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ABSTRACT 

 

Microfabrication of Biomimetic Structures for Neural Interfaces 

 

by 

 

Samuel Jack Beach 

 

Interfacing with the brain is a challenging problem. While many innovative 

methods for providing input and output to neural systems have been developed and 

demonstrated successfully in human patients, these invasive systems use less 

biologically compatible means than are realizable. Materials and mechanisms which 

are closer mimics to biological systems in their behaviors can lead to more stable and 

effective medical prosthetic and research devices.  

Retinal prosthetics, as well as Cochlear implants, are neural implants which 

provide stimulation via electrical impulses. Currents passing across neurons trigger 

neurons to begin firing or generating action potentials down their axons, stimulating 

neurons with dendrites connected to those axons terminals. This scheme transduces 

the desired simulation into neural firing spikes, but the majority of applied current is 

shunted around neurons rather than contributing to stimulation. Excess current 

contributes to the power and thermal budgets of neural simulation devices, which are 

implanted in tissue, limiting their functionality. Additionally, the electrical contacts 
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which provide a source and return for the stimulation currents are subject to 

degradation over time, as currents are repeatedly applied during stimulation events. 

Stimulation of neurons via local delivery of potassium in excess of available 

intercellular potassium can be used in place of direct electrical stimulation and 

promises to be a more biologically compatible method. 

Several forms of neural recording devices have been developed and the widest 

know and highest density is the Utah Array, a 3D array of silicon spires, which can 

record from their tips when inserted into neural tissue. While this 3D array topology 

can access a field of neural activity, the stiffness of these silicon spires is very 

different than that of neural tissue, which can lead to an unwanted inflammatory 

response. Conductive polymer pillars made of softer materials that are a closer match 

to neural tissues, while mirroring the same density and insertion length as the Utah 

Array, may provide a better recording mechanism due to their improved mechanical 

compatibility with neural tissues.   

This thesis investigates microfabrication schemes to produce 

biomimetic structures that can enable neural simulation and recording devices which 

feature greater biological stability and improve utility. 
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 1 

I. Motivations and Introduction to Microfabrication of 

Biomimetic Structures for Neural Interfaces 

A. Developing a Greater Understanding of the Human Brain 

The brain and its incredibly complex functions are of interest to the world. How 

the brain works, how neuronal circuits function, and how the basic neuronal code 

operates are all ongoing questions. A better understanding of the brain can lead to 

knowledge about how decision making, perception, and even consciousness come 

about. Knowledge about how neural circuits work will certainly also play a role in 

advancing treatments for many debilitating diseases and physiological conditions. 

Current knowledge about the human brain and its mechanisms has led to 

innumerable drug treatments for conditions afflicting people around the world as 

well as a growing number of devices to correct or stabilize damaging activities 

occurring in the brain. These include arresting seizures and tremors as well as some 

forms of migraines.  

The study of the mind and brain has been called, “The last frontier in science” by 

Professor Michael Tarr of Carnegie Mellon University. He has pointed out that, 

“Although the field has made enormous progress over the past several decades, 

understanding of the basic principles of thought and brain function are still far more 

unknown than known," going as far as suggesting that understanding the human 

brain “is a significant step in understanding what makes humans human.” 
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It is imaginable that with greater study of the human brain, improved treatments 

or even cures could be found for degenerative neural diseases such as Alzheimer's 

and other dementia causing conditions, as well as degenerative disorders of the 

central nervous system such as Parkinson's. 

The BRAIN Initiative (Brain Research Through Advancing Innovative 

Neurotechnologies) aims to direct the scientific community to investigate the human 

brain and create a map of the neural landscape of the brain with a scope that reaches 

down to the level of individual neurons and neuronal circuits. This initiative aims to 

reproduce the fruitful results of the human genome mapping project by focusing the 

scientific community on this goal and providing funding to develop innovative 

neurotechnologies that will enable the desired leap in understanding of the human 

brain. These neurotechnologies may be investigative, but may also directly result in 

improvements in therapeutic technologies that address the brain.  

When discussing the prospect of a full mapping of brain activity and gaining an 

understanding of the emergent properties of the neural circuits of the brain, A. Paul 

Alivisatos writes, "Understanding how the brain works is arguably one of the greatest 

scientific challenges of our time". It is with this challenge in mind that this 

dissertation focuses on developing improved methods to interface with and learn 

about the human brain and its neuronal circuitry. It is hoped that investigation of 

these novel simulating input interfaces and recording output interfaces may one day 

lead to improved human medical prosthetics and enable greater understanding of the 

brain and its neuronal circuitry. 
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B. Microfabrication of Biomimetic Structures for Neural Interfaces 

Novel neural interfaces can be developed by designing structures while using 

biomimetic principles and applying microfabrication techniques.   

1. Microfabrication Techniques 

Very precise devices and structures can be formed through the use of 

microfabricaition techniques which can enable a desired interface to be formed. 

These techniques come from the huge expansion of human knowledge related to 

semiconductor and specifically silicon processing techniques that drove the computer 

revolution, as well as advancements in MEMS (mico-mechanical machine systems) 

and related chemical microfabricaition processing and functionalization techniques. 

Specifically, these techniques allow for the generation of ultra-thin membranes, 

nanoscopic porous films, and patterns of deep high aspect ratio voids in solid 

crystals. These techniques additionally allow easy patterning of conductive and 

dielectric layers, enabling devices which can be directly connected to electronic 

circuits. 

2. Biomimetic Principles  

The idea of biomimetics is to essentially imitate, mimic, or mirror biology 

through synthetic means to solve problems. In general, this idea has been applied 

when looking to nature for inspiration to problems and then designing systems that 

synthetically reproduce the biological solution found in nature. In the case of 

interfacing with biological systems, the meaning may become more precise and 
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change slightly as the problems being faced generally result from differences and 

conflicts existing between the interfacing systems behaviors, properties, and 

operating principles and those of the cells, tissue, or biological system within which 

the interface is being established. By looking at the way the human brain operates 

and mimicking its operations, interfaces, and the mechanical properties of its tissues, 

neural interfaces can be developed that are more compatible with the human brain 

and specifically the cells and tissues within which interfaces are being created. In this 

case, mimicking the tissues properties or the neurons behaviors can potentially aid in 

the functionality, bio-compatibility, and lifetime of the device. 

Mimicking the electrochemical membrane potentials that are integral to neuron 

firing potentials and the function of neuronal circuits in order to stimulate neuronal 

firing activity is one potential biomimetic innovation in the realm of neural 

stimulation.  Normally, currents are driven from a source to a return electrode with 

the current shunting through intercellular fluid or electrolyte between neurons near 

the stimulation device. This process triggers some neurons along the path to become 

stimulated and fire, but most of the current is simply shunted around the neurons and 

doesn’t have an effect. This means that a significant amount of the power used to 

stimulate the target neurons is wasted needlessly using up thermal budget and power 

budget. Additionally, repeated stimulation using electric currents can degrade the 

electrodes being used, causing electroplating of the nearby tissue and the release of 

electrode materials that can be cytotoxic. The application of cations to the local 
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intercellular fluid increases the local external concentration nearby the neurons and 

causes the neurons to begin firing. 

Mimicking the mechanical properties of brain tissues is another possible avenue 

to enhance neural recording interfaces. In this case, the standard materials used are so 

stiff compared to brain tissue that they can cause excessive and unwanted damage 

both during implantation, as well as over the lifetime of the device. This occurs as 

the material is inserted into the softer brain tissue and creates a track of traumatic 

damage over time due to the small micro motion of the brain in a moving skull 

causing wear against the much softer tissue being moved against the stiffer implant 

material. By designing implants that are as soft as possible to minimize the 

difference between the mechanical properties of the implants and tissues involved, 

while still being stiff enough to successfully be inserted in the brain, implants of 

greater biocompatibility can be created. Additionally, as the inflammatory and 

isolating response of brain tissue to trauma results in the growth of glial support cells 

which seal off the source of the trauma, devices that minimize this trauma should 

additionally benefit from enhanced recording functionality and recording longevity.    

C. Sensory Loss and Simulating Ion Pumps 

The loss of a sensory organ or system and the information that system provides to 

the brain can have a devastating impact on an affected individual, limiting their 

access to the sensory information available in the world around them and degrading 

their quality of life. This comprises a significant problem, with the World Health 
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Organization for example estimating that fully 0.6% of the world’s population is 

blind. 

1. Stimulating Neural Interfaces and Implants 

A number of stimulating neural prosthetic systems have been developed to treat 

several different sensory organ failures. These stimulating interfaces are implanted to 

restore lost function due to neural damage and sensory loss. The Cochlear Implant is 

one such device used to restore the effect and sensation of hearing. In the case of this 

device, direct electrical stimulation of the cochlea via an implanted electrode array is 

used to restore hearing. While the Cochlear Implant is one of the most successful 

stimulating implants used to restore sensory loss, with 324,000 implanted patients 

worldwide as of 2012 according to NIH reporting, stimulating implants have also 

been made to restore other sensory systems and to arrest adverse neural activity.  

Some examples of this alternate but similarly important stimulating goal include 

stimulating systems developed to arrest undesired neural activity linked to 

Parkinson’s tremors, epileptic seizures, and some forms of intense migraines. These 

implanted systems have shown great promise in treating and limiting those 

debilitating conditions.  

One such sensory system where work is ongoing to restore sensory function is the 

vision system. Most often, the cause of blindness is related to the optical and sensing 

elements of the eye failing. In these instances, the neural cells in the retina and the 

nerves connecting the retina to the visual cortex remain intact. Two diseases which 

result in the loss of photoreceptors and blindness or severe vision loss in over a 
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million people each year, but which leave untouched nerves in the retina that can be 

stimulated are retinitis pigmetosa and macular degeneration. Each of these has a very 

different cause, but both can be treated with direct stimulation of the neurons in the 

retinal tissue.  

2. Electrical Neural Stimulation 

All of the above stimulating neural interfaces use direct electrical stimulation to 

trigger a biological electrochemical response in nerves or neurons to effectively 

transduce the desired signal into the action potentials used by the neuronal circuits of 

the brain.  This stimulation is manifested as currents that are driven access the target 

tissue from one electrode to another. Significantly, most of this current travels 

around nerve cells or neurons by following the path of least resistance along the 

intercellular fluid between them. This process is inefficient as most current 

circumvents the cells of interest. Unnecessary power is wasted stimulating the target 

neurons in this manner, which increases the thermal and power budget of the 

stimulating interface. The repeated application of these electrical currents degrades 

the electrodes over time and can cause electroplating of the nearby tissue and the 

release of electrode materials that can be cytotoxic. For these reasons, a mechanism 

that does not breakdown electrodes over time, shunt excess current around cells, 

generate excessive heat, or require excessive power would be more ideal and more 

biologically compatible. 
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3. Ionic Neural Stimulation 

Ionic neural stimulation offers an alternative method to electrical neural 

stimulation. By momentarily adding potassium cations to the intercellular fluid near 

a neuron, the local concentration of potassium ions immediately outside a neuron can 

be increased to the point that the neuron begins firing. Preliminary experiments 

demonstrating this possible avenue for neural stimulation were carried out by 

Professor Luke Theogarajan[1], demonstrating both stimulation of neural firing in 

rabbit retinal cells when potassium was added to their intercellular solution, (see 

Figure 1) as well as the dose response curve (see Figure 2) which indicates that 

doubling the local concentration of potassium is sufficient to generate firing.  

 

 

 

 

 

 

Figure 1. Time delayed response to the addition of potassium to local intercellular 

fluid around rabbit retina. 
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Due to the low background concentration of potassium present in intercellular 

fluid, doubling the concentration locally at the surface of a simulating neural 

interface is an intriguing and achievable goal.  

Unlike electrical stimulation which can damage tissues over time or the use of 

neurotransmitters which would have be stored for the lifetime of the device and 

slowly released, posing a health risk should the interface malfunction or leak, ionic 

stimulation has few potential downsides. Potassium can be slowly sequestered and 

concentrated from the potassium already present in extracellular fluid and then 

released in pulses significant enough to double the local concentration at the point of 

desired ionic stimulation. 

Figure 2. Dose-response curve for neural firing spikes verses concentrations of 

potassium. 
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4. Ion Pump Based Neural Stimulation 

Given the motivations behind increasing local potassium concentrations to 

trigger neuronal firing, a synthetic electrically gated ion pump would be an ideal 

device to form the basis of a stimulation neural interface. A scheme can be 

envisioned (see Figure 3) which ties CMOS control electronics to an array of pixels 

containing electrically gated ion pumps, continuously active potassium sequestration 

pumps, and a storage matrix for the sequestered potassium. 

 

 

 

This scheme also uses an electrically conductive conjugate polymer 

(PEDOT:PSS) to support the electrically gated transport of ions, and is motivated by 

earlier work demonstrating simple two dimensional ion pumps.[2] However, due to 

the oxidation-reduction process that takes place during each ion transport event, it is 

necessary to design the system to be biphasic so that, on average, an equivalent 

number of carriers are transported in the reverse direction between stimulation 

Figure 3. Complete envisioned electrically gated potassium ion pump 

stimulation neural interface scheme. 
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events. Additionally, the requirement for biphasic operation to preserve the 

functional state of the conjugate polymer also means that the pump must be selective 

to potassium while it is in the restoration phase between stimulation events. This is 

because ions will be transported from the intercellular fluid back into the reservoir, 

leaving substantially more sodium ions available for transport which could 

contaminate the potassium reservoir. As sodium maintains a far greater concentration 

than potassium in intercellular fluid, trying to stimulate neurons by altering sodium 

concentration locally would be quite difficult. Thus, the only way to ensure 

continuing operation of the envisioned device is to ensure that the pump has some 

selectivity to potassium over sodium during the restoration phase of the pump’s 

operation. 

5. Planar Ion Pump Based Neural Stimulation 

Initially, a number of planar pump designs based on conductive polymer 

electrodes were investigated and optimized. These investigations showed that 

diffusion within the conductive polymer was a limiting factor in devices that required 

ions to diffuse some distance within the polymer. Additionally, these investigations 

highlighted the instability of planar devices where layers of different materials are 

placed along the direction of transport and the applied field. The interfaces between 

these layers tended to hydrate and delaminate, causing device failure. From these 

investigations it became clear that a thin lateral device (see Figure 4) which 

transports ions perpendicular to the layers making up the device’s structure would be 

more ideal. In this case, the interfaces of layers are less likely to be hydrated and 
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delaminated. Additionally, this lateral device can be made to have a much larger 

cross section for transport and the thickness of the transport region can be minimized 

to reduce the required voltage needed to produce a desired electric field.   

 

 

6. Nanoporous Track-Etched Polycarbonate Arrays 

Initial investigations of thin film lateral devices focused on commercial track-

etch polycarbonate membranes and patterned holey thin-film silicon nitride 

membranes. Nanoporous membranes were determined to be optimal, as these could 

minimize transport thickness and maximize transport area while providing a 

structurally stable scaffold capable of hosting softer, more flexible chemistries and 

Figure 4. Model of a simple lateral ion pump devices. 
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matrix materials capable of diffusive transport. A scaffold was necessary as 

chemistries that were found to be flexible enough to allow diffusive transport tended 

to form films that were unstable, especially when exposed to liquids. By placing 

selective chemistries in and on top of a nanoporous scaffold, the chemistry can still 

transport ions but the combined film gains the structural support of the scaffold 

material.  

Using polycarbonate membranes, lateral thin-film conductive polymer ion pumps 

were fabricated which did not suffer from hydration and delamination issues and 

used the porous voids in the polycarbonate layer as the device’s transport region. 

After examination of the stability of these pumps however, the limited chemical 

attachment routes available using polycarbonate track-etch membranes and the 

limited chemical, thermal, and mechanical stability of the material were shown to 

render polycarbonate unideal as a material from which to continue development. A 

more chemically, thermally, and mechanically stable nanoporous scaffold material 

was determined to be required for continued development. Additionally, an ideal 

material needed a chemistry for which many different chemical attachment routes for 

chemical functionalization of selective chemistries exist. 

7. Suspended Anodized Aluminum Nanoporous Arrays 

Given the need for a thin nanoporous membrane that is chemically, thermally, 

and mechanically stable, one major focus of this work has been the development of a 

cost effective fabrication scheme that can produce this sort of membrane integrated 

into a stable silicon handle that maximizes the mechanical integrity of the devices. 
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Simple nanopores in a stable membrane would meet many of these requirements, 

however the methods used to produce membranes are serial and not economical. 

While these methods are sufficient to make one or several nanopores in an individual 

membrane, these methods become unfeasible when producing the millions of 

nanopores needed to provide a large transport area in a scaffold. The formation of 

anodized alumina in combination with microfabrication techniques has led to the 

development of a fabrication scheme that can produce suspended anodized aluminum 

nanoporous arrays meeting all the required criteria.  

While applicable to the selective ion transport scheme discussed previously, 

these devices are also a useful investigative tool for all sorts of transport experiments 

where chemical, thermal, and structural stability of the scaffold is desired along with 

a high transport area containing nanometer scale pores in a thin transport membrane. 

Chapter II focuses on the different fabrication schemes developed to produce the 

necessary suspended anodized aluminum nanoporous arrays, while Chapter IV 

focuses on demonstrative testing of these arrays while investigating ion transport 

selectivity when under an applied field. Finally, Chapter VI touches on a few 

possible future avenues for these devices. 

D. Peripheral Nervous System Failure and Recording Neural 

Electrodes 

Recent staggering advances in microfabrication along with our developing 

understanding of neural diseases have begun to enable the design of sophisticated 

devices that benefit patients suffering from neurodegenerative diseases. Most of 
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these devices, as already mentioned above, have mainly concentrated on stimulating 

the remaining healthy layers of the appropriate neural network to partially restore 

normal function. This method is most applicable with the central nervous system, 

however when dealing with the peripheral nervous system this approach does not 

work as well and an alternative approach must be taken. For diseases associated with 

the peripheral nervous system, it is not sufficient to stimulate neural tissue as faults 

exist between the brain and the peripheral nervous system. Thus, it is essential to 

record relevant neural activity from the brain in order to have any chance of restoring 

lost function. In this case, recording from the brain may be able to complete the 

feedback-loop that has been degraded or is absent due to disease or trauma. By 

recording the appropriate relevant neural activity associated with control over a part 

of the peripheral nervous system that is no longer responsive, control might be 

restored via implanted simulating interfaces or an alternative system might be 

implemented to return to patients some of the control over interactions with their 

environment that they have lost.  

1. Recording Neural Interfaces 

By developing recording neural interfaces it may be possible to stimulate intact 

areas of patients’ nervous systems beyond the point where damage or trauma has 

occurred. While this may be a more distant goal, recorded neural activity can also be 

used to allow patients suffering from peripheral nervous system failure to interact 

with their environments and control robotic or computerized systems designed to 

improve their lives. In these cases, recorded relevant neural activity is translated into 
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control signals for a system and the patient is trained along with the translation 

model to provide feedback to drive the system being run from the recorded signals in 

near real time. Such systems could include computer cursors, other human computer 

interaction systems specifically designed to work well with direct neural recording 

interfaces, motorized system such as wheelchairs, and robotic systems such as multi-

axis arms. Of course, the ultimate ideal restoration scheme would be the ability to 

regain direct control over the parts of the patients’ peripheral nervous system that 

have stopped responding.  

One other avenue that neural recording interfaces may enable is the possibility to 

map the neural code and gain a greater understanding of how the neural circuitry of 

the brain operates. In particular, by combining recording neural interfaces along with 

stimulating neural interfaces, complete input-output systems may be implanted in 

neuronal tissues allowing for in-depth study of these networks of neural circuits and 

a more complete understanding of the brain.  

The ability to provide a closed feedback system to a prosthesis that uses neural 

activity directly recorded from the relevant part of the brain associated with the 

activity is essential for its success. The electrical domain is ideal for recording, 

unlike the stimulation domain where additional challenges such as the need to 

prevent faradic reactions from occurring at the electrodes must be taken into 

consideration.  Neural recording interfaces pose their own challenges however, and 

due to the need to access specific regions of neural activity these recording systems 

must be implanted on a much larger scale to record the greatest amount of potentially 
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useful neural activity. As mentioned before, the Cochlear Implant is among the best 

stimulating neural interfaces developed today and it provides only 21 electrodes. 

Neural recording interfaces feature hundreds of electrodes and these electrodes have 

to be implanted deep into neural tissue to record the most relevant neural activity. 

Ideally, being able to record from as large a population as possible in the area of 

interest provides the best odds of establishing good recording sites where neural 

plasticity may enhance the resulting output signals given sufficient feedback training. 

Additionally, the largest number of recording sites possible would be optimal for 

effectively mapping neural signals and the operation of neural circuity. 

2. Challenges of Recording Neural Interfaces 

In order to reach the areas of neural activity of most interest it is necessary to be 

able to record from a depth of at least 1mm within the tissue of the brain. As removal 

of this depth of tissue would critically damage the area of interest and reduce normal 

functioning of the remaining neural tissue, it is ideal to penetrate into the brain tissue 

with neural recording electrodes that have a small cross-section while the main body 

of the recording neural interface sits against the outer surface of the brain. As trauma 

can result from the insertion and continuing existence of such an implanted recording 

neural interface, these implants need to be designed to minimize trauma and the 

corresponding isolating inflammatory response which can limit the quality of neural 

activity that is recorded. The recording neural interfaces also need to be generally 

biocompatible so that the neural tissue they are implanted in is not harmed by some 

element that is cytotoxic or otherwise harms the population of neurons or their 
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supporting glial cells. Finally, to operate within the electrical domain and 

capacitively couple to electrical signals propagating from neuronal action potentials 

through intercellular fluid, it is necessary that these recording neural interfaces be 

electrically conductive and able to route capacitive signals into recording circuitry. In 

turn, this circuitry must be able to efficiently transmit the recorded neural activity out 

of the brain and to a data processing system that can convert the recorded activity 

into control signals for a given stimulation or external interface such as a cursor or 

robotic arm. Ideally, such a scheme should use wireless power and data 

communication methods such that the patient is free to move and is not hindered by 

tethered cabling. Additionally, several health benefits exist should no ports into the 

skull be required for regular operation as an enclosed system is the best route to 

minimize possible paths of contagion and infection. 

