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Abstract

Longtime behavior of small solutions to viscous
perturbations of nonlinear hyperbolic systems in 3D

Boyan Yavorov Jonov

The first result in this dissertation concerns wave equations in three space di-
mensions with small O(v) viscous dissipation and O(J) non-null quadratic nonlin-
earities. Small O(¢) solutions are shown to exist globally provided that /v < 1.
When this condition is not met, small solutions exist “almost globally”, and in
certain parameter ranges, the addition of dissipation enhances the lifespan. We
study next a system of nonlinear partial differential equations modeling the mo-
tion of incompressible Hookean isotropic viscoelastic materials. The nonlinearity
inherently satisfies a null condition and our second result establishes global solu-
tions with small initial data independent of viscosity. In the proofs we use vector

fields, energy estimates, L™ — L? and weighted L?-decay estimates.
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Chapter 1

Introduction

Extensive research has been devoted to the study of the long time behavior
of solutions to evolutionary nonlinear Partial Differential Equation (PDEs). A
main objective in this field of research is to provide an estimate of the largest
interval on which a solution exists. Such an interval can extend to infinity ( the
corresponding solution is referred to as global ) or the interval can be bounded by
a finite time singularity at which the solution blows up in some sense.

In this dissertation, we first analyze the existence interval of the solution to
a quadratically nonlinear damped wave equation in three space dimensions (see

(1.0.1)). The techniques used are then adapted to the equations of motion of an

incompressible Hookean viscoelastic material (see ((1.0.2al) - (1.0.2c])). We focus on

the connection between the longtime behavior of the solutions and the interaction



of certain key parameters of the PDEs (size of initial data, viscosity, and nonlinear

perturbation from the null condition).

Both ([1.0.1)) and ((1.0.2a]) - (1.0.2¢)) can be classified as perturbations of quasi-

linear hyperbolic systems. Although we exploit the dissipative nature of those
PDEs, we still resort to many of the standard hyperbolic methods and tech-
niques. We provide next a brief summary of the relevant advances in quasilinear
hyperbolic systems in the past decades.

The first results date back to the seventies when Friedrichs showed through en-
ergy estimates that small size € solutions of positive definite symmetric hyperbolic
systems exist on an interval of order O(1/¢). In 1976, Fritz John [5] improved
this result to O((elog1/e)™*) for quasilinear waves in 3D. In dimensions four
and higher, John showed in the same work that the existence interval is O(1/¢?).
Estimates of the solution of the linear wave equation are key ingredients in John’s
approach. Klainerman was able to prove in [9] that solutions exist globally in
dimension six and higher. The same result was later obtained in [I3] by Klain-
erman and Ponce with simplified arguments involving energy estimates and the
fundamental solution. Global results were further established for dimensions four
and five (Klainerman [I1]).

Klainerman’s results raised the question whether global solutions can be ex-
pected in the physically important three dimensional case. John [4] and Sideris

[18], however, provided examples of quadratic nonlinearities that develop finite



time singularities. Even though these results demonstrate that in 3D solutions
in general do not exist globally, John and Klainerman [§], with the use of their
knowledge of the fundamental solution, were still able to extend the existence
interval to O(exp (C/¢)) - a lifespan referred to as almost global existence.

The advances discussed so far rely on estimates of the fundamental solution
of the wave equation. The techniques used are not easily adaptable to elasticity
where the fundamental solutions tend to be much more complicated. Klainer-
man addressed that issue by developing a new method (we will refer to it as the
generalized energy method) to handle quasilinear waves without relying on the
solutions to the linear equations. Exploiting the scaling (S = t0; + = - V), rota-
tional (2 = x A V), and Lorentz boost (L = tV + x0;) invariance of the wave
equation, Klainerman defined a generalized Sobolev space in terms of these new
vector fields together with the standard space-time derivatives 0 = (0;, V). With
this new structure, Klainerman [I1] improved the standard Sobolev Lemma by de-
veloping new L* — L? decay estimates without any references to the fundamental
solution.

Already known that quadratically nonlinear waves in 3D can develop finite
time singularities even for small initial data, the next important question posed
was whether there were nonlinearities for which global solutions were possible.
Klainerman [I2] and Christodoulou [2] independently identified a condition on

the quadratic portion of the nonlinearity, called null condition, which allowed for



global existence for small data. The corresponding proofs avoided estimates of
the fundamental solution.

