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Abstract

Stochastic Flocking and Its Application to Systemic Risk

with Jumps

Yi-Tai Chiu

In this dissertation, we first study the effect of jumps on a stochastic flocking

model and discuss characteristics of this model. We investigate its application

to understand systemic risk by proposing an interbank lending model with jump

diffusions and further show that there will be a higher systemic risk with jumps

(i.e., sudden increases or decreases in reserves) in our model. Then, to examine

how the systemic risk will be affected when each bank is acting toward their best

self-interest, we integrate a game feature with jumps where each bank controls its

rate of borrowing/lending to a central bank. We then solve Nash equilibria with

finitely many players in this game with jumps, within which the central bank acts

as a clearing house and adds liquidity to the system. The result indicates that the

linear growth contributed by jumps to the system does not affect the systemic risk

in the model. Finally, we propose another model with a central bank as well as

peripheral banks and investigate the impact of interaction between all banks on

systemic risk. The systemic risk might be reduced if the central bank is allowed

to monitor liquidity by solving an optimal control problem. We also provide a

mean-field game approach to approximate the equilibria for finitely many players.
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Chapter 1

Introduction

1.1 Stochastic flocking with jumps

Flocking is a natural behavior exhibited by a group of birds traveling in unison

during flight. It can also be used to describe similar group behavior of other species

such as insects or fish and is recently discussed in several papers [Aoki, 1982],

[Partridge, 1982], [Toner and Tu, 1998], [Milewski and Yang, 2008] and [Degond

and Motsch, 2008]. Flocking behavior is based on two simple rules: velocity

alignment and group formation. Velocity alignment suggests that individuals

in a group are moving towards the weighted average speed of their neighbors

according to the interaction in the group. Group formation shows that individuals

are traveling within a certain range. In other words, a group of individuals that

demonstrates flocking behavior will be steering towards the same direction within

a parallel timeframe.
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Cucker and Smale proposed a deterministic model that can capture the flocking

behavior without the stochastic noise term in [Cucker and Smale, 2007]. In [Ha

et al., 2009], the authors introduce the stochastic Cucker-Smale (SCS) model and

study the time-asymptotic flocking in the SCS model where the noise term is

driven by Brownian motions. Previous studies that model flocking behavior such

as [Ha et al., 2009] do not deal with the case that allows sudden dramatic increase

or decrease in the velocity of particles. In this study, we apply a stochastic model

to illustrate flocking behavior where we treat each bird as a random particle in

space. We denote the coordinates (xit, v
i
t), to be the position and velocity that

describe the flocking behavior mathematically (see Chapter 2). We expect that

the flocking criteria will hold when we replace the noise term Brownian motions

with Levy processes (i.e. the velocity of particles is allowed to decrease or increase

dramatically).

1.2 Systemic risk with jumps

Since the 2008 financial crisis, in particular, after the Lehman Brothers Bank-

ruptcy, modeling risk in banking system and preventing the systemic risk has

become an important topic. Many researchers have investigated systemic risk

and its impact on the banking market [Carmona et al., 2014], [Garnier et al.,

2013], [Fouque and Ichiba, 2013], [Ichiba dn Shkolnikov, 2013], [Capponi and

Chen, 2013] and [Bo and Capponi, 2015]. There are two major approaches for
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modeling systemic risk. One approach to model systemic risk is by describing

the system failures due to contagion of counterparty risk in a financial network

as stated in [Acemoglu et al., 2013]. Another approach is through diffusion based

models as studied in [Fouque and Ichiba, 2013] and [Garnier et al., 2013]. More

topics about systemic risk has also been studied in [Fouque and Langsam, 2013].

In this study, we will discuss systemic risk via diffusion based modeling.

Systemic risk is defined in [Fouque and Sun, 2013] as the risk that all banks will

bankrupt simultaneously for a given horizon time. It is a rare event that may oc-

cur under certain circumstances and sometimes lead to catastrophic consequences.

In this study, our goal is to establish a mathematical model to characterize the

banking system and the effect on systemic risk when each bank has instantaneous

supply and demand shocks, sudden bankruptcy, or positive or negative news in

the market. For example, the event that the central bank of China greatly reduces

the bank reserve requirements might increase the systemic risk of China’s entire

banking system. To get a more in-depth understanding of systemic risk that may

help us to navigate and further prevent such events, we propose an interbank bor-

rowing and lending model that allows sudden increases or decreases in individual

bank reserves to illustrate systemic risk by using a stochastic flocking system. In

addition, to explore if systemic risk will be affected when each bank is acting solely

in their best interest, we create another model based on the assumption that each

bank controls its rate of borrowing/lending to a central bank. The result of the
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research aims to inform future practice in understanding and modeling systemic

risk.

This study is built on the research result of [Carmona et al., 2014]. The authors

propose a mathematical model to characterize systemic risk and further discuss

and analyze systemic risk using game features and mean field games. However,

the above research does not discuss the impact of jumps to systemic risk. In this

study, we first illustrate the characteristics of systemic risk by applying a dynamic

of stochastic flocking system with jumps. Then, we extend the previous research

on systematic risk and investigate the effect on systemic risk when each bank is

allowed to have instantaneous shocks or sudden bankruptcy.

In a fixed time period, a systemic risk is characterized by a large number of

banks reaching a certain critical level. Here we anticipate a small probability that

every bank will bankrupt simultaneously. In order to obtain this probability, we

need an explicit formula to calculate the distribution of the first passage time for

a stochastic process with jumps. However, such explicit formula is hard to obtain.

Therefore, we use the Laplace transform approach and the inversion formula to

calculate this probability. Our model integrates a game feature with jumps where

each bank controls its rate of borrowing/lending to a central bank. We use game

theory and stochastic optimal control with jump processes to analyze the impact

of jumps to our interbank borrowing and lending model.

4



1.3 Outline of the dissertation

In Chapter 2, we briefly introduce the Cucker-Smale model as stated in [Ha

et al., 2009] and review the background of Lévy processes needed for stochastic

flocking with jumps. We then propose a stochastic Cucker-Smale (SCS) model

with jumps and further investigate the time-asymptotic flocking in both linear

and radially symmetric communication rate cases. We provide an estimate of

fluctuation of all particles for characterizing the flocking behavior in a jump phe-

nomenon. We also give some simulation results of the SCS model to illustrate

flocking behavior. At the end of this Chapter 2, we propose a new flocking model

with a specified central particle that lays the foundation for building an interbank

system with a central bank that we will discuss in Chapter 5.

In Chapter 3, we start with a systemic risk model with N banks similar to

[Fouque and Sun, 2013] and further investigate its mean field limit. Then, we

study the systemic risk with jumps through simulating the reserve processes and

obtain a formula for the systemic risk through an inversion Laplace transform of

the distribution of the first passage time.

In Chapter 4, we investigate the stochastic differential game with jumps as

well as its impact on systemic risk. In section 4.1, we give the needed background

material on stochastic optimal control with jump diffusions for obtaining the Nash

equilibrium in a stochastic differential game. In section 4.2, we search for a feed-

back equilibria by using both a forward-backward stochastic differential equation

5



(FBSDE) and HJB approach. We then provide some numerical results and discuss

the effect of jumps on systemic risk with combining a game feature.

In Chapter 5, we propose a new model with a central bank and peripheral

banks. We study their interactions between each other and how this interactions

affect systemic risk. Then, we solve a control problem that the central bank can

now control its rate of interactions and investigate the result with a solved optimal

response. We also give a possible approach to approximate the Nash equilibrium

in a finite player game with a central bank.
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Chapter 2

Stochastic Flocking Model

2.1 Introduction

There has been much research about flocking, schools or swarming [Aoki,

1982], [Aoki, 1982], [Partridge, 1982] and [Toner and Tu, 1998], yet only a few

of them discuss stochastic flocking. In nature, flocking is a phenomenon demon-

strated by a group of birds flying and swooping in a highly coordinated union. In

this chapter, we consider stochastic flocking as a behavior exhibited by a group

of particles in which each particle mirrors or shadows each other’s movement

while interacting with dramatic, random environmental factors that we identify

as jumps.

In [Cucker and Smale, 2007], the authors proposed a deterministic flocking

model that considers a group of birds in which each bird alters its velocity towards

the average of its neighbors’ velocities. Let (xit, v
i
t) ∈ R2d for i = 1, ..., N be the

7



position and the velocity of birds, respectively. The Cucker-Smale (C-S) model is

described as:

dvit =
α

N

N∑
j=1

φ
(
xjt , x

i
t

) (
vjt − vit

)
dt

dxit = vitdt, i = 1, ..., N,

where α ≥ 0 is the coupling strength and φ is a nonnegative function defined as

the communication rate which satisfies the following conditions:

(symmetry) φ
(
xit, x

j
t

)
= φ

(
xjt , x

i
t

)
, i = 1, .., N,

(translation invariance) φ
(
xit +M,xjt +M

)
= φ

(
xit, x

j
t

)
, for M ∈ Rd.

Given the positions of two brids, the communication rate φ in [Cucker and

Smale, 2007] depends on the distance between two birds in a space (d = 3). The

closer the physical distance of two birds are, the stronger the communication

rate between the two will be. More precisely, φ is defined as a non-increasing

function of the distance. In [Cucker and Smale, 2007], they show that under

certain circumstances, flocking will emerge based on the initial configuration. The

C-S model has been applied to different fields, especially in physics [Carrillo et

al., 2010], [Ha et al., 2014] and [Li and Xue, 2014].

In [Ha et al., 2009], they extend the C-S model and propose a new stochastic

flocking system by adding noise terms into the dynamics of velocity. In this

new stochastic flocking system, each bird exhibits interactions with the random

environmental factors. In addition, the velocity of each bird is influenced by noise

8



terms that varies over time. However, the noise terms in [Ha et al., 2009] do not

include jumps—the primary focus of this Chapter. The velocity of any bird may

increase or decrease dramatically in the presence of random jumps, which may

further cause the failure of the flocking behavior. Our goal in this chapter is to

investigate whether the flocking behavior can be anticipated with random noises

including jumps. Jump processes are a type of Lévy process. In the next section,

we give some background on Lévy processes.

2.2 Background of Lévy processes

In this section, we review the basic concepts and results of Lévy processes

needed to understand stochastic flocking with jumps. A Lévy process is a stochas-

tic process that possesses continuous or discontinuous paths [Applebaum, 2004],

[Bertoin, 1998], [Sato, 1999]. They have been widely applied in many fields in-

cluding finance [Cont and Tankov, 2003] and engineering [Kyprianou, 2013]. The

definition of Lévy processes is as follows:

Definition 2.1. A one dimensional stochastic process L = (Lt, t ≥ 0) defined on

a probability space (Ω,F ,P) is said to be a Lévy process if it has the following

properties:

1. L0 = 0 almost surely.

2. L has stationary and independent increments.

9



3. L is continuous in probability. i.e.,

∀ε > 0 and s ≥ 0, limt→s P (|Lt − Ls| > ε) = 0.

To understand more about Lévy processes, we provide the following theorem

that illustrates the characteristic function of Lévy processes.

Theorem 2.1. (Lévy-Khintchine formula for Lévy processes) Suppose there

exists a triplet (a, σ, ρ), where a ∈ R, σ ≥ 0 and ρ is a measure satisfying

ρ ({0}) = 0 and

∫
R

(
1 ∧ x2

)
ρ (dx) <∞.

Then there exists a probability space (Ω,F ,P) on which a Lévy process has the

following characteristic function:

E
(
eiθLt

)
= e−tΨ(θ) for all t ≥ 0,

where Ψ is defined as

Ψ (θ) = iaθ +
1

2
σ2θ2 +

∫
R

(
1− eiθx + iθx1(|x|<1)

)
ρ (dx) , for any θ ∈ R.

The proof can be found in [Bertoin, 1996]. Measure ρ is called the Lévy

measure that describes the sizes and rates for which jumps of Lévy process occurs.

We call (a, σ, ρ) the generating triplet of Lt. The quantities a, σ and ρ are the

drift, the Gaussian variance and the Lévy measure of Lit, respectively. One can

observe that a standard Brownian motion is one of the Lévy processes where the

triplet is given by (0, 1, 0) . The following is a classic example of Lévy processes:

10



Example 2.1. (Compound Poisson processes) Let

Lt =
Nt∑
i=1

ξi,

where Nt is a Poisson process with intensity λ, and jump sizes {ξi, i ≥ 1} are

i.i.d. random variables with common law F, independent from Nt. The character-

istic function of Lt, for θ ∈ R, is given by

E
[
eiθ

∑Nt
i=1 ξi

]
= e−λt

∫
R(1−eiθx)F (dx) = e−tΨ(θ).

where Ψ (θ) = λ
∫
R

(
1− eiθx

)
F (dx) .

The triplet (a, σ, ρ) is then given by a = −λ
∫
x1(|x|<1)F (dx) , σ = 0 and

ρ (dx) = λF (dx) .

For discontinuous Lévy processes at t ≥ 0, we introduce the jump part of Lt

which is defined as

∆Lt = Lt − Lt− .

Let B be the family of Borel sets U ⊂ R and {0} 6∈ Ū . For any U ∈ B we

define

N (t, U) = N (t, U, ω) =
∑

0<s<t

χU (∆Ls) .

N (t, U) is called the Poisson random measure which is the number of jumps of size

∆Ls ∈ U which occur before or at time t. The following theorem indicates that

any Lévy process can be decomposed into the sum of continuous and discontinuous

stochastic processes.
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Theorem 2.2. (Lévy-Ito decomposition) Let {Lt}t≥0 be a Lévy process. Suppose

that a ∈ R, σ ≥ 0 and ρ is a measure satisfying

ρ ({0}) = 0 and

∫
R

(
1 ∧ x2

)
ρ (dx) <∞.

We then have

Lt = at+ σWt +

∫
|x|≤1

xÑ (t, dx) +

∫
|x|>1

xN (t, dx) ,

where Ñ (t, dx) = N (t, dx)− tρ (dx) is a compensated martingale.

The proof of the above theorem can be found in chapter 2 in [Kyprianou,

2006]. Similar to the Ito formula for stochastic processes with continuous paths,

we have a more general formula for Lévy processes in the one dimension case, i.e.,

when d = 1.

Theorem 2.3. (Ito’s formula) Let {Lt}t≥0 be a Lévy process with triplet (a, σ, ρ)

and f : R→ R a C2 function. Then

f (Lt) = f (0) +

∫ t

0

σ2

2
f
′′

(Ls) ds+

∫ t

0

f
′
(Ls−) dLs

+
∑

0≤s≤t
∆Ls 6=0

[
f (Ls− + ∆Ls)− f (Ls−)−∆Lsf

′
(Ls−)

]
.

Proof of this can be found in [Cont and Tankov, 2004]. Note that the Ito’s

formula for Lévy processes is different from the one for Brownian motion only in

the last term that involves the sum of each discontinuity of Lévy processes. In

the next section, we will examine further on the stochastic flocking model.
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2.3 Stochastic Cucker-Smale (SCS) flocking model

In this section, we will give an estimate of the fluctuation of all particles in the

stochastic system with random jumps. We will study the interactions between all

particles and the environment with random noise and with jumps. Our main goal

is to extend the result of [Ha et al., 2009] which is a stochastic version of C-S model

driven by Brownian motions. We replace the noise terms, Brownian motions, in

[Ha et al., 2009] with Lévy processes and investigate the time-asymptotic flocking

within such stochastic particle systems. Within the nonlinear stochastic system,

we only discuss the case of d = 1 for the purpose of simplicity. Similar to the

C-S model, we consider a nonlinear system with N autonomous particles with the

pair (xit, v
i
t) ∈ R2, i = 1, .., N, where xit and vit are regarded as the position and

the velocity of birds, respectively.

The SCS model with jumps states the following:

dvit =
α

N

N∑
j=1

φ
(
xjt , x

i
t

) (
vjt − vit

)
dt+ dLit

dxit = vitdt, i = 1, ..., N,

(2.1)

where Lit is a Lévy process with the triplet (a, σ, ρi). In spite of the importance

of the initial configuration in the C-S model, we assume that the initial condition

is a deterministic value, i.e., (xi0, v
i
0) = (x0, v0) , i = 1, .., N, since such conditions

will not affect our analysis in time-asymptotic flocking.
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Note that for every t > 0, Lit are i.i.d. random variables. In addition, for

i = 1, ..., N , the Lévy-Ito decomposition yields

Lit = at+ σW i
t +

∫
|x|<1

xÑ i (t, dx) +

∫
|x|≥1

xN i (t, dx) ,

where Ñ i (t, dx) = N i (t, dx)− tρi (dx) is a compensated Poisson random measure

and ρi is a Lévy measure that satisfies
∫
R

(1 ∧ x2) ρi (dx) <∞.

Remark: In the case studied in [Ha et al., 2009], the noise terms are only

Brownian motions. Here, we assume that each particle has distinct jumps based

on the Levy measure ρi which might lead to the failure of flocking. We will study

this situation in the following section.

