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Abstract

Understanding and engineering two-dimensional electron gases

in complex oxides

Lars Gunnar Tangen Bjaalie

The next generation of electronic devices faces the challenge of adequately containing

and controlling extremely high charge densities within structures of nanometer dimen-

sions. Atomic-scale transistors must be thin and be able to control extremely high

charge densities (>1013 cm−2). Silicon devices typically have two-dimensional electron

gas (2DEG) densities around 1012 cm−2. Nitride-based devices can sustain densities an

order of magnitude higher. The “complex oxides” have recently emerged as an attrac-

tive materials system to support these developments. The demonstration of a 2DEG

at the SrTiO3/LaAlO3 interface has triggered an avalanche of research, including the

unprecedentedly high density of 3×1014 cm−2 at SrTiO3/GdTiO3 and SrTiO3/SmTiO3

interfaces. Metal-insulator (Mott) transitions that are inherent to some of these com-

plex oxides could offer even greater prospects for enhanced functionality or novel device

concepts.

The materials and heterostructures that have been explored to date are clearly only a

small subset of the vast number of materials combinations that could lead to interesting

phenomena. In this work we use first-principles methods to build greater understanding
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of the interface phenomena, so that searches can be better informed and more focused.

We also develop a set of criteria that the materials and their heterostructures should

satisfy to develop a high-performance 2DEG-based device. We focus in particular on

the band alignment, calculating it for a variety of different potential materials.

Next, we study GdTiO3/SrTiO3/GdTiO3 heterostructures in depth, where each in-

terface contributes excess electrons into the SrTiO3. We calculate the 2DEG forma-

tion for a superlattice containing six layers of SrTiO3, and compare with angle-resolved

photoemission spectroscopy results. Together, the experimental and theoretical results

conclusively show that the 2DEG results from the interface itself, and does not orig-

inate from a secondary source such as oxygen vacancies. These heterostructures also

exhibit a metal-to-insulator transition as the SrTiO3 layer thickness decreases, which

could possibly be used as a “Mott field effect transistor”—the system is very close to

a metal-to-insulator transition, and modulating a small fraction of the electron density

would lead to switching between the metallic and insulating phases. The mechanism

behind this transition is unraveled, and we construct a bulk model of the transition

based on the surprising observation that SrTiO3 itself can become a Mott insulator

when doped with an extremely high density of electrons.

Building on our study of the SrTiO3/GdTiO3 interfaces, we investigate the electronic

structure of GdTiO3 in detail—our calculated band gap differs markedly from past

experimental values, but is consistent with recent photoluminescence measurements. We

xii



find that the presence of small hole polarons leads to a feature in the optical absorption

spectrum which was previously interpreted to be the band gap. Since small hole polarons

are present in all the rare-earth titanates, not only GdTiO3, the values of the band gaps

(also based on optical absorption measurements) across the series will likely have to be

revised. Lastly, to understand the formation of small hole polarons in the rare-earth

titanates, we study point defects and impurities in GdTiO3. We also investigate how

defects may impact the behavior of GdTiO3 in electronic devices.

Professor Chris G. Van de Walle

Dissertation Committee Chair
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Chapter 1

Introduction: The complex oxides

The next generation of electronic devices faces the challenge of adequately containing

and controlling high charge densities within structures of nanometer dimensions. Silicon-

based electronics has been extremely successful. Silicon metal-oxide-semiconductor field

effect transistors (MOSFETs) are based on a two-dimensional electron gas (2DEG) that

is formed at the interface between Si and a dielectric, and electrostatically controlled by

a gate voltage. As devices are scaled to atomic dimensions the capacitance density and

the switched current density must both increase.1 Atomic-scale transistors must be thin

and be able to control extremely high charge densities (>1013 cm−2). Silicon devices

typically have 2DEG densities around 1012 cm−2. Nitride-based devices can sustain

densities an order of magnitude higher. To go beyond that, novel materials that can

support extremely high charge densities and high electric fields need to be explored.
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Chapter 1. Introduction: The complex oxides

The “complex oxides” have recently emerged as an attractive materials system to

support these developments. These oxides are transition metal oxides with at least

two other elements other than oxygen, and their study spans several sub-fields of con-

densed matter physics. They display a staggering number of different properties, such

as superconductivity,2 metal-insulator transitions,3 ferroelectricity,4 and colossal mag-

netoresistance.5 These are effects that are not observed in “regular” semiconductors,

insulators, and metals, but arise from the highly spatially confined transition metal d-

and f -states. In addition, the electron-electron (Coulomb) interactions are linked with

spin, orbital, and lattice degrees of freedom. Research interest in these compounds has

recently increased substantially, with the goal of creating new electronic devices which

can overcome the scaling limits inherent to the silicon-based semiconductor technology.

In this work, we will concern ourselves with perovskite oxides with the chemical for-

mula ABO3, with A being an alkali earth metal, a metalloid, or a rare-earth element,

and B being a regular or transition metal. We will study a tiny subset of the huge

array of compounds that can be formed from these elemental ingredients, motivated by

the spontaneous formation of a two-dimensional electron gas at the interface between

certain perovskite oxides (a full explanation of this phenomenon is given in Section 1.2).

The demonstration of a 2DEG at the SrTiO3/LaAlO3 (STO/LAO) interface6–8 has trig-

gered an avalanche of research. 2DEG densities up to 3×1013 cm−2 can be achieved in

STO/LAO, but unprecedentedly high densities of 3×1014 cm−2 have since been demon-
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Chapter 1. Introduction: The complex oxides

strated at SrTiO3/GdTiO3 (STO/GTO) and SrTiO3/SmTiO3 interfaces.9,10 In addition,

the interfaces have been reported to display unique behavior such as ferromagnetism7

and superconductivity.11 Metal-insulator (Mott) transitions that are inherent to some of

the complex oxides could offer even greater prospects for enhanced functionality or novel

device concepts.12,13 These oxide interfaces have been made possible due to tremendous

recent progress in materials growth technology, in particular in pulsed laser deposition

(PLD)14 and molecular beam epitaxy (MBE).15

In the next sections we will discuss the structural and electronic properties of perovk-

site oxides. In particular, we will discuss the properties of perovskites with a transition

metal B-site atom which have conduction bands derived from d-states, since this is the

category of compounds we will study in detail. We will also explain the formation of

the interface 2DEG formation via the polar discontinuity.

1.1 The perovskites

1.1.1 Structural properties

The ideal simple cubic perovskite crystal structure is shown in Figure 1.1(a). It is

a 5-atom unit cell (space group Pm3̄m) characterized by corner-sharing BO6 octahe-

dra. The A-site cation is usually fully ionized, and the functionality of the material

is derived from the B-site transition metal cation. Most perovskites are found in more

3



Chapter 1. Introduction: The complex oxides

Figure 1.1: The perovskite structure. 5-atom simple cubic cell shown in (a) and 20-
atom GdFeO3 unit cell with octahedral rotations and A-site cation off-centering shown
in (b).

complicated structures, breaking the simple cubic symmetry: Tetragonal, rhombohedral,

or orthorhombic crystal structures are possible. This symmetry breaking results from

BO6 octahedral rotations and deformations (changes to the B-O bond length), which

are also accompanied by A-site cation off-centering. Figure 1.2(b) shows an example:

a rhombohedral 20-atom unit cell. This unit cell has the octahedral tilt pattern of all

the non-cubic perovskites we will study (space group Pbnm). These deviations from the

simple cubic structure are caused by lattice instabilities arising from ionic size mismatch,

and/or the first-order Jahn-Teller effect (wherein the total energy of the system can be

lowered by breaking an electronic degeneracy of the B-site d-states by an appropriate

structural distortion).
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Figure 1.2: The 20-atom GdFeO3 structure, looking at the (a) (110)o and (b) (001)o

planes. The subscript “o” indicating that the axes are referenced to the 20-atom unit
cell, and not the 5-atom simple cubic cell.

Octahedral tilts and rotations (keeping the B-O bond lengths intact) arising from

ionic size mismatch can be understood via the geometric problem of packing hard spheres

together in the perovskite structure, resulting in the Goldschmidt tolerance factor16

t′ =
rA + rO√
2(rB + rO)

(1.1)

where rA, rB, rO are the ionic radii of the atomic species. If t′ > 1, the structure tends

to be hexagonal or adopt B-site ferroelectric off-centering distortions, if 1 > t′ > 0.9 it

tends to be cubic, and if t′ < 0.9 it tends to have octahedral tilts and rotations (this

simple criterion cannot tell us anything about the nature of these distortions). There

are 23 perovskite tilt systems and 15 space groups.17 I will not go into detail regarding

the possible relative orientations of the octahedra, and instead refer the reader to the

book by R. H. Mitchell.18 All the distorted perovskites we will study in this work have
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the GdFeO3 structure (space group Pnma). Figure 1.2 shows the octahedral rotations

for this structure, and shows that the A-site cation is displaced away from the cubic

positions to accommodate the octahedral rotations.

1.1.2 Electronic properties

The structural distortions are key in determining the electronic properties of the per-

ovskite. To understand why, we first look at the bonding arrangement (Figure 1.3). The

A-site cation does not usually play an important role in bonding, and the interactions

between the B-site and O atoms dictate the physics of the compound. These bands are

derived from the antibonding B-O π and σ bonds. The top of the O 2p band is predom-

inantly non-bonding with the transition metal. In general, transition metal oxides are

different from other materials such as metals, covalently bonded semiconductors, and

ionic insulators. The bonding between the O and the transition metal is mainly cova-

lent, with some ionic contribution, and the conduction bands are made up of transition

metal d- or f -states. Depending on the orbital occupation and structure, these states

can be either delocalized (large overlap with O 2p states) or localized (small overlap).

Therefore, small changes in the B-O-B interactions (via bond angles and lengths) in the

perovskite can completely determine the electronic properties of the material. One spe-

cific example we will see in this work (Chapter 4) is that changes to the bond angles can
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Figure 1.3: Molecular-orbital diagram for the bands arising from the bonding between
transition metal d-states and oxygen 2p-states in the perovskites. The ordering of these
bands is discussed in the text.

drive a Mott metal-insulator transition. Figure 1.4 illustrates how the overlap between

the d and O 2p states decreases as the bond angle increases.

We next examine how the surrounding atoms (in this case, oxygen) create an electric

field felt by the orbitals of the transition metal atom. This is the “crystal field” felt

by the d states, and it is a perturbation to the electronic system which is able to break

the five-fold degenerate d orbitals in the free atom (spherical symmetry). In a simple

cubic perovskite, the effective electric field leads to the splitting into the three-fold t2g

(dxy, dxz, dyz) and two-fold eg (dx2−y2 , dz2) orbital sets with some crystal field splitting

∆cf [Figure 1.5(a)]. The ordering of the t2g and eg sets is caused by the spatial orientation

of the orbital lobes with respect to those of oxygen: The eg orbitals have a maximum

near the negatively charged oxygen atoms, and the t2g a minimum.
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Figure 1.4: Changing overlap between transition metal (B) d-orbitals and O 2p orbitals
as B-O-B bond angle is tuned. Smaller overlap for (a), with bond angle smaller than
the cubic 180◦ shown in (b).

Further symmetry breaking via tetragonal elongation/compression of the octahedra

(two long or short bonds) may also occur, as illustrated in Figure 1.5(a). If there is

a combination of tetragonal elongations or compressions, along different axes, resulting

in three pairs of B-O bonds of different length, the crystal field becomes orthorhom-

bic, further lowering the symmetry. These results can be derived from group theory,

considering the symmetry properties of the d-orbital spherical harmonic wave functions.

All the orbitals can also be doubly occupied, and due to direct exchange interactions

(Hund’s exchange) between the spins of orthogonal and partially occupied d orbitals,

there is further splitting into spin up and down components as shown in Figure 1.5(b),

with an exchange splitting ∆ex.

If the B-site d- or f -states are occupied, octahedral distortions can occur by lowering

the total energy of the system by breaking an electronic degeneracy (the first-order Jahn-

Teller effect). From our simple treatment of the crystal field, we immediately see how the
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Figure 1.5: The influence of (a) crystal field splitting under cubic symmetry and tetrag-
onal compression (comp.) and elongation (elong.), and (b) Hund’s exchange on the
degeneracies of the d-states.
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filling of the d states can contribute to octahedral distortions by favoring bond lengths

deviating from three equal pairs. The introduction of such distortions will increase the

structural energy of the system, but it will decrease the electronic energy—a balance

will be struck, giving the maximal lowering of the total energy. For example, in the

rare-earth titanates (RTiO3, where R is a rare-earth atom in the +3 valence state),

which we will study in this work, each Ti atom has one 3d electron associated with it

(electron configuration 3d1), leading to octahedra with different B-O bond lengths.

1.1.3 Magnetism

In these perovskites, the magnetic interactions from the direct overlap of d orbitals

on separate atoms are negligible due to the large interatomic distance (4 Å), but sub-

stantial nearest-neighbor interactions occur via the overlap with oxygen 2p orbitals. As

mentioned above (and shown in Figure 1.4), the overlap is the largest for B-O-B bond

angles of 180◦ and decreases as the angle diminishes. There are two types of inter-

actions that arise from the hopping of electrons between different d orbitals, double

exchange and superexchange. Double exchange (or real kinetic exchange) is the transfer

of electrons between transition metal atoms (mediated via the bonding to oxygen) with

different valency, which requires an individual electron to retain its spin. This interac-

tion is therefore ferromagnetic in nature. Conversely, superexchange results from the

virtual kinetic exchange between two spins in non-orthogonal orbitals. For two singly
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occupied orbitals, the Pauli exclusion principle requires antiferromagnetic interactions.

If the interactions are instead between a singly occupied and empty orbital, then the

transfer of spin-up electron density into the empty orbital favors ferromagnetic coupling

because of the intra-atomic exchange interactions between electrons in different orbitals.

In the rare-earth titanates (3d1 electron configuration), superexchange is the cause

of the magnetic behavior, since the orbitals on two neighboring Ti sites (Ti-O-Ti) are

singly occupied and non-orthogonal. For the members of the series with larger rare-earth

radius (for example LaTiO3 and NdTiO3) the bond angles are close enough to 180◦ for

the singly occupied orbitals on two neighboring Ti atoms (Ti-O-Ti) to have significant

overlap, resulting in antiferromagnetic order. As the rare-earth radius becomes smaller

(for example GdTiO3 and YTiO3), the overlap between two occupied orbitals decreases

and the overlap between occupied/empty orbitals increases, giving ferromagnetic order.

1.1.4 Electron correlation

As the bands formed by the transition metal d orbitals become filled, we need to

consider the consequences of the spatially confined nature of these orbitals. This con-

finement results in small inter-atomic overlap and narrow bands (this also applies to

bands derived from f orbitals). When electrons are placed in these narrow bands, their

interactions go beyond simple band theory, in which electrons can be described as inter-

acting with an average potential. This leads to band theory failing to predict insulating
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phases of partially filled d-states. There is now an electron-electron Coulomb repulsion

energy cost U of doubly occupying an orbital which cannot be neglected—the material

is said to be “strongly correlated”. The consequence of this electronic correlation is just

as important as covalent bonding in understanding the electronic properties.

By comparing the magnitude of U to the kinetic energy of the electrons, or the orbital

bandwidth W , U/W gives the degree of this correlation. If the kinetic energy W is large

enough compared to U , the electrons can overcome the on-site Coulomb repulsion U and

form extended metallic states. However, if W is small (narrow band) then localization

will be favorable to avoid the relatively larger energy cost U , and the system is insulating.

This can occur in mainly two ways; charge-transfer and Mott-Hubbard insulators.19

Figure 1.6 shows the different cases, with ∆ being the charge-transfer energy (energy

to transfer an electron from the anion to the transition metal cation). The resulting

filled/empty bands are referred to as the lower and upper Hubbard bands (LHB and

UHB).

In the perovskites we study, the kinetic energy W is determined by the interactions

between the d orbitals of neighboring B-site atoms. As for the magnetic interactions,

the direct overlap of d orbitals is negligible, and it is the interactions via O 2p orbitals

that largely determine W . Small changes in the structure (changes to B-O-B bond

angles and lengths) can therefore change W , driving metal-insulator transitions (MITs).

Controlling this type of MIT is one example of “Mottronic applications”, where small
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Figure 1.6: Diagram of the bands in (a) a Mott-Hubbard insulator and (b) a charge-
transfer insulator.
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external perturbations drive transitions between competing electronic, orbital, charge

and spin orderings.3

As mentioned in past sections, in this work we will study the rare-earth titanates,

which are Mott insulators where the 3d1 electrons form a LHB. The theoretical methods

that we will use are applicable if U is appreciably larger than W . If U and W are of

similar magnitude, then delocalized electronic states around the Fermi level dynamically

screen the effective interaction between electrons residing on Ti 3d orbitals (“dynamical

correlations”), requiring more advanced methods. In the rare-earth titanates W is the

hopping amplitude between d orbitals of neighboring Ti sites, which is small in com-

parison to U .20 These materials are not close to the metal-insulator transition, and we

do not have delocalized electronic states around the Fermi level. However, in other sys-

tems dynamical correlations may be important, for example in correlated metals (such

as LaNiO3) or systems in the vicinity of a metal-insulator transition (such as VO2).

The reader is referred to the review by A. Georges et al.21 for an in-depth discussion of

dynamical correlation.
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1.2 Formation of a 2DEG and polar discontinuity

doping

In this section, I will describe in detail how one can form a 2DEG at the interface

between two perovskite oxides, taking advantage of an interface “polar discontinuity”,

and explain how this 2DEG differs from those formed at conventional semiconductor

interfaces.

To realize a 2DEG, two ingredients are required: confinement and a source of elec-

trons. Confinement is provided by forming a heterojunction: electrons are located in a

semiconducting layer in which the energy of the conduction band is lower than in an

adjacent barrier material. These electrons are confined to the vicinity of the interface

in a (roughly) triangular potential well, which is formed by electrostatics (through ap-

plication of a gate voltage) and/or because electrons are attracted to the interface by

positive charges. As to the source of carriers: in a depletion-mode MOSFET, the car-

riers in the channel are provided by doping of the channel, while in the more common

enhancement-mode MOSFET, they arise from electrostatic manipulation of the band

structure: a positive gate voltage pulls the conduction band below the Fermi level, cre-

ating an inversion layer in the p-type substrate in which electrons from the n-type source

can flow.22 In high electron mobility transistors (HEMTs), the electrons are typically

provided by modulation doping.22 III-nitride based transistors offer higher confinement
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and 2DEG densities due to polarization fields intrinsic to the wurtzite structure of the

nitride semiconductors. Modulation doping has recently been demonstrated for an oxide

heterojunction between STO and SrTi0.95Zr0.05O3.23

One could hypothesize a structure in which the source of electrons would be intrinsic

to the heterojunction itself: i.e., an atomically thin layer of donors right at the interface

between the two materials [see Figure 1.7 (a)]. This would have the advantage of pro-

viding a very high density of electrons right where they are needed, and simultaneously

confining them due to electrostatic attraction of the electrons to the positively charged

donor centers. One might think that delta doping of semiconductors could achieve this

goal; however, in practice delta doping is impossible to achieve with atomic precision,

and any randomness in the doping profile will cause a high degree of scattering and lower

the mobility.

It turns out to be possible, however, to create such a layer of delta doping intrinsically

at the interface between two materials. As a generic example, consider two materials,

one polar and the other nonpolar. Assume these materials have a cubic crystal structure,

with lattice parameters that are close enough that a properly bonded interface can be

formed. Looking along the [001] direction, we can picture the nonpolar material as

consisting of atomic layers that are all charge neutral (i.e., the electronic charge in

each layer exactly equals the ionic charge). The polar material, on the other hand,

consists of layers that are charged; in the example of Figure 1.7(b), charges of +1 and
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Figure 1.7: (a) Illustration of charge at a heterojunction resulting from an intrinsic
interface layer of donors, providing a high density of carriers as well as electrostatically
confining them to the interface. (b) Schematic showing an interface between a nonpolar
and a polar material. Charges on layers are indicated, and arrows indicate electron
transfer between layers in the polar material. At the interface, an excess 1/2 electron is
present. (c) Polar discontinuity at the SrTiO3/LaAlO3 interface.
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−1 per unit cell are assumed. The presence of such charges arises, of course, from

an imbalance in the electronic and ionic charges, and arises in any material that has at

least partially ionic character. Many ionic crystals exhibit such polar behavior, although

regular semiconductors such as GaAs can also be considered in this fashion.24 The local

charges arise from the fact that electrons in one layer are transferred to adjacent layers:

if a layer ends up with a net positive charge of +1, it is because 1/2 electron has been

transferred to the layer to its left, and 1/2 electron to the layer to its right, leaving those

layers with a net negative charge.