3. Recording Neural Interface Scheme 

From the above criteria determined necessary for an optimal recording neural 

interface, a scheme (see Figure 5 and Figure 6) has been devised. This high density 

recording neural interface array scheme includes aspects that range from wireless 

data and power transmission to customized amplification and signal acquisition 

CMOS electronics. The envisioned device consists of a thin, flexible, and 

biocompatible integrated package that is implanted on the surface of the brain and 

contains a high density array of recording neural interface electrodes. These 

electrodes penetrate into the brain to record from the appropriate regions of neural 

circuity. The resulting signals are amplified by custom CMOS electronics integrated 
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within the implant, which also digitizes and wirelessly transmits the recordings to a 

relay unit located on the outside of the skull in order to remove the need for tethered 

cables.  

The electrodes are fabricated form flexible materials to minimize the damage 

caused due to shear stress during insertion and to also minimize damage post 

insertion due to micro motion based shear stress. Additionally, the use of flexible 

materials helps to eliminate the fibrous and glial encapsulation that are responses 

related to trauma from insertion and micro motion damage. By developing flexible 

recording neural interface electrodes, it is hoped that better chronic implants with 

improved recording quality and longer lifetimes will result.  

The focus of this work is on the actual recording neural interface electrodes 

rather than the complete envisioned system. Thus, the custom CMOS electronics as 

well as wireless data, power circuitry, and external data telemetry module are not the 

focus of this work. Instead, the development of a fabrication scheme for independent, 

biocompatible, conductive, and flexible recording neural electrodes that can be 

integrated with custom CMOS electronics and other components is the focus of this 

work.    



 

 

 

 20 

 

 

Figure 5. Complete envisioned high density recording neural interface 

system. 
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4. Recording Neural Interface Electrodes 

Focusing on the development and fabrication of a recording neural interface as 

entailed above is a daunting task. Critical to this development and fabrication scheme 

is the necessity that the resulting structures be at least 1mm tall and be able to 

penetrate brain tissue while also being conductive and as flexible as possible. This 

flexibility results in the material requiring a low Young’s Modulus. Additionally, in 

order to minimize trauma and damage to the tissue being penetrated by the 

electrodes, it is necessary that these pillars be as narrow, and thus as high aspect 

Figure 6. Envisioned high density recording neural interface integrated with 

thinned CMOS electronics in a thinned silicon handle with interconnects. 
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ratio, as possible while still having sufficient structural support to be successfully 

inserted into the brain tissue of interest.  

In order to determine the best type of recording neural interface electrode array 

structure to pursue, it is worth looking at the currently most often used implant types. 

The two most common chronic implant types are the Utah Array and the Michigan 

Array, which are named after the universities where they were initially developed. 

The Utah Array consists of a number of equal height spires of silicon on a silicon 

substrate. These spires can be micromachined and fabricated using a number of 

different techniques, but in all cases the result is a field of spires with the mechanical 

properties of silicon that are formed from a substrate they are attached to which also 

has the same mechanical properties. As the modulus of silicon is ~200 GPa and the 

modulus of brain tissue is between one and several hundred KPa there is a huge 

mismatch between the two which results in unnecessary trauma during insertion and 

after insertion due to the micro motion of the brain. A flexible electrode array which 

minimizes this modulus mismatch is a better solution.  

The alternative design is the Michigan Array, which is generally implemented as 

a single flat spike of silicon machined from a thin wafer. This single spike features 

multiple recording sites along at least one of its two planar surfaces. Additionally, the 

Michigan Array can be built on a flexible tether so that once implanted the spike 

itself is not mechanically fixed to a large structure on the surface of the brain. While 

the ability to partially mechanically decouple the Michigan Array from components 

left on the surface of the brain is advantageous in helping reduce some of the 
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associated chronic micro motion damage, the array can only record from a narrow 

linear field into which it has been implanted. Because the Michigan array is also 

fabricated from a silicon structure, it is still subject to the same insertion trauma and 

a large portion of the micro motion trauma associated with the mismatch between the 

implanted array and the brain tissue it is penetrating.  

From a recording perspective, the field recording format present in the Utah 

Array design is better for recording activity across whole regions of neural circuity. 

This renders it better for both creating a high density recording neural interface array 

and for mapping neural activity. For this reason, the structures developed and 

fabricated in this work will focus on this format of recording structures that record 

from a field of neural tissue.  

5. Flexible Polymer Electrodes 

In order to fabricate an array of flexible electrodes, a flexible material needs to be 

selected as a basis from which to develop a fabrication scheme and produce the 

desired recording neural interface arrays. Using COMSOL modeling, (see Figure 7) 

several materials were compared to determine the best route for development. While 

stiffer materials often used in microfabrication such as silicon and SU-8 (a common 

structural photo-patternable epoxy) both quickly fail under a uniform force applied to 

the modeled electrodes, the third electrode modeled using PDMS 

(Polydimethylsiloxane), a common flexible siloxane based rubber, can continue to 

deform without a point of mechanical failure. Based on these and other simulation 

results, PDMS was further investigated. With a modulus around 3 MPa, the most 
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commonly used laboratory version of PDMS, Dow Corning Sylgard 184, has a much 

smaller mismatch to brain tissue than that between silicon and brain tissue. 

 

 

 

 

 

 

 

It is clear that flexible electrodes are required to support brain plasticity and 

minimize trauma when the electrodes are being inserted and after they are implanted. 

For these reasons, it is important to investigate polymer based flexible electrodes 

made from polymers such as PDMS. Calculating the bucking force for a 100 micron 

diameter electrode pillar that is 1 mm tall, the resulting force the pillar can withstand 

before buckling is determined to be 36 µN to 297 µN, depending on whether the 

Figure 7. Simulated mechanical properties of penetrating electrodes made from 

three popular microfabrication materials. Both silicon and SU-8 that have high 

modulus fail early by breaking at the base when a uniform force is applied to the 

electrodes. PDMS, however, shows deformational failure rather than breakage. 

Deformation failure is defined as the point where the aspect ratio in any 

dimension changed by 30%. 
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pillar sticks into the surface it is being compressed against or glances off. In the case 

of implantation, the surface texture of the tissues involved should make glancing off 

the surface very unlikely. In comparison, the force required to penetrate a 100 micron 

diameter section of the Pia-arachnoid membrane layer, which is the final protective 

layer left in place over the brain tissue during an implantation procedure, is 4-40 mN. 

This seemingly makes pillars made from PDMS too soft to properly insert, but this is 

not the case. A variety of absorbable coatings[3] and aging polymers are under 

development that can temporarily impart additional structural integrity to softer 

materials that are being implanted in brain tissue and facing this issue. One such 

temporary structural coating that has been demonstrated with some success is 

crystalline sucrose. In such a coating scheme, an array of electrode pillars can be 

inverted and slowly drawn from a heated and saturated solution of sucrose, which 

will dry to form a hard coating over the pillars. Then, to protect the added structural 

layer from immediately dissolving in intercellular fluid during the insertion process, 

the coated pillars can be drawn from a bath of mineral oil. The oil layer slows the 

degradation of the sucrose coating long enough for the insertion to be completed. 

Given such available techniques, flexible PDMS based polymer electrodes are a 

major focus of this work. Chapter III focuses on the development of fabrication 

schemes to produce flexible conductive polymer neural recording electrodes that 

meet the height and aspect ratio requirements outlined above and further investigates 

methods to produce electrodes that are conductive, independent, and capable of being 

connected to planar interconnect structures for neural recordings.  Chapter V focuses 
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on investigations and experiments demonstrating the functionality of the resulting 

recording neural electrodes fabricated using the scheme developed. Finally, Chapter 

VI briefly touches on future possibilities associated with these recording neural 

electrodes. 

II. Fabrication of Suspended Anodized Aluminum 

Nanoporous Arrays 

Working from the anodization methods found in literature and widely 

standardized, several generations of devices have been designed and fabricated. The 

goal of these schemes has been to provide the structure to support the creation of the 

envisioned ion selective electrically gated pump. Secondarily, these devices serve as 

a general research mechanism to understand biological and chemical reaction as they 

occur on a thin nanoscopic scaffold. Both of these goals may provide insight both 

into basic experimental research as well as cognitive neuroscience. 

Fabrication of these nanopourous arrays is by no means a trivial task. With each 

new generation of devices and each revision and improvement to the fabrication 

schemes involved, utility, yield, uniformity, and cost (in terms of labor, materials, 

and clean room time) have been further optimized. A stable and functional device for 

which device-to-device and wafer-to-wafer uniformity is high, feature membranes 

are both sturdy and chemically stable, and individual pores are all of similar 

dimensions at the nanoscopic scale is ideal. 



 

 

 

 27 

A. Fabrication of Nanoporous Alumina Films 

The initial attempts to produce nanoporous arrays of alumina focused on the 

anodization process itself without concern to providing access to the underside of the 

nanoporous alumina film. These studies were conducted on small samples framed by 

3M 470 electroplating masking tape protecting a ring of copper tape and anodized 

while varying the anodization time, acid solution, and applied voltage. Results were 

determined by optical inspection of the resulting porous surface as well as SEM 

imaging of the pores. A high degree of variation and disorder was seen from sample 

to sample and from near masked edge to center. Occasional contamination by copper 

conductive tape would lead to an unwanted current path and affect the uniformity of 

the anodization. This would occur when protective electroplating masking tape 

delaminated and exposed to the copper to the anodization process. This would both 

deteriorate the conductor supplying current to the aluminum sample being etched, 

increasing resistance, and also poison the anodization solution with copper ions.  

As the envisioned pores needed to be small enough to easily react and fill with 

small molecule chemistries that would allow for selectivity, the goal of initial studies 

was to determine the best conditions for producing uniform small-diameter pores 

given the available anodization apparatus. Optimal conditions were determined to be 

low voltages (10 V applied) in 6 wt.% sulfuric acid aqueous solution at ~2 ºC for 

1.5-2 hours followed by at least one half hour soak in deionized water. As voltage 

increases, the solution becomes more able to etch through oxide layers, and the 

resulting fields in the pores tend to increase the pore diameters and interpore spacing. 
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As voltage drops, it is harder to etch into formed oxides and the etch rate drops. 

While there are generally five chemistries widely used for making porous aluminum, 

testing of the three safer and more accessible chemistries (oxalic acid, phosphoric 

acid, and sulfuric acid) verified that sulfuric acid resulted in the smallest pore 

diameters. Low temperatures for long etch times provided best uniformity at these 

desired pore sizes when combined with standard 3-6% acid concentrations.     

B. Fabrication of First Generation Nanoporous Arrays 

With the anodization method verified, the first generation of nanoporous arrays 

focused on providing a successful integration scheme that would mate a nanoporous 

film with a window in a fixed silicon substrate acting as a support scaffold. Two 

methods were initially explored using an anodization-last approach. In this approach, 

windows were fabricated in silicon first, then the arrays were formed, and finally the 

membrane on which the arrays were formed was removed.  

1. Handle and Dielectric Membrane Via Selective Wet Etch 

The first of these approaches used a selective wet etch process using potassium 

hydroxide (KOH). KOH is known to selectively etch silicon preferentially along the 

<111> crystal plane and is known to etch silicon nitride at a much slower rate, 

making silicon nitride a good choice as a hard masking material. As KOH would 

easily etch aluminum and alumina, deposition of the metal for the nanoporous layer 

was performed after a solid membrane was formed. Starting with double side-

polished <100> plane silicon, both sides were masked with silicon nitride. A pattern 
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to form square windows as well as to separate the wafer into dies was transferred into 

the back side of the wafer using contact lithography. Then the pattern was 

subsequently used to open areas of the back side of the silicon nitride using an 

inductively coupled plasma CF4/O2 etch followed by the removal of the resist. The 

pattern used accounted for the narrowing of the etch features as they etched deeper 

into the silicon wafer, meaning that patterned features were wider than the final 

desired membrane width.  The resulting etch windows appeared as inverted 

pyramidal frustums and the cut lines defining device perimeters appeared as pointed 

trenches.  

The KOH etch process (see Figure 8) results in suspended membranes in 

independent dies provided that the mask has been perfectly aligned to the <100> 

crystal plane of the silicon and that no defects exist in the silicon nitride layers. In 

most cases, defects in the nitride layers result in broken or damaged membranes.  

Additionally, significant areas of the protected silicon handle were removed, 

cratered, or otherwise made mechanically unsound for further processing. Similarly, 

any rotation of the masking pattern leads to the pyramidal KOH etch expanding 

under the masked areas to take on the shape of a larger pyramid aligned with the 

crystal planes of the silicon. This effect is particularly damaging when one considers 

the effect to the cut lines separating dies that run all along the wafer; in this case, a 

rotation may significantly increase the amount of area being etched and significantly 

reduce the size of resulting dies. 
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While the ability to make the region underneath the membrane an inverted 

pyramidal frustum with KOH provides benefits to spinning or otherwise depositing 

on or accessing the underside surface of the membrane and array, these benefits do 

not outweigh the resulting damage and low yield due to the destructive nature of the 

KOH etch process. It is for this reason that methods that avoid wet plane-selective 

etches have been investigated.  

Figure 8. KOH selective wet etch processing scheme. 
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2. Handle and Membrane Via Deep Reactive Ion Etch 

As an alternative to the KOH process and techniques related to the pillar deep 

silicon mold process, the Bosch deep reactive ion etching process is well suited to 

open windows in silicon substrate. This method (see Figure 9) can be used to form 

windows as well as die cut lines, but, unlike KOH, it does not yield a plane-selective 

etch. Starting with a double-sided polished silicon wafer, a stopping layer of silicon 

nitride or silicon dioxide is deposited on the topside, and a hard masking layer of 

silicon dioxide is deposited on the bottom side of the wafer. Using lithography, a 

pattern for cut lines and square windows is transferred into photoresist and then 

subsequently transferred into the silicon dioxide hard mask using a vertical oxide 

etch with an inductively coupled plasma containing CHF3 and O2.  

Once the pattern is transferred into the hard mask, the Bosch deep reactive silicon 

etch is carried out against the patterned bottom side of the wafer. The Bosch etch is a 

cyclic process which alternates between a plasma of SF6 and argon as an etch gas 

mixture and a plasma of C4F8 and argon as a passivation gas mixture. As the etch 

proceeds, the sample is routinely checked for optical transmission through the 

membrane and remaining silicon. The etch continues until all silicon under the 

dielectric membrane layer in the window area is removed, along with passivation 

defects resulting from the Bosch etch (e.g. grassing or fluorocarbon-passivated 

spires).  

These near vertical etched lines and windows are quite clean and free of major 

defects. While center-to-edge etch uniformity across the wafer varies more than that 
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of a wet etch, the overall uniformity achieved with this procedure is much better than 

that of KOH. Additionally, defects in the Bosch etch present themselves as 

differences in etch diameters or as debris in the voids being etched, rather than 

defects in the mask seen in the case of the KOH etch. These defects can generally be 

removed by continuing to etch once the front side dielectric membrane has initially 

been reached. In this case, open windows grow slightly wider and their membranes 

grow thinner, while most defects are removed and smaller windows widened. 

 

3.  Anodization Last Following Window Fabrication 

Once the silicon die with a suspended dielectric membrane over the backside 

window has been properly manufactured, aluminum can be deposited via electron 

beam metal evaporation and then anodized. In the case of the KOH process, 

aluminum can only be deposited on the topside of the die following the etch process. 

Figure 9. Bosch first processing scheme. 
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In the Bosch process, aluminum can be deposited before the Bosch deep reactive ion 

etch, keeping the interface between the dielectric membrane and aluminum pristine; 

however, the ability to conduct window inspections using transmission microscopy 

to verify etch end point is lost in this case.   

Samples are anodized using the optimal conditions described earlier with the 

edges of each die masked off with electroplating masking tape and copper conductive 

tape (also masked off) providing the electrical connection for the anodization. The 

complexities of the masking and the need for an electrical connection to the dies that 

is otherwise insulated from the solution determine that few dies can be anodized at a 

time without risking significant uniformity issues and possible copper contamination. 

Each of the separate dies need equivalent resistance paths to the power supply in 

order to properly be anodized and each copper contact to the aluminum must be 

properly masked off, as the failure of one contact results in copper contamination of 

the entire bath. Removing the anodization bath solution from the devices can be 

accomplished by placing the anodized devices in deionized water at room 

temperature with a stir bar, allowing 20 minutes for dissolved material as well as 

acid residues to diffuse.  

After the anodization is complete, exemplary samples can be sacrificed to gold 

palladium sputtering and SEM imaging of the suspended membrane areas to verify 

pore diameter, surface morphology, and the amount of defects at the nanoscale. SEM 

imaging alone would not be particularly destructive to the devices at this point, 

however surface charging on the micron thickness insulating film makes SEM 
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imaging an impossibility without the reactive ion driven sputter deposition of a 

conformal conductive gold palladium coating on top of the nanoporous aluminum. 

The dielectric membrane that the aluminum has been deposited onto must be 

removed along with the dense oxide layer formed by the self-termination of the 

anodization process, which is immediately above the original dielectric. The removal 

of the underlying dielectric membrane is accomplished by protecting the top surface 

with photoresist followed by mounting the dies topside down with oil on a carrier 

substrate and exposing the backside to inductively coupled plasma. Either a plasma 

consisting of CF4 and O2 for silicon nitride or a plasma consisting of SF6 and argon 

for silicon dioxide is applied. These gas mixtures are selective to the specific 

dielectrics vs alumina, allowing the etch to stop on the alumina layer immediately 

under the inverted membrane. Devices made using the Bosch and KOH process 

schemes both relied on silicon nitride dielectric layers to form the support membrane 

under the alumina nanopores so that the dielectric removal process was common to 

both schemes and the resulting devices would be similar from the dielectric up 

through the nanoporous alumina film. 

4. Difficulties in an Anodization Last Approach 

The anodization last fabrication schemes outlined previously provide a good 

means of manufacturing the substrate membrane, but ultimately limit the yield of 

final nanoporous array devices. This occurs because the window fabrication process 

is also used in parallel to form the individual device die. Hence, once the fabrication 

process is complete, the starting wafer is no longer a mechanically stable single piece 
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but rather many dies held together by bridges of silicon between die. With the dies in 

this configuration and with the complexities of connecting and masking multiple 

dies, yield and nanoporous array quality suffer. A scheme allowing for whole wafers 

to be fabricated without relying on serial processing of individual dies and while also 

maintaining better nanoporous alumina quality would be more ideal. 

C. Fabrication of Second Generation Nanoporous Arrays 

The first generation nanoporous arrays were able to provide suspended 

nanoporous alumina membranes in a silicon window that successfully conducted 

ionic currents between solutions in a test cell. However, the anodization last 

processing scheme, when combined with defining the dies while etching the silicon 

windows, made producing the needed inventory of uniform nanoporous arrays 

impractical. The approach essentially required individual dies to be contacted, 

masked, and anodized sequentially or in very small batches. The masking and 

contacting process involved manually cutting and placing those materials on each 

array perimeter by hand. This had the effect of making each nanoporous array more 

like a work of art than a reliable device.  

Clearly the anodization scheme initially used in the first generation devices was 

insufficient and needed to be replaced with a more uniform and more parallelized 

method. Additionally, whole wafer processing needed to be maintained through the 

entire processing scheme to maximize uniformity. 
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The processing scheme for second generation devices aimed to overcome the 

yield and uniformity issues identified during and after fabrication runs using the first 

generation processing schemes.     

1. Anodization First Fabrication Process 

As so many yield and quality issues stemmed from serial processing of small, 

already defined dies through the anodization process, an anodization first processing 

scheme (see Figure 10) was the next logical step towards improving yields and 

quality of the devices. This change in the process scheme was also beneficial as 

numerous anodization experiments had been carried out on small samples and a 

fixed anodization process providing desired results was already determined. By 

anodizing whole wafers before the Bosch process has been employed to define 

backside windows and cut lines in the silicon, issues stemming from tape 

delamination and copper contamination can be limited. This is because the ratio of 

wafer perimeter to surface area is smaller than the ratio for already defined dies. As 

the distance from the edge of the masked copper contacted region to the defined die 

areas increases, there is also some improvement in uniformity in comparison to very 

small exposed areas, but still less improvement than is desired. Anodization slows in 

areas further from the contact that experience greater resistance in the final stages of 

anodization, leading to decreased applied potential and altering the resulting pores. 
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The stack required for the anodization first approach begins with high quality 

dielectric layers that serve two purposes: to block current from being supplied 

through the silicon substrate during anodization and to act as a stopping layer for the 

later Bosch etch. As this layer will eventually need to be etched to open through 

nanopores and will not need to support itself as a free-standing membrane at any 

time in the process scheme, a very thin high quality dielectric stack is preferable. A 

stack of SiO2, Al2O3, and SiO2 is deposited using atomic layer deposition via an 

Oxford Flexal deposition tool without breaking vacuum, which insures the quality of 

the interfaces of the dielectric stack. The first layer of SiO2 is used to form a good 

interface to the underlying silicon wafer. The second layer consisting of Al2O3 is 

used for its quality both as a dielectric and as a very strong etch stopping layer for the 

Bosch etch process. The final SiO2 layer is used to block the anodization process 

from interacting with the Al2O3 layer should there be any potential on the substrate. 

Figure 10. Bosch last processing scheme. 
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Upon this dielectric stack a micron thick aluminum layer can be deposited using E-

beam or sputter deposition. Using the conditions mentioned previously, the complete 

metal on dielectric stack can be anodized all the way down to an additional hard 

stopping layer of alumina at the bottom of the nanopores, just above the deposited 

dielectric layers. Anodizing the stack for a longer period slightly increases pore 

diameter while not affecting the spacing between the pores.  Further, it has the 

benefit of ensuring that the pores terminate at the base of the anodized aluminum 

after having consumed all the aluminum. 

2. Improving Uniformity with a Potential Grid 

While an anodization first approach is a quality and yield improvement over the 

original anodization last scheme, the variation in distance from the masked contact to 

the exposed aluminum that is converted to nanoporous alumina leads to variations in 

the applied field and the formation of the nanoporous alumina. To reduce the 

distance from the contacts to all of the aluminum to be anodized, an equipotential 

conducting grid can be used to supply a uniform voltage at the edge of every die. 

This could hypothetically be accomplished by placing copper tape and masking tape 

across the wafer in a grid pattern, but this would in turn cause many of the issues 

observed in the anodization last approach. A better approach is the introduction of a 

patterned grid of buried metal lines, which will not be anodized, and, thus, will 

provide uniform potential across all dies on the wafer as the anodization progresses. 

