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Abstract

Modeling and Computation of Immersed, Flexible

Boundaries in Complex Fluids

Daniel Salazar

This thesis consists of two main parts related to the modeling and computation

of elastic, immersed fiber-like structures in non-Newtonian flows. We focus on the

particular case of a flexible, microscopic swimmer which is modeled as an immersed

sheet of finite extent in a two-dimensional, incompressible viscoelastic flow at zero

Reynolds number. The swimmer is imposed a beating pattern or gait based on

a given target curvature. In the first part, we present a comprehensive numerical

investigation of such a swimmer in an Oldroyd-B fluid. An efficient semi-implicit

version of the Immersed Boundary Method is employed to remove the impeding

time-step limitation, induced by the strong interfacial forces needed to appropri-

ately impose the swimmer’s gait and inextensibility. Our study investigates in

detail, for the first time, the important effects of the domain size, the stiffness

parameters enforcing the constraints, and numerical resolution and dissipation.

It is found that when the gait is accurately enforced, the mean propulsion speed

of the swimmer always decreases monotonically with Deborah number De, which

is a measure of the flow’s viscoelasticity, i.e. viscoelasticity hinders locomotion.

We observe that this monotonic ordering can be broken when the enforcement

of the gait is sufficiently relaxed but without viscoelastic swimmer’s mean speed
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surpassing that of the Newtonian swimmer. More importantly, our investigation

reveals that the addition of dissipation in the polymeric stress invariably enhances

locomotion and can lead to a speed-up with respect to the Newtonian swimmer.

This result clarifies and reconciles several seemingly contradictory existing nu-

merical and experimental results and identifies diffusive transport of momentum

via the addition of polymeric stress dissipation as the main mechanism which can

produce a swimmer’s speed-up in the viscoelastic fluid.

The second part of of this thesis presents a novel multi-scale approach for the

computation of the same type of finite swimmer but in a FENE (Finitely Exten-

sible Nonlinear Elastic) fluid. The FENE model overcomes the main limitation

of the Oldroyd B fluid which is the possibility of infinite extensions to the poly-

mer chains (modeled as elastic dumbbells) but it requires a full resolution of the

dynamics in the polymer’s configuration space to evaluate the polymeric stress.

When coupled with a flow, this becomes a highly dimensional multi-scale problem

which is common to most models of complex fluids arising from kinetic theory

and represents a formidable computational challenge. Here, we exploit that the

flow affected by the non-inertial swimmer is highly localized and hence an adap-

tive multi-resolution approach can be effectively implemented. We combine this

multi-resolution strategy with a robust, spectral method to solve cost-effectively

for the polymer chain dynamics in configuration space. The overall adaptive,
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multi-resolution method offers a significant computational improvement over the

direct approach, being about seven faster for this particular application.
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Chapter 1

Introduction

The interaction of flows with immersed, elastic structures is common to a

myriad of applications related to biology including, among many others, cardiac

flows [23], peristaltic pumping [31, 4], and microscopic swimmers [32, 34, 9, 21].

In this work we focus on the particular case of a microscopic swimmer of finite

extent (non-periodic) propelling in a viscoelastic flow by sending lateral waves of

motion.

G.I. Taylor provided the first analytic study of small-amplitude, periodic, flexi-

ble swimmers in Stokes flow, modeled as infinite (periodic), thin sheets undergoing

a sinusoidal wave [30]. He found that, to leading order, the swimmer’s propul-

sion speed is proportional to the square of the wave’s amplitude. In this seminal

work, Taylor also emphasized that for microscopic swimmers, the propulsion oc-

curs without much displacement of fluid in contrast to (inertial) swimming at
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larger length scales. He shows that asymptotically the velocity decays exponen-

tially in the normal direction of the swimmer. Thus, only a localized fluid region

around the swimmer is effectively affected.

Often, the flow in which swimming takes place is viscoelastic. Lauga [18, 19]

and Fu, Powers and Wolgemuth[12, 11] extended Taylor’s asymptotic work to

simple Maxwellian models of viscoelastic fluids such as Oldroyd B. They found

that for periodic swimmers with a prescribed sinusoidal beating pattern at zero

Reynolds number, and in the limit of small amplitude, viscoelasticity always hin-

ders locomotion. That is, there is a monotonic decrease of the mean propulsion of

the swimmer as the Deborah number De (the ratio of the viscoelastic relaxation

time and the characteristic time scale of the swimming motion) increases.

This situation is less clear for a swimmer of finite extent and undergoing a

larger amplitude motion. In fact, published experimental and numerical results

appear to be contradictory. For example, Liu, Powers and Brewer [21] conducted

experiments of a small-amplitude helical swimmer in a Boger fluid and observed

that viscoelasticity could enhance its propulsion. Espinosa-Garcia, Lauga, and

Zenit [9] performed experiments using swimmers consisting of a flexible tail at-

tached to a magnetically actuated head in a Boger fluid and found that viscoelas-

ticity monotonically increases the ratio of non-Newtonian to Newtonian mean

propulsion speed. On the other hand, experiments of Shen and Arratia [27] for

C. elegans nematodes in shear thinning polymeric fluids, show that viscoelasticity
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hinders locomotion; the mean propulsion speed decreases with Deborah number,

and is always bounded above by Newtonian swimmer’s speed. This is to be con-

trasted with the numerical work of Teran, Fauci, and Shelley [32] who concluded

that for a finite swimmer undergoing undulatory motion in an Oldroyd-B fluid,

viscoelasticity can not only increase mean propulsion speed (relative to the New-

tonian swimmer), but that there exists an optimal Deborah number. There is a

recent (under review) numerical work by Thomases and Guy [34] in which an at-

tempt is made to reconcile these seemingly contradictory results. They attribute

swimming enhancement to the combined gait asymmetry and swimmer elasticity.

In the first part of this thesis, we present a comprehensive numerical study which

shows that the actual central mechanism to produce a speed-up relative to the

Newtonian swimmer is polymer stress diffusion. Without this diffusive transport,

viscoelasticity hinders locomotion, in agreement with the observations of Shen

and Arratia [27].

We model the swimmer as an immersed filament in a two-dimensional, in-

compressible fluid using the Immersed Boundary Method [24, 10]. In the first

part of this work, we consider a simple Oldroyd B fluid. The main computa-

tional challenges are to enforce the inextensibility constraint and the imposed

beating pattern or gait as well as to accurately resolve large, and highly local-

ized viscoelastic stresses. Due to large stresses, huge restoring tangential forces

have to be generated to prevent the swimmers from stretching/contracting. These
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enormous tangential forces induce a severe stability constraint for explicit time in-

tegration of the equations of motion [29, 28] and it becomes necessary to treat the

interfacial forces implicitly. This is done efficiently with the numerical methodol-

ogy introduced in [5, 3]. With this non-stiff approach, we are able to effectively

enforce the conditions of inextensibility and to accurately prescribe a swimmer’s

gait for different Deborah numbers. Our numerical study also includes the investi-

gation of the important effects of domain size, the stiffness parameters associated

with the constraints, and numerical resolution. We find that when the gait is

accurately enforced, the locomotion speed of the inextensible swimmer monoton-

ically decreases with increasing De, in agreement with the analytic results for the

small-amplitude, periodic swimmer. Moreover, we observe that for such a swim-

mer there appears to be a tendency toward a limiting, minimal speed as De→∞,

as predicted by the asymptotic results [18]. When the enforcement of the gait is

sufficiently relaxed and the swimmer is allowed to deform in response to the local

stresses, our study shows that the propulsion speed monotonicity with De can be

broken but without achieving a speed-up relative to the Newtonian swimmer. On

the other hand, we find that the addition of some diffusion in the polymeric stress

(introduced numerically or by modifying the constitutive equation of the stress

as done in the numerical works in [32, 34]) invariably enhances the viscoelastic

swimmer’s locomotion and can indeed lead to a speed-up relative to the New-
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tonian swimmer. Thus, our study reveals that diffusive transport is the leading

mechanism to produce a speed-up for this type of swimmers.

