjusted

as order flow Yt changes. We can also construct a “dynamic” strategy by continually

recomputing T ∗(xt, Yt) using the latest datum (xt, Yt). We denote the latter as

α̃Mt (x, Y ) := αM(T ∗(xt, yt), xt, yt)
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Figure 2.3: Expected execution cost uDH(T, x, Y ) as a function of T for different values of trade
imbalance Y . The dashed line indicate the value of T achieving the minimum. Figure drawn for

β = .05, σ = .14, η = .05, κ = 10, λ(x) = 0.1x2 and inventory x = 3.

with associated value function ũM . The corresponding α̃D(x, Y ) and ũD are defined in

similar fashion. The approach of “rolling” the horizon T ∗ as the underlying stochastic

state changes is known as receding horizon control or model predictive control, see

e.g. [48].

Remark 4. Recomputing T ∗ can be done at any frequency. Namely, given a (stochas-

tic) set 0 = t0 < t1 < . . ., one can construct the strategy α(T(t), xt, Yt) where

T(t) := T ∗(xtk , Ytk) and tk = max{ti : ti < t}. For example, one can take tk = inf{t :

xt ≤ (K − k)x/K}, giving K rebalancing periods, during each of which 1/K of total

inventory is liquidated.

Before moving forward we pause briefly to summarize the various strategies that

have been defined. The fully dynamic strategy which solves the original indefinite-

46



horizon control problem (2.7) in Section 2.1 is denoted α∗(x, Y ). In Section 2.2.1 we

defined a family of myopic strategies on a fixed horizon, generally denoted αM(T, x, Y )

and specific cases addressed in Lemma 2.2.3. Continually optimizing T ∗ then yields

the receding horizon strategy α̃M(x, Y ). In Section 2.2.2 we introduced the dynamic

strategy αD(T, x, Y ), which adapts to changing flow imbalance over a fixed horizon,

as well as the corresponding receding α̃D(x, Y ).

We proceed to compare execution cost statistics across the described strategies.

For easier interpretation we consider the case of zero inventory penalization, λ(x) = c

independent of x, so that the benchmark strategy (without informational costs) is

VWAP, i.e. constant trading rate. The precise parameters were: timing risk λ(x) =

c = .1 (i.e. linear timing costs), initial inventory and initial trade imbalance x = 3

and y = 0 respectively, η = .075, κ = 10, β = .05 and σ = .14. Against the original

strategy α∗(x, Y ), we also compare the adaptive α̃D and α̃ML. Both of these adjust

the execution horizon by optimizing T in the fixed-horizon solution. Practically, this

was achieved by discretizing in time (∆t = .01) and recomputing T ∗(xt, Yt) at each

time step, see Remark 4. Recall that αML
t = xt/T

∗(t). To understand the frequency

of above “rebalancing”, we also show results for the strategy αML
t (T ∗(2), x, Y ) which

recomputes the horizon midway through the liquidation process, when xt = x
2
. The

corresponding path of xt is therefore piecewise linear with two pieces, see Figure 2.4.

This is a convenient compromise in the VWAP setting and nicely illustrates the
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advantage gained when the trader is allowed to adjust the execution horizon. Finally,

to understand the importance of adaptively adjusting T ∗, we also compare to the

static αDL(T ∗, x, Y ) and αML(T ∗, x, Y ) = x/T ∗(x, Y ).

Table 3.1 shows some summary statistics about the distribution of realized costs

J(α) :=
∫ T0

0
(α2

s + κY 2
s + c) ds. The results were produced with 2000 simulated paths

of (Y 0
t ). The actual realized trade imbalance paths for each strategy reflect the as-

sumption that φ(αt) = ηαt represents the true form of information leakage. Beyond

the average expected costs u(x, Y ) := Ex,Y [J(α)], we also report the standard devi-

ation SD and quantiles q· (at the 5% and 95% level) of J(α) which are important

for risk-management perspective. Lastly, we also report the average realized horizon

E[T0]. Of course for non-adaptive strategies, T0 ≡ T ∗(x, Y ) is constant. Compar-

ing each α̃ to its respective fixed horizon counterpart demonstrates the importance of

utilizing “adaptive” execution horizon. Similarly, comparing respective myopic to dy-

namic strategies shows that the modelling of deterministic information leakage in the

former is not too suboptimal compared to the fully dynamic proportional information

leakage strategy of the latter. The cost improvements achieved through optimizing

the horizon tend to dominate those obtained through adopting a dynamic strategy in

lieu of a myopic strategy.

Of particular interest is that the closed form solution computed for uML and

resulting strategy α̃ML
t form a reasonable approximation for the difficult indefinite
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Optimal Execution Strategy

v ũD ũML uML
(2) uD uML

E[J(α)] 4.257 4.264 4.317 4.411 4.483 4.547

SD(J(α)) 1.50 1.45 1.39 1.49 1.77 1.84

q.05(J(α)) 2.70 2.76 2.83 2.96 3.11 3.12

q.95(J(α)) 7.33 7.28 7.10 7.50 8.19 8.42

E[T0] 3.87 3.70 3.48 3.44 3.43 3.43

Table 2.1: Statistics for six execution strategies including average realized cost J(α), standard
deviation, .05− and .95−quantiles of realized costs as well as average realized execution horizon.

Left-to-right the strategies are: dynamic (in Y ) with indefinite horizon (v), dynamic with adaptive
horizon (ũD), myopic with adaptive horizon (ũML), myopic with two-step adaptive horizon (uML

(2) ),

dynamic with fixed horizon (uD) and myopic with fixed horizon (uML).

horizon setup in (2.6) - (2.9). The cost improvement of the fully dynamic α∗ over

VWAP strategy αML is approximately 6.8%. This appears somewhat modest, but

note that the latter strategy is applied to the horizon [0, T ∗], which is the statically

optimal horizon computed at t = 0 with the value function uML.

Figure 2.4 illustrates the various strategies for a sample simulated trade imbalance

path (Y 0
t ). The one-sided order flow in this particular simulation causes the adaptive

horizon strategies to accelerate trading and shorten the horizon relative to the fixed

horizon strategies. However, as Table 3.1 shows, on average E[T0] actually tends to

be longer when using adaptive execution horizon.
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2.3.1 Comparative Statics

Focusing on a single strategy, α̃DLt , we briefly discuss how adjusting the values

for parameters c, η, and κ affect the trading rate and realized horizon. Increasing c

corresponds to lower tolerance for timing risk and intuitively leads to a shorter realized

horizon and an increase in trading rate across all values of Y . Choices for κ and η

depend respectively on the trader’s assessment of the added cost of transacting when
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order flow is unbalanced and exactly how susceptible one is to revealing information

to other participants. Increasing κ raises sensitivity to the trade imbalance which

leads to an increase in trading speed and shortened execution horizon, particularly

when (Y 2
t ) moves away from 0. At the other extreme, setting κ = 0 leads to the

strategies addressed in Lemma 2.2.1 with zero informational cost. The effects of

increasing η depend on the market state, increasing the trading rate when order

flow tilts towards buy orders and slowing when order flow is balanced or sell orders

dominate. Specifically, an increase in η means a stronger trade impact on the order

flow process, and thus it is beneficial in a buy market to tolerate somewhat higher

instantaneous costs because the trader can more efficiently capture the savings that

result from more balanced order flow in the future (and vice-versa in a sell-tilted

market). Figure 2.5 illustrates these comparative statics for α̃DL in terms of κ and ν.

Note that while theoretically αDL from (2.26) could be negative, in all our plots αDL

remains far from zero and well-behaved.

2.3.2 Realized Execution Horizon

We now explore some features of the realized execution horizon T0(x, Y ) when

following the dynamic strategy α̃Dt (xt, Yt). The left panel of Figure 2.6 highlights

the distribution of T0(x, Y ) for different initial market states. We observe that T0

tends to be longest in a balanced market. Indeed, in that case the trader pays the
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most attention on minimizing his footprint and instantaneous execution costs, and

therefore trades slowly. With positive imbalance Yt > 0, he is incentivized to trade

at a more rapid pace in order to bring the market into a more balanced state. On the

other hand, when a market is dominated by sell orders Yt < 0, the trader finds himself

competing for liquidity and trading occurs at an even faster pace. The asymmetric

effect of these effects creates a skew even with a symmetric informational cost κy2.

This phenomenon is further shown in the right panel of Figure 2.6 that shows a

scatterplot of T0 against terminal YT0 . It is also clear that the issue is not only

whether order flow is balanced versus unbalanced, rather the side of the trade is very

pertinent to the optimal strategy and realized horizon. Generally, imbalanced order

flow results in higher trading costs and a shorter horizon, but clearly as one would
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expect, trading against the prevailing order flow (selling when order flow is dominated

by buy orders) is preferable.

We remark that with T fixed, execution rate decreases with Yt in hopes that

the order flow process will revert to a more balanced state and the cost of liquidity

will decline in the future. However, allowing the horizon to be adjusted brings a

new incentive for accelerating execution in order to exit the market altogether and

stop information leakage. This is a phenomenon seen especially in times of panic or

capitulation when minimizing the footprint is less important than finding liquidity,

even at greater cost.

We also observe a strong correlation between realized execution cost and realized

execution horizon. Unbalanced order flow results in higher costs from the Y 2
t term.

In addition, as lopsided order flow causes trading to accelerate, the trader also incurs

higher costs from the instantaneous cost term α2
t . So costs tend to be lower for longer

realized execution horizon. Figure 2.7 provides another perspective on this feature

by highlighting several specific inventory trajectories and the corresponding realized

order flow paths. It also shows that the spread in realized horizon T0 is significant

and can be up to 50% of the static T ∗.
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Figure 2.6: Left: Distribution of realized execution horizon T0 following strategy α̃DL for different
values of initial flow imbalance Y0. Statistics corresponding to Y0 = 0 are given in Table 3.1. Right:

Realized execution horizon T0 against final trade imbalance YT0
when initial imbalance Y0 = 0.

2.3.3 Static Information Leakage

One of the motivations for the present analysis was the work of Easley et al. [27]

(ELO), who considered a related static optimal execution horizon model. Through

the lens of our setup, [27] treated the case where informational costs are measured

only through YT rather than through the integral term in (2.5). Specifically, ELO

equated informational footprint to the absolute value of the terminal flow imbalance

|YT |. Also, ELO (implicitly) assumed a VWAP execution strategy on [0, T ] which is

equivalent to taking zero inventory risk λ(x) = 0 and instantaneous impact
∫ T

0
ẋ2
s ds

and translates to the myopic strategy αML of constant trading rate. Finally, timing

risk was modelled directly as Λ(T ) = c
√
T , motivated by the same structural form
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Highlighted are three trajectories resulting from different realized trade imbalance (Yt) paths.

Bottom: Corresponding realizations of trade imbalance t 7→ Yt.

for volatility of PT . The overall problem in [27] was therefore

min
T≥0

{
E[|Y α

T |] + c
√
T
}
, αt = x/T. (2.29)

Our framework allows treatment of (2.29) in a dynamic setup, i.e. beyond the myopic

strategies and beyond a static optimization to obtain T ∗(x, Y ). The associated HJB

equation for (2.29) is

uT =
1

2
σ2uY Y − βyuY + inf

α≥0
{α2 − αux − φ(α)uY }, (2.30)
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with initial condition

lim
T↓0

u(T, x, Y ) =


|Y | if x = 0

+∞ if x 6= 0.

(2.31)

The singular initial condition (2.31) and α2 cost term (2.30) suggest the VWAP bench-

mark strategy, which was assumed in [27]. The possibility of directly incorporating

a timing cost of the form Λ(T ) can be easily handled in more generality within (2.5)

since the latter term makes no difference to the fixed-horizon problems in Sections

2.2.1-2.2 and hence only shows up in the second-step optimization over T . Based on

numerical experiments, replacing running Y -costs with a terminal cost ∝ Y 2
T0

, tends to

slow the optimal trading strategy in sell dominated markets which allows the mean

reversion in the order flow process to kick in and lower the terminal cost. In the

presence of positive order flow, the change in trading rate can be in either direction

depending on φ(α) and the trade-off between instantaneous costs and informational

costs.