Copper and masking tape can be excluded from the entire wafer with the exception 
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of one edge where the applied voltage is supplied the grid, minimizing the risk of 

copper shorting and demasking issues.  

The potential distribution grid could be formed in a number of ways, including a 

buried conductive material that will not etch during the course of the anodization and 

is protected by a similarly etch-resistant dielectric layer to keep current from shunting 

from the grid into the anodization bath. The simplest way to accomplish this is to 

protect a part of the aluminum plane to be anodized with an insulating grid, so that a 

grid of aluminum remains conducting throughout the anodization process. 

Photoresist might be a sufficient protection layer to define and protect the potential 

grid, but to ensure the potential grid remains intact for the length of the anodization 

process and to further minimize the route of contamination, patterning a protective 

dielectric layer over these areas is preferred (see Figure 11). In this case, a stack of 

Al2O3 and SiO2 is deposited via atomic layer deposition, with the first layer acting as 

an interface layer and the second layer providing the protection from the anodization 

bath. After this layer is deposited, a standard photoresist recipe is used to pattern 

photoresist over a grid, allowing the remainder of the deposited dielectric to be 

etched away down to the alumina layer via a vertical oxide etch.  The etch uses an 

inductively coupled plasma containing CHF3 and O2 and is followed by the stripping 

of the remaining photoresist before anodization. Because the grid lies along the 

perimeter of every die to be defined by the Bosch etching process, the potential grid 

effectively ensures that each region that will be anodized to become a porous 

membrane is uniform (see Figure 12). 
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Figure 11. Bosch last processing scheme with potential grid. 

Figure 12. Anodized 100mm wafer with Bosch with potential grid. 
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3. Bosch Last Silicon Window Formation 

The process of Bosch last window formation is similar to the Bosch process in 

the Bosch first processing scheme, but the Bosch last scheme is more robust than the 

original approaches in a few respects. Trying to stop the etch process on a nitride 

layer that is necessarily strong enough to not break in subsequent processing steps 

can be difficult, particularly in instances such as the removal of the post-Bosch etch 

wafer from the carrier wafer to which it is mounted. Similarly, trying to stop on a 

dielectric stack containing an aluminum layer beneath it makes transmission 

microscopy impossible, greatly increasing the difficulty associated with finding an 

optimal point at which to stop the Bosch etch for a given wafer. 

The addition of the nanoporous alumina layer prior to Bosch etching provides 

enhanced mechanical stability when compared to a thin nitride layer and allows the 

use of a thin SiO2 and Al2O3 stack as the dielectric stopping layer, as mechanical 

support is provided by the nanoporous alumina film. This dielectric stopping layer is 

more robust to the Bosch etch chemistry and is more easily removed with a simple 

phosphoric wet etch following the Bosch process. Perhaps most importantly, the 

stack of dielectric and aluminum is converted into a primarily porous dielectric stack 

that is compatible with transmission microscopy, providing a simple means of 

determining the etch status and quality of windows being formed by the Bosch 

process. 
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4. Bosch Window Patterning for Improved Spin Profiles 

While in many cases the ability of the Bosch process to etch near-vertical deep 

features is desirable in the process, the resulting depressions can be difficult to spin 

onto from the side of the wafer that has been exposed to the Bosch etch. Many 

materials spun into such depressions may never correctly coat the depressions 

trapping air bubbles as they spin across the depression. Alternately they may fill in 

the depression but remain so thick that baking or otherwise removing solvent will 

generate cracks in the material such that it cannot provide continuous coverage of the 

membrane at the bottom of the depression. If the final material stack desired for a 

device requires a continuous film on the bottom side of the membrane that needs to 

be spin coated, this is an unacceptable situation.  

One improvement to overcome this issue is to manipulate the geometry of the 

windows being patterned by the Bosch etch to generate sloped ramps by which fluid 

may flow into and out of the window when being spun. This should cause less 

pooling of spun material and trapped bubbles than in the case of pure vertical 

sidewalls. Specifically, by creating a sun-shaped pattern (see Figure 13) by adding 

triangles to the outer edge of the standard round perimeter of the desired etch 

window, the reduction in gas transport of the reactant species as the triangles narrow 

causes a decreasing etch rate and thus a tapered depth. The sun-shaped pattern 

produces the desired ramps while still providing increased mechanical support to the 

membrane. In this particular case, a limitation of a particular process technology, 
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specifically the effect of gas transport limits in Bosch etching, is used as an 

advantage to provide tapering to the etch. 

 

 

 

 

5. Glass Carrier-based Bosch Etching 

Due to the variation between the etch rates of the windows used to provide access 

to the back side of the nanoporous alumina membranes and the cut lines employed to 

separate the wafer into individual devices, cut lines and the interactions between 

Figure 13. Enhanced Bosch pattern for solution transport. (top left: 

surface pattern, top right: mid-depth pattern, mid figure: cross section 

of failure modes, bottom: cross section of enhanced Bosch etch feature) 
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them can begin to break through the silicon carrier and dielectric stopping layer long 

before the Bosch windows are fully opened. As no additional obstructions limit the 

gas flow of reactive species at the intersections of cut lines, even the relatively thick 

nanoporous alumina layer can be breached. As a result, this can lead to leaks between 

the helium cooling mechanism below the wafer and the process chamber above the 

wafer with the reactive plasma. Small leaks of helium and the associated drop in 

back side cooling pressure can be overcome by throttling back the needle cooling 

exhaust value. However, larger leaks can drop the helium cooling pressure below 

process control limits even if the cooling exhaust valve is closed completely.  

Mounting the membrane side of the wafer being processed face down onto a 

carrier wafer using vacuum oil can remove the risk of substantial helium leaks from 

developing under the wafer being processed. The standard carrier wafer used in the 

Bosch process is a silicon wafer with a thick deposited layer of silicon dioxide. 

While such wafers do eliminate helium leaks and maintain good thermal contact, 

their inability to transmit visible light necessitates dismounting the wafer being 

processed from the carrier at any point where it is desirable to conduct transmission 

microscopy when looking for an endpoint.  

Glass carrier wafers offer a substantial improvement in processing as they are 

sufficiently thermally conductive while removing the need to repeatedly dismount a 

wafer that is being Bosch etched from the carrier in order to check the progress of the 

etch using transmission microscopy. As each dismounting and mounting action can 

scratch, dirty, or otherwise mechanically damage the wafer being processed, 



 

 

 

 45 

minimizing these events down to a single precision mounting and dismounting can 

positively impact die yield and quality as well as the mechanical stability of the 

resulting released nanoporous membranes. 

6. Recovery of Cracked or Shattered Wafers 

Additionally, the risk of the wafer shattering in the dismounting process is 

negated in the instance that it is only dismounted once the Bosch etch is determined 

to be completed. This is because the next processing step beyond this point is a wet 

phosphoric etch to open the terminating alumina layer, which is easily carried out via 

series processing just before each array is going to be used. However, due to the 

configuration of Bosch processing tools, continuing an incomplete etch on a cracked 

wafer becomes problematic and usually requires sets of individual dies to be 

processed in smaller quantities on an otherwise empty carrier wafer, leading to 

different plasma loading conditions. Occasionally, cracked wafers can continue to be 

processed as if they were whole but the height at the edge of the wafer must be kept 

continuous to avoid damaging the Bosch processing tool. 

7. Pore Widening and Removal of Back Side Alumina Stopping Layer 

Commonly, dilute phosphoric acid is used to widen porous anodized alumina. In 

the case that the anodization is allowed to completely consume the aluminum, the 

alumina stopping layer at the bottom of the anodization stack can also be removed 

using the same wet etch. This can be useful in the event that the alumina is being 

used to template nanostructures being grown upon a seed layer beneath the alumina 
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stopping layer. In the case that a suspended membrane requires that alumina stopping 

layer be removed to create through-pores, a dilute phosphoric etch can also be 

employed. However, placing the membrane in the wet etch will also widen the 

diameter of the nanopores, which may not be desirable.  

In order to minimize the ultimate diameter of the alumina nanopores, which is 

desirable for a number of uses such as small molecule surface functionalization, only 

the back side can be exposed to a phosphoric wet etch while the already open front 

side of the membrane can instead be exposed to water. When working at the wafer 

scale the whole wafer can be phosphoric etch opened at once without exposing the 

front side of the membrane to significant widening by employing a photoresist or 

stable vacuum oil to keep the wafer attached to the Bosch carrier wafer. When 

working at the individual die scale, most apparatuses useful in testing these devices 

are also sufficient to allow selective etching of the back side of the die while wetting 

the front side with water.   

8. Pore Shrinking via Atomic Layer Deposition  

Along with forming nanometer-thick quality dielectric stacks on top of the silicon 

substrate or deposited metal stack, atomic layer deposition can also be used to shrink 

nanopores to dimensions smaller than that which is achievable by alumina 

anodization alone. To ensure penetration into the extremely high aspect ratio, 

nanopores’ very slow reaction cycle times can be mated with a thermally driven 

water vapor process. In this process, TMA (tetrametyl-aluminum) is allowed to 

slowly chemically adsorb on exposed existing anodized alumina providing sufficient 
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time for transport of the precursor into the nanopores.  This is followed by a purge 

and exposure to water vapor, which forms an alumina monolayer during each cycle. 

9. Multistep Anodizations for Improved Pore Uniformity 

One further improvement to the processing schemes for nanoporous alumina 

discussed above is the implementation of multi-step anodization to improve the 

ordering of the nanopores in the suspended alumina membrane. Two-step 

anodizations are most often carried on aluminum films with a thickness of hundreds 

of microns. Generally the majority of the film is anodized in a first anodization step 

using conditions selected for their ability to form desired regular interpore distances. 

While the exposed surface of the alumina may appear very chaotic, after significant 

anodization depth, the pores become aligned to each other as a result of the applied 

voltage conditions and the insulating nature of the consumed alumina. Using a 

combination of chromic acid and phosphoric acid, the first anodization layer can be 

quickly etch away while leaving the remaining alumina intact with a remaining 

imprint of the ordered nanopores. Then a second anodization can be performed, 

forming new pores at the depressions already left from the first anodization. Using 

this method with large thicknesses of alumina, very well-ordered pores can be 

formed for certain voltage and concentration conditions. However, in the case of thin 

film suspended nanoporous membranes that are being fabricated on a mechanically 

stable silicon frame, limited methods exist to deposit the necessary thicknesses of 

aluminum. While electroplating is one such potential option, it was not examined, as 

the necessary electrochemistry bath was not readily available.  
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As an alternative, the thickness of deposited aluminum thin films can be 

increased slightly and a short sacrificial anodization can be carried out. The formed 

nanoporous alumina film can then be etched back and the remaining aluminum can 

again be anodized to improve the ordering of the remaining film. An alumina etching 

500mL aqueous solution containing 10g chromium trioxide and 20mL of 85% stock 

phosphoric acid was used at 75C when investigating this two-step process. This etch 

was carried out after a 30 minute anodization in 6% H2SO4 at 2C and 25v, and 

before a final anodization under the same conditions for 3 hours. 

D. Fabrication of Planar Ion Pump Devices 

While they are not specifically nanoporous alumina based devices, a number of 

planar two-dimensional devices have been produced for investigating ion pumps, 

selective ion pumps, and similar concepts. In this section the design of these devices 

is outlined.  

1. PEDOT:PSS Gasket Based Devices 

Using PEDOT:PSS (Poly(3,4-ethylenedioxythiophene) Polystyrene sulfonate) as 

an electrically driven ion transport layer and adhesive silicone rubber gaskets as 

wells for aqueous salt solutions, electric and ionic transport can be demonstrated. By 

applying over 20 V to a narrow region where all current is forced to flow, the 

PEDOT:PSS can be irreversibly oxidized, making the region highly resistive to 

electron transport, but still capable of drift-based ion transport. This oxidation can 

also be accomplished by placing a well over the area to be oxidized, supplying 
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bleach to the well, and applying a similar voltage across the edge of the PEDOT:PSS 

and the bleach solution. 

These devices, while easy to fabricate, suffer from the eventual leakage of the 

well, which leads to delamination of the gasket from the PEDOT:PSS and eventually 

hydration across the oxidized PEDOT:PSS region. Additionally, due to the size of 

available adhesive silicone gaskets, the length of the over-oxidized region as well as 

the distance ions are required to diffuse before reaching the over-oxidized region can 

also limit ion transport. 

2. Patterned PEDOT:PSS SU8 Devices 

By pattering PEDOT:PSS and SU8 (SU-8 2000 series structural photo-

patternable resist) using lithographic processing techniques, more robust planar 

devices can be fabricated, which are capable of more useful experimental 

investigations. In particular, SU8 can be employed to provide more stable wells that 

are less likely to delaminate as well as miniaturized devices that feature shorter drift 

and diffusion distances for ion transport. Additionally, photoresist masking can be 

used along with O2 plasma etching to selectively pattern the PEDOT:PSS layer to 

define its dimensions.  Alternatively, photoresist masking can be used to remove an 

area of PEDOT:PSS that would have been over-oxidized so that it can be replaced 

with a selective transport chemistry under investigation.  
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3. Planar Device Stability Issues 

Like the gasket-based planar devices, patterned PEDOT:PSS and SU8 devices 

also suffer from delamination of the isolating SU8 patterned layer as well as 

hydration and delamination of the patterned PEDOT:PSS layer. Once either the 

substrate-PEDOT:PSS interface or the PEDOT:PSS-SU8 interface is breached by the 

aqueous salt solution being tested, or once the PEDOT:PSS film become sufficiently 

hydrated that a parallel channel develops, the transport through the PEDOT:PSS is 

supplanted by the other path. 

These hydration and delamination issues can potentially be overcome with the 

addition of chemistries tuned to maintain adhesion at these interfaces. However, 

devices designed without exposed interfaces that are parallel to the direction of 

transport can greatly limit these issues. Such devices, where the transport of ions and 

the application of electric field is directly into the plane of the device rather than 

across it, also have the benefit of being able to be fabricated into very thin transport 

stacks. It is for these reasons, in addition to results discussed later suggesting that 

greater transport can be achieved in narrower transport widths, that suspended 

anodized aluminum nanoporous arrays were developed. 

III. Fabrication of Flexible Conductive Polymer Neural 

Recording Electrodes  

The fabrication of high aspect ratio conductive polymer recording electrodes is a 

daunting task. While on its surface many possible avenues seem viable as routes to 
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produce such devices, there are many difficulties that make most of these possible 

routes unfeasible given some practical experimentation. Ultimately a mold-based 

polymer casting scheme using silicon molds created through the Bosch etching 

process has been employed to fabricate the desired recording electrodes. 

A. Direct Fabrication of Flexible Pillars 

The simplest method for fabricating flexible pillars would appear to be to 

fabricate the structures directly from a material of the desired properties. In this 

scheme a layer of an appropriate material would need to be deposited as a film and 

then patterned so that only the desired pillar volume remained. As the most useful 

neural recording pillars need to be implantable in at least 1mm into neural tissue, 

these films and pillars need to be at least 1mm thick. 

1. Mechanical Machining of Non-Pillar Volumes 

Mechanical machining of 1mm thick flexible polymer films is a possibility. 

However, this requires all the material with the exception of the volume of the 

electrodes to be mechanically removed and the pillars to be formed sequentially. The 

bits used in the machining process need to be able to fit in between the defined 

pillars volumes to remove material while not disturbing or damaging the pillar 

volume itself and removing all unwanted film down to the substrate which also needs 

to be left in good condition. While working with hard material, machining these sorts 

of positive features is not difficult.  With a flexible material, however, the material 

must be of similar modulus to that of neural tissues.  Otherwise, the mechanical 
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motion of burs or bits will cause tangles and damage to the pillar volume will likely 

occur while in the process of removing unwanted film. It is for this reason that such a 

machining process was not selected to make the desired neural recording electrodes. 

2. Laser Machining of Non-pillar Volumes 

Laser machining is another option similar to mechanical removal of an excess 

volume of polymer film to define pillar volumes that has been considered. Using a 

CO2 laser, undesired volumes can be removed by following cut patterns or a 

rasterized pattern, while pulse deration, frequency, and power level and be tuned for 

according to the desired material. Unlike mechanical machining of excess non-pillar 

volume, in this case there is no mechanical motion that may entangle and destroy 

desired pillar volume. As the laser process is essentially comprised of combustion of 

the polymer film along with ablation of the material under the beam, this process has 

a tendency to both combust and deform pillar areas as the beam spends time at the 

edge of each pillar. Additionally, the general heating of the film and more 

specifically the heating of film immediately around the pillars can induce further 

non-uniformities into the resulting pillar volumes are left after the films removal. 

The focus of the CO2 laser is such that only one plane of material will be in focus, 

and, above and below that focus, the beam will spread exposing additional film for 

removal. Excess energy delivered to the substrate under the film can in the case of 

reflective materials damage the film limiting the use of metal interconnecting 

conductors that would be immediately under the film being removed. This otherwise 

could also cause damage to the substrate or additional energy transmitted into the 
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base of the pillar volumes being defined by the laser. For these reasons laser removal 

of the unwanted film volume surrounding pillar areas was determined to be 

unacceptable. 

3. Photo Pattering of Structural Photoresists 

Direct photo patterning was one initially very appealing method to produce 

polymer pillars. It was possible with sufficient synthetic chemistry such a photoresist 

system might be altered to meet the electrical and mechanical demands of a 

conducting flexible pillar array. Assumedly, conductivity and mechanical stability 

could be tuned via chemical or plating routes. 

The photo patternable structural resist chosen was Microchem SU-8 2000 series. 

This epoxy-based system original developed by IBM at the Almaden Reaserch 

Center has seen widespread use, including use in complex MEMS devices. Studies 

with SU-8 including fabrication of very small diameter 25 micron pillars as well as 

larger diameter 100 micron pillar. SU-8 2150 specifically was used as it can be spun 

to thicknesses of 200 microns in a single layer, allowing only five layers of resist to 

form a 1mm structure.  

The spinning, prebake, and post bake procedures required are complex for the 

highly viscous resist in particular, as at such thicknesses skin layers as well as 

gradients in remaining solvent density tend to occur. Patterning and developing each 

layer in sequence is not possible as it is impossible to build up material of any 

thickness while spinning on independent pillars on a substrate, due to the height of 

the first developed pillars being nearly equal to the height of additional layers. This 
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leads to the other two possible routes for multilayer patterning of the desired pillars: 

either spinning several layers with prebakes between and then attempting a very long 

exposure and development or prebaking and exposing each layer without subsequent 

developments until all layers have been spun on and exposed. Such extremely thick 

stack of resist is not easily exposed, as resist near the exposure source tends to filter 

out a great deal of the exposure energy. In the case of multiple exposures before 

development each exposure dose can be guaranteed but alignment between layers can 

become a problem, as the exposed structures are not well defined until they are 

developed. This is easily addressed with alignment marks on the substrate to 

reference against or by transferring the desired pillar pattern into a mask on the 

substrate. In the latter case, additional layers must be shot through the existing layers, 

but alignment is guaranteed. In either case, development of multi-layer stacks of 

narrow cross section structures, lacking cross structure supports, such as free-

standing pillars proves very difficult. Interfaces between different layers of SU-8 tend 

to delaminate from one another under either exposure method, particularly given the 

amount of time and agitation required to develop the base layers of material that have 

been pre-baked repeatedly. Isopropanol is generally used to remove the remaining 

developer once development is finished, but this generates residues if any uncross-

linked SU-8 remains. Substrate adhesion with SU-8 is also an issue for high aspect 

ratio structures with narrow bases, particularly as the structures are being developed. 

Occasionally, enough stress is present in the cross-linked materials that the pillar 

structures jet sideways and curl around rather than remaining upright as patterned. 
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While some of these issues can be overcome by permanent or temporary scaffolds 

between pillar structures and continuous base layers of adhesion promoting resist, 

Microchem Omnicoat, such schemes cannot be used to produce independent pillars 

that could be directly attached to an interconnected pad for neural recording 

connectivity. It is further noted that, in many circumstances, even continuous layers 

of much thinner and easier to work with SU-8 will tend to delaminate under aqueous 

conditions such as those that would be experienced when neural recording electrodes 

are inserted into the brain. Given the difficulty found in producing independent 

pillars of narrow cross sections, which lack a secondary structural support system, 

the decision was made to not continue further development along this route.  

B. Methods for Fabricating Mold-Based Pillars 

Following investigations into possible methods for direct patterning of pillars it 

was determined that a mold-based scheme would ultimately provide the best avenue 

to arrive at a reliable method for making 1mm tall and above polymer film pillar 

electrode structures. Molds have the advantage of being fabricated from harder 

materials while the different in the structural properties of materials can improve the 

process of mechanical separation between mold and cast pillar. Additionally, in 

many cases molds can be reused where a clean release of cast features has been 

achieved. 

 As only the volume of the pillars desired needs to be removed from the mold 

material, the mold-based approach is much more focused on the precise removal of 

desired pillar volume. Additionally, obstructions or deformations in the mold shape 



 

 

 

 56 

can severely hinder the proper removal of cast materials as pillars can become caught 

on mold areas that narrow or protrude into the mold volume. Therefore, molds that 

are easily produced in bulk or parallel processes and feature the best mold and 

sidewall uniformity are ideal. 

1. Drilling 

While drilling was already explored as an option to directly fabricate pillars, it 

was also investigated for its use in producing the desired 1mm or greater thickness 

molds. While a bur is used to remove material bulk material, in the case of direct 

drilling of the desired pillar volume, a long high precision drill bit is required along 

with a high precision stage to produce a mold with the desired pillar dimensions and 

pitch. This was beyond the ability of the standard CnC machines found in machine 

shops such as the University of California Santa Barbara Physics machine shop. As a 

result, a mill operated by a physics group as well as example parts produced by a 

number of vendors were investigated. For ease of milling, metal brass or copper 

plates were drilled. The two external vendors’ demo parts were unable to match the 

mold dimensions desired and tended to produce rough and non-planer molds. Both 

the surface roughness as well as the curvature of the parts made them unusable for 

casting pillars of the desired dimensions. A final attempt was made using the 

available mill, but the spindle was not sufficiently true and the rather expensive test 

bit was destroyed within a few holes. As mills, with the necessary precision to 

potentially keep the drill bits from immediately being destroyed upon initial use, are 

rather costly and quite specialized in their utility, no further attempts were made 



 

 

 

 57 

along this route. In general, mechanical drilling of such narrow deep features is not 

suggested. 

