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Abstract

Joint Modeling of Mixed Outcomes in Clinical Research

by

Yuqi Chen

Mixed types of multivariate outcomes are common in clinical investigations. Survival

time is one of the primary goals in practice. In addition, hospitalization attracts increas-

ing attention as it is a main contributor to the total cost of care, and the identification

of related risk factors is of interest in many health economics studies. Meanwhile, we

are also interested in the longitudinal path of important clinical measurements along the

progress of disease. Joint modeling is often required as both hospitalization frequencies

or longitudinal measurements can be informatively censored due to death. In this dis-

sertation, we will propose three research projects which jointly model multiple aspects

of the outcomes.

The first research project models survival time and hospitalization together through

a latent subject-specific random frailty. B-spline bases are introduced for flexible forms

of baseline hazard and the offset function. Computational methods to solve for the

MLE and to select knots are developed. The proposed methods are applied to study the

risk factors of hospitalization and survival time among end-stage-renal-disease (ESRD)

patients.

The second part proposes a joint model of hospitalization and readmission. Number

of hospitalizations is modeled as a Poisson random variable and number of readmissions

is treated as a Binomial random variable with number of hospitalizations being the

total number of trials. The proposed joint modeling framework is applied to evaluate the

performance of an intervention program from Fresenius Medical Care in reducing number

vii



of hospitalizations and readmissions.

The third research project jointly models survival time and multiple longitudinal

observations. A penalized likelihood approach is described for variable selection. We

design a Coordinate Descent Algorithm to solve for the penalized MLE and a two-stage

estimation method to reduce the bias resulting from penalization. Simulation results

demonstrate good selection and estimation property. We illustrate the practical usage of

proposed method through an application to ESRD patients.
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Chapter 1

Introduction

Mixed types of outcomes are very common in clinical research. Patients’ survival time

is often the primary interest. Other outcomes of interest include hospitalization, quality

of life and important clinical measurements. The main interest is to investigate the

relationship between mixed outcomes and predictors. The study may be cross-sectional

where predictors are observed at baseline and outcomes are observed at follow-up time,

or longitudinal where both outcomes and predictors are observed over time. Outcomes

collected from the same patient are usually correlated since they reflect the patient’s

underlying health condition. Therefore fitting each outcome separately is less efficient

compared with joint modeling, and may lead to bias. For example, Ibrahim et al. [32] and

Henderson et al. [27] have shown that severe bias occurs for some parameters when latent

association between longitudinal measures and event time data is ignored. Liu et al. [40]

have also shown that ignoring the dependence between the terminal and recurrent events

can result in significant biases. Statistical techniques of joint modeling are required for

valid data analysis and inference.

Our research is motivated by the need for improvement in care for patients who have

end-stage renal disease (ESRD). Chronic kidney disease (CKD) is a major public health

1



Introduction Chapter 1

problem affecting 11% of the US population [8]. ESRD is the last stage of CKD when

kidneys can no longer support the body’s needs. ESRD patients need kidney transplants

or rely on dialysis to remove extra salt, water, and waste products. ESRD is a complex

condition, the failure of kidney function is accompanied by numerous metabolic changes

which affect almost all organ systems of the human body. In general, ESRD patients

suffer from multiple comorbidities, such as diabetes and cardiovascular diseases, resulting

in frequent hospitalizations and substantial mortality. Many scientific questions arise in

practice in the care for ESRD patients that require novel statistical methodologies. This

dissertation aims to develop efficient and valid statistical methodologies to address these

scientific questions.

We will develop statistical methods for three situations with mixed outcomes and

apply them to investigate the relationships between mortality, hospitalization and pre-

dictors. We introduce these three situations in the next three sections.

1.1 Joint Modeling of Mortality and Hospitalization

with Cross-Sectional Data

Hospitalization, an important marker of disease severity, and a substantial contributor

to medical cost, has attracted much attention in the literature. The aggregated cost for

all hospital stays was $387.3 billion in 2011, nearly one-third of all health care expenses in

the United States [44]. Specifically, the aggregate cost for stays with acute and unspecified

renal failure jumped from $1.0 billion in 1997 to $4.7 billion in 2011.

The high stake of hospitalization motivates health care professionals and policy mak-

ers to investigate associated risk factors for better intervention. A large number of studies

have studied the risk factors for various diseases. For example, Moss et al. [43] identified
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risk factors for hospitalization in diabetic patients, Eisner et al. [13] studied the risk

factors for hospitalization among adult asthma patients, Dennehy et al. [11] investigated

risk factors for hospitalization in pediatric rotavirus gastroenteritis patients. Inrig et al.

[34] and Brotman et al. [3] examined the effects of blood pressure changes and heart rate

variability on hospitalization in ESRD patients respectively.

One challenge in modeling hospitalization is that it is informatively censored by a

terminal event, namely death. Therefore it is desirable to model the two outcomes

(death and hospitalization) jointly since they are correlated. To investigate risk factors

associated with mortality and hospitalization together, in Chapter 2 I will propose a semi-

parametric joint model for survival time and a random variable from exponential family.

Hospitalization can be easily fitted into this framework. For example, the number of

hospitalizations can be treated as Poisson random variables and the total length of stay,

another important measure of hospitalization, can be modeled by Gamma distribution.

Shared frailty is introduced to account for the correlation between the two outcomes. An

offset function is incorporated in the hospitalization sub-model to accommodate the fact

that hospitalization can only be observed prior to death. To allow flexible form of baseline

hazard and the offset set, I assume each of these is a smooth function and model them

using B-splines with the number of knots selected by the AIC criterion. A method for

computing the maximum likelihood estimates will be developed and implemented using

SAS Proc NLMIXED. Simulations will be conducted to evaluate the proposed method. I

apply the proposed method to study the risk factors for hospitalization and mortality of

ESRD patients who are on hemodialysis. I analyze two applications on ESRD patients:

joint model of frequency of hospitalization and survival time, and joint model of total

length of stays and survival time.

3
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1.2 Joint Modeling of Hospitalization and Readmis-

sion

Readmission is defined as a patient being admitted to a hospital within a certain time

period from an initial admission. A 30-days rule is usually used by Medicare. A study of

Medicare claims data from 2003 to 2004 found that almost one fifth (19.6%) of Medicare

beneficiaries who had been discharged from a hospital were rehospitalized within 30 days

[35]. The estimated cost to Medicare of unplanned rehospitalization in 2004 was as high

as $17.4 billion.

If a hospital has a high proportion of patients readmitted within a short time frame,

it may be an indication of inadequate quality of care in the hospital or a lack of appro-

priate coordination of post-discharge care. Preventable hospital readmissions result from

several factors: lack of discharge instruction, poor quality post-hospitalization care or

poor transition of patients among providers. Many efforts have been made to alleviate

these problems [23].

Hospitalization cost and readmission rates are high in ESRD patients. United States

Renal Data System reports that in 2015, hospitalization accounts for approximately 40%

of total Medicare expenditures for dialysis patients and about 30% of ESRD patients

have an unplanned rehospitalization within the 30 days following discharge [50].

Targeting on ESRD patients on hemodialysis, Fresenius Medical Care initiated an

intervention program in 2013 in order to reduce the number of hospitalizations and read-

missions for ESRD patients on hemodialysis. Details about this study will be discussed

in Chapter 3.

Motivated by the need of evaluation for this intervention program, I propose a joint

model for hospitalization and readmission in Chapter 3. The number of hospitalizations is

modeled using a Poisson distribution, and conditional on the number of hospitalizations,
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the number of readmissions is modeled using a Binomial distribution where the number

of hospitalizations serves as the total number of trials. A shared frailty term is intro-

duced and an extra function is incorporated to explain the possible non-linear association

between the two responses. I apply the proposed method to evaluate the effectiveness of

the intervention program in reducing patients hospitalizations and readmissions.

1.3 Variable Selection in Joint Modeling of Multi-

variate Longitudinal Covariates and Survival Time

Methods in the previous two sections are intended for cross sectional data, where a

baseline period and a follow-up period are established. This section considers longitudinal

studies. The important clinical measurements are recorded repeatedly over time and

the longitudinal patterns provide insights of disease progression. In some situations,

the course of a disease is determined by one underlying clinical measurement which is

referred as a biomarker. For example, for HIV patients, CD4 cell counts is a well known

biomarker and is often monitored longitudinally together with patients’ survival time. In

some other complicated diseases, no one golden biomarker exists and therefore multiple

longitudinal processes need to be recorded. For example in ESRD patients, the impaired

kidney function is accompanied by numerous biological changes in the body and there is

no one simple clinical measurement that fully captures the disease progression.

Since the longitudinal processes are correlated and terminated by patients’ death,

a large body of literatures have explored joint modeling of longitudinal processes and

survival time [62, 9, 17, 56, 31]. Mixed effects models are commonly used to model the

longitudinal covariate and the Cox proportional hazard model is a classical choice for

survival time. Shared random effects are often introduced to account for the correlation
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between the two outcomes. Joint modeling of multiple longitudinal processes and survival

time has also been proposed from a Bayesian’s perspective [4]. However variable selection,

an essential part in statistical theory and practice, is rarely discussed in the literature

of joint modeling framework. Variable selection is especially important when there are

multiple longitudinal outcomes.

To fill this gap, I will propose a joint model for multiple longitudinal outcomes and

survival time in Chapter 4. Longitudinal outcomes are modeled by multivariate linear

mixed effect models. The random intercepts and slopes, as trajectories of longitudinal

measurements, are then incorporated in the sub-model of survival time. A penalized

likelihood approach is proposed to perform variable selection of these random effects

in a Cox model. I will develop a coordinate descent algorithm for the optimization

of penalized likelihood. A two-stage estimation method will be adopted to reduce the

estimation biases resulting from penalization. The proposed procedure will be applied to

an ESRD study to identify important predictors for mortality.

6



Chapter 2

Joint Modeling of Mortality and

Hospitalization with Cross-Sectional

Data

2.1 Introduction and Related Work

Hospitalization is a main contributor to the total cost of care, and identification of

the related risk factors is of interest in many health care studies. The main difficulty

in modeling hospitalization data is due to the fact that the frequency of hospitaliza-

tion and the total length of hospital stays are functions of follow-up time that can be

informatively censored due to death. Since both the hospitalization outcome and time-

to-death are related to the underlying health, it is desirable to jointly model them as

bivariate outcomes. Mixed types of multivariate outcomes are common in many fields of

science and social science. Various statistical models and methods have been proposed

to deal with different types of mixed outcomes [10]. For example, Fitzmaurice and Laird

proposed regression models for continuous and binary outcomes [18], Sammel et al. pro-
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posed latent variable models for mixed discrete and continuous outcomes [49], Catalano

proposed a latent variable model for continuous and ordinal outcomes [6], and Dunson

and Herring proposed Bayesian latent variable models for mixed outcomes [12]. These

methods can not handle censored data which is needed for joint modeling of survival time

and hospitalization in health studies.

A large number of models have been developed aiming at the joint modeling of survival

hazard function and hospitalization rate simultaneously. For example, Lancaster and

Intrator 1998 [37], Wang, Qin and Chiang 2001 [60], Huang and Wang 2004 [30], Liu,

Wolfe and Huang 2004 [40], Huang, Qin and Wang 2010 [29] and the references therein.

These researches treat hospitalization as a recurrent event and death as a terminal event.

And they are interested in modeling the intensity function of the recurrent process. In

this research, we are interest in modeling the expected number of hospital admissions

and hospital stay.

Our research is motivated by the need for improvement in care for end-stage renal

disease (ESRD) patients. Hemodialysis (HD) is the most frequently used treatment

modality for ESRD patients. In general, HD patients suffer from multiple comorbidi-

ties, such as diabetes and cardiovascular diseases, resulting in frequent hospitalizations

and substantial mortality. In spite of improvements over the years, hospitalization and

mortality rates of ESRD patients on HD remain much higher than those of the general

population [7]. In this chapter I am interested in identifying risk factors for hospital-

ization and mortality. The data come from an observational study of patients on HD

in Fresenius Medical Care. Covariates at baseline and outcomes including survival time,

hospital admissions and total length of hospital stay at follow-up were collected. Ap-

proximately 20% of patients died during the follow-up period and observational times for

hospitalization outcomes of these patients are censored due to death. Since both survival

time and hospitalization are associated with the underlying health condition, it is likely

8
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that these outcomes from the same subject are correlated. Therefore, it is necessary to

develop a joint model for survival time and hospitalization. Details of the data are given

in Section 2.5.

In this chapter I propose a semi-parametric latent variable model for joint modeling

of a survival time and an outcome from exponential family. The survival time is modeled

by a semi-parametric proportional hazard model with a subject-specific random effect.

The hospitalization related endpoint, such as the number of admissions, length of stay or

whether a subject has ever been hospitalized, can be model by a generalized linear mixed

effects model. Since the hospitalization outcome may only be observed before death,

an offset function will be included in the generalized linear model to take into account

the follow-up time. To allow a flexible relationship between the hospitalization endpoint

and the follow-up time, I introduce a nonparametric smooth offset function that includes

parametric functions, such as logarithm, as special cases. When the offset function is

parametric, these models reduce to the standard generalized mixed effects models and

parameters of interest may be interpreted in terms of the constant conditional means

such as incident rate, mean duration and average probability. The smooth offset function

allows deviation from this rigid assumption. The forms of the baseline hazard function

and the offset function are usually unknown. They will be modeled non-parametrically

using spline functions with non-negative and, when appropriate, monotone constraints.

A latent random variable will be used to model potential correlation between survival

time and hospitalization outcome from the same subject [42]. I will further discuss the

estimation procedures which can be conveniently carried out using existing softwares.

The rest of this chapter is organized as follows. Section 2.2 introduces the semi-

parametric latent variable model. Section 2.3 provides details about our estimation

procedure. Sections 2.4 and 2.5 present simulation results and applications to patients

on HD. The chapter ends with a discussion in Section 2.6.

9
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2.2 The Semi-parametric Latent Variable Model

2.2.1 The Overall Model

For subject i, I denoteDi as the death time, Ci as the censoring time, Ti = min{Ci, Di}

as the observed time, ∆i = I(Di < Ci) as the event indicator and hi(t) as the hazard

function. Let Yi be another outcome variable from exponential family. Let ZD
i and ZY

i

be covariates associated with the outcomes Di and Yi respectively. Note that ZY
i may

include ∆i. We will consider the following joint model:

hi(t) = h0(t) exp(β′ZD
i + νi),

g (E(Yi|Ti, νi)) = w(Ti) + α′ZY
i + ηνi,

(2.1)

where h0(t) is the baseline hazard, g is the link function, νi
iid∼ N(0, σ2) is a shared frailty

for subject i, and w is an offset function. The first equation in (2.2) is a Cox proportional

hazard model for survival time while the second equation in (2.2) is a generalized linear

model for Yi. The shared frailty is introduced to model heterogeneity among subjects

and correlation between Di and Yi within a subject. The distribution of the shared

frailty is assumed to be normal for simplicity. Extensions to other distributions are

straightforward. The offset term w(Ti) is introduced to account for the fact that Yi is

only observed prior to time Ti.

10



Joint Modeling of Mortality and Hospitalization with Cross-Sectional Data Chapter 2

2.2.2 A Spline Model for the Baseline Hazard

The form of the baseline hazard function h0(t) is generally unknown in practice. We

will assume that h0(t) is a smooth function and model it using B-spline basis functions:

h0(t) =

K+1+Lh∑
k=1

dkBk(t|K1, τh),

where Bk(t|K, τh) denotes the evaluation at t of the K-degree B-spline basis functions

generated with interior knots τh = {th1, th2, · · · , thLh
}. We will use the constraints dk ≥ 0

to enforce the non-negativity constraint of the function h0(t). The function h0(t) is

decided by coefficients dk as well as the number and locations of knots. The estimation

of coefficients and the selection of knots will be discussed in Section 2.3.