2.4 Calibration and Extensions

To implement the proposed execution strategies, the trader must continuously

measure the expected trade imbalance state Yt. Moreover, they need to be able to

calibrate the parameters of Yt. This requirement is different from typical execution
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strategies that operate in “open-loop” settings, i.e. without any immediate input of

market data. Of course, most empirical trading is “closed-loop” and dynamically

responds to market messages. In this section we briefly discuss such calibration and

translation of market information into model inputs.

2.4.1 Empirical Order Flow

To connect the modeled Yt to market data, we begin by considering the executed

orders, which from the flow point of view can be summarized as a sequence O1, O2, . . . ,

where Oi is the signed market order volume (positive for buys and negative for sells)

for the security in question. We assume that trading is in volume time, so there is

no separate time-stamp component. A raw order flow would then be the cumulative

sum
∑

iOi. Assuming that the participants focus on recent trades (i.e. market mem-

ory is limited) leads to consideration of moving averages of Oi. By analogy to the

discussed Ornstein-Uhlenbeck dynamics we therefore introduce the following expo-

nentially weighted moving average (EWMA) trade imbalance process (TIMAi) that

is defined recursively via

TIMAi+1 = e−β|Oi|TIMAi + (1− e−β|Oi|) sign(Oi), (2.32)

where the memory parameter β is a proxy for the time-scale of market participants

persistency of beliefs about order flow. Intuitively, if all trades were of unit volume,

we would have TIMAi+1 = e−βTIMAi + (1 − e−β) sign(Oi); treating a single trade
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of |Oi| as that many unit-volume trades leads to (3.10). We suggest that β = a/Vdaily

where Vdaily is the average daily volume and a ∈ [10, 100] is the intra-day mesoscopic

time-scale of order flow. By construction, Oi takes values in [−1, 1], with TIMAi = 0

representing a balanced market, and positive and negative values of TIMAi repre-

senting a market tilted towards buying and selling respectively. Figure 2.8 shows a

typical daily path of TIMAi for two different values of β. To draw the figure we

considered all executed Nasdaq ITCH trades between 9:40am and 3:55pm on a fixed

trading day and initialized TIMA0 = 0 in the beginning (note that if one fully adheres

to the concept of moving averages, TIMA0 should include flow from the previous day,

but this is rather problematic to properly implement). The value of β controls the

volatility of TIMAi.
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Figure 2.8: The EWMA trade imbalance metric for Teva Pharmaceutical (ticker: TEVA) for a
single day 5/3/2011. The data includes executed orders from Nasdaq, BATS and Direct Edge

exchanges which accounted for 2, 497, 623 of the 8, 059, 668 total traded shares on the day. We also
show the VPIN-like metric that used V = 25, 000 and n = 20 in (2.33) and (2.34) respectively.
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An alternative way to define empirical trade imbalance is based on bucketing.

This approach is more in line with a discrete model, such as the one in ELO [27] and

indexes flow by equally-sized volume slices rather than by individual trades. Namely,

consider (executed) volume slices of size V = V B
k +V S

k where (V B
k ) and (V S

k ) represent

the buy and sell volume respectively for the k-th slice. The bucket trade imbalance

T̃ Ik is

T̃ Ik :=
V B
k − V S

k

V
= 2V B

k − 1. (2.33)

Compared to (3.10), we have the link V ' 1/β to achieve same time-scale for

(TIMAk) and (T̃ Ik).

The defined TIMAi and T̃ Ik are directly observed, and one could attempt to use

them as the basis for the expected flow process (Yt) used in the previous sections.

According to [23, 24, 27, 26], informational costs arise from order flow toxicity which is

in turn tied to the participants’ beliefs about probability of adverse selection. Hence,

translating past information contained in TI into Y requires making a judgement on

how such beliefs about future order flows are formed. Indeed it is well known that

signed market order flow exhibit positive autocorrelation and long memory [13], [12],

[49]. Therefore it naturally follows that TI and Yt would be very closely related.

It is also commonly accepted that certain trades are influential or informative

while others have little to no impact on the market. With this in mind, it follows

that a trade may have little influence on a market maker’s expected flow imbalance

59



even if the associated trade volume Oi was large. Thus, the private information

leaked to the market by a trade is the product of numerous factors beyond trade size:

spacing of successive orders, prevailing market state, LOB shape, etc. Consequently,

the exact relation between (TI) and (Yt) remains open. Further questions about the

most relevant time scale or how the recent history of observed order imbalance might

influence the expected future trade imbalance are investigated in Chapter 3. Another

related problem is calibrating the functional form of the information leakage function

φ(α). While in our example we worked with a linear φ(α) = α, a more realistic

specification would probably require a convex relationship to trading rate (and possi-

bly zero impact for α small). Nonlinear information leakage is easily accommodated

through the use of myopic strategies of Section 2.2.1 which are agnostic about φ.

Remark 5. In [26], ELO contend that order flow toxicity is linked to the level of

“informed” trading and can be approximated via the following VPIN metric based

on (2.33),

VPINk =
1

n

k−1∑
i=k−n

|T̃ I i|, (2.34)

where n, chosen along with bucket size V represents the window relevant for per-

sistency of order flow. Thus, VPIN is a moving average of observed values of T̃ Ik

for n latest volume slices. According to ELO, VPIN is a good approximation to the

market-makers’ expectations of the current imbalance VPINk ≈ E|T̃ Ik| and hence

can be used as a proxy for Yt in (2.29). In other words, the traders should act to
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minimize their impact on VPIN, which is the expected absolute trade imbalance.

Because VPIN is directly based on observed traded volumes, this also allows an ex-

plicit definition of trader’s informational impact, see (2.37) below. ELO suggest to

take V = Vdaily/50 and n = 50 which makes VPIN a daily moving average of flow

imbalance. This seems rather long and in Figure 2.8 we make n smaller to focus

on intra-day scale. More recently, concerns about VPIN’s usefulness as a predictive

indicator have surfaced, for example see Anderson and Bondarenko [9], [10] and ELO

[26].

2.4.2 Correlated Price Process

An important aspect that is missing from the presented models is price risk. With

a fixed horizon, the assumption that the unperturbed asset price is a martingale makes

realized revenue only depend on execution risk. However, once the agent has the

liberty to extend the execution horizon, this is no longer the case and the trader could

also chase higher revenues. Explicit modeling of such objectives would necessarily

increase the dimensionality since another stochastic state variable, the (mid-)price Pt,

must be added. Nevertheless, under certain assumptions this more general setup could

still be tractable. In particular, one could maintain the linear-quadratic structure by

adopting the assumptions of [31]. Gatheral and Schied [31] assume that S is described

by a geometric Brownian motion and inventory risk is measured by time-averaged
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value-at-risk (VAR), i.e. λt = λxtPt. Making this adjustment in (2.5) leads to the

problem of minimizing

ǔ(T, P, x, Y ) := Ep,x,y
[∫ T

0

(
ẋ2
t + κY 2

t + λxtPt
)
dt

]
. (2.35)

Assuming linear information leakage and that P and Y have correlation ρ ∈ [−1, 1],

dW
(P )
t dW

(Y )
t = ρdt allows for the solution

ǔ(T, P, x, Y ) = x2Ǎ(T ) +Y 2B̌(T ) +xY Č(T ) +P 2Ď(T ) +PxĚ(T ) +PY F̌ (T ) + Ǧ(T )

where the coefficients Ǎ, . . . , solve again a Riccati ODE

A′(T ) = −A2 − ηAC − η2

4
C2

B′(T ) = −η2B2 −B(ηC + 2β) + κ− 1
4
C2

C ′(T ) = −η
2
C2 − C(η2B + A+ β)− 2ηAB

D′(T ) = σ2
P − 1

4
(ηF + E)2

E ′(T ) = c− A(E + ηF )− ηC
2

(ηF + E)

F ′(T ) = −βF − ηB(E + ηF )− ηC
2

(ηF + E)

F ′(T ) = σ2
YB − ρ,

with similar initial conditions as before. Moreover, a fully closed-form solution is

possible for strategies that are myopic with respect to Yt (see [31] for details). As

in Remark 3, the main difficulty is that an inventory risk that is linear in x cannot
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guarantee xs ≥ 0 and hence is likely to include buying, making the optimization over

T delicate.

In the dynamic case the execution strategy α̌D(t, Pt, xt, yt) is given by

1

2

{
xt(2Ǎ(T − t)+ηČ(T − t))+Yt(Č(T − t)+2ηB̌(T − t))+Pt(Ě(T − t)+ηF̌ (T − t))

}
and is therefore linear in price Pt. (The myopic strategy is also linear in Pt). Note

that only the execution cost ǔ is impacted by ρ, while the strategies themselves are

independent of the correlation between asset prices and order flow. In this setup,

the strategy adapts to the fluctuations in price throughout the execution process.

Arguably, the current value of Y might affect the future asset price. This issue is

revisited in Chapter 4. In reality, the joint behavior of order flow and asset prices re-

mains poorly understood. In fact, the positive correlation between market-order flow

and asset price is a direct indication of adverse selection affecting liquidity providers,

see e.g. the very recent preprint [14]. Further investigation into how the co-movement

of order flow and asset prices might affect execution costs is found in Chapter 3.

2.4.3 Discrete Time Formulation

Building on (2.33) and (2.34) one can construct a discrete model for optimal

execution. This involves reinterpreting the strategy α as a participation rate based

on the observation that an executed sell trade inherently affects the next bucket
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imbalance Ĩ` since it physically displaces some of the other volume from that bucket.

A discrete-time model also allows to examine more general costs and model dynamics.

Fixing a volume bucket V , we assume that the trader chooses a participation rate

αk at each step, where

xk+1 = xk − αkV

and k indexes trade volume. The trader’s participation influences the flow imbalance

at the next step via

Yk+1 = F (Yk, εk+1)− φ(αk, Yk) (2.36)

where εk+1 are independent random perturbations, F (Y, ·) models the dynamics in

Yk that happen apart from the trader and φ(α, Yk) is the information leakage given

previous imbalance Yk. One motivation to generalize the leakage function is the trade

influence proposed in [27],

Yk+1 = ψ(αk)(Yk(1− αk)− αk) + (1− ψ(αk))Yk + εk+1, (2.37)

where we still have αk ∈ [0, 1] and the function ψ ∈ [0, 1] is monotonic increasing.

The new expected trade imbalance is a convex combination of two extreme outcomes:

full leakage according to ψ (first term) and no leakage (second term). (2.37) simplifies

to

E[Yk+1] = Yk − αkψ(αk)(Yk + 1) =: Yk − φ(αk, Yk).
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In analogue to Section 2.1, the trader’s goal is to minimize total expected costs

until the entire position has been liquidated,

v(x, Y ) := inf
α
Ex,Y

[
T0−1∑
k=0

g(αk) + κY 2
k + λ(xk)

]
, T0 = min{k : xk = 0}. (2.38)

The control αk is constrained so that αk ∈ (0, 1] and is assumed to be in feedback

form, αk = α(xk, Yk).

The indefinite-horizon control problem (2.38) can be solved by introducing an

auxiliary “time” variable t such that execution stops after t steps (if it did not ter-

minate already) and remaining inventory at t incurs a terminal cost H(xt) = Ax2
t

(assuming immediate one-step liquidation after t, cf. the VWAP strategy in (2.13)).

This auxiliary problem has value function v(t) defined in (2.39). As t → ∞, this

execution horizon constraint vanishes and we expect to recover the time-stationary

solution v(x, Y ) of (2.38).

Using t as time-to-maturity, we have the discrete-time dynamic programming

equations

v(0)(x, Y ) = H(x),

v(t)(x, Y ) = inf
α∈(0,1]

EY
[
g(α) + κY 2 + λ(x) + v(t−1)(x− αV, Y1)

]
(2.39)

where Y1 = Y α
1 is defined by (2.36) and v(t)(0, Y ) = 0∀Y . The one-stage problem in

(2.39) can be readily solved using a Markov-chain approximation method by discretiz-

ing the state space of Y and the bounded control space of α (which also makes the
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state space of xt discrete). The above procedure allows arbitrary dynamics for (Yk)

beyond (2.37) since one can always use Monte Carlo or other methods to compute

the transition density pY1(·|Y0 = y, α).