2. Laser Cutting 

Laser cutting sheets of polymers or plastics were also investigated, but, similarly 

to the destructive nature of combustion and ablation observed when trying to remove 

fields of polymer films, uniform voids in the dimensions desired with vertical 

sidewalls are nearly impossible to produce. This is because of the focus and beam 

heating issue discussed earlier with the added detriment that combusted gases can 

only escape by movement up the beam path in the situation that the beam is covering 

the majority of the pillar mold area being cut. The issues with combusted products 

being trapped in the path of the beam leads to slower rate of material removal as well 

as local heating, which can further combust the material beyond the desired sidewalls 

of the pillar voids in the mold. Molds made in this manner tend to have burned out 

non-vertical upper surfaces and appear very rough. While laser cutting can be a great 

tool at larger, lower precision jobs, such as cutting soft PDMS gaskets for nanopump 

testing, it is not ideal for making small, high aspect ratio molds like those useful for 

neural recording arrays.  

3. Strained Polystyrene Sheets  

Strained polystyrene sheets have become quite well known in the microfluidics 

community since initial research was first conducted at UC Merced. They are also 

known for being the material used in the popular creative craft toy “Shrinky dinks.” 
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These strained polystyrene-based materials can be heated such that they draw in 

along their pressed in plane dimensions and expand along their vertical direction. As 

a result, in the microfluidics case, ink dots, other applied bumps, or cuts into the 

surface made at a low resolution can be converted into narrower, denser, and higher 

aspect ratio patterns. For microfluidics, this enables printing of higher aspect ratio 

features for PDMS casting masters using simple printers.  

While strained polystyrene can be heated and drawn in in some cases as much as 

20x in the strained in plane dimensions, even this is not sufficient to produce clean 

1mm thick voids for molds. Inks or similar materials cannot be deposited in high 

enough densities while being conformal with the polystyrene surface to take 

advantage of the shrink.  

Some of the problems associated with polystyrene can be overcome if rather than 

depositing ink on the polystyrene surface, the desired voids are directly removed. 

This can be accomplished by either the laser drilling method or mechanical drilling 

method, both of which are mentioned above. Unlike those processes, however, the 

lower aspect ratio and larger feature size available before the polystyrene is drawn 

back make such cutting attempts far more realizable. Since heating causes the 

strained polystyrene to draw back, uniform heating is critical to ensuring a flat 

polystyrene mold once the shrink is complete. This undermines the potential 

application of laser machining which would locally heat and possibly melt the 

sidewall material of the mold areas, possibly removing the necessary built-in strain 

needed for the shrink to occur.  
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To further investigate the use of strained polystyrene sheets as molds for flexible 

polymer pillar casting, a number were machined such that their post-shrink 

dimensions would approach the desired dimensions for the molds. These in turn were 

baked in an oven under normal atmosphere either in open air or with polished 

aluminum plates on either side to keep molds flat during the shrink process in order 

to avoid the formation of bubbles in the shrink process and to try to keep the ultimate 

shape planar. Thermally conductive weighted nonstick surfaces might have been 

optimal for this process, but they were not available.  

As a starting point for flexible pillar electrodes, PDMS (Polydimethylsiloxane) 

which is a silicone rubber that is known to be biologically compatible and widely 

used in microfluidics applications as well as electronics potting applications, was 

chosen. Specifically, a very common formulation, Dow Corning Sylgard 184, was 

purchased and used as a starting material for pillar development. Sylgard, which has 

a Young’s Modulus in the low MPa for a standard mixture, and a working life 

greater than 90 minutes, can be cured at a range of different temperatures and 

conditions making it an ideal starting material from which to work, particularly due 

to its ubiquity in the research community. 

Shrunken polystyrene molds were placed in aluminum dishes and prepared and 

degassed. PDMS was poured into the dishes and then degassed repeatedly until all 

the mold voids were filled. The filled molds were then cured at 100 C for 35 

minutes, as recommended by the manufacturer. The PDMS and the mold were cut 

out of the dish once cured and the thin layer of PDMS under the mold was removed, 
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making it possible to attempt to remove the mold and release the pillars. As the 

molds were not perfectly planar, and as the PDMS was well adhered to the mold, 

removal of the pillars from the mold was not successful when applying mechanical 

force. Cutting at the interface between the PDMS bulk and the mold tended to cut 

through the PDMS leaving a thin layer of PDMS attached to the mold. Mechanically 

disassociating the remaining PDMS tended to tear the pillar from the PDMS bulk, 

rather than release the pillars from the mold.  

After several different attempts utilizing different methods of mechanically 

releasing the pillars, it was determined that all failed to be effective, and a chemical 

solution rather than a mechanical solution was sought. Several solvents that can over 

time swell and eventually dissolve polystyrene molds were investigated. While some 

of these were able to slowly remove the mold, freeing the PDMS, the PDMS did not 

prove particularly stable to these solvents and would also swell and deform 

irreversibly. This meant that even once all solvent was removed from the mold and 

PDMS, the result was not planar and generally did not reflect the original desired 

dimensions for the pillar array.  

In parallel to this work, additional experiments were carried out evaporating 

metal films of gold and Titanium into the polystyrene molds. Using solvent-based 

methods, it was possible to transfer the evaporated metal to the chemically released 

pillars, but the uniformity and deformation issues following the solvent-based 

process remained.  
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While a broader search for the most appropriate selective etch chemistry to 

separate polystyrene from PDMS might have yielded improved results, the ultimate 

goal of being able to align and pattern the pillars directly to a substrate eventually 

terminated this avenue of investigation. A silicon substrate activated by an O2 plasma 

process could be introduced and pushed into contact with the mold once the PDMS 

was degassed, leaving only a thin layer of PDMS between the mold and the desired 

substrate, but the solvents were not particularly helpful to maintaining the PDMS 

silicon substrate bond. Non-uniformities in the post-shrink positioning of the molds 

would always cause the released pillar to be at a random non-uniform spacing instead 

of a predictable, fixed pitch. This undermined the use of a fixed lithographic mask 

set for electrical contacts, as they would be impossible to mate to pillars fabricated in 

this process without significant tolerances being designed into the contacts.  

Similarly, the variations in flatness of these molds meant that without a good 

mechanism for the etch back or removal of excess PDMS or conductive flexible 

polymer film, the pillars would likely feature shorts bridging the array of pillars 

together. This investigation made it clear that a successful molding method must rely 

on a planar material that can be mechanically, rather than chemically, separated to be 

successful in the release process without negatively impacting the flexible polymer 

material. 

C. Silicon Based Pillar Molds 

Silicon based mold became the focus of the investigation for a method of 

producing mold to cast flexible polymer pillars, following feasibility problems found 
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with softer mold materials. In particular, the molding methods using soft materials 

like polystyrene produced irregularly spaced pillars that would not align well to 

lithographically-generated contact patterns, while other materials proved too difficult 

to produce the desired mold patterns successfully. This decision was made only after 

assessing the accessibility of methods for selectively deep etching hard planar 

materials such as glass or ceramics with the necessary etch ratios, and even 

considering current state of the art 3D printing platforms. Silicon is at the heart of the 

semiconductor industry and research has been focused on process techniques 

surrounding silicon for half a century making it a material from which to develop a 

process. 

1. Bosch Etching of Molds 

When determining the best route for creating deep narrow voids in silicon 

substrate for mold fabrication, three possible processes stand out. First, selective wet 

etches such as KOH (potassium hydroxide) and TMAH (tetramethylammonium 

hydroxide), which preferentially etch along certain crystal planes; second, dry etch 

processes designed for deep silicon etching; and third, photo- or laser-induced 

electrochemical etches. While the first of these methods is not sufficient to produce 

arrays of deep vertical circular features in silicon, the second and third are. As a deep 

reactive ion etching system was available in the UCSB Nanotech cleanroom and no 

well-characterized photo electrochemical etching system was readily available to 

investigate, the decision was made to focus the investigation on a dry etch technique.  
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Deep reactive ion etching, also called Bosch etching after the company’s initial 

patent of the process in 1994, is a cyclic plasma etching technique that can produce 

near vertical sidewalls in large and in particularly small dimensions. The process is 

briefly described in relation to the nanoporous alumina membrane fabrication 

process scheme where it is also used, but will be examined in greater detail in these 

sections as the etch process scheme required to generate flexible polymer molds 

presents particularly interesting technical challenges. These challenges are associated 

with the aspect ratio as well as the desired depth of the etch in the case of fabricating 

the pillar molds in silicon.  

The Bosch deep reactive ion etching process depends primarily on a directed 

chemical and kinetic etch of argon and SF6 that supplies reactive free radicals of 

Fluoride. These radicals react to covert silicon into volatile SiF4 which is then 

exhausted through the exhaust valve and low vacuum pump. This process on its own 

would lead to undesirable non-vertical results, as the etch would be only partially 

anisotropic depending on plasma conditions. However, this standard etch chemistry 

is combined with argon and a fluorocarbon chemistry such as C4F6 or C4F8 to 

isotropically passivate the exposed surface silicon bonds with fluorocarbon 

compounds. In industry, such etch and passivation chemistries are applied in 

different ratios during multi-step etching processes to achieve the desired, consistent 

etch profiles. In the case of the Bosch etch process, the two processing steps are 

applied in a sequential loop. The anisotropic nature of the etch combines with the 
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isotropic nature of the passivation step to produce near vertical sidewalls with very 

identifiable surface scalloping on those sidewalls in most instances.  

Mask materials used to define areas that will be protected from the etch process 

include dielectric materials that are stable to SF6 as well as other materials such as 

photoresists. Due to chamber contamination issues, etch stops or hard masks made of 

metals rather than oxides are prohibited in Bosch silicon deep reactive ion etching 

systems such as the one used in this investigation. Depending on the mask material 

being used, photolithography alone or photolithography along with dielectric 

deposition and reactive ion etching or wet chemical etching may be required to form 

the required etch mask. In the case of silicon dioxide or silicon nitride masks, a 

plasma etch chemistry of CF4 and O2 or CHF3 and O2 can be used to transfer the 

resist pattern into the dielectric hard mask. 

2. Limitations of Bosch Etching 

In general, the Bosch etch is a very useful technique for etching deep patterns 

into silicon either of large surface areas or small finer positive or negative features. 

Such uses include die-sized windows in silicon handles, thinning away complete 

silicon support substrates at a larger scale, etching small patterns to make voids, or 

removing unpattern bulks to leave hard masked pillars behind.  Limitations on the 

Bosch process that occur when large areas are exposed to the etch process can be 

troubling. These include the loading down of the etch such that a uniform density of 

fluorine radicals is unable to reach the surface of the etch. Such effects lead to 
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sculpted etch areas which gradually curve up near the edge of the etch area and tend 

to be more pronounced at the edges of the wafer.  

Additionally, as mentioned in the nanoporous alumina membrane fabrication 

scheme, grassing can be a significant problem for large areas where etch rate may 

slow down due to loading. Grassing refers to the formation of micro scale heavily 

passivated silicon spires, which feature sharp vertical topographies and as a result 

continuously experience greater passivation depositions than the etching species are 

able to remove. As a result, these spires appear to grow from the surface as the 

surface bulk is removed. Conditions allowing grass formation ultimately roughens 

the etch area with dense fields or “forests” of passivated silicon spires that the etch 

leaves behind. Most often, chemical residues on the wafer under etch or 

contaminates in the etch chamber from a previous run using excesses amount of 

passivation can be blamed for these events.  

In the case that small areas are being exposed to the etch process, plasma loading 

and grassing as described above become much less of an issue. Small exposed areas 

and a low overall fraction of unmasked surface material ensures that sufficient 

reactant species are available to maintain the etch process and hinder these issues. 

However, other issues emerge under these circumstances, particularly at deep etch 

depths and narrow cross-sections.  

The greatest limitation to the Bosch etching process for these processing scheme 

is the role gas transport plays in narrow etch cross-sections and at high aspect ratios. 

For etch features larger than 100 microns and even for short etch depths of hundreds 
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of microns at smaller feature sizes etch rate in the standard Bosch process recipe is 

stable and the limitations due to gas transport are not generally observed. However, 

for cross sections at or below 100 microns and at etch depths like those approaching 

the thickness of a standard 100mm wafer (~526 microns) gas transport limitations 

play a major role in determining the etch profile and etch rate.  

Essentially, etch rate as well as passivation rate drop as gas transport into the 

deepening feature being etched becomes the limiting factor. While a bulk etch rate 

for the standard etch process might be around 2 microns of silicon per minute of 

active Bosch etch process time, that rate might drop to 0.7 microns of silicon per 

minute of etch time at several hundred microns into a 100 micron diameter etch 

feature. Additionally, as etches become slightly sloped rather than vertical while 

small deep cross sections are being etched, the features can grow wider than desired 

or narrower than desired as the etch proceeds into the silicon bulk. The effect can 

become so pronounced that a through etch of small features in a silicon handle may 

never finish while the hardmask is intact. This can happen if the passivation step 

slowly narrows the etch cross-section down to nothing or at some depth into the 

etched feature the passivation process begins to overwhelm the reactive etch species 

reaching the bottom of the etched feature.  

These effects are particularly detrimental in cases where the etch cross-section is 

completely limited, such as when etching small circular cross-sections, and becomes 

much less of an issue where a narrow dimension exists only in one dimension, such 

as when a trench or street shaped cross section is being etched.  
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3. Bosch Etch Process Tuning for Narrow Deep Features 

In many ways it is understandable that an etch technique designed to vertically 

etch silicon bulk primarily to sculpt MEMS structures would run into difficulties as 

gas transport, something for which the fixed repetitive process was not designed, 

becomes a limiting factor. However, by tuning the process parameters, the Bosch 

etch process can be corrected to cleanly etch deep narrow features, even at depths 

deeper than that of standard wafers such as 1-1.5 mm. Two easily accessible knobs 

that can be accessed to optimize the etch include gas flow rates used in the cyclic 

process steps and etch step length. Additionally, chamber pressure and applied RF 

power are two more variables that can be altered. However, due to the cyclic nature 

of the plasma process and the stress put on the RF components, these two variables 

were not modified from the standard process conditions. Either an extension of the 

active etch time or an increase in the flow of supplied SF6 etch reactant supply gas 

will increase the etch rate of the Bosch process as it etches deep features. In 

particular, a 30-50% increase in gas flow coupled with a 30% increase in etching 

time are sufficient to etch through 1mm thick wafers with etch patterns of 100um in 

diameter. These changes are made without reductions to Argon carrier gas flow or 

decreases in deposition process time; the cycle length is extended and the overall gas 

flow is increased. While a decrease in passivation gas flow or a decrease in 

passivation deposition time could also result in improved etch performance for the 

desired etch features, these changes could be detrimental to the performance of the 

Bosch etch, particularly shortening the overall cycle time, which would additionally 
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stress the matching network and other RF components whose response times are 

already at their limit during the standard Bosch process.  

To effectively etch the required 1mm deep features, several different modified 

recipes were created which feature different degrees of etch enhancement. As an etch 

proceeds, more aggressive etches can be applied to further the etch depth while 

limiting the undesirable effects of more aggressive etch processes. Extending this 

concept, a more complex etch process recipe might slowly alter or morph etch 

conditions as the count of the etch cycles and etch time increases. This could provide 

the optimal etch cycle length and reactant gas flow as the etch deepened to keep 

etching vertically at a reliable etch rate. However, as such a complex etch recipe 

would approach the limits of the Bosch deep reactive ion etch system and be difficult 

to characterize, this additional experimentation and the ultimate fine tuning of the 

process was not carried out. 

While grassing and other debris formation mechanisms play a lessor role in 

narrow etch features that do not load down the plasma process, such effects do play a 

role and can lead to defects that can partially or completely block a small number of 

the individual features being etched. This effect can diminish the yield of pillar voids 

in completed mold arrays as well as lead to irregularly shaped pillar voids that can be 

slower to etch and from which it can be difficult to release cast pillars. To pre-clean 

the chamber and minimize these issues, an automated pure O2 dry etch recipe was 

created as a cleaning sequence using similar process conditions to the standard Bosch 

process. This was done so that a patterned wafer being processed could be loaded 
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into the Bosch etching system following the automated clean without moving in and 

out of manual operation mode or needing to wait for forced temperature ramps to be 

enforced on the Bosch deep reactive ion etcher’s electrodes. 

4. Limitations Due to Hard Mask Etch Selectivity 

No matter the quality of the etch recipe or recipes involved, areas where bulk 

silicon removal is not desired must be protected. At a minimum, every 

etch/deposition cycle will etch away exposed silicon, particularly over large surfaces 

where gas transport is not an issue. Unless a masking material is completely 

invulnerable to etching by the chemical SF6 etch as well as the kinetic argon etch of 

the Bosch etching process, the hard mask will slowly be etched away cycle by cycle. 

The ratio or difference between the etch rate of the desired material being removed, 

in this case silicon, and the masking material is referred to as the etch ratio or the 

etch selectivity between the two materials.  In silicon device processing, etch ratios 

between masking materials and materials being etched might be as low as 1:1, but 

when etching deep features, producing incredibly thick masking layers is impossible. 

If an etch is allowed to proceed after having removed the patterned hard mask 

material, the wafer will begin to be thinned in the exposed areas and plasma loading 

will begin to affect the etch rate of the areas where the etch is desired to proceed. 

The most common masking materials for the Bosch deep reactive ion etching 

process are silicon dioxide and silicon nitride which have etch selectivities of ~200:1 

and ~100:1 with respect to the etch rate of silicon in these conditions. While these 

are good selectivity values, even when using silicon dioxide a 200 micron deep etch 
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would require at least 1 micron of masking material to avoid the etch back of the 

bulk silicon located under the hard mask. Similarly, a 1mm deep etch would require 

at least 5 microns of silicon dioxide hard masking material to complete the etch. 

While 5 microns of silicon dioxide can reasonably be deposited on a wafer or 

thermally grown in the case of a virgin silicon wafer, this amount is only sufficient to 

protect the masked surfaces long enough for large features not effected by gas 

transport issues to be etched through to a depth of 1mm. The etch recipe tuning 

process described above results in etches with less passivation and greater etch 

speed, thus, in addition to a narrow feature requiring more etch time, the etch rate of 

the hard mask facing the aggressively tuned recipe is further increased. Several 

means of producing a hard mask capable of meeting the demands required to etch the 

desired narrow features to an etch depth of 1mm were investigated. As silicon nitride 

has a poorer selectivity than silicon dioxide it was excluded from the investigations. 

The growth rate of thermally grown silicon dioxide is limited by two mechanisms. 

The first of these is a reaction rate, which is limited as oxygen freely reacts with 

silicon to form silicon dioxide and the second is the diffusive transport rate of 

oxygen through formed silicon dioxide as it reaches towards the next available layer 

of silicon to react with. This diffusion transport rate quickly becomes the limiting 

factor when thermally growing thick layers of silicon dioxide and increases so 

quickly that a few microns can take days to grow under optimal conditions while 

thicker layers would take weeks. As a result, 6+ micron stacks of silicon dioxide 

used in investigating the molding process had to either be produced by PECVD 



 

 

 

 71 

(plasma enhanced chemical vapor deposition) alone or by beginning with as much 

thermally grown oxide as possible and then adding to the grown layer with additional 

PECVD deposited oxide. As thermal oxide provides better selectivity it would have 

been preferable. Silicon dioxide stacks of 15+ microns approach the depth of hard 

mask material needed to complete the desired mold etch without widespread etch 

breakthrough in the masked areas. Unfortunately, at the silicon dioxide thicknesses 

required, patterning the silicon dioxide hard mask layer becomes difficult to 

complete in a single step process as many etch recipes to cleanly pattern such a 

thickness of SiO2 will tend to combust the patterned photoresist long before etching 

through the full thickness of the SiO2 being etched. 

Additional hard masking stacks were also investigated that might provide an 

easier processing route or lead to a better quality etch. These included hybrid stacks 

of silicon dioxide and photoresists. In these cases, the remaining photoresists that had 

been used to pattern the silicon dioxide layer were left in place to be the top of the 

hard mask stack and initially slowed the consumption of the hard mask during the 

Bosch deep reactive ion etch. Using standard resists of thicknesses up to 11 microns 

such as thickly spun SPR 220-7 and 6-10 micron silicon dioxide layers, the hard 

mask stacks held up relatively well but were not able to completely remain intact for 

the necessary duration of the mold etch. One further improvement to this scheme was 

the replacement of standard resists with built into the silicon dioxide hard mask with 

a structural resist, SU-8, that is more robust to the SF6 etch chemistry employed and 

can be spun to produce much thicker layers. SU-8 has a tendency to delaminate from 
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surfaces, particularly when heated. This detrimental impediment to its use as a hard 

mask layer was addressed with the addition of a spun Omnicoat adhesion layer 

between the silicon dioxide base of the hard mask stack and the SU-8 layer of the 

stack.  The addition of the Omnicoat layer also allowed the SU-8 hard mask film 

remaining at the end of the silicon etch to be removed with stripper, (Microposit 

1165) exposing the more uniform remaining silicon dioxide masking layer which is a 

better surface for casting and releasing polymer pillars. 

While these hybrid silicon dioxide and SU-8 dielectric stacks were capable of 

protecting the majority of the wafer surface, defects in the SU-8 layer which would 

form during the silicon etch would leave groves and holes etched into the silicon 

substrate. Additionally, delamination and enhanced hard mask consumption by the 

silicon etch at the edges of patterned areas would lead to broken mask corners and 

blown out areas of the pillar molds. These effects would result in irregular, wider 

features being etched into the upper parts of the silicon mold as the etch progressed 

and the exposed edges of the hard mask were consumed.         

5. Angled Hard Mask Re-deposition 

Two critical enhancements were required to overcome the widened features 

caused by enhanced removal of hard mask material at the edges of etch features as 

discussed above. First, a more selective hard mask was required to limit the problem. 

Second, a method was required to protect the area immediately below the hard mask 

surface so it would not be significantly etched into while the more aggressive etch 

recipes were applied to finish etching through the silicon remaining at the bottom of 
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the pillar volume. Due to the aggressive etch rate near the mouth of the etched 

features during the aggressive etch, both of these enhancements were required and 

neither would be successful alone. 