In the SCS model with jumps, the velocity of each bird is now influenced by the

environment. Moreover, some birds may speed up dramatically at some moment

in response to the random environmental factors such as the appearance of an

attractive target or by other environmental factors. We provide the definition of

time-asymptotic flocking in [Ha et al., 2009] here:

Definition 2.2. We say there is time-asymptotic flocking for a group of birds if the

position and velocity processes (xit, v
i
t) , i = 1, ..., N, satisfy the follow conditions:

(velocity alignment) lim
t→∞

∣∣E (vit)− E
(
vjt
)∣∣ = 0

(group formation) sup
0≤t<∞

∣∣E (xit)− E
(
xjt
)∣∣ <∞. (2.2)

Note that the SCS model is a nonlinear system and is difficult to analyze

without an explicit form of the communication rate φ. In the next section, with
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a simple explicit form of φ, such as considering φ as a constant, the SCS model

can be reduced to an Ornstein-Uhlenbeck type process which then becomes more

tractable. Moreover, under some boundedness condition on φ, it is also possible

to analyze this nonlinear stochastic system which we will discuss in section 2.4.

2.3.1 Linear communication rate

Assuming that φ = 1, without loss of generality, the SCS model is given by

dvit =
α

N

N∑
j=1

(
vjt − vit

)
dt+ dLit

= α
(
v̄t − vit

)
dt+ dLit

dxit = vitdt, i = 1, ..., N,

(2.3)

where v̄t =
∑N

i=1 v
i
t is defined as the ensemble average and the Lit are independent

Lévy processes for i = 1, ..., N . From the dynamics of the velocity vit, one can

see that each vit is now attracted to ensemble average v̄t which is an Ornstein-

Uhlenbeck Lévy-type process. In oder to show the stochastic system follows the

flocking criteria (2.2), we follow the analysis in [Ha et al., 2009] where the authors

define the following two variables: ensemble average (macro variable) and the

fluctuations with respect to the ensemble average (micro variable), named (x̄t, v̄t)

and (x̂it, v̂
i
t) , respectively.

We define

(Macro variable) x̄t =
1

N

N∑
i=1

xit, v̄t =
1

N

N∑
i=1

vit,

(Micro variable) x̂it = xit − x̄t, v̂it = vit − v̄t.
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Note that the micro variable (x̂it, v̂
i
t) satisfies 1

N

∑N
i=1 x̂

i
t = 1

N

∑N
i=1 (xit − x̄t) = 0

and 1
N

∑N
i=1 v̂

i
t = 0. The dynamics for the ensemble average (x̄t, v̄t) are then given

by

dv̄t =
1

N

N∑
i=1

dLit,

dx̄t = v̄tdt,

and the dynamics for the micro variable v̂it are

dv̂it = dvit − dv̄t

=
α

N

N∑
j=1

(
v̂jt − v̂it

)
dt+ dLit −

1

N

N∑
i=1

dLit,

=

[
α

N

N∑
j=1

v̂jt − αv̂it

]
dt+ d

[
Lit −

1

N

N∑
i=1

Lit

]

Since α
N

∑N
j=1 v̂

j
t = α

N

∑N
j=1

(
vjt − v̄t

)
= 0, the dynamics for v̂it can be reduced to

dv̂it = −αv̂itdt+ d

[
Lit −

1

N

N∑
i=1

Lit

]
= −αv̂itdt+ dZi

t ,

where Zi
t =

(
1− 1

N

)
Lit− 1

N

∑N
j 6=i L

j
t , which is a Lévy-type OU process. Therefore,

the dynamics for the micro variable (x̂it, v̂
i
t) are given by

dv̂it = −αv̂itdt+ dZi
t

dx̂it = v̂itdt.

Note that the processes {Lit, 1 ≤ i ≤ N} are independent, but the processes

{Zi
t , 1 ≤ i ≤ N} are now correlated through the ensemble noises.
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As investigated in [Sato, 1999], it is easy to check that the solution v̂it with

initial condition v̂i0 is given by

v̂it = e−αtv̂i0 +

∫ t

0

e−α(t−s)dZi
t . (2.4)

We now consider the difference defined as v̂i,jt = v̂it − v̂jt and x̂i,jt = x̂it − x̂jt

,∀i 6= j ∈ {1, ..., N} . Then, we have

v̂i,jt = e−αtv̂i,j0 +

∫ t

0

e−α(t−s)dLi,js ,

x̂i,jt = x̂i,j0 +

∫ t

0

v̂i,js ds,

(2.5)

where Li,js = Lis − Ljs.

Lemma 2.1. Assume that there exists a constant µi ∈ R for all i = 1, ..., N

such that
∫
|x|≥1

xρi (dx) = µi < ∞, and let µi,j = µi − µj. We have the following

estimates for x̂i,jt and v̂i,jt :

E
[
v̂i,jt
]

= e−αtE
[
v̂i,j0

]
+
µi,j

α

(
1− e−αt

)
and

E
[
x̂i,jt
]

= E
[
x̂i,j0

]
+ E

[
v̂i,j0

] (1− e−αt)
α

+ µi,j
[
t

α
+

1

α2

(
e−αt − 1

)]
.

Proof. By the Lévy-Ito decomposition, we know that Lit = at+σW i
t+
∫
|x|<1

xÑ i (t, dx)+∫
|x|≥1

xN i (t, dx) . Thus,

Li,js = Lis − Ljs

= σ
(
W i
s −W j

s

)
+

∫
|x|<1

x
(
Ñ i (t, dx)− Ñ j (t, dx)

)
+

∫
|x|≥1

x
(
N i (t, dx)−N j (t, dx)

)
.
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Since the first two terms are martingales, we then have

E
(
v̂i,jt
)

= e−αtE
(
v̂i,j0

)
+ E

[∫ t

0

e−α(t−s)
∫
|x|≥1

x
(
N i (ds, dx)−N j (ds, dx)

)]
= e−αtE

(
v̂i,j0

)
+

∫ t

0

e−α(t−s)ds

(∫
|x|≥1

xρi (dx)−
∫
|x|>1

xρj (dx)

)
= e−αtE

(
v̂i,j0

)
+

1

α

(
1− e−αt

)
µi,j.

The second estimate directly follows by integrating e−αtE
[
v̂i,j0

]
+ 1

α
(1− e−αt)µi,j.

As we can see from the above lemma, the expectation of the gap process v̂i,jt

depends not only on the initial value, but also on the mean of the jumps µi,j, which

will not converge to zero as time tends to infinity. The term µi,j contributed by

jumps may cause the flocking to fail. In other words, the dynamics of velocity with

distinct jumps will not satisfy definition (2.2) . On the contrary, flocking emerges

in the SCS model (2.3) with identical jumps, i.e., µi = µj as shown in the next

theorem:

Theorem 2.4. Let (xit, v
i
t) be the solutions to (2.3) with µi = µj, i 6= j ∈

{1, ..., N} , then we have the time-asymptotic flocking in velocity alignment and

group formation given by

lim
t→∞

∣∣E (vit)− E
(
vjt
)∣∣ = 0,

sup
0≤t<∞

∣∣E (xit)− E
(
xjt
)∣∣ < ∞.
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Proof. With the assumptions on jumps µi = µj, ∀i 6= j ∈ {1, ..., N} , by Lemma

2.1, we have

lim
t→∞

∣∣E (vit)− E
(
vjt
)∣∣ = lim

t→∞

∣∣E (vit − v̄t)− E
(
vjt − v̄t

)∣∣
= lim

t→∞

∣∣E (v̂it)− E
(
v̂jt
)∣∣

= lim
t→∞

∣∣E (v̂i,jt )∣∣
= lim

t→∞
e−αt

∣∣E (v̂i,j0

)∣∣ = 0.

Similarly, we have

∣∣E (xit)− E
(
xjt
)∣∣ =

∣∣E (xit − x̄t)− E
(
xjt − x̄t

)∣∣
=

∣∣E (x̂i,jt )∣∣
≤

∣∣E (x̂i,j0

)∣∣+
∣∣E (v̂i,j0

)∣∣ (1− e−αt)
α

,

which yields the desired result.

The above theorem indicates that flocking emerges in the SCS model (2.3)

as long as we make some restrictions on jumps. In other words, the jumps for

each particle must be identical, otherwise some particles may move too far away

from the group due to dramatic jumps in velocity, and, therefore, fail to have

group formation and velocity alignment asymptotically. As a result, it is worth

investigating the situation where each particle has only identical jumps, i.e., µi =

µj for all i 6= j. The following theorem focuses only on particles with identical
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jumps. Assume that the noise terms are identical, i.e.,

E
(
Lit
)

= E
(
Ljt
)

V ar
(
Lit
)

= V ar
(
Ljt
)
,

for all i 6= j ∈ {1, ..., N}.

Theorem 2.5. (Estimate of fluctuation of all particles) For every t ≥ 0, define

the variance of all particles

SN (t) =
1

N − 1

N∑
i=1

(
vit − v̄t

)2
(2.6)

Then, the expectation of SN (t) is given by

E (SN (t)) =
1

N − 1

N∑
i=1

{
e−2αt

(
v̂i0
)2
}

+
(1− e−2αt)

2α
var (L1) ,

Furthermore, as t→∞, we have

lim
t→∞

E (SN (t)) =
var (L1)

2α
.

Proof. Recall the solution v̂it = e−αtv̂i0 +
∫ t

0
e−(t−s)dZi

t . It is well known that the

characteristic function of v̂it, see details in [Sato, 1999], is given by

φj (θ) = E
(
eiθv̂

j
t

)
= exp

[
ie−αtvj0θ +

∫ t

0

ψj
(
e−α(t−s)θ

)
ds

]
,

where ψj (θ) = logE
[
eiθZ

j
1

]
. The second moment of v̂it is then obtained by taking

derivative at θ = 0, so we now have

E
[(
v̂it
)2
]

=

[
e−αtE

(
vi0
)

+
(1− e−αt)

α
E
(
Zi

1

)]2

+
(1− e−2αt)

2α
var

(
Zi

1

)
= e−2αt

[
E
(
vi0
)]2

+
(1− e−2αt)

2α
var

(
Zi

1

)
,
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since E (Zi
1) =

(
1− 1

N

)
E (Li1)− 1

N

∑
j 6=iE

(
Lj1
)

= E (Li1)
((

1− 1
N

)
− (N−1)

N

)
= 0.

Additionally,

var
(
Zi

1

)
= var

[(
1− 1

N

)
Lit −

1

N

∑
j 6=i

Ljt

]
=

[(
1− 1

N

)2

+
(N − 1)

N2

]
var (L1)

=
N − 1

N
var (L1) ,

the asymptotic estimate of variance is then given by

lim
t→∞

E (SN (t)) = lim
t→∞

1

N − 1

N∑
i=1

E
[(
v̂it
)2
]

= lim
t→∞

1

N − 1

N∑
i=1

{
e−2αt

[
E
(
vi0
)]2

+
(1− e−2αt)

2α
var

(
Zi

1

)}
=

var (L1)

2α
. (2.7)

Remark 2.1. The asymptotic estimate of variance does not depend on the number

of particles N but on the coupling strength α as t→∞.

We provide two concrete examples with numerical results to illustrate the

asymptotic estimate that will tend to a function of coupling strength α.

Example 2.2. (Brownian motions) If Lit = σW i
t , then the dynamics are given by

dvit =
α

N

N∑
j=1

(
vjt − vit

)
dt+ σdW i

t , 1 ≤ i ≤ N. (2.8)

Note that these are the dynamics investigated in [Ha et al., 2009]. From (2.7),

we have the asymptotic estimate of the variance

lim
t→∞

E (SN (t)) =
σ2

2α
,
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which is a constant that depends on α. It is worth knowing that although the

system (2.8) satisfies the flocking criteria (2.2), the fluctuation of all particles

might not converge to zero except in the case when the coupling strength α tends

to infinity.

Example 2.3. (Compound Poisson processes) Let

Lit =
Nt∑
j=1

ξj,

where Nt is a Poisson process with intensity λ and the jump sizes {ξj, j ≥ 1} are

i.i.d. random variables with common distribution F ∼ normal(µF , σF ), indepen-

dent of Nt. Thus, the mean and variance of Lit are given by E (Lit) = λtµF and

var (Lit) = λtE
(
ξ2
j

)
= λt (σ2

F + µ2
F ) . The asymptotic estimate of the variance is

then given by

lim
t→∞

E (SN (t)) =
λ (σ2

F + µ2
F )

2α
.

From the above example, we see that the asymptotic estimate of the variance

tends to a function of not only in α but also in the parameters λ, µF and σF .

Both examples may have the same asymptotic variance under some parameters

settings which we show in the following figures.

We simulate the linear SCS model (2.3) in both examples 2.2 and 2.3 by

employing an Euler scheme with time dividend ∆t = 0.0001 and illustrate the

effect of coupling strength α. In Figure 2.1 with smaller coupling strength, for

instance α = 1, we see that the flocking is not obvious while the asymptotic
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variance in both examples tend to the same theoretical value 0.5 with parameters

T = 10, λ = 1, µF = 0 and σF = σ = 1 as shown in Figure 2.3. In Figure 2.2,

both asymptotic variances tend to zero with large coupling strength, α = 100,

and the flocking emerges in both systems.

Figure 2.1: The velocity plots of both with Brownian motions, compound Poisson

processes and the fluctuation. With smaller coupling strength α = 1, flocking is

not obvious while the asymptotic variances in both examples tend to the same

theoretical value λ
2α

(σ2
F + µ2

F ) = 0.5. The parameters used: N = 100, T = 10,

λ = 1, µF = 0, σF = σ = 1.
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Figure 2.2: The velocity plots of both with Brownian motions, compound Poisson

processes and the fluctuation. With larger coupling strength α = 100, flocking

is obvious while the asymptotic variances in both examples tend to the same

theoretical value λ
2α

(σ2
F + µ2

F ) ≈ 0. The parameters used: N = 100, T = 10,

λ = 1, µF = 0, σF = σ = 1.
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Figure 2.3: The fluctuation plot of both with Brownian motions, compound Pois-

son processes and the fluctuation. The parameters used: T = 1, λ = 1, µF = 0,

σF = σ = 1.

2.3.2 Radially symmetric communication rate

In this section, we follow the analysis in [Ha et al., 2009] for which the noise

terms are now driven by Lévy processes. When the communication rate func-

tion satisfies some boundedness conditions, we also give the upper bound for the

estimate of the variance of all particles that we define in (2.6) .
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Assume that ψ is a non-increasing function in its argument and depends only

on the distance between particles, i.e.,

ψ = ψ̄
(
|xj − xi|2

)
.

Then (2.1) can be rewritten as

dxit = vitdt

dvit =
α

N

N∑
j=1

ψ̄
(
|xj − xi|2

) (
vjt − vit

)
dt+ dLit, 1 ≤ i ≤ N.

(2.9)

By using the assumption of symmetric and translation invariance for the commu-

nication rate, we may write the dynamics for the micro variables (x̂it, v̂
i
t) as

dvit =
α

N

N∑
j=1

ψ̄
(∣∣x̂jt − x̂it∣∣2) (v̂jt − v̂it) dt+ dZi

t ,

dx̂it = v̂itdt,

where Zi
t =

(
1− 1

N

)
Lit − 1

N

∑N
j 6=i L

j
t .

Recall that the variance is given by

SN (t) =
1

N − 1

N∑
i=1

(
v̂it
)2
.

We need an auxiliary function to obtain an upper bound for E [SN (t)] . Define

χ (t) =
N∑
i=1

(
x̂it
)2
.

Observe that ∣∣x̂jt − x̂it∣∣2 ≤ 2χ (t)
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and since ψ̄ is non-increasing, we have

ψ̄
(∣∣x̂jt − x̂it∣∣2) ≥ ψ̄ (2χ (t)) .

We now give the boundedness of E [SN (t)] in the following theorem:

Theorem 2.6. Assume that ψ̄ satisfies the lower bound condition

min
s>0

ψ̄ (s) ≥ ψ∗ > 0,

for some constant ψ∗. Then, the estimate of the variance SN (t) is bounded in t

and depends on the distribution of jump size of vit. Specifically, we have

E [SN (t)] ≤ e−2ψ∗αtSN (0)+
σ2

2ψ∗α

(
1− e−2ψ∗αt

)
+

1

N − 1
e−2ψ∗αt

N∑
i=1

∑
0≤s≤t

e2ψ∗αsE
(
∆v̂is

)2
.

Proof. Firstly, we derive the dynamics for SN (t) by using the Ito formula for Lévy

processes and by changing index i↔ j.

dSN (t) =
1

N − 1

N∑
i=1

d
(
v̂it
)2

=
1

N − 1

N∑
i=1

{
2v̂itdv

i
t + d

[
v̂it, v̂

i
t

]c
t

+
(
v̂it
)2 −

(
ŷit−
)2 − 2v̂it−∆v̂it

}
=

1

N − 1

N∑
i=1

{
2v̂itdv

i
t + σ2

(
1− 1

N

)
dt+

(
∆v̂it

)2
}

=
1

N − 1

N∑
i=1

2v̂it

(
α

N

N∑
j=1

ψ̄
(∣∣x̂jt − x̂it∣∣2) (v̂jt − v̂it) dt+ dZi

t

)

+σ2dt+
1

N − 1

N∑
i=1

(
∆v̂it

)2
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=
−2

N − 1

N∑
i=1

vjt

(
α

N

N∑
j=1

ψ̄
(∣∣x̂jt − x̂it∣∣2) (v̂jt − v̂it) dt

)
+

1

N − 1

N∑
i=1

2v̂itdZ
i
t

+σ2dt+
1

N − 1

N∑
i=1

(
∆ŷ

(i)
t

)2

≤ −ψ̄ (2χ (t))

N − 1

α

N

N∑
i=1

N∑
j=1

2v̂jt
(
v̂jt − v̂it

)
dt+

1

N − 1

N∑
i=1

2v̂itdZ
(i)
t

+σ2dt+
1

N − 1

N∑
i=1

(
∆v̂it

)2

=
−ψ̄ (2χ (t))α

N − 1

N∑
j=1

2
(
v̂jt
)2
dt+

1

N − 1

N∑
i=1

2v̂itdZ
(i)
t

+σ2dt+
1

N − 1

N∑
i=1

(
∆v̂it

)2

≤ −2ψ∗αSN (t) dt+
1

N − 1

N∑
i=1

2v̂itdZ
(i)
t + σ2dt+

1

N − 1

N∑
i=1

(
∆v̂it

)2
.

