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ABSTRACT 

 

The Disruptive Anti-Covering Location Problem: new modeling perspectives and 

solution approaches 

 

by 

 

Matthew Russell Niblett 

 

Dispersive strategies and outcomes are readily apparent in many geographic 

contexts. In particular, dispersive strategies can be seen in activities such as: the 

scattering of military missile silos and ammunition bunkers, center-pivot crop 

irrigation systems, location of parks, franchise store location, and territorial species 

den/nest locations. Spatial optimization models represent dispersion where selected 

facility locations are maximally “packed” or maximally “separated.” The Anti-

Covering Location Problem, in particular, is one in which a maximum number of 

facilities are located within a region such that each facility is separated by at least a 

minimum distance standard from all others. In this context, facilities are “dispersed” 

from each other through the use of the minimum separation standard. Solutions to 

this problem are called maximally “packed” as there exists no opportunity to add 

facilities without violating minimum separation standards.    
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The Anti-Covering Location Problem (ACLP) can be defined on a continuous 

space domain, or more commonly, using a finite set of discrete locations. In this 

dissertation, it is assumed that there exists a discrete set of sites, among which a 

number will be selected for facility locations, and that this general problem may 

represent a number of different problems ranging from habitat analysis to public 

policy analysis. The main objective of this dissertation is to propose a new and 

improved optimization model for the ACLP when applied to a discrete set of points 

on a Cartesian plane using a combination of separation conditions called core-and-

wedge constraints. This model structure, by its very definition, demonstrates that all 

planar problems can be defined using at most seven clique constraints for each site. 

In addition, the use of an added set of facet constraints in reducing computational 

effort is explored.  

Anti-covering location model solutions are maximally packed, providing an 

“optimistic” estimate of what may be possible in dispersing facilities. But, what if 

less than optimal sites are employed in a dispersive pattern. That is, to what extent 

can an optimal maximally packed configuration be disrupted? This possibility is 

explored through the development of a new model, called the Disruptive Anti-

Covering location model. 
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I. Dispersion 

A. Introduction 

Dispersion is directly related to location problems. In such problems, dispersion 

between facilities, and or demands, has often been measured as a function of 

distance. When considering dispersive behavior, it is often within the context of 

facility site location. Facility site location has long been a topic of interest to 

researchers in geography, economics, engineering, and planning. To understand 

dispersion, one must first discuss facility site location.  

Facility site location has been of importance to mankind since pre-historic times 

when “hunter and gatherers” chose sites for encampments. Such location decisions 

were tantamount to long term survival. This interest in site selection has never waned 

and has even intensified since the emergence of cities, agricultural practices, 

scientific principles, and industrial economies. For example in the 1600’s Pierre de 

Fermat described a point location problem as follows: “given three points on the 

plane, find a fourth point which minimizes the sum of the distances to the other three 

points.” Since these early beginnings, geographers, as well as regional scientists, 

industrial engineers, econometricians and business planners have formulated 

prescriptive models for facility location and general location questions. 
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1. Location Theory   

An early example of a quantitative description of how best to locate a factory is 

the classic Weber problem (Weber, 1909) that involves locating a manufacturing 

plant such that the costs of transporting the raw materials to the plant and the 

finished goods from the plant to the market are minimized. Another classic example 

is Christaller’s (1933) central place theory, which theorizes an explanation of why 

retail centers were arranged in distinct patterns in southern Germany. Christaller 

assumed a competitive economic process of retail owners who located in such a 

manner as to achieve at least a minimum threshold of business activity, assuming 

that products and prices among retailers were indistinguishable.  

Christaller extended the concepts of how distance and demand affected the 

placement of markets relative to an underlying base of customers. Christaller 

references earlier researchers, such as Hettner, who in 1902 had suggested areas of 

research that should be explored and which could quantify and explain, “Distances 

between settlements of the same economic character.” Christaller and Hettner were 

both concerned with the location of facilities or types of spatial entities, and why 

they were uniquely dispersed across the landscape. Christaller believed that distance 

and the cost of obtaining resources of varying value are key elements that led to such 

a dispersive pattern. Christaller identified two aspects of spatial dispersion that are 

critical components of his theory; threshold and range. 

The concepts of threshold and range in the central place model can be 

conceptualized in varying ways. In terms of business economics, the threshold can 



 

be thought of as the minimum level of demand needed to sustain a business facility 

at a given location, and the range is the maximum distance a person is willing to 

travel to buy a good or service 

seemed to be a dispersed pattern of cities providing services to the surrounding 

places, and that the concept

such dispersion of places. 

orientation is given in the 

unique geometrical arran

Figure 1. Maximally dispersed central place theory arrangement on 25 nodes 
( )3=K  

Church and Bell (1990)

relaxing the geometrical packing requirement of classical Central Place Theory.

They found that relaxing the geometric packing constraint still resulted in demand 
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be thought of as the minimum level of demand needed to sustain a business facility 

at a given location, and the range is the maximum distance a person is willing to 

travel to buy a good or service (Hurst, 1972). Christaller recognized that there 

seemed to be a dispersed pattern of cities providing services to the surrounding 

places, and that the concepts of threshold and range are essential to understanding 

laces. An example of a central place pattern for a market 

orientation is given in the Figure 1. Notice that central places are dispersed in a 

unique geometrical arrangement.  

. Maximally dispersed central place theory arrangement on 25 nodes 

 

(1990) examined the spatial and economic implications of 

metrical packing requirement of classical Central Place Theory.

They found that relaxing the geometric packing constraint still resulted in demand 

be thought of as the minimum level of demand needed to sustain a business facility 

at a given location, and the range is the maximum distance a person is willing to 

Christaller recognized that there 

seemed to be a dispersed pattern of cities providing services to the surrounding 

of threshold and range are essential to understanding 

An example of a central place pattern for a market 

. Notice that central places are dispersed in a 

. Maximally dispersed central place theory arrangement on 25 nodes 

examined the spatial and economic implications of 

metrical packing requirement of classical Central Place Theory. 

They found that relaxing the geometric packing constraint still resulted in demand 
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being satisfied. They found that with unpacked landscapes, those that resulted from 

relaxing the packing constraint, fewer facilities were required to meet demand and 

that often they were more widely spaced though did not increase the length of 

journey to a shop. Additionally, they found that stable k-systems emerged, that is, 

where no further market entry was possible just as in Christaller’s classic work. 

Church and Bell further note that non-integer k-systems are possible, as are systems 

that are stable combinations of co-existing k principles. One critical point of this 

outcome is that consumers have fewer choices in an unpacked landscape, but on the 

upside, economies of scale could increase the array of goods and services available. 

Furthermore, they found that if two entrepreneurs co-located in the same central 

place rather than monopolizing a limited hinterland, the two would actually receive 

greater economic benefits. Church and Bell (1990) suggest this result is consistent 

with retail trends of the 1990’s and the duplication ratio concept of Berry and 

Garrison (1958). Thus, Church and Bell have shown that dispersion between 

facilities is possible, and in many ways, desirable and more representative of the 

“real world.” One interesting point that Church and Bell (1990) did not consider is 

whether such centers are maximally dispersed. However, Church and Bell (1990) 

mention a sequel to their paper dealing with demands distributed in a discrete, 

punctiform, manner that would require the same or fewer supply centers at any 

hierarchical level; it appears this paper was never developed.  

It took seventeen years before research involving Central Place Theory within 

the context of whether central place facilities will result from a maximally dispersed 
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process to be considered. In 2007, Curtin and Church developed a model for which 

facilities were maximally dispersed but had protected thresholds. They formulated 

two dispersion models: one that considers the single-good system, and one that deals 

with a multiple-good system. Specifically, two methods for generating multiple-good 

systems are presented: a multiple-type dispersion model and a k-value constraint set 

formulation. These formulations allowed the hierarchical systems to grow by 

increasing the number of maximally dispersed places. Their paper showed that stable 

k-levels were identified that met the classic tenets of central place theory for 

maximally dispersed facilities. They suggest that, “The objective of maximal 

dispersion is posited as both a motivating factor in central place location decisions, 

and as the optimal outcome of a mature system of central places (Curtin & Church, 

2007, p.167).” In other words, the classic central place patterns of Christaller’s 

central place theory have been shown to be maximally dispersed (Curtin & Church, 

2007). 

Central place theory, however, is not only limited to cities and economics. One 

can observe a similar phenomenon, the location of dens/nesting sites, in territorial 

species. There are underlying factors that influence where a nest or den site is 

located and how the maintenance of territory effects the distribution of these nest/den 

sites across a landscape. In this case, the threshold can be thought of as the minimum 

level of available resources necessary for a territorial species to support themselves 

and maintain a nest/den site at a location, and the range can be thought of as the 

maximum energy expended or the furthest distance that an animal could reasonably 
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travel in order to maintain a reliable supply of food. If a territory does not contain 

enough food resources within a reasonable reach to support an animal, it fails to 

meet a threshold of success, just as a retail site fails when the customer base falls 

short of a threshold within the range of the good. Just like central places, viable 

territories or “home ranges,” must be dispersed. In both the economic and territorial 

species conceptualization of central place theory, dispersive strategies are necessary 

to maintain a viable business location or maintenance of a territory. 

2. Use of Dispersive Strategies 

Dispersive strategies are observed in many different locations at varying scales. 

Dispersion manifests itself in the location of territorial species den/nesting site 

location, forest management activities, urban park locations, strategic facility 

placement, competitive retail store location1, obnoxious facility location, halfway 

houses, and the location of correctional rehabilitation centers among others. In each 

of these examples there is an underlying process, strategy, or objective that tends to 

generate spatially dispersed activities.  

In the territorial species den/nest site case, dispersion is caused by the necessity 

of protecting the food source and to preserve a suitable site to secure the success of 

the species progeny. Similarly, with forest management activities, such as logging 

and fuels removal for the reduction of forest fire intensity, one wants to disperse 

these activities so that no one part of the forest is overly impacted by these activities. 

                                                 
1 Competitive retail could be chain stores that sell goods, banking facilities, and 

franchise stores such as automobile sales lots and fast food restaurants. 
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Competitive retail store location, particularly for franchises, is similar to the 

territorial species case; the franchiser does not want too many franchises located 

close together because they will cannibalize sales from each other and hinder the 

success of an individual franchisee.  

In the case of obnoxious facility location (e.g. landfills, half-way houses, and 

correctional rehabilitation centers) or semi-obnoxious facilities (e.g. fire stations, 

police precincts, etc.), policy makers try to spread these facilities out so as to 

minimize the impact to the public at large (Church & Garfinkel, 1978; Erkut & 

Neuman, 1989). In rehabilitation homes, in particular, dispersion is sought after to 

minimize the interaction of individuals with negative societal influences, and thus 

the recidivism rate of the individuals (Grubesic et al. 2011). Another example of 

strategic placement of facilities is the well of a center pivot irrigation system. Such 

center-pivot systems are often separated in such a way as to maximize irrigated areas 

as efficiently as possible with variable sized center pivot systems (New & Fipps, 

2000). Figure 2 shows an example of a packed configuration of center-pivot 

irrigation systems in eastern Washington state, USA. The examples listed above are 

only a sampling; there are many examples of dispersive processes and locational 

outcomes in the context of ecology (Church, 2013), business economics (Erkut & 

Neuman, 1989), and social institutions (Grubesic et al. 2011).  
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Figure 2. Example of several center-pivot irrigation systems expanding in 
farmlands of eastern Washington state, USA. Center of image is: 
46°48'16.98" N 119°00'31.84" W, from Google Earth 

 

B. Modeling Dispersion 

Dispersion has been an objective of considerable interest in the field of location 

science. There are three basic forms of dispersion. The first involves the dispersal of 

facilities from population centers (See Church & Cohon, 1976; Church & Garfinkel, 

1978 as early examples of this type of problem). A second form of dispersion 

involves the dispersal of facilities from each other. Keeping facilities as far apart as 

possible from each other has been the subject in a number of different problem 

settings, ranging from military defense (Erkut, 1990) to franchisee store location 

(Current & Storbeck, 1994). A third form of dispersion, which is a hybrid of the first 
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two forms, involves keeping facilities away from each other as well as away from 

population (Berman & Huang, 2008).  

Moon and Chaudhry (1984) were among the first to propose a formal problem 

dispersing facilities from each other on a network, called the p-dispersion problem. 

This problem involves locating “p” facilities on a network, such that the minimum 

distance of separation between the closest pair of facilities is maximized. Moon and 

Chaudhry (1984) also proposed a model which maximized the sum of minimum 

separation distances, with one separation distance defined for each facility, while 

locating p-facilities. This problem was called the p-defense problem. Kuby (1987) 

expanded this concept to a problem that involves maximizing the sum of all 

separation distances between all pairs of facilities. Erkut and Neuman (1991) added a 

fourth classic form which involves locating p-facilities as well. For their problem, 

each facility is represented by the sum of separation distances to the other p-1 

facilities. Their objective was to maximize the smallest of these facility defined 

sums. Curtin and Church (2006) proposed general forms of these problems which 

involve the location of different types of facilities, where interaction between 

different types has a defined repulsion weight and Lei and Church (2013) have 

shown that all four classic forms outlined by Erkut and Neuman (1991) can be 

viewed as special cases of general dispersion model using a concept based on vector 

assignment.    

There is one other important form of facility dispersion and it is based upon a 

standard of minimum separation. Moon and Chaudhry (1984) were the first to focus 
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on a minimum separation standard. They proposed to locate as many facilities as 

possible while keeping them at least r-distance apart from each other. They called 

this the anti-covering location problem. It has been used in a number of different 

ways. Grubesic and Murray (2008) proposed its use in analyzing policies that dictate 

that sex offender residences should be kept separated from each other as well as from 

selected fixed elements on the landscape, like parks and schools. Downs et al. (2008) 

used the anti-cover problem to analyze the carrying capacity of a population of 

Sandhill cranes, Williams (2008) employed a separation distance in the selection of 

biological reserve sites, Church (2013) has used it in estimating the size and extent 

of core habitat, and Murray and Church (1996) describe a form of anti-covering for a 

forest harvest selection problem. Grubesic et al. (2012) analyzed the impacts of 

alcohol outlet distribution in Philadelphia based upon a proposed policy change 

involving privatization.  

More general forms of this problem have been defined for dashboard layout 

(Castillo et al. 2008), map label placement (Ribeiro & Lorena, 2008a), DNA 

sequencing (Joseph, Meidanis, & Tiwari, 1992) and the location of undesirable 

facilities (Berman & Huang, 2008). A number of techniques have been used to solve 

the anti-cover problem and related problems, including greedy (Chaudhry et al. 

1986), bee colony optimization (Dimitrijević et al. 2012), Lagrangian relaxation 

(Murray & Church, 1997b), genetic algorithms (Chaudhry, 2006), column generation 

(Ribeiro & Lorena, 2008a), and greedy randomized adaptive search (Cravo et al. 

2008). 
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Most of the applications of the anti-covering model entail the use of an integer-

linear programming model. Prospective sites are often identified in advance as 

“discrete” locations, representing centers of raster cells (Church, 2013), commercial 

parcels (Grubesic et al. 2012), or nodes of a network. Murray and Church (1997a) 

have shown that the discrete anti-cover problem is an equivalent problem to the 

vertex packing problem on a network or the maximal independent set problem on a 

graph. This demonstrates that the discrete anti-cover problem belongs to the class of 

non-deterministic polynomial-time (NP) hard. There can be possible uncertainty in 

potential site positions, and Wei and Murray (2012) have analyzed the impacts of 

site uncertainty within the context of the anti-cover problem. 

Research that is focused on modeling anti-covering is extensive and a number of 

model formulations have been proposed. In chapter three, these model structures are 

reviewed. After that a new form of ACLP is proposed based upon a new concept of 

“Core and Wedge.” With this concept, it is shown that all Euclidean-based discrete 

point anti-covering models can be formulated with at most 7 clique constraints per 

site. Optimal solutions to the anti-covering problem represent the largest number of 

facilities that can be simultaneously located while keeping each of them at least a 

minimum distance, r, from each other. Unfortunately, there can be circumstances in 

which a maximum packing is disrupted. They may be disrupted by earlier residential 

choices, already established crane nests and territories, or by poor choices in already 

located franchisee establishments. Whether maximal packing arrangements are 

disrupted by accident, happenstance or by intent, such disruption and the potential 
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impact of disruption should be of interest when using this type of model. In chapter 

three, a description of the two basic ways in which the anti-covering problem has 

been formulated as an integer programming problem is given.  

Following this a problem and model formulation is presented which seeks to 

maximally disrupt potential solutions to the anti-covering problem; that is, a model 

that identifies the minimum packing configuration. In addition, a model is also 

formulated that allows one to determine if there are other packing configurations 

between the maximally packed configuration, the Anti-Covering Location Problem 

(ACLP), and the minimally packed configuration, the Disruptive Anti-Covering 

Location Problem (DACLP). Chapter five presents the computational experience of: 

the previous and new “Core & Wedge” formulations representing the ACLP, and the 

formulations representing the DACLP. In addition, a new heuristic designed to 

quickly solve the ACLP on very large datasets is described and an example of a 

solution is given. Chapter six contains some concluding remarks and directions for 

future research. 

C. Outline of Dissertation 

The focus of this dissertation is on dispersion and its use with respect to facility 

location, and in particular, how it can be modeled within the context of an integer 

programming problem considering a discrete set of facility locations. This chapter 

briefly describes the structural organization of the dissertation and gives a brief 

overview of dispersion. The subsequent chapters are as follows: Chapter 2 reviews 

existing dispersion models. Chapter 3 describes classic and new mathematical 
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methods of modeling dispersion within the context of the Anti-Covering Location 

Problem (ACLP). Chapter 4 describes two new ACLP models. Chapter 5 explores 

how such problems might be solved. Chapter 6 demonstrates how a real world 

dispersion problem can be modeled and solved. Finally, Chapter 7 concludes the 

dissertation with a discussion of the theoretical underpinnings, uses, and 

implementations of the dispersive techniques described in this dissertation.  
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II. A review of dispersive location strategies 

This chapter reviews the location modeling literature pertaining to dispersion. 

The primary purpose of this chapter is to discuss how dispersion has been modeled 

previously. Previous models of dispersion can be broken down into two types of 

dispersive modeling. The first type can be thought of as maximizing a measure of 

dispersion, or “dispersiveness,” between facilities to facilities, or facilities to 

demands. The second type of dispersive modeling is standards based. In this case, a 

minimum separation standard is employed. The nuances between these two ways of 

mathematically representing dispersion will be discussed. Formulations for the 

problems discussed in this chapter are not provided here, though, chapter 3 presents 

formulations specifically related to the standards based Anti-Covering Location 

Problem (ACLP), the focus of this dissertation. Now, let us begin the discussion of 

general dispersion problems. 

A. Maximizing “Dispersiveness” 

As mentioned above, dispersive modeling has taken two different paths. The first 

is maximizing a measure of “dispersiveness” and the second is a standards-based 

approach. The case where facilities are separated from their demands, and/or each 

other, has often been modeled as the p-Maxian problem. The case where facilities 

are separated from only each other has been termed the p-Dispersion problem. First, 

the p-Maxian Problem is discussed. Subsequently a discussion of the p-Dispersion 

problem will be presented. 
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B. Dispersiveness and the p-Maxian 

The Maximum Median, or Maxian, problem was first described, with a 

formulation representing it, by Church and Garfinkel (1978). It was further expanded 

by Chandrasekaran and Daughety (1981) as a multiple p-facility location problem. 

The Maxian problem is the antithesis of the median problem where the objective is 

to site a facility as far as possible from centers of population. Church and Garfinkel 

(1978) describe the basis of a finite optimal set for a Maxian problem on a network. 

The p-Maxian problem is defined as follows: simultaneously locate p points 

(facilities) as far from each other and a given set of nodes (demands). This is the first 

such problem that considered dispersion between located facilities and a set of 

demands.  

The p-Maxian problem maximizes “dispersiveness” between facilities and 

demands, as a function of distance, without a minimum separation standard. Church 

and Garfinkel (1978) note that the one-facility p-Maxian mathematical objective 

function is identical to the absolute median (p-Median) objective function of Hakimi 

(1964), except that the objective sense of Hakimi’s formulation is to minimize. In 

Hakimi’s p-Median problem “dispersiveness” is not desired; the median distance of 

a facility location and assigned demands is minimized. This is contrary to the p-

Maxian problem where separation between facilities and demands is also 

maximized. Church and Garfinkel note that without an objective to disperse p-

facilities apart from each other the p-Maxian solution would involve co-locating all 

p-facilities at the optimal 1-Maxian point. However, there are several ways that 
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“dispersiveness” can be measured between facilities in a configuration. In particular, 

this relates to the p-Dispersion problem discussed below. 

C. Dispersiveness and p-Dispersion 

Several derivations of separation distance measures have been presented and 

discussed in the literature. These implementations have been used in the p-

Dispersion problem. The p-Dispersion problem, first described by Shier (1977), 

involves the location of p-facilities such that the minimum distance between the 

closest pair of facilities is maximized. Shier suggested that this problem was ideal for 

placing a fixed number of fire hydrants over a street network. Kuby (1987) further 

notes that the p-Dispersion model could be used to avoid cannibalization of market 

areas for franchise stores.  

Erkut and Neuman (1991) describe four possible objectives when maximizing 

dispersion between facilities. The paper by Curtin and Church (2006) contains a 

succinct, easily understood, synopsis of Erkut and Neuman’s work. The classic 

representations of “dispersiveness” described by Erkut and Neuman for facilities of a 

single type using distance as a metric are as follows: 

1) The Max-Min-Min representation maximizes the dispersion of the p facilities 

to be located. Specifically, the objective of the model is to Maximize the 

Minimum separation distance Minimum (hence Max-Min-Min) of each 

facility to its closest neighbor. That is, the objective considers the smallest 

separation distance of each facility and its closest neighboring facility and 

maximizes the separation distance of this pair. This particular representation 
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of dispersiveness is the classic form of what Moon and Chaudhry (1984) call 

the p-dispersion problem. However, Shier (1977) initially described this 

formulation as the p+1-dispersion problem, the dual of the p-Center problem. 

Several formulations of this model type have been developed with example 

applications and procedures in the literature (Chandrasekaran & Daughety, 

1981; Kuby, 1987).  

2) The Max-Sum-Min representation Maximizes the Sum of the Minimum 

(Max-Sum-Min) separation distances for every facility and the facility closest 

to it. This has been referred to as the p-Defense problem by Moon and 

Chaudhry (1984). The difference between the Max-Min-Min and the Max-

Sum-Min is that the Max-Min-Min is concerned with the “worst case” of 

separation between a facility and its closest neighboring facility. The Max-

Sum-Min is concerned with the overall sum of minimum separations between 

each facility and its closest neighboring facility. 