The bulk of the material remains, overall, charge neutral. But an interesting phe-

nomenon occurs if an interface is formed between a polar and a nonpolar material [Fig-

ure 1.7(b)]: the layer in the polar material adjacent to the nonpolar material donates

1/2 electron to the right, i.e., to a “bulk-like” layer in the polar material. It is also trying

to donate 1/2 electron to the layer to its left—but that layer belongs to a nonpolar ma-

terial and does not need that electron to satisfy its bonding. This electron is therefore

in principle available as a free electron, and the atomic layer on the polar side of the

interface effectively acts as a layer of donors with a density of 1/2 of the areal density of

atoms at the interface. In most materials, this is on the order of a few times 1014 cm−2;

i.e., a huge density compared to what is typically achieved in 2DEGs at conventional

interfaces. We will refer to this situation as “polar discontinuity doping” of interfaces.
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In case all of this sounds far-fetched: a concrete example was discussed in the context

of conventional semiconductors such as Ge and GaAs as early as 1978, by Harrison et al.25

Unfortunately, an implementation with such semiconductors has not proved feasible,

mainly because the interfaces have a tendency for intermixing and/or the surfaces of

semiconductors tend to be heavily reconstructed, rendering it difficult to obtain the

abrupt interfaces required for self-doping. We note that the nitride interfaces, such as the

AlGaN/GaN interfaces employed in HEMTs, do not exhibit polar-discontinuity doping.

The nitrides, because of their wurtzite structure, exhibit polarization discontinuities,

which enhance the density and confinement of the 2DEG—but (contrary to some early

reports) the electrons in this 2DEG still need to be externally supplied, either by extrinsic

doping or from surface states.

Interestingly, perovskite oxides do seem to enable the formation of the abrupt po-

lar/nonpolar interfaces required for self-doping; indeed the by now famous STO/LAO

interface falls into this category, as illustrated in Figure 1.7(c). Recent work, based

on a combination of first-principles calculations (which I performed) and macroscopic

Schrödinger-Poisson simulations, demonstrated that the electrons in the 2DEG are truly

intrinsic to the STO/LAO interface and generated by the polar discontinuity.26 This work

also demonstrated that the electrons in the STO conduction band are delocalized over

several atomic layers—in contrast to models where electrons are purported to reside in

“Ti3+” states on the STO side. Such a localization of electrons would be inconsistent
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with the high mobilities that have been observed. However, as will be explained in

Chapter 4, electrons do reside in Ti3+ states if the STO layer is sufficiently thin, which

has been experimentally observed for STO/GTO quantum wells.27

The 2DEG formation at the STO/GTO interface can be understood in the same way

as for STO/LAO. In STO, the valences are Sr2+, Ti4+, and O2−; in GTO, Gd3+, Ti3+,

and O2−. Along the [001] direction, STO is non-polar since it is composed of charge-

neutral (TiO2)0 and (SrO)0 planes, whereas GTO is polar, composed of (TiO2)− and

(GdO)+ planes. Each GdO plane donates 1/2 electron per STO unit-cell area to each of

the adjacent TiO2 planes. At the (001) interface, there is therefore a polar discontinuity,

giving rise to an excess of 1/2 electron per unit-cell area. Since the conduction-band

minimum of STO lies within the Mott Hubbard gap of GTO,28 the excess electrons end

up in the STO. Therefore, in a GTO/STO/GTO heterostructure (Figure 1.8), there

will be an excess 2×1/2 electron per unit-cell area (corresponding to a 2D density of

∼ 7× 1014 cm−2) in the STO.

1.3 Summary

Complex oxide interfaces offering unprecedentedly high interface 2DEG densities are

a promising new class of materials for electronics. In the rest of this thesis we will study

the properties of bulk, interfaces, and defects in this context. To do so, we need to
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Figure 1.8: Polar discontinuities in a SrTiO3/GdTiO3 double heterostructure. Arrows
indicate electron transfer between planes in the polar material. At each interface, an
excess 1/2 electron per unit cell area is present, giving a 2D electron density of
∼ 7× 1014 cm−2.

build on the understanding laid out in this chapter regarding structural and electronic

properties. This is required to calculate band offsets and identify criteria for devices

which we describe in Chapter 3, study the metal-insulator transition at STO/GTO

interfaces in Chapter 4, and determine the band gap and impact of small hole polarons

in GTO which we do in Chapters 5 and 6. Our method of investigation will be first-

principles electronic structure calculations, which will be discussed in the next Chapter.
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First-principles calculations

To study the complex oxides described in Chapter 1, including the Mott-insulating

rare-earth titanates, we will use first-principles electronic structure calculations based

on density functional theory. This will allow us to obtain the electronic structure of the

valence electrons, which are the electrons that participate in bonding and determine the

properties of solid-state systems.

The idea behind first-principles (or ab initio) calculations is to start from the gov-

erning equation in (nonrelativistic) solid-state physics, the Schrödinger equation, and

solve for the wave functions and eigenvalues. In principle, this means that no empirical

parameters are necessary, so that the theory has predictive power. Additionally it can

be used to explain and interpret experimental observations. However, in practice a num-

ber of approximations must be made. These approximations in solving the Schrödinger
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Chapter 2. First-principles calculations

equation will be described briefly below, but the discussion only touches the surface—

the reader is recommended to study the textbook by R. Martin for a more in-depth

treatment.29

2.1 The many-body problem

We start from the many-body Schrödinger equation in Hartree atomic units (neglect-

ing relativistic effects and the influence of magnetic fields),

ĤΨ({ri}, {Ri}; t) =

[
− 1

2

∑
i

∇2
i +

1

2

∑
i 6=j

1

|ri − rj|
−
∑
i,I

ZI
|ri −RI |

−
∑
I

1

2MI

∇2
I

+
1

2

∑
I 6=J

ZIZJ
|RI −RJ |

]
Ψ({ri}, {Ri}; t) = i

∂Ψ({ri}, {Ri}; t)
∂t

,

(2.1)

where lower-case subscripts denote a given electron, upper-case subscripts denote a given

nucleus, the r’s are the electron positions, the R’s are the nuclear positions, MI is

the nuclear mass, and Z is the nuclear charge. The first term on the left-hand side

of Eq. (2.1) is the kinetic energy of the electrons, the second term is the Coulomb

interaction between electrons, the third term is the potential energy of the electron-

nuclei interaction, the fourth term is the kinetic energy of the nuclei, and the final

term represents the interactions between the nuclei. The properties of the system are

determined by solving for the wave function Ψ. The solution to Eq. (2.1) will determine
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the material’s atomic and electronic structure—whether it is a metal or an insulator, its

conductivity, its band gap, and so on.

The first approximation we will introduce to solve the Schrödinger equation is the

Born-Oppenheimer (BO) approximation. We treat the nuclei classically by setting their

mass to infinity (MI → ∞), so that their kinetic energy (the fourth term in Ĥ) goes

to zero. This allows us to determine the electronic structure for the fixed external

potential of the nuclei. The nuclei-nuclei interactions (fifth term in Ĥ) is then given

simply by classical electrostatics. After calculating the electronic structure, we find the

atomic forces via the Hellmann-Feynman theorem, and the positions of the atoms can

be optimized.

We introduce a simplified notation, writing the electron kinetic energy as T̂ , the

electron internal potential energy operator as V̂int, the electron external potential (from

the nuclei) energy operator as V̂ext, and the classical interaction between nuclei as EII .

The total energy is the expectation value of the Hamiltonian

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

= 〈T̂ 〉+ 〈V̂int〉+ 〈V̂ext〉+ EII . (2.2)

Eqs. (2.1) and (2.2) seem simple enough, but finding a solution is unfortunately com-

putationally intractable for more than a few electrons and nuclei. The main issue is the

electron-electron interaction term V̂int, in which the number of terms increases exponen-
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tially with the number of electrons. The next section details how we will approximate

this problem using density functional theory.

2.2 Density functional theory

Even though more than 50 years old, DFT still represents the main computational

tool to perform electronic structure calculations, by making the problem of calculating

the electronic structure of a many-body system tractable. The basic idea is to treat the

electron density, instead of the explicit electron wave functions, as the defining variable

of the system. The groundbreaking 1964 work by Hohenberg and Kohn (HK)30 proved

that all ground- and excited-state properties of a system in a given external potential are

uniquely defined by the ground-state density of the system. They also proved that for

any external potential, there exists an energy functional of the density, E[n(r)], whose

global minimum (over all densities n that represent N electrons) is the ground-state

energy of the system, and the density that results from minimizing this functional is the

exact ground-state density. These theorems are the theoretical basis upon which DFT

is founded.

Dealing with the density instead of the full wave functions makes the many-body

problem a lot more tractable. Each wave function depends on the positions of all the

electrons in the system, meaning that for N electrons, it has 3N variables. In com-
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parison, the density n(r) has only three spatial variables for any number of electrons.

This makes it possible to simulate more than a handful of electrons, instead going up to

about a thousand electrons.

The HK theorems do not give any practical information how to obtain the ground-

state density of a system, or what E[n(r)] might be, and it is not obvious how to

formulate Eq. (2.2) in terms of densities. These practical details were outlined shortly

after the HK theorems by Kohn and Sham (KS),31 in their formulation of KS-DFT:

Replace the many-body-interacting system of electrons by an auxiliary system of nonin-

teracting particles in an effective potential chosen so that it reproduces the ground-state

density of the many-body system.

We attempt to write an energy functional of the density for such a system in terms

of single-particle wave functions ψ(r). The density for N single-particle wave functions

is given by

n(r) =
N∑
i=1

|ψi(r)|2, (2.3)

and the kinetic energy is

T s
e =

1

2

N∑
i=1

∫
dr|∇ψi(r)|2, (2.4)

where we use the superscript “S” for “single particle” to differentiate it from the full

many-body kinetic energy. Since the kinetic energy is not a smoothly varying function

of the density, it is difficult to construct a kinetic energy density functional. However,
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this does not turn out to be an issue in practice, since we can express the kinetic energy

in terms of single-particle wave functions.

Since we are operating under the BO approximation, we neglect the kinetic energy

of the nuclei. We consider the potential of the nuclei as a fixed external potential, and

write the nucleus-electron interaction from classical electrostatics as

Eext =

∫
drVext(r)n(r), (2.5)

and the nucleus-nucleus interaction is still a constant with respect to the electron density,

as outlined above:

EII =
1

2

∑
I 6=J

ZIZJ
|RI −RJ |

. (2.6)

We can write part of the electron-electron interaction as the Hartree energy of a classical

charge density interacting with itself

Es
Hart =

1

2

∫
drdr′

n(r)n(r′)

|r− r′|
. (2.7)

The KS energy functional is then

EKS = T se + Eext + Es
Hart + EII + EXC (2.8)

where we have lumped all the difficult total energy contributions from many-body effects

(not included in the noninteracting kinetic energy and Hartree energy) in the exchange-

correlation (XC) energy EXC. We will soon return to how to deal with this term.
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According to the HK theorems, the density that minimizes the exact energy density

functional is the exact many-body ground-state density; therefore we need to minimize

the functional in Eq. (2.8) with respect to the density. The derivation will not be outlined

here, but can be found in Ref. 29. Doing so, we end up with

(
−1

2
∇2 + Vext + V s

Hart + VXC

)
ψi(r) =

(
−1

2
∇2 + VKS

)
ψi(r) = εiψi(r), (2.9)

where we have written the functional derivatives above as potentials, V . For each

single-particle wave function, we have a single-particle Schödinger equation (called a

KS equation) with an effective KS potential chosen such that the sum of the solutions

ψi to Eq. (2.9) squared [as in Eq. (2.3)] gives the exact, many-body ground-state density.

VKS also depends on the density; therefore we must solve Eq. (2.9) self-consistently.

2.3 Traditional forms for the exchange-correlation

potential

In principle, Eq. (2.9) gives us the exact ground-state density, but we have yet to

define the XC potential, VXC—in fact, there is no known form for the exact VXC for

all systems. However, hope is not lost. Kohn and Sham provided an approximate

version called the local density approximation (LDA).31 V LDA
XC approximates the XC at

a given point r as that of the uniform electron gas with the same density as the KS

28



Chapter 2. First-principles calculations

density n(r) at r. The XC potential for the uniform electron gas can be calculated

exactly using quantum Monte Carlo techniques, and tabulated with respect to density.

Therefore, it is a local (only depending on the density at a given point), smooth function

of the density. The LDA has been amazingly successful at capturing material properties,

and is both intuitive and simply parametrized.32,33 A further development, called the

generalized gradient approximation (GGA), includes terms dependent on the gradient

of the density to try to better capture the difference between the homogeneous electron

gas and the inhomogeneities of a real material.34

2.4 The self-interaction error: over-delocalization

As one may expect, the LDA and GGA functionals often fail in capturing the proper-

ties of systems whose ground state is characterized by localized and strongly interacting

electrons, such as transition metal oxides and the rare-earth elements. Phenomena such

as metal-insulator transitions and heavy fermion behavior are thus not captured cor-

rectly. This can be ascribed to the tendency of the XC functionals to over-delocalize

valence electrons and to over-stabilize metallic ground states, as expected since the XC

functional is based on the homogeneous electron gas. One example, important for the

materials studied in this thesis, is the failure to correctly describe Mott insulators (see

Section 1.1.4). Here, the electronic localization on atomic-like states is not described
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properly, and these materials are instead predicted to be metals. Coupled with the

intrinsic difficulty in modeling the dependence of the XC functional on the electronic

charge density, for these materials approximate functionals generally provide a rather

poor representation of the many-body terms of the electronic interactions of the N -

electron ground state. Such systems with strongly interacting electrons still represent a

formidable challenge for DFT, and no single scheme has been identified that is able to

capture entirely the complexity of the quantum many-body problem, while maintaining

a sufficiently low computational cost.

The over-delocalization of electrons can largely be attributed to the failure of the XC

functional to cancel out the electronic self-interaction contained in the classical Hartree

term. This (unphysical) self-interaction makes an electron repel itself, thus inducing an

excessive delocalization of the wave functions. Consider the Hartree energy in Eq. (2.7);

we can write it out explicitly in terms of single-particle wave functions (now including

spin)

Es
ee =

1

2

∑
i,j,σi,σj

∫
drdr′ψ∗i,σi(r)ψ∗j,σj(r

′)
1

|r− r′|
ψi,σi(r)ψj,σj(r

′). (2.10)

We see that the term in the sum where i = j is the interaction between the charge

density of a state with itself. The next two sections will discuss methods to correct for

the self-interaction on the single-particle level, which is the level of theory employed in

this thesis. Going beyond single-particle theory is required to obtain a more precise

description of the many-body terms and thus a better treatment of correlation effects.
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Methods and corrective approaches for this purpose have been formulated and developed

in the last decades, with DFT + Dynamical Mean Field Theory (DFT+DMFT)21 being

the most commonly used, significantly improving the description of correlated systems.

While being less computationally demanding than wave-function based methods (as in

quantum chemistry approaches), this method is significantly more expensive than DFT.

2.5 The DFT+U approach

For a comprehensive review of DFT+U , the reader is referred to the review article by

Himmetoglu et al.;35 the discussion here is a brief introduction and overview. DFT+U

is based on a corrective functional where the missing VXC is included according to the

Hubbard model,36 essentially adding an intra-atomic energy repulsion U . It is one of

the simplest approaches to improve the description of the ground state of correlated

systems.37 Due to its simplicity and low computational cost (only marginally larger

than that of standard DFT calculations), DFT+U has rapidly gained popularity. This

method consists of adding a Hubbard +U correction to conventional functionals such as

LDA or GGA.

Within DFT+U the total energy of a system can be written as follows

EDFT+U = EDFT + EHub − EDC (2.11)
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Here EDFT is the total energy from the functional being corrected and EHub is the term

containing the Hubbard Hamiltonian. Because of the additive nature of this correction,

we have to correct for the interaction energy to be modeled by EHub. This is accomplished

by the subtraction of the so-called “double-counting” (DC) term EDC which models the

contribution of correlated electrons to the total energy as a mean-field approximation of

EHub. The Hubbard and DC functionals are not uniquely defined, and different possible

formulations exist. A popular approach for materials whose electrons are localized on

specific orbitals is the “fully localized limit” (FLL),38 as it is able to better capture Mott

localization and open up a Mott-Hubbard gap than other implementations. It consists

of an energy functional that, consistent with Eq. (2.11), can be written as

EDFT+U[ρ(r)] = EDFT[ρ(r)] +
∑
I

[
U I

2

∑
m,σ 6=m′,σ′

nIσm n
Iσ′

m′ −
U I

2
nI(nI − 1)

]
(2.12)

where nIσm are the occupation numbers of localized orbitals identified by the atomic site

index I, state index m (e.g., running over the eigenstates of Lz for a certain angular

quantum number l) and by the spin σ. Although the definition of these occupations

depends on the specific implementation, they are often computed from the projection of

KS orbitals on the states of a localized basis set of choice (e.g., atomic states)

nIσmm′ =
∑
k,v

fσkv〈Ψσ
kv|ΦI

m′〉〈ΦI
m|Φσ

kv〉 (2.13)
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where the coefficients fσkv represent the occupations of KS states (labeled by k-point,

band, and spin indices), determined by the Fermi-Dirac distribution of the corresponding

single-particle energy eigenvalues.

2.6 Hybrid functionals

Another method to approximate the wave function and energy of a many-body sys-

tem is Hartree-Fock (HF). Similarly to DFT, the interacting many-body system is re-

placed by single-particle non-interacting equations, but the HF method attempts to

include the many-body effects by incorporating the fermionic nature of the wave func-

tion in the exchange potential. The HF “exact” exchange energy of the system is given

by39

EHF
X = −1

2

∑
i,j,σ

∫
drdr′ψ∗i,σ(r)ψ∗j,σ(r′)

1

|r− r′|
ψj,σ(r)ψi,σ(r′) (2.14)

where the sum goes over a single spin σ. This term looks very similar to the Hartree

energy described above for KS theory (for a single spin), though because the integral

over r′ involves both ψi and ψj (the terms are “exchanged” compared to the Hartree

energy), it cannot be expressed in terms of densities.
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Within this framework, we reformulate the Hartree energy in Eq. (2.7) explicitly in

terms of single-particle wave functions (now including spin):

Es
Hart =

1

2

∑
i,j,σi,σj

∫
drdr′ψ∗i,σi(r)ψ∗j,σj(r

′)
1

|r− r′|
ψi,σi(r)ψj,σj(r

′). (2.15)

We see that the term in the sum where i = j is the interaction between the charge

density of a state with itself. In HF, this term is exactly canceled for each i by the

exchange term [Eq. (2.14)]. From the observation that the self-interaction is canceled,

hybrid functionals are constructed by adding some amount of HF exchange to a tradi-

tional functional, allowing hybrids to better describe the energetics of localized systems

where self-interaction is significant. Compared to DFT+U , the method is more general

since there is no assumption implicitly stating that the KS orbitals are localized—in

DFT+U the KS orbitals are projected onto a localized basis set in order to calculate

their occupation.

The XC energy in these hybrid functionals is given by

EXC = αEHF
X + (1− α)E

LDA/GGA
X + E

LDA/GGA
C , (2.16)

where α is an adjustable “mixing” parameter. This comes with the drawback of higher

computational cost (about one to two orders of magnitude) due to the explicit use of

the wave functions in calculating EHF
X . Still, systems of size up to 100-200 atoms can be

simulated.
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In this work we use the hybrid functional developed by Heyd, Scuseria, and Ernzer-

hof40 (HSE), which has a second parameter, σ that screens the long-range part of the

Hartree-Fock exchange

EXC = αEHF,SR
X (σ) + (1− α)EGGA,SR

X (σ) + EGGA,LR
X (σ) + EGGA

C , (2.17)

where the HF exchange is now replacing only the short-range exchange of the GGA XC.

[Specifically, the GGA functional developed by Perdew, Burke, and Ernzerhof34 (PBE)

is used for the GGA XC part of HSE.] The motivation behind the screening is that

exchange effects occur on a short-range scale, which also reduces the complexity of the

exchange term, making calculations of practical systems feasible.