In order to obtain the upper bound, we then apply Ito’s formula again to the

function e2ψ∗αtSN (t) . Thus,

de2ψ∗αtSN (t) = 2ψ∗αe2ψ∗αtSN (t) dt+ e2ψ∗αtdSN (t)

+e2ψ∗αtSN (t)− e2ψ∗αt−SN
(
t−
)
− e2ψ∗αt−∆SN (t)

= 2ψ∗αe2ψ∗αtSN (t) dt+ e2ψ∗αtdSN (t)

≤ 2ψ∗αe2ψ∗αtSN (t) dt

+e2ψ∗αt


−2ψ∗αSN (t) dt+ 1

N−1

∑N
i=1 2ŷitdZ

i
t + σ2dt

+ 1
N−1

∑N
i=1 (∆ŷit)

2


= e2ψ∗αt

{
1

N − 1

N∑
i=1

2ŷitdZ
i
t + σ2dt+

1

N − 1

N∑
i=1

(
∆ŷit

)2

}

28



Then we integrate with respect to t to get

SN (t) ≤ e−2ψ∗αtSN (0) +
2

N − 1

N∑
i=1

∫ t

0

e−2ψ∗α(t−s)v̂isdZ
i
s +

σ2

2ψ∗α

(
1− e−2ψ∗αt

)
+

1

N − 1
e−2ψ∗αt

N∑
i=1

∑
0≤s≤t

e2ψ∗αs
(
∆v̂is

)2
.

Finally, we take the ensemble average to obtain

E [SN (t)] ≤ e−2ψ∗αtSN (0)+
σ2

2ψ∗α

(
1− e−2ψ∗αt

)
+

1

N − 1
e−2ψ∗αt

N∑
i=1

∑
0≤s≤t

e2ψ∗αsE
(
∆v̂is

)2
,

since E
[∫ t

0
e−2ψ∗α(t−s)v̂isdZ

i
s

]
= 0 by the Lévy-Ito decomposition and the martin-

gale argument.

It is difficult to prove when the nonlinear system (2.9) satisfies the flocking

criteria (2.2) . However, the above theorem provides a different perspective on

flocking by investigating the fluctuation of all particles. Flocking will emerge in

such systems as long as the rate α is large enough under some boundedness of

communication rate ψ. Specifically, the fluctuation of all particles will decrease

exponentially with large α despite the lack of flocking criteria (2.2) .

2.3.3 Numerical results

In this section, we simulate the linear SCS model (2.3) by employing an Eu-

ler scheme with time dividend ∆t = 0.0001 and illustrate the effect of coupling

strength α as well as jumps. Assuming the noise terms in (2.3) is given by

Lit = σW i
t +
∑N i

t
j=1 ξj , where ξj has distribution f (y; θ) = θ

2
e−|y|θ, θ > 0 and N i

t is
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a Poisson process with rate λ. We use the parameters N = 10, T = 1, σ = 1, θ = 1

and λ = 3 to illustrate the model. For the purpose of simplification, we only

provide the plots for the position of all particles. Note that Figure 2.4 to Figure

2.7 show the trajectories of the model (2.3) in space (with 3-dimensional noises

terms).

In both Figure 2.4 and Figure 2.5, it is obvious that the flocking does not

emerge for a small coupling strengh, α = 1. Additionally, as shown in blue line

in Figure 2.4, a particle only changes its position due to a sudden jump in its

velocity part, whereas the blue line shows no obvious change in course in Figure

2.5.
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Figure 2.4: Plot of 3-dimensional position for the model (2.3) with one particular

jump (blue line). Flocking does not emerge for a small coupling strengh, α = 1,

since the failure of group formation. The parameters used: σ = 1, θ = 1 and

λ = 3.
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Figure 2.5: Plot of 3-dimensional position for the model (2.3) without any jumps.

Compare to Figure 2.4, the blue line shows no obvious change in course.

In Figure 2.6 and Figure 2.7, flocking emerges in the SCS model for larger

coupling strength α = 100 regardless the presence of jumps. Figure 2.6 shows

flocking with jumps where jumps might be considered as a characteristic of a

leading particle (i.e. the blue line) who has a faster or lower velocity than other

particles in the group. Everyone else follows the trajectory of this leading particle

in Figure 2.6. In contrast, every particle is moving around closely to each other

without jumps in Figure 2.7.
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Figure 2.6: Plot of 3-dimensional position for the model (2.3) with one particular

jump (blue line). Flocking emerges in the SCS model for larger coupling strength

α = 100 regardless of the presence of jumps. Everyone else (red lines) follows the

trajectory of this particular particle (blue line). The parameters used: N = 10,

T = 1, σ = 1, θ = 1 and λ = 3.
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Figure 2.7: Plot of 3-dimensional position for the model (2.3) without any jumps.

Compare to Figure 2.6, the blue line shows no dramatic change in course and

every particle is moving around closely to each other without jumps.

In the following two figures, we provide a one dimensional plot for both po-

sitions and velocities to better describe the jump phenomenon. As we can see

in Figure 2.8, there is a negative jump around time 0.6. Compared to the ve-

locity plot in Figure 2.9, it shows that the velocity of a particular particle (blue

line) decreases suddenly around time 0.6 and then is attracted to the rest of the

group. While the corresponding position of this particle is affected and is moving
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out of the group slightly, the rest of the group is still attracted to its trajectory.

Therefore, we may consider this particle as a leading particle.
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Figure 2.8: Plot of one-dimensional position, a negative jump presents around

time 0.6. The parameters used: N = 10, T = 1, σ = 1, θ = 1 and λ = 3.
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Figure 2.9: The corresponding velocity of a particular particle (blue line) decreases

suddenly around time 0.6. The parameters used are the same as Figure 2.8.

2.4 Stochastic flocking model with a central par-

ticle

In the previous sections, we did not take into account the interactions between

individual particles and one central particle in a stochastic system. Within the

new system, all particles now communicate with each other indirectly through a
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central particle. The central particle is now playing an important role as it acts

as an intermediary to bring all particles into communication.

In this section, we propose a new model that would capture the interactions

between individual particles and the central particle. For the simplicity of analysis,

we consider the noise terms in the dynamics are driven by Brownian motions only

but can easily be extended to Lévy processes. We consider a particle (x0
t , v

0
t ) as

the central particle with dynamics:

dv0
t =

α

N

N∑
j=1

φ
(
xjt , x

0
t

) (
vjt − v0

t

)
dt+ σ0dW

0
t ,

dx0
t = v0

t dt,

while the other individual particles, called peripheral particles, have dynamics

dvit = βφ
(
x0
t , x

i
t

) (
v0
t − vit

)
dt+ σidW

i
t

dxit = vitdt, i = 1, ..., N,

where α, β ≥ 0 are the coupling strength and φ ≥ 0 is the communication rate as

we defined earlier in this chapter.

From the above dynamics, we observe that individual peripheral particles com-

municate with each other only through the communication rate φ (x0
t , x

i
t) with the

central particle x0
t . In other words, the closer the peripheral particle xit is to the

central particle x0
t , the stronger communication rate xit will be. We again assume

that the initial condition (xi0, v
i
0) = (x0, v0), for i = 0, 1, .., N. We will also prove
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that such stochastic systems have the time-asymptotic flocking as in the case of

linear communication rate.

We consider a constant communication rate φ = 1. Hence, the dynamics read

as

dv0
T =

α

N

N∑
j=1

(
vjt − v0

t

)
dt+ σ0dW

0
t

dvit = β
(
v0
t − vit

)
dt+ σIdW

i
t

dxit = vitdt, i = 0, 1, ..., N

(2.10)

Define the ensemble average v̄t = 1
N

∑N
j=1 v

j
t and then we have the dynamics

of v̄t to be

dv̄t = β
(
v0
t − v̄t

)
dt+

1

N

N∑
i=1

σidW
i
t .

Our goal is to show that vit will satisfy the time-asymptotic flocking criteria

lim
t→∞

∣∣E (vit)− E
(
vjt
)∣∣ = 0, for i 6= j ∈ {0, ..., N} .

We consider the micro and macro decomposition again and recall that the micro

variable is defined as v̂it = vit − v̄t for i = 0, 1, ..., N. First of all, we investigate the

micro variable only for i = 1, .., N ; the dynamics are given by

dv̂it = β
(
v0
t − vit

)
dt+ σidW

i
t − β

(
v0
t − v̄t

)
dt− 1

N

N∑
i=1

σidW
i
t

= −β
(
vit − v̄t

)
+ σi

(
1− 1

N

)
dW i

t +
1

N

N∑
j 6=i

σjdW
j
t

= −βX̂ i
t + dZi

t ,

where Zi
t = σi

(
1− 1

N

)
W i
t + 1

N

∑N
j 6=i σjW

j
t .
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Since v̂it is an OU process with mean reverting rate β, and it is easy to check

that the solution v̂it are given by

v̂it = e−βtv̂i0 +

∫ t

0

e−β(t−s)dZi
s, i = 1, .., N,

we have the estimate

E
(
v̂it
)

= e−βtE
(
v̂i0
)

= 0.

Secondly, we see that the dynamic of the micro variable for i = 0 is given by

dv̂0
t = dv0

t − dv̄t

= α
(
v̄t − v0

t

)
dt+ σ0dW

0
t − β

(
v0
t − v̄t

)
dt− 1

N

N∑
i=1

σidW
i
t

= − (α + β)
(
v0
t − v̄t

)
dt+ σ0dW

0
t −

1

N

N∑
i=1

σidW
i
t

= − (α + β) v̂0
t dt+ dZ0

t ,

where Z0
t = σ0W

0
t − 1

N

∑N
i=1 σiW

i
t . The solution is, again, given by

v̂0
t = e−(α+β)tv̂0

0 +

∫ t

0

e−(α+β)(t−s)dZ0
s ,

and, also, we have the estimate

E
(
v̂0
t

)
= e−(α+β)tE

(
v̂0

0

)
.

We now know the particles (xit, v
i
t) have time-asymptotic flocking by the following

theorem:

Theorem 2.7. Let (xit, v
i
t) be the solutions to (2.10) for i 6= j ∈ {0, 1, ..., N} , we

then have

lim
t→∞

∣∣E (vit)− E
(
vjt
)∣∣ = 0.
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Furthermore,

sup
0≤t<∞

∣∣E (xit)− E
(
xjt
)∣∣ <∞.

Proof. By a similar argument shown in the previous section, we would have for

i 6= j ∈ {1, .., N}

lim
t→∞

∣∣E (vit)− E
(
vjt
)∣∣ = lim

t→∞
e−at

∣∣E (v̂i0 − v̂j0)∣∣ = 0.

In addition, for i = {1, ..., N}, we have

lim
t→∞

∣∣E (v0
t

)
− E

(
vjt
)∣∣ = lim

t→∞

∣∣E (v0
t − v̄t

)
− E

(
vjt − v̄t

)∣∣
= lim

t→∞

∣∣E (v̂0
t

)
− E

(
v̂jt
)∣∣

= lim
t→∞

∣∣e−(α+β)tE
(
v̂0

0

)
− e−βtE

(
v̂i0
)∣∣

= lim
t→∞

∣∣e−(α+β)tE
(
v̂0

0

)
− e−βtE

(
v̂i0
)∣∣

≤ lim
t→∞

e−(α+β)t
∣∣E (v̂0

0

)∣∣+ e−βt
∣∣E (v̂i0)∣∣

= 0.

The above theorem provides us the fact that flocking still emerges even in such

stochastic particle systems with a central particle. We will apply this result to

further characterize systemic risk in Chapter 5. The particle dynamics studied in

this chapter will represent the dynamics of log-monetary reserves of banks later

in Chapter 3 and will use this time-asymptotic flocking result.
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Chapter 3

Systemic risk with jumps

3.1 Systemic risk model

Systemic risk is the risk of financial system instability or failure that may occur

under certain circumstances and can sometimes led to catastrophic consequences

to the interconnected financial system. Many researchers have investigated sys-

temic risk and its impact on the banking market [Bo and Capponi, 2013], [Fouque

and Ichiba, 2013], [Fouque and sun, 2013], [Garnier et al., 2012]. In [Fouque and

Ichiba, 2013], the authors analyze systemic risk in interbank lending systems by

modeling monetary reserves of banks as a system of interacting Feller diffusions.

Their model demonstrates that growth rate and lending preference are key fac-

tors in understanding systemic risk in an interbank lending system. In [Fouque

and Sun, 2013], the authors propose a simpler system with log-monetary reserves

of N banks where the rates of borrowing\lending between individual banks are
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proportional to the difference between their log-monetary reserves. They further

define systemic risk as the risk that all banks will be in default simultaneously for

a given horizon time.

In this chapter, we aim to extend the model proposed in [Fouque and Sun, 2013]

and establish a mathematical model to characterize the banking system and the

effect on the systemic risk when each bank is exposed to the possibility of having

instantaneous shock or sudden bankruptcy that we identify as jumps. To get a

more in-depth understanding of systemic risk that may help us to navigate and

further prevent such event, we propose an interbank borrowing and lending model

that allows sudden increase or decrease in individual bank reserve to illustrate a

systemic risk by using a stochastic flocking system described in Chapter 2.

We consider a system of N banks with log-monetary reserves interacting with

each other through interbank borrowing and lending. We assume that, for i =

1, .., N , the log-monetary reserves of the ith bank satisfies the following dynamics

dX i
t =

α

N

N∑
j=1

(
Xj
t −X i

t

)
dt+ dLit, (3.1)

where α ≥ 0 is defined as the rate of borrowing or lending to each other. For

i = 1, ..., N, the processes Lit are independent and one-dimensional Lévy processes

with generating triplet (a, σ, ρi) . We assume that the initial log-monetary reserves

X i
0 is zero. The overall rate of mean-reversion α

N
is normalized by the number

of banks. Moreover, the drift term indicates the interaction between the reserves

of bank i and bank j. For bank i with reserve X i
t , it will borrow from bank j
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if X i
t < Xj

t and lend to bank j if X i
t > Xj

t . Note that this is the case of linear

communication rate in the SCS model where we regard the velocity as the log-

monetary reserve. As a result, we can expect that flocking emerges whenever the

rate α is large or in the long run. In the sense of this banking system, for each

bank i, the log-monetary reserve X i
t will be almost the same as long as there

are more interbank activities, i.e., the rate of borrowing or lending is large. It is

shown in [Fouque and Sun, 2013] that increasing the rate will not only increases

the stability of this banking system but also systemic risk.

As stated in [Fouque and Sun, 2013], in order to study the systemic risk, we

first define the first default time for bank i as

τi = inf
{
t ≥ 0;X i

t ≤ η
}
, η < 0.

We are interested in the event that all banks will be in default simultaneously for

a given horizon time T . Therefore, we investigate the joint probability that

P (τi ≤ T, i = 1, ..., N) = P

(
min

0≤s≤T
X i
s ≤ η, i = 1, ..., N

)
. (3.2)

According to the literature [Di Crescenzo et al., 1995], it is difficult to compute

the joint probability explicitly even when N = 2. It is even more complicated to

find this probability in a high dimensional banking system with interacting drift

terms.

However, within the special structured system where noise terms are driven

by particular processes, we will be able to compute the joint probability (3.2)
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approximately by the behavior of flocking, which will be discussed in section

3.3. In the following section, we investigate the mean-field limit in this interbank

lending system.

3.2 Mean-field limit

To understand system (3.1) , we rewrite the dynamics as

dX i
t =

α

N

N∑
j=1

(
Xj
t −X i

t

)
dt+ dLit

= α

[
1

N

N∑
j=1

Xj
t −X i

t

]
dt+ dLit, i = 1, ..., N.

Observe that processes X i
t are now Lévy-type OU processes which mean-revert

to the ensemble average X̄t = 1
N

∑N
j=1X

j
t , which indicates that X̄t approximately

leads the entire banking system. Moreover, by taking the average, the ensemble

average X̄t satisfies

dX̄t =
1

N

N∑
i=1

dLit.

Recall that X i
0 = 0, for i = 1, ..., N ; we then have X̄t = 1

N

∑N
i=1 L

i
t, and so

dX i
t = α

[
1

N

N∑
i=1

Lit −X i
t

]
dt+ dLit.

The solution X i
t is given by

X i
t =

1

N

N∑
i=1

Lit + e−αt
∫ t

0

eαsdLis −
1

N

N∑
j=1

e−αt
∫ t

0

eαsdLjs.

