UNIVERSITY OF CALIFORNIA
Santa Barbara

Collocated Data Deduplication for Virtual
Machine Backup in the Cloud

A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
in
Computer Science
by

Wei Zhang

Committee in Charge:
Professor Tao Yang, Chair
Professor Jianwen Su

Professor Rich Wolski

September 2014



The Dissertation of
Wei Zhang is approved:

Professor Jianwen Su

Professor Rich Wolski

Professor Tao Yang, Committee Chairperson

January 2014



Collocated Data Deduplication for Virtual Machine Backup in the Cloud

Copyright (©) 2014
by

Wei Zhang

il



v

To my family.



Acknowledgements

First of all, I want to take this opportunity to thank my advisor Professor Tao Yang
for his invaluable advice and instructions to me on selecting interesting and challenging
research topics, identifying specific problems for each research phase, as well as prepar-
ing for my future career. I would also like to thank my committee members, Professor
Rich Wolski and Professor Jianwen Su, for their pertinent and helpful instructions on
my research work.

I also want to thank members and ex-members of my research group, Michael
Agun, Gautham Narayanasamy, Prakash Chandrasekaran, Xiaofei Du, and Hong Tang,
for their incessant support in the forms of technical discussion, system co-development,
cluster administration, and other research activities.

I owe my deepest gratitude to my parents, for their love and support, which give me
the confidence and energy to overcome all past, current, and future difficulties.

Finally and most importantly, I would like to express my gratitude beyond words to
my wife, Jiayin, who has been encouraging and inspiring me since we met in love. We
went through all the difficult times together, and depended on each other in this foreign
place one Pacific Ocean away from our homeland. Every step forward I have made is
unimaginable without Jiayin’s support.

This dissertation study was supported in part by NSF IIS-1118106. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of



the authors and do not necessarily reflect the views of Alibaba or the National Science

Foundation.

Vi



Curriculum Vitae

Wei Zhang
Education
2002 - 2005 Master of Science in Computer Science, Tsinghua University, Beijing,
China.
1997 — 2001 Bachelor of Science in Electrical Engineering, Wuhan University, Wuhan,
China.
Publications

Michael Daniel Agun, Tao Yang, Wei Zhang. “Asynchronous Source-
side Deduplication for Cloud Data Backup”. To be submitted for pub-
lication.

Wei Zhang, Michael Daniel Agun, Tao Yang, Hong Tang. “VM-Centric
Snapshot Deduplication for Converged Cloud Architectures”. Submit-
ted for publication.

Wei Zhang, Tao Yang, Gautham Narayanasamy, Hong Tang. “Low-
Cost Data Deduplication for Virtual Machine Backup in Cloud Stor-
age”. In Proceedings of the 5th USENIX Workshop on Hot Topics in

File and Storage Technologies (HotStorage’13), July 2013.

vii



Wei Zhang, Hong Tang, Hao Jiang, Tao Yang, Xiaogang Li, Yue Zeng.
“Multi-level Selective Deduplication for VM Snapshots in Cloud Stor-
age”. In Proceedings of the 5th IEEE International Conference on
Cloud Computing (CLOUD’12), June 2012.

Wen Ye, Wei Zhang, Rich Wolski. “Simulation-Based Augmented Re-
ality for Sensor Network Development”. In Proceedings of the 5th
ACM Conference on Embedded Networked Sensor Systems (SenSys’07),
November 2007.

Wei Zhang, Haoxiang Lin. “A Versatile Cryptographic File System for
Linux”. In Journal of Micro Computer Systems, China, 2006.

Wei Zhang, Fuchun Sun. “An Improved FCM Algorithm Based On
Search Space Smoothing”. In Proceedings of the Ist IASTED Interna-

tional Conference on Computational Intelligence (CI’05), July 2005.

viii



Abstract

Collocated Data Deduplication for Virtual Machine Backup
in the Cloud

Wei Zhang

Cloud platforms that host a large number of virtual machines (VMs) have high stor-
age demand for frequent backups of VM snapshots. Content signature based dedupli-
cation is necessary to eliminate excessive redundant blocks. While dedicated backup
storage systems can be used to reduce data redundancy, such an architecture is ex-
pensive and introduces huge network traffic in a large cluster. This thesis research is
focused on a low-cost backup and deduplication service collocated with other cloud
services to reduce infrastructure and network cost.

The previous research for cluster-based data deduplication has concentrated on var-
ious inline solutions. The first part of the thesis work is a highly parallel batched so-
lution with synchronized backup scalable for a large number of virtual machines. The
key idea is to separate duplicate detection from the actual storage backup, and to par-
tition global index and detection requests among machines using fingerprint values.
Then each machine conducts duplicate detection partition by partition independently
with minimal memory consumption. Another optimization is to allocate and control
buffer space for exchanging detection requests and duplicate summaries among ma-

chines. The resource requirement in terms of memory and disk usage for the proposed

X



solution is very small while the backup efficiency in terms of overall throughput and
time is not compromised. Our evaluation validates this and shows a satisfactory backup
throughput in a large cloud setting.

The second part of the thesis work is a VM-centric collocated backup service with
inline deduplication. The key difference compared to the previous work is its novelty
in fault resilience and low resource usage. We propose a multi-level selective dedu-
plication scheme which integrates similarity-guided and popularity-guided duplicate
elimination under a stringent resource requirement. This scheme uses popular common
data to facilitate fingerprint comparison, localizes deduplication as much as possible
within each VM, and associates underlying file blocks with one VM for most of cases.
The main advantage of this scheme is that it strikes a balance between inner and in-
ter VM deduplication, increasing parallelism and improving reliability. Our analysis
shows that this VM-centric scheme can provide better fault tolerance while using a
small amount of computing and storage resource. We have conducted a comparative
evaluation of this scheme on its competitiveness in terms of deduplication efficiency

and backup throughput.

Professor Tao Yang

Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

The ubiquity of the cloud computing has resulted in the widespread availability
of cluster-based services and applications accessible through the Internet. Examples
include online storage services, big data analytics, and e-commerce websites. In such
a cluster-based cloud environment, each physical machine runs a number of virtual
machines as instances of a guest operating system to contain different kind of user
applications, and their data is stored in virtual hard disks which are represented as
virtual disk image files in the host operating system. Frequent snapshot backup of
virtual disk images is critical to increase the service reliability and protect data safety.
For example, the Aliyun cloud, which is the largest cloud service provider by Alibaba
in China, automatically conducts the backup of virtual disk images to all active users

every day.
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The cost of supporting a large number of concurrent backup streams is high be-
cause of the huge storage demand. If such VM snapshot data is plainly backed up
without any duplicate reduction, storage waste would be extreme high. For example,
a fresh Windows server 2008 installation costs 25 GB on the virtual disk, and they are
almost certainly duplicated with other Windows VM instances[51, 33]. Using a sep-
arate backup service with full deduplication support [42, 62] can effectively identify
and remove content duplicates among snapshots, but such a solution can be expensive.
There is also a large amount of network traffic to transfer data from the host machines
to the backup facility before duplicates are removed.

Unlike the previous work dealing with general file-level backup and deduplication
inside a centralized storage appliance, our research is focused on virtual disk image
backup in a cluster of machines. Although we treat each virtual disk as a file logically,
its size is very large. On the other hand, we need to support parallel backup of a
large number of virtual disks in a cloud every day. One key requirement we face at a
busy cloud cluster is that VM snapshot backup should only use a minimal amount of
system resources so that most of resources is kept for regular cloud system services
or applications. Thus our objective is to exploit the characteristics of VM snapshot
data and pursue a cost-effective deduplication solution. Another goal is to decentralize
VM snapshot backup and localize deduplication as much as possible, which brings the

benefits for increased parallelism and fault isolation.
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Despite its importance, storage deduplication remains a challenging task for cloud
storage providers, especially for resource-constrained large-scale public VM clouds. In
recognizing this importance and the associated challenges, my thesis is that

It is possible to build an efficient, scalable, and fault-tolerant backup service sup-
porting highly accurate deduplication with sustainable high throughput.

In other words, the main goal of this study is to answer the following question.
Given a large scale VM cluster running tens of thousand of VMs, how can such a snap-
shot backup service identify whether a piece of data in VM disk really needs a backup?
And how to manage backup data under complex sharing relationship? This dissertation
investigates techniques in building a snapshot storage architecture that provides low-
cost deduplication support for large VM clouds. In particular, it contains the following

contributions to establish my thesis:

e The design of a low-cost multi-stage parallel deduplication solution for automat-

ically batched deduplication.

e An inline multi-level deduplication scheme with similarity-guided local detection

and popularity-guided global detection.

e The development and analysis of a VM-centric storage approach which considers

fault isolation and integrates multiple duplicate detection strategies.
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e Fast and efficient garbage collection with approximate snapshot deletion and leak

repair.

In general, this dissertation study is built upon a large body of previous research in
storage deduplication and distributed storage systems. The goal of this work is to pro-
vide low-cost deduplication support and storage management for large-scale resource-
constrained VM clouds. This solution should be collocated with existing cloud infras-
tructure services and require no dedicated hardware support. It also needs to accom-
plish good deduplication efficiency and does not comprise the data reliability due to
the inherent volatility of commodity hardware. Under the above consideration, our
system is designed to support multiple levels of deduplication depending on backup
requirements. The objective is to provide satisfactory deduplication efficiency and high

throughput with the emphasis on low resource usage and fault tolerance.

1.2 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 gives the background
of thesis problems. Chapter 3 presents the overall VM snapshot storage architecture.
Chapter 4 describes a synchronous and parallel deduplication scheme for batched com-
plete deduplication. Chapter 5 studies a multi-level selective deduplication solution for

inline deduplication. Chapter 6 describes a VM-centric storage management with ap-



Chapter 1. Introduction

proximate deletion. Chapter 7 concludes this dissertation and briefly discusses some

potential future work.



Chapter 2

Background

At a cloud cluster node, each instance of a guest operating system runs on a virtual
machine, accessing virtual hard disks represented as virtual disk image files in the host
operating system. Virtual machine backup is typically conducted through a snapshot,
which is a copy of the virtual machine’s disk files at a given time. Performing VM

snapshot backup for the entire cluster is difficult for several reasons:

e Huge storage demand. The size of each VM snapshot varies from tens of giga-
bytes to multiple terabytes while the total snapshot size of an entire cloud cluster

is often in a petabyte level. Such data needs to be backed up daily or weekly.

e Big network bandwidth cost. Sending such a large amount of snapshot data re-

quires a large network bandwidth and may impede normal application activities.
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As a result, data deduplication is necessary in order to reduce the storage and band-
width costs of backup in a cloud cluster. But adding deduplication at a cloud scale

brings new challenges against previous developed techniques:

e Limited resources. Without dedicated hardware support in backup appliances,
VM backup and data deduplication in cloud must not race for CPU and memory
resources with existing VM activities. Compare to dedicated backup appliances
which are typically equipped with tens of GB of memory and multiple processors,
backup service in the cloud are only allowed to use no more than a few hundred

MB of memory, and its CPU usage must always stay low.

e Garbage collection for shared data. Data management for deduplicated storage
is complicated due to the need of tracking use of every shared data block. In order
to reclaim disk space, the reference counts of shared data blocks will need to be
updated whenever a snapshot is added or deleted. Managing reference counting

for data blocks at KB level in a PB level storage is extreme difficult.

o Little semantic information. For VM snapshot backup, file-level semantics are
normally not provided. Snapshot operations take place at the virtual device driver
level, which means no fine-grained file system metadata can be used to determine

the changed data.
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In summary, deduplication systems designed for legacy network storage that are
attached to physical servers are too expensive and complex for virtual machines. Both
cloud users and providers are seeking low-cost solutions to effectively backup their
data, otherwise they will be forced to backup less amount of data or less frequently,
which in return will compromise the data safety and recovery time. For example, Elec-
tronic Arts, which deploys its data analytics platform in Amazon’s AWS using several
hundreds of VMs, avoids using Amazon’s built-in snapshot storage and chooses to
backup hand-picked data manually for cost reasons.

To that end, this dissertation proposes low-cost deduplication storage architecture
that is collocated with other cloud services. We have learned a lot from various dedu-
plication systems built in the past for different backup scenarios. In this chapter we
will review the literature and discuss several system design options at high-level. Sec-
tion 2.1 introduces the origin and applications of data deduplication. Section 2.2 talks
the optimization and trade-off in designing a deduplication storage system. Section 2.3

discusses design options of backup storage architecture.

2.1 Deduplication

Backup storage for VM snapshots in the cloud contains petabytes of data from

many VMs, the data redundancy in such a data set is very high[30, 5]. If we treat each
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snapshot as a single data object, the similarities between snapshots can not be utilized.
Therefore we need better method to break files into data blocks. In the recent decade,
data deduplication techniques are emerged to solve this data redundancy problem in
backup systems. Most of data deduplication methods can be categorized by their gran-

ularity:

e By file: Old storage systems detect the duplicated files by compare their hash
value or byte-by-byte. If two files are the same, then only one copy of data is
saved, duplicated copies will be saved as metadata plus a pointer to the data.

Thus this method can not detect any redundant data between different files.

e By fixed size block: Many popular file systems or tools can catch data redun-
dancy at block level. It breaks files into many small fixed size blocks, and such
block is the basic unit for comparison. Typical applications based on this method
are Windows shadow copy, ZFS[3] snapshot, and Rsync[52]. While this method
does better than simple file comparison, it can only be used in pair-wise com-
parison between different versions of the same logical data object, and any inser-
tion/deletion will completely destroy the block similarity after the position where

modifications are taken place.

e By variable size block: This method breaks data into variable size blocks, and

the block boundary is only decided by local data content, so it is also called
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content-based chunking. Because of the chunk boundaries are only decided by
local data content, this method is modification-resistant. It resolves the limita-

tions in the previous two methods, and provides best deduplication efficiency.

Content-based chunking is first proposed by Manber[35]. He uses Rabin’s fingerprints[43,
18] to sample data in order to find similar files. This technique computes fingerprints
of all possible sub-strings of a certain length in a file and chooses a subset of these
fingerprints based on their values, e.g., if (fingerprint(s) mod a) = b, where s is a sub-
string, a and b are pre-defined values, then the position of sub-string s is considered as a
breakpoint. These breakpoints provide modification-resistant boundaries that separate
the file into many small chunks. A sequence of hash values of such chunks is a compact
representation of a file, that is then used to compare against other fingerprinted files.

There are pathological cases in finding breakpoints, for example, a long extent of
zeros may never contain a break point. Thus, LBFS[37] introduces min and max thresh-
olds to the chunk size: when scanning the file sequentially for breakpoints, if the dis-
tance between current sub-string and previous breakpoint is less than the minimum
threshold, then it is skipped; if the distance reaches the maximum threshold, then a
breakpoint is enforced. This method also reduces the computation because less sub-
strings are checked. In order to increase the chance of finding a breakpoint between
two thresholds, Kave[32] proposes the two divisors idea, in addition to have a standard

breaking condition, a weaker breaking condition is used to find backup breakpoints.

