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I would also like to thank Nicholas Högasten, Austin Richards, Stephanie Lin, and

everyone else at FLIR Systems for the valuable internship opportunity.

I am also grateful to all the people at UCSB who have supported me and my research

over the years. Specifically, I thank Val de Veyra, Student Affairs Manager of the ECE

Department, for all her support and kindness throughout my graduate career. I also

thank Ronni Wynn, facility manager for the Animal Resource Center at UCSB, for all

her assistance with zebrafish care. I also thank Dr. Sebastian Streichan at the Kavli

Institute for Theoretical Physics for our collaborations and the use of his custom single

plane illumination microscope.

I also thank all the previous members of the Systems Bioimaging Lab – Nikhil,

Michael, Jungho, Sandeep, Chieh, Jeff, and John – for being wonderful colleagues and

friends, both in and out of the lab.

Finally, I thank my dad, whose guidance has made me who I am today, and Lauren,

whose unwavering support keeps me motivated for the future.

v



Kevin G. Chan

Contact
Information

Email: kevin@kchan.me
Phone: (510) 557-3243
Web: http://www.kchan.me
LinkedIn: linkedin.com/in/kevingchan

Education University of California, Santa Barbara, Santa Barbara, CA
Ph.D., Electrical and Computer Engineering, 2017
• Adviser: Dr. Michael Liebling
• Group: Systems Bioimaging Laboratory
• Area of Study: Signal & Image Processing
• Thesis: Computational imaging methods for improving resolution

in biological microscopy

University of California, Santa Barbara, Santa Barbara, CA
M.S., Electrical and Computer Engineering, 2013

Harvey Mudd College, Claremont, CA
B.S., Engineering, 2011

Work
Experience

Idiap Research Institute, Martigny, Switzerland 2015 - 2016
Computational Imaging Intern
• Designed and assembled a computational imaging system with active illumi-

nation for temporal superresolution.
• Investigated the performance of different active illumination codes using com-

putational simulations.
• Developed a video reconstruction algorithm capable of achieving temporal

superresolution by a factor of up to 6×.

FLIR Systems, Goleta, CA 2015
Video, Signal Processing, and Algorithms Intern
• Developed image processing simulations for infrared camera systems.
• Implemented single image superresolution for low-cost, low-resolution in-

frared camera sensors.
• Implemented a spatially-variant, point spread function-aware algorithm for

infrared image deblurring.

Research
Experience

Systems Bioimaging Laboratory, UC Santa Barbara 2012-present
Graduate Student Researcher
• I am currently working on biological image processing algorithms, including

temporal superresolution, deconvolution, tomographic reconstruction, and
blood flow video analysis.

1 of 3



• I am developing computational imaging methods that combine novel hard-
ware with image processing algorithms for cardiac fluorescence microscopy. I
apply these methods to imaging experiments with in vivo microscopy of live
transgenic zebrafish.

• I develop bioimage processing tools for ImageJ and Imaris with Java and
Matlab.

Computer Science Department, Harvey Mudd College 2010
Undergraduate Researcher
• I helped develop LogiSketch, an educational software system written in C#

for sketching and simulating digital logic circuits on a tablet PC.
• I implemented a decision tree algorithm to increase recognition speed and a

context-based refinement algorithm to increase recognition accuracy.
• I implemented on-line learning with a Bayes Classifer to improve recognition

robustness and adapt to the user’s individual drawing style.

Laboratory of Neuroimaging, UCLA 2009
Undergraduate Researcher
• I collaborated with a multidisciplinary team to analyze registration of tetrahedral-

based volumetric meshes of the brain.
• I implemented various metrics in Matlab for localizing and quantifying changes

during registration.
• I applied my analysis methods to MRI data from a study of Alzheimer’s Dis-

ease from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Teaching
Experience

UC Santa Barbara, Santa Barbara, CA
Teaching Assistant 2011-2015
• ECE 2A, 2B, 2C: Circuits, Devices, and Systems
• ECE 15A: Fundamentals of Logic Design
• ECE 178: Digital Image and Video Processing
• ECE 278B: Principles of Biological Microscopy

Research Mentorship Program 2012, 2013
• I mentored 1-2 high school students for 6 weeks in the summer as they con-

ducted a research project in the Systems Bioimaging Lab.

Condor Techs 2013
• I mentored 4 students from Oxnard College for 2 weeks in the summer as

they conducted a short research project in the Systems Bioimaging Lab.

Skills • Matlab, Java, C#, C/C++, Python
• Microsoft Office, LaTeX, SVN
• ImageJ, Imaris, Adobe Photoshop, Adobe Illustrator

2 of 3



Publications
K. G. Chan, S. Calinon, and M. Liebling, “Temporal superresolution imaging
of repeating processes using a single camera and active illumination,” IEEE
Transactions on Computational Imaging, (submitted).

K. G. Chan, S. J. Streichan, L. A. Trinh, and M. Liebling, “Simultaneous
temporal superresolution and denoising for cardiac fluorescence microscopy,”
IEEE Transactions on Computational Imaging, vol. 2, no. 3, pp. 348–358, 2016.

K. G. Chan and M. Liebling, “A point-spread-function-aware filtered back-
projection algorithm for focal-plane-scanning optical projection tomography,”
in IEEE International Symposium on Biomedical Imaging, 2016.

N. Chacko, K. G. Chan, and M. Liebling, “Intensity-based point-spread-
function-aware registration for multi-view applications in optical microscopy,”
in IEEE International Symposium on Biomedical Imaging, 2015.

K. G. Chan and M. Liebling, “Estimation of divergence-free 3D cardiac blood
flow in a zebrafish larva using multi-view microscopy,” in IEEE International
Symposium on Biomedical Imaging, 2015.

K. Chan, L. Trinh, and M. Liebling, “A temporal superresolution method
applied to low-light cardiac fluorescence microscopy,” in Proceedings of the IEEE
Asilomar Conference on Signals, Systems and Computers, 2013.

3 of 3



Abstract

Computational Imaging Methods for Improving Resolution in Biological Microscopy

by

Kevin G. Chan

Optical microscopy is an essential tool for biological research, as it allows for non-

invasive imaging of small animals. However, optical microscopy has its limits. Due to the

low light level, fluorescence microscopy prohibits high speed imaging, making it difficult

to study fast dynamic biological processes. In addition, optical blur due to the diffraction

of light results in limited spatial resolution, particularly when using objective lenses with

low numerical apertures. In this thesis, we propose computational imaging methods to

overcome these limitations using a combination of novel image acquisition procedures

and reconstruction algorithms.

The first part of this thesis deals with improving temporal resolution in fluorescence

microscopy to image rapid, repeating processes. We take advantage of multiple ac-

quisitions, each taken with different time delays or temporally modulated illumination

patterns, to recover high frequency information that is lost with traditional imaging. We

demonstrate our method to image the beating heart in live embryonic zebrafish with

reduced motion blur and high resolution in time.

The second part of this thesis deals with reducing spatial blur in optical projection

tomography, a form of optical microscopy that uses multiple 2D projections to reconstruct

a 3D image of an object. We propose a method to reduce the optical distortion (as

characterized by the system’s optical point spread function) that can be implemented

with a scanning acquisition approach combined with a modified filtered backprojection

algorithm for reconstruction. We demonstrate our method to image blood vessels in

ix



larval zebrafish with high spatial resolution and reduced out-of-focus blur.

The final part of this thesis deals with the dimensional limitation of 2D sensors for

measuring 3D motion in microscopy. We propose a method to combine two-dimensional

motion estimates from multiple views to recover out-of-plane velocity and reconstruct a

divergence-free, three-dimensional velocity field. We demonstrate our method to measure,

for the first time, dynamic blood flow in 3D inside the beating heart of a live zebrafish

using optical microscopy.

This thesis provides new tools that integrate custom image acquisition procedures and

image reconstruction algorithms to overcome the resolution limitations – temporal, spa-

tial, and out-of-plane velocity resolution – in optical microscopy. The methods presented

in this thesis, in particular the single camera, active illumination method for temporal

superresolution in fluorescence microscopy, will be directly applicable to a broad range

of biological studies and will open up new perspectives for imaging small organisms in

3D (and time) with high spatio-temporal resolution.
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Chapter 1

Introduction

With the development of digital cameras, optical microscopy has become an indispens-

able tool for quantitative measurements in biological research. While there have been

many recent advances in microscope architecture and optical design, there is still a need

for better imaging solutions as scientists continually seek to perform measurements on

smaller scales with higher resolution.

Recently, computational imaging has gained popularity as a new way of thinking

about image processing. Rather than considering image processing as a separate step,

independent of image acquisition, in computational imaging, image acquisition systems

and image reconstruction algorithms are jointly designed. In computational microscopy,

we apply the computational imaging mindset to microscopy system design. By con-

sidering image acquisition and image processing interdependently, we can design new

integrated solutions for biomicroscopy that surpass the limits of traditional microscopes.

1



Introduction Chapter 1

1.1 Motivation

By nature, biology is a field of science that is heavily driven by observation. In order

to study and understand a complex biological system, it is first necessary to observe

and measure it in its natural (or close to natural) setting. For example, to study the

developing heart in small animals, it is necessary to observe the heart as non-invasively

as possible and to quantitatively measure it with sufficiently high resolution to distin-

guish the features of interest. Optical microscopy is a widely used tool to perform such

observations, for the heart as well as for many other biological systems. However, every

optical imaging system has a limited resolving power, which prohibits measurement of

features at a scale beyond the system’s resolution limit.

In this thesis, we adhere to a strict definition of resolution limit: the smallest distance

between which two separate features are still distinguishable after imaging. We consider

a system with a resolution limit smaller than our features of interest to have (sufficiently)

high resolution, and vice versa. Typically, this refers to spatial resolution, as any optical

imaging system will produce some degree of optical blur due to the diffraction of light [1].

However, we take a more general definition of the separation distance between features,

as features can be separated not only in space, but also in time, as well as in the feature

dimension itself.

In this thesis, we consider three different types of resolution in biological microscopy

imaging systems. First, temporal resolution refers to the minimum separation in time

between two events such that they are still distinguishable. Temporal resolution is limited

by the frame rate and exposure time of the camera or sensor, and it imposes restrictions

on the speed of dynamic processes that can be observed and recorded. Second, spatial

resolution refers to the minimum Cartesian distance separating two point sources such

that they are still distinguishable, and it is limited by the diffraction of light and the

2



Introduction Chapter 1

numerical aperture of the imaging system. Spatial resolution imposes restrictions on the

smallest biological structures that can be imaged and measured. Finally, out-of-plane

velocity resolution refers to the loss of 3D motion information when capturing images

with a 2D sensor. Projecting 3D velocity down to two dimensions results in many 3D

vectors becoming indistinguishable, as they are all projected onto the same 2D vector.

Out-of-plane velocity resolution imposes limitations on our ability to study 3D biological

motion, since any out-of-plane components of velocity are lost.

1.2 Contribution and Thesis Organization

In this thesis, we propose methods to improve resolution – temporal, spatial, and out-

of-plane velocity resolution – in various forms of optical microscopy. These methods are

based on the inversion of a forward imaging model, which we have flexibility in designing

with computational imaging. We summarize our contributions below.

• Improving Temporal Resolution in Cardiac Fluorescence Microscopy Us-

ing Active Illumination (Chapter 2)

We propose two computational imaging approaches for increasing temporal resolu-

tion beyond an imaging system’s limit when imaging repeating processes. Our first

approach uses constant illumination, is compatible with any conventional micro-

scope without requiring hardware modifications, and is able to improve temporal

resolution by a factor of approximately 1.6× in physical experiments (2.8× in noise-

free simulations). Our second approach uses active, coded illumination, and is able

to improve resolution by a factor of 2.5× in physical experiments (6.3× in noise-free

simulations).

Previous methods for temporal superresolution either require multiple cameras

3



Introduction Chapter 1

[2, 3, 4] or a specially modified camera [5, 6, 7, 8]. In contrast, we use a single

un-modified camera, and we instead use illumination modulation to reveal high

frequency temporal information. Additionally, we propose minimizing an energy

function with `1 norms for both the data fidelity term and the regularization term.

While this is computationally more expensive than minimizing an `2 norm for a

least-squares solution (as is commonly done), it produces a reconstruction that is

less sensitive to outlier data and is qualitatively sharper. We demonstrate both

our methods in practice for live imaging of the developing zebrafish heart under

low-light fluorescence microscopy.

• Improving Spatial Resolution in Optical Projection Tomography Using

Point-Spread-Function-Aware Filtered Backprojection (Chapter 3)

We propose a direct inversion formula for optical projection tomography (OPT)

that accounts for optical blur due to the diffraction of light. This approach im-

proves spatial resolution in the tomographic reconstruction and reduces out-of-

focus blur. We utilize a modified image acquisition procedure in which we scan

the focal plane during acquisition to achieve a greater depth-of-field. We show

that, when following such an acquisition procedure, our reconstruction approach is

a regularized inverse of the forward model, and it can be implemented efficiently

with a modified filtered backprojection algorithm. Previous methods for OPT re-

construction assumed straight-ray geometry [9, 10], which is a valid assumption

for x-ray computed tomography, but is incorrect for OPT due to the diffraction of

light. While several methods have acknowledged this, they have focused on ad-hoc

solutions to mitigate the effects of light diffraction [11, 12]. In contrast, we propose

an analytically-derived inversion formula based on a forward imaging model that

incorporates the system’s point spread function (PSF).

4



Introduction Chapter 1

• Improving Out-of-Plane Velocity Resolution in Cardiac Flow Velocime-

try Using Multi-View Imaging (Chapter 4)

We propose a computational algorithm to reconstruct a three-dimensional velocity

field from multiple two-dimensional velocity projections acquired from different

views. This method allows us to measure, for the first time, three-dimensional

blood flow through the live zebrafish heart using non-invasive optical microscopy.

Due to the high velocities of blood cells, previous methods for measuring blood flow

in microscopy only focused on flow in two dimensions [13, 14]. While methods have

been proposed to recover three-dimensional flow with MRI [15, 16] and ultrasound

imaging [17], our method is the first to measure three-dimensional blood flow with

optical microscopy.

5



Chapter 2

Improving Temporal Resolution in

Cardiac Fluorescence Microscopy

Using Active Illumination

Abstract1

Fast, dynamic processes pose a challenge to conventional imaging, particularly in

low-light settings such as fluorescence microscopy where the camera frame rate is limited

due to insufficient light in the scene. In such a setting, videos are often acquired with

long exposure times, resulting in poor temporal resolution, motion blur, or, possibly,

temporal aliasing. Here, we propose two computational imaging approaches for temporal

superresolution, one using constant illumination and one using active, coded illumination.