Note that the ensemble average is still a Lévy process.
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As N →∞, the strong law of large numbers gives

1

N

N∑
i=1

Lit → γ ≡ E
(
L1
t

)
= t

(
a+

∫
|x|≥1

xρ (dx)

)
a.s.,

and therefore (X i
t)
′
s converges to independent Lévy-type OU processes(

a+

∫
|x|≥1

xρ (dx)

)(
1− 1− e−αt

α

)
+ e−αt

∫ t

0

eαsdLis

with long-run mean γ. In fact, this is a simple example of a mean-field limit and

propagation of chaos studied in [Sznitman, 1991]. In conclusion, getting more

banks involved in this lending system will make the system more complicated

intuitively; however, the banks will eventually act independently.

3.3 Systemic risk illustrated with jump diffusion

processes

The stability of this interbank system with coupled diffusions has been il-

lustrated in [Fouque and Sun, 2013], the authors show that more interactivities

between individual banks will not only create stability but also systemic risk. In

this section, we aim to extend their result by adding jumps which can be regarded

as optimistic news or sudden bankruptcy.

We assume that, for i = 1, .., N , the log-monetary reserves of the ith bank

satisfies the following dynamics:

dX i
t =

α

N

N∑
j=1

(
Xj
t −X i

t

)
dt+ dLit, (3.3)
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where α is defined as the rate of borrowing and lending. The processes Lit = σW i
t +∑N i

t
j=1 ξj are one-dimensional jump diffusion processes, where W i

t are independent

Brownian motions, σ > 0, jump sizes ξj have distribution f (y; θ) = θ
2
e−|y|θ, θ > 0

and N i
t are Poisson processes independent of W i

t , with intensity parameter λ. We

assume that the initial log-monetary reserves X i
0 = 0. The parameter σ is the

volatility of Brownian motions, while the parameters θ and λ are described as the

strength and the frequency of instantaneous shock, respectively.

To understand the systemic risk, we now investigate the joint default prob-

ability (3.2) , i.e., how many banks have reached the default level η < 0 before

t = 1. In order to illustrate the systemic risk in this setting, we assume the de-

fault level η = −0.7. Define {default event} = {min0≤t≤1X
i
t ≤ η, 1 ≤ i ≤ N} and

K ≡ {# of default} . We are interested in the loss distribution

p = P (K = k) , where k = 0, 1..., N.

We aim to know the probability that all banks will be in default simultaneously

before t = 1, i.e., K = N ; however, such probability is difficult to obtain explicitly.

Alternatively, we compute this probability numerically through simulations to

illustrate the systemic risk. We simulate 104 trajectories for the dynamics (3.3)

by employing an Euler scheme with time dividend ∆t = 0.0001 and illustrate the

effect of rate α as well as jumps. Below, we provide figures for the loss distribution

in both coupled diffusions and jump diffusions for α = 1, indicating weak interbank
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lending activities, and for α = 100, indicating strong interbank lending activities.

These figures also show one realization of the trajectories for different values α.

In Figure 3.1 , we assume that the noise terms in (3.3) are driven by Brow-

nian motions and when α = 1, the model appears to be driven by independent

Brownian motions. Thus, the chance that the log-monetary reserve of each bank

i will be in default before t = 1, i.e., {min0≤t≤1X
i
t ≤ −0.7} , is equally likely.
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Figure 3.1: Plots of trajectories for the model (3.3) with Brownian motions (upper

one) and the corresponding loss distribution (bottom one) in a fixed time t = 1.

Weak flocking for α = 1 in the upper one; the model appears to be driven by

independent Brownian motions. The parameters used: N = 10, σ = 1 and

η = −0.7..

The loss distribution is shown as a Binomial distribution (N, p) , N = 10,

p ≈ P {min0≤t≤1X
i
t ≤ −0.7} . In addition, the default probability can be computed

in general for α = 0 with the initial reserve X i
0 = 0 and noise terms Lit = σW i

t in
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(3.3) . We conclude that

p = P
{

min
0≤t≤T

X i
t ≤ η

}
= P

{
min

0≤t≤T
Lit ≤ η

}
= P

{
min

0≤t≤T
σW i

t ≤ η

}
= 2Φ

(
η

σ
√
T

)
,

where Φ denotes the cdf of N (0, 1) and we use the distribution of the first passage

time for Brownian motion, which will be shown in section 3.3.1.

In Figure 3.2, we see that the loss distribution corresponds to either no default

or all defaults. It appears that the fat tail corresponds to the small probability

of the ensemble average reaching the default level, and to almost all diffusions

following this average due to flocking behavior for large α. The authors in [Fouque

and Sun, 2013] identify this small probability as a ”systemic risk” probability

which can be obtained by the distribution of the first passage time of Brownian

motions due to flocking in this stable system.
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Figure 3.2: Plots of trajectories for the model (3.3) with Brownian motions (upper

one) and the corresponding loss distribution (bottom one) in a fixed time t = 1.

Compare to Figure 3.1, flocking emerges for α = 100 in the upper one and the

loss distribution corresponding to either no default or all defaults. The parameters

used: N = 10, σ = 1 and η = −0.7.

We next illustrate the effect of jumps on the systemic risk through another

simulation using a model with jump diffusions shown in Figure 3.3. We simulate

50



the model in (3.3):

dX i
t =

α

N

N∑
j=1

(
Xj
t −X i

t

)
dt+ dLit,

where α is defined as the rate of borrowing and lending. The processes Lit = σW i
t +∑N i

t
j=1 ξj are one-dimensional jump diffusion processes, where W i

t are independent

Brownian motions, σ > 0, jump sizes ξj have distribution f (y; θ) = θ
2
e−|y|θ, θ > 0

and N i
t are Poisson processes independent of W i

t , with intensity parameter λ.

In Figure 3.3, we obtain a higher probability that all banks will be in default

before t = 1. Note that θ = 1 means we have a greater chance that one of the

banks will reach the default η = −0.7. As a result, in the jump diffusion model with

double exponential jump size, we obtain a similar result as the Brownian motion

case but higher probability on the fat tail. Observe that the small probability,

i.e., systemic risk increases and so does the risk of individual banks, that is, the

probability that one bank will be in default.
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Figure 3.3: Plot of trajectories for the model (3.3) with jump-diffusion noises

as well as the corresponding loss distribution in a fixed time t = 1. Note that

the upper one is just one realization of the model (3.3), flocking still emerges for

α = 100 according to the analysis in section 2.3. The parameters used: N = 10,

σ = 1, θ = 1 and λ = 1.

In [Fouque and Sun, 2013], the authors identify
{

min0≤t≤T X̄t ≤ η
}

as a sys-

temic event in a coupled diffusion model. We now focus on the event where the

ensemble average X̄t = 1
N

∑N
i=1 L

i
t reaches the default level η < 0. The probability
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that this event, which we call systemic risk, can be written as follows:

P

(
min

0≤t≤T
X̄t ≤ η

)
= P

(
min

0≤t≤T

1

N

N∑
i=1

Lit ≤ η

)
. (3.4)

Note that this probability might only be computed explicitly under certain

situations (see [ Kou and Wang, 2003] and [Novikov et al, 2003]) such as when

Lit is a Brownian motion, only possesses one-sided jumps or there is some special

distribution for the jump size.

3.3.1 First passage time for Brownian motions

For searching the distribution of the first passage, we define τb = inf {t ≥ 0;Lt ≥ b} ,

b > 0. It is well known that, if Lt = Wt, the Laplace transform of τb is then given

by, for s ∈ (0,∞) ,

E
[
e−sτb

]
= e−b

√
2s.

Moreover, the density function of τb is given by

fτb (t) =
b√
2π
t−

3
2 e−

b2

2t , t ≥ 0.

In terms of (3.4) , let Lit = σW i
t . Then the probability can be computed

explicitly as

P

(
min

0≤t≤T

1

N

N∑
i=1

Lit ≤ η

)
= P

(
min

0≤t≤T

σ

N

N∑
i=1

W i
t ≤ η

)

= P

(
min

0≤t≤T
W̃t ≤

η
√
N

σ

)

= 2Φ

(
η
√
N

σT

)
,

(3.5)
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by a change of measure, by the reflection principle or by computing the Laplace

transform through some appropriate martingale and the optional stopping theo-

rem. Here, W̃t is a standard Brownian motion.

3.3.2 First passage time for jump-diffusion processes

If Lt is a jump-diffusion process, there are some difficulties for finding the

distribution of the first passage time depending on the structure of jumps. The

intuition is given as follows:

• Without a jump part, the distribution of the first passage time can be ob-

tained by the reflection principle or by calculating the Laplace transform

via some appropriate martingale and optional sampling theorem.

• With a jump part, it is difficult to find the distribution of the first pas-

sage time since the process may hit the boundary exactly or it incurs an

”overshoot”, Lτb − b, over the boundary.

• The overshoot presents many problems.

1. We have to know the exact distribution of the overshoot,

i.e, P (Lτb − b = 0) and P (Lτb − b > x) for x > 0.

2. We need to know the dependent structure between the overshoot Lτb−b

and the first passage time τb.
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3. If we want to use the reflection principle, the dependent structure be-

tween the overshoot and the terminal value of Lt is needed.

However, the special case that the size of jump is double-exponentially dis-

tributed has been solved in [Kou and Wang, 2003]. We state the important results

needed for systemic risk in what follows.

Let Lit be a jump-diffusion process with double-exponentially distributed jump

sizes, i.e.,

Lit = σW i
t +

N i
t∑

j=1

ξj, (3.6)

where N i
t is a Poisson process with intensity rate λ > 0 and {ξj, j ≥ 1} are

i.i.d. random variables with common distribution

f (y; θ) =
θ

2
e−|y|θ, θ > 0.

For all u ∈ C2, the infinitesimal generator of Lit is given by

Lu (x) =
1

2
σ2x2u

′′
(x) + λ

∫
R

[u (x+ y)− u (x)] fξ (y) dy.

Moreover, assume that z ∈ (−θ, θ) . The moment generating function of Lt is

given by

E
[
ezLt

]
= exp {G (z) t} ,

where G (x) ≡ 1
2
σ2x2+λ

(
θ2

θ2−x2 − 1
)
. Then the Laplace transform of P (τb ≤ T ) =

P (max0≤t≤T Lt ≥ b) is given by the following theorem:
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Theorem [Kou and Wang, 2003]. For any s ∈ (0,∞) , let β1 and β2 be

the only two positive roots of the equation

s = G (β) ,

where 0 < β1 < θ < β2 <∞. Then the Laplace transform of τb is given by

E
[
e−sτb

]
=
θ − β1

θ

β2

β2 − β1

e−bβ1 +
β2 − θ
θ

β1

β2 − β1

e−bβ2 .

Remark 3.1. See Theorem 3.1 in [Kou and Wang, 2003] for the general case

if interested, i.e., f (y; θ) = pθ1e
−yθ11 {y ≥ 0} + qθ2e

yθ21 {y < 0} , θ1, θ2 > 0 and

p+ q = 1.

Back to the systemic risk (3.4) , the probability is given by

P

(
min

0≤t≤T

1

N

N∑
i=1

Lit ≤ η

)
= P

(
max

0≤t≤T

1

N

N∑
i=1

Lit ≥ b

)
, where b = −η.

= P

(
max

0≤t≤T

N∑
i=1

Lit ≥ Nb

)

= P

(
max

0≤t≤T
L̃t ≥ Nb

)
= P (τNb ≤ T ) ,

(3.7)

where L̃t = σ̃Wt +
∑Ñt

j=1 ξj, σ̃ =
√
Nσ and Ñt is a Poisson process with rate

λ̃ = Nλ.

By using the above theorem and the inverse Laplace transform, we can there-

fore obtain the numerical result of the probability (3.7) . As stated in [Kou and

Wang, 2003], the Gaver-Stehfest algorithm by [Gaver, 1966] and [Stehfest, 1970]
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is a crucial method since it is the only algorithm that can deal with the inversion

on the real line. Alternatively, one may see [Abate and Whitt, 1992] for more

details about Laplace inversion algorithms. The algorithm is described as follows:

For any bounded real-valued function f on [0,∞) and continuous at t we have

that

f (t) = lim
n→∞

f̃n (t) ,

where fn (t) = ln(2)
t

(2n)!
n!(n−1)!

∑n
k=0 (−1)k

(
n
k

)
f̂
(

(n+ k) ln(2)
t

)
and f̂ is the Laplace

transform of f. Since the explicit form of f̂ is given in the previous theorem, we

will now be able to compute the distributions of the first passage times for the

double exponential jump diffusion process and thus the systemic risk probability

(3.4) with (3.6) can be computed numerically.

It is worth discussing (3.4) for a Lévy process Lt; however, finding an explicit

formula for the distribution of the first hitting time for a Lévy process is quite

difficult. According to [Kou and Wang, 2003], the only case of an explicit formula,

so far, is the jump diffusion with double exponential jump size. Problem (3.4) can

be solved either through a martingale approach or an integral equation approach,

see [Hadjiev, 1985], [Novikov, 1981]. In addition, see [Novikov et al., 2003] for a

survey of the first hitting time problems of compound Poisson processes. More-

over, in [Braverman, 2009] the author provides an asymptotic probability for (3.4)

as N →∞ that may help us to see the systemic risk in the general case.
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At the end of this section, we provide the plot for the probability that the

ensemble average reaches the default barrier on both models for different number

of banks N given in Figure 3.4.
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Figure 3.4: Plot of systemic risk probability for different number of banks with

both Brownian motions and jump diffusions. The probability that the ensemble

average reaches the default level η = −0.7 for both Brownian motions and jump

diffusions decreases as N increases.

One can observe in Figure 3.4 that, compared to systemic risk with Brownian

motions, the systemic risk probability is higher with jump diffusion processes

and decays to 0 slower as N increases. Note that in [Fouque and Sun, 2013], the

authors show the probability that the ensemble average reaches the default barrier
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is of order exp
(
− η2N

2σ2T

)
by the theory of large deviations when Lt is a Brownian

motion.

To conclude this chapter, we see that including jumps in the dynamic of re-

serve processes increases not only the systemic risk but also the risk of individual

banks. However, the model with jumps provides more flexibility by including

more parameters such as intensity rates λ and jump sizes θ, for the purpose of

calibration. In April 2015, China’s central bank made a huge reduction in the

amount of cash that banks must hold in reserves in order to add liquidity to help

stimulate bank lending and fight slowing growth. This kind of dramatic change

can be regarded as a sudden jump in the reserve processes that will expose the

entire banking system to a higher risk environment. Making some slight changes

in the reserve is reasonable and acceptable in a stable banking system such as

studied in [Fouque and Sun, 2013] but might not be a good idea with dramatic

changes (jumps) since it may result in a higher systemic risk.
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Chapter 4

Stochastic differential games with

jumps and systemic risk

In this chapter, we integrate a game feature with jumps, where each bank

controls its rate of borrowing/lending with a central bank. We will use game

theory and stochastic optimal control with jump-diffusion processes to analyze

the impact of jumps to our interbank borrowing and lending model. We will solve

a feedback equilibrium with jumps in game theory—Nash equilibria—with finitely

many banks using both an FBSDE approach and an HJB approach in section 4.2.
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4.1 Stochastic optimal control with jump-diffusion

processes

In this section, we give some background and concepts related to stochastic

optimal control with jump-diffusion processes. There are typically two ways to

solve an optimal control problem: one way is through dynamic programming with

corresponding HJB equations [Framstad et al, 1998] and the other approach is

by using maximum principle [Framstad and Øksendal, 2004]. The deterministic

case of maximum principle was first introduced in [Pontryagin et al., 1962]. The

author in [Kushner, 1972] and [Bismut, 1973] further investigate a correspond-

ing maximum principle for Ito diffusions. Subsequently, the maximum principle

for Ito diffusions was developed in [Bensoussan, 1983], [Bensoussan, 1991] and

[Haussmann, 1986]. Recently, a sufficient maximum principle for jump diffusions

was formulated in [Framstad et al, 2004] and is further summarized in the text-

book [Øksendal and Sulem, 2007] from which we state some related results in the

following.

Maximum principle for jump diffusion processes

Assuming that the state process Xt = X
(α)
t of a controlled jump diffusion in

R satisfies the dynamics

dXt = b (t,Xt, αt) dt+ σ (t,Xt, αt) dWt

+

∫
R

γ (t,Xt− , αt− , z) Ñ (dt, dz) ,

(4.1)
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X0 = x ∈ R, where

b : [0, T ]×R× U → R,

σ : [0, T ]×R× U → R and

γ : [0, T ]×R× U ×R→ R

are given functions, and U ⊂ R is a given set. Let Ñ (dt, dz) = N (dt, dz)−ρ (dz) dt

be the compensated Poisson random measure with Lévy measure ρ. The process

αt = α (t, ω) : [0, T ]×Ω→ R is the control process and assumed to be càdlàg and

adapted. We say the control process αt is admissible if there exists a unique and

strong solution to (4.1) , and we denote A the set of all admissible controls.

The performance criterion (objective function) is given by

J (α) = E
[∫ T

0

f (t,Xt, αt) dt+ g (XT )

]
,

where T < ∞ is deterministic, f is continuous and g is concave. We consider an

optimal control problem that finds an admissible α∗ ∈ A such that

J (α∗) = sup
α∈A

J (α) .