After extensive investigation of possible methods to achieve these enhancements, 

it was determined that alumina could be used as a hard mask. While pure aluminum 

was not an acceptable hard mask due to chamber contamination concerns, 

nanofabrication facility staff eventual approved the use of alumina films in the 

facility’s Bosch silicon deep reactive ion etch system. Alumina, with an etch 

selectivity of 10,000+:1 in a standard SF6 based Bosch process, can be an incredible 

etch stop or hard mask material. The availability of alumina meant that nanometers 

rather than microns of hard mask material could be used to protect the surface of the 

silicon mold wafer. Complementary to the approval and successful tests verifying the 

etch selectivity of alumina in the deep silicon etch process, the availability of an 

ALD (atomic layer deposition) tool capable of depositing high quality alumina films 

enabled a transition to alumina as the hard mask material for forming the silicon 

molds. A stack of alumina, silicon dioxide, and alumina (50nm/3um/50nm) was 

chosen due to deposition limits imposed on the available ALD system. 

Despite this structure, the alumina hard mask stack still suffered from 

undercutting in later portions of the silicon mold etch. Re-application of the hard 

mask, and particularly application of the hard mask onto the upper side walls of the 

etched holes in the silicon mold, was required. Standard methods of deposition and 

patterning were, however, impossible in this instance. If the base of the etch was 
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deposited with alumina and it was not selectively removed, the remaining silicon 

etch couldn’t proceed. Additionally, few methods exist for protecting the extreme 

base of a deep feature to allow selective deposition on side walls and clean removal 

of the protecting material. A resist could be spun and then ashed back to a point at 

which it would only be present at some depth into the etch void, but deposition of a 

dielectric onto the surface and into the voids would entomb the resist under a layer of 

the deposited material or otherwise limit options for the removal of the resist. 

Chemical routes by which a hard mask might be deposited on the side walls would 

tend to operate at high enough temperatures to bake the remaining resist inside the 

mold voids.  

One elegant solution to these problems is the electron beam evaporation of a 

dielectric onto a partially etch silicon mold wafer while the wafer is placed at an 

angle and rotated along its axes. Such a method, while uncommon to many process 

flows, takes advantage of the existing geometry that the mold etching process 

generates and uses the geometry as its own shadow mask. This innovative solution 

can thus cover any desired amount of already etched silicon mold depth through the 

adjustment of the angle at which the wafer is placed with respect to the source 

pocket. The deposited material masks both the patterned surface as well as the upper 

portions of the mold voids which see the greatest undercutting. As alumina is a far 

more economical source material than the metal organic alumina precursors used in 

ALD, thick lower quality depositions of such hard mask material can be deposited 
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using a dedicated dielectric electron beam deposition chamber with the correct 

tooling for angled rotational handling of substrates, if such a chamber is available.  

It is worth noting that the facilities used during the completion of this work did 

not possess such a dedicated chamber with the necessary tooling and that, as a result, 

remasking deposition runs could only be carried out immediately before complete 

preventative maintenance measures were going to be carried out on the available 

metal deposition chamber with the necessary tooling in order to avoid excessive 

particle or flaking contamination issues. 

In combination, a hard mask containing alumina and the above described 

masking technique (see Figure 14 and Figure 15) enables the fabrication of pillar 

mold voids sufficient for successful pillar releases. While it is possible to generate 

molds without using alumina as an initial hard mask, the process requires thick layers 

of silicon dioxide in place of the alumina. This necessitates the use of SU-8 as a 

patterning hard mask and a release coating due to the long silicon dioxide patterning 

etch required. For this reason, the use of alumina both in the primary masking step 

and the secondary re-masking step is heavily preferred. 
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Figure 14. Pillar Fabrication Scheme using SiO2 and SU-8. 
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6. Bosch Etch Completion and Debris Removal 

Using the techniques described above, including customized etch process recipes 

during Bosch silicon deep reactive ion etching, patterned hard mask stacks 

containing alumina, and the reapplication of a second hard mask onto the surface and 

sidewalls of the patterned partially etched wafer before continued etching, complete 

etches through 1mm silicon wafers in 100 micron diameter mold voids can be made 

(see Figure 16, Figure 17 and Figure 18). As debris or over passivation can cause the 

etch rate of some features being etched to slow, even when employing pre-cleans on 

Figure 15. Pillar Fabrication Scheme using Al2O3 wherever possible. 
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the etch chamber, it is necessary to over-etch beyond the point that a few mold voids 

open all the way through the wafer thickness. In order for complete arrays to be 

etched, it is necessary to etch until almost all arrays on the wafer have completed 

etching. As additional over-etching can begin to rapidly expand the bottom on the 

etch at the interface of the silicon mold wafer and the carrier substrate, it is useful to 

minimize over-etching to only the amount necessary. For this reason and others 

discussed earlier, the use of a glass substrate is preferred. This provides a stable 

carrier which can be left attached to the silicon mold wafer while continuing to etch, 

as well as when using transmission microscopy to inspect the mold for complete, 

incomplete, or debris containing features as the etch is finished.  

 

 

Figure 16. Diced cross section of fully Bosch etched 1mm pillar mold. 
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Unlike the fabrication scheme for nanoporous alumina membranes, the etch used 

in this case does not need to stop on a thin delicate membrane. However, excess 

Figure 17. Diced cross section of partial Bosch etched pillar mold. 

Figure 18. SEM cross section of pillar mold showing necking and footing. 
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over-etching will cause expansions, or feet, to form at the bottom of the etched 

features. These feet will make it impossible to extract cast pillars from the mold in 

one direction, as they will act as anchoring structures causing the pillars to neck and 

break rather than release. In the case that a single side-polished wafer has been used, 

the rough bottom surface will then necessarily become the only interface that can be 

released from and will be imprinted and transferred during the release of cast pillars. 

Ideally, narrowing pillars are best for insertion and implantation into tissues. Thus, 

eliminating footing and ending with a narrowing etch is preferred and also allows the 

polished side of a single side-polished wafer to be used as the interface for the cast 

pillar release minimizing film at the interface. 

7. Mold Sidewall Preparation and Release Layer Deposition 

A successful release between the surfaces of the silicon mold and the cast 

polymer is critical to producing a complete array of full height pillars. Adhesion 

between the silicon mold and the pillars can cause the pillars to narrow and break at 

the base of the mold while in the release process. This occurs because the surface 

area of the interface between the cast pillars and the silicon mold is very large 

compared to the narrow cross section where the force releasing the pillars from the 

mold is applied. For instance a 100um diameter, 1mm deep silicon pillar mold would 

have a surface area of 314000 square microns while the cross sectional area that the 

releasing force is being applied to would only be 7850 square microns, a factor of 40 

times smaller. If the adhesion between the silicon molds is anywhere near the 
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strength of the bulk cast polymer film, the pillars will always neck and tear at the 

base being pulled on rather than releasing. 

When cured against silicon or silicon dioxide, PDMS forms very stable bonds 

such that in some cases, bulk PDMS can be torn apart rather than delaminating from 

a silicon or silicon dioxide substrate it has been cured against. To minimize adhesion 

at the interfaces between the cast pillars and the silicon mold, a form of passivation is 

needed. The already existing thin fluorocarbon passivation layers deposited during 

the Bosch silicon deep reactive ion etching process, while helping to diminish 

adhesion forces, are not sufficient.  

A Teflon like fluorocarbon passivation layer is required to diminish unwanted 

adhesion between the cast polymer and the silicon mold surfaces and improve the 

release process. While many possible candidate molecules exist that could reduce 

adhesion and stiction (the static friction that must be overcome to have relative 

motion between objects), fluorocarbon molecules that can be chemically attached to 

the sidewalls of the silicon mold as a monolayer are used. Given the need to coat the 

vertical and horizontal surfaces of the mold and ensure that the chemical attachment 

occurs along the internal surfaces of the molds, MVD (molecular vapor phase 

deposition) is used to coat the molds. The chemical selected to reduce adhesion and 

stiction is FDTS (Perfluorodecyltrichlorosilane), which contains a long fluorocarbon 

tail that hosts 17 fluorine atoms and a chlorosilane head that is very reactive and can 

attach to silicon surfaces.  
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To prepare the silicon molds, the molds are separated from the glass carrier and 

from the areas of the processed wafer that do not contain molds. These molds are 

then solvent cleaned with acetone isopropanol and deionized water to remove 

vacuum grease and debris that might be attached to or inside the molds. To remove 

the fluorocarbons left by the mold fabrication process and prepare the silicon surface 

for the vapor deposition of FDTS, the molds are subjected to a long O2 plasma 

ashing process burning away all the carbon based materials on the molds and 

activating surface bonds on the silicon. The ashing process is repeated twice in 

succession, and in between the molds are inverted so that all surfaces are exposed to 

the ashing process. In addition to this, an inductively coupled plasma reactive ion 

etch using oxygen can also be employed before the solvent cleans. However, this is 

generally not necessary and requires vacuum grease to keep the molds mounted 

during the etch, potentially further contaminating the mounted side of the molds 

while cleaning the top surfaces of passivation molecules. 

Given the limited time that the O2 plasma ashed silicon mold’s surface remains 

reactive, it is preferable to immediately transfer the molds to the MVD chamber and 

start the FDTS deposition process with haste. In the event that a whole wafer full of 

molds is being prepared, placing the molds on one or two clean carrier wafers 

without any vacuum grease or adhesive can substantially increase the speed of the 

transfer between the ashing chamber and the MVD by decreasing the number of 

items that need to be individually transported from dozens to two easily transported 

carrier wafers. It is also useful at this stage of the fabrication process to separate 
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clean high yielding molds and dirty damaged molds so that sets of known good 

molds can be prepared and stored together in preparation for polymer film casting. 

MVD provides a low pressure environment where heated FDTS can be released 

as a vapor which can then deposit itself on the surface of the silicon mold and the 

chamber’s interior. While the adsorption of the molecular monolayer is initially a 

physical phenomenon, the reactivity of the chlorosilane group ensures that chemical 

attachments occur. After a 20 minute deposition process, the samples are exposed to 

a 110C bake to increase the amount of chemical bonding and are inverted and 

returned to the MVD for a second exposure which coats the previously unexposed 

surface. One final bake is applied to react the bonds from the second vapor 

deposition, and the silicon molds are then ready to use or store for future molding 

use. The FDTS coating on the finished silicon molds has proven very stable under 

standard storage conditions provided containers are sealed from dust.   

D. Casting and Releasing Pillars from Molds 

Once the silicon molds have been fabricated, flexible polymer pillars can be cast 

and released (see Figure 19, Figure 20 and Figure 21). The following section 

describes different casting and releasing strategies that have been investigated using 

PDMS as starting material, and ultimately describes the creation of biologically 

compatible conductive pillars using PDMS. Other polymers that could be similarly 

cast are not discussed.  
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Figure 19. Optical image of released 1024 pillar PDMS array. 

Figure 20. SEM image of released PDMS pillars illustrating array uniformity. 
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1. Casting Pure PDMS Mold 

This casting process calls for the preparation of PDMS. First, the Sylgard 184 

base component is measured out and then 10% by weight of the activator component 

is added. The two component system is vigorously mixed in a plastic cup or metal 

weighing dish, preferably with flat sidewalls that don’t trap material. The mixing 

process is meant to distribute the activator component homogenously throughout the 

viscous solution but will also trap air bubbles. These are removed with a vacuum 

desiccation of at least 20 minutes. One continuous desiccation can be employed, or 

alternating periods of vacuum and re-pressurization can be used. In the case of 

mixing a large volume of PDMS, it is best to observe the vacuum desiccation as the 

Figure 21. SEM image of pillar highlighting necking and remasking region. 
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expanding solution being degassed can run over the container. Similarly, small 

containers being degassed also need to be watched when being pressurized as these 

may be thrown around the desiccator by the pressure change.     

If molded pillars are desired which are backed by a bulk of PDMS, a mold can be 

placed in the container with a second flat and preferably polished FDTS treated piece 

of silicon below it. Then the PDMS can be degassed and re-pressurized repeatedly 

until bubbles stop appearing from within the mold voids. The FDTS treated silicon 

substrate allows the top of the polymer pillars to easily be separated from the thin 

film between the two pieces using a razor blade at a low angle shearing the tops of 

the pillars along the film interface. Without this substrate it would be necessary to 

remove the bulk of PDMS under the mold before releasing the pillars and this 

process could easily cause the tops of the pillars to be torn off when removing the 

bulk.   

Once the mold no longer contains trapped air bubbles, the silicon mold voids are 

completely filled with PDMS. If a backing of silicon is desired it can be placed on 

top of the mold after being activated in O2 plasma. The rough side of a single side-

polished piece of silicon wafer is preferred as the increased surface area improves 

adhesion between the cured PDMS and the substrate. The further down into the 

PDMS the pillar backing piece is pressed, the thinner the film at the base of the 

pillars will be. Pressing the pillars all the way into the mold will result in a very thin 

film, which may not be continuous, so adhesion may be limited by the area of the 

pillars attached to the substrate.       
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The PDMS must be cured before it can be released. In order to induce strain into 

the pillars to make the release process more reliable, the mold and PDMS can be 

cured at 150C for at least 10 minutes such that it will contract at room temperature. 

Additionally, freezing the mold and PDMS after baking them can further help 

separate the pillars from the sidewalls of the silicon mold. After curing and freezing 

the PDMS and silicon mold, the two or three pieces of silicon along with the PDMS 

between them can be cut away from the rest of the cured PDMS. The FTDS treated 

piece is then cut free of additional PDMS at the edges and a razor blade or scalpel is 

used to pry up the piece free. The thin interface layer of PDMS is removed by using a 

blade at a low angle, shearing the tops of the pillars along the film interface as 

previously described.  

Releasing the independent pillars from the silicon mold requires cutting all 

PDMS from the edges of the mold and working a thin blade around the edges until 

the PDMS film begins to separate from the mold on all sides. This is much easier in 

cases where a thick film exists between the mold and releasing substrate or that when 

there is no releasing substrate and the pillars are connected to a bulk of PDMS. In the 

event that a very thin to non-existent layer of PDMS is between the mold and 

releasing substrate, this can be a very delicate and difficult process. Too much force, 

and a blade may slip all the way in between the mold and the releasing substrate and 

cut the pillars from the releasing substrate, rendering them useless inside the silicon 

mold. When the mold is loose, two thin blades can be introduced to either side of the 

mold and slightly inserted into the juncture. The two blades can then be pried up 
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together to cause the mold to lift away from the releasing substrate vertically. Prying 

with a single blade on a single edge or corner of the mold can cause the mold to lift 

at an angle catching the pillars inside and causing them to be torn from the releasing 

substrate. 

It is worth noting that while PDMS is capable of being drawn and narrowing 

without being torn apart, it is always advised that the wider side of the mold face the 

releasing substrate and the narrowing side face the FTDS treated silicon substrate in 

case the mold is not entirely vertical or either end of the mold has been expanded by 

footing or widening under the hard mask during the Bosch silicon deep reactive ion 

etching process. 

2. Casting Metal Loaded Molds 

As the goal of this process is the creation of conductive flexible polymer pillars 

for use as neural recording electrodes, development of a conducting polymer or 

hybrid material was required. In most cases where siloxane based rubbers that 

conduct are required, such as for flexible electronics applications, metal particles or 

carbon black have been blended into the mixture homogenously before curing.  

These materials become very viscous and easily trap gases when they are being 

mixed. Often, use of such materials requires a press to extrude the material into the 

desired shape before curing as well as a static mixer to combine the PDMS and the 

particles without introducing trapped bubbles. Without such machinery or a way to 

combine the developed molding technique with them, working with metallic particle 

filled PDMS mixtures is very difficult.  
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Commercial carbon black filled siloxane elastomers as well as silver particle 

filled blends found in literature were investigated. Both were very difficult to mix by 

mechanical stirring, and also extremely difficult to degas and load into the silicon 

molds. Resulting pillars that were successfully released would only conduct partially, 

(see Figure 22) while others would be cast with areas missing conductive filler or 

contained trapped air bubbles or other forms of insulating voids. As a result, neither 

path of investigation resulted in particularly conductive pillars or bulk films. In the 

case of filling with silver particles, the particles would tend to fall out of suspension 

or at least away from cast interfaces leaving an insulating surface. The use of 

solvents to mix the PDMS and fill particles without introducing bubbles was also not 

successful as degassing the solvent after mixing never resulted in a product that 

would successfully cure. It is assumed that part of the compounds involved in 

crosslinking the polymer were vacuumed off before the solvents. These issues might 

be overcome with static mixing techniques and injection press molding methods, but 

those are not applicable in a lab setting. Given the techniques available, casting 

particle filled mixes of PDMS proved unmanageable due to viscosity and trapped 

gases.  
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3. Casting Magnetically Loaded Molds 

Magnetic guidance of ferromagnetic particles, and in particular nickel particles, 

has proven incredibly useful in overcoming difficulties related to casting PDMS 

containing conductive fill particles. The application of a strong magnetic field can be 

used to draw nickel particles contained within PDMS into a silicon mold. This effect 

can also be used to increase the local density of nickel particles within and near the 

silicon mold while helping to displace gas bubbles and volumes of PDMS without 

nickel.  

Magnetic guidance has been investigated for loading wires directly into through 

silicon vias[4]. While this initially appeared directly applicable to these investigations, 

Figure 22. SEM of partially and fully conductive fill loaded PDMS pillars. 
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wire segments of the dimensions required to be loaded into the center of pillar voids 

in the silicon molds were not able to be directed into the position. It was only when 

migrating to magnetic particles instead of magnetic rods that magnetic guidance 

worked with the molds. 

Several different PDMS nickel formulations were investigated including different 

loadings of nickel particles as well as different sizes of particles. These included both 

50 micron as well as 5 micron powders of nickel and ~45 micron sliver coated nickel 

powders. Loadings of 33% and 50% metal powder by weight were also investigated. 

Experimentally, it was determined that the finer powder of nickel combined with the 

higher fill percentage provided the most conductive resulting pillars. This finding is 

due to the higher densities of particles overcoming the percolation threshold for 

conduction. While not investigated, it is likely that even denser loadings of smaller 

particles of nickel would provide greater conduction. Loadings above 50% nickel in 

PDMS have not been extensively examined as they can be difficult to mix and 

magnetic guidance already tends to increase the effective loading in the pillars. 

As the magnetic guidance process is rather complex and differs from the standard 

pillar casting process, a complete description is provided at the end of this work. Key 

differences are stated and explained below. 

The FTDS treated silicon substrate is taped down at the center of an alumina dish 

with the polished side up using double-sided Kapton polyimide tape. This keeps the 

substrate in place so that it is easier to maintain the alignment and position of the 

mold and correctly position the releasing substrate. The PDMS mixture is first mixed 
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and degassed, then nickel powder is added and mixed in and again degassed before 

being applied to the mold. Whenever the mixture of PDMS and nickel is added to the 

silicon mold, a neodymium magnet is applied to the underside of the alumina dish 

and moved back and forth across the mold area driving additional nickel into the 

mold. The magnetic particles in the PMDS cause the mixture to act as a ferrofluid, 

(see Figure 23) and each movement of the magnet guides the particles into the mold 

voids. The PDMS-nickel is deposited on the FDTS coated substrate and prior to the 

mold being placed, then PDMS-nickel is applied to the top of the mold after it is 

positioned. Because of the high viscosity of the PDMS-nickel after each application 

of PDMS-nickel and magnetic guidance, the mold is then degassed with the magnet 

directly underneath the aluminum dish aligned with the mold’s location. This process 

of adding PDMS-nickel followed by magnetic guidance and degassing is repeated 

four times which helps overcome the viscosity of the mixture, remove trapped 

bubbles, and completely fill the pillar voids in the mold. As the PDMS-nickel is 

guided across the surface of the mold, it is drawn into the mold and PDMS free of 

nickel accumulates at the edges of the expanding PDMS-nickel pool in the alumina 

dish. Over these repeated magnetic guidance movements, the nickel in the mold 

voids becomes locally densified. As the motion of the magnet guiding the nickel 

drags the PDMS as well, the silicon mold can slip off the FDTS coated substrate. 

The mold must be realigned while being kept in plane to avoid introducing bubbles 

or displacing compacted nickel in the mold. After the final degassing step, a 
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releasing substrate that has been activated with O2 plasma can be aligned and placed 

directly over the filled mold. 

 

 

Magnetic guidance of dry nickel powders into a prepared mold without PDMS 

followed by the addition of PDMS or PDMS-nickel have not resulted in releasable 

pillars. This is because only an insufficient amount of siloxane elastomer is able to 

get into the pillar voids in the mold to facilitate the release as the nickel particles are 

unable to deform when they are tightly packed together. 

4. Removal of Excess Cast Film 

The PDMS-nickel film within and above the mold can be conductive, therefore it 

is important that individual pillars be isolated from each other so that they can be 

used as independent neural recording electrodes. As the PDMS-nickel film is gray 

and does not transmit light, the cast film layer above the pillars can make the pillar 

impossible to locate on the surface of the mold, which makes alignment of the pillars 

Figure 23. PDMS-Nickel acting as a ferrofluid while under magnetic guidance. 
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to a particular position on a releasing substrate difficult. Both of these difficulties are 

overcome by blading off the PDMS-nickel film on top of the mold once the magnet 

has been withdrawn. Finally, to ensure good contact is made between the releasing 

substrate and the bare mold surface, pressure can be applied downward onto the 

mold to extrude small hills of dense nickel filled PDMS just above the pillar voids in 

the mold. These bumps ensure good contact with the releasing substrate when it is 

contacted against the mold and minimize the chance of air gaps between pillars and 

releasing substrate that could hinder the full release of the pillar array. The complete 

mold casting scheme, (see Figure 24) while complex, is quite novel and overcomes 

the many challenges discussed. After the blading process, some PDMS-nickel can 

remain as a film on the surface of the mold but it will not contain enough nickel to 

cause shorting between the released pillars even if the surface of the mold being used 

in the release is unpolished (see Figure 25). 
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Figure 24. Magnetically guided mold casting scheme. 
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5. Deposition of Biologically Compatible Conductive Gold Layer 

Nickel is cytotoxic and not biologically compatible, and this is unacceptable 

when considering the proposed use of this pillar molding technique. Platinum, gold, 

silver, and titanium would all be far more biologically compatible materials but they 

cannot be guided magnetically. By plating nickel in a more compatible material such 

as silver or gold, the biocompatibility of the electrodes can be greatly improved. This 

process of plating can either occur before the powder is used or after the pillars are 

cast and released. In the event that individual particles are plated, a chemical 

formulation is preferred while with the completed pillars electroplating is also an 

option. In the case of the devices shown here an electroless cyanide free gold 

deposition solution is applied to a released pillar array that has been ashed in O2 

Figure 25. Nickel loaded flexible conductive pillar electrodes. 
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plasma. The nickel that is directly exposed at the surface of the pillar is plated in a 

fine layer of gold improving the biocompatibility of the pillar array.    