These methods recover a high temporal resolution video from multiple low-resolution

acquisitions acquired with a single camera. Using our approach, we observed, in practice,

a resolution improvement factor of 1.6 with our constant illumination approach and a

factor of 2.5 with our coded illumination approach. We also applied our methods to in

1This chapter is based on [18], [19],and [20].
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vivo fluorescence imaging of the beating heart in embryonic zebrafish, where we observed

a noticeable reduction of motion blur.

2.1 Introduction

When imaging rapid, dynamic processes, a long exposure time results in motion blur.

Furthermore, a long exposure time also leads to a low sampling rate, which can result in

temporal aliasing. For many applications, it is not possible to increase the sampling rate,

either because of limitations of the camera technology, or because there is insufficient light

in the process. Such extreme imaging situations are common in biological microscopy,

where live samples are observed with a high ratio of velocity to required resolution. For

example, a biological structure moving at a speed of 1000 µm/s (such as cardiac muscle cells

observed directly within the developing embryo) requires imaging beyond 1000 frames

per second when the target resolution is 1 µm. This is due to the motion blur caused by

the object’s movement, which, at an exposure of 1/1000 of a second, already amounts to a

distance 1 µm = 1000 µm/s×1/1000 s [21]. To study sub-cellular structures moving at similar

speeds, even higher frame rates may be required, with the limitation that only light

emitted by fluorescent molecules in the sample itself (and not reflected from an external

source) is available. Given these challenges, we are interested in temporal superresolution

methods which can reconstruct a high effective frame rate video from multiple low frame

rate, low temporal resolution videos. We assume that each low temporal resolution video

is acquired with a sufficient photon count per pixel to avoid the signal being overwhelmed

by measurement noise. Additionally, we assume that the fluorescence emission response

is linear, so that doubling the excitation intensity results in doubling the fluorescence

emission. This is a valid assumption for single-photon imaging, provided the excitation

intensity is within a range to avoid fluorophore saturation. We propose two such temporal

7
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superresolution methods for cardiac fluorescence microscopy: one that is compatible with

any standard microscope without the need for additional hardware [19], and one using

active illumination with a custom, programmable light source [20]. The contributions of

our methods are as follows:

1. We propose two temporal superresolution methods based on `1 minimizations: one

using constant illumination that is compatible with any standard microscopy setup

and requires no hardware modifications, and one that uses active (coded) illumina-

tion that provides greater resolution improvement.

2. We provide a FIJI software plugin to demonstrate our constant illumination tem-

poral superresolution method.

3. For our active illumination method, we propose a closed-form expression to generate

a well-conditioned set of active illumination codes for any reconstruction factor K.

4. We include temporal registration as part of our superresolution methods to correct

for unsynchronized acquisitions.

5. We report simulation results under common experimental conditions showing that

it is possible to achieve a resolution improvement factor of 2.8× and 6.3×, respec-

tively, for our our constant illumination and active illumination methods.

6. In physical experiments, due to noise and registration error, we observed a practical

resolution improvement factor of up to 1.6× for our constant illumination method

and 2.5× for our active illumination method.

This chapter is organized as follows. In Section 2.2, we discuss several methods

related to ours. In Section 2.4, we present the acquisition and superresolution method.

In Section 2.5, we investigate the resolution improvement this technique offers, and we

8
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demonstrate its performance in computational simulations and physical experiments. In

Section 2.6, we summarize the advantages of our methods and discuss some details to

consider when using them.

2.2 Related methods

Table 2.1: A summary of methods for imaging rapid, dynamic events
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Uses a single camera 3 3 3 3 3 3 3 3 3

Does not require
special modified cameras

3 3 3 3

Can handle complex scene motion 3 3 3 3 3 3 3 3 3 3

Does not rely heavily on prior
knowledge/sparsity of signal

3 3 3 3 3

Uses temporally
modulated illumination

3 3 3

Methods for reconstructing a high frame rate video from a low frame rate video can

be categorized into three groups: temporal interpolation, temporal rebinning (interleav-

ing), and temporal superresolution. While methods have been proposed for sophisticated

interpolation [22] and rebinning [23], these methods do not truly improve temporal res-

olution. For example, if one were to capture a video of a stationary light source whose

intensity oscillated with a period equal to the camera’s integration time, each frame in

the resulting video would be identical, and these methods would be unable to recover

the oscillation of the light intensity. Temporal superresolution methods, on the other

hand, seek to improve resolution by using additional information about the imaging sys-

tem to reconstruct a temporally superresolved video. In this section, we briefly describe

9
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some of the existing approaches for temporal superresolution, and we summarize these

for comparison in Table 2.1.

2.2.1 Multi-camera temporal superresolution

In [2], Shechtman et al. proposed a staggered exposure approach using multiple

synchronized cameras to achieve temporal superresolution. Agrawal et al. extended this

method by using different binary temporal sampling patterns for each camera, making the

inverse superresolution problem well-posed [3]. More recently, Pournaghi and Wu further

extended this multi-camera approach for temporal superresolution by using different

binary sampling patterns for each pixel (or column of pixels) and exploiting spatio-

temporal sparsity [4]. While these methods successfully reconstruct videos with improved

temporal resolution, they require multiple synchronized cameras. As a result, the cost

of such systems increases with the number of cameras used, which may end up being

prohibitive for the sensitive cameras required in fluorescence microscopy. Our active

illumination approach expands on the binary sampling patterns proposed by Agrawal et

al. but instead uses a single camera system.

2.2.2 Single camera temporal superresolution

Several other works have proposed methods for temporal superresolution using a

single, modified camera. For example, Bub et al. proposed a method for temporal

superresolution by offsetting pixel exposure times during a single frame capture [24].

However, with this method, increasing temporal resolution required sacrificing spatial

resolution. In [?], Reddy et al. proposed a compressed sensing camera architecture

with programmable, multiplexed pixels that exploited the spatio-temporal redundancy in

videos. Unfortunately, both of these methods require a modified camera system with per-
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pixel exposure control, which is not commonly available in commercial camera systems.

Quite a few other single-camera, compressive sensing imaging systems have been

proposed for temporal superresolution. In [6], Veeraraghavan et al. proposed a coded

strobing method with a reconstruction algorithm assuming Fourier domain sparsity to

image high-speed, periodic events. While our active illumination approach also utilizes

coded sampling for periodic signals, we do not require Fourier-domain sparsity during

the reconstruction step. This allows us to perform our reconstruction with only a few

(e.g. Q = 4, where Q will be formally defined later in the text) acquired cycles. In

addition, rather than using pseudo-random binary codes which can be time-consuming

to optimize, we propose a closed-form expression for a well-conditioned set of binary

modulation codes. Other compressive sensing systems include the flutter shutter video

camera, which Holloway et al. combined with a total variation prior and a learned-

dictionary video prior to synthesize high effective frame rate videos [7]. Also, Koller et

al. developed a modified camera with a binary mask in the optical path and demonstrated

a prototype capable of reconstructing 10 frames of video from a single coded image [8].

In contrast to these compressive sensing approaches, we do not require our underlying

signal to be sparse, nor do we rely as heavily on our underlying signal conforming to

a prior model. Instead, we assume that we can acquire additional observations of our

signal so that the problem is no longer underdetermined.

2.2.3 Active illumination stroboscopy

Active illumination has been previously used for stroboscopy to freeze the motion of

objects with extremely short, precisely-timed flashes of light [25]. Such a method has also

been applied to cardiac microscopy [26]. In contrast, we use active coded illumination, in

combination with a computational image reconstruction algorithm, to improve temporal

11
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resolution for repeating processes captured with a single camera and ungated acquisitions.

This allows for a lower peak illumination intensity compared to conventional strobing.

2.2.4 Coded motion deblurring

Motion deblurring methods are a class of methods related to temporal superresolution.

While they do not improve temporal resolution in the strictest sense, they seek to reduce

one of the symptoms of poor temporal resolution—spatial motion blur. In [27], Raskar

et al. proposed coded motion deblurring (flutter shutter), where the camera exposure is

modulated by a binary code during a single frame. This changes the point spread function

of the motion blur and makes the spatial deconvolution problem well-posed. Ma et al.

extended on this work by temporally encoding the illumination rather than the exposure

and using a non-binary code [28]. By using a coded exposure rather than a constant

exposure, these methods improved the invertability of the point spread function and

made the associated deconvolution well-posed. However, these works are only capable

of spatially deblurring uniform motion blur along a straight line (with a known point

spread function), while our methods focus on temporal resolution improvement and do

not impose any restrictions on the motion in the scene.

2.2.5 Translational spatial superresolution

While it is not a method for increasing temporal resolution, translational spatial

superresolution has similarities with our constant illumination approach for temporal su-

perresolution. In the spatial superresolution methods of, for example, Sroubek et al. [29],

Farsiu et al. [30], and Ben-Ezra et al. [31], several low spatial resolution images with

translational shifts were combined into a high spatial resolution image. Here, we instead

reconstruct a temporal superresolution sequence from multiple low temporal resolution

12
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image sequences.

2.2.6 Spatial structured illumination

While it is also not a method for increasing temporal resolution, structured illumina-

tion microscopy has some methodological parallels with our active illumination approach

for temporal superresolution. Structured illumination is an approach for spatial superres-

olution in optical microscopy proposed by Gustafsson, in which spatially modulated light

is used to illuminate an object. In a diffraction-limited microscopy system, spatially mod-

ulating the illumination allows access to high frequency information that can be used to

reconstruct a superresolution image overcoming the limited spatial bandwidth of optical

microscopy by a factor of up to 2 [32] or more [33]. Configurations with more general spa-

tial light patterns have also been proposed [34], as well as configurations that capitalize

on the non-linear relationship between excitation and fluorescence emission [35]. Alterna-

tive reconstruction techniques, which include estimation of hyper-parameters, have also

been proposed [36].

In our approach, we use temporally structured illumination (i.e. active illumination)

for superresolution in time rather than in the spatial dimensions. This imposes a different

set of challenges, such as sub-resolution temporal registration of modulated signals, which

we solve as part of our superresolution algorithm. In addition, the time-limited light

integration of the shutter aperture differs from the frequency-limited setting of a lens.

2.3 Problem Formation

For a single pixel at location x = (x, y, z), we assume the image intensity is tem-

porally repeating, and that a single cycle can be described by a discrete time sequence,

Iref [x, n] , n = 0, . . . , N − 1, where N is the number of samples covering the duration of

13



Improving Temporal Resolution in Low-Light Cardiac Fluorescence Microscopy Chapter 2

one cycle, and where the sample spacing TH is sufficiently small to prevent temporal

aliasing of the fundamental frequency. We wish to measure samples of this high tempo-

ral resolution sequence, which we place into a vector of length N (one vector for every

pixel position x = (x, y, z)),

fx = (Iref[x, 0], . . . , Iref[x, N − 1])> . (2.1)

Since in low-light, live fluorescence microscopy, a long exposure time is needed to capture

enough photons, this high temporal resolution sequence is not directly accessible. Instead,

we acquire Q low resolution sequences I
(q)
acq of length M (q = 1, . . . , Q), each covering the

duration of a full period but with a larger sample spacing TL (TL > TH), from which we

will reconstruct the higher sampling rate sequence fx. We assume that the ratio between

sampling steps, TL
TH

= N
M

= K, is an integer. The q-th acquisition at pixel position

x = (x, y, z),

g(q)
x =

(
I(q)

acq[x, 0], . . . , I(q)
acq[x,M − 1]

)>
, (2.2)

is an M -length sequence, where we model I
(q)
acq[x,m] as a discrete convolution of the high

temporal resolution sequence Iref with the system’s temporal integration filter along the

time index followed by a decimation operation. Specifically,

I(q)
acq [x,m] =

(
Iref[x, ·] ~ h

(q)
int ~ sq

)
↓K

[x,m] + vq[x,m], (2.3)

where vq[x,m] is an additive noise term, K is the decimation factor, h
(q)
int represents the

system’s temporal light integration filter, and sq applies a circular sub-frame shift such

that

sq[n] = αqδ[n+ ξq] + (1− αq) δ[n+ ξq + 1], (2.4)
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to account for the fact that the camera starts capturing the first frame at an arbitrary

time σq ∈ R after the beginning of the periodic sequence. In (2.4), δ[n] is the Kronecker

delta function, and the circular sub-frame time shift σq is separated into an integer shift

ξq = bσq mod Nc and a fractional shift αq = (σk mod N) − ξq, where mod denotes

the modulo operation.

2.4 Proposed Methods

We propose two temporal superresolution methods, one using constant illumination

and one using active illumination. While our two methods share a common model of the

problem, they differ in their model of the system’s temporal light integration filter, hint.

As a result, they have different models for image acquisition, as described in Sections

2.4.1.1 and 2.4.2.2 and illustrated in Figure 2.1. They also differ in the way the Q low

resolution sequences are acquired. In our constant illumination approach, we assume

that all low resolution sequences are acquired as part of a single long video, so that

there is no delay between the end of one acquisition and the start of the next. On the

other hand, for our coded illumination approach, we assume that each low resolution

sequence is acquired separately with an unknown phase shift between them. Finally,

our two methods use different approaches to temporal registration and superresolution

reconstruction, as will be described in the following sections.

2.4.1 Constant Illumination Imaging System

2.4.1.1 Image Acquisition Model

Under constant illumination, we capture a long video sequence, Iacq[x, n] for n =

1, . . . ,MQ, containing I
(q)
acq for q = 1, . . . , Q. These are Q repetitions of our underlying
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... ...

(a) 1 2 Q

1 2 Q(b)

Figure 2.1: We assume that we can acquire Q cycles of a temporally repeating process.
(a) Under constant illumination, each acquired frame can be considered as a summa-
tion of K high resolution frames. (b) With coded illumination, each high resolution
frame is multiplied by a binary weight prior to summation. Using a different illumi-
nation code for each acquired cycle allows us to better reconstruct the high resolution
signal IHR [x, n]. Since we do not synchronize our acquisitions with the underlying
signal, each acquired cycle may begin at a different phase of the repeating cycle.

repeating process of interest. We assume that at a given coordinate x, the underlying

signal, I [x, n], at any time point n ∈ Z (not only 0 ≤ n < N), is a temporally repeating

signal such that I [x, n] is either equal (up to some additive noise) to a matching time

point in Iref, or can be interpolated from Iref, provided that Iref is chosen to be a complete

cycle. More specifically, using linear interpolation, our assumption translates to:

I [x, n] = (1− (w[n]− bw [n]c)) Iref [x, bw [n]c]

+ (w[n]− bw [n]c) Iref [x, dw [n]e]

+ vs [x, n] ,

(2.5)

where w [n] is the real-valued “index” in Iref that corresponds to I [x, n] (0 ≤ w [n] < N),

and vs [x, n] is an additive noise term.