2.2.3 A Spline or Monotone Spline Model for the Offset Func-

tion

When Yi represents counts such as hospital admissions, one possible assumption is

that Yi is generated from a homogeneous Poisson process. Under this assumption and

canonical link for Poisson data, the offset function w(t) = log(t). However in practice Yi

may be generated from a non-homogeneous Poisson process [59]. It is therefore desirable

to leave the functional form of w unspecified. Again I model w nonparametrically using

B-spline basis functions:

w(t) =
K+1+Lw∑
k=1

ckBk(t|K, τw),

where Bk(t|K, τw) denotes the evaluation at t of the K-degree B-spline basis functions

generated with internal knots τw = {tw1, tw2, · · · , twLw}.

For Poisson data, it is natural to assume that the expectation of Yi increases with

the observational time Ti. In this case I assume that w(t) is a smooth non-decreasing

11
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function. Ramsay used integrated M -splines to fit a monotone spline [47]. We will adopt

a similar approach using integrated B-splines. Specifically, denote integrated B-splines

as Ik(t|K, τ) =
∫ t

0
Bk(u|K, τ)du for k = 1, . . . , K. Since Bk’s are non-negative, then Ik’s

provide a set of non-decreasing basis functions. We model w using integrated B-spline

basis functions:

w(t) =
K+1+Lw∑
k=1

ckIk(t|K, τw) + c,

where c is an unknown constant and ck’s are coefficients with constraints ck ≥ 0.

2.3 Estimation Method

The full likelihood is

L =
n∏
i=1

∫
f(Yi|Ti,∆i, νi)li(Ti,∆i|νi)fν(νi)dνi, (2.2)

where n is the total number of subject, f(Yi|Ti,∆i, νi) is the conditional density of Yi in

the exponential family, fν(νi) is the density function of the latent random variable ν, and

li(Ti,∆i|νi) =
{
h0(Ti) exp(β′ZD

i + νi)
}∆i

exp

{
−
∫ Ti

0

h0(t) exp(β′ZD
i + νi)dt

}
.

Our goal is then to obtain parameter estimates by maximizing the likelihood. Since

there is no closed form solution, I apply the Newton-Raphson methods to compute param-

eter estimates numerically. For stability, I apply the Newton-Raphson ridge optimization

where a pure Newton step is used when the Hessian is positive definite and when the

Newton step successfully increases the value of the likelihood, otherwise a multiple of the

identity matrix is added to the Hessian matrix [38]. To calculate the gradient and Hessian

matrix, I need to evaluate integrals derived from the likelihood function. The Gaussian
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quadrature method is used to approximate these integrals. We estimate random effects

νi by their empirical Bayes estimators ν̂i that maximize f(yi|Ti,∆i, νi)li(Ti,∆i|νi)fν(νi).

Numerically stable implementations of these methods can be obtained from a variety

of publicly available softwares [46]. In our simulation and example, I employed SAS

procedure Proc NLMIXED to perform the computation. Proc NLMIXED has an appealing

feature which allows a user-specified log likelihood functions with respect to the random

effects. See [38] for details on this procedure.

The number and location of knots are fixed in the above discussion. While increasing

the number of knots has the capability to model a more flexible function, having too many

knots will increase the complexity of the model and result in over-fitting. A data-driven

procedure for the selection of number and location of knots is desirable. We allow h0(t)

and w(t) to have different numbers and locations of knots. In practice one may place

knots evenly in a range or at equally spaced quantiles of data. We select the numbers of

knots by minimizing the following AIC [1]:

AIC(Lh, Lw) = −2 logL+ 2(Lh + Lw + 2K + 2), (2.3)

where Lh and Lw are the number of knots for baseline hazard function and offset function

respectively.

2.4 Simulations

We generate simulation samples from the following model

hi(t|νi) = h0(t) exp(βZi + νi),

log(E(Yi|Ti, νi)) = w(Ti) + αZi + ηνi,

(2.4)
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where Zi’s are iid random variables with P (Zi = 0) = P (Zi = 1) = 0.5, νi
iid∼ N(0, 0.5),

and conditional on Ti and νi, Yi follows a Poisson distribution with mean exp(w(Ti)+αZi+

ηνi). The censoring time Ci = min{Ei, 4} where Ei
iid∼ Exp(0.1). The true parameters are

set to be (α, β, η) = (0.5, 0.5, 1). We consider two baseline hazard functions, Exponential

baseline h0(t) = 1/2 and Weibull baseline h0(t) = t/2, and two offset functions, linear

function w(t) = t/2 and log function w(t) = log(t).

The baseline hazard h0(t) is estimated using cubic B-spline basis functions. The

offset function w(t) is estimated using cubic integrated B-spline basis functions under

the monotone constraint. Interior knots are equally spaced within the time period (0, 4],

and the number of knots for h0(t) and w(t) range from 2 to 4 respectively. The optimal

combination of number of knots is selected by minimizing the AIC (2.3).

Simulation under each setting is repeated 500 times. For the estimation of parameters,

I compute bias, mean squared error (MSE) and coverage probability of 95% confidence

intervals (CP). The 95% confidence interval is constructed as the MLE plus-minus 1.96

times the standard errors obtained from the variance-covariance matrix. For the estima-

tion of functions h0(t) and w(t), I compute the integrated mean square error (IMSE)

IMSE(f̂) =

∫ 4

0

(f̂(t)− f(t))2dt

for each replicate, where f is either h0 or w.

Tables 2.1, 2.2, 2.3, 2.4, 2.5 summarize performances of parameter and function es-

timates under four simulation settings. Overall the proposed estimation procedure per-

forms well: bias and MSE are small, and the coverages of 95% confidence intervals are

close to the nominal value. The performances improve as sample size increases.

As an illustration, Figure 2.1 shows the 5th, 25th, 50th, 75th and 95th best estimates

of ĥ0(t) and ŵ(t) ordered by the IMSE under the simulation setting when h0(t) = t/2,
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Table 2.1: Bias, mean squared error (MSE) and coverage probability of 95% confidence
intervals (CP) based on the joint model when h0(t) = 1/2 and w(t) = t/2.

h0(t) = 1/2 w(t) = t/2 α β η σ2

n = 300 Bias 0.007 0.045 -0.064 0.337
MSE 0.017 0.037 0.066 0.65
CP 0.938 0.981 0.809 0.965

n = 500 Bias 0.002 0.014 -0.008 0.149
MSE 0.010 0.022 0.871 0.936
CP 0.946 0.946 0.871 0.936

n = 1000 Bias 0.002 0.008 0.003 0.063
MSE 0.005 0.01 0.031 0.062
CP 0.94 0.948 0.916 0.94

Table 2.2: Bias, mean squared error (MSE) and coverage probability of 95% confidence
intervals (CP) based on the joint model when h0(t) = 1/2 and w(t) = log(t).

h0(t) = 1/2 w(t) = log(t) α β η σ2

n = 300 Bias 0.033 0.084 -0.106 0.779
MSE 0.025 0.064 0.109 2.833
CP 0.966 0.968 0.774 0.957

n = 500 Bias 0.016 0.046 -0.03 0.381
MSE 0.016 0.030 0.088 0.912
CP 0.955 0.973 0.842 0.953

n = 1000 Bias 0.004 0.017 0.005 0.127
MSE 0.007 0.011 0.053 0.156
CP 0.947 0.966 0.890 0.951

Table 2.3: Bias, mean squared error (MSE) and coverage probability of 95% confidence
intervals (CP) based on the joint model when h0(t) = t/2 and w(t) = t/2.

h0(t) = t/2 w(t) = t/2 α β η σ2

n = 300 Bias -0.003 0.008 0.016 0.056
MSE 0.011 0.025 0.06 0.075
CP 0.968 0.963 0.925 0.951

n = 500 Bias -0.006 0.008 0.007 0.044
MSE 0.007 0.015 0.038 0.052
CP 0.944 0.962 0.912 0.930

n = 1000 Bias -0.002 0.003 0.011 0.017
MSE 0.003 0.008 0.022 0.025
CP 0.950 0.946 0.942 0.928
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Table 2.4: Bias, mean squared error (MSE) and coverage probability of 95% confidence
intervals (CP) based on the joint model when h0(t) = t/2 and w(t) = log(t).

h0(t) = t/2 w(t) = log(t) α β η σ2

n = 300 Bias 0.033 0.064 -0.025 0.346
MSE 0.020 0.064 -0.025 0.346
CP 0.958 0.973 0.859 0.936

n = 500 Bias 0.014 0.036 -0.014 0.227
MSE 0.013 0.027 0.070 0.386
CP 0.945 0.955 0.850 0.951

n = 1000 Bias 0.009 0.015 -0.009 0.117
MSE 0.006 0.011 0.040 0.100
CP 0.954 0.950 0.892 0.942

Table 2.5: Integrated Mean Square Error (IMSE) of the baseline hazard h0(t) and
offset function w(t) fitted by the joint model.

h0(t) w(t)

h0(t) = 1/2 n = 300 0.078 0.079
w(t) = t/2 n = 500 0.050 0.052

n = 1000 0.027 0.027
h0(t) = 1/2 n = 300 0.109 0.151
w(t) = log(t) n = 500 0.063 0.097

n = 1000 0.033 0.052
h0(t) = t/2 n = 300 0.665 0.066
w(t) = t/2 n = 500 0.456 0.043

n = 1000 0.230 0.025
h0(t) = t/2 n = 300 0.856 0.165
w(t) = log(t) n = 500 0.662 0.114

n = 1000 0.340 0.057
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w(t) = log(t) and n = 500. Overall, the estimates are close to the true functions except

for the baseline hazard with large t. The poor estimation of the baseline hazard with

large t is likely caused by censoring. Estimation performance of ĥ0(t) and ŵ(t) under

other scenarios are provided in Appendix A.
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Figure 2.1: True function (solid lines) and estimates (dashed lines) of h0(t) = t/2 (left)
and w(t) = log(t) (right) correspond to the 5th, 25th, 50th, 75th and 95th percentiles
of the IMSE when h0(t) = t/2, w(t) = log(t) and n = 500.

2.5 Application

We now apply the proposed method to model mortality and hospitalization outcomes

for patients on HD. Baseline covariates are collected from 1999 HD patients from January

1, 2007 to December 31, 2007. Survival time, the number of hospital admissions and total

length of stay of these patients during the period of January 1, 2008 and December 31,

2009 are collected. 1078 (53.93%) patients are male. 984 (49.22%) patients are black,

834 (41.72%) patients are white, the rest are from other races.
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Table 2.6: Summary statistics of covariates

(Min, Max) Mean (Std)

Age (year) (1.00, 96.62) 62.39 (14.84)
BMI (kg/m2) (13.75, 49.51) 27.65 (6.46)

Albumin (g/dL) (1.60, 4.74) 3.84 (0.37)
IDWG (%) (0.41, 7.99) 3.48 (1.05)

PreSBP (mmHg) (81.88, 219.29) 149.38 (18.86)
eKt/V (0.68, 3.77) 1.46 (0.26)
NLR (0.51, 31.18) 3.70 (2.32)

Vintage (year) (0.08, 7.90) 2.56 (1.92)

In previous studies, albumin and systolic blood pressure prior to dialysis (PreSBP)

have been found as significant risk factors for mortality [45, 25, 28]. Albumin serves

as an indication of nutrition levels. Erdem et al. observed that HD patients with high

neutrophil-to-lymphocyte ratio (NLR) levels have increased risk of short term mortality

as it has been discovered as an important marker of inflammation in ESRD patients [14].

Our preliminary data analytical results indicate that vintage, inter-dialytic weight gain

(IDWG) and eKt/V also have significant effect on mortality. Vintage is recorded as the

time in years since the patient initiated dialysis. IDWG is measured at the beginning of

dialysis and excessive IDWG is usually related to the overload of sodium and water in

the body and indicates a poor residual kidney function. eKt/V is a quantity comparing

the level of urea in the blood before and after dialysis, and serves as a measurement

of dialysis adequacy. Larger level of eKt/V implies that more waste is cleared from

the body through dialysis. Each time-varying covariates is summarized by its mean in

baseline period for each patient. In addition, I will include gender, race and BMI as

potential risk factors. The summary statistics for these covariates are listed in Table 2.6.

In modeling the hospitalization, the number of hospital admissions is usually the

primary outcome which will be studied in Section 2.5.1 using a Poisson model. We are

sometimes also interested in whether a patient has ever been hospitalized as a binary
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outcome. Since the probability of ever been hospitalized can be derived from the Poisson

model, I omit the details of modeling the binary outcome in this chapter. Given the

subject has been hospitalized, a further goal is to identify the risk factors that lead to

longer total length of stay which will be studied in Section 2.5.2 using a Gamma model.

For simplicity I will consider the same set of covariates for all models.

2.5.1 Joint Analysis of Mortality and Hospital Admission

359 (17.96%) patients died during the follow-up period. The number of hospital

admissions in the data ranges from 0 to 37 with mean 2.53. We consider the following

joint model:

hi(t|νi) = h0(t) exp{β1 ∗ Agei + β2 ∗ Albumini + β3 ∗ PreSBPi + β4 ∗NLRi

+ β5 ∗BMIi + β6 ∗Malei + β7 ∗ IDWGi + β8 ∗ eKt/Vi

+ β9 ∗ V intagei + β10 ∗RaceWhitei + β11 ∗RaceBlacki + νi},

g(E(Yi|Ti, νi)) = w(Ti) + α1 ∗ Agei + α2 ∗ Albumini + α3 ∗ PreSBPi + α4 ∗NLRi

+ α5 ∗BMIi + α6 ∗Malei + α7 ∗ IDWGi + α8 ∗ eKt/Vi

+ α9 ∗ V intagei + α10 ∗RaceWhitei + α11 ∗RaceBlacki + ηνi,

(2.5)

where Yi represents the number of hospital admissions of patient i and is assumed to

follow a Poisson distribution, and νi
iid∼ N(0, σ2). We use log link g(.) = log(.).

As in the previous section I set the interior knots for baseline hazard and offset

function equally spaced within the time period. The number of interior knots ranges

from 2 to 4. Among all the combinations, the AIC selects 2 knots for the baseline hazard

and 2 knots for the offset function.

I summarize the estimation results in Table 2.7. All covariates except BMI have sig-

19



Joint Modeling of Mortality and Hospitalization with Cross-Sectional Data Chapter 2

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

t (year)

h 0
(t)

Estimate
95% Confidence Interval

0.0 0.5 1.0 1.5 2.0

−
4

−
2

0
2

4
6

t (year)
w

(t
)

Estimate
95% Confidence Interval
Log function

Figure 2.2: The estimated baseline function h0(t) and offset function w(t) for the joint
model of mortality and number of hospitalization.

nificant effect on the expected number of hospital admissions, while age, albumin, NLR,

eKt/V and vintage have significant effect on the hazard function. Overall age, NLR and

vintage are positively associated with both survival hazard and the number of hospi-

tal admissions, while albumin and eKt/V are negatively associated with the outcomes.

Furthermore, pre-dialysis SBP and IDWG are positively associated with the number of

hospital admissions, and female patients tend to have more hospital admissions. The

directions of associations are as expected.

The latent random variable is significant (σ̂2 = 0.6008, p = 0.0057), which supports

the model with random effect. Furthermore η̂ is significantly larger than 0 (p < 0.0001).

It implies that the survival time and the number of hospital admissions are positive

correlated. The estimated baseline function h0(t) and offset function w(t) are shown

in Figure 3.2. While our model allows for inhomogeneous Poison model, the logarithm

function is close to the estimated offset function and well within the 95% confidence
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Table 2.7: Analysis of ESRD data

Covariates Estimate SE p-value

Mortality Age 0.0355 0.0048 < 0.0001
Albumin -1.2736 0.1681 < 0.0001
PreSBP -0.0004 0.0031 0.8990

NLR 0.1061 0.0217 < 0.0001
BMI -0.0198 0.0106 0.0619
Male 0.0748 0.1210 0.5365

IDWG 0.0684 0.0625 0.2737
eKt/V -0.5936 0.2474 0.0165
Vintage 0.1244 0.0307 < 0.0001

Race(White) 0.1341 0.2151 0.5329
Race(Black) -0.2446 0.2184 0.2629

Hospitalization Age 0.0089 0.0022 < 0.0001
Albumin -0.8126 0.0856 < 0.0001
PreSBP 0.0072 0.0015 < 0.0001

NLR 0.0776 0.0129 < 0.0001
BMI -0.0026 0.0049 0.5974
Male -0.1612 0.0600 0.0073

IDWG 0.1018 0.0307 0.0009
eKt/V -0.2360 0.1170 0.0437
Vintage 0.0386 0.0157 0.0140

Race(White) 0.2634 0.1094 0.0162
Race(Black) 0.3130 0.1069 0.0035

σ2 0.6008 0.2172 0.0057
η 1.2225 0.2039 < 0.0001

intervals, suggesting that it is reasonable to model the offset function by the logarithm

function in this case.