2.5 Proofs

Finite Difference Approach to (2.9)

We employ an explicit finite difference scheme to find an approximate solution to

(2.9). Denote vi,j := v(xi, yj), where xi = i∆x for i = 0, 1, . . . , N and yj = y0 + j∆y

for j = 0, 1, . . . ,M . Derivatives of v are approximated as

∂

∂x
v(xi, yj) =

vi+1,j − vi,j
∆x

;

∂

∂y
v(xi, yj) =

vi,j+1 − vi,j−1

2∆y
;

∂2

∂y2
v(xi, yj) =

vi,j+1 − 2vi,j + vi,j−1

(∆y)2
,

and we apply the boundary condition v(0, y) = v0,j = 0∀j. In y we use the boundary

conditions for vi,0 and vi,M via ∂2v(xi,y1)
∂y2

= ∂2v(xi,yM−1)

∂y2
= 0 and choose y0 and yM such

that P((Yt) /∈ [y0, yM ]) ≈ 0. Substituting into (2.9) we have

0 =
1

2
σ2∂

2vi,j
∂y2

− βyj
∂vi,j
∂y

+ κy2
j + λ(xi)−

1

4

(
∂vi,j
∂x

+ η
∂vi,j
∂y

)2
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and rearranging terms yields

vi+1,j = vi,j + ∆x

(
2

(
κy2

j + λ(xi)− βyj
vi,j+1 − vi,j−1

2∆y
+
σ2

2

vi,j+1 − 2vi,j + vi,j−1

(∆y)2

)1/2

− ηvi,j+1 − vi,j−1

2∆y

)
.

So we have a so called “time-marching” scheme in x, where v at each inventory

level i + 1 can be approximated by values from the previous inventory level i. This

explicit approach is available for appropriate parameter values in which α∗ > 0 holds.

For more extreme parameter values we may have α∗ = 0 (recall that we constrain

α∗ ≥ 0). In this case our explicit method would fail for certain grid points and it

would be necessary to utilize an alternative method.

Proof of Lemma 2.2.3

Proof. We skip the trivial case λ(x) = 0. See [33] for details when λ(x) = cx2. For

λ(x) = cx, when x is unconstrained, the problem is a straightforward application of

the Euler-Lagrange equation. For cost functional F (x, ẋ, t) = ẋ2
s + cxs, the optimal

trajectory xMQ
t must satisfy

(
dF

dx
− d

dt

dF

dẋ

)
= 0 (2.40)

Applying the constraint that x is decreasing introduces the boundary condition at x =

0. Then the optimal trajectory for the constrained minimization problem either lies

on the curve which satisfies the Euler-Lagrange equation or lies along the boundary,
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with the transition from the former to the latter occurring where xMQ
t is tangent to

the line x = 0. In order to find the point at which this transition takes place, we find

T ′ such that
dx∗t
dt

∣∣
t=T ′

= 0. It is easily verified that T ′ = 2
√
x√
c

satisfies the requirement

and so we have T̂ = min(T, 2
√
x√
c

).

Having computed xMt for each choice inventory risk term, αMt and IM are com-

puted respectively by differentiating with respect to t and integrating over the interval

[0, T ] ([0, T̂ ] for IMQ).

Proof of Proposition 2.2.1

Proof. An application of Fubini’s theorem, permits the interchange of expectation

and integration leaving us with a straight-forward but lengthy integral computation.

The general expression for O is

O(T, x, Y ) =

∫ T

0

(Y e−βt − At)2 +
σ2

2β
(1− e−2βt)dt (2.41)

where

At :=

∫ t

0

e−β(t−s)φsds (2.42)

captures all the information leakage. Integrating the other two terms gives

O0(T, x, Y ) = κ

∫ T

0

(Y e−βt)2 + σ2
t dt

=
κY 2

2β

(
1− e−2βT

)
+
κσ2

4β2

(
2βT + e−2βT − 1

)
.
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Computing the integral for the remaining three cases is straight-forward but tedious.

We provide the values of At for each case. For φt = ηαML
t , we have AML

t = ηx
βT

(1 −

e−βt). When φt = ηαMQ
t we have

AMQ
t = η

∫ t

0

(
cT̂

4
+
x

T̂
− ct

2

)
e−β(t−s) ds

=
η

β2

(
c(1− βt+ e−βt) + β(1− e−βt)

(
cT̂

4
+
x

T̂

))
.

Lastly, when φt = ηαMH
t and

√
c 6= β, we have

AMH
t = η

∫ t

0

√
cx cosh(

√
c(T − s))

sinh(
√
cT )

e−β(t−s) ds

=
η
√
cx

(c− β2) sinh(
√
cT )

(λ sinh(
√
c(T − t)) +

√
ce−βt sinh(

√
cT )

− β cosh(
√
c(T − t)) + βe−βt cosh(

√
cT )).

If
√
c = β then the final expression simplifies to

AMH′

t =
ηxe−βte−βT

(
2βte2βT + e2βt − 1

)
4β sinh(βT )

.

One can finally integrate (using a symbolic integration software for example) (2.41)

over t ∈ [0, T ] to obtain closed-form expressions for OMQ and OMH .
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Proof of Proposition 2

Proof. Substituting (2.23) into the HJB PDE (2.22) we have

uDT = σ2B(T ) + κY 2 + c2x2 − βY (2Y B(T ) + xC(T ))

−
(

2xA(T ) + Y C(T ) + η(2Y B(T ) + xC(T ))

2

)2

= x2
(
c2 − (A(T ))2 − ηA(T )C(T )− (ηC(T ))2

)
+ Y 2

(
κ− 2βB(T )−

(
C(T )

2

)2

− ηB(T )C(T )− (ηB(T ))2

)

+ xY

(
−βC(T )−A(T )C(T )− 2ηA(T )B(T )− η(C(T ))2

2
− η2B(T )C(T )

)
+ σ2B(T ).

On the other hand, uDT = x2A′(T )+Y 2B′(T )+xY C ′(T )+xD′(T )+Y E ′(T )+F ′(T ).

Matching the appropriate powers of x, Y on either side of the equality yields the

system of Riccati differential equations (2.4.2), with the boundary conditions (2.11)

translating into (4.11). As previously mentioned, the first order terms D(T ) and

E(T ) in x and Y are not required if the inventory risk term is of order x2 or 1.
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Chapter 3

Order Flows and Limit Order Book

Resiliency

Electronic trading marketplaces match liquidity providers and consumers via the

limit order book (LOB). At any given moment, the LOB summarizes the current

state of trading by listing the resting limit orders entered into the matching engine.

Since price formation is essentially mechanical given the LOB state (namely, the

LOB directly determines the mid-price), on the instantaneous time-scale the LOB is

fundamental for understanding price dynamics. Similarly, the LOB is fundamental

for explaining price impact, namely the effect of trader’s actions on the book and

price. The concept of price impact is typically quantified in terms of liquidity, with

higher liquidity indicating smaller price impact and scarce liquidity indicating larger
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impact. Questions of liquidity are key for market participants planning their actions,

such as market making or order execution.

However, on a longer time-scale, the enormous volume of data and noise captured

by the LOB becomes a major challenge that obscures the link between price evolution,

liquidity, and participant orders. Indeed, dynamically, rather than the static snap-

shots offered by the LOB, the main drivers of price formation are arguably the order

flows. In this chapter, we initiate statistical analysis and modeling of such mesoscopic

quantities. One of our main aims is to understand the link between order-flow and

liquidity, which could be of interest to execution traders for purposes of scheduling

in a manner that adapts to the changing state of liquidity and thus varying expected

price impact.

The remainder of the chapter is structured as follows. In Section 3.1 we fix nota-

tion, and discuss LOB evolution, highlighting the primary motivations for the current

study. Section 3.2 describes our data and approach, explaining how we choose to ag-

gregate order flows to analyze at the intermediate time scale (1−10 minutes). Section

3.3 explains regression models and results focusing on price trend, liquidity and scarce

liquidity. Lastly, Section 3.4 discusses ramifications from the previous sections and

additional anecdotal findings.
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3.1 Price Impact

Price impact directly corresponds to liquidity, a somewhat murky concept that

has become increasingly difficult to pinpoint with the steady rise in the speed of

today’s market activity. To help frame the discussion, consider an execution trader

who wishes to sell x shares. Because there are a finite number of resting buy orders

in the LOB, she follows convention and divides the order into smaller “child” orders

so as to disrupt the market as little as possible. Nevertheless her orders consume

liquidity and reveal information to other market participants. Moreover, there is the

possibility for latency arbitrage. Because execution is typically over multiple time

slices, rather than a static cost dictated by the shape of the LOB (e.g. instantaneous

impact), expected execution costs are driven by expected price change, which depends

on the liquidity state i.e. how the LOB evolves through time.

3.1.1 Limit Order Book Notation

To fix ideas, we revisit the LOB structure and set notation for its quantities. The

LOB is constructed by aggregating the history of all submitted trading orders. The

two base classes of trades are market orders and limit orders. Market orders, which

indicate actual transactions taking place are denoted as M := {(TMi , OM
i )} where

TMi are the execution times and OM
i are corresponding execution volumes. OM

i ’s are

signed, with positive indicating a buy order and negative a sell order. Limit orders
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are L := {(TLi , OL
i , S

L
i )} where TLi are the message time stamps, OL

i are (signed)

order volumes and SLi is the limit order price. For limit orders positive OL
i indicates

adding a new limit order, while negative OL
i indicates a cancellation.

At time t, the LOB consists of the vector (pji (t), v
j
i (t)), listing the volume vi(t) ≥ 0

of resting limit orders at price pi(t). Limit orders reside in the LOB until executed

by an incoming market order, or being cancelled by participant who initially placed

the order. The superscript j ∈ A,B denotes the Ask and Bid sides respectively.

We separately index each side of the LOB, starting from the best-bid and best-ask

levels and moving consecutively. Thus, pA1 (t) is the best-ask (at the touch) price,

pA2 (t) = pA1 (t) + ∆p is the second price level, etc. The LOB levels are discretized in

terms of the tick size ∆p, typically 1 cent for US equities. Note that the indexing

is consecutive and some queues can be empty, vji (t) = 0. By definition vj1(t) > 0 is

always strictly positive and the spread is at least 1 tick pA1 (t) > pB1 (t).

The midprice is defined by

P (t) :=
pA1 (t) + pB1 (t)

2
, (3.1)

and the bid-ask spread is defined Spr(t) = pA1 (t) − pB1 (t). Figure 3.1 illustrates a

hypothetical LOB example.
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Figure 3.1: Stylized limit order book.

3.1.2 Static Measures of Liquidity

A starting point for understanding the expected price impact of an order is the

information contained in a static snapshot of the LOB. Quantities of interest include

spread Spr(t), depth, LOB shape and LOB imbalance. Traditionally, liquidity has

been measured in terms of such quantities and more recently several studies have

shown the predictive information found in an LOB snapshot[35, 18, 42, 22] Impor-

tantly, static measurements and the predictions derived may be useful but at very

short time scales. We briefly consider some examples.
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The most basic measure of liquidity is the spread Spr(t). The informativeness

of the bid-ask spread varies significantly by asset class. Generally US equities are

considered very liquid and spreads in today’s markets tend to be small relative to

other assets and historical standards. Within the class of US equities “large tick stocks

are such that the bid-ask spread is almost always equal to one tick”[28]. Therefore

Spr(t) is not a useful measure of liquidity for a large class of stocks because it is not

sensitive to changing market conditions.

Another commonly used measure is the volume-at-the-touch vj1(t). Over very

short time horizons, volume at the touch may be sufficient for understanding the

direction and likelihood of a change in mid-price. Volume imbalance, defined

V I(t) =
vA1 (t)− vB1 (t)

vA1 (t) + vB1 (t)
, (3.2)

has been shown to be predictive of the next order side and price move [22, 18]. At the

slicing/routing level of the execution process, V I(t) is often used as an indicator of

when to employ limit orders and when to cross the spread and place a market order

[42]. Similarly, in [35] order arrival rates are modeled as a function of relative queue

size (i.e. imbalance).

Beyond the first queue, efficiently summarizing the LOB shape or depth profile (on

even a single side of the LOB) is a non-trivial matter. Depth over the first n queues

Dj
n(t) =

∑n
i=1 v

j
i (t) for example is a blunt measurement as it provides no information

about the shape of the book. A better view is provided by the theoretical price impact
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of quantity N shares. Let iN = min{i :
∑

i vi ≥ N}, then we define

PIjN(t) := N−1

iN−1∑
i=1

vji (t)(p
j
i (t)− P (t)) + (N −

iN−1∑
i=1

vji (t))(p
j
iN

(t)− P (t))

 , (3.3)

where vji (t) and pji (t) are the depth and price at the ith tick from the mid-price, and

N is some fixed quantity of shares. This succinct measure is the weighted average

cost per share of immediately executing N shares and therefore contains information

on the shape and depth of the LOB, as well as the spread.