We then model the temporal light integration filter as a box filter,

hint[n] =


1

Nint
0 ≤ n < Nint

0 otherwise
, (2.6)

that accounts for the camera’s integration time Tint and integration window width Nint =
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round
(
Tint
TL
K
)

.

Using discrete matrix-vector notation similar to that used in [29], we can express our

image acquisition forward model in Equation (2.3) at pixel location x = (x, y, z) as

gx = DKHSfx + vx, (2.7)

where gx =
(
g

(1)
x , . . . ,g

(Q)
x

)>
is a vector containing the observed samples, g

(q)
x and fx

are described in Equations (2.2) and (2.1) respectively, > denotes transposition, DK is

an MQ×NQ matrix that downsamples by K, H is an NQ×NQ circulant matrix with

shifted versions of the filter hint [n] as its rows, S is an NQ×N matrix with elements

Sij =


1− (w[i]− bw [i]c) j = bw [i]c

w[i]− bw [i]c j = dw [i]e

0 otherwise

(2.8)

that replicates and interpolates the high-resolution reference sequence fx according to

sub-frame positions w [n] (unknown in practice), and vx is an additive noise vector that

accounts for any measurement noise or intrinsic variability in the underlying process.

2.4.1.2 Sub-resolution Temporal Registration

The first task to invert Equation (2.7) is estimating the best matching sub-frame

indices, w [n], for each sample n = 0, . . . ,MQ− 1. To do this, we first define a new set

of sub-frame indices in the low-resolution signal,

w` [n] =
1

K
w [n] , (2.9)
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which we split into a large, whole-sample integer shift w̄`[n] and a smaller sub-sample

shift ∆n,

w`[n] = w̄`[n] + ∆n, (2.10)

where |∆n| < 1. We then use a two-step process to separately estimate w̄`[n] and ∆n that

is similar to the approach used in [37], with the exception that we explicitly estimate the

sub-sample shift.

We first identify a low-resolution reference cycle Îref [x,m] ,m = 0, . . . ,M − 1 from

the long sequence Iacq [x, n]. For simplicity, we consider the first M = N
K

time points in

Iacq [x, n] to be our reference cycle Îref [x,m] = I
(1)
acq[x,m]. In practice, the reference cycle

can be user-defined by its first and last frame, determined automatically by taking the

M first frames (with M an estimate of the cardiac frequency obtained from the peak

frequency component in the Fourier transform of the entire signal), or a combination

of both (user-adjustment following automatic period estimation). While the sub-frame

accuracy of the reference sequence is not necessary for successful super-resolution, the

assumption in Equation (2.5), which states that each time point in the long sequence can

be obtained by interpolating two frames from the reference cycle, should not be violated.

To determine the whole-sample shift w̄`[n], we find the best match Îref [x, w̄` [n]] to

Iacq [x, n]. Specifically, we use a dynamic programming synchronization algorithm [38] to

find w̃ [n] ∈ Z for n = 0, . . . ,MQ− 1, such that

Q =
N−1∑
n=0

∑
x

∣∣∣Iacq [x, n]− Îref [x, (w̃ [n] mod M)]
∣∣∣ (2.11)

is minimized with respect to w̃ [n], under the constraint that

wmin ≤ w̃ [n]− w̃ [n− 1] ≤ wmax, (2.12)
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where mod denotes the modulo operator, M = N
K

, and wmin and wmax are positive

integers (0 < wmin ≤ wmax) that allow for nonuniform temporal warping, restrict w̃ [n]

to be monotonically increasing, and limit excessive dilation. In practice, wmin and wmax

can be used to restrict the search space, and thereby reduce the computational burden,

when bounds on the temporal variability can be estimated. The whole-sample shift is

then given by

w̄` [n] = w̃ [n] mod M. (2.13)

To determine the sub-sample shift ∆n, we approximate the reference signal at spatial

location x and sub-integer index w`[n] = w̄`[n] + ∆n with a first order Taylor series and

a finite difference approximation to the derivative,

Iacq [x, n] ≈ Îref [x, w̄` [n]] +

∆n

(
Îref [x, w̄` [n+ 1]]− Îref [x, w̄` [n]]

)
.

(2.14)

Using a least-squares approach, we take all spatial locations x into account to find

∆n = arg min
s

∑
x

((Iacq [x, n] − Îref [x, w̄` [n]]
)

−
(
Îref [x, w̄` [n+ 1]] − Îref [x, w̄` [n]]

)
s
)2

.

(2.15)

This is a reverse interpolation problem using a piecewise linear approximation to the

underlying function Îref [x, n]. Instead of using linear interpolation to find the value of

the function at a given location, we wish to find the location at which the function takes on

a given value, assuming that the function is piecewise linear. In practice, we use a higher

order approximation (such as the cubic approximation described in Appendix 2.A.1)

rather than a linear approximation to the underlying function.

Once we obtain w̄`[n] and ∆n, we can determine the best matching sub-integer refer-
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ence index

w[n] = K (w̄`[n] + ∆n) (2.16)

and populate the matrix S in Equation (2.8).

2.4.1.3 Superresolution Reconstruction

The task of superresolution reconstruction is an inverse problem to recover the un-

known fx from the measured gx. We solve this independently at each spatial location

x = (x, y, z) by minimizing an `1 cost function,

f̂x (λ) = arg min
fx

‖DKHSfx − gx‖1 + λ‖Γfx‖1, (2.17)

where λ is a regularization weighting constant, and Γ is a Tikhonov regularization second-

order difference operator that is chosen to favor temporally smooth solutions,

Γ =



1 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

. . .

0 0 0 . . . −1 1


, (2.18)

and all other matrices are given by the forward imaging model in Equation (2.7). This is

a strictly one-dimensional temporal reconstruction problem, and we solve this indepen-

dently at each pixel without any spatial constraints.
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The minimization in Equation (2.17) is equivalent to the minimization problem:

f̂x = arg min
fx,ỹ

∑
i

ỹi s.t.

−ỹ ≤


DKHS

λΓ

 fx −


gx

0

 ≤ ỹ,

(2.19)

where ỹ is a helper variable vector that bounds the data fidelity error and the regular-

ization error. Since the double-sided inequality in Equation (2.19) can be rewritten as a

single-sided inequality,



DKHS

−DKHS

λΓ

−λΓ


fx − ỹ ≤



gx

−gx

0

0


, (2.20)

we can pose the minimization in Equation (2.17) as a linear programming problem subject

to an inequality constraint,

ŷ = min c>y

s.t. Ay ≤ b

and y ≥ 0,

(2.21)

with the following matrix definitions:
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c> =

[
01×N 11×(MQ+N)

]
,

y =


(fx)N×1

ỹ(MQ+N)×1

 ,

A =



DKHS −IMQ×MQ 0MQ×N

−DKHS −IMQ×MQ 0MQ×N

λΓ 0N×MQ −IN×N

−λΓ 0N×MQ −IN×N


,

b =



gx

−gx

0N×1

0N×1


.

(2.22)

We find the solution to this linear programming problem by the simplex method [39].

To reconstruct the full temporal superresolution video, we apply the optimization at each

pixel location independently. We then produce the complete temporal superresolution

sequence,

ÎSR [x, n] = ÎSR [x, y, z, n] = f̂x(λ), (2.23)

by assembling the solutions at all pixel locations x = (x, y, z). Since each pixel location

can be treated independently, the computation time can be significantly reduced through

parallelization on multi-core processors or multi-node clusters.

22



Improving Temporal Resolution in Low-Light Cardiac Fluorescence Microscopy Chapter 2

2.4.1.4 Optimal Regularization Weighting

If, for each value of λ, the energy of each of the two terms in the minimization (2.17)

is computed separately and a locus is recorded in a plot with the two energies in the

x and y axes, respectively, one can empirically observe that the resulting curve has the

approximate shape of the letter L. The optimal choice for λ is the corner of this L-

curve [40], as it provides a good balance between the two terms of Equation (2.17). We

find this corner by finding the value of λ ∈ [λmin, λmax] that minimizes the two-group

linear regression error,

λopt = arg min
λ?

λ?∑
λ=λmin

(
L (λ)− L̂1 (λ)

)2

+
λmax∑
λ=λ?

(
L (λ)− L̂2 (λ)

)2

,

(2.24)

where

L (λ) =
(
‖DKHSf̂x (λ)− gx‖1, λ‖Γf̂x (λ) ‖1

)
(2.25)

is a point on the L-curve, and L̂1, L̂2 are least-squares linear regressions to L (λ) in

the ranges [λmin, λ
?] and [λ?, λmax], respectively. The motivation behind this approach is

that the L-curve’s corner location is the point that best separates the L-curve into two

straight-line regions.

2.4.2 Active Illumination Imaging System

2.4.2.1 Coded Exposure Acquisition

Our active illumination method has similarities with the coded exposure approach by

Agrawal et al. [3], in which a camera’s shutter is rapidly opened and closed during the

integration duration of the sensor. To begin, we briefly summarize the coded exposure
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approach in more general terms so as to better relate it to our method and to highlight

similarities and differences. At each pixel location x = (x, y), the process of interest can

be modeled as a discrete, N -length, high resolution signal, Iref [x, n] , n = 0, . . . , N − 1.

As illustrated in Figure 2.1, when capturing video with a constant exposure camera, each

acquired frame can be considered as a summation of K high resolution frames,

Iacq [x,m] =
K−1∑
k=0

Iref [x, n+ k] , (2.26)

where n = mK and m = 0, . . . ,M − 1 for M = N/K. In contrast, when capturing video

with a coded exposure, due to the open/closed nature of camera exposure, each high

resolution frame is multiplied by a binary weight c [k] before summation,

Iacq [x,m] =
K−1∑
k=0

c [k] Iref [x, n+ k] . (2.27)

By capturing the same sequence with Q different, carefully chosen binary codes (different

sets of cq [k] for q = 1, . . . , Q), the system

bm = Afm, (2.28)

where bm is a Q×1 vector containing the m-th samples of the coded sequences Iqacq [x,m],

bm =


I1

acq [x,m]

...

IQacq [x,m]

 , (2.29)
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and where A is a Q×K sampling matrix formed by the binary codes cq [k],

A =


c1 [0] . . . c1 [K − 1]

...
...

cQ [0] . . . cQ [K − 1]

 , (2.30)

is well-posed and can be solved for the K × 1 vector fm containing samples of the high

resolution temporal sequence,

fm =



Iref [x,mK]

Iref [x,mK + 1]

...

Iref [x,mK +K − 1]


. (2.31)

For K = Q = 4 and when c[k] are limited to be binary, Agrawal et al. [3] found the

optimal coded sampling matrix (with the lowest condition number) for codes with at

least 50% light efficiency to be

A =



1 1 1 0

1 0 0 1

0 1 0 1

0 0 1 1


. (2.32)

2.4.2.2 Image Acquisition Model

Rather than coding the camera exposure with a shutter, we instead propose to tem-

porally code the illumination. Temporally coding the illumination has the advantage

25



Improving Temporal Resolution in Low-Light Cardiac Fluorescence Microscopy Chapter 2

that the scene is not illuminated during the “closed exposure” code intervals (i.e. when

cq [k] = 0) and thus is not subject to unnecessary illumination. In settings such as fluo-

rescence imaging, where each fluorescent molecule can undergo only a limited number of

excitation-emission cycles before becoming inactive, this ensures that no emitted photons

are wasted. However, while exposure coding allowed for parallelization of different codes

across multiple cameras, only a single code can be applied at a time with illumination

coding. As a result, the codes must be applied sequentially to a repeating process.

Following the notation from our forward model in Equation (2.3), the temporal inte-

gration filter h
(q)
int now takes the form of our binary illumination codes,

h
(q)
int [n] =

 cq[n] 0 ≤ n < K

0 otherwise
. (2.33)

As with our constant illumination method, we assume that the underlying signal I [x, n]

is temporally repeating, and that we are able to capture Q repetitions of this signal,

I
(q)
acq for q = 1, . . . , Q. However, unlike in Section 2.4.1.1, where we assumed that all

repetitions are captured as part of one long video sequence, here we assume that each

repetition is captured separately with a different arbitrary sub-resolution shift s̃q applied

to Iref,

Iqacq [x, n] =
K−1∑
k=0

cq [k] Iref [x,m+ k + s̃q] . (2.34)

In practice, the temporal shift between different coded acquisitions may not correspond

to an integer s̃q number of high-resolution frames, but instead may be a fractional shift,

s̃q = Ksq, (2.35)

where sq is the corresponding low-resolution, real-valued shift. In such a case, we assume
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that Iqacq can be generated by using linearly interpolated samples of Iref, just as in Equa-

tion (2.3). We further assume that sequences can be coarsely pre-aligned to within one

temporal frame so that |sq| < 1.

Assuming periodic boundary conditions on Iref and following the matrix-vector nota-

tion in [19], we can rewrite our forward imaging model at pixel location x = (x, y, z) as

gx = CSfx, (2.36)

where gx contains the observed, coded samples,

gx =
(
g(1)
x , . . . ,g(Q)

x

)>
, (2.37)

for

g(q)
x =

(
I(q)

acq [x, 0] , . . . , I(q)
acq [x,M − 1]

)>
, (2.38)

fx is the superresolution sequence for which we wish to solve,

fx = (Iref [x, 0] , . . . , Iref [x, N − 1])> , (2.39)

C is an MQ × NQ matrix with shifted and zero-padded versions of the codes cq as its

rows, and S is an NQ × N matrix that replicates and interpolates the superresolution

sequence and is of the form

S =


S1

...

SQ

 (2.40)
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where each sub-matrix Sq (q = 1, . . . , Q) is a square matrix with elements

Sq (i, j) =



1− |sq| j = i

|sq|
j = i+ 1 if sq > 0,

j = i− 1 if sq < 0

0 otherwise.

(2.41)

2.4.2.3 Superresolution Reconstruction

To accurately reconstruct the superresolution sequence, fx, we must first estimate the

unknown sub-resolution shifts sq for q = 1, . . . , Q. In [19], we solved this as a temporal

registration problem for image sequences under constant illumination. However, with the

addition of coded illumination, sequences acquired under different illumination codes can

no longer be directly registered. Instead, with coded illumination, we consider estimating

the sub-resolution shifts sq along with the superresolution reconstruction itself as an

optimization problem.

We first assume that the acquired sequences all begin at approximately the same phase

of the repeating process, so that the sub-resolution shifts are in the range −1 < sq < 1.