The approach is similar to the case of Ito diffusion except we now have to deal

with the jump part. Define the Hamiltonian H : [0, T ]×R×U ×R×R×R→ R

by

H (t, x, α, p, q, r) = f (t, x, α) + b (t, x, α) p+ σ (t, x, α) q (4.2)

+

∫
R

γ (t, x, α, z) r (t, z) ν (dz) ,
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where R is the set of functions r : [0, T ] × R → R such that the integrals in

(4.2) converge. Functions pt, qt and r satisfy the forward and backward stochastic

differential equation (FBSDE)

dpt = −Hx (t, x, α, p, q, r) dt+ qtdWt +

∫
R

r
(
t−, z

)
Ñ (dt, dz) ,

pT = g′ (XT )

A sufficient maximum principle in [Framstad and Øksendal, 2004] is stated in the

following:

Theorem 4.1. Let α ∈ A with corresponding solution X∗ = X(α∗) and sup-

pose there exists a solution (p∗t , q
∗
t , r
∗ (t, z)) of the corresponding adjoint equation.

Moreover, suppose that

H (t,X∗t , α
∗
t , p
∗
t , q
∗
t , r
∗ (t, ·)) = sup

u∈U
H (t,X∗t , α, p

∗
t , q
∗
t , r
∗ (t, ·))

and

H (x) := max
α∈U

H (t, x, α, p∗t , q
∗
t , r
∗ (t, ·)) (4.3)

exists and is a concave function of x, for all t ∈ [0, T ] . Then α∗ is an optimal

control.

Next, we provide a concrete example as provided by [Øksendal and Sulem,

2006] to see how to implement the above theorem.

Example : The stochastic linear regulator problem

Assuming that the state process Xt = X
(α)
t is given by

dXt = αtdt+ σdWt +

∫
R

zÑ (dt, dz) , X0 = x,
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and T > 0 is a constant, we aim to solve a stochastic control problem that

minimizes the objective function

J (x) = Ex
[∫ T

0

(
X2
t + θα2

t

)
dt+ λX2

T

]
.

Our goal is to find an admissible α∗ ∈ A such that

J (α∗) = inf
α∈A

J (α) .

We can solve this problem by using the stochastic maximum principle. Define the

Hamiltonian

H (t, x, α, p, q, r) = x2 + θα2 + αp+ σq +

∫
R

zr
(
t−, z

)
ν (dz)

Then the corresponding adjoint equation is given by

pt = −2Xtdt+ qtdWt +

∫
R

r
(
t−, z

)
Ñ (dt, dz) ; t < T

pT = 2λXT .

By the stochastic maximum principle, we minimize H with respect to α to

obtain that H (t, x, α, p, q, r) is minimal for

αt = α̂t = − 1

2θ
pt.

To find a solution of the adjoint equation, we consider an ansatz

pt = ξtXt,

where ξt : R→ R is a deterministic function such that ξT = 2λ.
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Note that αt = − ξtXt
2θ

and

dXt = −ξtXt

2θ
dt+ σdWt +

∫
R

zÑ (dt, dz) ; X0 = x.

Moreover, differentiating the ansatz, we obtain

dpt = ξtdXt + ξ́tXtdt

= Xt

[
− ξ

2
t

2θ
+ ξ́t

]
dt+ ξtσdWt + ξt

∫
R

zÑ (dt, dz) .

Hence, ξt is the solution to

ξ́t =
ξ2
t

2θ
− 2; t < T

ξT = 2λ.

The solution is then given by

ξt = 2
√
θ

1 + βe
2t√
θ

1− βe
2T√
θ

,

where β = λ−
√
θ

λ+
√
θ
e
− 2T√

θ . By using the stochastic maximum principle, we can conclude

that

α∗t = −ξtXt

2θ

is the optimal control, pt = ξtXt and qt = σξt, r (t−, z) = ξtz.

4.2 Stochastic differential games with jumps

The noncooperative games analysis without jumps has been investigated in

[Carmona et al., 2014]. Within our proposed interbank lending system, individ-

ual banks can control their rates of borrowing from and lending to the central
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bank. In addition, individual banks are allowed to have jumps as we mentioned

in Chapter 3. The lending/borrowing interaction is determined by the amount in

their reserves. If the reserve of a bank is below the average reserve of all banks,

it will borrow money from the central bank. Conversely, if the reserve of a bank

is above the average reserve, it will be lending money to the central bank. Each

transaction comes with certain cost and fees. To minimize the cost, banks will

seek the optimal strategies considering the distance between the average reserve

and their own reserves. Here we want to see how this game feature with jumps

may affect the systemic risk.

In this chapter, we look at N player games, where N is finite as studied

in [Carmona et al., 2014]. Considering N controls for N players, each optimal

strategy depends on all the other optimal strategies. We are looking for the

equilibria in this game where the state processes are allowed to have jumps. We

first construct closed-loop (feedback) equilibria using an FBSDE approach and

then follow it up with an HJB approach.

Recall in Chapter 3 that the log monetary reserve X i
t satisfies the dynamics

dX i
t =

[
a
(
X̄t −X i

t

)
+ αit

]
dt+ σidW i

t +

∫
R

γi
(
t−, z

)
N i (dt, dz) , (4.4)

where W i
t , i = 1, ..., N are independent Brownian motions, a ≥ 0 and σi > 0. Here,∫

R
γi (t, z)N i (dt, dz) is an independent jump process for i = 1, ..., N , where R is

the set such that the integral converges with Poisson random measure N i (dt, dz)

and of jump size γi (t, z) .
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Control problem

As stated in [Carmona et al., 2013], bank i ∈ {1, ..., N} controls its rate of

lending and borrowing (to a central bank) at time t by choosing the control αit in

order to minimize

J i
(
αi, ..., αN

)
= E

{∫ T

0

fi
(
Xt, α

i
t

)
dt+ gi

(
X i
T

)}
(4.5)

with

fi
(
x, αi

)
=

1

2

(
αi
)2 − qαi

(
x̄− xi

)
+
ε

2

(
x̄− xi

)2
and (4.6)

gi (x) =
c

2

(
x̄− xi

)2
, (4.7)

where the running cost function fi (x, α) is convex in (x, α) under the assumption

q2 ≤ ε. Notice that the running quadratic cost 1
2

(αi)
2

has been normalized and

that the effect of the parameter q > 0 is to control the incentive to borrowing or

lending: bank i will want to borrow (αit > 0) if X i
t is smaller than the empirical

mean X̄t and lend (αit < 0) if X i
t is larger than X̄t. Equivalently, after dividing

by q > 0, this parameter can be thought as a control by the regulator of the cost

of borrowing or lending (with q large meaning low fees). The quadratic terms

in (x̄− xi)2
in the running cost (ε > 0) and in the terminal cost (c > 0) penalize

departure from the average.

Recall the state processes Xt in the stochastic maximum principle; we need the

jump part of the state process to be a martingale in order to apply the principle

to solve the control problem. As a result, we assume that
∫
R
γi (t, z) ρi (dz) <∞,
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and then rewrite (4.4) as

dX i
t =

[
a
(
X̄t −X i

t

)
+ αit +

∫
R

γi (t, z) ρi (dz)

]
dt+ dLit

=
[
a
(
X̄t −X i

t

)
+ αit + υit

]
dt+ dLit, (4.8)

where now dLit = σidW i
t +

∫
R
γi (t−, z) Ñ i (dt, dz) , i = 1, ..., N are independent

martingales with compensated Poisson random measures Ñ i (dt, dz) = N i (dt, dz)−

ρi (dz) dt and υit =
∫
R
γi (t, z) ρi (dz) . Processes (4.8) are now the state processes

for solving control problem (4.5).

4.2.1 Closed-loop equilibria : FBSDE approach

With the state processes (4.8) and the objective function J i, we solve for an

exact closed-loop Nash equilibrium when banks at time t use Markovian strategies

and have the complete information of states of all other banks. When all other

banks k 6= i have chosen their strategies αk (t, x) , bank i has to solve a Markovian

control problem to search for its best strategy among these choices.

Using the Pontryagin approach, the Hamiltonian for bank i is given by

H i
(
x, yi,1, ..., yi,N , α1 (t, x) , ..., αit, ..., α

N (t, x)
)

=
N∑
k 6=i

[
a
(
x̄− xk

)
+ αk (t, x) + υkt

]
yi,k +

[
a
(
x̄− xi

)
+ αi + υit

]
yi,i

+
1

2

(
αi
)2 − qαi

(
x̄− xi

)
+
ε

2

(
x̄− xi

)2
.

The state processes X i
t are given by (4.8) with initial condition X i

0 = xi. Based

on the Pontryagin principle, the adjoint processes Y i
t =

(
Y i,j
t : j = 1, ..., N

)
, Zi

t =
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(
Zi,j,k
t : j = 1, ..., N, k = 1, ..., N

)
and

(
ri,j,k (t−, z) : j = 1, ..., N, k = 1, ..., N

)
for

i = 1, ..., N are defined as the solutions to the BSDEs

dY i,j
t = −∂xjH i

(
Xt, Y

i
t , αt

)
dt+

N∑
k=1

Zi,j,k
t dW k

t +
N∑
k=1

∫
R

ri,j,k
(
t−, z

)
Ñk (dt, dz)

(4.9)

with terminal conditions Y i,j
T = ∂xjgi (XT ) .

Without any information about strategy αi, i = 1, ..., N, the partial derivative

with respect to xj of the Hamiltonian H i is given by

∂xjH
i = a

N∑
k=1

(
1

N
− δk,j

)
yi,k +

∑
k 6=i

(
∂xjα

k (t, x)
)
yi,k (4.10)

−qαi
(

1

N
− δi,j

)
+ ε
(
x̄− xi

)( 1

N
− δi,j

)
.

The stochastic maximum principle (4.3) suggests that one minimizes H i with

respect to αi yields choices

α̂i = −yi,i + q
(
x̄− xi

)
, i = 1, ..., N. (4.11)

We assume that all banks are making that choice so as to prove that this choice

is a Nash equilibrium. Our goal is to find a solution to (4.9) and identify each

bank’s own adjoint equation so that bank i obtains its best response. However,

the solution is difficult to find in general but can be obtained in the linear case.

We make the ansatz

Y i,j
t =

(
1

N
− δi,j

)[
ηt
(
X̄t −X i

t

)
+ ϕit

]
, (4.12)

where ηt and ϕit are deterministic functions satisfying the terminal conditions

ηT = c and ϕiT = 0.
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With ansatz (4.12) , we have the choices of control (4.11)

αk =

[
q + ηt

(
1− 1

N

)] (
x̄− xk

)
+

(
1− 1

N

)
ϕkt ,

∂xjα
k =

[
q + ηt

(
1− 1

N

)](
1

N
− δk,j

)
.

(4.13)

Plugging these choices into (4.10) , the derivation of ∂xjH
i is then given by

∂xjH
i = a

N∑
k=1

(
1

N
− δk,j

)(
1

N
− δi,k

)[
ηt
(
x̄− xi

)
+ ϕit

]
+
∑
k 6=i

[
q + ηt

(
1− 1

N

)](
1

N
− δk,j

)(
1

N
− δi,k

)[
ηt
(
x̄− xi

)
+ ϕit

]
−q
(

1

N
− δi,j

){[
q + ηt

(
1− 1

N

)] (
x̄− xi

)
+

(
1− 1

N

)
ϕit

}
+ε
(
x̄− xi

)( 1

N
− δi,j

)
= a

[
ηt
(
x̄− xi

)
+ ϕit

] N∑
k=1

(
1

N
− δk,j

)(
1

N
− δi,k

)
+

[
q + ηt

(
1− 1

N

)] [
ηt
(
x̄− xi

)
+ ϕit

] 1

N

∑
k 6=i

(
1

N
− δk,j

)
+

(
1

N
− δi,j

)(
x̄− xi

) [
ε− q2 − qηt

(
1− 1

N

)]
−
(

1

N
− δi,j

)(
1− 1

N

)
qϕit

= −
(

1

N
− δi,j

)(
x̄− xi

) [
(a+ q) ηt +

1

N

(
1− 1

N

)
η2
t − ε+ q2

]
−
(

1

N
− δi,j

)[
(a+ q)ϕit +

1

N

(
1− 1

N

)
ηtϕ

i
t

]
,

where we used the fact that
∑N

k=1

(
1
N
− δk,j

) (
1
N
− δi,k

)
= −

(
1
N
− δi,j

)
and∑

k 6=i
(

1
N
− δk,j

)
= −

(
1
N
− δi,j

)
.
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We now plug ∂xjH
i into BSDE (4.9) and so the backward equation is given by

dY i,j
t = −∂xjH idt+

N∑
k=1

Zi,j,k
t dW k

t +
N∑
k=1

∫
R

ri,j,k
(
t−, z

)
Ñk (dt, dz)

=

(
1

N
− δi,j

)(
X̄t −X i

t

) [
(a+ q) ηt +

1

N

(
1− 1

N

)
η2
t − ε+ q2

]
dt

+

(
1

N
− δi,j

)[
(a+ q)ϕit +

1

N

(
1− 1

N

)
ηtϕ

i
t

]
dt

+
N∑
k=1

Zi,j,k
t dW k

t +
N∑
k=1

∫
R

ri,j,k
(
t−, z

)
Ñk (dt, dz) ,

(4.14)

with the terminal conditions Y i,j
T =

(
1
N
− δi,j

) [
c
(
X̄T −X i

T

)]
.

With choice controls (4.13) , the forward dynamics are given by

dX i
t = ∂yi,iH

i
(
Xt, Y

i
t , αt

)
dt+ dLit

=

{[
a+ q +

(
1− 1

N

)
ηt

] (
X̄t −X i

t

)
+

(
1− 1

N

)
ϕit + υit

}
dt

+ dL̃it,

(4.15)

with initial conditions X i
0 = xi for i = 1, ..., N . In addition, the dynamics of the

ensemble average X̄t are given by

dX̄t =

[(
1− 1

N

)
ϕ̄t + ῡt

]
dt+

1

N

N∑
k=1

dL̃kt (4.16)

,where ϕ̄t = 1
N

∑N
k=1 ϕ

i
t and ῡt = 1

N

∑N
k=1 υ

k
t .

On the other hand, we differentiate the ansatz to obtain

dY i,j
t =

(
1

N
− δi,j

)[
η̇t
(
X̄t −X i

t

)
+ ϕ̇it

]
dt+

(
1

N
− δi,j

)
ηtd
(
X̄t −X i

t

)
,
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where η̇t and ϕ̇it denote the time-derivative of ηt and ϕit, respectively. Using

equations (4.15) and (4.16), we further have

dY i,j
t =

(
1

N
− δi,j

)(
X̄t −X i

t

) [
η̇t − ηt

(
a+ q +

(
1− 1

N

)
ηt

)]
dt

+

(
1

N
− δi,j

)[
ϕ̇it + ηt

(
1− 1

N

)(
ϕ̄t − ϕit

)
+ ηt

(
ῡt − υit

)]
dt

+ ηt

(
1

N
− δi,j

)(
1

N

N∑
k=1

dL̃kt − dL̃it

)

=

(
1

N
− δi,j

)(
X̄t −X i

t

) [
η̇t − ηt

(
a+ q +

(
1− 1

N

)
ηt

)]
dt

+

(
1

N
− δi,j

)[
ϕ̇it + ηt

(
1− 1

N

)(
ϕ̄t − ϕit

)
+ ηt

(
ῡt − υit

)]
dt

+ ηt

(
1

N
− δi,j

) 1
N

∑N
k=1

(
σkdW k

t +
∫
R
γk (t−, z) Ñk (dt, dz)

)
−σidW i

t −
∫
R
γi (t−, z) Ñ i (dt, dz)


(4.17)

Comparing term by term between the two decompositions (4.14) and (4.17) , we

obtain

Zi,j,k
t = ηt

(
1

N
− δi,j

)(
1

N
− δi,k

)
σk,

ri,j,k (t, z) = ηt

(
1

N
− δi,j

)(
1

N
− δi,k

)
γk (t, z) , for k = 1, ..., N.

From the drift term:

η̇t − ηt
(
a+ q +

(
1− 1

N

)
ηt

)
= (a+ q) ηt +

1

N

(
1− 1

N

)
η2
t − ε+ q2,

ϕ̇it + ηt

(
1− 1

N

)(
ϕ̄t − ϕit

)
+ ηt

(
ῡt − υit

)
= (a+ q)ϕit +

1

N

(
1− 1

N

)
ηtϕ

i
t.

Therefore, ηt must satisfy the scalar Riccati equation

η̇t = 2 (a+ q) ηt +

(
1− 1

N2

)
η2
t −

(
ε− q2

)
(4.18)
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with the terminal condition ηT = c, and ϕit must satisfy the equation

ϕ̇it = (a+ q)ϕit − ηt
(

1− 1

N

)[
ϕ̄t −

(
1 +

1

N

)
ϕit

]
− ηt

(
ῡt − υit

)
, i = 1, ..., N,

(4.19)

with the terminal condition ϕiT = 0.

By taking the average in (4.19), ϕ̄t will satisfy the equation

·
ϕ̄t =

[
a+ q +

1

N

(
1− 1

N

)
ηt

]
ϕ̄t (4.20)

with terminal condition ϕ̄T = 0. Therefore, the solution should be ϕ̄t = 0.

As a result, (4.19) becomes

ϕ̇it = (a+ q)ϕit +

(
1− 1

N

)
ηtϕ

i
t − ηt

(
ῡt − υit

)
=

[
a+ q +

(
1− 1

N

)
ηt

]
ϕit − ηt

(
ῡt − υit

)
= κtϕ

i
t − λit,

(4.21)

with terminal condition ϕiT = 0, where κt = a + q +
(
1− 1

N

)
ηt and λit =

ηt (ῡt − υit) , i = 1, ..., N.