3) The Max-Min-Sum representation Maximizes the Minimum of the Sum 

(Max-Min-Sum) of separation distances between a facility and all other 

facilities. Note the nuance here as compared to that found in the max-sum-

min representation above. In this case, the separation distances of all 

facilities is considered, whereas in the max-sum-min representation, only the 

sum of the smallest separation distances between a facility and its closest 

facility is considered. This representation was first defined in Erkut and 

Neuman (1991). 
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4) The Max-Sum-Sum representation Maximizes the Sum of the Sum distances 

from a facility to all other facilities. Kuby (1987) formulated this problem, 

which he calls the Maxisum problem, that locates p-facilities maximizing the 

sum (Maxisum) distance between all pairs of open facility sites. Kuby’s 

maxisum formulation locates facilities over a network or a set of discrete 

points. However, some facilities may be in close proximity to one another as 

the sum distance between open facility sites is maximized.  

The four measures of “dispersiveness” presented above capture the four principal 

ways one might wish to separate facilities of the same type. Figure 3 shows these 

representations of dispersion graphically by locating five facilities, shown as the red 

dots. The top left panel shows the results of using the Max-Min-Min model, which 

maximizes the separation distance of the closest pair of facilities. This is indicated by 

the blue arrow connecting the closest pair of facilities. The top right panel shows the 

Max-Sum-Min model, where the sum of the distances, one for each facility to its 

closest neighboring facility, is maximized. These distances are shown by the blue 

arrows. The bottom left panel shows the results of the Max-Min-Sum model, where 

the minimum sum of separation distances from a facility to all other facilities is 

maximized. The blue arrows show which distances are accounted for in the Min-

Sum (associated with site 52). The bottom right panel shows the solution of the Max-

Sum-Sum model where the sum of all separation distances between located facilities 

is maximized, as indicated by the blue arrows.  Erkut and Neuman point out that  
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Modeling outcomes of the Max-Min-Min (top left), Max- Sum
(top right), Max -Min-Sum (bottom left), and Max-Sum-Sum (bottom 
right) approaches to dispersion. 

Sum-Min 
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these four forms of dispersiveness can be grouped into two bases. The first base 

involves those objectives concerned with the “worst-case” separation distance 

between a facility and its closest neighbor, or with the sum of worst-case separation 

distance between all facilities. That is, “worst-case” separation efficiency versus 

collective sum of worst-cases, one for each facility. The second measure involves the 

total or sum of separation between facilities. Erkut and Neuman (1991) were the first 

to summarize the four basic models of dispersion. 

Curtin and Church (2006) identified a nuance that the previous four models fail 

to account for: the concept of dispersion between facilities of differing types. They 

develop a general class of facility location models that optimize multiple type facility 

dispersion. This type of modeling has been successfully used to show that central 

places are maximally dispersed, and is an optimal outcome for which central places 

are mature (Curtin & Church, 2007). Additionally, they suggest strategies for 

constraint elimination to reduce computation time. Curtin and Church (2006) address 

dispersion between facilities of differing types and developed a form for each of the 

objectives codified by Erkut and Neuman (1991) 

Lei and Church (2013) identified a concept that can be used to unify all four 

previous modeling implementations of dispersion. Lei and Church (2013) identified 

four new partial sum models that are generalized forms of the four models discussed 

by Erkut and Neuman (1991). The partial sum dispersion problem conceptually is 

quite simple. How dispersion is measured may be of greater importance to facilities 

that are closest to one another. For example, dispersing the closest 3 or 4 neighboring 
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facilities to any given facility may only be of real interest, rather than only the 

closest facility or all facilities. Their paper models this type of dispersion using 

partial sums. Furthermore, they introduce a general model called Max-PSum-PSum 

which is a form which represents all basic forms of Erkut and Neuman (1991) as 

special cases.  

In all of the representations of dispersion discussed to this point, no minimum 

separation standard has been considered. In addition to the previously discussed 

problems, there has been interest in formulating a model that will disperse facilities 

over a landscape based upon “equity” (Prokopyev, Kong, & Martinez-Torres, 2009). 

Such representations of equity could be seen as more easily implemented using a 

standard of separation. The next section focuses specifically on standards based 

dispersion. 

1. Standards Based “Dispersiveness” 

Dispersiveness can also be implemented through a standards based approach, 

typically implemented using distance or weighted distance where facilities are 

located where they have to be separated by at least a minimum distance of 

separation. Moon and Chaudhry (1984) introduced this construct in their seminal 

work of 1984. Moon and Chaudhry (1984) also proposed a classification scheme to 

introduce and define a variety of distance constrained problems. One of those 

problems is the Anti-Covering Location Problem, or r-Sep problem, that involves 

maximizing the number of facilities placed in a bounded region or problem domain, 

such that each facility is at least r-distance from each and every other located 
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facility. This problem has also been called the packing problem in the field of 

mathematics and computer science, in which a maximal set of circles, spheres, or 

other polygons that can be tessellated, are packed into a finite 2 or 3 dimensional 

space. An introductory book describing various circle packing configurations within 

the context of mathematics has been written by Kenneth Stephenson (2005).  

Conceptually the p-dispersion and r-separation, or anti-covering location 

problems are “duals” of each other. The p-Dispersion problem involves locating a 

fixed number of facilities and maximizing the separation distance, whereas the Anti-

Covering Location Problem (ACLP) involves maximizing the number of facilities 

with a minimum separation distance standard. Even though these two problems can 

be considered duals of one another, past work has differed in their underlying 

formulations.  

Yoshimoto and Brodie (1994) describe an approach that significantly tightens the 

neighborhood constraint used in the original formulation of Moon and Chaudhry 

(1984). Murray and Church (1996) developed an approach that further tightens the 

neighborhood constraint described by Yoshimoto and Brodie (1994). In addition, 

Murray and Church (1996) describe how cliques may be used to reduce several 

individual constraints into a single tight clique constraint. Erkut, ReVelle, and 

Ulkusal (1996) focused on generating integer friendly formulations of the Anti-

Covering Location Problem (ACLP).  

Their paper described six different formulations representing the ACLP. Their 

paper demonstrated the usefulness of varying formulation approaches that aid in 
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obtaining integer solutions to the ACLP. The reason for doing this is that the ACLP 

is a difficult problem to solve to provable optimality, as it belongs to the NP-Hard2 

class of problems (Murray & Church, 1997a). Erkut et al. (1996) describe a 

particularly important formulation. They describe a formulation that utilizes the 

concept of neighborhood constraints and “clique” constraints. Specifically, Erkut et 

al. (1996) defined a clique constraint as containing the neighbors, j, of a potential 

facility location, i, that are all mutually within half of the separation standard of i, 

and that are within the separation standard of each other. This has been termed the 

“Core Clique” representation. A detailed description of this constraint approach is 

given in chapter three.  

Murray and Church (1997a) describe a formulation to represent the ACLP which 

consists of a neighborhood constraint and a maximal clique. A maximal clique is 

defined as a set of neighbors j that are within the separation standard of site location i 

and all other members j. The neighborhood constraint contains all of the sites within 

the separation standard of i that are not members of the maximal clique. Murray and 

Church (1997a) show that the maximal clique can be computed by solving several 

vertex packing problems for all potential site locations. Several other applied papers 

have been written that involve the ACLP, that focus on several applications and 

problem solving approaches (Castillo et al. 2008). Castillo et al.  (2008) discuss 

several packing problems, including one of packing various sized circles into a finite 

region, though they do not consider site-benefit in their formulation. 

                                                 
2 NP-Hard stands for Non-deterministic Polynomial-time hard. 
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The Anti-Covering Location Problem has been used in modeling a broad 

spectrum of problems. For example, the ACLP has been used in: the Cartographic 

Label Placement Problem (Ribeiro & Lorena, 2008a); estimating carrying capacity 

of territorial species (Downs et al. 2008); evaluating planning policy and sex 

offender residency (Grubesic & Murray, 2008; Grubesic et al. 2011; Grubesic, et al. 

2008); evaluating liquor store permitting and placement (Grubesic et al. 2012); DNA 

sequencing (Joseph, Meidanis, & Tiwari, 1992); forest planning problems (Murray 

& Church, 1995); center pivot irrigation systems (New & Fipps, 2000); analyzing 

historical and modern settlement patterns (Ruggles & Church, 1996; Curtin & 

Church, 2007); industrial problems such as container loading, dash-board layout, 

cutting patterns (Castillo et al. 2008) and fabric cutting patterns (Wong & Leung, 

2009). 

Approaches to solving these problems have varied; some problems are small 

enough that they are easily solved to optimality. When problems are not solvable to 

optimality, often another approach is required. Heuristics designed to generate 

feasible solutions as close to optimal as possible have been developed. Heuristic 

techniques have very different solution approaches. Such heuristic approaches 

include: greedy randomized adaptive search procedure or GRASP (Feo et al. 1994), 

genetic algorithms (Chaudhry, 2006), LaGrangian relaxation (Murray & Church, 

1997b; Ribeiro & Lorena, 2008a; 2008b), tabu search (Yamamoto, Camara, & 

Lorena, 2002), Bee Colony Optimization meta-heuristics (Dimitrijević et al. 2012), 

and evolutionary algorithms (Wei & Murray, 2014). In the next chapter the Anti-
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Covering Location Problem (ACLP) formulation is presented, followed by several 

refinements published in the literature. A discussion related to each formulated 

model and subsequent method of mathematical represented will be provided. 
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III. Mathematical representation of “Anti-Covering”  

This chapter presents several mathematical models which represent the Anti-

Covering Location Problem (ACLP). The chapter contains several sub-sections. The 

first section presents and discusses the classic ACLP model formulation developed 

by Moon and Chaudhry (1984). Subsequently, several concepts in constraint 

modeling are presented. They deal with: the concept of neighborhoods and their 

refinement, clique constraints, the concept of a “Core” constraint set, and hybrid 

approaches of the previous forms. Two completely new representations are also 

provided in this section: the concept of “Core and Wedge” cliques, as well as the use 

of location set covering (LSC) constraints in anti-cover modeling.  

A brief discussion related to these new constraint methods and why and how one 

should implement them is also provided. In the next chapter, solution times and 

results related to each formulation are presented with a discussion on the strengths 

and weaknesses of each approach. This chapter presents each formulation and 

provides a brief description of how the constraints work, why the approach was 

developed, and some information related to ease of solving. 

A. The classic Moon and Chaudhry (1984) Anti-Coveri ng model 

formulation 

As noted in the previous chapter, the anti-covering model was first proposed in 

Moon and Chaudhry (1984). The model that Moon and Chaudhry formulate is 

designed to solve the Anti-Covering Location Problem (ACLP), also known as the r-
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Sep or radius of separation problem. The Anti-Covering Location Problem (ACLP) 

involves maximizing the number of facilities packed within a bounded region such 

that each facility meets a minimum separation standard, often times a distance 

measure such as r, from its closest located facility. In this section details in 

formulating the anti-cover location model (ACLM) is presented.  

The anti-covering location model (ACLM1) developed by Moon and Chaudhry 

(1984) representing the discrete case is given as follows: 

Notation: 

i, j are indices of potential facility locations 

r is the minimum distance standard, or radius of separation 

S is the set of potential facility site locations 

iQ  { }ijrdSjQ iji ≠<∈=      where  |   , defined for each Si ∈  

M is a very large number (i.e. a big M value), at least equal to n, where n is the 

number of sites or S  

ijd  shortest distance from facility i to facility j 

jx  = 




otherwise 0,

at  sited isfacility  if ,1 j
 

 

ACLM1: 

∑
∈

=
Sj

jx ZMaximize  (1) 

s.t.  

∑
∈

∈≥−
iQj

ji SixxM  allfor             )1(  (2) 
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{ } Sjx j ∈∈  allfor                           1,0  (3) 

 

The formulation presented here is a zero-one linear programming problem comprised 

of Sbinary variables and S  constraints. The objective of the ACLM1 (1) involves 

maximizing the number of sites selected to locate a facility. Constraints (2) ensure 

that if a given site i is selected for a facility, no other sites closer than r-distance of 

site i may be used. In effect, if xi = 1, then the left hand side of the inequality must be 

zero in value. When the left hand side of this constraint is zero, the right hand side 

must also be zero. Essentially, this means that when the right hand side is forced to 

be zero, all facility sites within the set Qi are unable to be selected as a facility. 

Constraints of type (3) represent the binary integer restrictions for the facility site 

selection variables. The total number of constraints, those that define the model, in 

this case are constraints of type (2). The binary integer restrictions (3) are not 

considered model constraints per-se; they represent the restrictions on the values a 

decision variable can take and are not a part of the constraint matrix. Hence, the total 

number of constraints found in the ACLM1 is equal to at most the number of facility 

sites (S  or ≤ n constraints). The number of constraints could be less because some 

facilities may not be within r-distance of another facility, and thus a constraint of 

type (2) would not need to be written. 

Yoshimoto and Brodie (1994) formulated a model containing a similar constraint 

of type (2) above that was implemented for a forestry adjacency restriction problem, 
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with an important difference. Yoshimoto and Brodie recognized that an arbitrarily 

large “big M” is not required when you know how many neighbors are within r of a 

facility. Specifically, the M in each constraint of type (2) can be replaced by the size 

of the set Qi. Note that i is not a member of its neighborhood set, so the value of iQ  

equals the number of neighboring sites to site i. Moving from a large M value to a 

much smaller value such as  iQ  can greatly reduce the computational time required 

to solve a given problem to optimality because it is a tighter constraint. Consider, for 

example, the following equation: ii xnxxx ≤++ 321 . If ni represents a large value, 

then variable 1x , 2x , and 3x  can be 1 in value when the value of ix  is a small 

fraction. This type of property means that constraints (2) can be easily violated when 

M is large and ix  is fractional. Often such constraints are not “enforced” without 

resolving fractional variable values with a branch and bound algorithm. If iQ is 

considerably smaller than M, then constraints (2) will be tighter and often require 

less effort in solving with branch and bound. Thus, any way to reduce the size of M 

in these types of constraints will generally reduce overall computation time 

necessary to solve a problem. 

Murray and Church (1995) discuss how a big “M” can be further reduced by 

replacing M with the value ni where: 

ni = the largest number of sites which can be simultaneously selected 

within the set Qi while maintaining a distance separation of r 

between each pair of facilities (note nni ≤ ). 
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Murray and Church (1995) show that even though computing ni requires solving a 

small vertex packing problem for each set Qi, it has been shown that this can help to 

lower overall computational time. It is important to note that vertex packing 

problems are of the class of NP-Hard, so that large problems are challenges in 

themselves to solve. Where the Murray and Church (1995) approach makes sense is 

when each set Qi is relatively small. 

A second model form, the Anti-Covering Location Model 2 (ACLM2), first 

proposed by Erkut et al. (1996) and Murray and Church (1996) uses a constraint 

structure originally proposed by Thompson et al. (1973) that has been used to solve 

the ACLP. Using the previously defined notation, the model can be formulated as: 

 
ACLM2 

∑
∈

=
Sj

jx ZMaximize  (4) 

s.t.  

rdjiSjixx ijji <≠∈≤+  and   where,each for                        1  (5) 

{ } Sjx j ∈∈  allfor                          1,0  (6) 

 

This second formulation of the ACLP has the same objective value (4) as that of the 

ACLM1, but uses what are called pairwise adjacency constraints (5). For each 

facility site pair, i and j where i ≠ j, that are within r distance of each other, a 

constraint of type (5) is written. This constraint prevents more than one facility in the 
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pair from being selected. Either facility i or facility j can be selected, or neither one 

when the model is solved. Constraints of type (6) are the binary integer restrictions 

for the facility site selection variable xj. Whereas the ACLM1 is compact (having at 

most n constraints), the ACLM2 is not; this is due to the pairwise constraints of type 

(5). The number of constraints in the ACLM2 model is equivalent to the number of 

unique site pairs that are strictly within r-distance of each other, potentially a 

significant number. Murray and Church recognized that this constraint form can be 

reduced using higher ordered clique constraints. The next section discusses the 

concept of cliques in further detail. 

B. Cliques 

The Anti-Covering Location Model 2 (ACLM2) using pairwise constraints, see 

constraints (5) in previous section, can be reduced in number and tightened through 

the use of higher ordered cliques. To understand the representation of a higher 

ordered clique, let us consider three facility sites t, u, and v which are within r-

distance of each other. The ACLM2 model formulation would contain the following 

pairwise constraints: 1≤+ ut xx ,  1≤+ vu xx  and 1≤+ vt xx . These three 

constraints can be represented, or reduced, into one inequality term: 1≤++ vut xxx , 

a clique constraint of 3 members. The model can be reduced by replacing these three 

pairwise constraints by this clique constraint. Clique constraints can be written when 

a set of sites are all mutually adjacent or within r-distance of each other.  
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It makes great sense to combine pairwise constraints whenever possible into 

higher ordered clique sets as this reduces the needed number of constraints and 

produces a tighter relaxed problem (Meneghin, Kirby, & Jones, 1988). In general a 

clique constraint can be written as: ∑
∈

≤
kCj

jx 1 where k is an index of clique sets K3, 

and Ck is the set of members of cliques k, where each member of the clique is within 

r-distance of all other members of the sites within r of i. Murray and Church (1996) 

describe a method to determine the minimum number of clique sets that represent all 

pairwise constraints of a given problem. The Anti-Cover Location Problem (ACLP) 

as represented using ACLM2 with higher ordered cliques would use the following 

constraint: 

∑
∈

≤
kCj

jx 1                          for each Kk∈  (7) 

 

instead of constraints of type (5). Through the use of cliques, the number of 

constraints found in pairwise formulations such as ACLM2 can be substantially 

reduced resulting in a more compact model that can be solved much faster. Cliques 

can also be implemented in several special ways. One such way is through the 

concept of a “Core” clique constraint set, discussed in the next section. 

                                                 
3 K represents the set of all cliques 
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C. “Core” Clique Constraint Set Representation 

“Core” sites are those sites that can be thought of as being so close to a particular 

facility, within 
2

r
, that if a facility is located at any of the facilities within the core, 

no other facility can be placed. This property holds for problems defined on a 

Euclidean plane or problems in which the triangle inequality holds. Erkut et al. 

(1996) first described this type of constraint set within a model they call “Model IV”.  

A version of Erkut et al.’s model using the previously defined notation, formulated 

as the Anti-Covering Location Model – Core Clique Constraints (ACLM-CCC) here, 

is as follows.  

ACLM-CCC 

∑
∈

=
Sj

jx ZMaximize  (8) 

s.t.  

∑
∈

≤+
iKj

ijii nxxn            for each facility Si∈  (9) 

1≤+ ∑
∈ iCQj

ji xx              for each facility Si∈  (10) 

{ } Sjx j ∈∈  allfor                          1,0  (11) 

Where 






 ≠≤∈= ji

r
dSjCQ iji ,

2
| , defined for each Si∈  and 

Where 






 ≠<<∈= jird

r
SjK iji ,

2
| , defined for each Si∈  
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The objective of the ACLM-CCC (8) and the binary integer restrictions on the 

facility site selection variables (11) is the same as all of the other models formulated 

to this point. The significance of this model is in the implementation of constraints 

(9) and (10). Constraint (9) represents the form of constraint developed by 

Yoshimoto and Brodie (1994), which was previously discussed in relation to the 

ACLM1 model. As earlier noted, ni represents the number of sites within iQ . 

However, in this case, in  can be reduced to represent the number of elements within 

iK . Conceptually, constraint (9) specifies that if a facility at site i is selected, none of 

the other facilities strictly within r of site i can be selected. This represents the 

neighborhood constraint of facility i. If a facility at site i is not selected, than those 

facilities within r of site i remain candidates for selection. Constraint (10) is the 

“Core” constraint and can be thought of as a clique of facilities centered around 

facility i that are at least half-r away. 

Constraint (10) represents a core area within 
2

r
 distance of facility site i. If 

facility site locations j are strictly within 
2

r
 of facility site i, any specific facility sites 

j within the core set of i, iCQ , is also within r distance of all the other j facilities in 

the set iCQ . This constraint is particularly tight as it requires that at most only one of 

the sites within the core can be selected at any time. As Erkut et al. (1996) note, even 

though constraint (9) sufficiently represents a feasible region, and that constraint (10) 
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is redundant from a pure modeling point of view, constraint (10) tightens the 

problem considerably.  

This is an important observation as the “Core” constraints represent a particularly 

tight neighborhood constraint about a facility which reduces the necessary 

computation time to solve the problem. Erkut et al. further note that the “Core” 

constraint set represents only a quarter of the total area within r-radius of site i, and 

that there could several potential facility locations not included within this type of 

clique constraint. However, constraint (10) is easy to compute and implement when 

building the location model. In fact, Erkut et al. also suggested an algorithmic way of 

further tightening the neighborhood constraints by eliminating members from the 

“core” set from the neighborhood set. However, there is a better method of 

generating constraints incorporating “Core” conditions than that suggested by Erkut 

et al. Murray and Church (1997a) proposed a “hybrid” form of a “Core” type clique 

constraint, called a Maximal Clique.  

D. Hybrid Clique Constraint Representation 

Murray and Church (1997a) describe how to generate a hybrid Anti-Covering 

Location Model (ACLM) through the use of a maximal clique set. The Anti-

Covering Location Model – Core Constraints (ACLM-CC), described in the previous 

section, is in a certain way similar to the model that Murray and Church (1997a) 

describe. Murray and Church recognized that a clique constraint does not necessarily 

have to be centered on the location of facility i. Furthermore, they demonstrated that 

neighbors of facility site i can be grouped into a maximal set of neighbors that are all 
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within r distance of one another, or a maximal clique. To conceptualize this, think of 

a small circle of radius half r located within a circle of radius r. You can move the 

circle of radius half r anywhere within the circle of radius r so long as you group the 

maximum number of potential facility locations within the half r circle. Note, that 

site i will always be a member of such a set. A maximal clique is conceptually 

similar to this example. A maximal clique can be located anywhere within r of site i 

such that each of the other sites within r of i are also within r of each other.  Figure 4 

contains a hypothetical set of sites within r distance of site i: sites j, k, l, m, n, o, p, q, 

r, s, and t. These facilities can be grouped into cliques, for example C0, C1, C2, and 

C3. C0, the circle symbolized by the dash-dot pattern, represents the “Core” clique 

described by Erkut et al. (1996), discussed previously, which contains all facility 

sites 
2

r
≤  of site i.  The “Core” clique constraint set, C0, has 5 members: sites i, l, m, 

o, and q. The maximal clique, C2 symbolized by the orange top-right circle, contains 

the greatest set of neighbors within r of each other; 7 in this case. The sites within 

the maximal clique are: i, j, k, l, m, n, and o. While the maximal clique set C2 has 

been represented as a circle for demonstrative purposes, it need not necessarily be a 

circle. This is because maximal cliques are by definition determined through their 

mutual connections; that is, the maximal clique of facility site i and facility sites 

within r of i must also be within r of each other. Murray and Church (1997a) show 

that a constrained node packing problem can be used to compute maximal clique sets 

for use in solving the ACLP. This is done through the use of an undirected graph 
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(network). Vertices (nodes) represent facility sites and the edges (arcs) represent 

pairs of sites that are < r.  