The advances in elastodynamics in 3D followed a path similar to the one of
quasilinear waves. With the use of the fundamental solution in [6], John showed
that the interval of existence of isotropic elastic materials is O((glog1/e)™).
In [3], he improved this result to an almost global existence interval for small
solutions.

Analogous to the wave equation, solutions in nonlinear elasticity generally do
not exist globally. In [7], John presents genuine nonlinearities for which arbitrary
small spherically symmetric displacements to isotropic elastic materials develop
singularities. Another result comes from Sideris [17] who, borrowing some of the
techniques from his earlier work [I§] on nonlinear wave equation, established that
solutions to ceratin compressible fluids break down in finite time regardless of the
size of the initial data.

Klainerman and Sideris [I4] were able to simplify John’s almost global result
by avoiding any use of the fundamental solution. The authors used Klainerman’s
generalized energy method to prove that solutions to quadratically nonlinear waves
exist almost globally. This result has immediate applications in isotropic hyper-
elasticity. A major obstacle in adapting the generalized energy approach was
that motions of elasticity are not Lorentz invariant. The smaller symmetry group

implied weaker Klainerman’s inequalities. To compensate for this deficiency, the



authors obtained an additional set of weighted L2-estimates which, in combination
with the L>® — L? inequalities, were successfully used in many other applications
(see [19], [20], [23]).

The transition from almost global to global solution in nonlinear elastodynam-
ics requires two conditions: (1) the initial deformation must be a small displace-
ment from equilibrium and (2) the nonlinear terms must satisfy a nonresonance
(null) condition. If either of these conditions fails, solutions breakdown in finite
time. As discussed above, John [7] and Sideris [I7] provided examples of such
breakdowns in the absence of nonresonance. On the other hand, Tahvildar-Zadeh
[25] showed formation of singularities for large displacements.

The exact formulation of the nonresonance condition was first given by Sideris
in [19] and then in [20] the author weakened the condition and showed that it
is physically realistic. Nonresonance essentially requires the cancelation of non-
linear interactions among the same wave families along the characteristic cone.
Compressible elastodynamics, for example, is characterized by nonlinear shear
and pressure waves interactions. In the isotropic case, however, shear waves in-
teractions are linearly degenerate, and so null condition is imposed only on the
pressure waves (see [20] ).

Under the assumption of nonresonance condition, Sideris [20] further developed
the ideas associated with the energy method from [I4] and [19] to prove global

existence for small solutions in compressible, isotropic, nonlinear elastodynamics.



The approach was adapted in [24] to a system of coupled quadratically nonlinear
waves in 3D with multiple propagations speeds. Agemi [I] used the same null
conditions from [20] to discuss existence of solutions near unstressed reference
configuration.

Incompressible elasticity naturally satisfies a null condition in the isotropic
case and therefore global existence is expected for small initial displacement. The
result was confirmed by Sideris and Thomases in [21]. The proof relies on the gen-
eralized energy method and strong dispersive estimates. Key ingredients in the
argument are also local decay estimates which were further shown in [23] to be ap-
plicable to a wide class of certain isotropic symmetric hyperbolic systems. Sideris
and Thomases [22] proved similar global small data existence for an isotropic in-
compressible material regarded as the limit of slightly compressible materials. In
this setting, the shear waves are already null (by isotropy) and the pressure ways
vanish in the limit.

We will consider first the nonlinear PDE:

3 3
0o —Dp—voAp =" Y Cls0updidse (t,x) €RT xR®,  (1.0.1)
a,f=0 (=1

where 0y = 0y, Op = 0y, { = 1,2,3, and Rt = [0,00). The summation notation
will be employed hereafter.

The viscosity parameter v is assumed to satisfy 0 < v < 1. We will define a
second parameter J to measure the deviation of the nonlinearity from being null.

Furthermore, we will assume that the size of the initial data is controlled by a



third parameter e. Our main objective is to analyze how the interaction of those
three parameters v, §, and ¢ influences the long time behavior of the solution to
the given PDE.

What is known already is that in the hyperbolic case (v = 0) under a null
conditions (d = 0) we have a small global solution (see [12], [2]). Moreover, Ponce
showed in [16] that generally admits global solution from small initial data.
In his proof, Ponce relied on the dissipative properties of the linear equation. Also,
initial data was assumed small relative to the viscosity parameter although this
relationship was not quantified explicitly.

