
UNIVERSITY OF CALIFORNIA

Santa Barbara

Data Learning Methodologies for

Improving the Efficiency of

Constrained Random Verification

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Wen Chen

Committee in charge:

Professor Li-C. Wang, Chair

Professor Forrest Brewer

Professor Malgorzata Marek-Sadowska

Dr. Jayanta Bhadra

September 2014

The dissertation of Wen Chen is approved.

Professor Forrest Brewer

Professor Malgorzata Marek-Sadowska

Dr. Jayanta Bhadra

Professor Li-C. Wang, Committee Chair

June 2014

Data Learning Methodologies for Improving the

Efficiency of Constrained Random Verification

Copyright c© 2014

Wen Chen

iii

Dedicated to my mom and dad

iv

Acknowledgements

First of all, I express my deepest appreciation and gratitude to my advisor

Professor Li-C. Wang for his continuous guidance and tremendous patience

through the past four years. Not only did he teach me how to conduct solid

research, but he also guided me to becoming a more mature person in life. The

mindset and philosophy I developed while working with Li will be definitely

beneficial for a lifetime.

I would like to thank my colleagues in Freescale Semiconductor Inc. for their

help during my research internships there. I owe special thanks to Dr. Jay

Bhadra, my manager and PhD committee member, for his mentorship and

enormous help with my research and internships. I am also thankful to Dr.

Magdy Abadir and Dr. Shaun Feng for their mentorship and support for my

projects. Also, I would like to thank Sanjay Gupta, Robert Page, Daniel

Pinero, Prashant Bansal and Larry McConville for their technical help with

setting the verification environment.

I would like to thank the faculty at the University of California, Santa Barbara.

Specially, I am grateful to the members of my PhD committee, Professor For-

rest Brewer and Professor Margaret Marek-Sadowska, for their guidance and

valuable feedback.

I feel very fortunate to meet my adorable labmates in Li’s group. Particularly,

I would like to acknowledge Po-Hsieh Chang and Nik Sumikawa for their help

when I started as a junior graduate student. I would like to thank Jeff Tikka-

nen, Gagi Drmanic, Vinayak Kamath, Sebastian Siatkowski, Kuo-Kai Hsieh

and Chia-Ling Chang for discussions and collaborations.

v

I really appreciate the love and support from all my friends. I would like to

thank Yang Li, Yang Lin, Liming Chen and many other friends here at UCSB

for their company and comfort during the past four years. I also owe thanks to

Gang Li, Qiang Xu, Tao Mao, Cheng Zhuo, Jia Zeng and many other friends

who are not here, for their spiritual support for my PhD endeavor.

Last but certainly not the least, I dedicate this dissertation to my parents,

with my gratitude for their unconditional support and care in my lifetime.

vi

Curriculum Vitae
Wen Chen

EDUCATION

2010 − 2014 PhD in Electrical and Computer Engineering,

University of California, Santa Barbara.

2008 − 2010 M.S. in Computer Science and Engineering,

University of Michigan, Ann Arbor.

2004 − 2008 B.S. in Electrical Engineering,

Zhejiang University, Hangzhou, China.

PUBLICATIONS

1. Wen Chen, Li-C. Wang, Jay Bhadra, Madgy S. Abadir, Simulation Knowl-

edge Extraction and Reuse in Constrained Random Verification, ACM/IEEE

Design Automation Conference (DAC), June 2013

2. Wen Chen, Li-C. Wang, Jay Bhadra, Madgy S. Abadir, Novel Test Anal-

ysis to Improve Structural Coverage A Commercial Experiment, in Proc.

IEEE/ACM International Symposium on VLSI Design, Automation and

Test (VLSI-DAT), April 2013

3. Vinayak Kamath, Wen Chen, Nik Sumikawa, Li-C. Wang, Functional test

content optimization for peak-power validation - An experimental study,

IEEE International Test Conference (ITC), Nov 2012

4. Wen Chen, Nik Sumikawa, Li-C. Wang, Jayanta Bhadra, Xiushan Feng,

Magdy S. Abadir, Novel test detection to improve simulation efficiency

- A commercial experiment, IEEE/ACM International Conference on

Computer Aided Design (ICCAD), Nov 2012

vii

FIELD OF STUDY

Electrical and Computer Engineering Professor Li-C. Wang

viii

Abstract

Data Learning Methodologies for Improving the Efficiency of

Constrained Random Verification

by Wen Chen

Functional verification continues to be one of the most time-consuming steps in

the chip design cycle. Simulation-based verification is well practised in indus-

try thanks to its flexibility and scalability. The completeness of the verification

is measured by coverage metrics. Generating effective tests to achieve a sat-

isfactory coverage level is a difficult task in verification. Constrained random

verification is commonly used to alleviate the manual efforts for producing

direct tests. However, there are yet many situations where unnecessary verifi-

cation efforts in terms of simulation cycles and man hours are spent. Also, it

is observed that lots of data generated in existing constrained random verifica-

tion process are barely analysed, and then discarded after simplistic correctness

checking. Based on our previous research on data mining and exposure to the

industrial verification process, we identify that there are opportunities in ex-

tracting knowledge from the constrained random verification data and use it

to improve the verification efficiency.

In constrained random verification, when a simulation run of tests instantiated

by a test template cannot reach the coverage goal, there are two possible rea-

sons: insufficient simulation, and improper constraints and/or biases. There

are three actions that a verification engineer can usually do to address the

problem: to simulate more tests, to refine the test template, or to change to a

new test template. Accordingly, we propose three data learning methodologies

ix

file:wenchen@ece.ucsb.edu

to help the engineers make more informed decisions in these three application

scenarios and thus improve the verification efficiency.

The first methodology identifies important (”novel”) tests before simulation

based on what have been already simulated. By only simulating those novel

tests and filtering out redundant tests, tremendous resources such as simulation

cycles and licenses can be saved. The second methodology extracts the unique

properties from those novel tests identified in simulation and uses them to refine

the test template. By leveraging the extracted knowledge, more tests similar to

the novel ones are generated. And thus the new tests are more likely to activate

coverage events that are otherwise difficult to hit by extensive simulation. The

third methodology analyses a collection of existing test items (test templates)

and identifies feasible augmentation to the test plan. By automatically adding

new test items based on the data analysis, it alleviates the manual efforts for

closing coverage holes.

The proposed data learning methodologies were developed and applied in the

setting of verifying commercial microprocessor and SoC platform designs. The

experiments in this dissertation were conducted in the verification environment

of a commercial microprocessor and a SoC platform in Freescale Semiconductor

Inc. and were in parallel with the on-going verification efforts. The experi-

ment results demonstrate the feasibility and effectiveness of building learning

frameworks to improve verification efficiency.

x

Contents

Curriculum Vitae vii

Abstract ix

List of Figures xv

List of Tables xviii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 The Proposed Methodologies . 5

1.4 Dissertation Organization . 7

2 Background and Related Works 8

2.1 Simulation-based Verification 8

2.2 Verification Test Generation . 9

3 Kernel-Based Novelty Detection for Simulation Cost Reduc-

tion 12

3.1 Overview . 12

3.2 Introduction . 13

3.3 The Experimental Framework and Novel Tests 16

xi

Contents

3.3.1 Existence of Novel Tests in Practice 17

3.4 The Graph-based Kernel Approach 18

3.4.1 Kernel Based Learning with SVM One-class 18

3.4.2 The Coverage-independent Graph-based Kernel 20

3.4.3 Model Building and Novelty detection 22

3.4.4 Experiment Results . 22

3.5 Kernel Based on Estimated Coverage 24

3.5.1 Disadvantage of the Graph-kernel Approach 24

3.5.2 Coverage-based Kernel 24

3.5.3 Estimating Coverage Before Simulation 26

3.5.4 The Accuracy of Coverage Estimation 27

3.5.5 Dynamically Adjusting the Coverage Base Set S 28

3.5.6 Results Compared to the Graph-based Kernel Method . 30

3.5.7 Result on Simulation of 10K Tests 31

3.5.8 Two Additional Results 32

3.6 Limitation of the Single-Instruction Database 33

3.7 Summary . 35

4 Knowledge Extraction Framework to Improve Functional Ver-

ification Coverage 36

4.1 Overview . 36

4.2 Introduction . 37

4.3 Motivation and Related Works 38

4.3.1 The Benefits of Understanding Novel Tests 38

4.3.2 What Knowledge to Extract 40

4.3.3 Related Works . 42

4.4 Feature Generation . 43

4.4.1 Snippet-based Vector Representation 43

4.4.2 Defining a Set of Features at ISA level 45

xii

Contents

4.4.3 Feature Discretization 46

4.5 Knowledge Extraction by Rule Learning 47

4.6 Knowledge Reuse . 50

4.6.1 Rule Validation and Refinement 50

4.6.2 Rule Reuse . 50

4.7 Learning with Microarchitecture Features 51

4.7.1 Limitations of Learning at ISA Level 51

4.7.2 Hypothesis Pruning and Ranking 53

4.7.3 Adaptation of the Learning Methodology 56

4.8 Experiment Results . 58

4.8.1 Experiment Environment 58

4.8.2 The First Illustrative Result Based on Structural Coverage 59

4.8.3 The Second Result . 62

4.8.4 The Third Result . 64

4.8.5 The Fourth and Fifth Results 66

4.9 Summary . 68

5 Data Driven Test Plan Augmentation in Platform Verification 69

5.1 Overview . 69

5.2 Introduction . 70

5.3 Platform Verification . 73

5.4 Test Plan Augmentation Problem 77

5.5 Platform Learning Algorithm 81

5.5.1 Test Item Clustering . 81

5.5.2 Group Partitioning & Choice Generation 82

5.5.3 Further Group Merging 83

5.6 Experiment Results . 84

5.7 Summary . 87

xiii

Contents

6 Conclusions and Future Directions 88

6.1 Conclusions . 88

6.2 Future Research Directions . 90

xiv

List of Figures

1.1 When result is not satisfactory, there can be three ways to improve . 3

1.2 With non-redundant test identification and effective test template

refinement, we are implementing a test template search process that

can help us to find tests for hitting coverage holes (k � N) 6

3.1 Illustration of novel test detection 14

3.2 Three simulation runs to illustrate the existence of novel tests . 17

3.3 Illustration of kernel-based learning 20

3.4 The framework of computing graph-based kernel 21

3.5 The framework of graph-based kernel 22

3.6 Comparison of coverage curves with and without novelty detection 23

3.7 Comparison of coverage curves with and without novelty detec-

tion based on only the first 1800 tests in Figure 3.6 24

3.8 The framework of coverage-based kernel 25

3.9 Illustration of coverage estimation flow 26

3.10 Histogram of estimation accuracy of 2000 tests 28

3.11 An ideal iterative process with novel test detection 29

3.12 Comparison of coverage curves with and without novelty detec-

tion using the coverage-based kernel; The same example shown

in Figure 3.6 . 30

xv

List of Figures

3.13 Comparison of coverage curves with and without novelty detec-

tion using the coverage-based kernel; The same example shown

in Figure 3.7 . 30

3.14 Comparison of coverage curves with and without novelty de-

tection based on the middle plot example shown in Figure 3.2

before . 31

3.15 Results based on 2000 tests instantiated from 6 CFX instructions 32

3.16 Results based on 200 hard-to-cover points in CFX 33

3.17 Comparison of coverage curves with and without novelty detec-

tion using extended coverage-based kernel based on the third

example plot shown in Figure 3.2 34

4.1 Improving coverage by test template refinement 39

4.2 Histogram of covered events in LSU based on the frequency of

being hit . 41

4.3 Illustration of the learning goal 42

4.4 Illustration of the slide window approach 43

4.5 Illustration of the transformed dataset 44

4.6 Illustration of a test program snippet 46

4.7 Illustration of a test template macro 50

4.8 Illustration of an example scenario in which rules cannot be

efficiently learned by the approach discussed in previous sections 52

4.9 Illustration of the concept lattice based on the example data set 55

4.10 State matrix view of a test . 56

4.11 A positive state vector and its hypotheses 56

4.12 Toggle coverage on a block in LSU of the original simulation run 60

4.13 Coverage improvement in the first iteration 60

4.14 Coverage improvement in the second iteration 61

4.15 Coverage improvement in the last iteration 62

xvi

List of Figures

4.16 Comparision between coverage w/ and w/o learning 62

4.17 Functional coverage improvement 64

4.18 2 examples, coverage point sets A and B 66

5.1 Processor Verification vs Platform Verification 72

5.2 Illustration of a platform . 73

5.3 Transaction view in platform verification 74

5.4 Illustration of platform verification 75

5.5 Platform coverage examples . 76

5.6 Illustration of the learning problem 79

5.7 A simplified illustration of the SoC platform 85

xvii

List of Tables

4.1 Illustration of portion of a feature vector 46

4.2 Example Data Set . 54

4.3 Comparison of event coverage between original 1000 tests and

200 new tests . 64

4.4 Rules for macros m1 and m2 . 65

4.5 Coverage improvement after learning 66

4.6 Coverage improvement after learning 67

5.1 Result of test plan augmentation 86

5.2 Coverage gain of test plan augmentation 86

xviii

Chapter 1

Introduction

1.1 Background

Functional verification is acknowledged as a key bottleneck in the chip de-

sign cycle and industry has witnessed soaring sizes of verification teams [1].

The increasing sizes and complexities of emerging multi-core System-on-Chip

(SoC) have placed greater challenges on verification [2][3][4]. Numerous efforts

and resources have been dedicated to verifying the increasingly complicated

microprocessors and the integration of heterogeneous cores at the SoC level.

Hence, there is an enormous need for the development of advanced verification

technologies.

Although the application of formal methods in verification has made remark-

able advances, extensive simulation is still the most applicable for full-chip

verification due to its scalability and flexibility. A typical verification flow

includes a process of stimulus generation, simulation, result checking and cov-

erage collection. One prevalent approach to simulation-based verification is

1

Chapter 1. Introduction

Constrained Random Verification (CRV), where the verification engineers en-

code constraints and biases as test templates and instantiate them into tests.

The completeness of the verification is measured by coverage metrics. A satis-

factory coverage level must be met before tape-out.

One difficult task in CRV is to generate effective tests to achieve high coverage.

The quality of test generation usually improves along the verification process,

as the verification engineers learn more in-depth knowledge about the design.

However, this effort is conducted manually, usually in a trial-and-error man-

ner. In the meanwhile, tons of data are generated in CRV, most of which are

discarded during verification iterations. It would be helpful to analyse those

data and extract useful information that can aid in improving the test gen-

eration. In recent years, the advances of data mining techniques have made

it possible to analyse large volumes of data in various application fields [5].

This motivates us to investigate the feasibility and effectiveness of applying

data mining techniques in functional verification. More specifically, we aim to

develop learning-based methodologies to improve the efficiency of constrained

random verification.

1.2 Motivation

Suppose we were verifying a complex design with a constrained random verifi-

cation framework. There was a particular coverage event we tried to hit. We

developed a test template and let the framework to instantiate a number of

tests and simulate them. After a long simulation run, we decided that it could

not hit the event. We modified the test template and tried a new run. After

a couple of trials, we still could not hit the event. At that point, we would

2

Chapter 1. Introduction

be hoping that there could be a tool that could guide us to more effectively

produce a test template that could generate a test to hit the coverage event.

This is a typical scenario in constrained random verification. When we say

that ”my test template cannot hit the coverage hole,” it can be actually due

to two reasons:

Insufficient simulation How do we know that the test template is incapable

of generating a test to hit the hole? Usually, we reach this conclusion

by generating N tests. How do we know it will not hit the hole if we

continue the simulation by generating 100×N tests?

Improper input constraints and biases If we use a test template to pro-

duce 1M tests and still none of them can hit the hole, we probably would

confidently conclude that we need to change the test template. Do we

start from the scratch or do we start by modifying the existing input

constraints and biases?