The Oldroyd-B viscoelastic model can be viewed as a dilute suspension of

polymer chains modeled as elastic, Hookean dumbbells in a Newtonian carrier.

The linear (Hookean) intramolecular force of the dumbbells makes it possible to

obtain a closed, constitutive equation for the stress contributed by the polymer.

The existence of such constitutive law enormously reduces the computational cost

as it becomes unnecessary to compute statistical information about the configura-

tion state of the polymer chains to calculate the polymeric stress. For this reason

Oldroyd B is a popular and computationally attractive model. It is, however, a

model with serious flaws. The main problem of Oldyrod B arises precisely be-

cause of its linear intramolecular force as it allows for an infinite stretching of the

polymer chain. Linked to this unbounded polymer extensibility is also a shear

viscosity which is shear-rate independent, an elongational viscosity that goes to

infinity at a finite elongation rate [2] , and, as we will show, unbounded stresses.

By using a nonlinear intramolecular force, the Finitely Extensible, Nonlinearly

Elastic (FENE) model [2, 17], overcomes the aforementioned problems of the Ol-

droyd B model and thus represents a physically more sound model of a dilute

polymer solution. However, this comes at a very high computational expense as

there is no longer a constitutive equation for the polymeric stress in the FENE

model. We need to compute both the configurational dynamics of the polymer
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chains to obtain the polymeric stress and the flow. That is, the FENE model cou-

ples the configurational and physical spaces rendering a high dimensional problem.

Unfortunately this is the norm rather than the exception for kinetic theory mod-

els of complex fluids [2, 7, 17], which couple a micro or meso scale structure (e.g.

a mechanical model of a polymer chain) with a macro scale flow. The accurate

numerical simulation of these multi-scale models is a formidable challenge. The

FENE model provides a suitable test bed from which substantial computational

advances could be developed for a wider class of kinetic theory models. Attempts

have been made to address these challenges and make the FENE model computa-

tionally more tractable. In [20] Leonenko and Phillips describe an adaptive grid

method to reduce the complexity of solving the Smoluchowski (or Fokker-Planck)

equation, which governs the dynamics of the configurational probability density

function, for a 1-dimensional FENE model. Chinesta, Ammar, Leygue, and Keun-

ings [6] propose applying a model reduction technique based on a Proper General-

ized Decomposition to the Smoluchoski equation, and Ern and Lelievre [8] present

a hybrid adaptive method that dynamically switches between a microscopic and

macroscopic model in physical space.

In the second part of this work, we propose an adaptive, multiscale method-

ology based on a combination of multi-resolution and the use of a robust spectral

method for the Smoluchowski equation. Our multiresolution approach stems from

the schemes first presented by A. Harten in context of hyperbolic conservation laws

6



[13, 14], and follows the algorithm proposed in [26]. The central idea of our ap-

proach is to exploit that viscoelastic stresses are highly localized and thus we can

focus our computational efforts in these regions. Moreover, as the Smoluchowski

equation has to be solved at each point of the physical space grid, it is crucial to

do this with an accurate, cost effective, low memory method; a spectral method

meets these requirements. These two ingredients are combined to produce an

efficient calculation of the polymer stress by performing a multi-resolution analy-

sis on the spectral coefficients of the configurational probability density function

in physical space. Consequently, the spectral method allows to use a reduced

number of spectral coefficients or collocation points in configurational space while

the multi-resolution strategy adaptively focuses the computation of these coef-

ficients in physical space to regions of high stresses. We show that this multi-

resolution/spectral methodology offers a significant computational improvement

over the standard approach, being close to seven times faster for this particular

application.

The rest of this thesis is organized as follows: In Chapter 2 we present the

mathematical framework for the fluid, swimmer, and viscoelastic models. In Chap-

ter 3 we present the numerical discretizations, and Chapter 4 contains validation

studies for them. The main results of our study for an Oldroyd B finite swimmer

are found in Chapter 5, and the adaptive multiresolution method is reviewed,

tested and analyzed in Chapter 6.
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Chapter 2

The Model

We model the swimmer as an inextensible sheet which undergoes imposed

lateral waves in a two-dimensional, incompressible, Stokesian flow. The lateral

waving motion or gait gives rise to stresses that cause the forward propulsion of

the swimmer. This model goes back to a seminal paper of Taylor [30] on the

swimming of microscopic organisms. Our work focuses on the particular case in

which the sheet is of finite extent (i.e. non-periodic) and the viscoelastic fluid

is modeled by a dilute solution of elastic polymer chains with a single relaxation

time.

The equations governing the flow can be written as [2, 17]

∇p = ηs∇2u +∇ · τ p + F, (2.1)

∇ · u = 0, (2.2)
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in a domain Ω, where p is the pressure, ηs is viscosity due to the solvent, u is

the velocity field, F is the force on the sheet resulting from the imposed gait and

the inextensibility constraint, and τ p is extra stress due to the polymers, which

is given by Kramers formula [2]

τ p = −npkBT I + np

〈
Q⊗ F̃

〉
ψ
. (2.3)

In (2.3), np is the density of polymer chains, kB is the Boltzmann constant, T

is the temperature, F̃ is the intramolecular force, and ψ is probability density

function of finding a dumbbell with end-to-end displacement Q. The probability

density function, ψ, is computed via [2]

Dψ

Dt
= −∇ ·

{(
∇u ·Q− 2

ζ
F̃

)
ψ

}
+

2kbT

ζ
∆ψ, (2.4)

where ζ is a friction coefficient, Dψ
Dt

= ∂ψ
∂t

+ u · ∇ψ, and ψ = ψ(t,x,Q).

If we introduce the dimensionless quantities in physical space,

τ p
′ =

Lτ p
η0U

, x′ =
x

L
, u′ =

u

U
(2.5)

t′ =
tU

L
, p′ =

pL

η0U
, F ′ =

FL2

η0U
, (2.6)
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and in configuration space,

Q′ =
Q

Lq
, F̃′ =

F̃

LqH
(2.7)

where U , L, Uq and Lq are characteristic velocity and lengths in physical and

configuration space, respectively, then we can rewrite the entire system in dimen-

sionless form as

∇p = (1− ε)∇2u +∇ · τ p + F, (2.8)

∇ · u = 0 (2.9)

τ p =
ε

De

(〈
Q⊗ F̃

〉
ψ
− I

)
(2.10)

Dψ

Dt
= −∇ ·

{(
∇u ·Q− 1

2De
F̃

)
ψ

}
+

1

2De
∆ψ, (2.11)

where we have made use of the definitions and rescalings,

λH =
ζ

4H
, De =

λHU

L
, ηp = npkBTλH (2.12)

ε =
ηp
η0

,
L2
qH

kBT
= 1, η0 = ηs + ηp, (2.13)

and H is a scalar quantity related to the intramolecular force strength.