2.5.2 Joint Analysis of Mortality and Total Length of Stay

To further investigate the features of patients with hospitalizations, another interest-

ing application is to model mortality and total length of hospital stay. We will focus on

the patients who had non-zero length of stays (1396 patients). The total length of stay
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ranges from 1 to 368 with mean 26.13. We consider the following joint model:

hi(t|νi) = h0(t) exp{β1 ∗ Agei + β2 ∗ Albumini + β3 ∗ PreSBPi + β4 ∗NLRi

+ β5 ∗BMIi + β6 ∗Malei + β7 ∗ IDWGi + β8 ∗ eKt/Vi

+ β9 ∗ V intagei + β10 ∗RaceWhitei + β11 ∗RaceBlacki + νi},

g(E(Yi|Ti, νi)) = w(Ti) + α1 ∗ Agei + α2 ∗ Albumini + α3 ∗ PreSBPi + α4 ∗NLRi

+ α5 ∗BMIi + α6 ∗Malei + α7 ∗ IDWGi + α8 ∗ eKt/Vi

+ α9 ∗ V intagei + α10 ∗RaceWhitei + α11 ∗RaceBlacki + ηνi,

(2.6)

where Yi represents the total length of stay of patient i and is assumed to follow a Gamma

distribution, and νi
iid∼ N(0, σ2). We use natural log link function g(.) = log(.).

Similar process for knots selection applies, which results in 2 knots for the baseline

hazard and 2 knots for the offset function. The estimation results are summarized in Table

2.8. All covariates except BMI and vintage have significant effect on the expectation of

total length of stay, while age, albumin, NLR and vintage have significant effect on

the hazard function. We note that the results of this subsection are consistent with

those in the previous subsection. The latent random variable is borderline significant

(σ̂2 = 0.2108, p = 0.0542). The estimated baseline function h0(t) and offset function

w(t) are shown in Figure 2.3.

2.6 Discussion

In this chapter, we propose a semi-parametric joint model for survival time and hos-

pitalization. In particular, we consider the number of hospital admissions and total

length of stay as hospitalization outcomes. A shared random effect is introduced to

accommodate heterogeneity among subjects. The baseline hazard and offset functions
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Table 2.8: Analysis of ESRD data

Covariates Estimate SE p-value

Mortality Age 0.0302 0.0053 < 0.0001
Albumin -1.0237 0.1730 < 0.0001
PreSBP -0.0040 0.0035 0.2472

NLR 0.0751 0.0228 0.0010
BMI -0.0204 0.0118 0.0843
Male 0.0830 0.1340 0.5359

IDWG 0.0939 0.0704 0.1826
eKt/V -0.4920 0.0704 0.0812
Vintage 0.0944 0.0332 0.0045

Race(White) -0.0361 0.2303 0.8754
Race(Black) -0.3373 0.2335 0.1489

Length of Stay Age 0.0070 0.0022 0.0017
Albumin -0.5335 0.0870 < 0.0001
PreSBP 0.0047 0.0016 0.0036

NLR 0.0484 0.0137 0.0004
BMI -0.0045 0.0051 0.3788
Male -0.1269 0.0626 0.0430

IDWG 0.0740 0.0319 0.0205
eKt/V -0.2495 0.1234 0.0433
Vintage 0.0275 0.0165 0.0955

Race(White) 0.1338 0.1123 0.2336
Race(Black) 0.2933 0.1110 0.0084

σ2 0.2108 0.1094 0.0542
η 1.8883 0.5550 0.0007
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Figure 2.3: The estimated baseline function h0(t) and offset function w(t) for the joint
model of mortality and total length of stay.

are modeled non-parametrically through B-spline or monotone B-spline bases in order to

gain flexibility. With fixed number of knots, the techniques to numerically obtain max-

imum likelihood estimation are presented. We have also discussed the AIC method for

selecting the number of knots. Standard large sample properties of maximum likelihood

estimation apply when knots are fixed. Simulation results indicate that the proposed

estimation method performs well.

Throughout this chapter, we assume Normal distribution for the random effect. Our

method can be easily generalized to other parametric distributions for the random effect.

We have analyzed the different aspects of the hospitalization separately. One future

research is to build a joint model for survival time, hospital admission and length of stay.

Zero-inflated Poisson model can also be incorporated to account for the fact that a large

number of zeros. It is worth noting here that even though we focus on the joint modeling

of survival time and hospitalization in this research, the model and estimation method we
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proposed is in fact general in theory. It can accommodate the joint modeling of survival

time and any outcome which can be reasonably assumes to follow a distribution from

Exponential family.
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Chapter 3

Joint Modeling of Hospitalization

and Readmission

3.1 Introduction and Related Work

Hospitalization and readmission are increasing focuses for medical researchers and

policy makers. Readmission refers to a patient being admitted to a hospital within a

certain time period from an initial admission. Medicare uses 30 days as the time period.

If a hospital has a high proportion of patients readmitted within a short time frame, it

may be an indication of inadequate quality of care in the hospital or a lack of appropriate

coordination of postdischarge care.

Hospital admissions and readmissions are expensive. A variety of intervention pro-

grams have been implemented to reduce hospital readmission rates. Hansen et al. pro-

vided an excellent systematic review of 43 reports and articles of such intervention pro-

grams published between January 1975 and January 2011 [23].

Objective methods are required to evaluate the effectiveness of intervention programs.

Traditional evaluation methods focus on the readmission after one initial hospitalization
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during a specified observational period. Logistic regression or Cox proportional haz-

ard models are commonly used to model the rate and time of readmission [54, 24, 53].

However, one patient may experience multiple initial hospitalizations and/or multiple

readmissions. Focusing only on one initial occurrence of hospitalization and/or one read-

mission does not take full advantage of whole data.

Considering all hospitalizations during the period brings two challenges: 1) outcomes

are correlated among the same subject; and 2) number of readmissions is naturally

bounded by the number of total hospitalizations. A joint modeling approach is needed

to consider these two outcomes simultaneously.

This research is motivated by the need of evaluation of an intervention program im-

plemented by Fresenius Medical Care for ESRD patients who are on hemodialysis (HD).

The intervention program is a combination of targeted interventions. This program in-

volves a post-hospital care management system, including pre- and post-hospital checking

lists, regular follow-up on patients’ post-hospital needs and adherence to the discharge

instructions, and a centralized approach for transfer of patient among providers. It is of

interest to evaluate the program performance in reducing number of hospitalizations and

readmissions.

The aim of this research is to develop a joint modeling approach for the analysis

of hospitalization and readmission. The rest of this chapter is organized as following:

Section 3.2 introduces the statistical model for the joint analysis. Section 3.3 discusses

the estimation procedure using SAS Proc NLMIXED and the selection of number of

knots. Systematic simulation results are demonstrated in Section 3.4. The proposed joint

modeling framework is applied to evaluate the performance of the intervention program

from Fresenius Medical Care in reducing number of hospitalizations and readmissions.

The results are presented in Section 3.5. Finally this chapter ends with a conclusion in

Section 3.6.
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3.2 Model Formulation

For each patient, we observe numbers of hospital admissions and readmissions as two

outcomes. Let Yij, Zij and Xij be the number of hospitalizations, the number of hospital

readmissions and a vector of covariates for patient i at time period j, i = 1, · · · , n,

j = 1, · · · , ni.

We begin by modeling the number of hospitalizations with log linear model with

random intercept. We assume that given covariates XY
ij , Yij follows Poisson distribution

with mean λij and

Yij|bi ∼ Poisson(λij),

log(λij) = log(Tij) + α0 +αXY
ij + bi,

(3.1)

where Tij is the exposure time for patient i in period j and bi is the random intercept.

We assume that bi
iid∼ N(0, σ2).

We then treat number of hospital readmission Zij as a Binomial random variable

with total number of trials Yij and probability pij, and model pij with a semi-parametric

logistic regression model with random intercept. Specifically, we assume that

Zij|Yij,XZ
ij ∼ Binom(Yij, pij),

logit(pij) = f(Yij) + γXZ
ij + ηbi.

(3.2)

The random effect bi is shared by (3.1) and (3.2) to accommodate the correlation between

the observations from the same subjuect i. η is a scale parameter, which allows the

random effect bi to have different impact on each of the two responses. XY
ij and XZ

ij are

part of the vector X ij and they do not need to be the same.

The probability pij may depend on Yij. We introduce function f(Yij) into the model

to account for the potential association. The form of f(Yij) is often unknown in practice

and we will model it non-parametrically.
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We assume that f(x) is a smooth function and propose to use a natural cubic spline

to model it. Natural cubic spline is piecewise cubic polynomials joined at pre-determined

knots where first-order and second-order derivatives of the function are constrained to be

continuous. In addition it requires the evaluations of second order derivative at boundary

points to equal 0. The spline function is then modeled by a linear combination of B-spline

basis functions

f(x) =
h∑
k=1

dkBk(x|τ),

where Bk(x|τ) denote the evaluation at x of the kth B-spline basis functions, generated

with internal knots τ = {t1, t2, · · · , th}. The function f(x) is decided by coefficients dk

as well as the number and locations of knots.

3.3 Estimation

For a fixed number and location of knots, the likelihood function can be obtained

by integrating out the latent random variable with respect to its density. We define

Yi = (Yi1, · · · , Yini
) and Zi = (Zi1, · · · , Zini

), the likelihood function for subject i is

li(Θ|Yi,Zi) =

∫
f(Yi,Zi|bi)fb(bi)dbi,

where Θ = (α0,α,γ, η, σ
2,d) is the parameter vector and fb(bi) is the density function

for the latent random variable bi.

We can further express f(Yi,Zi|bi) as the product of conditional densities:

f(Yi,Zi|bi) = fY (Yi|bi)fZ(Zi|Yi, bi)

∝
ni∏
j=1

λ
Yij
ij exp(−λij)

ni∏
j=1

p
Zij

ij (1− pij)Yij−Zij .
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We defind Y = (Y1, · · · ,Yn), Z = (Z1, · · · ,Zn), the full log likelihood is:

l(Θ|Y,Z) ∝
n∏
i=1

∫ ni∏
j=1

λ
Yij
ij exp(−λij)

ni∏
j=1

p
Zij

ij (1− pij)Yij−Zijfb(bi)dbi. (3.3)

Then it is our goal to obtain parameter estimates by maximizing the likelihood. I

adopt a similar computational approach as in Chapter 2 using SAS Proc NLMIXED

for its flexibility to provide a user-specific likelihood function with respect to random

effects. This procedure approximates the integral numerically using Gaussian quadrature

method and finds maximizers using the Newton-Raphson methods. A Newton-Raphson

ridge optimization is employed here for stable results [38]. Random effect ν̂i is estimated

by the empirical Bayes estimators ν̂i that maximize f(Yi,Zi|bi)fb(bi).

To select the number and location of knots, we propose a data-driven method to

strike the balance between goodness-of-fit and model complexity. Suppose we have h

knots τ1, τ2, · · · , τh, where τi is placed at the (i− 1)/(h− 1)th percentile of the observed

Yij. τ1 and τh are the minimum and maximum of Yij. We then select the optimal h by

minimizing the AIC [1]:

AIC(h) = −2 logL+ 2h.

3.4 Simulations

We set ni = 1 or 2. We randomly assigned subjects such that they are observed

only in 1 period with probability 0.4 and in 2 periods with probability 0.6. Subjects are

randomly assigned to two treatment groups with same probability.
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We generate the simulation sample from the following model:

Yij|bi ∼ Poisson(λij),

log(λij) = α0 + α1 ∗ groupi + α2 ∗ periodij + bi,

Zij|Yij, bi ∼ Binom(Yij, pij),

logit(pij) = f(Yij) + γ1 ∗ groupi + γ2 ∗ periodij + ηbi,

bi
i.i.d.∼ N(0, σ2).

(3.4)

We consider two situations for the function f(x): linear and quadratic. Knots are

placed at percentiles of the values of Yij’s in the sample. The number of interior knots

are selected as the minimizer of AIC among three values: 3, 4 and 5. Simulation results

are based on 500 replicates in each scenario.

As a comparison, we have also conducted the simulation by separate modeling (SM)

where there is no shared random variable bi, and Yij and Zij are modeled marginally

with a log-linear model and a logistic regression respectively. The estimation results for

parameters are listed in Tables 3.1 and 3.2. Our joint model (JM) has small bias and

MSE, and the coverage probability is closed to nominal value. Moreover, the performance

of estimation improves when we increase sample size. The estimates from SM for some

parameters are severely biased, especially α0, γ1, γ2. The coverage probabilities generally

are poor for SM and increasing sample size does not improve the performance. The

simulation results verifies the necessity of modeling two responses jointly when they are

correlated.

We investigate the performance of curve fitting by their sum weighted mean square

error (SWMSE) defined as

SWMSE(f̂) =
N∑
i=1

wi(f̂(xi)− f(xi))
2, (3.5)
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Table 3.1: Mean squared error (MSE), bias and coverage of 95% confidence intervals
(CP) based on the joint model (JM) and the separate model (SM).

JM SM
f(x) = 0.5 + 0.1x Parameter True Bias MSE CP Bias MSE CP

n = 400 α0 0.5 .000 .004 .952 .123 .019 .338
α1 -0.2 -.004 .006 .966 -.004 .006 .896
α2 -0.2 -.002 .004 .964 -.002 .005 .952
γ1 -0.2 .000 .026 .942 .064 .027 .906
γ2 -0.2 -.005 .023 .954 .058 .025 .942
η 1 -.012 .130 .966 - - -
σ2 0.25 -.004 .003 .934 - - -

n = 600 α0 0.5 .000 .003 .938 .124 .018 .174
α1 -0.2 -.003 .004 .960 -.003 .004 .890
α2 -0.2 -.002 .003 .950 -.002 .003 .940
γ1 -0.2 -.002 .017 .946 .064 .019 .910
γ2 -0.2 -.003 .018 .930 .062 .021 .896
η 1 .005 .095 .960 - - -
σ2 0.25 -.001 .002 .946 - - -

n = 800 α0 0.5 .000 .002 .948 .126 .018 .086
α1 -0.2 -.003 .003 .952 -.003 .003 .864
α2 -0.2 -.001 .003 .942 -.001 .003 .928
γ1 -0.2 -.003 .013 .948 .063 .015 .900
γ2 -0.2 -.004 .012 .952 .059 .014 .928
η 1 -.007 .073 .948 - - -
σ2 0.25 .001 .001 .938 - - -

where x1, . . . , xN are integers from 0 to the maximum value of Yij in the sample.

Here we use weight wi in Equation (3.5) proportional to the observed frequency of xi

in the data. Figure 3.4 provides the 5th, 25th, 50th, 75th and 95th best estimates of f̂(x)

ordered by SWMSE when the true function is linear and quadratic respectively. Overall,

the estimates are close to the true functions when sample size is median or large.
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Table 3.2: Mean squared error (MSE), bias and coverage of 95% confidence intervals
(CP) based on the joint model.