Test template
generator

Constrained
random test
generator

TA NTT ,..,1
design

simulation

Simulation
result

(1)(2)(3)

Figure 1.1: When result is not satisfactory, there can be three ways to
improve

These two reasons imply three ways to improve the constrained random verifi-

cation process when we encounter coverage holes. Figure 1.1 illustrates them.

In the figure, we assume that a test template TA is instantiated into N tests

3

Chapter 1. Introduction

T1, . . . , TN . Moreover, the test template is likely to be manually crafted by a

verification engineer.

The first way to improve is to remove ”redundancy” in T1, . . . , TN .

For example, suppose we can afford (or decide) to simulate 2000 tests per

test template. Currently, we simply instantiate 2000 tests and simulate them.

Alternatively, we can instantiate 100K tests and identify the top 2000 novel

(”non-redundant”) tests. Intuitively, the alternative approach would be more

effective.

The effectiveness can be viewed in two ways: (1) the 2000 novel tests achieve

a higher coverage (or have a higher chance to hit the hole) than the original

2000 tests. (2) When we decide to stop using TA, such a decision can be made

with higher confidence.

The second way is to refine the test template TA.

Refinement may mean to constrain and/or bias the template in such a way

that the resulting tests have much higher probability for hitting a desired area

(or a state) of the design. For example, a refinement increases the probability

of satisfying some local conditions that we know would help to hit the hole.

The third way is to produce a new test template.

If we would like to have a tool that can automatically produce a test tem-

plate for a desired target, in essence, this becomes solving the test generation

problem. And we know that this would be a difficult problem. In practice,

producing a new test template means someone writes the test template man-

ually. However, when there is a collection of test templates, it is possible to

4

Chapter 1. Introduction

identify the insufficiency of the current collection and thus produce new test

templates to augment the collection.

1.3 The Proposed Methodologies

Accordingly, we developed three learning-based methodologies to help improve

the efficiency in the three application scenarios mentioned above.

The first methodology is a novel test detection framework to reduce simulation

cost. A novel test is dissimilar to those tests already simulated thus is likely

to provide additional coverage. A kernel is defined to represent the similarity

between two tests. By using the kernel-based novelty detection model, we can

efficiently capture the covered space and filter out redundant tests. The idea

of the novel test detection is not new, however, designing practical kernels is

at the core of the novelty detection framework. We investigate the practical

implementation of the kernel-based novel test detection framework and design

a coverage-based kernel that is easy to implement.

The second methodology is a feature-based rule learning framework for extract-

ing knowledge from novel tests. The novel tests embed valuable knowledge

about how to activate special conditions in simulation. By analysing novel

tests against a large population of non-novel tests based on a feature set, we

can extract rules that explain the specialty of the novel tests. The learned

rules can be used to refine the test templates and thus produce tests that are

likely to hit the functional events that had low or zero coverage.

5

Chapter 1. Introduction

The first two methodologies are developed in the context of microprocessor

verification. They can be used in combination to solve the problem of gen-

erating effective tests for a coverage goal. Even though we do not solve the

test template generation problem directly, with these two components, novel

test identification and test template refinement (based on learning from novel

tests), we can build an iterative flow that implements a test template search

process. Figure 1.2 illustrates this idea.

Constrained
random test
generator

TA NTT ,..,1
design

simulation

Simulation
resultlearning

Novelty
detection
to avoid

redundancy

kEE ,..,1

Refine continue

Learned constraints
based on novel tests

Novel
tests

Figure 1.2: With non-redundant test identification and effective test tem-
plate refinement, we are implementing a test template search process that

can help us to find tests for hitting coverage holes (k � N)

The third methodology is a test plan augmentation approach in the context of

SoC platform verification. In platform verification, the constraints and biases

are encoded as test items (like test templates in processor verification). By

analysing a collection of test items, we can extract knowledge that captures

the underlying verification intent and thus implies feasible augmentation to the

test plan. By adding new test items based on this information, we can make

the test plan more complete and thus ease the manual efforts for reaching

coverage closure.

The first two methodologies have been applied on top of the verification en-

vironment of a high-performance low-power microprocessor within Freescale.

The third methodology has been applied in the verification of a commercial

6

Chapter 1. Introduction

SoC platform within Freescale. The experimental results prove the effective-

ness and efficiency of the proposed methodologies and show promises of making

practical tools based on them.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 provides neces-

sary background information and reviews previous works for simulation-based

verification and test generation. Chapter 3 reports the study of practical im-

plementation of the novel test detection framework with the emphasis of ker-

nel design. The feature-based rule learning framework is presented in Chap-

ter 4, where the learned knowledge is used for test template refinement. The

differences of processor verification and platform verification are discussed in

Chapter 5, and a test plan augmentation approach for platform verification is

presented. Chapter 6 concludes the dissertation and discusses future research

opportunities to extend the materials addressed in this dissertation.

7

Chapter 2

Background and Related Works

2.1 Simulation-based Verification

Simulation-based verification is the predominant methodology for full-chip ver-

ification in industry. Today’s state-of-the-art verification flow includes a highly

automated flow of test generation, simulation, correctness checking and cov-

erage collection, with islands of manual labor [6]. The verification usually

starts with the creation of a verification plan, which specifies the important

functionalities and aspects of the design to verify. Then verification engineers

prepare stimulus/tests via various approaches. The tests are simulated using

RTL models and the correctness checking is done by comparing results with

those produced by reference models or by checking with built-in checkers such

as assertions. The completeness of the verification is measured by various cov-

erage metrics [7]. There are two types of coverage metrics based on the way

that they are defined: those that can be automatically extracted from the de-

sign code, such as toggle coverage, and those that are user-specified in order

8

Chapter 2. Background and Related Works

to tie the verification environment to the design intent or functionality [8].

The former is referred to as structural coverage and the latter is referred to as

functional coverage. Generating effective tests to achieve satisfactory coverage

within bounded simulation cycles is crucial in meeting the verification budget

requirement. In practice, a mixture of several test generation schemes are used,

which we will discuss in Section 2.2

2.2 Verification Test Generation

Direct tests are tests manually drafted by verification engineers for verifying

specific scenarios. They are focus tests delicately designed for exercising par-

ticular mechanisms and thus are very effective in hitting the events of interest.

However, the creation of direct tests requires a lot of manual efforts and in-

depth knowledge into the design. Thus, their primary use is to hit those corner

cases that cannot be well exercised in extensive simulation. In addition, scenar-

ios not considered by the designer might be overlooked by the test developers.

Random testing is an approach to overcome the costly manual labor and bi-

ases in direct tests. However, pure random testing proves ineffective due to two

reasons: (1) It generates a lot of invalid tests (2) It cannot target effectively

on the events of interest since the sampling space is enormous. Constrained

random verification [9] is a method that combines the verification knowledge

with the power of random test generation. Constraints are used to restrict

the test sampling space to ensure the tests are valid and focused on certain

verification subspace. The unconstrained aspects are randomized with certain

biases to increase the chances of hitting targets of interest while preserving the

9

Chapter 2. Background and Related Works

potential of exposing bugs in scenarios overlooked by designers. As for micro-

processor verification, a methodology called Random Test Program Generation

(RTPG), originated in IBM, is designed to facilitate the constrained random

verification for different processor models [10] [11]. In RTPG, a descriptive

language is provided to describe the constraints and biases based on the archi-

tectural specifications and the test knowledge of the verification engineers [12].

The constraints and biases are encoded in test templates and are then fed to

a test program generator. The generator converts the test generation problem

into a Constraint Satisfaction Problem (CSP) and leverages CSP solvers to

generate test programs satisfying the constraints [13].

Constrained random verification and direct tests are used as two prevalent

approaches in industry. However, it might still be difficult to achieve a cer-

tain coverage level using both approaches. Coverage Directed Test Genera-

tion (CDTG) is a technique to generate stimulus to hit specific coverage tar-

gets. There are two approaches to CDTG: one is model-based and the other

is learned-based or feedback-based [14].

In model-based CDTG, an abstract model such as Finite-State-Machine (FSM)

of the design is built, and algorithms traversing the model are used to search

for a path from the initial state/node to the state/node corresponding to the

coverage point of interest. Commonly used models are FSM [15] [16], graph

model [17], and Extracted Control Flow Machine [18]. The abstract models

are either manually constructed from high-level specifications [19] [17] [15]

or automatically extracted from the design. Formal methods such as model

checking [15] [16], symbolic simulation [20], bounded model checking [21] are

used to search the path. For the method to be applicable, the model must be

10

Chapter 2. Background and Related Works

abstract enough, which affects its ability to be accurate; otherwise, the method

can only be applied to relatively small designs.

The main idea behind feedback-based CDTG is to create a system that cap-

tures the relationships between coverage and inputs in a simpler but less precise

manner and to combine this knowledge with the power of the random stimuli

generator to generate inputs that improve the possibility of hitting the tar-

get coverage points [14]. Recent works proposed various techniques to learn

from the simulation results. These approaches employ a variety of learning

techniques such as Bayesian Networks [22], Markov Models [23], Genetic Al-

gorithms [24] and Inductive Logic Programming [25]. However, automatically

modifying the input to the test generator, based on the feedback from simu-

lation, can be very difficult for complex designs. The feedback-based CDTG

has been an active research area. A recent work in [6] proposed to learn test

knowledge from micro-architectural behavior and embed the knowledge into

the test generator to produce more effective tests.

11

Chapter 3

Kernel-Based Novelty Detection

for Simulation Cost Reduction

3.1 Overview

Novel test detection is an approach to improve simulation efficiency by select-

ing novel tests before their application [26]. Techniques have been proposed to

apply the approach in the context of processor verification [27]. This chapter

reports our experience in applying the approach to verifying a commercial pro-

cessor. Our objectives are threefold: to implement the approach in a practical

setting, to assess its effectiveness and to understand its challenges in practical

application. The experiments are conducted based on a simulation environ-

ment for verifying a commercial dual-thread low-power processor core. By

focusing on the complex fixed-point unit, the results show up to 96% saving in

simulation time. The main limitation of the implementation is discussed based

12

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

on the load-store unit with initial promising results to show how to overcome

the limitation.

3.2 Introduction

In a practical simulation-based verification environment, one of the most chal-

lenging tasks is to produce the tests that lead to the desired coverage level.

One common practice is to manually produce direct tests targeting on specific

coverage items. For processor verification, another common approach is con-

strained random test program generation in which users provide constraints

and biases in the form of test templates and directives to the test generator

[9]. The input to the test generator specifies the sampling scheme for various

dimensions in the test space such as address selection, register dependencies,

arithmetic data selection, etc.

Coverage-directed test generation (CDTG) is an emerging approach to over-

come the test generation problem. CDTG techniques dynamically analyse cov-

erage results and automatically adapt the test generation process to improve

the coverage. Recent works proposed various techniques to learn from the sim-

ulation results and improve the test generation. These techniques employ a

variety of learning techniques such as Bayesian Networks [22], Markov Models

[23], Genetic Algorithms [24] and Inductive Logic Programming [25]. In [28]

the authors proposed an automatic target constraint generation technique to

alleviate the burden of constraint generation.

13

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

Figure 3.1: Illustration of novel test detection

Novel test detection tries to tackle a problem much more restricted than

CDTG. Figure 3.1 illustrates the approach. In a novel test detection frame-

work, the assumption is that there is a constrained random test generator that

can instantiate the test template to generate a large number of functional tests.

The idea is to learn a novel test detection model based on the results from tests

that have already been applied. This model is used to select novel tests from

the large pool of tests before their application. Hence, only the selected novel

tests are applied, which reduces the simulation cost.

The authors in [26, 29] proposed a novel test detection framework where Sup-

port Vector Machine (SVM) one-class algorithm [30] is used to build models.

The framework is limited to analysing fixed-cycle functional tests. The authors

in [27] extended the application to build novel test detection models where tests

are assembly programs and the context is for processor verification. The ex-

periments were conducted based on a rather simple Plasma/MIPS processor

design.

The objective of the work in this chapter is not to claim that novel test detec-

tion is better than the existing approaches for improving constrained random

test generation. In fact, novel test detection can be viewed as complementary

to constrained random test generation and to CDTG. Our objective instead is

to assess the applicability and effectiveness of novel test detection in a practical

14

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

setting. We began by implementing the approach proposed in [27] in a com-

pany’s in-house simulation environment for a dual-thread low-power processor.

The experiments were conducted parallel to the ongoing verification efforts.

In this chapter, we explain the main findings based on the commercial exper-

iment. These findings are organized into the remaining flow of the chapter as

the following:

• Section 3.3 presents simulation results to illustrate the existence of novel

tests in the particular simulation-based processor verification environ-

ment.

• Section 3.4 reviews the approach proposed in [27], in particular the graph-

based kernel method used to measure similarity on a pair of assembly pro-

grams. Applying the approach to the complex fixed-point unit demon-

strates up to 80% potential saving in simulation time.

• Section 3.5 discusses the major challenge of applying the graph-based

kernel approach in practice. To implement the graph-based kernel de-

mands a user to manually implement a cost table defining the similarity

between every pair of instructions in consideration. To overcome this

challenge, an alternative approach based on estimating coverage of an

assembly program is proposed. This alternative approach implements a

flow that requires minimal user involvement. The implementation is also

easier. We demonstrate that this alternative approach can be as effec-

tive as the graph-based kernel approach and delivers up to 96% potential

saving in simulation time.

• Section 3.6 discusses the main limitation of the alternative approach and

proposes an extension to overcome the limitation. The effectiveness of

15

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

this extension is shown based on an experiment on a module in the load-

store unit with a potential 96% saving in simulation time.

• Section 3.7 summarizes this chapter.

3.3 The Experimental Framework and Novel

Tests

The experiments in this chapter and next chapter were conducted based on a

dual-thread low-power 64-bit Power Architecture-based processor core. It was

targeted to be manufactured in a 28 nm technology. The processor core sup-

ports dual-thread capability that enables each core to act as two virtual cores.

Each thread has dedicated Fetch, Decode, Issue, and Completion resources.

Each thread also has a dedicated Branch Unit, Load Store Unit, and Simple

Fixed Point unit. The Complex Fixed Point unit as well as the Floating Point

Unit and the vector engine are shared between threads. The core is designed

with a memory subsystem supporting up to an eight-core implementation in a

multiprocessing system.

The in-house simulation-based verification environment conforms to a state-

of-the-art coverage-driven flow. An in-house test generator is used to gener-

ate constrained random test programs based on user-supplied test templates.

During the test generation, architectural simulation is also performed and the

simulation results are embedded in test programs. The RTL simulation results

are compared with the architectural simulation results for checking correctness.

The coverage information is recorded and reported using a commercial cover-

age analysis tool. The verification coverage space is divided into subspaces.

16

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

A subspace can be a part of the design, e.g., a particular unit or a specific

mechanism such as memory collision, etc. In our experiments, we focused on

the toggle coverage of the Complex Fixed Point unit (CFX) and the Load

Store Unit (LSU). Test templates targeting on these units are provided by the

verification team and are used in constrained random test generation.

3.3.1 Existence of Novel Tests in Practice

Figure 3.2 shows three plots for three simulation runs, two on CFX and one

on LSU. The x-axis shows the number of tests simulated, incremented by 30

at a time. The y-axis shows the normalized coverage based on the maximum

coverage achieved for the respective unit in all experiments.

Figure 3.2: Three simulation runs to illustrate the existence of novel tests

For the CFX, the first run consists of 2000 test programs each with 50 instruc-

tions and an initial machine state. The test programs are instantiated from

a template based on 33 instructions targeting on the unit. The second run is

similar, consisting of 10K test programs each also with 50 instructions and an

initial state. For the LSU, the run consists of 3000 test programs each with

10 instructions and an initial state. The template is based on 6 instructions

targeting on the unit.

17

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

In all three plots, we observe jumps in the coverage curves. These jumps are

due to special tests that provide relatively significant coverage at the given

simulation point. These special tests are the novel tests that we are looking

for. If they can be identified before simulation, they can be applied earlier in

the simulation run. As a result, the respective coverage can be achieved much

faster.

Take the first plot as an example. We see that the jump occurs after simulating

1900 tests. We also see that the coverage curve is flat from 1300 to 1900.