The swimmer (a sheet) Γ is represented in parametric form as X(s, t), where

s is a Lagrangian variable and t stands for time. We use the IB framework [24]

to describe the interaction of the flow and the swimmer. Namely, the interfacial

10



force F is written as a delta distribution of a force density A(X(s, t)) by

F(x, t) =

∫
Γ

A(X(s, t))δ (x−X(s, t)) ds (2.14)

and the kinematic condition expressing the continuity of velocity at the swimmer

is also given in terms of a delta distribution:

dX(s, t)

dt
=

∫
Ω

u(x, t)δ (x−X(s, t)) dx. (2.15)

The wave or gait on the swimming sheet is imposed by prescribing a time-

periodic, target curvature κ̄(s, t). We follow the approach proposed by Fauci and

Peskin [10] to enforce both the waving motion and the inextensibilty condition

through a density force given by

A(X(s, t)) = −δE[X(s, t)]

δX
(2.16)

where E[X] is the elastic energy

E[X] =
S1

2

∫
Γ

(∥∥∥∥∂X(s, t)

∂s

∥∥∥∥− 1

)2

ds+
S2

2

∫
Γ

(κ(s, t)− κ̄(s, t))2 ds. (2.17)

Here κ is the sheet’s mean curvature. The parameters S1 and S2 are arbitrary

but have to be selected large enough to effectively enforce the inextensibilty (first

term) and the gait (the target curvature κ̄) at each time step. The target curvature

11



κ̄ of the swimmer is specified at all times by

κ̄(s, t) = Ã(s)k2 sin(ks+ ωt), s ∈ [0, L], (2.18)

where Ã is related to the maximum amplitude of the swimmer’s gait, and L is the

swimmer’s length.

The polymeric structure will be modelled as dumbells connected by a spring.

For an Oldroyd-B fluid the force is Hookean (F̃ = Q in dimensionless form) and

(2.10) becomes

τ p =
ε

De

(
〈Q⊗Q〉ψ − I

)
. (2.19)

In this case (2.19) and (2.11) can be used to show [2] that the polymeric stress τ p

satisfies the constitutive equation

τ p +De τ p
∇ = ε

[
∇u +∇uT

]
, (2.20)

where

τ p
∇ =

∂τ p
∂t

+ u · ∇τ p −
(
∇u τ p + τ p∇uT

)
(2.21)
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is the upper convective derivative of τ p (with the last two terms understood as

matrix products). This eliminates the need to solve directly for the the probability

distribution function, ψ.

The Finitely Extensible, Nonlinearly Elastic (FENE) model is defined by the

nonlinear force F̃(Q) = Q
1−Q2/b

, where b is a parameter related to the maximal

extensibility of the polymer dumbbells. In this case there does not exist a related

constitutive equation for the stress and ψ must be found throughout physical space

using (2.11). However, as it is shown in Chapter 6, Figure 6.2, under certain flows

Oldroyd-B (Hookean) dumbbells can be stretched to unnatural lengths resulting

in unbounded stresses. The nonlinear FENE force prevents such behavior.

13



Chapter 3

Numerical Methods

The physical computational domain is the square Ω = [0, C]× [0, C], which is

discretized with a uniform Cartesian grid Gh with N × N computational cells of

size h×h, where h = C/N . Periodic boundary conditions are assumed for the flow

variables and τ p. The swimmer Γ is of extent L and is discretized with a uniform

grid G∆s in s, consisting of the points si = i∆s, i = 0, . . . , Nb with ∆s = L/Nb.

Let Dh and Lh be the standard centered second-order finite difference oper-

ators to approximate the gradient and Laplacian, respectively. Given the excess

polymeric stress τ np at the current time tn, we discretize the Stokes equations and

the swimmer’s evolution equation as

Dhp
n+1 − (1− ε)Lhun+1 = Dh · τ pn + SnA∆s(X

n+1), (3.1)

Dh · un+1 = 0, (3.2)
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Xn+1 −Xn

∆t
= S∗nun+1, (3.3)

where Sn and S∗n are the IB Method spreading and interpolation operators given

by

(Sng)(x) =
∑
si∈Gb

g(si)δh(x−Xn(si))∆s, (3.4)

(S∗nw)(s) =
∑
xij∈G

w(xij)δh(xij −Xn(s))h2 (3.5)

and δh is an approximation to the 2D delta distribution, δh(x) = ϕ (x)ϕ (y) ,

where x = (x, y) and [24]

ϕ(r) =


1

4h

(
1 + cos

(
πr
2h

))
, | r |≤ 2h,

0, | r |> 2h.

(3.6)

To compute the force density A∆s(X) we employ the following discretization

of the energy:

E∆s[X] =
S1

2

n∑
k=0

(‖D∆sXk‖ − 1)2 ∆s+
S2

2

n−1∑
k=1

(κk − κ̄k)2 ∆s, (3.7)

where D∆s stands for the centered finite difference for k = 1 . . . n− 1 and for the

forward and backward finite differences for k = 0 and k = n, respectively. The

mean curvature κ is computed from X(s, t) using second order finite differences
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and assuming that the target curvature is satisfied exactly at the end points. Then

A∆s(X)j = −
[
∂E∆s

∂Xj

,
∂E∆s

∂Yj

]
. (3.8)

We note that for this discretization the sum of all the forces is zero, i.e.
∑

kA∆s(X)k =

0, which is a compatibility condition for Stokes equations.

Equations (3.1)-(3.3) are an implicit system for the future velocity and sheet

configuration, un+1 and Xn+1. To solve this system we follow the approach pro-

posed in [[5],[3]] which we briefly outline next.

The solution to the discrete Stokes equations (3.1)-(3.2) can be written as

un+1 = Lh
[
SnA∆s(X

n+1) + Dh · τnp
]
, (3.9)

where Lh is the fluid solver operator whose application gives the velocity field given

the interfacial configuration (and hence the force density) and the excess polymeric

stress. We compute Lh using the Fast Fourier Transform (FFT). Substituting this

into (3.3) we obtain an equation for Xn+1 only:

Xn+1 =MnA∆s(X
n+1) + bn, (3.10)
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where Mn, the flow-structure operator, is given by Mn = ∆tS∗nLhSn and

bn = Xn + ∆tS∗nLh
(
Dh · τnp

)
. (3.11)

The relation (3.10) is a nonlinear system for Xn+1
j , j = 0, . . . , Nb. It is solved

efficiently with Newton’s method combined with an expedited evaluation of matrix

representation ofMn as detailed in [5]. Once Xn+1 is computed, un+1 is obtained

from (3.9) and the excess stress is updated.

3.1 Obtaining the Stress - Oldroyd-B

For an Oldroyd-B fluid, the governing equations are

∇p = (1− ε)∇2u +∇ · τ p + F (3.12)

∇ · u = 0 (3.13)

τ p +De τ p
∇ = ε

[
∇u +∇uT

]
. (3.14)

We define

G(u, τ p) = −u · ∇τ p +
(
∇u τ p + τ p∇uT

)
+

1

De

(
ε
[
∇u +∇uT

]
− τ p

)
(3.15)
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so that the Oldroyd-B constitutive equation can be expressed by

∂τ p
∂t

= G(u, τ p). (3.16)

Let Gh be the discrete version of (3.15) obtained by using standard second order

spatial finite differences for all the terms except for the advection u ·∇τp which is

computed with a upwind scheme (first-order and third-order as explained later).