To show how this looks in graphical form, let us re-use the example presented in 

Figure 4. Figure 5 shows this example graph. The small blue edges (arcs) represent 

theoretical connections to vertices (nodes) that are not within the r-neighborhood of 

Figure 4. Example of clique sets C0, C1, C2, and C3. The dashed circle with dot 
fill, C0, represents the “Core” constraint clique of Erkut, ReVelle, & 
Ulkusal (r/2). C2, the orange top right circle, represents the Maximal 
Clique for facility site i. 
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site i. The edges (arcs) connecting to the other nodes represent those nodes that are 

also within r-distance of one another.  For example clique C1, sites i, s, and t, are 

represented on the graph as the orange edges (arcs) in the top left of Figure 5. Clique 

C2 is represented as the brown arcs (top right), and clique C3 is represented by the 

blue arcs (bottom left). The maximal clique, C2, is determined by “packing” the 

number of nodes that are simultaneously connected together. However, as Murray 

and Church (1997a) have shown, maximal cliques for one facility site, say i, could 

be a subset of another maximal clique, say of site j. When a maximal clique for one 

facility site (i) is a subset of a maximal clique for another facility site (j) it is said to 

be dominated. 

Murray and Church (1997a) thus suggest that the use of maximal non-dominated 

cliques should be used when formulating an ACLM. Fortunately, solving for non-

dominated clique constraints is easily accomplished through industrial optimization 

packages or using the “back-tracking” method described by Nishizeki and Chiba 

(1988). Using maximal non-dominated cliques results in a compact formulation, 

consisting of tight clique constraints, which greatly reduce the necessary 

computation time to solve the ACLP to optimality. Murray and Church defined the 

following additional notation for the model using maximal non-dominated cliques, 

indexed by k. 

iN̂  ={ }KkCjiQj ki ∈∉∈ other any for  &|  

in̂  = Coefficient necessary to impose node packing restrictions for the set iN̂  
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iN̂  represents a reduced neighborhood set associated with site i, and in̂  represents 

the coefficient necessary to impose node packing restrictions for the set iN̂ . 

Essentially, all pairwise conditions handled in a clique constraint are removed from 

appropriate neighborhood sets. The maximal cliques are computed by solving a 

vertex packing problem for each candidate site location. This reduction allows for 

tighter (lower) values of in̂  to be used. The maximal non-dominated clique model of 

Figure 5. Cliques as a network representation. 
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Murray and Church, called the Anti-Cover Location Model-Hybrid Clique 

Constraints (ACLM-HCC) here, is provided below. 

 
ACLM-HCC 

∑
∈

=
Sj

jx ZMaximize  (12) 

s.t.  

∑
∈

≤+
iNj

ijii nxxn
ˆ

ˆˆ            for each i, where ≠iN̂ � (13) 

1≤∑
∈ kCi

jx                        for each Kk∈  (14) 

{ } Sjx j ∈∈  allfor                         1,0  (15) 

 

The objective function (12) and the binary integer restrictions (15) are the same 

as used in previously described models. Constraint (13) represents those facility sites 

within r radius of facility site i that are not members of a non-dominated maximal 

clique; this represents a neighborhood constraint capturing all facility sites within r 

of i that are not members of a maximal non-dominated clique. This constraint is 

structured the same way as a general clique constraint; when xi is 1, no other 

facilities within r of site i may be sited within that set. If xi is 0, the other facility 

sites are still candidate sites. Constraint (14) represents maximal non-dominated 

cliques. At most one facility within each non-dominated clique may be located. This 

represents a very tight constraint while significantly reducing the overall size of the 
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model. Such constraints significantly reduce the overall computation time necessary 

to solve the ACLP. However, the overall computation time may be greatly increased 

if one is using a dataset that contains a dense set of points due to the necessity of 

solving one vertex packing problem associated for each site in identifying the 

maximal clique set. Though this hybrid formulation is very efficient and significantly 

reduces required computation time, there is another approach that reduces the overall 

computation time even more than Murray and Church’s hybrid approach. This 

approach is termed the “Core & Wedge” clique constraint approach, which was 

developed as a part of this dissertation research and is discussed in the next section. 

E. “Core and Wedge” Clique Constraint Representatio n 

The “Core and Wedge” clique constraint representation uses the concept of the 

core clique constraint representation first described by Erkut et al. (1996) and the 

idea of off-center cliques (Maximal Cliques) first posited by Murray and Church 

(1997a). While Erkut et al. recognized a very simple way to easily create tight clique 

constraints, it still requires the relatively loose neighborhood constraint set. They 

failed to recognize that their method could be expanded further.  

While Murray and Church recognized that one could group the set of facilities 

that are all within r of each other into a tight maximal clique constraint set, they 

failed to recognize that one could actually employ several sets of less dense clique 

sets. While their approach is effective at creating one very tight constraint for each 

site, which is particularly efficient for sparse data sets, it still requires the 

implementation of loose neighborhood constraints. Furthermore, their formulation 
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approach requires numerous node-packing-problems to be solved just to identify the 

maximal non-dominated clique sets. That is to say, it can be computationally 

intensive to derive the maximal clique sets required to solve the ACLP-HCC model 

itself, particularly when the data set contains dense groups of points. The concept of 

“Core and Wedge” clique constraints is a very simple one. Every facility site 

location i has, at most, seven clique sets that capture all pairwise conditions within 

its neighborhood! A graphic conceptualization of “Core and Wedge” constraints is 

presented in Figure 6, 6, and 7. 

The “Core and Wedge” diagram in Figure 6 is the result of a geometric analysis 

of the core circle and the larger region of points outside of the core, but inside the 

larger circle of radius r. Figure 6 depicts a site i, its core and the large circle of radius 

r. In addition, there is a wedge depicted which has been drawn with an angle of 60 

degrees. If one thinks of the region outside the core, but inside of the larger circle as 

a tire, then a wedge is a region of that tire (or a felloe of a wagon wheel). If a wedge 

is defined to be equal to or less than 60 degrees, then all points within a wedge are 

within r/2 of each other. This can be proven by geometric construction and is 

depicted in Figure 7. This same wedge is shown with a circle of r/2 centered within 

the wedge itself. If a wedge has an angle of definition that exceeds 60 degrees then a 

circle of radius r/2 cannot be drawn that is centered within the wedge which covers 

all points within the wedge. Thus, any wedge (or felloe) that is defined that is less 

than 60 degrees contains a set of points that are close enough together, that they 

represent a core-like set. Consider then the following property: 
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Corollary: A set of points that fall within a 60 degree wedge defined about point 

i along with point i form a clique set. 

Proof: All points within the wedge set are within r distance of each other, so that 

the points within the wedge region about point i form a clique set. Since point i is 

also strictly within r distance of all points within the wedge, then point i can be 

Figure 6. Example of Core and Wedge areas associated with site i 



 

added to the clique set. Thus, the points in the wedge set along with point 

clique. QED 

Figure 7. Example of a Core and Felloe region of a 60 degree angle

One can now define: 

Wedge clique set is the set of points that fall within a 60 degree or less wedge of 

point i along with point i

Since a circle is comprised of 360 degrees, the entire region within 

about a given site i, can be represented by 6 

depicts this construction. Note that the construction can be made where the first 

wedge drawn from point 
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added to the clique set. Thus, the points in the wedge set along with point 

. Example of a Core and Felloe region of a 60 degree angle 

 

 

Wedge clique set is the set of points that fall within a 60 degree or less wedge of 

i.  

Since a circle is comprised of 360 degrees, the entire region within r 

, can be represented by 6 wedge sets and a core set. Figure 

depicts this construction. Note that the construction can be made where the first 

wedge drawn from point i within the circle of radius r can be oriented at any angle. 

added to the clique set. Thus, the points in the wedge set along with point i form a 

Wedge clique set is the set of points that fall within a 60 degree or less wedge of 

 distance 

Figure 8 

depicts this construction. Note that the construction can be made where the first 

can be oriented at any angle.  



 

Figure 8. Example of felloe region with 

In Figure 6, the first wedge has been defined where one edge of the sector coincides 

with the vertical or y-axis. Now consider the following theorem. 

Core and Wedge theorem: 

can be represented with at most six wedge cliques and a core clique.

Proof: Each wedge set defines a clique set which contains

represents all pairwise conditions associated with point 

Since all points strictly within 

overlapping wedge sets or within its core set and since all of th

within each of these sets can be represented by their associated clique set constraints, 
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. Example of felloe region with r/2 circle overlay 

, the first wedge has been defined where one edge of the sector coincides 

axis. Now consider the following theorem.  

Core and Wedge theorem: All pairwise restrictions associated with a given site 

can be represented with at most six wedge cliques and a core clique. 

: Each wedge set defines a clique set which contains point i, thus it 

represents all pairwise conditions associated with point i that fall within the wedge. 

Since all points strictly within r distance of point i will fall within at most 6 non

overlapping wedge sets or within its core set and since all of the pairwise restrictions 

within each of these sets can be represented by their associated clique set constraints, 

 

, the first wedge has been defined where one edge of the sector coincides 

All pairwise restrictions associated with a given site i, 

, thus it 

that fall within the wedge. 

will fall within at most 6 non-

e pairwise restrictions 

within each of these sets can be represented by their associated clique set constraints, 
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all pairwise restrictions associated with site i can be represented by at most 7 clique 

constraints. QED. 

In Figure 8 the core constraint of Erkut et al. (1996) is shown as the red circle 

with radius 
2

r
. Any facility site strictly within 

2

r
 of facility i is a member of the core 

clique constraint. In addition to the “core” clique, six additional “wedge” clique 

constraints can also be constructed. In Figure 6 these are labeled in yellow print 

“Wedge 1”, “2”, “3”, “4”, “5”, and “6”. Consider the following notation: 

wiW  =  Set of facility sites contained within wedge w of site i. 

 

The wedge index ranges from one to six to account for each wedge. Computing wiW  

is relatively easy and can be computed using a straightforward set of logical tests to 

determine which wedge set neighbor j within r of i should be assigned. When 

computing the “Core and Wedge” constraints for facility i, one need only work with 

the set iQ  to determine which core or wedge set facility site j should be included, 

given that the Cartesian coordinates of site i, ( )ii yx , , and for site j, ( )jj yx ,  are 

known. Figure 9 shows the logic structure used to compute core and wedge clique 

sets membership. This process is based upon the geometrical arrangement of wedges 

depicted in Figure 8. Function 1, f1, represents the line separating Wedge 1 & 2 as 

well as Wedge 4 & 5. Function 2, f2, represents the line separating Wedge 2 & 3 as 

well as Wedge 5 & 6. By using the logic structure outlined in Figure 9, members 
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within the r-neighborhood of i can be quickly and easily assigned to a clique set, 

either the core set or one of the wedge sets.  

For example, the first test determines whether site j is a member of the “core” 

clique constraints or whether it should be assigned to a wedge. If site j belongs to the 

“core” clique constraints, it is assigned to the core clique constraint and the logic 

process is terminated. If it is not a member of a core clique, the second logic decision 

point determines whether it belongs in Wedge Cliques 1 through 3 if the x-

coordinate of site j is greater than or equal to the x-coordinate of site i,  or 4 through 

6 if the x-coordinate of site j is less than the x-coordinate of site i. 

If site j is determined to be a potential member of Wedge cliques 1 through 3 a 

Figure 9. Logic used to determine members of the Core and Wedge clique sets 
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further set of logical tests is performed. The first test determines if site j is a member 

of Wedge Clique 1 by checking to see if site j’s y-coordinate is greater than or equal 

to that of the corresponding y-coordinate of the f1 line. If it is, it is a member of 

Wedge Clique 1. If it isn’t, then the algorithm checks to see if it is a member of 

Wedge Clique 2 by determining if the y-coordinate of site j is less than the 

corresponding y-coordinate of the f1 line and greater than or equal to the 

corresponding y-coordinate of the f2 line. If these conditions are met, it is assigned 

membership to Wedge Clique 2. If it is not, the last logical check point is reached 

and the y-coordinate of site j is checked to see if it is less than the corresponding y-

coordinate of the f2 line. A similar set of logical tests is conducted to determine 

whether or not site j is a member of Wedge Cliques 4 through 6 on the other logic 

branch. Once the logic operations have determined the core and wedge clique 

members, the following formulation model, the Anti-Covering Location Model – 

Core and Wedge Clique Constraints (ACLM-CWCC) can be defined. 

ACLM-CWCC 

∑
∈

=
Sj

jx ZMaximize  (16) 

s.t.  

Sixx
iCQj

ji ∈∀≤+ ∑
∈

         1  (17) 

6 & 5, 4, 3, 2, 1,for  and            1 =∈∀≤+ ∑
∈

wSixx
wiWj

ji  (18) 
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{ } Six j ∈∀∈                   1,0  (19) 

 

The ACLM-CWCC is notably different from all previously formulated models in 

that there is no neighborhood constraint and there is a predetermined limited number 

of clique constraints. This is because the ACLM-CWCC formulation accounts for all 

pairwise constraints within r distance of facility site i in a core or wedge clique. As 

in previous models the objective (16) and binary integer decision variables 

restrictions (19) remain the same. Similarly, the core constraint (17) developed by 

Erkut et al. (1996), which is the same constraint (10) of the ACLM-CCC, has been 

utilized. Constraints (18) represent the completely new wedge constraints. 

Additionally, if any core or wedge has no members it does not need to be written out. 

This further reduces the overall number of constraints required to solve this problem. 

Formulating the ACLM-CWCC requires at most n constraints. The inclusion of the 

wedge constraints and the elimination of the loose neighborhood constraint can 

significantly tighten the formulation. Furthermore, conducting the logic tests 

necessary to formulate the core and wedge constraints is much more computationally 

tractable than solving node-packing problems to determine maximal clique 

membership as in Murray and Church (1997a). 

In addition to the previously described logic approach, one could include a 

simple test to determine if a wedge defined for site i is a sub-set clique of a core 

clique for site j. If it is, then only the core clique constraint of site j need be written 

and the wedge clique constraint for site i can be eliminated as site i 's pairwise 
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restrictions will be in a wedge clique of site j. In this way the needed number of 

constraints can be further reduced. This clique set determination is similar to that 

proposed by Murray and Church (1997a).  

There is also an opportunity to reduce the number of needed wedges. This 

approach involves determining the minimum number of 60 degree wedges that one 

could use to represent all of the facilities within ½ r and r of facility i. A core clique 

would only be required if facilities were within ½ r of facility i. Using this approach 

could create tight constraints that substantially reduce the total number of constraints 

necessary to represent the ACLP.  

In conclusion, the ACLM-CWCC model utilizes a small number of cliques 

without the need to solve vertex packing problems, as in Murray and Church (1997a) 

for Euclidean point datasets. In addition, the ACLM-CWCC contains at most 7n 

tight constraints and does not require a neighborhood constraint as in Erkut et al. 

(1996). However, the advantage of generating tight wedge and core constraints may 

not be readily apparent when the number of facilities represented in such constraints 

is sparse; in that case, the Erkut et al. (1996) formulation (8)-(11) is likely to have 

the advantage. Results of direct comparison will be presented and discussed in the 

next chapter. In addition, the geometry relied upon for generating core and wedge 

cliques has theoretical implication for all of the previously described formulations 

that use neighborhood constraints.  
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F. Theoretical implications of Core and Wedge relat ed to 

Neighborhood Constraints 

In addition to the geometry that informed construction of the ACLM-CWC 

formulation given above, the geometry has important implications related to the 

neighborhood constraints of all the previous models e.g. constraints of type (2), (9), 

and (13). Specifically, model ACLM-CWC needs no more than seven clique 

constraints for each potential site. Each clique constraint represents one of seven 

zones in the region surrounding a given site i (a core and 6 wedges). The seven zones 

are depicted in Figure 10. The fact that all pairwise conditions can be represented by 

7 clique conditions means that if site i is not chosen as a site, these seven clique 

constraints will allow at most one site in each clique constraint to be chosen. Given 

this observation, one can now prove the following property: 

Corollary: a classic neighborhood constraint can be written with an in  value no 

greater than 7 without loss of generality for Euclidean based anti-covering location 

problems. 

Proof: given that all pairwise conditions for a given site i are represented by 7 

clique constraints, and given that these clique conditions will allow at most one site 

in each clique to be selected, then in total, no more than 7 sites in the neighborhood 

around site i can be selected. This means that the upper limit within the 

neighborhood is at most 7 and that in  can be set to a value of 7. QED. 

 



 

Figure 10. Figure showing the 6 wedges and core.

Therefore, the maximum number of nearest neighbors, 

constraint about site i is 7. This represents a valid upper

neighborhood constraints. The proof of the above corollary is based upon the notion

that there can be at most 7 sites chosen within the neighborhood of a given site. This 

is because each clique constr

constraint. But, the fact is there are other restrictions represented in any given

problem that will limit the number of selected facilities. 
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. Figure showing the 6 wedges and core. 

, the maximum number of nearest neighbors, ni, for a neighborhood 

is 7. This represents a valid upper-bound for all such 

neighborhood constraints. The proof of the above corollary is based upon the notion

that there can be at most 7 sites chosen within the neighborhood of a given site. This 

is because each clique constraint will prevent no more than one site chosen per 

constraint. But, the fact is there are other restrictions represented in any given

problem that will limit the number of selected facilities.  

 

, for a neighborhood 

bound for all such 

neighborhood constraints. The proof of the above corollary is based upon the notion 

that there can be at most 7 sites chosen within the neighborhood of a given site. This 

aint will prevent no more than one site chosen per 

constraint. But, the fact is there are other restrictions represented in any given 
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First, one should observe that sites that fall on the circle that is of radius r about 

site i are all possible candidates to be selected when site i is selected, as each site on 

that circle meets the separation requirements with site i. It is notable to observe that 

Figure 11. Regions uniquely within ½ r of each other and within r of facility site 
i. Example wedge clique is shown in green.  
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at this distance of exactly r, no more than six sites on the circle can be chosen 

without violating an r-distance constraint among them. Thus, at a distance of r, it is 

impossible to have more than 6 neighboring selections when site i is selected. This is 

an alternate way of viewing the proof of the above corollary. The wedge-based 

clique constraints in themselves, include only sites strictly within the circle of r 

distance of site i and fall on or within a given wedge felloe or tire section.  

By construction, one can draw a circle of radius r about any site j in the wedge 

felloe of i and observe that all sites in the core of i that are also within the confines of 

the lines defining that same wedge are strictly within r distance of site j. This means 

that if any site j in a wedge felloe of site i is chosen for a facility, then, restrictions 

associated with the choice of site j will prevent any site chosen within the core set of 

i that falls within the same lines drawn to define the wedge of i containing j. Given 

this property, one can now prove the following theorem. 

Theorem: a classic neighborhood constraint can be written with an in  value no 

greater than 6 without loss of generality for Euclidean based anti-covering location 

problems. 

Proof. If selecting a site j in a wedge felloe of site i prevents the selection of any 

sites within the portion of the core of i defined by the lines that were used to define 

the wedge, then selecting a site in each of the six wedges will prevent any site being 

selected in the whole core of site i. Thus, no more than six sites within the 

neighborhood of site i can be chosen simultaneously. QED. 
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However, the above proof applies only to those site locations, j, that are exactly r 

distance away from site i. One then must ask about the upper-bound for in in the case 

where site locations j are less than r distance away from site i. What might be the 

maximum number of located neighbors in this case? In this instance, one can show 

graphically that the maximum number of neighbors that could be simultaneously 

located within r of site location i is 5. Figure 12 shows this. If one were to locate 

these in a symmetric configuration, as in Figure 12, each facility would be located at 

equal intervals of 72 degrees from one another. Given this geometric configuration, 

one can now prove the following theorem. 

Theorem: a classic neighborhood constraint can be written with an in  value no 

greater than 5 without loss of generality for Euclidean based anti-covering location 

problems. 

Proof. If any site j that is less than r distance away from i is selected, it will 

preclude site i from being selected. If site i is not selected, then there are 

opportunities for other j neighbors of i to be selected and still remain at least r 

distance away from each other. Given the previous proof showing that six sites may 

be located r distance away from i, and the fact that a facility may not be located at i, 

it is possible to locate at most 5 sites within r of site i that may have a facility located 

such that each of the 5 located facilities are each r distance from each other. In this 

case, one may locate 5 sites greater than or equal to 0.850650808r distance of site i 

at equal intervals of 72 degrees about site i to generate a symmetrical configuration.   
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Figure 12. Graphical proof that ni can be at most 5 with an r separation 
standard 

 

Thus, no more than five sites within the neighborhood of site i can be chosen 

simultaneously. QED. 

Therefore the theorem shows that the in  value of a neighborhood constraint can 

be limited to no more than 5 when using a model formulation using neighborhood 

constraints. However, when there are fewer facilities within the neighborhood set, 
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that is 5<iN , then in  should be set equal to iN . When generating a model that 

utilizes neighborhood constraints a simple test, such as ( )ii NMinimumn ,5= , can be 

implemented to make the neighborhood constraints as tight as possible. 

For example, if one has a neighborhood constraint written as: 

90...90 904321 ≤+++++ xxxxx is mathematically not as tight as a constraint written 

as: 5...5 904321 ≤+++++ xxxxx . Incorporating this simple property into the 

previous formulations representing the ACLP which use neighborhood constraints is 

likely to reduce overall computation time. In fact, the model most likely to 

experience an improvement when using this particular property is the ACLM-CC 

formulation first described by Erkut et al. (1996) because it is extremely easy to 

generate the core clique and determine the remaining neighboring facilities for the 

reduced neighborhood constraint.  

G. Location Set Covering Constraints 

In addition to the completely new representation of “Core and Wedge” 

constraints, another constraint form can be used to further tighten existing 

formulations for the Anti-Covering Location Problem. This involves the use of a 

location set covering constraint, initially implemented in the Location Set Covering 

Problem described by Toregas and ReVelle (1972). The Location Set Covering 

Problem is a problem where one seeks to identify the minimum number of facilities 

required to cover a set of demands. Rather than covering a set of demand locations, 

think of our selection of sites as covering other facility sites. It seems strange at first 
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to think of wanting to cover facility sites in an anti-cover location problem, but in 

reality it is a property at optimality. That is, at optimality it is impossible to have an 

unused site that is not within r distance of all selected sites. For if such a site existed 

it could be selected without violating the r-separation constraints, and thereby 

demonstrate that it wasn’t optimal. Thus, set covering constraints can be thought of 

as stipulating that any unselected site must be covered by a selected site, a prospect 

that must be true at optimality for the ACLP. Incorporating this condition does not 

restrict an optimal solution from being found, but since set covering constraints are 

thought to be integer friendly, they may further tighten a problem formulation.  

