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ABSTRACT 

 

Decision-Making under Spatial Uncertainty   

in Downscaled Population Estimates: An Assessment  

of HIV Prevalence in Tanzania 

by 

 

Kevin Muriuki Mwenda 

 

Spatially explicit impact assessment analyses such as vulnerability studies often require 

spatially detailed population distribution as input.  Downscaled population datasets 

otherwise known as disaggregated, gridded or fine resolution population datasets are 

becoming increasingly available at global and regional scales and are based on information 

from various sources with varying spatial and temporal resolutions as well as reliabilities. 

Uncertainty is endemic in such downscaled population estimates, particularly in developing 

countries yet it is hardly assessed. Consequently, decision-makers are potentially faced with 

a bias problem whereby uncertainties are masked and estimates are presented as unique or 

expected values even after being derived in a probabilistic context. This research explores 

how HIV prevalence in three districts of the United Republic of Tanzania might vary with 

the utilization of simulations of downscaled population estimates. In so doing, this study 

explores some scenarios in which HIV prevalence that corresponds to minimum expected 

cost of antiretroviral (ARV) treatment is estimated under three different decision-making 

attitudes, namely minimax regret, maximin and maximax, followed by a discussion of some 
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implications of any variation in best estimates of HIV prevalence corresponding to the least 

impact on ARV cost.  

Our findings show that for effective decision analysis, rather than using coarse 

aggregated values such as census data at the district level, decision-makers may benefit from 

the application of multiple simulated spatial distributions of fine scale population along with 

the associated ARV cost estimates.  From this distribution of ARV cost estimates, decision-

makers could select best estimates based on an explication of risk attitude, thus avoiding 

unforeseeable consequences of underestimating or overestimating impact assessment 

outcomes of HIV prevalence. 
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ABBREVIATIONS AND ACRONYMS 

 

AfriPop – Not an acronym. This is a downscaled population dataset created for countries  

     within the continent of Africa 

AIDS – Acquired Immunodeficiency Syndrome 

AIS – AIDS Indicator Survey 

ARV – Antiretroviral (treatment) 

AsiaPop – Not an acronym. This is a downscaled population dataset created for countries  

     within the continent of Asia 

CIA – Central Intelligence Agency 

DHS – Demographic and Health Surveys 

GIS – Geographic Information Systems 

GPW – Gridded Population of the World 

HIV – Human Immunodeficiency Virus 

Landscan – Not an acronym. This is a downscaled global population dataset 

MODIS – Moderate-Resolution Imaging Spectroradiometer 

PHC – Population and Housing Census 

SLEUTH – Slope, Land-use, Exclusion, Urban extent, Transportation and Hill-shade 

THMIS – Tanzania HIV/AIDS and Malaria Indicator Survey 

UN – United Nations  
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I. Introduction 

In most developing countries, the low resolution aggregated census data that are used to 

create the high resolution, disaggregated or downscaled population datasets show significant 

variation by year and by spatial resolution (Linard & Tatem, 2012). In addition, 

contemporary census data are not usually available for such countries and they therefore 

typically rely on census data that is around a decade old and collected at coarse 

administrative units (Tatem et al., 2011). The cumulative effect of using varying years of 

census data, aggregated intercensal growth rates and adjustments to estimate total population 

results in downscaled datasets have significant variations in estimated population size and 

spatial distribution may result (Tatem et al., 2011; Mondal & Tatem, 2012). The choice of 

such datasets that ‘hide’ uncertainty behind their input data, methods, and output estimates, 

may lead to significant discrepancies in vulnerability studies by decision-makers (e.g. 

researchers, policy-makers and/or agencies) who use the data (Thompson & Graham, 1996; 

Savage, 2009). For example, Mondal and Tatem (2012) compared two different downscaled 

population datasets and found differences exceeding 7.5 million people characterized as 

vulnerable to sea level rise and coastal flooding in Indonesia and Japan. Similarly, Tatem et 

al. (2012) reported a difference of over ten million people at risk of malaria when employing 

different gridded population datasets.  

The ‘vulnerable’ populations in our study are adults infected by HIV/AIDS in the United 

Republic of Tanzania. Tanzania is one of the developing countries worst hit by the 

HIV/AIDS epidemic (TACAIDS, 2014). Tanzania was ranked 13
th

 in the world based on the 

2012 national adult prevalence rate of 5.1% (CIA, 2012a) which translates to 1.3 million 

adults (AllAfrica, 2012). The age bracket of 15-49 years is typically referred to as the 
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reproductive age group (DHS, 2013) and the people who are infected by HIV therein (HIV 

prevalence) are the main consumers of antiretroviral (ARV) drugs that the Tanzanian 

Government is contemplating manufacturing locally rather than importing. This move is 

predicted to cost each adult individual with HIV approximately 12,000 Tanzanian Shillings 

($7.30 U.S. Dollars) for one dose of ARV treatment per month instead of approximately 

16,000 Tanzanian Shillings ($10 U.S. Dollars) (AllAfrica, 2012). Given that these HIV 

prevalence and ARV cost values are derived from aggregate, not to mention uncertain, 

information, it begs the question – how might the cost of ARV treatment change with the 

utilization of simulated spatially distributed population estimates and what might the 

resulting implications of that change be?  

In an attempt to answer the aforementioned question, we first review some downscaling 

methods used to disaggregate population datasets, then we introduce some concepts in 

decision theory within which we investigate how the cost of ARV treatment might change 

with the utilization of simulated spatially distributed population estimates in three districts in 

Tanzania. First, we determine and compare the district-level aggregate ARV costs with 

spatially distributed ARV costs derived from spatially distributed population of reproductive 

age. Next, we derive a distribution of spatially varying total ARV costs from multiple 

realizations of spatially distributed population. After the resulting implications of any 

discrepancy in ARV cost from the aforementioned three cost-determination procedures are 

discussed, three decision-making attitudes are employed to determine the “best” estimates of 

HIV prevalence that corresponds to the least expected loss or impact in terms of ARV costs 

by the decision-maker who is tasked with the acquisition of ARV drugs for the HIV 

prevalent population.  
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II.Background 

A. Downscaling Methods: A Review  

The integration of different population measurements obtained over different spatial 

units or zones is a major problem in spatial population studies. The varying geometrical 

characteristics of the aforementioned spatial zones warrant the need to redistribute or 

interpolate population measurements from coarse or low resolution source zones to fine 

resolution target zones using methods that are collectively known as population 

downscaling. Two main types of widely used downscaling methods are simple area 

weighting and dasymetric mapping. The simple area weighting method is one of the most-

straight-forward interpolation methods to use because it is only concerned with the re-

distribution of a population value into the overlap of target and source zones, without the 

need of any other extraneous or ancillary data. An example of contemporary downscaled 

population datasets that use simple area weighting for population modeling is Gridded 

Population of the World (GPW) version 2 and 3 (Linard & Tatem, 2012).The method is 

formulated by Fisher & Langford (1995) as 

 ̂   ∑
      

  

 

   

 ∑      

 

   

 

where  ̂  is the population estimates at target zone t;       is the overlapping area between 

target zone t and source zone s;    is the population of source zone s;    is the area of source 

zone s; S is the total number of source zones; and    is the mean population density of 

source zone s. 

Dasymetric mapping was first introduced as a method of cartographic representation in 

which source zones are subdivided into smaller regions in order to ensure consistency of the 
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density of the variable to be mapped (McCleary, 1984). Examples of contemporary 

downscaled population datasets that use dasymetric modeling are AfriPop, AsiaPop, 

Landscan and the Gridded Population of the World (GPW) (Linard & Tatem, 2012). 

Essentially, each source zone is divided into two or more parts and population is 

redistributed therein based on a priori information or assumptions that those are the specific 

areas which are inhabited – a form of density measuring (Wright, 1936; Tobler, 1979). 

There are two main subtypes of dasymetric mapping: binary and multi-class 

(polycategorical) dasymetric methods. 

In binary dasymetric mapping, the source zone is divided into two sub-regions, one of 

which is assigned a population from the original source zone, and the other considered 

uninhabited. The process is formulated by Fisher & Langford (1995) as 

 ̂   ∑
       

   

 

   

 ∑        

 

   

 

where        is the overlapping area between target zone t and source zone s, with populated 

land cover having been identified;     is the area of source zone s, with populated land 

cover having been identified; S is the total number of source zones; and     is the 

dasymetric population density of the populated class in source zone s. 