Suppose an engineer uses the template to instantiate 1600 tests and observes

the flat curve. It is likely that the engineer would decide it is not effective to

continue. Then, the coverage jump would have been missed. If we have the

ability to predict novel tests before simulation, we can generate a much larger

number of tests to begin with and consequently reduce the chance of missing

a test capable of producing a significant coverage increase.

The three plots in Figure 3.2 show the existence of novel tests in practical

simulation-based verification scenarios. This gives a clear motivation to apply

novel test detection to identify those tests before simulation.

3.4 The Graph-based Kernel Approach

3.4.1 Kernel Based Learning with SVM One-class

Support Vector Machine (SVM) one-class algorithm, such as the ν-SVM algo-

rithm [30] is an unsupervised learning method that builds a model to identify

outliers in a given set of samples. The parameter ν is a user-supplied input

18

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

that represents an upper bound on the number of outliers and low bound on

the number of support vectors. In application with n samples, we typically set

ν to be 1
n

meaning that we want to build a model to incorporate at least n− 1

samples, i.e. with at most one outlier.

In applying ν-SVM in novel test selection, the samples are tests that have been

simulated up to the point of simulation. Suppose they are t1, ..., tm. A SVM

model when applying to an un-simulated test T takes the following form:

M(T) =
m∑
i=1

αiK(T, ti)− ρ

Conceptually, one can consider each αi as a weight denoting the importance

of test ti in the calculation of the model. A test ti is a support vector if

|αi| > 0. Otherwise, it is a non-support vector, meaning that it is not used in

the calculation. The ρ is a constant denoting the boundary of the measured

outlier value for a test T . If M(T) < 0, T is deemed dissimilar to the simulated

tests t1, ..., tm. The more negative the M(T) is, the more dissimilar the test T

is to t1, ..., tm. Given a set of un-simulated tests T1, . . . , Tn, let M(Tj) be the

most negative value computed by the model. Then, test Tj is the most novel

test selected by the model.

The function K(T, ti) is called a kernel function used to measure similarity

between T and ti, i.e. a pair of tests. The novel tests selected by a SVM model

highly depend on the definition of the kernel function. The kernel function

dictates the perspective of what novelty means.

Suppose our objective is to cover a set S of coverage items. Suppose test T

covers the subset ST . Suppose test ti covers the subset Sti . Intuitively, the

19

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

similarity between T and ti can be measured as
|ST∩Sti |
|ST∪Sti |

. For ti, Sti is known.

However for T , ST is unknown because it has not yet been simulated.

The SVM one-class is a kernel-based learning method [31]. Such a method

consists of two components, a kernel function used to measure similarity be-

tween a pair of samples and an optimization engine used to build the model.

Figure 3.3 illustrates the learning approach.

Figure 3.3: Illustration of kernel-based learning

The SVM one-class algorithm concerns how to find the best values for α1, . . . , αm

and ρ, based on a given kernel function. As shown in Figure 3.3, such an al-

gorithm access the kernel function by querying the similarity between a pair

of samples xi, xj. In application, one can alter the kernel definition without

changing the SVM algorithm in order to influence the model building process.

3.4.2 The Coverage-independent Graph-based Kernel

Developing an appropriate kernel is at the core of applying the kernel-based

learning algorithm. In our application, tests are assembly programs. Hence,

the kernel function K() needs to measure similarity between a pair of assembly

programs. The work in [27] proposes a graph-based kernel that computes a

similarity measure by analysing two assembly programs. It is important to

note that such a graph-based kernel does not rely on any coverage information

by a test in the calculation. Hence, it is a coverage-independent kernel.

20

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

Figure 3.4: The framework of computing graph-based kernel

Figure 3.4 illustrates the graph-based kernel. Each assembly program is first

converted into a program flow graph, a directed graph capturing the possible

execution flows of the program. Then, the kernel calculates the similarity

between two programs based on the graph edit distance (GED) of the two

graphs. The larger the distance is the more dissimilar the two programs are.

The GED is measured as the minimal cost of using a number of operations to

transform one graph to the other. These operations include insertion, deletion,

and substitution of vertices and edges. Each operation when performed has

a cost value. The cost is defined in a cost table. For example, the cost of

substitution of an addition instruction to a subtraction is smaller than the cost

of substitution of an addition to a load/store instruction. This is because both

addition and subtraction utilize the same execution unit while the load/store

instruction utilizes the load-store unit.

Because the graph-based kernel is coverage independent, for a given cost table

the process of building the model is fixed and consequently the novel tests

detected by the model are fixed. This means that in order to apply the graph-

based kernel to a given scenario, it is important to have a proper cost table.

This cost table can be design dependent, unit dependent and coverage metric

dependent. While this provides the flexibility to tackle a variety of scenarios,

21

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

it can also be a challenge for its user to develop a proper cost table in practice.

3.4.3 Model Building and Novelty detection

Figure 3.5: The framework of graph-based kernel

Figure 3.5 illustrates the model building and novelty detection processes. In

model building, a model is built on a set of simulated tests. In novelty detec-

tion, the model is applied to a set of un-simulated tests to calculate an outlier

measure for each test. These measures are used to rank tests. The most out-

lying k tests are selected and simulated. For example, the process is iterative

as shown in Figure 3.1 where in each iteration the most outlying k tests are

selected for simulation.

3.4.4 Experiment Results

The novel test detection framework using the graph-based kernel approach is

implemented and integrated with the in-house simulation environment. Discus-

sions in this section focus on the example shown in the first plot in Figure 3.2,

i.e. the case with 2000 test programs for the CFX unit.

The novel test detection is applied iteratively where each iteration selects 30

tests to simulate from the pool of un-simulated tests. Figure 3.6 compares the

coverage curves achieved with and without the novelty detection. The curve

without is the same as that shown in Figure 3.2.

22

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

Figure 3.6: Comparison of coverage curves with and without novelty de-
tection

Without the novel test detection, the original simulation achieves a maximal

coverage with 1930 tests. With the novel test detection, the same coverage

is achieved using 190 tests, a 90% saving (i.e. 1- 190
1930

). The simulation time

of 2000 tests is more than a day (using a single machine). This means that

with the novel test detection, a day of single-machine simulation time can be

reduced to less than two hours.

One may notice the huge coverage jump in the original simulation at around

the 1930th test. This indicates a special test whose characteristic is quite

different from that of others, i.e. involving a dramatically different sequence

of instructions. This might make the novel test detection problem easier. To

assess the impact of this special test on the novel test detection, we conduct a

different experiment by removing this test from consideration. In this revised

experiment, we consider only the first 1800 tests.

Figure 3.7 shows the results with and without novel test detection based on the

1800 tests. Observe that in this case, the novel test detection can still provide

a 60% saving (i.e. 1- 520
1300

). The figure also confirms that the existence of the

special test does make the novel test detection more effective.

23

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

Figure 3.7: Comparison of coverage curves with and without novelty de-
tection based on only the first 1800 tests in Figure 3.6

3.5 Kernel Based on Estimated Coverage

3.5.1 Disadvantage of the Graph-kernel Approach

As discussed in Section 3.4.2, the major disadvantage with the graph-based

kernel approach is in the manual implementation of the cost table. Figure

3.6 and Figure 3.7 show promising results. However, these results were not

obtained without noticeable effort to develop the cost table for verifying the

unit. Such a development may take days or weeks to understand the behavior

of each instruction with respect to the intended coverage space based on the

target unit and/or design. Although one may argue that the development

effort can be seen as a one-time cost, in practice, it represents a major obstacle

for the acceptance of the approach.

3.5.2 Coverage-based Kernel

To ease the use of the novel test detection approach, what we need is a new way

to compute the similarity with minimal manual involvement. This motivated

us to develop an alternative kernel method based on estimated coverage.

24

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

Recall from the discussion in Section 3.4.1 that a novelty detection model is

of the form: M(T)=
∑m

i=1 αiK(T, ti)−ρ where t1, . . . , tm are simulated tests.

Such a model is learned based on t1, . . . , tm to decide the values on α1, . . . , αm

and ρ. To calculate the similarity between a pair of simulated tests ti, tj, i.e.

the kernel denoted as Kc(ti, tj), we can simply let Kc(ti, tj) =
|Sti∩Stj |
|Sti∪Stj |

, where

Sti and Stj are subsets of covered items by ti and tj, respectively. Note that

ti, tj are simulated tests and hence, Sti and Stj are known. Such a calculation

can be based on a given set S of items to cover in the simulation. Hence,

the kernel calculation only depends on the selection of S that is much easier

to obtain than the cost table. For example, S can be the toggled lines in a

specific module of interest. As another example, S can be a set of hard-to-cover

toggled lines after some initial simulation.

Figure 3.8: The framework of coverage-based kernel

Figure 3.8 illustrates the framework using the coverage-based kernel. In model

building, a coverage-based kernel works well because the true coverage of each

simulated test is available. In novel test detection, the model M is applied

to compute an outlier measure for each un-simulated test T . This requires

computing Kc(T, ti) for each support vector test ti where the true coverage of

T is not yet known. Hence, to enable the approach, we require a method to

estimate coverage for an un-simulated test T .

25

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

3.5.3 Estimating Coverage Before Simulation

The idea to estimate the coverage of an un-simulated test is simple. Figure 3.9

illustrates the idea.

Figure 3.9: Illustration of coverage estimation flow

For each single instruction, we randomly instantiated h instances using the

constrained random test generation framework. In the experiments, we had

h = 100. These 100 instances were simulated and their coverages were recorded

in a database. There are 600+ instructions defined by the PowerPC ISA. It

took about 250 hours to build the entire single instruction coverage database.

The storage requirement is about 480GB. The simulation time represents a

one-time cost for the approach.

For a given un-simulated program T consisting of a sequence of instructions,

for each instruction I we retrieve the coverage from the database based on

26

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

the instruction instance that is closest to the instruction I. This closeness is

decided based on an indexing function. We implemented the indexing function

to look for the closest instruction instance based on Hamming-distance calcu-

lation between the operand values of the instruction I in T and the operand

values of the instruction instances stored in the database. For each instruc-

tion I in T , the indexing function decides the closest instruction instance in

the database. Then, the corresponding coverage is retrieved and used for I.

To estimate the coverage of T , we simply take the union of all the retrieved

coverages.

It is important to note that using the union operation to estimate the coverage

presents a major limitation to the approach. This limitation will be discussed

in Section 3.7 later.

3.5.4 The Accuracy of Coverage Estimation

To give an idea on the accuracy of the coverage estimation method, Figure

3.10 shows a result based on the 2000 test programs used in the experiment in

Figure 3.6. The x-axis shows the accuracy measured in terms of the percentage

of overlap between the estimated coverage and the true coverage of a test

program. The average estimation accuracy is around 75% and is far from

being perfect. Later in the experimental section 3.5.6, we will show that this

accuracy is sufficient for novel test detection to be effective.

27

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

Accuracy

o
f te

sts

Figure 3.10: Histogram of estimation accuracy of 2000 tests

3.5.5 Dynamically Adjusting the Coverage Base Set S

In Section 3.5.2, we discuss the flexibility of the coverage-based kernel method.

The coverage is estimated based on a set S of coverage items where this set

can be flexibly defined. We call such a set the coverage base set.

Recall that novel test detection is an iterative process. Hence, ideally in each

iteration the perspective of novelty should be defined with respect to the un-

covered items. In other words, the novelty of a test should be evaluated based

on its chance to provide coverage on the uncovered items.

Figure 3.11 illustrates the iterative process. Initially, a set of tests T1, ..., Tn

are simulated. Then a novel test detection model M0 is learned from the

coverage results of T1, ..., Tn. When applying M0 to select the next n novel

tests Tn+1, ..., T2n, we would like to cover the uncovered area in the design. To

achieve this effect, we can perform the following adjustment on the coverage

base set S.

28

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

Figure 3.11: An ideal iterative process with novel test detection

Initially, suppose the set S contains p items c1, . . . , cp. Let each item ci be

associated with a weight wi initialized as 1. We calculate the coverage as
∑
wi

for all i such that ci is covered by a test. Every time ci is covered, wi is adjusted

to wi/a where a is a constant such as a = 2. Such a weight adjustment scheme

depreciates the importance of a covered item gradually.

Similarly, after the first iteration, a novel test detection model M1 is learned

based on all the simulated tests T1, ..., T2n. This model M1 is used to select the

next n novel tests T2n+1, ..., T3n for hitting the uncovered area.

It is important to note in model building, those uncovered items do not par-

ticipate in the coverage-based kernel calculation. This is because in model

building, the true coverage of simulated tests is used and an uncovered item is

skipped in the coverage calculation. When the model is applied to estimated

coverage for an un-simulated test, an uncovered item may participate in the

kernel calculation. This is because it is possible that the instruction instances

retrieved from the database can hit the uncovered item.

29

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

3.5.6 Results Compared to the Graph-based Kernel Method

Figure 3.12: Comparison of coverage curves with and without novelty de-
tection using the coverage-based kernel; The same example shown in Figure

3.6

Figure 3.12 shows the result based on the same example shown in Figure 3.6.

Again, in each iteration the top 30 novel tests are selected for simulation. We

see that with the novelty detection, only 400 tests are required to achieve the

same coverage of using 1930 tests in the original simulation run, an 80% saving.

Comparing this result to that shown in Figure 3.6, we observe the effectiveness

is not as good as before. However, 80% remains a significant saving.

Figure 3.13: Comparison of coverage curves with and without novelty de-
tection using the coverage-based kernel; The same example shown in Figure

3.7

30

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

Figure 3.13 shows the result based on the same example shown in Figure 3.7

before, i.e. using only the first 1800 tests by removing the one special test

giving the big coverage jump at the 1930th test in the original simulation run.

We see that with the novelty detection, only 220 tests are required to achieve

the same coverage of using 1300 tests in the original simulation run, an 83%

saving. Comparing this result to the 60% saving shown in Figure 3.7, the

effectiveness is better than before.

3.5.7 Result on Simulation of 10K Tests

Figure 3.14: Comparison of coverage curves with and without novelty
detection based on the middle plot example shown in Figure 3.2 before

Figure 3.14 demonstrates the effectiveness of novel test selection using the

coverage-based kernel for the 10k tests simulation example shown in Figure 3.2.

Without novelty detection, the maximal coverage of the original simulation

run is achieved with 5950 tests. With novelty detection, the same coverage is

achieved using only 250 tests, or roughly a 96% saving. Simulation of the 5950

tests would have taken more than 4 days of single-machine simulation time.

With the novelty detection, this time is reduced to less than 6 hours.

31

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

3.5.8 Two Additional Results

To show that the novelty detection approach can work well on tests based on

a focused instruction base, we conducted an experiment using a test template

based on only 6 CFX instructions. 2000 test programs were instantiated each

with 50 instructions and an initial state. Figure 3.15 shows the results with

and without novelty detection. Without the novelty detection, the original

simulation achieves the maximal coverage with 1720 tests. With the novelty

detection, the same coverage is achieved with only 100 tests, i.e. a 94% saving.

Figure 3.15: Results based on 2000 tests instantiated from 6 CFX instruc-
tions

To show that the novelty detection can also work well on selected coverage

points, we conducted an experiment by focusing on the 200 hard-to-cover points

in the CFX unit. 2000 tests of 50 instructions were simulated in the original

run. Without the novelty detection, the original simulation achieves the max-

imal coverage with 1930 tests. With the novelty detection, the same coverage

is achieved with only 100 tests, i.e. a roughly 95% saving.

32

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

Figure 3.16: Results based on 200 hard-to-cover points in CFX

3.6 Limitation of the Single-Instruction Database

Section 3.5.3 discusses the method to estimate coverage for an un-simulated test

program and points out its major limitation is in the use of the union operation

to compute the coverage (also see Figure 3.9 for this union operation). Because

the estimated coverage of a test program is the union of individual estimated

coverages of all the instructions in the test program, such an estimated coverage

does not consider coverage contributed by multiple instructions collectively.