Theoretical price impact PIN(t) can be used to formulate an estimate of the

instantaneous execution cost of executing N shares. A recent paper by Cartea and

Jaimungal [16] computes PI(t) for various volumes (by walking through the LOB)

up to N shares and then fits a simple linear regression model of the form

PIi(t) =
1

2
∆p+ k̂i+ εi, (3.4)

where i = 1, 2, ..., N , spread is assumed constant Spr(t) = ∆p and k̂ is the estimated

slope coefficient. k̂ estimates temporary price impact per share when price impact is

assumed linear. Both PI(t) and corresponding slope k̂ effectively capture the LOB

state at time t. However, it is well known that most individual market orders have

zero observable impact, meaning that orders rarely “walk the book”, instead usually

consuming at most the standing liquidity at the first level.

To sum up, static liquidity measures derived from the state of the LOB at a

time t make sense primarily at very short time scales (� 1 second). In practice,
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large orders are split into smaller orders and executed over time to avoid walking

the book. Therefore the static picture of the LOB is not enough when it comes

to optimal execution. At the scheduling level, (1 − 10 minutes) LOB evolution, in

particular trends in order-flow and behaviors exhibited by liquidity providers become

more relevant.

3.1.3 Order Flows and LOB Evolution

Most traditional execution models in the literature decompose price impact into

instantaneous and permanent impacts. The former (discussed in the previous sec-

tion) models impact only on the current transaction price, and usually carries the

assumptions that the LOB recovers infinitely fast to its previous state. The latter

captures the impact on the mid-price that persists and affects trading in the future.

An alternative approach applied in so-called resilience models [2, 32, 3] instead as-

sumes transient impact. That is, the LOB has some general shape, market orders

arrive and impact the mid-price by consuming a portion of the LOB and finally limit

orders “refill” over time, often exponentially. In reality, following a market execution,

the LOB response varies widely, at times bouncing back immediately in a resilient

fashion, while other times falling through and retreating.

Figure 3.2 illustrates the evolution of the LOB for TEVA on 2/18/2011 over a

period of 90 seconds. To visualize the book, we focus on the top 2 queues with
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volumes vA1 (t) and vB1 (t) (left axis). A vertical line represents the jump caused by an

arriving order and horizontal lines represent periods of inactivity at each respective

queue. Limit additions and cancellations and market orders (orange) are plotted

event-by-event so that the mechanics and sequence of order arrivals are more clear.

The right axis corresponds to the mid price (upper lines) with dotted vertical lines

marking a change in bid- or ask-price.
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Figure 3.2: Best bid/ask queues vj1(t) for TEVA along with bid/ask price pj1(t) (top). Data taken
from a 90 second window beginning at 2:30pm on 2/18/2011. Cancellations exceed additions at
the best bid. Limit orders are in red and blue depending on side, market executions are orange.

One key element that is showcased in Figure 3.2 is the interaction between limit

and market orders. We observe several typical “regimes”, for example periods where

market orders are counteracted with added limit orders (so that vj1(t) stays roughly

constant over time), and other periods where market orders are accompanied primar-
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ily by LO cancellations, creating a strong negative trend in vj1(t). The latter situation

would correspond to scarce liquidity, as the book is “retreating” along with executed

trades. In contrast, in a deep or resilient market, executed orders do not impact the

book which bounces back through fresh LO. Visually, one can imagine in Figure 3.2,

that excluding market orders, the drift of the queue size at the bid/ask would trend

positively through time. Scarce liquidity on the ask (bid) side would be character-

ized by the alternative, either negative drift or near zero-drift combined with a high

quantity of buy (sell) executions.

The microstructure behavior in Figure 3.2 is on the short time-scale and can be

analyzed directly using queue-theoretic methods found in [44, 18, 35]. In that context,

factors such as static volume imbalance, queue priority and sign of last market orders

are the main drivers. For example, Huang et al. [35] model limit order, cancellation

and market order arrival rates as a function of the queue sizes vji (t). Under this

Markovian assumption tractable formulas can be often be computed for interesting

quantities such as the probability of move up or down in the mid-price, but the

historical order flow is ignored. Here, we aim to lift these features to a mesoscopic

time-scale by documenting and modeling some of the persistent behavior of book

liquidity/resilience that are driven by order flows and revealed on the minutes-scale.

Figure 3.3 nicely illustrates this point, albeit with a very extreme example. On

the July 12, 2012, four large cap US stocks exhibited an unusual trading pattern;
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heavy buying following by heavy selling in a predictible fashion at 30 minute inter-

vals. One expects that LOB volume imbalance V I(t) should be positively correlated

with price movement. This is typically the case. Here we see the opposite is true:

As the price moves higher (respectively, lower) there is more depth at the best ask

(bid). So while the static look indicates plentiful liquidity, market maker actions, ap-

parently responding to the incoming order flow, leads to significant price slippage for

the aggressive buyers/sellers. In their research note [40] Lehalle et al. conclude that

one likely cause of the very unusual trading behavior was a derivative hedging strat-

egy that entirely ignored common knowledge about market microstructure. For our

purposes, the event is a clear example of weak LOB resilience as liquidity providers

anticipate 1-sided MOF.

Figure 3.3: Plot taken from Lehalle et al. [40]. Stock price P (t) for Coca-Cola and LOB volume
imbalance V I(t) at the touch aggregated over 5 minute time bars (green/black).
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3.2 Data and Methodology

Our main dataset consists of Nasdaq ITCH data from the first five calendar months

of 2011 for three tickers (MSFT, TEVA, BBBY). Nasdaq ITCH data contains rich

information on all order book activities, including limit orders and cancellations,

direction and size of market executions, and LOB data out to 30 levels. Pre-processing

included removing all executions against hidden orders (less than 10% of executed

volume) and aggregating executed orders where necessary. Market orders are often

matched against several smaller limit orders and are reported in the data in terms

of those matching limit orders. We re-created the size of the original market order

by aggregating orders that were consecutive, in the same direction and with equal

time stamps. Furthermore, to avoid erratic behaviors often seen near the open or

close, we consider only activity between 10am and 3 : 45pm in all statistical analysis.

Summary statistics are provided below for the three stocks. The following section

first outlines how the vast amount of data (e.g. up to 1,000,000 daily messages), was

aggregated for the analysis.

3.2.1 Volume Slices

To move from the micro- to meso-scale, capturing both dynamic and static LOB

measures in our analysis, we divide the trading day into buckets and aggregate order

flows. Rather than dividing the day according to clock time, we choose to divide
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the day into equally sized trade volume slices. While there are difficulties with any

method of aggregation of activity, using volume slices has some attractive properties

for our purposes.

Most importantly, even though market orders account for only 2 − 4% of total

trades, they indicate actual transactions taking place and hence ultimately drive

traders’ P&L. Due to their intrinsic nature of “putting money on the table”, they carry

the most information and are typically viewed as influential by other participants.

Slicing by trade volume rather than time means more consistency in information

across buckets. Under clock-time bucketing, one can easily appreciate the difficulty

of comparing buckets with dramatically different activity levels. A related advantage

is that working in volume-time helps reduces the intra-day seasonality effects such

as volume and volatility clustering. It also allows for a partial recovery of Normality

and IID assumptions.

Lastly, one of our key objectives is better understanding LOB behavior by studying

interaction in order flows. LOB evolution is driven by volume. Comparing limit order

activity across buckets is natural and most consistent when measuring in (trade)

volume time. One would reasonably expect for example, that limit additions to the

touch depend more on quantity of market orders than passing minutes.
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Practically, slices are delineated by slice times τk yielding

Vk =
∑

i:τk≤TM
i ≤τk+1

|OM
i | (3.5)

VMB
k =

∑
i:τk≤TM

i ≤τk+1

|OM
i |1OM

i <0 (3.6)

V LBk =
∑

i:τk≤TL
i ≤τk+1

OL
i 1SL

i =pB1 (TL
i ). (3.7)

In the study, volume slices Vk = V are held constant at 1% of average daily volume

(ADV) for each stock. This requires that market orders are split as one bucket “fills”

up and the next begins. Slice times τk+1 are taken to be the time stamp of the final

trade included (or partially included) in slice k. On average, volume slices span just

under four minutes but of course fluctuate and range from one second to much longer

depending on trade arrivals.

Note that by definition, VM j ≥ 0 is non-negative (and measures total market

buys/sells during the k-th slice), whereas V Lj can be of either sign. Indeed, V Lj

counts the net additions/cancellations of limit orders at the best ask/bid during the

slice. In fact we expect V Lj to also be positive, since by definition liquidity providers

ought to add more than they cancel to balance liquidity consumptions captured by

VM j. Co-movement between VM and V L on the same side of the book is what

defines resilience in the LOB. Finally, we define for each volume slice, the normalized

trade imbalance

TIk =
VMB

k − VMA
k

V
. (3.8)
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Trade imbalance captures the supply and demand for the asset and is often used as

the basis for measuring price impact [13], [16]. We now analyze properties of these

mesoscopic time-series TI, V Lj and VM j.

3.2.2 Data Summary

All three assets are categorized as large cap stocks, with 2011 market caps of

approximately $237B, $48B and $12B respectively. Table 3.1 provides summary info

for each stock, with the first four lines pertaining to static LOB quantities and the

next four lines to order dynamics after bucketing by traded volume. Mid-price and

ADV (includes only Nasdaq trading) information are shown for reference. There

are also some notable differences which can be seen in the typical LOB snapshot

quantities.

For each stock, the spread Spr(t) spends most of the trading day at .01, espe-

cially MSFT which rarely sees a spread beyond .01 and neatly fits the definition of a

“large tick asset”. Another key difference between assets is the relative depth. The

second line in the table shows the average volume-at-the-touch v1 and the third line

shows the ratio of volume-at-the-touch to average market order size v1/|OM |. This

ratio shows mechanically some of the reasons for higher volatility observed in TEVA

and BBBY compared to MSFT, which exhibits much higher depth relative to market

order size. The fourth line of the table shows price impact PIjN where N is a fixed
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MSFT TEVA BBBY

mean stdev mean stdev mean stdev

Spr .011 .003 .014 .006 .015 .007

v1 20, 006 17, 956 1, 019 1, 393 586 575

v1/|OM | 12.52 − 3.87 − 3.44 −

PIN .017 .012 .019 .012 .016 .011

∆Pk 4.21E-05 .027 9.09E-04 .054 4.59E-04 .058

TIk −8.18E-03 .371 5.27E-03 .359 4.66E-03 .337

|TIk| .295 .225 .282 .222 .267 .206

V L 83, 510 102, 738 14, 534 10, 471 5, 777 5, 942

ADV 13, 702, 322 6, 947, 343 1, 672, 942 1, 169, 025 846, 328 305, 071

Vk 135, 000 − 17, 000 − 8, 500 −

P 26.34 1.28 50.38 2.48 50.78 3.61

Table 3.1: Summary statistics for trading days from 1/1/2011 to 5/31/2011.

number of shares. For the remainder we set N equal to the average volume at the

top three queues of the LOB N ≈ 3v̄ for each stock. We find PIjN to be the most

statistically significant static measure of liquidity/price impact at the time scale in-

duced by volume slices of V = 1%ADV, more so than the other measures described

in 3.1.2.
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Figure 3.4: Left: daily evolution of PIAN (upper) and PIBN (lower) for MSFT, N = 80, 000 over
the first 50 trading days of 2011. Right: Histogram of PIA, measured at each execution time for a

single day 1/4/11.

Intraday seasonality is observed in both spread Spr(t) and especially PIjN . Note

that the intra-day seasonality caused by trade clustering is removed by measuring in

volume slices, but there still exists seasonality in the LOB which can be seen in the

left plot of Figure 3.4. Each line corresponds to a single trading day, where PIjN is

computed at each execution time and then smoothed using a lowess approximation.