The multi-class (polycategorical) dasymetric method captures more realistic variations 

within populated target zones, for example using satellite imagery to derive information 

about population densities. The polycategorical dasymetric model is formulated as follows: 

(Yuan et al., 1997; Eicher & Brewer, 2001; Mennis, 2003; Langford, 2006) 

 ̂   ∑∑
       

   

 

   

 

   

 ∑∑        
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where       is the overlapping area between target zone t and source zone s, with populated 

land cover with class c having been identified;     is the area of source zone s, with 

populated land cover with class c having been identified; S is the total number of source 

zones; and     is the dasymetric population density of the populated class c in source zone s. 

 

While dasymetric mapping generally incorporates more spatial information than simple 

area weighting,  the main challenges of the former are objectively establishing a relationship 

between ancillary data and population distribution, and quantifying the inherent spatial 

uncertainty in the downscaled data based on the original data (Eicher & Brewer, 2001; 

Langford, 2006). For instance, the relationship between population and ancillary data such 

as land use and street data might be unknown, and the original data from census-designated 

polygons also lack precision.  

 

B. Downscaled population Dataset: AfriPop  

For our study, we utilize AfriPop, a downscaled population dataset created for each 

respective African country at a resolution of 3 arcseconds (~100m), using publicly available 

source data and mapping methods that are transparent (Linard & Tatem, 2002; Linard et al., 

2012). The first AfriPop dataset was created for the East African region in 2009, using 

datasets and methods outlined in the main paper by Tatem et al. (2007). The main ancillary 

layers that went into creating AfriPop include settlement data, land cover data (e.g. rivers, 

roads etc.) and respective national census data (Tatem et al., 2004, 2005).  
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C. HIV/AIDS Surveys  

The Demographic and Health Surveys (DHS) program is one of the world’s leading 

surveying agencies that supports the collection, compilation and reporting of HIV/AIDS 

national statistics, among other health, nutrition and population information, for over 90 

countries in the world (DHS, 2013). Specifically through the AIDS indicator Survey (AIS), 

the DHS collects demographic and behavioral aspects of HIV prevalence among adults of 

reproductive age (15-49 years of age). The AIS takes about 9 months to complete and the 

design typically consists of biomarkers, individual and household questionnaires, and 

geographic information in the form of sample points that are representative of household 

clusters in urban and rural areas (DHS, 2013).  

The geo-referenced clusters are collected during fieldwork and have an accuracy of 15-

20 meters. However, due to privacy protection purposes, the household cluster points 

(centroids) are randomly displaced
1
 such that points located in urban areas contain between 

0 and 2 kilometers of error while those in rural areas contain between 0 and 5 kilometers of 

error, with a further 1% of the rural points achieving a maximum of 10 kilometers (DHS, 

2013). However, the displacement is geographically restricted such that the cluster points 

remain in their respective survey regions which, for surveys conducted after 2009, translate 

to the country’s second administrative regions that are the district level for Tanzania (DHS, 

2013). 

 

                                                 
1
 Detailed Information on GPS Data Collection Methods used by DHS can be found in 

the following link: http://dhsprogram.com/What-We-Do/GPS-Data-Collection.cfm 
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D. Decision Theory 

There are several sources of uncertainty in spatial data resulting from data collection, 

processing and usage, or a combination thereof (Hunter & Beard, 1992; Hunter and 

Goodchild, 1997). This inherent uncertainty in spatial data introduces the question of how 

the decision-making process may be influenced by the nature of spatial dataset. For more 

than half a century, decision-making studies have been at the core economics, business, 

sociology and statistics, among others. The overlying goal of this interdisciplinary sub-field 

is to improve decision-making efficiency by optimizing results of decisions presumably 

made under rational conditions. Following the traditional concept of rational behavior, the 

goal is the pure intent of maximizing utility hewing to certain characteristics of human 

behavior that comprise rationality (Savage, 1954). However, studies have shown that 

rationality is instead bounded by the complexity of a certain decision, which in turn is partly 

determined by the uncertainty of the outcomes (Simon, 1955). In other words, rationality is 

determined by the potential consequences or risk factors of making a decision based on a 

probability of occurrence, hence the Bayesian approach to estimation that is one of the 

decision-making criteria (Ang & Tang, 1990).  

There are three other main criteria or attitudes in decision theory. The first criterion is 

the minimax regret criterion or ‘risk-neutral’ attitude in which the decision-maker makes 

his/her decision based on regret or opportunity loss (Savage, 1954). For example, if a 

decision-maker knows that the actual outcome of not acquiring enough ARV drugs would be 

loss of life of the prevalent population due to HIV/AIDS, the best choice under the minimax 

regret attitude would be to pay to acquire a moderate amount of ARV drugs since it would 

be the least expensive option.  
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The second criterion is the maximin criterion or ‘risk-averse’ attitude in which the 

decision-maker still ignores probabilities and decides that he/she wants to picks the 

alternative that makes the minimal cost as high as possible, i.e., the one that maximizes 

his/her minimum cost (Wald, 1950). Therefore, the decision-maker would take the budget-

conscious approach of putting the weight of his/her decision on the worst possible outcome 

of overspending on ARV drugs, by choosing an action with the greatest payoff in terms of 

costs saved. For example, if a decision-maker considers the outcome of acquiring more than 

enough ARV drugs worse than failing to buy enough ARV drugs to cater for the HIV 

prevalent population, then the best choice under the maximin attitude would be to pay for 

the least possible amount of ARV drugs since it would be the least expensive option. 

The third criterion is the maximax criterion or ‘risk-seeking’ attitude in which the 

decision-maker ignores probabilities and decides that he/she wants to picks the alternative 

that makes the maximum cost as high as possible. Therefore, the decision-maker would 

adopt an optimistic approach of putting the weight of his/her decision on the best possible 

outcome of lives saved, by choosing an action with the greatest payoff in terms of ARV 

drugs acquired. For example, if a decision-maker considers the outcome of failing to buy 

enough ARV drugs worse than the outcome of acquiring more than enough ARV drugs, then 

the best choice under the maximax attitude would be to pay for the highest possible amount 

of ARV drugs such that ideally, all the HIV prevalent people would be catered for. 
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III. Study Area  

A. Population 

The United Republic of Tanzania is a country located in Eastern Africa between 

Longitude 29° and 41° east and Latitude 1° and 12° south. The country consists of a 

Mainland and set of Islands with a total land area of nearly 900,000 square kilometers (NBS, 

2012b). The 2012 Population and Housing census (PHC) was conducted on 26
th

 August 

2012 by the Tanzania National Bureau of Statistics across 169 districts and the results 

showed that Tanzania had a population of 44,498,923 of which 97% reside on the mainland 

(NBS, 2012). This was the fifth census conducted since Tanzania became a republic in 1964. 

The census preceding the one in 2012 was conducted in 2002. The Tanzania 2012 census 

data together with the geographic boundary files were obtained from the NBS website, after 

which population data of reproductive age (15-49 years of age) were derived using district-

level demographic data (NBS, 2012). Three districts of varying geographic and demographic 

characteristics were selected for analysis in order to test our models under diverse 

population and areal contexts. The first one is Kinondoni district, which is the largest of the 

three with an area of 537 km
2 

and the most population gain in the country between 2010 and 

2012 (~630,000 people). The second district is Mbeya Urban district which is roughly half 

the size of Kinondoni district but had the least population change in Tanzania between 2010 

and 2012 (~500 people). The third district is Mjini district which is the smallest district in 

Tanzania (15 km
2
) but has the highest population density of the three districts.  

Figure 1 shows some geographic and population characteristics of Tanzania and Figure 2 

shows the three districts of interest. 

 



 

 10 

 

Figure 1. Geography and Population of Tanzania in 2012 
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Figure 2. Study Areas 
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The Tanzania AfriPop 2010 dataset was obtained from the AfriPop website (AfriPop, 

2013). The Tanzania AfriPop 2010 was created by downscaling 2002 national population 

census data to 100m grid and applying national intercensal growth rates provided by the 

United Nations (AfriPop, 2012) to create 2010 AfriPop national population estimates 

(AfriPop, 2013).  We summed up the U.N. adjusted Afripop 2010 population dataset within 

each district to create 2010 aggregated population estimates.  Figure 3 shows the AfriPop 

2010 gridded population maps of Tanzania with the three districts of interest highlighted. 