In general, hybrids provide an improved description of the electronic structure of

semiconductors and insulators compared to LDA/GGA.41 They open up gaps in Mott

insulators,42 and improve the accuracy of electronic and structural properties for a wide

range of materials.43,44 The gap in a given material has an approximately linear depen-

dence on the α parameter in Eq. (2.17). The default value for HSE is 0.25,40 which is

the value used to obtain all the results in this thesis. If the band gaps of the studied

materials are well established, it is also common practice to fit α so that the correct

band gap is reproduced.
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2.7 The band-gap problem

In Section 2.4 we discussed the shortcomings of traditional DFT related to the self-

interaction error, motivated by the failure of obtaining a band gap for systems where

strong electron-electron interactions are the cause of the gap opening (Mott insulators).

However, traditional DFT has another problem which we must address: it significantly

underestimates band gaps of conventional semiconductors and insulators (where the

band gap can be understood from band theory), often by 50% or more. In DFT, the

band gap is often calculated from the eigenvalues of the single-particle KS equations

[Eq. (2.9)]: the energy difference between the highest occupied single-particle state and

the lowest unoccupied state, i.e., between the valence-band maximum (VBM) and the

conduction-band minimum (CBM). This is defined as the “KS band gap”. We must

therefore examine the physical meaning of these single-particle states. The derivation in

Section 2.2 guaranteed only the correspondence between the KS and exact many-body

ground-state density and total energy (for an exact VXC). No such guarantee for physical

significance was made regarding the eigenvalues and single-particle wave functions.

It can be shown that for an exact VXC the highest occupied single-particle eigenvalue

correctly gives the negative ionization energy,45 but others may not represent the true

energies for adding or removing electrons from the system. The best we can do is to

show empirically and by perturbatively adding quasiparticle interactions46 that the KS
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eigenvalues are in fact a close approximation. However, even if we assume that the

single-particle wave functions and eigenvalues are physically significant, the band gap

may not be, since it is an excited-state property. In Section 2.2 we pointed out that

HK theory states that any excited-state property can be found from the ground-state

density, but we do not have an obvious method to obtain the excited-state properties

from the density.

To see why the band gap is underestimated in DFT, we consider a semiconductor

with N singly occupied valence bands, with the VBM represented by εKS
N (N) and the

CBM by εKS
N+1(N + 1), so we can write the gap as:

Egap ≡ εKS
N+1(N + 1)− εKS

N (N) (2.18)

where εKS
p (q) denotes the pth Kohn-Sham eigenvalue in a system with q electrons. We

go on to define:

EKS
gap ≡ εKS

N+1(N)− εKS
N (N) (2.19)

∆XC ≡ εKS
N+1(N + 1)− εKS

N+1(N). (2.20)

Therefore:

Egap = EKS
gap + ∆XC. (2.21)

EKS
gap is the KS band gap, the energy difference between the CBM and VBM, and ∆XC

accounts for the shift in the CBM when it becomes occupied by an electron. For
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LDA/GGA, ∆XC is zero. In a macroscopic material the neutral excitation of a sin-

gle electron is an infinitesimal perturbation to the electron density of the system, and

in LDA/GGA the XC functional is parameterized from the homogeneous electron gas,

meaning that the contributions from the many-body effects in LDA/GGA are zero. This

is known as the “derivative discontinuity”,47,48 which takes it name from the fact that for

the exact functional the band gap can be written as the difference between the deriva-

tives of the total energy with respect to particle number in the limits approaching N from

above and below [see Eq. (64) in Ref. 49]. There are methods to overcome the band-gap

problem. The hybrid functional approach is one, but it is still a single-particle theory.

A common approach to evaluate excited state properties is the GW method.50 Here

a nonlocal self-energy term replaces the local XC potential, and quasi-particle Green’s

functions are calculated in order to take into account the presence of an extra particle.

2.8 The practical implementation of DFT

The final topic in this Chapter explains how the KS equations are solved in DFT

codes, and how the results in this thesis were obtained. All calculations were done with

the Vienna Ab initio Simulations Package (VASP)51 using the HSE40 functional unless

otherwise explicitly stated.

38



Chapter 2. First-principles calculations

The first practical aspect of numerically solving the KS equations is to choose a

basis set in which to parametrize the wave functions. Our choice is plane waves, which

requires periodic boundary conditions, appropriate for simulating solids. The accuracy

of the expansion increases monotonically with the highest-energy plane wave included,

specified by an energy cutoff parameter, making it easy to check for convergence. This is

not the case with all basis sets; increasing the size of a gaussian basis set (often used in

quantum chemistry), for example, does not guarantee systematic convergence.29 Another

advantage is that integrals with plane waves are relatively simple to perform numerically

using Fast Fourier Transforms. One serious drawback, however, is that a very large

number of plane waves is required to describe the rapidly varying potential of the atomic

nuclei and core electrons. We overcome this problem by using “pseudopotentials” that

reproduce the long-range behavior of the full, all-electron potential. Specifically, the

calculations in this thesis use pseudopotentials generated by the Projector Augmented

Wave (PAW)52 method.

The combination of plane waves and periodic boundary conditions allows the KS

equation to be efficiently solved in reciprocal space. Many important quantities, such as

the total energy, can therefore be expressed as a sum over k-vectors in the first Brillouin

Zone (BZ) of the simulation cell. Regarding the choice of k-vectors, it was shown, first

by Baldereschi53 and later by Chadi and Cohen54 and Monkhorst and Pack (MP)55 that

we can take advantage of the symmetry of the system to determine which k-points will
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give us the best approximation to a full integration over the BZ. We simply have to

define a mesh of points in three dimensions, and use the MP procedure to choose the

vectors giving the highest accuracy BZ integration. We must also check for convergence

with respect to the density of the mesh.

We also have to consider the practical implications of using periodic boundary con-

ditions. Their use means that we can simulate the properties of an infinite bulk crystal

using only the unit cell. If one wants to simulate surfaces, interfaces, and point defects,

one has to construct a supercell based on several unit cells, carefully considering the

effect of its periodic images. For example, for a surface one constructs a supercell con-

taining unit cells of the material and a vacuum region, and one has to ensure that the

vacuum region is large enough to avoid interactions between the two surfaces. Similarly,

if one wants to simulate a single interface one must make sure that the bulk regions of

the materials are large enough to avoid interface-interface interactions, and in order to

simulate a point defect or impurity the size of the supercell must be increased until the

interactions between defects in nearby cells are sufficiently small.
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Chapter 3

Criteria for the design of complex

oxide interfaces

3.1 Introduction

As outlined in Chapter 1, the complex oxides have recently emerged as an attrac-

tive materials system for devices containing extremely high charge densities, with the

vast majority of the research centered on the 2DEG at the SrTiO3/LaAlO3 (STO/LAO)

interface.6–8 There has also been recent developments using rare-earth titanates inter-

faced with STO; GdTiO3 (GTO)9 and SmTiO3.10 The materials and heterostructures

that have been explored to date are clearly only a small subset of the vast number of

materials combinations that could, in principle lead to interesting phenomena. System-
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atic experimental exploration of all of these combinations is clearly unfeasible—not least

because high-quality growth techniques have proven essential to bring out the unique

properties.9,56 Computations and simulations can greatly assist in the process of iden-

tifying suitable prospects: first and foremost, by building greater understanding of the

phenomena, so that searches can be better informed and more focused (which we will

see in practice for the STO/GTO interface in Chapter 4)—but also by screening and

exploring a greater number of materials and junctions than is experimentally practi-

cal. Such a search should be guided by a set of criteria that the materials and their

heterostructures should satisfy to develop a high-performance 2DEG-based device.

In this Chapter we propose a list of physical criteria that complex oxides and their

interfaces should meet and explain how these requirements can be used in conjunction

with electronic structure theory and device simulations to intelligently sort through

candidate systems. We will illustrate the approach with select examples using first-

principles calculations based on density functional theory (DFT), for which the theory

was laid out in Chapter 2. In particular, we present comprehensive data for band

alignments across a range of oxides that are being considered as candidate materials.

Since the band offsets at heterojunctions control confinement, accurate knowledge of

these quantities is a prerequisite for device design.

The attention that has been focused on oxides and their interfaces is of course based

on the tremendous progress that has been made in epitaxial growth.6,57–59 These achieve-
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ments provide us with confidence that sensible proposals for new structures based on

computational designs stand a good chance of being experimentally executable.

Section 1.2 discusses the fundamentals of formation of a 2DEG at an interface, par-

ticularly the case where electrons are provided by “polar-discontinuity doping.” In Sec-

tion 3.2 we present the list of criteria. Section 3.3 elaborates on band alignments, first

explaining the first-principles methodology, then summarizing the results. Section 3.4

summarizes the Chapter and provides an outlook.

3.2 Criteria

In this section we describe a set of key parameters and criteria that determine the

formation of a 2DEG at a given interface, or influence the 2DEG characteristics. These

include the structural quality, the polar/nonpolar discontinuity at the interface, the

electronic structure of the individual materials, band alignments, and parameters that

affect the mobility of the electrons in the 2DEG.

3.2.1 Structural quality

Lattice parameters.

The lattice parameters of the materials to be joined at an interface should be close

enough to allow for strong epitaxial bonding without formation of misfit dislocations.
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Perfect matching is not required; in fact, a slight lattice mismatch can be advantageously

used to induce pseudomorphic strain that can be used in band-structure engineering, as

discussed in Section 3.2.5 below. Strain has also been found to be a useful parameter to

affect other properties such as ferroelectricity, as has been established both experimen-

tally60 and computationally.61

Point defects.

Point defects, in particular oxygen vacancies, have often been invoked as sources

of electrons in the STO/LAO 2DEG.62–66 Previous first-principles calculations indicate

that both in STO and LAO oxygen vacancies have relatively high formation energies.67,68

However, this is an issue that would need to be evaluated in new materials being con-

sidered for heterostructures, and the methodology for addressing point defects is well

established.49,69 In Chapter 5 we will present a study of native defects and impurities

in GTO, highlighting their role in forming small hole polarons, which influence the elec-

tronic behavior of the material.

Intermixing.

Cation intermixing has been shown to occur for STO/LAO interfaces,70,71 and re-

cent experiments also indicate a strong effect of cation (non)stoichiometry on the 2DEG

density;72 such intermixing or (non)stoichiometry will interfere with the ability to ob-
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tain the full density 2DEG. Based on DFT calculations (in the generalized gradient

approximation) Qiao et al.71 reported that intermixed interfaces are thermodynamically

more stable than abrupt interface. This is a common feature at semiconductor inter-

faces; it does not mean that abrupt interfaces cannot be obtained using suitable growth

teachniques. Abrupt STO/GTO interfaces grown with molecular beam epitaxy (MBE)

without evidence of intermixing have been reported.9,73

3.2.2 Avoiding the “polar catastrophe”

The interface between STO and LAO has often been described in terms of a “po-

lar catastrophe”.70 This stems from regarding the system purely in terms of the ionic

charges. In the description outlined in Section 1.2, no divergence of the potential occurs

if the electrons that are generated by the polar discontinuity are kept (in conduction-

band states) locally at the interface. A divergence in potential only occurs if a net charge

is present at the interface—which would be a consequence of electrons leaking away.

Electrons will leak away if the system is such that those electrons can be transferred

to unoccupied states at lower energy. When a thin layer of LAO is grown on STO, the

LAO surface [which is usually AlO2-terminated, as in Figure 3.1(a)] exhibits partially

occupied surface states in the lower part of the band gap, i.e., well below the energy of

the electrons in the conduction band of STO. Electrons therefore prefer to occupy those

states; the transfer of electrons from the interface to the surface sets up an electric field
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(a)

(b)

Figure 3.1: (a) Schematic of a structure with a thin LaAlO3 layer on top of SrTiO3.
(b) Corresponding band diagram. The LAO surface serves as a sink of electrons when
unpassivated, reducing the 2DEG density.
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across the LAO layer, as shown in Figure 3.1(b). This leads to a potential that increases

towards the surface in the LAO layer, up to the point where the partially occupied surface

states cross the Fermi level. The fraction of electrons that are transferred depends on

the energetic position of the surface states and the thickness of the LAO layer. Below a

critical layer thickness, all of the electrons are transferred to the surface, consistent with

experimental observations.74 Only for large enough thickness is the potential buildup

sufficient to bring the surface states above the Fermi level. This situation has often been

described as charge transfer from the LAO surface to the interface,75,76 i.e., as if the

surface acts as a source of electrons. However, as should be evident from Section 1.2,

the electrons actually originate at the interface.

This model was elaborated on in Refs. 26 and 77. It also explains why the observed

2DEG density at STO/LAO interfaces is one order below the expected value of 1/2

electron per unit cell.62,65,74,78 For the present purposes, the question is: how can the

loss of electrons from the interface be avoided? The key, clearly, is to avoid the presence

of unoccupied states that drain away electrons from the interface. This can be addressed

in two ways.

Surfaces.

If the overlayer (the layer with the larger band gap) is terminated at a surface, un-

occupied surface states in the band gap should be avoided. First-principles calculations
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can assess surface reconstructions and the associated electronic structure. Such calcu-

lations have been performed for many semiconducting systems (see, e.g., Ref. 79 for an

example in nitrides). Aside from the recent work by my colleagues in the Van de Walle

group on LAO,80 for oxides very few studies have been performed to date. This will be

a very fertile and necessary area of investigations.

It should clarify, for instance, why heterostructures with a GTO, rather than an LAO

overlayer, exhibit a 2DEG with a density of 3×1014 cm−2.9 Clearly, the GTO surface

behaves differently from the LAO surface, and first-principles calculations can address

this difference. The calculations can also address how modifications of the surface could

prevent surface states from serving as a sink of electrons.26

Interfaces.

In Ref. 26 it was demonstrated that STO/LAO/STO double heterostructures, with

mirror-symmetric TiO2-LaO interfaces, lead to a 2DEG density corresponding to 1/2

electron per unit cell at each interface. One can explain this based on the symmetry

of the structure, which forces the electrostatic potential to be essentially flat across the

LAO layer (as opposed to exhibiting a slope); Gauss’ law then tells us that the net charge

density at each interface (integrated over the width of the 2DEG) has to be zero, i.e.,

no electrons leak away from the interface. An alternative viewpoint is that the interface
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that terminates the LAO layer does not contain any unoccupied states that can act as

a sink for electrons.

In STO/LAO, growing such symmetric interfaces has proven very difficult.81 Once

again, STO/GTO has proven to be different, with superlattices containing a number

of periods having been demonstrated.9 One reason is that symmetric interfaces are

inherent in the STO/GTO system, due to the TiO2 layer that is common to both the

STO and GTO structure. I.e., there is only one type of interface possible, containing

an SrO/TiO2/GdO sequence of layers. In contrast, STO/LAO exhibits two types of

interfaces, namely SrO/AlO2 and TiO2/LaO, and it is apparently not possible to control

the growth process to force symmetric interfaces.

3.2.3 Electronic structure

Density of states.

Achieving a high electron density in the 2DEG obviously depends on the density

of states (DOS) of the conduction band. Oxides with conduction bands comprised of

transition-metal d states (as is the case in STO) will tend to provide high DOS, since d

bands tend to have relatively low dispersion. Low dispersion also implies large effective

mass, which could limit mobility. Fortunately, these issues can be decoupled, as discussed

in Section 3.2.5 below. In oxides with conduction bands arising from sp bonding, the
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DOS should be carefully evaluated. Accurate first-principles calculations provide reliable

band structures, which in turn directly determine DOS. For modeling purposes, effective

masses can also be extracted from the calculations.82 It should be noted that parabolic

band models are often inadequate.

wave function spread and dielectric constant.

Tight confinement of the electrons in the 2DEG is beneficial since it avoids capaci-

tance degradation. The characteristic length for the wave-function spread decreases with

increasing effective mass. Just like for the DOS, a high effective mass in the direction

perpendicular to the interface is thus beneficial.

The dielectric constant is also a key parameter in confinement: the higher the dielec-

tric constant, the less tightly the electrons are confined to the interface. An interesting

complication arises due to the fact that dielectric constants can depend on the strength

of the electric field.83 The tight confinement of electrons means that the confining po-

tential well is narrow, corresponding to large electric fields, which in turn will affect the

confinement of the 2DEG near the interface. The confinement problem therefore needs

to be solved self-consistently.84 For STO, the dielectric constant is known to decrease

with applied field.85
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Breakdown strength.

To render the 2DEG useful for device applications, being able to modulate these

high electron densities is essential. This requires a high breakdown strength, which is

the product of dielectric constant and breakdown field.86 Breakdown field tends to scale

as the square of the band gap. Conventional semiconductors such as Si and GaAs exhibit

breakdown fields on the order of 0.1 MV/cm, while the value for GaN (Eg=3.5 eV) is

around 3 MV/cm. The perovskite oxides discussed here have band gaps comparable to

that of GaN, so we expect a similarly high breakdown field. Since the dielectric constants

of complex oxides are larger than those of conventional semiconductors, the breakdown

strengths will be superior.

Metal/insulator transitions.

Some of the complex oxides in which the conduction band is comprised of d states

behave as Mott insulators (discussed in detail in Chapter 1), i.e., an occupied d band

is split into an occupied lower Hubbard band (valence band) and an unoccupied up-

per Hubbard band (conduction band). Changing the occupation of these d states can

trigger a metal-insulator transition,87 which has been proposed as the basis for a novel

“charge-gain” transistor structure.12 The physics of these Mott insulators is an active

area of research, and first-principles calculations can contribute to both qualitative and

quantitative understanding, as will be demonstrated in Chapter 4.
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Alloying.

Forming alloys increases the flexibility in device design and band-structure engineer-

ing, as has been demonstrated with STO/SrTi0.95Zr0.05O3 interfaces, at which modula-

tion doping can be performed.23 To first order, the electronic properties of alloys can

be obtained by linear interpolation between the end compounds but nonlinearities (such

as band-gap bowing) can often be significant, and can be obtained from first-principles

calculations.88

3.2.4 Band alignments.

In the discussion of the STO/LAO interface in Section 1.2 and Figure 3.1, we showed

a band alignment in which the conduction-band minimum (CBM) in STO lies well below

the CBM in LAO. Given the large difference in band gaps between STO (3.2 eV)89 and

LAO (5.6 eV),90 and considering that the valence-band offset is expected to be small

(because the valence-band states are mainly derived from 2p states of oxygen, which

is the common anion91), this seems like a reasonable assumption. However, for many

other materials combinations this alignment is not a priori known. The alignment is a

key parameter for heterojunction design, both qualitatively (since it determines which

material the electrons will reside in) and quantitatively (since the CB offset needs to be

sufficiently large to ensure adequate confinement).
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While the alignment can be determined experimentally, very few results have been

reported for oxide interfaces to date. First-principles calculations are a powerful tool

for determining such alignments, as has been demonstrated in the many calculations

reported for semiconductors.92–94 Because of the importance of this topic, and to serve

as an illustration of the power of the first-principles approach, we devote a separate

Section of this Chapter to the band alignment problem (see Section 3.3).

3.2.5 Mobility

For electronic devices, the mobility of electrons in the 2DEG needs to be high. This

is actually a major problem for many oxides: low-temperature mobility is high (32,000

cm2V−1s−1 in STO at 1.8 K95) but decreases to low values at room-temperature (10

cm2V−1s−1 in STO at 300 K96). While cooling to cryogenic temperatures may be ac-

ceptable in some applications, widespread adoption will clearly depend on the ability to

achieve higher room-temperature mobilities. Two main factors enter: carrier effective

masses and scattering.

Effective mass.

To achieve high mobility, the effective mass of carriers should be small. At first sight

this seems incompatible with the requirement for a high density of states, but as pointed

out in Ref. 97, clever band-structure engineering can circumvent the issue. Effective
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masses may exhibit an anisotropy, either intrinsic due to the symmetry of the material,

or induced by strain. The orientation of the heterostructure should then be chosen such

that light electron masses occur in the in-plane direction (particularly, the transport

direction), while the out-of-plane direction should exhibit heavy electron masses, which

lead to large densities of states.

One way to avoid the problem of electrons occupying the Ti 3d-derived bands would

be to replace SrTiO3 with a material that instead contains 4d or 5d-derived bands (as in

SrZrO3 or SrHfO3), or s or p-derived bands (as in BaSnO3). The less localized nature of

these states will result in smaller electron effective masses, potentially leading to higher

mobilities.