We then identify the optimal sub-resolution shifts by minimizing the objective function,

ŝ = arg min
−1<s<1

‖CSf̂x (s)− gx‖1 + α‖Γf̂x (s) ‖1, (2.42)

where, for a particular set of shifts s = (s1, . . . , sQ)>,

f̂x (s) = arg min
fx

‖CSfx − gx‖1 + β‖Γfx‖1, (2.43)

and where 1 is a Q×1 vector of all ones, α and β are regularization weighting constants,
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Γ is a regularization matrix of the form

Γ =



1 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

. . .

0 0 0 . . . −1 1


, (2.44)

and S is a linear interpolation matrix defined by the shifts sq (as described in Equa-

tions (2.40) and (2.41)). Once we determine the set of optimal shifts ŝ = (ŝ1, . . . , ŝQ)>,

we reconstruct the superresolution sequence,

Iref [x, n] = f̂x (ŝ) , (2.45)

independently at each spatial location x = (x, y, z) by minimizing the `1 cost function in

Equation (2.43) with the optimal shifts ŝ defining the matrix S.

2.4.2.4 Code Selection

For a given reconstruction factor K and number of acquisitions Q, we propose a set

of binary illumination codes for q = 1, . . . , Q,

cq [k] =


R
(
k−1
2K

)
q = 1,

R
(
k
K

⌊
q
2

⌋
+ ψ

)
q > 1,

(2.46)

where b·c denotes the floor function, where

ψ =

 0 for q even,

1
4

for q odd,
(2.47)
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and where R (x) is a periodic function with period 1,

R (x) =

 1 if 0 ≤ x < 1
2
,

0 if 1
2
≤ x < 1.

(2.48)

These illumination codes apply a multi-frequency binary temporal modulation to the

underlying signal. In the case of K = Q = 4, these codes are equivalent to the optimal

binary codes proposed in [3]. More importantly, this closed-form expression allows us to

generate a set of well-conditioned codes for any choice of K or Q. Having a closed-form

code-generating function is valuable, because searching for the optimal code from the

space of all possible codes, even when restricted to only binary codes as in [3], becomes

prohibitively time-consuming when K > 4 or Q > 4.

2.5 Experiments

To validate our methods, we conducted both computational simulations and in vivo

experiments. During the in vivo experiments, we imaged spatially static (but with a tem-

porally varying intensity) as well as moving samples. We applied our methods to 2D+time

microscopy image sequences acquired using an epi-fluorescence microscopy setup (illumi-

nation and light collection occur through the same microscope objective). To demonstrate

our constant illumination method with 4D imaging, we used a multiview selective plane

illumination microscope [41] to image live zebrafish embryos. For both methods, we re-

constructed a full resolution, temporal superresolution video by solving the minimization

problem in Equation (2.17) and Equation (2.43) using the cplexlp solver from the IBM

CPLEX optimization package [42]. In our experiments with constant illumination, we

assumed loose bounds on the signal’s temporal warping with wmin = 1 and wmax = M
2

.

We obtained all our `1 reconstructions through independent temporal processing on a
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pixel-by-pixel basis without any spatial post-processing. For each `1 reconstruction, un-

less otherwise mentioned, we determined the value of λ by performing the reconstruction

on a small, manually-selected region of interest with several different values and select-

ing the optimal value according to Equation (2.24). All experiments and procedures

involving zebrafish embryos were performed following standard techniques [43] under a

protocol approved by the Institutional Animal Care and Use Committee at the University

of California, Santa Barbara.

2.5.1 Quantifying Resolution Improvement

2.5.1.1 Constant Illumination Temporal Superresolution

To quantify the constant illumination method’s temporal resolution improvement ex-

perimentally, we imaged a static fluorescent sample (drawn on a glass coverslip with a

Sharpie Accent Highlighter, Sanford L.P., Oak Brook, III.) illuminated by a time-varying

light source. The illumination (and also the emitted fluorescence) followed a repeating

temporal chirp signal, where each cycle is a sinusoid with its frequency increasing linearly

from 0 Hz to 30 Hz over two seconds. We imaged the sample with a Leica DMI6000B in-

verted microscope and an HCX PL S-APO 20×/0.50 air objective. We acquired fourteen

low temporal resolution cycles, each with a known uniform temporal shift, at 30 frames

per second using a Hamamatsu ImageEM C9100-13 EM-CCD camera. EM-CCD cam-

eras have a much higher sensitivity and gain than regular CCD cameras, and therefore

are well adapted for fluorescence microscopy despite the relatively low frame rate at full

resolution and full field (512×512 pixels per frame). At 30 frames per second, the second

half of the sequence (corresponding to illumination frequencies between 15 Hz to 30 Hz)

is aliased because the camera sampling rate is too slow to accurately capture the rapid

flickering of the sample. Naive interpolation and resampling cannot recover these aliased
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high frequencies. However, by using 14 low resolution cycles (with known uniform shifts)

to reconstruct a sequence with a K = 4× temporal magnification factor, our tempo-

ral superresolution method recovers oscillations up to 24 Hz (Figure 2.2, Supplementary

movie 1). This is equivalent to a 1.6-fold increase in bandwidth, which is consistent with

the theoretically-derived practical superresolution limit in [44].
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Figure 2.2: We measure a static fluorescent sample’s mean intensity over time while
under a linear sweep-frequency (chirp) illumination from 0 Hz to 30 Hz, as illustrated
in (b). Sampling a linear chirp signal below the Nyquist rate results in temporal
aliasing, as shown in (a: top). A non-aliased acquisition taken at 100 fps is shown for
comparison. Fourteen sequences acquired at 30 fps are used for temporal superres-
olution reconstruction. The superresolution sequence, shown in (a: bottom) reveals
rapid, high frequency changes in intensity that are normally lost when imaging at 30
fps. A comparison of the signals’ frequency spectrum in (c) reveals a superresolution
improvement in bandwidth over the 30 fps sequence by a factor of 1.6×.

We conducted further simulations to explore the relationship between the number of

cycles used for reconstruction and the superresolution performance. In these simulations,

we used a one-dimensional temporal chirp signal, with its frequency increasing linearly

from 0 Hz to 150 Hz over one second, as the original high-resolution signal. The signal was

low-pass filtered and sampled at 150 Hz so that frequencies above 75 Hz were lost. For

reconstruction, we first assumed the shifts w[n] to be known (no registration error, σ = 0)
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and uniformly distributed over one frame interval. We measured resolution improvement

by comparing the bandwidth of the reconstructed signal (with a 2× reconstruction factor,

K = 2) to the bandwidth of the observed, low-resolution signal, and we repeated the

simulation using up to 60 cycles for the reconstruction. As expected, we found that the

resolution improvement increases significantly as more cycles are included, but eventually,

including additional cycles provides negligible improvement and is limited to a resolution

improvement factor of approximately 1.9× when K = 2 (Figure 2.3 and σ = 0 curve, see

further description in Section 2.5.2).
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Figure 2.3: Our simulations reconstructing a temporal chirp signal (with a 2× re-
construction factor, K = 2) show that, relative to the number of cycles used for the
reconstruction, the resolution improvement follows an exponential rise to a maximum
limit of approximately 1.9× when the registration is perfect (σ = 0 frames). In the
presence of zero-mean, normally distributed registration error with a standard devia-
tion of σ, the resolution improvement also follows an exponential rise, but to a lower
maximum limit.
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2.5.1.2 Active Illumination Temporal Superresolution

To quantify our coded illumination method’s resolution improvement, we again per-

formed computational simulations using a one-dimensional temporal chirp signal as our

high-resolution ground-truth signal, Iref. Following Equation (2.34), we applied our pro-

posed illumination codes cq to generate Q = 4 low-resolution coded sequences I
(q)
acq. We

then applied our superresolution method to reconstruct the high-resolution chirp signal

Iref with a reconstruction factor of K = 4, K = 8, and K = 12. We repeated this both

when all coded acquisitions are synchronized (sq = 0) and when there is a sub-resolution

temporal shift, |sq| > 0, between each acquisition that we recover during the reconstruc-

tion process. For the latter case, sq was drawn from a uniform random distribution

between [−σ, σ] with σ = 1/2 (corresponding to a shift of up to ±0.5 low-resolution

frames). For each selection of K, Q, and σ, we computed the median condition number

and mean resolution gain over 20 trials (Table 2.2). For comparison, we also performed

this simulation with random binary illumination codes and with our constant illumination

method. For the case of K = Q = 4, since our proposed codes are identical to the op-

timal codes, we also compared our reconstructions with the least-squares reconstruction

proposed in [3]. Since the least-squares method in [3] assumes that all acquisitions are

synchronized, it does not recover the random shifts sq, and as a result does not perform

as well as our `1 method.

Additionally, since one of the advantages of our approach is that we can easily gen-

erate a set of codes for any choice of the reconstruction factor K and the number of

codes/acquisitions Q, we repeated this simulation with Q = 8 and Q = 12 (with K = 4,

K = 8, and K = 12 for each). Selecting a value of Q > K made the problem overdeter-

mined and improved both the condition number of the sampling matrix and the resolution

improvement factor. For these values of K and Q, it is computationally intractable to
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Table 2.2: Resolution improvement for different code types with different reconstruc-
tion factors K and number of acquisitions Q.

Q = 4 Q = 8 Q = 12

σ = 0 σ = 1/2 σ = 1/2 σ = 1/2

Condition
Number

Resolution
Gain

Condition
Number

Resolution
Gain

Condition
Number

Resolution
Gain

Condition
Number

Resolution
Gain

K
=

4

Constant Code 1016 2.0 1018 1.7 1016 1.9 1015 2.1

Random Code 6.8 3.1 54 1.7 6.6 2.5 4.9 3.0

Proposed Code cq 2.3 3.7 9.2 2.7 5.3 3.5 4.8 3.7

Optimal Code1 [3] 2.3 3.7 2.3 1.7 - - - -

K
=

8 Constant Code 1016 3.6 1016 1.8 1047 2.1 1015 2.6

Random Code 3.7 1.9 4.8 1.6 102 2.3 15 2.9

Proposed Code cq 2.5 4.2 6.4 2.8 102 4.7 14 6.3

K
=

12

Constant Code 1014 3.7 1014 1.9 1015 2.8 1018 2.8

Random Code 3.8 1.5 4.7 1.8 17 2.7 102 2.8

Proposed Code cq 2.7 4.2 5.8 2.6 22 4.5 102 5.1

compute the optimal code, and even performing a suboptimal greedy search can be time

consuming. With our proposed codes cq, we can generate a set of codes for any choice of

K or Q that remains well-conditioned when σ = 0. When σ > 0, our sampling matrix

A = CS is no longer guaranteed to be well-conditioned (due to the random shifts sq),

but the condition number of A can be improved by choosing Q > K.

From these results (tabulated in Table 2.2), we make several observations. First, mod-

ulating the illumination with a binary code (even a completely random binary code) pro-

duces a sampling matrix that is many orders-of-magnitude better conditioned than that

produced by constant illumination, even when acquisitions are unsynchronized (σ > 0).

Second, on average, completely random binary codes do not provide as much resolution

improvement as our proposed binary codes. Due to the random nature of these codes,

they can produce sampling matrices that are not well-conditioned or are rank-deficient.

Third, for a given reconstruction factor K, using additional codes (for additional acqui-

sitions) such that Q > K makes the problem overdetermined, improves the condition

number of the sampling matrix, and improves the resolution gain in the reconstruction.
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Fourth, for a given number of coded acquisitions Q, increasing the reconstruction fac-

tor K beyond Q makes the problem more underdetermined, and, on average, does not

improve resolution. Finally, our proposed binary codes consistently outperform both con-

stant illumination as well as binary codes chosen at random, and our proposed method

is able to improve resolution by 6.3× when K = 8 and Q = 12. For comparison, our con-

stant illumination method is only able to improve resolution by 2.8× when K = Q = 12.

For the case of Q = 4, K = 12, and σ = 0.5 (similar conditions to those used in Section

2.5.1.1), we observed a resolution gain of 1.9× with our constant illumination approach

and 2.7× with our proposed coded illumination approach. Beyond K = 8, the resolution

improvement of our method approaches a limit, as registration error has a greater effect

on the reconstruction. For example, a registration error of 0.15 low-resolution frames

(observed in Figure 2.5), corresponds to only about half of a high-resolution frame when

K = 4, but corresponds to more than a full high-resolution frame when K = 8.

2.5.2 Effect of Registration Error

2.5.2.1 Constant Illumination Temporal Superresolution

The performance of the sub-frame temporal registration step is critical to the su-

perresolution reconstruction quality. Since sub-resolution registration accuracy is diffi-

cult to measure in practice (due to a lack of a ground truth in experimental data), we

conducted a simulation on synthetic data to quantify the registration error. We gen-

erated a reference signal, Îref[n] = cos (2πf (n∆T )), and a warped test signal, Î[n] =

cos (2πf (n∆T + ε[n])), where ε[n] is a random shift drawn from a uniform distribution

between −∆T/2 and ∆T/2, f is the signal frequency, and ∆T is the sample spacing. For

consistency with our in vivo imaging experiments in which we image the zebrafish heart

(beating at approximately 3 beats per second) at 30 frames per second, we chose f = 3 Hz
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Figure 2.4: We reconstruct a temporal chirp with a 2× reconstruction factor from 10
cycles under different levels of registration error σ. As the standard deviation of the
registration error increases, the resolution improvement in the reconstructed signal
decreases. Beyond a standard deviation σ = 0.5 frames, the reconstructed resolution
is worse than the original resolution (resolution improvement factor < 1×).

and ∆T = 1/30 s. We registered the test signal Î[n] to the reference signal Îref[n] and

compared the registered time indices to the true time indices to determine the registra-

tion error. In this simulation, for a sample size of 1000 time points, we observed that

80% of registered samples are within ±0.02 frames of the true temporal shift.

We next performed a simulation to characterize the effect of registration error on the

resolution improvement in the reconstruction. We generated 10 cycles of a repeating

temporal chirp signal with a known sample index w[n] at each sample. We then low-pass

filtered and downsampled the signal by a factor of 2, and performed the reconstruction

using incorrect sample indices, w[n] + ε[n], where ε[n] is a random error drawn from

a zero-mean normal distribution with a standard deviation σ. We repeated this with

various values of σ, and for each value of σ, we repeated this simulation 8 times. As σ
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increases, the resolution improvement decreases, and past σ = 0.5 frames, the resolution

of the reconstruction is worse than the original resolution due to the registration step

matching dissimilar samples together (Figure 2.4). We then repeated the simulation

in which we varied the number of cycles used for reconstruction, this time imposing a

random registration error to each sample, drawn from a normal distribution with standard

deviation σ = 0.1, 0.2, and 0.25. As we increase the number of cycles, the resolution

improvement still increases, but the maximum resolution improvement limit decreases

as σ increases (Figure 2.3). We can use this result to estimate the registration error in

the experimental data used in Figure 2.2. Since we used 14 cycles in our reconstruction

in Figure 2.2, and we observed a resolution improvement of approximately 1.6×, we

estimate our registration error to have a standard deviation of approximately 0.1 frames.