Before the location set covering constraint is presented, some additional notation 

must be given. In this case one must define the neighborhood of potential facility 

locations, j, that are within r of site i; that is the neighborhood of sites about facility 

location i or SCi. More formally: 

Additional Notation:  

{ }rdSjSC iji <∈= |  for all i in S  

 

Thus, the location set covering constraint is formally defined as follows: 

Six
iSCj

j ∈∀≥∑
∈

                  1  (20) 

 

Constraints of type (20) are similar to those of the neighborhood constraints e.g. 

constraints of type (2), (9), and (13).  
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The neighborhood constraints restrict all of the potential facility locations within 

the neighborhood of i to be less than or equal to one in value, that is that only one of 

the facility sites within the neighborhood of i may have a located facility. The 

location set covering constraint maintains that at least one facility site within r 

distance of site i must be selected. Though this constraint is structurally redundant, it 

aids in generating an efficient cut to the polytope of each formulation. Incorporating 

location set covering constraints into the previous formulations is likely to result in 

modest to significant performance advances. This constraint is easily added to all of 

the models and should reduce solution times. 

H. Concluding Remarks 

This chapter has focused on presenting several constraint structures that can be 

used to represent the Anti-Covering Location Problem. The chapter described the 

initial big M constraint formulation presented by Moon and Chaudhry (1984), as 

well as clique constraint modeling approaches described by both Erkut et al. (1996)  

and Murray and Church (1996), maximal clique sets (Murray & Church, 1997a), and 

the completely new Core and Wedge clique constraint model and the Location Set 

Covering facet.  

Erkut et al. (1996) describe a method incorporating Core cliques and the 

associated neighborhood constraint. Murray and Church (1997a) extended their 

constraint structuring approach using maximal cliques (Murray & Church, 1996) to 

generate a maximal clique set. Using maximal cliques requires solving numerous 

node packing problems, but can reduce the need for numerous pairwise constraints 
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This reduced constraint represents all sites within r distance of each other and within 

r distance of site i. The two new constraint structures presented in this chapter, Core 

and Wedge cliques and the Location Set Covering constraint approaches, have 

important implications for all formulations currently in the ACLP literature. 

The Core and Wedge clique formulation extends the concept of the core clique 

developed by Erkut et al. (1996) and Murray and Church’s (1997a) idea of tight 

“maximal” cliques. The main difference here is that instead of identifying a singular 

maximal clique for each potential site location i, several small yet dense cliques can 

be used to represent all pairwise conditions for a given facility site i without the need 

for a loose neighborhood constraint. An added bonus is that no a-priori optimization 

is required to generate the cliques as in the Murray and Church (1997a) method; only 

simple geometric tests are required to determine clique membership. Furthermore, 

the geometric proof supporting the Wedge and Core formulation approach can be 

further extended to show that the upper bound of the ni constant in neighborhood 

constraints can be set at no larger than 5 without loss of generality and can be further 

reduced if the size of the neighborhood set is less than 5, which will further tighten 

the neighborhood constraint. 

The Location Set-Covering constraint can also be implemented in each of the 

formulations presented here. The addition of a location set covering constraint is an 

efficient way to generate a cut facet to the basic matrix of a problem. This cut is 

likely to reduce solution times. Chapter 5 focuses on the implementation of each 

formulation presented here. 
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In conclusion, this chapter has: 

• Reviewed previous formulations representing the Anti-Covering Location 

Problem, 

• Presented two completely new constraint representations, and 

• Provided an important proof with significant implications related to the 

neighborhood constraints used in previous formulations. 

In the next chapter, two new forms of the Anti-Covering Location Problem will 

be developed. Computational testing of these two models along with the work 

presented in this chapter will be presented in chapter five. 
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IV. New Anti-Covering Models 

This chapter outlines two new models related to the anti-covering location 

problem and discusses the important elements that these models capture that 

previous formulations do not. As was discussed in the introduction, minimum 

separation standards have often been used in location modeling. Using a standards 

based approach, as in the Anti-Covering Location Problem (ACLP), facilities must 

be kept at least r distance from their nearest neighboring facility. To address this 

problem, all previous anti-covering location modeling approaches have been made 

with two basic implied assumptions. The first assumption involves the objective of 

the problem. The second assumption involves the fixed separation distance. Both of 

these assumptions have affected the way in which dispersion modeling using 

separation metrics has been conducted and applied.  

For example, the first assumption involving the objective function assumes that 

one wishes to maximize the number of located facilities among a set of potential 

facility sites or within some bounded region. Several models have been developed to 

locate the greatest number of facilities separated by some standard, for locating: 

military defense positions (Chaudhry et al. 1986); estimating the potential impacts of 

policies on sex offender residence locations (Grubesic & Murray, 2008; Grubesic et 

al. 2008); designing optimal cut patterns for fabric materials (Wong & Leung, 2009); 

placing labels on maps (Ribeiro & Lorena, 2008a); designing biological reserves 

(Williams, 2008); and determining habitat carrying capacity (Downs et al. 2008). 

The objective of maximizing the number of located objects makes a great deal of 
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sense, particularly for problems involving economic maximization, such as the cut 

pattern application.  

However, many of these problems should also consider the configuration case 

where the minimum number of facilities is located such that each is separated by a 

standard. Problems that are likely very sensitive to this nuance, which haven’t been 

considered before, are all of the forms that do not involve an explicit economic 

objective. For example one should know the minimum number of facilities/objects 

that are located such as: reserve sites, the minimum population carrying capacity for 

an area, the minimum number of map labels to place on a map, etc. Thus the first 

assumption about maximizing the number of objects (facilities) to locate has some 

implications that have not been previously discussed. This particular issue is 

addressed in the Disruptive Anti-Covering Location Problem section of this chapter 

and for which the problem is defined and a location model is presented.  

In addition to the first assumption, there is an assumption of a fixed separation 

standard. If one is locating a series of franchise stores there is a general assumption 

that the separation standard is constant. However, what if there is a case where one is 

considering multiple types of facilities that have a varying separation standard? What 

is the maximum and minimum packing configuration for this case? What if one 

wishes to relax the separation standard to allow a certain number of “violations”, that 

is, where there are a certain number of facilities that may be closer than r? These 

issues are addressed in the Modeling Variable Separation Standards section of this 

chapter.  
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These two assumptions have un-intended or previously un-accounted for 

modeling consequences that have not been addressed in the anti-covering location 

problem literature to date. The rest of this chapter is devoted to addressing these 

modeling shortcomings to improve dispersion modeling within the context of 

separation standards. Each section will provide a description of the problem and 

formulations representing the problem. 

A. The Disruptive Anti-Covering Location Problem 

The anti-covering (or r-separation) location problem (ACLP) involves 

maximizing the set of located sites, such that no two located sites are closer than a 

specified distance, time, or other standard of each other. This problem can be defined 

on a bounded continuous region or a discrete set of sites. When defined on a 

bounded continuous domain it is generally assumed that all facilities must be located 

within the region and be further than r-distance from the boundary and r-distance 

from each other. The solution to this problem is sometimes referred to as a packed 

arrangement.  

There may be many configurations to a problem instance in which all facilities 

are at least the prescribed r-distance apart from each other. Those arrangements 

which involve the maximum number of located facilities are optimal ACLP 

solutions. Those solutions that use fewer than the maximum possible number of 

located facilities fall into two cases: 1) sites exist where it is possible to locate 

additional facilities and still maintain the r-separation constraints; and, 2) all 

remaining unused sites are too close to an existing facility or boundary so that no 
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further sites can be added to the solution without violating the r-separation 

constraints. This chapter section deals with this second type of solution.  

If one is considering the case where all facilities must be separated by at least r 

such that no other facility may be packed in, a logical question to ask is the 

following: “What is the smallest number of facilities needed and their placement 

such that no remaining sites can be used without violating one or more r-separation 

constraints?” The basic element to this problem is to find the smallest configuration 

that blocks to the greatest extent possible a maximal packing. This problem case can 

be described as the Disruptive Anti-Covering Location Problem (DACLP).  

The formulated model to address this problem must identify solutions that 

prohibit a maximally packed configuration; such solutions can be thought of as being 

disruptive to a maximally packed solution. The importance of this problem is both 

theoretical and practical. From either perspective, optimal solutions to the DACLP 

define a lower bound on the number of facilities that can be placed without violating 

the r-separation constraints as well as pre-empt any additional facilities from being 

feasibly added. This is an important consideration, particularly in problems where a 

lower-bound packing arrangement should be considered.  

Most of the applications of the anti-covering location problem (ACLP) entail the 

use of one of the models described in chapter 3. Prospective sites are identified in 

advance as “discrete” locations, representing centers of raster cells (Church, 2013), 

commercial parcels (Grubesic et al. 2012), or nodes of a network. Murray and 

Church (1997a) have shown that the discrete anti-cover problem is an equivalent 
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problem to the vertex packing problem on a network or the maximal independent set 

problem on a graph, and therefore is NP hard.  

Optimal solutions to the anti-covering problem represent the largest number of 

facilities that can be simultaneously located while keeping each of them at least a 

minimum distance, r, from each other. Unfortunately, there can be circumstances in 

which a maximum packing is disrupted; that is, not optimally packed. They may be 

disrupted by earlier residential choices, already established crane nests and 

territories, or by poor choices in already located franchisee establishments. Whether 

maximal packing arrangements are disrupted by accident, happenstance or by intent, 

such disruption and the potential impact of disruption should be of interest when 

using this type of model. Additionally, given that many problems have used the 

ACLP to find maximal packing configurations, and Wei and Murray (2012) have 

shown that spatial uncertainty plays a role in determining various packed 

configurations, one should also consider the lower bound or maximally disruptive 

case as well within the context of spatial uncertainty. 

Understanding the configuration and number of sites that can be located is 

particularly useful for applications related to habitat nest/den site modeling, 

modeling feasible residence locations for sex-offenders, modeling franchise store 

location, or any other application for which the ACLP has been used.  In the next 

section a basic way in which to represent the Disruptive Anti-Covering Location 

Problem (DACLP), formulated as an integer programming problem called the 

Disruptive Anti-Covering Location Model (DACLM), is described. Following this, a 
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brief discussion on packing solutions using the DACLM and ACLM and some other 

important modeling details related to the DACLM.  

 

1. Formulating a model for the disruptive anti-covering location problem 

(DACLP) 

A feasible solution to an anti-covering location problem must have all facilities 

placed at least r-distance apart. If a feasible solution to an anti-covering location 

problem also has the property that no additional sites can be chosen without violating 

one or more separation constraints, then one calls that solution a proper solution. An 

optimal solution to an ACLP is a proper solution which involves locating the largest 

number of facilities possible. The disruptive anti-covering location problem has the 

opposite goal as that of the anti-covering location model. It can be formally defined 

as:  

 

What is the minimum number of facilities and their arrangement such that each 

facility is separated by at least r-distance from all other facilities and no remaining 

sites exist in which another facility can be added without violating one or more of 

the separation conditions.  

 

Thus, it involves finding a proper solution which involves the location of the 

smallest possible number of facilities. If one defines: 
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=maxp  the number of facilities deployed in an optimal anti-covering solution, 

and 

=minp  the number of facilities deployed in an optimal disruptive anti-covering 

solution, 

then all proper solutions to a given problem instance will deploy a number of 

facilities that can be bounded as follows:                     

      maxmin solution  proper   ain   used  facilities ofnumber    PP ≤≤                  (21) 

Figure 13 contains three parts showing: the minimum separation distance r and 

how packing circles of radius s are related, a proper ACLP solution considering three 

potential facility locations, and a proper DACLP solution considering the same three 

potential facility locations. Figure 13A shows how the minimum separation standard 

r is related to packing circles of radius s, where s = r/2. Figure 13B depicts the case 

where there are three site locations represented as small squares. If the left most site 

and the right most site are selected for facilities then one can see that their disks of 

radius s touch, but do not overlap. Thus, this solution is feasible. Further, the middle 

site is too close to the other two sites as its disk would overlap with the others. Thus, 

this solution is an optimal ACLP solution. Figure 13C depicts a different solution 

where the middle site has been chosen for a facility. The choice of this middle site 

would preclude the choice of any additional site for a facility because the remaining 

two sites are too close. Thus, this solution is also proper. This solution is an optimal 

disruptive anti-covering solution. 
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Figure 13.  A) Example of r separation standard and packing circle of radius s. 
B) A proper optimal solution to the ACLP. C) A proper optimal 
solution to the DACLP for the same sites in B. 

 

The objective of this section is to define a model which can be used to solve the 

disruptive anti-cover problem and thereby calculateminP . Using the notation that has 

already been introduced, one can formulate the disruptive anti-cover model 

following the form used by Moon and Chaudhry (1984) as follows:  
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DACLM 

∑
∈

=
Sj

jx ZMinimize  (22) 

s.t.  

∑
∈

∈≤+
iQj

ijii Sinxxn   allfor                (23) 

∑
∈

∈≥+
iQj

ji Sixx   allfor                    1  (24) 

{ } Sjx j ∈∈  allfor                           1,0  (25) 

 

The objective (22) involves minimizing the number of sites selected for facility 

placement. Constraints (23) ensure that each located facility is separated by at least 

r-distance from all other located facilities. Constraints (24) basically require that the 

resulting solution is a feasible proper packing solution. Constraints (24) require that 

each unused or unselected site is less than r distance away from a located facility. In 

essence, constraints (24) force the model to locate enough facilities that each unused 

site is close enough to a located facility that its choice as a facility site would violate 

a separation standard. This means that constraints (24) establish that the solution 

must be proper; that is no feasible site exists within the located configuration that is 

r-distance or further from all other selected sites.  

One should recognize that constraint (24) is the Location Set Covering constraint 

first described by Toregas and ReVelle (1972) which was previously discussed in 

Chapter 3; see constraints (20). Constraints (24) simply ensure that at least one site is 
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chosen nearby to site i (strictly within r distance) or site i itself is chosen for a 

facility. Constraints (25) are the binary integer restrictions for the facility site 

location variables. Altogether, the model involves finding a feasible, proper anti-

covering solution that uses the smallest number of facilities.   

The above model can also be formulated with pairwise (5) and higher ordered 

clique constraints (7) instead of constraints (23), as discussed in Chapter 4. This 

includes any of the other forms discussed in Chapter 4 such as: core cliques, 

maximal cliques, and core and wedge cliques. In many circumstances a hybrid model 

using both types of constraints may prove to be the best when using off-the-shelf 

commercial solvers. The model as formulated above is an integer programming 

problem. Because it is a combined form of the vertex packing problem and the set 

covering problem, it is functionally related to the class of NP-hard problems. The 

fact that it is related to two complex problems virtually ensures that the above model 

will not always be solvable to provable optimality. As the number of sites increases, 

it appears that the difficulty of the problem will tend to increase, and for large 

problems, one may have to resort to heuristic approaches. This will be discussed in 

Chapter 5. In the following sub-section, the subject focuses on the solution of 

disruptive anti-cover location problems using the model described above. In the next 

sub-section, details associated with the application of the ACLP and DACLP models 

applied to two different data sets are presented. 
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2. A comparison of DACLP and ACLP solutions 

In this section example of solutions associated with solving the DACLP are 

provided. The presentation here is not meant to be exhaustive, but more illustrative 

of what can be learned from solving the DACLP as compared to the ACLP. Both 

ACLP and DACLP problems were solved using two different spatial problems over 

a range of separation distances. The first dataset is the well-known Swain (1971) 

data set of 55 nodes. Each node represents a potential facility location for a postal 

delivery zone. The second set is a 372 node dataset from Ruggles and Church 

(1996). This dataset contains several known Aztec cities, villages, and hamlets and 

other settlement locations that are believed to have existed prior to the arrival of the 

Spanish conquistador Hernán Cortés in 1519. The Aztec dataset in particular is 

particularly interesting because of the potential implications related to central place 

theory with regard to packing, service access, and regional centers. This research in 

particular could support the previous work related to optimal dispersion and central 

places conducted by Curtin and Church (2007). 

The ACLP model was formulated and solved using objective form (1) and 

constraints of type (3) and (9). The DACLP was formulated and solved using 

objective form (22) and constraint types (9), (24), and (25). These two formulations 

involve a “neighborhood” or nodal style of separation constraints (i.e. (2) and (9)). 

The approach of Yoshimoto and Broadie (1994) is used to define the main 

coefficient for such constraints in this case. No attempt to test other formulations, 

especially a hybrid form involving clique-based separation constraints, was 
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conducted here as this was not the central theme of this chapter. The Xpress 

modeling language was used to set up each problem and then solved using the Mosel 

64-bit solver version 3.4.3. Xpress and Mosel are products of FICO, or the Fair Isaac 

COrporation. A 2.4 GHz Intel Xeon workstation with 12 gigabytes of memory 

running the Windows 7 operating system was used to solve the DACLP and ACLP 

using the two spatial datasets. 

Table 1 presents the results obtained when solving a selected set of r values of 

anti-covering and disruptive anti-covering problems applied to the 55 node data set 

of Swain (1971). Solution times are not included as all but one problem were solved 

in less than the smallest time increment of the solver and were reported by the solver 

as 0.00 seconds. The ACLP problem with r = 7 required 0.01 seconds. Sites that 

were closer than r-.00001 distance units were considered to be too close and were 

prevented from being simultaneously used in a solution.  Solutions were obtained by 

setting specific r-separation distances, ranging from a low of 4.0 to a high of 60.0. 

For each specific separation distance, the number of facilities located by the anti-

cover model and the disruptive anti-cover model are listed.  

For example, for a separation distance of 10.0 the anti-cover model packed 17 

facilities across the 55 sites and kept all facilities separated by at least 10 distance 

units. For that same distance, the disruptive anti-cover solution involved placing 9 

facilities. That is, it is possible to locate 9 facilities in such a manner as to keep all of 

the facilities separated by at least 10 distance units where all other sites are too close 

to chosen sites to allow additional sites to be selected. The level of disruption for this 
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case is quite substantial, a 47% reduction. It is important to observe that the 

difference between what can be located in the packing case (anti-cover) vs. the 

disruptive case (disruptive anti-cover) is quite small for relatively small distances as 

well as for relatively large distances. In the mid-range of distance values, there is a 

considerable difference between what each model is able to locate, a difference that 

ranges from 30% to a high of 75%. This is a substantial difference and is of critical 

importance. 

 

Table 1. Results associated with solving the ACLP and DACLP on the Swain 
Data set. Note that the “:” indicates an incremented number of 
facilities; e.g. 1:4 is equivalent to 1, 2, 3, 4. 

Separation 
Distance, r 

ACLP 
Obj 

Sites selected 
by ACLP 

DACLP 
Obj 

Sites selected 
by DACLP 

% Difference 
Between ACLP 
& DACLP 

4.0 45 
3, 5:7, 10, 12, 
14:28, 30, 32, 
33, 35:55 

41 
7:12, 14:28, 
30, 35:41, 
43:46, 48:55 

8.89% 

5.0 38 

5, 8, 10, 12, 
14:19, 21:23, 
26:28, 30, 
35:55 

30 

5, 8, 10, 12, 
14:18, 20, 
24:29, 32, 
33, 36, 37, 
39, 40, 42, 
43, 49:54 

21.05% 

6.0 33 

4, 8, 10, 12, 
14:19, 21, 
26:28, 33, 
35:41, 44:52, 
54, 55 

23 

1, 3, 6, 12, 
14, 16, 17, 
20, 24, 
26:29, 32, 
36, 37, 39, 
40, 46, 51:54 

30.30% 

7.0 25 

4, 10, 12, 14, 
15, 21:23, 
25:28, 31, 34, 
35, 37:40, 46, 
47, 49:52 

17 

8, 9, 14, 16, 
17, 20, 
24:26, 31, 
37, 40, 43, 
51:54 

32.00% 
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8.0 21 

6, 8, 12, 14, 
20, 23, 25:27, 
31, 33, 35, 
37:40, 46, 47, 
50:52 

13 

4, 14, 18, 21, 
25, 28, 33, 
35, 40, 43, 
50, 52, 54 

38.10% 

9.0 18 

3, 6, 12:14, 18, 
20, 23, 24, 27, 
33, 37:40, 48, 
51, 52 

11 

3, 9, 14, 21, 
26, 28, 33, 
48, 50, 54, 
55 

38.89% 

10.0 17 

1, 10, 12, 
14:16, 23, 26, 
30, 35, 39, 40, 
43, 49, 51:53 

9 
4, 17, 20, 27, 
30, 36, 52, 
53, 55 

47.06% 

11.0 14 

2, 10, 12, 18, 
24, 27, 33, 39, 
40, 43, 48, 
51:53 

7 
5, 16, 20, 23, 
36, 52, 55 

50.00% 

12.0 13 
4, 14, 18, 24, 
25, 28, 33, 40, 
43, 51:54 

7 
5, 16, 20, 23, 
26, 52, 55 

46.15% 

13.0 11 
13, 14, 24, 28, 
33, 37, 40, 41, 
51, 52, 54 

6 
8, 20, 22, 36, 
39, 52 

45.45% 

14.0 11 
14, 15, 24, 28, 
33, 37, 40, 44, 
49, 52, 54 

5 
18, 22, 49, 
53, 55 

54.55% 

15.0 10 
14, 26, 28, 33, 
37, 39, 42, 46, 
49, 52 

5 
18, 20, 22, 
43, 53 

50.00% 

20.0 7 
8, 27, 28, 35, 
40, 50, 51 

3 12, 41, 46 57.14% 

25.0 5 
28, 35, 39, 51, 
52 

2 4, 14 60.00% 

30.0 4 14, 26, 51, 52 1 1 75.00% 
40.0 3 14, 35, 52 1 18 66.67% 
50.0 2 14, 51 1 28 50.00% 
60.0 1 28 1 28 0.00% 
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Figure 14 and Figure 15 depict opposing solutions, one for the ACLP and one for 

the DACLP when using the separation distance of 12.0. Both figures display all 55 

potential facility sites as black dots. Selected facility sites are shown as red squares 

with the separation distance of radius r, in this case 12.0, represented as a black 

circle with gray fill drawn around each selected facility site. Note that in each figure 

all unused sites are within the minimum separation distance of 12.0 from one or 

more located facilities. From Table 1, it can be observed for the separation distance 

of 12.0 that the ACLP solution involves the location of 13 facilities. Figure 14 

depicts this ACLP solution. In Figure 14 observe that each selected site is outside all 

circles except for the one representing that site. This means that the pattern meets all 

separation requirements. Figure 15 presents the related disruptive solution that 

involves the placement of only 7 facilities, which is 6 facilities fewer, a 46.15% 

reduction, than what could be located in the optimal anti-cover solution. These two 

solutions capture the range in which proper solutions exist for the separation distance 

of 12.0.  
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Figure 14. An optimal anti-cover solution associated with the separation 
distance of 12.0 involving the location of 13 facilities. 

 



 

 78 

Figure 15. An optimal disruptive anti-cover solution associated with the 
separation distance of 12.0 involving the location of 7 facilities. 