Strain can be used to engineer the ordering of conduction-band valleys as well as

effective masses. Strain can be induced through pseudomorphic growth, in which a

material is grown epitaxially on a substrate with a different lattice constant. This leads

to tensile or compressive strain as the in-plane lattice constant is expanded or contracted

to match that of the substrate, and the out-of-plane lattice constant adjusts according

to the elastic properties of the layer. This approach is widely used in silicon technology,

particularly in SiGe heterostructures; in addition, other methods of process-induced

strain have been developed in silicon technology.98

Understanding the effects of strain on the band structure is thus of great importance,

and first-principles calculations can yield detailed and comprehensive information. For
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STO, strain-induced changes of the energetic ordering and effective mass of conduction-

band states results based on hybrid functional calculations (a methodology discussed in

detail in Chapter 2) has been published.82

Scattering.

Ionized impurity scattering can lead to strong decreases in mobility; this is an impor-

tant reason why modulation doping (in which carriers are located in a different spatial

region from the ionized donors) is widely applied in HEMTs. One might think that the

high density of effective donor centers at the polar/nonpolar interface [Figure 1.7(a)]

would lead to unacceptably high scattering rates. This does not happen, however, be-

cause these charged centers are arranged in a perfectly periodic array, which does not

lead to scattering—the analogy being the charged atomic cores that constitute the pe-

riodic lattice in which valence electrons move in a crystal. However, any deviation from

periodicity (e.g., due to interfacial roughness) will lead to reductions in mobility.

In addition to impurity scattering, scattering from optical phonons leads to a strong

reduction of mobility at finite temperatures, responsible for the large difference in mo-

bility at low and room temperatures, as has recently been highlighted for STO.99
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3.3 Band alignments

Band alignments of complex oxides can be obtained by a variety of experimental

methods; to date, mainly x-ray photoelectron spectroscopy (PES) has been employed,

but the focus has been almost exclusively on STO/LAO. First-principles theory is a

powerful tool for obtaining these offsets, but the calculated values for valence-band

(VB) offsets that have been reported to date differ significantly in both magnitude and

sign. The sign determines whether the valence-band maximum (VBM) is higher in STO

or in LAO; we adopt the convention that at an A/B interface the VB offset is positive

if the VBM in B is higher in energy than in A. DFT calculations, using either the local

density (LDA) or the generalized gradient (GGA) approximation, for superlattices with

symmetric TiO2-LaO terminations resulted in VB offsets of –0.15 eV (GGA),100 0.51 eV

(LDA),101 and 0.9 eV (GGA).102 Qiao et al. (GGA)71 also reported a VB offset of 0.7

eV for a perfect interface, and 0.2 eV for an interface that included cation intermixing.

In the following Section we will outline the methodology followed in the calcula-

tions. We note that band-alignment results are relevant not only for the case of polar-

discontinuity-doped (polar/nonpolar) heterostructures, but also for interfaces between

nonpolar materials, such as STO/SrZrO3.103 As noted in Section 1.2, modulation doping

at STO/SrTi0.95Zr0.05O3 interfaces was recently reported.23
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3.3.1 Methodology

Band alignments are in principle properties of a specific interface; i.e., a new cal-

culation should be performed for every pair of materials. In practice however, it turns

out that band offsets for lattice-matched non-polar interfaces exhibit transitivity.92,94,104

I.e., if the offsets A/B and B/C are known, the offset A/C can be derived. This implies

that the offsets can be obtained based on the alignment of the band structure of each

material on an absolute energy scale (e.g, with respect to the vacuum level).

Surface calculations can in principle be used to obtain this alignment.88,105 In the

present the band alignments are obtained from explicit interface calculations.93 First,

separate calculations for each bulk material are performed in which the VBM and

conduction-band minimum (CBM) are determined with respect to the average elec-

trostatic potential in the respective material. Then, the average electrostatic potentials

in the two materials are aligned by performing a calculation for a superlattice and de-

termining the difference in the average electrostatic potential in the bulk regions of the

heterostructure, i.e., far enough from the interface (see Figure 3.2). Therefore, the thick-

ness of each material in the superlattice has to be large enough to contain a bulk-like

region.

In our present work, the band alignments were determined by systematically using

STO as one of the materials in the interface calculations. STO was chosen because
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Figure 3.2: Planar-averaged electrostatic potential plotted along the [110] direction for
the SrTiO3/LaAlO3 heterostructure (blue dotted line). Bulk-like regions in the center
of each layer are highlighted (red solid lines), and the average potentials determined for
these regions are shown as dashed black lines.
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it is widely used as a substrate due to the availability of large single crystals with

high crystalline quality. It also exhibits reasonably good lattice matching to the other

materials considered here.

Usually the two materials have different equilibrium lattice parameters, posing an

additional complication in the calculation of band alignments. In this case, the interface

calculation is performed by fixing the in-plane lattice parameters to those of the non-

STO material, and allow the out-of-plane lattice parameter of STO and the atomic

positions near the interface (cation layer of each material, and interface oxygen layer)

to relax.

In general, the volume of the STO in the superlattice will end up at a value different

from its equilibrium value due to the Poisson effect, i.e., a material that is compressed

(stretched) in the plane tends to expand (contract) in the perpendicular direction ac-

cording to the Poisson ratio. The superlattice calculations thus provide the alignment of

the electrostatic potential between strained STO and another material in its equilibrium

structure. Combined with bulk calculations for STO in the same strain state, this pro-

vides the band alignment between a complex oxide in equilibrium and a strained STO

overlayer.

We are often interested, however, in the “natural” band alignment between the ma-

terials at their equilibrium volume. To obtain this alignment, we have to account for the

effect of the volume change in the STO. This is done by performing a similar calculation
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as for the band alignment at a heterojunction, but instead calculating the alignment of

the electrostatic potential between strained and unstrained volumes of the same mate-

rial,93 in a homojunction supercell with equilibrium in-plane lattice parameters.

Finally, we discuss the issue of the interface orientation. Many of the oxide interfaces

grown to date have been grown along the [001] direction, where a polar discontinuity

occurs at the interface. However, if we carry out the calculations for a superlattice

including this polar discontinuety, we unavoidably introduce the doping due to the polar

discontinuity at the interface and the compensating 2DEG, and the presence of these

charges and the resulting dipole could affect the calculated band alignment. For the

record, we are of the opinion that these additional effects are not part of the true

intrinsic band alignment, for reasons that have been discussed at length in previous

publications.92,104 Indeed, in the absence of the polar-discontinuity-doping effects, we

expect only small differences between band alignments for different orientations. This

has been tested in the case of alignments between nonpolar materials, in which the 2DEG

is absent in the [001] direction, and found that calculations for this direction (with up

to 8 layers of each material in the superlattice) produce results that are within 0.05 eV

of those obtained for [110].

One could argue that the 2DEG-related effects may be present in experimental de-

terminations of the offsets—however, that is an issue that depends on the details of how

the experiments are carried out. In the calculations, if one did include these effects by
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using the [001] direction, one might also introduce additional uncertainties due to in-

complete description of the 2DEG in our limited-width superlattices. Indeed, while the

thickness of the layers in our superlattices is adequate to describe the rapid convergence

of the electrostatic potential to its bulk value away from the interface, we do not claim

to accurately describe the full spatial extent of a 2DEG.

We have avoided all these issues by performing our calculations for superlattices with

an (110) interface orientation. No polar discontinuity exists in this orientation, since the

planes parallel to the interface are composed of (SrTiO)4+ and (O2)4− on the STO side

and, for example, (LaAlO)4+ and (O2)4− on the LAO side. For the cubic oxides we used

superlattices containing 6 layers of each material in the [110] direction, with an in-plane

area of a×
√

2a, and for the distorted oxides we used a superlattice with 5 layers of each

material with in-plane area 2a ×
√

2a in order to accommodate the lattice distortions.

Convergence tests as a function of layer thickness indicated that increasing the thickness

of each material from 6 layers to 8 layers for the cubic materials changed the potential

alignment by less than 0.05 eV, and for the distorted materials increasing the layers from

5 to 7 changed the potential alignment by less than 0.1 eV.

3.3.2 Results for bulk materials

We considered ABO3 perovskite oxides, with A=Ca, Sr, Ba, La, K, Y, and Gd, and

B=Ti, Zr, Hf, Al, Ta, and Sn, as listed in Tables 3.1 and 3.2. The materials investigated
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can be divided into cubic band insulators, distorted band insulators, and distorted Mott

insulators. The choice of materials covers B-site transition metals from the 3d, 4d, and 5d

rows (Ti, Zr, Hf, and Ta). The valences include +1, +2, and +3 for the A site, and +3,

+4, and +5 for the B site. This also allows for comparing materials with conduction

bands derived from d states versus s states (as in the case of BaSnO3, SrSnO3, and

CaSnO3).

The band insulators can be divided in nonpolar and polar according to the charge of

the alternating planes along the [001] direction: STO, BaTiO3 (BTO), CaTiO3 (CTO),

SrZrO3 (SZO), SrHfO3 (SHO), BaSnO3 (BSO), SrSnO3 (SSO), and CaSnO3 (CSO) are

nonpolar since the alternating planes consisting of either AO or BO2 are all charge

neutral. LAO and KTaO3 (KTO) are polar: LAO is composed of alternating planes

of (LaO)+ and (AlO2)−, and KTO is composed of (KO)− and (TaO2)+. The Mott

insulators, YTiO3 (YTO) and GTO are also polar materials along the [001] direction,

with alternating planes of (TiO2)− (Ti assumes valence +3 in these Mott materials) and

(YO)+ or (GdO)+. We remind the reader that our band-offset calculations are all carried

out with an (110) interface orientation, which does not exhibit any polar discontinuity.

For bulk calculations we considered both the 5-atom simple cubic perovskite unit

cells (a × a × a, where a is the lattice constant) and 20-atom distorted GdFeO3 unit

cells (roughly
√

2a×
√

2a× 2a). The latter allow for octahedral rotations and tilts that

are characteristic of the room-temperature phase for a number of the complex oxides
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Table 3.1: Calculated and experimental lattice constants and band gaps of studied
oxides in the simple cubic structure at room temperature. The simple cubic structure
has an indirect (R→ Γ) band gap; the direct (Γ→ Γ) band gap is given in parentheses.

Calculated Experimental

a Eind
g Edir

g a Eind
g Edir

g

Material (Å) (eV) (eV) (Å) (eV) (eV)

SrTiO3 STO 3.903 3.27 3.63 3.905106 3.20 3.7589

BaTiO3 BTO 3.992 3.13 3.22 3.992107 3.20108

KTaO3 KTO 3.994 3.40 4.36 3.988109 3.64 4.35110

LaAlO3 LAO 3.787 4.88 5.04 3.791111 5.690

BaSnO3 BSO 4.130 2.40 2.88 4.119112 3.1112
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Table 3.2: Calculated and experimental lattice constants and band gaps of oxides
stable in the GdFeO3 distorted phase at room temperature. Note that GdTiO3 and
YTiO3 are Mott insulators, with band gaps still debated in the literature. The band
gap is direct for the GdFeO3 structure.

Calculated Experimental

a b c Edir
g a b c Edir

g

Material (Å) (Å) (Å) (eV) (Å) (Å) (Å) (eV)

CaTiO3 CTO 5.363 5.445 7.627 3.84 5.380 5.442 7.640113 3.57114

SrZrO3 SZO 5.786 5.833 8.198 5.36 5.791 5.811 8.196115 5.6116

SrHfO3 SHO 5.752 5.783 8.153 5.76 5.752 5.765 8.134115 6.1116

CaSnO3 CSO 5.511 5.675 7.892 4.31 5.532 5.681 7.906117 4.4118

SrSnO3 SSO 5.711 5.725 8.090 3.55 5.708 5.704 8.066119 3.93120

GdTiO3 GTO 5.350 5.726 7.624 2.05 5.393 5.691 7.664121 –

YTiO3 YTO 5.324 5.697 7.611 2.11 5.316 5.679 7.611121 –
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considered in the present work (see Table 2). The calculations for the 5-atom cubic unit

cell were performed using a 6×6×6 Γ-centered k-point mesh, and the calculations for

the 20-atom cells were performed using a 4×4×2 k-point mesh.

As discussed in Section 1.1.4, in the Mott insulators GTO and YTO the VBM and

CBM are derived from the Ti 3d states. Here the Ti atoms assume the +3 oxidation

state, in contrast to the titanate band insulators discussed above in which the Ti atoms

assume the +4 oxidation state. Starting from STO, replacing Sr by Y or Gd results in

one extra electron per Ti that would occupy the conduction band. This extra electron

causes the degenerate Ti bands to split in an occupied lower Hubbard band, constituting

the valence band, and an empty upper Hubbard band, which constitutes the conduction

band. This opening of a gap is accompanied by a structural distortion, with rotations

and tilts of the TiO6 octahedra; the size of the gap strongly depends on the lattice

distortion.

The primitive cell of GTO and YTO contains 20 atoms, i.e., four formula units, as

they both are stable in the GdFeO3 distorted phase. Spin polarization is essential in

the description of the ground state of GTO and YTO: the lower Hubbard band and the

upper Hubbard band occur in the same spin-up channel, with a ferromagnetic ordering

of the Ti moments.
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3.3.3 Results for band alignments

The calculated band alignments are shown in Figure 3.3 and listed in Tables 3.3

and 3.4. In the band insulators the valence band is composed mainly of O 2p states,

with the VBM at the R point π/(2a)(±1,±1,±1) of the Brillouin zone of the cubic

crystal structure. Because of the similarity of these valence-band states, one might

expect them to be approximately aligned (an expectation that formed the basis for the

“common-anion” rule for band offsets91). Figure 3.3 indeed shows that the variation of

the VBM (and the O 2p edge for the Mott insulators) across the different materials is

generally smaller than the variation of the CBM; still, the position of the VBM varies

by as much as 1.2 eV, and thus a blanket application of the common-anion rule would

lead to significant inaccuracies. The larger variation of the CBM reflects the variety in

cations in these perovskites. For instance, in the case of STO the CBM is derived from

the Ti 3d t2g states, while in SZO it is derived from Zr 4d t2g states. Atomic Zr 4d states

are higher in energy than Ti 3d states,24 placing the CBM in SZO at a higher energy

than in STO. The CBM of SHO lies even higher. While insights like this are very useful

to analyze and predict trends, quantitative results require full-fledged calculations.

For STO/LAO interfaces, a number of experimental results have appeared in the lit-

erature, all obtained with PES: Chambers et al.122 reported a VB offset for STO/LAO

of +0.24±0.20 eV; Qiao et al.:123 0.16±0.10 eV; Segal et al.:124 0.35±0.18 eV, and
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Figure 3.3: Natural band alignments for oxides considered in the present work. The
valence-band maximum of STO was used as the zero of energy.

Table 3.3: Natural band alignments between band insulators and STO. Valence- and
conduction-band offsets (VBO and CBO) are referenced to the STO band edges.

Material VBO (eV) CBO (eV) Material VBO (eV) CBO (eV)

SrHfO3 –0.36 2.13 BaSnO3 –0.27 –1.14

SrZrO3 –0.34 1.74 SrSnO3 –0.37 –0.09

BaTiO3 0.14 –0.01 KTaO3 0.02 0.15

CaTiO3 –0.62 –0.05 LaAlO3 0.28 1.89

CaSnO3 –0.91 0.13
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Table 3.4: Natural band alignments between Mott insulators and STO. Offsets are
given for the O 2p edge and the minimum and maximum of the lower Hubbard band (all
referenced to the VBM of STO), and for the bottom edge of the upper Hubbard band
(referenced to the CBM of STO).

O 2p (eV) LHB-bottom (eV) LHB-top (eV) UHB (eV)

GdTiO3 –0.66 2.12 2.69 1.47

YTiO3 –0.71 2.11 2.61 1.47

Berner et al.:125 0.35±0.10. All of these values are in reasonable agreement with our

calculated VBO of 0.28 eV. PES measurements of the STO/SZO band alignment pro-

duced a VBO of –0.5 eV,103 again close to our calculated value of –0.34 eV. For the Mott

insulator GTO, our calculated offset between the VBM of STO and the top of the LHB

is 2.69 eV, in good agreement with the measured value of 2.94 eV,126 lending further

support to our approach.

3.3.4 Discussion

As described in Section 1.2, a 2DEG can spontaneously form at a polar/nonpolar

heterostructure. For the materials discussed in this manuscript, this includes a combi-

nation of any of the nonpolar band insulators with the polar LAO or KTO, or with the

Mott insulators GTO or YTO. The band alignments reported in the previous Section

then determine on which side of the interface the 2DEG will reside—and whether the
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magnitude of the offset is sufficient to provide adequate confinement. For instance, the

0.17 eV offset between STO and KTO may only be marginal. This offset results in the

interface electrons being confined to the STO. By combining KTO with, for example,

SZO as a barrier, the electrons will be confined within KTO. This would both minimize

the lattice mismatch compared to the STO/KTO case, and result in a 2DEG residing

in higher-mobility KTO Ta 5d states.

Other potentially interesting combinations involve the stannates. BSO has already

been flagged as a promising transparent conducting oxide material because of its high

conductivity,127 with a CBM consisting of Sn s states. According to our band alignments,

a heterojunction with KTO or LAO would create a 2DEG situated on the BSO side.

Another way of increasing electron mobility would be to have the 2DEG reside in a

material with conduction bands derived from 4d or 5d such as SZO or SHO, since such

d states are less localized (and hence more dispersive) than the 3d states of STO. But

due to the high-lying conduction band energies of these two materials, this might be

difficult to achieve in practice.

The STO/GTO interface was the first interface to exhibit a full 2DEG density (1/2

electron per unit cell area) as expected from the polar discontinuity.9 In accord with the

band alignment shown in Figure 3.3, the 2DEG resides on the STO side of the interface,

and the Mott insulator GTO serves as a potential barrier. We expect this to hold in

the case of STO/YTO as well, due to the similar band gap and band alignments. To
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achieve a “charge-gain” transistor structure12 in which the electron density in GTO or

YTO can be modulated would require a band insulator with a CBM significantly higher

than in STO; possibly SHO. Alternatively, Mott insulators with lower d-state energies

could be explored.

3.4 Summary

The design of novel complex-oxide heterostructures can greatly benefit from first-

principles calculations. We reported hybrid density functional calculations for band

alignments, which are useful for assessing and analyzing all types of heterostructures,

including those in which a 2DEG would be formed by extrinsic doping as well as those

exhibiting a polar discontinuity that leads to spontaneous formation of a 2DEG. We also

proposed a list of criteria to screen useful heterostructures, highlighting in which areas

first-principles calculations can contribute. The examples that were discussed illustrate

that the first-principles computational approach can fruitfully contribute to the design

of novel complex oxide heterostructures.
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Chapter 4

The metal-insulator transition in

SrTiO3 quantum wells

4.1 Introduction

As explained in Chapter 1, experiments in the group of Prof. Susanne Stemmer have

revealed the formation of a two-dimensional electron gas (2DEG) at the interface be-

tween the band insulator SrTiO3 (STO) and the Mott insulators GdTiO3 (GTO) SmTiO3

(SmTO), with an electron density of 1/2 electron per unit-cell area.9,10 The 2DEG re-

sides on the STO side, and the electron density (∼3×1014 cm−2) is more than one order

of magnitude higher than those obtained using conventional semiconductors, opening

a path towards novel electronic device applications, as described in Chapter 3. For
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the STO/GTO heterostructures, sheet resistance measurements indicate a remarkable

dependence of the electronic structure on the thickness of the STO: GTO/STO/GTO

structures are metallic if the STO is three or more layers thick, but insulating for fewer

layers.27,128 This metal-to-insulator transition with decreasing STO layer thickness and

increasing 3D electron density has been attributed to on-site Mott-Hubbard-type cor-

relation physics, where a correlation-induced mass enhancement is followed by a tran-

sition to a correlated insulator.27 This observation is corrobrated by measurements of

the distortons of the atomic positions, which are found to be larger than what would be

expected from simple lattice geometrical considerations based on the bulk structure.10,73

Computational studies for one-layer-thick STO129 have also been reported. However, the

microscopic mechanisms that trigger the change in the electronic structure with STO

layer thickness are yet to be fully explored.