10
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Policroniades[41] gives out experimental results and present a comparative analysis
to three deduplication methods: First, the content based chunking is always the best
strategy to discover redundancy in any data sets. Second, the fixed size block method
can sometimes provides close results compare to content based chunking, and it brings
significant less overhead to computation and data management. Finally, for I/O inten-
sive primary storage system, data compression is still the most efficient approach to
save disk space, inline data reduction through deduplication has too much random I/O
overhead, making it difficult to justify the limited space savings in a primary storage
system.

Data deduplication is extensively used in saving bandwidth for data synchroniza-
tion. The popular rsync[52] protocol exploits the similarity of two directory trees using
fixed size blocks deduplication. LBFS uses content-based chunking to improve the NFS
protocol, it avoids transmitting redundant chunks which already exist at the other side.
But data deduplication has its cost. Content-based chunking algorithm needs to scan
the whole file looking for breakpoints, which is very slow (about 20MB/s using a single
2GHz core). StoreGPU[6] exploits the possibility of using GPU to chunk the file, their
results are exciting. Another option is to use parallel chunking algorithm to improve the
chunking speed, so that future’s many-core chips will be helpful. Meanwhile, stripping
files is not a quite big issue in cloud storage scenario, because it is expected to be done

at the client side before files are sent to the cloud.

11
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Since content-based chunking strips files into data blocks and identify them by
content hash, it is very natural to build CAS system base on it. Jumbo Store and
others[25, 11, 59] encodes directory tree snapshots into a graph whose nodes are data
blocks and edges are hash value pointers. Directory metadata, file metadata and data
chunk are all represented in the form of variable-size data blocks that identified by
content hash. A object which encapsulate metadata also has a list of hash identifiers
that point to other blocks it contains. Such a deduplication storage system has some
great advantages in terms of space efficiency, file transmission efficiency (through a
LBFS-like protocol), and data integrity checking (by verifying the hash).

Cumulus[53] is a client side backup tool to store file system snapshots in exist
cloud storage such as S3. To create a snapshot, Cumulus uses content-based chunking
to break files into data blocks, then compare (by hash) them to the list of stored blocks
(in local logs). New blocks will be packed and compressed into a segment file, and
sent to server. The advantage of Cumulus is portability, because it makes the dedupli-
cation backup totally opaque to the server. However, without the deduplication support
from protocol and server side, it’s hard to have efficient storage management, and from

server’s perspective, snapshots from many users still contain much redundant data.

12
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2.2 Optimization and Trade-off

Many previous studies on data deduplication focus on the disk bottleneck problem,
which refers to the key performance challenge in finding duplicate blocks. Let’s con-
sider a single machine in cluster which hosts many VMs and has 10 TB of virtual disks
in total, if it needs to be backed up daily, then the performance target would be 115
MB/sec on each machine. Given a block size of 4 KB, a deduplication system must
process approximately 28,900 blocks per second. An in-memory index of all block
fingerprints could easily achieve this performance, but the size of the index would limit
system size and increase system cost. If we use 20 bytes as block fingerprint size, then
supporting 10 TB worth of unique blocks, would require 50 GB just to store the fin-
gerprints. An alternative approach is to maintain an on-disk index of block fingerprints
and use a cache to accelerate block index accesses. Unfortunately, a traditional cache
would not be effective for this workload. Since fingerprint values are random, there is
no spatial locality in the block index accesses. With low cache hit ratios, most index
lookups require disk operations. If each index lookup requires a disk access which may
take 10 ms and 8 disks are used for index lookups in parallel, the write throughput
will be about 6.4MB/sec, which is far from the throughput goal of deduplicating at 115

MB/sec for our cloud backup scenario, and don’t forget that this goal is conservative

13
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since VM users generally want the backup task to finish in tens of minutes without
affecting their normal application activities.
Massive efforts have been put into the optimization of searching duplicate finger-

prints in large index. They can be summarized into three categories:

e Reduce disk index access. The data domain method [62] uses an in-memory
Bloom filter and a locality-based prefetching cache to intercept fingerprint lookup
which may access the on-disk index. Bloom filter[13] helps to tell if a fingerprint
is new, and prefetching cache helps to quickly find consequential duplicates. Im-

provements to this work with parallelization can be found in [56, 58, 38].

e Index sampling. A sampled index can be put into memory[34] or NAND flash[29]
to accelerate fingerprint lookup. This sampled index is 100 times or more smaller
than the full index so that they can be accessed quickly and easily. Once there’s a
hit in the sampled index, system loads the fingerprints that are next to the hit one

on disk, so that it can efficiently catches duplicates based on spatial locality.

e Similarity based sharding. Several similarity based techniques[19] such like
Extremely Binning[12, 22, 48, 49] group big files by similarity metrics such that
similar files are likely to fall into the same group. Then block level deduplication
is performed within the group. While all the group indices are still on the disk,

it can deduplicate an entire file by only load one group index into memory. This

14
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approach can easily scale-out, but it misses small amount of duplicates because
the similarity algorithm does not guarantee always mapping a file to the most

similar group.

Most of approaches discussed above focus on optimization of inline deduplication
performance by sacrificing a small percent of deduplication efficiency. In our cloud
backup scenario, we must always satisfy the low resource usage constraints while pro-
viding sustainable good throughput. As a result, we consider to sacrifice other perfor-
mance metrics to achieve our design goals, which we describe as below:

Given we are designing scalable low-cost collocated deduplication solutions, the
effectiveness of a deduplication system is determined by the extent to which it can
achieve three mutually competing goals: deduplication efficiency, throughput, and job
turnaround time. Deduplication efficiency refers to how well the system can detect and
share duplicate data units which is its primary compression goal. Throughput refers to
the rate at which data can be transferred in and out of the system, and constitutes the
main performance metric. Job turnaround time is the total time for a backup job from
submit to finish. All three metrics are important. Good deduplication efficiency reduces
the storage cost. High throughput is particularly important because it can enable fast
backups, minimizing the length of a backup window. Job turnaround time reflects how
fast primary storage can be released from backup related I/O activity. Among the three

goals, it is easy to optimize any two of them, but not all. To get good deduplication

15
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efficiency, it is necessary to perform data indexing for duplicate detection. The indexing
metadata size grows linearly with the capacity of the system. Keeping this metadata in
memory, would yield good throughput. But the amount of available RAM would set a
hard limit to the scalability of the system. Partition indexing metadata man remove the
scalability limit, but significantly hurt job turnaround time. Finally, we can optimize
for both throughput and turnaround time, , but then we lose deduplication as there’s no
cheap solution to search all metadata quickly. Achieving all three goals is a non-trivial
task.

Another less obvious but equally important problem is duplicate reference manage-
ment: duplicate data sharing introduces the need to determine who is using a particular
data unit, and when it can be reclaimed. The computational and space complexity
of these reference management mechanisms grows with the amount of supported ca-
pacity. Real world experience has shown that the cost of reference management for
garbage collection (upon addition and deletion of data) has become one of the biggest
bottlenecks.

This dissertation studies two low-cost deduplication design options with different
trade-off. Chapter 4 gives a synchronous parallel deduplication design that sacrifices
the job turnaround time to achieve high throughput and deduplication efficiency. Chap-
ter 5 describes an multi-level selective deduplication solution that comprises dedupli-

cation efficiency to improve throughput and job turnaround time.

16
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2.3 Architecture Options

The way that backup storage architecture evolves has been following the pace of
primary storage, so we will give a glimpse on primary storage’s evolution first. Or-
ganizations start with building their virtualization infrastructure using the traditional
servers-connected-to-storage-over-a-network architecture, which cant adapt to the ever-
changing demands of virtualization. In addition to slow performance, network storage
has become the single biggest source of cost and complexity in virtualized environ-
ments. The network storage-based architecture worked well for physical servers that
served relatively static workloads. Virtualization, and now Cloud Computing, has made
data centers extremely dynamic[8]; virtual machines are created on the fly, move from
server to server and depend heavily on shared resources. These characteristics make the
management of virtual machines and their underlying physical infrastructure extremely
complex: Data volumes are growing at a rapid pace in the data center, thanks to the
ease of creating new VMSs. In the enterprise, new initiatives like desktop virtualization
contribute to this trend. Service providers deal with an even larger number of VMs as
they build data centers to serve customers who cant afford the cost and management
overhead that virtualization requires. This growing pool of VMs is exerting tremen-
dous cost, performance and manageability pressure on the traditional architecture that

connects compute to storage over a multi-hop network.
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Google[27] and other leading cloud-generation companies such as Amazon, Yahoo
and Microsoft(Azure)[20] realized that a network-storage based approach would not
work for their data centers. They built software technology (such as Google File Sys-
tem) that could glue a large number of commodity servers with local storage into a
single cluster. This approach allowed Google to build a converged compute and storage
infrastructure that used commodity servers with local storage as its building block[28].
Google File System runs across a cluster of servers and creates a single pool of local
storage that can be seamlessly accessed by applications running on any server in the
cluster. It provides high availability to applications by masking failures of hard disks
and even complete servers. Google File System allowed Google to build data centers
with massively scalable compute and storage, without incurring the costs and perfor-
mance limitations associated with network storage.

In cooperate with the changes of primary storage in cloud, backup storage architec-
ture has to evolve as well. A dedicated backup storage appliance sits aside the cloud
does provide some good properties, such like it deduplicates all the backup data to-
gether so it provides good deduplication efficiency, and because it uses dedicated hard-
ware to fingerprint lookups, it leaves very small resource footprint on the client side.
However, its weakness on high-cost and bandwidth demand make it unsuitable for large
scale cloud backup scenario. This is especially true for public clouds whose users are

very sensitive to the storage pricing.
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To make VM snapshot backup efficient and economy for large scale cloud, we must
seek for a low-cost architecture that can be collocated with existing storage and other
cloud services. To avoid excessive bandwidth usage on transmitting backup data, it
must process fingerprint lookups at the client side and provides good deduplication ef-
ficiency. In addition, the resource footprint of deduplication must stay very low in order
to minimize the influence to normal VM activities. Finally, it must provides efficient

mechanism to manage the complicated data sharing relationship on deduplicated data.
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Chapter 3

System Overview

At a cloud cluster node, each instance of a guest operating system runs on a vir-
tual machine, accessing virtual hard disks represented as virtual disk image files in
the host operating system. For VM snapshot backup, file-level semantics are normally
not provided. Snapshot operations take place at the virtual device driver level, which
means no fine-grained file system metadata can be used to determine the changed data.
Backup systems have been developed to use content fingerprints to identify duplicate
content [42, 44]. As discussed earlier, collocating a backup service on the existing
cloud cluster avoids the extra cost to acquire a dedicated backup facility and reduces
the network bandwidth consumption in transferring the raw data for backup. Figure 3.1
illustrates a converged IaaS cloud architecture where each commodity server hosts a
number of virtual machines and storage of these servers is clustered using a distributed

file system [27, 46]. Each physical machine hosts multiple virtual machines. Every vir-
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tual machine runs its own guest operating system and accesses virtual hard disks stored

as image files maintained by the operating system running on the physical host.
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Figure 3.1: VM snapshot backup running on a converged cloud cluster.

3.1 Snapshot Service Overview

We will briefly introduce the abstraction of our storage architecture here and discuss
the implementation details in chapter 6. Our architecture is built on the Aliyun platform
which provides the largest public VM cloud in China based on Xen [10]. A typical VM
cluster in our cloud environment consists of from hundreds to thousands of physical
machines, each of which can host tens of VMs.

A GFS-like distributed file system holds the responsibility of managing physical
disk storage in the cloud. All data needed for VM services, which include runtime VM
disk images and snapshot backup data, reside in this distributed file system. During the
VM creation, a user chooses her flavor of OS distribution and the cloud system copies

the corresponding pre-configured base VM image to her VM as the OS disk, and an
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empty data disk is created and mounted onto her VM as well. All these virtual disks are
represented as virtual machine image files in our underline runtime VM storage system.
The runtime I/O between virtual machine and its virtual disks is tunneled by the virtual
device driver (called TapDisk[55] at Xen). To avoid network latency and congestion,
our distributed file system place the primary replica of VM’s image files at physical
machine of VM instance. During snapshot backup, concurrent disk write is logged to
ensure a consistent snapshot version is captured.

Figure 3.2 shows the architecture view of our snapshot service at each node. The
snapshot broker provides the functional interface for snapshot backup, access, and dele-
tion. The inner-VM deduplication is conducted by the broker to access meta data in the
snapshot data store and we discuss this in details in Section 5.3.1. The cross-VM dedu-
plication is conducted by the broker to access a popular data set (PDS) (will discuss in
Section 5.3.2, whose block hash index is stored in a distributed memory cache.

The snapshot store supports data access operations such as Get, Append and Delete.
Other operations include data block traverse and resource usage report. The snapshot
data does not need to be co-located with VM instances, and in fact they can even live
in a different cluster to improve the data reliability: when one cluster is not available,
we are still able to restore its VMs from another cluster which holds its snapshot data.

Under the hood of snapshot store, it organizes and operates snapshot data in the

distributed file system. We let each virtual disk has its own snapshot store, and no data

22



Chapter 3. System Overview

Guest OS [ PDS Hash Index J<;: Distributed
4 Y )
— Memory
VM | VM I\D/er\t/icel Snapshot |’/ Cache

Y ) Driver Broker
VM | VWM | [{= ;'—)\
—

VM | VM Storage Access
) : Distributed
L VM L M ) [ Runtime VM Disk N SVFSiigm
| Snapshot Store N " (GIES—Iike)

Host OS

Figure 3.2: Snapshot backup architecture abstraction

is shared between any two snapshot stores, thus achieve great fault isolation. For those
selected popular data that shared by many VM snapshot stores, we could easily increase

its availability by having more replications.

3.2 VM Snapshot Metadata Hierarchy

The representation of each snapshot in the backup storage has a two-level index
structure in the form of a hierarchical directed acyclic graph as shown in Figure 3.3. A
VM image is divided into a set of segments and each segment contains content blocks
of variable-size, partitioned using the standard chunking technique with 4KB as the

average block size. The snapshot metadata contains a list of segments and other meta
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Figure 3.3: An example of snapshot representation.

data information. Segment metadata contains its content block fingerprints and refer-
ence pointers. If a segment is not changed from one snapshot to another, indicated by a
dirty bit embedded in the virtual disk driver, its segment metadata contains a reference
pointer to an earlier segment. For a dirty segment, if one of its blocks is duplicate to an-
other block in the system, the block metadata contains a reference pointer to the earlier

block.
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Chapter 4

Synchronous and Parallel Approach
for Batched Deduplication

4.1 Introduction

This chapter introduces a low-cost architecture option and considers that a backup
service uses the existing cloud computing resource. Performing deduplication adds
significant memory cost for comparison of content fingerprints. Since each physical
machine in a cluster hosts many VMs, memory contention happens frequently. Cloud
providers often wish that the backup service only consumes small or modest resources
with a minimal impact to the existing cloud services. Another challenge is that deletion
of old snapshots compete for computing resource as well, because data dependence
created by duplicate relationship among snapshots adds processing complexity.