 

Figure 3. Tanzania AfriPop 2010 Population 
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B. HIV/AIDS Survey Data  

The main survey used by NBS to collected recent information on HIV prevalence among 

Tanzania adults is collectively known as the 2011-12 Tanzania HIV/AIDS and Malaria 

Indicator Survey (THMIS) that is carried out as part of the DHS project in Tanzania (NBS, 

2012b). The THMIS sampled 10,040 households containing 8352 men and 10,967 women 

between 15-49 years of age (DHS, 2013b). The response rate for men was 89% and that of 

women was 96% (NBS, 2012b). The 2011-12 THMIS cluster data were obtained from the 

DHS website (DHS 2013b). Since the district-level HIV prevalence rate data do not come 

readily available from the NBS website, we re-created the HIV prevalence rates  at the 

district level using similar methodologies adopted by DHS whereby the average prevalence 

rate for each district was calculated in the proceeding steps. First, the total number of 

respondents with HIV in each household cluster was divided by the total number of 

respondents in each cluster and converted to a percentage value representing prevalence rate 

for each cluster. Finally, the average of all cluster prevalence rates within each district was 

obtained and that value assigned as the average HIV prevalence rate for each district.   We 

confirmed the aforementioned district-level HIV prevalence rate by checking to see that 

collectively with other district level data, they averaged to the established national level of 

5.1%
2
 prevalence rate (TACAIDS, 2014).  The population and HIV prevalence data for the 

three districts are summarized in table 1. 

 

 

                                                 
2
 Detailed Information on the Tanzania 2011-12 HIV/AIDS and Malaria Indicator 

Survey (THMIS) can be found in the following report: 

http://dhsprogram.com/pubs/pdf/SR196/SR196.pdf 
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District Area 

(km
2
) 

Aggregated 

AfriPop  

(2010) 

Census 

Population 

(2012) 

Population 

Difference 

(2010-2012) 

Population of 

Reproductive 

Age (2012) [%] 

Average 

Prevalence 

Rate (%) 

Kinondoni 537 1,142,170 1,775,049 +632,879 1,110,917 [62.6] 6.88 

Mbeya Urban 253 305,901 305,319 -582 142,494 [46.7] 6.63 

Mjini 15 243,515 223,033 -20,482 120,616 [54.1] 0.73 

Table 1. Aggregate population and HIV Prevalence Information 

 

IV. Methods 

In order to investigate how the cost of ARV treatment might change with the utilization 

of simulated spatially distributed population estimates, we first employ the district-level 

aggregate census population values, the average HIV prevalence rates and the individual 

cost of ARV treatment to determine the aggregate ARV costs. Next, we compare the 

aforementioned aggregate or fixed costs to those obtained from applying spatially 

distributed prevalence rates to spatially distributed or gridded population values. Finally, we 

apply spatially distributed prevalence rates to multiple simulations of spatially distributed 

population estimates to obtain a distribution of varying total cost of ARV per district. The 

resulting implications of any change in ARV cost from the aforementioned procedures are 

measured by the adoption of three decision-making preferences to determine the best 

estimates of HIV prevalence that correspond to the least expected loss or impact in terms of 

costs of ARV acquisition by the decision-maker.  
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A. Calculating Aggregate ARV Costs from Aggregate Population Data 

To create aggregate ARV costs we take the following steps. First, we adopt reported 

2012 census population data from which we derive the aggregate population of reproductive 

age (15-49 years) at the district level. We then apply average prevalence rates to the 

population of reproductive age to obtain the HIV prevalence or the number of people with 

HIV/AIDS for each district. Finally, we apply the individual cost of ARV treatment to the 

HIV prevalence to obtain the aggregate total ARV cost at the district level. 

Let  ̅  represent
3
 the reported 2012 census population at the k

th
 district where, k = 

1,…,K.
 
In this study, K = 3. Furthermore, let    represent the proportion of census 

population of reproductive age (15 – 49 years) in each district k. The census population of 

reproductive age   ̅  at each district k is thus calculated as follows: 

  ̅      ̅  

Let  ̅  represent the average HIV prevalence rate at each district k. The average prevalence 

( ̅   is thus calculated as follows: 

 ̅   ̅    ̅ 

 

Let   represent the proposed cost of a dose of ARV treatment for each adult individual 

infected with HIV ($7.30). The aggregate ARV cost (  ̅  for each district k is thus calculated 

as follows:  

  ̅     ̅  

 

                                                 
3
 In the methodology of this study and henceforth, we deviate from the symbols (e.g.  ̂  )  

typically employed in downscaling literature since we are utilizing downscaled population 

values rather than conducting the population downscaling 
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B. Creating Spatially Distributed ARV Costs from Spatially Varying Population Data 

To create spatially distributed ARV costs we take the following steps. First, we create 

spatially distributed or gridded population values on which we apply spatially distributed 

prevalence rates to determine spatially varying prevalence at the district level. We then 

apply the proposed cost of a dose of ARV treatment for each adult individual infected with 

HIV ($7.30) to the spatially varying prevalence rate to obtain the spatially varying total 

ARV cost at the district level. 

 

1. Creating Spatially Distributed Population Estimates  

The gridded AfriPop population estimates in 2010 are used as a surrogate for creating 

gridded population estimates in 2012. Let  ̂  represent AfriPop population gridded at the i
th

 

pixel contained in district k, where i = 1,…,    pixels.  A population change factor (  ) 

depicting a change of aggregate population from 2010 to 2012 is calculated using the 

following equation: 

   
 ̅ 

 ̅̂ 

 

where  ̅̂  represents aggregate AfriPop population estimates in each district k in 2010 and is 

calculated as follows: 

 ̅̂  ∑  ̂ 

  

   

 

The population change factor (    is then applied to AfriPop gridded estimates  ̂  to obtain 

gridded population 2012 estimates ( ̂   as follows: 

 ̂      ̂  
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Finally, the gridded population estimates of reproductive age in 2012 ( ̂   are obtained using 

the equation below: 

 ̂      ̂  

 

2. Creating Spatially Distributed Prevalence Values 

Spatially distributed HIV prevalence values are created by disaggregating the average 

HIV prevalence rate to the grid level then applying the spatially varying HIV prevalence 

rates to each adjusted simulation of spatially varying population of reproductive age,  ̂ .  

The average HIV prevalence rate for each district is disaggregated as follows. First, we 

create buffers around each DHS cluster centroid, specifying a radius of 2km for urban 

clusters and 5km for rural clusters. These specifications are consistent with the threshold of 

random displacement of cluster centroids by the DHS (2013b) coupled with the premise that 

the prevalence rate (   from each household cluster (d) would be applicable to all 

population grids falling within each buffer. Furthermore, for population grids that fall within 

two or more buffers,              and those that do not fall within any buffer,      . 