JM SM
f(x) = 0.02(x− 5)2 Parameter True Bias MSE CP Bias MSE CP

n = 400 α0 0.5 .002 .004 .942 .126 .020 .290
α1 -0.2 -.004 .007 .954 -.004 .007 .854
α2 -0.2 -.001 .071 .944 -.002 .005 .934
γ1 -0.2 .002 .023 .936 .068 .025 .884
γ2 -0.2 .001 .021 .954 .065 .023 .934
η 1 -.040 .134 .964 - - -
σ2 0.25 -.004 .002 .936 - - -

n = 600 α0 0.50 .001 .003 .938 .124 .018 .174
α1 -0.20 -.001 .005 .936 -.001 .005 .840
α2 -0.20 .001 .003 .964 .001 .003 .952
γ1 -0.20 .000 .016 .934 .067 .019 .866
γ2 -0.20 -.003 .014 .952 .062 .017 .920
η 1 -.025 .082 .950 - - -
σ2 0.25 -.004 .001 .946 - - -

n = 800 α0 0.50 .000 .002 .940 .124 .017 .104
α1 -0.20 .002 .003 .964 .001 .004 .868
α2 -0.20 .000 .002 .972 .000 .002 .954
γ1 -0.20 .007 .012 .934 .074 .015 .848
γ2 -0.20 -.003 .010 .950 .063 .013 .884
η 1 -.017 .058 .966 - - -
σ2 0.25 -.002 .001 .962 - - -
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Figure 3.1: True function (solid lines) and estimates (dashed lines) of f(Y ) (left)
correspond to the 5th, 25th, 50th, 75th and 95th percentiles of the SWMSE when
f(Y ) is linear (top) or quadratic (bottom).
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3.5 Application

We apply our method to an observational study of ESRD patients. The data come

from Fresenius Medical Care. There are two treatment groups: intervention group and

control group. The intervention group includes 26 clinics in West Virginia, and the

control group includes 18 clinics from other places. Clinics in the control group were

matched to those in the intervention group based on Urban vs. rural, clinic size, hospital

admission rate and percent of readmissions within 30 days. We have 1730 and 1400 pa-

tients in each group respectively. The intervention was applied to patients in 2013. Each

patient is expected to be observed in two periods: 1) Before treatment: 12 months end-

ing 12/31/2012 and 2) After treatment: 12 months ending 12/31/2014. However some

patients died or lost-to-follow in the After period. In the intervention group, there are

889 patients who have both observations and 841 patients who only have the observation

in Before period. In the control group, there are 749 patients who have both observa-

tions and 651 patients who only have the observation in Before period. The number

of hospitalization admissions and readmissions are recorded. Summaries are provided

in Table 3.3. Other covariates include age, vintage, gender, and comorbidities diabetes,

congestive heart failure (CHF) and chronic obstructive pulmonary disease (COPD). Ages

of the patients in our data range from 2.4 to 98.8 years with mean 61.4. Vintage is the

number of years since the patient started dialysis, it ranges from 0.002 to 28.613 years

with mean 2.497. 56.26% of patients are male. The proportions of diabetes, CHF and

COPD patients in our data are 68.56%, 18.18% and 9.11% respectively.

The motivation of this analysis is to investigate the effect of intervention program on

both the hospitalization and readmission rate. Since hospitalization will naturally change

over time with patients’ disease progression, as illustrated in Table 3.3, our main goal

is to test whether intervention changes the difference between the outcomes in Before
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Table 3.3: Mean (SE) of the number of hospitalizations and readmissions.

Before After

Hospitalization Intervention 1.82 (2.23) 1.50 (2.12)
Control 1.57 (2.20) 1.46 (1.98)

Readmission Intervention 0.65 (1.41) 0.49 (1.32)
Control 0.55 (1.45) 0.45 (1.20)

period and After period. The model is fitted as

Yij|Xij ∼ Poisson(λij),

log(λij) = log(Expij) + α0 + α1Trti + α2Prdij + α3(Trti × Prdij) + α4Ageij

+ α5V intageij + α6Malei + α7Diabetici + α8CHFi + α9COPDi + bi,

Zij|Yij,Xij ∼ Binom(Yij, pij),

logit(pij) = f(Yij) + γ1Trti + γ2Prdij + γ3(Trti × Prdij) + γ4Ageij

+ γ5V intageij + γ6Malei + γ7Diabetici + γ8CHFi + γ9COPDi + ηbi,

bi
i.i.d.∼ N(0, σ2),

where we define Trti = 1 if patient i is assigned to treatment group and 0 otherwise.

Prdij = 0 if patient i is observed in Before period, and Prdij = 1 if in After period, j = 1

or 2 respectively. Expij is the exposure time of patient i in period j. To test the impact

of intervention on hospitalization and readmission, it is equivalent to test H0 : α3 = 0

and H0 : γ3 = 0 respectively. Parameter estimates are listed in Table 2.7. We select the

number of knots as the minimizer of AIC among three values, 2, 3 and 4.

From Table 3.4, we can conclude that intervention has significantly reduced the num-

ber of hospitalizations (α̂3 = −0.218, p-value = 0.016), while its impact on readmission

rate is not significant. Age, diabetes, COPD are positively associated with number of

hospitalizations. Vintage, male are negatively associated with the number of hospital-
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Table 3.4: Parameter estimation for the ESRD data.

Hospitalization Readmission
Estimation Error p-value Estimation Error p-value

Intercept -0.053 0.115 0.647
Treatment 0.177 0.053 0.001 0.058 0.078 0.458

Period -0.216 0.068 0.002 -0.136 0.107 0.205
Trt*Prd -0.218 0.090 0.016 -0.010 0.140 0.942

Age 0.004 0.002 0.003 0.006 0.002 0.012
Vintage -0.020 0.007 0.007 -0.015 0.011 0.188

Male -0.094 0.042 0.027 0.028 0.064 0.698
Diabetic 0.283 0.048 < 0.001 0.058 0.076 0.443

CHF 0.004 0.053 0.937 -0.126 0.082 0.125
COPD 0.192 0.068 0.005 0.081 0.101 0.425

σ2 1.128 0.047 < 0.001
η 0.812 0.063 < 0.001

izations. Only age is positively associated with readmission rate.

The estimates of both σ̂2 and η̂ are significantly different from 0 at significance level

0.05, which suggests that the correlation among outcomes from the same patient is non-

ignorable. Figure 3.2 shows the fitted curve f̂(x) and its 95% pointwise confidence

interval. We can observe that it is an increasing linear function.

3.6 Conclusion

The methods proposed in this chapter fill the gap of statistical methodologies on eval-

uating intervention effect on both hospitalization and readmission rate. A joint modeling

approach is proposed treating the number of hospitalizations as observations from Pois-

son distribution and number of readmissions as observations from Binomial distribution

with the total number of trials being the number of hospitalizations. The means of the

Poisson distribution and Binomial distribution are linked by shared random effects.

The estimation procedure can be conveniently carried out by SAS Proc NLMIXED.
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Figure 3.2: Fitted f̂(x) in ESRD data and its 95% pointwise confidence interval.
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The simulation demonstrates good estimation properties. Furthermore, by comparison

of the estimation between joint analysis and separate modeling, we found that separate

modeling neglecting the possible correlation introduces biases on the treatment effects.

The proposed joint modeling framework is applied to a real world example to examine

the effect of an intervention program on reducing number of hospitalizations and admis-

sions. Data analytical results show that this program effectively reduces the number

of hospitalizations, however its effect on reducing rate of readmission is not significant

comparing with the control group.

It may be noticed that in the application, only a subset of patients are observed in both

before intervention and after intervention period. This is caused by the death or censoring

of patients during the time period in-between. As mortality is another important measure

of treatment effect and is underlying associated with patients’ health condition, it is

desirable to include it as one of the outcomes and model it with hospitalization and

readmission jointly. This is one potential direction of our future research.

We considered all-cause readmission. Planned and unplanned readmissions are mixedly

observed and unbraiding the two provides different interpretation of statistical analysis.

However it is beyond the scope of this research. See Kossovsky et al. about distinctions
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between planned and unplanned readmissions [36].
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Chapter 4

Variable Selection in Joint Modeling

of Multivariate Longitudinal and

Survival Data

4.1 Introduction and Literature Review

Joint modeling of longitudinal measurements and survival data has attracted a great

deal of attention. Both longitudinal measurements and survival time may be driven by

an underlying biological process which governs the health condition of patients. The

complicated features in the data structure brings challenges in statistical modeling. Pre-

vious studies have shown that a naive combination of longitudinal and survival time

data analyses neglecting the dependence structure will lead to bias [40, 62]. Model-

ing the longitudinal measurements and survival time jointly reduces biases and provides

improvements of efficiency in the estimates [32].

The joint modeling framework links a submodel for longitudinal processes and a

submodel for survival time. Cox proportional hazard model for the survival time has
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been widely adopted in literature. Standard approaches for the longitudinal process are

mixed effect models [62, 9, 17, 56, 31]. These models assume that true longitudinal process

(without measurement error) changes smoothly, possibly depending on time-independent

covariates and subject-specific random effects. Excellent reviews were given by Tsiatis

and Davidian [58] and Rizopoulos [48]. Some other authors introduced a stochastic

process as time varying frailty which can be regarded as biological fluctuations in the

process as disease progresses (eg, Wang and Taylor discussed integrated OU process [61],

Henderson et al. suggested stationary Gaussian process [27]). To allow for more flexibility

in modeling of longitudinal measurements, Tsiatis and Davidian specified nonparametric

distributions for the random effects [57] while Brown, Ibrahim and DeGruttola proposed

a multivariate B-Spline model for the longitudinal biomarkers [4].

Variable selection is an essential topic in statistical modeling, for improved inference

and interpretation. Many classical methods such as Akaike information criterion (AIC)

[1], Bayesian information criterion (BIC) [51], Mallow’s Cp [41] and risk inflation crite-

rion (RIC) [19] have been developed to compare different models. These methods are

computationally intensive when the number of models is large. Regularization methods

are widely used for variable selection for high dimensional data [5]. Tibshirani proposed

the famous LASSO method for fixed-effect selection in linear models [55]. Other types

of penalties, including SCAD [16], elastic-net [65] and adaptive LASSO [64], are well

studied. Bondell et al. [2] and Ibrahim et al. [33] studied the selection of fixed and

random effects in mixed effect models. Fan et al. provided a systematic review on the

variable selection methods for survival analysis and proposed a unified nonconcave penal-

ized likelihood approach [15]. However research of variable selection in the joint modeling

framework is still limited.

Recently He et al. [26] proposed a variable selection method for the fixed effects and

random effects in the joint modeling of one longitudinal biomarker and the survival time
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. In many situations there does not exist a single biomarker and multiple variables are

observed longitudinally. For example, ESRD patients suffer from many comorbidities.

The reduced kidney function is accompanied by numerous metabolic changes which affect

almost all organ systems of the human boby. Therefore multiple biological changes of

the patients need to be monitored.

The goal of this research is to develop a joint modeling framework linking multivariate

longitudinal processes and survival time. A penalized likelihood approach is proposed

to perform variable selection and estimation simultaneously. The rest of this chapter is

organized as follows. Section 4.2 introduces the joint model. Section 4.3 proposes the pe-

nalized likelihood estimation method. Section 4.4 discusses details about our estimation

procedure. Sections 4.5 and 4.6 present simulation results and applications to patients

on HD. The chapter ends with a discussion in Section 4.7.

4.2 Model Formulation

For each subject i, i = 1, · · · , n, we observe J longitudinal outcomes yij, j = 1, · · · , J ,

at time points tijk, k = 1, · · · , Kij. The observation time points may be different for each

longitudinal outcome and for each subject. Denote Di as the death time of subject i

which is subject to right censoring at censoring time Ci. We denote Ti = min{Ci, Di} as

the observed time, and ∆i = I(Di < Ci) as the death event indicator.

For longitudinal outcomes, consider the following multivariate linear mixed effect

model:

yij(tijk) = X ′iαj + βj1 + bij1 + (βj2 + bij2)tijk + εijk, (4.1)

where X ′i is the vector of fixed covariates for the longitudinal outcomes of subject i,

βj1 and βj2 are population mean intercept and slope for the jth longitudinal outcome
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respectively, bij1 and bij2 are the subject-specific random intercept and slope for subject i

respectively and εijk are random errors. We denote bi = (bi11, bi12, bi21, bi22, · · · , biJ1, biJ2)′

as the vector of random effects of subject i and assume bi follows a 2J-dimension multi-

variate Normal distribution, bi
iid∼ N(0,Σ). We assume that εijk

iid∼ N(0, σ2) and further-

more they are independent of subject-specific random effects bi for all i, j, k.

For the survival outcome, we consider the Cox proportional hazard model:

hi(t) = h0(t) exp{X ′iγ0 + b′iγ}, (4.2)

where h0(t) is the baseline hazard function and X ′i is the vector of fixed covariates.

Subject-specific random intercepts and slopes for longitudinal covariates bi are also in-

cluded as features of the longitudinal trajectories. Therefore bi is the key component in

our joint modeling framework since it is responsible for not only the correlation among

multiple longitudinal covariates but also the correlation between survival time and longi-

tudinal outcome. Since bi’s are the ith subject’s deviation from population mean inter-

cept and population mean slope, exp(γ) is interpreted as the hazard ratio of increasing

one unit of subject intercept or slope away from the population mean. The idea of in-

troducing random intercept and slope of longitudinal processes in the Cox model is not

new. A similar modeling technique has been considered by Liu and Huang [39] in 2009.

For simplicity of notation, we consider the situation where all J longitudinal outcomes

and the survival outcome shares the same set of fixed covariates. Our model formulation

can be easily generalized to the situation where the components of fixed covariates are

different in different sub-models.
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4.3 Variable Selection Through Penalized Likelihood

We denote yi = (y′i1,y
′
i2, · · · ,y′iJ)′ as the stacked longitudinal outcomes for subject

i, α = (α1, · · · ,αJ)′ and β = (β1, · · · ,βJ)′. Let θ be the collection of all unknown

parameters (α,β,γ0,γ, σ
2,Σ) in the model. The log likelihood can be written as

l(θ) =
n∑
i=1

log

∫
fy(yi|X i, bi;θ)fT (Ti,∆i|X i, bi, h0(Ti);θ)fb(bi)dbi, (4.3)

where fy(yi|X i, bi;θ) is the density function of the multivariate Normal random vari-

ables yi conditional on bi, fb(bi) is the density function of random effects bi, and

fT (Ti,∆i|X i, bi, h0(Ti);θ) is the likelihood function of survival outcome (Ti,∆i) con-

ditional on bi:

fT (Ti,∆i|X i, bi, h0(Ti);θ)

= {h0(Ti) exp(X ′iγ0 + b′iγ)}∆i exp

{
−
∫ Ti

0

h0(t) exp(X ′iγ0 + b′iγ)dt

}
.

(4.4)

The likelihood function depends on h0(Ti). It can be modeled parametrically (e.g.

using an Exponential or Weibull distribution) or non-parametrically using a piece-wise

constant function or B-spline bases. Throughout this chapter, I present an Exponential

baseline, that is h0(Ti) equals a constant h0. Our methods can be easily adapted to other

models for the baseline function.

The aim of our research is to perform variable selection of the features of longitudinal

outcomes in the survival sub-model. In order to select the random effects bi, we consider

the following negative penalized likelihood

pl(θ) = −l(θ) + p1(γ) + p2(Σ), (4.5)
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where p1(γ) controls the sparsity of the coefficients of random intercepts and slopes in

the survival sub-model γ, and p2(Σ) controls the sparsity of the covariance matrix of bi.

For p1(γ), we consider LASSO penalty, defined as p1(γ) = nλ1||γ||1 = nλ1

∑2J
i=1 |γi|.

The LASSO penalty was first introduced by Tibshirani [55] in 1996 for fixed-effect selec-

tion in linear models. Since L1 penalty shrinks small estimates all the way towards zero,

it is a useful tool for simultaneous variable selection and parameter estimation. Therefore

the random intercepts and slopes of longitudinal covariates are selected in the survival

sub-model. As the dimension of longitudinal outcomes may be high, it is reasonable to

assume that the covariance matrix of random effects bi is sparse. Therefore, we also

consider L1 penalty for p2(Σ). We define p2(Σ) = (nλ2/2)
∑

i 6=j |σij|, where σij is the

element in Σ at ith row and jth column. Penalties are only imposed on off-diagonal

elements to avoid the non-identifiability problem in our joint model. This off-diagonal

penalty was considered on the precision matrix in graphical lasso problems by Zhang

and Zou [63]. λ1 and λ2 are tuning parameters which control the sparsity of coefficients

vector and covariance matrix respectively. It is worth mentioning that we do not penalize

the variances of random intercepts and slopes in the longitudinal sub-models as they are

essential features of trajectories, this is different than the penalty proposed by He et al.