The traditional approach to deduplication is an inline approach which follows a

sequence of block reading, duplicate detection, and non-duplicate block write to the
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backup storage. In this chapter we introduce an synchronous and parallel approach
for batched deduplication. This solution is suitable for cloud which typically conduct
automatic backup of all the VMs during system’s spare time. Our key idea is to first
perform parallel duplicate detection for VM content blocks among all machines be-
fore performing actual data backup. Each machine accumulates detection requests and
then performs detection partition by partition with minimal resource usage. Finger-
print based partitioning allows highly parallel duplicate detection and also simplifies
reference counting management.

While our synchronous batched solution accomplishes perfect deduplication effi-
ciency while maintaining low resource usage, the trade-off of this approach is that the
job turnaround time for each individual VM backup task becomes longer. In addition,
every machine has to read dirty segments twice and that some deduplication requests
are delayed for staged parallel processing. However, with our careful parallelism and
buffer management, this multi-stage detection scheme can provide a sufficient through-
put for VM backup.

The rest of this chapter is organized as follows. Section 4.2 describes our syn-
chronous processing steps. Section 4.3 is our experimental evaluation that compares
with other approaches. Section 4.4 reviews the related works. Section 4.5 concludes

this chapter.
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4.2 Multi-stage Synchronous Deduplication Design

We consider deduplication in two levels. The first level uses coarse-grain segment
dirty bits for version-based detection [21, 54]. Our experiment with Alibaba’s produc-
tion dataset shows that over 70 percentage of duplicates can be detected using segment
dirty bits when the segment size is 2M bytes. This setting requires OS to maintain seg-
ment dirty bits and the amount of space for this purpose is negligible. In the second
level of deduplication, content blocks of dirty segments are compared with the finger-
prints of unique blocks from the previous snapshots. Our key strategies are explained

as follows.

e Separation of duplicate detection and data backup. The second level detec-
tion requires a global comparison of fingerprints. Our approach is to perform
duplicate detection first before actual data backup. That requires a prescanning
of dirty VM segments, which does incur an extra round of VM reading. During
VM prescanning, detection requests are accumulated. Aggregated deduplicate
requests can be processed partition by partition. Since each partition corresponds
to a small portion of global index, memory cost to process detection requests

within a partition is small.

o Buffered data redistribution in parallel duplicate detection. Let global index

be the meta data containing the fingerprint values of unique snapshot blocks in
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all VMs and the reference pointers to the location of raw data. A logical way
to distribute detection requests among machines is based on fingerprint values
of content blocks. Initial data blocks follows the VM distribution among ma-
chines and the detected duplicate summary should be collected following the
same distribution. Therefore, there are two all-to-all data redistribution opera-
tions involved. One is to map detection requests from VM-based distribution to
fingerprint based distribution. Another one is to map duplicate summary from
fingerprint-based distribution to VM based distribution. The redistributed data
needs to be accumulated on the disk to reduce the use of memory. To minimize
the disk seek cost, outgoing or incoming data exchange messages are buffered to
bundle small messages. Given there are p X g partitions where p is the number
of machines and ¢ is the number of fingerprint-based partitions at each machine,
space per each buffer is small under the memory constraint for large p or ¢ values.
This counteracts the effort of seek cost reduction. We have designed an efficient

data exchange and disk data buffering scheme to address this.

We assume a flat architecture in which all p machines that host VMs in a cluster can
be used in parallel for deduplication. A small amount of local disk space and memory
on each machine can be used to store global index and temporary data. The real backup
storage can be either a distributed file system built on this cluster or use another external

storage system.
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We use the two level metadata hierarchy as discussed in section 3.2. The snapshot
metadata contains a list of segments and other meta data information. Segment meta-
data contains its content block fingerprints and reference pointers. If a segment is not
changed from one snapshot to another, indicated by a dirty bit embedded in the virtual
disk driver, its segment metadata contains a reference pointer to an earlier segment. For
a dirty segment, if one of its blocks is duplicate to another block in the system, the
block metadata contains a reference pointer to the earlier block.

The data flow of our multi-stage duplicate detection is depicted in Figure 4.1. In
Stage 1, each machine independently reads VM images that need a backup and forms
duplicate detection requests. The system divides each dirty segment into a sequence
of chunk blocks, computes the meta information such as chunk fingerprints, sends a
request to a proper machine, and accumulates received requests into a partition on the
local temporary disk storage. The partition mapping uses a hash function applied to the
content fingerprint. Assuming all machines have a homogeneous resource configura-
tion, each machine is evenly assigned with ¢ partitions of global index and it accumu-
lates corresponding requests on the disk. There are two options to allocate buffers at
each machine. 1) Each machine has p x g send buffers corresponding to p x g partitions
in the cluster since a content block in a VM image of this machine can be sent to any
of these partitions. 2) Each machine allocates p send buffers to deliver requests to p

machines; it allocates p receive buffers to collect requests from other machines. Then
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the system copies requests from each of p receive buffers to g local request buffers, and
outputs each request buffer to one of the request partitions on the disk when this request
buffer becomes full. Option 2, which is depicted in Figure 4.1, is much more efficient
than Option 1 because 2p + ¢ is much smaller than p x g, except for the very small
values. As a result, each buffer in Option 2 has a bigger size to accumulate requests
and that means less disk seek overhead.

Stage 2 is to load disk data and perform fingerprint comparison at each machine one
request partition at a time. At each iteration, once in-memory comparison between an
index partition and request partition is completed, duplicate summary information for
segments of each VM is routed from the fingerprint-based distribution to the VM-based
distribution. The summary contains the block ID and the reference pointer for each
detected duplicate block. Each machine uses memory space of the request partition as
a send buffer with no extra memory requirement. But it needs to allocate p receive
buffers to collect duplicate summary from other machines. It also allocates v request
buffers to copy duplicate summary from p receive buffers and output to the local disk
when request buffers are full.

Stage 3 is to perform real backup. The system loads the duplicate summary of a
VM, reads dirty segments of a VM, and outputs non-duplicate blocks to the final backup
storage. Additionally, the global index on each machine is updated with the meta data

of new chunk blocks. When a segment is not dirty, the system only needs to output
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the segment meta data such as a reference pointer. There is an option to directly read
dirty blocks instead of fetching a dirty segment which can include duplicate blocks. Our
experiment shows that it is faster to read dirty segments in the tested workload. Another
issue is that during global index update after new block creation, the system may find
some blocks with the same fingerprints have been created redundantly. For example,
two different VM blocks that have the same fingerprint are not detected because the
global index has not contained such a fingerprint yet. The redundancy is discovered
and logged during the index update and can be repaired periodically when necessary.
Our experience is that there is a redundancy during the initial snapshot backup and
once that is repaired, the percentage of redundant blocks due to concurrent processing
is insignificant.

The above steps can be executed by each machine using one thread to minimize the
use of computing resource. The disk storage usage on each machine is fairly small for
storing part of global index and accumulating duplicate detection requests that contain
fingerprint information. We impose a memory limit M allocated for each stage of pro-
cessing at each machine. The usage of M is controlled as follows and space allocation
among buffers is optimized based on the relative ratio between the cross-machine net-
work startup cost and disk access startup cost such as seek time. Using a bigger buffer

can mitigate the impact of slower startup cost.
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e For Stage 1, M is divided for 1) an I/O buffer to read dirty segments; 2) 2p

send/receive buffers and g request buffers.

e For Stage 2, M is divided for 1) space for hosting a global index partition and the

corresponding request partition; 2) p receive buffers and v summary buffers.

e For Stage 3, M is divided for 1) an I/O buffer to read dirty segments of a VM
and write non-duplicate blocks to the backup storage; 2) summary of duplicate

blocks within dirty segments.

Snapshot deletion. Each VM will keep a limited number of automatically-saved
snapshots and expired snapshots are normally deleted. We adopt the idea of mark-and-
sweep [29]. A block or a segment can be deleted if its reference count is zero. To
delete useless blocks or segments periodically, we read the meta data of all snapshots
and compute the reference count of all blocks and segments in parallel. Similar to
the multi-stage duplicate detection process, reference counting is conducted in multi-
stages. Stage 1 is to read the segment and block metadata to accumulate reference
count requests in different machines in the fingerprint based distribution. Stage 2 is
to count references within each partition and detect those records with zero reference.
The backup data repository logs deletion instructions, and will periodically perform a

compaction operation when its deletion log is too big.
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4.3 System Implementation and Experimental Evalua-

tions

We have implemented and evaluated a prototype of our multi-stage deduplication
scheme on a cluster of dual quad-core Intel Nehalem 2.4GHz E5530 machines with
24GB memory. Our implementation is based on Alibaba’s Xen cloud platform [1,
60]. Objectives of our evaluation are: 1) Analyze the deduplication throughput and
effectiveness for a large number of VMs. 2) Examine the impacts of buffering during
metadata exchange.

We have performed a trace-driven study using a 1323 VM dataset collected from a
cloud cluster at Alibaba’s Aliyun. For each VM, the system keeps 10 automatically-
backed snapshots in the storage while a user may instruct extra snapshots to be saved.
The backup of VM snapshots is completed within a few hours every night. Based on
our study of its production data, each VM has about 40GB of storage data usage on
average including OS and user data disk. Each VM image is divided into 2 MB fix-
sized segments and each segment is divided into variable-sized content blocks with an
average size of 4KB. The signature for variable-sized blocks is computed using their
SHA-1 hash.

The seek cost of each random IO request in our test machines is about 10 millisec-

onds. The average I/O usage of local storage is controlled about SOMB/second for
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backup in the presence of other I/O jobs. Noted that a typical 1U server can host 6 to
8 hard drives and deliver over 300MB/second. Our setting uses 16.7% or less of local
storage bandwidth. The final snapshots are stored in a distributed file system built on
the same cluster.

The total local disk usage on each machine is about 8GB for the duplicate detection
purpose, mainly for global index. Level 1 segment dirty bits identify 78% of dupli-
cate blocks. For the remaining dirty segments, block-wise full deduplication removes
about additional 74.5% of duplicates. The final content copied to the backup storage is

reduced by 94.4% in total.
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Figure 4.2: Parallel processing time when memory limit varies.

Figure 4.2 shows the total parallel time in hours to backup 2500 VMs on a 100-node
cluster a when limit M imposed on each node varies. This figure also depicts the time

breakdown for Stages 1, 2, and 3. The time in Stages 1 and 3 is dominated by the two
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scans of dirty segments, and final data copying to the backup storage is overlapped with
VM scanning. During dirty segment reading, the average number of consecutive dirty
segments is 2.92. The overall processing time does not have a significant reduction as
M increases to 190MB. The aggregated deduplication throughput is about 8.76GB per
second, which is the size of 2500 VM images divided by the parallel time. The system
runs with a single thread and its CPU resource usage is 10-13% of one core. The result
shows the backup with multi-stage deduplication for all VM images can be completed
in about 3.1 hours with 35MB memory, 8 GB disk overhead and a small CPU usage. As
we vary the cluster size p, the parallel time does not change much, and the aggregated
throughput scales up linearly since the number of VMs is 25p.

Table 4.1 shows performance change when limit M=35MB is imposed and the num-
ber of partitions per machine (g) varies. Row 2 is memory space required to load a
partition of global index and detection requests. When g = 100, the required memory
is 83.6 MB and this exceeds the limit M =35MB. Row 3 is the parallel time and Row 4
is the aggregated throughput of 100 nodes. Row 5 is the parallel time for using Option
1 with p x g send buffers described in Section 4.2. When ¢ increases, the available
space per buffer reduces and there is a big increase of seek cost. The main network
usage before performing the final data write is for request accumulation and summary
output. It lasts about 20 minutes and each machine exchanges about 8MB of metadata

per second with others during that period, which is 6.25% of the network bandwidth.
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Table 4.1: Performance when M=35MB and ¢ varies.

#Partitions (g) 100 | 250 | 500 | 750 | 1000

Index+request (MB) | 83.6 | 33.5 | 16.8 | 11.2 | 8.45

Total Time (Hours) | N/A | 3.12 | 3.15 | 3.22 | 3.29

Throughput (GB/s) | N/A | 8.76 | 8.67 | 8.48 | 8.30

Total time (Option 1) | N/A | 7.8 | 11.7 | 148 | 26

4.4 Related Work

At a cloud cluster node, each instance of a guest operating system runs on a virtual
machine, accessing virtual hard disks represented as virtual disk image files in the host
operating system. For VM snapshot backup, file-level semantics are normally not pro-
vided. Snapshot operations take place at the virtual device driver level, which means
no fine-grained file system metadata can be used to determine the changed data.

Backup systems have been developed to use content fingerprints to identify dupli-
cate content [42, 44]. Offline deduplication is used in [24, 7] to remove previously writ-
ten duplicate blocks during system’s idle time. Several techniques have been proposed
to speedup searching of duplicate fingerprints. For example, the data domain method
[62] uses an in-memory Bloom filter and a prefetching cache for data blocks which may

be accessed. An improvement to this work with parallelization is in [56, 58]. As dis-
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cussed in Section 4.1, there is no dedicated resource for deduplication in our targeted
setting and low memory usage is required so that the resource impact to other cloud
services i1s minimized. The approximation techniques are studied in [12, 29] to reduce
memory requirement with a trade-off of the reduced deduplication ratio. In comparison,
this paper focuses on full deduplication without approximation.

Additional inline deduplication techniques are studied in [34, 29, 48]. All of the
above approaches have focused on such inline duplicate detection in which deduplica-
tion of an individual block is on the critical write path. In our work, this constraint is
relaxed and there is a waiting time for many duplicate detection requests. This relax-
ation is acceptable because in our context, finishing the backup of required VM images
within a reasonable time window is more important than optimizing individual VM

block backup requests.

4.5 Concluding Remarks

The contribution of this work is a low-cost multi-stage parallel deduplication so-
lution. Because of separation of duplicate detection and actual backup, we are able to
evenly distribute fingerprint comparison among clustered machine nodes, and only load

one partition at time at each machine for in-memory comparison.
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The proposed scheme is resource-friendly to the existing cloud services. The eval-
uation shows that the overall deduplication time and throughput of 100 machines are
satisfactory with about 8.76GB per second for 2500 VMs. During processing, each ma-
chine uses 35MB memory, 8GB disk space, and 10-13% of one CPU core with a single
thread execution. Our future work is to conduct more experiments with production
workloads.