Therefore, the spatially varying prevalence ( ̂   is calculated as  

 ̂     ̂  

The spatially varying prevalence at each pixel is then summed up to obtain the total spatially 

varying prevalence ( ̅̂   as follows:  

 ̅̂  ∑  ̂ 
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3. Calculating Spatially Distributed Total ARV Costs 

The spatially varying prevalence   ̂   is multiplied by   to obtain the spatially varying cost 

  ̂   of ARV treatment at the pixel level, as follows:  

 ̂     ̂  

Consequently, the ARV cost ( ̂   at each pixel is then summed up to obtain the total 

spatially varying cost ( ̂ ̅) as follows:  

 ̂ ̅  ∑  ̂ 

  

   

 

 

C. Creating Varying ARV Costs from Simulated Spatially Varying Population Data 

To create varying ARV costs we take the following steps. First, we conduct multiple 

non-homogenous Poisson simulations of gridded population of reproductive age (    and 

then we sum up    for each realization. Next, we adjust each realization by increasing and 

reducing population values of candidate pixels such that when summed up, they match the 

estimated census ‘target’ population of reproductive age (  ̅  at the district level. We then 

apply spatially varying prevalence rates (    to each realization of adjusted population of 

reproductive age at the pixel level then summing them up to obtain a distribution of varying 

aggregate prevalence for each district. Finally, we apply   to the varying prevalence to 

obtain varying total ARV cost at the district level. 
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1. Non-homogenous Poisson Simulation of Population of Reproductive Age 

We employ the Poisson process to simulate multiple realizations of the gridded 

population of reproductive age since the latter is considered an outcome of a counting 

process depicting a population that has occurred in a particular space and time. Specifically, 

the non-homogenous Poisson process is used to simulate 100 independent realizations of the 

gridded population of reproductive age (    for each district, based on the presumption that 

each  ̂  represents the respective mean observed or expected value      and is also 

independent of each other within a single realization.  We choose to conduct 100 

realizations, a number that is computationally efficient for our purposes. The non-

homogenous Poisson simulation of gridded population of reproductive age (  ) is 

represented as  

          ̂   

with a cumulative distribution function (CDF) that can be expressed as follows: 

     |           
   

  

     
 

where    represents the local intensity of the Poisson distribution (Rubinstein & Kroese, 

2007). In other words,    is the mean observed or expected value at each pixel and is 

equivalent to  ̂  in this study. 
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2. Adjustment of Simulated Population of Reproductive Age 

The sum of each realization from the non-homogenous Poisson simulation is calculated 

as 

  ̅  ∑   

  

   

 

where   ̅ represents the sum of each Poisson realization of gridded population of 

reproductive age. The gridded population realizations    ̅   are then adjusted in order to 

match the spatial pattern of the AfriPop dataset while summing up to the estimated census 

‘target’ population of reproductive age (  ̅
 ) that is previously defined

 
as the aggregate 

census population   ̅ for each district k. 

  ̅
       ̅  

We set up the spatial population adjustment algorithm to make changes to realizations in 

which   ̅    ̅
 . For realizations in which   ̅ >   ̅

 , a threshold   is selected as the median 

of    for which changes would only be made randomly to pixels for which      . 

Consequently, any randomly selected pixels would have their respective populations 

decreased by a randomly selected net migration rate   where            until   ̅  

  ̅
 . Net migration rate refers to the difference between the number of people entering and 

leaving a specific country over a given period of time that is typically a year (CIA, 2012b). 

If more people leave the country than enters it over a specific time frame, then the process is 

known as a net emigration. In our study, the net migration rate    represents a “low” 

national net emigration rate of 0.29 migrants per 1000 people as estimated in 2012 (CIA, 

2012b) and the net migration rate    represents a “high” national net emigration rate of 0.6 

migrants per 1000 people as estimated in 2013 (IOM, 2014). Each randomly selected net 
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migration rate   is converted into a ratio on a 0-1 scale and used to decrease    by a factor 

of       as follows: 

  
             

In the equation above,   
  is the adjusted simulated gridded population of reproductive 

age   . During the adjustment process, adjusted simulated values   
  replace the original    

and the adjustment is considered complete when  

∑  

  

   

   ̅     ̅
  

The algorithm then checks if there is any adjusted realization in which 

∑  

  

   

    ̅
  

If found, the algorithm increases ∑    
  
   by [   ̅

     ̅  to match    ̅
 .  

For realizations in which   ̅ <   ̅
 , a similar threshold   was selected as the median of    

for which changes would only be made randomly to pixels in which       . Consequently, 

any randomly selected pixels would have their respective populations increased by a 

randomly selected urbanization rate   where             until   ̅    ̅
 . Urbanization rate 

refers to the average rate of growth of the size of an urban population over a specific period 

in time for a given country (UN Population Division, 2013). The urbanization rate    

represents a “low” annual urbanization rate of 4.2%, estimated for the period between 2005-

2010 (UN Population Division, 2013) and the urbanization rate    represents a “high” 

annual rate of 4.77%, estimated for the period between 2010-2015 (CIA, 2012c).  
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Each randomly selected urbanization rate   is converted into a ratio on a 0-1 scale and used 

to increase    by a factor of       as follows: 

  
             

During the adjustment process, adjusted simulated values   
  replace the original    and the 

adjustment is considered complete when  

∑  

  

   

   ̅     ̅
  

The algorithm then checks if there is any adjusted realization in which 

∑  

  

   

    ̅
  

If found, the algorithm decreases ∑    
  
   by [   ̅

     ̅  to match    ̅
 .  

 

The adjustment of simulated population is summarized in Figure 4 and 5. 
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Figure 4. Spatial Adjustment Flowchart for Decreasing Population 
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Figure 5. Spatial Adjustment Flowchart for Increasing Population 
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3. Calculating Varying Prevalence and ARV Cost from Simulated Population of 

Reproductive Age 

The gridded prevalence values      for each district are obtained by applying spatially 

varying prevalence rates    ) to each realization of adjusted population of reproductive age 

(    at the pixel level, as follows: 

        

These gridded prevalence values    are then summed up across all realizations to obtain a 

distribution of varying aggregate prevalence values ( ̃ ) for each district k, as follows: 

 ̃  ∑   

  

   

 

Finally, we apply   to the varying aggregate prevalence values  ̃  to obtain varying total 

ARV cost  ̃  at the district level, as follows: 

 ̃     ̃  

 

D. Estimation of Utility Functions for Antiretroviral Costs 

The estimation of utility or loss functions for ARV cost by a decision-maker is based on 

the adjusted gridded population of reproductive age (    established after the non-

homogenous Poisson simulation process and consequently used to calculate  ̃ . Assuming 

that a decision-maker has a particular choice of  ̃  and that the remaining values could be 

possible ‘actual’ values  ̃ ̂ this would imply an estimation error which would be depicted by 

a loss (Ang & Tang, 1990). The goal for a decision-maker then would be to minimize the 

expected loss associated with an estimation error which is in turn informed by the decision-

maker’s risk attitude. In our study,  ̃  is the estimator of a cost parameter whose ‘actual’ 
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value is dictated by the distribution    ̃ ̂ . Therefore, the expected loss resulting from the 

error in estimation is calculated as 

   ∫    ̃ ̂ 
 

  

 ̃   ( ̃ ̂)  ̃ ̂ 

where  ( ̃ ̂  ̃ ) is the loss function from the estimation error that is ( ̃ ̂    ̃ ). For the 

estimator  ̃  to minimize the expected loss, it should satisfy the following equation: 

  

  ̃ 
  

 

  ̃ 
[∫    ̃ ̂ 

 

  

 ̃   ( ̃ ̂)  ̃ ̂]    

 

1. Testing Cost Scenarios in Varying Risk Tolerance 

Few studies have suggested loss functions for minimizing ARV cost. One study explored 

various algorithms for minimizing and maximizing non-linear loss functions for ARV cost 

and efficacy, respectively (Oyelami & Ogidi, 2013). However, the aforementioned study 

was conducted from a theoretical perspective without use of empirical HIV prevalence and 

ARV cost data. With little reference to inform our loss functions, we simply assume the loss 

function  ( ̃ ̂  ̃ ) to be linear and is formulated as 

 ( ̃ ̂  ̃ )  {
 ( ̃ ̂    ̃ )             ̃ ̂    ̃  

 ( ̃ ̂    ̃ )            ̃ ̂     ̃ 

 

where   is a previously defined cost constant that could be preceded with a variable that 

would depend on the approach to decision making.  

In a minimax regret attitude, the assumption is that the risk-neutral decision-maker 

would consider both overestimation and underestimation of HIV prevalence as having 

similar impact (cost) and as such would adopt the following symmetrical utility function. 
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 ( ̃ ̂  ̃ )  {
 ( ̃ ̂    ̃ )             ̃ ̂    ̃  

 ( ̃ ̂    ̃ )            ̃ ̂     ̃ 

 

In a maximin attitude, the assumption is that the budget-conscious decision-maker would 

be hesitant to spend more money on ARV acquisition than they need to and therefore would 

not mind catering to a lower HIV prevalence than the risk-neutral approach. To achieve such 

an outcome, the decision maker would most likely consider overestimation of HIV 

prevalence as having a greater impact (cost) than underestimation.  