2.5.2.2 Active Illumination Temporal Superresolution

In our active illumination temporal superresolution method, since we do not assume

that our acquisitions are gated with the process to be imaged (though knowing the gating

values would allow us to bypass or initialize the registration), each observed cycle of the

repeating process may be acquired with a different sub-resolution shift sq. We assume

that the acquisitions can be coarsely registered (e.g. by cross-correlation or, possibly,

in some applications, gating) as a pre-processing step, such that |sq| < 1. As a part

of our reconstruction algorithm, we estimate sq through a constrained minimization in

Equation (2.42). We evaluated the accuracy of this shift optimization by simulating

acquisitions with different shifts and comparing the recovered shift ŝq to the true shift

sq. In this simulation, we used a step function as the high-resolution signal, and we

chose K = 4, Q = 8, α = 1, and β = 0.1. The shifts sq were chosen at random from

a uniform distribution between [−1, 1]. We used Matlab’s fmincon with the interior-

point algorithm [45] to perform the shift optimization, and we recorded the registration
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Figure 2.5: Using Matlab’s fmincon with the interior-point algorithm to minimize
Equation (2.42), we observed that, on average, the median absolute registration error
converges within 30 iterations to an error of between 0.1 to 0.2 low-resolution frames.
We averaged this over 100 trials, each with a random set of shifts sq drawn from a
uniform distribution between [−1, 1].

error at each iteration of the optimization. We repeated this 100 times, each with a

different randomly selected set of shifts s. On average, for this choice of parameters, the

registration error converged in approximately 30 iterations to an error of between 0.1 to

0.2 frames (Figure 2.5).

To observe how such a registration error affects the reconstruction itself, we per-

formed computational simulations using a one-dimensional temporal chirp signal as our

high-resolution ground-truth signal, Iref. Following Equation (2.34), we applied our pro-

posed illumination codes cq to generate Q = 4 low-resolution coded sequences I
(q)
acq. In

this simulation, sq was split into a known shift φq and an unknown shift δq (sq = φq +δq).

The known shift φq was randomly drawn from a uniform distribution between [−1/2, 1/2],

and the unknown shift δq was randomly drawn from a uniform distribution between
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Figure 2.6: Using our superresolution method in Equation (2.43), we simulated re-
constructing a temporal chirp signal (with K = Q = 4) subject to different amounts
of registration error in the low-resolution acquisitions. For each level of registration
error, we repeated this simulation 100 times, each time with a different set of random
error. For each set of registration errors, we simulated the acquisition and reconstruc-
tion under constant illumination [19], our proposed binary codes cq, as well as the
least-squares coded sampling method in [3]. Note that, for K = Q = 4, our pro-
posed codes are identical to the optimal codes from [3]. However, our method uses a
regularized `1 based reconstruction while [3] uses a least-squares reconstruction.

[−σ, σ]. We then applied Equation (2.43) to reconstruct the high resolution chirp signal

with a reconstruction factor of K = 4, and we calculated the resolution improvement of

the reconstruction (i.e. the ratio of the recovered bandwidth to the bandwidth of the

constant illumination acquisition). We measured the bandwidth of the chirp signal as

the number of accurate Fourier coefficients whose magnitude is within τm = 50% of the

ground truth’s magnitude, and whose phase is within τp = 1% of the ground truth’s

phase. Since we did not apply the shift optimization in Equation (2.42) to estimate sq,

we performed the reconstruction with ŝq = φq for q = 1, . . . , Q. We repeated this for
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σ = 0, 0.1, 0.2, 0.3, 0.4, and 0.5, and for each value of σ, we repeated the simulation 100

times, each time with a different set of randomly drawn shifts φq and δq. For comparison,

we also repeated this with the constant illumination code [19] as well as the least-squares

method proposed by Agrawal et al. [3]. While our proposed codes are identical to the

optimal codes in [3] for K = Q = 4, we utilize a regularized `1 reconstruction instead

of a least-squares reconstruction, which performs more consistently and provides greater

resolution improvement on average. As expected, a larger registration error results in a

worse reconstruction and a lower resolution improvement factor (Figure 2.6). Also, a reg-

istration error of between 0.1 to 0.2 frames, which we observed in Figure 2.5, corresponds

to approximately a 2.5× resolution improvement for our proposed coded illumination.

2.5.3 Comparing Reconstruction Quality

2.5.3.1 Constant vs. Active Illumination

To demonstrate our method in practice, we assembled a coded illumination imaging

system consisting of a Seoul Semiconductor high power LED [46], controlled by an Ar-

duino microcontroller [47] and synchronized to a Thorlabs DCC3240C camera [48]. We

programmed the Arduino to control the LED illumination intensity according to our set

of codes cq (with K = 8 and Q = 24), such that the code length K overlapped with the

camera’s exposure time, which we set to 16.6 milliseconds for a frame rate of 60 frames per

second. Using this imaging setup, we acquired videos of a moving target (playing cards)

under both constant illumination and coded illumination. To ensure that the target fol-

lowed the same motion path in all videos, and to eliminate the need for a preliminary

spatial registration step, we used a Rethink Robotics Baxter robot [49] to hold the target

and move them in a consistent manner following an arc across the camera’s field of view.

For both our constant illumination and coded illumination superresolution methods, we
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(a) (b) (c)

(d) (e) (f)

Figure 2.7: We imaged a hand of cards (a,b,c) and a resolution test target (d,e,f)
moving in an arc across the camera’s field of view. (a,d) An image from the original
sequence, captured at 60 frames per second with an exposure time of 16.6 ms, is blurred
due to the motion of the cards/target. Arrows denote the direction of motion. (b,e) We
used 24 cycles of similar motions captured under constant illumination to reconstruct
a temporal superresolution sequence with a reconstruction factor of K = 8. While
the reconstruction reduces the motion blur, it also results in “ringing” or “ghosting”
artifacts around the cards’ letters and suits in (b) and around the smaller Ronchi
rulings in (e). (c,f) We used 24 cycles captured under our proposed coded illumination
with K = 8 and Q = 24 to reconstruct a temporal superresolution sequence. The
coded reconstruction significantly reduces the motion blur without as severe “ringing”
artifacts as present in the constant illumination reconstruction.
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used 24 videos to reconstruct an 8× temporal superresolution sequence. For our con-

stant illumination superresolution method, we performed the reconstruction with λ = 0.3

(Figure 2.7(b)). For our active illumination superresolution method, we performed the

reconstruction with regularization parameters α = 0.2 and β = 0.2 (Figure 2.7(c)). Both

reconstructions visibly reduce the motion blur compared to the original, low-resolution

acquisition (Figure 2.7(a)). However, because of its lower condition number and increased

numerical stability, our proposed coded illumination reconstruction contains noticeably

fewer “ringing” artifacts compared to the constant illumination reconstruction.

We also repeated this experiment with a modified USAF 1951 resolution test tar-

get in which the groups of bars were laid out along an arc matching our motion path

(Figure 2.7(d,e,f)). In the low-resolution acquisition, the smallest resolvable set of bars

(group -3, element 6) corresponded to a resolution limit of 0.22 line pairs per millimeter.

In our coded reconstruction, the smallest resolvable set of bars (group -1, element 2)

corresponded to a resolution limit of 0.56 line pairs per millimeter, or a 2.5× resolution

improvement factor over the low-resolution acquisition.

2.5.3.2 `1 vs. `2

An important aspect in our method is the `1 norm in the minimization function,

Equation (2.17) and (2.43). Minimizing an `1 norm is more computationally expensive

than minimizing an `2 norm (for a least-squares solution). The latter is much easier to im-

plement and faster to compute, but the solution is more affected by outlier data. Outlier

data can be caused by the shot noise typical in low-light fluorescence microscopy, irreg-

ularity in the repeating signal (such as arrhythmia), or registration error. We compared

our proposed `1 constant illumination reconstruction with the corresponding least-squares

reconstruction (i.e. the solution to Equation (2.17), except with `2 norms replacing both

of the `1 norms) and with the result of temporal interpolation to evaluate the recon-
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Figure 2.8: The cardiac cycle of a live fluorescent Gt(tpm4-citrine)ct31a zebrafish em-
bryo (3 dpf) is imaged at 30 fps with a 20× objective. (a-d) An off-sample frame
halfway in between two original video frames (between t = 233ms and t = 267ms)
and (e-h) its neighboring on-sample frame (at t = 267ms) are reconstructed by (a,e)
cubic interpolation, (b,f) motion interpolation using Adobe After Effects [50], (c,g)
minimizing an `2 version of our constant illumination cost function with λ = 0.1,
and (d,h) minimizing our proposed `1 cost function (Equation (2.17)) with λ = 0.15.
These choices for λ produce similar background noise levels in both the `1 and `2
reconstructions. Arrows denote a bright region in the heart wall that is blurred due
to the motion of the heart. A comparison of this region in each reconstruction shows
that our proposed `1 method is best at reducing this motion blur, both for off-sample
and on-sample frames. Scalebars are 50 µm.
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structed image quality for both on-sample and off-sample time points. Specifically, we

used both `1 and `2 norms to reconstruct an image sequence of the cardiac cycle for a

three day-old (three days post-fertilization) Gt(tpm4-citrine)ct31a zebrafish embryo [51]

from a low temporal resolution sequence acquired at 30 frames per second [18]. We

chose λ for the `1 reconstruction according to Equation (2.24), and we chose λ for the

least-squares reconstruction to provide a similar background noise level as that of the `1

reconstruction. We compared this to both cubic interpolation and motion interpolation

(using Adobe After Effects [50]).

Results show that our proposed method is best able to reduce motion blur (Fig-

ure 2.8). In fact, results show that the least-squares approach tends to over-smooth the

solution, which can worsen the problem of motion blur. Additionally, while interpolation

methods can be used to create higher rate sequences, they do not actually improve the

effective temporal resolution, and they cannot reduce temporal aliasing or motion blur.

Naive interpolation (using linear or cubic interpolation) can introduce additional spatial

blur as a result of blending neighboring frames. Motion interpolation can avoid these

frame-blending artifacts when calculating intermediate frames, but does not improve the

resolution of frames that fall on integer samples. Our method is able to reconstruct a

true higher rate sequence without additional spatial blurring in intermediate frames and

with reduced motion blur in both on-sample and off-sample frames (Figure 2.8).

We also repeated this comparison for our coded illumination approach with a simula-

tion in which we used a video of the beating heart in a live Tg(cmlc2 :EGFP) fluorescent

zebrafish embryo captured at 60 frames per second (under conditions similar to those

in [19]) as the high-resolution ground truth signal Iref. We simulated coded acquisition

with Q = 11 codes of length K = 8 (for a low-resolution frame rate of 7.5 fps), and we

applied each code cq to a different cardiac cycle. By using different cardiac cycles for each

coded acquisition, we preserve any noise or temporal variations of the cardiac cycle in our
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(a) (b)

(c) (d)

Figure 2.9: We simulated coded illumination for fluorescence microscopy with a video
of the beating heart in a zebrafish embryo captured at 60 fps. We generated Q = 11
coded acquisitions at 7.5 fps with each code applied to a different cardiac cycle. From
these coded acquisitions, we reconstructed a single high resolution cardiac cycle (with
K = 8) using our proposed method, as well as an `2 version of our method. (a)
A single frame from the original video at 60 fps. (b) A simulated coded image for
q = 11. (c) A single frame from our `1-based reconstruction corresponding to the
cardiac phase shown in (a). (d) The corresponding frame from the least-squares
version of our algorithm. While both the `1 and `2-based approaches are able to
reconstruct a high-resolution cardiac cycle, the `1-based reconstruction produces a
spatially and temporally sharper result. Scalebar is 100 µm.
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low-resolution coded sequences. Using a single frame from each coded cardiac cycle, we

used our proposed algorithm to reconstruct K = 8 high-resolution frames (Figure 2.9).

We also performed the reconstruction using a least-squares version of our algorithm in

which the `1 norms in Equations (2.42) and (2.43) were replaced with `2 norms. In both

cases, we performed the reconstructions with α = β = 0.01. In both reconstructions,

individual cells, which were blurred together in the low-resolution image, are distinctly

visible. However, the least-squares reconstruction produces a slightly more spatially and

temporally smooth result, which is counter-productive for improving temporal resolution

and reducing motion blur.

2.5.4 Application to Fluorescence Microscopy

2.5.4.1 Constant Illumination Temporal Superresolution

We applied our constant illumination temporal superresolution method to reconstruct

a 3D time series of a beating heart in a live Tg(cmlc2:eGFP) zebrafish embryo (at 2.5

days post-fertilization) expressing green fluorescent protein in the heart [52]. We ac-

quired a dataset consisting of 125 z-slices (with 2 µm spacing between adjacent slices)

at 60 frames per second using a custom-built multiview selective plane illumination mi-

croscope with two illumination arms and two detection arms [41]. Using this setup, we

illuminated the sample through both illumination arms with a 3-µm thick light sheet pro-

duced by rapidly scanning a Cobolt MLD 488 nm laser beam through the sample. We

acquired images from a single view with a Nikon CFI Apo LWD 25×/1.1 water dipping

objective and a Hamamatsu ORCA-Flash 4.0 V2 camera. To reduce file size and speed

up processing time, we downsampled the images in the x and y directions to 180 pixels

× 180 pixels. Prior to our temporal superresolution reconstruction, we synchronized the

z-slices using the method in [38]. We used nine heartbeat cycles to reconstruct a temporal
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superresolution sequence with twice the original sampling rate and with regularization

parameter λ = 0.5. In addition to temporal superresolution, our method also reduces

noise, as shown in Figure 2.10.

To quantify the noise reduction of our temporal superresolution method, we cal-

culated the peak signal-to-noise ratio (SNR), PSNR = 10 log10 [max (I2) /σ2], and the

contrast-to-noise ratio (CNR), CNR = 10 log10 [(µ1 − µ2) /σ], where I is the entire 3D +

time image sequence, σ is the standard deviation of a background region of the image se-

quence, and µ1 and µ2 are, respectively, the mean pixel intensities in appropriately chosen

heart and background regions of interest. As shown in Table 2.3, our method performs

better than the wavelet-based PURE-LET method (which specifically takes into account

Poisson-type noise, yet does not take advantage of temporal redundancy) [54] and our

previous multicycle method [53] at denoising the experimental cardiac fluorescence image

sequences.

Table 2.3: Denoising comparisons for data in Figure 2.10.