The major limitation of our synchronous approach is that all VM snapshots must
be processed together in order to achieve maximum aggregated throughput, as a result,
small VMs need to wait big VMs during the duplicate detection phase until all VMs
finishes stage 2. Since the small VM disks need to be put under copy-on-write pro-
tection longer, their disk I/O performance will be slow down and additional disk space
are needed to store the modified segments during backup. Another limitation is that
VM user cannot choose the time of taking snapshot freely. Therefore, our synchronous
approach is ideal for private cloud in which the IT admin needs to backup all the VMs
together, but it may not be suitable for public cloud which demands real-time snapshot
backup operation. We will discuss our solution for on demand inline deduplication in

the next chapter.
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Multi-level Selective Approach for
Inline Deduplication

5.1 Introduction

In a public virtualized cloud environment such as ones provided by Amazon EC2[2]
and Alibaba Aliyun[1], VM snapshots are created on user’s requests. Because the snap-
shot captures the virtual disk state at a specific point of time, virtual disk under snap-
shot backup operation must be protected by copy-on-write until the operation finishes.
However, copy-on-write introduces additional disk I/O and space overheads, users are
typically advised to reduce their disk I/O activities to the minimum before making a
snapshot backup operation, such activities typically include their web and database ser-
vices. As a result, it is critical to perform the backup operation in the shortest amount

of time to make the VM back to work.
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Our synchronous batched deduplication introduced in chapter 4 does not apply to
such situation which requires fast inline deduplication. Based on the requirement that
we are now pursuing low-cost solution with short job turnaround time, we choose to
design a deduplication solution which will sacrifice the deduplication efficiency to sat-
isfy the cost and time constraints. By observations on the VM snapshot data from
production cloud, we found snapshot data duplication can be easily classified into two
categories: inner-VM and cross-VM. Inner-VM duplication exists between VM’s snap-
shots, because the majority of data are unchanged during each backup period. On the
other hand, Cross-VM duplication is mainly due to widely-used software and libraries
such as Linux and MySQL. As the result, different VMs tend to backup large amount
of highly similar data.

With these in mind, we have developed a distributed multi-level solution to conduct
segment-level and block-level inner-VM deduplication to localize the deduplication ef-
fort when possible. It then makes cross-VM deduplication by excluding a small number
of popular popular data blocks from being backed up. Our study shows that popular
data blocks occupy significant amount of storage space while they only take a small
amount of resources to deduplicate. Separating deduplication into multi levels effec-
tively accomplish the major space saving goal compare the global complete deduplica-
tion scheme, at the same time it makes the backup of different VMs to be independent

for better fault tolerance, which we will discuss more in chapter 6.
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The rest of the paper is arranged as follows. Section 5.2 discusses the require-
ments and design options, Section 5.3 presents our multi-level selective deduplication
scheme, Section 5.4 presents our evaluation results on the effectiveness of multi-level
deduplication for snapshot backup. Section 5.5 discusses on some background and

related work. Section 5.6 concludes this chapter.

5.2 Requirements and Design Options

We discuss the characteristics and main requirements for VM snapshot backup in a

cloud environment. which are different from a traditional data backup.

1. Cost consciousness. There are tens of thousands of VMs running on a large-scale
cluster. The amount of data is so huge such that backup cost must be controlled
carefully. On the other hand, the computing resources allocated for snapshot
service is very limited because VM performance has higher priority. At Aliyun,
it is required that while CPU and disk usage should be small or modest during
backup time, the memory footprint of snapshot service should not exceed 500

MB at each node.

2. Fast backup speed. Often a cloud has a few hours of light workload each day
(e.g. midnight), which creates an small window for automatic backup. Thus it

is desirable that backup for all nodes can be conducted in parallel and any cen-

42



Chapter 5. Multi-level Selective Approach for Inline Deduplication

tralized or cross-machine communication for deduplication should not become a

bottleneck.

3. Fault tolerance. The addition of data deduplication should not decrease the de-
gree of fault tolerance. It’s not desirable that small scale of data failure affects

the backup of many VMs.

There are multiple choices in designing a backup architecture for VM snapshots.
We discuss the following design options with a consideration on their strengths and

weakness.

1. An external and dedicated backup storage system. In this architecture setting,
a separate backup storage system using the standard backup and deduplication
techniques can be deployed [62, 12, 34]. This system is attached to the cloud
network and every machine can periodically transfer snapshot data to the at-
tached backup system. A key weakness of this approach is communication bottle-
neck between a large number of machines in a cloud to this centralized service.
Another weakness is that the cost of allocating separate resource for dedicated
backup can be expensive. Since most of backup data is not used eventually, CPU

and memory resource in such a backup cluster may not be fully utilized.

2. A decentralized and co-hosted backup system with full deduplication. In this

option, the backup system runs on an existing set of cluster machines. The dis-
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advantage is that even such a backup service may only use a fraction of the ex-
isting disk storage, fingerprint-based search does require a significant amount of
memory for fingerprint lookup of searching duplicates. This competes memory

resource with the existing VMs.

Even approximation [12, 34] can be used to reduce memory requirement, one key
weakness the hasn’t been addressed by previous solutions is that global content
sharing affects fault isolation. Because a content chunk is compared with a con-
tent signature collected from other users, this artificially creates data dependency
among different VM users. In large scale cloud, node failures happen at daily
basis, the loss of a shared block can affect many users whose snapshots share this
data block. Without any control of such data sharing, we can only increase repli-
cation for global dataset to enhance the availability, but this incurs significantly

more cost.

With these considerations in mind, we propose a decentralized backup architecture
with multi-level and selective deduplication. This service is hosted in the existing set
of machines and resource usage is controlled with a minimal impact to the existing
applications. The deduplication process is first conducted among snapshots within each
VM and then is conducted across VMs. Given the concern that searching duplicates
across VMs is a global feature which can affect parallel performance and complicate

failure management, we only eliminate the duplication of a small but popular data set
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while still maintaining a cost-effective deduplication ratio. For this purpose, we exploit
the data characteristics of snapshots and collect most popular data. Data sharing across
VMs is limited within this small data set such that adding replicas for it could enhance

fault tolerance.

5.3 Multi-level Selective Deduplication Scheme

5.3.1 Similarity Guided Inner-VM Deduplication

The first-level deduplication is logically localized within each VM. Such localiza-
tion increases data independency between different VM backups, simplifies snapshot
management and statistics collection during VM migration and termination, and facili-
tates parallel execution of snapshot operations.

The inner VM deduplication contains two levels of duplicate detection efforts and
the representation of each snapshot is correspondingly designed as a two-level level
index data structure in the form of a hierarchical directed acyclic graph as shown in
Figure 3.3. An image file is divided into a set of segments and each segment contains
hundreds of content blocks from the bottom level. These blocks are of variable-size,
partitioned using the standard chunking technique [35] with 4KB as the average block

size. Segment metadata (called segment recipe) records its content block hashes and
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data pointers. The snapshot recipe contains a list of segments and other meta data

information.

o Level 1 Changed segment tracking. We start with the changed block tracking
approach in a coarse grain segment level. In our implementation with Xen on an
Alibaba platform, the segment size is 2 MB and the device driver is extended to
support tracking changed segments using a dirty bitmap. Since every write for a
segment will touch a dirty bit, the device driver maintains dirty bits in memory
and cannot afford a small segment size. It should be noted that dirty bit tracking
is supported or can be easily implemented in major virtualization solution ven-
dors. For example, the VMWare hypervisor has an API to let external backup
applications know the changed areas since last backup. The Microsoft SDK pro-
vides an API that allows external applications to monitor the VM’s I/O traffic and

implement such changed block tracking feature.

o Level 2 Similarity guided segment comparison. Since the best deduplication uses
a non-uniform chunk size in the average of 4KB or 8KB [31], we conduct ad-
ditional local similarity guided deduplication on a snapshot by comparing chunk
fingerprints of a dirty segment with those in similar segments from its parent
snapshot. We define two segments are similar if their content signature is the

same. This segment content signature value is defined as the minimum value of
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all its chunk fingerprints computed during backup and is recorded in the snap-
shot metadata (called recipe). Note that this definition of content similarity is an
approximation [17]. When processing a dirty segment, its similar segments can
be found easily from the parent snapshot recipe. Then recipes of the similar seg-
ments are loaded to memory, which contain chunk fingerprints to be compared.
To control the time cost of search, we set a limit on the number of similar seg-
ments recipes to be fetched. For a 2MB segment, its segment recipe is roughly
19KB which contains about 500 chunk fingerprints and other chunk metadata,
by limiting at most 10 similar segments to search, the amount of memory for
maintaining those similar segment recipes is small. As part of our local duplicate
search we also compare the current segment against the parent segment at the

same offset.

We choose this two-level structure because in practice we observe that during each
backup period only a small amount of VM data are added or modified. As the result,
even the metadata of two snapshots can be highly similar, thus aggregating a large
number of content blocks as one segment can significantly reduce the space cost of
snapshot meta data.

How can we choose the length of a segment? Instead of using variables-sized
segments, we take a simple approach to let every segment being aligned to the page

boundary of each virtual image file. For Aliyun, each VM image file is represented as
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a virtual disk file format (called vhd at Xen) and we use a dirty bit to capture if a page
(or segment) of a virtual disk file has been modified or not to ease the segment-level
deduplication. A dirty bit array is used to indicate which segments have been modified
or not. Each page (segment) size in our implementation uses 2 MB, which contains a
large number of content blocks.

Once level-2 deduplication is activated for those segments that have been modified,
it requires memory to load block fingerprints from the corresponding parent snapshot’s
segment. This scheme processes one segment at time and each segment of 2 MB con-
tains about 500 content blocks on average given 4KB is the average block size. That

only takes a tiny amount of space to hold their fingerprints.

5.3.2 Popularity guided Cross-VM Deduplication with PDS

The level-3 deduplication is to identify duplicated data blocks among multiple VMs
through the index cache of popular data set (PDS). PDS is the most popular content
blocks among snapshots across all VMs. Each index entry contains the block fingerprint
and a reference pointer to the location of its real content in the snapshot content block
store.

At the runtime, the PDS index resides in a distributed memory lookup table imple-
mented using Memcached [26] to leverage the aggregated memory in a cluster. The

usage of memory at each machine is small and thus this scheme does not lead to a
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memory resource contention with the existing cloud services. PDS raw data stored in

the distributed file system has multiple copies in different machines for the purpose of

fault tolerance and while providing high read throughput.

To control the size of searchable popular data in this global setting, we focus on
those items that are most popular based on the historical snapshot data and the popular
analysis is conducted periodically to ensure meta data freshness to match the latest data
access trend. There are two advantages to exploit this. First, a smaller PDS reduces
overall resource requirement while covering most of data duplication. Second, knowing

this small set of data is shared heavily makes the fault tolerance management easier

because we can replicate more copies to mitigate the failure.
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image. Given the separation of OS disks and data disks, we study their characteristics
separately. We expect that data related to OS and popular software installations are not
frequently modified or deleted, to facilitate analysis we call them OS-related data, and
the rest of data, either from OS or data disks, are called user-related data.

We have studied the popularity of popular blocks in the OS and data disks from a
dataset containing over 1,000 VMs, taking their first snapshots to watch the cross-VM
duplication pattern (scale of OS disk sampling is smaller due to performance impact to
user VMs). Figure 5.1 shows the duplicate count for unique data blocks sorted by their
ranking in terms of the duplication count. Y axis is the popularity of a data block in a
log scale measured its duplicate count among snapshots. X axis is the identification of
data blocks in a log scale sorted by their duplicate rank. The rank number 1 is the block
with the highest number of duplicates. These two curves exhibit that the popularity of
popular blocks partially follows a Zipf-like distribution.

Base on the Zipf-like distribution pattern, many previous analysis and results on
web caching[4, 15] may apply. In general this indicates a small set of popular data
dominates data duplication. Although we already know OS-related data are heavily
duplicated among OS disks, it still surprises us that user-related data follow a simi-
lar pattern. Therefore, we collect the PDS by performing global reference counting
through map-reduce for all blocks in snapshot store, and select the most popular ones

base on the memory limitation of PDS hash index.
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The PDS collected from user-related data is generally proportional to the data size.
As discussed in Section 5.4, selecting about 1% of data (after level 1 and level 2 dedu-
plication) can cover about 38% of data blocks. Consider we allow maximum 25 VMs
per machine, each VM has about 30 GB of user-related data, having 10 snapshots in
its snapshot store and the data change ratio during each backup is 10%, this translates
to 15 GB PDS data per machine. Consider each PDS hash index entry cost about 40
bytes and the average block size is 4KB, this leads to a 1:100 ratio so the memory cost
by PDS hash index is about 150 MB per machine. On the other hand, the PDS from
OS-related data is only relevant to the number of OS releases. Our experiment on 7
major OS releases shows that about 100 GB of data is never modified, and we expect
it won’t grow over 200 GB in the near future. So it would cost the entire cluster 2 GB
of memory to store its hash index, or 20 MB per machine on a 100 node cluster. On
average each OS disk has about 10 GB of data that can be completely eliminated in
this way. Thus in total the PDS index size per node takes less than 170 MB in a large
cluster bigger than 100 nodes, covering over 47% of blocks in OS and data disks after
inner-VM deduplication. This memory usage is well below the limit required by our

VM services.
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Figure 5.2: Illustration of snapshot deduplication dataflow.

5.3.3 Illustration of multi-level deduplication process

We illustrate the steps of 3-level deduplication in Figure 5.2, which can be summa-

rized as 5 steps:

1. Segment level checkup. As shown in Figure 5.2 (a), when a snapshot of a plain

virtual disk file is being created, we first check the dirty bitmap to see which

segments are modified. If a segment is not modified since last snapshot, it’s data

pointer in the recipe of the parent snapshot can be directly copied into current

snapshot recipe (shown as the shadow area in Figure 5.2 (b)).

2. Block level checkup. As shown in Figure 5.2 (b), for each dirty segment, we di-

vide it into variable-sized blocks, and compare their signatures with the similar
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segment recipes in the previous snapshot (called parent snapshot). For any dupli-

cated block, we copy the data pointer directly from the parent segment recipe.

3. PDS checkup. For the remaining content blocks whose duplicate status is un-
known, Figure 5.2 (d) shows a further check to compare them with the cached
signatures in the PDS by querying the PDS hash index. If there is a match, the

corresponding data pointer from the PDS index is copied into the segment recipe.

4. Write new snapshot blocks : If a data block cannot be found in the PDS index,
this block is considered to be a new block and such a block is to be saved in the

snapshot store, the returned data pointer is saved in the segment recipe.

5. Save recipes. Finally the segment recipes are saved in the snapshot block store
also. After all segment recipes are saved, the snapshot recipe is complete and can

be saved.

If there is no parent snapshot available, which happens when a VM creates its first
snapshot, only PDS-based checkup will be conducted. Most of the cross-VM duplica-

tion, such as OS-related data, is eliminated at this stage.
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5.4 System Implementation and Experimental Evalua-

tions

We have implemented the snapshot deduplication scheme on the Aliyun’s cloud
platform. Objectives of our experimental evaluation are: 1) Analyze the popularity of
content data blocks and the popularity of hot items. 2) Assess the effectiveness of 3-
level deduplication for reducing the storage cost of snapshot backup. 3) Examine the

impacts of PDS size on deduplication ratio.

5.4.1 Experimental setup

At Aliyun our target is to backup cluster up to 1000 nodes with 25 VMs on each.
Based on the data studied, each VM has about 40 GB of storage data usage on av-
erage, OS disk and data disk each takes about 50% of storage space. The backup of
VM snapshots is completed within two hours every day, and that translates to a backup
throughput of 139 GB per second, or S00TB per hour. For each VM, the system keeps
10 automatically-backed snapshots in the storage while a user may instruct extra snap-
shots to be saved.