 

In addition to the solving the ACLP and DACLP models on the 55 node dataset 

(Swain, 1971), the models were also applied to the larger dataset of 372 nodes 

(Ruggles & Church, 1996). Table 2 presents the results of these problems using 

separation distances that ranged from 2.0 to 15.0. For the distance of 2.0, the anti-

cover model involved locating 110 facilities, or selecting more than 1 out of 4 sites 

for a facility on the average. For that same distance, the disruptive model was able to 
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find a proper solution which located only 68 facilities, a 38.18% reduction, or less 

than 2 out of 10 sites for a facility on average. Over the range of distance values, the 

disruptive case often differs considerably from the packed case in terms of the 

number of facilities that were located ranging from 38.18% to 63.64%. Though the 

focus of this chapter is not on solution times, solution times for both problem types 

are given in the table as well. This is included to show that the computational effort 

required to solve the DACLP is much less. This is exemplified using this larger data 

set; it can be seen that the disruptive case can be solved in considerably less time 

than the original anti-cover problem.  

In most cases the disruptive model was solved in less than a tenth of the time 

needed for the packing (ACLP) model. Although it may be possible to reduce 

computational times below what is reported here by using a selected set of clique 

constraints or a hybrid of cliques and neighborhood constraints, it is likely that the 

disruptive model is easier to solve in general as compared to the classic anti-covering 

problem. It should also be mentioned that modeling languages also exact a cost in 

terms of set-up and execution time when using maximal cliques or a hybrid 

approach; however, this cost is often outweighed by the value in increased 

computational efficiency. Greater discussion related to why the DACLP solves faster 

than the ACLP and a comparison of solution approaches using modeling languages 

and alternative methods is presented in greater detail in Chapter 5.  
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Table 2: Results associated with solving the ACLP and DACLP on the 372 
Node dataset of Ruggles and Church (1996) 

Separation 
Distance, r 

ACLP 
Objective 

ACLP 
Solution 
Time in 
seconds 

DACLP 
Objective 

DACLP 
Solution 
Time in 
seconds 

% Difference 
Between ACLP & 
DACLP 

2.0 110 0.15 68 0.00 38.18% 
3.0 68 0.25 35 0.15 48.53% 
4.0 45 0.80 22 0.10 51.11% 
5.0 32 2.50 16 0.20 50.00% 
6.0 26 1.30 11 0.20 57.69% 
7.0 21 1.90 9 0.20 57.14% 
8.0 17 3.20 7 0.20 58.82% 
9.0 14 2.40 6 0.20 57.14% 
10.0 11 2.40 4 0.30 63.64% 
11.0 10 2.40 4 0.30 60.00% 
12.0 9 3.10 4 0.30 55.56% 
13.0 8 4.10 4 0.30 50.00% 
14.0 8 5.10 3 0.40 62.50% 
15.0 6 6.80 3 0.40 50.00% 

 

3. Searching for stable levels of possible disruption   

A proper solution to the anti-cover problem maintains a minimum separation of r 

distance between any pair of facilities and where no additional facilities may be 

located without violating a separation constraint. As described in the previous 

section, the range of proper solutions will involve a number of facilities which fall 

within the range:   

                       maxmin  solution  proper    ain    used  facilities  ofnumber    PP ≤≤  
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Where maxP and minP can be generated by solving the ACLP and DACLP 

respectively. What is not known is whether solutions to a specific problem exist 

within the range or whether solutions exist only at the upper and lower bounds. In 

addition, it is unknown from the outset for a given problem whether multiple proper 

patterns exist at the bounds or within the range. One can define for any value of p 

within the range for which one or more proper solutions exist, a stable level. It 

makes sense to identify where stable levels exist between the upper and lower 

bounds, maxP and minP . One approach to identifying whether a stable level exists is by 

appending the following constraint to the model described by conditions (22)-(26): 

Sjpx
j

j ∈∀≥∑             (26) 

                                                                                             

Constraint (26) maintains that at least p facilities are to be deployed. The value of 

p can range from minP  to maxP . If an optimal solution to this problem deploys exactly 

p facilities, then p represents a stable level of disruption. If not, then the solution 

deploys some number of facilities pp >* . This means that all values of p strictly 

between *p  and p, including p itself, are not stable levels for the problem instance. 

Thus, in solving for the existence of stable levels, it makes sense to first solve with 

the bound of 1min += pp . After solving that problem, each subsequent problem is 

defined by setting 1* += pp  until *p  = maxp  or 1max
* −= pp . This strategy can be 

used to efficiently solve for the stable levels of p.  This strategy is used to solve 
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several example problems that were presented in the previous section. Essentially a 

constraint was added to the problem and solved in sequence, based upon the value of 

p specified in constraint (26) for the previous iteration. 

Table 3: Results associated with solving for stable levels of the DACLP on the 
Swain data set. 

Separation 
Distance, r 

DACLP 
Objective 

Stable values of p found 
between strict ACLP and 
strict DACLP 

ACLP 
Objective 

Percent 
Difference 
Between 
ACLP & 
DACLP 

5.0 30 31,32,33,34,35,36,37 38 21.05% 

10.0 9 10,11,12,13,14,15,16,17 17 47.06% 

15.0 5 6,7,8,9 10 50.00% 

20.0 3 4,5,6 7 57.14% 

25.0 2 3,4 5 60.00% 

30.0 1 2,3 4 75.00% 

 

Table 3 presents the results for the search for stable levels for disruptive anti-

covering when solving for selected separation distances on the Swain data set. 

Several problems were solved for stable disruption levels for 6 different separation 

distances ranging from 5.0 to 30.0 with increments of 5.0. Each of these problems 

solved in less than 0.00 seconds. Altogether, stable disruptive solutions for all 26 

possible cases were identified. At first this seems to be somewhat counterintuitive, 

however, after the fact it seems entirely reasonable, as one should be able to make 

just the needed amount of adjustment to a disruptive pattern so that exactly one more 
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facility can be added, bringing it to the next stable level. Of course this will not hold 

for all problems, but it is likely that this would be commonplace rather than the 

exception.      

4. A note on aiding disruption 

Together, the DACLP and ACLP models can be used to generate the range of 

proper solutions to a given problem instance. A constrained version of the DACLP 

model can then be used to generate stable levels within the range of feasible, proper 

values of p. As stated before, disruption can be accidental, natural, or intentional. For 

example, the ACLP can be used to generate an arrangement that maximizes the 

number of Sandhill cranes that can be supported in a bounded area of suitable 

habitat, where crane nests are separated by a minimum distance of r (Downs et al., 

2008). But current nest patterns may not be optimal and together they may thwart the 

existence of a larger number of nests being supported. The same can be said for a 

problem of locating liquor stores (Grubesic et al., 2012). If liquor stores are to be 

located at least r distance apart from each other and at least a certain distance from 

special areas, like schools, then an existing store pattern may “disrupt” the location 

of new entrants. It also may be possible for a new entrant to locate in such a manner 

as to prevent others from locating nearby and effectively increase their neighborhood 

market size (Church and Bell, 1990). Such a circumstance leads to two types of 

location questions: 1) what is the best location that a new entrant can make within 

the separation constraints and effectively develop the largest “hegemony” against 
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others in possible encroachment? and; 2) how many facilities are needed and what 

are their locations that will aid resulting disruption the most?  

Both problems are of considerable interest. The first of which can be solved by a 

site search, looking for the site which effectively controls the greatest amount of 

surrounding area. The second problem is of considerably greater complexity and can 

be formulated as a bi-level integer programming problem. The model representing 

this bi-level structure can be formulated as follows: 

G   Minimize  (27) 

s.t.  

l
j

j py =∑  (28) 

∑
∈

∈≥−
iQj

ji NiyyM  allfor                   )1(  (29) 

{ } Njy j ∈∈  allfor                                 1,0  (30) 

∑=
j

jxG  Maximize  (31) 

s.t.  

∑
∈

∈≥−−
iQj

jji NixyxM  allfor             )1(  (32) 

{ } Njx j ∈∈  allfor                                  1,0  (33) 

 

where the additional notation is as defined as follows: 
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=G  the maximal number of facilities that can be placed after the selection of lp

preemptive sites 

=lp  the number of facilities being placed in which to maximally disrupt an anti-

cover solution 





=
                                                                    not        if  ,0

  site disruptive preemptive a asfor  selected is  site if ,1 j
y j  

 

The above bi-level optimization model involves a leader and a follower. The 

leader makes the decision to locate lp facilities as maximally disruptive sites. The 

portion of the model that is the leader consists of constraints (28) through (30). 

These constraints should be recognized as being similar to those implemented in the 

formulation representing the disruptive anti-cover location problem (DACLP). The 

follower solves for the optimal anti-cover solution, given that lp facilities have 

already been placed. The follower portion consists of constraints (32) and (33); these 

constraints are similar to those defined in the formulation representing the ACLP. A 

description of the technical workings of the constraints of this leader and follower bi-

level optimization model is as follows. 

Whatever the leader selects, the follower responds with the best anti-cover 

pattern that can occur given what the leader has selected. The leader minimizes the 

resulting level of facility placement G, formulated as (27) & (31), while making the 

location decisions for lp facilities (28). The siting decisions, iy , must be binary in 

value, constraints (30), and they must satisfy the separation requirements (29). The 

value of G is defined by a modified anti-covering model. Constraints (32) ensure that 
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selected sites by the leader and the follower must be at least r-distance apart from 

each other. The fact that the right hand side will always be greater than or equal to 

zero will ensure that the same site will not be selected by both the leader and the 

follower (i.e. it is impossible for a given site i  for 1=ix  and 1=iy at the same time). 

Finally, constraints (33) restrict the site selections to be binary for the follower.  

The solution to this model (27)-(33) will identify a set of  lp  sites which disrupt 

the completed anti-covering solution the most. However, solving bi-level models can 

be a complex task that often involves significant computational effort, even for small 

to moderately sized problems (Scaparra and Church, 2008). Thus, solutions to this 

formulation are not discussed in Chapter 5. Nevertheless, the model is formulated 

here as an important branch that future researchers should explore.  

B. Other forms of r-Separation 

All prior formulations of the ACLP have focused on maximizing the packed 

configuration such that all facilities are separated by at least some standard r. Only 

the paper by Murray and Church (1997b) even considered the issue of site benefit in 

a formulation they provided. Yet, they did not determine if any change in site benefit 

had an impact on the overall packing configuration, as that was not the objective of 

their paper. However, what if the quality of a site requires a separation standard that 

is smaller or larger than another site? What if a particular site or configuration allows 

for a certain number of violations of the separation standard? These are two 

questions that have not been fully addressed in the literature and are of concern when 
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modeling phenomena. The rest of this section defines several ways that a minimum 

separation standard: can be relaxed as a percentage of sites located near a site; or 

where the separation standard varies by site benefit. This section describes a few 

additional formulations that either relax the packing restrictions or consider 

separation standards as a function of site benefit.  

1. The generalized or “almost” r-Separation ACLP  

The Generalized or Almost r-Sep Problem is a problem in which the distance 

constraints are relaxed for a percentage of potential sites within radius r. In other 

words, some locations will be allowed to violate the explicit r separation criterion. 

This is an interesting problem in that it represents reality in that territories of nearby 

territorial species (e.g. fox, California Spotted owl, and fishers) often overlap 

modestly. However, one again must ask which locations one would allow to violate 

the r-Sep rule; are they random locations across a landscape? Are they in an area that 

has a high density of habitat/customer support? Or, is there a strategic decision that 

has been made to allow for incursions into territory; say for a family group that 

allows siblings to locate near them or for a retail chain that locates two of their stores 

close together, such as Target, or coffee houses such as Starbucks? These are all 

questions that would need to be explored to provide a definitive answer. I believe, 

however, that a general model such as the one presented below could be effective in 

comparing outcomes based upon: random dispersion, additional landscape support, 

or strategic influences. 
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If one allows for some facilities to be a bit closer than the desired r-separation 

constraint, then it may be possible to select and pack more facilities into a given 

region. It may also allow for one to locate at sites which are preferred over others but 

would not ordinarily be chosen because they are a bit too close. In addition, one 

should limit such “incursion” as separation standards are often suggested for solid 

reasons. Consider then the following problem definition: 

Generalized r-Separation problem: Maximize the weighted benefit of sites 

selected for a configuration of facilities, where in general each site must be at least 

αr distance from each other and where for each sited facility, at most one of their 

neighboring facilities can be closer than r distance. 

This problem is called the generalized r-separation or the generalized ACLP. The 

value of α is to be some value less than or equal to 1. The above generalized problem 

represents the classic ACLP when α is equal to 1 and all site values are equivalent. 

This new problem definition allows for the fact that only one neighboring facility of 

a given located facility can be somewhat closer than the standard r separation 

distance. As the value of α would probably be on the order of say 0.90, even the 

closest neighboring facility to a given facility will be forced to be close to the 

standard r-separation distance. What this problem allows for is a modest flexibility 

in applying the separation standard as well as encourages the selection of those sites 

which are weighted more than others.  

The following formulation uses the notation that has been previously defined as 

well as:  
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bi is the benefit of locating at location i.  

The Generalized r-Separation or “almost” r-Separation model can be thus 

formulated as follows: 

∑
j

jj xb Maximize  (34) 

s.t.  

( ) { }krjjNnxxn j
Nk

kj

j

 of  within is  site |  where,1 =≤+− ∑
∈

 (35) 

{ }krjjNnxnx j
Nk

kj

j

 of  within is  site |  where, α=≤+ ∑
∈

 (36) 

{ }jrkkNkx j
Nj

j

j

 of  within is  site |  where,each for      1 =≥∑
∈

  (37) 

{ } jx j each   for      1,0∈  (38) 

 

The objective (34) is to maximize the number of packed facilities with the 

greatest benefit. Constraints of type (35) enforce the separation of facilities. In this 

case at most one facility may be allowed to locate closer than r distance of a located 

facility. Constraints (36) work in conjunction with constraints (35); this constraint 

limits any selected facility to be closer than α of r distance to any other located 

facility. Constraints of type (37) require that any facility i within the r neighborhood 

of facility site j must have at least one facility located within its neighborhood. 

Though these constraints are technically redundant, as mentioned in Chapter 3, they 
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aid in generating a tighter relaxed linear programming solution. Constraints (38) 

restrict the location site decision variables to be binary integers. 

This model is likely to be helpful particularly for habitat modeling and franchise 

store modeling where good habitat or market areas provide enough support for the 

den/franchise store. Figure 16 shows an optimal solution obtained using the above 

formulation with a separation distance, r, equal to 12, α equal to 0.8 and where all 

benefit values were set equal to one. For this case, 17 facilities have been located at 

sites: 1, 10, 12, 14, 15, 26, 27, 29, 33, 35, 39, 40, 43, 49, 51, 52, and 53. The solution 

differs from that of Figure 14, where 13 facilities have been located. The optimal 

solution to the Generalized ACLP has 7 sites in common with the optimal solution to 

the ACLP; sites 14, 33, 40, 43, 51, 52, and 53. However, allowing for a 20% 

relaxation of separation distance for only the closest neighboring facility, four 

additional facilities can be placed using the almost r-Separation formulation. This is 

apparent in Figure 14 as there are subtle shifts in where a facility is located in the 

Generalized ACLP vs. the ACLP. In addition, one can observe that no facility is 

closer than α*r  (9.6) of a site and if a site has an existing facility within αr, all other 

sites are no closer than r (12) units away. 

If one wished to examine the lower bound, as in the DACLP, one would have to 

solve the DACLP problem first, as this would provide the optimal minimally packed 

configuration. Then one would simply have to use the above formulation as well as a 

constraint that specifies that no more than p-facilities are deployed to ensure that a 

proper but maximal valued configuration would be found.  
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Figure 16. Generalized ACLP model optimal solution for a separation distance 
of 12 with α equal to 0.8 and all site benefits equal to 0 applied to the 
Swain dataset with 17 located facilities 

 

2. The Site Sensitive r-Separation ACLP & DACLP 

To illustrate the importance of using site-sensitive minimum separation 

standards, consider the following examples. For instance, one may be interested in 

modeling a territorial species that must sustain itself by defending an area centered 

about its nest/den. Let us also consider the habitat in which the animal resides; it 

should contain a source of water, food, and shelter that enable it to survive and 
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thrive. One must recognize that areas distributed over space vary in habitat quality. 

For example an area might have a river that feeds into a lake with several species of 

fish in varying quantities as well as tree/shrub species that provide nesting material 

and/or food, while another area is centered over several creeks. The lake and river 

habitat has a greater capacity to provide fish (food) and nesting sites/material 

(trees/shrubs) than the area with many creeks. Both are suitable habitat locations, for 

example an osprey, but require two different territory sizes to maintain the same 

level of access to resources such as food and nesting material.  

Another example of the importance of location related to territory could be a 

competitive retail chain. A competitive retail chain may locate stores with varying 

market sizes (varying r-Separations) based upon the underlying threshold of market 

support required to maintain the viability of a store. So then, if one is to estimate the 

number and distribution of a territorial species over an area or the location of 

competitive retail stores, should one not also consider the suitability of each site and 

its influence on the size of the separation standards? What would these distributions 

and capacities be? Before addressing these questions, however, the problem must be 

restated in a general form.  

The Variable r-Separation Anti-Covering Problem: given several locations that 

vary in quality with constant threshold requirements, what would be the optimal 

arrangement of the nest/den/facility sites?  

The required separation between neighboring nest/den/facility locations is a 

function of the threshold requirement at a potential site of location; for the territorial 
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species it could be the quality of the underlying landscape, or the size and level of 

access to a customer base for a store. In the Variable r-Separation Anti-Covering 

model, the separation distance r for very high quality locations will be smaller than 

the r distance required in lower quality locations.  

This assumption is supported in the territorial species literature, of which a nice 

review can be found in the paper by Joni Downs and Mark Horner (2008), which 

specifically looked at the effects of point patterns and the shape of home range 

estimates using spatial statistical methods. Justin Williams (2008) also considered 

reserve site selection with distance requirements. Church and Bell (1990) looked at 

the variations in business site location and their effect on Central Place Theory, 

particularly with hybrid k-levels in their paper. Varying radii in the Variable r-Sep 

ACLP capture these differences and could lead to such a landscape identified by 

Church and Bell. Thus, this is an important element of dispersion modeling that is 

missing and should be developed. 

Carrying capacity estimates of habitat using the optimistic view (“Rosy View”) 

of the ACLP have been generated; most notably and recently by Downs, Gates, and 

Murray (2008). However, their paper does not consider nesting site quality, and its 

impact on the value of r. The Variable r Anti-Covering Location Problem (VrACLP) 

considers each site and the underlying quality of that site and maximizes the number 

of facilities located. The notation is the same as has been previously defined, 

including the following: 
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jr  is the radius of separation criterion for location j   

 

Using this notation, the VrACLP can be formulated thusly as: 

∑
j

jx Maximize  (39) 

s.t.  

{ }krjjNnxnx jk
Nk

kj

k

 of  within is  site |  where, =≤+ ∑
∈

 (40) 

{ } jx j each   for      1,0∈  (41) 

 

The objective in this formulation (39) maximizes the number of facilities placed. 

The site location suitability measure is captured in the separation standard criterion, 

jr , and is adjusted accordingly for each site j. Constraints (40) prevent sites that are 

closer than jr  distance from site j from being used when site j is selected. 

Constraints (41) restrict the facility site selection variables to binary integer values.  

The Variable r Anti-Covering Location Problem can be re-formulated to consider 

the minimum number of facilities that can be located, the lower bound, as in the 

DACLP as well. The formulation of that problem, the Variable r Disruptive Anti-

Covering Location Problem (VrDACLP) is defined with the following additional 

notation: 

{ }irjjN ii  of  within is  site |=  
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{ }jrij ji  of  within is  site|=Θ  

VrDACLP: 

∑
j

jx Minimize  (42) 

s.t.  

∑
∈

≤+
iNk

iki nxnx  for each i (43) 

     1∑
Θ∈

≥
ij

jx for each i (44) 

{ } jx j each   for      1,0∈  (45) 

 

The objective function (42) minimizes the number of facility/nest centers to be 

placed, while considering site suitability. The constraints (43) and (45) have the 

same function as those previously discussed for the VrACLP. Because this form is 

designed to find the optimally “disruptive” packing configuration, following the 

DACLP, this necessitates the inclusion of constraints (44). One issue that needs to be 

addressed with this formulation is that, while the model will locate the minimum 

number of facility sites such that no site is closer than the specified standard and that 

there are no other sites that may be packed, the model will also lead to solutions that 

are “biased”. This “bias” is towards sites located in lower quality habitat/territories 

because the radius of separation is larger and site suitability is lower.  
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This means that a greater area can be covered by fewer, lower quality, 

nest/den/facility sites with greater separation distances when in reality there is likely 

to be a mix of high and low quality sites. A territorial species, and a business, will 

certainly tend to select higher quality sites. Depending on how great the variation 

between the optimistic and pessimistic views, it may be necessary to account for 

variations that lie between the “pessimistic” and “rosy” outlooks by attempting to 

generate solutions in between the two bounds. This could easily be done by adding 

constraints (26). Constraints (26) specify that at least p-facilities be located between 

the pmin (ACLP) and pmax (DACLP) solution configurations. In this way varying 

configurations could be generated. Using this constraint will assist in providing a 

range of configurations of possible outcomes.  

C. Conclusions 

The classic ACLP involves maximizing the number of facilities being placed 

while keeping them at least r distance apart from each other. The ACLP has been 

used in a number of different application areas, including reserve design, defense, 

forest operations models, DNA sequencing, analyzing policies impacting potential 

sex offender residence location as well as potential liquor store patterns, among 

several others. This chapter has presented several important extensions of the Anti-

Covering Location Problem (ACLP).  

Section A introduced a new problem called The Disruptive Anti-Covering 

Location Problem, which discussed the importance of the Disruptive Anti-Covering 

Location Problem (DACLP) in policy analysis. The disruptive anti-cover problem 



 

 97 

(DACLP) involves finding a solution which minimizes the number of facilities being 

placed, ensuring that all facilities are separated from each other by a minimum 

separation distance, r, and where no further sites can be selected without violating a 

separation condition. An integer-linear formulation model for the disruptive anti-

covering problem has been developed, example solutions provided, and a discussion 

of how this model can be used to identify stable levels of disruption was included.  

In particular, this section demonstrates the importance of the disruptive form of 

anti-covering. In fact, when policies are analyzed using the anti-cover location model 

(e.g. sex offender residences or carrying capacity of a population of Sandhill cranes), 

it makes sense to solve the disruptive form of this problem as well in order to capture 

the range of possible outcomes. When the problem encompasses a number of 

independent decision making entities, sex offenders (or birds) in selecting housing 

(or nest sites), it is likely that an optimal pattern will not be generated. Thus, 

solutions to the DACLP are important and informative within the context of policy 

analysis and decision making. 

A bi-level “leader and follower” model is also proposed for identifying 

placement strategies to thwart or disrupt optimal configurations to the greatest extent 

possible with limited resources. This bi-level model was only formulated; this model 

is a research avenue that should be explored in greater detail and is left for future 

work. 