Intuitively, one would expect that a global solution of will be attained
for large values of v that make the dispersive effect of the linear term more pro-
nounced and for small values of § which enhance the effect of the null term. The
precise interaction of the three parameters is captured in the two main theorems
2.3 and 2.3.2]

In Theorem [2.3.1| we show that the size of the initial data must be roughly
v/§ in order to obtain a global result. If this condition is not met, then Theorem
gives lower bounds for the lifespan of the solution. In the hyperbolic case,
it is well known ([8], [I0]) that the solution exists almost globally. Theorem
shows that dissipation can improve the almost global result of the hyperbolic case

if v is large enough relative to the size of the data.



The main tools we use in the above results are the generalized energy method,
L* — L? and weighted L?- decay estimates . In order to capture the dissipative
nature of the PDEs, we incorporate the viscous terms in the energy definition (see
(2.2.3)). This allows for terms arising in bootstrapping arguments to be controlled
by the energy.

The PDE that we are studying is not invariant under the Lorentz boost L
and as a result this vector field is not included in our energy definition. Conse-
quently, we can only use a weaker version of Klainerman’s original L> — L? decay
estimates. To obtain the extra decay needed, we provide additional dispersive es-
timates by extending the weighted L?- estimates approach introduced in [14] and
further generalized in [23]. Those decay estimates are derived in two space-time
regions and subsequently we obtain interior and exterior weighted L2-estimates

(see Theorem (12.8.1)) and Theorem (2.8.2)) correspondingly). It is convenient to

work in the framework of [23] and therefore we express ([1.0.1) as a first order

system in (2.1.1al) and (2.1.1Db)).

Although the scaling operator S does not commute with the linear part of
, it is still included in the energy definition. However, we need to keep
an explicit track of the occurrences of the scaling operator (see (2.2.3)). The
additional linear terms that appear as a result of the lack of scaling invariance are

handled through an inductive argument (see, for example, Theorem ([2.7.3)).



Next we study the motion of incompressible Hookean isotropic viscoelastic

materials given by:

0,G — Vv =VuvG —v-VG (1.0.2a)
o —V-G—vAv=V-(GG") —v-Vv—-Vp (1.0.2b)
with constraints
V-v=0
v-GT =0 (1.0.2¢)

0WG7 — 0;,G* = GY9,G™ — G*9,G7 = Q) (G, VG),
where G € R? ® R?, v € R3, and p € R. The precise derivation of the system is
given in section [3.1]

The incompressible and isotropic assumptions imply that the quadratic nonlin-
earity of and inherently satisfies a null condition. The expected
global existence result is verified in Theorem [3.3.1. The smallness of the initial
data is shown to be uniform with respect to viscosity.

The proof of this global existence result shares the main features we discussed
earlier in the damped wave equation case. In viscoelasticity, however, it is enough
to establish only interior weighted L?-estimates unlike the damped wave equation
case in which those estimates are needed in both the interior and exterior regions.
This major simplification comes from the special nonlinear structure associated

with the Hookean assumption on the strain energy function (see (3.1.4])) and the

incompressible constraints ((1.0.2¢]).



Another difference in the viscoelastic case is the presence of the pressure term
Vp in (1.0.2b)). It is treated as a part of the nonlinearity since its L? norm can be

controlled by quadratic terms (see Lemma |3.9.1]).
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Chapter 2

Damped Wave Equation

2.1 PDEs

We will rewrite the PDE ((1.0.1)) as a first order system. We introduce the new

unknowns:

u=u%eqy = Jupeq

where e, ...,es3 are the standard basis column vectors in R*. We denote the

spatial and the spatial-time gradients of u as Vu and du where
(Vu)ar = Ou®  and  (0u)ap = Ogu”.
Notice that we have the relation:

ou = ou'.

11



With the above notation, we can rewrite ((1.0.1)) as the following evolutionary

system with constraints:
Lu = dyu — AV0;u — vBAu = N(u, Vu)
Gjuk = Opu’.
The coefficients are given by:
A =e®ejt+e e, j=1,2,3; B=eRe

and the nonlinearity is of the form:

N(u, Vu) = N°(u, Vu)ey with N°(u, Vu) = C'Kﬁu()@ﬂﬁ.

o

(2.1.1a)

(2.1.1b)

(2.1.1¢)

(2.1.1d)

With the notation 4 = w’/e; (@ is a vector in R?), the system (2.1.1a) - (2.1.1d)

can also be written as:

o’ — V-1 — vAu® = N°(u, Vu)
atﬂ — (VUO)T =0

VAu=0.