This limits the application of novelty detection to, for example, the load-store

unit consisting of multiple finite-state machines, arrays and register files. For

example, a data-forwarding event occurs when Read-After-Write hazards are

present. Using the single-instruction database would be unable to properly

estimate the coverage given by a test containing such hazards.

The LSU is one of the most complex units in the design. It is responsible for

scheduling and managing the out-of-order memory operations. To illustrate

the idea for overcoming the limitation we focus on an experiment based on

the data-forwarding module used in the store queue. The result of the original

simulation run is shown in the third plot in Figure 3.2. Below we discuss how

33

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

to refine the novelty detection implementation to capture those novel tests

shown in the plot.

The idea is simple. To overcome the limitation of using the single-instruction

database, we build a database with a large number of test program instances

each consisting of three instructions. Then, we use the coverage information

stored in this 3-instruction database to estimate the coverage of test programs

with a longer length. The indexing function in Figure 3.9 needs to be modi-

fied. In other words, the estimated coverage of a 10-instruction test becomes

the union of coverages of several 3-instruction instances retrieved from the

database.

Figure 3.17 shows the result of applying this extension to the particular exam-

ple. Without novelty detection, the original simulation achieves the maximal

coverage with 2590 tests. With novelty detection, the same coverage is achieved

with only 100 tests, a 96% saving. Again, the coverage shown on y-axis is nor-

malized based on the coverage achieved in the particular example and hence,

it is shown as 100%.

Figure 3.17: Comparison of coverage curves with and without novelty
detection using extended coverage-based kernel based on the third example

plot shown in Figure 3.2

34

Chapter 3. Kernel-Based Novelty Detection for Simulation Cost Reduction

3.7 Summary

In this chapter, we report the experience of applying novel test detection in a

company in-house constrained random test generation and simulation environ-

ment for a Power architecture-compliant processor core. The first implemen-

tation is based on the graph-based kernel method. While this implementation

can demonstrate 60-90% saving of simulation time, its practical applicability

is limited because of the requirement to manually construct the cost table. To

overcome this limitation, a second implementation is proposed. This alterna-

tive approach is based on a coverage-based kernel method. The effectiveness

of this approach is comparable to the graph-based kernel approach. The alter-

native approach demands minimal user involvement and hence is much more

acceptable in practice. With the second implementation, we demonstrate 80-

96% simulation cost reduction in various experiments. In one case, more than

four days of single-machine simulation time can be reduced to less than six

hours.

We discuss an extension based on the second implementation. The extension

overcomes the limitation of using the single-instruction database to estimate

coverage. A new database of 3-instruction instances is added to capture cov-

erage depending on multiple instructions collectively. The effectiveness of this

extension is demonstrated on the data-forwarding module in the LSU with a

potential 96% saving in simulation time.

35

Chapter 4

Knowledge Extraction

Framework to Improve

Functional Verification Coverage

4.1 Overview

This chapter proposes a methodology of knowledge extraction from constrained

random verification data. Feature-based analysis is employed to extract rules

describing the unique properties of novel assembly programs hitting special

conditions. The knowledge learned can be reused to guide constrained random

test generation towards uncovered corners. The experiments are conducted

based on the verification environment of a commercial processor design, in

parallel with the on-going verification efforts. The experimental results show

36

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

that by leveraging the knowledge extracted from constrained random simu-

lation, we can improve the test templates to hit the functional events that

otherwise are difficult to hit by extensive simulation.

4.2 Introduction

In a design cycle, the design evolves over time. Consequently, functional ver-

ification is an iterative process in which extensive simulation is run on a few

relatively stable versions of the design. When a new version is released with

accumulated changes over a period, the verification process restarts with the

new version. From one iteration to another, two assets are kept. The first are

the test templates refined and accumulated up to the previous iteration. The

second are the ”novel” tests (as described in Chapter 3) identified so far. For

example, a novel test can be the one hitting a particular block and/or event of

interest or capturing a bug in the previous design versions. These two assets

embed the knowledge accumulated through the iterative verification process.

In this chapter, we propose a novel learning methodology for extracting knowl-

edge from novel tests. The extracted knowledge then is reused for two pur-

poses: (1) for producing more tests similar to those novel ones and (2) for

producing new novel tests that, for example, can hit blocks and/or events not

covered before. To develop such a learning methodology, we need to address

three aspects: (1) what knowledge to extract, (2) how to extract and represent

knowledge, and (3) how to reuse the extracted knowledge.

We applied the proposed methodology to verifying a dual-thread low-power 64-

bit Power Architecture-based processor core to be manufactured with a 28nm

37

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

technology. Our experiments were conducted parallel to the verification process

where the design was not yet stable. The experimental results demonstrate

the effectiveness of the methodology for the two intended purposes. More

specifically, we show that after applying the extracted knowledge, a refined test

template can effectively generate additional tests for hitting a block and/or

functional event that received low coverage before. Moreover, a refined test

template can effectively generate tests for hitting an event that was not covered

before.

The rest of the chapter is outlined as follows: Section 4.3.1 presents a moti-

vational example for this work. Section 4.3.2 addresses the first aspect, i.e.

what knowledge to extract. Section 4.3.3 briefly reviews the related works. A

feature-based rule learning methodology is presented in Section 4.4 to address

the knowledge representation aspect. Section 4.5 discusses the knowledge ex-

traction aspect using subgroup discovery rule learning. Section 4.6 illustrates

how the knowledge can be reused. Section 4.7 discusses the possible adap-

tations to enhance the methodology. Experimental results are presented in

Section 4.8. Section 4.9 summarizes the chapter.

4.3 Motivation and Related Works

4.3.1 The Benefits of Understanding Novel Tests

Figure 3.12 in Chapter 3 shows that the special test causing a coverage jump

at about the 1930th test in the original simulation is captured by novel test

detection within the first 100 tests. It is interesting to understand why the

special test can cause such a coverage jump. We analysed the special test

38

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

in Figure 3.12 based on a set of features such as instruction types, operand

values and the changes of those values in a program. A property we learned

is that there is an exception in the novel test that does not occur in non-novel

tests. Also, there are move-to-special-register instructions in the novel test,

which don’t appear elsewhere. We examined the novel test and found the

exception triggers an interrupt routine and the special instructions are part of

the interrupt routine. Then we modified the test templates to produce more

tests satisfying the property and observed the coverage impact.

Figure 4.1: Improving coverage by test template refinement

Figure 4.1 shows the result of this test template refinement. After simulation of

the first 100 tests, the special test that results in a coverage jump is identified.

After understanding the unique properties of the special test, the test template

is manually modified to produce additional tests. Observe that the additional

180 tests are able to improve the coverage to exceed that achieved by the

original 2000 tests. The y-axis is normalized based on the maximal coverage

achieved, and that is why the best coverage shown is 100%. Note that this

maximal coverage is the best coverage achieved across all experiments on the

CFX unit in this dissertation and all coverages for CFX shown in Chapter 3

are normalized based on this best coverage. The result shows us that we can

39

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

achieve additional coverage benefits beyond novel test detection by extracting

knowledge from the novel tests to refine the test template.

4.3.2 What Knowledge to Extract

The example in Section 4.3.1 illustrates a scenario where structural coverage

such as toggle coverage is concerned. In more occasions, functional coverage

is more of a concern. During the design iteration, it may not be effective to

maintain the detailed structural coverage results from one iteration to the next

due to major changes in the implementation. Therefore, functional coverage

is often used as the metric to evaluate the importance of tests and to guide

test template refinement. The definitions of the functional events are relatively

stable and do not change as often as the design implementation. Hence, the

majority of the purpose for knowledge extraction in this chapter is to improve

functional coverage, although as we will demonstrate by experimental results,

it can also improve structural coverage.

Figure 4.2 illustrates a scenario of simulation with tests instantiated from a

given test template that had been refined by the verification team up to the

time of the experiment. The figure summarizes the statistics of covered func-

tional events for the Load Store Unit (LSU) of the processor in a simulation of

3000 tests. The LSU is among the most complex and difficult-to-verify units

in the design. Over 90% of the covered events were already hit by 50 or more

tests. However, there existed other events activated only by 10 tests or fewer.

Furthermore, there were events with zero coverage (not shown in the figure).

Our interest is in knowledge extraction for hitting those events with low or

zero coverage. The property stated by a complex event comprises multiple

40

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

0
5

10
15
20
25
30
35

[1,5) [5,10) [10,50) [50,500) [500,2500) [2500,3000)

%
 o

f e
ve

nt
s

in
 e

ac
h

Ca
te

go
ry

Category of events
based on how many tests to hit them

Hit by only a few tests

Figure 4.2: Histogram of covered events in LSU based on the frequency
of being hit

conditions. Learning the knowledge about the entire event directly could be

difficult. Hence a divide-and-conquer strategy is employed. The idea is to

learn knowledge with respect to each condition and then, the knowledge can

be combined for hitting the event. The similar thinking applies to improving

the structural coverage of a block since hitting a block usually depends on the

activation of certain conditions.

Knowledge extraction for a given condition is based on tests activating the

condition. We call those tests the novel tests. In processor verification, a

test is an assembly program. Figure 4.3 illustrates the learning goal. Suppose

a novel assembly program is identified to trigger a special condition in the

simulation, for example, a ”coreflush” condition concerning the instructions

already fetched but not yet committed. Then what we want to learn are

descriptive rules explaining the properties in the novel tests that trigger the

condition, for example, the rule being the existence of a mis-predicted branch

in the test. Such rules are then used as constraints to refine test templates for

hitting the condition.

To summarize, in our methodology we begin by monitoring a set of conditions.

Novel tests with respect to these conditions are identified and recorded in the

41

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

tests

design

simulation

learning
engine

rules

Figure 4.3: Illustration of the learning goal

simulation. The extracted knowledge is rules describing the special properties

of the novel tests.

4.3.3 Related Works

In a feature-based diagnosis approach, a set of features are used to encode the

characteristics of a sample (in our case a sample is a test). This encoding trans-

forms each sample into a feature vector. Then, by analysing the feature vector

of a special sample against other non-special samples, we can extract rules to

explain the unique property of the special sample, e.g. the special sample sat-

isfies the rule and all other samples do not. For the rule extraction analysis,

one can use a decision tree algorithm [32] or the subgroup discovery algorithm

[33]. Feature-based rule learning has been applied in the context of under-

standing design-silicon mismatch [34]. In our work, we apply the approach to

analyse the special test to understand its specialty. In contrast, this chapter

studies the feasibility and effectiveness of applying feature-based analysis for

extracting knowledge from novel tests to improve verification coverage.

42

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

4.4 Feature Generation

4.4.1 Snippet-based Vector Representation

To extract knowledge from an assembly program, we first need an approach to

convert an assembly program into a representation suitable for applying the

feature-based rule learning. A given assembly program may consist of hun-

dreds of instructions. Our representation approach comprises two steps. The

first step converts an assembly program into multiple snippets of instruction

sequence of equal length k where k is a user-supplied input.

Figure 4.4 illustrates how this step, with a slide window size of 3, works on

an example test with 6 instructions. Six snippets are extracted, where the ith

snippet ends with the ith instruction in the test. Beginnings of the first two

snippets are filled with dummy instructions.

Inst1
Inst2
Inst3
Inst4
Inst5
Inst6

Snippet 1

Not covered
Covered

Not covered
Not covered
Not covered

Covered

program Simulation trace

Snippet 3

Snippet 5

Snippet 2

Snippet 4

Snippet 6

Figure 4.4: Illustration of the slide window approach

Each snippet is paired with the episode of simulation trace starting from the

commitment of the second-to-last instruction and ending at the commitment of

the last instruction. In this way, each snippet is paired with a unique simulation

episode. For a given condition to be monitored, the episode is used to decide

43

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

if the condition is covered by the snippet. Figure 4.4 shows, in the example,

the condition is covered by snippets 2 and 6.

The second step of the representation approach is to convert each snippet into

a feature vector. A feature vector encodes a sequence of instructions based

on a set of features. A feature can be an occurrence feature or a descriptive

feature. An occurrence feature has a value of 0 or 1. A descriptive feature has

a numerical value.

occurrence descriptive

o1 o2 ... on d1 d2 ... dm Class

1 0 ... 1 231 6 ... 54 −1

1 1 ... 0 78900 654 ... 37 +1

0 1 ... 0 256 800 ... 24 −1

0 0 ... 0 3 60 ... 4096 −1

0 0 ... 1 701 9754 ... 7 −1

1 1 ... 1 1 570 ... 0 +1

Figure 4.5: Illustration of the transformed dataset

Figure 4.5 illustrates the look of a feature-encoded dataset based on the six

snippets for a condition. The illustration shows n occurrence features and

m descriptive features. The set of snippets are divided into two classes, the

positive class with the condition being hit and the negative class without the

condition being hit.

It is important to note that in the analysis, the negative class will also contain

snippets obtained from non-novel tests. Hence, the size of the negative class is

usually much larger than the size of the positive class. It is also important to

note that such a feature-encoded dataset is constructed for each condition to

be monitored.

44

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

4.4.2 Defining a Set of Features at ISA level

Features are ISA dependent. A feature set defined for PowerPC ISA can be

different from that for x86 architecture. In the proposed methodology, defining

a feature set is treated as a one-time cost. During the verification process, the

feature set may be manually expanded. However, because the feature set only

depends on the ISA, it can be reused for generations of design compatible to

the ISA.

In this chapter, the feature set is defined based on the Power ISA [35]. In the

experiment presented later, we consider three categories of features:

• State-based features:

– The contents of a set of special registers such as machine state reg-

ister (MSR), exception syndrome register (XER), L1 cache control

and status register (L1CSR), and etc.

• Instruction-based features:

– Instruction types and data patterns of associated operands, the re-

sult of execution, and etc.

– Information associated with load/store addresses, such as the virtual

addresses and physical addresses, the attributes of the page which

the addresses lie on, and etc.

• Sequence-based features:

– Data dependency in a sequence of instructions, the distance between

the dependent instructions, and etc.

– Address collision in a sequence of instructions, the distance between

the collided instructions, and etc.

45

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

stdx 4,28,15
(EA=0x00000000ee308888,RA=0x0000000020edb888)

ldx 22,22,22
(EA=0x00000000fff1d908,RA=0x0000000020edb908)

ldx 21,22,3
(EA=0x00000000fff1d888,RA=0x0000000020edb888)

Figure 4.6: Illustration of a test program snippet

Figure 4.6 illustrates an example showing a simplified view of a snippet from a

novel test. The feature vector extracted from the third instruction is illustrated

in Table 4.1. The subscript 3 denotes the features of the third instruction.

EA3 specifies the effective address, while RA3 is the real address. op type3

refers to the instruction type. collided3 is an occurrence feature indicating

whether the instruction has address collision with any of previous instructions.

collision dist3 = 1 means there is one instruction between the third instruction

and the closest previous collided instruction.

Feature ... EA3 RA3

Value ... 0x00000000fff1d888 0x0000000020edb888

... op type3 collided3 collision distance3 ...

... ldx 1 1 ...

Table 4.1: Illustration of portion of a feature vector

4.4.3 Feature Discretization

In rule learning, a descriptive feature with numerical values is first partitioned

into multiple bins to facilitate the rule search. For example, RA is a descriptive

feature whose value can be partitioned into bins based on the cache line size

or page size. In general, an entropy minimization heuristic developed by [36],

can be employed for the partitioning such that a small range of feature values

with rare occurrence is considered important and identified as a separate bin.

A large range of feature values commonly-appearing in many samples are con-

sidered less important and grouped into the same bin. We use a discretization

46

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

scheme based on the entropy minimization heuristic with additional constraints

based on the known design features such as cache line and page sizes, etc.