Section B. “Other Forms of r-Separation” focuses primarily on how one could 

consider variations in the way separation standards are imposed. All previous 



 

 98 

formulations in the literature are based on the assumption that there is a fixed 

separation standard. However, there are cases where such strict standards are not as 

representative as one would like. This is especially true where explicit standards of 

separation are not appropriate for certain modeling applications, as in models 

representing habitat carrying capacity for territorial species or where certain 

franchise stores or retail outlets share a portion of market area. The generalized 

ACLP model allows modest violations of separation constraints in selecting a 

configuration and encourages the use of higher-valued sites. 

In addition to the Generalized ACLP, another problem called the Variable ACLP 

was proposed. This problem is based on the assumption that the separation standards 

could be site specific. One example of an application of this type of problem 

involves the analysis of carrying capacity. For those locations where resources are 

plentiful, separations between one individual and others is likely not as important as 

those locations that provide fewer benefits. Sites with lower benefit are likely to 

force an individual to maintain a larger territory to maintain a similar level of 

resource availability than a site with greater benefit. The Variable r-Separation 

ACLP was formulated as an integer linear programming problem and this should be 

the subject of future research. 

Overall this chapter presents two new major conceptual models related to the 

ACLP have been developed. The first section pointed out that the ACLP is often 

“rosy” when used to determine optimal solutions to the ACLP and a related problem, 

the Disruptive ACLP, was discussed and formulated to address this issue. The 
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subsequent sections discussed how separation standards themselves can be relaxed or 

specified individually. Each of these points are important to the various applications 

for which the ACLP has been employed. The next chapter, “Computational Results” 

presents the results of the computational experience in solving ACLP and DACLP 

models. 

 

In conclusion, this chapter has focused on: 

• Describing and formulating the Disruptive Anti-Covering Location 

Problem 

• Defined proper solutions and discussed the importance of intermediate 

anti-covering solutions that range from the upper ACLP bound and 

DACLP lower bound 

• Presented a bi-level leader and follower formulation for disruption 

• Covered two ways of implementing a separation standard 
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V. Computational Results 

As discussed in chapter III and IV, the Anti-Covering Location Problem (ACLP) 

and the Disruptive Anti-Covering Location Problem (DACLP) are Non-deterministic 

Polynomial-time Hard, or NP-Hard, problems. This means that large instances of 

these problems may be difficult to solve to provable optimality, even if given 

significant computing resources and time. For this reason several sophisticated 

constraint representations have been developed (e.g. Erkut & Neuman, 1991; 

Yoshimoto & Brodie, 1994; Erkut, ReVelle, & Ulkusal, 1996; Murray & Church, 

1996; Murray & Church, 1997a) in addition to several heuristic approaches. This 

chapter is composed of two primary sections that present and compare computational 

tests of competing model formulations using off-the-shelf commercial solvers and a 

section that introduces a new heuristic approach.  

The first section discusses the computational experience of solving the ACLP 

and DACLP to optimality using an industrial solver. Several of the modeling 

constraint structures discussed in chapter three are used to represent the ACLP and 

DACLP and are solved to optimality. By using industrial off-the-shelf software 

where each constraint structure is formulated, a comparison of each structure can be 

conducted and discussed. The second section contains a brief overview of existing 

heuristic solution approaches to solving the ACLP as well as a new heuristic 

approach called the Marching Army heuristic. Furthermore, a discussion on heuristic 

approaches to solve the DACLP is provided. 
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A. Solving the ACLP and DACLP to Optimality 

Solving the ACLP and DACLP using most of the model forms presented in 

chapters 3 & 4 to optimality on small datasets can be done with ease. For example, 

many of the conceptual figures used in the previous chapters were solved to 

optimality in less than a tenth of a second using the Swain (1971) dataset. However, 

as the size of problems increase computation time often increases as well. This 

chapter section utilizes the larger dataset of Ruggles and Church (1996) to compare 

the various model formulations representing the ACLP and DACLP. 

The Ruggles and Church (1996) dataset represents a collection of Aztec 

settlements. The settlements range in size from hamlets to cities and are dispersed 

over a large region of approximately 900 km2. In total there are 372 point locations 

in the dataset. Each point represents the centroid of the town center. Figure 17 shows 

the histogram of the distance matrix representing the Euclidean settlement-to-

settlement distances of the 372 Aztec settlements. The average settlement-to-

settlement distance is 15 kilometers, with the bulk of the settlement distances 

between 5 and 25 kilometers. This is important in terms of thinking about separation 

standards. If the distance of separation standard, r, is small and there are few 

neighbors, the neighborhood constraints and cliques will be sparsely populated. As 

the value of r increases, the neighborhood constraints will increase in their 

membership and thus size. As constraint membership, be it clique or neighborhood 

constraint, population size and complexity typically increase as well. Thus, the 
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Ruggles and Church (1996) dataset is particularly well suited to testing separation 

standards.  

Figure 17. Histogram of the settlement-to-settlement distances of the 372 point 
Aztec dataset of Ruggles and Church (1996) 

 

The Ruggles and Church dataset was used as it is larger than the Swain (1971) 

dataset and is large enough and contains enough spatial complexity that computation 

times will measurably vary. This is important because the optimizer must be stressed 

by enough problem complexity to compare solution times. In order to solve each of 

the represented formulations, the Fair Isaac Corporation’s (FICO) Xpress solver 

version 25.01.05 was used. FICO’s Xpress-IVE development environment including 
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the Mosel modeling language version 3.4.3 was used to set up each problem which 

was then solved using the Xpress solver. Mosel was used as it is very easy to 

formulate a model and check it, and Xpress is an industrial solver just as capable as 

CPLEX. Only the Core and Wedge and Maximal Clique formulations used 

specialized code. In this case the model forms were generated using a program 

developed in Microsoft’s Visual Basic .Net environment. These models were then 

solved to optimality by means of the same Xpress solver. The primary reason for 

doing this was to take advantage of GIS functionality for the Core and Wedge 

geometry calculations, and to take advantage of the multi-thread capabilities in the 

computation of the vertex packing problems that are required in the maximal clique 

formulation of Murray and Church (1997a). Three primary computers were used to 

run the software. 

The three different computers used to run the models were: 1) Super-Chief, a 2.8 

GHz quad-core hyper-threaded4 (8 total threads) Intel i7 CPU desktop computer with 

12GB of PC3-10700 (1333 MHz) memory running the Windows 7 operating system 

(OS); 2) Jupiter, a 4.1GHz quad-core (4 total threads) AMD A-10 6800K CPU 

desktop computer with 8GB of PC3-17000 (2133 MHz) memory running the 

Windows 7 OS; and 3) IO, a 2.5GHz variable speed mobile quad-core (4 total 

threads) AMD A-10 5750M CPU laptop computer with 8GB of PC3-12800 (1600 

MHz) memory running the Windows 8.1 OS. Super-Chief is the computer for which 
                                                 
4 A hyper-threaded CPU means that there is a “virtual” core associated with an 

individual physical core. For example a dual-core hyper-threaded processor has 4 
threads to which computation may be distributed. The threads of a CPU are where 
computation is conducted for a process. 
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the results of several model formulations were run using a range of separation 

distances. 

A side interest in running the various models on these configurations was to 

determine if the hyper-threading capability of the Intel processor was of benefit 

when running the models using the Xpress solver. The other computers were used as 

their CPU configurations represent a broad range of hardware from which 

performance can be compared. Super-Chief has the benefit of multiple threads per 

core, albeit at a reduced CPU clock frequency, whereas Jupiter has the advantage of 

a higher clock speed but the disadvantage of having fewer threads. IO is used to 

compare a more efficient mobile CPU to the desktop CPUs. The next two sub-

sections report the results of the computational experience for the various 

formulations for the ACLP and DACLP problems entirely run on SuperChief. 

Following that, a comparison is made across all of the computer configurations. 

1. Computational Experience of Various Constraint Forms Representing 

the Anti-Covering Location Problem 

This sub-section presents the computational experience for the various constraint 

representations of the ACLP. All of the results in this section were generated using 

Super-Chief, a computer with a 2.8 GHz quad-core i7 CPU and DDR3 memory 

described previously. Before the results are described, a brief review of the varying 

constraint structures are characterized using the following notation: 

i, j are indices of potential facility locations 

r is the minimum distance standard, or radius of separation 
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S is the set of potential facility site locations 

iQ  { }ijrdSj ij ≠<∈=      where  | , defined for each Si ∈  

in  is the largest number of sites which can be simultaneously selected within the 
set Qi while maintaining a distance separation of r between each pair of 
facilities 
 

ijd  shortest distance from facility i to facility j 

jx  decision variable where 




otherwise 0,

at  sited isfacility  if ,1 j
 

 

Using this notation, the following generic neighborhood constraint represents the 

restrictions on siting facilities by ensuring that if site i is chosen for a facility, then 

all other sites that are within the r standard (distance) of location i must be left 

unused. The generic neighborhood constraint can be written as: 

 ∑
∈

∈≤+
iQj

ijii Sinxxn   allfor                (46) 

 

This is the neighborhood constraint first proposed by Yoshimoto and Brodie 

(1994), though they had iQ  including site i instead of in . Murray and Church 

(1995) recognized that iQ  could be further reduced to the form of in . 

Representations using in  are an improvement in that they are much more efficient 

than that of the big M value5 implemented by Moon and Chaudhry (1984). In 

addition to the neighborhood constraint form, the ACLP can be represented as a set 

                                                 
5 A very large integer number, such as 999,999. 
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of pairwise constraints, as well as a hybrid form composed of a neighborhood 

constraint and clique constraint.  

A pairwise constraint can be viewed in the following way. For example, consider 

three facility sites t, u, and v which are within r-distance of each other. In pairwise 

form they are represented as: 1≤+ ut xx ,  1≤+ vu xx , and 1≤+ vt xx . These three 

constraints can be reduced into one inequality term: 1≤++ vut xxx . This reduced 

representation is called a clique. As stated in the cliques section of chapter three, it is 

sensible to combine pairwise constraints whenever possible into higher ordered 

clique sets. This reduces the needed number of constraints and produces a tighter 

relaxed problem. In general a clique constraint can be written as:  

∑
∈

≤+
Cj

ji xx 1 (47) 

 

 

Where C is the set of members of the neighborhood clique of facility site i. The 

ACLP can be represented as: 1) using neighborhood constraints of type (46) such as: 

the Big-M and in  forms – the total number of neighbors within r of facility site i; 2) 

A combination of neighborhood and clique constraints of types similar to (46) & 

(47) such as: Core Cliques, Maximal Cliques, and Pairwise forms; or 3) Entirely by 

cliques of similar form to type (47) such as Core & Wedge6. 

                                                 
6 In chapter three of this dissertation all of these constraint forms are discussed in 

detail. Big-M is the classic Moon and Chaudhry (1984) formulation, in  is the tighter 



 

 107 

Table 4 contains the computational experience of formulating and solving each 

of the constraint representations for the Anti-Covering Location Problem (ACLP). 

This table excludes the use of Location Set Covering Problem (LSCP) facet 

enhancing constraints, which will be discussed a little later in this sub-section. Table 

4 presents each modeled form by row. The table is broken into two sections; the top 

half represents r separation standards of 1-10 in increments of 1. The bottom half 

represents r separation standards of 11-15 in increments of 1 and 20, 25, 30, 35, & 

40. The columns represent each of the separation standards used to run each 

constraint form. The top rows of each section contain the separation distances used 

for each modeled constraint form. The second rows of each section contain the 

optimal ACLP objective value that was obtained for each distance standard, r. The 

rows associated with a particular model form contain the following: setup time, 

solution time, and total time. All times are reported in seconds. Results related to 

each formulation will be discussed independently first, and then compared and 

contrasted as a whole. 

The Big-M approach (Moon & Chaudhry, 1984) is represented by a set of 

neighborhood constraints similar to constraints of type (46), as previously discussed. 

Observe in Table 4, that the Big M model form for a distance of separation of 5 

required .02 seconds to set up and 2.7 seconds to solve, resulting in a total time of 

2.72 seconds. When the model is solved to optimality, particularly for small r, it is 
                                                                                                                                          

form proposed by Yoshimoto and Brodie (1994) and Murray and Church (1995), 
Core-Cliques by Erkut et al. (1996), pairwise constraints and maximal cliques 
described by Murray and Church (1997a; 1997b), and the completely new all clique 
constraint representation, Core and Wedge, also described in chapter three. 
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solved in less than a second. This is because when r values are small the total 

number of neighborhood members is quite small which results in a fairly compact 

constraint that is easily solved. As the r standard increases the members of each 

neighborhood steadily increase. As these neighborhood sizes increase the 

computational effort required to solve the problem increases. When the r standard is 

less than or equal to half of the average settlement-to-settlement distance (15km), the 

number of sites with overlapping neighborhoods is much more manageable and 

results in an easier to solve problem.  

Once the average settlement-to-settlement distance is exceeded by the r 

separation standard the number of sites that are members of overlapping 

neighborhoods greatly increases. This results in several constraints with very large 

neighborhood membership that also overlaps, which increases the complexity of a 

given problem. This is reflected in the total solution time for a given problem as 

problem size increases. For example, it takes 6.077 seconds to solve for a standard of 

15km. For a standard of 20km, the total required solution time takes over a minute 

(74.135 seconds). However, there is a way to further tighten a formulation with using 

only neighborhood constraints.  

This brings us to the Yoshimoto and Brodie (1994) constraint representation. 

Instead of “Big-M”, this form utilizes iQ  in each neighborhood constraint. The 

performance of the Yoshimoto and Brodie constraint representation is very similar to 

the Big-M representation (see Table 4: Yoshimoto & Brodie). In many instances this 
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formulation is solved in almost the same, or in slightly less, time than the Big-M 

representation.  

Table 4: Computational results associated with solving 6 ACLP model 
formulations applied to the 372 node Aztec data set. All times are in 
seconds and r-Sep in kilometers 

 

Since this approach is functionally similar to the Big-M approach, it is not 

surprising that the performance is similar, to slightly better. One of the reasons why 

r-Sep 1 2 3 4 5 6 7 8 9 10

Objective 212 110 68 45 32 26 21 17 14 11

Setup Time 0.017 0.014 0.019 0.019 0.020 0.019 0.020 0.021 0.023 0.023

Solution Time 0.035 0.069 0.212 0.882 2.700 1.453 1.904 2.949 2.266 2.284

Total Time 0.052 0.083 0.231 0.901 2.720 1.472 1.924 2.970 2.289 2.307

Setup Time 0.016 0.018 0.017 0.018 0.018 0.019 0.020 0.021 0.022 0.023

Solution Time 0.034 0.069 0.214 0.823 2.901 1.320 1.825 2.897 2.259 2.270

Total Time 0.050 0.087 0.231 0.841 2.919 1.339 1.845 2.918 2.281 2.293

Setup Time 0.022 0.024 0.025 0.026 0.028 0.031 0.031 0.034 0.037 0.039

Solution Time 0.037 0.075 0.124 0.273 0.827 0.521 0.784 1.325 1.211 3.880

Total Time 0.059 0.099 0.149 0.299 0.855 0.552 0.815 1.359 1.248 3.919

Setup Time 0.027 0.028 0.028 0.028 0.030 0.031 0.032 0.033 0.034 0.036

Solution Time 0.038 0.079 0.247 0.706 3.383 1.279 3.155 3.971 2.105 4.457

Total Time 0.065 0.107 0.275 0.734 3.413 1.310 3.187 4.004 2.139 4.493

Setup Time 0.030 0.030 0.070 0.030 0.030 0.030 0.040 0.040 0.040 0.040

Solution Time 0.000 0.000 0.000 0.100 1.400 0.300 1.000 1.100 0.500 0.800

Total Time 0.030 0.030 0.070 0.130 1.430 0.330 1.040 1.140 0.540 0.840

Setup Time 19.210 19.010 18.710 18.520 19.600 18.880 19.860 19.410 20.260 23.410

Solution Time 0.000 0.000 0.100 0.200 1.200 0.700 1.400 2.600 1.100 2.200

Total Time 19.210 19.010 18.810 18.720 20.800 19.580 21.260 22.010 21.360 25.610

r-Sep 11 12 13 14 15 20 25 30 35 40

Objective 10 9 8 8 6 4 3 2 2 1

Setup Time 0.024 0.024 0.026 0.027 0.029 0.035 0.036 0.038 0.042 0.038

Solution Time 2.688 2.924 3.765 4.688 6.048 74.100 79.900 88.200 78.800 84.400

Total Time 2.712 2.948 3.791 4.715 6.077 74.135 79.936 88.238 78.842 84.438

Setup Time 0.024 0.025 0.026 0.027 0.028 0.032 0.035 0.039 0.038 0.037

Solution Time 2.636 3.006 3.793 4.723 6.255 73.100 79.800 88.220 78.500 84.690

Total Time 2.660 3.031 3.819 4.750 6.283 73.132 79.835 88.259 78.538 84.727

Setup Time 0.041 0.053 0.046 0.051 0.053 0.065 0.075 0.080 0.082 0.080

Solution Time 3.522 4.940 4.619 5.261 6.401 12.300 52.300 138.000 36.000 111.000

Total Time 3.563 4.993 4.665 5.312 6.454 12.365 52.375 138.080 36.082 111.080

Setup Time 0.038 0.038 0.040 0.042 0.043 0.052 0.055 0.057 0.058 0.057

Solution Time 1.520 0.526 1.553 0.943 0.983 1.538 4.243 18.800 35.300 25.100

Total Time 1.558 0.564 1.593 0.985 1.026 1.590 4.298 18.857 35.358 25.157

Setup Time 0.040 0.040 0.040 0.050 0.050 0.060 0.060 0.060 0.070 0.060

Solution Time 0.800 1.000 1.400 1.600 1.900 3.200 6.400 24.100 40.500 48.800

Total Time 0.840 1.040 1.440 1.650 1.950 3.260 6.460 24.160 40.570 48.860

Setup Time 28.850 39.160 40.260 50.560 58.820 52.540 39.490 19.650 19.350 19.250

Solution Time 1.900 1.400 0.300 0.400 0.700 0.600 0.600 0.100 0.000 0.000

Total Time 30.750 40.560 40.560 50.960 59.520 53.140 40.090 19.750 19.350 19.250
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this approach is a slight improvement over that of Big-M is because the number of 

members in the neighborhood set is still quite large using Yoshimoto and Brodie’s 

approach. 

Because of this, the model still suffers from the same problem as that of the Big-

M approach. As the number of members of a neighborhood increase and as 

neighborhood overlap increases, the computational effort required to solve the 

problem increases as well. This, again, is especially apparent when separation 

standards exceed the average settlement-to-settlement distances. For example when 

the r standard is 15km it takes 6.283 seconds to solve and when r is 20, it requires 

73.132 seconds to solve. 

Given that total solution times only varied slightly or subtly improved using 

Yoshimoto and Brodie’s approach, one might wonder how the proof that in  is no 

larger than five would affect performance. The Wedge and Core approach, described 

in chapter three, led to the proof that the value of in  need be no larger than 5. Thus, 

from the theoretical results of chapter 3, one can set in  to five whenever the 

neighborhood size is larger than 5. Figure 18 graphically shows the total solution 

times for each neighborhood model form using a variety of separation standards.  

Figure 18 shows that even though the neighborhood constraints can be tightened, 

using a maximum value of 5 as compared to the Big-M and Yoshimoto and Brodie 

the models perform similarly. Where the separation standard is less than the average 

settlement-to-settlement distance, the models solution behavior is almost 

indistinguishable. Where there is a greater difference in solution times is when the 
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separation standard exceeds the settlement-to-settlement average distance. In this 

case, the tightened neighborhood constraint following the Wedge and Core proof 

generally leads to significant reductions in computation time required to solve a 

model.  

Figure 18. Graphical example of neighborhood constraint representation total 
solution times 

 

The Pairwise constraint representation requires very little computation time when 

the separation standard is small and the number of site locations within the 

separation standard of a given site are few in number. Since there are fewer sites 

within the separation standard of a given site, the overall size of the problem remains 

small. In addition, these constraints are considered to be tight. This leads to low 
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computation times when the separation standard is small. In fact, the Pairwise 

formulation when solved for small separation standards is quite fast; when r is less 

than 9 km total solution times were computed in less than 1.5 seconds (see Table 4: 

Pairwise). However, as the separation standard increases and the number of sites 

within the separation standard of a given site increase, the size of the problem – that 

is the total number of constraints, dramatically increases which requires the solver to 

work harder in resolving fractional solutions. This is especially true when solving for 

large values of r. In fact, the largest required solution time in Table 4 is associated 

with the pairwise formulation (r = 30). Since several pairwise constraints may be 

represented as a single clique constraint, the performance of the clique-based models 

is reported next. 

The first clique based formulation to be reported is that of Erkut et al. (1996) 

who describe a Core Clique that represents all site-site restrictions within half of the 

separation standard and a neighborhood constraint that represents those pairwise 

conditions restrictions for distances greater than half r distance to strictly within r 

distance away. The solution times of this approach when the separation standards are 

small, r < 5, total solution times are less than 0.75 seconds (see Table 4: Core 

Cliques). This is because the problem size is still relatively small and membership in 

neighborhoods and cliques is relatively low in number. When r is larger, the 

membership of the core cliques and neighborhoods grow larger, and so does needed 

computational times. Overall, total solution times are relatively low in comparison to 

other approaches. 
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When the separation standard is larger (11 to 15km) total solution times are 

much less, ranging from approximately 0.5 to 1.5 seconds than for distances of 5 to 

10. When the separation standard exceeds the average settlement-to-settlement 

distance, computation time increases, though not as dramatically as in the previous 

approaches. At very large separation standard values (20-40km), computation times 

range from approximately1.5 to 35.5 seconds. The reason for the relatively lower 

computation times at larger separation standards is that the core clique membership 

becomes larger and represents spatially a large percentage of pairwise restrictions. 

This happens even as the neighborhood membership remains relatively constant. 

This makes for a fairly tight and compact problem, which is reflected in the 

computation times, particularly for larger separation standards.  

The Core and Wedge approach is based on the fact that an ACLP model in 

Euclidean space could be built entirely of at most 7 cliques per site. In this case, 7 

clique constraints need to be written for a potential facility location unless a given 

clique for site i contains only site i as a member. Because cliques are very tight 

problem representations, models that use them are generally very efficiently solved. 

The problem size is much larger than that of a problem using a single neighborhood 

constraint set (e.g Yoshimoto and Brodie, 1994) and can take longer to compute a 

solution unless the separation distances are large enough to create neighborhood sets 

of relatively large size. 

When separation standards are small (<5km) total solution times for the Core & 

Wedge model are less than 0.1 seconds. When separation standards are in the 
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intermediate range (5 to 10km), total solution times are a little longer; they range 

from approximately 0.3 to 1.40 seconds. However, when separation standards are 

larger than 10 and less than 25 the approach is very efficient. Total solution times at 

larger separation standards range from approximately 0.24 seconds to 49 seconds. 

The Maximal Clique model of Murray and Church creates a single very tight 

clique constraint for each location site and a neighborhood set that represents the 

remaining site locations not in the clique. This approach requires several vertex 

packing problems to be solved for each site neighborhood in order to generate the 

appropriate maximal clique to represent the problem. The process of generating each 

maximal clique was multithreaded, that is split into several sub-problems and run on 

all available CPU threads, to reduce problem set up times. However, even when the 

setup process is multi-threaded the process overall takes a great deal of time.  