2.2 Notation

We will use the following vector fields:

V, Q=xAV, S=to;+r0d.,, Syg=r0,.

12

(2.1.2a)
(2.1.2b)

(2.1.2¢)



We will also employ the following modified version of the rotational operators £2:

Qi = 1Q; + Z;,

where
Zi=e3Re3—e3@ey, Zy=e3R@e; —eg®es, 43 =e ey — ey R ey,

We note that, as defined,  commutes with linear part of the system (2.1.1a)). In

particular, for any scalar function ¢, we have:

(i) = Q;00.

On the other hand, the linear system is not scale (S) invariant. For this

reason, we will need to explicitly keep track of the number of occurrences of the

vector field S in the Hilbert space X?? and energy &, ,[u](¢) definitions (see (2.2.2)

and (22.3)).

We will also rely on the following spatial gradient decomposition:
V =wd, — —AQ (2.2.1)
r

with

x :
w=—, r=lz[, 0, =uw0,.
r
For any 0 < ¢ < p and with the following abbreviation:

r={Vv,Ql,

13



we can define the space:
XP4 = {y € HP(R* R*Y) : ||SET%u| 12 < oo, for all |a| + k <p, k<q}. (2.2.2)

In the above definition p denotes the total number of derivatives allowed, while ¢
stands for the number of occurrences of the scaling operator S;. We emphasize
again that it is the lack of commutativity of Sy with the linear operator in ([2.1.1a))
that dictates this special consideration for the scaling operator. As defined, X7

is as Hilbert Space with inner product:

<'U,, ’U>Xp,q = Z <S§F“u, SgFaU>L2.

la|+k<p
k<q

The initial data of the PDE under consideration will be defined in XP4.

The energy associated with the solution of the system (2.1.1al) - (2.1.1d)) is

defined as:
1 k 2 ! k 0 2
Epqlu)(t) = Z HS F“u(t)HL2+V/O VS* (T ) (s)|]32 ds| . (2.2.3)
la|+k<p
k<q

For ug = u(0) we write:

1
5p,q[uo] = gp,q[u](o) = 5”“0”%@«1-

In order to obtain bounds for the energy, we need to establish dispersive es-
timates. These will be derived using weighted L2-estimates in two space-time
regions referred to as interior and exterior. We define those two regions with the
following cut-off functions:

2]

oty = (L

) and n(t,x)—l—zp(a—>, (2.2.4a)

14



where v is given by:
e C®(R), ¢Y(s)= . ' <. (2.2.4Db)

We use the notation (t) = (1 + 2)1/2. The parameter ¢ would be chosen to be

small enough (0 < 1). We notice that:
1<¢+n and 1-n<¢ (2.2.4c)
We also have the following property:
(r + 1) [|8C(t,x)| + |an(t,x)|} <1 (2.2.4d)
In the interior region, we will derive estimates for the following quantities:

Vinlt)y = > KV u(t)|7
la|+k<p—1

and

Zru)t) = > ICASHT ) (1),
lal+k<p-—1
k<q

forg<pand 0 <6< 1.

In the exterior region, we need to decompose the solution into its orthogonal

and tangential components along the light cone. We use the following projections:

Pu(t,z) = - v @ w u(t,z) = % [W(t,z) —w-ult,z)] & (2.2.5a)

N | —

15



@u(ta I) = (I - P)U(t, l’),
in which

o= eR! w= |i| 0+ e RS> (2.2.5b)
A

We have the following commutation properties:
[QPP] = [aTa]P)] =0 and [,{2]7@] = [am@] =0 (2.2.6)

due to the fact that ﬁjw =0 and O,w = 0.

The quantities to be estimated in the exterior region are:

Youlal®) = Y > [l (t =) PO;S T u(t)||2:

la|+k<p—1 j=1
k<q
+ [l (t +7) QO;S* T u(t)|7:]

and

ZX)t) =1 Y nASHTw) ()17,
la|+k<p—1
k<q

again for ¢ < p.
We define a cubic polynomial Py(y) associated with the coefficients of a

quadratic nonlinearity of the form in the following way:
Py(y) = Clay™y’y', yeRY
We say that the nonlinearity N is null if
Py(y)=0 forall yeN={yeR":yf—ui —y; —y; =0}

16



The set of vectors in R* belonging to N is called null vectors.
Finally, we remark that the expression A < B would mean A < CB, where
C' is a constant independent of v, §, %, and the initial data. Furthermore, O(B)

would denote a quantity that satisfies O(B) < B.