[26]. Their research aims at the selection of random covariates and therefore imposes

penalties on the diagonal elements of covariances matrix as well.

We note that in this work we do not impose penalties on other coefficients since our

main interest is to select important longitudinal covariates in the survival sub-model.

However, our procedure can been easily generalized to penalize other coefficients, for

example, α or γ0, in order to perform variable selection of fixed covariates in longitudinal

or survival sub-models respectively.
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4.4 Computational Method

The negative penalized likelihood involves a complicated integral which does not have

a closed form, therefore solving the whole solution path is difficult. In this section, I will

propose a numeric estimation method based on coordinate descent algorithm.

4.4.1 Laplace Approximation

First, the integral in the negative penalized likelihood function is approximated by

a Laplace approximation. We start by writing the non-penalized log likelihood function

for subject i as:

l0i(θ)

= log

∫
exp{log fy(yi|X i, bi;θ) + log fT (Ti,∆i|X i, bi, h0(Ti);θ) + log fb(bi;θ)}dbi

= log

∫
exp{κ(bi)}dbi.

(4.6)

By second order Taylor expansion of κ(bi), we get the following approximation:

κ(bi) ≈ κ(b̃i) +
1

2
(bi − b̃i)′H˜bi

(bi − b̃i),

where b̃i = argmax bi
κ(bi) and H˜bi

is the Hessian evaluated at b̃i.

Substituting the above approximation in (4.6) yields approximate log likelihood func-

tion for subject i:

l0i(θ) ≈ κ(b̃i) + log

∫
exp

{
1

2
(bi − b̃i)′H˜bi

(bi − b̃i)
}
dbi.

We note that the latter term is a multivariate Gaussian integral up to a constant and
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therefore

l0i(θ) ≈ κ(b̃i)−
1

2
log | −H˜bi

|+ J log(2π). (4.7)

4.4.2 Coordinate Descent Algorithm

Coordinate descent is an algorithm designed to optimize a multivariate objective

function. The idea is that the multivariate objective function can be optimized by opti-

mizing over each direction in a loop. In each step, one focuses on one parameter alone

while holding other parameters fixed, therefore the task of this algorithm becomes the

optimization of a sequence of univariate objective functions. This algorithm is easy to

implement since optimization of univariate objective functions are generally much easier

than that of multivariate objective functions.

Coordinate descent and its extensions has been proposed for optimizing objective

functions with L1 regularization a number of times, for example in linear regression

models [22, 20] or generalized linear models [52, 21]. In this section, we describe a

coordinate descent algorithm to optimize our negative penalized likelihood.

With the Laplace approximation in (4.7), the approximate penalized log-likelihood

can be written as

pl(θ) =
n∑
i=1

[
−κ(b̃i)

]
+

n∑
i=1

1

2
log | −H˜bi

|+ nλ1||γ||1 + (nλ2/2)
∑
j 6=k

|σjk|, (4.8)

where σjk is the element of Σ at jth row and kth column, n is the number of subjects,

and
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−κ(b̃i) =− log fy(yi|bi)− log fT (Ti,∆i|bi)− log fb(bi)

=
ni
2

log σ2 +
(yi − µi)′(yi − µi)

2σ2
−∆i log h0 −∆i(X

′
iγ0 + γ ′b̃i)

+ h0Ti exp(X ′iγ0 + γ ′b̃i) +
1

2
log |Σ|+ 1

2
b̃
′
iΣ
−1b̃i,

Hi , H˜bi
=
∂κ(bi)

∂b′i∂bi

∣∣∣∣
bi=

˜bi

= −ZiZ
′
i

σ2
− h0Ti exp(X ′iγ0 + γ ′b̃i)γγ

′ − Σ−1,

where ni is the total number of longitudinal observations for subject i, µi is the mean

vector of yi, Zi is the design matrix for bi.

The last part in Equation (4.7) is a constant and therefore is dropped.

At the beginning of the algorithm, we initialize our parameter vector θ̂
(0)

by a naive

combination of longitudinal and survival outcomes. We fit a linear mixed effects model

first on the longitudinal outcomes only to obtain estimates α̂(0) and β̂
(0)

. We then treat

the estimated random effects as known covariates and fit the Cox proportional hazard

model to get estimates γ̂
(0)
0 and γ̂(0).

Then in each iteration, we first calculate b̃i , argmax biκ(bi) with the current estimates

of parameters. We use a Newton method to solve b̃i by updating equation b̃
new

i =

b̃
old

i − κ′(boldi )Hbold

i

, where

κ′(bi) =
(yi − µi)′Zi

σ2
+ ∆iγ

′ − h0Ti exp(X ′iγ0 + γ ′bi)− b′iΣ−1,

Hbi
= −ZiZ

′
i

σ2
− h0Ti exp(X ′iγ0 + γ ′bi)γγ

′ − Σ−1.

In the next step, we update each parameter in θ one at a time with other parameters

fixed at the value obtained in the previous iteration. Specifically, to update parameter

θ̂tj → θ̂t+1
j , we would compute the gradient ∂pl(· · · , θ̂(t)

j−1, θj, θ̂
(t)
j+1, · · · )/∂θj at θj = θ̂

(t)
j .
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Note that the gradient only exists when θ̂
(t)
j 6= 0. We then update θ̂

(t)
j by

θ̂
(t+1)
j ← θ̂

(t)
j − s

(t)
j

∂pl(· · · , θ̂(t)
j−1, θj, θ̂

(t)
j+1, · · · )

∂θj

∣∣∣∣∣
θj=θ̂

(t)
j

. (4.9)

s
(t)
j in (4.9) is the step size. We use a backtracking line search scheme to select the

appropriate s
(t)
j to insure sufficient descent of objective function in each update. A sketch

of the line search algorithm is shown in Algorithm 1.

Algorithm 1 Backtracking line search algorithm

Start at s = 1, choose α ∈ (0, 1/2), β ∈ (0, 1)
repeat s← βs
until f(x− sf ′(x)) < f(x)− αs[f ′(x)]2

Partial derivatives and Hessian matrix in the updating steps are as follows:

∂pl(θ)

∂α
= −

n∑
i=1

(yi − µi)′X i

σ2
,

∂pl(θ)

∂β
= −

n∑
i=1

(yi − µi)′Zi

σ2
,

∂pl(θ)

∂γ0

=
n∑
i=1

−∆iX
′
i+h0Ti exp(X ′iγ0+γ ′b̃i)X

′
i−

1

2
tr(H−1

i h0Tiγγ
′ exp(X ′iγ0+γ ′b̃i)X i),

∂pl(θ)

∂h0

=
n∑
i=1

−∆i

h0

+ Ti exp(X ′iγ0 + γ ′b̃i)−
1

2
|tr(H−1

i Tiγγ
′ exp(X ′iγ0 + γ ′b̃i)),

∂pl(θ)

∂γj

∣∣∣∣
γj=γ

(t)
j

=
n∑
i=1

−∆ibij + h0Ti exp(X ′iγ0 + γ(t)′ b̃i)bij

−
n∑
i=1

tr(H−1
i h0Ti exp(X ′iγ0 + γ(t)′ b̃i)(γ

(t)γ(t)′bij + 2Ijγ
(t)′)) + sign(γj)nλ1|γ(t)

j |,

where Ij is a vector of length 2J , its jth element is 1 and others are 0.

∂pl(θ)

∂σ2
=

n∑
i=1

ni
2σ2
− (yi − µi)′(yi − µi)

2(σ2)2
+

1

2
tr

(
H−1
i

ZiZ
′
i

(σ2)2

)
.
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∂pl(θ)

∂σjk

∣∣∣∣
σjk=σ

(t)
jk

=
n∑
i=1

[
1

2
tr(Σ−1Ijk)−

1

2
b̃
′
iΣ
−1IjkΣ

−1b̃i +
1

2
tr(H−1

i Σ−1IjkΣ
−1)

]
+ I(j=k)sign(σjk)λ2n|σjk|,

where I(j=k) is a scale indicator, it equals 1 if j = k and 0 otherwise, Ijk is a matrix

indicator of dimension 2J × 2J , the elements at its jth row, kth column and kth row,

jth column are 1 and all the other elements are 0.

The estimation procedure is summarized in Algorithm 2. The algorithm iterates until

convergence. Our convergence criteria is

|pl(θ(t+1))− pl(θ(t))|
|pl(θ(t))|

< δ,

where δ is a pre-specified number. We use δ = 10−6 throughout this chapter.

Algorithm 2 Coordinate Descent Algorithm

Initialize parameter vector θ(0) by fitting marginal models
repeat

Obtain b̃i which maximize κ(bi) with current estimates θ(t)

for (each parameter θi in θ) do

Select step size s
(t)
j ;

Update θ
(t+1)
i ← θ

(t)
i − s

(t)
j ·
(
∂pl(· · · , θ̂(t)

j−1, θj, θ̂
(t)
j+1, · · · )/∂θj

)
;

end for
t→ t+ 1

until Converge

4.4.3 Tuning Parameters

We apply the above algorithm on a grid of values of tuning parameter λ1 and λ2. The

optimal combination of λ1 and λ2 is selected by minimizing BIC:

BICλ1,λ2 = −2l(θ) + log(N) · dfλ1,λ2 ,
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where l(θ) is the log likelihood function, N is the total sample size N =
∑n

i=1 ni + n.

dfλ1,λ2 is defined as the number of effective (non-zero) estimates in the model.

4.4.4 Two-Stage Estimation

To reduce bias introduced by penalization, we use a two-stage estimation suggested

by He et al. [26]. The first stage focuses on the variable selection procedure using

penalized likelihood function. When the non-zero effects are identified, the second stage

re-estimates the model with the non-zero variables only, using non-penalized likelihood.

Our simulation results show that this two-stage estimation method reduces the biases

successfully.

4.5 Simulations

The simulation data are generated from the following model:

yij(tijk) = Xiαj + βj1 + bij1 + (βj2 + bij2)tijk + εijk, i = 1, 2, · · · , n, j = 1, · · · , J

hi(t) = h0 exp{Xiγ0 + b′iγ},

where fixed effect Xi is a binary group indicator, Xi
i.i.d.∼ Bin(0.5), γ = (1, 0, 0, 0, 0, 0, 1)

which implies that only the random intercept of the first longitudinal outcome and the

random slope of the third longitudinal outcome are non-zero, (α1, α2, α3) = (1,−1, 1).

(β11, β12, β21, β22, β31, β32) = (1,−1, 1, 1,−1, 1), h0 = 0.2, γ0 = 1, and σ2 = 0.04. Lon-

gitudinal observations are collected every 0.2 time unit from the time 0 to the death or
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censored time Ti. The following covariance matrix is considered for bi:

Σ =



0.5 0.2 0 0 0 0

0.2 0.5 0 0 0 0

0 0 0.5 0.2 0 0

0 0 0.2 0.5 0 0

0 0 0 0 0.5 0.2

0 0 0 0 0.2 0.5


We consider the following four scenarios:

• Scenario I: Censoring rate 10%, n = 500 subjects.

• Scenario II: Censoring rate 30%, n = 500 subjects.

• Scenario III: Censoring rate 10%, n = 1000 subjects.

• Scenario IV: Censoring rate 30%, n = 1000 subjects.

On average for each longitudinal outcome of each subject, 18 observations are col-

lected in scenario I and III, and 13 observations are collected in scenario II and IV. Our

simulation under each scenario is repeated 100 times.

Tables 4.1 and 4.7 present the selection frequencies of γ and covariance matrix Σ

respectively. Throughout the simulation, we use 0.05 as the cut-off value to determine

zero effects. Our variable selection procedure demonstrates excellent selection properties.

The selection frequencies of non-zero elements in γ are 100% in all scenarios and the mis-

selection rates for zero effects are well controlled. And both true positive rates and true

negative rates in the selection of components in Σ are closed to 100%. Simulation also

shows that increasing sample size and reducing censoring rate improves both selection

performance and estimation precision.
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Table 4.1: Sel. Freq.(%) of random effects in survival submodel

γ11 γ12 γ21 γ22 γ31 γ32

True 1 0 0 0 0 1

Senario I Freq. 100 0 1 0 1 100
Senario II Freq. 100 3 2 2 13 100
Senario III Freq. 100 1 0 0 3 100
Senario IV Freq. 100 0 0 0 10 100

Table 4.2: Sel. Freq.(%) of components in covariance matrix

True Positive True Negative

Scenario I 100 99.8
Scenario II 100 99.8
Scenario III 100 100
Scenario IV 100 100

Estimation results are shown in Tables 4.3, 4.4, 4.5 and 4.6. The bias of direct

estimation of random effects ranges from 0% to 25%. After post-selection estimation,

they are reduced to 0% to 6%. The estimates of fixed effects are almost the same in

direct estimation and post-selection estimation. This is reasonable because we do not

impose penalties on these parameters, and re-estimation with selected covariates using

non-penalized likelihood will not have a large impact on them. In order to evaluate

the precision of estimation of covariance matrix Σ, I use Frobenius norm to measure the

difference matrix between Σ and Σ̂. It is defined as ||Σ−Σ̂||F = (
∑

(σij− σ̂ij)2)1/2. Table

4.7 compares the direct estimation and post-selection estimation in all four scenarios. It

can be observed that post-selection estimation increases the precisions of Σ̂ by a large

extent.
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4.6 Application

To illustrate the model, we analyze the data from an observational study of ESRD

patients on HD. The data are provided by Fresenius Medical Care. There are 872 patients

in the study. They are enrolled in the study since they have been on HD for one year

and are then observed for 1 subsequent year. The patient cohort includes 506 (58.0%)

males. 561 (64.33%) patients have diabetes. The age of patients ranges from 21 to 99

with mean 64. Patients’ survival time is monitored. Among 872 patients, 151 (17.3%)

died within the observational time period.

We also collect patients’ monthly measurements of systolic blood pressure prior to

dialysis (PreSBP), neutrophil to lymphocyte ratio (NLR), albumin, inter-dialytic weight

gain (IDWG) and eKt/V. Since NLR is heavily skewed, we consider log(NLR) in the

modeling. PreSBP is divided by 100 to ensure that the scales of the five longitudinal

covariates are approximately the same. The distribution of these variables are presented

in Figure 4.1.

To illustrate the format of the ESRD data, we randomly select 10 patients who died

during the observational period and 10 patients who were censored. The five longitudinal

observations of them are plotted in Figure 4.2. Red lines represent patients who died

and green lines represent patients who were censored. The figure illustrates that the

longitudinal measurements are not always available in each month, and the observational

times for different measurements are not always the same in the data. It is worth-

mentioning that our model does not require any specific observational scheme and can

handle this situation well.

For the five longitudinal covariates, we consider a multivariate linear mixed effect

model. Each longitudinal process is adjusted by the fixed effects of gender, diabetic and
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Figure 4.1: The histograms of longitudinal covariates: Albumin (g/dL), PreSBP/100
(mmHg/100), log(NLR), IDWG (%) and eKt/V in the data.

age:

Albumini(ti1k) = α11IMalei + α12IDiabetici + α13Agei + β11 + β12ti1k + bi11 + bi12ti1k + εi1k

PreSBPi(ti2k)/100 = α21IMalei + α22IDiabetici + α23Agei + β21 + β22ti1k + bi21 + bi22ti2k + εi2k

log(NLR)i(ti3k) = α31IMalei + α32IDiabetici + α33Agei + β31 + β32ti3k + bi31 + bi32ti3k + εi3k

IDWGi(ti4k) = α41IMalei + α42IDiabetici + α43Agei + β41 + β42ti4k + bi41 + bi42ti4k + εi4k

eKt/Vi(ti5k) = α51IMalei + α52IDiabetici + α53Agei + β51 + β52ti1k + bi51 + bi52ti5k + εi5k

For mortality, we use proportional hazard model with the fixed effects of gender,
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Figure 4.2: Longitudinal observations of albumin (g/dL), PreSBP/100 (mmHg/100),
log(NLR), IDWG (%) and eKt/V from 20 random selected patients in the data. 10
patients died during the observational time, their observations are marked red. 10
other patients were censored, their observations are marked green.
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diabetic, age, and random effects in the longitudinal sub-model:

h(ti) = h0(ti) exp{γ01IMalei + γ02IDiabetici + γ03Agei + γbi},

where bi = (bi11, bi12, · · · , bi51, bi52). We assume the survival time of ESRD patients

follows an Exponential distribution, and therefore h0(ti) is a constant h0. We make this

assumption mainly for the simplicity of illustration, however, it is not entirely unrealistic.