SNR [dB] CNR [dB]

Raw Synchronized 38.17 12.59

Multicycle Median Denoising [53] 43.64 15.17

PURE-LET Denoising [54] 43.86 15.80

Temporal Superresolution 44.10 15.93

2.5.4.2 Active Illumination Temporal Superresolution

We applied our active illumination temporal superresolution method to reconstruct

a 2D time series of a beating heart in a live Tg(cmlc2:eGFP) zebrafish embryo (at

39 hours post-fertilization) expressing green fluorescent protein in the heart [52]. We

acquired Q = 24 low-resolution coded image sequences at 10 frames per second using

a Leica DMI6000B inverted microscope with a HCX PL S-APO 10x/0.30 air objective

48



Improving Temporal Resolution in Low-Light Cardiac Fluorescence Microscopy Chapter 2

(a) (b)

(c) (d) (e) (f)

Figure 2.10: We imaged the heart of a live, 2.5 dpf, Tg(cmlc2:eGFP) zebrafish embryo
in fluorescence at 60 frames per second. (a) 125 z-slices are synchronized to recon-
struct a 3D volume. Due to the low illumination intensity and the short integration
time used during acquisition, the resulting image is severely corrupted by Poisson–
type noise. (b) Our temporal superresolution reconstruction is able to simultaneously
temporally superresolve the image sequence and remove much of the noise. We used
nine cardiac cycles with a regularization parameter λ = 0.5 to reconstruct a single
denoised heart beat with an effective sampling rate of 120 frames per second. See
supplementary movie 5 for the full video showing the cardiac cycle. (c) An image
with low signal-to-noise ratio from a single timepoint and z-slice is shown from the
original image sequence. (d) The image is denoised using the multicycle denoising
method in [53]. (e) The image is denoised using PURE-LET denoising [54]. (f) The
corresponding denoised image is shown from our temporal superresolution reconstruc-
tion with λ = 0.5. Quantitative denoising results are tabulated in Table ??. Scale bar
is 100 µm.
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and custom-built light source (consisting of a blue high power LED controlled by an

Arduino microcontroller [47]) synchronized to a Hamamatsu ImageEM C9100-13 EM-

CCD camera. From these 24 coded image sequences of the cardiac cycle, we applied

our algorithm in Equation (2.43) with β = 0.21 to reconstruct an 8× superresolution

sequence. We also repeated this with our constant illumination temporal superresolution

method, using 24 low-resolution image sequences acquired at 10 frames per second under

constant illumination to reconstruct an 8× superresolution sequence following Equation

(2.17) with λ = 0.22. In both cases, β and λ were determined using the L-curve approach

in Equation (2.24). In both reconstructions, the motion blur of fast-moving cardiac

muscle cells is reduced, but to a greater extent in the coded illumination reconstruction

(Figure 2.11).

Low Resolution
Frame

Constant Illumination
Reconstruction

Coded Illumination
Reconstruction

(a)                                                      (b)                                                       (c)

Figure 2.11: A comparison of the superresolution reconstructions under constant il-
lumination (b) and coded illumination (c) with K = 8 and Q = 24. A corresponding
low resolution image under constant illumination (a) is also shown. Motion blur is
reduced more in our coded reconstruction than in the reconstruction under constant
illumination.
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2.6 Conclusion

In summary, we have presented two methods for temporal superresolution of repeat-

ing processes. Our first method, designed for constant illumination with any conventional

microscope, improves both temporal resolution and signal-to-noise ratio without any ad-

ditional hardware or hardware modifications. We achieve denoising by combining multi-

ple cycles of the signal through the `1 minimization in Equation (2.17). Additionally, this

minimization also uses these multiple cycles to simultaneously achieve temporal super-

resolution (by a factor of 1.6 in experimental data), which is not possible with standard

denoising algorithms. While our method is limited to repeating processes such as the

cardiac cycle, we do not require the process to be strictly periodic, as our method handles

nonuniform temporal warping in the repeating process. Our software demonstrating this

superresolution algorithm, in the form of a Fiji plugin, is available online for download

at [55].

Our second method for temporal superresolution combines a coded illumination ap-

proach for video acquisition with an `1 reconstruction algorithm. In addition, we pro-

pose a generalizable set of binary modulation codes for any reconstruction factor K and

number of acquisitions Q. With this method, we do not assume that acquisitions are

precisely synchronized (e.g. via gating). However, when gating acquisitions such that

they are precisely synchronized (so that sq = 0), our proposed set of modulation codes

remains well-conditioned even for relatively large values of K and Q (e.g. K = Q = 12).

Precisely gating acquisitions (which may be possible for some applications) would elim-

inate the need for our temporal registration step and could also improve the resolution

improvement factor in the reconstruction (depending on the gating accuracy).

One of the advantages of our coded illumination approach is its light efficiency. Unlike

in coded exposure approaches [3, 4], in which the object is still illuminated during closed-
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exposure intervals, we do not illuminate our object unnecessarily. Moreover, compared

to temporal superresolution under constant illumination [19], for the same number of

acquisitions Q, we illuminate the object with approximately only half the total energy.

This is especially advantageous in fluorescence biomicroscopy, where biological samples

are often sensitive to harsh (with high peak intensity) illumination and where fluorescent

molecules can only be excited a limited number of times before becoming inactive. By

using modulated illumination, we can extend the lifetime of the samples’ fluorescent

molecules, allowing for longer-duration and less-damaging imaging sessions.

We anticipate our methods to be particularly useful for low-light fluorescence imaging

of repeating biological processes, such as the beating heart in developing organisms. In

such settings, a long exposure time is often necessary to acquire a sufficient number of

photons for an acceptable signal-to-noise ratio. Unfortunately, when imaging dynamic

processes (e.g. the heart), a long exposure time also results in motion blur due to the

motion of the sample. With our approach, we can reconstruct a video with high temporal

resolution and reduced motion blur, even in a low-light setting when the individual low-

resolution sequences are acquired with a long exposure time.
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2.A Appendix

2.A.1 Reverse Cubic Interpolation for Sub-Sample Shift Esti-

mation

Rather than using a piecewise linear approximation to solve for the sub-sample shift

∆n in Section 2.4.1.2, in practice it is preferable to use a higher order approximation,

such as a monotone cubic approximation [56], in which

Iacq [x, n] ≈Îref [x, w̄ [n]]H1(∆n)+

Îref [x, w̄ [n+ 1]]H2(∆n)+

D [x, w̄ [n]]H3(∆n)+

D [x, w̄ [n+ 1]]H4(∆n),

(2.49)

where D [x, w̄[n]] is the temporal derivative of Îref at w̄[n] (which we calculate using the

method in [56]), and Hk(∆n), k = 1, . . . , 4 are the cubic Hermite basis functions evaluated

at ∆n. Assuming that 0 < ∆n < 1,

H1(∆n) = 2∆3
n − 3∆2

n + 1, (2.50)

H2(∆n) = −2∆3
n + 3∆2

n, (2.51)

H3(∆n) = ∆3
n − 2∆2

n + ∆n, (2.52)

H4(∆n) = ∆3
n −∆2

n. (2.53)

Given the image sequence Iacq [x, n] and the whole-sample, integer shift w̄[n], we
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calculate ∆n with the following minimization:

∆n = arg min
t
C(t), (2.54)

where

C(t) =
∑
x

(
Îref [x, w̄ [n]]H1(t)

+ Îref [x, w̄ [n+ 1]]H2(t)

+D [x, w̄ [n]]H3(t)

+D [x, w̄ [n+ 1]]H4(t)

− Iacq [x, n])2 ,

(2.55)

which is a minimization of a scalar polynomial function and can be solved by finding the

roots of d
dt
C(t).
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Chapter 3

Improving Spatial Resolution in

Optical Projection Tomography

Using Point-Spread-Function-Aware

Filtered Backprojection

Abstract2

Traditional optical projection tomography requires the use of low numerical aperture

(NA) objectives in order to achieve a large depth of field and approximate parallel projec-

tion geometry. However, low NA objectives suffer from poor resolution, resulting in blur

in the reconstructed image. In this chapter, we present a modified filtered backprojec-

tion method suitable for focal-plane-scanning optical projection tomography (FPS-OPT),

where each projection is obtained by scanning through focal planes during collection. We

show that FPS-OPT has an exact inversion formula akin to a filtered backprojection, but

that incorporates the system’s point-spread-function to recover a deblurred 3D volume.

2This chapter is based on [57].
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With simulations, we demonstrate that FPS-OPT permits the use of high numerical aper-

ture objectives that lead to more accurate images. We further illustrate the technique on

experimentally acquired data from a fluorescently-labeled zebrafish larva, which shows

that our approach reduces out-of-focus blur.

3.1 Introduction

Optical projection tomography (OPT) is a 3D microscopy technique that has been

used to image small transparent animals (up to a few millimeters) such as cleared mouse

embryos [58] and zebrafish embryos [59]. Similar to computed tomography (CT), optical

projection tomography uses multiple projections through a sample to reconstruct a 3D

volume. However, unlike CT, which uses x-rays that travel in approximately straight

lines, OPT uses visible light and microscope optics that accept light rays over a range

of angles. In order to apply traditional tomographic reconstruction techniques to OPT,

researchers typically use low numerical aperture (NA) objectives with OPT to reduce

the acceptance angle of the system and achieve approximately straight-line projections.

However, low NA objectives have worse lateral resolution than high NA objectives, thus

limiting the lateral resolution of OPT systems.

The problem with high NA objectives is that they have a shallow depth of field,

making them unsuitable for traditional OPT imaging of thick samples. To adapt OPT

for use with high NA objectives, Miao et al. [60] proposed scanning the focal plane

through the entire sample to create pseudoprojections with improved resolution com-

pared to traditional (low NA) OPT projections. Additionally, for high-NA OPT imaging

with a selective plane illumination microscope, Bassi et al. used high-pass filtering and

weighted averaging of multiple focal slices to create an extended depth of field projec-

tion [61]. These pseudoprojections and extended depth of field projections are then used
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to reconstruct a 3D image using filtered backprojection (FBP) [9].

While the image formation process through convolution with an extended PSF (rather

than line integrals) has been acknowledged in OPT and methods have been proposed to

mitigate its effect [11, 12, 62], they are ad-hoc methods that focus on fixed focal plane

OPT, for which an analytically-derived inversion formula is lacking. Other methods

include a well-defined forward model, but require computationally intensive iterative

algorithms for reconstruction [63]. In this chapter, we instead consider the acquisition

procedure of Miao et al. [60], which we will refer to as focal-plane-scanning OPT (FPS-

OPT), and we derive an analytic inversion formula that fully incorporates the point-

spread-function.

This chapter is organized as follows. In Section 3.2, we present the image formation

process in optical projection tomography. In Section 3.3, we present our proposed image

acquisition and reconstruction approach. In Section 3.4.1, we characterize our method

with a 2D phantom and point-spread-functions of various NAs. In Section 3.4.2, we

illustrate our method on data acquired with FPS-OPT of blood vessels in a fluorescent

zebrafish embryo.

3.2 Problem Formation

Assuming minimal optical attenuation and scattering, the ideal image formation pro-

cess in optical projection tomography can be described by the Radon transform of the

underlying object. For a 2D object f(x, y), the Radon transform at a particular angle θ

is the set of line integrals at a distance s from the origin (Fig. 3.1 (a)),

Rf(s, θ) =

∫∫
R2

f(x, y)δ(x cos θ + y sin θ − s) dx dy, (3.1)
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where δ(·) is the Dirac delta function, and R(s, θ) is the projection of f(x, y) along the

direction θ. However, this model is only accurate when (i) the entire sample is contained

in the system’s depth of field, and (ii) the system’s optical point spread function (PSF)

is infinitely narrow in the lateral (x-y) direction. In OPT, this model is inaccurate,

particularly the second condition. The image formation model in OPT is more accurately

described by that of widefield imaging, in which a focal plane is sampled from the result

of the convolution between the object and a rotated version of the system’s PSF (Fig. 3.1

(b)),

Ĩ(s, θ) = (f ∗ Tθ {h}) (s cos θ, s sin θ), (3.2)

where Tθ{·} is a transformation operator that rotates a function by an angle θ about

the origin, h is the point-spread-function of the system, and s is the distance from the

origin (which we assume to lie on the focal plane). In such a case, the standard filtered

backprojection (FBP) algorithm can no longer be used to accurately recover f(x, y).

(a) (b)
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Figure 3.1: (a) In traditional tomography, acquisitions are assumed to be straight line
projections through the entire object. (b) In OPT (for the 2D case), acquisitions are
better described as the result of the 2D convolution between the object and the PSF
sampled on a single focal plane. (c) In FPS-OPT, each acquisition is obtained by
summing up images obtained while scanning through all focal planes.
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3.3 Proposed Method

3.3.1 Increasing the Depth of Field

To address the first problem when the sample is not completely contained in the

system’s depth of field, we follow [60] to create a pseudoprojection by scanning the

focal plane through the entire sample (FPS-OPT). This can be done either by linearly

sweeping the focal plane through the sample during a single camera integration period, or

by acquiring a focal stack and retrospectively integrating along the projection direction

by digitally averaging the slices. By scanning the focal plane during imaging, we manually

perform a Radon transform as in Fig. 3.1 (c),

R̃f(s, θ) =

∫∫
R2

(f ∗ Tθ {h})(x, y) · δ(x cos θ + y sin θ − s) dx dy. (3.3)

However, the imaging model still differs from the ideal model in Fig. 3.1 (a), because for

each angle θ, the Radon transform is taken of a differently blurred underlying image due

to the rotated point-spread-function Tθ {h}.

3.3.2 Deblurring with PSF-Aware Filtered Backprojection

Applying standard filtered backprojection to Equation (3.3) will not allow us to re-

cover f(x, y). Rather, it will reconstruct a blurred version of f(x, y) due to the effect of

the optical point-spread-function h. However, recall that according to the Fourier slice

theorem, the M -dimensional Fourier transform of a projection (X-ray transform) of an

N -dimensional function onto M dimensions is equivalent to an M -dimensional slice of

that function’s N -dimensional Fourier transform [64],

FM ◦ PN→Mθ = SN→Mθ ◦ FN , (3.4)
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Figure 3.2: The Fourier transform of an object’s projection is equivalent to a slice
from the underlying object’s Fourier transform. The inclusion of the system’s point
spread function introduces an extra convolution in space, or equivalently, an extra
multiplication in the Fourier domain.

where FM denotes an M -dimensional Fourier transform, PN→Mθ denotes a projection

(X-ray transform) at an angle θ from N dimensions to M dimensions, SN→Mθ denotes an

M -dimensional slice normal to the direction of θ from N dimensions, and FN denotes

an N -dimensional Fourier transform. For consistency with Figure 3.1, the remainder of

this section considers the case where M = 1 and N = 2. However, we note that this also

generalizes to higher dimensions, specifically to the case where M = 2 and N = 3 for 3D

OPT.