Then the update equation for the stress is

τ n+1
p = τ np + ∆tGh(u

n+1, τ np ). (3.17)

3.2 Obtaining the Stress - FENE

For the FENE model (2.11) must be solved to obtain ψ. Once ψ is obtained,

(2.10) can be used to compute τ np . To discretize (2.11),

Dψ

Dt
= −∇ ·

{(
∇u ·Q− 1

2De
F̃

)
ψ

}
+

1

2De
∆ψ,

we follow the approach of Lozinski and Chauvire [22]. Since |Q| ∈ (0,
√
b), it is

natural to represent the equation in polar coordinates. As such we rewrite (2.11)

18



as

Dψ

Dt
= −(κ11 + κ22)ψ − rb1

dψ

dr
− b2

dψ

dθ
+

1

De

b2

(b− r2)2ψ

+
1

2De

{
br

b− r2
+

1

r

}
· dψ
dr

+
1

2De

{
d2ψ

dr2
+

1

r2

d2ψ

dθ2

}
, (3.18)

for r ∈ [0,
√
b) and θ ∈ [0, 2π), where

b1 =
κ11 + κ22

2
+
κ12 + κ21

2
sin(2θ) +

κ11 − κ22

2
cos(2θ) (3.19)

b2 =
κ21 − κ12

2
+
κ12 + κ21

2
cos(2θ) +

κ22 − κ11

2
sin(2θ). (3.20)

To help prevent the spring force from becoming infinite near r =
√
b, we introduce

a new function α that satisfies

ψ(t,x, r, θ) =

(
1− r2

b

)2

α(t,x, r, θ), (3.21)

where the prefactor
(

1− r2

b

)2

is chosen such that the boundary conditions,

ψ(t,x,
√
b, θ) = 0 (3.22)

dψ

dr
(t,x, 0, θ) = 0, (3.23)

are satisfied.
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To accomodate the spectral discretization, we introduce the change of variables

r2 = b(1 + η)/2, for η ∈ (−1, 1). In terms of η,

ψ(t,x, η, θ) =

(
1− η

2

)2

α(t,x, η, θ), (3.24)

and the evolution equation for α is written as

Dα

Dt
= −(κ11 + κ22)α + b1L1α− b2

dα

dθ
+ L0α, (3.25)

where

L0α = − 4(b− 4)η

bDe(1− η)2
α +

(
2(b− 8)(1 + η)

bDe(1− η)
+

4

bDe

)
dα

dη

+
4(1 + η)

bDe

d2α

dη2
+

1

bDe(1 + η)

d2α

dθ2
(3.26)

L1α = 4
1 + η

1− ηα− 2(1 + η)
dα

dη
. (3.27)

Equations (3.25)-(3.27) are discretized using a spectral method, specifically

Fourier in θ and Gauss-Legendre collocation in η. As such, any sufficiently regular

function f(η, θ) can be represented as

f(η, θ) ≈
1∑
i=0

Nf∑
l=i

Nr∑
k=1

aiklhk(η)Φil(θ) (3.28)
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with

Φil(θ) = (1− i) cos(2lθ) + i sin(2lθ), (3.29)

and hk(η) the Lagrange interpolating polynomials based on the Gauss-Legendre

collocation points ηr. Algorithms for their computation can be found in [16]

(Algorithms 22,23). We note that integration in η can be computed using the

Gauss quadtrature rule

∫ 1

−1

f(x) dx ≈
Nr∑
i=1

ωif(xi), (3.30)

with the approximation being exact for polynomials of degree 2(Nr − 1) + 1 or

less.

The spectral basis functions, {hk}Nrk=1 and {Φil}Nfi=0,1,l=0, are orthogonal and we

define the coefficients for an arbitrary function f as

ajmn =
1

ωm(1 + δn0)π

∫ 2π

0

∫ 1

−1

f(η, θ)hm(η)Φjn(θ) dη dθ (3.31)

=
1

(1 + δn0)π

∫ 2π

0

f(ηm, θ)Φjn(θ) dθ, (3.32)

where this last integral can be computed by quadrature, if not analytically.
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We discretize in time using a first order time-splitting method to decouple the

computations in configuration space from those in physical space:

α∗ − αn
∆t

= −(κ11 + κ22)αn + b1L1α
n − b2

dα

dθ

n

+ L0α
∗ (3.33)

αn+1 − α∗
∆t

= −un · ∇α∗ (3.34)

Focusing on the configuration space equation, we let M0, M1 and M2 be the matrix

representation of the discretized operators L0, b1L1 and −b2
dα
dθ

, respectfully. Then,

α∗ = (I −∆tM0)−1 [(1−∆t(κ11 + κ22))Iαn + ∆tM1α
n + ∆tM2α

n] . (3.35)

Once α∗ is obtained, (3.34) can be used to compute αn+1 and the stress is updated

via (3.24), (3.21) and (2.10).
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Chapter 4

Model Validation

4.1 Newtonian and Oldroyd-B Model Validation

We begin with two validation tests using analytic results for an infinite, peri-

odic sheet in Stokesian flow (zero Reynolds number) undergoing small-amplitude

motion.

The sheet is of the form:

y(x, t) = a sin(kx+ ωt). (4.1)

Taylor [30] predicted that the sheet’s mean locomotion speed for small-amplitude

waves (ak << 1) would be

U(a, k, ω) =
1

2

(ω
k

)
(ak)2

[
1− 19

16
(ak)2

]
+O(ak)6. (4.2)
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Moreover, if looked from the frame of reference moving with the sheet, material

points would describe figure-eight like paths. For a given small amplitude (up to

5 % of the wavelength), we perform simulations for various resolutions up to the

time equal to five wave periods. All the parameters used for this test are provided

in Table 4.1.

Ω [0, 1]× [0, 1]
∆s 0.5∆x
∆t ∆s
S1 106

S2 104

k 2π
ω 2π
a .001, .003, .006, .01,.02, .03, .04, .05

Table 4.1: Parameters for the infinite sheet simulations.

As it is evident in Figure 4.1 there is a convergence to the asymptotic value of

Taylor, and the figure-eight path is also confirmed in Figure 4.2.

 0

 0.02

 0.04

 0.06

 0  0.1  0.2  0.3

U
/V

aκ

Taylor
N = 64
N = 128
N = 256

Figure 4.1: Taylor’s predicted swim speed and the computed swim speed for N = 64, 128, 256.
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 0.49

 0.51

 0.5

y

x

Figure 4.2: Midpoint of the swimmer (amplitude .01) in the frame of reference of the moving
sheet. The figure-eight is traversed five times, once for each period.

Our second validation test considers the asymptotic, small amplitude, results

of Lauga [18], which state that the ratio of an Oldroyd-B swimmer’s mean loco-

motion speed UV to a Newtonian swimmer’s mean locomotion speed U satisfies

UV
U

=
1 + (1− ε)De2

1 +De2
+O(ak)2. (4.3)

Figure 4.3 shows good agreement between our results and Lauga’s prediction for

De = 1. The parameters for this test are as in Table 4.1 with ε = 1/3.

25



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

sp
e
e
d

aκ

Lauga
N = 64
N = 128
N = 256

Figure 4.3: Lauga’s predicted swim speed and the computed swim speed for N = 64, 128, 256
and De = 1.

4.2 FENE Model Validation

For this validation test we consider planar extensional flow of the form u =

c · (x,−y), with the velocity gradient, ∇ui,j = ∂ui
∂xj

, given by

∇u =

 c 0

0 −c

 . (4.4)

For this case the exact steady state solution is known [2] and, in terms of (η, θ),

given by

α∞eq =

(
1− η

2

)b/2−2

exp

{
De · c · b

2
(1 + η) (cos 2θ)

}
. (4.5)
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We take

α0
eq =

b+ 2

2πb

(
1− η

2

)b/2−2

(4.6)

as the initial condition, fix the flow rate for all the tests (c = 1), and vary De and

the extensibility parameter b.