In Table 4, notice that the set up times for Maximal Cliques are large (always 

greater than 18 seconds). Using this approach results in very small solution times for 

the model, as solution times range from less than one thousandth of a second to a 

maximum of 2.2 seconds. This is because the formulation is very tight and easy to 

solve. However, the approach results in an overall total solution time that is very 

long; total solution times range from 18.720 seconds to 59.520 seconds. 

Unfortunately, solving the required vertex packing problems to set up the problem 

takes time. Thus, while the formulation problem is very efficient to solve to 

optimality, the setup process is not.  
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Figure 19. Total solution times of the various constraint representations of the 
Anti-Covering Location Problem 

 

Given each of these formulation types, one may wonder which formulation 

approach may be best geared toward solving an Anti-Covering Location Problem 

(ACLP). Figure 19 presents the total solution times for each approach over the range 

of separation distances. The Core & Wedge formulation and the core formulation 

have robust performance when compared to the other formulations. Both solve 

relatively quickly and often outperform many of the other formulations, particularly 

for large separation standards. The Core and Wedge formulation outperforms the 

core model formulation when the separation standard is of small to intermediate size. 

This is because several tight cliques result in a fairly tight overall problem, whereas 

the Erkut et al. (1996) formulation does not.  
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When distances are very large and few facilities can be placed among the sites 

without violating a distance standard, the core model of Erkut et al. (1996) has the 

advantage over the core & wedge model. This is due to the fact that the core & 

wedge has 3.5 times more constraints. This is because for each site the core 

constraint overlaps with many of the other facility sites. This results in a relatively 

compact model where the core constraint acts like a maximal clique constraint and 

solves efficiently. Thus, the Core and Wedge and core modeling approaches are 

likely to be the most robust in terms of overall solution time; Core and Wedge 

performs the best for small to intermediate separation standards while the Core 

performs the best for intermediate to large separation standards. There is, however an 

additional constraint, the Location Set Covering Problem constraint, which may be 

added to all of these formulations with the potential to reduce solution times. This is 

discussed in the next subsection. 

2. Computational Experience of Anti-Covering Location Problems with 

added Location Set Covering Constraints 

The Location Set Covering Problem (Toregas & ReVelle, 1972), or LSCP, 

constraint could be added as a constraint to each of the previously described 

formulations. The LSCP constraint can be added in an attempt to create an efficient 

cut for the problem matrix. In other words, this constraint was proposed as a possible 

method to create facets which yield integer solutions with greater frequency than 
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otherwise would occur. The LSCP constraint, using this added notation  

{ }rdSjN iji <∈= |  for all i in S, has the following general form:  

Six
iNj

j ∈∀≥∑
∈

                  1  (48) 

 

For each ACLP model formulation an LSCP constraint set was added and solved for 

each problem instance to optimality. 

Table 5 presents the computational experience results for each formulation with 

the appended LSCP constraints. In many cases where the separation standard was 

small the addition of the LSCP constraints resulted in a total solution time that was 

the same or slightly worse. This makes sense as the added constraint set increases 

problem size for problems that are already generally easily solved by the optimizer. 

However, where the LSCP constraints generally improve the total solution time 

performance is when the separation standard is larger than the average settlement-to-

settlement distance. This is because there are many members of cliques or 

neighborhood constraints, and the addition of the LSCP constraint often results in a 

tight cut to the problem matrix.  

Figure 20 shows this graphically. Results of the total solution time with and 

without the LSCP constraints for each formulation are presented. It is clear that when 

separation standards are small, the computation is increased through their addition. 

However, for large separation standards, there is a general reduction in solution time 

for the pairwise and core models. Solution times are also differentially affected  
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Table 5: Computational Experience of Formulations with added LSCP 
constraint 

 

depending on the formulation type. For example, the total solution times of 

pairwise constraints for large separation standards are greatly reduced, as are the 

Yoshimoto and Brodie and Big M formulations. The formulations that appear to 

r-Sep 1 2 3 4 5 6 7 8 9 10

Objective 212 110 68 45 32 26 21 17 14 11

Setup Time 0.026 0.026 0.027 0.027 0.041 0.029 0.034 0.037 0.033 0.033

Solution Time 0.044 0.093 0.305 1.624 3.724 2.038 1.808 4.510 3.431 4.229

Total Time 0.070 0.119 0.332 1.651 3.765 2.067 1.842 4.547 3.464 4.262

Setup Time 0.026 0.032 0.027 0.027 0.029 0.036 0.030 0.032 0.034 0.035

Solution Time 0.044 0.096 0.307 1.631 3.883 2.215 1.639 4.519 3.447 4.095

Total Time 0.070 0.128 0.334 1.658 3.912 2.251 1.669 4.551 3.481 4.130

Setup Time 0.039 0.032 0.046 0.035 0.040 0.068 0.045 0.050 0.048 0.050

Solution Time 0.059 0.085 0.169 0.396 1.720 1.520 1.414 2.467 1.560 5.541

Total Time 0.098 0.117 0.215 0.431 1.760 1.588 1.459 2.517 1.608 5.591

Setup Time 0.047 0.048 0.036 0.038 0.039 0.040 0.061 0.044 0.055 0.048

Solution Time 0.049 0.197 0.262 1.216 5.162 2.019 1.579 5.971 2.135 6.869

Total Time 0.096 0.245 0.298 1.254 5.201 2.059 1.640 6.015 2.190 6.917

Setup Time 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.040 0.040 0.040

Solution Time 0.100 0.000 0.100 0.100 2.600 0.400 0.400 1.800 0.700 1.700

Total Time 0.130 0.030 0.130 0.130 2.630 0.430 0.430 1.840 0.740 1.740

Setup Time 19.210 19.010 18.710 18.520 19.600 18.880 19.860 19.410 20.260 23.410

Solution Time 0.000 0.000 0.100 1.100 4.600 0.600 0.500 2.600 1.000 4.000

Total Time 19.210 19.010 18.810 19.620 24.200 19.480 20.360 22.010 21.260 27.410

r-Sep 11 12 13 14 15 20 25 30 35 40

Objective 10 9 8 8 6 4 3 2 2 1

Setup Time 0.035 0.037 0.039 0.040 0.041 0.048 0.054 0.054 0.054 0.057

Solution Time 4.799 4.522 5.628 8.644 11.540 17.600 28.100 30.000 82.000 91.200

Total Time 4.834 4.559 5.667 8.684 11.581 17.648 28.154 30.054 82.054 91.257

Setup Time 0.038 0.056 0.038 0.043 0.042 0.049 0.052 0.055 0.055 0.056

Solution Time 4.825 4.849 5.633 8.675 11.500 17.200 27.400 30.100 82.300 92.500

Total Time 4.863 4.905 5.671 8.718 11.542 17.249 27.452 30.155 82.355 92.556

Setup Time 0.057 0.082 0.071 0.064 0.085 0.084 0.091 0.097 0.102 0.096

Solution Time 5.777 10.700 9.712 7.672 11.100 24.100 60.550 70.700 39.670 69.200

Total Time 5.834 10.782 9.783 7.736 11.185 24.184 60.641 70.797 39.772 69.296

Setup Time 0.049 0.055 0.053 0.059 0.058 0.065 0.071 0.075 0.074 0.075

Solution Time 2.437 1.077 1.071 1.556 1.685 1.995 4.787 15.530 22.800 13.200

Total Time 2.486 1.132 1.124 1.615 1.743 2.060 4.858 15.605 22.874 13.275

Setup Time 0.040 0.040 0.050 0.050 0.050 0.060 0.060 0.060 0.060 0.060

Solution Time 1.200 1.600 2.600 2.300 2.400 4.300 8.100 25.500 37.900 47.200

Total Time 1.240 1.640 2.650 2.350 0.030 4.360 8.160 25.560 37.960 47.260

Setup Time 28.850 39.160 40.260 50.560 58.820 52.540 39.490 19.650 19.350 19.250

Solution Time 1.500 0.900 0.700 0.500 0.900 1.000 1.800 0.200 0.100 0.000

Total Time 30.350 40.060 40.960 51.060 59.720 53.540 41.290 19.850 19.450 19.250

C
o

re
 &

 

W
e

d
g

e
 

C
liq

u
e

s

M
a

x
im

a
l 

C
liq

u
e

s

M
a

x
im

a
l 

C
liq

u
e

s
B

ig
 M

Y
o

sh
im

o
to

 &
 

B
ro

d
ie

P
a

ir
w

is
e

C
o

re
 

C
liq

u
e

s
B

ig
 M

Y
o

sh
im

o
to

 

&
 B

ro
d

ie
P

a
ir

w
is

e
C

o
re

 

C
liq

u
e

s

C
o

re
 &

 

W
e

d
g

e
 

C
liq

u
e

s



 

 119 

receive less of a benefit when used in conjunction with LSCP constraints appear to 

be models based upon clique constraints, however, the core formulation appears to 

receive the greatest benefit when used with LSCP constraints.  

Thus, it appears that LSCP constraints are useful, though only when there are 

larger separation standards. In conclusion, this sub-section has presented and 

discussed the results of several constraint formulations representing the ACLP. It 

appears that the Core and Wedge formulation and core models are quite efficient as 

compared to the other approaches. The core & wedge model outperforms the core 

model when used to solve small problems using small to intermediate separation 

standards. However, the core & wedge model is not as efficient as the core model 

when very large separation standards are used and only a few facilities can be 

located. The next section discusses the computational experience of solving the 

Disruptive Anti-Covering Location Problem. 
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Figure 20. Graphical comparison of solution times for formulations with and 
without the addition of Location Set Covering Problem Constraints 
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3. Computational Experience of Various Constraint Forms Representing 

the Disruptive Anti-Covering Location Problem 

This section describes the computational experience of solving the Disruptive 

Anti-Covering Location Problem. The disruptive anti-covering location problem is 

presented in detail in chapter four. Essentially, this problem may be modeled using 

any of the ACLP formulations by adding LSCP constraints and changing the 

maximization objective to a minimization objective. Thus, if one develops an ACLP 

formulation with LSCP constraints one simply needs to switch the objective function 

and one has a working DACLP formulation and vice-versa. This is due to the fact 

that the LSCP constraints along with the separation constraints ensure that each 

solution is proper. Table 6 presents the results of the DACLP formulations 

computational experience. 

The results of Table 6 are very similar to the results of the ACLP formulations in 

terms of the conclusions made about constraint membership and problem size for 

each formulation type. What is different about these results, however, is that all of 

the formulations representing the DACLP are solved to optimality significantly 

faster than their ACLP counterparts with and without LSCP constraints. There is a 

reason for this.  

That reason is simply how cuts can be made to the problem matrix and how the 

solver works to solve each of these problems. As this is actually a conditioned LSCP 

problem, it is likely that this form is easier to solve. In this case, the LSCP 

constraints represent particularly tight cuts for the DACLP problem.  
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Table 6: Computational experience of formulations representing the Disruptive 
Anti-Covering Location Problem 

 

r-Sep 1 2 3 4 5 6 7 8 9 10

Objective 170 68 35 22 16 11 9 7 6 4

Setup Time 0.025 0.026 0.026 0.027 0.035 0.030 0.050 0.031 0.033 0.034

Solution Time 0.046 0.061 0.164 0.101 0.213 0.143 0.484 0.246 0.317 0.278

Total Time 0.071 0.087 0.190 0.128 0.248 0.173 0.534 0.277 0.350 0.312

Setup Time 0.025 0.026 0.045 0.027 0.034 0.029 0.031 0.033 0.032 0.034

Solution Time 0.040 0.065 0.184 0.099 0.228 0.145 0.365 0.261 0.330 0.275

Total Time 0.065 0.091 0.229 0.126 0.262 0.174 0.396 0.294 0.362 0.309

Setup Time 0.031 0.032 0.035 0.036 0.037 0.039 0.041 0.049 0.047 0.050

Solution Time 0.044 0.100 0.211 0.222 0.361 0.439 0.670 1.048 1.394 1.512

Total Time 0.075 0.132 0.246 0.258 0.398 0.478 0.711 1.097 1.441 1.562

Setup Time 0.045 0.046 0.046 0.059 0.050 0.052 0.054 0.062 0.058 0.060

Solution Time 0.048 0.075 0.174 0.202 0.389 0.207 0.480 0.408 0.445 0.481

Total Time 0.093 0.121 0.220 0.261 0.439 0.259 0.534 0.470 0.503 0.541

Setup Time 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.040 0.040 0.040

Solution Time 0.000 0.000 0.100 0.300 0.200 0.200 0.400 0.500 1.300 0.900

Total Time 0.030 0.030 0.130 0.330 0.230 0.230 0.430 0.540 1.340 0.940

Setup Time 19.210 19.010 18.710 18.520 19.600 18.880 19.860 19.410 20.260 23.410

Solution Time 0.000 0.000 0.100 0.100 0.200 0.000 0.200 0.200 0.200 0.200

Total Time 19.210 19.010 18.810 18.620 19.800 18.880 20.060 19.610 20.460 23.610

r-Sep 11 12 13 14 15 20 25 30 35 40

Objective 4 4 4 3 3 1 1 1 1 1

Setup Time 0.036 0.038 0.039 0.040 0.041 0.048 0.052 0.054 0.054 0.080

Solution Time 0.307 0.320 0.353 0.390 0.389 0.522 0.659 0.609 0.593 0.682

Total Time 0.343 0.358 0.392 0.430 0.430 0.570 0.711 0.663 0.647 0.762

Setup Time 0.039 0.043 0.038 0.039 0.045 0.047 0.058 0.054 0.055 0.055

Solution Time 0.317 0.336 0.346 0.376 0.384 0.520 0.717 0.629 0.607 0.619

Total Time 0.356 0.379 0.384 0.415 0.429 0.567 0.775 0.683 0.662 0.674

Setup Time 0.052 0.055 0.058 0.066 0.074 0.080 0.091 0.100 0.100 0.097

Solution Time 1.848 2.810 2.394 2.840 3.366 4.981 7.336 8.917 9.409 9.539

Total Time 1.900 2.865 2.452 2.906 3.440 5.061 7.427 9.017 9.509 9.636

Setup Time 0.081 0.066 0.071 0.072 0.077 0.086 0.095 0.100 0.102 0.103

Solution Time 0.627 0.610 0.739 0.889 1.020 1.786 2.838 3.208 3.490 2.590

Total Time 0.708 0.676 0.810 0.961 1.097 1.872 2.933 3.308 3.592 2.693

Setup Time 0.040 0.040 0.050 0.050 0.050 0.060 0.060 0.060 0.060 0.060

Solution Time 1.200 1.500 1.800 2.200 2.400 4.200 7.900 26.300 39.000 46.900

Total Time 1.240 1.540 1.850 2.250 0.030 4.260 7.960 26.360 39.060 46.960

Setup Time 28.850 39.160 40.260 50.560 58.820 52.540 39.490 19.650 19.350 19.250

Solution Time 0.300 0.000 0.000 0.400 0.000 0.000 0.000 0.000 0.000 0.000

Total Time 29.150 39.160 40.260 50.960 58.820 52.540 39.490 19.650 19.350 19.250M
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This means that the solver has to run fewer iterations to generate cuts, branches, and 

bounds, and thus yields a solution in less time. Figure 21 shows this graphically. 

When looking at the figure, one can see this quite easily. There are also some 

important notes that should be made related to each formulation. 

The Wedge and Core constraint formulation does not perform well for large 

separation standards when used to represent the DACLP. The reason for this is that 

with the exception of the pairwise model, the core & wedge model is, in general, 

larger than the other models. Those formulations that use a combination of 

neighborhood and clique constraints generally receive a benefit in that the overall 

problem representation is small. For example only two constraints need be written 

for each facility site for the Big-M and Yoshimoto and Brodie formulations, and at 

most three for the Erkut et al. (1996) constraint forms. This results in fairly compact, 

tight formulations that are easily solved. Given the computational experience of the 

ACLP and DACLP constraint formulations, it is likely that if one needs to solve for 

both forms of the ACLP and DACLP the constraint types to use would be that of 

Erkut et al. (1996). This is because the overall solution time when using both forms 

is fairly efficient in terms of solution time. With regard to the Maximal Clique 

constraint representation, it again performs the slowest due to the computation time 

necessary to develop the maximal clique sets.  
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Figure 21. Total solution times of the various constraint representations of the 
Disruptive Anti-Covering Location Problem 

 

However if one were to implement the Maximal Clique model for both the 

ACLP and DACLP, they would technically only need to solve the series of vertex 

packing problems once for each distance. Unfortunately, even if one were to do that 

for a dense point set the total solution time would still exceed the time of all the 

other approaches, except for the Core and Wedge approach when the separation 

standard is very large. This brings us to an important point. When the number of 

points is large, the likelihood that one will be able to solve a problem to optimality in 

a reasonable amount of time, say in the time it would take to get a cup of coffee, isn’t 

high. Figure 20 and Figure 21 support this conclusion as times even for the modest 

sized 372 node dataset of Ruggles and Church (1996) show.  
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4. Computational Experience on Varying CPU Hardware Types 

The types and power of computing hardware have greatly expanded in the last 

decade. Computers are now able to use 64-bit integers and it is nearly standard for 

central processing units (CPUs) to have multiple processing cores, or threads, built 

into the chip itself as well as containing at least 8GB of memory as a standard. There 

are two main CPU manufacturers in the x86 computing market. They are Intel 

Corporation and Advanced Micro Devices (AMD). Both companies have taken 

different approaches to sell their processors.  

Intel has designed multi-core chips with the ability to run two “virtual” threads 

on a single physical CPU thread. This technology makes use of instruction sets 

generated from the two virtual threads that are then handed to the physical thread. 

The two virtual threads are designed to utilize the single physical hardware thread 

when there is “downtime” between instructions on either virtual thread. The 

advantage of this approach is that one is able to achieve maximal performance from 

a physical thread. The downside is that if two processes are running long-term and 

are numerically intensive on each thread, it can slow performance. Since Intel chips 

are designed to use hyper-threading, which generates significant amounts of heat and 

stress to the CPU core when running at full capacity, their chips are clocked at 

slightly lower speeds but generally contain a greater number of computational 

threads. AMD, on the other hand, has focused on developing lower cost processors 

that use only physical threads that run at higher clock frequencies to achieve a 

similar level of performance. 
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Given this increase in computational power, many operations research solvers 

have greatly expanded their computational ability. They do this by taking advantage 

of the ability to address more memory and to take advantage of parallel processing 

techniques provided by the ability to take advantage of a multiple thread CPU. This 

section seeks to describe the computational experience of running several of the 

ACLP formulations using three separation standards that stress the Xpress solver. In 

particular, separation standards of 15, 7.5, and 5 were chosen. 

Table 7 lists the computational experience of running the Big-M, Yoshimoto & 

Brodie, Pairwise, Core Cliques, Wedge & Core, and Maximal Cliques formulations 

of the ACLP on the three computers. The separation standard used in these models is 

15km. The computers used have the following CPUs: IO is a laptop PC with an 

AMD A10 5750M 2.5GHz  variable-speed mobile quad-core (4 total threads) CPU;  

Jupiter is a desktop PC with an AMD A10 6800K 4.1GHz quad-core (4 total threads) 

CPU; SuperChief is a desktop PC with an Intel i7 2.8GHz quad-core hyper-threaded 

(8 total threads) CPU.  

In this case, Jupiter, the quad-core high CPU clock speed computer beat the other 

machines in all formulations except the Maximal Cliques representation. This is not 

surprising as these are fairly small problems for which a faster clocked CPU is likely 

to iterate through faster, particularly given the computational intensity. SuperChief, 

the computer with more available threads, is the fastest computer when used to solve 

the several vertex packing problems required to setup the Maximal Clique 

formulation. This is primarily due to the fact that SuperChief is able to break the 
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setup problem into several smaller chunks that can then be solved. IO, with its 

mobile CPU, performed the slowest of all three computers. This isn’t surprising as 

this CPU is designed to sip power and balance computation. Though it is slower, it is 

competitive with the other CPUs, often trailing by less than two seconds of 

computation time. 

 

Table 7: Computational experience on three different computers for the various 
ACLP formulations where r = 15 

 

Machine IO Jupiter* SuperChief Original Pre-Solve

Setup Time 0.040 0.030 0.029

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 7.325 5.490 6.048 372 371 6

Total Time 7.365 5.520 6.077 372 371

Setup Time 0.037 0.035 0.028

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 7.338 5.474 6.255 372 371 6

Total Time 7.375 5.509 6.283 372 371

Setup Time 0.066 0.056 0.053

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 8.213 5.750 6.401 69888 4766 6

Total Time 8.279 5.806 6.454 372 372

Setup Time 0.060 0.045 0.043

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 1.102 0.787 0.983 744 568 6

Total Time 1.162 0.832 1.026 372 371

Setup Time 0.070 0.070 0.050

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 1.700 1.400 1.900 2119 827 6

Total Time 1.770 1.470 1.950 372 368

Setup Time 98.150 84.020 58.820

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 0.700 0.600 0.700 745 745 6

Total Time 98.850 84.620 59.520 372 372

Big M

Yoshimoto and 

Brodi

Pairwise

Core Cliques

Core & Wedge

Maximal Cliques
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Table 8: Computational experience on three different computers for the various 
ACLP formulations where r = 7.5 

 

Table 8 shows similar results to those in Table 7, though a separation distance of 

7.5km is used here. Again, where the size of the problem is small, Jupiter typically is 

the winner. Where problem sizes are larger SuperChief tends to be the winner. The 

exception, once again, is the Maximal Clique formulation that heavily favors 

SuperChief in its ability to parallelize the vertex packing problems. Table 9 shows 

similar results as Table 7 & Table 8, except that the problems involve a separation 

distance of 5 km. 

Machine IO Jupiter* SuperChief Original Pre-Solve

Setup Time 0.031 0.021 0.021

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 3.797 3.006 2.745 372 361 18

Total Time 3.828 3.027 2.766 372 362

Setup Time 0.031 0.023 0.022

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 3.781 2.954 2.747 372 361 18

Total Time 3.812 2.977 2.769 372 362

Setup Time 0.031 0.031 0.032

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 1.391 1.044 1.153 12332 643 18

Total Time 1.422 1.075 1.185 372 361

Setup Time 0.047 0.043 0.032

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 4.407 3.446 3.601 744 567 18

Total Time 4.454 3.489 3.633 372 367

Setup Time 0.050 0.050 0.050

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 1.300 1.100 1.100 2271 642 18

Total Time 1.350 1.150 1.150 372 361

Setup Time 47.790 48.470 19.690

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 1.900 1.500 1.500 745 18

Total Time 49.690 49.970 21.190 372

Maximal Cliques

Big M

Yoshimoto and 

Brodi

Pairwise

Core Cliques

Core & Wedge



 

 129 

Table 9: Computational experience on three different computers for the various 
ACLP formulations where r = 5 

 

These results suggest that if one is solving small problems, a higher clocked CPU 

with several cores is likely to be faster than a CPU with hyper-threading capability 

running at a lower clock speed. However, when problem complexity is great and 

problems are large and parallelizable, a computer with multiple threads at a lower 

clock speed is likely to solve a problem much faster. This is especially true for 

problems such as the Maximal Cliques formulation. 