As the Radon transform in Equation (3.3) is a projection operator P2→1
θ , by the

Fourier-slice theorem, its Fourier transform is equivalent to a slice from the Fourier
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transform of the PSF-blurred, underlying image (as illustrated in Figure 3.2),

F1
{
R̃f(s, θ)

}
= S2→1

θ

{
F2 {f ∗ Tθ {h} (x, y)}

}
. (3.5)

Since the convolution between two functions is equivalent to the product of their Fourier

transforms, and since the point-wise product can be performed after the slicing operator,

F1
{
R̃f(s, θ)

}
= S2→1

θ

{
F2 {f(x, y)}

}
· S2→1

θ

{
F2 {Tθ {h} (x, y)}

}
. (3.6)

Applying the Fourier-slice theorem once more to the PSF-term in the product allows us

to separate the Fourier-slice of the desired, underlying function:

S2→1
θ

{
F2 {f(x, y)}

}
=
F1
{
R̃f(s, θ)

}
· F1∗ {P2→1

θ {Tθ {h} (x, y)}}
|F1 {P2→1

θ {Tθ {h} (x, y)}} |2 . (3.7)

At this point, we recall that the filtered back projection (FBP) algorithm [9] can be

used to invert the Radon transform by expressing the reconstructed image as:

f(x, y) ≈
K∑
i=1

Qθi(x cos θi + y sin θi), (3.8)

where Qθi(s) is the projection at an angle θ after Fourier domain filtering with a ramp

filter W = |ω|,

F1 {Qθ(s)} = S2→1
θ

{
F2 {f(x, y)}

}
·W. (3.9)

Substituting (3.7) in the above, each filtered backprojection can be expressed in terms

of the FPS-OPT-measured blurred projection R̃f(s, θ). Specifically, we use

F1 {Qθ(s)} = F1
{
R̃f(s, θ)

}
· W̃ , (3.10)
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where W̃ is the product of the ramp filter W and a (regularized) version of the expression

in Equation (3.7),

W̃ =
W · F1∗ {P2→1

θ {Tθ {h} (x, y)}
}

|F1
{
P2→1
θ {Tθ {h} (x, y)}

}
|2 + λ|F1 {r(s)} |2 , (3.11)

where λ is the regularization weighting parameter and r is a high-pass regularization filter.

This regularization term in the denominator stabilizes the inverse filter and prevents it

from growing large when the optical transfer function is close to zero. With this result,

we can now apply the FBP in (3.8), to reconstruct the pre-blurred image f(x, y) from

the blurred projections R̃f(s, θ).

3.4 Experiments

3.4.1 Simulations with Shepp-Logan Phantom

To evaluate our method, we simulated an optical projection tomography system in

Matlab using the spline-based Radon transform [65] and a Shepp-Logan phantom as a test

image. In this simulation, we used 180 uniformly spaced projections over a total of 180◦

degrees (for an angular spacing of 1◦). For each projection angle, we convolved the Shepp-

Logan phantom with a rotated point-spread-function prior to computing the Radon trans-

form. We obtained 2D point-spread-functions by extracting the central y-z plane from 3D

PSFs generated with the Born & Wolf model [1, 66]. We compared image reconstruction

quality in terms of peak signal-to-noise ratio, PSNR = 10 log10

(
max(f̃)2/MSE

)
where

f̃ is the reconstructed image, and MSE is the mean squared error between f̃ and the

original ground truth image.

In our simulations, we compared three different reconstruction algorithms: traditional

filtered backprojection (FBP), simultaneous algebraic reconstruction technique (SART)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: We compare traditional filtered backprojection (a,e) with SART (b,f)
and with our PSF-aware filtered backprojection (c,g) using point spread functions
generated with numerical apertures of 0.3 (a,b,c) and 0.5 (e,f,g). The corresponding
PSF for NAs of 0.3 and 0.5 are shown in (d) and (h), respectively.

[10, 9], and our proposed PSF-aware filtered backprojection. In our SART implementa-

tion, we incorporated the blur of the point spread function into the forward projection

model rather than using a simple straight-ray projection model. We computed all SART

reconstructions using 10 iterations. For our PSF-aware filtered backprojection, we per-

formed each simulation with multiple values of λ and selected the λ that produced the

reconstruction with the highest PSNR.

3.4.1.1 Constant Magnification

We first considered the scenario where we varied the numerical aperture of the OPT

system without changing the sampling resolution (magnification factor). We chose the

sampling resolution to be 100 nm per pixel in both directions. It is well known that,

for the same magnification factor, a higher numerical aperture system allows for better

resolution than a lower numerical aperture system. This is due to the fact that the
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lateral width of a point-spread-function, as defined by its full width at half maximum

(FWHM), is inversely proportional to the system’s NA. Additionally, the axial width of

a point-spread-function is inversely proportional to the square of the system’s NA. We

compared our PSF-aware filtered backprojection to traditional FBP and SART under this

scenario for numerical apertures of 0.3 and 0.5 (Figure 3.3). In each case, our method

outperformed standard FBP and SART in terms of PSNR (Table 3.1 (a)). Note that

as the PSF’s lateral width increases with lower NA, the inverse filter also becomes more

numerically unstable and requires a greater regularization weighting λ. Additionally, the

reconstructed image contains more visible ringing artifacts at a lower NA (Figure 3.3(b)).

3.4.1.2 Variable Magnification

We also considered the scenario where we varied the NA while also varying the sam-

pling resolution to keep the PSF width the same (isolating the effect of PSF shape).

Depending on the NA, the sample spacing was adjusted such that the lateral width

(FWHM) of the PSF covered the same number of samples. This is similar to imaging

with different magnification objectives, since a higher magnification microscope objective

will typically also have a higher NA, yet camera sampling would ideally be adjusted to

the optical resolution (PSF width). We compared our PSF-aware FBP to traditional

FBP under this scenario for numerical apertures of 0.1, 0.7, and 1.3. In each case, the

sampling resolution was adjusted to be 1/4 of the lateral width of the PSF. Under these

conditions, higher NAs perform worse with traditional FBP since the PSF becomes more

hourglass-shaped than low NA PSFs. When instead using our PSF-aware FBP, we were

able to reconstruct images with higher PSNRs than both traditional FBP and SART for

all three numerical apertures (Table 3.1 (b)).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.4: We compare traditional filtered backprojection (a,e,i) with SART (b,f,j)
and with our PSF-aware filtered backprojection (c,g,k) using point spread functions
generated with numerical apertures of 0.1 (a,b,c), 0.7 (e,f,g), and 1.3 (h,i,j). The cor-
responding PSF for NAs of 0.1, 0.7 and 1.3 are shown in (d), (h), and (l), respectively.
For each point spread function, the sampling resolution was adjusted to be 1/4 of the
lateral width of the PSF.

Table 3.1: PSNR comparisons between traditional FBP, SART, and our PSF-aware
FBP with different numerical apertures.

PSNR (dB)

NA FBP SART PSF-Aware FBP

(a) Constant
Magnification

0.3 18.85 21.05 23.46
0.5 20.12 22.84 25.23

(b) Variable
Magnification

0.1 22.20 23.23 25.44
0.7 20.56 23.92 26.08
1.3 19.78 23.91 26.03
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3.4.1.3 Number of Projections

An important factor in tomographic imaging is the number of acquired projections

and the angular spacing between them. Using fewer projections allows for faster imaging

due to the reduced acquisition (and reconstruction) time, but often results in “star-like”

artifacts, especially with filtered backprojection. To evaluate the effect of the number of

projections on our reconstruction algorithm, we performed a simulation with the same

1.3 NA settings used in Section 3.4.1.2 (where the sampling resolution was adjusted to be

1/4 of the PSF width). We acquired sets of 30, 60, 90, and 180 uniformly projections over

180◦, for angular spacings of 6◦, 3◦, 2◦, and 1◦, respectively. For each set of projections,

we compared the reconstructions using standard filtered backprojection (FBP), SART,

and our PSF-aware filtered backprojection. When there are few projections separated by

a large angular spacing (60 projections separated by 3◦, and 30 projections separated by

6◦), our PSF-aware FBP reconstruction contains severe “star” artifacts (Figure 3.4.1.3

(i,j)). In these cases, iterative reconstruction with SART provides better PSNR than

both traditional and our PSF-aware filtered backprojection. However, when the angular

spacing between projections is sufficiently small (≤ 2◦), our PSF-aware FBP outperforms

SART (Table 3.2).

Table 3.2: PSNR comparisons between traditional FBP, SART, and our PSF-aware
FBP reconstructions using different numbers of acquired projections.

PSNR (dB)

# Projections FBP SART PSF-Aware FBP

30 18.96 19.67 15.60

60 19.65 22.10 20.70

90 19.76 23.13 23.83

180 19.78 23.91 26.03
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Figure 3.5: We compare traditional FBP (a,b,c,d) with SART (e,f,g,h) and with
our PSF-aware FBP (i,j,k,l) to reconstruct an image from 30 projections (a,e,i), 60
projections (b,f,j), 90 projections (c,g,k), and 180 projections (d,h,l). Quantitative
results are tabulated in Table 3.2.
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Focal	Plane

Microscope

Objective

Figure 3.6: Diagram of the OPT rotational acquisition procedure for zebrafish. For
each projection angle θ, the focal plane is scanned through the entire zebrafish to
create a full projection, even with a shallow depth-of-field objective.

3.4.2 Application to Blood Vessel Imaging

To demonstrate our approach in practice, we imaged the tail of a 64 hpf (hours

post-fertilization) Tg(fli1a:eGFP) zebrafish that expresses green fluorescence in its blood

vessels. We acquired 1600 projections over 360◦ (with 8 focal slices per projection, over

a total depth of 1000 µm) using a custom-built rotational stage consisting of a stepper

motor connected to a fluorinated ethylene propylene (FEP) tube that has a refractive

index close to that of water. We mounted the larval zebrafish inside the FEP tube in a 1%

low melting-point agar solution. We placed this rotational stage on a Leica DMI6000B

inverted widefield microscope and imaged in fluorescence with a 10×/0.3 dry objective

and a Hamamatsu C9100-13 EM-CCD camera. Figure 3.6 shows a sketch of the image

acquisition setup and rotation orientation.

At each angle, we acquired a projection of the zebrafish fluorescence emission using
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Figure 3.7: We compare (a) standard FBP with (b) our PSF-aware FBP for 3D flu-
orescence OPT imaging of a Tg(fli1a:eGFP) zebrafish tail. Our proposed PSF-aware
FBP algorithm reconstructs an image with less out-of-focus blur. Scalebar is 100 µm.

FPS-OPT, and we computed the projection’s center of mass to determine the position of

its rotational axis [67]. From these, we reconstructed a 3D volume using both traditional

FBP and our PSF-aware FBP (Fig. 3.7). Our PSF-aware FBP reconstruction contains

significantly less out-of-focus blur compared to the traditional FBP reconstruction.

3.5 Conclusion

In conclusion, we have derived a direct inversion algorithm for focal plane scanning

optical projection tomography (FPS-OPT) that can be implemented using a modified fil-

tered backprojection algorithm that incorporates knowledge of the system’s point-spread-

function. Through simulations with a 2D phantom, we showed that our modified filtered

backprojection offers a noticeable improvement in PSNR compared to traditional FBP

and SART reconstructions. Additionally, our proposed reconstruction method is compu-

tationally inexpensive compared to SART. For our simulations with a 512×512 phantom

in Section 3.4.1, our proposed FBP algorithm took approximately 1.8 seconds (the same

time as traditional FBP) to reconstruct an image from 180 projections, whereas SART
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(with 10 iterations) took, on average, approximately 50 minutes. Finally, we applied our

method to image the tail of a larval zebrafish, where we demonstrate that our PSF-aware

FBP algorithm is able to reconstruct an image with significantly reduced out-of-focus

blur compared to a traditional FBP reconstruction.
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Chapter 4

Improving Out-of-Plane Velocity

Resolution in Cardiac Flow

Velocimetry Using Multi-View

Imaging

Abstract3

Conventional fluid flow estimation methods for in vivo optical microscopy are limited

to two-dimensions and are only able to estimate the components of flow parallel to the

imaging plane. This limits the study of flow in more intricate biological structures, such

as the embryonic zebrafish heart, where flow is three-dimensional. To measure three-

dimensional blood flow, we propose an algorithm to reconstruct a 3D, divergence-free

flow map from multiple 2D flow estimates computed from image stacks captured from

different views. This allows us to estimate the out-of-plane velocity component that is

normally lost with single-view imaging. This chapter describes our 3D flow reconstruction

3This chapter is based on [68]

71



Improving Out-of-Plane Velocity Resolution in Cardiac Flow Velocimetry Chapter 4

algorithm, evaluates its performance on a simulated velocity field, and demonstrates its

application to in vivo cardiac imaging within a live zebrafish larva.

4.1 Introduction

Blood flow in the embryonic heart plays a critical role to ensure normal development,

and perturbations to the normal flow can lead to severe heart defects [13]. Measuring

these flows in 3D has remained a challenge due to the limited acquisition speed of con-

ventional 3D imaging modalities and the rapid motion of blood cells in the heart. New

microscope designs using electrically tunable lenses have begun to address this issue and

have demonstrated acquision rates of up to 30 volumes per second [69]. However, such

designs require a tradeoff between temporal and axial sampling, so increasing the num-

ber of volumes per second is only possible by taking volumes with fewer z-slices. In

optical microscopy, blood flow estimation is typically performed on 2D video sequences

acquired at very high frame rates (400-1000 frames per second for zebrafish) [13, 14].

However, this 2D approach is only able to measure the components of velocity parallel to

the acquisition plane, and any out-of-plane motion is lost, as illustrated in Fig. 4.1(a-c).

A number of methods have recently been proposed to recover three-dimensional flow

with MRI [15, 16] and ultrasound imaging [17]. Unfortunately, these imaging modalities

often lack the spatio-temporal resolution necessary for imaging blood flow in small organ-

isms and developing embryos. In comparison, optical microscopy offers high resolution

and allows use of fluorescent probes to image specific biological structures and functions

of interest. Several 3D particle image velocimetry (PIV) methods have also been pro-

posed, including holographic PIV [70] and defocusing PIV [71]. However, these methods

have yet to be demonstrated with in vivo microscopy to measure 3D blood flow.