In fact, a constant baseline hazard is suggested in the data analytic results in Chapter 2.

We apply our selection and estimation methods and present the selection and esti-

mation results of random effects in Table 4.8. The standard errors are calculated based

on the information matrix. Our procedure selects the random intercept of Albumin, the

random slope of PreSBP/100, both the random intercept and slope of log(NLR), and

the random intercept of IDWG as non-zero effects. Specifically, a high rate of survival

hazard is associated with low level of albumin at the beginning, drop in PreSBP over

time, high level of NLR at the beginning, increase of NLR over time and a high level of

IDWG in the beginning. The estimation results of fixed effects are listed in the survival

sub-model. Age is a significant risk factor. Senior patients tend to have higher survival

hazard. Table 4.10 presents the estimation results of mean intercept, mean slope and the

fixed effects in the longitudinal sub-model.

4.7 Conclusion

In this chapter, we propose a joint modeling framework for the joint analysis of mul-

tiple longitudinal outcomes and survival time. The two types of responses are correlated

through shared random intercepts and slopes in the longitudinal sub-models. A penalized

likelihood approach is introduced to perform variable selection and parameter estimation
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simultaneously. A coordinate descent algorithm is proposed to calculate the penalized

maximized likelihood estimates. Furthermore, a post-selection approach is introduced to

reduce the estimation bias resulted from the penalization.

We demonstrate through simulation that our procedure carries excellent selection

properties for both random effects and the elements of covariance matrix. The post-

selection method effectively reduced the estimation bias. The performance of estimation

procedure is further improved if we increase the sample size or decrease the censoring

rate.

Our proposed method is applied to a study of ESRD patients as an illustration. The

procedure successfully selects the non-zero random effects in the survival sub-model.

They include the random intercept of albumin, random slope of PreSBP, random inter-

cept of log(NLR), random intercept of IDWG and random slope of eKt/V. The signs of

these estimated coefficients are as expected.

In this research, I assume the survival time is from an exponential distribution for sim-

plicity. It can be easily generalized to other parametric distributions with corresponding

forms of baseline hazard. To allow flexible forms of baseline hazard, piecewise-constant

functions and B-splines can also be accommodated when the number and location of

knots are specified. In addition, as the primary of interest of this research is the selection

of non-zero longitudinal effects on the survival outcome, we only impose penalties on the

coefficients of random trajectories of longitudinal outcome and their covariance matrix.

Penalties on other parameters, for example fixed effects, could also be considered if of

interest in future practical data analysis.
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Table 4.3: Estimation of coefficients in survival submodel in scenario I

Survival Sub-model

Random Effects Fixed Effect
γ11 γ12 γ21 γ22 γ31 γ32 γ0

True 1 0 0 0 0 1 1
Direct Bias 0.130 -0.003 0.001 -0.001 -0.008 0.205 0.102

MSE 0.024 0.000 0.000 0.000 0.000 0.005 0.023

Post-Selection Bias -0.006 0.000 0.000 0.000 0.000 0.047 0.015
MSE 0.007 0.000 0.000 0.000 0.000 0.008 0.015

Longitudinal Sub-model

Fixed Intercept and Slope
β11 β12 β21 β22 β31 β32

True 1 -1 1 1 -1 1
Direct Bias 0.002 -0.007 0.001 0.007 0.002 0.099

MSE 0.002 0.001 0.002 0.001 0.002 0.011

Post-Selection Bias 0.002 -0.007 0.001 0.007 0.002 0.099
MSE 0.002 0.001 0.002 0.001 0.002 0.010

Fixed Effect
α1 α2 α3

True 1 -1 1
Direct Bias -0.003 0.002 -0.019

MSE 0.004 0.004 0.004

Post-Selection Bias -0.002 0.002 -0.019
MSE 0.004 0.004 0.004

59



Variable Selection in Joint Modeling Chapter 4

Table 4.4: Estimation of coefficients in survival submodel in scenario II

Survival Sub-model

Random Effects Fixed Effect
γ11 γ12 γ21 γ22 γ31 γ32 γ0

True 1 0 0 0 0 1 1
Direct Bias 0.179 -0.007 -0.001 0.002 -0.021 0.255 0.104

MSE 0.036 0.000 0.000 0.000 0.002 0.073 0.023

Post-Selection Bias 0.010 -0.006 -0.004 0.004 -0.026 0.065 0.011
MSE 0.006 0.001 0.001 0.001 0.005 0.013 0.016

Longitudinal Sub-model

Fixed Intercept and Slope
β11 β12 β21 β22 β31 β32

True 1 -1 1 1 -1 1
Direct Bias 0.003 -0.007 0.007 -0.001 0.004 0.098

MSE 0.002 0.001 0.002 0.001 0.002 0.011

Post-Selection Bias 0.003 -0.007 0.007 -0.001 0.004 0.098
MSE 0.002 0.001 0.002 0.001 0.002 0.011

Fixed Effect
α1 α2 α3

True 1 -1 1
Direct Bias -0.004 -0.013 -0.018

MSE 0.004 0.003 0.004

Post-Selection Bias -0.002 -0.013 -0.017
MSE 0.004 0.003 0.004
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Table 4.5: Estimation of coefficients in survival submodel in scenario III

Survival Sub-model

Random Effects Fixed Effect
γ11 γ12 γ21 γ22 γ31 γ32 γ0

True 1 0 0 0 0 1 1
Direct Bias 0.122 0.000 0.000 0.000 -0.007 0.198 0.025

MSE 0.018 0.000 0.000 0.000 0.000 0.042 0.011

Post-Selection Bias -0.002 -0.001 0.000 0.000 -0.003 0.049 0.000
MSE 0.003 0.000 0.000 0.000 0.000 0.005 0.009

Longitudinal Sub-model

Fixed Intercept and Slope
β11 β12 β21 β22 β31 β32

True 1 -1 1 1 -1 1
Direct Bias 0.007 -0.007 -0.000 0.006 -0.002 0.103

MSE 0.001 0.001 0.001 0.001 0.001 0.011

Post-Selection Bias 0.007 -0.007 -0.000 0.006 -0.002 0.102
MSE 0.001 0.001 0.001 0.001 0.001 0.011

Fixed Effect
α1 α2 α3

True 1 -1 1
Direct Bias -0.005 0.003 -0.016

MSE 0.002 0.002 0.002

Post-Selection Bias -0.003 0.003 -0.016
MSE 0.002 0.002 0.002
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Table 4.6: Estimation of coefficients in survival submodel in scenario IV

Survival Sub-model

Random Effects Fixed Effect
γ11 γ12 γ21 γ22 γ31 γ32 γ0

True 1 0 0 0 0 1 1
Direct Bias 0.173 -0.001 -0.000 0.000 -0.016 0.246 0.089

MSE 0.032 0.000 0.000 0.000 0.000 0.064 0.018

Post-Selection Bias 0.014 0.000 0.000 0.000 -0.019 0.059 0.019
MSE 0.003 0.000 0.000 0.000 0.003 0.008 0.010

Longitudinal Sub-model

Fixed Intercept and Slope
β11 β12 β21 β22 β31 β32

True 1 -1 1 1 -1 1
Direct Bias -0.001 -0.007 0.005 0.001 0.003 0.098

MSE 0.001 0.001 0.001 0.001 0.001 0.010

Post-Selection Bias -0.001 -0.006 0.005 0.001 0.003 0.098
MSE 0.001 0.001 0.001 0.001 0.001 0.010

Fixed Effect
α1 α2 α3

True 1 -1 1
Direct Bias 0.001 -0.005 -0.020

MSE 0.002 0.002 0.002

Post-Selection Bias 0.002 -0.005 -0.020
MSE 0.002 0.002 0.002

Table 4.7: Frobenius norms of (Σ− Σ̂) under all scenarios

True Direct Post-selection

Scenario I 0.161 0.104
Scenario II 0.162 0.107
Scenario III 0.161 0.074
Scenario IV 0.155 0.076
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Table 4.8: Selection and Estimation (SE) of longitudinal covariates in survival sub-model

Albumin PreSBP/100 log(NLR) IDWG eKt/V
Intercept -2.066(0.124) - 1.034(0.151) 0.115(0.056) -

Slope - -3.353(0.105) 0.795(0.156) - -

Table 4.9: Estimate (SE) of fixed effects in survival sub-model

Male Diabetic Age
0.199(0.104) 0.170(0.096) 0.004(0.001)

Table 4.10: Estimate (SE) of fixed covariates in longitudinal sub-model

Albumin PreSBP/100 log(NLR) IDWG EKTV

Intercept 4.175(0.004) 1.658(0.004) 0.784(0.004) 4.586(0.004) 1.344(0.004)
Slope -0.079(0.006) -0.023(0.006) 0.096(0.006) -0.058(0.006) -0.039(0.006)
Male 0.063(0.005) -0.051(0.005) 0.010(0.005) -0.052(0.005) -0.090(0.005)

Diabetic -0.083(0.005) 0.064(0.004) -0.029(0.005) -0.199(0.004) 0.037(0.005)
Age -0.004(0.001) -0.003(0.001) 0.007(0.001) -0.020(0.001) 0.003(0.001)

63



Appendix A

Estimation Performance of ĥ0(t) and

ŵ(t) Under All Scenarios
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Figure A.1: True function (solid lines) and estimates (dashed lines) of h0(t) = 0.5 (left)
and w(t) = t/2 (right) correspond to the 5th, 25th, 50th, 75th and 95th percentiles of
the IMSE when h0(t) = 1/2, w(t) = log(t) and n = 1000.
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Figure A.2: True function (solid lines) and estimates (dashed lines) of h0(t) = 0.5 (left)
and w(t) = t/2 (right) correspond to the 5th, 25th, 50th, 75th and 95th percentiles of
the IMSE when h0(t) = 1/2, w(t) = log(t) and n = 500.
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Figure A.3: True function (solid lines) and estimates (dashed lines) of h0(t) = 0.5 (left)
and w(t) = t/2 (right) correspond to the 5th, 25th, 50th, 75th and 95th percentiles of
the IMSE when h0(t) = 1/2, w(t) = log(t) and n = 300.
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Figure A.4: True function (solid lines) and estimates (dashed lines) of h0(t) = 0.5
(left) and w(t) = log(t) (right) correspond to the 5th, 25th, 50th, 75th and 95th
percentiles of the IMSE when h0(t) = 1/2, w(t) = log(t) and n = 1000.
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Figure A.5: True function (solid lines) and estimates (dashed lines) of h0(t) = 0.5
(left) and w(t) = log(t) (right) correspond to the 5th, 25th, 50th, 75th and 95th
percentiles of the IMSE when h0(t) = 1/2, w(t) = log(t) and n = 500.
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Figure A.6: True function (solid lines) and estimates (dashed lines) of h0(t) = 0.5
(left) and w(t) = log(t) (right) correspond to the 5th, 25th, 50th, 75th and 95th
percentiles of the IMSE when h0(t) = 1/2, w(t) = log(t) and n = 300.
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Figure A.7: True function (solid lines) and estimates (dashed lines) of h0(t) = t/2 (left)
and w(t) = t/2 (right) correspond to the 5th, 25th, 50th, 75th and 95th percentiles of
the IMSE when h0(t) = t/2, w(t) = t/2 and n = 1000.
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Figure A.8: True function (solid lines) and estimates (dashed lines) of h0(t) = t/2 (left)
and w(t) = t/2 (right) correspond to the 5th, 25th, 50th, 75th and 95th percentiles of
the IMSE when h0(t) = t/2, w(t) = t/2 and n = 500.
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Figure A.9: True function (solid lines) and estimates (dashed lines) of h0(t) = t/2 (left)
and w(t) = t/2 (right) correspond to the 5th, 25th, 50th, 75th and 95th percentiles of
the IMSE when h0(t) = t/2, w(t) = t/2 and n = 300.
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Figure A.10: True function (solid lines) and estimates (dashed lines) of h0(t) = t/2
(left) and w(t) = log(t) (right) correspond to the 5th, 25th, 50th, 75th and 95th
percentiles of the IMSE when h0(t) = t/2, w(t) = log(t) and n = 1000.
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Figure A.11: True function (solid lines) and estimates (dashed lines) of h0(t) = t/2
(left) and w(t) = log(t) (right) correspond to the 5th, 25th, 50th, 75th and 95th
percentiles of the IMSE when h0(t) = t/2, w(t) = log(t) and n = 300.
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Appendix B

R and SAS Codes Used in Chapter 2

Here we provide the R and SAS codes for the data analysis in Chapter 2. The following

R code is used for generating B-spline bases and integrated B-spline bases in R:

library(sas7bdat)

library(splines)

# read data of patients’ survival time

train <- read.table("dat_time.csv", sep=",", header=T,

na.strings=c("NA",""))

# function to generate B-spline bases and integrated B-spline bases

# hk is number of knots for baseline

# wk is number of knots for offset function

bspline <-

function(hk, wk, cut=730/100, n=dim(train)[1], K=1000, data=train)

{

dur <- function(i,j,knots){

integrate(function(x)

as.numeric(bs(x,knots=seq(0,cut,length=knots+2)[-c(1,knots+2)],

degree=3,intercept=T, Bound=c(-1/100,731/100))[,j]),

0, tgrid[i], rel.tol=.Machine$double.eps^0.1)$value

}

t <- bs(data$time/100,

knots=seq(0,cut,length=hk+2)[-c(1,hk+2)],intercept=T,
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Bound=c(-1/100,731/100))

tgrid <- seq(0,cut,length=K)

Tgrid <- mat.or.vec(K,hk+4)

for (i in 1:K){

for (j in 1:(hk+4)){

Tgrid[i,j] <- dur(i,j,hk)

}

}

d <- t(sapply(1:n, function(x)

Tgrid[which.min(abs(tgrid-data$time[x]/100)),]))

Wgrid <- mat.or.vec(K,wk+4)

for (i in 1:K){

for (j in 1:(wk+4)){

Wgrid[i,j] <- dur(i,j,wk)

}

}

dw <- t(sapply(1:n, function(x)

Wgrid[which.min(abs(tgrid-data$time[x]/100)),]))

data.frame(patient_id=data$patient_id,t=t,d=d,dw=dw)

}

time33 <- bspline(2,2)

write.table(time22,file="dat_time22.csv",sep=",",col.names=T,row.names=F)

The following sas code is for the joint model of survival time and number of hospi-

talization:

libname JM ’~/JM2data’;

proc import datafile = ’~/JM2data/dat_time22.csv’ dbms=csv replace

out = JM.dat_time22;

run;

data JM.dat_all22;

merge JM.dat_time22 JM.dat_all;

by patient_id;
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run;

proc nlmixed data=JM.dat_all33 maxiter=4000 TECH=NRRIDG;

bounds sigma2 c1-c6 d1-d6>0;

parms c0=-2 c1=0.3 c2=0.1 c3=0.5 c4=0.2 c5=1 c6=0.1 sigma2=0.5 eta=1

a1=0.002 a2=-0.341 a3=0.003 a4=0.031 a5=-0.004 a6=-0.105

a7=0.027 a8=-0.160 a10=0.018 a11=0.231 a12=0.444

b1=0.028 b2=-0.906 b3=-0.004 b4=0.067 b5=-0.020 b6=0.095 b7=0.086

b8=-0.387 b10=0.086 b11=0.002 b12=-0.281

d1=0.1 d2=0.1 d3=0.1 d4=0.1 d5=0.1 d6=0.1;

lin_h = v + b1*age + b2*albumin_avg + b3*pre_sbp_avg + b4*nlr_avg

+ b5*post_bmi_avg + b6*male + b7*idwg_percent_avg + b8*ektv_avg

+ b9*vintage + b10*race_white +b11*race_black;

base_haz_d = d1*t_1 + d2*t_2 + d3*t_3 + d4*t_4 + d5*t_5 + d6*t_6;

cum_base_haz_d = d1*d_1 + d2*d_2 + d3*d_3 + d4*d_4 + d5*d_5 + d6*d_6;

h = base_haz_d * exp(lin_h);