We begin by setting De = .1 and consider b = 10 and b = 100. Figure 4.4

and Figure 4.5 demonstrates the convergence in the L∞ norm of the difference

between the exact and computed solution as a function of time (for b = 10 and

b = 100). Note the larger spectral element requirements for the b = 100 case.

 0

 0.001

 0.002

 0  0.5  1  1.5  2  2.5  3

time

b = 10

Figure 4.4: ‖α∞eq − αn‖∞ with maximal extensibility set to
√

10 and Nf = 10, Nr = 15,

∆t = .01, and De = 0.1.
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 0  0.5  1  1.5  2  2.5  3

time

b = 100, Nf = 10, Nr = 16
b = 100, Nf = 10, Nr = 17
b = 100, Nf = 10, Nr = 20

Figure 4.5: ‖α∞eq−αn‖∞ with maximal extensibility set to
√

100, ∆t = .01, and De = 0.1. Note
the need for increased spectral resolution due to the greater allowed extensibility and resulting
larger domain.

Next we set De = .5 and once again consider b = 10 and b = 100. Figure

4.6 and Figure 4.7 show convergence as a function of time for this larger De. We

emphasize that for this particular case, the Oldroyd-B model leads to finite time

blow up in the stress (see Figure 6.2), underscoring the need to develop efficient

methods for the FENE model.
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b = 10

Figure 4.6: ‖α∞eq − αn‖∞ with maximal extensibility set to
√

10 and Nf = 10, Nr = 15,

∆t = .01, and De = 0.5.
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b = 100, Nf = 10, Nr = 20

Figure 4.7: ‖α∞eq−αn‖∞ with maximal extensibility set to
√

100, ∆t = .01, and De = 0.5. Note
the need for increased spectral resolution due to the greater allowed extensibility and resulting
larger domain.
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Chapter 5

Finite Swimmers in an Oldroyd-B

Fluid

We now focus on the central case of study of this work: a finite swimmer in

an Oldroyd-B Stokesian fluid (Re = 0). We will consider two distinct swimming

motions: kicking and burrowing. For the kicker the undulations increase in am-

plitude from head to tail, and the target curvature, κ̄, is specified at all times

by

κ̄(s, t) = −A(s− 1)k2 sin(ks+ ωt), s ∈ [0, L], (5.1)

where A is the maximum amplitude of the swimmer’s gait and L is the swimmer’s

length. For the burrower the undulations decrease in amplitude from head to tail
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and the target curvature is specified by

κ̄B(s, t) = A(s+ .4)k2 sin(ks+ ωt), s ∈ [0, L]. (5.2)

To obtain the swimmer’s initial configuration (x0(s), y0(s)) we integrate the

following system:

∂θ0

∂s
(s) = κ̄(s, 0), (5.3)

∂x0

∂s
(s) = cos(θ0(s)), (5.4)

∂y0

∂s
(s) = sin(θ0(s)). (5.5)

To do this, we first integrate analytically (5.3) to get the tangent angle θ0 (we set

the constant of integration to zero). We then integrate the system

x0(si) =

∫ si

0

cos(θ0(t))dt, (5.6)

y0(si) =

∫ si

0

sin(θ0(t))dt, (5.7)

using trapezoid rule for i = 0, . . . , Ns. Here Ns = [L/∆s], and si = i∆s.

N ×N Domain
128× 128 [0, 2]× [0, 2]
256× 256 [0, 4]× [0, 4]
512× 512 [0, 8]× [0, 8]

Table 5.1: Computational domains and their discretization.
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∆s 0.5∆x
∆t 0.5∆s
S1 107

S2 104

L 0.6
k 2π

L

ω 2π
Final Time 20

A 0.1
ε 1

3

Table 5.2: Simulation parameters for a finite swimmer in Stokes (Re = 0) Oldroyd-B flow.

Given that this is a finite swimmer and we employ periodic boundary con-

ditions, we first look at the effect of the domain size. To this end, we fix the

amplitude (A = 0.1) and length (L = 0.6) of the swimmer. The numerical res-

olution is kept fixed (by adjusting N and Nb) as we consider different domain

sizes (see Table 5.1). We fix De = 0 for this test and the remaining numerical

parameters are all listed in Table 5.2.
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Figure 5.1: Effect of finite domain size on Newtonian (De = 0) kicker for domain sizes listed
in Table 5.1. (a) location of center of mass throughout 20 periods, (b) location of center of
mass during final 2 periods, (c) Final resting position of swimmer.
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Figure 5.2: Effect of finite domain size on Newtonian (De = 0) burrower for domain sizes
listed in Table 5.1. (a) location of center of mass throughout 20 periods, (b) location of center
of mass during final 2 periods, (c) Final resting position of swimmer.
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Figures 5.1 and 5.2 present a plot of the mean x position of the swimmer as

a function of time for the three domains considered, as well as the final resting

position of the swimmers. Note that there is an appreciable difference between

the [0, 2]× [0, 2] and the [0, 8]× [0, 8] results (≈ 2%); for the smaller domain, the

locomotion of the swimmer is clearly affected by that of the periodic images. The

difference between the [0, 4]× [0, 4] and the [0, 8]× [0, 8] results is not as significant

(< 0.5%), and to better afford the required high resolution for the viscoelastic

simulations, we will now fix the computational domain to be [0, 4]× [0, 4].

5.1 Resolution and Enforcement of the Constraints

We now perform a resolution study for the kicker and burrower with De = 0

and De = 5. The rest of the parameters are again as in Table 5.2. The spatial

resolutions used are defined by ∆x = 2−6, ∆x = 2−7 and ∆x = 2−8 for domain

Ω = [0, 4] × [0, 4]. Figure 5.3 displays the mean x position of the swimmer as a

function of time for the three numerical resolutions. The figure shows convergence

of the swimmer’s mean displacement as the resolution is increased. The lower

resolutions significantly underestimate the swimmers mean displacement.
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Figure 5.3: Kicker’s mean x position for ∆x = 2−6, 2−7, 2−8. (a) corresponds to De = 0 and
(b) corresponds to De = 5. The mean propulsion speed is significantly underestimated by the
lower resolutions.
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Figure 5.4: Burrower’s mean x position for ∆x = 2−6, 2−7, 2−8. (a) corresponds to De = 0
and (b) corresponds to De = 5. The mean propulsion speed is significantly underestimated by
the lower resolutions.

We now vary S2 keeping all other parameters fixed (as in Table 5.2 with ∆x =

2−8). Recall that the value of S2 effectively determines how strongly the given

gait is imposed. Figures 5.5 and 5.6 show the mean x position of the swimmers

(Stokesian and De = 5) as a function of time for various values of S2. We observe
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convergence of the swimmer’s mean x position as S2 is increased. In particular,

tables 5.3 and 5.4 show that the number of grid points (for both kicker and

burrower, De = 1) that deviate more than 10% from the target curvature is ≈ 1%

for S2 = 104, and ≈ 4% for S2 = 103.
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Figure 5.5: Kicker’s mean x position for S2 = 2, 101, 102, 103, 104. (a) corresponds to De = 0
and (b) corresponds to De = 5.
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S2 = 2 10 102 103 104

‖κ̄− κ‖l∞ 9.08 2.07 0.73 0.09 0.04
count| κ̄−κκ̄ |>.1

Nb
0.94 0.82 0.30 .04 0.01

Table 5.3: (Kicker) Percent deviation from the target curvature for various values of S2 and
De = 1. Additionally, the last row includes percentage of Lagrangian grid points that deviate
more than 10 percent from the target curvature.
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Figure 5.6: Burrower’s mean x position for S2 = 2, 101, 102, 103, 104. (a) corresponds to
De = 0 and (b) corresponds to De = 5.
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S2 = 2 10 102 103 104

‖κ̄− κ‖l∞ 6.90 3.28 0.84 0.10 0.02
count| κ̄−κκ̄ |>.1

Nb
0.90 0.74 0.33 .04 0.01

Table 5.4: (Burrower) Percent deviation from the target curvature for various values of S2 and
De = 1. Additionally, the last row includes percentage of Lagrangian grid points that deviate
more than 10 percent from the target curvature.