For our study, we defined overestimation of HIV prevalence as having 10 times of an 

impact (cost) than underestimation, as shown in the following asymmetrical utility function. 

 ( ̃ ̂  ̃ )  {
     ( ̃ ̂    ̃ )             ̃ ̂    ̃  

  ( ̃ ̂    ̃ )            ̃ ̂     ̃ 

 

The coefficient value of 10 was chosen in order to create an asymmetrical linear loss 

function that presents a significant distinction between minimized values obtained from 

overestimating and underestimating population of reproductive age.  

In a Maximax attitude, the assumption is that the ‘risk-seeking’ decision-maker would be 

willing to spend more money on ARV acquisition and potentially benefit a higher HIV 

prevalence than the risk-neutral approach. To achieve such an outcome, the decision maker 

would most likely consider underestimation of HIV prevalence as having a greater impact 

(cost) than overestimation. For our study, we defined underestimation of HIV prevalence as 

having 10 times of an impact (cost) than overestimation, as shown in the following 

asymmetrical utility function. 

 ( ̃ ̂  ̃ )  {
   ( ̃ ̂    ̃ )             ̃ ̂    ̃  

       ( ̃ ̂    ̃ )            ̃ ̂     ̃ 

 



 

 28 

In the aforementioned three decision-making attitudes, we minimized the loss functions 

to obtain the best HIV prevalence estimates and associated least expected impact (loss) in 

terms of the cost of ARV acquisition for each district. 

 

 

 

V. Results 

A. Aggregate ARV Costs from Aggregate Population Data 

Aggregate ARV costs   ̅   are calculated from aggregate census population ( ̅    using 

procedures described in part A of the Methods section. The results are shown in table 2.  

District 

(K) 

Census 

Population 

( ̅ ) 

Proportion of 

Reproductive 

Age (    

Census 

Population of 

Reproductive 

Age (  ̅) 

Aggregate 

HIV 

prevalence 

rate    ̅   

[%] 

Average 

HIV 

prevalence 

  ̅   

Aggregate 

ARV cost  

   ̅) [$] 

Kinondoni 1,775,049 0.63 1,110,917 6.88 76,431 557,947 

Mbeya 

Urban 

305,319 0.47 142,494 6.63 9,447 68,963 

Mjini 223,033 0.54 120,616  0.73 881 6,431 

Table 2. Aggregate Population and ARV Cost 
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B. Spatially Distributed ARV Costs from Spatially Varying Population Data 

Empirical census population was discretized in the procedures outlined in part B of the 

Methods section for the respective number of grids in each district, as specified by the 

“surrogate” AfriPop population data. The discretized population of reproductive age 

( ̂   values were obtained by applying the population change factor (   ) to the AfriPop 

gridded estimates   ̂   to obtain gridded census population ( ̂ ), then applying the proportion 

of population of reproductive age (    in each district k.  The results of the discretization 

process are shown in table 3.  

 

District (K) Population 

Change 

Factor (   ) 

Proportion of 

Reproductive 

Age (    

Sum of 

Gridded 

Census 

Population 

( ̅     

Sum of Gridded 

Census 

Population of 

Reproductive 

Age (  ̅
     

Number of 

discretized 

points (N) 

Kinondoni 1.03 0.63 1,775,049 1,110,917 53,332 

Mbeya Urban 0.99 0.47 305,319 142,494 25,257 

Mjini 0.92 0.54 223,033 120,616  1,511 

Table 3. Results of Population Discretization 

The discretized population of reproductive age in Kinondoni district is shown in figure 6. 

The legend limits have been re-scaled to a maximum of 500 to best show the pixel-level 

population since most of the pixels contain relatively few people, as shown in the left 

histogram in figure 7. The right histogram in figure 7 shows the same population distribution 

capped at 100 people. 
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Figure 6. Discretized Population of Reproductive Age in Kinondoni District 

 

 

Figure 7. Histogram of Discretized Population of Reproductive Age in Kinondoni 

District 
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The discretized population of reproductive age in Mbeya Urban district is shown in 

figure 8. The legend limits have also been scaled to a maximum of 50 to best show the pixel-

level population variation since most of the pixels contain relatively few people, as shown 

the left histogram in figure 9. The right histogram in figure 9 shows the same population 

distribution capped at 100 people. 

 

Figure 8. Discretized Population of Reproductive Age in Mbeya Urban District 

 

Figure 9. Histogram of Discretized Population of Reproductive Age in Mbeya 

Urban District 
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The discretized population of reproductive age in Mjini district is shown in figure 10. 

The legend limits have also been scaled to a maximum of 500 to best show the pixel-level 

population variation since most of the pixels contain less than 200 people, as shown the left 

histogram in figure 11. The right histogram in figure 11 shows the same population 

distribution capped at 200 people. 

 

Figure 10. Discretized Population of Reproductive Age in Mjini District  

 

Figure 11. Histogram of Discretized Population of Reproductive Age in Mjini 

District  
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Figure 12 – 14 show the spatially varying prevalence rates      for each district that 

were determined using steps outlined in part B2 in the Methods section. 

 

 

 

Figure 12. Map of Spatially Varying HIV Prevalence Rates in Kinondoni District 
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Figure 13. Map of Spatially Varying HIV Prevalence Rates in Mbeya Urban 

District 

 

Figure 14. Map of Spatially Varying HIV Prevalence Rates in Mjini District 



 

 35 

Spatially distributed total ARV costs   ̂ ̅  are calculated from the spatially varying 

gridded population estimates ( ̂    and spatially varying prevalence rates (   using 

procedures described in part B2 and B3 in the Methods section. The results are shown in 

table 4.  

District (K) Sum of Gridded 

Census 

Population of 

Reproductive Age 

(  ̅
     

Average of 

Spatially 

Varying 

prevalence rate  

       [%] 

Sum of 

Spatially 

Varying 

prevalence 

  ̅̂   

Aggregate of 

Spatially 

Varying 

ARV cost  

  ̂ ̅) [$] 

Kinondoni 1,110,917 1.65 18,330 133,810 

Mbeya Urban 142,494 3.29 4,688 34,223 

Mjini 120,616  1.78 2,147 15,673 

Table 4. Spatially Varying Population Estimates and ARV Cost 

C. Varying ARV Costs from Simulated Spatially Varying Population Data 

1. Poisson Simulation of Population of Reproductive Age 

For each district, the non-homogenous Poisson process was used to simulate 100 

realizations of the gridded census population of reproductive age (  ). Figure 15 shows a 

graph of 100 realizations of population values from the non-homogenous Poisson simulation 

of gridded census population of reproductive age in Kinondoni District. Population maps of 

some realizations are shown in figure 16. 
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Figure 15. 100 Realizations of Gridded Census Population of Reproductive Age in 

Kinondoni District 

 

Figure 16. 1
st
, 10

th
, 79

th
 and 98

th
 Realizations of Simulated Gridded Census 

Population of Reproductive Age in Kinondoni District 
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Figure 17 shows a graph of 100 realizations of population values from the non-

homogenous Poisson simulation of gridded census population of reproductive age in Mbeya 

Urban District. Population maps of some realizations are shown in figure 18. 

 

Figure 17. 100 Realizations of Gridded Census Population of Reproductive Age in 

Mbeya Urban District 

 

 

Figure 18. 1
st
, 10

th
, 79

th
 and 98

th
 Realizations of Simulated Gridded Census 

Population of Reproductive Age in Mbeya Urban District 
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Figure 19 shows a graph of 100 realizations of population values from the non-

homogenous Poisson simulation of gridded census population of reproductive age in Mjini 

District. Population maps of some realizations are shown in figure 20. 

 

Figure 19. 100 Realizations of Gridded Census Population of Reproductive Age in 

Mjini District 

 

Figure 20. 1
st
, 10

th
, 79

th
 and 98

th
 Realizations of Simulated Gridded Census 

Population of Reproductive Age in Mjini District 
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2. Adjusted Realizations of Population of Reproductive Age 

For each of the three districts, the population realizations were adjusted to spatially 

match the target census population of reproductive age as stipulated in the flowcharts in 

figure 4 and 5 (the threshold population of reproductive age (   for each district is shown in 

table 5 below). The population realizations were matched the target census population of 

reproductive age    ̅
  . 