E. Alignment and Electrical Contact with Wireouts 

To make use of the flexible conductive polymer pillars as neural recording 

electrodes, it is necessary to connect them to a conductive interconnect or a wireout 

or directly place them on open pads on a CMOS chip. These wireouts can then run to 

contact pads that can be connected to recording systems. This section briefly 

describes alignment methods and different types of wireouts that have been aligned 

to fabricated pillars for demonstration purposes.    

While 1mm tall molds with up to 1024 pillars have been fabricated on silicon 

substrates using methods already described, demonstration of conducting neural 

recording pillars has focused on easier to align 16 pillar systems. These slightly 

smaller and lower density arrays still maintain the prerequisite 1mm recording height 

required for implantable devices. Additionally, a 16 pillar 4x4 array with a 400 

micron pitch is the same size, count, and density as those Utah recording electrode 

arrays most often used in simple animal based studies. 

1. Fabrication of Small Gold Wireouts 

Wireouts designed to be compatible with dual hemisphere animal studies were 

designed after consultation with Ray Rui Ma and the Neural Interaction Lab directed 

by Todd P. Coleman at UCSD. These featured contacts for two 16 pillar arrays, with 

one per hemisphere as well as contact pads to mount a 34 pin interface that could be 



 

 

 

 98 

mated to the recording head stage used in their animal studies. This design was used 

to produce conducting wireouts of titanium and gold on glass. These were used to 

verify pillar to contact pad conductivity (see figure 26) as well as to verify that the 

pillars and wireouts did not contain shorts. 

 

 

2. Alignment of Small Gold Wireouts 

Alignment between the pillars and these wireouts were carried out with two 

different mechanisms. The first was a custom built assembly that hosted spring clips 

attached to a frame that would hold glass slides of 75mm length over a three axis 

mechanical alignment stage. The wireout was taped to a 35mm x 75mm glass slide 

with a small amount of double-sided Kapton at either end, and then activated with O2 

Figure 26. Flexible conductive pillar electrodes on gold wireouts for testing. 
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plasma being mounted in the assembly facing downward. A prepared mold and 

FDTS treated substrate not adhered to the aluminum dish was made. After excess 

PDMS-nickel was bladed off and the mold was depressed so that a slight bump of 

PDMS-nickel extended from the pillar voids in the silicon mold, it was placed on the 

alignment surface. While under a microscope, the stage was then quickly 

manipulated into alignment with the matching contact locations and driven up into 

hard contact. Continuing to use the microscope, good alignment and contact was 

verified and the stage was slowly brought down. The PDMS-nickel left on the 

surface is sufficient to keep the mold in place while the alignment stage is lowered 

and the aligned stack of mold and wireout are extracted and inverted. The bake and 

release process then proceeds normally with the caveat that the extraction process be 

carried out with great care so as not to cut the metal lines on the wireout surface.  

The second method for alignment of the mold to the gold wireout required a flip 

chip bonder. The Finetech Fineplacer Lambda was used for this alignment. The 

standard PDMS-nickel mold preparation process was used including taping the 

FDTS treated substrate to the aluminum dish. The gold wireout was picked up by the 

placing arm of the Fineplacer after being activated with O2 plasma and inverted. Due 

to size restrictions, the aluminum dish holding the mold was cut down to a size just 

larger than the substrate and then placed under the Fineplacer. The mold was aligned 

on the Fineplacer stage to match the positioning of the wireout held on the arm and 

the two were bonded. In the bonding process, the arm lowered the wireout onto the 

mold and then applied pressure as well as heat from both under the substrate as well 
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as above the wireout. The cure at 150C occurs on the Fineplacer, providing no 

opportunity for the alignment to slip before the cure starts unlike the previously 

described method using a custom assembly. Once cured, the arm is released and the 

pillars can be released from the mold following the standard process while being 

careful not to damage the conductors on the wireout. 

3. Fabrication of Multi-Electrode Arrays 

To further demonstrate the use of the fabricated pillars as neural recording arrays, 

they needed to be integrated with a head stage designed for neural recording. A 

Multi-Channel Systems MEA2100-System recording system was chosen as a 

platform. This particular system included a 120 channel head stage and pin interface. 

After examining several 120 electrode multi-electrode arrays produced by MCS and 

receiving a technical drawing of the contact pads in their 120 electrode arrays, 

compatible multi-electrode arrays were designed and fabricated (see Figure 27). 

These used 100 micron electrode contacts which are equivalent in size to the 

fabricated pillars, as well as a 400 micron pitch matching the 16 pillar molds and 

arrays.  
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The fabricated multi-electrode arrays were made using electron beam deposited 

titanium and platinum and a liftoff process using nLOF 2020 or nLOF 2070 

photoresist and standard processing recipes. Liftoff was carried out using heated 

stripper (Microposit 1165) at 70 degrees for several hours and low intensity 

sonication in a heated bath was also employed in cases where liftoff was 

problematic.  

Figure 27. Custom 2 layer MEA (multi-electrode array) design. 
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To make the most economical multi-electrode arrays possible two different 

possible dielectrics were investigated. Similar materials to both of these are used in 

different MCS multi-electrode arrays. Due to its ability to be directly patterned and 

used as a dielectric, SU-8 was initially investigated. This avoided the deposition and 

etching process usually required when putting down and opening contacts through a 

dielectric layer. SU-8 2025 was spun to a thickness of 20 microns and patterned to 

provide openings to the electrode contact array as well as the pad ring.  

Following this process, a cylindrical well like those found in MCS multi-

electrode arrays was fabricated. Standard media wells are composed of glass, but 

wells produced for these arrays were fabricated from PMMA (Poly(methyl 

methacrylate)) resin using a FormLabs Form 1 3D printer. To attach the PMMA 

rings to the multi-electrode array already patterned with SU-8, the ring was partially 

dipped into additional SU-8 and then flood exposed and hard baked to seal the ring 

in place.  

Delamination of the SU-8 layer from the multi-electrode array eventually 

occurred when the wells were left filled with aqueous biological buffer and 

maintained under incubation conditions for one week. Even with the addition of 

Omnicoat and slowly ramped hard bakes, the SU-8 patterning process employed was 

not compatible with the conditions required to culture neurons.  

While more costly, low stress silicon nitride was used to replace patterned SU-8 

as the dielectric layer in the multi-electrode arrays. 860nm of silicon nitride was 

deposited using a dual frequency PECVD produced by Advanced Vacuum. This was 
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patterned using nLOF 2020 or nLOF 2070 and a standard processing recipe. A 10 

minute, CHF3/O2 ICP RIE plasma etch was then used to open the pattern in the 

silicon nitride layer and the photoresist was stripped off with stripper (Microposit 

1165).  

Given the delamination issues already experienced with SU-8, unpatterned 

PMMA resin was investigated to bond the silicon nitride dielectric to the printed 

PMMA ring. The bottom half of the ring was dipped into PMMA resin and then 

mounted to the silicon nitride layer. The PMMA resin was then exposed to a low 

power 350nm UV source for 24 hours to crosslink the resin.  

The PMMA resin attachment bond held for longer than the SU-8 bond previously 

employed, however some of these devices also delaminated from the silicon nitride. 

Ultimately, commercial Loctite marine epoxy was used to replace SU-8 or PMMA 

resin to form a stable, biologically friendly, and watertight bond between the PMMA 

ring and the silicon nitride substrate.      

4. Alignment on Multi-Electrode Arrays 

As the prepared PDMS-nickel filled mold has to be directly contacted to the 

electrodes of the multi-electrode array, the alignment, bonding, and release of the 

pillars from the silicon mold onto the multi-electrode array must precede the 

attachment of the PMMA ring. The previously described alignment methods are not 

compatible with the fabricated multi-electrode array. This is because the multi-

electrode array is 50mm x 50mm in size. This is beyond the dimensions the custom 

assembly can accommodate as well as larger than the Fineplacer can safely pickup 
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while its optics are centered on the electrode contact area that needs to be aligned. A 

SUSS MJB3 contact aligner was used in place of these two methods. This takes 

advantage of the 50mm x 50mm size of the multi-electrode array. The multi-

electrode array is vacuum sealed to a small mask vacuum plate and set in the system 

after being activated by O2 plasma. The prepared mold stack on the bottom of a 

cutout aluminum dish is set on a 50.8mm x 75mm glass slide for easy handling and 

transport to an oven after contact alignment is complete. The contact aligner is used 

to align the bladed mold surface with the multi-electrode array looking down through 

the glass and silicon nitride. The mold is brought up into hard contact with the 

electrodes at the center of the multi-electrode array. Once good contact is visible in 

the optics of the aligner (see Figure 28), the vacuum holding the multi-electrode 

array is cut and the multi-electrode array left resting on the mold. The whole stack 

can then be lowered away from the vacuum plate, extracted from the aligner, and 

carefully transported to a waiting oven at 150C for the 30 minute cure. Care must be 

taken while releasing the cured mold both to make sure the release is vertical and to 

avoid damaged to the wireout. Once cured, the cylindrical well can be manufactured 

and attached, resulting in a completed demonstrative conductive flexible polymer 

electrode array integrated into the custom MEA (see Figure 29) that is ready for 

biological testing and recording. 
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Figure 28. Custom MEA aligned to prepared mold and ready to bond. 
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IV. Testing and Experimental Demonstration of Fabricated 

Alumina Nanoporous Membranes  

The following chapter covers experimental investigations associated with ion 

pumps as well as selective ion pumps and selective chemistries. Both planar devices 

as well as through plane devices are discussed. Alumina nanoporous membranes 

fabricated using the scheme discussed earlier are demonstrated as research 

instruments for experimental studies. Limited selectivity between the biologically 

meaningful cations potassium and sodium are shown using alumina nanoporous 

membranes fabricated as a stable scaffold to host deposited selective chemistries.  

Figure 29. Completed custom MEA with flexible conductive pillar electrodes. 
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A. Investigations with Planar Devices 

Following the work of Joakim Isaksson first published in Nature Materials[2], 

similar planar PEDOT:PSS devices were fabricated. Eventually, these initial 

investigations were followed by lithographically defined devices featuring both 

PEDOT:PSS and SU-8 layers that were patterned. These could be modified to feature 

gaps free of PEDOT:PSS and were capable of supporting potentially ion selective 

transport materials rather than regions of over- oxidized PEDOT:PSS. 

The stability of these devices, and particularly the delamination associated with 

the interfaces of the PEDOT:PSS layer greatly limited their use. A number of 

different formulations of PEDOT:PSS and reactive saline terminated molecules 

designed to improve adhesion were investigated including formulations with DMSO 

(Dimethyl sulfoxide) to provide extra doping. Momentive Silquest A187, a 

polyepoxysilane, was found to improve adhesion when spun down before 

PEDOT:PSS or when co-mixed and spun. Immediate activation of a glass or silicon 

surface in O2 plasma just before application of PEDOT:PSS was also found to 

improve adhesion and limit delamination over time due to hydration. This did not 

require the use of reactive polyepoxysilanes.  

1. Testing of First Generation Planar PEDOT:PSS Devices 

The first generation of these devices had wells 5.5mm away from the over-

oxidized or selective regions (see Figure 30). When testing these with a potential 

applied between the two bodies of PEDOT:PSS and over-oxidized PEDOT:PSS in 

the ion transport region, currents for salts such as one molar KCl in the wells were 
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equivalent with currents when deionized water was in the wells. This led to the 

finding that diffusion of ions through the PEDOT:PSS was very slow. This could be 

overcome with additional potential applied to the wells to cause field driven 

transport of ion into the PEDOT:PSS layer, but this is not ideal for a device pumping 

into or out of intercellular fluids.  

 

 

2. Testing of Second Generation Planar PEDOT:PSS Devices 

As diffusion of ions across the PEDOT:PSS limited ion transport across the 

junction, a second generation of devices was designed and fabricated with the wells 

nearly adjacent to the transport region (see Figure 31). These devices displayed 

currents with 1M salt solutions two orders of magnitude larger than with deionized 

water. Testing the ion transport selectivity of materials using these planar devices 

Figure 30. First generation long channel PEDOT:PSS planer pump. 



 

 

 

 109 

proved difficult as the SU-8 tended to delaminate from the PEDOT:PSS that became 

hydrated over time. Additionally, the narrow spacing between the wells that was 

necessary to avoid the diffusion limitations of the PEDOT:PSS made loading of 

potential ion selective transport chemistries difficult. Any time these materials come 

into direct contact with a salt solution, transport currents may become very high and 

irregular as leakage paths formed under, over, or through the material. 

 

   

Several other materials polymers were also investigated to replace PEDOT:PSS 

such as TCNQ (Tetracyanoquinodimethane) and Polyaniline. These materials did not 

produce reversible oxidation reduction curves in salt solutions, making them 

impossible to use repeatedly in a biphasic device without further refinement.  

Figure 31. Second generation short channel PEDOT:PSS planer pump. 
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B. Investigations with Non-Alumina Membranes 

As planar devices had numerous issues related to delimitation and leakage paths, 

due to the devices construction that was in plane with the direction of ion transport 

and applied field, devices that transport ions through plane were considered. These 

have several benefits compared to planar devices. First, they can be made very thin, 

so less applied potential is needed to generate the same electrical field across the 

device. Second, material interfaces are perpendicular to and not in line with the ion 

conduction path, limiting the risk of delamination. Third, arrays of devices may be 

built using a single plane of stacked materials and lithographic patterning techniques. 

While the alumina nanoporous membrane fabrication scheme was being 

developed, other porous membranes were investigated for their potential use in an 

ion transport device. These included porous polycarbonate membranes as well as 

silicon nitride membranes with 1 micron holes. 

1. Holey Silicon Nitride Membrane Windows  

The silicon nitride membranes were purchased from Norcada’s selection of holey 

nitride membrane windows for TEM use. These windows were 500 microns by 500 

microns in a silicon handle and contained an array of 1 micron holes at a 10 micron 

pitch. PEDOT:PSS was spun across the membranes and characterized to ensure that 

spun PEDOT:PSS films could form over small openings of one micron or less (see 

Figure 32 and Figure 33). This characterization included SEM (scanning electron 

microscopy) imaging using an FEI Sirion SEM as well as a FEI FIB (focused ion 

beam) milling system. The SEM was used to capture top down images of the surface 
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texture and uniformity of the cured PEDOT:PSS film while the FIB was used to mill 

away half of a film covered hole in the window region to determine the thickness of 

the bridging film, and to determine if the hole had been filled. This analysis indicated 

that the spun PEDOT:PSS films did not fill the holes in the membrane, but rather 

bridged the surface. This is important as it indicates that conductive cores of 

PEDOT:PSS do not form when spun over porous membranes, ensuring that ions 

rather than electrons will be transported between two spun layers of PEDOT:PSS 

sandwiching a porous membrane. Given the fragile nature of these porous nitride 

membranes meant for TEM studies, transport experiments with them were not 

investigated.  
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Figure 32. SEM of 40nm thick PEDOT:PSS layer spun across 1µm pores. 
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2. Track-Etched Polycarbonate Membranes 

Track-etched membranes of polycarbonate 13mm in diameter and 12um in 

thickness with 15nm pores were purchased from Whatman (Nuclepore Polycarbonate 

110401) for these experiments. The membranes were either treated with a crown 

ether (18-c-6) which was attached within the track-etch pores, or 40nm thick layers 

of PEDOT:PSS polymer electrodes were fabricated on both faces of the 

polycarbonate membrane.  

Figure 33. FIB / SEM image of 40nm cross-section of PEDOT:PSS film. 
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3. Polycarbonate Membranes with PEDOT:PSS 

In the case of the PEDOT:PSS prepared devices, single sided Kapton tape with a 

8mm hole punch through it was applied to both sides of the polycarbonate membrane 

before the PEDOT:PSS was applied and spun. Each side of the membrane was spun 

and then baked at 115C for 20 minutes. Following the final bake, the outer edge of 

the tape frame around the membrane was cut to remove PEDOT:PSS that would 

connect both sides together. These electrodes were made accessible for cell transport 

studies by the application of silver paint (silver in iso-butyl methyl ketone) 

(Electrodag 1415M), followed by the attachment of cut strips of aluminum tape as 

lead wires. The membrane was sealed in a two-well solution cell by two 1mm thick 

PDMS gaskets made using Sylgard 184. The gasket was laser cut, and window size 

was a diameter of 5mm for each gasket. The cell (see Figure 34 and Figure 35) was 

made of two milled Teflon blocks containing the solution wells. This cell and similar 

cells sharing the same PDMS gasket assembly stack and operating principles were 

also used for demonstrative investigations of the fabricated anodized alumina 

nanoporous membranes discussed in Chapter II and later in this chapter. 
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Figure 34. Two chamber Teflon testing cell. 

Figure 35. Disassembled Teflon chamber with gaskets and nanoporous sample. 
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0.01M solutions of KCl, NaCl, and CaCl2 solutions were transported across the 

membrane stack using both a fixed potential (I*t) and a cyclic potential (CV). These 

potentials were applied either from directly across the two PEDOT:PSS PH1000 

layers on either side of the polycarbonate membrane (see Figure 36) or from 

Ag/AgCl electrodes 1.5mm from the membrane residing in each well (see Figure 37). 

The experiment was run at 2 volts as well as 4 volts. CV times were 300 seconds per 

cycle and fixed potential times (see Figure 38) were 400 seconds. 

  

 

 

 

Figure 36. CV plots of double-sided PEDOT-PC-PEDOT pump with potential 

applied to the PEDOT layers. 
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Figure 37. CV plots of double-sided PEDOT-PC-PEDOT pump with 

potential applied to the salt solution in the chambers via Ag/AgCl electrode. 
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The CV measurements taken across the PEDOT:PSS layers indicate that the 

PEDOT layers are functioning in their transport of ions under applied voltage 

conditions. Additionally, these measurements show that the PEDOT:PSS on its own 

is not selective to NaCl, KCl, or CaCl2. When voltage is applied across the 

PEDOT:PSS and the oxidation-reduction reaction drives transport, KCl is slightly 

enhanced in line with its higher mobility in water while CaCl2 does not show a 

doubled current despite its two electron charge. This is likely because the transport is 

limited by the rate of the oxidation-reduction reaction within the PEDOT:PSS layers. 

Figure 38. I(t) plots of double-sided PEDOT-PC-PEDOT pump with 

potential applied to the PEDOT layers. 
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Under passive operation, when voltage is applied to electrodes within the wells 

the carriers must drift across both the PEDOT layers and internal gaps within the 

polycarbonate nanopores. In this case, the current is higher as the applied voltage is 

not diminished by contact resistance to the PEDOT:PSS layers and CaCl2 has double 

the current of NaCl and KCl reflecting its two electron charge. If the PEDOT:PSS 

was not oxidizing and reducing to transport carriers in the first plot, it would mirror 

the curves in the second plot. 

As stability with planar PEDOT:PSS devices was a major early challenge, 

extended timed current plots at a fixed voltage were taken. To maintain the 

PEDOT:PSS in a neural and non-depleted state, these measurements were taken at 

alternating fixed negative and positive voltages for 400 seconds in each direction per 

salt solution being investigated. The data was then converted to an absolute current 

value and the runs for each salt were averaged. These repeated measurements all 

show an initial decay before settling at a fixed current level. This implies that while 

there is an immediate impulse potentially associated with PEDOT:PSS directly over 

the nanopores, the transport rate eventually stabilizes. Furthermore, this repetitive 

extended experiment at 4 volts does not cause degradation, delamination, or 

hydration as these would have resulted in increasing curves rather than stable curves. 

From these results, it is clear that nanometer thick layers of PEDOT:PSS can be 

spun on the fronts and backs of nanoporous membranes to produce double-sided ion 

pumps. Given this finding, the other component of a selective electrically gated ion 

pump, namely selectivity between cations, is the focus of the remainder of this 
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chapter. Additionally, due to the ease of processing PEDOT:PSS to make an 

electrically gated ion pump as described, the demonstrative investigations carried out 

using the anodized alumina nanoporous membranes produced using the developed 

fabrication scheme primarily focus on investigating chemistries for cation selectivity.   

4. Polycarbonate Membranes with Crown Ether Functionality 

Hydroxymethyl-18-crown-6 and hydroxymethyl-15-crown-5 were both 

functionalized onto track-etched polycarbonate membranes working from the 

carboxylic group available for attachment. 

Once the functionalization was complete, the membrane was rinsed in ethanol to 

remove crowns that were not attached, then rinsed in deionized water. The 

membrane was carefully extracted from the solution and rolled flat between two 

PDMS gaskets with 5mm diameter openings as described earlier and placed in the 

two-well Teflon testing cell. Ag/AgCl electrodes were placed in each well as 

described earlier to apply voltage and record current measurements. 

Both hydroxymethyl-18-crown-6 and hydroxymethyl-15-crown-5 were attached 

to track-etched polycarbonate porous membranes following the same 

functionalization method described above. Neither functionalization produced stable 

results that differed significantly from control samples of track-etched polycarbonate 

porous membranes. Additionally, subsequent investigations of the samples tested 

after different intermediate steps in the functionalization process, such as O2 plasma 

treatment and heating, showed temporary changes from the control similar to those 

that the functionalized membranes exhibited. From these investigations, the 
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conclusion is drawn that these monolayer functionalizations are either unsuccessful, 

unstable, or do not block a significant enough portion of the pores to produce a stable 

noticeable effect. These results limit the potential for further investigations of 

selective chemistries using polycarbonate track-etch pores. 

Due to the fragile nature of the polycarbonate membranes, as well as the low 

compatibility with many solvents, these membranes are less useful than alumina 

based membranes. Additionally, it is not possible to easily lithographically pattern 

tracked etched polycarbonate membranes, making feasible multi-channel devices 

difficult to envision. 

C. Investigations with Fabricated Nanoporous Membranes 

Due to the stability of alumina as well as the nanoporous nature of the 

membranes developed, the alumina nanoporous membranes are an excellent tool for 

investigation of ion transport properties through materials under applied electrical 

fields. The silicon support structure makes these devices easy to handle, 

functionalize, and experiment with. Additionally, these nanoporous alumina 

membranes may also be useful as a scaffold for investigations of biological or 

biologically inspired organic membranes.  