According to the exact solutions in [Polyanin and Zaitsev, 2002], the solutions

of (4.21) for i = 1, ..., N are then given by

ϕit = e−
∫ T
t κsds ·

∫ T

t

(
e
∫ T
s kuduλis

)
ds.

With the optimal control α̂i, the forward dynamics become

dX i
t =

{[
a+ q +

(
1− 1

N

)
ηt

] (
X̄t −X i

t

)
+

(
1− 1

N

)
ϕit + υit

}
dt+ dL̃it

=

{
κt
(
X̄t −X i

t

)
+ e−

∫ T
t κsds ·

∫ T

t

(
e
∫ T
s kudu

(
1− 1

N

)
λis

)
ds

}
dt+ dLit
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with initial conditions X i
0 = xi.

Observe the drift term in the forward dynamics; each bank finds its best

response with additional liquidity κt
(
X̄t −X i

t

)
as well as a growth contributed by

compensators υit. Next, we provide a concrete example for the impact of jumps.

The first example is when the noise terms are driven by a jump-diffusion pro-

cess with common intensity rate λ while the second one is with different intensity

rate λi.

Example 4.1. Let Lit = σW i
t+
∑N i

t
j=1 ξj, ξj has distribution f (y; θ) = θ

2
e−|y−µ|θ, θ >

0 and N i
t is a Poisson process with rate λ. Then, for i=1,...,N, υit =

∫
R
γi (t, z) ρi (dz) =

λtE (ξj) = λtµ. Furthermore, equation (4.21) becomes

ϕ̇it = κtϕ
i
t − λit = κtϕ

i
t

with terminal condition ϕiT = 0. Hence,

ϕit = 0, i = 1, ..., N.

As a result, the forward dynamics of X i
t ’s become

dX i
t =

[
κt
(
X̄t −X i

t

)
+ λtµ

]
dt+ dL̃it

= κt
(
X̄t −X i

t

)
dt+ dLit, (4.22)

where κt = a+ q +
(
1− 1

N

)
ηt.

Example 4.2. (Compound Poisson with different jump rates) Let Lit = σW i
t +∑N i

t
j=1 ξj, ξj has distribution f (y; θ) = θ

2
e−|y−µ|θ, θ > 0 and N i

t is a Poisson process
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with rate λi. Then, for i=1,...,N, υit =
∫
R
γi (t, z) ρi (dz) = λitE (ξj) = λitµ. So,

equation (4.21) becomes

ϕ̇it = κtϕ
i
t − λit

= κtϕ
i
t − ηt

(
ῡt − υit

)
= κtϕ

i
t − ηttµλ̃,

where λ̃ =
(
λ̄− λi

)
, with terminal condition ϕiT = 0. The solutions are then given

by

ϕit = e−
∫ T
t κsds ·

∫ T

t

(
e
∫ T
s kuduηsλ̃µs

)
ds.

As a result, the forward dynamics with the best response αi become

dX i
t =

[
κt
(
X̄t −X i

t

)
+

(
1− 1

N

)
ϕit + υit

]
dt+ dL̃it

=

[
κt
(
X̄t −X i

t

)
+ e−

∫ T
t κsds ·

∫ T

t

(
e
∫ T
s kudu

(
1− 1

N

)
ηsλ̃µs

)
ds

]
dt

+ dLit.

(4.23)

In the first example, although jumps are present in the interbank lending

system, the impact of jumps disappear after we obtain the Nash equilibria as

shown in (4.22) since each bank now has a common intensity rate λ. In fact,

the effect contributed by compensators is absorbed into the Nash equilibrium.

However, if the intensity rate λi is distinct for all i, after obtaining the Nash

equilibria we have an additional drift term (1 − 1
N

)ϕit from the compensator υit.

As we can see from the drift term in (4.23), (1− 1
N

)ϕit is a function of κt and the
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intensity rate λi. In the next section, we provide an HJB approach in searching

for the feedback Nash equilibria with jumps.

4.2.2 Closed-loop equilibria : HJB approach

In order to search for a closed-loop equilibrium, we start with some settings

as stated in the section 3 in [Matatamvura and Øksendal, 2008]. We assume that

the set of all admissible controls A contains the set of controls such that (4.4) has

a unique strong solution and such that

Et,x
{∫ τS

0

∣∣fi (Xt, α
i
t

)∣∣ dt+
∣∣gi (X i

T

)∣∣} <∞ (4.24)

for all x ∈ S, where S ⊂ R is a given open set (called the solvency region),

τS = inf {t > 0;Xt 6= S} .

Recall that the value function of bank i in our problem is given by

V i (t, x) = inf
α
Et,x

{∫ T

t

fi
(
Xt, α

i
t

)
dt+ gi

(
X i
T

)}
(4.25)

with the cost function fi and gi given in (4.6) and (4.7), respectively, where the

log-monetary reserve X i
t satisfies the dynamics

dX i
t =

[
a
(
X̄t −X i

t

)
+ αit + υit

]
dt+ dLit, i = 1, ..., N,

with dLit = σidW i
t +

∫
R
γi (t−, z) Ñ i (dt, dz) , i = 1, ..., N being independent mar-

tingales with compensated Poisson random measures Ñ i (dt, dz) = N i (dt, dz) −

ρi (dz) dt and υit =
∫
R
γi (t, z) ρi (dz) .
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Analogous to the classical HJB for optimal control of jump diffusions by using

the dynamic programming principle (see theorem 3.1 in [Øksendal and Sulem,

2007]), one can formulate a verification theorem (see theorem 5.2 in [Matatamvura

and Øksendal, 2008]) in searching for a closed-loop equilibrium in a differential

game. The corresponding HJB equations read as

0 = inf
αi

{
A(α1(t,x),...αit,...,α

N (t,x))V (t, x) + fi
(
x, αit

)}
, (4.26)

where A(α1(t,x),...αit,...,α
N (t,x)) is defined as

A(α1(t,x),...αit,...,α
N (t,x)) (V i

)
=

N∑
j 6=i

[
a
(
x̄− xj

)
+ αj (t, x) + υjt

]
∂xjV

i

+
[
a
(
x̄− xi

)
+ αi + υit

]
∂xjV

i

+
σ2

2

N∑
j=1

N∑
k=1

δj,k∂xjxkV
i

+
N∑
j=1

∫
R


V i (t, x+ γj (t, z))− V i (t, x)

−∂xjV i (t, x) γj (t, z)

 ρj (dz)

and

fi
(
x, αit

)
=

(αi)
2

2
− qαi

(
x̄− xi

)
+
ε

2

(
x̄− xi

)2

with the terminal conditions V i (T, x) = gi (X
i
T ) = c

2
(x̄− xi)2

.

Assume that all players chose αj (t, x) for j 6= i, minimizing the above equation

with respect to αi to obtain the control for bank i

α̂i = q
(
x̄− xi

)
− ∂xiV i,

where V i is unknown. Put it back to the (4.26) , the HJB equations become

0 =
{
A(α̂1

t ,...α̂
i
t,...,α̂

N
t )V (t, x) + fi

(
x, αit

)}
(4.27)
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and specifically

0 = ∂tV
i +

N∑
j=1

[
(a+ q)

(
x̄− xj

)
− ∂xjV j + υjt

]
∂xjV

i

+
σ2

2

N∑
j=1

N∑
k=1

δj,k∂xjxkV
i

+
1

2

(
ε− q2

) (
x̄− xi

)2
+

1

2

(
∂xiV

i
)2

+
N∑
j=1

∫
R


V i (t, x+ γj (t, z))− V i (t, x)

−∂xjV i (t, x) γj (t, z)

 ρj (dz) . (4.28)

We need to find the function V that satisfies (4.28) and then make the ansatz

V i (t, x) =
η̃t
2

(
x̄− xi

)2
+ ϕ̃it

(
x̄− xi

)
+ µt, (4.29)

where η̃t, ϕ̃
i
t and µt are deterministic functions satisfying η̃T = c, ϕ̃iT = 0 and

µT = 0 in order to match the terminal conditions for V i.

The optimal strategies are then given by

α̂i = q
(
x̄− xi

)
− ∂xiV i

=

(
q +

(
1− 1

N

)
η̃t

)(
X̄t −X i

t

)
+

(
1− 1

N

)
ϕ̃it, (4.30)

and the controlled dynamics become

dX i
t =

(
a+ q +

(
1− 1

N

)
η̃t

)(
X̄t −X i

t

)
dt+

[(
1− 1

N

)
ϕ̃it + υit

]
dt+ dLit.
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Next, we compute some useful terms

∂xjV
i = η̃t

(
1

N
− δi,j

)(
x̄− xi

)
+ ϕ̃it

(
1

N
− δi,j

)
,

∂xjxkV
i = η̃t

(
1

N
− δi,j

)(
1

N
− δi,k

)
,

V i
(
t, x+ γj (t, z)

)
− V i (t, x) =

η̃t
2

 2 (x̄− xi)
(

1
N
− 1
)
γj (t, z)

+
(

1
N
− 1
)2
γj (t, z)2


+ϕ̃it

(
1

N
− 1

)
γj (t, z) and

∂xjV
iγj (t, z) =

 η̃t
(

1
N
− δi,j

)
(x̄− xi)

+ϕ̃it
(

1
N
− δi,j

)
 γj (t, z) .

Note that the term ∂xjV
i corresponds to the adjoint variables yi,j introduced

in the FBSDE approach, and the jump term V i (t, x+ γj (t, z)) − V i (t, x) −

∂xjV
iγj (t, z) correspond to the variables ri,j,k (t, z) for k = 1, ..., N. Plugging

these all into (4.28) , and matching the terms in (x̄− xi), as well as (x̄− xi)2
and

the state-independent terms on both sides, we obtain

·
η̃t = 2 (a+ q) η̃t +

(
1− 1

N2

)
η̃2
t −

(
ε− q2

)
,

·
ϕ̃it = (a+ q) ϕ̃it − η̃t

(
1− 1

N

)[
ϕ̃t −

(
1 +

1

N

)
ϕ̃it

]
− η̃t

(
ῡt − υit

)
, i = 1, ..., N,

µ̇t = −1

2
σ2

(
1− 1

N

)
η̃t,

with terminal conditions η̃T = c, ϕ̃iT = 0 and µT = 0. Observe that η̃t and

ϕ̃it satisfy the same equations given by (4.18) and (4.19) , and we conclude that

η̃t = ηt and ϕ̃it = ϕit for all t < T. As a result, we verify that the closed-loop

equilibrium obtained through the FBSDE approach is indeed a feedback Nash
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equilibrium. The value functions V i using this exact Nash equilibrium are then

given by (4.29).

In fact, the theorem 5.2 in [Matatamvura and Øksendal, 2008] for a two players

game establishes a relationship between the HJB equations and the Nash equilib-

rium which is a fundamental theorem for our differential game with N players. We

give the extended version of theorem 5.2 in [Matatamvura and Øksendal, 2008]

in the following and show that the value functions V i and controls α̂i will satisfy

the assumptions.

Theorem 4.2. Suppose there exists functions V i ∈ C2, i = 1, ..., N, and a Markov

control
(
α̂1, ..., α̂N

)
∈ A such that

(1) A(α1(t,x),...α̂it,...,α
N (t,x))V i (t, x) + fi (x, α

i
t) ≥ 0, for all i = 1, ..., N.

(2) A(α1(t,x),...,αN (t,x)) (τS) ∈ ∂S a.s. on {τS <∞} and

limt→τ−S
V i

(
t,X

(α1(t,x),...,αN (t,x))
t

)
= gi

(
X

(α1(t,x),...,αN (t,x))
τS

)
χ{τS<∞} a.s.

for all i = 1, ..., N, where τS = inf {t > 0;Xt 6= S} .

(3) The families

{
V i

(
t,X

(α1(t,x),...,αN (t,x))
τ

)}
τ∈T

are uniformly integrable for

all i = 1, ..., N, where T is the set of all stopping times τ ≤ τS.

Then
(
α̂1, ..., α̂N

)
is a Nash equilibrium.

Proof. The proof of this theorem resembles that of theorem 5.2 in [Matatamvura

and Øksendal, 2008], except that the partial differential operator is replaced by

A(α1(t,x),...αit,...,α
N (t,x)).
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Indeed, we can check that the (1)-(3) will be satisfied and therefore
(
α̂1, ..., α̂N

)
is a Nash equilibrium. First of all, recall that our control problem (4.25) is a finite

horizon one and τS = T. As a result, (2) is obvious since

lim
t→T

V i

(
t,X

(α1(t,x),...,αN (t,x))
t

)
= gi

(
X

(α1(t,x),...,αN (t,x))
T

)

according to the terminal condition. Moreover, (3) follows by the assumption

(4.24) since the families

{
V i

(
X

(α1(t,x),...,αN (t,x))
τ

)}
τ∈T

=

{
V i

(
X

(α1(t,x),...,αN (t,x))
s

)}
s∈[t,T ]

is bounded by (4.24) and is therefore uniformly integrable.

Secondly, (1) is satisfied since from (4.27) and the optimal control α̂it is a

minimizer of the HJB equation (4.26) we have

0 =
{
A(α̂1

t ,...α̂
i
t,...,α̂

N
t )V (t, x) + fi

(
x, α̂it

)}
≤

{
A(α1(t,x),...α̂it,...,α

N (t,x))V (t, x) + fi
(
x, α̂it

)}
for all αit ∈ A, i = 1, ..., N. As a result, we conclude that

(
α̂1, ..., α̂N

)
is a Nash

equilibrium from the above theorem.

4.3 Numerical results and conclusion

In this section, we provide simulation results of example 4.2 to illustrate the

system with or without the game feature. In section 4.2, with the feedback equi-
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libria, we have the controlled dynamic that

dX i
t =

[(
a+ q +

(
1− 1

N

)
ηt

)(
X̄t −X i

t

)
+

(
1− 1

N

)
ϕit + υit

]
dt

+dL̃it

=
[
At
(
X̄t −X i

t

)
+Bi

t

]
dt+ dLit, (4.31)

where At is the effective rate as stated in [Carmona et al., 2014], and Bi
t is the

growth contributed by compensators. Here, L̃it are the compensated indepen-

dent martingales, and υit is a deterministic function which is the mean of the

jumps. Recall that in example 4.2 where Lit = σW i
t +

∑N i
t

j=1 ξj, ξj has distribu-

tion f (y; θ) = θ
2
e−|y−µ|θ, θ > 0 and N i

t is a Poisson process with rate λi. Also,

υit =
∫
R
γi (t, z) ρi (dz) = λitE (ξj) = λitµ.

Assume that υit = 1 which suggests the jump of one particular bank i is positive

in average. In order to obtain the Nash equilibrium, bank i has to lend more to

other banks via the central bank. This situation can be seen in Figure 4.1 where

the growth Bt is negative at about −0.4. Figure 4.2 indicates that this growth

remains a constant as time increases. The parameter used in both Figure 4.1 and

Figure 4.2 are N = 10, a = 0, q = 1, ε = 10, c = 0, λ = θ = 1 and σ = 1.
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Figure 4.1: Plot of the effective rate At (top red line) and the growth Bi
t (bottom

blue line) for the closed-loop equilibrium in a fixed time t = 1. υit = 1 (dash line)

suggests the jump of one particular bank i is positive in average.
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Figure 4.2: Plot of the effective rate At (top red line) and the growth Bi
t (bottom

blue line) in a fixed time t = 10. Both At and Bi
t remain a constant most of the

time as t increases.

In both Figure 4.3 and Figure 4.4, the upper plots provide the trajectories

without the game feature while the bottom ones give the trajectory with the

game feature. In the upper plot in Figure 4.3, without a game feature, each bank

acts as an independent jump-diffusion process. In the bottom plot in Figure 4.3,

after obtaining an equilibrium, we see that the reserve of a particular bank will

be forced to reach the ensemble average like the lowest trajectory (light blue line)
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shown in Figure 4.3. In other words, the lowest trajectory in Figure 4.3 (identified

as bank j) has a negative jump at time 0.05, when the level of its reserve is much

lower than others, which means it has to borrow more from the central bank in

order to obtain an equilibrium. As a result, the level of bank j′s reserve rises and

gets closer to others in the long run. Figure 4.4 shows that this situation becomes

more obvious as time increases since the effective rate and the growth remain a

constant as shown in Figure 4.2.
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Figure 4.3: Plots of trajectories for the dynamics (4.4) without controls (upper

one) and for the controlled dynamics (4.31) (bottom one) in a fixed time t =

1. Note that the dynamics in both plots have the same jumps and Brownian

increments. The bottom plot shows that, after obtaining an equilibrium, the

reserve of a particular bank will be forced to reach the ensemble average like

the lowest trajectory (light blue line). The parameters used: N = 10, σ = 1,

µ = 1, θ = 1 and λ = 1.
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Figure 4.4: Plots of trajectories for the dynamics (4.4) without controls (upper

one) and for the controlled dynamics (4.31) (bottom one) in a fixed time t = 10.

Compare to Figure 4.3, the level of each bank reserve rises or decreases rapidly

and gets closer to others in the long run.

We also want to know the effect of the differential game on systemic risk.