District (K) Threshold Population of 

Reproductive Age (   

Kinondoni 1 

Mbeya Urban 1 

Mjini 8 

Table 5. Threshold Population of Reproductive Age 

Figure 21 shows a graph of 100 realizations of population values from the non-

homogenous Poisson simulation of discretized population in Kinondoni District, adjusted to 

the ‘target’ census population of reproductive age, a value of 1,110,917. Population maps of 

some adjusted realizations with histograms are shown in figure 22 and 23, respectively. The 

x-axis on the histograms in figure 23 is capped at 100 people to best display the subtleties in 

the pixels with low population. 
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Figure 21. Adjusted Realizations of Discretized Census Population of Reproductive 

Age in Kinondoni District 

 

Figure 22. 1
st
, 10

th
, 79

th
 and 98

th
 Adjusted Realizations of Simulated Gridded 

Census Population of Reproductive Age in Kinondoni District 
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Figure 23. Histogram of 1
st
, 10

th
 and 79

th
 Adjusted Realizations with Histogram of 

Empirical Gridded Census Population of Reproductive Age (Bottom Right) in 

Kinondoni District 

 

Figure 24 shows a graph of 100 realizations of population values from the non-

homogenous Poisson simulation of discretized population in Mbeya Urban District, adjusted 

to the ‘target’ census population of reproductive age, a value of 142,494. Population maps of 

some adjusted realizations with histograms are shown in figure 25 and 26, respectively. The 

x-axis on the histograms in figure 26 is capped at 50 people to best display the subtleties in 

the pixels with low population. 
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Figure 24. Adjusted Realizations of Discretized Census Population of Reproductive 

Age in Mbeya Urban District 

 

 

Figure 25. 1
st
, 10

th
, 79

th
 and 98

th
 Adjusted Realizations of Simulated Gridded 

Census Population of Reproductive Age in Mbeya Urban District 
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Figure 26. Histogram of 1
st
, 10

th
 and 79

th
 Adjusted Realizations with Histogram of 

Empirical Gridded Census Population of Reproductive Age (Bottom Right) in  

Mbeya Urban District 

 

Figure 27 shows a graph of 100 realizations of population values from the non-

homogenous Poisson simulation of discretized population in Mbeya Urban District, adjusted 

to the ‘target’ census population of reproductive age, a value of 120,616. Population maps of 

some adjusted realizations with histograms are shown in figure 28 and 29, respectively. The 

x-axis on the histograms in figure 29 is capped at 200 people to best display the subtleties in 

the pixels with low population. 
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Figure 27. Adjusted Realizations of Discretized Census Population of Reproductive 

Age in Mjini District 

 

 

Figure 28. 1
st
, 10

th
, 79

th
 and 98

th
 Adjusted Realizations of Simulated Gridded 

Census Population of Reproductive Age in Mjini District 



 

 45 

 

Figure 29. Histogram of 1
st
, 10

th
 and 79

th
 Adjusted Realizations with Histogram of 

Empirical Gridded Census Population of Reproductive Age (Bottom Right) in Mjini 

District 

  

3. Varying HIV Prevalence 

For each district, varying HIV prevalence values ( ̃ ) were created by applying spatially 

varying HIV prevalence rates to each of the adjusted realizations of population of 

reproductive age. Figure 30 – 32 show the histograms varying HIV prevalence derived from 

adjusted realizations of gridded population of reproductive age.  
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Figure 30. Histogram of Distribution of HIV Prevalence in Kinondoni District 

 

 

Figure 31. Histogram of Distribution of HIV Prevalence in Mbeya Urban District 
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Figure 32. Histogram of Distribution of HIV Prevalence in Mjini District 

 

Table 6 shows some statistics of the varying HIV prevalence values ( ̃   for each 

district.  

 

 

 

 

 

District  ̃  

Maximum 

 

  ̃  

Mean 

  ̃  

Median 

 ̃  

Minimum 

 ̃  

Range 

Kinondoni 88,012 87,776 87,774 87,564 448 

Mbeya Urban 5193.2 5158.2 5157.9 5116.9 76.3 

Mjini 2710.3 2703.6 2703.7 2698.7 11.6 

Table 6. Summary Statistics of Varying HIV Prevalence 
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4. Varying ARV Costs 

For each district, total cost of ARV was calculated by multiplying the cost of one dose of 

ARV treatment per HIV patient per month ( ) with the spatially distributed HIV prevalence 

(  ̃  . Figures 33 – 35 show the varying total cost of ARV for each of the districts. 

 

 

Figure 33. Histogram of Distribution of Total Cost of ARV in Kinondoni District 
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Figure 34. Histogram of Distribution of Total Cost of ARV in Mbeya Urban 

District 

 

Figure 35. Histogram of Distribution of Total Cost of ARV in Mjini District 
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Table 7 shows some statistics of the varying ARV total cost for each district.  

 

District  ̃ Max ($)  ̃ Mean ($)  ̃ Median 

($) 

 ̃ Min($)  ̃ Range 

($) 

Kinondoni 639,520 637,810 637,790 636,260 3255 

Mbeya 

Urban 

37,735 37,481 37,479 37,181 554.5 

Mjini 19,694 19,645 19,645 19,610 84.3 

Table 7.Summary Statistics of Varying ARV Costs 

D. Loss Functions for Antiretroviral Costs 

The varying ARV costs ( ̃   are then used to create and minimize loss functions under 

three decision-making attitudes or varying risk tolerance, namely minimax regret, maximin 

and maximax attitudes. For each of the three districts, linear loss functions depicting the 

error in estimation of HIV prevalence were created and minimized to obtain the best 

estimates of HIV prevalence values that correspond to the least impact on ARV cost under 

three decision-making attitudes. The linear loss functions of the minimax regret, maximin 

and maximax attitudes, respectively, are represented on the graphs on the top row in figures 

36 – 39 and the corresponding graphs of minimized loss values are shown on the bottom 

row of the same figures. Summary statistics from the each district’s minimized expected loss 

values are shown in tables 8 – 10. 
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Figure 36. Linear Loss Functions and Expected Loss Values for Kinondoni District 

 

 

 

Attitude Best HIV Prevalence Estimate Impact on ARV Cost ($) 

Minimax Regret 87,774 494.6 

Maximin 87,672 98.3 

Maximax 87,880 1167.1 

Table 8.Kinondoni District: Best HIV Prevalence Estimates and Impact on ARV 

Cost under Three Decision-Making Attitudes 



 

 52 

 

Figure 37. Linear Loss Functions and Expected Loss Values for Mbeya Urban 

District 

 

 

Attitude Best HIV Prevalence Estimates Impact on ARV Cost ($) 

Minimax Regret 5158 97.2 

Maximin 5136 22 

Maximax 5181.4 196 

Table 9.Mbeya Urban District: Best HIV Prevalence Estimates and Impact on ARV 

Cost under Three Decision-Making Attitudes 
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Figure 38. Linear Loss Functions and Expected Loss Values for Mjini District 

 

 

 

Attitude Best HIV Prevalence Estimates Impact on ARV Cost ($) 

Minimax Regret 2703.7 13.6 

Maximin 2700.7 3 

Maximax 2706.7 29.4 

Table 10.Mjini District: Best HIV Prevalence Estimates and Impact on ARV Cost 

under Three Decision-Making Attitudes 
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VI. Discussion 

A. Aggregate vs Spatially Varying Prevalence Values 

In all the three districts in this study, the aggregate prevalence values ( ̅  ) did not fall 

within the distribution of the spatially varying values ( ̃   derived from simulated 

population of reproductive age, as shown in table 11.  