The specific question we will address here is why and how GTO/STO/GTO struc-

tures become insulating when the STO thickness is reduced to one or two layers. We show

that for a sufficiently high number of STO layers a 2DEG forms at each interface, but

that once the number of layers become small enough the excess electrons localize within

the interface TiO2 planes. Building on suggestions in the experimental papers,10,27 we

attribute this transition to the high electron density in the STO conduction band, cou-

pled with large structural distortions at the interface.
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Bulk STO is stable in a cubic perovskite crystal structure at room temperature,

described by a 5-atom cubic unit cell (space group Pm3̄m). Bulk GTO is stable in

a GdFeO3 crystal structure (space group Pbnm), described by a 20-atom orthorhom-

bic unit cell which includes rotation and tilts of TiO6 octahedra. We use the hybrid

functional methodology outlined in Chapter 2 to simulate these bulk cells. The Gd f

electrons were included in the pseudopotential. Integrations over the Brillouin zone are

replaced with sums over a mesh of 6×6×6 Γ-centered special k-points for STO, and

4×4×2 for GTO, both with a 500 eV plane-wave basis set energy cutoff.

For STO, the calculated lattice parameter of 3.903 Å is within 0.1% of the experi-

mental value,106 and the indirect and direct band gaps are 3.27 eV and 3.63 eV, close

to the experimental values of 3.25 eV and 3.75 eV.89 The HSE functional also gives an

accurate description of the lattice parameters of GTO, giving 5.350 Å, 5.726 Å, and

7.624 Å, each within 0.8% of the experimental lattice parameters.121 The band gap in

GTO derives from a splitting of the Ti 3d derived bands into an occupied lower Hub-

bard (LHB) band and an empty upper Hubbard band (UHB), as explained in Chapter 1.

These Hubbard bands occur in the same spin channel, so that the magnetic moments

on the Ti atoms exhibit ferromagnetic ordering, consistent with experiment.130,131 The

LHB and UHB have relatively low dispersion, and the calculated Mott-Hubbard gap

is 2.02 eV. This value is markedly different than the commonly accepted experimental

value of 0.7 eV,59,132,133 and Chapter 5 reexamines the electronic structure of GTO in
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detail, concluding that the 2 eV value is indeed correct. We are therefore confident that

we are correctly simulating both bulk materials of the STO/GTO heterostructures.

We investigate the evolution of the electronic structure of GTO/STO/GTO het-

erostructures as a function of decreasing STO thickness by carrying out calculations for

(STO)n/(GTO)3 superlattices, with n = 6 to 1. A 2×2×1 k-point mesh is used with a

500 eV plane-wave cutoff for relaxations, and electronic properties are calculated with a

4×4×1 k-point mesh with a 400 eV plane-wave cutoff. The direction perpendicular to

the interface is [001] in the coordinate systems of both the STO and GTO unit cells. To

allow for the type of octahedral rotations and tilts as in bulk GTO, the in-plane area

is thus
√

2a ×
√

2a, where we fix a to the lattice parameter of STO. Each interface in

the superlattice thus provides one excess electron going into the STO. Internal atomic

positions and the lattice parameter perpendicular to the interface are allowed to relax.

We use an odd number of GTO layers in order to make the interfaces symmetric, while

satisfying the periodic boundary conditions and the connectivity of the octahedra. A

comparison between (STO)1/(GTO)3 and (STO)1/(GTO)5 superlattices indicates that

a greater GTO thickness leads to very small changes in the electronic and atomic struc-

ture: the width of the GTO LHB changes by less than 0.02 eV, and bond angles by less

than 0.5◦.
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4.2 Results

4.2.1 Thick STO layers: Metal

We start by presenting the results for thicker STO layers. In Figure 4.1(a) we show

the electronic band structure of (STO)6/(GTO)3 in the energy range comprising the LHB

and UHB of GTO, also encompassing the STO conduction band. Our results show that

(STO)6/(GTO)3 has a metallic state confined to the STO layer, indicative of the 2DEG.

The STO subbands can be clearly distinguished from the GTO LHB, which consists of

four bands derived from the 3d states associated with the four Ti atoms within the bulk

GTO. We note that there is a sizable spin splitting of the STO conduction band, with

the majority of the electrons in the 2DEG occupying spin-up bands, and a small fraction

occupying spin-down bands near the Fermi level. The spin splitting is in fact so large

that the partially occupied STO conduction band overlaps the GTO LHB.

The crystal structure and the electronic charge density associated with the STO

subbands in the (STO)6/(GTO)3 superlattice are shown in Figure 4.2(a). The TiO6

octahedra in the interfacial plane on the STO side exhibit large rotations in order to

accommodate the connectivity across the interface. Octahedra deeper in the STO layer

are close in structure to those in bulk STO; the relaxation largely occurs within a single

interface TiO2 plane. Two electrons occupy the STO conduction band, forming a 2DEG
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Figure 4.1: Electronic band structure of (GdTiO3)3/(SrTiO3)n superlattices for (a)
n=6, (b) n=3, (c) n=2, and (d) n=1. The bands are plotted along the in-plane directions
Γ → M/2 and Γ → X, where M=(1

2
,1
2
,0) and X=(1

2
,0,0), with coordinates referenced

to the reciprocal basis vectors of the cubic perovskite 5-atom primitive cell. The energy
axis is referenced to the bottom of the GdTiO3 lower Hubbard band. Solid black line
indicates Fermi level in the case of metallic systems (n=6 and n=3). Red (solid) indicates
spin up, and blue (dashed) indicates spin down.
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with a density corresponding to 1/2 electrons per 5-atom unit-cell area per interface,

consistent with having two identical STO/GTO interfaces.

The charge density reveals that the orbital character of the occupied subbands varies

depending on the position in the structure: In the two TiO2 planes nearest to the

interface the orbital character is dxy, while it is dyz and dxz deeper in the STO. A

consequence of the different orbital character is that the planar-averaged electron density

[Figure 4.2(b)] appears narrower and more peaked in the two TiO2 planes nearest to the

interface; the double-peaked structure in the interior of the STO reflects the dyz/dxz

nature. Macroscopic averaging (running average along the z direction over one period

of the lattice)134 reveals, however, that the distribution of the electrons is quite uniform

among the different TiO2 planes in the STO layer.

Figure 4.3 compares the calculated superlattice band structure with an angle-resolved

photoemission plot (ARPES) obtained by a team of experimental collaborators in the

group of Prof. Charles Fadley, performed on superlattices grown in the group of Prof.

Susanne Stemmer.135 There is in general excellent agreement as to where one expects

to see intensity, including the more localized nature of the 2DEG in k-space. The

ARPES measurements probe the 2DEG in the multilayer, as well as the position of

the LHB in the GTO with respect to the 2DEG and the bands associated with the

oxygen 2p orbitals. The calculated density of states was also compared with hard x-

ray photoemission measurements, finding good agreement (Figure 4.4). These results
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Figure 4.2: (a) Charge density of the occupied SrTiO3 conduction bands (isosurface
plotted at 10% of maximum value) and (b) in-plane averaged electron density (blue)
and macroscopic average (red) for the (GdTiO3)3/(SrTiO3)6 superlattice.
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Figure 4.3: Comparison of an ARPES map obtained in the group of Prof. C. Fadley
on an (STO)6/(GTO)3 superlattice grown in the group of Prof. S. Stemmer135 with the
band structure from Figure 4.1(a) shown along the Γ-X-Γ-X-Γ directions.

give us confidence that we are able to simulate the metallic STO/GTO interface, as the

positions of the GTO LHB and the 2DEG are consistent with the measurements.

For smaller STO thicknesses, down to (STO)3/(GTO)3, we also find a metallic ground

state with integrated charge corresponding to 1/2 electron per unit-cell area per interface.

For the three-layer case, the rotations of the octahedra are again large in the interfacial

layer, relaxing towards cubic in the interior of the STO [Figure 4.5(a)]. In contrast to the

six-layer case, the in-plane macroscopic average of the electron density is now distinctly

higher at the interface [Figure 4.5(b)], with smaller contributions from the TiO2 planes

inside the STO layer.
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Figure 4.4: (a) Experimental valence-band spectra obtained in the group of Prof. C.
Fadley from hard x-ray photoemission on an (STO)6/(GTO)3 superlattice grown in the
group of Prof. S. Stemmer135 compared to the calculated density of states (DOS) for the
same structure. The atom-projected DOS is multiplied by the appropriate differential
photoelectric cross section. The Gd 4f states were not included in the calculation. (b)
Magnification of the region near the Fermi level.
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Figure 4.5: (a) Charge density of the occupied SrTiO3 conduction bands and
(b) in-plane averaged electron density (blue) and macroscopic average (red) for the
(GdTiO3)3/(SrTiO3)3 superlattice.
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As the thickness of the STO layer decreases, going from six to three layers, we see a

downward shift of the lower-lying subbands; the overlap with the LHB is larger for the

three-layer than the six-layer case [compare Figures 4.1(a) and (b)]. This is caused by

a large spin splitting within the subbands, which increases with electron density. This

large spin splitting corresponds to ferromagnetism in the STO layer, which has been

observed experimentally for a GTO/(STO)3/GTO heterostructure.136

4.2.2 Thin STO layers: Insulator

Decreasing the STO thickness to two or one unit cells, we see a drastic change in the

electronic structure: (STO)2/(GTO)3 and (STO)1/(GTO)3 are no longer metallic, and

display a band gap. In the case of (STO)2/(GTO)3 we observe localization and charge-

ordering of the excess electrons on every other interface Ti atom, shown in Figure 4.6(a).

These localized states form two bands, both with spin down, which lie within the LHB

of the GTO, as can be seen in Figure 4.1(c). Each of these two bands is associated

with a single TiO2 interface plane. The lowest-energy unoccupied band originates from

the central TiO2 plane in the STO layer, and it exhibits a large dispersion as it is com-

posed of Ti dxy states, shown in Figure 4.6(b). The calculated band gap is 90 meV. The

octahedra within the central TiO2 plane are practically cubic as a consequence of the

(STO)2/(GTO)3 superlattice geometry. To check that our results were not an artifact of

this imposed high symmetry, we also performed calculations for (STO)2/(GTO)4. The
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Figure 4.6: Γ-point charge density of (a) the two bands occupied by the excess electrons
and (b) the conduction-band minimum, for the (GdTiO3)3/(SrTiO3)2 superlattice. Blue
indicates spin down, and yellow no spin polarization.

same localization of electrons on interfacial Ti atoms was found, with the same band

gap. This result is similar to a GGA+U study on STO/LaAlO3 and STO/NdGaO3

superlattices (both forming polar discontinuities with excess electrons in STO),137 indi-

cating that the thickness-dependent metal-to-insulator transition is a general feature of

STO and not dependent on the details of the interface.

In the limit of a single STO layer we also obtain an insulating ground state, in

agreement with experiment.128 In contrast to the two-layer case, we now obtain a sizeable

band gap of 0.82 eV, but the nature of the insulating state is the same: the TiO2 layers
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Figure 4.7: Γ-point charge density of the two bands occupied by the excess electrons
in SrTiO3 for the (GdTiO3)3/(SrTiO3)1 superlattice. Blue indicates spin down.

located between GdO and SrO layers display large rotations of the octahedra, the excess

electrons are localized on every other Ti interface atom (Figure 4.7), and the electrons

are distributed in two bands that overlap with the GTO LHB [Figure 4.1(d)]. These

results differ from previous theoretical work on the n=1 case, using GGA+U and a

model Hamiltonian based on GGA calculations, which resulted in a dimer Mott ground

state with a 0.2 eV band gap.129

4.2.3 Understanding the transition

To understand why the system is no longer metallic for the n=2 and n=1 cases,

we examine the atomic structure of the superlattices and the contributions to the total

energy. First, we note that the GTO atomic structure and LHB energies remain largely

intact as the thickness of the STO decreases from six to one layer—the Ti-O-Ti angles
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differ by less than a degree, the Ti-Ti distances by less than 0.005 Å, and the bandwidth

by less than 0.1 eV. For all investigated STO thicknesses, the relaxation in Ti-O-Ti bond

angles required to accommodate the connectivity of the octahedra occurs predominately

right at the interface—in the octahedra between planes of SrO and GdO. These interface

octahedra are thus appreciably distorted, in contrast to the cubic structure of bulk STO,

and these distortions are key to understanding why the system transitions from a metal

to an insulator as the thickness decreases: The distortions break the degeneracy of the

t2g orbitals, allowing the minimization of the strong on-site electron-electron repulsion

via the localization of the 3d electrons in single orbitals, each giving rise to a single band.

This localization is what we observe at the interface for the one- and two-layer cases [as

can be seen in Figures 4.1(c) and (d), which have two spin-down bands overlapping with

the GTO LHB representing the localized interface electrons].

If the system can lower its electronic energy by localizing the excess electrons on every

second interface Ti atom (alternating between Ti3+ and Ti4+), why do we not observe

this localization for all STO thicknesses? The answer is that there is a structural energy

penalty associated with the localization; the TiO6 octahedra have to distort. In addition

to tilts and rotations, the Ti-O bond lengths also have to change; in the interface layer

the Ti3+ atoms have longer Ti-O bonds than the Ti4+ atoms. For n = 1 (n = 2), the

average Ti-O bond length is 2.05 Å (2.04 Å) for Ti3+ and 1.98 Å (1.98 Å) for Ti4+. These

changes in bond lengths cost energy, and therefore localization becomes favorable only
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if the energy gain due to minimization of electron-electron repulsion is sufficiently large.

The amount of energy gain is proportional to the magnitude of the electron density

associated with a specific band. This density will be high in the case of thin STO layers,

since then the number of STO conduction-band states is low and they are filled to high

energies.

To quantify this argument, we inspect the n = 2 case. Here, in contrast to all the

other STO thicknesses investigated, we can obtain both a metallic (delocalized) and

insulating (localized) solution. The metallic solution has average Ti-O bond lengths

in the interfacial TiO2 layer of 2.00 Å, the same for all Ti sites, and a total energy

0.26 eV [per (STO)2(GTO)3 supercell] higher than the insulating solution. To estimate

the structural energy penalty associated with localization, we remove the Ti 3d electrons

from the system (i.e., we remove six electrons from the supercell, meaning that there are

no excess electrons in STO and no LHB in GTO), and compare the energy of the metallic

structure to that of the insulating structure; the former is 1.15 eV lower in energy. Since

the total energy of the metallic phase is 0.26 eV higher than the insulating phase, this

means that the electronic energy gained by going from a metallic to an insulating state

is 0.26–(–1.15)=1.41 eV. Since the structural energy penalty is associated mainly with

distortions in the interfacial layers, we expect our estimate of 1.15 eV to apply also to

cases with thicker STO layers (n > 2); however, the amount of electronic energy gain

decreases in thicker layers due to the fact that the number of STO conduction-band
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states increases. For n > 2 electrons are spread over a larger number of bands, and the

electronic energy gained by localization is insufficient to overcome the energy cost of the

structural rearrangement.

4.3 Electron localization in bulk STO

Inspired by the intriguing result of electron localization for very thin STO layers

in the GTO/STO/GTO heterostructures, we next show that STO this can also occur

when bulk STO is doped at very high levels. Rather than behaving as a heavily doped

semiconductor, a charge-ordered Mott insulating state emerges when 1/2 electron per

Ti atom is added, with an occupied lower Hubbard band (LHB) separated by an energy

gap from an unoccupied upper Hubbard band (UHB), derived from the Ti 3d states.

This Mott insulating state is characterized by a large distortion of the crystal structure,

with Ti-O-Ti angles of 165◦, compared to 180◦ in the perfect cubic phase.

We first consider STO in a unit cell of 20 atoms (four SrTiO3 formula units), to

which we add one or two electrons and allow the volume and all the atomic positions

to relax. A 6×6×2 special k-point mesh for integrations over the Brillouin zone and an

energy cutoff of 500 eV for the plane-wave basis set were used. Figure 4.8(a) shows the

relaxed atomic structure and the corresponding conduction-band structure of a neutral

20-atom cell of STO. The crystal structure is very close to cubic, with lattice parameters
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of 3.903 Å (a, b) and 7.807 Å (c). Ti-O-Ti angles in this structure should be 180◦ (our

choice of k-point mesh breaks the cubic symmetry and leads to inaccuracies on the order

of 0.5◦). Due to the octahedral crystal field, the 3d orbitals of Ti are split into lower-

energy triply degenerate states with t2g symmetry, and higher-energy doubly degenerate

states with eg symmetry. The conduction band derived from the t2g orbitals is triply

degenerate at the Γ point. Adding electrons to STO leads to partial occupation of the

t2g-derived bands, and within band theory, a metallic behavior is expected.

Upon adding one electron to the 20-atom cell, corresponding to an excess electron

density of 1/4 per Ti atom, and allowing the crystal structure to relax we find that the

system is metallic and remains in an almost perfectly cubic structure. The resulting

band structure and the charge density corresponding to the partially filled conduction

bands are shown in Figure 4.8(b). The lattice parameters increase by 1.3% (a, b) and

1.2% (c) compared to undoped STO. The change in lattice parameters upon electron

doping is in line with experimental results.138 An additional feature that arises as a result

of doping STO with 1/4 per Ti atom is strong exchange splitting within the conduction

band.

Attempts to localize the extra electron on a particular Ti atom in the 20-atom cell

by slightly displacing the surrounding O atoms to accommodate the extra charge were

unsuccessful. Calculations were also done for a 135-atom supercell, again finding that
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Figure 4.8: Evolution of electronic and atomic structure of STO as electrons are added.
The conduction bands are plotted along the Γ-X and Γ-M/2 directions in the Brillouin
zone (BZ) of the 5-atom cubic perovskite unit cell, which correspond to Γ-M and Γ-X in
the BZ of the 20-atom cell. Red lines correspond to bands that are non-spin-polarized,
orange to spin-up, and blue to spin-down bands. The top of the valence band is set as
the reference. For the doped cells, the charge density of the occupied conduction-band
states is shown (in orange) superimposed on the crystal structure, and for the undoped
cells the charge density of the (unoccupied) lowest-lying conduction-band states at the
Γ-point (in grey) is shown. In all cases the isosurface is set to 10% of the maximum.
Undoped STO is shown in (a), STO doped with 1/4 electrons per Ti in (b), and STO
doped with 1/2 electrons per Ti in (c).

an excess electron prefers to stay delocalized, with a charge distribution equally shared

by all the Ti atoms.

For a doping level of 1/2 electron per Ti (i.e., adding two electrons to the 20-atom

cell), the structure displays GdFeO3-type distortions and a 1.26 eV gap opens within

the t2g derived bands, as shown in Figure 4.8(c). The calculated density of states (not
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Figure 4.9: Continuation of Figure 4.8. In (a), the crystal structure is the same as in
Figure 4.8(c), but the excess electrons are removed. In (b) the crystal structure is the
same as in Figure 4.8(a), but doped with 1/2 electrons per Ti.

shown) confirms this result. The Ti-O-Ti angles decrease to 165◦ and 163◦, and the

lattice parameters increase by 2.6% (a, b) and 3.7% (c) compared to undoped STO.

Based on the structural distortions we would expect a decrease in the lattice parameters;

the observed increase is attributed to the effect of electron addition.139 The distortions

break the cubic symmetry seen by the Ti atoms, leading to a splitting of degenerate

Ti 3d t2g states, with a corresponding change in the orbital character of the bands.

This is illustrated for the lowest-lying conduction band at the Γ point for the undoped

cubic and distorted cases in Figurs 4.8(a) and 4.9(a). It therefore becomes possible to
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split off a band derived from a single occupied orbital, which is what we observe upon

electron addition: a LHB splits off, with each band derived from a single orbital (dxz

and dyz) localized on a single Ti atom. Exchange splitting is also required to form the

LHB, as it splits off the corresponding spin-down bands. We thus see the formation of a

charge-ordered insulating ground state, with the added electrons residing on every other

Ti atom in a three-dimensional checkerboard arrangement. In Figure 4.8(c) the charge

density of the added electrons is plotted. The insulating state exhibits a ferromagnetic

order with the antiferromagnetic arrangement higher in energy by 5 meV per Ti atom.

We speculate that this Mott insulating phase would be stable with respect to small

deviations in the doping level, since phase separation is likely to occur. For a doping

level below 1/2 electrons per Ti, a small fraction of the system would be undoped STO,

also insulating. For doping levels above 1/2 electrons per Ti, a small fraction would be

STO doped with 1 electron per Ti, which is insulating, with a distorted crystal structure

(same situation as in, e.g., GTO). Unfortunately, explicit calculations investigating this

behavior would require much larger supercells than computationally tractable.