4.5 Knowledge Extraction by Rule Learning

Given two classes of snippets, Scovered (positive samples) and Snot−occurred

(negative samples), we are interested in finding the rules to describe the prop-

erties of positive samples Scovered. A rule is in the form of Ante ⇒ Scovered,

where the class Scovered appears in the rule consequent, and the rule antecedent

Ante is a conjunction of clauses c1 ∧ c2 . . . ∧ cn. Each clause involves a sin-

gle feature. For an occurrence feature f , a clause can be either f = 0 or

f = 1. For a descriptive feature f ′, a clause can be f ′ = bin where bin is a

bin number after the discretization described above. The Ante is essentially

a combination of important features selected to describe the properties of the

positive samples. In principle, the Ante should appear in zero or only very

few negative samples. Moreover, an Ante with a smaller number of clauses is

preferred because such an Ante is more general. An example rule based on

features discussed in Table 4.1 is shown as follows:

op type1 = stdx ∧ op type3 = ldx ∧ collided3 = 1 ∧

collision dist3 = [1, 2) ⇒ Scovered

(4.1)

There are two classes of rule learning algorithms: classification rule learning

and association rule learning. Classification rule learning is an approach for

predictive induction (supervised learning), aimed at constructing a set of rules

to be used for classification. Association rule learning is a form of descriptive

47

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

induction (unsupervised learning), aimed at the discovery of rules which define

interesting patterns in data. Subgroup discovery aims to address a task at the

intersection of predictive and descriptive induction. For descriptive induction,

it identifies groups of similar samples that should be analysed collectively.

Then, for a group of multiple similar samples, predictive induction is applied to

extract rules. The search iterates between descriptive induction and predictive

induction to find the optimal group boundaries and rules to describe each

group.

Compared to classification rule learning, subgroup discovery is more suitable

for the application. A class of positive samples hitting a particular condition

can be due to multiple reasons. In classification rule learning, the positive

samples are analysed collectively. But because one subset of samples may be

due to one reason and another subset may be to due a different reason, it

becomes difficult to find a single rule to explain most of the samples, i.e. a

single rule with high accuracy. This problem is resolved in subgroup discov-

ery by grouping similar samples and searching rules to describe each group

individually.

We implement a rule search engine similar to the CN2-SD algorithm proposed

by [33], which adapted the classification rule learning CN2 algorithm [37] to

subgroup discovery learning in order to achieve both predictive and descriptive

induction.

The rule search engine performs a breadth-first search where the depth is char-

acterized by the number of clauses. The evaluation metric of a rule is based

on a weighted relative accuracy [38] as described below.

48

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

For a rule Ante ⇒ Scovered, the weighted relative accuracy WRAcc is defined

as follows:

WRAcc(Ante⇒ Scovered) = p(Ante) · (p(Scovered|Ante)− p(Scovered)) (4.2)

p(Ante) is the frequency of the total samples satisfying theAnte. p(Scovered|Ante)

is the frequency of the positive samples satisfying the Ante. p(Scovered) is

the frequency of the positive samples. The weighted relative accuracy con-

sists of two components. the relative accuracy component (p(Scovered|Ante) −

p(Scovered)) and the generality component (p(Ante)). Therefore, the weighted

accuracy provides a tradeoff between the generality of the rule (rule coverage)

and the relative accuracy.

In classification rule learning, covered samples are dropped to avoid finding the

same rule again. However, a single sample may attribute to two reasons for

hitting the condition. If such a sample is dropped after uncovering one reason,

its information is lost for uncovering the other reason. To address this problem,

the rule search engine uses a weighed covering heuristic. Instead of dropping a

covered sample, it stores the covered sample with a weight indicating how many

times the sample has been covered, i.e. how many rules have been produced

based on the sample. Then, in Equation (4.2) the frequencies are adjusted

based on these weights. The output of the search is a ranked list of rules where

the ranking can be based on several metrics [33].

49

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

4.6 Knowledge Reuse

4.6.1 Rule Validation and Refinement

From a ranked list of rules, a rule can be selected and validated by creating a

test template macro satisfying the rule. A macro is a parameterized building

block of a template, which specifies how instruction sequences are instantiated.

For example, the rule in Equation (4.1) can be encoded into a macro illustrated

in Figure 4.7, which will generate a pair of stdx-ldx collision with a random

instruction between them.

sequence:
var a = random()
gen inst(optype=stdx, addr=a)
gen inst()
gen inst(optype=ldx, addr=a)

Figure 4.7: Illustration of a test template macro

A rule is evaluated based on the frequency of the produced tests hitting the

desired condition. A rule is considered to be meaningful if the frequency is

higher than the ratio of the number of positive samples over the total number

of samples in the original dataset. The larger the difference is, the more mean-

ingful the rule is. In the learning process, a rule can be further refined based

on additional positive samples produced in the rule validation process.

4.6.2 Rule Reuse

Rules and macros are reused to improve the coverage of complex events. A

database is built to store the rules and macros for each condition to be mon-

itored. When we want to produce tests to hit an event comprising multiple

conditions, the corresponding macros for the conditions are retrieved from the

50

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

database. These macros are combined to create more complex macros for

hitting the event.

In our methodology, combining macros follows a predefined set of built-in pro-

cedures that can be selected by the user. For example, one procedure combines

macros by enumerating all the orderings without interleaving instructions from

two macros. Another procedure combines macros based on a given fixed or-

dering by interleaving the instructions from two consecutive macros in the

ordering. There are variants of interleaving schemes in the procedure to decide

how instructions from two macros can be interleaved.

When creating compound macros, the constraints specified by individual macros

should be preserved. For example, if we combine the macro in Figure 4.7 with

another macro, the stdx instruction should still proceed the ldx instruction.

While we can interleave instructions from another macro between the stdx and

ldx, the number of intercepted instructions should not exceed one.

4.7 Learning with Microarchitecture Features

4.7.1 Limitations of Learning at ISA Level

In the learning methodology proposed earlier in this chapter, learning is per-

formed with instruction-level features based on a slide window approach. This

might be a limitation when complexity increases. Let us consider an exam-

ple scenario as illustrated in Figure 4.8. Suppose the 100th instruction of a

program invalidates the Translation Lookaside Buffer (TLB). Then following

99 non-memory instructions, the 200th instruction is a load instruction. This

51

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

would cause a TLB fault. Apparently, the approach proposed earlier is not

capable of learning the rules for the TLB fault event here. This example shows

there exist a category of events that cannot be learned efficiently by merely

looking at the instruction interactions locally without consideration of micro-

architecture states. Hence, when the instruction-level learning proves to be

ineffective, adaptations to the proposed learning methodology are needed to

deal with more complexities.

100th instr

200th instr
TLB

…

invalidate

load

TLB
fault

…

…

Figure 4.8: Illustration of an example scenario in which rules cannot be
efficiently learned by the approach discussed in previous sections

There are two key components in a learning methodology: feature representa-

tion and learning algorithms. When applying learning to a more complex sys-

tem, one might wonder which direction to pursue: more sophisticated learning

algorithms or better feature representations? At first glance, it might appear

that more advanced learning algorithms are required to solve more complex

problems. However, our experiences show that a better feature representa-

tion will give us more insightful perspectives and thus result in better learning

results than going after advanced algorithms. From the analysis of the limi-

tation of learning only at the ISA level, we adapt the learning framework to

being applied at two levels. We first learn rules of the important combinations

of microarchitecture states present when a special condition occurs. Then a

learning scheme similar to that proposed in previous sections in this chapter

is applied at the ISA level. The adaptation includes two levels of features:

features describing the microarchitecture states, and features describing the

52

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

characteristics of instructions. The application of the learning scheme relies

on the proper selection of microarchitecture states, hence simple learning al-

gorithms are preferred to search the rules based on different sets of features.

A hypothesis pruning and ranking scheme is a good candidate for its simplic-

ity and efficiency. We will briefly review the hypothesis pruning and ranking

scheme in Section 4.7.2 and present the adapted learning scheme in 4.7.3.

4.7.2 Hypothesis Pruning and Ranking

All rule learning algorithms essentially try to find good hypotheses that can

explain why samples fall into a particular category. A hypothesis space is

formed based on features. Given a set of n occurrence features F = {f1, ..., fn},

the hypothesis space is the power set 2F . Each hypothesis is a combination of

features. The hypothesis space formed from all features can be huge. However,

when forming hypotheses to explain a special sample, we only need to consider

the features that appear in the sample. This number is usually much smaller

than the number of all features. However, even for the number of features in

the order of tens, the space is still too large to enumerate explicitly. Hence,

the hypothesis space usually exists implicitly in the analysis. In the hypothesis

space, a lot of hypotheses appear in non-special samples, which means they

cannot be used to distinguish the special samples from non-special ones. We

call them inconsistent hypotheses. When inconsistent hypotheses are pruned,

only consistent hypotheses that are more creditable for explaining the special

samples will be left.

We illustrate the concept of hypothesis pruning through an example data set

as shown in Table 4.2. It consists of 2 special samples S1, S5 and 4 other

53

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

non-special samples. Each sample is characterized by 5 features F1 through

F5. The hypothesis space formed by features appearing in the special samples

is illustrated as a concept lattice in Figure 4.9. Each node represents a hypoth-

esis annotated with the number of appearances in non-special samples. For

example, the 2-order hypothesis {F1, F4} denotes the combination of F1 and

F4, and annotated with 2 since it appears in S2 and S4.

Table 4.2: Example Data Set

F1 F2 F3 F4 F5 Class

S1 1 0 1 1 1 1
S2 1 0 1 1 0 0
S3 0 1 1 1 1 0
S4 1 1 0 1 0 0
S5 1 0 1 0 1 1
S6 1 0 0 0 1 0

In the example concept lattice, {F1, F3, F5}, {F1, F4, F5} and {F1, F3, F4, F5}

are annotated with 0, which means they never appear in non-special samples.

In other words, they are consistent hypotheses. The goal of hypothesis prun-

ing is to find all the consistent hypotheses that are not descendants of other

hypotheses. In this example, {F1, F3, F5}, {F1, F4, F5} are the results of hy-

pothesis pruning. The reason for finding low-order consistent hypotheses is

that high-order consistent hypotheses ({F1, F3, F4, F5} in this example) are in-

cluded in their ancestors and tend to ”overfit” the data set. Also, the low-order

hypotheses are easier to understand.

The problem of hypothesis pruning can be formulated as finding a cut in the

concept lattice. The dashed curve in Figure 4.9 is such a cut separating the

consistent hypotheses from the others. Various algorithms can be used to

search for the cut [39]. In practice, the pruning is not that strict and can

tolerate certain degrees of inconsistency. The consistency checking is replaced

by support-confidence evaluation. Let P be the set of all special samples, and

54

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

{}

3{F1} 2{F3} 3{F4} 2{F5}

1{F1,F3} 2{F1,F4} 1{F4,F5} 1{F1,F5} 1{F3,F5} 2{F3,F4}

1{F1,F3, F4} 0{F1,F3, F5} 0{F1,F4, F5} 1{F3,F4, F5}

0{F1,F3, F4, F5}
Figure 4.9: Illustration of the concept lattice based on the example data

set

N be the set of all non-special samples. For a hypothesis h, let Ph be the subset

of P satisfying the hypothesis h and Nh be the subset of N satisfying h. Then

the support of h is |Ph|
|P | and the confidence of h is |Ph|

|Ph|+|Nh|
. For example, the

hypothesis {F1, F4, F5} appears in one special sample S1 but not in the other

special sample. Then its support is 50%. Its confidence is 100% as it never

appears in non-special samples.

Rule learning algorithms based on hypothesis pruning usually start with the

null hypothesis and generate lowest-order hypotheses first in a breadth-first-

search manner. For each hypothesis, support-confidence evaluation is per-

formed with user-specified thresholds. Hypotheses without sufficient support

or confidence will be pruned. If a hypothesis passes the evaluation, its descen-

dants will not be explored. If a hypothesis is pruned due to insufficient support,

its descendants will not be explored as well (since they have lower support

than their ancestors). The search will stop after all lowest-order hypotheses

are found or the search depth exceeds a threshold. The hypotheses found are

ranked based on support and/or confidence. In the example, {F1, F3, F5} is

ranked as the top hypothesis as it has higher support (100%) than {F1, F4, F5}

while they have the same confidence.

55

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

4.7.3 Adaptation of the Learning Methodology

Figure 4.10: State matrix view of a test

Figure 4.10 illustrates the learning scheme. We assume that there is a set of

relevant microarchitecture states. For each analysis, a subset of p states are

selected, S = {s1, . . . , sp}. Given an instruction sequence, simulation provides

the state vector based on S achieved at the end of each instruction. For

simplicity, we assume that in this state vector, ”1” means the state is present

and ”0” means the state is not present.

Suppose for a test we observe that instruction Ij+1 hits a coverage point of

interest. Our first learning goal is to uncover what state configuration is causing

the instruction to hit the coverage point.

The learning can proceed by assuming a small window size w and concatenating

the last w columns in the state matrix in Figure 4.10 to form a positive state

vector. Then, in all tests where an instruction of the same type as Ij+1 appears

and the coverage point is not hit, we extract a negative state vector. There can

be many negative state vectors.

Figure 4.11: A positive state vector and its hypotheses

56

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

Given a positive state vector, a set of hypotheses can be formed. For example,

Figure 4.11 shows a positive state vector of 10 states. Since only states 3, 4,

6 and 8 are present, hypotheses are formed based on these four states. Others

are ignored because we assume that hitting the coverage point depends only

on state presence. Using four states, there are 24 − 1 = 15 hypotheses. Each

hypothesis can then be checked against all the negative state vectors. For

example, one can set the rule that if a hypothesis appears in any negative

state vector, it will be removed. Or one can set the rule that if a hypothesis

appears in much more positive state vectors than negative state vectors (when

combining analysis of multiple tests), then it can be accepted.

The learning scheme is quite simple. Its power of course lies in the proper

selection of S. Also because the learning algorithm is simple, its effectiveness

decreases as the number of states p and the window size w increases, i.e. the

dimensionality of a state vector increases. In practical use, we want to keep p

and w small. For example, w can be kept at 2 while p is kept at less than 10.

Because p is kept small, it may require multiple runs to try out different sets

of state variables. In practice a user makes the selection of the set S from

a larger set of known state variables built into the tool. Even so the simple

learning scheme still provides a useful way to help the user quickly explore a

large number of hypotheses.

Suppose a hypothesis is accepted. Then, finding the instructions causing the

states is a relatively easy problem. One can trace back in time from the state

vector to identify the corresponding instruction where a state is first present.

Then, we apply a second level of learning to learn the characteristics of the

instruction for causing the state presence. In this second level of learning, a

positive example is an instruction causing the state of interest. A negative

57

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

example is an instruction of the same type that does not cause the state to be

present. The learning scheme can be designed in a similar fashion as described

above.

In summary, the two levels of learning schemes first try to uncover the combina-

tion of states causing the coverage hit and then uncover the specific instructions

and instruction features.

4.8 Experiment Results

4.8.1 Experiment Environment

In this chapter, the experiments were conducted on a dual-thread low-power 64-

bit Power Architecture-based processor core. The design is a newer version of

the processor core mentioned in Chapter 3. The processor core supports dual-

thread capability that enables each core to act as two virtual cores. Each thread

is two-way superscalar and maintains up to 16 out-of-order instructions in-flight

through 10 parallel execution pipelines. In this version, the core is designed

with a memory subsystem supporting up to a twelve-core SoC implementation.

The in-house simulation-based verification environment conforms to a state-

of-the-art constrained random verification flow. An in-house test generator

is used to generate constrained random test programs based on user-supplied

test templates. During the test generation, architectural simulation is also

performed and the simulation results are embedded in test programs. The

RTL simulation results are compared with the architectural simulation results

for checking correctness.

58

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

The experimental results shown below focus on the Load Store Unit (LSU).

LSU is one of the most complex and difficult-to-verify units in the design.

The LSU in this version supports up to eight outstanding load operations and

eight outstanding store operations in-flight. The design leverages features such

as store queueing, L1 load miss queueing, store gathering, and critical-word-

first service to support the speculative memory access in order to achieve high

performance.

Since the experiment was conducted in parallel to the on-going verification

efforts, the experiment started with test templates that had been refined by

the verification team up to the time of the experiment. In the following, we

describe five results in detail to demonstrate the effectiveness of the proposed

learning methodology. The first result is based on toggle coverage and the rest

are focused on the more important coverage type– functional coverage.