Since it’s impossible to perform large scale analysis without affecting the VM per-
formance, we sampled two data sets from real user VMs to measure the effectiveness of

our deduplication scheme. Dataset] is used study the detail impact of 3-level dedupli-
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cation process, it compose of 35 VMs from 7 popular OSes: Debian, Ubuntu, Redhat,
CentOS, Win2003 32bit, Win2003 64 bit and Win2008 64 bit. For each OS, 5 VMs are
chosen, and every VM come with 10 full snapshots of it OS and data disk. The overall
data size for this 700 full snapshots is 17.6 TB.

Dataset2 contains the first snapshots of 1323 VMs’ data disks from a small cluster
with 100 nodes. Since inner-VM deduplication is not involved in the first snapshot, this
data set helps us to study the PDS deduplication against user-related data. The overall
size of dataset2 is 23.5 TB.

All data are divided into 2 MB fix-sized segments and each segment is divided into
variable-sized content blocks [35, 43] with an average size of 4KB. The signature for
variable-sized blocks is computed using their SHA-1 hash. Popularity of data blocks
are collected through global counting and the top 1% will fall into PDS, as discussed in

Section 5.3.2.

5.4.2 Effectiveness of Multi-level Deduplication

Figure 5.3 shows the overall impact of 3-level deduplication on datasetl. The X
axis shows the overall impact in (a), impact on OS disks in (b), and impact on data
disks in (c). Each bar in the Y axis shows the data size after deduplication divided by
the original data size. Level-1 elimination can reduce the data size to about 23% of

original data, namely it delivers close 77% reduction. Level-2 elimination is applied to
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after deduplication divided by the original data size and the unit is percentage.
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data that could pass level-1, it reduces the size further to about 18.5% of original size,
namely it delivers additional 4.5% reduction. Level-3 elimination together with level 1
and 2 reduces the size further to 8% of original size, namely it delivers additional 10.5%
reduction. Level 2 elimination is more visible in OS disk than data disk, because data
change frequency is really small when we sample last 10 snapshots of each user in 10
days. Nevertheless, the overall impact of level 2 is still significant. A 4.5% of reduction
from the original data represents about 450TB space saving for a 1000-node cluster.
Figure 5.4 shows the impact of different levels of deduplication for different OS

releases. In this experiment, we tag each block in 350 OS disk snapshots from dataset]
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as “new” if this block cannot be deduplicated by our scheme and thus has to be written
to the snapshot store; “PDS” if this block can be found in PDS; “Parent segment” if
this block is marked unchanged in parent’s segment recipe. “Parent block™ if this block
is marked unchanged in parent’s block recipe. With this tagging, we compute the per-
centage of deduplication accomplished by each level. As we can see from Figure 5.4,
level-1 deduplication accomplishes a large percentage of elimination, this is because
the time interval between two snapshots in our dataset is quite short and the Aliyun
cloud service makes a snapshot everyday for each VM. On the other hand, PDS still
finds lots of duplicates that inner VM deduplication can’t find, contributing about 10%
of reduction on average.

It is noticeable that level-1 deduplication doesn’t work well for CentOS, a signif-
icant percentage of data is not eliminated until they reach level-3. It shows that even
user upgrade his VM system heavily and frequently such that data locality is totally
lost, those OS-related data can still be identified at level-3.

In general we see a stable data reduction ratio for all OS varieties, ranging from
92% to 97%, that means the storage cost of 10 full snapshots combined is still smaller
than the original disk size. And compare to today’s widely used copy-on-write snapshot
technique, which is similar to our level-1 deduplication, our solution cut the snapshot

storage cost by 64%.
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Figure 5.5: Cumulative coverage of popular popular user data blocks.

5.4.3 Coverage of popular data blocks

One of our biggest advantage is small memory footprint for deduplication, because
we only eliminate a small amount of highly popular data. we use dataset2 to demon-
strate the coverage of popular data blocks on user-related data, as shown in Figure 5.5.
The X axis is the rank of popular user data blocks, and Y shows how much raw data
can be covered given the size of PDS. Let S; and F; be the size and duplicate count of
the i-th block ranked by its duplicate rank. Then Y axis is the coverage of the popular

dataset covering data items from rank 1 to rank i. Namely

5:1 Six Fi
Total data size
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Thus with about 1% of blocks on data disks, PDS can cover about 38% of total
data blocks appeared in all data snapshots. The corresponding PDS index uses no more
than 150 MB memory per machine, which can be easily co-located with other cloud
services.

Because there are a limited number of OS releases, we study popular blocks among
OS disks loaded with the same OS release. In Figure 5.6, we list a conservative pop-
ularity study in 7 major OS versions supported in Aliyun. For every block in the base
image, we classify this block as “unchanged” if this block has appeared in all snapshots
of the same OS release even they are used by different VMs. Figure 5.6 shows that for
each OS, at least 70% of OS blocks are completely unchanged among all snapshots of
the same OS. Some latest release of OS tends to have a higher percentage of content
change while old release tends to have more variations of content versions. That can
be interpreted as that users with very old version of operating systems have a lower
tendency to update their OS versions and this causes a larger discrepancy among OS
snapshots of these users.

Based on the above analysis, we have selected a small set of most popular OS
blocks, which is about 100 GB OS data and its corresponding PDS index takes about 1

GB memory space in total. They can cover sufficiently over 70% of OS-related data.
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5.4.4 A comparison of perfect and PDS-based deduplication

After level-1 and level 2 elimination, we find that the complete deduplication would
reduce the storage cost further by 50%. If we put all these unique data into PDS, we
could achieve complete deduplication, but fingerprint lookup in such huge PDS hash
index would become a bottleneck as discussed in many pervious works. So we use
dataset2 to evaluate how much space saving of deduplication can be achieved when
varying the PDS size.

Figure 5.7 shows the relationship between PDS cache size and relative space sav-
ing ratio compared to the full deduplication. The unit of PDS size is gigabytes. We
define space saving ratio as the space saving of PDS method divided by full dedupli-
cation space reduction. With a 100 GB PDS data (namely 1 GB PDS index) can still
accomplish about 75% of what perfect deduplication can do.

With dataset2, Figure 5.8 shows how PDS space saving ratio compared to the full
deduplication is affected by the dataset size. In this experiment we first set out a goal
of space saving ratio completed, then watch how much data needs to be placed in PDS
cache to achieve this goal. From the graph we can see a 75% saving ratio lead to a
stable ratio between PDS size and data size, which requires 1% of data to be placed in
PDS.

When we deal with a large cluster of 1,000 nodes, we expect that using 1% of data

disks can cover more than what we have seen from this 1323 VM dataset, assuming
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that the average behavior of every subcluster with 100 machines exhibits a similar pop-

ularity. In addition to this, PDS for OS disks will become even more effective when

there are more VMs sharing the same collection of OS releases.

5.5 Related Work

In a VM cloud, several operations are provided for creating and managing snapshots

and snapshot trees, such as creating snapshots, reverting to any snapshot, and removing

snapshots. For VM snapshot backup, file-level semantics are normally not provided.

Snapshot operations are taken place at the virtual device driver level, which means no
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fine-grained file system metadata can be used to determine the changed data. Only raw
access information at disk block level are provided.

VM snapshots can be backed up incrementally by identifying file blocks that have
changed from the previous version of the snapshot [21, 54, 50]. The main weakness is
that it does not reveal content redundancy among data blocks from different snapshots
or different VMs.

Data deduplication techniques can eliminate redundancy globally among different
files from different users. Backup systems have been developed to use content hash
(finger prints) to identify duplicate content [42, 44]. Today’s commercial data backup
systems (e.g. from EMC and NetApp) use a variable-size chunking algorithm to detect
duplicates in file data [35, 23]. As data grows to be big, fingerprint lookup in such
schemes becomes too slow to be scalable. Several techniques have been proposed
to speedup searching of duplicate content. For example, Zhu et al. [62] tackle it by
using an in-memory Bloom filter and prefetch groups of chunk IDs that are likely to
be accessed together with high probability. It takes significant memory resource for
filtering and caching. NG et al. [39] use a related filtering technique for integrating
deduplication in Linux file system and the memory consumed is up to 2 GB for a single
machine. That is still too big in our context discussed below.

Duplicate search approximation [12, 34, 57] has been proposed to package similar

content in one location, and duplicate lookup only searches for chunks within files

65



Chapter 5. Multi-level Selective Approach for Inline Deduplication

which have a similar file-level or segment-level content fingerprints. That leads to
a smaller amount of memory usage for storing meta data in signature lookup with a

trade-off of the reduced recall ratio.

5.6 Concluding Remarks

In this chapter we propose a multi-level selective deduplication scheme for snapshot
service in VM cloud. Similarity based inner-VM deduplication localizes backup data
dependency and exposes more parallelism while popularity based cross-VM deduplica-
tion with a small popular data set effectively covers a large amount of duplicated data.
Our solution accomplishes the majority of potential global deduplication saving while
still meets stringent cloud resources requirement. Evaluation using real user’s VM data
shows our solution can accomplish 75% of what complete global deduplication can do.
Compare to today’s widely-used snapshot technique, our scheme reduces almost two-
third of snapshot storage cost. Finally, our scheme uses a very small amount of memory
on each node, and leaves room for additional optimization we are further studying. In
future we may conduct more field study on large VM clusters to better study the VM

data duplication patterns.
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VM-centric Storage Management with
Approximate Deletion

6.1 Introduction

In this chapter, we discuss a low-cost storage and management architecture that
collocates a backup service with other cloud services and uses a minimum amount of
resources. We also consider the fact that after deduplication, most data chunks are
shared by several to many virtual machines. Failure of a few shared data chunks can
have a broad effect and many snapshots of virtual machines could be affected. The pre-
vious work in deduplication focuses on the efficiency and approximation of fingerprint
comparison, and has not addressed fault tolerance issues together with deduplication.
Thus we also seek deduplication options that yield better fault isolation. Another issue
considered is that that garbage collection after deletion of old snapshots also competes

for computing resources. Sharing of data chunks among by multiple VMs needs to be
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detected during garbage collection and such dependencies complicate deletion opera-
tions.

The key contribution of this work is the development and analysis of a VM-centric
approach which considers fault isolation and integrates multiple duplicate detection
strategies supported by similarity guided local deduplication and popularity guided
global deduplication. This approach localizes duplicate detection within each VM
and packages only data chunks from the same VM into a file system block as much
as possible. By narrowing duplicate sharing within a small percent of common data
chunks and exploiting their popularity, this scheme can afford to allocate extra replicas
of these shared chunks for better fault resilience while sustaining competitive dedupli-
cation efficiency. In addition, our VM-centric design allows garbage collection to be
performed in a localized scope and we propose an approximate deletion scheme to re-
duce this cost further. Localization also brings the benefits of greater ability to exploit
parallelism so backup operations can run simultaneously without a central bottleneck.
This VM-centric solution uses a small amount of memory while delivering reasonable
deduplication efficiency.

The rest of this chapter is organized as follows. Section 6.2 reviews the background
and discusses the design options for snapshot backup with a VM-centric approach.
Section 6.3 describes our system architecture and implementation details. Section 6.4

analyzes the trade-off and benefits of our approach. Section 6.5 describes out approxi-
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mate deletion algorithm. Section 6.6 is our experimental evaluation that compares with
other approaches. Section 6.7 reviews the related works. Section 6.8 concludes this

chapter.

6.2 Design Considerations

Our key design consideration is VM dependence minimization during deduplication

and file system block management.

e Deduplication localization. Because a data chunk is compared with fingerprints
collected from all VMs during the deduplication process, only one copy of du-
plicates is stored in the storage, this artificially creates data dependencies among
different VM users. Content sharing via deduplication affects fault isolation since
machine failures happen periodically in a large-scale cloud and loss of a small
number of shared data chunks can cause the unavailability of snapshots for a
large number of virtual machines. Localizing the impact of deduplication can in-
crease fault isolation and resilience. Thus from the fault tolerance point of view,
duplicate sharing among multiple VMs is discouraged. Another disadvantage of
sharing is that it complicates snapshot deletion, which occurs frequently when
snapshots expire regularly. The mark-and-sweep approach [29, 14] is effective

for deletion, but still carries a significant cost to count if a data chunk is still
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shared by other snapshots. Localizing deduplication can minimize data sharing
and simplify deletion while sacrificing deduplication efficiency, and can facilitate

parallel execution of snapshot operations.

o Management of file system blocks. The file system block (FSB) size in a dis-
tributed file system such as Hadoop and GFS is uniform and large (e.g. 64MB),
while the data chunk in a typical deduplication system is of a non-uniform size
with 4KB or 8KB on average. Packaging data chunks to an FSB can create more
data dependencies among VMs since a file system block can be shared by even
more VMs. Thus we need to consider a minimum association of FSBs to VMs in

the packaging process.

Another consideration is the computing cost of deduplication. Because of collo-
cation of this snapshot service with other existing cloud services, cloud providers will
want the backup service to only consume small resources with a minimal impact to
the existing cloud services. The key resource for signature comparison is memory for
storing the fingerprints. We will consider the approximation techniques with reduced
memory consumption along with the fault isolation considerations discussed below.

We call the traditional deduplication approach as VM-oblivious (VO) because they

compare fingerprints of snapshots without consideration of VMs. With the above con-
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siderations in mind, we study a VM-centric approach (called VC) for a collocated
backup service with resource usage friendly to the existing applications.

We will first present an VM-centric architecture and implementation design with
deletion support that can be integrated with our multi-level selective deduplication
scheme, then discuss and analyze the integration of the VM-centric deduplication strate-

gies with fault isolation.

6.3 Snapshot Storage Architecture

6.3.1 Components of a Cluster Node

Our VM cloud runs on a cluster of Linux machines with Xen-based VMs and an
open-source package for the distributed file system called QFS [40]. All data needed
for the backup service including snapshot data and metadata resides in this distributed
file system. One physical node hosts tens of VMs, each of which accesses its vir-
tual machine disk image through the virtual block device driver (called TapDisk[55] in
Xen).

As depicted in Figure 6.1, there are four key service components running on each
cluster node for supporting backup and deduplication: 1) a virtual block device driver,
2) a snapshot deduplication agent, 3) a snapshot store client to store and access snapshot

data, and 4) a PDS client to support PDS metadata access.
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We use the virtual device driver in Xen that employs a bitmap to track the changes
that have been made to the virtual disk (CBT). Every bit in the bitmap represents a fixed-
sized (2MB) segment, indicating whether the segment has been modified since last
backup. Segments are further divided into variable-sized chunks (average 4KB) using
a content-based chunking algorithm [32], which brings the opportunity of fine-grained
deduplication. When the VM issues a disk write, the dirty bit for the corresponding
segment is set and this indicates such a segments needs to be checked during snapshot
backup. After the snapshot backup is finished, the driver resets the dirty bit map to a
clean state. For data modification during backup, copy-on-write protection is set so that
backup can continue to copy a specific version while new changes are recorded.