5.2 Inextensible Swimmer

We now look at the dynamics of the finite swimmer for different Deborah

numbers. Based on the resolution study presented earlier, we fix ∆x = 2−8 and set

all the other parameters as in Table 5.2 (except for De which will be varied). Note

the high values S1 = 107 and S2 = 104 used to guarantee an accurate enforcement

of both the inextensibility constraint and the gait, where S1 is chosen large enough

relative to S2 to ensure the swimmer does not break. The use of such large stiffness

parameter was made possible by the semi-implicit IB method [5].

Figures 5.7, 5.8 and 5.9 show a clear monotonic ordering of the fixed gait

swimmers’ mean displacement and velocity with respect to De (after 20 periods).

Indeed, the steady state mean locomotion speed of the swimmer decreases with

an increase in De. Before reaching steady state, however, there is a period of time

(≈ t < 3, see Figure 5.9) during which the mean velocities of the swimmers are

inversely related to the Deborah number. This is an effect of the faster beating

pattern, or larger relaxation times associated with larger Deborah numbers.
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Figure 5.7: Mean x position of fixed gait kickers versus time for various De. There is a
monotonic decrease in mean x position with De.
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Figure 5.9: Average velocity versus period for various De. (a) Kicker, (b) Burrower.

5.3 Flexible Swimmers and Effects of Stress Dis-

sipation

In light of the varying theoretical, experimental and numerical results [9, 32,

34, 27], we further explore the effects of varying the S2 parameter, as well as adding

stress dissipation to the Oldroyd-B constitutive equation. We begin by varying

S2 and setting all other parameters as in Table 5.2. Recall that S2 determines
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how strongly the gait is enforced. Figure 5.10 shows the Newtonian-normalized

final velocity (after 20 periods) for various S2 values. Here the final velocities are

computed by averaging the forward propulsion of the swimmer’s center of mass

throughout the final period. Notably, we see that if the gait enforcement is relaxed

enough (S2) there is a reversal of the steady state ordering found in Figure 5.9,

but no speed-up relative to the Newtonian swimmer.
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Figure 5.10: Newtonian-normalized velocities after 20 periods versus De for various S2.

Next we consider the effects of adding stress dissipation to eq. (2.20). Recently

Thomasses and Shelley [35] numerically demonstrated the possibility of finite-time

blow up in the stresses for the Oldroyd-B model. In [33] Thomasses found that

adding δ = O(h) stress dissipation is sufficient to mitigate this growth. In light

of these results, it is tempting to rewrite the Oldroyd-B constitutive equation as

τ p +De τ p
∇ = ε

[
∇u +∇uT

]
+ δ∆τ p. (5.8)
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In this form, eq. (5.8) not only ensures finite polymeric stresses, but allows for the

advective term to be discretized with a standard second order central difference

scheme. To explore the effects of adding of stress dissipation, we set ∆x = 1/128,

∆t = .3∆s and maintain the domain Ω = [0, 4]× [0, 4]. All other parameters are

as in table 5.2 and first-order upwinding is used to compute the advective term,

except where noted.

In Figure 5.11 we plot the Newtonian-normalized mean velocity of the kickers,

averaged over the final period, as a function of Deborah number, and for various

dissipation coefficients, δ. Notably, setting δ = 1.28h = .01 results in an enhance-

ment of the mean swimming velocity. In particular, the viscoelastic swimmers are

all faster than their Newtonian counterpart. While similar numerical results have

been found in [32, 34], they attributed it to the combined gait asymmetry and

swimmer elasticity. Comparing the first-order upwind scheme (δ = 0) and third-

order ENO results, we see the effect of numerical stress dissipation introduced

by the upwind scheme. Moreover, when the stresses are appropriately resolved

(as with the third order ENO results in Figure 5.11), we see the hint of a limit-

ing, minimal locomotion speed as De→∞. It is however, extremely challenging

to capture this apparent limit numerically as larger De become computationally

formidable.

Figure 5.12 shows a plot of the mean-square polymer extension, Tr(〈Q⊗Q〉ψ),

at t = 20. The figure serves to further emphasize the side effects that the addition
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of stress dissipation may have on results. The effects when δ = .01 (O(h)) are

remarkable, and again we see the discrepency between the third order ENO scheme

and first order upwinding.
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Figure 5.11: Newtonian-normalized velocities after 20 periods, versus De, and for various stress
dissipation coefficients, δ and S2 = 104. Note the difference between the first-order upwind and
third-order ENO results.
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Figure 5.12: Measure of mean square polymer extension, Tr(〈Q⊗Q〉ψ), at t = 20 for De = 1.

(a) δ = .01, (b) first-order upwinding, (c) third-order ENO.
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Chapter 6

Adaptive Multiresolution Scheme

As previously noted in Chapter 4, the Oldroyd-B model can lead to finite-time

blow up in the stresses and is best suited for modeling simple Boger fluids [15].

For example, Figures 6.1 and 6.2 show the evolution of the xx−component of

the polymeric stress tensor in extensional flow for both the Oldroyd-B and FENE

model. For the case of fixed extensional flow u = (x,−y) and De = 0.1 the

stress remains bounded and we observe convergence of the FENE stress to the

Oldroyd-B stress as the extensibility parameter in the FENE model is increased.

However, increasing the Deborah number to De = 0.5 (which corresponds to

larger polymeric relaxation times or increased flow rate) results in divergence of

the Oldroyd-B stress, while the FENE results remain bounded and converge to

steady state.
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Figure 6.1: (τ p)xx for planar extensional flow u = (x,−y) and De = .1 using Oldroyd-B and
FENE models.
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Figure 6.2: (τ p)xx for planar extensional flow u = (x,−y) and De = .5 using Oldroyd-B and
FENE models. Note the divergence of the Oldroyd-B stress.

The major benefits of employing the FENE model is that it ensures the fi-

nite extensibility of the polymer dumbbells and agrees better with experimental

results [2]. However, the same nonlinear (intramolecular) force that enusures fi-

nite extensibility also prohibits any closure approximations of the coupled system
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(2.10)-(2.11). In this section we introduce an adaptive multiscale methodology

that makes it feasible to compute the viscoelastic stresses using the FENE model.

To mitigate the computational difficulties introduced by the higher dimension-

ality of the model, we will employ an adaptive multiresolution technique on the

spectral coefficients, α, which are evolved via equations (3.33)-(3.34):

α∗ − αn
∆t

= −(κ11 + κ22)αn + b1L1α
n − b2

dα

dθ

n

+ L0α
∗

αn+1 − α∗
∆t

= −un · ∇α∗.

A multiresolution scheme represents data on a series of nested grids, each

dyadically finer than the previous one, and in such a way that the information on

the finer grids can be completely recovered from the coarser ones. Such schemes

were pioneered by Harten [13, 14] and have been successfully used for the adaptive

computation of fluxes in hyperbolic and parabolic equations in conservation form

[14, 26, 25].