District 

(K) 

Average 

HIV 

prevalence 

  ̅   

Sum of 

Spatially 

Varying 

prevalence 

  ̅̂   

 ̃  

Maximum 

 

 ̃  

Mean 

 ̃  

Median 

 ̃  

Minimum 

Kinondoni 76,431 18,330 88,012 87,776 87,774 87,564 

Mbeya 

Urban 

9,447 4,688 5193.2 5158.2 5157.9 5116.9 

Mjini 881 2,147 2710.3 2703.6 2703.7 2698.7 

Table 11.HIV Prevalence Statistics 

For Kinondoni and Mjini districts, the spatially varying prevalence was at least 11,133 

people (1% of respective gridded census population of reproductive age) and 1,817 people 

(1.5% of respective gridded census population of reproductive age) more than the aggregate 

prevalence, respectively. For Mbeya Urban district, the spatially varying prevalence was at 

least 4253 people (3% of respective gridded census population of reproductive age) less than 

the aggregate prevalence.  
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In all the three districts in this study, the sum of spatially varying prevalence   ̅̂   values 

also did not fall within the distribution of the spatially varying values ( ̃  . However, the 

aggregates of spatially varying prevalence   ̅̂   values were closer to the  ̃  distribution in 

Mbeya Urban and Mjini districts by at least 428 and 551 people, respectively. In Kinondoni 

district, the aggregates of spatially varying prevalence was at least 69,234 people less than 

the spatially varying values ( ̃   because of the relatively high difference between the 

aggregate prevalence rate and the average of spatially varying prevalence rate as shown in 

table 12. 

District Aggregate HIV prevalence 

rate    ̅   [%] 

Average of Spatially 

Varying prevalence rate  

       [%] 

Kinondoni 6.88 1.65 

Mbeya Urban 6.63 3.29 

Mjini 0.73 1.78 

Table 12.Aggregate vs. Spatially Varying HIV Prevalence Rates 

While the disaggregation of HIV prevalence rates from the average district values to the 

spatially varying values may help a decision-maker to avoid spatial analysis bias, assigning 

DHS cluster centroid values to discretized points within the urban and rural buffers may lead 

to a significant discrepancy between the aggregate prevalence rate and the average of 

spatially varying prevalence rate, as is the case in Kinondoni district. Therefore, a decision-

maker would want to be cautious of which prevalence rate values to employ, keeping in 

mind that using the average of spatially varying prevalence rates instead of the aggregate 

prevalence rate may underestimate HIV prevalence in relatively large districts such as 

Kinondoni and Mbeya Urban while overestimating HIV prevalence in smaller districts such 
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as Mjini, as shown in this study. Another consideration that might affect the average of 

spatially varying prevalence rates is how prevalence rates are assigned to grids that are 

contained within the intersection of two or more DHS centroid buffers. In our study, the 

grids in the intersection of two or more buffers were assigned the higher prevalence rate 

value: thus, it is likely that the difference between the average of spatially varying 

prevalence rates and aggregate prevalence rate would change somewhat had we considered 

the alternative approach of averaging the values of the prevalence rates contained within the 

intersection of buffers. That said, since our goal in this study was to explicate the differences 

between using aggregate values and spatially varying values in the light of possible 

decision-making attitudes, we considered the somewhat extreme but realistic possibility of 

employing the maximum    value as the spatially varying prevalence rate to study the 

decision-making implication thereof.  

 

 

 

B. Aggregate vs Spatially Varying Prevalence ARV Costs 

In all the three districts in this study, the aggregate ARV costs (  ̅ ) did not fall within the 

distribution of the spatially varying values ( ̃   derived from simulated population of 

reproductive age, as shown in table 13.  
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District 

(K) 

Aggregate 

ARV cost  

   ̅) [$] 

Aggregate 

of Spatially 

Varying 

ARV cost  

  ̂ ̅) [$] 

 ̃ Max ($)  ̃ Mean ($)  ̃ Median ($)  ̃ Min($) 

Kinondoni 557,947 133,810 639,520 637,810 637,790 636,260 

Mbeya 

Urban 

68,963 34,223 37,735 37,481 37,479 37,181 

Mjini 6,431 15,673 19,694 19,645 19,645 19,610 

Table 13.ARV Cost Statistics 

The aforementioned discrepancies translate to a difference of at least $78,313 and 

$13,179 between spatially varying ARV cost values ( ̃   and aggregate ARV cost    ̅)  for 

Kinondoni and Mjini districts, and aggregate ARV cost of at least $31,228 more than the 

spatially varying cost in Mbeya Urban district. In all the three districts in this study, the sum 

of spatially varying ARV cost   ̂ ̅  also did not fall within the distribution of the spatially 

varying ARV cost ( ̃  . However, the aggregates of spatially varying ARV cost   ̂ ̅  were 

closer to the  ̃  distribution in Mbeya Urban and Mjini districts by at least $2958 and $3937, 

respectively. In Kinondoni district, the aggregates of spatially varying ARV cost was at least 

$502,450 less than the spatially varying ARV cost ( ̃  . 

The aforementioned cost differences can be better put into perspective if one was to take 

into account how much the decision-maker, say the Tanzanian government, would be trying 

to save the consumer by manufacturing ARV drugs locally at approximately $7.30 rather 

than importing at approximately $10. Considering the aggregate HIV prevalence and cost of  
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one dose of ARV treatment per month per person, the decision-maker would be aiming to 

save approximately $200,000 for Kinondoni district, $25,000 for Mbeya Urban district, 

$2000 for Mjini district and approximately $3.5 million for the entire country of Tanzania. 

Considering such potential aggregate savings, the discrepancy between aggregate ARV cost 

   ̅) and aggregate of spatially varying ARV cost    ̂ ̅) translates to approximately two times 

the intended potential savings in Kinondoni district, exceeds intended potential savings in 

Mbeya Urban by 36% and is four times the intended potential savings in Mjini district. A 

viable conclusion then is that if a decision-maker utilizes the aggregate ARV cost    ̅) 

instead of the aggregate of spatially varying ARV cost    ̂ ̅), then it is unlikely that they will 

realize the full potential savings from locally manufacturing rather than importing ARV 

drugs. 

For comparison, the discrepancy between the aggregate of spatially varying ARV cost  

  ̂ ̅) and the spatially varying ARV cost ( ̃   is approximately double the intended potential 

savings in Kinondoni district, at least 11% of intended potential savings in Mbeya Urban 

and exceeds intended potential savings in Mjini district by 65%. Therefore, if a decision-

maker utilizes the spatially varying ARV cost ( ̃   instead of the aggregate of spatially 

varying ARV cost   ̂ ̅), then they would be relatively closer to realizing the full potential 

savings from locally manufacturing rather than importing ARV drugs. 
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C. Adjustment of Realizations of Population of Reproductive Age 

During the adjustment process, the threshold population of reproductive age (    chosen 

was equivalent to the median gridded population of reproductive age. While the choice of 

the latter may have been subjective, it was computationally sufficient enough for our 

adjustment algorithm to make changes to enough pixels as to achieve the required spatial 

pattern. The choice of threshold population was informed by the percentiles of population of 

reproductive age shown in table 14.  

District Percentiles (%) 

 10 25 50 75 90 100 

Kinondoni 0 0 1 13 36 512 

Mbeya Urban 0 0 1 3 17 334 

Mjini 0 1 8 38 239 1419 

Table 14.Percentiles of Gridded Population of Reproductive Age 

In all the three districts, the gridded population values of reproductive age were relatively 

low across most grids. For instance, in Kinondoni, the largest district in this study, 90% of 

the population in the 53,332 grids contained 36 people of reproductive age or lower. In 

Mbeya Urban and Mjini districts, 90% of the population in their grids contained 17 and 239 

people of reproductive age or lower, respectively.   

All in all, the adjusted realizations resembled the original gridded dataset relatively 

well across all districts as shown in the maps and associated histograms in figures 39 – 41. 