In order to separate the effects of lattice distortions and electron-electron interactions,

it is instructive to consider two test cases: (1) a distorted STO structure with the same

atomic positions as in Figure 4.8(c) but without the extra electrons; and (2) undistorted

STO with the same structure as in Figure 4.8(a) but with doping of 1/2 electron per Ti

atom. The band structure for the distorted but undoped case is shown in Figure 4.9(a).
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Despite the large structural distortion, the conduction bands look remarkably similar to

those in Figure 4.8(a): degeneracies are split and avoided crossings occur, but no gap is

observed.

The second case, where two electrons are added to the undistorted structure without

allowing atomic relaxation, leads to a metallic state, as shown in Figure 4.9(e). The

conduction bands are partially occupied, leading to a metallic ground state, again with

strong exchange splitting, but with no evidence of gap formation. These results provide

powerful evidence that structural distortions are key to achieving the insulating state.

In the absence of such distortions [case (2), Figure 4.9(e)] the system remains metallic,

even for the 1/2-electron-per-Ti case. Electron-electron interactions play a strong role

as well, of course, evidenced by the significant differences in band structure between

Figure 4.8(c) and Figure 4.9(a): structural distortions alone do not open up a gap,

and electron localization is required to trigger gap formation. We conclude that both

structural distortions and electron-electron interactions are necessary to trigger a metal-

insulator transition, but neither is sufficient by itself.

4.4 Localization vs delocalization in bulk STO

In the previous Section we saw that bulk STO can host a charge-ordered phase of

localized electrons when doped with 1/2 electron per Ti. Next, we construct a bulk
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model for understanding the physical mechanisms involved in the balance of localization

versus delocalization. In Section 4.2.3 the localized (insulating) configuration was shown

to be 0.26 eV lower in energy than the delocalized (metallic) configuration for the n = 2

heterostructure. Similarly, for the bulk model we will calculate the increase in total

energy upon adding electrons to STO, in either a localized or a delocalized configuration.

By varying the added electron density q (corresponding to the excess number of electrons

per Ti atom in STO in a heterostrucutre with layer thickness n), and comparing the

energy of the localized and delocalized configurations, we can investigate when the metal-

to-insulator transition occurs in the absence of the interface with GTO.

To find the energy of the delocalized configuration, Edeloc(n), for a given layer thick-

ness n, we add q = 1/(n + 1) electrons (the number of excess electrons per STO Ti

atom for a layer thickness n; for n = 1 there are two TiO2 layers in the STO region)

to a 5-atom unit cell of STO, and calculate the total energy (Eq
5,tot). We reference this

energy to the total energy of the neutral 5-atom cell (E0
5,tot) plus q = 1/(n+ 1) electrons

at the conduction-band minimum (CBM) of the neutral cell (ECBM). Since we want the

calculated energy to apply to the heterostructure supercells, in which two electrons are

added to the STO layer, we multiply the resulting energy difference by 2(n+ 1):

Edeloc(n) = [Eq
5,tot − (E0

5,tot + q × ECBM)]× 2(n+ 1). (4.1)

The result is shown as the red curve in Figure 4.10.
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Figure 4.10: Energy of a bulk model for delocalized (red) and localized (blue) con-
figurations of a system with two excess electrons in an STO layer of thickness n. The
system mimics the situation of the GTO/(STO)n/GTO heterostructure with two excess
electrons added per

√
2 ×
√

2 interface area. The energies are referenced to the energy
of an undistorted bulk STO crystal in which the added electrons would all be placed at
the CBM. Localization is favored for systems with layer thickness n < 3, just like in the
full heterostructures.
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To find the energy for the localized configuration, we need to work with a unit cell

of STO large enough to accommodate charge ordering and distortions. A 20-atom unit

cell of STO (i.e., a
√

2 ×
√

2 × 2 enlargement of the 5-atom unit cell) allows for such

internal structural relaxations; note this is similar to crystal structure of GTO. Upon

addition of two electrons to this 20-atom cell (1/2 electron per Ti atom), the material

turns into a Mott insulator. The electrons localize on every other Ti atom, and the

structure displays GdFeO3-type distortions.140 The energy of this structure (E2
20,tot) is

again referenced to the total energy of four neutral 5-atom E0
5,tot cells plus 2 electrons at

the CBM of the neutral cell (ECBM), yielding the energy of the localized configuration:

Eloc = E2
20,tot − [4E0

5,tot + 2ECBM]. (4.2)

This energy of the localized configuration would apply to any thickness of STO in the

heterostructure, since the excess electrons always localize in the interfacial TiO2 layers,

and therefore the STO layers away from the interface do not contribute.

Since the reference energy is the same for Edeloc and Eloc, they can be plotted on

the same energy scale, as shown in Figure 4.10. Edeloc decreases as the electron density

decreases, corresponding to smaller filling of conduction-band states. In the limit of very

thick STO layers (i.e., if the added electron density q per Ti atom approaches zero),

Edeloc goes to zero. For very thin layers, the localized configuration is more favorable;
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the crossover occurs between n=2 and n=3, which is the same thickness at which the

crossover occurs in the actual heterostructures.

The bulk model thus captures the key features of the behavior of thin STO lay-

ers, indicating that the mechanism for electron localization at high electron densities is

independent of the nature or details of the interface, but rather a consequence of the

properties of bulk STO. Naturally, this model is a “first-order” approximation since it

builds only on bulk quantities. As such, it should not be expected to equally accurately

describe all sytems. In particular, interface-specific effects might be more important in

some cases. From inspecting Figure 4.10, we see that if such effects shift the energies of

localization/delocalization by a few 0.1 eV per
√

2a×
√

2a interface area the transition

from the metallic to insulating phase with decreasing STO thickness could be shifted

or even suppressed. Experimental observations for SmTO/STO/SmTO quantum wells

have shown no evidence of a transition to an insulating phase, even at the smallest STO

layer thicknesses.10 Here, the distortions at the interface are measured to be smaller than

in the GTO/STO/GTO case for one and two STO layers. It may therefore be possible

that the SmTO interface changes the bulk properties of doped STO, turning it metallic.
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4.5 Summary

We have used first-principles calculations to describe the mechanism behind the

metal-to-insulator transition in GTO/STO/GTO heterostructures as the STO thickness

decreases below three layers.27 For the one- and two-layer thick STO cases, a charge-

ordered ground state is found, where every other interface Ti atom is occupied with one

3d1 electron, in contrast to the delocalized ground state found for three or more STO

layers. We find that this charge-ordered ground state is also stable in bulk STO, and use

this result to construct a bulk model. This model shows that the localized ground state

becomes favored at very high electron densities because localizing electrons in specific

orbitals becomes more favorable than having to fill the conduction band up to very high

energies—this in spite of the cost of the lattice distortions required to enable localization.

The fact that a bulk model can reproduce the main features of the transition from metal

to insulator indicates that the physical mechanisms do not depend on the specifics of

the interface. This fundamental understanding of the transition is key to designing a

“Mott field effect transistor” based on a GTO/STO/GTO heterostructure, where small

changes in the excess electron concentration in the STO (via an applied voltage) could

switch the structure between the metallic and insulating phases.
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Chapter 5

The electronic structure of GdTiO3

and the impact of small polarons

5.1 Introduction

In this chapter we will investigate the electronic structure of GTO in detail. This is

motivated by the explicit calculations of GTO/STO/GTO heterojunctions in Chapter 4,

where the value of the GTO gap determines on which side of the interface these excess

electrons reside and the degree of electron confinement, thus being an important design

parameter. As described in Chapter 1, the rare-earth titanates are Mott insulators (Ti

electron configuration 3d1), in which the energy band gap (Mott-Hubbard gap) arises

from strong intra-atomic Coulomb electron-electron interactions that split partially filled
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d or f bands, separating an occupied lower Hubbard band (LHB) from an unoccupied

upper Hubbard band (UHB).19 The magnitude of the gap reflects both the strength of

the intra-atomic interactions U and the bandwidth W , and is therefore a key descriptor

of the material.

Past experimental efforts to determine the Mott-Hubbard gap of GTO were based

on optical absorption obtained by Kramers-Kronig analysis of reflectivity data on bulk

crystals132 or thin films grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT),59 or on trans-

mission spectroscopy of films grown on SrLaGaO4.133 These measurements revealed an

onset of optical absorption at around 0.7 eV, which was interpreted to correspond to the

Mott-Hubbard gap. More generally, optical conductivity spectra of rare-earth titanates

typically display onsets in the range 0.2 to 0.7 eV,3,59,132,141 which have been attributed

to excitations across the Mott-Hubbard gap.

However, recent photoluminescence (PL) and PL excitation (PLE) measurements on

GTO conducted by our experimental colleagues in a collaboration with the groups of

Prof. Susanne Stemmer and Prof. Debdeep Jena, paint a very different picture. PL

produces a strong signal around 1.8 eV (Figure 5.1).142 To reconcile a GTO bandgap of

0.7 eV with the 1.8 eV PL observation, one possibility would be to assume that 0.7 eV is

the indirect bandgap of GTO while 1.8 eV corresponds to the direct transition. However,

given that the LHB and UHB arise from d orbitals that are very localized, band dis-

persions greater than 1 eV are highly unlikely. Another possibility is that the PL arises
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Figure 5.1: (Left+Bottom Axes) Room-temperature PL spectrum at 488 nm laser
excitation of a 20-nm thin film of GTO grown on LSAT (red). Films were grown in
the group of Prof. S. Stemmer, and measurements made in the group of Prof. D.
Jena.142 A peak at 1.8 eV is observed. (Inset) Visually observable red PL from the
GTO sample when pumped with a 325 nm laser. (Right+Top Axes) Room-temperature
PLE spectrum (red) of 20-nm thin film of GTO showing a bandedge like feature near
∼1.8 eV. The pump laser energy was varied, and the detector was tuned to measure the
PL intensity at 760 nm. The control measurements of PL and PLE from the bare LSAT
substrate are shown in blue.
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not from band-to-band recombination, but from excitonic recombination, defect-to-band

transitions, or defect-to-defect transitions.143 However, all of these recombination mech-

anisms lead to PL emission either equal to or smaller than the band gap. Therefore,

while the PL measurements alone do not allow identifying the precise recombination

pathway, the observed PL emission from GTO puts a lower limit on its band gap and

indicates this band gap to be greater than or equal to 1.8 eV.

This apparent discrepancy between photoluminesence and optical absorption begs

for a reexamination of the electronic structure of GTO. Both the HSE and the GGA+U

approach (see Chapter 2) produce a Mott-Hubbard gap around 2 eV, in close agreement

with the PL result. The conclusion will be that the actual Mott-Hubbard gap of GTO

is ∼ 2 eV, and we will attribute the absorption onset at 0.7 eV to self-trapped holes

(small hole polarons).

5.2 Calculations on bulk GTO

Both the HSE and DFT+U methods were employed to simulate the 20-atom or-

thorhombic unit cell shown in Figure 5.2(a). The HSE calculations were done using a

500-eV energy cutoff for the expansion of plane waves and a 4×4×2 Γ-centered k-point

mesh for the Brillouin-zone integrations. The DFT+U calculations were performed by

B. Himmetoglu, using U = 4.38 eV for Gd f orbitals and U = 3.86 eV for Ti d orbitals,
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Figure 5.2: (a) Ball-and-stick model of the GdFeO3 crystal structure of GTO. The
Ti atoms used to define the Ti-O-Ti angles are indicated with I, II, and III. The lower
Hubbard band charge density is shown in red (isosurface set to 10% of maximum). (b)
Band structure of GTO calculated using HSE, with red (solid) lines corresponding to
spin up states, and blue (dotted) lines to spin down states. The lower Hubbard band is
filled, and the upper Hubbard band is empty—the Mott-Hubbard gap occurs between
these bands. The zero of energy is set to the highest occupied eigenvalue.

computed self-consistently using a linear response method.144 Ultra-soft pseudopoten-

tials145 were employed, as implemented in the Quantum Espresso package.146 A 60-Ry

energy cutoff was used for the expansion of Kohn-Sham states, and a 720-Ry cutoff for

the charge-density expansion, using a 6× 6× 6 Monkhorst-Pack k-point mesh. For both

methods, the Gd f electrons were included in the valence, and all calculations were done

using spin polarization.

Both HSE and DFT+U find the ground state to be ferromagnetic, with the Ti 3d1

spins aligned, consistent with experiment.130,131 The occupied f states are located in the

low-energy part of the O 2p valence bands, and the unoccupied ones in the high-energy
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part of the Ti 3d conduction bands, as can be seen in the density of states (Figure 5.3).

The main difference between HSE [Figure 5.3(a)] and DFT+U [Figure 5.3(b)] calcula-

tions is the position of the O 2p bands, which are located about 2 eV higher in DFT+U .

This is expected since DFT+U is not meant to correct the position of these bands.

Full structural relaxations yield lattice parameters and angles in close agreement with

experimental values for bulk GTO, as shown in Table 5.1. The volume is underestimated

by 0.7% in HSE, and overestimated by 5.0% in DFT+U , typical for the accuracy provided

by these methods.

The band structure from the HSE calculation is shown in Figure 5.2(b), giving an

indirect band gap of 2.02 eV. The top of the LHB occurs at a point along the Y-Z direc-

tion, while the bottom of the UHB occurs at Γ. The direct Γ → Γ band gap occurs at

only slightly higher energy, namely 2.05 eV. The dispersion of the individual Hubbard

bands is less than 0.7 eV, and the LHB is spin-up, corresponding to ferromagnetic align-

ment of the Ti 3d1 electrons. The LHB charge density is plotted in Figure 5.2(a), where

orbital ordering of the LHB electrons can be seen. This is a consequence of the large

crystal-field splitting of the Ti 3d t2g states introduced by the GdFeO3-type distortions,

as described in previous work.147,148 These localized electrons occupy bands derived

primarily from dxz and dyz orbitals alternating on every second Ti atom. The band

structures from DFT+U calculations (not shown) are very similar, yielding an indirect

band gap of 2.21 eV, consistent with a recent study on GTO also using DFT+U .149 The
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Figure 5.3: Atom-projected density of states for GTO calculated (a) using HSE and
(b) using DFT+U (calculations performed by B. Himmetoglu in the group of Prof. C.
G. Van de Walle). The zero of energy is set to the highest occupied eigenvalue.
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Table 5.1: Equilibrium lattice parameters and Ti-O-Ti angles for bulk GTO. Angles
referenced to Ti atoms as shown in Figure 5.2(a).

HSE DFT+U Exp.121

a (Å) 5.351 5.464 5.393

b (Å) 5.725 5.820 5.691

c (Å) 7.627 7.781 7.664

Volume (Å3) 233.65 247.43 235.22

TiI-O-TiII (◦) 144.4 144.1 145.8

TiI-O-TiIII (◦) 140.4 144.2 144.1

slight overestimate compared to HSE can be largely attributed to the larger equilibrium

volume in DFT+U .

Based on this band structure, we expect an onset of direct interband transitions

at 2.05 eV. While electric dipole transitions within the d manifold, which gives rise to

the LHB and UHB, are forbidden by symmetry, the hybridization with other orbitals,

most significantly with O 2p, leads to finite optical transition elements. The effect of

hybridization of Ti d states with O p, Gd d and Gd f states is clearly visible in the

atom-projected density of states shown in Figure 5.3. The presence of strong optical

transitions is confirmed by our first-principles calculations of the absorption coefficient,
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Figure 5.4: Total optical absorption for bulk GTO, calculated with HSE and averaged
over the x, y, and z directions.

defined by

αi(ω) =

√
2ω

c

√
|εii| − Re(εii(ω)), (5.1)

where εii′ is the dielectric tensor and ω the frequency. The dielectric tensor was computed

with the HSE functional within the PAW formalism as described in Ref. 150. A 0.2 eV

Gaussian smearing of the band occupancies was used, leading to a broadening of the

absorption coefficient. The results shown in Figure 5.4 indicate strong optical transitions

starting around 2.0 eV, with a peak at 2.8 eV. Recombination will occur at lower energies,

closer to the band edge, since electrons excited to higher energies in the UHB will lower

their energy nonradiatively before recombining with holes.
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5.3 Small hole polarons in GTO

Both PL/PLE measurements and first-principles calculations are therefore consistent

with a Mott-Hubbard gap of around 2 eV in GTO. This raises the question of the origin

of absorption with an onset around 0.7 eV observed in reflectivity measurements.59,132,133

For the similar material YTiO3, this onset has been previously attributed to transitions

between self-trapped holes and the LHB, in work led by B. Himmetoglu in the group of

Prof. Van de Walle.20 The presence of small hole polarons in GTO has been inferred

from the p-type thermally activated transport.132,151 Zhou and Goodenough151 pointed

out the discrepancy between the activation energies in DC transport and the band gap

and proposed that the transport is caused by small polaron hopping. The formation

of such polarons due to strong coupling with the lattice is well documented;128,141,152

however, their role in optical conductivity has not been fully appreciated until now.

Optical excitations of electrons from the LHB to the self-trapped hole state can then

occur.

This section is devoted to the calculation of absorption spectra corresponding to

the excitation of a small polaron either from a localized site to an adjacent site153–155

or from a localized to a delocalized configuration.156 In collaboration with co-workers

at UCSB, we find an excellent match between the low-energy feature in the optical

conductivity spectra (measured by D. G. Ouellette and S. J. Allen) of high-quality
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Figure 5.5: Real part of the optical conductivity of Gd1−xSrxTiO3 thin films at 10 K.
Films were grown in the group of Prof. S. Stemmer, and measured in the group of
Prof. S. J. Allen. The ”Difference-13%” curve (red) represents the difference between
the spectra of Gd0.87Sr0.13TiO3 and of GTO, and the ”Difference-4%” curve (purple)
the difference between Gd0.96Sr0.04TiO3 and GTO. The dashed line is the fit of the
”Difference-13%” curve to the small polaron model [Eq. (5.2)].

.

epitaxial Gd1−xSrxTiO3 films grown by MBE (by P. Moetakef, T. Cain, and S. Stemmer),

shown in Figure 5.5.157 Here the Sr-alloying introduces small hole polarons; Sr is valence

+2 and Gd +3.

To explain the behavior of feature A, we first consider the excitation of the small

polaron out of its self-trapping potential well via a hopping process, with the structure

subsequently relaxing by creating a lattice distortion at a neighboring site [Figure 5.6(a)].
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In this process, the optical absorption is expected to peak near twice the polaron self-

trapping energy, EST [defined in Figure 5.6(b)].155 Considering the probability of hopping

to an adjacent site within perturbative solutions to the Holstein model, the optical

absorption peak is expected to be four times as large as the DC conductivity activation

energy.158–160 Therefore, we also expect the self-trapping energy to be twice as large as

the activation energy.

Our collaborators D. G. Ouellette and S. J. Allen at UCSB compared the incoherent

absorption below the Mott-Hubbard gap to an approximate expression for the optical

conductivity of a small polaron:153–155

σ1(ω) = np
π1/2e2

mω

t

∆
exp

[
−(2EST − h̄ω)2

∆2

]
(5.2)

where np is the polaron density and t = h̄2

2ma2
is the electronic bandwidth parameter with

a being the lattice constant and m the effective mass. At low temperatures, kT � h̄ω0,

the width is determined by the zero-point phonon motion, ∆ = (4ESTh̄ω0)1/2, where ω0

is the frequency of the relevant phonon mode. The factor t/∆ represents a transition

probability and should be replaced by unity in the adiabatic limit, t > ∆.155

To separate the polaron contribution from the Mott-Hubbard feature at higher en-

ergy, the optical conductivity of the undoped GTO film was subtracted from that of the

Gd0.87Sr0.13TiO3 film at 10 K and the difference was fitted to Eq. (5.2). The fit is shown

as the dashed line in Figure 5.5. The resulting self-trapping energy is EST = 0.58 eV,
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Figure 5.6: Calculated one-dimensional configuration-coordinate diagrams for (a) the
excitation of a small hole polaron to a nearest-neighbor site and (b) the excitation of a
small hole polaron to a delocalized-hole configuration. Symbols correspond to calculated
values and the solid lines are parabolic fits. The dashed horizontal lines correspond to
the vibronic ground state in the starting configurations. Eh

T and ET are the transition
energies of the two processes, EST is the small-polaron self-trapping energy, and Em is
the polaron migration barrier energy. Note that the atomic displacements are different
for (a) and (b), giving different generalized coordinates Qa and Qb. In (c) and (d) the
calculated broadening of each transition is plotted.
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about twice as large as the 0.24 eV activation energy that has been reported for bulk sam-

ples.151 The broadening factor, ∆ = 0.51 eV, corresponds to a phonon energy h̄ω0 = 110

meV, which is larger than the highest-frequency optical phonon mode (67 meV) reported

for GTO.161 That there is some difference is expected, since Eq. (5.2) is an approximate

expression involving multiple fitting parameters. The presence of SrGd substitutional

impurities will also lead to an increased mode energy, as will be discussed further below.