For microscopic swimmers, the viscoelastic stresses are highly localized in the

region along the swimmer (see Figure 5.12), and moreover, this is the region where

α will vary the most as a function of the spatial variable x. We will exploit this

fact in our use of the multiresolution analysis.
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To demonstrate the idea of multiresolution analysis, we first consider the pe-

riodic scalar function f defined on the interval [0, 1]. Let

{xli}Nl−1
i=0 , Nl = 2l, hl = 2−l, xli = i · hl (6.1)

be a discretization of [0, 1]. Then, a dyadic refinement of this grid would corre-

spond to

{xl+1
i }

Nl+1−1
i=0 , Nl+1 = 2l+1, hl+1 = 2−l−1, xl+1

i = i · hl+1. (6.2)

Letting fmj = f(xmj ), then f lj = f l+1
2j , since xlj = xl+1

2j . Note that xl+1
2j+1 ∈ [xlj, x

l
j+1]

(see Figure 6.3).

xl+2
4j+2

xl
j xl

j+1

xl+1
2j xl+1

2j+2
xl+1
2j+1

xl+2
4j xl+2

4j+1 xl+2
4j+3 xl+2

4j+4

Figure 6.3: Example of dyadic grid refinement
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If we let I (f)l+1
2j+1 be an approximation to f l+1

2j+1 derived from the values on the

coarser grid corresponding to l, then we can write

f l+1
2j+1 + dlj = I (f)l+1

2j+1 (6.3)

where dij is the error produced by the approximation. We refer to dij as the

(multiresolution) details. For a fixed approximation operator, I, the information

provided by the function values on the grid corresponding to l + 1,

{f l+1
i }

Nl+1−1
i=0 , (6.4)

is exactly the same as the function values on the coarser grid (l) coupled with the

details,

{dli, f li}Nl−1
i=0 . (6.5)

While the two formulations in (6.4) and (6.5) are identical, the details in (6.5)

provide a measure of the local regularity of the function which will be leveraged

to derive adaptive strategies.
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6.1 Adaptive Multiscale Algorithm and Tree Data

Structure

We begin by considering the collection of nested grids defined on [a, b]:

{
{xlj}Nl−1

j=0

}L
l=1

, xlj = j · hl, hl =
h0

2l
, Nl =

b− a
hl

. (6.6)

From the previous section we have that for any periodic scalar function defined

on [a, b], {
{f lj}Nl−1

j=0

}L
l=0

=
{
f 0, d0, . . . , dL

}
, (6.7)

with the details providing a measure of the local regularity of the function. The

idea is to use the details to dynamically determine the appropriate local level

of resolution, and adapt it at each time-step. Implenting the method efficiently

requires the use of a tree data structure. In this case we will make use of the

dynamic tree and algorithm presented in [26, 25].

To illustrate the main idea of the method, we begin with an example in one-

dimensional space using three progressively (and dyadically) finer grids. Let f be

the scalar function defined in Figure 6.4.
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Figure 6.4: One-dimensional scalar function with sharp transition.

Figure 6.5 illustrates how a fine grid manages to resolve the steep gradient in

the function while over resolving the smooth regions. Here the circles represent

equally spaced grid points, also referred to as nodes from here on out.

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

Figure 6.5: One-dimensional scalar function defined over a fine grid.

Instead of using one grid to represent the function, we consider the nested

grids G0 ⊂ G1 ⊂ G2 (see Figure 6.6).
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Figure 6.6: One-dimensional scalar function defined over three dyadically finer and nested
grids.

The goal is to systematically determine the appropriate grid Gl, l = 0, 1, 2 to

locally represent the function. This is dependent on the choice of interpolation, I,

and detail (error) tolerance, δ. Starting from the coarsest grid G0 we compare the

function values on the next grid (G1, which is finer), with the interpolated values

determined from G0. For example, let f 0
i be the function value on G0 defined at

x0
i . Then, as noted before x1

2i = x0
i and x1

2i+1 ∈ (x0
i , x

0
i+1) as illustrated in Figure

6.7.
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Figure 6.7: Illustration of the nested nature of the grids: x12i+1 ∈ (x0i , x
0
i+1). Note that

G0 ⊂ G1 ⊂ G2.

We now compare the value interpolated using G0 and the actual value on G1,

|I(f)1
2i+1 − f(x1

2i+1)| < δ. (6.8)

If we were using linear interpolation, then eq. (6.8) would read

∣∣∣∣12 (f 0
i + f 0

i+1

)
− f(x1

2i+1)

∣∣∣∣ < δ. (6.9)

If the inequality is satisfied, then we mark the point x0
i , indicating that G0 is

sufficient to resolve the function within the given tolerance at this point. If the

inequality is not satisfied, then we perform the same comparison using x1
2i, x

1
2i+1
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and the associated values on G2. Note that since x0
i = x1

2i, f
0
i = f 1

2i and thus they

do not need to be compared.

After the multiresolution analysis is complete, the tree might look something

like Figure 6.8. We emphasize that the function values at the unmarked nodes

(empty circles) in the finest grid, G2, can be recovered from the coarser grids using

the predefined interpolation operator, I, and to within a controlled tolerance by

decreasing δ.

bc bc bc bc bc bc bc bc bc bc bbc bc bc b b b b b b bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc b b bc bcb bc bc bc b b bc bc bc bc bc

b bc bcbc bc bc b b b

G2

G1

G0

bc bc bc bc

bc bc

b

Figure 6.8: Marked nodes after multiresolution analysis has been performed. Note that the
finest grid is only marked near the sharp transition of the function.

In the context of the data structure, the tree is represented by Figure 6.9,

where the black lines in the figure are representative of pointers, every circle is a

node, and the filled circles are referred to as leaves. The coarsest grid is referred

to as the root, and every non-root node has a parent and siblings (children of
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the same parent). Each node in the tree is a data object that contains pointers

to its siblings, cousins (children of parent’s siblings), parent and children (where

applicable). Additionally, a node contains the spectral coefficients, details, and

stress tensor τ p. The multiresolution methodology works by evolving the spectral

coefficients on the leaves and using interpolation to recover the function values on

the finest grid, G2, adding and removing nodes as necessary at each time step.

bb b b b b b

b b b bcb bc bc bc b b

b bc bcbc bc bc b b bb root

siblings
parent

Figure 6.9: Grids in the context of the tree data structure. We refer to the coarsest grid as
the root. Also, any non-root node has a parent and siblings (children of same parent).

The extension from one dimension to two, and even three, is natural and once

again defined by dyadic refinement. The equivalent of (6.6) on the periodic domain

Ω = [a, b]× [c, d] is

{
Gl = {(xi, yj)l}N

x
l −1,Ny

l −1

i,j=0

}L
l=1

(6.10)

xli = i · hxl , hxl =
hx0
2l
, Nx

l =
b− a
hxl

(6.11)

ylj = j · hyl , hyl =
hy0
2l
, Ny

l =
d− c
hyl

, (6.12)
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where the grids are nested:

G0 ⊂ G1 ⊂ · · · ⊂ GL. (6.13)

In what follows we briefly present the adaptive multiscale methodology for

the spectral coefficients, α. For a more comprehensive review of multiresolution

analysis the reader is referred to [13, 14, 1], and for an additional explanation of

the algorithm the reader is encouraged to review [26, 25].

6.2 Multiresolution Algorithm

Given the tree and flow, u, at time tn, the algorithm proceeds as follows:

1. For each node in the root, navigate all the way to the leaves and compute

α∗ using eq. (3.35).