The representation of each snapshot has a two-level index data structure. The snap-
shot meta data (called snapshot recipe) contains a list of segments, each of which con-
tains segment metadata of its chunks (called segment recipe). In snapshot and segment
recipes, the data structures include references to the actual data location to eliminate

the need for additional indirection.

6.3.2 A VM-centric Snapshot Store for Backup Data

We build the snapshot storage on the top of a distributed file system. Following the

VM-centric idea for the purpose of fault isolation, each VM has its own snapshot store,
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Figure 6.1: System architecture and data flow during snapshot backup
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containing new data chunks which are considered to be non-duplicates. As shown in

Figure 6.2, we explain the data structure of the snapshot stores as follows.
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Figure 6.2: Data structure of a VM snapshot store.

There is an independent store containing all PDS chunks shared among different
VMs as a single file. Each reference to a PDS data chunk in the PDS index is the offset
within the PDS file. Additional compression is not applied because for the data sets
we have tested, we only observed limited spatial locality among popular data chunks.
On average the number of consecutive PDS index hits is lower than 7. Thus it is not

very effective to group a large number of chunks as a compression and data fetch unit.
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For the same reason, we decide not to take the sampled index approach [29] for detect-
ing duplicates from PDS as limited spatial locality is not sufficient to enable effective
prefetching for sampled indexing.

PDS data are re-calculated periodically, but the total data size is small. When a
new PDS data set is computed, the in-memory PDS index is replaced, but the PDS file
on the disk appends the new PDS data identified and the growth of this file is very
slow. The old data are not removed because they can still be referenced by the existing
snapshots. A periodic cleanup is conducted to remove unused PDS chunks (e.g. every
few months).

For non PDS data, the snapshot store of a VM is divided into a set of containers and
each container is approximately 1GB. The reason for dividing the snapshot store into
containers is to simplify the compaction process conducted periodically. As discussed
later, data chunks are deleted from old snapshots and chunks without any reference
from other snapshots can be removed by this compaction process. By limiting the
size of a container, we can effectively control the length of each round of compaction.
The compaction routine can work on one container at a time and move the in-use data
chunks to another container.

Each non-PDS data container is further divided into a set of chunk data groups.
Each chunk group is composed of a set of data chunks and is the basic unit in data

access and retrieval. In writing a chunk during backup, the system accumulates data
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chunks and stores the entire group as a unit after compression. This compression can
reduce data by several times in our tested data. When accessing a particular chunk, its
chunk group is retrieved from the storage and decompressed. Given the high spatial
locality and usefulness of prefetching in snapshot chunk accessing [29, 45], retrieval
of a data chunk group naturally works well with prefetching. A typical chunk group
contains 1000 chunks in our experiment.

Each non-PDS data container is represented by three files in the DFS: 1) the con-
tainer data file holds the actual content, 2) the container index file is responsible for
translating a data reference into its location within a container, and 3) a chunk deletion
log file records all the deletion requests within the container.

A non-PDS data chunk reference stored in the index of snapshot recipes is com-
posed of two parts: a container ID with 2 bytes and a local chunk ID with 6 bytes. Each
container maintains a local chunk counter and assigns the current number as a chunk ID
when a new chunk is added to this container. Since data chunks are always appended to
a snapshot store during backup, local chunk IDs are monotonically increasing. When
a chunk is to be accessed, the segment recipe contains a reference pointing to a data
chunk in the PDS store or in a non-PDS VM snapshot store. Using a container ID,
the corresponding container index file of this VM is accessed and the chunk group is

identified using a simple chunk ID range search. Once the chunk group is loaded to
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memory, its header contains the exact offset of the corresponding chunk ID and the
content is then accessed from the memory buffer.
Our snapshot store supports three API calls for block data operations:

Append(). For PDS data, the chunk is appended to the end of the PDS file and the
offset is returned as the reference. Note that PDS append may only be used during PDS
recalculation. For non-PDS data, this call places a chunk into the snapshot store and re-
turns a reference to be stored in the recipe metadata of a snapshot. The write requests to
append data chunks to a VM store are accumulated at the client side. When the number
of write requests reaches a fixed group size, the snapshot store client compresses the
accumulated chunk group, adds a chunk group index to the beginning of the group, and
then appends the header and data to the corresponding VM file. A new container index
entry is also created for each chunk group and is written to the corresponding container
index file.

Get(). The fetch operation for the PDS data chunk is straightforward since each refer-
ence contains the file offset, and the size of a PDS chunk is available from a segment
recipe. We also maintain a small data cache for the PDS data service to speedup com-
mon data fetching. To read a non-PDS chunk using its reference with container ID and
local chunk ID, the snapshot store client first loads the corresponding VM’s container
index file specified by the container ID, then searches the chunk groups using their

chunk ID coverage. After that, it reads the identified chunk group from DFS, decom-
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presses it, and seeks to the exact chunk data specified by the chunk ID. Finally, the
client updates its internal chunk data cache with the newly loaded content to anticipate
future sequential reads.

Delete(). Chunk deletion occurs when a snapshot expires or gets deleted explicitly by a
user and we discuss this in more details in next subsection. When deletion requests are
issued for a specific container, those requests are simply recorded into the container’s
deletion log initially and thus a lazy deletion strategy is exercised. Once local chunk IDs
appear in the deletion log, they will not be referenced by any future snapshot and can be
safely deleted when needed. This is ensured because we only dedup against the direct
parent of a snapshot, so the deleted snapshot’s blocks will only be used if they also exist
in other snapshots. Periodically, the snapshot store identifies those containers with an
excessive number of deletion requests to compact and reclaim the corresponding disk
space. During compaction, the snapshot store creates a new container (with the same
container ID) to replace the existing one. This is done by sequentially scanning the
old container, copying all the chunks that are not found in the deletion log to the new
container, and creating new chunk groups and indices. Every local chunk ID however
is directly copied rather than re-generated. This process leaves holes in the chunk ID
values, but preserves the order and IDs of chunks. As a result, all data references stored

in recipes are permanent and stable, and the data reading process is as efficient as
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before. Maintaining the stability of chunk IDs also ensures that recipes do not depend
directly on physical storage locations, which simplifies data migration.

Additional APIs such as Scan(), Compact(), Create() and Remove() are provided
for higher level operations. Scan() is used by the map-reduce procedure to collect the
most popular blocks among all snapshot stores. Compact() is called when the system
determines a container has too much unclaimed space and needs to be reclaimed. Cre-

ate() and Remove() initialize and delete a container respectively.

6.4 Analysis of VM-centric Approach

In this section we give out analysis of the impacts of our VM-centric deduplication
scheme. As introduced in chapter 5.3, our VM-centric approach put the cluster wide
popular data into PDS which prevent each VM from keeping their own copies. We will
show that by adding extra replication to PDS data, this strategy brings advantages to
both fault tolerance and deduplication efficiency. The parameters we will use in our

analysis below are defined in Table 6.1.

6.4.1 Impact on Deduplication Efficiency

Choosing the value k for the most popular chunks affects the deduplication effi-

ciency. We analyze this impact based on the characteristics of the VM snapshot traces
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k the number of top most popular chunks selected for deduplication
c the total amount of data chunks in a cluster of VMs

Cy the total amount of unique fingerprints after perfect deduplication
fi the frequency for the ith most popular fingerprint

o the percentage of duplicates detected in local deduplication

(o] =£ which is the percentage of unique data belonging to PDS

p the number of machines in the cluster

Vv the average number of VMs per machine

E.,E, |deduplication efficiency of VC and VO

s the average number of chunks per FSB

Ni the average number of non-PDS FSBs blocks in a VM for VC

N> the average number of PDS FSBs in a VM for VC

N, the average number of FSBs in a VM for VO

A(r) the availability of an FSB with replication degree r

Table 6.1: Modeling parameters
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studied from application datasets. A previous study shows that the popularity of data
chunks after local deduplication follows a Zipf-like distribution[16, 9] and its exponent
o is ranged between 0.65 and 0.7 [60]. Figure 5.1 illustrates the Zipf-like distribution
of chunk popularity.

By Zipf-like distribution, f; = f1/i*. The total number of chunks in our backup
storage which has local duplicates excluded is ¢(1 — ), this can be represented as the
sum of each unique fingerprint times its frequency:

Cy 1
flzi—a:c(l—S).
i=1

Given a < 1, f] can be approximated with integration:

f_ci-a(-8)

el
Thus putting the £ most popular fingerprints into PDS index can remove the follow-

ing number of chunks during global deduplication:

| k1 k' —a
flz,i—a%fl/l de%fll_a:c(l—&c :
Deduplication efficiency of the VC approach using top k popular chunks is the

percentage of duplicates that can be detected:

_cb+c(1-8)o!
B c—cy ’

E. (6.1)

We store the PDS index using a distributed shared memory hash table such as Mem-

cached and allocate a fixed percentage of memory space per physical machine for top
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k popular items. As the number of physical machines (p) increases, the entire cloud
cluster can host more VMs; however, ratio ¢ which is k/c, remains a constant because
each physical machine on average still hosts a fixed constant number of VMs. Then the
overall deduplication efficiency of VC defined in Formula 6.1 remains constant. Thus

the deduplication efficiency is stable as p increases as long as ¢ is a constant.
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Figure 6.3: Predicted vs. actual PDS coverage as data size increases.

Ratio 0! ~% represents the percentage of the remaining chunks detected as dupli-
cates in global deduplication due to PDS. We call this PDS coverage. Figure 6.3 shows
predicted PDS coverage using o' % when « is fixed at 0.65 and measured PDS cov-

erage in our test dataset. 0 = 2% represents memory usage of approximately 100MB
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Figure 6.4: Bipartite association of VMs and file system blocks under (a) VC and (b)
VO.

memory per machine for the PDS. While the predicted value remains flat, measured
PDS coverage increases as more VMs are involved. This is because the actual o value

increases with the data size.

6.4.2 Impact on Fault Isolation

The replication degree of the backup storage is r for regular file system blocks and

r = 3 is a typical setting in distributed file systems [27, 46]. Since o is small (e.g. 2%
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in our experiments), the impact of replication on storage increase is very small even
when choosing r./r ratio as 2 or 3.

Now we assess the impact of losing d machines to the VC and VO approaches. A
large r./r ratio can have a positive impact on full availability of VM snapshot blocks.
We use an FSB rather than a deduplication data chunk as our unit of failure because the
DFS keeps file system blocks as its base unit of storage. To compute the full availability
of all snapshots of a VM, we derive the probability of losing a snapshot FSB of a VM
by estimating the number of file system blocks per VM in each approach. As illustrated
in Figure 6.4, we build a bipartite graph representing the association from unique file
system blocks to their corresponding VMs in each approach. An association edge is
drawn from an FSB to a VM if this block is used by the VM.

For VC, each VM has an average number N; of non-PDS FSBs and has an average
of N, PDS FSBs. Each non-PDS FSB is associated with one VM and we denote that

PDS FSBs are shared by an average of V. VMs. Then,

VpNis ~c—E:(c—c,) —c,0 and VpNys =~ c,0V,.

For VO, each VM has an average of N, FSBs and let V,, be the average number of

VMs shared by each FSB.

VPNys = (¢ —Ey(c—cy))Vo.
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Since each FSB (with default size 64M B) contains many chunks (on average 4KB),
each FSB contains the hot low-level chunks shared by many VMs, and it also contains

rare chunks which are not shared. Since ¢ >> ¢, from the above equations:

N 1-E,

~
~

N, (1—-E.)V,
When E. is close to E,, Ni is much smaller than N,. Figure 6.5 shows the average

number of file system blocks for each VM in VC and in VO and N; is indeed much

smaller than N,, in our tested dataset.

600 |-
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200

Avg. Num. FSBs used by VM

Number of VMs

Figure 6.5: Measured average number of 64MB FSBs used by a single VM. For VC
both the number of PDS and Non-PDS FSBs used are shown.

The full snapshot availability of a VM is estimated as follows with parameters N
and N, for VC and N,, for VO. Given normal data replication degree r, PDS data repli-

cation degree r., the availability of a file system block is the probability that all of its
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replicas do not appear in any group of d failed machines among the total of p machines.

-1 ())

Then the availability of one VM’s snapshot data under VO approach is the probability

Namely, we define it as

that all its FSBs are unaffected during the system failure:
A(r)Ne,
For VC, there are two cases for d failed machines.

e When r <d < r., there is no PDS data loss and the full snapshot availability of a
VM in the VC approach is

A(r)M.

Since N is typically much smaller than N, the VC approach has a higher avail-

ability of VM snapshots than VO in this case.

e When r. < d, both non-PDS and PDS file system blocks in VC can have a loss.

The full snapshot availability of a VM in the VC approach is

A(r)N1 *A(rc)N2.

We have considered a worst case scenario that every PDS FSB is shared by all VMs in

the VC approach, which leads to a large N, value. Even with that, the availability of VC
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A(re) x 100%
Failures (d)
re=73 re=06 re=9
3 99.999381571 100 100
5 99.993815708 100 100
10 99.925788497 | 99.999982383 | 99.999999999
20 99.294990724 | 99.996748465 | 99.99999117

Table 6.2: A(r.) as storage nodes fail in a 100 node cluster.

snapshots is still much higher than VO and there are two reasons for this: 1) N is much
smaller than N, as discussed previously. 2) A(r) < A(r.) because r < r.. Table 6.2 lists
the A(r) values with different replication degrees, to demonstrate the gap between A(r)

and A(r).

6.5 Approximate Snapshot Deletion with Leak Repair

In a busy VM cluster, snapshot deletions can occur frequently. Deduplication com-
plicates the deletion process because space saving relies on the sharing of data and it re-
quires the global references to deleted chunks to be identified before they can be safely
removed. The complexity of our distributed environment obviates reference counting
as an option, and while the mark-and-sweep techniques can be used and optimization
can be considered [14], it still takes significant resources to conduct reference counting

every time there is a snapshot deletion. We seek a fast solution with low resource usage
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Figure 6.6: Approximate deletion merges existing snapshot summaries to check block
reference validity contained by a deleted snapshot

to delete snapshots and our VM-centric design simplifies the deletion process. Since
PDS is small and separated, we can focus on unreferenced non-PDS chunks within each
VM. Another resource-saving strategy we propose is an approximate deletion strategy
to trade deletion accuracy for speed and resource usage. Our method sacrifices a small
percent of storage leakage to efficiently identify unused chunks.

We depict our approximate deletion process in Fig.6.6, this procedure contains three

aspects.

e Computation for snapshot reference summary. Every time there is a new snap-
shot created, we compute a Bloom-filter with z bits as the reference summary
vector for all non-PDS chunks used in this snapshot. The items we put into the

summary vector are all the references appearing in the metadata of the snapshot.
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For each VM we preset the vector size according to estimation of VM image size,
given h snapshots stored for a VM, there are 4 summary vectors maintained. We
adjust the summary vector size and recompute the vectors if the VM size changes
substantially over time. This can be done during the periodic leakage repair stage

described below.

e Approximate deletion with fast summary comparison. When there is a snap-
shot deletion, we need to identify if chunks to be deleted from that snapshot are
still referenced by other snapshots. This is done approximately and quickly by
comparing the reference of deleted chunks with the merged reference summary
vectors of other live snapshots. The merging of live snapshot Bloom-filter vec-
tors uses the bitwise OR operator and the merged vector still takes z bits. Since
the number of live snapshots 4 is limited for each VM, the time and memory cost

of this comparison is small, linear to the number of chunks to be deleted.