4.8.2 The First Illustrative Result Based on Structural

Coverage

The first experiment was conducted on a test set instantiated by a test template

based on 6 load/store instructions. It contains 3000 test programs, each of

which has 10 instructions. Figure 4.12 shows the accumulated toggle coverage

curve of the data forwarding block in LSU. Out of 3000 tests, only 4 contribute

to coverage increase for that block. After simulating the whole test set, the

coverage only reaches 46.31%.

Instruction-level rule learning were conducted to extract rules. One rule we

learned can be interpreted as follows:

59

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

of applied tests

Novel tests

10-inst sequences

46.31

Figure 4.12: Toggle coverage on a block in LSU of the original simulation
run

• There is a store instruction followed by a load instruction.

• The data width of the two instructions are the same.

• The real addresses of the two instructions can only differ in the last 3

bits.

• There are no more than 2 instructions between these two instructions.

44

45

46

47

48

49

50

51

3
0

0
0

3
0

0
3

3
0

0
6

3
0

0
9

3
0

1
2

3
0

1
5

3
0

1
8

3
0

2
1

3
0

2
4

3
0

2
7

3
0

3
0

3
0

3
3

3
0

3
6

3
0

3
9

3
0

4
2

3
0

4
5

3
0

4
8

%
 o

f
co

ve
ra

ge

of applied tests

Figure 4.13: Coverage improvement in the first iteration

60

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

We modified the test template toward producing tests featuring sequences that

satisfy this rule and generated additional 50 tests. After running the 50 tests,

coverage was increased from 46.31% to 50.22%, as shown in Figure 4.13. This

was not the endpoint. Since we had more samples of novel tests, we could

improve the effectiveness of learning by extracting rules based on the newly

generated tests. In this iteration, we discovered that if the qualified sequences

occur more than once in a test, the test is more likely to contribute to the

coverage increase in the block.

40

45

50

55

60

65

70

3
0

0
0

3
0

0
6

3
0

1
2

3
0

1
8

3
0

2
4

3
0

3
0

3
0

3
6

3
0

4
2

3
0

4
8

3
0

5
4

3
0

6
0

3
0

6
6

3
0

7
2

3
0

7
8

3
0

8
4

3
0

9
0

3
0

9
6

%
 o

f
co

ve
ra

ge

of applied tests

Figure 4.14: Coverage improvement in the second iteration

Then we applied this new rule to direct the test generation and instantiated

another 50 tests. In this iteration, the coverage was increased to 66%, as

shown in Figure 4.14. Again, we iterated the learning process based on the

refined tests. We discovered it can be interpreted as that if the Hamming

distance between the data of interest in two sequences is large, it’s more likely

to contribute to the coverage increase of the block. Thus, we applied this

constraint and generated another 5 tests. As we can see from Figure 4.15,

after applying the extra 5 tests, the coverage of the block ramped up to 100%.

61

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

40

50

60

70

80

90

100

3
0

0
0

3
0

0
6

3
0

1
2

3
0

1
8

3
0

2
4

3
0

3
0

3
0

3
6

3
0

4
2

3
0

4
8

3
0

5
4

3
0

6
0

3
0

6
6

3
0

7
2

3
0

7
8

3
0

8
4

3
0

9
0

3
0

9
6

%
 o

f
co

ve
ra

ge

of applied tests

Figure 4.15: Coverage improvement in the last iteration

What would we get if we continued simulation using tests generated by the orig-

inal test template? The comparison is shown in Figure 4.16. We instantiated

another 4000 tests and simulated them, which took over 15 hours. However,

the coverage only increased to 50% and levelled off in the long simulation. It’s

very unlikely to increase coverage if we continue simulation without learning.

0
10
20
30
40
50
60
70
80
90

100

1
0

3
7

0

7
3

0

1
0

9
0

1
4

5
0

1
8

1
0

2
1

7
0

2
5

3
0

2
8

9
0

3
2

1
0

3
5

7
0

3
9

3
0

4
2

9
0

4
6

5
0

5
0

1
0

5
3

7
0

5
7

3
0

6
0

9
0

6
4

5
0

6
8

1
0

%
 o

f
co

ve
ra

ge

of applied tests

Figure 4.16: Comparision between coverage w/ and w/o learning

4.8.3 The Second Result

The second result demonstrates the following: The learning began with novel

tests hitting an event α comprising a single condition c1. Learning was to

62

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

extract rules for hitting c1. After the learning, two things were accomplished

by the tests instantiated from the refined test template. First, the frequency of

hitting event α was substantially improved. Moreover, two additional events

β, γ (with zero coverage before) were covered.

The event β comprises a single condition c2 that is highly correlated to the

condition c1. The event γ comprises both conditions c1 and c2. The result

demonstrates that learning from tests hitting one event can lead to fortuitous

coverage of other correlated events.

In the simulation run, 1000 tests were instantiated from a test template based

on 114 types of memory instructions. Each test consists of 50 instructions. The

simulation time for each test on a single machine took several minutes. When

simulating using a server farm, 20-30 tests could be simulated simultaneously.

The event A was covered by merely three tests. This event refers to the special

condition c1 concerning how certain queues in LSU are filled up.

We applied the learning methodology to extract rules from the three novel

tests. One interesting rule we found can be interpreted as follows:

• There is a lmw (load multiple word) instruction.

• The page on which the real address of lmw lies, is not cache inhibited.

• The destination register of the lmw is before G20.

The rule is converted into a test template macro and used to generate another

200 tests, each comprising 50 instructions. Table 4.3 shows the comparison

of coverage between the original 1000 tests and 200 new tests. As shown by

the 4th row, the number of tests hitting the event α increases from 3 to 33 in

the new test set, thus boosting the frequency from 0.3% to 15.5%. Moreover,

63

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

events β and γ which were not hit by the original 1000 tests could be hit by 9

tests and 5 tests from the 200 new tests (the 5th and 6th rows).

of tests % of tests

test set original new original new

size 1000 200 1000 200

event α 3 33 0.3% 15.5%

event β 0 9 0 4.5%

event γ 0 5 0 2.5%

Table 4.3: Comparison of event coverage between original 1000 tests and
200 new tests

4.8.4 The Third Result

0

5

10

15

20

25

30

35

assertion
I

assertion
II

assertion
III

assertion
IV

assertion
V

all 5

o

f
co

ve
ra

ge

original combined macro iteration 1 iteration 2
Figure 4.17: Functional coverage improvement

Figure 4.17 summarizes the third result. In the original simulation run, 2000

tests were instantiated from a template based on 44 types of memory instruc-

tions and over 200 types of non-memory instructions. Each test consists of 100

instructions. In the simulation, only event IV was hit by one test. event I, II,

III, and V had zero coverage.

Event IV comprises two conditions c3 and c4. Other events comprise the same

two conditions. However, the temporal constraints between the two conditions

are different across the five events.

64

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

Learning was carried out based on the novel tests hitting conditions c3 and

c4. Note that there were multiple tests hitting c3 and c4 individually. After

the learning, rules were extracted for hitting c3 and c4, resulting in multiple

macros for each condition.

Two macros m1 and m2 (for c3 and c4, respectively) were identified to be con-

sistent with two respective segments of instructions in the one test hitting event

IV. The corresponding rules for these two macros are illustrated in Table 4.4.

Hence, macros m1 and m2 were combined to produce a new template macro.

Because in the test, instructions from m1 was followed by instructions from m2

without interleaving, in the combined macro, m1 was followed by m2 without

instruction interleaving.

Rule for m1
There is a mulld instruction and the two
multiplicands are larger than 232

Rule for m2

There is a lfd instruction and the instructions
prior to the lfd are not memory instructions
whose addresses collide with the lfd

Table 4.4: Rules for macros m1 and m2

The combined macro was used to produce 100 new tests. These new 100 tests

led to higher coverage for events I to IV as shown with the legend ”combined

macro” in Figure 4.17. But event V remained at zero coverage.

The learning was re-applied with the additional 100 tests and new rules/macros

were obtained for hitting c3 and c4. Again, 100 new tests were produced. The

result was denoted as ”iteration 1” in Figure 4.17. Observe in ”iteration one”

that coverage for event I to IV was improved further. More importantly, event

V could be covered. The process repeated in the ”iteration 2” and we can

observe further coverage improvement for events II to V.

65

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

4.8.5 The Fourth and Fifth Results

Figure 4.18: 2 examples, coverage point sets A and B

Figure 4.18 illustrates the fourth and fifth examples to illustrate the effective-

ness of two-level learning. The first group contains 8 coverage points A0 . . .

A7. The second group contains 6 coverage points B0 . . . B5. The second rows

of Tables 4.5 and 4.6 show their initial coverage based on the test templates

developed by the verification engineers. For group A, 400 tests were simulated,

which hit A0 10 times and A1 17 times. Others had no coverage. For group B,

>30K tests were simulated, which hit none of the points.

The 8 points in group A correspond to filling the 8 slots in a queue. If slot i is

filled, Ai is activated. The queue is consumed by other parts of the processor

depending on the machine state. While filling a slot may not be difficult, once

a slot is filled, it can be consumed quickly and removed. Hence, it is difficult

to keep many slots filled simultaneously.

Table 4.5: Coverage improvement after learning

Stage # of tests A0 A1 A2 A3 A4 A5 A6 A7

Initial 400 10 17 0 0 0 0 0 0

based on 400 tests 100 3 11 10 10 4 2 1 1

based on 500 tests 50 72 59 71 83 79 97 96 87

Table 4.5 shows the improvement after applying the learning schemes discussed

above. After learning based on the initial 400 tests, we were able to find

constraints to improve the test item. The improved test template was used to

produce 100 new tests. All points in group A were covered at least once.

66

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

The 100 new tests provide additional information to learn from. Hence, the

learning schemes were applied to all tests, including the 100 new tests. The

test template was further improved accordingly. The last row shows that with

50 tests, the further-improved test template can cover all points many times.

The coverage frequencies are greater than 50 because each test consists of

a sequence of instructions and by focusing the test template on hitting the

coverage points, many instructions can hit them, i.e. a test can cover a point

more than once.

Refer to example 2 in Figure 4.18. In this case, none of the points was covered

in the initial run. However, by analysing the block of interest, one can easily

discover that in order to hit coverage points in group B, setting signal C and

signals D0 to D5 is necessary. Hence, instead of learning to reach points in B,

which is not possible because the tests and simulation data provide no infor-

mation to learn from, the learning objective is to provide better controllability

for C and D0 to D5.

Table 4.6: Coverage improvement after learning

Stage # of tests B0 B1 B2 B3 B4 B5

Initial >30K 0 0 0 0 0 0

based on >30K tests 1200 1 0 0 16 25 26

based on >30K + 1200 tests 100 2 1 1 56 61 77

After learning based on the initial >30K tests, Table 4.6 shows that B3 to B6

could be covered many times. B0 was covered once. Again, the learning can

include the 1200 new tests. Results are shown in the last row of the table.

67

Chapter 4. Knowledge Extraction Framework to Improve Functional
Verification Coverage

4.9 Summary

This chapter proposes a learning methodology to extract knowledge from sim-

ulation in constrained random processor verification. A feature-based rule

learning approach is developed for the knowledge extraction. The extracted

knowledge is reused for test template refinement to improve event coverage.

Experimental results demonstrate the effectiveness of the proposed learning

methodology in various scenarios where event coverage could be further im-

proved after a substantial verification effort had been spent.

68

Chapter 5

Data Driven Test Plan

Augmentation in Platform

Verification

5.1 Overview

Verification of a platform design can be divided into two parts, core verification

where an individual core is verified and platform verification where integration

of multiple cores is verified. In both parts, constrained random test generation

is applied and verification is driven by certain predefined coverage metrics.

This chapter focuses on platform verification and shows that a data learning

approach designed for core verification is not feasible for platform verification.

We explain the differences between the two from the perspective of applying

data learning and point out a fundamental problem to be solved in platform

verification. We propose a data driven approach for test plan augmentation

69

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

and demonstrate its effectiveness using a latest commercial platform design.

Experimental result shows that the approach can be used to further improve

coverage during a verification cycle.

5.2 Introduction

Functional verification starts with a verification plan, specifying the aspects

of design to verify [6]. In constrained random verification, test cases are gen-

erated by constrained random test generation, which is guided by constraints

and biases specified in a test item (or test template). Verification quality is

measured by coverage metrics and coverage results are analysed to guide the

setting of constraints and biases.

In a design process, the design evolves over time. This means that functional

verification also evolves accordingly. From one design version to another, func-

tional verification has two important goals: to identify bugs in the current

version and to develop a collection of test items and/or direct tests that even-

tually will be used to simulate the final version of the design.

In this chapter, we call a constrained random test generator a randomizer. We

call a particular setting of constraints and biases a test item and a collection

of test items a test plan. A randomizer processes a test item and produces a

set of tests. For example, a test for verifying a processor core is a sequence of

assembly instructions. A test for verifying a platform is a sequence of transac-

tions.

For test plan development, it often relies on a coverage metric to drive the

improvement of a test plan. The specifications of coverage models are often

70

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

encapsulated into coverage groups where each group consists of coverage points.

A coverage point is usually defined as a particular combination of signal values.

Suppose a randomizer generates a set of tests intended for a coverage group.

Suppose some or none of the coverage points are covered and others are not.

This is a typical scenario where a verification engineer analyses the coverage

result and tries to improve the test item so that the randomizer can produce

tests covering the uncovered points.

In this context, the data learning methodology proposed in Chapter 4 ana-

lyzes the simulation traces and the tests to assist understanding of why some

tests hit the coverage points and some do not. The result is then used to

add additional constraints for better controllability for hitting the points in

the coverage group. The experiment results showed that in practice such a

methodology could be useful for processor verification. However, for platform

verification, we discover that the data learning methodology is ineffective.

At processor level, the learning is for incrementally improving a test item.

Finding a better set of constraints often means adding more constraints such

that they can reach a desired microarchitecture state. Which constraints to add

can be learned from the tests and their simulation traces. At platform level, we

observe that the core of the problem is the incompleteness of a test plan. This

means that to apply the same learning idea, one has to be able to learn from

one test item to discover another. We observe that in such an application, the

tests and simulation traces often provide little or no information to enable the

learning.

Figure 5.1 illustrates the difference between learning in the processor verifica-

tion context and learning in the platform verification context. For processor

71

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

verification, the task is to learn from the behavior of a collection of tests to im-

prove a test item. In platform verification, the task is to learn from a collection

of test items to improve a test plan. We discovered that in such an application,

the tests and their simulation traces often provided little or no information to

enable the learning. Therefore, while the learning approach proposed for pro-

cessor verification is more like a supervised learning approach, we found that

for platform verification, we had to develop an unsupervised approach.

Test plan

Test item
(constraints & biases)

Test item
(constraints & biases)

…

Test

Test

…

Test

Test

…

Sequence of
Instructions or transactions

Sequence of
Instructions or transactions

…

Sequence of
Instructions or transactions

Sequence of
Instructions or transactions

…

…

Processor verification context
(learning from tests to improve a test item)

Platform verification context
(learning from test items to improve a test plan)

Figure 5.1: Processor Verification vs Platform Verification

In this chapter, we propose a different data driven methodology to overcome

the test plan incompleteness problem. The data to analyse is the collection

of existing test items. The objective is to identify feasible augmentations to

the test plan by adding new test items. The approach analyses only the test

items without using the actual tests and their simulation results. We apply

the methodology to a latest commercial platform design and demonstrate its

effectiveness of use during a verification cycle.

72

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

The rest of the chapter is outlined as follows: Section 5.3 introduces platform

verification and explains why it is difficult to learn from tests and simulation

traces to improve coverage. Section 5.4 formulates the data learning problem

present at the platform level. Section 5.5 discusses the algorithms to tackle the

problem. Section 5.6 shows results based on the commercial platform design.

Section 5.7 concludes the paper.