The high price impact values during the first 30−60 minutes of trading explain much

of the increased volatility at this time relative to the rest of the day. PIjN compresses

significantly near the open and then gradually declines throughout the day reaching

its minimum around the close. This pattern is consistent with other studies e.g. [16],

and is observed in a number of assets.

Figure 3.5 shows a histogram of net limit order-flow V LBk at the bid-side touch

(left) and elapsed time (in seconds) for volume slices of 1%ADV (right). Notably,
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Figure 3.5: Left: Net order flow at the best bid level V LBk . Right: Time elapsed during volume
slices. Figures drawn for MSFT over 103 trading days.

the correlation coefficient for V Lk and time spanned by the kth slice, τk+1 − τk, is

approximately 0. As expected, average limit flow at the touch is typically positive, but

does become negative in about 14% of observed volume buckets for MSFT (shown).

V Lk is negative less frequently in BBBY (< 10%) and TEVA (< 4%). One likely

reason for the discrepancy can be observed in the measure of depth relative to order

size v1/|OM |. Low or negative net order-flow at the touch has less effect on the LOB

(in terms of mid-price change) for MSFT than for TEVA or BBBY.

Figure 3.6 shows a histogram of price change ∆Pk (left) and trade imbalance

TIk/V (middle) by volume slice for TEVA over the entire sample of trading days.

Also shown are the two plotted against one another showing a positive relationship

as should be expected. One feature that immediately stands out is the dispersion in

the observed price change ∆Pk conditional on concurrent trade imbalance TIk. This
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Figure 3.6: Summary plots for TEVA for all 103 trading days. Left: Histogram of ∆Pk. Right:
Price change ∆Pk plotted against trade imbalance TIk fitted-least squares regression line.

highlights that market order flow is only part of the story, and that additional factors

play a key role in price formation.

3.3 Empirical Results

Figure 3.6 suggests the natural decomposition of price formation into two compo-

nents: (1) price trend, which is primarily about the supply and demand for the asset

captured in trade imbalance TIk, and (2) liquidity, which is seen in the deviation of

the observed ∆Pk from the best fit curve between the two variables. This section

applies a series of regression models aimed at disentangling price trend from liquidity.

We seek to identify key variables important for explaining the magnitude of ∆P at
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the minutes scale (Sections 3.3.1 and 3.3.2) and predicting periods of scarce liquidity

that lead to out-sized price impact (Section 3.3.3).

3.3.1 Price Trend

In the first step, we seek to explain price change over each volume slice ∆Pk =

Pk+1 − Pk using only a single explanatory variable, the concurrent trade imbalance

TIk. We fit the following model for each stock on volume slices from the entire sample

period

∆Pk = g(TIk) + εk (3.9)

where εk is the normally distributed error term (assumed iid: autocorrelation in

error terms was negligible) and g is a smooth function computed using penalized

regression splines (See [50] for details). In contrast to [19, 16] we do not assume

a linear relationship between net market flow TIk and ∆Pk. Instead a generalized

additive model (GAM) is assumed to help account for the non-linear dependence that

we observe.

Figure 3.7 highlights two key features. The first is the non-linearity in the rela-

tionship for extreme values of trade imbalance TIk. At first glance this result appears

somewhat puzzling. However, it is well-known that execution traders take into ac-

count the state of the LOB when placing orders. In other words, 135, 000 shares,

executed consecutively in the same direction, is an infrequent occurrence for MSFT
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Figure 3.7: Left: ∆P against TI for TEVA over volume slices of V = 17, 000. Right: Non-linear
curves for MSFT, TEVA, BBBY were computed using penalized regression splines. The flatter

curve in MSFT is due to its higher depth relative to the size of volume slice V .

and is usually precipitated by a very large quantity of resting limit orders at or near

the touch.

The second important feature of Figure 3.7 is the significant amount of dispersion

around the best fit curve, which can be verified in the relatively low R2 levels for the

model (3.9) for each stock: 48.4%, 27.4% and 24.9% for MSFT, TEVA and BBBY

respectively. Unlike the time slicing approach, each bucket contains the identical

amount of traded volume. Thus the difference between observed price change ∆P

for two buckets with similar trade imbalance TI must be due to differences in LOB

depth/shape or resilience. Lastly, the normal assumption on the error terms εk is

reasonable, although we do observe slightly heavier tails which we can attribute to

occurrences of low depth/resiliency.
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Because the daily trading session provides convenient break in activity, it is often

assumed that LOB behavior is confined to this same daily scale. Therefore, one

approach is to fit a separate regression model for each trading day. Indeed, fitting

individual daily models does reveal significant day-to-day variation in the shape of the

best fit curve (also see [16]). However, the average R2 across our entire sample when

following this convention is only marginally better than when fitting a single model to

all days (e.g. the average R2 across all individual days for MSFT improves to 52%).

So the significant noise in (3.9) is not simply the result of inter-day variation, but

rather shows that liquidity provision is stochastic on an intra-day basis.

3.3.2 Liquidity

Having removed the effect of trade imbalance (i.e. the price trend), we fit a new

regression model to explain the residuals ε̂k from equation (3.9). For example, in

the case of TEVA (Figure 3.7), ∆Pk|TIk = 0.5 ranges from −0.10 to .20 for buckets

across our sample period. Explaining this variation in realized price change for a given

trade imbalance is of practical importance to execution traders. In this section we

test both static LOB measures and dynamic quantities relating to liquidity provision.

Recall, that a static quantity measures something physical related to the LOB at

some specific time t. By dynamic, we mean that some quantity related to a process

(e.g. limit order flow) is measured over time.
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The static variables tested in our regression models included the measures of LOB

depth and shape described in Section 3.1 including PIN , k̂, Di for i = 1, 2 and volume

imbalance V I. Volume imbalance V I and D1 were not significant in the regression

tests. Price impact slope k̂ improved the model slightly but is, as expected, highly

correlated with price impact PIjN and proved less significant to the model than did

PIjN . All static variables were measured at the start of the volume slice i.e. the

kth residual ε̂k, computed with activity during [τk, τk+1] was regressed against static

variables measured at time τk. Table 3.3.2 summarizes the variables tested here and

in the following section.

Dynamic quantities initially tested were the net limit flow at each touch V Lj,

trailing limit flow V Lj` price change ∆P`, trade imbalance TI` over the previous `

volume slices, where ` ∈ 1, 5, 10, 20. Also tested was the exponentially weighted

moving average of recent trade imbalance, first introduced in Chapter 2,

TIMAi+1 = e−β|O
M
i |TIMAi + (1− e−β|OM

i |) sign(OM
i ), (3.10)

where i indexes arrival of market orders of size |OM
i | and β dictates how quickly

the process decays towards 0. We set β equal to 1%ADV and 10%ADV and found

that when β = 10%ADV, TIMA is highly significant as a predictor for each stock.

Each dynamic quantity was measured at time τk except for V Lj which captured the

concurrent flows from the kth bucket.
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We fit several general linear models and settled on model 3.11 which includes the

most important predictors for each stock.

ε̂k = β0 + β1PI
A
k + β2PI

B
k + β3V L

A
k + β4V L

B
k + β5TIMAi + ηk (3.11)

where ηk are assumed iid and normally distributed. Coefficients and corresponding

R2 levels are shown in Table 3.2. There were additional variables that were to a

lesser extent, statistically significant for one or two of the stocks, but these showed

negligible improvement to overall model fit.

MSFT TEVA BBBY

coeff stdev R2 coeff stdev R2 coeff stdev R2

PIAk 4.202E-01 3.074E-02 4.987E-01 4.896E-02 4.242E-01 4.055E-02

PIBk −4.705E-01 3.029E-02 4.1% −5.313E-01 4.773E-02 1.6% −5.179E-01 3.899E-02 0.8%

V LA
k −5.727E-08 1.932E-09 −2.053E-06 4.278E-08 −4.401E-06 8.642E-08

V LB
k 6.785E-08 1.992E-09 1.817E-06 3.827E-08 2.521E-06 6.894E-08

TIMA −1.876E-02 1.610E-03 36.5% −2.964E-02 3.178E-03 42.5% −5.134E-02 3.805E-03 39.3%

Table 3.2: Least-squares regression Results for model 3.11. Volume slices V = 1%ADV : 135, 000,
17, 000, 8, 500 shares respectively.

Static Variables Given the meso-scale and the amount of activity in each volume

slice it is not surprising that “shallow” LOB measures capturing only at the top of the

LOB are not all that useful. Instead, the longer time scale in this analysis requires
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information from deeper in the LOB. Theoretical price impact PIjN (N ≈ 3v̄), is the

LOB measure that provides the most explanatory power for each of the three stocks.

On average, for a given trade imbalance TIk, ∆Pk increases (respectively, decreases)

by approximately 0.01 for each increase in PIAN (respectively, PIBN ) of 0.02. PIjN does

vary throughout the day, but this is largely a seasonal effect (see Figure 3.4).

In the case of MSFT, the depth at the first two queues D2 is also significant to

the model. This is a consequence off MSFT’s larger depth profile relative to both the

average market order size |OM
i | and ADV. In other words, the state of the LOB at the

start of the volume slice is more relevant to price formation for MSFT than for TEVA

or BBBY. The first set of model R2 values in table 3.2 assumes β3 = β4 = β5 = 0,

showing the relatively weak explanatory power of PIjN .

Dynamic Variables. The net limit order flow processes at each touch V Lj are

by far the most significant explanatory variables in the regression. For a given trade

imbalance TI, net order flow at the touch measures the resilience of the LOB. When

net order flow at the best bid V LB is large the price is unlikely to move lower even if

trade imbalance is negative. On the other hand, if cancellations at the bid dominate

additions, the price can move lower on very little volume. For TEVA, an additional

10, 000 shares added to the best bid, on average leads to an increase of 0.02 in ∆Pk

conditional on trade imbalance TIk.
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Somewhat less intuitively, the trailing moving average (prior to the kth bucket)

trade imbalance TIMA is also a key variable in the model. The coefficient for TIMA

is consistently negative across all three stocks and highly significant to the model,

of approximately equal importance as PIjN . The inclusion of TIMA appears to

be capturing the tendency of stock prices, to more often than not, retrace recent

movement. More precisely, when TIk leans with the prevailing trend (TIMA) the

impact on price is on average less than expected. Lastly, recent price trend ∆P`

proved significant for TEVA and MSFT for ` = 20 and ` = 1 respectively with

negative coefficients in both cases.

The primary objective of the last two sections was to identify those quantities that

contribute most to price formation at the intermediate time scale. To that end, we

also tested for variable interaction and again applied a GAM model to account for non-

linear dependence. These revealed nearly identical results in terms of relative variable

importance. The moderate improvement in goodness of fit obtained by allowing for

non-linear dependence is mostly the result of over-fitting to the very few extreme

values of V Lj. We have opted to show only the linear regression results to keep the

presentation compact and because the key explanatory variables remain the same. In

the following section we choose to focus specifically on periods of low LOB resiliency

i.e. scarce liquidity.
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Remark 6. The regressions performed in Sections 3.3.1 and 3.3.2 are qualitatively

similar to the work by Cont et al [19]. We similarly find that including concurrent

limit order flow at-the-touch along with trade imbalance TIk dramatically improves

the statistical fit of the model when predicting ∆Pk. But there are several key differ-

ences between the studies. First, in time scale (we test at minutes scale on average

compared to their 10 second buckets) and bucketing (we apply volume buckets in-

stead of time bucketing). Second, we separate limit flow and trade imbalance (rather

than combining into one variable as in [19] in an effort to understand how the two

interact with one another. Third, the goal of this study is to measure and predict

periods of scarce liquidity, which is where we now turn our attention.