As expected, in all the three districts, the relatively higher population differences are 

observed in pixels that contained more people of reproductive age to begin with.  
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Figure 39. Kinondoni District: Maps and Histograms showing Population 

Differences between some Adjusted Realizations and Gridded Population of 

Reproductive Age 
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Figure 40. Mbeya Urban District: Maps and Histograms showing Population 

Differences between some Adjusted Realizations and Gridded Population of 

Reproductive Age 
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Figure 41. Mjini District: Maps and Histograms showing Population Differences 

between some Adjusted Realizations and Gridded Population of Reproductive Age 

 

Moreover, the adjusted realizations resembled each other relatively well across all districts 

as shown in the maps and associated histograms in figures 42 – 44. As expected, the 

relatively higher population differences are observed in pixels that contained more people of 

reproductive age to begin with.  
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Figure 42. Kinondoni District: Maps and Histograms of Population Differences 

between some Adjusted Realizations of Reproductive Age 
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Figure 43. Mbeya Urban District: Maps and Histograms of Population Differences 

between some Adjusted Realizations of Reproductive Age 

 

 

 

 

 

 

 

 

 

 



 

 65 

 

Figure 44. Mjini District: Maps and Histograms of Population Differences between 

some Adjusted Realizations of Reproductive Age 

 

As shown in the quantile-quantile plots in figures 45 – 47, the adjusted realizations match 

the gridded population of reproductive age relatively well for populations of lower quantiles 

that comprise most of the grids in each district.  
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Figure 45. Kinondoni District: Q-Q Plots of 1
st
, 10

th
 and 79

th
 Adjusted Realizations 

 

Figure 46. Mbeya Urban District: Q-Q Plots of 1
st
, 10

th
 and 79

th
 Adjusted 

Realizations 

 

Figure 47. Mjini District: Q-Q Plots of 1
st
, 10

th
 and 79

th
 Adjusted Realizations 
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D. Utility Functions for Antiretroviral Costs 

In Kinondoni district, the minimization of the linear loss function under the three 

decision-making attitudes reveals best estimates of HIV prevalence values that are all 

approximately 15% higher than the aggregate prevalence values ( ̅   and almost four times 

higher than the sum of spatially varying prevalence ( ̅̂  .  The minimax regret attitude yields 

a best HIV prevalence estimate of 87,774 people, a value that is equivalent to the median 

value in the distribution of varying HIV prevalence values ( ̃   (see table 6 and 8). As 

expected, the maximax attitude caters to the highest HIV prevalence estimate (87,880 

people) but at a greater impact on ARV cost ($1167.10). That said, the best estimate of HIV 

prevalence under the maximax attitude is 208 people more than the best estimate in the 

budget-conscious maximin attitude.  

In Mbeya Urban district, the minimization of the linear loss function under the three 

decision-making attitudes reveals best estimates of HIV prevalence values that are all 

approximately 46% lower than the aggregate prevalence values ( ̅   and approximately 10% 

higher than the sum of spatially varying prevalence ( ̅̂  . The minimax regret attitude yields 

a best HIV prevalence estimate of 5,158 people, a value that is equivalent to the median 

value in the distribution of varying HIV prevalence values ( ̃   (see table 6 and 9). The 

maximax attitude caters to the highest optimized HIV prevalence estimate (~5181 people) 

but at a greater impact on ARV cost ($196). That said, the best HIV prevalence estimate 

under the maximax attitude is 45 people more than the best estimate in the budget-conscious 

maximin attitude.  
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In Mjini district, the minimization of the linear loss function under the three decision-

making attitudes reveals HIV prevalence values that are two times higher than the aggregate 

prevalence values ( ̅   and approximately 26% higher than the sum of spatially varying 

prevalence ( ̅̂  . The minimax regret attitude yields a best HIV prevalence estimate of 2,703 

people, a value that is equivalent to the median value in the distribution of varying HIV 

prevalence values ( ̃   (see table 6 and 10). The maximax attitude yields the highest best 

HIV prevalence estimate (~2707 people) but at a greater impact on ARV cost ($29.40). That 

said, the best HIV prevalence estimate under the maximax attitude is only 3 people more 

than that of the more budget-conscious maximin attitude.  

 

 

VII. Model Limitations 

While our study advocates for the incorporation of spatially varying datasets if available, 

disaggregating health and socio-economic indicators remains a matter of an informed guess, 

at best. In this study, the disaggregation of the district level HIV prevalence rates was 

necessitated by the lack of discretized HIV prevalence data to begin with and few degrees of 

freedom existed for exploring spatial heterogeneity in our population variables. Essentially, 

the population value at each pixel was simulated independently of other pixels because of 

lack of extraneous information dictating population dynamics within each district. While the 

AfriPop dataset ensured that the spatial pattern in our model remained consistent with a pre-

established gridded dataset, our non-homogenous Poisson model failed to model spatial 

dependence that one would expect in Tobler’s first law of geography (Tobler, 1970).   The 

assumption here is that the local (pixel-specific) AfriPop estimates, once adjusted to account 
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for the temporal difference, provides all the information necessary for determining the 

uncertainty in the unknown population value at each pixel. In essence, all the complexity of 

the spatial pattern is encapsulated via this model into the local adjusted AfriPop population 

estimates. Furthermore, since the gridded population was modeled within each district at a 

time, it was difficult to account for spatio-temporal demographic changes, for example 

migration, between census years and geographical areas. We tried to mitigate this spatial 

uncertainty by applying national net migration rates and urbanization rates to decrease and 

increase population, respectively, yet what happens on the ground between each pixel, 

district and census years remains uncertain and difficult to model. Lastly, our spatial 

adjustment algorithm did not quite distinguish population dynamics between urban and rural 

areas. HIV Prevalence is known to be generally higher in urban areas than in rural areas 

across gender (TACAIDS, 2014), an observation that our model did not consistently capture 

across all districts, mostly due to the compounded uncertainty of areas defined as urban and 

rural.  

 

VIII. Future Research 

The next step in this research that is arguably the most crucial would be to validate the 

population distribution in the original and derived gridded population datasets. One 

approach would be to use recent MODIS satellite imagery to distinguish urban and rural 

extents within any global region of interest (e.g. Schneider et al., 2009). With the 

consistently scarce data on population in remote rural communities, it is likely that rural 

population and HIV prevalence rates therein are underestimated.   As such, research 
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emphasis on prediction of population dynamics is necessary in order to estimate population 

at the pixel level and temporal scales between and beyond the census years. For instance, the 

role of fertility rates and migration in rural and urban areas could be investigated (e.g. Carr 

& Burgdorfer, 2013). Prediction of urban population dynamics would benefit from 

simulation of urban growth and the resulting land use change, as performed for other urban 

areas using Clarke’s SLEUTH model (Clarke et al, 1997, 2008).  

 In terms of methodology, further work into how the choice of pseudo-random 

number generator may introduce potential bias during the simulation process is required. A 

study by Van Niel & Laffan (2003) demonstrated that the choice of random number 

generator employed in the Monte Carlo simulation of multiple realizations of a GIS layer 

could lead to significantly different results in the output. Future research could also entail 

the exploration of other models of simulating errors resulting from population downscaling. 

For instance, instead of a non-homogenous simulation process, correlated simulation could 

be used to explore dynamics at the pixel level. For areas with incomplete and/or irregular 

observation units, geostatistical simulation methods such as that developed by Kyriakidis 

and Yoo (2005) could be adopted to generate realizations at the pixel level. 

Finally, from a decision-making standpoint, further work is needed on the development 

on concepts of loss functions and estimation theory which can be applied to HIV studies that 

utilize empirical data. In the meantime, other decision-making attitudes such as the Bayesian 

approach coupled with other types of loss functions could be investigated and possibly 

adopted for larger-scale regions. Additionally, further research would also entail a study of 

the potential role of ambiguity as far as spatial uncertainty is concerned. A consistent finding 

across several fields reveals that many decision-makers tend to be averse to ambiguity 
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(Highhouse & Hause, 1995; Mukerji & Tallon 2004). When this ambiguity is likened to 

spatial uncertainty, potential aversion by decision-makers could present a bias in which they 

avoid regions in which uncertainty is included (Van Dijk & Zeelenberg, 2003). 

 

 

IX. Conclusion 

Our findings show that the utilization of coarse aggregated values such as census data at 

the district level instead of spatially varying values may hinder effective decision analysis in 

situations that call for the use of a spatial population dataset. As such, we show that ARV 

cost assessment is sensitive to the level of aggregation of the population datasets and as 

such, may result in potentially significant discrepancies in cost that might affect policy. 

However, we recognize that up-to-date fine resolution datasets for some regions, 

especially in developing countries, are not always readily available. Furthermore, the few 

that exist typically contain source data and methods that are inherently uncertain and 

difficult to explicate. In such cases, decision-makers may benefit from the application of 

multiple simulated spatial distributions of fine scale population along with the associated 

cost estimates.  From this distribution of cost estimates, decision-makers should feel 

relatively confident selecting optimized impact values based on an explication of risk 

attitude, thus avoiding unforeseeable consequences of underestimating or overestimating 

impact assessment outcomes.  
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