Taking the polaron density as np = x = 0.13, we obtain a bandwidth, t = 0.18 eV and

mass, m = 1.4 me, where me is the free-electron mass.

To perform first-principles calculations for the small polarons, a single electron was

removed from a 160-atom supercell, which is constructed based on a 2×2×2 replication of

the 20-atom GTO unit cell. The crystal symmetry was broken by slightly displacing the

O atoms around a given Ti atom, followed by the relaxation of the atomic positions in the

supercell. A 400 eV cutoff for the plane-wave expansion was used, and the integrations

over the Brillouin zone were performed with a (1/4, 1/4, 1/4) special k-point.

The atomic structure of a small hole polaron, as obtained from the first-principles

calculations, is shown in Figure 5.7. We consider two types of excitation processes: (a)

the hopping process described above, and (b) the excitation of a small hole polaron to a

delocalized-hole configuration. The calculated configuration coordinate diagrams asso-

ciated with these two mechanisms are shown in Figure 5.6. The generalized coordinate

Q describes the displacement of the atoms with respect to the initial state (Q = 0)
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Figure 5.7: Atomic configuration and charge-density isosurface (10% of maximum
value) for a small hole polaron in GTO. The Ti-O bonds surrounding the Ti atom where
the polaron resides shrink relative to the bulk bond length, as indicated by the dashed
arrows.

weighted by the mass of each atomic species:

Q2 =
∑
α

mα(Rα −Ri;α)2s (5.3)

Here mα are the atomic masses of the atoms, labeled with index α. The atomic positions

of the intermediate configurations were obtained by interpolation between the initial and

final configurations. A parabola was fitted to the data points.

Based on the configuration coordinate diagrams, the broadening of the transition

energies due to lattice vibrations was calculated using the formalism developed by Huang

and Rhys.162 Each configuration corresponds to a harmonic oscillator, with quantized

levels corresponding to different vibronic states. The vibrational problem is therefore

approximated by a single effective phonon frequency. The calculated vibrational modes

are 75 meV for the harmonic oscillators in transition (a), and 65 meV for those of
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transition (b), which are both close to the highest-frequency optical phonon mode in

bulk GTO (67 meV).161

As seen in the configuration coordinate diagram in Figure 5.6(b) we find a polaron

self-trapping energy of 0.55 eV (EST), and in Figure 5.6(a) we find the energy barrier

for polaron migration to be 0.29 eV (Em). This is close to half of the polaron self-

trapping energy, consistent with the Holstein model.158 The calculated peak energy for

the excitation of an electron from the lower Hubbard band to the polaron state in the gap

is 1.12 eV (ET), and for the excitation of the polaron out of its self-trapping potential

well via a hopping process it is 1.09 eV (Eh
T). Both of these values are in good agreement

with the observed 1 eV peak (Figure 5.5), and once again consistent with the Holstein

model, being about twice as large as the polaron self-trapping energy.

The calculated absorption curves for the two mechanisms are shown in Figs. 5.6(c)

and (d). Since the experiments were performed at 10 K, we only take transitions from

the first vibronic state of the initial configuration into account. The onsets are at a

slightly higher energy than in experiment. We attribute this to the presence of the

SrGd substitutional impurities in the samples, which is likely to lead to a broadening of

the absorption peak that is not included in the calculations. This is consistent with the

phonon mode found by fitting the experimental data to Eq. (5.2) being larger (110 meV)

than the calculated modes [75 meV for transition (a), and 65 meV for transition (b)].
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Figure 5.8: (Color online) Configuration coordinate diagram for the recombination of
an electron with a localized hole (small polaron). EG is the band-gap energy, EST the
polaron self-trapping energy, Ee the optical emission energy, and ES is the lattice energy
cost (strain energy).

We also need to consider the possible role of small hole polarons in luminescence.

There are two conceivable mechanisms that could be probed using PL/PLE. First, exci-

tation of an electron from the LHB to the self-trapped hole state could occur, but after

this excitation the small-polaron state is gone—all that remains is a local distortion of

the crystal structure, which will decay via phonon emission. Second, an electron excited

to the UHB could recombine with a small-hole-polaron state. For a polaron in bulk

GTO we calculate the peak of this emission to occur around 0.8 eV, as illustrated in the

configuration coordinate diagram of Figure 5.8. A transition at this energy is actually

more likely to be nonradiative,163 and indeed, PL measurements around 0.7 eV do not

show any signal in this energy range.142
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5.4 Summary

First-principles results for GTO indicate that the Mott-Hubbard gap is significantly

larger than the previously accepted value of 0.7 eV. The calculations predict a gap

of 2.0 eV, in good agreement with the observed 1.8 eV PL peak, which constitutes a

lower limit to the band gap. The previous 0.7 eV value came from the onset of op-

tical absorption. Instead, we propose that this optical excitation is caused by small

hole polarons. The self-trapping energy is found to be 0.6 eV, both from optical con-

ductivity measurements (performed by experimental collaborators at UCSB) as well as

from first-principles calculations. Calculations for excitation of a small hole polaron to

a delocalized-hole configuration and for excitation of the small polaron out of its self-

trapping potential well via a hopping process both yield an optical excitation peak at

1.1 eV, in good agreement with the experimental peak at 1 eV. We conclude that this

feature in the optical conductivity spectra is caused by small hole polarons, and not by

excitations across the Mott-Hubbard gap.
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Chapter 6

Point defects and impurities as a

source of small hole polarons in

GdTiO3

6.1 Introduction

In this Chapter our goal is to investigate the origin of the small polarons observed

in GTO, as discussed in Section 5.3. We present a comprehensive study of native point

defects (vacancies, interstitials, and antisites), and investigate the likelihood of vari-

ous impurities being incorporated. In general, such defects introduce states that affect

electronic and optical properties by acting as carrier traps or recombination centers.
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Surprisingly, we find that in GTO all the native defects and the considered impurities

(except Hi) act as a source of small hole polarons, including oxygen vacancies. We iden-

tify which point defects are most likely to form and how they impact electronic and

optical properties. We also evaluate how the resulting defect transition levels may im-

pact devices based on the tunneling of the 2DEG electrons at the STO/GTO interface

through the GTO.

Electronic and structural properties of an array of native defects are described in

Section. 6.4. In addition to the native defects, in Section 6.5 we investigate C, Sr, and

H impurities, which are likely to be present during growth of GTO on STO. Section 6.6,

finally, discusses the impact of defects on conductivity, optical properties, and devices.

6.2 Formation energy and transition levels

Once again our approach is DFT with a hybrid functional, which provides reliable

values for defect formation energies and transition levels in semiconductors and insu-

lators.164–168 As for the study of bulk polarons in Section 5.3, defect calculations were

performed in a 160-atom 2× 2× 2 supercell. wave functions were expanded in a plane-

wave basis set with a 400 eV energy cutoff, and the (1/4, 1/4, 1/4) special k-point was

used for integrations over the Brillouin zone. Atomic structure was considered con-
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verged when Hellman-Feynman forces were less than 0.01 eV/Å. Symmetry breaking

was explicitly allowed by choosing low-symmetry initial structural configurations.

The formation energy of a defect D in a charge state q is defined as:49

Ef (Dq) = Etot(D
q)− Etot −

∑
i

niµi + qεF + ∆q , (6.1)

where Etot(D
q) is the total energy of a supercell containing a defect D in charge state q,

and Etot is the total energy of the perfect GTO supercell. ni is the number of atoms of

species i (i = Gd, Ti, O, Sr, H, or C) added to (ni > 0) and/or removed from (ni < 0)

the perfect crystal to form the defect, and µi are the atomic chemical potentials. εF

is the Fermi level referenced to the valence band maximum (for GTO, the top of the

LHB). ∆q is a correction term to align the electrostatic potential in the perfect bulk and

defect supercells and to account for finite-cell size effects on the total energies of charged

defects, using the approach of Freysoldt et al.169,170

The charge-state transition level (q/q′) is defined as the Fermi-level position below

which the defect is most stable in charge state q and above which the defect is most

stable in charge state q′. It can be derived from the formation energies:

(q/q′) =
Ef (Dq; εF = 0)− Ef (Dq′ ; εF = 0)

(q′ − q)
, (6.2)

where Ef (D
q; εF = 0) is the defect formation energy for charge state q when εF is at the

top of the LHB. The position of the transition level in the band gap is independent of

the choice of chemical potentials.
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6.3 Atomic chemical potentials

The defect formation energies depend on the atomic chemical potentials µi, which

are taken with respect to the total energy per atom of the standard phase of the species

i. I.e., µGd is referenced to the total energy per atom of Gd metal (hcp), and µH to half

of the total energy of an isolated H2 molecule. The chemical potentials are variables,

but restricted by the formation of limiting phases containing the relevant species. The

chemical potentials must satisfy the stability condition of GTO:

µGd + µTi + 3µO = ∆Hf (GTO) , (6.3)

with µGd ≤ 0, µTi ≤ 0, and µO ≤ 0, and ∆Hf (GTO) the formation enthalpy.

The chemical potentials are further restricted by the formation of TiO2, Gd2O3, and

Gd2Ti2O7 phases:

µTi + 2µO ≤ ∆Hf (TiO2) , (6.4)

2µGd + 3µO ≤ ∆Hf (Gd2O3) , and (6.5)

2µGd + 2µTi + 7µO ≤ ∆Hf (Gd2Ti2O7) , (6.6)

Calculated and experimental formation enthalpies are listed in Table 6.1. By using

Eqs. (6.3)–(6.6) we can define a region in the µO vs. µTi plane in which GTO is stable,

as shown in Figure 6.1.
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Table 6.1: Calculated and experimental formation enthalpies.

Material Present work (eV) Experiment (eV)

GTO -17.22

TiO2 -9.13 -9.74171

Gd2O3 -18.67 -18.8172

Gd2Ti2O7 -38.05 -39.62173

H2O -2.68 -2.51172

CO2 -3.89 -4.07172

SrO -5.64 -6.12171

SrTiO3 -16.05 -17.14174
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Figure 6.1: Allowed values of O and Ti chemical potentials (gray shaded region) defin-
ing the stability of GTO. The chemical potentials µTi, µO, and µGd are limited by the
formation of secondary phases TiO2 (rutile), Gd2O3, and Gd2Ti2O7. The filled black
circles correspond to µO = −3.61 eV and µO = −5.25 eV, spanning the range of possible
values of µO.
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For calculating the formation energies we focus on two extreme cases, indicated with

filled black circles in Figure 6.1. The first is defined by Gd2Ti2O7 (pyrochlore) as the

limiting phase, with µO = −3.61 eV; since this sets an upper limit on µO we refer to this

as “oxygen-rich”, though it should be noted that the value of µO is quite low. While

this does not strictly specify the value of µTi, the stability region is sufficiently narrow

that µTi can vary by only 0.55 eV, and we chose a value at the center of this region:

µTi = −2.20 eV. “Oxygen-poor” conditions correspond to Gd2O3 as the limiting phase,

with µO = −5.25 eV and µTi = 0 eV.

When considering impurity atoms, we also need to take into account limiting phases

for H, C, and Sr; these are also included in Table 6.1. µH is subject to the constraint

2µH + µO ≤ ∆Hf (H2O), but due to the low values of µO needed to stabilize GTO, H2O

turns out not to be a limiting phase. Similarly for C, CO2 is not a limiting phase. For Sr,

SrO and SrTiO3 are possible limiting phases. We find that for our choice of oxygen-rich

conditions, SrTiO3 limits µSr to −3.02 eV, and for oxygen-poor conditions, SrO limits

µSr to −0.39 eV.

6.4 Results: Native defects

The formation energies of all native defects considered in our study are shown in

Figure 6.2. The intrinsic defects include vacancies (VGd, VTi, and VO), antisites (TiGd
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Figure 6.2: (Color online) Formation energies as a function of Fermi level for native
defects in GTO under (a) oxygen-rich and (b) oxygen-poor conditions. The slopes of
the lines indicate the charge state of the defect, and the kinks in the lines correspond to
the position of the charge-state transition levels in the gap [Eq. (6.2)]. The dotted lines
indicate charge states corresponding to hole polarons bound to the defect center.

and GdTi), oxygen interstitials (Oi), and cation interstitials (Tii and Gdi). The cation

interstitials are found to have high formation energies (due to the highly compact per-

ovskite structure and their large atomic radius) and a discussion of their behavior is not

included.
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6.4.1 Polarons in bulk GdTiO3

In Section 5.3 we discussed the presence of small hole polarons in bulk GTO. The

Ti atoms are in a Ti3+ configuration, and removing an electron leads to a hole in the

LHB, which localizes in the form of a small polaron, corresponding to a single Ti4+. The

Ti-O bonds surrounding this Ti4+ atom shrink relative to the bulk bond lengths. Such

small polarons are stable in bulk GTO with a self-trapping energy of 0.55 eV; i.e., the

localized state is 0.55 eV lower in energy than the delocalized state of the hole (at the

top of the LHB). Within a defect model, this corresponds to a (+1/0) transition level

at 0.55 eV above the VBM (top of the LHB).

6.4.2 Oxygen vacancies

As expected, the formation energy of VO in GTO is low for oxygen-poor conditions

[Figure 6.2(b)]. Oxygen is two-fold coordinated, and the removal of an oxygen atom

leaves two Ti 3d “dangling bonds.” These dangling bonds form an occupied bonding

state resonant in the LHB (Figure 6.3) and an empty antibonding state resonant in the

UHB. In the neutral charge state, the Ti-Ti distance is 3.69 Å (compared to 3.81Å in

bulk GTO), and the bonding state is doubly occupied.

This atomic and electronic structure is similar to what is found for VO in other

perovskite oxides such as STO,175 SrZrO3,176 or LaAlO3.177 Those other oxides are band

124



Chapter 6. Point defects and impurities as a source of small hole polarons in GdTiO3

Figure 6.3: (Color online) Charge density for the Ti-Ti bonding state in an oxygen
vacancy (VO), with isosurface set to 10% of the maximum.

insulators, however, and the bonding state is located within the band gap of the oxide;

+1 and +2 charge states can then be stabilized by taking electrons out of this state. In

contrast, in GTO the bonding state overlaps with the LHB and hence removing electrons

from this state corresponds to inducing holes in the LHB. These holes stabilize in the

form of one or two small polarons localized on the Ti atoms neighboring the vacancy,

while the Ti-Ti bonding state itself remains doubly occupied. The structure of these

polarons is similar to that of bulk polarons,157 and the structure of the “center” of the

defect remains very similar to that of the neutral charge state.

The neutral charge state is therefore in principle the only “stable” charge state of

the defect, within the traditional view of defects in semiconductors and insulators.49 To

indicate that the +1 and +2 charge states correspond to polarons bound to the neutral

defect center, we show the corresponding formation energies in dotted lines in Figure 6.2.

The (+2/+1) transition level occurs at 0.75 eV and (+1/0) at 0.92 eV. Since in the bulk
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a hole polaron is stabilized by 0.55 eV compared to a free hole, as discussed in Sec. 6.4.1,

the values indicate that the first polaron is bound to the defect center by 0.37 eV, and

the second by 0.20 eV.

6.4.3 Cation vacancies

Gd and Ti both have valence 3 in GTO; removing either a Gd or Ti therefore leads

to a deficiency of three electrons (in the neutral charge state of the defect). One expects

the most stable charge state of these defects to be the −3 charge state, in which these

electrons are added back into the lattice; this is indeed reflected in the low formation

energy of this charge state, at least when the Fermi level is high (Figure 6.2). The

occupied bonding states corresponding to the −3 charge state are located well below the

top of the LHB, and hence hanging the charge state to −2, −1, or neutral requires taking

electrons from states within the LHB; these missing electrons then manifest themselves

in the form of small hole polarons on nearby Ti atoms. Figure 6.4 illustrates the situation

for the q = −2 charge state of VGd, in which a single polaron is located adjacent to the

vacancy. The −1 charge state has two polarons, and the neutral charge state has three.

In the −3 charge state of VTi (no polarons) the O atoms with a missing Ti neighbor

shorten their remaining Ti-O bond, and the nearby Gd atoms displace inwards towards

the vacancy. For VGd the predominant change in atomic structure is in the increase in

bond angles of the Ti and O atoms surrounding the Gd vacancy.

126



Chapter 6. Point defects and impurities as a source of small hole polarons in GdTiO3

Figure 6.4: (Color online) Formation of a single small hole polaron for V−2
Gd. The

charge-density isosurface illustrating the wave function of the polaron state is set to
10% of the maximum value.

The formation energies for all charge states are shown in Figure 6.2; as expected,

they are lowest under oxygen-poor conditions. Cation vacancies act as deep acceptors.

VTi has transition levels at 0.92 eV (0/− 1), 1.03 eV (−1/− 2), and 1.29 eV (−2/− 3),

and VGd at 0.77 eV (0/ − 1), 0.85 eV (−1/ − 2), and 1.34 eV (−2/ − 3). The binding

energy of the polarons to the defect center is clearly larger than it was for binding to a

neutral oxygen vacancy, which can be attributed to the defect center now being triply

negatively charged rather than neutral.

6.4.4 Antisites

TiGd and GdTi antisites have moderately low formation energies for both oxygen-rich

and oxygen-poor conditions [Figures. 6.2(a) and (b)]. Ti has 4 valence electrons, and

therefore one more electron than the Gd atom which it replaces (which transfers its
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electrons to low-lying oxygen states). This extra electron is localized on the Ti atom, as

for a Ti atom in bulk GTO, but with the electron in a state 0.38 eV below the LHB. We

therefore expect the TiGd defect to be stable in a neutral charge state, which is indeed

the case over most of the range of Fermi levels. However, a hole polaron can occur in

the vicinity of the defect, which effectively gives the appearance of the +1 charge state

being stabilized when the Fermi level is below the (+1/0) transition level at 0.58 eV.

The similarity of this transition-level value to the value of 0.55 eV for the bulk polaron

indicates the interaction between the polaron and the TiGd defect is quite weak, with a

binding energy of only 0.03 eV.

For the case of GdTi there is now a missing electron, and the number of LHBs is

reduced by one. Again the defect is most stable in a neutral charge state, but a small

polaron can be formed in the vicinity, seemingly stabilizing a q =+1 charge state with

a (+1/0) transition level at 0.69 eV (corresponding to a binding energy for the polaron

of 0.14 eV).

6.4.5 Oxygen interstitials

The oxygen interstitial is stable in a asymmetric dumbbell configuration for all charge

states (0, −1 and −2). The adjacent O host atom is displaced, and the Ti-O-Ti bond

angles for both O atoms are strongly distorted. The interstitial bonds to two Ti atoms

and introduces two Ti-O bonding states 0.75 eV above the O 2p band. The −2 charge
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state is the “natural” charge state for this defect. Forming a −1 or 0 charge state

requires removing electrons, which need to be taken from the LHB, thus leading to the

formation of one or two hole polarons; the transition levels are at 0.89 eV (0/+1) and

1.20 eV (+1/+2). Oxygen interstitials have higher formation energies than the other

defects considered here (Figure 6.2), meaning that they are not likely to form.

6.5 Results: Impurities

The formation energies of impurities considered in our study are shown in Figure 6.5.

We studied Sr substitutional impurities (SrGd), H interstitials (Hi), and carbon-related

defects: carbon interstitials (Ci), and substitutional C on Gd (CGd), Ti (CTi), and O

sites (CO). All these elements are candidates for unintentional doping that may occur

during growth. H and C are ubiquitious impurities, and in particular are part of the

metallorganic precursors used in hybrid MBE.59 Sr is present during the growth of

STO/GTO interfaces, and has also been used in intentional doping of GTO.128,157,178,179

6.5.1 Strontium

The calculated formation energy of Sr on a Gd site (SrGd) is very low (Figure 6.5). In-

deed, experimentally it is straightforward to dope GTO with Sr157 or form Gd1−xSrxTiO3

alloys.178,179 The atomic structure of SrGd is similar to that of the Gd vacancy: the bond
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Figure 6.5: (Color online) Formation energies as a function of Fermi level for impurities
in GTO under (a) oxygen-rich and (b) oxygen-poor conditions. The dotted lines indicate
charge states corresponding to hole polarons bound to the impurity.
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angles of the surrounding Ti and O atoms increase slightly. As expected from the 2+

valence of Sr (compared to 3+ for Gd), the impurity acts as an acceptor: over most of

the range of Fermi levels it occurs in a −1 charge state, and a (−1/0) transition level

occurs at 0.81 eV. The neutral charge state is characterized by a small hole polaron on

a neighboring Ti atom, with a binding energy of 0.26 eV. Evidently this binding energy

is low enough to lead to easy ionization of the polaron and the observation of p-type

conductivity in Sr-doped GTO.179 Strontium on a Ti site behaves similarly to SrGd,

with a (−1/0) transition level at 1.04 eV and the neutral charge state corresponding to

a small polaron on a nearby Ti site, but with a significantly higher formation energy.