In this chapter, we present a method to reconstruct 3D, divergence-free flow fields
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0º view
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Figure 4.1: (a) Still frame of a high-speed video of the beating heart in a larval
zebrafish (A: atrium, V: ventricle). Blood flow was estimated using an optical flow
technique. (b) 2D flow can be estimated at multiple depths in the sample by adjusting
the focal plane. (c) Flow estimation algorithms can only recover the in-plane com-
ponent (projection, dashed arrows) of the true velocity vector (black arrows). The
out-of-plane component (gray line connecting the in-plane and true velocity vectors) is
inaccessible. (d) The out-of-plane component can be measured by imaging the object
from a different view (e.g. 90◦).

from multiple 2D projections acquired from different rotated views (e.g. 0◦ and 90◦

as shown in Fig. 4.1(d)). At a high level, our method is similar to the multi-view,

divergence-free method used by Liu et al. to measure 3D motion of muscle tissue using

MRI [72]. Our method also has similarities with other multi-view flow reconstruction

methods [73, 74] that formulate the reconstruction problem as a constrained and regular-

ized inverse problem. Unlike these methods, however, we do not use explicit constraints

or separate regularization terms, but rather we directly reconstruct flow fields using radial

basis functions which guarantee our reconstructed flow to be divergence-free, a common

assumption for flow estimation. This also allows us to represent the 3D flow field with

relatively few coefficients, making the method computationally tractable.

This chapter is organized as follows. In Section 4.2, we describe the image formation

model and the problem with single-view imaging for measuring 3D flow. In Section 4.3

we present the multi-view 3D flow reconstruction method as a quadratic minimization

problem. In Section 4.4.1, we evaluate our method using a simulated flow field. In Section

4.4.2, we discuss the experimental acquisition procedure and demonstrate our approach
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with in vivo microscopy to produce volumetric maps of 3D blood flow in the beating

heart of a developing zebrafish larva.

4.2 Problem Formation

Given a three-dimensional vector field v(x, t), at every position x ∈ R3, we consider

an orthogonal projection of this vector field onto a plane:

vnk(x, t) = Pnk {v(x, t)} (4.1)

= v(x, t)− 〈v(x, t),nk〉 nk, (4.2)

where Pnk{·} is an operator that projects a vector onto the plane with unit normal

vector nk, and 〈·, ·〉 is an inner product between two vectors. This situation reflects

conventional imaging and estimation of 2D flow, where out-of-plane flow velocities (i.e.

〈v(x, t),nk〉 nk) are lost.

In optical microscopy, when imaging thin, flat samples (that can be approximated as

two-dimensional), such as cells under a coverslip, the velocity vector field can be measured

by acquiring a 2D + time image sequence and using, for example, an optical flow [75] or

other motion estimation algorithm. However, when imaging thick samples where motion

is three-dimensional, traditional 2D imaging restricts our out-of-plane velocity resolution

and can only provide information about motion in the focal plane.

4.3 Proposed Method

To recover a three-dimensional velocity field v(x, t), we consider acquiring K two-

dimensional projections vnk(x, t), for k = 1, . . . , K, each on a different rotated plane.
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From these K projections, we recover the 3D vector field v(x, t) with the following

minimization:

v̂(x, t) = arg min
ṽ(x,t)

K∑
k=1

(Pnk {ṽ(x, t)} − vnk(x, t))
2 . (4.3)

This equation ensures data consistency, i.e. the least-squares error is minimized when

the projected estimate matches the measured field. However, we also wish to enforce

fluid incompressibility in our flow reconstruction. Using a divergence-free interpolation

method based on radial basis functions [76], we require that v̂(x, t) satisfy

v̂ (x, t) =
M∑
j=1

Φ (x−mj) cj (t) , (4.4)

where cj (j = 1, . . . ,M) are vectorial radial basis coefficients, mj are their corresponding

node locations, and Φ is a matrix-valued radial basis function given by

Φ (r) =

[(
1− ‖r‖

2

2α2

)
I +

1

2α2
rr>
]
e−

‖r‖2

2α2 , (4.5)

where I is the identity matrix, and α is a real, positive-valued parameter that controls

the smoothness of the vector field.

Combining Equations (4.3) and (4.4), we obtain the following modified minimization:

ĉj (t) = arg min
cj(t)

K∑
k=1

(
Pnk

{
M∑
j=1

Φ(x−mj)cj(t)

}
− vnk(x, t)

)2

, (4.6)

which can be solved using the conjugate gradient method. This minimization equation

solves for the vectorial radial basis coefficients that produce the 3D vector field best

matching our observed vector projections. After solving for the divergence-free coeffi-

cients ĉj(t), the 3D vector field can be interpolated using Equation (4.4).
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4.4 Experiments

4.4.1 Simulation

We evaluated our method using the following divergence-free vector field:

v(x) =


γ1yz

γ1xz

γ2cos (γ3 (x+ y))

 , (4.7)

sampled on a 10×10×10 grid from −1 mm to 1 mm in each direction (Fig. 4.2(a)),

and where γ1, γ2, γ3 are constants such that v(x) is in units of mm/s. Specifically,

γ1 = 1 mm−1 · s−1, γ2 = 1 mm · s−1, and γ3 = 1 mm−1. We computed two 10× 10× 10

focal stacks from two different views of this vector field: one where vectors were projected

onto slices parallel to the xy-plane (Fig. 4.2(b)) and one where vectors were projected

onto slices with normal vector n = [−sin (45◦) , 0, cos (45◦)]>, corresponding to a 45◦

rotation of the xy-plane about the y-axis (Fig. 4.2(c)). In each view, we added zero-

mean white Gaussian noise to both the magnitude and phase of the projected vectors.

The standard deviation of the magnitude and phase noise are, respectively, σmag = 0.05

mm/s and σφ = 45◦. From these two views, we were able to recover the 3D vector field

(shown in Fig. 4.2(d)) with a total mean squared error (for all three vector components)

of 0.13 mm/s. All vector fields were visualized using ParaView 4.2.0 [77].

Additionally, we explored how the angle between different views affected the recon-

struction accuracy. Using again the vector field given in Eq. 4.7 and taking two views

separated by an angle θ, we applied our method to reconstruct a 3D vector field. We

repeated this with different values of θ and found mean squared errors of 0.17 mm/s,

0.14 mm/s, and 0.06 mm/s for θ = 15◦, 30◦, 90◦, respectively. Unsurprisingly, as θ ap-
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Figure 4.2: (a) We simulated a 10 × 10 × 10 3D divergence-free velocity field. (b,c)
We compute 10 × 10 × 10 focal stacks from two views of this velocity field, rotated
by 45◦. In each view, the 3D vectors on each focal slice are projected onto that 2D
focal plane. In each stack, the center slice is outlined in red. (d) Our method is able
to combine these two views to reconstruct the original 3D velocity field with a mean
squared error of 0.13 mm/s.

proaches 90◦, the mean squared error decreases. This suggests that, in a 3D flow imaging

experiment, it is ideal to acquire data from orthogonal views. When this is not possible

(due to a lack of optical access), it is advisable to take views with the largest separation

angle possible.

4.4.2 In-Vivo Application

To demonstrate our method with in vivo microscopy, we immersed a 60 hpf (hours

post fertilization) zebrafish larva in a 1.2% low melting point agarose, 0.016% tricaine

(MS-222) solution and placed it inside a tube made of fluorinated ethylene propylene

(FEP) which has a refractive index close to that of water. We then placed this tube on

the stage of a Leica DMI6000B inverted microscope equipped with an HCX PL S-APO

20×/0.50 dry objective. The tube was oriented perpendicular to the optical axis, and

its axis of rotation was aligned parallel to the y-axis of the focal plane. Using a stepper

motor, we rotated the tube to image the zebrafish heart from three different views, each

rotated by an additional 18◦. At each view, we acquired movies with 512×512 pixels at

500 frames per second, covering 3 heartbeats, at 10 different z-slices with 15 µm between

each slice. After acquisition, we computationally synchronized the movies and extracted
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a channel containing only blood cells using the algorithm described in [14]. We then

estimated flow velocity vectors (parallel to the imaging plane) at each z-slice using the

Lucas-Kanade optical flow algorithm [75], as implemented in FlowJ [78]. Fig. 4.3 shows

an example of 2D velocities estimated from three different views (for visibility, only a

single plane is shown for each view).

x
y

z

Figure 4.3: We acquired focal stacks of the zebrafish heart from three views: −18◦,
0◦, and 18◦ relative to the xy-plane and rotated about the y-axis. At each view, 2D
optical flow was used to estimate velocity vectors in each plane. For visibility, a single
slice is shown for each view.

After estimating all 2D velocity fields, we estimated the 3D velocity field using the

algorithm described in Section 4.2. We obtained a set of 8×8×4 uniformly spaced vector

coefficients from the minimization in Eq. 4.6 and used it to interpolate the 3D velocity

field onto a 128×128×64 grid. Fig. 4.4 shows the reconstructed blood flow velocity field

during the atrial contraction phase of the heart. For a 60 hpf zebrafish embryo, we

observed a maximum blood flow velocity of approximately 4 mm/s as blood is pumped

from the atrium to the ventricle. This value falls between the maximum AV velocities
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Figure 4.4: We combine 2D flow estimates from three different views to recover a
divergence-free 3D velocity map of blood flow through the heart of a zebrafish larva
(A: atrium, V: ventricle, Y: yolk).
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of 0.9 mm/s and 5 mm/s for a 37 hpf and 4.5 dpf (days post fertilization) embryo,

respectively, measured by Hove et al. [13]. We repeated this procedure at all timepoints

to characterize three-dimensional blood flow over an entire cardiac cycle.

4.5 Conclusion

Since blood flow is inherently three-dimensional, current 2D imaging methods, which

cannot measure out-of-plane motion, are inadequate to fully characterize complex flow

trajectories. Multi-view imaging allows one to recover the out-of-plane component of

motion and measure 3D flow. In this chapter, we demonstrate a new method for com-

bining multi-view 2D flow estimates to recover a divergence-free, 3D flow field. Since

our method starts from 2D vector fields, we rely on accurate 2D flow separation and

motion estimation algorithms as a pre-processing step. Additionally, since the normal

vectors nk are assumed to be known, any rotational imperfections could also result in

errors in the recovered 3D flow. This may be resolved with careful calibration, better

volumetric image registration, or perhaps by including the projection angles (the normal

vectors) into the optimization framework itself. We foresee our method to be applicable

to not only transmitted light microscopy, but also to other modalities such as fluorescence

microscopy (with fluorescently labeled blood cells).
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Conclusion

5.1 Summary of Contributions

In conclusion, we have presented a set of computational imaging methods for improv-

ing resolution – temporal, spatial, and out-of-plane velocity resolution – in biological

microscopy. These methods use modified data acquisition procedures and solve an in-

verse problem to reconstruct images that surpass the limits of conventional microscopes.

We summarize the novelties of our methods below.

To image the beating heart at high speeds in low-light fluorescence microscopy, we

proposed an active illumination image acquisition procedure and an `1 reconstruction

algorithm that utilizes multiple differently illuminated images to achieve sub-frame tem-

poral resolution. Since an active illumination light source may not be readily available

to many microscopy users, we also proposed a translational temporal superresolution

method using constant illumination that is compatible with any conventional microscope

and does not require any specialized hardware. Other methods for temporal superreso-

lution either use multiple cameras [2, 3] or specially modified cameras [5, 7, 8] and are

ill-suited to microscopy. In contrast, our temporal superresolution methods in Chapter 2
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use only a single camera with the requirement that we image repeating processes. To

develop our temporal superresolution methods for repeating processes, we proposed sub-

frame temporal registration procedures to align multiple cycles of a repeating process

with sub-sample accuracy. In our constant illumination method, temporal registration is

performed as a separate pre-processing step. In our active illumination method, temporal

registration is performed jointly as part of the superresolution optimization. Also, while

[3] and [6] use temporal exposure modulation (which has similarities with our illumina-

tion modulation), they use a computationally expensive exhaustive search to determine

their camera exposure codes, whereas we propose a closed-form expression to generate a

set of well-conditioned modulation codes for any desired reconstruction factor.

To image millimeter-scale three-dimensional fluorescent samples with high spatial res-

olution and without out-of-focus blur, we proposed a point-spread-function-aware filtered

backprojection algorithm combined with focal-plane scanning acquisition for optical pro-

jection tomography (OPT). While focal plane scanning had been previously proposed for

OPT [60], previous methods for focal plane scanning OPT (FPS-OPT) have ignored the

optical point spread function (PSF) during tomographic reconstruction. Several previous

methods for traditional (single-plane) OPT reconstruction have acknowledged the pres-

ence of the PSF during image formation. However, these methods use ad-hoc filtering to

reduce PSF blur, and they lack an exact inversion formula based on a forward imaging

model [11, 12, 62]. Other methods include a well-defined forward model, but require

computationally intensive iterative algorithms for reconstruction [63]. In Chapter 3, we

showed that focal plane scanning results in a modified forward imaging model that has

a direct, computationally inexpensive inverse. With our method, we can reconstruct a

“deconvolved” three dimensional image without need for 3D deconvolution algorithms,

as the optical PSF is accounted for within the filtered backprojection algorithm itself.

To measure three-dimensional blood flow velocity in live, in-vivo microscopy, we pro-
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posed a divergence-free 3D vector field reconstruction algorithm that combines velocity

estimates from two (or more) views. Previous flow-estimation methods for optical mi-

croscopy have been limited to two-dimensional flow [13, 14]. While methods have been

proposed to measure 3D flow with MRI [15, 16] and ultrasound imaging [17], these imag-

ing modalities often lack the spatio-temporal resolution necessary for imaging blood flow

in small organisms and developing embryos. Our method has similarities with other

multi-view flow reconstruction methods [73, 74] that formulate the reconstruction prob-

lem as a constrained and regularized inverse problem. However, our approach is unique

in its use of radial basis functions to model a divergence-free vector field. This assump-

tion reduces the computational complexity of the inverse problem, since it allows us to

represent the 3D flow field with relatively few coefficients. Our method allowed us to

measure, for the first time, 3D blood flow at high spatio-temporal resolution in live larval

zebrafish using optical microscopy.

5.2 Future Outlook

We have presented a series of tools to overcome the limitations of specific imaging

modalities within optical microscopy. Future work may include extending these tools

to other imaging applications. For example, optical astronomical imaging may benefit

from our constant illumination temporal superresolution method in Chapter 2, since it

is also characterized by low photon counts, long exposure times, and periodic motions.

Future work may also include combining these tools. Specifically one could use our tem-

poral superresolution method in Chapter 2 in combination with our OPT reconstruction

method in Chapter 3, to achieve both high spatial and high temporal resolution. An-

other possible direction of future work is to apply our cardiac flow velocimetry method

in Chapter 4 to conduct more in-depth, quantitative analyses of how blood flow changes
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over development (and even across indivduals). In addition, one could apply our 3D flow

reconstruction algorithm to measure blood flow dynamics in abnormal development (e.g.

with a heart defect), possibly providing new insights into cardiovascular disease.
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