Considering the systemic event
{

min0≤t≤T X̄t ≤ η
}
, we take the average in (4.31)
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to obtain

dX̄t =

(
1− 1

N

)
ϕ̄tdt+

1

N

N∑
i=1

dLit

=
1

N

N∑
i=1

dLit,

since ϕ̄t = 0 is the solution to (4.20). The ensemble average is again the average

of the noise terms as studied in Chapter 3. The result indicates that the systemic

risk remains even in a differential game with jumps. Hence, allowing a model with

jumps will not affect the systemic risk since the average growth contributed by

the jumps is zero.
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Chapter 5

Systemic risk with a central bank

In this chapter, for the purpose of simplicity, we only consider the diffusion

case. Recall that the dynamics of the log-monetary reserve of N banks in Chapter

3 are given by

dX i
t =

β

N

N∑
j=1

(
Xj
t −X i

t

)
dt+ σ1dW

i
t , i = 1, .., N. (5.1)

Instead, we consider the log-monetary reserves of N banks X i
t , which we call

peripheral banks, satisfy dynamics

dX i
t = β

(
X0
t −X i

t

)
dt+ σdW i

t , i = 1, .., N, (5.2)

while the central bank X0
t satisfies the following dynamics:

dX0
t =

α

N

N∑
j=1

(
Xj
t −X0

t

)
dt+ σ0dW

0
t (5.3)

= α
(
X̄t −X0

t

)
dt+ σ0dW

0
t ,
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where σ1 and σ0 are the volatilities of the noise terms for each peripheral bank

and for the central bank, respectively. Let W i
t , i = 0, ..., N be independent 1-

dimensional Brownian motions. Also, we define X̄t =
∑N

j=1X
j
t as the ensemble

average of reserve of all peripheral banks. Here, α, β > 0 are the rates of the

interactions (borrowing or lending money) between bank i and the central bank.

Note that each peripheral bank is now interacting with the central bank only.

Within the new system, all banks have interactions with each other indirectly

through the central bank. The central bank plays an important role as it acts

as an intermediary to bring all banks into communication. In the following, we

analyze different values for the rates α and β along with numerical results to

indicate how the parameters α and β affect the systemic risk probability. We use

the settings that σ1 = σ0 = 1, T = 1 and a default level η = −0.7.

Case 1: When α = 0 and β is large, for instance β = 100, the entire dynamics

can be read as

dX i
t = β

(
X0
t −X i

t

)
dt+ σ1dW

i
t , i = 1, ..., N,

dX0
t = σ0dW

0
t , (5.4)

which indicate that each peripheral bank is attracted to the central bank X0
t where

X0
t is driven by a Brownian motion with volatility σ0.

In order to obtain the systemic risk probability, we again investigate the sys-

temic risk event
{

min0≤t≤T X̄t ≤ η
}
. By taking the average in (5.2) , we have the
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dynamic of the ensemble average

dX̄t = β
(
X0
t − X̄t

)
dt+

σ1

N

N∑
j=1

dW j
t . (5.5)

As long as the rate of interaction β is large enough, flocking will emerge in this

system. The ensemble average of all peripheral banks will be in default if the

reserve of the central bank arrives at default level η < 0. In other words, the

dynamics of the central bank is a representative of all other peripheral banks and,

hence, can be used to compute the systemic risk. Therefore, we have

P

(
min

0≤t≤T
X̄t ≤ η

)
≈ P

(
min

0≤t≤T
X0
t ≤ η

)
(5.6)

= P

(
min

0≤t≤T
σ0W

0
t ≤ η

)
= 2Φ

(
η

σ0T

)
(5.7)

≥ 2Φ

(
η
√
N

σT

)
,

where the last term is the systemic risk probability given in the interbank lending

system (5.1) without the dynamic of a central bank (5.3). In Figure 5.1, we

observe that the systemic risk with a central bank, which depends on the number

of banks N , is indeed higher than the one without a central bank which can be

obtained by the formula (5.6).
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Figure 5.1: The upper plot shows trajectories for dynamics with a central bank

and all peripheral banks in case 1. The bottom plot shows the corresponding loss

distribution (red line) as well as the loss distribution (dash line) for the dynamics

(5.3) without a central bank. The parameters used: α = 0, β = 100, N = 10,

t = 1, η = −0.7 and σ1 = σ0 = 1.

Case 2: When β = 0, the entire dynamics can be read as

dX i
t = σdW i

t , i = 1, .., N,

dX0
t = α

(
X̄t −X0

t

)
dt+ σ0dW

0
t

= α

(
σ

N

N∑
i=1

W i
t −X0

t

)
dt+ σ0dW

0
t ,
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which indicate that no interaction drift terms in the system of peripheral banks.

There is only independent Brownian motions while the central bank is still at-

tracted to the ensemble average of reserves of peripheral banks.

Since the dynamics of peripheral banks are merely Brownian motions, we can

expect that the loss distribution will be shown as a Binomial distribution (N, p) ,

N = 10, wtih p ≈ P {min0≤t≤1X
i
t ≤ −0.7}. This Binomial distribution is shown in

both bottom plots of Figure 5.2 and Figure 5.3. Increasing the rate of interaction

α will only increase the stability of the system but will not affect the systemic

risk. In Figure 5.2, for large α, we can observe that the central bank is attracted

to the ensemble average reserve of all peripheral banks. On the other hand, the

trajectory of the central bank is independent of other peripheral banks for small

α as shown in Figure 5.3.
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Figure 5.2: The upper plot shows trajectories for dynamics with a central bank and

all peripheral banks in case 2. One can observe that the central bank (bold line)

is attracted to the ensemble average reserve of all peripheral banks for α = 100.

The bottom plot shows the corresponding loss distribution (red line) as well as

the loss distribution (dash line) for the dynamics (5.3) without a central bank.

The parameters used: N = 10, t = 1, η = −0.7 and σ1 = σ0 = 1.
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Figure 5.3: The upper plot shows trajectories for dynamics with a central bank

and all peripheral banks in case 2. The bottom plot shows the corresponding loss

distribution (red line) as well as the loss distribution (dash line) for the dynamics

(5.3) without a central bank. The parameters used are the same as Figure 5.2.

Case 3: When α and β are both large, for instance α = β = 100, the entire

system can be read as

dX i
t = β

(
X0
t −X i

t

)
dt+ σ1dW

i
t , i = 1, .., N,

dX0
t = α

(
X̄t −X0

t

)
dt+ σ0dW

0
t ,

dX̄t = β
(
X0
t − X̄t

)
dt+

σ1

N

N∑
j=1

dW j
t .

(5.8)

95



Now we have two OU processes X0
t and X̄t that are attracted to each other.

The reserve of the central bank is mean-reverting to the ensemble average of the

peripheral banks, and vice versa.

The systemic risk can be computed by the same flocking argument, that the

ensemble average of all peripheral banks will be in default if the reserve of the

central bank arrives at default level η. We rewrite (5.8) as

dX̄t = β
(
X0
t − X̄t

)
dt+

σ1

N

N∑
j=1

dW j
t

= 2β

(
X̄t +X0

t

2
− X̄t

)
dt+

σ1

N

N∑
j=1

dW j
t ,

where the drift term in the second equation indicates that X̄t is attracted to the

average between X̄t and X0
t . In addition, the dynamics of the average between X̄t

and X0
t are given by

d

(
X̄t +X0

t

2

)
=
α− β

2

(
X̄t −X0

t

)
dt+

1

2

(
σ0dW

0
t +

σ1

N

N∑
j=1

dW j
t

)
.

As a result, for α = β, we will be able to use
X̄t+X0

t

2
to approximate the systemic

risk probability due to the diffusions flocking towards the average. Therefore, we
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have

P

(
min

0≤t≤T
X̄t ≤ η

)
≈ P

(
min

0≤t≤T

X̄t +X0
t

2
≤ η

)
= P

(
min

0≤t≤T

1

2

(
σ0dW

0
t +

σ1

N

N∑
j=1

dW j
t

)
≤ η

)

= P

(
min

0≤t≤T

(√
σ2

0 +
σ2

1

N2
W̃t

)
≤ 2η

)

= P

 min
0≤t≤T

W̃t ≤
2η√

σ2
0 +

σ2
1

N2


= 2Φ

 2η√
σ2

0 +
σ2
1

N2T

 , (5.9)

where W̃t is a standard Brownian motion. In Figure 5.4, we see that the sys-

temic risk on the right tail (red line) of the bottom plot is about 18%, which is

comparatively higher than the systemic risk when there is no central bank (3%).

Contrary to the case with small rate α as shown in Figure 5.1, increasing the rate

α when the central bank is attracted more to the average reserve of the peripheral

banks will reduce the systemic risk. It suggests that with reasonable monitoring

of liquidity, the interbank lending system becomes more stable when the central

bank coordinates with peripheral banks closely.
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Figure 5.4: The upper plot shows trajectories for dynamics with a central bank

and all peripheral banks in case 3. The bottom plot shows the corresponding loss

distribution (red line) as well as the loss distribution (dash line) for the dynamics

(5.3) without a central bank. The parameter used: α = 100, β = 100, N = 10,

t = 1, η = −0.7 and σ1 = σ0 = 1.

In fact, we investigate two systemic risks: (5.7) with a small rate α and (5.9)

with a large rate α. Assume that

2Φ

(
η

σ0T

)
> 2Φ

 2η√
σ2

0 +
σ2
1

N2T

 , (5.10)
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where η < 0, σ1 is the volatility of peripheral banks and σ0 is the volatility of the

central bank. Then from (5.10) , we derive that

σ2
1

N2
< 3σ2

0. (5.11)

Clearly, our setting σ1 = σ0 = 1 and N = 10 satisfies (5.11) which indicates

that the systemic risk with a large rate α is lower than the systemic risk with a

small one. As we mentioned earlier, with reasonable monitoring of liquidity, i.e.,

in a system with a large α, the system becomes more stable and can therefore

reduce the systemic risk with appropriate assumptions about the volatilities of

both the central bank and the peripheral banks. In the next section, with the aim

to increase system stability with a central bank, we will solve an optimal control

problem related to the central bank to further reduce the systemic risk.

5.1 Stochastic optimal control with a central bank

We consider the log-monetary reserves of N banks which we call peripheral

banks that satisfy the following dynamics:

dX i
t = β

(
X0
t −X i

t

)
dt+ σ1dW

i
t , i = 1, .., N,

whereas the central bank satisfies the following dynamics:

dX0
t = α0

tdt+ σ0dW
0
t , (5.12)
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where σ1 and σ0 are the volatilities of the noise terms for each peripheral bank

and for the central bank, respectively. Let α0
t ∈ R be our control process as

well as W i
t , i = 0, ..., N , independent 1-dimensional Brownian motions. Recall

that X̄t =
∑N

j=1X
j
t is defined as the ensemble average of reserves of all peripheral

banks and the dynamic is given by (5.5). With the control variable α0
t , the central

bank aims to minimize the objective function

J0 = E


∫ T

0

(
1
2

(α0
t )

2 − q0α
0
t

(
X̄t −X0

t

)
+ ε0

2

(
X̄t −X0

t

)2
)
dt

+ c0
2

(
X̄T −X0

T

)2

 ,

where the parameters q0, ε0 and c0 are constants that satisfy the same conditions

given in Chapter 4.

We solve the control problem by using a similar FBSDE approach that we

used in section 4.2. The Hamiltonian is given by

H
(
x0, x1, ..., xN , y0, α0

)
= y0α0 +

1

2

(
α0
)2 − q0α

0
(
x̄− x0

)
+
ε0
2

(
x̄− x0

)2
.

Minimizing H with respect to α0 yields

∂H

∂α0
= y0 + α0 − q0

(
x̄− x0

)
= 0 and so

α̂0 = −y0 + q0

(
x̄− x0

)
.

The partial derivative of α̂0with respect to x0 gives

∂α0

∂x0
= −q0. (5.13)
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Thus, with (5.13) , we have

∂H

∂x0
= y0∂α

0

∂x0
+ α0∂α

0

∂x0
− q0

∂α0

∂x0

(
x̄− x0

)
+ q0α

0 − ε0
(
x̄− x0

)
=

(
x̄− x0

) [
q2

0 − ε0
]
− y0q0.

As a result, the adjoint equation is given by

dY 0
t =

[(
X̄t −X0

t

) (
−q2

0 + ε0
)

+ Y 0
t q0

]
dt+ Z0

t dW
0
t +

N∑
i=1

Zi
tdW

i
t ,

where W i
t , i = 0, 1, ..., N are independent Brownian motions. We then make the

ansatz

Y 0
t = −ηt

(
X̄t −X0

t

)
,

where ηt is a deterministic function satisfying the terminal condition ηT = c0.

Given the optimal control α̂ with the ansatz, the forward dynamics become

dX0
t = (ηt + q0)

(
X̄t −X0

t

)
dt+ σ0dW

0
t . (5.14)

The adjoint equation is then given by

dY 0
t =

(
X̄t −X0

t

) (
−q2

0 + ε0 − ηtq0

)
dt+ Z0

t dW
0
t +

N∑
i=1

Zi
tdW

i
t . (5.15)

Differentiating the ansatz results in

dY 0
t = −η̇t

(
X̄t −X0

t

)
dt− ηtd

(
X̄t −X0

t

)
= −η̇t

(
X̄t −X0

t

)
dt− ηt

 β
(
X0
t − X̄t

)
dt+ σ1

N

∑N
j=1 dW

j
t

− (ηt + q0)
(
X̄t −X0

t

)
dt− σ0dW

0
t


=
(
X̄t −X0

t

)
[−η̇t + ηtβ + ηt (ηt + q0)] dt

− ηt

[
σ1

N

N∑
j=1

dW j
t − σ0dW

0
t

]
.

(5.16)
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Identifying the drift term in (5.15) and (5.16) we obtain

η̇t = η2
t + ηt (2q0 + β) + q2

0 − ε0,

with terminal condition ηT = c0, which is a Riccati equation with an exact so-

lution. In the controlled dynamic (5.14), the effect of the central bank using its

optimal strategy corresponds to the interactions between all peripheral banks and

the central bank at the effective rate ηt + q0. According to the analysis in [Car-

mona et al, 2014], ηt will tend to a constant as time goes to infinity. With the

effective rate ηt + q0, we provide the corresponding loss distributions in Figure

5.5.
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Figure 5.5: Plot of the corresponding loss distribution (blue line) for the controlled

dynamic (5.14) as well as the loss distribution (red line) for the dynamics (5.4)

without control. The parameter used: β = 100, N = 10, t = 1, η = −0.7,

σ1 = σ0 = 1, q0 = 1, ε0 = 10 and c0 = 0.
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From the right tail of the loss distributions in Figure 5.5, it is interesting to

see that the systemic risk (red line) is higher (about 42%) without the control α0
t

in (5.4). Conversely, if the central bank can now monitor the liquidity between all

peripheral banks and itself (i.e., controls difference of the reserve flow X̄t −X0
t ),

it will reduce the systemic risk. One of the purposes of having a central bank

is to stabilize the entire banking system. However, introducing a central bank

in our system without any controls as stated in (5.4) (i.e. all peripheral banks

are attracted to a Brownian motion) will result in a higher systemic risk. In

other words, in a system where the central bank does not monitor the liquidity,

the probability that all peripheral banks will be in default simultaneously will

rise. In the next section, we further assume that each peripheral bank can now

control its rate of interaction between each other and we aim to solve a stochastic

differential game as studied in Chapter 4. However, the equilibrium for the finite

players’ game has not been solved in our case. In the next section, we will use

another approach called a mean-field game inspired by [Carmona and Zhu, 2014]

within which the authors provide an approach to mean-field games with major

and minor players.

5.2 A mean-field game approach

We consider X0
t and X i

t as the log-monetary reserve of a central bank and

peripheral banks, respectively, which satisfy the following dynamics with control
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variables α0
t and αit

dX i
t = αitdt+ σ1dW

i
t , i = 1, ..., N,

dX0
t = α0

tdt+ σ0dW
0
t .

The central bank and all peripheral banks aim to minimize the objective functions

J i(α0, α1, ..., αN) = E


∫ T

0

(
1
2

(αit)
2 − qαit (X0

t −X i
t) + ε

2
(X0

t −X i
t)

2
)
dt

+ c
2

(X0
T −X i

T )
2

 ,

J0(α0, α1, ..., αN) = E


∫ T

0

(
1
2

(α0
t )

2 − q0α
0
t

(
X̄t −X0

t

)
+ ε0

2

(
X̄t −X0

t

)2
)
dt

+ c0
2

(
X̄T −X0

T

)2

 ,

where X̄t = 1
N

∑N
i=1 X

i
t and the parameters q, q0, ε, ε0, c and c0 satisfy the same

conditions as mentioned earlier. We now use a mean-field game approach to obtain

an approximate Nash equilibrium. Consider the limit of X̄t as N →∞ :

mt = lim
N→∞

1

N

N∑
i=1

X i
t .

A key idea in mean-field games states that the control problem for finite players

can be regarded as solving the two-player control problem

inf
α1

E


∫ T

0

(
1
2

(α1
t )

2 − qα1
t (X0

t −X1
t ) + ε

2
(X0

t −X1
t )

2
)
dt

+ c
2

(X0
T −X1

T )
2

 , (5.17)

inf
α0

E


∫ T

0

(
1
2

(α0
t )

2 − q0α
0
t (mt −X0

t ) + ε0
2

(mt −X0
t )

2
)
dt

+ c0
2

(mT −X0
T )

2

 , (5.18)
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subject to the dynamics

dX0
t = α0

tdt+ σ0dW
0
t ,

dX1
t = α1

tdt+ σ1dW
1
t , (5.19)

where W 0
t and W 1

t are independent Brownian motions. Assuming that X0
0 = x0

0

and X1
0 = x1

0. We solve the above control problem sequentially by the following

procedure.