1. Attaching Chemistries to Nanoporous Alumina 

In order to investigate ion transport using nanoporous alumina membranes, 

chemistries of interest needed to be integrated into the pores’ volume, along the sides 

of the pores, or as a film across the surface of the membrane. Direct attachment to 
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the nanoporous membrane can occur immediately after fabrication or after post-

fabrication treatment with ALD to grow alumina to narrow the diameter of the 

nanopores. If attached chemistries are significantly shorter than the radius of 

nanopores, hydration paths can exist that will present a considerable contribution to 

observed currents and will effectively diminish signals presented by the chemical 

under test.  

2. Surface Functionalization of Nanoporous Alumina  

Two primary routes have been used to attach molecules of interest to the alumina 

pore surface. The first of these methods is the direct attachment of molecules that 

contain triethoxysilane or trimethoxysilane terminations. As methoxy groups are 

slightly more reactive than ethoxy groups, trimethoxysilanes are preferred. However, 

both terminations are sufficient for the needed reaction. A variety of means exist to 

react a target molecule of interest with these termination groups, but these are outside 

the scope of this work. The other method is to terminate a molecule of interest with 

an OH bond and prepare the alumina surface with a molecule containing both an 

isocyanate group and a triethoxysilane or trimethoxysilane termination group. In this 

case, the attachment points off of the silane react with the alumina surface while the 

isocyanate reacts with the OH bond of the target molecule.   

As both of these routes rely on the same ethoxysilane or methoxysilane 

terminations in order to react, the alumina surface can be prepared in the same 

manner for either route of functionalization. The nanoporous alumina array is 

activated using O2 plasma for 5 minutes (100mW, 300mTorr O2) and is then placed 



 

 

 

 123 

in 30% reagent grade hydrogen peroxide for 30 minutes. Following this step, the 

nanoporous alumina array is dried on a hotplate or in a heated vacuum oven to 

remove all water content from the array before proceeding with the reaction. The 

plasma activation is used to clean the surface of organic material as well as break 

surface bonds, this in turn promotes the attachment of OH groups onto the surface of 

alumina when exposed to hydrogen peroxide. As ethoxysilane, methxoysilane, and 

isocyanate bonds are reactive to water, the drying step is necessary anytime an 

aqueous solution, such as hydrogen peroxide, is employed before functionalization. 

However, this is not required if the hydrogen peroxide step is skipped and the sample 

is plasma activated and immediately functionalized. 

For other forms of alumina as well as some other oxide materials, this sort of 

preparation activity could be carried out using sulfuric peroxide, also known as 

Nanostrip (buffered form), or Piranha. However, the alumina phase and porosity 

generated by the anodization process make it an ill-advised process as membranes 

being prepared in this manner tend to be significantly degraded. 

3. EthoxySilane- MethoxySilane- Direct Attachment  

In the case of direct attachment, the terminated molecules of interest are generally 

too large to deposit and attach as a vapor. Therefore solution phase functionalization 

is the only possible route. Depending on one’s intent, solutions anywhere from pure 

or neat material to micro-molar concentrations can be prepared. Hydrophobic or 

flexible linker molecules with single or double ended attachment points can be added 

to solutions to increase the hydrophobic nature of the product material, as they will 
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be co-deposited. Additionally, diluted HCl can be added to solutions to enhance the 

rate of the reaction, but this can lead to materials reacting in the solution phase rather 

than on the nonporous alumina surface.  

Single monolayers of molecules can be attached using micro-molar 

concentrations in dry solvents that will not react with methoxy or ethoxy groups such 

as dry ethanol, dry methanol, dry DCM (dichlorometane), or Hexafluoroisopropanol. 

Samples should be placed in degassed vials of such solutions and the reaction must 

be allowed to proceed overnight without heating. After the reaction is completed, 

unattached molecules can be rinsed off by application of additional fresh, non-

reactive solvents. Using ALD shrunken pores, this method can form pores with 

molecules of interest across the remaining pore diameter. 

Thicker, non-monolayer films can be formed using higher concentrations of 

molecules of interest in solutions that are allowed to condense on the surface and into 

the nanopores or the alumina array. Using a vacuum oven, the solution is slowly 

heated up to 110C while under no more than 25 inHg vacuum pressure. Solvents 

under these low pressure conditions tend to easily wet the alumina nanopores 

facilitating the transport of the molecules for functionalization. As the solvent is 

removed by evaporation, thermal energy reacts with the ethoxysilane or 

methoxysilane bonds, calcinating them and forming a network from the alumina 

surface outward within the pore diameter and also across the alumina membrane 

surface. The formation of films, as well as monolayers, is possible as the 

ethoxysilane and methoxysilane bonds can react with themselves given proper 
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conditions. Ideally, the surface is reacted and additional molecules bond with the 

initial layer until the whole network is indirectly attached to the surface. The addition 

of H2O can promote the formation of bonds between ethoysilane or methoxysilane 

groups similarly to the application of HCl to the prepared solution.  

4. Isocyanate Linker Based Two Part Attachment 

Using an isocyanate based linker molecule which contains ethoxysilane or 

methoxysilane bonds, such as (3-Isocyanatopropyl)triethoxysilane, is ideal for 

attachment of monolayers. This is because the OH bonds required to attach to 

isocyanate are not reactive with each other and because this reaction can be 

catalyzed. While the initial reaction of the isocyanate containing molecule could be 

carried out in a solution phase, the preferred method is to run the reaction in the 

vapor phase. Due to the small size of the linker molecules involved, vapor deposition 

is easily realized with a vacuum oven. As the transport and reaction kinetics are more 

favorable for the reaction than in the solution phase, this is particularly preferred to 

densely react linkers with the internal surfaces of the alumina nanopores. The use of 

these linkers has the additional benefit that OH terminated forms of molecules of 

interest will generally be smaller than triethoxysilane or trimethoxysilane terminated 

forms such that the solution phase transport of these into nanopores should be 

enhanced. 

To vapor deposit and react isocyanate containing ethoxysilanes and 

methoxysilanes, it is ideal that a small volume container with a chimney be used with 

a vacuum oven. This maximizes the vapor that is transported to the alumina 
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nanoporous film being functionalized. The samples that are to be functionalized are 

placed in a jig that suspends them above the bottom of the closed container. Critical 

to the design of the jig is the concept that the window which contains the nanoporous 

membrane is exposed from both sides and that the jig only provide support through 

contact with surfaces away from the membrane and window. Several generations of 

increasingly refined jigs have been produced, with the latest of these a custom 3D 

printed jig (see Figure 39) made from photo-patternable PMMA resin using a 

Formlabs Form 1 printer. 

 

 

In order to vapor functionalize a linker molecule to samples using this method, a 

100 uL to 200 uL volume of the linker molecule is added to the bottom of the 50 ml 

jar just after the jig with a prepared sample loaded on it is placed in the jar. The jar is 

immediately closed, except for the chimney, and placed in the vacuum oven. The 

oven is pumped and purged with N2 twice and is left pumping down at 50C for at 

least 30 minutes, while the vapor is physically adsorbed on the surfaces of the 

Figure 39. Model of 3D printed jig developed to assist in vapor deposition. 
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nanoporous alumina. The oven is then ramped to 110C and left at this temperature 

for one hour to drive the chemical calcination reaction of the bond on the surface of 

the alumina, and then ramped back down to room temperate. Before extraction of the 

reaction container and the samples, the system is again pumped and purged twice 

with N2 to clear remaining unbound excess linker molecules. 

After the attachment of the linker molecule, the OH terminated molecule of 

interest should quickly be attached. Due to the reactivity of the isocyanate group with 

water, leaving these samples in anything other than a completely dry environment 

will lead to the loss of reactive groups capable of bonding to the target OH 

terminated molecule of interest. Before the second reaction, the samples should be 

washed in dry solvent not containing OH bonds such as DCM. Following this, the 

samples can be transported into a prepared solution generally containing millimolar 

concentrations of the OH terminated molecule of interest in a dry solvent free of OH 

bonds. The second reaction should be allowed to proceed for 24 hours and can be 

enhanced with the addition of a catalytic amount of tributyltin. The attachment 

chemistries for both the direct one step method as well as the vapor deposition based 

two step method are shown (see Figure 40). 
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5. Atom-Transfer Radical-Polymerization Based Attachment 

One additional method that was examined for crown ether attachment to alumina 

nanoporous membranes was ATRP (atom-transfer radical-polymerization) based 

crown polymer attachment (see Figure 41). In this method, a repeated monomer 

containing a desired crown can be polymerized from the attachment surface inward 

toward the center of the nanopore. This technique relies on the same basic 

ethoxysilane attachment mechanism, but attaches an aminopropyl group which is 

then reacted to have a bromine termination. This termination can then be used in a 

copper based radical-polymerization reaction where the bromine is transferred to the 

end of each new crown ether monomer that attaches. This reaction is continued until 

either the monomer is depleted or the pores are filled.   

Figure 40. Ethoxysilane based methods for crown ether attachment. 
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6. Characterization of Ethoxysilane and Methoxysilane Attachments 

To ensure that attachment methods using ethoxysilane and methoxysilane 

terminated molecules did a good job of functionalizing the alumina surfaces in the 

nanoporous alumina arrays, a characterization experiment was carried out on a 

number of different types of materials using the same protocols. PDMS, alumina, 

silicon dioxide, and silicon nitride films were reacted following the above described 

vapor functionalization method, then properly rinsed and characterized. To provide 

further evidence of successful functionalization, as well as the intact functionality of 

the isocyanate groups, an OH and chlorine containing molecule was also reacted with 

some samples before the final rinse to provide an additional signal. XPS (X-ray 

photoelectron spectroscopy) was used to probe the surface of the films and determine 

elemental content as well as the presence of bonds associated with the attached 

isocyanate. This technique excites electrons using a focused beam of X-rays of 

known energy and then collects and analyzes the energies of emitted photos, 

Figure 41. Atom-transfer radical-polymerization based crown ether 

attachment. 
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allowing the binding energies of the source electrons in the surface material to be 

determined. This includes those valence electrons contributing to bonds between 

atoms. As a result, both elemental information as well as bond information can be 

extracted using XPS.  

XPS measurement scans on alumina samples as well as glass and silicon nitride 

all provide low carbon signals. Additionally, alumina and glass both also featured 

control measurements with low nitrogen peaks. By vapor functionalizing 3-

isocyanatepropyltriethoxysilane on these three materials, the ethoxysilane attachment 

routes for both the direct and two step vapor phase attachment chemistries were 

confirmed. Lower carbon content, as well as fewer C-O, C-N, and N=C=O peaks in 

the cases of glass and silicon nitride samples suggest that alumina is better able to 

react with and attach to using ethoxysilane chemistry. In the case of vapor 

functionalized alumina, (see Figure 42) significant carbon and nitrogen peaks are 

present which were not visible in the alumina control sample. Additionally, after 

fitting the bond energies that form the broadened C1s peak, (see Figure 43) the 

characteristic N=C=O peak from the now attached isocyanate is visible. Solution 

reactions of OH terminated chlorine containing molecules that were carried out after 

functionalization provided evidence that the attached isocyanates were able to react 

with hydroxides. This reaction effectively attached the chlorines to the sidewall via 

the attached ethoxysilane linker molecules and provided a good marker to confirm 

attachment as no other traces of chlorine were present in any samples. The results 

provide evidence that both functionalization routes are compatible with alumina 
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surfaces.

Figure 42. Wide scan of 3-isocyanatepropyltriethoxysilane functionalized 

alumina. 
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7. Trichlorosilane Attachment Chemistry 

Chlorosilane attachment chemistry is often used in literature for attachment of 

molecules to silica or alumina surfaces. Chlorosilane based chemistry is at the heart 

of the reaction that attaches FDTS to silicon in order to reduce adhesion and stiction 

as mentioned in regard to the preparation of pillar molds. Unfortunately, the same 

strong reactivity which renders chlorosilanes useful also makes it difficult to prepare 

and maintain in an unreacted state. As the molecules used in this work were reacted 

to form desired terminations or entirely synthesized from obtained commercial 

precursors, the lab facilities available did not support the stable preparation, storage, 

or use of chlorosilanes. The use of chlorosilane based attachments would be a 

Figure P. Narrow scan of C1s bonds for 3-isocyanatepropyltriethoxysilane 

functionalized alumina. 

Figure 43. Narrow C 1s scan of 3-isocyanatepropyltriethoxysilane on alumina. 
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potential area for future work in demonstrating and improving the utility of 

nanoporous alumina arrays.  

8. Chemical Modification via Attachment Chemistries 

Using the attachment methodology described, the robust alumina nanopore 

membrane can be reacted to host many different kinds of functionality to produce 

desired hydrophobicity, pH sensitivity, or selective chemical binding. The possible 

functionality that can be added is only limited by the range of molecules that can be 

modified to work with one of the above attachment mechanisms.  

9. Anodized Alumina Pore Constrained Templated Meso-Silica  

While most often examined for its highly porous structure when produced as 

powder, templated meso-silica compounds can be combined with the nanoporous 

alumina membranes to add additional levels of functionality[5-7]. Meso-silica refers to 

a series of compounds primarily produced by reacting TEOS (Tetraethyl 

orthosilicate) with deionized water, a solvent such as ethanol, HCl, and a surfactant. 

Based on the evaporation rates of the solution, condensation of silica occurs slowly 

and in a templated fashion due to interaction with the surfactant molecules. 

Depending on the concentrations and surfactants used, a large and interesting array of 

ordered porous films can be produced. Porosity is developed after film is condensed, 

and the surfactant is generally removed by combustion under 500C+ conditions.   

Like nanoporous alumina films, these meso-porous silica materials have large 

internal surface areas and can be functionalized using methods similar to those 
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already discussed for alumina. Additionally, as meso-silica is condensed from a 

solution, it is possible to directly incorporate different types of functional groups by 

adding them to the solution before it is condensed.    

Commercially produced porous anodized alumina disks with pore diameters of 

60 microns to 200 nm have been used to constrain condensing solutions forming 

meso-silica. The sidewall constraints have shown significant effects on the self-

assembly of surfactant and silica molecules, leading to the formation of ordered 

vertical nano pores within the condensed meso-silica.  

To investigate the possible combination of meso-silica within and across the 

fabricated nonporous alumina membranes produced, several meso-silica experiments 

were made focusing on co-condensation of functional groups. These included 

comparisons with commercial anodized alumina porous products known as 

Whatman Anodisc. 

To form the silica–surfactant nanocomposite precursor solution, a mixture of 

ethanol (0.16 mL), TEOS (0.24 g), and 21 uL of HCl aqueous solution (2.8 mM) was 

refluxed at 60 °C for 90 min. After this step was completed, ethanol (0.33 mL), 84 ul 

of HCl solution (55 mM), and CTAB (30 g) were added to the refluxed solution, 

which was stirred for 30 min. This process produced the precursor solution, which 

was then used immediately due to the reactive species present. 

Trimethoxysilane terminated 18-Crown-6 was produced and added to a meso-

silica precursor solution, which was prepared such that the mole fraction of the 

crown was 5% of the TEOS in the solution. The solution was made with TEOS, 
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ethanol, DI, HCl, and the cationic surfactant CTAB (Cetrimonium bromide). After 

the solution was prepared, it was applied to the nonporous alumina membranes and 

the other samples via their top surfaces while very light vacuum was applied to the 

region below the sample. This was done to ensure that the meso-silica precursor 

solution was drawn into the nanopore and that they were wetted. After 4 25 uL drops 

of precursor were deposited, the vacuum was cut and 4 more drops were added to the 

top surface. The samples were left to condense in enclosed environments with 

additional vials of ethanol to slow the evaporation and condensation process.  

To test different preparation and condensation conditions, a soluble potassium 

salt was employed to potentially assist with scaffolding arrangement of the crowns 

and solution. These were condensed both at standard ambient conditions with a 

supply of excess ethanol and under light vacuum (10 inHg) at an elevated 

temperature of 60C with a supply of excess ethanol. After the samples were allowed 

to condense for 15 hours, the samples were heated to remove the CTAB. 

Unfortunately, as the crown functionality was already condensed, it was impossible 

to expose the devices to 500C+ temperatures, as this would degrade the crown. 

Instead, the samples were baked under vacuum at 150C for 6 hours and then 

thoroughly rinsed in fresh ethanol to help remove the CTAB.  

Commercial anodized alumina porous membranes are structurally fragile and 

face difficulties being lithographically processed. Anodized alumina integrated into a 

silicon platform, such as in the fabrication scheme discussed, could be manufactured 

to specific pore sizes to best couple with the addition of functionally enhanced meso-
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silica to produce specialized functionalities that could then be lithographically 

processed. 

D. Demonstration of Fabricated Nanoporous Membranes as 

Investigative Instruments 

Using the nanoporous alumina membrane fabrication scheme, significant 

numbers of nanoporous arrays were manufactured. These were prepared with a 

variety of chemistries to demonstrate the investigative uses of the fabricated devices. 

In particular, these nanoporous arrays were treated with crown ether containing 

molecules and investigations relating to the enhancement of the selectivity of specific 

cations were carried out. A few of these are presented here showing clear cation 

selectivity across the nanoporous membranes while under an applied electric field. 

Each of these investigations used 0.01M buffered salt solutions and centered 

Ag/AgCl electrodes as discussed earlier. 

1. Investigation of Triethoxysilane Terminated 15-Crown-5 

While many different experiments with crowns were investigated, the most 

significant series entailed the use of triethoxysilane terminated crown eithers. These 

materials were deposited in a neat condition and allowed to penetrate the prepared 

alumina surface. The triethoxysilane groups allowed the crowns to both attach to the 

nonporous alumina sidewalls, and also react with each other to form a network. The 

first investigation of such a film that was both in the nanopores and covering the 

surface focused on 15-Crown-5 which was expected to be selective towards sodium. 
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By recording reparative cyclic voltammetry measurements for both KCl and NaCl, 

(see Figure 44) a strong variation in selectivity was noted with respect to applied 

potential. With the backside well held 1 volt above the front side well, sodium is 

selectivity preferential transported. In this case, sodium cations are driven through 

the crown filled nanopores and out the crown film. However, when the voltage is 

applied in the opposite direction so that cations are driven into the film and then into 

the nanopores below, the current ratio approaches the expected ratio for diffusion in 

water. Additionally, for some small voltages around 500mV in this direction, current 

ratios are preferentially selective to potassium cations. While only preliminary, these 

results suggest that there is a mechanism at work directing the way in which the 

population of 15-crown-5 molecules interact in the nanopores and within the thin 

film above them. 
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2. Investigation of Triethoxysilane Terminated 18-Crown-6 

Following the interesting results of the neat triethoxysilane terminated 15-crown-

5 experiments, the same procedure was used with 18-crown-6 molecules. In this 

case, positive voltages applied to the backside of the array with respect to the front 

side result in almost one to one current transport, (see Figure 45) which does not 

reflect the difference in mobility between potassium and sodium. In this direction, 

the cations should be transported from the backside into the nanopores and then out 

through the thin crown film layer. This makes the transport area that contains crowns 

and which can potentially interact with cations go from a small area in the nanopores 

to a large area in the film. Conversely, when the field is applied so that cations are 

driven into the film, through the crown containing nanpores, and then out the 

Figure 44. Current ratio of KCl to NaCl showing selectivity versus voltage. 
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backside of the array, the device becomes highly selective towards the preferential 

selective transport of sodium. Upon further analysis, it appears that rather than 

facilitating potassium transport under these applied field conditions, the 18-crown-6 

molecules inhibit potassium while allowing the normal current of sodium to be 

transported. It appears that in this configuration perhaps some form of partial 

hydration facilitates one to one transport when the field is applied in one direction, 

but a conformation change occurs which traps and slows potassium when the polarity 

of the field is reversed.  As only a unidirectional selectivity would be required for the 

envisioned gated selective ion pump motivating this work, a behavior such as this 

one but which was significantly inhibitory towards sodium rather than potassium 

would be completely functional for the design.  

 

 

Figure 45. Unidirectional selectivity between KCl and NaCl with 18-crown-6  
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3. Selective Hydration Effects of Triethoxysilane Terminated 18-Crown-6 

Following the observation of unidirectional selectivity favoring sodium transport 

in the triethoxysilane terminated 18-crown-6 experiment, additional investigations 

were carried out on the same sample. A series of current plots with fixed voltage 

steps was measured (see Figure 46). This time consuming testing method was used to 

attempt to determine exactly what the observed unidirectional selective behavior was 

and what it could be caused by. Using this method, voltages were fixed for hundreds 

of seconds at -0.5v, -1v, -2v, 0.5v, 1v, 2v, allowing a better view of the steady state 

behavior at each applied voltage. The whole experiment, which already included four 

repetitions in each measurement sequence, was then run multiple times for both KCl 

and NaCl in order to check stability. While the current stayed very stable and non-

selective when the voltages were positive, with cations moving towards the front side 

of the array from the backside, the results in the other direction varied significantly. 

The potassium measurements in the negative direction, with cations heading towards 

the backside of the device, remained at a constant current level. Meanwhile the three 

NaCl measurements trended towards higher and higher currents. Disassembly of the 

sample initially revealed a pristine film of crown material across the surface. 

However, as soon as the small amount of moisture remaining on the array surface 

evaporated, the whole area which had been exposed by the PDMS gasket to solution 

during the testing regime immediately began to pull away from itself and crack (see 

Figure 47). This occurrence further validates the hypothesis that hydration as well as 

voltage-directed realignment of the crown material is playing a major role in the 



 

 

 

 141 

observed selective behaviors. It is worth noting that before conducting these 

experiments, the functionalized and reacted film was crystal clear without any sign of 

stress or defects. Thus, the application of voltage, salts, and hydration must be 

directing the movements of the crown molecules enough that the reorganized 

material pulls itself apart when slightly dehydrated. 

 

 

 

Figure 46. Multi step potential measurements of KCl and NaCl. 
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4. Anodized Alumina Pore Constrained Templated Meso-Silica 18-

Crown-6 Experiment  

Following the protocol described earlier, a co-mixed meso-silica precursor 

solution was condensed in and across a prepared nanoporous alumina membrane to 

demonstrate the functionality of the combination of the two techniques. The resulting 

device showed a similar one to one and unidirectional selectivity result to those in 

the previous case. However, the voltage polarity under which these two phenomena 

occurred was reversed and the selective region was preferentially selective to 

potassium instead of inhibitory towards it (see Figure 48). Additionally, the 

inhibitory selectivity towards sodium at positive voltages (see Figure 49) and 

specifically at 500 mV produces the largest preferential selective ratio towards 

potassium of any among all the stable experiments that were measured.   