3.3.3 Scarce Liquidity

Within a given trading day small variation in realized ε̂ is to be expected. Pin-

pointing the confluence of factors that lead to or at least coincide with scarce liquidity

is of practical importance due to the potentially large ramifications of triggering, or

executing during, a period of heavy cancellation activity in the LOB. We define scarce

liquidity SL ∈ 0, 1 in a binary fashion in terms of the realized outcome ε̂ so that SLj
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Variable Description
Static

PIjN Price impact, N ≈ 3v̄ shares, j ∈ A,B, (3.3)

k̂j Slope of linear price impact function, (3.4)

Dj
i Total shares at top i levels of the ask/bid side of LOB, i ∈ 1, 2

V I Volume imbalance,(3.2)
τ Hours from midnight
Dynamic
V Lj Concurrent net limit order flow at each touch, (3.7)

V Lj` Net limit order flow at the touch during previous ` volume slices
∆P` Price change over the previous ` volume slices, ` ∈ 1, 2, 5, 10
TI` Mean trade imbalance over the previous ` volume slices
|TI|` Mean absolute trade imbalance over the previous ` volume slices,

(3.13)

ρjt Correlation between market flow and net limit flow totals over 30-
second intervals at the ask/bid side touch, over previous 2.5 hours.
(3.14)

TIMA Exponentially weighted moving average of recent trade imbalance,
(3.10), β ∈ 1%ADV, 10%ADV

ρTox Correlation between signed market orders and price change over
previous 200 order arrival, Equation (3.15)

Table 3.3: Static and dynamic quantities tested in regression models (3.11) and (3.16).

occurs on at most one side of the LOB per volume slice. Specifically, SLA is defined

SLjk =


1 if ε̂k ≥M

0 if ε̂k < M

(3.12)

where SLBk is defined similarly in the opposite direction and M depends on the

asset’s liquidity profile. We choose M as a function of the standard deviation of the

residuals ε̂, namely M = 1.5σ̂ε̂ so that scarce liquidity occurs on one side of the LOB
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in approximately 5 − 8% of volume slices. Applying a logistic regression model to

each side of the LOB we test the predictor variables described in Table 3.3.2.

Alongside the covariates tested in the previous section, we also include additional

variables which may contribute to price formation process but do not affect the sign

of said price moves. For example, we now include as an explanatory variable the

time of the volume slice τ , which was not applicable in explaining signed price change

but is useful as a predictor for the magnitude of a price change. We also test three

so-called toxicity indicators. Toxicity is often used in reference to incoming market

order flow from “informed” traders who possess better knowledge of the future asset

price. In theory, liquidity should become more expensive in a toxic market as market

makers try to avoid being adversely selected.

The first such measure is based on ELO’s VPIN metric 2.34, which is simply the

average of the absolute trade imbalance across the ` most recent volume slices. In

the current notation the quantity can be expressed

|TI|` = `−1
∑̀
i=1

|TIi|. (3.13)

Large values of |TI|`, are supposed to lead to less liquidity and more volatility.

Amongst the three large cap stocks we investigated, this measure was not statistically

significant to the regression models.

The co-movement in arriving market VM j and net limit flow V Lj at one side

of the LOB precisely defines the concept of resiliency. We define the correlation on
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either side of the LOB as

ρjt = corr(VM j
[t−s,t], V L

j
[t−s,t]), (3.14)

where the empirical correlation is taken over a sliding time horizon of length s = 2.5

hours with time buckets of 30 seconds. We choose the shorter intervals for this

indicator in an effort to obtain more observations for intra-day use. In theory, positive

values should indicate strong resilience (e.g. positive drift for vj(t) in Figure 3.2). We

find that ρjt is moderately significant for two stocks BBBY and TEVA. This measure

is discussed in more detail in the following section. Lastly, ρTox, first described as a

useful toxicity measure in [14], is defined

ρTox = corr(∆Pi, O
M
i ) (3.15)

where the empirical correlation is computed between the signed volume of the ith

market order and subsequent change in price is taken over a sliding window that

includes the previous 200 order arrivals. This quantity measures amount of “toxic”

flow, that is, order flow that predicts/causes a price change in the same direction.

Each variable in Table 3.3.2 was tested on each side of the LOB for all three

stocks. Equation (3.16) includes the key variables in predicting the log-odds of scarce

liquidity,

logit(πAk ) = θ0 + θ1V L
A
k + θ2V L

B
k + θ3τk + θ4PI

A
k + θ5V L

A
1 + θ6ρ

A
t + θ7TIMAi (3.16)
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where logit(·) is the log-odds function and we make the usual assumption that

SLAk ∼ Bin(1, πk)

with probability πk. We fit the identical model to SLBk except for switching the

superscripts on variables PIN , V L1 and ρt from A to B.

As in the previous section, for each stock and side of the LOB (six models in

all), limit order flow at each touch V Lj was of key importance to the model. Unlike

the previous section, theoretical price impact PIjN on the same side of the book

(PIjN if testing πj) was of approximately equal significance as V Lj in all six models.

The time of the volume slice τ , was also highly significant, especially for TEVA and

BBBY, and with negative coefficient, indicating that scarce liquidity tends to occur

less frequently later in the trading session. The trade imbalance moving average

TIMA, was significant for all six models and affected results in the same manner in

the previous model (3.11). The coefficient for TIMA was negative for j = A and

positive for j = B showing that scarce liquidity often occurs in the opposite direction

of the longer term trend in market order flow, i.e. price tends to mean revert on

average.

The three “toxicity” measures added little in terms of predictive power to the

model. Both |TI|` and ρ̂i were not significant for any of the models. In three of

the six models the resilience measure ρt did prove significant at the 1% level with

negative coefficient. So some persistent trend in the interaction between limit and
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market flow does appear to exist but our metric ρt surely needs further improvement

or calibration.

Across all six estimated models (3.16), the percentage of deviance explained ranged

between 30%− 35%. Percentage of deviance explained is analogous to R2 and is one

goodness of fit measure for generalized linear models.

To this point each model has included concurrent limit order flow V Lj, and is

therefore of limited practical use. Upon removing the concurrent indicators V Lj to get

a truly predictive model, the deviance explained by each model (3.16) drops to 7−10%.

Without including the concurrent additions and cancellations summarized in V Lj, the

model fit materially worsens. Further study into these processes on more robust data

including multiple assets and trading venues is warranted. Further, defining a model-

free dependence structure between the four asynchronous point processes V LA, V LB,

VMA and VMB is an interesting open problem with practical implications.

3.4 Limit and Market Flow

We have shown that at the minutes-scale, the flow of incoming additions and

cancellations rather than LOB depth is the primary driver of the price impact of

market orders. Further the observed outcomes upon arrival of several market orders

on one side varies widely, from strong resilience that leaves the mid-price unchanged,

to rapid cancellations that lower the mid-price by several ticks. While predictors
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V Ljk−1, ρjt and ρ̂i attempt to capture persistent trends in limit order arrival processes

the predictive power in equation (3.16) when excluding contemporaneous limit orders

β1 = β2 = 0 is limited. This is not an altogether surprising result. Moving from the

event-by-event timescale to the intermediate scale of course brings the effects of not

only intra-day but also inter-day trends and broader market themes as well. However,

even with the limited data and scope under consideration, we note some interesting

features of limit flow and related quantities.
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Figure 3.8: Autocorrelation plots at minutes-scale V = 1%ADV , 103 trading days. Left: V LA

and V LB for BBBY. Right: Occurrence of scarce liquidity for TEVA.

Figure 3.8 illustrates that some non-zero autocorrelation exists in the flow of limit

orders to the touch, even at the intermediate time-scale. The left side shows autocor-

relation for processes V LB and V LA for BBBY and the right shows autocorrelation in

the occurrence of TEVA volume slices with scarce liquidity in either direction. While
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the figures show some persistence in limit flow, analyzing limit arrivals apart from

market order arrivals, makes little sense. Rather the key issues are how the two move

together, how this relationship evolves over time and importantly, whether there exist

persistent “regimes”.
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Figure 3.9: Smoothed contemporaneous correlation between V L and VM over the past 2.5 hours
using 30-second buckets with colors indicating different trading days. Left: TEVA. Right: MSFT.

Solid: bid-side. Dashed: ask-side

Figure 3.9 plots correlation between observed values of V L and VM (ρj) over

a sliding time interval of 2.5 hours and with 30-second time buckets. The left side

shows interaction between V LB and VMB for four separate trading days for TEVA

while the right shows each side of the book on two separate trading days for MSFT.

We observe distinct “regimes” in the correlation value on both an intra- and inter-

day basis and interpret lower values as corresponding to increased cancellations and

scarce liquidity, while positive values are characteristic of strong resilience. From
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one point of view rapidly declining ρj could be an indication of the cumulative effect

of persistent and aggressive buying/selling that leads market makers to adjust their

reference prices to account for added inventory risk. Alternatively, ρj could highlight

instances of “information leakage” and/or “front running”. In any case, the existence

of persistent states in interactions of order flows seem to deviate from the traditional

model of resilience, in which a well-defined LOB shape is perturbed by arriving market

orders and then “refilled” over time.
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Figure 3.10: TI plotted against net limit order flow at the bet bid (left) and best ask (right).
Red (blue) points indicate volume slices with price decrease (increase) of at least .05. MSFT,

covering the first 50 trading days of 2011.

By construction, ρj ignores the activity taking place at the opposite side of the

LOB. Alternatively we could simply analyze the joint movement between V L and TI.
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Figure 3.10 plots the two quantities at the V = 1%ADV volume slice scale. There

is a clear positive (negative) relationship between TI and V LB (V LA), especially for

MSFT, but which also holds for TEVA and BBBY. Given the very large number

of heterogeneous players participating in trading activity, it is difficult to draw any

conclusions as to the causality. Whether HFT market makers are predicting one-

sided market flow or reacting to it, these periods persist long enough to appear very

clearly at the minutes-scale. Table 3.4 shows that volume slices with low resiliency

are anywhere from 2− 5 times as likely to occur when market order flow is one sided

(at least 75% in buy/sell direction).

MSFT TEVA BBBY

V LA < q.10 V LB < q.10 V LA < q.10 V LB < q.10 V LA < q.10 V LB < q.10

TI > V/2 35.4% 0.6% 23.0% 11.2% 27.7% 11.0%

−V/2 < TI < V/2 7.4% 8.6% 3.0% 3.9% 10.7% 14.1%

TI < −V/2 0.7% 35.7% 11.1% 23.0% 8.7% 27.1%

Table 3.4: Observed probability of low resilience by trade imbalance.

To summarize, we have discussed several key issues in the modeling and measure-

ment of LOBs and price impact. At the minutes scale, order flows are the primary

driver of the price formation process and not the measures of depth given by the

LOB. Additionally, it is clear that market makers anticipate and/or react to one-
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sided MOF which can lead to periods of rapid limit order cancellations or weak LOB

resiliency. Along these lines, modeling LOB dynamics or price impact under a Marko-

vian assumption ignores a significant component of the price formation process: the

historical order flow. Further research into the multi-scale dynamics of LOBs is cer-

tainly warranted.

For the large tick stocks studied here, periods of scarce liquidity appear to induce

higher one-sided execution costs, which contrasts with Easley et al. [24, 27] and

the model in Chapter 2. In the following, we propose a new execution model that

incorporates several of the findings from the empirical study.
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Chapter 4

Optimal Execution with Expected

Trade Imbalance: Liquid Stocks

4.1 Motivation

We now return to the question of how to best liquidate a large position of an asset

while considering order flows and the informational costs associated with impacting

the order flow process. In Chapter 2, execution costs stemming from the expected

trade imbalance (Yt) were largely symmetric (cost term Y 2
t ) and abstract in the sense

that it was not specified how exactly the trader’s profit and loss were affected. We

now assume that the asset in question is a liquid stock, similar to those investigated

in Chapter 3. Important features are that the bid-ask spread is usually one tick and
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that the posted volume is almost always plentiful at the first several levels of the

LOB. In this setting, limit order flow appears to be closely associated with trade im-

balance, lending support to the assumption that market maker strategies incorporate

expectations about MOF. Further, the effects on liquidity and resulting execution

costs appear to be 1-sided in nature (see Section 3.4). In the current chapter optimal

executions strategies are calculated when costs in Yt are asymmetric.

Remark 7. Modeling symmetric execution costs in the LOB setting is an interesting

issue. ELO [27] claim that extreme values of trade imbalance indicate two sided

effects on the liquidity provision process, which could be easier to detect in less

liquid assets, such as E-Mini contracts, one of their primary applications. Even for

large-tick assets like MSFT, we do find some evidence of longer (e.g. daily) regimes

with elevated symmetric costs as measured by the daily average of PIA + PIB or

frequency of observed instances of scarce liquidity SL1. Determining the contributing

factors to these regimes is difficult however. First, at the daily scale overall market

trends and related assets (Futures, ETFs etc) play a large role. Second, order flows

and execution activity for the individual asset must be aggregated across all trading

venues to gain a complete picture of market activity. This is certainly a non-trivial

issue. Lastly, periods of low liquidity are episodic in nature, occurring infrequently.