S = exp(-cum_base_haz_d * exp(lin_h));

* loglik for death;

if (event=1) then loglikD = log(h) + log(S);

if (event=0) then loglikD = log(S);

* loglik for Y;

lin_Y = a1*age + a2*albumin_avg + a3*pre_sbp_avg + a4*nlr_avg

+ a5*post_bmi_avg + a6*male + a7*idwg_percent_avg + a8*ektv_avg

+ a9*vintage +a10*race_white +a11*race_black + eta*v;

w_T = c0 + c1*dw_1 + c2*dw_2 + c3*dw_3 + c4*dw_4 + c5*dw_5 + c6*dw_6;

lambda = exp(w_T + lin_Y);

loglikY = hosp_count*log(lambda) - lambda;

loglik = loglikD + loglikY;

model time ~ general(loglik);

random v ~ normal(0,sigma2) subject=patient_id out=JM.hosp22_nu;

ods output ParameterEstimates=JM.hosp22_est FitStatistics=JM.hosp22_fit;

run;
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The following sas code is for the joint model of survival time and total length of

hospital stay:

libname JM ’~/JM2data’;

data JM.dat_days22;

merge JM.dat_time22 JM.dat_all;

by patient_id;

run;

proc nlmixed data=JM.dat_days22 maxiter=4000 TECH=NRRIDG;

bounds sigma2 c1-c6 d1-d6 nu>0;

parms c0=-2 c1=1 c2=1 c3=0.1 c4=0.3 c5=0.01 c6=0.1

sigma2=1 eta=1 nu=2

a1=0.002 a2=-0.341 a3=0.003 a4=0.031 a5=-0.004 a6=-0.105

a7=0.027 a8=-0.160 a10=0.018 a11=0.231 a12=0.444

b1=0.028 b2=-0.906 b3=-0.004 b4=0.067 b5=-0.020 b6=0.095

b7=0.086 b8=-0.387 b10=0.086 b11=0.002 b12=-0.281

d1=0.4 d2=0.8 d3=0.1 d4=0.8 d5=0.2 d6=1;

lin_h = v + b1*age + b2*albumin_avg + b3*pre_sbp_avg + b4*nlr_avg

+ b5*post_bmi_avg + b6*male + b7*idwg_percent_avg + b8*ektv_avg

+ b9*vintage + b10*race_white +b11*race_black;

*h = h0 * exp(lin_h);

*S = exp(-time*h/700);

base_haz_d = d1*t_1 + d2*t_2 + d3*t_3 + d4*t_4 + d5*t_5 + d6*t_6;

cum_base_haz_d = d1*d_1 + d2*d_2 + d3*d_3 + d4*d_4 + d5*d_5 + d6*d_6;

h = base_haz_d * exp(lin_h);

S = exp(-cum_base_haz_d * exp(lin_h));

* loglik for death;

if (event=1) then loglikD = log(h) + log(S);

if (event=0) then loglikD = log(S);

* loglik for Y;

lin_Y = a1*age + a2*albumin_avg + a3*pre_sbp_avg + a4*nlr_avg

+ a5*post_bmi_avg + a6*male + a7*idwg_percent_avg + a8*ektv_avg

+ a9*vintage +a10*race_white +a11*race_black + eta*v;

*w_T = log(time/700);

73



R and SAS Codes Used in Chapter 2 Chapter B

w_T = c0 + c1*dw_1 + c2*dw_2 + c3*dw_3 + c4*dw_4 + c5*dw_5 + c6*dw_6;

mu = exp(w_T + lin_Y);

loglikY = nu*(-hosp_total_days/100/mu-log(mu))

+ nu*log(hosp_total_days/100)+nu*log(nu)-log(gamma(nu));

loglik = loglikD + loglikY;

model time ~ general(loglik);

random v ~ normal(0,sigma2) subject=patient_id out=JM.days22_nu;

ods output ParameterEstimates=JM.days22_est FitStatistics=JM.days22_fit;

run;
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SAS Code Used in Chapter 3

The following SAS code is for the joint modeling of hospitalization and readmission in

Chapter 3:

proc nlmixed data=rehosp.dat_oneyear maxiter=30000 tech=NRRIDG;

bounds sigma2 > 0 ;

parms a0=0.72 a1=0.15 a2=-0.17 a3=-0.14 a4=0.001

a5=-0.03 a6=-0.10 a7=0.24 a8=-0.01 a9=0.19

c1=0.04 c2=-0.13 c3=0.03 c4=-0.007

c5=-0.02 c6=0.05 c7=-0.06 c8=-0.18 c9=0.11;

lambda_lin = exp_yrs_log + a0 + a1*txt + a2*prd + a3*(txt*prd) + a4*age

+ a5*vintage + a6*male + a7*DIABETIC + a8*comorbid_CHF

+ a9*comorbid_COPD + nv;

p_lin = b1*ns_1 + b2*ns_2 + c1*txt + c2*prd + c3*(txt*prd) + c4*age

+ c5*vintage + c6*male + c7*DIABETIC + c8*comorbid_CHF

+ c9*comorbid_COPD+ eta*nv;

loglikY = event_hosp*lambda_lin - exp(lambda_lin);

loglikZ = event_rehosp*p_lin - event_hosp*log(1+exp(p_lin));

loglik = loglikY + loglikZ;

model event_hosp ~ general(loglik);

random nv ~ normal(0,sigma2) subject=patient_id;

ods output ParameterEstimates=rehosp.dat_est FitStatistics=rehosp.dat_fit;

run;
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R Code Used in Chapter 4

The following R code is for the variable selection in Chapter 4:

library(psych)

library(survival)

library(nlme)

# read data for longitudinal covariates

data.Y <- read.table("sample.y.csv", sep=",",header=TRUE)

# read data for survival time

data.T <- read.table("sample.t.csv", sep=",",header=TRUE)

# load initial values generated from marginal models

load("initial.rda")

varnames.fixed <- c("male","diabetic","age")

# main function to perform variable selection

lasso.JM <- function( maxiter=100, rtol=1e-6,

lambda, lambda2, J=5, J1=3){

res.alpha <- res.beta <- res.gamma <- res.gamma0 <- res.sigma.e2

<- res.h0 <- res.Sigma <- res.negPL <- NULL

idRange <- 1:nrow(data.T)

# function to obtain b which maximize kappa(b)

GS <- function() {

b.out <- b
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J <- ncol(b)/2

J1 <- length(alpha)/J

for (id in idRange){

data <- data.Y[data.Y$id==id,]

N <- nrow(data)

X <- data[,colnames(data) %in% varnames.fixed]

time <- data.T[data.T$id==id,]$time

delta <- data.T[data.T$id==id,]$delta

t <- data[data$y.name==1,]$y.t

n <- length(t)

Zi <- matrix(c(rep(1,n),t),n,2)

for (j in 2:J) {

t <- data[data$y.name==j,]$y.t

n <- length(t)

z <- matrix(c(rep(1,n),t),n,2)

Zi <- superMatrix(list(Zi,z))

}

b.est <- rep(0,ncol(b))

kbi.drv <- rep(1,ncol(b))

GS.iter <- 0

while (GS.iter < 10 & sum(kbi.drv^2) > 1e-10) {

b.est.old <- b.est

y.name.ind.all <- data$y.name

alpha.sel.left.all <- J1*(y.name.ind.all-1)+1

beta.sel.all <- 2*y.name.ind.all-1

alpha.matrix <- matrix(rep(0,N*J1),nrow=N)

for (i in 1:N)

alpha.matrix[i,] <- alpha[(alpha.sel.left.all[i]):

(alpha.sel.left.all[i]+J1-1)]

mu <- apply(X*alpha.matrix,1,sum) + beta[beta.sel.all]

+ beta[beta.sel.all+1]*data$y.t + Zi%*%b.est.old

eta <- c(as.numeric(X[1,])%*%gamma0 + t(gamma)%*%b.est.old)
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kbi.drv <- t(data$y-mu)%*%Zi/sigma.e2 + delta*gamma

- h0*time*exp(eta)*gamma - t(b.est.old)%*%solve(Sigma)

Hi <- -t(Zi)%*%Zi/sigma.e2 - c(h0*time*exp(eta))*gamma%*%t(gamma)

- solve(Sigma)

b.est <- b.est.old - solve(Hi)%*%t(kbi.drv)

GS.iter <- GS.iter+1

}

b.out[rownames(b.out)==as.character(id),] <- b.est

}

b.out

}

# negative penalized likelihood

negPL.fun <- function(alpha.est=alpha, beta.est=beta,

gamma0.est=gamma0, gamma.est=gamma,

h0.est=h0, sigma.e2.est=sigma.e2,

Sigma.est=Sigma, b.est=b)

{

PL.neg <- 0

for (id in 1:400) {

data <- data.Y[data.Y$id==id,]

N <- nrow(data)

X <- data[,colnames(data) %in% varnames.fixed]

time <- data.T[data.T$id==id,]$time

delta <- data.T[data.T$id==id,]$delta

t <- data[data$y.name==1,]$y.t

n <- length(t)

Zi <- matrix(c(rep(1,n),t),n,2)

for (j in 2:J) {

t <- data[data$y.name==j,]$y.t

n <- length(t)

z <- matrix(c(rep(1,n),t),n,2)

Zi <- superMatrix(list(Zi,z))

}

mu <- sapply(1:N, function(i)

c(as.numeric(X[i,])%*%alpha.est[(J1*(data$y.name[i]-1)+1)

:(J1*data$y.name[i])]) + beta.est[2*data$y.name[i]-1]
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+ beta.est[2*data$y.name[i]]*data$y.t[i]

+ b.est[rownames(b.est)==as.character(id),

2*data$y.name[i]-1]

+ b.est[rownames(b.est)==as.character(id),

2*data$y.name[i]]*data$y.t[i])

eta <- c(as.numeric(X[1,])%*%gamma0.est)+c(gamma.est

%*%b.est[rownames(b.est)==as.character(id),])

kbi.neg <- N*log(sigma.e2.est)/2

+ c(t(data$y-mu)%*%(data$y-mu)/sigma.e2.est/2)

- delta*log(h0.est) - delta*eta

+ h0.est*time*exp(eta) + log(det(Sigma.est)+0.0000001)/2

+ t(b.est[rownames(b.est)==as.character(id),])%*%

solve(Sigma.est)%*%b.est[rownames(b.est)==as.character(id),]/2

Hi <- -t(Zi)%*%Zi/sigma.e2.est - h0.est*time*exp(eta)*gamma.est

%*%t(gamma.est) - solve(Sigma.est)

PLi.neg <- kbi.neg+log(det(-Hi)+0.00000001)/2

PL.neg <- PL.neg + PLi.neg

}

c(PL.neg) + lambda*sum(abs(gamma.est))*length(idRange) +

lambda2*sum(abs(Sigma.est[upper.tri(Sigma.est)]))*length(idRange)

}

data.X <- data.Y[!duplicated(data.Y$id),]

Z <- NULL

for (id in idRange){

data <- data.Y[data.Y$id==id,]

N <- nrow(data)

t <- data[data$y.name==1,]$y.t

n <- length(t)

Zi <- matrix(c(rep(1,n),t),n,2)

for (j in 2:J) {

t <- data[data$y.name==j,]$y.t

n <- length(t)

z <- matrix(c(rep(1,n),t),n,2)

Zi <- superMatrix(list(Zi,z))

}

Z <- rbind(Z, Zi)

}

alpha.hist <- alpha.old <- alpha <- alpha.ini
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beta.hist <- beta.old <- beta <- beta.ini

sigma.e2.hist <- sigma.e2.old <- sigma.e2 <- sigma.e2.ini

Sigma <- Sigma.ini

gamma0.hist <- gamma0.old <- gamma0 <- gamma0.ini

gamma.hist <- gamma.old <- gamma <- gamma.ini

h0.hist <- h0.old <- h0 <- 1

b <- b.ini

negPL.hist <- negPL <- negPL.fun()

k <- 0

rdiff <- 1

scale <- 1/2

maxiter.opt <- 10

# Coordinate Decent Algorithm

while (k < maxiter & rdiff > rtol) {

b <- GS()

alpha.old <- alpha

beta.old <- beta

gamma0.old <- gamma0

gamma.old <- gamma

h0.old <- h0

Sigma.old <- Sigma

sigma.e2.old <- sigma.e2

negPL.old <- negPL

f <- f.new <- negPL.fun()

# update h0

drv1 <- 0

drv1 <- sum(unlist(lapply(idRange, function(id) {

data.Y.row.sel <- data.Y$id==id

data <- data.Y[data.Y.row.sel,]
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N <- nrow(data)

X <- data[,colnames(data) %in% varnames.fixed]

data.T.row.sel <- data.T$id==id

time <- data.T[data.T.row.sel,]$time

delta <- data.T[data.T.row.sel,]$delta

t <- data[data$y.name==1,]$y.t

n <- length(t)

Zi <- matrix(c(rep(1,n),t),n,2)

for (j in 2:J) {

t <- data[data$y.name==j,]$y.t

n <- length(t)

z <- matrix(c(rep(1,n),t),n,2)

Zi <- superMatrix(list(Zi,z))

}

eta <- c(as.numeric(X[1,])%*%gamma0

+ gamma%*%b[rownames(b)==as.character(id),])

H <- -t(Zi)%*%Zi/sigma.e2

- h0*time*exp(eta)*gamma%*%t(gamma) - solve(Sigma)

-tr(solve(H)%*%gamma%*%t(gamma))*h0*time*exp(eta)/2

})))

drv2 <- sum(-data.T$delta/h0 + data.T$time*

exp(as.matrix(data.X[,colnames(data.X)%in%varnames.fixed])

%*%gamma0+b%*%gamma))

drv <- drv1 + drv2

if (drv > 1e-6) {

iter <- 0

step <- 1*0.5^k

h0.update <- h0 - step*drv

while (h0.update < 0) {

step <- scale*step

iter <- iter + 1

h0.update <- h0 - step*drv

}

if (abs(step*drv) >1e-5) {

f.new <- negPL.fun(h0.est = h0.update)

while ( abs(step*drv) >1e-5 & f - f.new < step*drv^2/4) {

step <- scale*step

iter <- iter+1
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h0.update <- h0 - step*drv

f.new <- negPL.fun(h0.est = h0.update)

}

}

h0 <- ifelse(abs(step*drv)<1e-5, h0, h0 - step*drv)

f <- ifelse(abs(step*drv)<1e-5, f, f.new)

}

print(paste("h0",h0,",","iter",iter))

# update gamma

drv2 <- -t(data.T$delta)%*%b + t(h0*data.T$time

*exp(as.matrix(data.X[,colnames(data.X)%in%varnames.fixed])%*%gamma0

+ b%*%gamma))%*%b

for (i in 1:length(gamma)) {

drv1 <- 0

for (id in idRange){

data <- data.Y[data.Y$id==id,]

N <- nrow(data)

X <- data[,colnames(data) %in% varnames.fixed]

time <- data.T[data.T$id==id,]$time

delta <- data.T[data.T$id==id,]$delta

t <- data[data$y.name==1,]$y.t

n <- length(t)

Zi <- matrix(c(rep(1,n),t),n,2)

for (j in 2:J) {

t <- data[data$y.name==j,]$y.t

n <- length(t)

z <- matrix(c(rep(1,n),t),n,2)

Zi <- superMatrix(list(Zi,z))

}

eta <- c(as.numeric(X[1,])%*%gamma0

+ gamma%*%b[rownames(b)==as.character(id),])

H <- -t(Zi)%*%Zi/sigma.e2

- h0*time*exp(eta)*gamma%*%t(gamma) - solve(Sigma)

ind <- numeric(length(gamma))

ind[i] <- 1
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drv1i <- -tr(solve(H)%*%(gamma%*%t(gamma)