5.3 Platform Verification

Figure 5.2: Illustration of a platform

Figure 5.2 illustrates a platform architecture. A platform may comprise a

number of processor cores, I/O cores, a platform MMU including cache, which

are interconnected through some interconnect structure. A coherency manager

is responsible for routing the transactions between cores and for ensuring data

coherency in the system.

Verification can be divided into two parts, individual core verification and

platform verification. For example, if the processor core is designed in house,

verification of an individual processor core is required before platform verifi-

cation. In platform verification, the focus is on the interconnection of cores.

Therefore, coverage groups often are defined on the interconnect interfaces.

73

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

As mentioned in the discussion referring to Figure 5.2 before, by assuming

each individual core is verified, platform verification focuses on verifying the

interconnection. Figure 5.3 illustrates the idea.

Figure 5.3: Transaction view in platform verification

In platform verification, most of the coverage groups are defined based on

interface signals between the interconnects and a core. For example, a group

may comprise a particular transaction type with combinations of attributes.

From a core perspective there are two types of transactions, outgoing and

incoming. Usually coverage points based on outgoing transactions are easier

to hit because hitting those points only depends on supplying the required

inputs to the core. Verification engineers usually have a good grasp of the

behavior of the core and hence, it is relatively easy to write a test item to

produce those outgoing transactions.

Incoming transactions depend on the rest of the system. If an incoming trans-

action represents a response to an outgoing transaction, then whether the

desired response can be observed or not depends on the system states and

behavior of the rest of the system. It is much harder to prepare a test item

targeting on a particular response.

If one considers all possible system configurations and state variables combined

from all cores, the state space is enormous. Typically, a randomizer takes a

test item and instantiates a test with a few hundred transactions. Thousands

of tests can be generated based on the configuration and initial state setting

74

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

specified in the test item. From the system state space perspective, because

the length of each test is short, a test usually does not go far from its initial

state. This is illustrated in Figure 5.4 below.

S1 S2

S3 SN ...

Space of all possible
Initial states and configurations

Observed simulation
behavior space

Test items

Behavior covered by the tests instantiated
from the test item with the particular
Initial state and configuration

Figure 5.4: Illustration of platform verification

In Figure 5.4, each Si denotes an initial system state of a test item based on a

system configuration. Constraints and biases in the test item influence how the

transaction sequences are generated based on the initial state. With a number

of tests generated and simulated, the system states close to the initial state

may be explored. However, it is unlikely that a transaction sequence would

start from one initial state Si and reaches another state Sj.

In platform verification, each Si is defined based on a set of predefined ar-

chitecture state variables. There can be tens of variables for each core and

hundreds for the system. Each test item involves one initial state. In platform

verification, the challenge lies in the coverage of the initial states.

For platform verification, the core of the problem is to ensure a complete

coverage of the initial states and configurations. The figure tries to illustrate

that for such a problem, learning from the behavior traces of a collection of

75

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

tests based on one test item provides little help to reasoning about another test

item. In other words, in Figure 5.4 learning carried out in the lower level space

(simulation behavior space) would not be effective to improve the coverage of

the upper level space (initial space and configuration space). Because of this,

the learning approach proposed for processor verification is not effective for

platform verification.

Figure 5.5: Platform coverage examples

To illustrate this point, Figure 5.5 shows two experimental results. In each

plot, two coverage results are shown. The red bars correspond to the result

from an original test item. The green bars correspond to the result from an

improved test item based on the original test item. The improvement is based

on manual analysis.

Both coverage groups are based on the requirements of seeing a particular

response from the system when a particular type of transaction is entered

into the system from the core. The difference between group X and group

Y is that they are based on different types of responses. Within each group,

the differences between two coverage points are based on their data sizes and

settings of some attributes of the transactions.

After analysing the results from the original test item, we discovered that in

order to cover the points, we had to set the cache in the platform MMU (refer

76

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

to Figure 5.2) into specific states, different for different groups. The initial

state setting in the original test item does not specify those cache-related state

variables. As we observe in the left plot for coverage point 8 of group X, there

is still a chance that the random transaction sequences can reach the specific

cache state and consequently hit the point. However, in most of other cases,

the coverage is zero.

Figure 5.5 illustrates the same concept shown in Figure 5.4. Given a test item

with an initial state Si, random transaction sequences are unlikely to bring the

system to another state Sj. Suppose we start with the test item and try to hit

the missing coverage points that depend on state Sj. In this case, tests and

simulation results from the test item provide no information to learn about

the importance of Sj. We see that in this case, the data learning approach

previously used for processor core verification cannot be applied.

5.4 Test Plan Augmentation Problem

At platform level, a missing coverage point is usually covered by finding the

proper initial state setting. It is rather difficult to modify only the constraints

of a test item to bring the system from one initial state to a desired system

state. Therefore, the main challenge in platform verification lies in the selection

of initial states.

Because the data learning schemes proposed for processor core verification do

not apply here, we formulate a different learning problem. The new learning

problem is unsupervised, meaning that the learning is not based on the results

of a test item, i.e., tests and simulation traces. Instead, the learning is based on

77

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

analysing a collection of test items themselves and trying to uncover additional

test items. Because the most relevant portion of a test item is its system

configuration and initial state setting, the learning focuses on analysing those

settings.

Simulation environments and the randomizer define a set of architecture state

variables that can be used to set the system configuration and the initial state.

Let this set be S = {S1, . . . , Sn}. Due to system architecture constraints and

constraints from the simulation models of the cores, the state variables can be

partitioned into groups G = {G1, . . . , Gm}. Each group comprises a few or

tens of variables.

Based on the variables in a group, choices are defined as combinations of some

or all variables. For example, each group Gi contains ci choices. When defining

a configuration with an initial state, certain groups can be combined together.

For example, given G1, G2, G3 with numbers of choices c1, c2, c3, an initial state

can be set with any one of the c1 × c2 × c3 choice combinations.

It is difficult for a single engineer to fully grasp all system architecture con-

straints. Furthermore, often a simulation model is given as a behavior model

that is not developed by the verification engineer - it is also difficult for the

engineer to fully grasp the constraints imposed by a simulation model. Because

of these two reasons, the partitioning boundaries of groups, the possible choices

within a group, and the possible combinations of multiple groups are usually

not entirely clear to a person. When preparing test items, an engineer relies on

partial knowledge to define what he/she understands, a possible configuration

and a feasible initial state.

78

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

The test plan augmentation problem can be stated as follows. Given a test

plan consisting of N test items, each with a set of some variables in S, uncover

groups and choices in each group. Further select groups to produce a per-

mutation of choices across the groups. Each combination in the permutation

represents an initial state setting for a test item.

Figure 5.6: Illustration of the learning problem

The problem is illustrated in the simple example depicted in Figure 5.6. Sup-

pose the golden answer contains two groups, one with four choices and the

other with three choices including the ”null choice” option φ as shown. For

example, Group 1 involves three variables A,B,C with four choices A, AB ABC

and φ. Because an engineer only has partial knowledge of this grouping and

choices, six test items are prepared. Their initial state settings are A, DE,

ABDE, ABF, ABCF, and ABCDE (shown in the table below the ”unknown

golden answer”). This table becomes the data to learn from.

From the six items in the table, observe that we can extract frequent patterns.

For example, AB appears most frequently by discounting the frequency of a

single variable appearance. Hence, we make AB a choice and consequently

79

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

variables A and B are put into the same group. This group then contains

choices A (1st row), φ (2nd row), and AB (3-6 rows). This decision leaves four

variables ungrouped. We then apply the process iteratively. The next most

frequent pattern is DE. Then, variables D and E are put into the same group.

The group contains the choice DE based on the data. This leaves variables C

and F ungrouped.

Variable F can be grouped with variables D and E because F and DE appear

disjointly in the data. The result contains 3 groups, denoted as groups 3, 4

and 5.

Based on the resulting groups, our goal is to permute all combinations of

choices to augment the original test plan containing six test items. This leads

to 3×2×3 = 18 combinations. Note that the grouping guarantees that the 18

combinations include the original six. However, notice that the original groups

1 and 2 give only 12 combinations. This means that there are 6 combinations

”invalid” from the perspective of the golden answer. To remedy this issue, we

need to find a way to merge groups. Reducing the number of groups decreases

the chance of generating an invalid combination.

The simple example shows several characteristics of the learning problem: (1)

The golden answer is unknown. (2) Data contains partial information about

the golden answer. (3) The learning result may contain more groups than the

golden answer due to incomplete information. (4) The resulting permutation

gives a set of test items that is a superset of the original test items. (5) The

resulting permutation may give an invalid test item.

In summary, the learning problem is to find groups and choices from the data

80

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

such that the resulting permutation augments the original test plan and min-

imizes the number of invalid test items (initial state settings). In the simple

example, the invalid state settings can be removed by merging group 4 into

group 3. This motivates us to develop a two-stage algorithm that first produces

the groups and identifies the choices, and second selects groups to merge in

order to reduce the number of invalid settings.

5.5 Platform Learning Algorithm

5.5.1 Test Item Clustering

The example in Section 5.4 assumes only one ”unknown golden answer”. In

practice, a collection of test items might reflect several different ”unknown

golden answers”. Hence, before searching for groups and choices, we need to

partition test items into different test plans and then, within each test plan,

decide groups and identify choices.

We formulate the partitioning problem as a clustering problem. Common clus-

tering algorithms include k-means [40], affinity propagation [41], mean shift

[42], spectral clustering [43], and hierarchical Clustering [44]. The performance

of many clustering algorithms depends on the selection of the number of clus-

ters. Mean shift is a non-parametric clustering technique which does not re-

quire prior knowledge of the number of clusters or the shape of the underlying

distribution. Mean shift finds clusters by searching for the modes (dense areas)

in the density estimation of data samples [42].

81

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

To apply mean shift to a set of test items, each item is encoded as a feature

vector where the features are all variables in the data and the feature values in-

dicate the appearances of the variables. Given n data samples ~xi, i = 1, ..., n on

a d-dimensional space, a kernel function K(~x) measures the similarity between

two samples. Given a window radius h, the density of the data is estimated

as:

f(~x) =
1

nhd

n∑
i=1

K

(
~x− ~xi
h

)
(5.1)

The modes, which are the local maxima of the kernel density function, represent

the dense regions in the feature space. At these modes, the gradient of the

density estimation 5f(~x) = 0. The main idea of the mean shift algorithm

is to find the modes for each data point using a gradient ascent search until

converging to the point at which 5f(~x) = 0. Then data points associated

with the same modes belong to the same clusters. Mean shift might not result

in the optimal clustering with one shot. For each cluster, we can apply mean

shift iteratively to refine the clustering until it does not yield new clusters.

5.5.2 Group Partitioning & Choice Generation

The next step is to process each cluster individually. In this step, the goal

is to decide group boundaries among variables and also to form choices, as

illustrated using the simple example in Figure 5.6 above. As described before,

the algorithm first iteratively identifies the most frequent patterns and variables

in each frequent pattern are put into a separate group. This first step produces

an initial set of groups.

82

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

For each group, the choices can be formed by collecting all variable combina-

tions appearing in the data based on the variables contained in the group.

The next step intends to merge groups. In this step we apply a simple graph

algorithm. Each group is a vertex. There is an edge between two groups if

their sets of choices are disjoint where two choices are considered disjoint if

the combination of the choices does not appear in any test item. Then, groups

belonging to the same strongly connected component are merged. For example,

in the example in Figure 5.6, DE and F will be merged into the same group in

this step.

Note that in each group, a ”null choice” may be added to indicate the option

that none of the choices in the group is selected. The addition is based on the

data where if there exists a test item that does not involve any choice in the

group, then a ”null choice” is added.

5.5.3 Further Group Merging

The example in Figure 5.6 shows that even after the first merging there is still

possibility that some groups should be merged with others. In the example,

the group with choice C should be merged with the group with choice AB.

Otherwise, invalid combinations will be produced.

We apply a postprocessing step to further refine the group boundaries. Given

two groups Gi and Gj, the idea is to calculate a gain by the action of merging.

Then, we use these gains to rank all group pairs and the pair with the highest

gain will be merged. The process iterates until the highest gain is below a

user-defined threshold.

83

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

The gain of merging is calculated based on a bias estimate. Given a group

with choices c1, c2, . . . , ck, let the frequency of appearance of ci in the data be

fi. The bias is calculated as bias =
∑

(fi − ave)2 where ave =
∑

fi
k

. Let the

merging result of Gi and Gj be denoted as group G. The gain of merging is

gain = min(biasGi
, biasGj

)− biasG.

Conceptually, the bias measures the uniformity of the frequencies of choices

across a group appearing in the data. The gain heuristic intends to merge

groups that would result in a distribution of frequencies closer to the uniform

distribution. This is based on the assumption that if a set of choices is meant

to be in a group, their usage in the data should appear random and hence,

their appearance frequencies should appear close to the uniform distribution.

5.6 Experiment Results

The experiment was conducted with an in-house simulation-based verification

environment of a latest commercial SoC platform. Figure 5.7 illustrates a

simplified view of the SoC platform. The platform features 3 core complexes,

each of which contains 4 dual-thread Power Architecture-based microprocessor

cores. Each processor core has its own L1 instruction cache and data cache

while each core complex shares a unified L2 cache.

The system fabric is an on-chip coherent interconnect network that conforms

to a proprietary bus protocol compatible with Power Architecture. The traffic

routing, transaction ordering and coherency maintenance are managed by the

coherency manager. The core complexes send requests to the system through

Processor Requester Ports (PRP). I/O devices are attached to I/O host bridges

84

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

which communicate with the coherency manager through I/O Requester Ports

(IRP) and I/O Target Ports (ITP). There is an on-chip L3 platform cache

integrated with on-chip memory controllers. The coherency manager routes

the memory requests to the platform cache through Memory Target Ports

(MTP).

Coherency Manager
L3
platform
cache

 Memory
Controller

PRP PRP PRP

Host Bridge
 0

I/O dev 0

Host Bridge
5

Host Bridge
3

Host Bridge
 2

Host Bridge
1

I/O dev 1

Host Bridge
4

I/O dev 2 I/O dev 3 I/O dev 4 I/O dev 5

ITP

IRP

ITP

IRP

ITP IRP IRP IRP

MTP

Shared unified L2 cache

Core 0 Core 1

Core 2 Core 3

Shared unified L2 cache

Core 4 Core 5

Core 6 Core 7

Shared unified L2 cache

Core 8 Core 9

Core 10 Core 11

Figure 5.7: A simplified illustration of the SoC platform

The verification environment conforms to a state-of-the-art transaction-based

verification flow. A random transactor embedded in the constrained random

testbench is used to generate transactions based on user-supplied parameters.

RTL models of the system logic (the parts encapsulated in the dashed rectangle

in Figure 5.7) and Bus Functional Models (BFM) of the cores, I/O devices and

external memories are used in simulation. The bus traffic events are monitored

and checked for correctness.

The test plan to be analysed contains 572 test items developed manually with

157 state variables. In the experiment, we selected six coverage groups for the

analysis. In total, they contain 4204 coverage points. The analysis was applied

at a late stage of the verification cycle. Because of this, the test plan had

been improved over some time. Consequently, most of the points had been

85

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

covered by the test plan and only 75 points remained uncovered. The test plan

augmentation was applied to address these 75 remaining points.

Table 5.1 shows the result of applying the test plan augmentation algorithm.

The iterative clustering partitions the 572 test items into five clusters, labelled

as A to E in the table. The 2nd row shows the number of test items in each

cluster.

The 3rd row shows the number of groups found for each cluster. The number of

choices in a group ranges from a few to more than 70. The ”# of permutations”

row shows the number of resulting test items by permuting all choices across

all groups. As noted before, these test items include the original test items

in the data. The last row shows the number of newly generated test items.

Simulation results found no invalid test item among them.

Cluster A B C D E

of test items 394 68 28 12 70

of groups 7 5 3 3 2

of permutations 540 90 45 15 70

of new test items 146 22 17 3 0

Table 5.1: Result of test plan augmentation

To see the impact of each test item, each of the new test items was given to the

randomizer to produce a single test. A test can have a few hundreds to a few

thousands transactions. While the number of transactions intended for a core

is fixed, depending on system configuration and the number of cores involved,

the number of total transactions can differ.