1Given the limited scope (both length of time and breadth of assets) of the data in Chapter 3
drawing conclusions at this scale proved very difficult.
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In this Chapter we focus on one-sided, trade imbalance driven, execution costs that

are more commonly characteristic of LOBs for liquid stocks.

Continuing in the Almgren-Chriss framework as in Chapter 2, the goal is now to

tie costs in Yt directly to the trader’s wealth process. This can be accomplished in two

ways: First, by introducing a liquidity cost in Yt that affects the immediate execution

price, and second, by allowing Yt to impact the future price. It is important to

remember that the process (Yt) is the trade imbalance that “the market” (especially

market makers) expects. As discussed in Section 2.4.1 the link between recently

observed trade imbalance and expected trade imbalance is an open question, but the

two are undoubtedly closely linked.

Liquidity Cost As in the model in Chapter 2, trading in the same direction as

prevailing flow means that the execution trader is competing for liquidity. Therefore,

in this case liquidity is potentially more costly that it would otherwise be if trading

in a balanced market. Namely, it is more likely that inventory at the first level will

be exhausted during the execution process by competing market orders or canceled

limit orders. To capture this effect we introduce an additional instantaneous price

impact term h(αt, Yt) which affects only the current transaction price. When the rate

of execution is very high, we posit that h(·) is dominated by the existing quadratic

cost term α2 (2.6). This reflects the fact that we do not observe radical changes to

110



the entire LOB coinciding with trade imbalance. Therefore we let h(αt, Yt) = γYt for

some constant γ > 0, so that the resulting cost is linear in αt and Yt (see (4.4)).

Impact on Future Price To capture the effect of the expected trade imbalance

on the fundamental price, we allow the drift term f(Yt)dt into the stock price dynam-

ics. Again, we note that Yt is expected trade imbalance and f(Yt), the flow driven

mid-price drift, captures the fluctuations in the stock price caused by limit order

additions and cancellations that result from expected trade imbalance. In contrast to

the execution model by Cartea et al. [16] (see Remark 8), f(Yt) is not meant to model

the impact of actual arriving MOF such as Equation (3.9) seeks to do, but rather

the effect on price of LOB resiliency/fading that occur when MOF is one-sided. The

functional form of f(·) is likely to be non-linear and possibly discontinuous as well.

For example, it may be the case that f(Yt) resembles a step function, with f(Yt) ≈ 0

for most values of Yt and stepping up materially when Yt becomes extreme in either

direction. From Section [Last in Ch3] we observed that rapid cancellation resulting

in scarce liquidity and large mid-price change is much more likely when imbalance is

high. In Section 4.2 we solve the problem assuming f(·) is linear and in Section 4.3

we address the case where f(·) is non-linear.

Remark 8. Cartea and Jaimungal [16] present an Almgren-Chriss extension where

the expected future net order flow serves as a linear drift term in the mid-price. It is

assumed that future order flow will impact the price in the same way as is observed in
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the price trend analysis in Section 3.3.1 for example. However, in reality, the current

price (and market makers) typically take into account the expected trade imbalance.

As the model [16] is presented, the implicit assumption is either 1) that the expected

net order flow process is information only known to the execution trader, or 2) that

current prices (and market makers) do not consider expected net order flow process.

In contrast, the approach presented in this Chapter models the effect of the expected

trade imbalance on market maker behavior, and subsequently the mid-price (through

resiliency/fading of the LOB). This is a subtle but important difference and motivates

the non-linear effect of Yt in Section 4.3.

In contrast to Chapter 2 we now focus exclusively on the fixed-horizon execution

problem. It is possible to apply similar steps as in Chapter 2 to investigate optimizing

the execution horizon but that is not the primary objective here. Additionally, we

assume that information leakage is modeled deterministically φ(αt) = φ(t) as in

Section 2.2.1. As will be shown, even with deterministic information leakage, we still

obtain dynamic strategies that adapt to fluctuations in the expected trade imbalance.

4.2 Optimal Execution with Assymetric Costs

As in Chapter 2 the trader needs to liquidate a position of size x0 = x. We assume

a continuous-time setup, with trading taking place continuously and via infinitesimal
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amounts. The trader controls the speed of liquidation αt = (αt){0≤t≤T} and inventory

xt again follows the dynamics

dxt = −αtdt. (4.1)

The class of admissible strategies A(T, x) is defined as in Chapter 2, as is the expected

trade imbalance process (Yt) which follows the dynamics

dYt = −βYtdt− φ(t)dt+ σY dW
(Y )
t , (4.2)

where φ, which controls information leakage, is modelled as a deterministic function

of time t. Recall that the stationary variance σ2
Y /(2β) is chosen such that P(Yt /∈

[−1, 1]) ≈ 0. The mid-price follows the SDE

dPt = f(Yt)dt+ σPdW
(P )
t , (4.3)

where f(Yt) captures the fluctuations in the mid-price caused by limit additions and

cancellations resulting from the expected trade imbalance. In the current section it is

assumed that f(Yt) = θYt for some nonnegative constant θ. Also note that the noise

terms in (4.2) and (4.3) could be correlated but this does not affect the execution

strategy or costs.

To account for the limited amount of liquidity resting at the best bid we also

define the execution price P̌t, which depends on both αt and Yt. Trading an order of
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size αtdt obtains the execution price

P̌t = Pt − ξαt + h(Yt), (4.4)

where h(·) is a decreasing function that captures the effect of trading with or against

the prevailing market order flow and ξ is a nonnegative constant . Trading with the

flow, the trader competes for liquidity with other participants and may on balance

expect to exhaust the first queue more often during execution. For the remainder,

we assume the cost is linear in Yt so that h(Yt) = γYt. Lastly, the investor’s wealth

process, Qt follows the dynamics

dQt := αtP̌tdt. (4.5)

The performance criteria and value function for the continuous-time execution prob-

lem are written

u(t, P, q, x, Y ) = sup
(αt)∈A(T,x)

EP,x,Y
[
QT −

∫ T

0

λ(xαs ) ds

]
. (4.6)

Equation (4.6), the analog (2.10) in Chapter 2, no longer has a quadratic cost term

in Yt. Also, rather than minimizing execution costs, the problem is framed such that

the objective is to maximize revenues Qt subject to the running inventory penalty∫ T
0
λ(xαs ) ds. The functional form of λ(xs) dictates the “benchmark” strategy as

described in Section 2.2.1. Here, we focus on λ(xs) = cx2
s which gives as a benchmark

1Recall that ξ = 1 in Chapter 2.
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the Almgren-Chriss strategy when c > 0 and the VWAP strategy when c = 0. As

before, the terminal condition

lim
t→T

u(t, P, q, x, Y ) =


0 if x = 0

−∞ if x 6= 0.

(4.7)

guarantees that the liquidation process is completed by the terminal time. As a matter

of notation, we now fix the terminal time T , and (4.7) and (4.8) are parameterized in

terms of t rather than in terms of remaining time (called T in Section 2.2.2). Then,

the HJB PDE for u(t, P, q, x, Y ) is

−ut =
1

2
σ2
Y uY Y − βY uY − φ(t)uY + θY uP − λ(x) + sup

α
{α(P − ξα + γY )uq − αux} ,

(4.8)

with f(Y ) = θY and u(T, P, q, x, Y ) = −∞ unless x = 0. Also, as in (2.22), α is

unconstrained and allowed to become negative, though this is an unlikely occurrence

for reasonable parameter choices.

Proposition 4.2.1. The solution of (4.8) has the form

u(t, P, q, x, Y ) = q+xP +x2A(t) +Y 2B(t) +xY C(t) +xD(t) +Y E(t) +F (t), (4.9)
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where A,B,C,D,E, F solve the system of ordinary differential equations (ODEs)

A′(t) = A2

ξ
− c

B′(t) = −2βB + 1
4ξ

(C − γ)2

C ′(t) = θ − βC + A
ξ
(C − γ)

D′(t) = −φ(t)C + AD
ξ

E ′(t) = −2φ(t)B − βE + D
2ξ

(C − γ)

F ′(t) = σ2
YB − φ(t)E + D2

4ξ
,

(4.10)

and we have the following terminal conditions

lim
t→T

A(t) = −∞

B(T ) = D(T ) = E(T ) = F (T ) = 0

C(T ) = γ

(4.11)

For the case c = 0 (VWAP benchmark strategy) we choose the corresponding

constant information leakage term φ(t) = φVWAP and have the following closed form

solution
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A(t) = − ξ

T − t

B(t) =
−χ+(t)e−2β(T−t)

8β4ξ(T − t)
(γβ − θ)2

(
2χ+(t) + β(T − t)(χ+(t) + 2)

)
C(t) =

1

β2(T − t)
(
θ(β(T − t) + χ−(t)) + βγχ−(t)

)
D(t) =

φVWAP

2β3(T − t)
(
2θχ−(t)− β2(T − t)(2γ + θ(T − t)) + 2β(θ(T − t)− γχ−(t))

)
E(t) =

φVWAP e−2β(T−t)

4ξβ5(T − t)
(βγ − θ)(2χ+(t) + β(T − t)(χ+(t) + 2))(θχ+(t)

− β(γχ+(t) + θ(T − t)eβ(T−t)))

F (t) =

∫ (
σ2
YB(t)− φVWAPE(t) +

D(t)2

4ξ

)
dt,

(4.12)

with

χ+(t) = 1− eβ(T−t)

χ−(t) = 1− e−β(T−t).
(4.13)

Proof. See Section 4.4.

Remark 9. The system (4.9) consists of a Riccati ODE, A(t) and several first order

ODEs that can be solved directly in a sequential manner. In the case where c > 0

the benchmark strategy follows the Almren-Chriss curve (2.14) and certain integrals

in (4.12) can not be easily expressed in explicit form. However lengthy expressions

can be obtained by applying a computer algebra program like Mathematica.

Proposition 4.2.1 yields a candidate solution to the control problem in (4.6). The

first two terms in (4.9) are the value of the proceeds from all sales to date plus the value

of the remaining inventory, “marked-to-market” at the current price. The remaining
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terms, which are independent of Pt, represent the value of optimally liquidating for

the remainder of the trading horizon. The optimal strategy is given by the following

theorem.

Theorem 4.2.2. Verification. The candidate value function given in Proposition

4.2.1 is the solution to the optimal control problem (4.6). The corresponding optimal

rate of liquidation when c = 0 is

α∗t =
xt

(T − t)
+
Yt
2ξ

(
γ − 1

β2(T − t)
(
θ(β(T − t) + χ−(t)) + βγχ−(t)

))
− φVWAP

2β3(T − t)
(
2θχ−(t)− β2(T − t)(2γ + θ(T − t)) + 2β(θ(T − t)− γχ−(t))

)
.

(4.14)

Proof. See Section 4.4.

The first term of the optimal trading strategy (4.14) corresponds to the VWAP

strategy and is independent of Yt. The functional form of this term depends on the

choice of inventory risk penalty λ(xt), with alternatives to the VWAP strategy given

by I in Section 2.2.1. How α∗t depends on Yt is dictated by the values chosen for

constants γ and θ. When γ is small relative to θ, then the additional liquidity cost of

trading with the prevailing market flow is outweighed by the dropping mid-price. In

this case the trading rate is decreasing in Yt. On the other hand, the liquidity cost

in Yt dominates the influence on mid-price when γ is large compared to θ. The third

term, which adjusts the trading rate based on the deterministic information leakage

φ(t), is positive and approaches 0 as t→ T .
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Corollary 4.2.3. For all values of T , the optimal rate of trading is non-decreasing

in Yt if the following condition holds

γ ≥ θ

β

and decreasing otherwise.

Proof. See Section 4.4.

Corollary 4.2.3 shows that when both f(·) and h(·) are linear, the effects on the

strategy of each function partially offset each other and the resulting strategy is linear

in Yt. The amount by which the market’s expected trade imbalance Yt affects the

trading rate depends on the time remaining T − t. As t → T , the trading rate

stabilizes as the first term in (4.14) dominates the second. In the next section we

investigate the more interesting set-up where expected order flow has a non-linear

effect on the price Pt.