6.5.2 Hydrogen

The hydrogen interstitial can occur in two charge states. In the +1 charge state

(essentially a proton) it bonds to an O atom, with a H-O bonding state resonant in

the O 2p band, while in the −1 charge state it bonds to a Ti atom, introducing a H-Ti

bonding state 1.33 eV above the O 2p band. The (+1/ − 1) transition level occurs at

1.12 eV (Figure 6.5). Note that this is the first example we have encountered where

a “true” charge-state transition level occurs, i.e., a transition that is truly associated

with a change in the electronic structure of the defect center (including even a change

in atomic structure, in this case), as opposed to merely binding a polaron to the center.
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6.5.3 Carbon

Carbon substituting on an oxygen site (CO) bonds with the two nearby Ti atoms,

with slightly smaller Ti-C bond lengths (1.94 Å) than the comparable Ti-O bonds in

the bulk (2.02 Å), which necessitates a larger Ti-C-Ti bond angle (150.3◦) than the bulk

Ti-O-Ti angle (140.4◦). It introduces states between the O 2p band and the LHB; a

spin-polarized pair of Ti-C bonding states (1.88 eV and 2.01 eV above the O 2p band),

and four C lone-pair states (spin up states 1.93 eV and 2.17 eV above the O 2p band, and

spin-down states at 2.09 eV and 2.34 eV). Since carbon is nominally a double acceptor

when placed on the oxygen site, the “natural” charge state would be −2; Figure 6.5

shows that this charge state only occurs when the Fermi level is very high in the gap. In

the −1 and neutral charge states, one or two holes are bound to the center. Figure 6.6

illustrates that in the neutral charge state, a polaron is localized on each of the Ti

atoms bonded to C. The polarons are strongly bound to the center, as indicated by the

high values of the transition level: at 1.30 eV for (0/ − 1) and 1.84 eV for (−1/ − 2)

(Figure 6.5). CO is the carbon-related defect with the lowest formation energy for both

limits of chemical potentials.

The carbon interstitial bonds with a substitutional O atom in a dumbbell configu-

ration, similar to Oi. The O atom is significantly displaced from its substitutional site,

increasing the distortion of the Ti-O-Ti bond angle. The interstitial introduces four
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Figure 6.6: (Color online) Charge density of the small hole polaron states for C0
O, with

the isosurface set to 10% of the maximum value.

spin-polarized C states above the O 2p band (1.81 eV and 2.33 eV above for spin-up,

and 2.00 eV and 2.67 eV for spin-down). Similar to Oi, the −2 charge state is expected

to be the natural charge state for Ci. It turns out that the Fermi level would need to

be pushed very high (into the UHB) to achieve this charge state: the (−1/− 2) level is

at 2.09 eV. The (0/− 1) transition level occurs at 1.15 eV (Figure 6.5). In the −1 and

neutral charge states, one or two polarons are bound to the defect center. Ci has high

formation energies.

Carbon has 4 valence electrons and therefore might be expected to form a good

“chemical match” when substituting on the Ti site; however, its size is significantly

smaller, and the C atom moves off-site to form two 1.35 Å C-O bonds. For this bonding

configuration of CTi we observe a doubly occupied C state 2.14 eV (spin-up) and 2.23 eV

(spin-down) above the O 2p band. The −1 charge state is the “natural” charge state for

this defect. Forming the 0 charge state leads to the formation of a hole polaron, with
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(−1/0) transition level at 1.07 eV [Figures 6.5(a) and (b)]. We note that the formation

energy of CTi is quite high; this is mainly due to the chemical potential of Ti being high

to maintain stability of GTO [Figure 6.1], which suppresses incorporation of impurities

on the Ti site.

Carbon on a Gd site moves off-site and forms a 1.30 Å C-O bond. It introduces a

spin-polarized C state (spin-up 0.15 eV above the O 2p band and spin-down 2.11 eV

above). Its “natural” charge state is −3, and for the higher charge states polarons are

localized on the nearby Ti atoms. The transition levels are at 0.84 eV (0/− 1), 1.09 eV

(−1/− 2), and 1.87 eV (−2/− 3) [Figures 6.5(a) and (b)]. The formation energy of CGd

is again high, for the same reasons related to chemical potentials as mentioned above

for CTi.

6.6 Discussion

6.6.1 Formation energies, transition levels, and binding of hole

polarons

For the native defects Figure 6.2 shows that under oxygen-rich conditions (µO =

−3.61 eV) the cation vacancies (VTi and VGd) have the lowest formation energies, and

under oxygen-poor conditions (µO = −5.25 eV) oxygen vacancies (VO) and Gd antisites
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(GdTi) have the lowest formation energies. From Figure 6.5 we see that among the

C-related defects CO has by far the lowest formation energy.

For all the studied defects except Hi, all the charge transition levels represent the

addition/removal of a small hole polaron. The polaron-related transition levels range

from 0.58 eV [(+1/0) level for TiGd] to 1.87 eV [(−2/−3) level for CGd]. Energies higher

than the 0.55 eV (+1/0) transition level for the polaron in bulk GTO indicate that the

polaron has a finite binding energy to the defect center. In the case of the oxygen

vacancy or the antisites, where the defect center itself is neutral, these binding energies

are quite small (see Section 6.4.4); in the other cases, the defect centers themselves are

negatively charged centers, leading to stronger binding of the hole polarons.

6.6.2 Optical properties

In Section 5.3 we investigated the impact of small hole polarons on optical absorption.

The transition corresponding to the excitation of a small hole polaron to a delocalized

hole state is shown in the configuration coordinate diagram in Figure 6.7(a). The strain

energy ES is the energy difference between GTO in its equilibrium configuration and in

the configuration corresponding to a small polaron, and the polaron self-trapping energy

EST is the energy difference between the delocalized and localized hole in their relaxed

atomic configurations.
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Figure 6.7: (Color online) Configuration coordinate diagrams for (a) the optical exci-
tation of a hole from a localized to a delocalized state and (b) the recombination of an
electron with a localized hole (small polaron). Ea is the absorption energy, EG is the
band-gap energy, EST the polaron self-trapping energy, Ee the optical emission energy,
and ES is the lattice energy cost (strain energy).
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Regarding the role played by small hole polarons in luminescence, an electron excited

to the UHB could recombine with a small hole polaron. For a polaron in bulk GTO we

calculate the peak of this emission to occur around 0.8 eV, as illustrated in Figure 6.7(b).

Since the defects introduce polaron transition levels that are higher than the bulk self-

trapping energy EST=0.55 eV (i.e., the polaron is more strongly bound), the 0.8 eV

constitutes an upper limit on the optical emission energy Ee (assuming that the strain

energy ES is not significantly affected by the proximity of the polaron to the defect).

However, defect-related transitions at such low energies are more likely to be nonradiative

than radiative.180

6.6.3 Defects as electron traps

GTO acts as the barrier layer that confines the 2DEG at STO/GTO interfaces;9 it is

therefore of interest to investigate the potential impact of defects on electron trapping.

This could affect the performance of field effect transistors181 and also of novel devices

that would be based on tunneling through the GTO layer.182 In the latter, electrons

would tunnel between the 2DEG subbands at the interface and the subbands at another

interface (in an STO/GTO/STO heterostructure) or a metal contact. In both cases

tunneling electrons could be trapped/de-trapped at defects in GTO. It is therefore im-

portant to assess the alignment of the charge-state transition levels in GTO with the

band structure of the STO.
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Figure 6.8 shows this alignment for the defects in GTO with a low formation energy,

using the previously calculated band offset between GTO and STO.28 In the “flat-band”

diagram of Figure 6.8, all transition levels (except that associated with a hole polaron in

the bulk) are above the STO conduction-band minimum (CBM). However, in an actual

heterostructure there will be band bending at the interface associated with the presence

of the 2DEG in the GTO, thus raising the energy of the tunneling electrons. This band

bending has been predicted to be as large as 1 eV,84 meaning that the highest Fermi

level position would be about 1.6 eV above the GTO LHB. The application of a voltage

to control the tunneling process may also lower the energy of the transition levels relative

to the tunneling electrons. Taken together, this means that the tunneling electrons may

line up in energy with the defect-related trapping levels.

To assess the impact of defects on leakage currents or on tunneling through a GTO

barrier layer, we consider trapping/de-trapping processes based on the formalism out-

lined by Fowler et al.,183 which has previously been applied to study leakage currents

in SiO2.184 Within this methodology, tunneling processes are approximated as Franck-

Condon transitions, with atomic relaxation occurring after charge-state switching. Thus

we define the “charge-state switching level” for trapping by adding the strain energy to

the thermodynamic transition level [since this strain energy will be gained back only after

the transition takes place, similar to the absorption event in Figure 6.7(a)]. Similarly, the

level for detrapping is defined by subtracting the strain energy from the thermodynamic
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Figure 6.8: (Color online) Band alignment between STO and GTO, with positions of
charge-state transition levels for native defects and impurities shown within the GTO
gap. The zero of energy is set to the top of the GTO valence band (LHB), and the
conduction-band minimum (CBM) of STO is indicated.
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transition level [since the system will subsequently relax to the final state, lowering its

energy by this amount of strain energy, similar to the emission event in Figure 6.7(b)].

Note that the strain energies for trapping and for detrapping are different.

As discussed in Sections 6.4 and 6.5, for all point defects except the hydrogen inter-

stitial the transition levels are associated with small hole polarons. Therefore, we first

illustrate these concepts for the case of a polaron in the bulk, and subsequently discuss

how the binding of the polaron to a defect would affect the charge-state switching levels.

A hole polaron by itself gives a (+/0) transition level at 0.55 eV, and may recombine

with a tunneling electron. This (+/0) transition corresponds to occupying the hole

polaron state with an electron. This is similar to what happens when a small hole polaron

transitions to a delocalized state via optical absorption [as illustrated in Figure 6.7(a)]:

in that case, an electron at the top of the LHB is excited to occupy the polaron state,

leaving behind a delocalized hole. The energy Ea required for the optical absorption

process is the sum of the polaron self-trapping energy EST = 0.55 eV and the strain

energy ES = 0.64 eV. In the case of electron tunneling, the electron would thus need to

be injected at an energy 0.55 eV + 0.64 eV = 1.19 eV above the LHB, as illustrated in

Figure 6.9(a). The charge-state switching level for electron trapping is thus at 1.19 eV.

After the electron has filled the polaron state, lattice relaxation occurs (through phonon

emission), and the final state corresponds to the perfect GTO lattice—i.e., there is no

detrapping level in this case.
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Figure 6.9: (Color online) Thermodynamic transition levels and charge-state switching
levels for trapping/detrapping of an electron, for (a) the (+1/0) transition for a polaron
in bulk GTO and (b) the (0/ − 1) transition for CO. The arrows indicate a transition
in which the atomic configuration is kept fixed to that of the initial state (unlike the
thermodynamic transition levels, for which the atomic configuration of the final state is
relaxed). ES(1,2) are the relaxation energies between the two charge states.

Now we examine the electron-trapping process in the presence of defects. To illus-

trate this we use the 1.30 eV (0/−1) transition level for CO, the lowest-energy C-related

defect. Since the Fermi level is likely to lie below 1.30 eV, CO is initially in the neutral

charge state and two polarons are localized on the nearest-neighbor Ti atoms (C0
O). The

difference in energy between C−O in its equilibrium configuration and C−O in the configu-

ration of C0
O (ES1) is 0.38 eV. Adding this strain energy to the transition level gives a

1.68 eV charge-state switching level for the 0→ − trapping process [Figure 6.9(b)].

After an electron is trapped, CO is in the negative charge state, and the defect will

relax to its ground-state atomic configuration. We now address whether the electron

would remain trapped on the defect, or be able to tunnel out. To remove the electron, a
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transition to the neutral charge state would need to occur. Again, the thermodynamic

transition level is at 1.30 eV, but now we need to take into account the strain energy

corresponding to the difference in energy between C0
O in its equilibrium configuration

and C0
O in the configuration of C−O (ES2). This energy, ES2, is 0.55 eV. Subtracting this

strain energy from the transition level gives a charge-state switching level of 0.75 eV for

the − → 0 detrapping process, as indicated in Figure 6.9(b). Empty states would need

to be available at that energy on the “exit” side of the barrier in order for the electron

to be able to escape from the CO trap.

For the range of possible Fermi levels, which we estimated above to be between 0.6 to

1.6 eV, multiple defects occur in charge states that stabilize small hole polarons. These

defects may act as trapping centers once a voltage is applied: an electron tunnels into

the defect, fills a hole polaron, and the defect switches to another charge state. For this

electron to become detrapped, there must be an empty state available on the other side

of the junction. It is evident from Figure 6.9(b) that for this criterion to be satisfied,

the voltage swing applied to the device must therefore be greater than the sum of the

strain energies associated with the charge-state switching level; in the example of CO

(0/− 1), this would be 0.38 eV + 0.55 eV = 0.93 eV. Assuming that the strain energies

are similar for all the defects (except Hi), since all the transition levels involve small

polarons, we conclude that defects may only contribute to tunneling for applied voltage

swings greater than about 0.9 V. For smaller applied voltage swings, there are no empty
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states available on the other side of the junction, and the defect level may act as a

trapping center, i.e., electrons would be trapped on the defect without the possibility of

detrapping; this would lead to charging of the GTO layer, which could be detrimental

to device operation.

6.7 Summary

We have investigated the electronic and optical properties of intrinsic and extrinsic

point defects in GTO using hybrid density functional theory. Results for formation en-

ergies of native defects are summarized in Figure 6.2. It should be noted that this figure

should be interpreted somewhat differently from the usual case of semiconductors or

band insulators:49 the kinks in the curves, which define the positions of the defect levels

according to Eq. (6.2), do not correspond to adding or removing electrons from elec-

tronic states within the band gap here; rather, they represent the formation of polarons

in the vicinity of the defect, while the center of the defect remains in the charge state in

which the bonding states are fully occupied. The same is true for all of the impurities

in Figure 6.5, except interstitial H. Among the native defects, the cation vacancies have

the lowest formation energies under oxygen-rich conditions and the oxygen vacancy un-

der oxygen-poor conditions. Among candidate impurities, SrGd is an acceptor with low
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formation energy, Hi has a level in the middle of the gap, and CO has the lowest energy

among C-related defects.

The transition levels for all defects (except Hi) are related to small hole polarons. In

the bulk, the (+1/0) transition level for a polaron is at 0.55 eV. The transition levels

for defects are higher in energy because of the binding of the polaron to the defect. The

defects can act as electron traps or sources of leakage current in GTO barrier layers in

devices. We find that defects would only act as tunneling centers (enabling trapping and

detrapping of electrons) if applied voltage swings are greater than about 0.9 V. Several

of the defects can lead to electron trapping and charging of the GTO layer.
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Summary and future directions

In this work, we studied interface, bulk, and defect properties of perovskite oxides

(“complex oxides”) exhibiting the formation of an interface two-dimensional electron gas

(2DEG). This 2DEG arises because of an interface polar discontinuity, which leads to a

sheet of donors right at the interface. Its density is incredibly high at 1/2 electrons per

unit cell area, corresponding to about 3×1014 cm−2, an order of magnitude higher than

2DEG densities achievable in conventional semiconductor systems. This has drawn a

large amount of attention to these complex oxides, and the efforts in this thesis centered

on understanding the formation of this 2DEG, and how to use it in electronic devices.

We began by outlining a set of criteria for the use of this 2DEG in devices. In that

context we calculated the band alignment between a variety of perovskite oxides that

may give rise to a 2DEG, predicting new interface candidates. Calculating the band
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alignment of SmTiO3, a new material used in complex oxide heterostrucures,10 and

comparing with experimental measurements, is currently in progress as a continuation

of this work.

A “grand challenge” of complex-oxide electronics is identifying and fabricating an

interface with good lattice matching, which can give rise to a high-mobility 2DEG that

can be modulated via a gate voltage. With that in mind, BaSnO3 was highlighted as a

promising 2DEG host material, having high mobility and a low-lying conduction band,

but with the drawback of low density of states. Subsequent work in which I participated,

led by my colleague K. Krishnaswamy in the Van de Walle group, evaluated BaSnO3 as a

channel material and used Schrödinger-Poisson simulations to understand the behavior

of the 2DEG at the interface.185 Future work in this direction is calculating band-edge

deformation potentials, quantifying by how much the valence- and conduction-band

edges shift on an absolute scale under strain, for candidate oxide materials such as

BaSnO3.

We next performed a detailed study of GTO/STO/GTO heterostructures (as grown

in the Stemmer group at UCSB), where each interface contributes a 2DEG in the STO.

These heterostructures display a metal-to-insulator transition with layer thickness; the

system becomes insulating for one or two STO layers. This transition has been at-

tributed to on-site Mott-Hubbard-type correlation physics: once the 3D density is high

enough, the on-site electron-electron repulsion causes localization.27 Distortions of the

146



Chapter 7. Summary and future directions

atomic positions are also found to accompany the transition.10,73 We found that the in-

sulating behavior can occur even in bulk STO as a consequence of extremely high doping,

making the material into a Mott insulator with one electron localized on every second

Ti atom. Once the layer thickness is small enough, this localized phase becomes lower

in energy than the competing delocalized (metallic) phase, leading to localized electrons

in the interface TiO2 layers. This fundamental understanding of the transition is key

to potentially designing a “Mott field effect transistor” based on a GTO/STO/GTO

heterostructure, where small changes in the 2DEG electron concentration in the STO

(by applying a voltage) could bring the system across the transition.

In the process of studying the STO/GTO interface, we noticed that our calculated

gap (2 eV) for GTO was significantly larger than what was reported in the literature

based on optical absorption measurements (0.7 eV). Experimental collaborators in the

Jena group at the University of Notre Dame (now at Cornell University) measured

a photoluminesence (PL) peak at 1.8 eV, setting a lower limit on the band gap in

agreement with our calculated value of 2 eV. The discrepancy with the 0.7 eV value from

optical absorption prompted further investigation of the electronic properties of GTO.

Given that GTO is reported to contain small hole polarons (leading to p-type hopping

conductivity), we investigated the role hole polarons play in optical absorption. A joint

study with experimentalists at UCSB (Allen group) found an excellent match between

the calculated and measured excitation energy of small hole polarons, confirming that
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they are indeed the source of the 0.7 eV optical absorption signal. As all the rare-earth

titanates have reported band gaps in the range 0.2-0.7 eV based on optical absorption,

and display p-type hopping conductivity, it is likely that the gap of all these materials

must be revised. PL measurements and optical absorption measurements of small hole

polaron excitations of other rare-earth titanates, in particular LaTiO3, which has the

smallest reported onset of optical absorption, would confirm or disprove this hypothesis.

Another approach to investigate the connection between small hole polarons and optical

absorption is to study their behavior under pressure, comparing the calculated optical

excitations with optical absorption measurements.186

Lastly, we studied native defects and impurities in GTO in order to understand how

the small polarons arise and affect physical properties. Surprisingly, all defects are either

neutral or acceptors (except hydrogen interstitials), and have only small hole polaron-

related thermodynamic transition levels. We considered how the defects may influence

possible devices using GTO as a tunnel barrier. We find that the defects can act as

electron traps or sources of leakage current, but that they only act as tunneling centers

(enabling trapping and detrapping of electrons) if applied voltage swings are greater

than about 0.9 V. However, several of the defects can lead to electron trapping and

charging of the GTO layer.

To conclude, our initial work on the formation of complex oxide 2DEGs and how

to harness this for device applications lead us down a path to understand Mott metal-
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insulator transitions, the impact of small hole polarons in these Mott materials, and how

such polarons form. This fundamental research is therefore motivated by a well-defined

application, and serves as a nice illustration of the power of first-principles calculations

in building understanding of new and unexplored materials.
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