Machine IO Jupiter* SuperChief Original Pre-Solve

Setup Time 0.016 0.024 0.020

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 3.265 2.617 2.700 372 341 32

Total Time 3.281 2.641 2.720 372 342

Setup Time 0.015 0.022 0.018

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 3.219 2.594 2.901 372 341 32

Total Time 3.234 2.616 2.919 372 342

Setup Time 0.032 0.027 0.028

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 1.062 0.791 0.827 12332 401 32

Total Time 1.094 0.818 0.855 372 341

Setup Time 0.046 0.037 0.030

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 3.735 2.996 3.383 744 527 32

Total Time 3.781 3.033 3.413 372 353

Setup Time 0.040 0.030 0.040

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 1.800 1.400 1.400 2214 432 32

Total Time 1.840 1.430 1.440 372 341

Setup Time 46.690 47.390 19.600

# Const & 

Variables

# Const & 

Variables Objective:

Solution Time 1.500 1.100 1.200 739 739 32

Total Time 48.190 48.490 20.800 372 372

Maximal Cliques

Big M

Yoshimoto and 

Brodi

Pairwise

Core Cliques

Core & Wedge
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5. Concluding comments about solving the ACLP and DACLP 

When working with datasets containing a large number of points with large 

separation standards, solving to optimality may take significant computational effort 

and may or may not result in finding an optimal solution. This is especially true for 

large environmental datasets that are often in raster form. For example, the ACLP 

model can be used to analyze useful habitat and possible carrying capacity. In one 

problem involving the analysis of spotted owl habitat, Church (2013) found that the 

problem was too large to solve for optimal ACLP solutions. So, in conclusion, for 

smaller discrete sets of points, the Core and Core & Wedge models should be used. 

If one is unable to solve the ACLP or DACLP when applied to large datasets of 

discrete points or a raster, they will have to rely on heuristic approaches to generate a 

solution. This next section discusses a heuristic that has been developed as a part of 

this dissertation.  
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B. Heuristic approaches to generating solutions to the ACLP 

The previous sections presented the computational experience in solving the 

ACLP and DACLP to optimality. This computational experience demonstrates that 

as separation standards increase, the number of facility pairwise site restrictions 

increase as well as the time required to compute the optimal solution. This is 

problematic, especially in the context of using datasets that have a large number of 

point locations. This is especially true if one is using a raster dataset containing a 

significant number of pixels at a fine resolution to represent an area. This all but 

prohibits one for determining a solution quickly, let alone an optimal one. In many 

cases a modeler or analyst simply wishes to build a feasible solution to their problem 

that is hopefully near optimal. Because of this, several heuristic approaches have 

been developed to solve the ACLP. 

Heuristics have been developed to solve a variety of spatial location problems. 

For example the greedy heuristic method has been discussed at length in the 

literature. Chvatal used the greedy approach to solve the Set Covering Location 

Problem (Chvatal, 1979), upon which Feo and Resende improved (Feo & Resende, 

1989) and subsequently expanded their approach with Smith to a greedy randomized 

adaptive search (Feo et al. 1994). Chaudhry, McCormick, and Moon (1986) used the 

Greedy approach to solve the original Anti-Covering Location Problem.  

In addition to the greedy approach other methods have been developed to solve 

the Anti-Covering Location Problem. Such examples include: greedy randomized 

adaptive search procedure or GRASP (Feo et al. 1994), genetic algorithms 
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(Chaudhry, 2006), La Grangian relaxation (Murray & Church, 1997b; Ribeiro & 

Lorena, 2008a; 2008b), tabu search (Yamamoto, Camara, & Lorena, 2002), Bee 

Colony Optimization meta-heuristics (Dimitrijević et al. 2012), and evolutionary 

algorithms (Wei & Murray, 2014). All of these approaches are useful for trying to 

determine near optimal solutions for problems applied to a set of discrete points. 

There are a few heuristic approaches that have been designed to solve the ACLP 

geared toward environmental problems that use raster datasets. 

Church (2013) developed two heuristic approaches for the ACLP used to identify 

and map core habitat. The first heuristic he developed is called the “Random 

Maximum Scatter Routine.” This routine systematically selects raster cells that may 

be used to serve as territorial centers. Each of the cells may not have an overlapping 

territory as represented as a circular separation standard. The routine selects at 

random a starting cell from a set of potential cell locations that have not already been 

selected as a territory center. Once a cell has been selected, all of the other cells 

within the range of the separation standard of the selected cell are removed from the 

candidate territory center list. Once all nearby cells have been removed, the 

algorithm checks to see if any remaining candidate territory centers exist. If they do 

the process repeats until no candidate territory centers are left.  

The second heuristic approach Church (2013) developed is more sophisticated. 

This heuristic is described as the Maximal Packing heuristic in the book chapter, but 

will subsequently be referred to as Packer. The Packer approach involves first 

populating a list of sites to keep track of those sites contained in a raster that have 
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been calculated as being feasible territory centers. Once this has been done, a site is 

selected at random from the list. Once this site has been selected, all sites within the 

separation standard of the initially selected site are eliminated from the list.  

Then the heuristic determines which site on the list is the closest site to the 

previously chosen site. It then picks the closest site or if there are ties in which site is 

the closest, it picks at random one of these candidates. This site is selected as a 

territory center and all of the sites within the separation standard of this selected site 

are removed from the candidate site pool. The third site that is chosen is the site on 

the candidate list that is the closest to the first two chosen centers. Each time a 

candidate is chosen, the list is updated. After the fourth site is chosen, all subsequent 

sites are chosen based upon their combined distance to the first four sites. This 

process is repeated until no sites are left in the candidate site pool. In this way a 

packed solution can be computed relatively quickly for large raster datasets. To date, 

these two heuristic approaches described in Church (2013) are the only heuristics 

designed to generate a packed solution using large environmental raster datasets. 

Both of these approaches, particularly this latter approach, could be used to generate 

ACLP solutions. Both processes are designed to be repeated a large number of times. 

However, these two approaches have a few drawbacks and because of this a new 

heuristic strategy was developed and described in the next sub-section. 

1. The Marching Army Heuristic  

The Marching Army heuristic is designed to quickly generate a packed solution 

to an ACLP when applied to a large raster dataset or a set of discrete points. This 
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presentation will focus on its use on a raster or grid of points, where either cells or 

points are selected one at a time for an ACLP solution. The Marching Army’s 

solution approach can be thought of as an army frontline. The objective is to select as 

many sites along the frontline for facility location while meeting the minimum 

separation criteria, and then advance the front. Figure 22 illustrates the heuristic 

approach over an example raster grid. The simple logic of a Marching Army is 

provided in Figure 23, and is conceptually related to sweep algorithms, such as that 

used by Nievergelt and Preparata (1982). To demonstrate the logic as it applies to the 

sample dataset, consider starting the algorithm at the NW corner of a raster and that 

the front line runs north to south and advances west to east. The algorithm will check 

each feasible facility site location along the front working its way down the frontline 

from north to south. If a site along the frontline is feasible and meets all of the 

separation requirements associated with previously selected sites, it selects that site 

for a facility/territory and then moves on. When it reaches and after it considers the 

last feasible site on the current frontline, the front line is advanced by a march-step, 

say equal to one cell move eastward, and the process is repeated until all feasible 

sites along each subsequent frontline advance have been considered and the frontline 

has reached the other side of the region.  

The process can be applied easily and should be repeated using frontlines that 

run vertically and horizontally (cardinal directions) as well as for non-cardinal 

directions that could be computed using a linear equation of the form bmxy += . 

The basic premise is that this heuristic will generate tightly packed arrangements, 



 

configurations that meet the type of properties found in optimal solutions. By 

generating hundreds if not thousands of solutions, the idea is that the best solution 

generated from this process should 

potentially be altered to start in the middle of the line or for several starting and 

ending locations along the frontline

work. The Marching Army

the problem of interest was defined on a raster

Figure 22. Conceptual example of how the Marching Army heuristic works

This approach could also be used to generate ACLP soluti

in the following three ways
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configurations that meet the type of properties found in optimal solutions. By 

generating hundreds if not thousands of solutions, the idea is that the best solution 

generated from this process should be close to if not optimal. Starting locations could 

potentially be altered to start in the middle of the line or for several starting and 

ending locations along the frontline, but that would be an extension to this current 

Marching Army heuristic, as conceptualized here, uses raster data because 

the problem of interest was defined on a raster.  

. Conceptual example of how the Marching Army heuristic works

This approach could also be used to generate ACLP solutions on vector datasets

in the following three ways. If it was applied to polygon datasets, the heuristic would 

configurations that meet the type of properties found in optimal solutions. By 

generating hundreds if not thousands of solutions, the idea is that the best solution 

Starting locations could 

potentially be altered to start in the middle of the line or for several starting and 

, but that would be an extension to this current 

, as conceptualized here, uses raster data because 

. Conceptual example of how the Marching Army heuristic works 

 

ons on vector datasets 

. If it was applied to polygon datasets, the heuristic would 
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have to use a point-in-polygon test to determine if it was inside a polygon defined as 

a feasible center. If a point dataset is to be used, one could first convert the point 

dataset to a raster such that each point location was uniquely represented as a pixel 

that the above heuristic could then be applied. Alternatively one could have the 

heuristic use a buffered line with a very small buffer distance as a front. A series of 

point in polygon tests on the front could then be used to determine the set of points 

located on the “frontline”. These points could then be selected and packed. These, of 

course, would be possible extensions in future work. 

The Marching Army heuristic has the potential to greatly reduce the solution 

time required to solve an Anti-Covering problem for large raster datasets as 

compared to using an integer linear programming (ILP) model. In addition, the 

Marching Army heuristic has the potential to quickly identify optimal or near 

optimal solutions that current competing heuristics are not necessarily able to find. 

The heuristic could also be modified to handle the generalized or “almost” r-

Separation ACLP, as well as the Site Sensitive ACLP proposed in chapter six.  

The marching army has been tested on the same dataset in which the two 

heuristics described in Church (2013) have been applied, the Kings River Protection 

Area (KRPA) in Sierra National Forest, California. It was developed by Ross 

Gerrard to identify possible nesting patterns for the California Spotted Owl (Strix 

occidentalis occidentalis), who frequently use locations of dense canopy cover in 

mature to old-growth forest. This dataset was used to support US Forest Service 

planning for fire-fuels removal activities and for potential forest disturbances such as 
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fire, so that such impacts to nesting site carrying capacity of the California Spotted 

Owl population could be inferred. The KRPA raster dataset, representing average 

canopy about an area of ~2.4 km2, was generated using a focal mean of ~879 m from 

US Forest Service vegetation data following the method of Gerrard et al. (2001).  

The KRPA dataset consists of ~1,000,000 pixels (an area of ~900 km2), of which 

~75,000 pixels represent potential nesting locations. Average separation distances of 

spotted owl nest sites is ~1.8km, which means that the focal mean likely captures the 

required canopy densities for those areas suitable for nesting. Classification of the 

KRPA canopy cover focal mean raster into high (60-100%), medium (50-59%) and 

low (0-49%), represent varying levels of habitat suitability. Those locations of high 

canopy cover are locations deemed suitable for nesting. If one were to attempt to 

solve this using an ACLP model, it would not be successful as the number of suitable 

nesting site variables would overwhelm existing solvers. However, one may use a 

random subset of potential locations in an attempt to derive a solution. Even if one 

uses a small percentage of the suitable sites, say 7%, the model requires 14.5 hours 

to derive a solution of 63 sites. Thus, one may be forced to rely on a heuristic 

approach to obtain solutions to such large datasets in a reasonable amount of time. 

Furthermore, solving a problem on a sample of sites, rather than the whole dataset, is 

itself a heuristic. 

When one uses a heuristic, it should be run several times with varying starting 

parameters in order to locate a good solution. The parameters that one should adjust 

when utilizing the marching army heuristic are the slope of the front line, direction  
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Figure 23. The Marching Army heuristic logic flowchart 

 

of travel and the starting point on the frontline. In the results presented 

subsequently, the ends of the frontline were randomly chosen as the starting 

locations. Any point on the frontline could be randomly selected as a starting point if 
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one desired, though this was not done here. The b-intercept point should be 

determined by the heuristic so as to start the front-line at a particular point (e.g. top 

or bottom right, or top or bottom left of the study area extent).  

Figure 24 shows an example of the solution generated by the Marching Army 

Heuristic. The figure shows the best packed solution identified by the Marching 

Army heuristic, consisting of 62 sites. Both the Packer (Church 2013) and Marching 

Army heuristics found a solution which deployed 62 nesting sites/territories potential 

facility sites when run 1000 times taking approximately 2.8 hours for Packer and 2.4 

hours for the Marching Army heuristics. Figure 25 shows the frequency of objective 

values obtained by the Packer and Marching Army heuristics. Packer found a 

configuration of 62 sites 21 times whereas Marching Army found it only 3 times. 

However, when one examines the histogram presented in Figure 25, it is clear that 

the Marching Army heuristic on the average finds better configurations. The least 

packed configuration found by Marching Army is 57 sites as compared to 54 for 

Packer. In addition, Packer found a configuration of 57 sites on average, while 

Marching Army found 59. Thus, the spread of solutions is much larger using the 

Packer heuristic than the Marching Army heuristic and does not do as well on the 

average. Thus, the Marching Army is a competitive heuristic approach that can 

identify a solution within 1 site (1.6%) of the best known configuration of 63 sites. 

In conclusion, utilizing heuristics to develop solutions to packing problems is 

necessary for problems where the number of potential location sites is very high. A  
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Figure 24. This figure shows the Kings River Protection Area in Sierra National 
Forest, California. The areas represent classifications of the results of 
a ~879m focal mean average raster of canopy cover. The areas in 
blue represent dense canopy, a requirement of spotted owl nesting 
sites.  The 62 sites located by the Marching Army heuristic are shown 
as the red circles. 
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new heuristic that is fast and produces solutions which are at least near optimality, 

the Marching Army heuristic, has been proposed and developed. The next section 

outlines an area of future work that could prove to be useful when developing a 

heuristic to solve the DACLP. 

Figure 25. Histogram showing the frequency of objective values found by the 
Packer and Marching Army (MA) heuristics. 

 

 

2. Future Work: Solving the Disruptive Anti-Covering Problem 

Heuristically 

The DACLP is a new location construct. Up to this point, no heuristic has been 

developed for this problem. The DACLP represents an entirely new way of thinking 

with respect to the anti-covering location problem. Since the DACLP is geared 

toward finding the maximally disruptive solution, new approaches should be 

0

50

100

150

200

250

300

350

400

450

500

54 55 56 57 58 59 60 61 62

F
re

q
u

e
n

cy

Objective Value

Packer MA



 

 142 

explored. One approach to solving the DACLP heuristically would be to borrow 

from heuristic approaches used to solve the Location Set Covering Problem. For 

example, one could think of trying to “cover” all points within S – 0.001 while 

keeping all facilities at least S distance apart. Thus, this is an area of future work that 

should be investigated. 

C. Concluding Remarks 

This chapter has described the computational experience of solving several 

existing ACLP formulations and an entirely new formulation, Core & Wedge. The 

performance of Core and Wedge was tested and compared to existing approaches. 

Further, it was shown that a neighborhood constraint constant in  need be no greater 

than 5. The implementation of this condition subtly improves performance for 

certain separation standards and problem sizes. In addition to testing this new 

property, LSCP constraints were tested as possible facets to help improve each 

formulation. The use of LSCP constraints was to reduce computation times for large 

problems that have numerous overlapping neighborhoods. This reduction is due to 

the fact that LSCP constraints, although redundant, can provide valuable cuts to the 

polytope. A comparison between the varieties of available computing hardware 

configurations with regard to multi-threaded programs is also given. 

This chapter has also described a new heuristic solution approach to the ACLP. 

This approach works very efficiently and obtains solutions for large raster datasets in 

less than a second. Furthermore, the solutions it obtains for such large datasets are 
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close to, if not optimal. Future research directed toward development of a heuristic to 

solve the DACLP has also been proposed.  

In conclusion, this chapter has: 

• Described the computational experience of:  

o Solving the Core & Wedge formulation for the ACLP and 

DACLP 

o Solving existing formulations for the ACLP and DACLP. 

o Testing constraints using the updated neighborhood constraint 

proof derived from the logic of Core & Wedge that shows that in  

is at most 5 

o Testing the efficacy of adding LSCP constraints to a problem to 

redundant, but strong facets. 

o Testing the performance of hardware configurations of multi-core 

and threaded CPUs and the use of the Xpress solver 

• Introduced a completely new heuristic – Marching Army 

• Suggested an approach that may be useful for solving the DACLP 

heuristically 
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VI. A Review of What Has Been Covered 

This dissertation has focused on facility location problems that involve a 

separation standard. The dissertation contains: 1) a review of the literature related to 

dispersion problems; 2) Provides several state-of-the-art advancements in modeling 

approaches related to the Anti-Covering Location Problem (ACLP); 3) Proposes a 

new location problem related to the ACLP, the Disruptive Anti-Covering Location 

Problem (DACLP); 4) Provides the computational experience of solving alternative 

modeling approaches; 5) Demonstrates a completely new approach to solving the 

ACLP heuristically; and, 6) provides insights into potential future research 

directions. The following is a brief synopsis of each chapter and some of the 

important highlights or points contained within each chapter. 

Chapter one sets the stage for this dissertation. It discusses the importance of 

dispersive strategies in location theory. It further focuses on what dispersion is and 

provides several examples of dispersive behavior in facility location. One direct 

example that is readily observed on the earth’s surface is the location of center pivot 

irrigation systems, as well as several other applications including territorial species 

carrying capacity modeling (Downs et al. 2008).  

Chapter two focuses on the two main conceptualizations of dispersion in location 

modeling. The first is a distance based approach and the second is a standards based 

approach. In the distance based approach, the distance between a located facility and 

all other facilities, the distance between a facility and a set of demands, or both, is 

maximized. Modeling approaches that use this representation of dispersion are the p-
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Maxian (Church & Garfinkel, 1978) and p-Dispersion (Shier, 1977; Erkut & 

Neuman, 1991; Lei & Church, 2013) models. The second approach is that of using 

an explicit standard of separation between facilities. It is this standards approach, 

implemented in the Anti-Covering Location Problem defined by Moon and 

Chaudhry (1984) that this dissertation explores. 

Chapter three describes the various ways that the Anti-Covering Location 

Problem can be represented mathematically. These representations include: Big-M 

(Moon & Chaudhry, 1984), refinements to the neighborhood constraints following 

Yoshimoto and Brodie (1994) and Murray and Church (1995), pairwise formulations 

(Murray & Church, 1997a), core cliques (Erkut et al. 1996), and maximal cliques 

(Murray & Church, 1997a). An all-new Core & Wedge model is presented. The Core 

& Wedge formulation is significant as this proves that an ACLP or DACLP defined 

in Euclidean space may be represented entirely through the use of at most 7 tight 

clique constraints. In addition to the Core & Wedge formulation, a proof is provided 

that shows that a neighborhood constraint used in all of the other formulations 

excluding the pairwise representation has a maximum of five neighbors that can be 

located within the separation standard of a given site. This is important as this helps 

create a tighter neighborhood constraint which is used in virtually all ACLP models. 

Furthermore, the chapter discusses an additional constraint that may be written 

which enables efficient cuts to be made to the problem polytope. These are desirable 

as they generally improve optimization solver performance.  
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Chapter four presents a new anti-covering location problem, called the 

Disruptive Anti-Covering Location Problem (DACLP). The DACLP is described 

and a model formulation is developed. This new problem is particularly important to 

environmental ecology problems where anti-covering modeling has been used to 

represent territorial space, location decisions that affect franchise store location, 

planning policy (e.g. regulations related to liquor store location or sex offender 

residency zones), or any other application for which a maximally packed 

configuration is not necessarily a realistic outcome.  

The DACLP involves finding the minimally “packed” configuration, or the 

“lower bound” for packing solutions. DACLP configurations thwart denser packing 

arrangements. An approach is proposed to identify if other solutions exist between 

the densest packing and the least dense packing configurations. In addition to the 

DACLP, generalized or “almost” r-Separation standards are described and a model is 

proposed for such a case as well as when there may be site specific separation 

standards. 

Chapter five describes the computational experience related to solving the 

formulations and concepts described in chapters three and four. Solution times 

required to setup and solve existing representations of the ACLP and the new Core & 

Wedge representation are provided. In addition, the constraints implementing the 

tighter neighborhood constraint are tested as well as the additional LSCP constraint 

used to provide efficient cuts to the problem polytope. Furthermore, the experience 

of solving the DACLP is provided. The computational experience related to solving 
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the various formulations show that solving the Erkut et al. (1996) representation is 

likely to be the most robust when solving the ACLP or DACLP models.  

Chapter five also examined the usefulness of multi-core CPUs and hyper-

threading. Depending on the type of problem one is solving, a CPU with fewer 

threads running at a higher clock speed may outperform a hyper-threaded CPU 

running at a slightly lower clock speed. This is strongly related to the overall size of 

the problem one is solving and the ability to break up such problems.  

A new heuristic approach to solving the ACLP is also proposed. This heuristic 

was developed to use raster data to compute an ACLP solution and is based upon the 

concept of a moving frontline, like a marching army. This heuristic can generate a 

near optimal solution in less than a second for a 30km x 30km raster dataset with a 

resolution of 30m and separation standard of approximately 1.5km. No other ACLP 

heuristic is capable of generating a solution to such a large problem this quickly. A 

future research section related to generating heuristics to solve the DACLP is also 

provided.  

In conclusion, this dissertation has explored the concept of dispersion. It has 

reviewed modeling approaches using separation standards. It has improved the way 

existing formulations may be formulated by improving the neighborhood constraint 

representation. In addition, an entirely new formulation of the ACLP has been 

defined that consists entirely of very tight clique constraints called Core & Wedge. 

Furthermore, an entirely new anti-location problem has been defined that describes 

the problem of finding a minimally packed configuration. This represents a lower 
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bound, or least dense packing configuration that is particularly important when the 

ACLP is used for planning and policy purposes or when applied to ecological 

modeling.  

This is a crucial point, as the ACLP has been broadly applied to several different 

types of spatial problems. A model formulation is also given that enables one to 

explore less dense packing configurations that exist between what may be deployed 

with the ACLP and the DACLP models. Moreover, a heuristic approach is given that 

enables large scale ACLP solutions to be obtained when using spatially extensive 

datasets containing hundreds of thousands of candidate locations. Thus, this 

dissertation has broad applicability to problems related to dispersion and anti-

covering location modeling, furthering the capabilities of using this problem 

construct in geographical analysis. 
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