4.3 Optimal Execution with Non-Linear Flow Driven

Mid-Price Drift

The motivation for allowing f(Yt) to be a non-linear and in particular a convex

function is quite intuitive. During relatively calm market conditions, we might observe

balanced to moderate values of expected trade imbalance. Under these conditions,
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liquidity providers would assume that adverse selection costs are low, or put another

way, that most MO arrivals are sent by non-informed traders. Increasingly one sided

MOF would be ignored as not indicative of new information. On the other hand, if

one-sided MOF persists or MOF is viewed as carrying new information about future

prices, expected trade imbalance would spike, causing liquidity providers to quickly

adjust their orders. Strong autocorrelation in limit order signs also suggest potential

“herding” amongst liquidity providers which would support the non-liner effect of Yt

on the mid-price Pt.

As described in the previous section, when both h and f are linear, the resulting

strategy is also linear in Y with the direction and sensitivity determined by the

parameter choices. When f(Yt) is convex, the liquidity cost h(Yt) drives the trading

strategy in a balanced market, and the effect of f(Yt) on the mid-price and trading rate

are negligible. In an unbalanced market, the mid-price drift f(Yt) heavily influences

the trading rate. Choices for the functional form of f that maintain the tractability

from Section 4.2 are limited. However, it turns out that f(Yt) = θY 3 can be solved

in closed-form when information leakage is modelled deterministically φ(αt) = φt.

We now have the mid-price drift f(Yt) = θY 3 and the corresponding HJB PDE

and conditions from the previous section 4.2. The following proposition gives the

form of the solution and explicit optimal trading rate when φt = 0. Allowing for
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non-zero φt requires additional higher order terms in Y but does not change the form

of (4.15) or the spirit of the optimal trading strategy.

Proposition 4.3.1. Under the assumptions that f(Yt) = θY 3 and φt = 0, the solution

of (4.8) has the form

u(t, P, q, x, Y ) = q+xP +x2A(t) +Y 2B(t) +xY C(t) +xY 3D(t) +Y 6E(t) +Y 4F (t) +G(t), (4.15)

where A,B,C,D,E, F,G solve the system of ordinary differential equations (ODEs)

A′(t) = A2

ξ
− c

B′(t) = −2βB + 1
4ξ

(C − γ)2 + 12σ2
Y F

C ′(t) = σ2
YD − βC + A

ξ
(C − γ)

D′(t) = θ − 3βD + AD
ξ

E ′(t) = D2

4ξ
− 6βE

F ′(t) = 30σ2
YE − 4βF + D

2ξ
(C − γ)

G′(t) = 2βσ2
Y .

(4.16)

and we have the following terminal conditions

lim
t→T

A(t) = −∞

B(T ) = D(T ) = E(T ) = F (T ) = G(t) = 0

C(T ) = γ

(4.17)
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For the case c = 0 (VWAP benchmark strategy), the optimal rate of liquidation is

α∗t =
1

2ξ

(
γYt − 2x2

tA(t)− YtC(t)− Y 3
t D(t)

)
=

xt
(T − t)

+
θY 3

t

9β2(T − t)
(
e−3β(T−t) − 1 + 3β(T − t)

)
+

Yt
18β(T − t)

(
18γβ2(1− e−β(T−t)) + θσ2

Y (9e−β(T−t) − e−3β(T−t) + 6β(T − t)− 8)
)

(4.18)

The proof of Proposition (4.3.1) is identical to Proposition (4.2.1). Functions C(t)

and D(t) are positive and approach γ and 0 respectively as t→ T , so that strategy’s

dependence on Y goes to 0 as the horizon approaches. In the following we discuss

features and financial interpretation of the optimal liquidation strategies (4.14) and

(4.18). To avoid confusion, we denote the linear case (f(Yt) = θYt) as α`t and the

convex case (f(Yt) = θY 3
t ) as αct . Figure 4.1 illustrates each trading strategy with

simulated paths of (Yt). In the simulation, parameters are set to

x0 = 3 , T = 3 , Y0 = 0 , σ2
Y = .1 , β = .25

ξ = .2 , c = .08 , γ = .6 , θ = .3.

Each side of Figure 4.1 shows 500 simulations of the optimal strategy (left: (α`t)

and right: (αct)) along with the baseline Almgren-Chriss strategy (bold solid line)

and colored bands corresponding to the 75%/25%, 90%/10% and 99%/.01% quantile

ranges. It is clear in both plots that the rate of trading tends to fluctuate with Yt

in the early stages with of trading before stabilizing as the terminal time T nears.
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Also evident is that most often, αct paths are much more tightly condensed around

the baseline strategy compared to α`t. At the same time, αct also experiences more

extreme fluctuations in the trading rate in a very small number of paths. This is a

straight-forward consequence of extreme values of expected trade imbalance having a

very large impact on trading due to the convexity of f(·).
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Figure 4.1: Optimal liquidation strategies (α`t) (left) and (αct) (right) for 500 simulated paths of
expected trade imbalance (Yt). Baseline Almgren-Chriss strategy is shown (bold solid line) along

with colored bands corresponding to the 75%/25%, 90%/10% and 99%/1% quantile ranges.

While the cubic formulation of f may not be the most realistic representation of

price dynamics with expected trade imbalance, there are some interesting financial

interpretations of the resulting strategy worth noting. First, the current price of

the asset most often reflects the available information in the market, including the

expected trade imbalance. From [12] and as previously discussed in Remark 8, this
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must generally be true given the presence of autocorrelated MOF and the common

observation/assumption that the mid-price follows a random walk. Therefore most

of the time, and for most values of Yt, its impact on future asset prices should be

minimal. As shown in Chapter 3, scarce liquidity resulting in a noticeable mid-

price move is a relatively rare event, occurring perhaps a few times a day. Thus, a

strategy considering expected trade imbalance should most often closely follow the

benchmark strategy but would occasionally deviate from this benchmark dramatically

under certain market conditions.

Second, in a similar vein, during tumultuous market conditions that often go

hand-in-hand with extreme values of observed and expected trade imbalance, market

participants often accelerate trading in an effort to exit the market and reduce risk.

The strategy αct captures this behavior, and explains how the seemingly “irrational”

trading could be in fact be optimal in certain cases. Of course with the assumption

of a fixed terminal time T , accelerated trading early in the execution process means

that trading must slow down later. As shown in Chapter 2, this issue can be resolved

by endogening the execution horizon, though it must be handled numerically.
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4.4 Proofs

Proof of Proposition 4.2.1

Proof. We first re-write (4.9) in the form

u(t, P, q, xY ) = q + xP + û(t, x, Y ). (4.19)

Substituting into (4.8) we find the optimal trading rate in feedback control form

α∗ =
γY − ûx

2ξ
.

. Upon substitution of α∗ in the HJB PDE (4.8) we have

−ût =
1

2
σ2
Y ûY Y − βY ûY − φ(t)ûY + θY ûp − λ(x) +

(γY − ûx)2

4ξ
. (4.20)

Applying the ansatz (4.19) and grouping like terms as in (2.5) yields (4.10). To obtain

the expressions for the ODEs 4.10 one begins by solving for A(t) which is a simple

example of a Riccati ODE. Substituting the expression for A(t) one can then solve for

C(t) and so forth. When c > 0 the expression for A(t) involves hyperbolic functions

that make solving the following ODEs quite messy.

Proof of Theorem 4.2.2

Proof. Since q + xp + x2A(t) + y2B(t) + xyC(t) + xD(t) + yE(t) + F (t) is a clas-

sical solution, standard arguments imply that it suffices to show whether the feed-

back control is an admissible strategy α∗ ∈ A(T, x). Namely it must be shown that
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E
∫ T

0
(α∗t )

2 dt < ∞. We provide details for the case φt = 0. Given dxt = −αtdt, the

initial position x0 and terminal condition xT = 0, we solve the ODE (4.14) and have

x∗t =
T − t
T

(
x0 −

∫ t

0

Ys

(
T (γ − C(s))

2ξ(T − s)

)
ds

)
.

Then it follows that

|x∗t | ≤
x0(T − t)

T
+

(∫ t

0

T (γ − C(s))

2ξ(T − s)
ds

)
sup

0≤s≤T
|Ys|

=
x0(T − t)

T
+
e−βT (βγ − θ)(T − t)

2β2ξT

{
(1− eβT ) + βTeβT

(
log
(T − t

T

)
+

∫ t

0

e−β(T−s)

T − s
ds

)}
sup

0≤s≤T
|Ys|

≤ x0 +
e−βT (βγ − θ)

2β2ξ

{
(1− eβT ) + βTeβT−1 + βeβT

}
sup

0≤s≤T
|Ys|.

Because Yt is Gaussian with known moments, it follows that E
∫ T

0
|xtYt| dt <∞, and

further that supt≤T |xt| ∈ L2. Therefore we have that E
∫ T

0
(α∗t )

2 dt <∞.

Proof of Corollary 4.2.3

Proof. It suffices to simply show for what values of γ the Y -coefficient in 4.14 is

positive, giving

γ ≥ θ(βT + e−βT − 1)

β2T − β(e−βT − 1)
=
θ

β
.
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Chapter 5

Conclusion

This dissertation investigated the well-known problem of optimally liquidating a

large position in an LOB-driven market. The key element introduced in our execution

model is the stochastic factor (Yt), which represents the expected trade imbalance;

that is, the imbalance between buy- and sell-initiated market orders. The expected

trade imbalance process (Yt) is closely related to the recent order flow history and

allows our model to take into account the informational cost of trading in addition

to the usual market microstructure impact. Further, incorporating Yt leads to the

consideration of the current market state and specifically whether one’s orders lean

with or against the prevailing order flow, key components often ignored by execution

models in the literature.
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In Chapter 2 we extended recent research in the area of order flow and market

toxicity to a dynamic setting. Compared to the prevailing Almgren-Chriss framework,

our model incorporates the direction of previaling MOF and the execution trader’s

impact on the expected trade imbalance. Further, we allow the trade horizon T to be

random, which provides more flexibility allowing the trading strategy to accelerate

and exit the market earlier than anticipated under adverse conditions. The model

presented in Chapter 2 incorporates two-sided execution costs when executing in a

unbalanced market, consistent the model put forth by Easley et al. [27].

The primary motivation for the empirical analysis presented in Chapter 3 was to

validate the main assumption made in Easley et al. [27] and the model in Chapter

2: that a market with one-sided MOF leads to higher execution costs for the trader

looking to liquidate his position. To that end, we estimated several regression models

in an effort to separate price trend from liquidity and to pinpoint key variables in

the price formation process. At the minutes scale, we found that order flows are the

primary driver of the price formation process. Further, it is clear that market makers

anticipate and/or react to one-sided MOF which can lead to periods of rapid limit

order cancellations or weak LOB resiliency, i.e. higher execution costs. However, one

notable conclusion was that for the assets we investigated, these costs were one-sided

in nature.
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In Chapter 4 we proposed a new model in which the costs associated with ex-

treme values of expected trade imbalance are asymmetric. The resulting closed-form

strategies are dynamic, adapting to changing state of expected trade imbalance Yt,

and have an interesting interpretation related to market stability. Namely, when the

flow driven mid-price drift f(Yt) is allowed to be convex in Yt, tumultuous market

conditions that often go hand-in-hand with extreme values of observed and expected

trade imbalance can lead dramatic moves in the selling rate. On the other hand,

moderately balanced buy/sell markets result in trading that remains very close to

the benchmark strategy.

Several interesting problems on this topic remain. First, LOB analysis is typically

done at a single time scale, usually at the very short end (� 1 second), but there

are clearly trends at the minutes-scale and longer. A multi-scale approach to LOB

analysis appears warranted. Second, while the model presented in Chapter 4 captures

the LOB resiliency/fading that occur during one-sided market order flow, it does not

fully consider how a surprise reversal in the MOF trend often has a greater impact on

the mid-price. This fact was highlighted in Sections 3.3.2 and 3.3.3 by the negative

coefficient for the trade imbalance moving average variable TIMA in the regression

models. The precise relationship between observed and expected trade imbalance has

large ramifications for traders and ought to be explored further. Refining mid-price

dynamics to account for these nuances could certainly improve execution models.
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[1] Aurélien Alfonsi, Antje Fruth, and Alexander Schied. Optimal execution strate-

gies in limit order books with general shape functions. Quantitative Finance,

10(2):143–157, 2010.
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