If a chunk’s reference is not found in the merged summary vector, we are sure
that this chunk is not used by any live snapshots, thus it can be deleted safely.
However, among all the chunks to be deleted, there are a small percentage of

unused chunks which are misjudged as being in use, resulting in storage leakage.

e Periodic repair of leakage. Leakage repair is conducted periodically to fix the

above approximation error. This procedure compares the live chunks for each

89



Chapter 6. VM-centric Storage Management with Approximate Deletion

VM with what are truly used in the VM snapshot recipes. A mark-and-sweep
process requires a scan of the entire snapshot store. Since it is a VM-specific pro-
cedure, the space and time cost is relatively small compared to the transitional
mark-and-sweep which scans snapshot chunks from all VMs. For example, con-
sider each reference consumes 8 bytes plus 1 mark bit. A VM that has 40GB
backup data with about 10 million chunks will need less than 8SMB of mem-
ory to complete a VM-specific mark-and-sweep process in less than half an hour,

assuming SOMB/s disk bandwidth is allocated.

We now estimate the size of storage leakage and how often leak repair needs to be
conducted. Assume that a VM keeps / snapshots in the backup storage, creates and
deletes one snapshot every day. Let u be the total number of chunks brought by the
initial backup for a VM, Au be the average number of additional chunks added from
one snapshot to the next snapshot version. Then the total number of chunks stored in a

VM’s snapshot store is about:

U=u+(h—1)Au.

Each Bloom filter vector has z bits for each snapshot and let j be the number of
hash functions used by the Bloom filter. Notice that a chunk may appear multiple times
in these summary vectors; however, this should not increase the probability of being a

0 bit in all # summary vectors. Thus the probability that a particular bit is O in all &
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summary vectors is (1 — %)J U Then the misjudgment rate of being in use is:

€= (1—(1—%)111)1'. (6.2)

For each snapshot deletion, the number of chunks to be deleted is nearly identical to
the number of newly added chunks Au. Let R be the total number of runs of approximate
deletion between two consecutive repairs. We estimate the total leakage L after R runs
as:

L = ReAu.

When leakage ratio L/U exceeds a pre-defined threshold 7, we trigger a leak repair.
Namely,
L RAue

T
— —>T:>R>E><

B u+(h—1)Au
U u+(h—1)Au '

A (6.3)

For example in our tested dataset, # = 10 and each snapshot adds about 0.1-5%
of new data. Thus we take Au/u ~ 0.025. For a 40GB snapshot, u ~ 10 million.
Then U = 12.25 million. We choose € = 0.01 and 7 = 0.05. From Equation 6.2, each
summary vector requires z = 10U = 122.5 million bits or 15MB. From Equation 6.3,
leak repair should be triggered once for every R=245 runs of approximate deletion.
When one machine hosts 25 VMs and there is one snapshot deletion per day per VM,

there would be only one full leak repair for one physical machine scheduled for every

9.8 days. If 7 = 0.1 then leakage repair would occur every 19.6 days.
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6.6 System Implementation and Experimental Evalua-

tions

We have implemented and evaluated a prototype of our VC scheme on a Linux
cluster of machines with 8-core 3.1Ghz AMD FX-8120 and 16 GB RAM. Our imple-
mentation is based on Alibaba cloud platform [1, 60] and the underlying DFS uses QFS
with default replication degree 3 while the PDS replication degree is 6. Our evaluation
objective is to study the benefit in fault tolerance and deduplication efficiency of VC,
and assess its backup throughput and resource usage.

We will compare VC with a VO approach using stateless routing with binning
(SRB) based on [22, 12]. SRB executes a distributed deduplication by routing a data
chunk to one of cluster machines [22] using a min-hash function discussed in [12].
Once a data chunk is routed to a machine, the chunk is compared with the fingerprint

index within this machine locally.

6.6.1 Settings

We have performed a trace-driven study using a production dataset [60] from Al-
ibaba Aliyun’s cloud platform with about 100 machines. Each machine hosts up to 25
VMs and each VM keeps 10 automatically-generated snapshots in the storage system

while a user may instruct extra snapshots to be saved. The VMs of the sampled data set
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use popular operating systems such as Debian, Ubuntu, Redhat, CentOS, win2008 and
win2003. Based on our study of production data, each VM has about 40GB of storage
data on average including OS and user data disk. The fingerprint for variable-sized

chunks is computed using their SHA-1 hash [35, 43].

6.6.2 Fault Isolation and Snapshot Availability

Table 6.3 shows the availability of VM snapshots when there are up to 20 machine
nodes failed in a 100-node cluster and a 1000-node cluster. We have assumed a worst-
case scenario that a PDS block is shared by every VM. Our results show that even the
worst case, VC still has a significantly higher availability than VO as the number of
failed machines increases. For example, with 5/100 machines failed and 25 VMs per
machine, VO with 93.256% availability would lose data in 169 VMs while VC with
97.763% loses data for 56 VMs. The key reason is that for most data in VC, only
a single VM can be affected by the loss of a single FSB. Since most FSBs contain
chunks for a single VM, VMs can depend on a smaller number of FSBs.

Although the loss of a PDS block affects many VMs, by increasing replication for
those blocks we minimize the effect on VM snapshot availability. Figure 6.7 shows the
impact of increasing PDS data replication. While the impact on storage cost is small,
a replication degree of 6 has a significant improvement over 4, but the availability is

about the same for r. = 6 and r. = 9 (beyond r, = 6 improvements are minimal).
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VM Snapshot Availability(%)

Failures (d) p =100 p =1000
VO VC VO VC
3 99.304248 | 99.773987 | 99.999321 | 99.99978
5 93.256135|97.762659 | 99.993206 | 99.997798
10 43.251892|76.093998 | 99.918504 | 99.97358
20 0.03397 | 5.613855 |99.228458 | 99.749049

Table 6.3: Availability of VM snapshots for VO and VC.

100 1

80

60

40

20

VM Snapshot Availability (%)

8 10
Failed storage nodes

12

14

16 18 20

Figure 6.7: Availability of VM snapshots in VC with different PDS replication degrees
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6.6.3 Deduplication Efficiency
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Figure 6.8: Deduplication efficiency of VC and SRB.

Figure 6.8 shows the deduplication efficiency for SRB and VC, namely the percent
of duplicate chunks which are detected and removed. With ¢ = 2%, memory usage
for PDS index lookup per machine is about 100MB per machine and the deduplica-
tion efficiency can reach over 96.33%. When o = 4%, the deduplication efficiency can
reach 96.9% while space consumption increases to 200MB per machine. The loss of

efficiency in VC is caused by the restriction of the physical memory available in the
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cluster for fast in-memory PDS index lookup. SRB can deliver up to 97.79% dedu-
plication efficiency, which is slightly better than VC. Thus this represents a trade-off
that VC provides better fault tolerance and fast approximate deletion with competitive
deduplication efficiency.

Figure 6.8 also shows the curve of VC without local similarity search. There is a
big efficiency drop in this curve when the number of VMs is about 30. The reason
is that there are VMs in which data segments are moved to another location on disk,
for example when a file is rewritten rather than modified in place, a dirty-bit or offset
based detection would not be able to detect such a movement and similarity search
becomes especially important. We have found that in approximately 1/3 of the VMs
in our dataset this movement happens frequently. In general, adding local similarity-
guided search increases deduplication efficiency from 93% to over 96%. That is one
significant improvement compared to the work in [60] which uses the parent segment
at the same offset to detect duplicates instead of similarity-guided search.

In general, our experiments show that dirty-bit detection at the segment level can
reduce the data size to about 24.14% of original data, which leads to about a 75.86% re-
duction. Similarity-guided local search can further reduce the data size to about 12.05%
of original, namely it delivers a 50.08% reduction to the dirty segments. The popularity-
guided global deduplication with ¢ = 2% can reduce the data further to 8.6% of its

original size, so it provides additional 28.63% reduction to the remaining data.
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Tasks | CPU | Mem | Read Write | Time

(MB) | (MB/s) | (MB/s) | (hrs)

1 19% | 118 50 16.4 1.31

2 35% | 132 50 17.6 1.23

4 63% | 154 50 18.3 1.18

6 T7% | 171.9 50 188 | 1.162

Table 6.4: Resource usage of concurrent backup tasks at each machine
6.6.4 Resource Usage and Processing Time

Storage cost of replication. When the replication degree of both PDS and non-PDS
data is 3, the total storage for all VM snapshots in each physical machine takes about
3.065TB on average before compression and 0.75TB after compression. Allocating
one extra copy for PDS data only adds 7GB in total per machine. Thus PDS replication
degree 6 only increases the total space by 0.685% while PDS replication degree 9 adds
1.37% space overhead, which is still small.

Memory and disk bandwidth usage with multi-VM processing. We have further
studied the memory and disk bandwidth usage when running concurrent VM snapshot
backup on each machine with o = 2%. Table 6.4 gives the resource usage when
running 1 or multiple VM backup tasks at the same time on each physical machine.

“CPU” column is the percentage of a single core used. “Mem” column includes 100MB
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memory usage for PDS index and other space cost for executing deduplication tasks
such as receipt metadata and cache. “Read” column is controlled as S0OMB/s bandwidth
usage with I/O throttling so that other cloud services are not impacted too much. The
peak raw storage read performance is about 300MB/s and we only use 16.7% with this
collocation consideration. “Write” column is the I/O write usage of QFS and notice
that each QFS write triggers disk writes in multiple machines due to data replication.
50MB/s dirty segment read speed triggers about 16.4MB/s disk write for non duplicates
with one backup task.

Table 6.4 shows that a single backup task per node can complete the backup of
the entire VM cluster in about 1.31 hours. Since there are about 25 VMs per machine,
we could execute more tasks in parallel at each machine. But adding more backup
concurrency does not shorten the overall time significantly because of the controlled
disk read time.

Processing Time breakdown. Figure 6.9 shows the average processing time of a
VM segment under VC and SRB. VC uses 0 = 2% and 4%. It has a breakdown of pro-
cessing time. “Snapshot read/write” includes snapshot reading and writing from disk,
and updating of the metadata. ““ Network transfer” includes the cost of transferring raw
and meta data from one machine to another during snapshot read and write. “Index
access/comparison” is the disk, network and CPU time during fingerprint comparison.

This includes PDS data lookup for VC and index lookup from disk in VO after Bloom
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filter lookup. For VC, the change of ¢ does not significantly affect the overall backup

speed as PDS lookup takes only a small amount of time. The network transfer time for

VC and SRB is about the same, because the amount of raw data they transfer is com-

parable. SRB spends slightly more time for snapshot read/write because during each

snapshot backup, SRB involves many small bins, while VC only involves few contain-

ers with a bigger size. Thus, there are more opportunities for I/O aggregation in VC to

reduce seek time. SRB has a higher cost for index access and fingerprint comparison

because most of chunk fingerprints are routed to remote machines for comparison while

VC handles most of chunk fingerprints locally.
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“Backup”

Throughput of software layers. Table 6.5 shows the average throughput of soft-

ware layer when when I/O throttling is not applied to control the usage.
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Concurrent Throughput without

backup tasks I/O throttling (MB/s)

per machine | Backup Snapshot Store ~ QFS

(write) (write)
1 1369.6 148.0 353
2 2408.5 260.2 61.7
4 4101.8 4433 103.1
6 5456.5 589.7 143.8

Table 6.5: Throughput of software layers per machine under different concurrency

column is the throughput of the backup service per machine. ‘“Snapshot store” is
the write throughput of the snapshot store layer. The gap between this column and
“Backup” column is caused by significant data reduction by dirty bit and duplicate de-
tection. Only non-duplicate chunks trigger a snapshot store write. “QFS” column is
the write request traffic to the underlying file system after compression. For exam-
ple, with 148MB/second write traffic to the snapshot store, QFS write traffic is about
35.3MB/second after compression. The underlying disk storage traffic will be three
times greater with replication. The result shows that the backup service can deliver up
to 5.46GB/second without I/O restriction per machine with 6 concurrent backup tasks.
With a higher disk storage bandwidth available, the above backup throughput would be

higher.
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Figure 6.10: Accumulated storage leakage by approximate snapshot deletions (Au/u =
0.025)

6.6.5 Effectiveness of Approximate Deletion

Figure 6.10 shows the average accumulated storage leakage in terms of percentage
of storage space per VM caused by approximate deletions. The top dashed line is the
predicted leakage using Formula 6.3 from Section 6.5 given Au/u = 0.025, while the
solid line represents the actual leakage measured during the experiment. The Bloom
filter setting is based on Au/u = 0.025. After 9 snapshot deletions, the actual leakage
ratio reaches 0.0015 and this means that there is only 1.5MB space leaked for every

1GB of stored data. The actual leakage can reach 4.1% after 245 deletions.
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6.7 Related Work

Since it is expensive to compare a large number of chunk signatures for deduplica-
tion, several techniques have been proposed to speedup searching of duplicate finger-
prints. For example, the data domain method [62] uses an in-memory Bloom filter and
a prefetching cache for data chunks which may be accessed. An improvement to this
work with parallelization is in [56, 58, 36]. The approximation techniques are studied
in [12, 29, 60] to reduce memory requirements with the trade-off of a reduced dedupli-
cation ratio. Additional inline deduplication techniques are studied in [34, 29, 48] and
a parallel batch solution for cluster-based deduplication is studied in [61]. All of the
above approaches have focused on optimization of deduplication efficiency, and none
of them have considered the impact of deduplication on fault tolerance in the cluster-
based environment that we have considered in this work.

In designing a VC duplication solution, we have considered and adopted some of
the following previously-developed techniques. 1) Changed block Tracking. VM snap-
shots can be backed up incrementally by identifying data segments that have changed
from the previous version of the snapshot [21, 54, 50, 47]. Such a scheme is VM-centric
since deduplication is localized. We are seeking for a trade-off since global signature
comparison can deliver additional compression [29, 22, 12]. 2) Stateless Data Routing.

One approach for scalable duplicate comparison is to use a content-based hash parti-
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tioning algorithm called stateless data routing by Dong et al. [22] Stateless data routing
divides the deduplication work with a similarity approximation. This work is similar to
Extreme Binning by Bhagwat et al. [12] and each request is routed to a machine which
holds a Bloom filter or can fetch on-disk index for additional comparison. While this
approach is VM-oblivious, it motivates us to use a combined signature of a dataset to
narrow VM-specific local search. 3) Sampled Index. One effective approach that re-
duces memory usage is to use a sampled index with prefetching, proposed by Guo and
Efstathopoulos[29]. The algorithm is VM oblivious and it is not easy to adopt for a dis-
tributed architecture. To use a distributed memory version of the sampled index, every
deduplication request may access a remote machine for index lookup and the overall

overhead of access latency for all requests can be significant.