Coverage group C1 C2 C3 C4 C5 C6 total

Augment 31 5 11 3 6 0 56

Manual 0 1 0 15 0 3 19

Table 5.2: Coverage gain of test plan augmentation

Table 5.2 shows the coverage impact by the test plan augmentation approach

(”Augment”). Because the augmentation does not cover all 75 coverage points,

86

Chapter 5. Data Driven Test Plan Augmentation in Platform Verification

we performed manual analysis to ensure that the rest of the points were covered.

These results are shown in the row ”Manual.” As the table shows, 56 out of

75 points (74.66%) are covered by the augmentation.

5.7 Summary

This chapter studies the fundamental difference between processor core ver-

ification and platform verification from the perspective of developing a data

learning methodology. We show that the rule learning approach proposed

before for processor verification is not suitable for platform verification and

illustrate the reason why it does not work. A different data learning problem

is formulated for platform verification. It is unsupervised, and analyses a col-

lection of test items to augment them. We propose an algorithm to tackle the

new learning problem and show that it can address over 70% of the missing

coverage points based on an experiment run on a latest commercial platform

design.

87

Chapter 6

Conclusions and Future

Directions

6.1 Conclusions

This dissertation evaluates the feasibility and effectiveness of developing prac-

tical data learning methodologies for functional verification, more specially,

constrained random verification. Our proposed methodologies were developed

based on the verification environment of commercial microprocessors and SoC

platforms and can be used as complementary approaches to the existing veri-

fication flow. We focus on the problem of verification test generation and the

goal is to discover knowledge for improving the effectiveness of the tests in

terms of reaching satisfactory coverage level. We do not intend to provide a

one-click solution to the problem but rather learning components that can be

88

Chapter 6. Conclusions and Future Directions

used iteratively to provide verification engineers with interpretable and action-

able knowledge. We propose data learning methodologies for three application

scenarios where such knowledge is desired for making informed decisions.

The first application is to decide which tests to simulate. As illustrated in

Chapter 3, there are many redundant tests in simulation and thus it is not

necessary to simulate all of them. The novel test detection framework described

in Chapter 3 helps identify the novel tests that are most likely to contribute

to coverage increase. Experimental results show that it can achieve up to 95%

saving of simulation cost.

The second application is to decide how to refine a test template to increase

the chances of hitting certain coverage events. The rule learning methodology

proposed in Chapter 4 extracts special properties from the novel tests that can

be used to guide the test template refinement. Our experiments conducted

parallel to the on-going verification efforts show that the proposed methodol-

ogy can help hit coverage events that otherwise had low or zero coverage in

extensive simulation.

The third application is to decide what test items can be added to augment a

test plan. The test plan augmentation method proposed in Chapter 5 analyses

a collection of existing test items and discovers the possible augmentation to

make the test plan more complete. The proposed methodology is shown to be

able to address over 70% of the missing coverage points based on an experiment

run on a latest commercial platform design.

89

Chapter 6. Conclusions and Future Directions

6.2 Future Research Directions

The works in this dissertations show the promise of building practical learning

framework for functional verification. This section discusses the future research

directions that can be extended from the works reported in this dissertation.

• Verification knowledge management: In the knowledge extraction

framework, the extracted rules can be stored in a database and ex-

panded along the verification process. This serves a verification knowl-

edge database. We already show that the knowledge can be reused to

refine the test templates in Chapter 4. Moreover, the knowledge can be

used to help design kernels in the novelty detection framework proposed

in Chapter 3, as another approach to overcome the limitation of single-

instruction database. The verification knowledge can evolve as the design

evolves. A lot of research can be done on how to manage the verification

knowledge to make the best use of it.

• Intelligent feature selection: A good feature set is crucial for the rule

learning framework to succeed. In our current framework, the user se-

lects the important microarchitecture states to start with and the simple

learning scheme enables the quick search over a set of features. Intelli-

gent feature selection schemes can be explored to alleviate the manual

efforts. For example, if the current feature set is not effective, selection

of features that have less mutual information with the current ones is

likely to provide extra information needed.

• Confidence metrics for learning: The data learning approaches are

not guaranteed to succeed in all cases. When evaluating the knowledge

90

Bibliography

output from learning, the user desires to know to what extent he/she

can trust the result. The development of such confidence metrics is very

important for the adoption of a data learning framework in practice.

91

Bibliography

[1] The International Technology Roadmap for Semiconductors (ITRS), Sys-

tem Drivers, 2009, http://www.itrs.net/.

[2] Noah Bamford, Rekha K. Bangalore, Eric Chapman, Hector Chavez, Ra-

jeev Dasari, Yinfang Lin, and Edgar Jimenez. Challenges in system on

chip verification. In Proceedings of the Seventh International Workshop

on Microprocessor Test and Verification, pages 52–60, 2006.

[3] Daniel Geist, Giora Biran, Tamara Arons, Michael Slavkin, Yvgeny Nus-

tov, Monica Farkas, Karen Holtz, Andy Long, Dave King, and Steve Bar-

ret. A methodology for the verification of a system on chip. In Proceed-

ings of the 36th annual ACM/IEEE Design Automation Conference, pages

574–579, 1999.

[4] T. Schober, B. Hoppe, S. Landa, and R. Morad. Ibm system z functional

and performance verification using x-gen. In High Level Design Validation

and Test Workshop, 2008. HLDVT ’08. IEEE International, pages 93–

100, 2008.

[5] David J. Hand, Padhraic Smyth, and Heikki Mannila. Principles of Data

Mining. MIT Press, Cambridge, MA, USA, 2001.

92

Bibliography

[6] Y. Katz and et al. Learning microarchitectural behaviors to improve stim-

uli generation quality. In ACM/IEEE Design Automation Conference,

pages 848 –853, 2011.

[7] Andrew Piziali. Functional Verification Coverage Measurement and Anal-

ysis. Springer Publishing Company, Incorporated, 1st edition, 2007.

[8] Ieee standard for systemverilog–unified hardware design, specification, and

verification language. IEEE Std. 1800, 2012.

[9] Jun Yuan, C. Pixley, A. Aziz, and K. Albin. A framework for constrained

functional verification. In Computer Aided Design, 2003. ICCAD-2003.

International Conference on, pages 142 – 145, nov. 2003.

[10] A. Aharon, B. Dorfman, E. Gofman, M. Leibowitz, V. Schwartzburd, and

A. Bar-David. Verification of the ibm risc system/6000 by a dynamic

biased pseudo-random test program generator. IBM Syst. J., 30(4):527–

538, October 1991.

[11] A. Aharon, Dave Goodman, Moshe Levinger, Yossi Lichtenstein, Yossi

Malka, Charlotte Metzger, Moshe Molcho, Gil Shurek, and Yossi

Malka Charlotte Metzger. Test program generation for functional veri-

fication of powepc processors in ibm. In Design Automation, 1995. DAC

’95. 32nd Conference on, pages 279–285, 1995.

[12] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, and

A. Ziv. Genesys-pro: innovations in test program generation for functional

processor verification. Design Test of Computers, IEEE, 21(2):84–93, Mar

2004.

93

Bibliography

[13] E. Bin, R. Emek, G. Shurek, and A. Ziv. Using a constraint satisfaction

formulation and solution techniques for random test program generation.

IBM Systems Journal, 41(3):386–402, 2002.

[14] Laurent Fournier, Avi Ziv, Ekaterina Kutsy, and Ofer Strichman. A prob-

abilistic analysis of coverage methods. ACM Trans. Des. Autom. Electron.

Syst., 16(4):38:1–38:20, October 2011.

[15] M. Benjamin, D. Geist, A. Hartman, Y. Wolfsthal, G. Mas, and R. Smeets.

A study in coverage-driven test generation. In Design Automation Con-

ference, 1999. Proceedings. 36th, pages 970–975, 1999.

[16] S. Ur and Y. Yadin. Micro architecture coverage directed generation of

test programs. In Design Automation Conference, 1999. Proceedings. 36th,

pages 175–180, 1999.

[17] P. Mishra and N. Dutt. Functional coverage driven test generation for

validation of pipelined processors. In Design, Automation and Test in

Europe, 2005. Proceedings, pages 678–683 Vol. 2, March 2005.

[18] D. Moundanos, J.A. Abraham, and Y.V. Hoskote. Abstraction techniques

for validation coverage analysis and test generation. Computers, IEEE

Transactions on, 47(1):2–14, Jan 1998.

[19] Nina Saxena, Jacob Abraham, and Avijit Saha. Causality based gener-

ation of directed test cases. In Proceedings of the 2000 Asia and South

Pacific Design Automation Conference, ASP-DAC ’00, pages 503–508,

New York, NY, USA, 2000. ACM.

94

Bibliography

[20] Daniel Geist, Monica Farkas, Avner Landver, Yossi Lichtenstein, Shmuel

Ur, and Yaron Wolfsthal. Coverage-directed test generation using sym-

bolic techniques. In Mandayam K. Srivas and Albert John Camilleri, edi-

tors, FMCAD, volume 1166 of Lecture Notes in Computer Science, pages

143–158. Springer, 1996.

[21] Heon-Mo Koo and Prabhat Mishra. Test generation using sat-based

bounded model checking for validation of pipelined processors. In Gang

Qu, Yehea I. Ismail, Narayanan Vijaykrishnan, and Hai Zhou, editors,

ACM Great Lakes Symposium on VLSI, pages 362–365. ACM, 2006.

[22] S. Fine and et al. Coverage directed test generation for functional verifi-

cation using bayesian networks. In Design Automation Conference, pages

286 – 291, june 2003.

[23] I. Wagner and et al. Microprocessor verification via feedback-adjusted

markov models. Computer-Aided Design of Integrated Circuits and Sys-

tems, IEEE Transactions on, 26(6):1126 –1138, june 2007.

[24] Giovanni Squillero. Microgp-an evolutionary assembly program generator.

Genetic Programming and Evolvable Machines, 6(3):247–263, September

2005.

[25] Kerstin Eder and et al. Inductive logic programming. chapter Towards

Automating Simulation-Based Design Verification Using ILP, pages 154–

168. Springer-Verlag, Berlin, Heidelberg, 2007.

[26] O. Guzey and et al. Functional test selection based on unsupervised sup-

port vector analysis. In Design Automation Conference, 2008. DAC 2008.

45th ACM/IEEE, pages 262 –267, june 2008.

95

Bibliography

[27] Po-Hsien Chang and et al. Online selection of effective functional test pro-

grams based on novelty detection. In Computer-Aided Design (ICCAD),

2010 IEEE/ACM International Conference on, pages 762 –769, nov. 2010.

[28] Hu-Hsi Yeh and Chung-Yang Huang. Automatic constraint generation for

guided random simulation. In Asia and South Pacific Design Automation

Conference, pages 613–618, 2010.

[29] O. Guzey and et al. Increasing the efficiency of simulation-based functional

verification through unsupervised support vector analysis. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

29(1):138 –148, jan. 2010.

[30] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Sup-

port Vector Machines, Regularization, Optimization, and Beyond. MIT

Press, Cambridge, MA, USA, 2001.

[31] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern

Analysis. Cambridge University Press, New York, NY, USA, 2004.

[32] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1993.

[33] Nada Lavrač, Branko Kavšek, Peter Flach, and Ljupčo Todorovski. Sub-

group discovery with cn2-sd. J. Mach. Learn. Res., 5:153–188, December

2004.

[34] P. Bastani and et al. Diagnosis of design-silicon timing mismatch with

feature encoding and importance ranking - the methodology explained.

In IEEE International Test Conference, pages 1 –10, oct. 2008.

[35] Power Architecture. http://www.power.org.

96

http://www.power.org

Bibliography

[36] Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of

continuous-valued attributes for classification learning. In IJCAI, pages

1022–1029, 1993.

[37] Peter Clark and Tim Niblett. The cn2 induction algorithm. Mach. Learn.,

3(4):261–283, March 1989.

[38] Ljupco Todorovski, Peter A. Flach, and Nada Lavrac. Predictive per-

formance of weghted relative accuracy. In Proceedings of the 4th Euro-

pean Conference on Principles of Data Mining and Knowledge Discovery,

PKDD ’00, pages 255–264, London, UK, UK, 2000. Springer-Verlag.

[39] Chengqi Zhang and Shichao Zhang. Association rule mining: models and

algorithms. Springer, 2002.

[40] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A k-means clustering

algorithm. Applied Statistics, 28(1):100–108, 1979.

[41] D. Dueck and B.J. Frey. Non-metric affinity propagation for unsupervised

image categorization. In Computer Vision, 2007. ICCV 2007. IEEE 11th

International Conference on, pages 1–8, Oct 2007.

[42] D. Comaniciu and et al. Mean shift: a robust approach toward feature

space analysis. Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, 24(5):603–619, 2002.

[43] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering:

Analysis and an algorithm. In Advances In Neural Information Processing

Systems, pages 849–856. MIT Press, 2001.

[44] StephenC. Johnson. Hierarchical clustering schemes. Psychometrika, 32

(3):241–254, 1967.

97

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 The Proposed Methodologies
	1.4 Dissertation Organization

	2 Background and Related Works
	2.1 Simulation-based Verification
	2.2 Verification Test Generation

	3 Kernel-Based Novelty Detection for Simulation Cost Reduction
	3.1 Overview
	3.2 Introduction
	3.3 The Experimental Framework and Novel Tests
	3.3.1 Existence of Novel Tests in Practice

	3.4 The Graph-based Kernel Approach
	3.4.1 Kernel Based Learning with SVM One-class
	3.4.2 The Coverage-independent Graph-based Kernel
	3.4.3 Model Building and Novelty detection
	3.4.4 Experiment Results

	3.5 Kernel Based on Estimated Coverage
	3.5.1 Disadvantage of the Graph-kernel Approach
	3.5.2 Coverage-based Kernel
	3.5.3 Estimating Coverage Before Simulation
	3.5.4 The Accuracy of Coverage Estimation
	3.5.5 Dynamically Adjusting the Coverage Base Set S
	3.5.6 Results Compared to the Graph-based Kernel Method
	3.5.7 Result on Simulation of 10K Tests
	3.5.8 Two Additional Results

	3.6 Limitation of the Single-Instruction Database
	3.7 Summary

	4 Knowledge Extraction Framework to Improve Functional Verification Coverage
	4.1 Overview
	4.2 Introduction
	4.3 Motivation and Related Works
	4.3.1 The Benefits of Understanding Novel Tests
	4.3.2 What Knowledge to Extract
	4.3.3 Related Works

	4.4 Feature Generation
	4.4.1 Snippet-based Vector Representation
	4.4.2 Defining a Set of Features at ISA level
	4.4.3 Feature Discretization

	4.5 Knowledge Extraction by Rule Learning
	4.6 Knowledge Reuse
	4.6.1 Rule Validation and Refinement
	4.6.2 Rule Reuse

	4.7 Learning with Microarchitecture Features
	4.7.1 Limitations of Learning at ISA Level
	4.7.2 Hypothesis Pruning and Ranking
	4.7.3 Adaptation of the Learning Methodology

	4.8 Experiment Results
	4.8.1 Experiment Environment
	4.8.2 The First Illustrative Result Based on Structural Coverage
	4.8.3 The Second Result
	4.8.4 The Third Result
	4.8.5 The Fourth and Fifth Results

	4.9 Summary

	5 Data Driven Test Plan Augmentation in Platform Verification
	5.1 Overview
	5.2 Introduction
	5.3 Platform Verification
	5.4 Test Plan Augmentation Problem
	5.5 Platform Learning Algorithm
	5.5.1 Test Item Clustering
	5.5.2 Group Partitioning & Choice Generation
	5.5.3 Further Group Merging

	5.6 Experiment Results
	5.7 Summary

	6 Conclusions and Future Directions
	6.1 Conclusions
	6.2 Future Research Directions