*c(b[rownames(b)==as.character(id),i])

+2*ind%*%t(gamma)))*h0*time*exp(eta)/2

drv1 <- drv1 + drv1i

}

drv <- drv1 + drv2[i] + sign(gamma[i])*lambda*length(idRange)

if (abs(drv)>1e-5) {

iter <- 0

step <- 1*0.5^k

gamma.update <- replace(gamma,i,gamma[i]-step*drv)

f.new <- negPL.fun(gamma.est=gamma.update)

while (is.na(f.new)) {

step <- scale*step

iter <- iter + 1

gamma.update <- replace(gamma,i,gamma[i]-step*drv)

f.new <- negPL.fun(gamma.est=gamma.update)

}

while ( abs(step*drv)>1e-5 & f - f.new < step*drv^2/4) {

step <- scale*step

iter <- iter+1

f.new <- negPL.fun(gamma.est=replace(gamma,i,gamma[i]-step*drv))

}

gamma[i] <- ifelse(abs(step*drv)<1e-5, gamma[i], gamma[i]-step*drv)

f <- ifelse(abs(step*drv)<1e-5, f, f.new)

}

print(paste("i",i))

}

print(paste("gamma",gamma,",","iter",iter))

# update alpha

mu <- sapply(1:nrow(data.Y), function(n){

y.name.ind <- data.Y$y.name[n]

alpha.sel <- (J1*(y.name.ind-1)+1):(J1*y.name.ind)

beta.sel <- 2*y.name.ind-1
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b.row.sel <- rownames(b)==as.character(data.Y$id[n])

as.matrix(data.Y[n, colnames(data.Y)%in%varnames.fixed])

%*%alpha[alpha.sel] + beta[beta.sel] + beta[beta.sel+1]

*data.Y$y.t[n] + b[b.row.sel,beta.sel]

+ b[b.row.sel,beta.sel+1]*data.Y$y.t[n]

} )

if (sum(abs(data.Y$y-mu)) > 1e-6) {

for (idx1 in 1:(length(alpha))) {

x.idx1 <- ifelse(idx1%%J1==0, J1, idx1%%J1)

y.idx1 <- (idx1-x.idx1)/J1+1

iter <- 0

data.tmp <- data.Y[data.Y$y.name==y.idx1,]

drvdrv <- sum(data.Y[data.Y$y.name==y.idx1,

colnames(data.tmp)==varnames.fixed[x.idx1]]^2)/sigma.e2

alpha.est <- alpha

drv <- 1

while (iter < 10 & sum(drv^2) > 1e-10) {

mu <- sapply(1:nrow(data.tmp), function(n){

y.name.ind <- data.tmp$y.name[n]

alpha.sel <- (J1*(y.name.ind-1)+1):(J1*y.name.ind)

beta.sel <- 2*y.name.ind-1

b.row.sel <- rownames(b)==as.character(data.tmp$id[n])

as.matrix(data.tmp[n,colnames(data.Y)%in%varnames.fixed])

%*%alpha.est[alpha.sel] + beta[beta.sel] + beta[beta.sel+1]

*data.tmp$y.t[n] + b[b.row.sel,beta.sel]

+ b[b.row.sel,beta.sel+1]*data.tmp$y.t[n]

} )

drv <- -sum(((data.tmp$y-mu)*as.matrix(data.tmp[,

colnames(data.tmp)==varnames.fixed[x.idx1]])))/sigma.e2

alpha.est.old <- alpha.est

alpha.est[idx1] <- alpha.est.old[idx1] - drv/drvdrv

iter <- iter+1

}

alpha <- alpha.est
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}

}

print(paste("alpha",alpha,",","iter",iter))

# update beta

iter <- 0

mu <- sapply(1:nrow(data.Y), function(n){

y.name.ind <- data.Y$y.name[n]

alpha.sel <- (J1*(y.name.ind-1)+1):(J1*y.name.ind)

beta.sel <- 2*y.name.ind-1

b.row.sel <- rownames(b)==as.character(data.Y$id[n])

as.matrix(data.Y[n,colnames(data.Y)%in%varnames.fixed])

%*%alpha[alpha.sel] + beta[beta.sel] + beta[beta.sel+1]

*data.Y$y.t[n] + b[b.row.sel,beta.sel]

+ b[b.row.sel,beta.sel+1]*data.Y$y.t[n]

} )

drv <- -t(as.matrix(data.Y$y-mu))%*%Z/sigma.e2

H <- t(Z)%*%Z/sigma.e2

beta.est <- beta

while (iter < 10 & sum(abs(drv)) > 1e-6) {

mu <- sapply(1:nrow(data.Y), function(n){

y.name.ind <- data.Y$y.name[n]

alpha.sel <- (J1*(y.name.ind-1)+1):(J1*y.name.ind)

beta.sel <- 2*y.name.ind-1

b.row.sel <- rownames(b)==as.character(data.Y$id[n])

as.matrix(data.Y[n,colnames(data.Y)%in%varnames.fixed])

%*%alpha[alpha.sel] + beta.est[beta.sel] + beta.est[beta.sel+1]

*data.Y$y.t[n] + b[b.row.sel,beta.sel]

+ b[b.row.sel,beta.sel+1]*data.Y$y.t[n]

} )

drv <- -t(data.Y$y-mu)%*%Z/sigma.e2

beta.est.old <- beta.est

beta.est <- beta.est.old - solve(H)%*%t(drv)
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iter <- iter+1

}

print(paste("beta",beta,",","iter",iter))

# update sigma.e2

iter <- 0

drv1 <- sum(unlist(lapply(idRange, function(id) {

data.Y.row.sel <- data.Y$id==id

data <- data.Y[data.Y.row.sel,]

N <- nrow(data)

X <- as.matrix(data[,colnames(data)%in%varnames.fixed])

data.T.row.sel <- data.T$id==id

time <- data.T[data.T.row.sel,]$time

delta <- data.T[data.T.row.sel,]$delta

t <- data[data$y.name==1,]$y.t

n <- length(t)

Zi <- matrix(c(rep(1,n),t),n,2)

for (j in 2:J) {

t <- data[data$y.name==j,]$y.t

n <- length(t)

z <- matrix(c(rep(1,n),t),n,2)

Zi <- superMatrix(list(Zi,z))

}

eta <- c(as.numeric(X[1,])%*%gamma0

+ gamma%*%b[rownames(b)==as.character(id),])

H <- -t(Zi)%*%Zi/sigma.e2

- h0*time*exp(eta)*gamma%*%t(gamma) - solve(Sigma)

drv1i <- tr(solve(H)%*%t(Zi)%*%Zi)/(sigma.e2^2)/2

drv1i

})))

mu <- sapply(1:nrow(data.Y), function(n){

y.name.ind <- data.Y$y.name[n]

alpha.sel <- (J1*(y.name.ind-1)+1):(J1*y.name.ind)

beta.sel <- 2*y.name.ind-1

b.row.sel <- rownames(b)==as.character(data.Y$id[n])

as.numeric(data.Y[n,colnames(data.Y)%in%varnames.fixed])
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%*%alpha[alpha.sel] + beta[beta.sel]

+ beta[beta.sel+1]*data.Y$y.t[n] + b[b.row.sel,beta.sel]

+ b[b.row.sel,beta.sel+1]*data.Y$y.t[n]

})

drv2 <- nrow(data.Y)*1/sigma.e2/2

- c(t(data.Y$y-mu)%*%(data.Y$y-mu)/(sigma.e2^2*2))

drv <- drv1 + drv2

if (sum(abs(drv)) > 1e-5) {

if (f - negPL.fun(sigma.e2.est = sigma.e2-sign(drv)*1e-5)

> (1e-5)^2/4)

{

iter <- 0

step <- 0.01*0.5^k

sigma.e2.update <- sigma.e2 - step*drv

while (sigma.e2.update < 0) {

step <- scale*step

iter <- iter + 1

sigma.e2.update <- sigma.e2 - step*drv

}

if (abs(step*drv) >1e-5) {

f.new <- negPL.fun(sigma.e2.est=sigma.e2.update)

while ( abs(step*drv) >1e-5 & f - f.new < step*drv^2/4) {

step <- scale*step

iter <- iter+1

sigma.e2.update <- sigma.e2 - step*drv

f.new <- negPL.fun(sigma.e2.est = sigma.e2.update)

}

}

sigma.e2 <- ifelse(abs(step*drv)<1e-5, sigma.e2, sigma.e2.update)

f <- ifelse(abs(step*drv)<1e-5, f, f.new)

}

}

print(paste("sigma.e2",sigma.e2,",","iter",iter))

# update gamma0

drv1 <- rep(0,length(gamma0))

drv1.list <- lapply(idRange, function(id){
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data <- data.Y[data.Y$id==id,]

N <- nrow(data)

X <- as.matrix(data[,colnames(data)%in%varnames.fixed])

time <- data.T[data.T$id==id,]$time

delta <- data.T[data.T$id==id,]$delta

t <- data[data$y.name==1,]$y.t

n <- length(t)

Zi <- matrix(c(rep(1,n),t),n,2)

for (j in 2:J) {

t <- data[data$y.name==j,]$y.t

n <- length(t)

z <- matrix(c(rep(1,n),t),n,2)

Zi <- superMatrix(list(Zi,z))

}

eta <- c(as.numeric(X[1,])%*%gamma0

+ gamma%*%b[rownames(b)==as.character(id),])

H <- -t(Zi)%*%Zi/sigma.e2

- h0*time*exp(eta)*gamma%*%t(gamma) - solve(Sigma)

drv1i <- -tr(solve(H)%*%gamma%*%t(gamma))*h0*time*exp(eta)*X[1,]/2

drv1i

})

drv1 <- apply(matrix(unlist(drv1.list),

nrow=length(gamma0), byrow=TRUE), 1, sum)

drv2 <- -t(data.T$delta)%*%

as.matrix(data.X[,colnames(data.X)%in%varnames.fixed]) + t(h0

*data.T$time*exp(as.matrix(data.X[,colnames(data.X)%in%varnames.fixed])

%*%gamma0+b%*%gamma))%*%

as.matrix(data.X[,colnames(data.X)%in%varnames.fixed])

drv <- drv1 + drv2

for (i in 1:length(gamma0)) {

if (abs(drv[i]) > 1e-5) {

iter <- 0

if (f - negPL.fun(gamma0.est = replace(gamma0,

i,gamma0[i]-sign(drv[i])*1e-5)) > (1e-5)^2/4)

{

step <- 0.01*0.5^k
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while ( abs(step*drv[i])>1e-5 & f - f.new < step*drv[i]^2/4){

step <- scale*step

iter <- iter+1

f.new <- negPL.fun(gamma0.est = replace(gamma0,

i,gamma0[i]-step*drv[i]))

}

gamma0[i] <- ifelse(abs(step*drv[i])<1e-5,

gamma0[i], gamma0[i] - step*drv[i])

f <- ifelse(abs(step*drv[i])<1e-5, f, f.new)

}

}

print(paste("i",i))

}

print(paste("gamma0",gamma0,",","iter",iter))

# update Sigma

system.time({

iter <- 0

for (i in 1:ncol(b)) {

for (j in 1:i){

Sigma.inv <- solve(Sigma)

Sigma.drv <- matrix(numeric(ncol(b)*ncol(b)), ncol=ncol(b))

Sigma.drv[i,j] <- Sigma.drv[j,i] <- 1

drv <- sum(unlist(lapply(idRange, function(id){

data.Y.row.sel <- data.Y$id==id

data <- data.Y[data.Y.row.sel,]

N <- nrow(data)

X <- as.matrix(data[,colnames(data)%in%varnames.fixed])

data.T.row.sel <- data.T$id==id

time <- data.T[data.T.row.sel,]$time

delta <- data.T[data.T.row.sel,]$delta

t <- data[data$y.name==1,]$y.t

n <- length(t)

Zi <- matrix(c(rep(1,n),t),n,2)
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for (jj in 2:J) {

t <- data[data$y.name==jj,]$y.t

n <- length(t)

z <- matrix(c(rep(1,n),t),n,2)

Zi <- superMatrix(list(Zi,z))

}

eta <- c(as.numeric(X[1,])%*%gamma0

+ gamma%*%b[rownames(b)==as.character(id),])

H <- -t(Zi)%*%Zi/sigma.e2

- h0*time*exp(eta)*gamma%*%t(gamma) - Sigma.inv

drv1i <- tr(Sigma.inv%*%Sigma.drv)/2 -

t(b[rownames(b)==as.character(id),])%*%Sigma.inv%*%Sigma.drv

%*%Sigma.inv%*%b[rownames(b)==as.character(id),]/2

drv2i <- tr(solve(H)%*%Sigma.inv%*%Sigma.drv%*%Sigma.inv)/2

drv1i + drv2i

})))

drv <- drv

+ (i!=j)*lambda2*sign(Sigma[i,j])*length(idRange)*abs(Sigma[i,j])

if (abs(drv) > 1e-5) {

if (f - negPL.fun(Sigma.est = replace(Sigma,

c((j-1)*ncol(b)+i,(i-1)*ncol(b)+j),Sigma[i,j]-sign(drv)*1e-5))

> (1e-5)^2/4)

{

iter <- 0

step <- 0.01*0.5^k

if (abs(step*drv) > 1e-5 ) {

Sigma.update <- replace(Sigma,

c((j-1)*ncol(b)+i,(i-1)*ncol(b)+j),Sigma[i,j]-step*drv)

while (det(Sigma.update) < 0) {

step <- scale*step

iter <- iter + 1

Sigma.update <- replace(Sigma,

c((j-1)*ncol(b)+i,(i-1)*ncol(b)+j),Sigma[i,j]-step*drv)

}

f.new <- negPL.fun(Sigma.est = Sigma.update)
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while ( abs(step*drv) > 1e-5 & f - f.new < step*drv^2/4) {

step <- scale*step

iter <- iter+1

Sigma.update <- replace(Sigma,

c((j-1)*ncol(b)+i,(i-1)*ncol(b)+j),Sigma[i,j]-step*drv)

f.new <- negPL.fun(Sigma.est = Sigma.update)

}

}

Sigma[i,j] <- Sigma[j,i] <-

ifelse(abs(step*drv) < 1e-5, Sigma[i,j], Sigma[i,j]-step*drv)

f <- ifelse(abs(step*drv)<1e-5, f, f.new)

}

}

print(paste("i",i,"j",j))

}

}

print(Sigma)})

negPL <- f

rdiff <- c(abs(negPL - negPL.old)/(abs(negPL.old)+0.000001))

k <- k+1

print(paste("rdiff",rdiff,",","iter",k-1))

print(list(alpha=alpha, beta=beta, gamma=gamma, gamma0=gamma0,

Sigma=Sigma, sigma.e2=sigma.e2, h0=h0, negPL=negPL,

rdiff=rdiff, iter=k))

}

list(alpha=alpha, beta=beta, gamma=gamma, gamma0=gamma0,

Sigma=Sigma, sigma.e2=sigma.e2, h0=h0, negPL=negPL,

rdiff=rdiff, iter=k)

}

lasso.JM(lambda=0.005, lambda2=0.1)

91



Bibliography

[1] Hirotugu Akaike. Information theory and an extension of the maximum likelihood
principle. In Second international symposium on information theory, pages 267–281.
Akademinai Kiado, 1973.

[2] Howard D Bondell, Arun Krishna, and Sujit K Ghosh. Joint variable selection for
fixed and random effects in linear mixed-effects models. Biometrics, 66(4):1069–
1077, 2010.

[3] Daniel J Brotman, Lori D Bash, Rehan Qayyum, Deidra Crews, Eric A Whitsel,
Brad C Astor, and Josef Coresh. Heart rate variability predicts ESRD and CKD-
related hospitalization. Journal of the American Society of Nephrology, 21(9):1560–
1570, 2010.

[4] Elizabeth R Brown, Joseph G Ibrahim, and Victor DeGruttola. A flexible B-spline
model for multiple longitudinal biomarkers and survival. Biometrics, 61(1):64–73,
2005.
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