6.8 Concluding Remarks

In this chapter we propose a collocated backup service built on the top of a cloud
cluster to reduce network traffic and infrastructure requirements. The key contribution
is a VM-centric data management architecture that integrate with multi-level deduplica-
tion to maximize fault isolation while delivering competitive deduplication efficiency.
Similarity guided local search reduces cross-VM data dependency and exposes more

parallelism while global deduplication with a small common data set eliminates popu-
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lar duplicates. VM-specific file block packing also enhances fault tolerance by reducing
data dependencies. The design places a special consideration for low-resource usages
as a collocated cloud service. Evaluation using VM backup data shows that VC strikes a
trade-off and can accomplish 96.33% or 96.9% of what complete global deduplication
can do. The availability of snapshots increases substantially with a small replication
overhead for popular inter-VM chunks.

We consider our approach has the potential to become a general purpose storage

backend build into the cloud to serve dropbox-like general file system backups.

104



Chapter 7

Conclusion and Future Works

Deduplication in storage backup with an ever-increasing demand faces scalability
and throughput challenges. This dissertation investigates scalable techniques in build-
ing a VM snapshot storage system that provides low-cost deduplication support for
large VM clouds. In particular, our work focuses on three specific aspects of VM snap-
shot deduplication: a synchronous solution for batched duplicate detection, a multi-
level selective approach for inline deduplication, and data management on the top of
cloud file system with an emphasis on fault tolerance and garbage collection. Our sys-
tem has been implemented on Xen-based Linux VM clusters.

This dissertation begins with studying a low-cost multi-stage parallel deduplication
solution for synchronous backup. We split the original inline deduplication process
into different stages to facilitate parallel batch processing. We first performing paral-
lel duplicate detection for VM content blocks among all machines before performing

actual data backup. Each machine accumulates detection requests and then performs
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detection partition by partition with a minimal resource usage. Fingerprint based parti-
tioning allows highly parallel duplicate detection and also simplifies reference counting
management. Because the design separation of duplicate detection and actual backup,
we are able to conduct distributed fingerprint comparison in parallel among clustered
machine nodes, and only load one partition at time at each machine for in-memory
comparison. This makes the proposed scheme very resource-friendly to the existing
cloud services.

We have also presented a multi-level selective deduplication scheme for on-demand
snapshot backup service. Our approach utilizes similarity guided inner-VM dedu-
plication to localize backup data dependence and exposes more parallelism. Mean-
while cross-VM deduplication uses a small popular data set to effectively cover a large
amount of content blocks. Our solution achieves the majority of what perfect global
deduplication can accomplish while meeting stringent resource requirements. Com-
pared to the existing snapshot techniques, our scheme reduces about two-third of snap-
shot storage cost. Finally, our scheme uses a very small amount of memory on each
node, and leaves room for employing other optimization techniques.

The key contribution of our VM-centric data management is VM-specific file block
packing that enhances fault tolerance by maximizing data localization and reducing
cross VM sharing. In addition, such a design allows garbage collection to be performed

in a localized scope and we propose an approximate deletion scheme to further reduce
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the cost. As supported by theoretical analysis and experimental studies, the availability
of VM snapshots increases substantially with a small replication overhead for popular
inter-VM chunks.

The design of our VM-centric deduplication approach has a potential of being ap-
plied to general purpose cloud backup. The idea of collecting popular data becomes
more interesting based on in data commonality among users. However, the access to
popular data could be a bottleneck in the I/O path if not designed carefully, these issues

remain to be solved.

107



Bibliography

[1]
[2]
[3]
[4]

[5]

[6]

(71

[8]

[9]

[10]

Alibaba Aliyun. http://www.aliyun.com.
Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.
ZFS. http://www.sun.com/software/solaris/zfs.jsp.

L. A. Adamic and B. A. Huberman. Zipfs law and the Internet. Glottometrics,
3(1):143-150, 2002.

N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A five-year study of
file-system metadata. Trans. Storage, 3(3):9, 2007.

S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and M. Ripeanu.
StoreGPU: exploiting graphics processing units to accelerate distributed storage
systems. In HPDC ’08: Proceedings of the 17th international symposium on High
performance distributed computing, pages 165—-174, New York, NY, USA, 2008.
ACM.

C. Alvarez. NetApp Deduplication for FAS and V-Series Deployment and Imple-
mentation Guide. NetApp. Technical Report TR-3505 , 2011.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: A Berke-
ley View of Cloud Computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, Feb. 2009.

S. K. Baek, S. Bernhardsson, and P. Minnhagen. Zipf’s law unzipped. New
Journal of Physics, 13(4):043004, Apr. 2011.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
L. Pratt, and A. Warfield. Xen and the art of virtualization. SIGOPS Oper. Syst.
Rev., 37:164-177, Oct. 2003.

108



Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. a. Barreto and P. Ferreira. Efficient file storage using content-based indexing. In
SOSP °05: Proceedings of the twentieth ACM symposium on Operating systems
principles, pages 1-9, New York, NY, USA, 2005. ACM.

D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge. Extreme Binning:
Scalable, parallel deduplication for chunk-based file backup. In IEEE MASCOTS
'09, pages 1-9, 2009.

F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and G. Varghese. Beyond
bloom filters. ACM SIGCOMM Computer Communication Review, 36(4):315,
Aug. 2006.

F. C. Botelho, P. Shilane, N. Garg, and W. Hsu. Memory efficient sanitization of
a deduplicated storage system. In Proceedings of the 11th USENIX conference on
File and storage technologies, FAST’ 13, pages 81-94, Berkeley, CA, USA, 2013.
USENIX Association.

L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching and
Zipf-like Distributions: Evidence and Implications. IN INFOCOM, pages 126 —
134, 1999.

L. Breslau, G. Phillips, and S. Shenker. Web caching and Zipf-like distri-
butions: evidence and implications. In IEEE INFOCOM °99. Conference on
Computer Communications. Proceedings. Eighteenth Annual Joint Conference

of the IEEE Computer and Communications Societies. The Future is Now (Cat.
No.99CH36320), pages 126—134 vol.1. IEEE, 1999.

A. Broder. On the Resemblance and Containment of Documents. In SEQUENCES
'97: Proceedings of the Compression and Complexity of Sequences 1997, page 21,
Washington, DC, USA, 1997. IEEE Computer Society.

A.Z. Broder. Identifying and Filtering Near-Duplicate Documents. In COM ’00:

Proceedings of the 11th Annual Symposium on Combinatorial Pattern Matching,
pages 1-10, London, UK, 2000. Springer-Verlag.

A.Z.Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering
of the Web. Comput. Netw. ISDN Syst., 29(8-13):1157-1166, 1997.

B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu,
S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri, A. Edwards,
V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. u. Haq, M. 1. u. Hagq,
D. Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Mani-
vannan, and L. Rigas. Windows azure storage: A highly available cloud storage

109



Bibliography

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

service with strong consistency. In Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles, SOSP ’11, pages 143-157, New York,
NY, USA, 2011. ACM.

A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decentralized deduplication
in san cluster file systems. In USENIX ATC’09, 2009.

W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and P. Shilane. Tradeoffs in
scalable data routing for deduplication clusters. In Proceedings of the 9th USENIX

conference on File and stroage technologies, FAST 11, pages 2-2, Berkeley, CA,
USA, 2011. USENIX Association.

C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P. Strzelczak,
J. Szczepkowski, C. Ungureanu, and M. Welnicki. HYDRAstor: a Scalable Sec-
ondary Storage. In FAST ’09: Proccedings of the 7th conference on File and
storage technologies, pages 197-210, Berkeley, CA, USA, 2009. USENIX Asso-
ciation.

EMC. Achieving storage efficiency through EMC Celerra data deduplication.
White Paper, 2010.

K. Eshghi, M. Lillibridge, L. Wilcock, G. Belrose, and R. Hawkes. Jumbo store:
providing efficient incremental upload and versioning for a utility rendering ser-
vice. In FAST ’07: Proceedings of the 5th USENIX conference on File and Storage
Technologies, pages 123—138, Berkeley, CA, USA, 2007. USENIX Association.

B. Fitzpatrick. Distributed caching with memcached. Linux J., 2004:5—, Aug.
2004.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In SOSP ’03:
Proceedings of the nineteenth ACM symposium on Operating systems principles,
pages 2943, New York, NY, USA, 2003. ACM.

H. S. Gunawi, N. Agrawal, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and
J. Schindler. Deconstructing Commodity Storage Clusters. In ISCA ’05: Pro-
ceedings of the 32nd annual international symposium on Computer Architecture,
pages 60-71, Washington, DC, USA, 2005. IEEE Computer Society.

F. Guo and P. Efstathopoulos. Building a high-performance deduplication system.
In USENIX ATC’11, pages 25-25, 2011.

K. R. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen, and H. Lei. An empirical
analysis of similarity in virtual machine images. In Proceedings of the Middleware

110



Bibliography

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

2011 Industry Track Workshop on - Middleware ’11, pages 1-6, New York, New
York, USA, Dec. 2011. ACM Press.

K. Jin and E. L. Miller. The effectiveness of deduplication on virtual machine
disk images. In Proceedings of SYSTOR 2009: The Israeli Experimental Systems
Conference on - SYSTOR ’09, page 1, New York, New York, USA, May 2009.
ACM Press.

E. Kave and T. H. Khuern. A Framework for Analyzing and Improving Content-
Based Chunking Algorithms. Technical Report HPL-2005-30R1, HP Laboratory,
Oct. 2005.

E. K. Lee and C. A. Thekkath. Petal: distributed virtual disks. In ASPLOS-VII:
Proceedings of the seventh international conference on Architectural support for

programming languages and operating systems, pages 84-92, New York, NY,
USA, 1996. ACM.

M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis, and P. Camble.
Sparse Indexing: Large Scale, Inline Deduplication Using Sampling and Locality.
In FAST 09, pages 111-123, 2009.

U. Manber. Finding similar files in a large file system. In USENIX Winter 1994
Technical Conference, pages 1-10, 1994.

C. Marshall. Efficient and Safe Data Backup with Arrow. Master’s thesis, Uni-
versity of California, Santa Cruz, June 2008.

A. Muthitacharoen, B. Chen, and D. Mazieres. A Low-bandwidth Network File
System. In Proceedings of the 18th ACM Symposium on Operating Systems Prin-
ciples (SOSP’01), pages 174-187, Chateau Lake Louise, Banff, Canada, Oct.
2001.

P. Nath, B. Urgaonkar, and A. Sivasubramaniam. Evaluating the usefulness of
content addressable storage for high-performance data intensive applications. In
HPDC °08: Proceedings of the 17th international symposium on High perfor-
mance distributed computing, pages 35-44, New York, NY, USA, 2008. ACM.

C.-H. Ng, M. Ma, T.-Y. Wong, P. P. C. Lee, and J. C. S. Lui. Live deduplication
storage of virtual machine images in an open-source cloud. In Middleware, pages
81-100, 2011.

M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, J. Kelly, C. Zimmer-
manand, D. Adkins, T. Subramaniam, and J. Fishman. The quantcast file system.

111



Bibliography

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

In Proceedings of the 39th international conference on Very Large Data Bases,
VLDB’13, pages 2-2, Berkeley, CA, USA, 2013. VLDB.

C. Policroniades and I. Pratt. Alternatives for detecting redundancy in storage
systems data. In ATEC ’04: Proceedings of the annual conference on USENIX
Annual Technical Conference, page 6, Berkeley, CA, USA, 2004. USENIX Asso-
ciation.

S. Quinlan and S. Dorward. Venti: A New Approach to Archival Storage. In FAST
'02, pages 89—-101, 2002.

M. O. Rabin. Fingerprinting by random polynomials. Technical Report TR-CSE-
03-01, Center for Research in Computing Technology, Harvard University, 1981.

S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive content-addressed storage
in foundation. In USENIX ATC’08, pages 143—156, Berkeley, CA, USA, 2008.
USENIX Association.

S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive content-addressed storage in
foundation. In USENIX ATC’ 08, pages 143—156, 2008.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file
system. In 2010 IEEE 26th Symposium on Mass Storage Systems and Technolo-
gies (MSST), pages 1-10, 2010.

C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger. Metadata Effi-
ciency in Versioning File Systems. In FAST ’03: Proceedings of the 2nd USENIX

Conference on File and Storage Technologies, pages 43-58, Berkeley, CA, USA,
2003. USENIX Association.

K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti. idedup: latency-aware,
inline data deduplication for primary storage. In Proceedings of the 10th USENIX
conference on File and Storage Technologies, FAST 12, pages 24-24, Berkeley,
CA, USA, 2012. USENIX Association.

I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet
applications. In ACM SIGCOMM, pages 149-160, 2001.

Y. Tan, H. Jiang, D. Feng, L. Tian, and Z. Yan. Cabdedupe: A causality-based
deduplication performance booster for cloud backup services. In IPDPS’11, pages
1266-1277, 2011.

112



Bibliography

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

J. C. Tang, C. Drews, M. Smith, F. Wu, A. Sue, and T. Lau. Exploring patterns of
social commonality among file directories at work. In CHI ’07: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages 951-960,
New York, NY, USA, 2007. ACM.

A. Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis,
The Australian National University, 1999.

M. Vrable, S. Savage, and G. M. Voelker. Cumulus: Filesystem Backup to the
Cloud. In FAST 09, pages 225-238, 2009.

M. Vrable, S. Savage, and G. M. Voelker. Cumulus: Filesystem backup to the
cloud. In FAST 09, pages 225-238, 2009.

A. Warfield, S. Hand, K. Fraser, and T. Deegan. Facilitating the development of
soft devices. page 22, Apr. 2005.

J. Wei, H. Jiang, K. Zhou, and D. Feng. MAD?2: A scalable high-throughput
exact deduplication approach for network backup services. In IEEE MSST’10,
pages 1-14, May 2010.

W. Xia, H. Jiang, D. Feng, and Y. Hua. Sil.o: a similarity-locality based near-
exact deduplication scheme with low RAM overhead and high throughput. pages
26-28, June 2011.

T. Yang, H. Jiang, D. Feng, Z. Niu, K. Zhou, and Y. Wan. Debar: A scalable high-
performance de-duplication storage system for backup and archiving. In IEEE
IPDPS, pages 1-12, 2010.

L. You. Efficient Archival Data Storage. PhD thesis, University of California,
Santa Cruz, June 2006.

W. Zhang, H. Tang, H. Jiang, T. Yang, X. Li, and Y. Zeng. Multi-level selective
deduplication for vm snapshots in cloud storage. In IEEE CLOUD’12, pages
550-557, 2012.

W. Zhang, T. Yang, G. Narayanasamy, and H. Tang. Low-cost data deduplication
for virtual machine backup in cloud storage. In Proceedings of the 5th USENIX
workshop on Hot Topics in Storage and File Systems, HotStorage’13, Berkeley,
CA, USA, 2013. USENIX Association.

B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the data domain
deduplication file system. In FAST 08, pages 1-14, 2008.

113