2. For each node in the root, navigate all the way to the leaves and compute

αn+1 using eq. (3.34), interpolating where necessary. Also update the stress

tensor τ p using Kramer’s formula (2.10).

3. Starting at the leaves, project the node’s updated values to the correspond-

ing coarser grid nodes until the root is reached (recall that the grids are

nested). Figure 6.10 shows this step in one dimension.
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Figure 6.10: Projection step in adaptive multiresolution methodology.

4. Interpolate the stress tensor to the full spatial grid using the interpolation

operator I.

5. Starting at the root, update the details at every (non-root) node by using α

and I(α). Since the detail needs to be a scalar value and α is the spectral

coefficient vector, we define the detail as ‖αl+1 − I(α)l+1‖∞

6. By analyzing the details of every node, update the tree by splitting (adding)

or removing nodes as necessary. Essentially, nodes are added in regions

where there are leaves with details greather than δ, and nodes are deleted

in regions where there are leaves with details smaller than δ.

7. Using the updated stress tensor τ p (defined on the entire spatial grid), up-

date the flow variables (and swimmer) and go back to the first step.
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6.3 Multiresolution Validation

We now perform convergence studies for both the multiresolution scheme tol-

erance, δ, and the spectral grid. For these tests we use 4 multiresolution grids,

with the coarsest defined by ∆x = 2−5 and the finest by ∆x = 2−8, which corre-

sponds with the full spatial grid. The interpolation, I, used for the details and

recovery of the stress is a three point centered stencil in each dimension (centered

at the node’s parent). For the swimmer we use an inextensible small amplitude

kicker governed by

κ̄(s, t) = −A(s− L)k2 sin(ks+ ωt), s ∈ [0, L], (6.14)

with A = 0.05 and Ω = [0, 2] × [0, 2]. The spatial resolution is set to ∆x = 2−8,

∆s = 0.5∆x, the time step to ∆t = 0.5∆s, and S2 = 105.

Recall that we perform the multiresolution analysis on the spectral (probability

distribution function) coefficients which are evolved in time via (3.35). For De = 1

and De = 2, we first set (Nf , Nr) = (8, 8) and vary the multiresolution tolerance.

Then we fix the error tolerance and vary the spectral resolution. We plot the L1

norm of the difference in successive stress tensor components as the tolerance and

spectral resolution are varied.

Figures 6.11 and 6.13 show the convergence of the stress tensor as the toler-

ance, δ, and spectral resolution are varied. Furthermore, Figure 6.12 shows the
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convergence of the swimmer’s center of mass throughout four periods (for varied

tolerance). The plots show that for De = 1, (Nf , Nr) ≥ (6, 6) and δ ≤ 10−5

are sufficient to resolve the viscoelastic stresses, with subsequent refinements of

(Nf , Nr) and δ resulting in a change of O(10−5) (in the L1 norm), which is smaller

than the first-order temporal discretization error, O(10−4).
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Figure 6.12: Kicker’s center of mass through four periods for various multiresolution error
tolerances, δ, De = 1 and (Nf , Nr) = (8, 8)
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Figure 6.13: ‖τ p (Nf , Nr)− τ p (Nf + 1, Nr + 1)‖L1
for (Nf , Nr) = (4, 4), (5, 5), . . . , (9, 9),

De = 1 and δ = 10−5.

Next we perform the same tests for De = 2. The results can be found in

Figures 6.14 through 6.16. In this case the spectral resolutions (3, 3) and (4, 4)

are no longer sufficient to resolve the dynamics and, in fact, lead to instability.

However, δ ≤ 10−5 and (Nf , Nr) ≥ (6, 6) remain sufficient to accurately resolve the

viscoelastic stresses, once again producing a difference of O(10−5) in subsequent

refinements.
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Figure 6.15: Kicker’s center of mass through four periods for various multiresolution error
tolerances, δ, De = 2, and (Nf , Nr) = (8, 8)
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Figure 6.16: ‖τ p (Nf , Nr)− τ p (Nf + 1, Nr + 1)‖L1
for (Nf , Nr) = (4, 4), (5, 5), . . . , (9, 9),

De = 2 and δ = 10−5.

6.4 Multiresolution Perfomance

Next, we analyze the multiresolution methodology’s perfomance for various

tolerances. Based on the results of Section 6.3, we set De = 1 and the spectral

resolution to (Nf , Nr) = (8, 8). Figure 6.20 shows the number of leaves in the

tree after 4 periods as a function of the error tolerance. In particular, the grid

corresponding to δ = 10−5 has approximately 6.6 times fewer grid points than the

δ = 0 grid (full grid). These results are visualized in Figures 6.18 and 6.19. In

these figures every grid point is representative of a leaf in the tree data structure.
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Figure 6.17: Average cpu time through t = 4 as the tolerance is decreased.
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Figure 6.18: Leaves after 4 periods of small amplitude kicker in a FENE fluid simulation. Four
multiresolution grids were used and De = 1.
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Figure 6.19: Close-up of the concentration of leaves in Figure 6.18.

Given that there is computational overhead introduced by the multiresolution

analysis, we now look at the differences in cpu-time for various error tolerances,

δ. Figure 6.17 contains the average cpu-time (averaged over the 4 periods) as

a function of error tolerance. We see from the figure that the multiresolution
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simulations with δ = 10−5 are approximately 6.8 times faster than the δ = 0 (full

grid) case.
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Figure 6.20: Total number of leaves (at t = 4) as the error tolerance δ is decreased.

In principle we would expect convergence of the stress tensor coefficients as

the tolerance, δ, is decreased. However, for a fixed tolerance δ, the total number

of leaves will decrease as the accuracy of the interpolation I is increased. One

must keep in mind, though, that with higher order interpolation comes a higher

computational overhead, and therefore what the algorithm gains in leaf/node

reduction, it might gain in computational cost.
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Chapter 7

Conclusion

In this thesis we considered two problems related to the modeling and simula-

tion of elastic, inextensible swimmers in viscoelastic fluids. The first problem was

a numerical investigation of such swimmer in an Oldroyd B fluid and the second

problem focused on the development of an efficient computational approach for

such a flow-structure interaction system with a FENE viscoelastic fluid model, as

a useful testbed for a wider class of kinetic theory micro-macro models of complex

fluids.

Our numerical study for fixed gait swimmers shows that the steady state

propulsion speed always decreases as the Deborah number increases. However,

if the gait enforcement is relaxed enough, this ordering can be reversed. Fur-

thermore, if stress dissipation is added to the Oldroyd-B constitutive equation,

then it is possible to reproduce a speed up similar to that in [32]. We also show
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that the dissipation added by low order schemes such as first order upwinding has

significant effects on the swimmer’s locomotion, making higher order upwinding

schemes necessary for visocoelastic fluid models involving sharp gradients in the

stresses. These results and observations identify diffusive transport as the leading

mechanism for the reported speed-up of this type of swimmers and reconciles most

of the seemingly contradictory results reported in the literature.

The adaptive, multi-resolution/spectral methodology, which we developed in

the particular context of a microscopic swimmer in a FENE fluid, shows a promis-

ing performance and potential for a wider use. For tests with De = 1, our method

was close to seven times faster than the standard approach. While further research

is required to determine the viability of the adaptive model for larger Deborah

numbers (De), the preliminary studies suggest that a similar speed-up can be

attained. In general, though, one could expect higher spectral resolution require-

ments, as well as larger stresses due to the larger relaxation times. There is,

however, much room for improvement and optimization of the main components

of this multi-scale approach.
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