1. Fix mt = limN→∞
1
N

∑N
i=1X

i
t , where X i

t , i = 1, .., N, are defined as the

peripheral banks. In the mean-field game setting, one may consider mt as

a function of X0
t . As a result, we may assume that mt = X0

t since X̄t

might be close to X0
t in the mean-field games. Recall that the initial value

X0
0 = x0

0 = m0.

2. Since mt is given, we can solve the one player control problem (5.18) using

only the dynamic of the central bank.

3. Given α0 is known, we then solve the control problem (5.17) with dynamics

(5.19).

4. Finally, we solve the fixed point problem : find mt = E (X1
t |F0

t ) for all t with

X1
0 = x1

0 , where (F0
t )t≥0 denotes the filtration generated by the Brownian

motion W 0
t .

With mt = X0
t is known.
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We solve the control problem (5.18) . With mt = X0
t , the objective function

becomes

inf
α0

E
{∫ T

0

1

2

(
α0
t

)2
dt

}
,

and so the optimal control α0 is zero by minimizing the above objective function.

The forward dynamics are then given by

dX0
t = σ0dW

0
t .

With α0
t is known.

With α0
t = 0, the dynamics become

dX0
t = σ0dW

0
t

dX1
t = α1

tdt+ σ1dW
1
t ,

in order to minimize the cost functional

inf
α1

E


∫ T

0

(
1
2

(α1
t )

2 − qα1
t (X0

t −X1
t ) + ε

2
(X0

t −X1
t )

2
)
dt

+ c
2

(X0
T −X1

T )
2

 .

The Hamiltonian is given by

H1 = y1α1 +
1

2

(
α1
)2 − qα1

(
x0 − x1

)
+
ε

2

(
x0 − x1

)2
.

Minimizing with respect to α1, we obtain

∂H1

∂α1
= y1 + α1 − q

(
x0 − x1

)
= 0

α̂1 = −y1 + q
(
x0 − x1

)
.
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Also, we have

∂H1

∂x1
= qα1 − ε

(
x0 − x1

)
.

Plugging in the optimal control α̂1, we have

∂H1

∂x1
= q

(
−y1 + q

(
x0 − x1

))
− ε
(
x0 − x1

)
= −y1q +

(
x0 − x1

) (
q2 − ε

)
.

Therefore, the corresponding FBSDEs are given by

dX1
t =

[
q
(
X0
t −X1

t

)
− Y 1

t

]
dt+ σ1dW

1
t and

dY 1
t =

[
−
(
X0
t −X1

t

) (
q2 − ε

)
+ Y 1

t q
]
dt+ Z1

t dW
1
t + Z0

t dW
0
t .

We then make the ansatz

Y 1
t = −φt

(
X0
t −X1

t

)
,

where φt is a deterministic function with terminal condition φT = c. The FBSDEs

become

dX1
t = (φt + q)

(
X0
t −X1

t

)
dt+ σ1dW

1
t and

dY 1
t =

(
X0
t −X1

t

) [(
ε− q2

)
− φtq

]
dt+ Z1

t dW
1
t + Z0

t dW
0
t . (5.20)

Differentiating the ansatz gives

dY 1
t = −φ̇t

(
X0
t −X1

t

)
dt− φtd

(
X0
t −X1

t

)
= −φ̇t

(
X0
t −X1

t

)
dt− φt

 σ0dW
0
t

− (φt + q) (X0
t −X1

t ) dt− σ1dW
1
t


=
(
X0
t −X1

t

) [
−φ̇t + φt (φt + q)

]
dt− φt

[
σ0dW

0
t − σ1dW

1
t

]
.

(5.21)
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Identifying the drift terms in (5.20) and (5.21) yields

φ̇t = φ2
t + 2φtq − ε+ q2,

with terminal condition φT = c, which is again a Riccati equation with an exact

solution. Moreover, identifying the noise terms in the two decompositions gives

Z1
t = φtσ1,

Z0
t = −φtσ0.

Given the optimal control α̂1
t , the forward dynamics become

dX0
t = σ0dW

0
t

dX1
t = (φt + q)

(
X0
t −X1

t

)
dt+ σ1dW

1
t .

In addition, with the initial condition x0, we have

dX1
t = (φt + q)

[(
x0 + σ0W

0
t

)
−X1

t

]
dt+ σ1dW

1
t . (5.22)

By conditioning with respect to F0
t , we have

dE
(
X1
t |F0

t

)
= (φt + q)

[(
x0

0 + σ0W
0
t

)
− E

(
X1
t |F0

t

)]
dt.

To complete the last step of the procedure, one has to solve the fixed point problem

: find mt = E (X1
t |F0

t ) for all t, where E (X1
t |F0

t ) is given by the above equation

with initial value E (X1
0 |F0

t ) = x0. One can observe that in a mean-field game

setting, the dynamic of peripheral bank X1
t is now attracted to the central bank,
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which is in fact a Brownian motion. As a result of the mean-field game, the optimal

control α̂1
t might be the approximate Nash equilibrium if there are infinitely many

players.
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Chapter 6

Conclusion

In Chapter 2, we investigated a stochastic Cucker-Smale model when jumps

were present in the noise term. We showed that the time-asymptotic flocking

defined in [Ha et. al., 2009] was still valid even with jumps. However, there was

one situation that might lead to flocking failure—when the distribution of each

jump were not identical. In order to obtain flocking behavior, we had to make

the assumption that each jump was identically distributed, otherwise any strong

positive or negative jump may break the symmetry of the stochastic system and

further cause flocking failure. In some cases, a jump may also be considered as

the characteristic of a leading particle.

In Chapter 3, we successfully extended the result in [Fouque and Sun, 2013]

to a jump-diffusion case, that is, the systemic risk in an interbank lending system

would increase when the noise terms were driven by jump-diffusion processes.
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Moreover, both the systemic risk and the risk of individual banks would increase.

This makes sense since if there was a dramatic increase or decrease in the reserves

of one bank, this bank will more likely be in default. We gave an approach to

compute the systemic risk in the jump-diffusion case and investigated the order

of convergence as the number of banks N increased.

In Chapter 4, each bank controlled its rate of borrowing/lending money through

a central bank in order to minimize a cost function where the dynamics of the

reserve processes were driven by jump diffusion processes. We utilized the method

of stochastic optimal control with jump-diffusions to solve a Nash equilibria in a

differential game. The closed-loop equilibria can be obtained by both an FBSDE

approach through the maximum principle and an HJB approach through dynamic

programming. We obtained a similar result as stated in [Carmona et al, 2014] that

the system created additional liquidity and the central bank acted as a clearing

house. Additionally, linear growth contributed by jumps were also presented after

obtaining the equilibrium. Based on the assumption that each bank had chosen

their best strategy to obtain an equilibrium, one had to pay more if it possessed

more reserve at any time and vice versa. In other words, if one of the banks pos-

sessed more reserves than the average reserve, it had to contribute more (lending

money) in the system. As for the systemic risk, the effect of jumps in this dif-

ferential game was zero since the average growth contributed by jumps was zero.

The systemic risk would not be reduced in a game setting with jumps.
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In Chapter 5, we obtained a higher systemic risk with a specified dynamics

for the central bank. Each peripheral bank was interacting with one another

indirectly through the central bank. The activity of borrowing and lending had

to go through the central bank. We showed that the systemic risk depended on

the relation of the volatility between a central bank and the peripheral banks.

The central bank played an important role in stabilizing the banking system by

controlling the liquidity between all peripheral banks and itself, otherwise the

system would be vulnerable and result in a higher systemic risk. However, if

the central bank monitored the liquidity closely and minimized the difference of

reserves between all peripheral banks and itself, it would reduce the systemic risk.

By solving an optimal control problem, we could reduce the systemic risk. At

the end of Chapter 5, we also gave a mean-field game approach for approximately

solving a differential game with finite players. Another extended model with major

banks and small banks is given and solved in a sequential way in the appendix.

The mathematical model we developed showed that the systemic risk would

rise when instantaneous shocks occur. In other words, the probability that all

banks will reach the critical level at the same time would be higher when jumps are

taken into consideration. Moreover, under the circumstance that each bank was

acting toward their best self-interest, the model showed that systemic risk would

possibly increase when one individual bank experienced slightly more shocks than

the rest. By establishing this mathematical model, we have characterized the
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banking system and understood the effect of jumps on systemic risk. Through

the incorporation of a game feature with jumps, the result of this study also

aimed to shed light on the regulation of banking system and contribute to the

understanding of the relationship between individual banks, as well as the role

that central banks should play to provide more liquidity.
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Appendix A

Stochastic sequential differential

games

We considerX0,i
t andX1,i

t as the log-monetary reserve of major banks and small

banks, respectively. We consider the following dynamics with control variables α0,i
t

and α1,i
t

dX0,i
t = α0,i

t dt+ σ0dW
0,i
t , i = 1, ..., N

dX1,i
t = α1,i

t dt+ σ1dW
1,i
t .

Major banks X0,i
t control their rate α0,i

t of borrowing/lending from/to a central

bank while small banks control their rate α1,i
t of borrowing/lending from/to the

major banks X0,i
t , i = 1, ..., N, in order to minimize their respective objective
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functions:

J0,i(α) = E


∫ T

0

(
1
2

(
α0,i
t

)2 − q0α
0,i
t

(
X̄0
t −X

0,i
t

)
+ ε0

2

(
X̄0
t −X

0,i
t

)2
)
dt

+ c0
2

(
X̄0
T −X

0,i
T

)2

 ,

J1,i = E


∫ T

0

 1
2

(
α1,i
t

)2 − q1α
1,i
t

(
X0,i
t −X

1,i
t

)
+ ε1

2

(
X0,i
t −X

1,i
t

)2

−α0,i
t α

1,i
t

 dt

+ c1
2

(
X0,i
T −X

1,i
T

)2


.

where α = (α0,1, ..., α0,N , α1,1, ..., α1,N). We now solve the open-loop equilibria by

using the Pontryagin approach. The Hamiltonian for major banks X0,i and small

banks X1,i are given by

H0,i
(
x, y0,i,1, ..., y0,i,N , α0,i, ..., α0,N

)
=

N∑
k=1

α0,ky0,i,k +
1

2

(
α0,i
)2 − q0α

0,i
(
x̄0 − x0,i

)
+
ε0
2

(
x̄0 − x0,i

)2
,

and

H1,i
(
x, y1,i,1, ..., y1,i,N , α1,i, ..., α1,N

)
=

N∑
k=1

α1,ky1,i,k +
1

2

(
α1,i
)2 − q1α

1,i
(
x0,i − x1,i

)
+
ε1
2

(
x0,i − x1,i

)2

−α0,i
t α

1,i
t .

The major banks choose to minimize the cost function J0,i, so we minimize

H0,i over α0,i to obtain choices

y0,i,i + α0,i − q0

(
x̄0 − x0,i

)
= 0, i = 1, ..., N

α̂0,i = −y0,i,i + q0

(
x̄0 − x0,i

)
.
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The ansatz for y0,i,j :

Y 0,i,j
t = φ0

t

(
1

N
− δi,j

)(
x̄0 − x0,i

)
,

where φ0
t is a deterministic function satisfying the terminal condition φ0

T = c0.

So, the optimal controls for the major banks are given by

α̂0,i =

(
φ0
t

(
1− 1

N

)
+ q0

)(
x̄0 − x0,i

)
.

The adjoint equation for Y 0,i,j
t is given by

dY 0,i,j
t = −∂H

0,i

∂x0,j
dt+

N∑
k=1

Z0,i,j,k
t dW 0,k

t .

The small banks anticipate this response and insert major banks’ reaction into

their own cost function J1,i.

J1,i = E


∫ T

0

 1
2

(
α1,i
t

)2 − q1α
1,i
t

(
X0,i
t −X

1,i
t

)
+ ε1

2

(
X0,i
t −X

1,i
t

)2

−α1,i
t

(
φ0
t

(
1− 1

N

)
+ q0

)
(x̄0 − x0,i)

 dt

+ c1
2

(
X0,i
T −X

1,i
T

)2


.

Using the Pontryagin approach, the Hamiltonian for small banks X1,i is given

by

H1,i
(
x, y1,i,1, ..., y1,i,N , α1,i, ..., α1,N

)
=

N∑
k=1

α1,ky1,i,k +
1

2

(
α1,i
)2 − q1α

1,i
(
x0,i − x1,i

)
+
ε1
2

(
x0,i − x1,i

)2

−α1,i
t

(
φ0
t

(
1− 1

N

)
+ q0

)(
x̄0 − x0,i

)
,
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The small banks choose to minimize the cost function J1,i, so we minimize

H1,i over α1,i to obtain choices

y1,i,i + α1,i − q1

(
x0,i − x1,i

)
−
(
φ0
t

(
1− 1

N

)
+ q0

)(
x̄0 − x0,i

)
= 0

α̂1,i = −y1,i,i + q1

(
x0,i − x1,i

)
+

(
φ0
t

(
1− 1

N

)
+ q0

)(
x̄0 − x0,i

)
.

The ansatz for y1,i,j :

Y 1,i,j
t = φ1

t δi,j
(
X̄0
t −X

0,i
t

)
− ηtδi,j

(
X0,i
t −X

1,i
t

)
,

where φ1
t and ηt are deterministic functions satisfying the terminal conditions

φ1
T = 0 and ηT = c1, respectively.

So, the optimal control α̂1,i is given by

α̂1,i =
(
X̄0
t −X

0,i
t

) [
−φ1

t + φ0
t

(
1− 1

N

)
+ q0

]
+
(
X0,i
t −X

1,i
t

)
(ηt + q1)

The adjoint equations are then given by

dY 1,i,j
t = −∂H

1,i

∂x1,j
dt+

N∑
k=1

Z1,i,j,k
t dW 1,k

t

= −δi,j
(
X̄0
t −X

0,i
t

) [
(ηt + q1)

(
−φ1

t + φ0
t

(
1− 1

N

)
+ q0

)]
dt

−δi,j
(
X0,i
t −X

1,i
t

) [
(ηt + q1)2 − ε1

]
dt+

N∑
k=1

Z1,i,j,k
t dW 1,k

t

The dynamics for the difference X0,i
t −X

1,i
t are given by

d
(
X0,i
t −X

1,i
t

)
=

[
φ1
t

(
X̄0
t −X

0,i
t

)
− (ηt + q1)

(
X0,i
t −X

1,i
t

)]
dt

+σ0dW
0,i
t − σ1dW

1,i
t .
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Differentiating the ansatz to obtain

dY 1,i,j
t =

[
φ̇1
t δi,j

(
X̄0
t −X

0,i
t

)
− η̇tδi,j

(
X0,i
t −X

1,i
t

)]
dt

+φ1
t δi,jd

(
X̄0
t −X

0,i
t

)
− ηtδi,jd

(
X0,i
t −X

1,i
t

)
=

[
φ̇1
t δi,j

(
X̄0
t −X

0,i
t

)
− η̇tδi,j

(
X0,i
t −X

1,i
t

)]
dt

+φ1
t δi,j

[
−
(
φ0
t

(
1− 1

N

)
+ q0

)(
X̄0
t −X

0,i
t

)
dt+

σ0

N

N∑
j=1

dW 0,j
t − σ0dW

0,i
t

]

−ηtδi,j


[
(φ1

t )
(
X̄0
t −X

0,i
t

)
− (ηt + q1)

(
X0,i
t −X

1,i
t

)]
dt

+σ0dW
0,i
t − σ1dW

1,i
t


=


−δi,j

(
X̄0
t −X

0,i
t

) [
−φ̇1

t + φ1
t

(
φ0
t

(
1− 1

N

)
+ q0

)
+ ηt (φ1

t )
]

−δi,j
(
X0,i
t −X

1,i
t

)
[η̇t − ηt (ηt + q1)]

 dt

+φ1
t δi,j

[
σ0

N

N∑
j=1

dW 0,j
t − σ0dW

0,i
t

]
− ηtδi,j

(
σ0dW

0,i
t − σ1dW

1,i
t

)
.

Identifying the term
(
X̄0
t −X

0,i
t

)
and

(
X0,i
t −X

1,i
t

)
to obtain the following

equations:

φ̇1
t = φ1

t

[
φ0
t

(
1− 1

N

)
+ q0 + 2ηt + q1

]
− (ηt + q1)

[
φ0
t

(
1− 1

N

)
+ q0

]
η̇t = 2η2

t + 3ηtq1 + q2
1 − ε1,

where φ1
T = 0 and ηT = c1.

Thus, for i = 1, ..., N, the optimal control for the major players are give by

α̂1,i =
(
X̄0
t −X

0,i
t

) [
−φ1

t + φ0
t

(
1− 1

N

)
+ q0

]
+
(
X0,i
t −X

1,i
t

)
(ηt + q1)
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As a result, with the optimal control, the dynamics will become

dX0,i
t =

[(
φ0
t

(
1− 1

N

)
+ q0

)(
X̄0
t −X

0,i
t

)]
dt+ σ0dW

0,i
t

dX1,i
t =

[(
φ0
t

(
1− 1

N

)
+ q0 − φ1

t

)(
X̄0
t −X

0,i
t

)
+ (ηt + q1)

(
X0,i
t −X

1,i
t

)]
dt

+σ1dW
1,i
t .
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