Figure 47. Cracking in TMS-18-c-6 surface film upon re-exposure to air. 
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Figure 48. Cracking in TMS-18-c-6 surface film upon re-exposure to air. 

Figure 49. Cracking in TMS-18-c-6 surface film upon re-exposure to air. 
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The difference between the behavior of the pure triethoxysilane terminated crown 

material and the 5% triethoxysilane terminated crown material in meso-silica is 

assumed to originate in the structural differences between the two materials. 

Hydration should not be impactful to the structurally stable meso-silica. Additionally, 

the change in behaviors may be contributed to by the self-ordering process that forms 

the meso-silica pores. These pores may be capable of templating along the alumina 

nanopores to form their own linear channels within the alumina nanopore film, but 

the material that reacts and forms meso-silica on the surface of the nanoporous 

alumina film may be very disordered. This could mean that it would be significantly 

easier for cations to travel into the bottom of the nanoporous alumina film rather than 

traveling in through the top disordered meso-silica surface.  

5. Trends in Triethoxysilane Terminated Crown Ethers 

The nanoscopic geometry of the alumina nanopores produced using the 

nanoporous alumina fabrication scheme enables some interesting field dependent 

selective transport behaviors. These behaviors are very different from the standard 

models of crown cation interactions that do not involve applied fields. As selectivity 

has been shown to vary with applied potential amplitude as well as direction with 

respect to the pore and crown film geometry, many different selective cation 

transport schemes could be developed to transport or concentrate a particular cation 

using only changes to the applied potential. Often devices with much simpler 

selective behaviors have to rely on conformational changes that occur by switching 
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pH, a condition that is not nearly as easy to change as voltage supplied across a pair 

of electrodes. 

E. Single Nanopore Studies  

Studies of single nanopores can also be used in transport investigations. While 

many methods of forming single nanopores, such as TEM milling, are expensive they 

can provide benefits complimentary to the benefits of nanoporous alumina 

membranes. While nonporous arrays can transport and provide similar functionality 

to nanopores, the huge population of nanopores in the case of a nanoprous film 

makes it much better at recording at low concentrations of species. Whereas a single 

nanopore might require a mole solution of a salt to attain measurable currents, a 

nanoporous film could operate at much lower salt molarities due to the parallel 

transport across the population of nanopores involved.  For the most sensitive of 

studies, single nanopores are excellent tools for gating or translocation events that 

would be impossible to distinguish among a population of parallel pores, but that can 

be observed in a single nanopore.  

1. Single Nanopore Investigation of Triethoxysilane Terminated 15-

Crown-5 

An investigation was carried out using triethoxysilane terminated 15-crown-5 and 

a TEM drilled nanopore in a silicon nitride / alumina / silicon nitride / alumina 

membrane. The exact membrane thicknesses were 15nm Si3N4 / 15nm Al2O3 / 15nm 

Si3N4 / 10nm Al2O3. As the membrane was formed using a Bosch etch, the bottom 
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alumina layer was used as a hard stop for the etch as it was completed. By burying 

the alumina, the top surface of the etch was left less reactive to ethoxysilane 

attachment. The drilled membrane was treated in Nanostrip (buffered sulfuric 

peroxide) for 15 minutes at 60C and then moved into a deionized water bath to 

remove the Nanostrip. Following this, the membrane dried and was mounted to 

aligned PDMS gaskets and placed in a Teflon jig. The sample was wetted in ethanol 

for 10 minutes while under vacuum desiccation. The jig was then set on top of a 

reservoir of dry ethanol that formed the bottom solution well, and the void inside the 

top of the jig was filled with dry ethanol to form the top solution well. The assembly 

was transported to an oven and heated to 50C with the top well sealed with PDMS to 

prevent evaporation. Once the solutions came to temperature, the jig was quickly 

extracted and a 5m molar solution of triethoxysilane terminated 15-crown-5 in dry 

ethanol was used to replace almost the entire volume of the upper well. It was then 

re-covered with PDMS and returned to the oven. Diffusion, as well as the 

concentration gradient, drove the crown through the nanopore and into the larger 

bottom well, while the silicon nitride on the top surface did not readily allow 

attachment of the crown. In combination, these two effects ensured that a significant 

amount of crown was transported across the membrane and had the opportunity to 

react with the exposed and activated internal alumina surface of the nanopore. The 

low concentration of crown involved ensured that the film that attached would only 

consist of a single monolayer and that a bulk film could not form. After 1 hour, the 
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jig was extracted and the solution in the wells was exchanged for fresh ethanol and 

then re-exchanged for deionized water.    

In order to examine the transport properties of the crown 1 Molar Tris-buffered 

salt solutions of KCl, NaCl, and CaCl2 at 7.6pH were employed. Measurements of 5 

minutes each were taken at 50 mV increments from 600 mV to -600 mV and then the 

recording process repeated 3 times each. While translocation or gating events 

appeared in all the data plots (see Figure 50, Figure 51 and Figure 52) that would not 

easily be observed individually in a many-pore system, no other trends appeared that 

are absent in the many-pore system. Similarly, the shape of data seen in nanoporous 

alumina experiments corresponded to the events and non-linear conductivities that 

are observed to occur after several hundred mV are applied in either direction.  
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Figure 50. Single nanopore with 1M CaCl2 with 600 to -600 mV fixed scans. 
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Figure 51. Single nanopore with 1M KCl with 600 to -600 mV fixed scans. 
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V. Testing and Experimental Demonstration of Fabricated 

Recording Electrode Pillars 

The following chapter covers experimental investigations associated with neural 

recording electrodes and similar pillar structures fabricated using the fabrication 

scheme and methods discussed earlier. This chapter’s investigations of the 

mechanical, electrical, and biocompatibility of the neural recording electrodes are 

also explored. Finally, a recording from living neurons taken using the produced 

electrodes integrated into a custom multi-electrode array and a MCS MEA2100 

Figure 52. Single nanopore with 1M NaCl with 600 to -600 mV fixed scans. 
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recording system is detailed. These investigations highlight the utility of the 

fabricated devices and demonstrate their potential for future neural recording studies. 

A. Mechanical Properties of the Neural Recording Pillars 

One motivation behind the creation of flexible polymer neural recording 

electrodes is that softer electrode pillars will cause a lessor immediate and long-term 

inflammatory response. Additionally, with a modulus closer to neural tissues, brain 

micro motion will not result in the trauma and death of immediately surrounding 

tissues. Both of these effects should lead to improved long-term recordings in 

implanted arrays. Therefore, the mechanical properties involved are investigated. 

1. Flexibility of Fabricated Neural Recording Pillars 

Because of the inherent elasticity of PDMS, the neural recording electrodes’ 

starting material, the pillars are extremely flexible. Once released from the mold in 

which they were cast, the pillars can be bent to 90 degrees and will return to their 

original shape and position without permanent deformation even when magnetically 

packed nickel content exceeds 50% of the weight of the pillars. 

2. Ideal Mechanical Behavior 

An ideal neural recording pillar would be ridged like silicon (Modulus of 200 

Giga Pascal) up to the point of being inserted through the Pia-arachnoid layer tissue 

membrane protecting the brain.  Upon breaching the last protective membrane, it 

would then immediately become much softer as it displaces the brain tissue it is 

being inserted into. Finally the pillar, after the completion of the insertion and once 
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the pillar had come to rest, would approach a modulus near 100 Kilo Pascal, which is 

the upper end of neural tissue modulus. While this is ideal, such a material would 

need to be able to significantly alter its mechanical properties over time, a difficult 

task given the triggering events entailed and the environment in which such a pillar 

would need to maintain its biocompatibility and conductivity.  

The proposed solution is the creation of a flexible pillar, which is tough enough 

to be inserted but not significantly more so than that. This solution leaves the pillar 

as soft as it can be while still being able to be inserted.   

3. Mechanical Behavior of PDMS Pillars and PDMS-Nickel Pillars  

Using a Hysitron Triboindenter Nanoindenter, the Young’s Modulus for the 

prepared standard PDMS used as a starting point for all pillar experiments was 

approximately 3 MPa. This value matches well with figures provided by Dow 

Corning for the standard composition of PDMS employed. As a follow up to this 

investigation, additional testing was carried out using a tensile testing cell and a 

linked laser micrometer. Strips of material were prepared containing different levels 

of linker as well as loadings of nickel particles. While all measurements (see Figure 

53) were similar, there was enhancement of the mechanical stiffness of the materials 

containing additional PDMS cross linker (activator). This is reasonable as additional 

cross linker provides the mechanism by which the polymer forms the extended 

network that provides its mechanical properties. Interestingly, loading of nickel 

shows a slight negative impact on mechanical stiffness. While this appears 

counterintuitive initially, this is reasonable given the testing conditions. Nickel which 
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replaces a given fraction of cross linked PDMS polymer acts as an inelastic solid. 

Under compression, this solid fill will clearly provide additional structure support. 

However, if this same material is provided a tensile rather than compressive loading 

force, the adhesion between nickel and the PDMS polymer rather than the inelastic 

mechanical properties of the nickel become prevalent. Essentially, the PDMS may 

overcome the adhesive force between itself and the engulfed nickel filled particles, 

pulling away from the otherwise mechanically solid elements within the volume. 

Given the nature of the test that was conducted, which drew upon strips of PDMS / 

cross linker / nickel composites and then measured their displacement versus force as 

they were unloaded back towards their initial length at zero displacement, it is 

understandable how this small deficit in mechanical stiffness results. Additionally, as 

the measurements were taken in larger volumes of composite PDMS, no simple 

mechanism to densify the mixed nickel to the same levels found in the magnetically 

densified pillar mold voids exists. 
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4. Possible Improvements to Mechanical Behavior of PDMS-Nickel Pillars  

The stiffness of the fabricated PDMS-nickel pillars may be improved with the 

application of permanent or temporary coatings to assist with insertion into the brain 

and Pia-arachnoid membrane.  

Permanent coatings such as SU-8, and particularly aerosol spray based 

formulations of SU-8 (Microchem SU-8 MicroSpray Photoresist Aerosol), are one 

possible route for increasing pillar stiffness. In this case, pillar tips could be left 

unexposed while the sides and substrate are exposed to a UV dose and developed to 

support neural recordings from the tips of the arrays while leaving a stiff support 

Figure 53. Tensile Young’s Modulus testing for different PDMS composites.  
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shell. Alternatively, UV light could be directed horizontally through a mask at a 

pillar array while the array was rotated to expose and crosslink a series of support 

cylinders, leaving exposed areas along the pillars’ sidewalls. 

Temporary coatings could also be used, and these provide the potential for some 

gradual decreases in overall stiffness as the coating dissipates. One particularly 

interesting option is the use of sucrose as mentioned in Chapter I, which can be 

dissolved by intercellular fluid over time. In this case, the pillars can be inverted and 

dipped up to their bases in a solution of supersaturated sucrose, and then drawn out 

vertically. The resulting coating of solution hardens as it cools while still inverted, 

and can also assist in forming a sharp tip for improved insertion characteristics. By 

no means is this the only possible option for temporary coatings. Many other options 

can be formulated, but they must remain biocompatible even after dissolving or 

dissipating.     

B. Electrical Testing 

Electrical testing of individual PDMS-nickel pillars integrated with gold wireouts 

has shown resistances as low as 200 ohms when measured from pillar tip to wireout 

contact point. 

1. Direct Electrical Testing 

Initial electrical testing was completed by casting conductive flexible polymer 

pillar electrodes from 1024 pillar molds (see Figure 54). These pillar electrodes were 

cast without the later developed pre-bonding excess film removal technique, and as a 
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result featured a continuous conductive film connecting all pillars together. These 

pillars were not gold plated. Even with this base fill, the produced conductive pillar 

arrays were sufficient to SEM and examine for areas of charging, highlighting any 

pillars that might not be properly conducting. Additionally, measurements were made 

by connecting a conductor across the top of the pillar array and a second probe to the 

conductive film perimeter. Ideally, this measure could be divided by the number of 

pillars to provide an approximation of the pillars’ conduction. Pillar geometry could 

then be used to calculate resistivity. However, this was not possible. Small amounts 

of PDMS at the top surfaces of the pillars partially blocked contact, forming 

intermittent and non-ohmic connections which made measurements across the whole 

pillar population unreliable. 

 

   

By probing local pairs of pillars with a probe station of 60 micron probes tips and 

dividing the resistance between the two pillars forming the conducting pair, clear 

measurements could be produced. Measurements using this method were clearer and 

pillar resistance was observed in hundreds of ohms per pillar. Using this method, it 

also became clear that dry physical contact between the probes, the pillars, and the 

network of conductive particles provides a non-ohmic resistivity that can be sensitive 

Figure 54. Conductive 1024 pillar array initially used for electrical testing. 
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to mechanical pressure changes. Given the continuous contact that is entailed when 

pillars are in an electrolyte or intercellular fluid, these effects are not expected to be 

present. 

2. Electrical Testing of Individual Pillars  

Once pillars were formed using the developed molding and bonding techniques 

previously discussed, individual independent pillar electrodes were able to be probed 

with the other point of contact made to the wireout on dielectric. Pillar electrodes 

aligned and bonded to gold wireouts provided clear information about the 

conductivity of the electrodes produced at different initial nickel fill loadings, and 

additionally verified that the pillar interconnect interface was conducting while the 

pillar to pillar conductivity was negligible. Accounting for pillar geometry, resistivity 

values of 830 Ω⋅cm at a 30% weight loading of nickel and 140 Ω⋅cm at 50% weight 

loading of nickel were found following the magnetic guidance and densification 

procedures discussed previously. 

C.  Demonstration of Biocompatibility and Neuro Spike Recording 

In order to determine the biological compatibility of the conductive flexible 

polymer pillar electrodes developed, they were integrated into a custom designed and 

fabricated planar multi-electrode array that was compatible with a Multi-Channel 

Systems MEA2100-System in order to be able to record neural activity in vitro. This 

recording method was chosen as it was an ideal initial step to both investigate 

biocompatibility and also begin to demonstrate the recording functionality of the 
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conductive flexible polymer pillar electrodes. Additionally, the accessibility of line 

animal implantations at the University of California Santa Barbara is limited, making 

in vitro records the best option before extending collaborative efforts to other 

institutions. 

 Due to the possible interaction between neurons and nickel, which is known to 

be cytotoxic, the pillars were plated in an electroless gold plating solution prior to 

experimentation. The treatment resulted in microscopic conformal layers of gold 

plating on all exposed nickel that would otherwise be directly interacting with cell 

buffer solution. To demonstrate initial biocompatibility, neurons were plated onto the 

fabricated custom MEAs with conductive flexible pillar electrode arrays. The 

neurons were incubated for up to two weeks and cell adhesion to the multi-electrode 

array surfaces was maintained, indicating the continued viability of the attached cells 

(see Figure 55). Activity from these incubated neurons was then recorded using the 

MEA2100-System. The recorded signals (see Figure 56) show activity in a number 

of the 2D and pillar recording sites. Inhibition of these signals (see Figure 57) via the 

application of Tetrodotoxin (TTX), a neurotoxin that inhibits the firing of action 

potentials, confirms that the signals observed are the result of neural active occurring 

near the pillars electrodes. 

Further measurements and investigations are ongoing while the biological 

protocol required to form robust populations of neurons in virto on these devices is 

being developed. Depending on if enhancements are found by altering the biological 

protocol involved, other routes of enhancement may include pre-plating the nickel 
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particles with gold, migrating to more biocompatible fill particles, or additionally 

modifying the chemistry found at the surface of the PDMS to better facilitate growth 

of neuronal cultures. Pre-plating the nickel fill particles with electroless gold prior to 

mixing the PDMS-nickel compound would ensure that all the nickel that is used to 

form the conductive flexible polymer pillar electrodes is biologically safe. Similarly, 

moving towards a biologically compatible magnetic particle could also completely 

remove the possibility of cytotoxicity. PDMS can be particularly non-ideal for in 

vitro neural growth, so a modification of the standard surface chemistry towards 

something more stiff and glass-like might drastically improve the growth and activity 

of the plated neurons. 
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Figure 55. Transmission images of living neurons attached to pillar MEA. 
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Figure 56. Recorded electrical measurements from 120 channel pillar MEA. 
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VI. Conclusions and Future Avenues 

In general, motivation for this research stemmed from the desire to gain a greater 

understanding of the neuronal circuitry driving the human brain to enhance the lives 

of patients suffering from conditions such as debilitating diseases of the peripheral 

nervous system and sensory organ failure. From these motivations, two novel 

biomimetically inspired schemes to improve the lives of patients and provide 

enhanced methods for interfacing with neural systems were envisioned. From these 

schemes, the critical interfacing elements and their associated requirements were 

determined and these requirements were transformed into two microfabrication 

Figure 57. Recorded neural signals before and after applying tetrodotoxin (TTX) 
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development programs. These programs resulted in fabrication schemes that 

produced the envisioned critical neural interfacing components. Additionally, 

investigative demonstrations using devices produced via these fabrication schemes 

have highlighted the utility and functionality of the neural interfacing structure 

developed. 

A. Flexible Polymer Neural Recording Pillar Electrodes 

The conductive flexible polymer pillar electrodes produced are extremely flexible 

and quite conductive. The fabrication scheme developed has yielded a product which 

meets the required criteria. While the road to beneficial chronic human medical 

implants is very long for such a radically new device structure, in vitro 

experimentation is the first step towards potentially one day directly improving the 

lives of patients with diseases of the peripheral nervous system.    

1. Recoding 3D Neuronal Networks (“Mini Brains”) 

Beyond simple two dimensional cultures of neurons, which could easily be 

recorded with planar recording arrays such as a standard multi-electrode array, 

recording from three dimensional volumes of neurons may be the first research 

activity in which these novel structures begin to shine. Three dimensional neuronal 

networks suspended in supporting gel have the possibility of growing with far more 

diverse and interesting levels of connectivity, and require the ability to record across 

a volume. Additionally, the soft nature of the conductive flexible polymer pillar 
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electrodes would provide a much better environment when the in vitro experiment is 

being transport around the lab and experiencing acceleration akin to micro motion. 

2. Spatially Localized Neural Recording using Planar and Pillar 

Recording Electrodes 

By recording from both two dimensional planar electrodes on a recording array 

surface as well as conductive flexible polymer pillar electrodes, fixed positioning in 

three dimensions should be able to be determined for any active neurons firing within 

a three dimensional neural network volume. Attenuation would make it impossible 

for a two dimensional array to accomplish this feat independently for any 

significantly thick volume, however the planar recording sites provide enough 

coverage to determine the Z-height along the orthogonal direction of the conductive 

flexible polymer pillar electrodes. 

3. Post CMOS Integration and Full Channel Demonstration  

On the path to a completely wireless high density neural recording interface, 

embedding a custom CMOS die which has a full demonstration neural recording 

channel into a larger silicon handle and then bonding conductive flexible polymer 

pillar electrodes to it could demonstrate the whole scheme. This would provide a 

single channel representation of the envisioned recording interface and recording 

electronics working in tandem.   
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4. Comparative Studies to Utah Array 

Once significant in vitro work has fully illustrated the utility of the conductive 

flexible polymer pillar electrodes, one further investigation will be comparative 

studies against the Utah Array which informed the implementation of the design. 

Using the wireouts and molds that have already been designed to be compatible with 

the dual hemisphere animal studies conducted in the Neural Interaction Lab at 

UCSD, direct comparisons between 16 conductive flexible polymer pillar electrode 

arrays and 16 electrode Utah Arrays should be possible.  

5. Coupled Optical Stimulation of Polymer Electrodes 

PDMS is already being investigated[8] as a core and cladding material for optical 

waveguides, so pillars cast using the scheme described could possibly be used to 

form an optogenetic stimulation and recording platform. Sylgard 184 without any 

modifications effectively channels green light in air without a cladding (see Figure 

58 and Figure 59). Ideally, optically transparent magnetic conductive particles could 

be used to make a single pillar capable of both recording and stimulation. 

Alternatively, the conductive fill could be used in a second coating, leaving a 

narrower core of nonconductive PDMS to act as a waveguide while the metal bearing 

conductive PDMS cladding layer could be chemically altered to provide conditions 

for total internal reflection. In this case, a narrow pillar could be formed using a 

narrow mold. That pillar could then be inserted into a large mold and the difference 

in volume could be filled by the conductive cladding material. Without either of 

these options, independent recording and optogenetic stimulation pillars could be 
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produced in a staggered array providing both stimulation and recording capabilities 

within the same plane of neural activity. 

 

 

 

 

Figure 58. PDMS pillar array channeling 530nm light. 

Figure 59. PDMS pillars channeling 530nm light. 
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B. Alumina Nanoporous Membranes Arrays 

The nanoporous alumina membrane scaffolds that have been developed and 

demonstrated are robust thin film scaffolds on silicon frames that are ideal for 

transport studies. When combined with crown ethers, these have demonstrated 

several different voltage dependent behaviors. 

1. Investigation of Crown Behavior 

The demonstrative investigations conducted using the fabricated nanoporous 

alumina have highlighted electric field dependent crown behaviors. These behaviors 

are interesting, but more characterization is required to better understand and present 

a more complete model of these observed behaviors. Using a mixture of modeling as 

well as single nanopores and the fabricated nanoporous alumina membranes, the 

exact behavior may be completely understood. 

2. Development of Improved Tethered Transporters 

As the highest observed stable preferential selectivity to potassium versus sodium 

was 2.8 with meso silica and triethoxysilane terminated 18-crown-6, it is clear that 

for the envisioned selective electrically gated ion pump devices to operate as 

intended in the scheme better chemistries will need to be found that provide higher 

levels of selectivity. Whatever materials are used, it is very likely that the nanoporous 

alumina membranes will continue to be utilized as a structurally stable scaffold. 
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3. Development of Sequestration Chemistries and a Sequestration 

Platform 

As the overall neural stimulating interface scheme requires a potassium 

sequestration mechanism, it is likely that this will be developed moving forward. 

Due to the similar transport flux, chemical, thermal, and mechanical stability 

requirements for such a device, it is likely it will also use the same nanoporous 

alumina membranes that have been described in this work. 
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