2.3 Main Results

Theorem 2.3.1 (Global existence). Choose (p,q) such thatp > 11, and p > q >

p*, where p* = [1%5] Define
d =max{|QPy(y)| :y €N, ||yl =1, |a] <p*} (2.3.1)

and assume that § < 1.
There are positive constants Cy, C7 > 1 with the property that if the initial

data ug satisfies
Cop p+ [o)] (1 + 5;,/q2 [UO]) <€ (2.3.2a)

for some e < 1, and

(5 2
Co (—) Ep-prlo] (14 E)/2[uo]) < 1, (2.3.2b)

v

then (2.1.1a)-(2.1.1d)) has a unique global solution

u € C(RY; XP9)

17



with
sup &y qlul(t) < Cl‘c:p,q[uo]<75>c16
0<t<oo

and

sup Ep pr[ul(t) < £°.
0<t<o0o

Outline of Proof. To establish global existence it is enough to show that the energy
Epqlu)(t) remains finite. Let T be the set of times 7' € (0,00) satisfying the

properties:

(P1) Equations (2.1.1a)-(2.1.1d)) have a unique local solution

u e C([0,T), XP7), with u(0) = up, and
(P2) &y pelu](t) < for 0 <t <T.

If T'€ T then we have (0,7) € T and hence T is connected. Since Cy > 1,
(2.3.2a)) implies that &£y« ,+[ug] < £2 and therefore, by the the local existence result,
the set 7 is nonempty. The set T is relatively closed in (0, co).

We show next that 7T is relatively open in (0,00). If 7" € T, then by (P2) and

Proposition [2.9.]]

18



so, by the local existence theorem, (P1) holds for some 7" > T

Using the assumptions ([2.3.2b]) and (P2), we apply Proposition [2.10.1| which,

together with (2.3.2a)), gives

sup Epe e [U] (1) < Co&pe e o] (1 + 5;7{]2 [uo]) < &2,
0<t<T

and so we have by continuity that (P2) holds for 0 <t < T" with T < T" < T".
This shows that (0,7") C T, and so T is open. The nonempty connected set T

is both open and closed in (0, 00), and therefore equal to (0, 00). ]

The next result establishes “almost global” existence of small solutions in the

case when the second smallness condition (2.3.2h]) does not hold.

Theorem 2.3.2 (Almost global existence). Choose (p,q) with p > 11 and p >

q > p*, where p* = [E£2]. Define § < 1 by (2:3.1).

There are positive constants Coy, Cy > 1 with the property that if the initial

data ug satisfies (2.3.24), for some ¢ < 1, then (2.1.1a)-(2.1.1d) has a unique

solution

u € C([0,Tp); XP9)

with Ty defined by

2
. 2 max {v, Cie
Cu(Tp) :< E/z 1 }>

19



and

sup Ep p[u](t) < g2,
0<t<Top

Proof. Suppose that ug satisfies (2.3.2a]), for €2 < 1. Consider the set
T ={T € (0,Tp) : (P1) and (P2) hold}.

The set T is nonempty, connected, and closed relative to (0, 7p).

If T'e€ T, then Propositions (2.10.2) and ({2.3.2a]) imply that
sup Ep pr[u](t) < Co&pr pr 0] (1 + 5;7/(12 [uo]) < e
0<t<T
Thus, 7 is open relative to (0,Tp). By connectness, 7 = (0, Tp). ]

Remarks.

e The following table summarizes the results of the Theorems. The basic

smallness restriction ({2.3.2a)) must always be enforced.

o 1
S Global existence (2.3.5a)
v CO
1 - 5 Almost global existence with
—<a s (2.3.5b)
o ¥ ! diffusion enhanced lifespan
5 . Almost global existence with
Cl 1%

hyperbolic lifespan

20



e The cases (2.3.5a)), (2.3.5b)) show that diffusive effects are important when

v > (e.

For the remainder of the article, we assume that properties (P1) and (P2) hold.

In the following sections, we are going to establish a series of a priori estimates

culminating in Propositions 2.10.1, and [2.10.2

2.4 Commutation

For the linear terms we have the following commutation properties:
LS*T%u = (S + 1) Lu — vBA[S* — (S — 1)*]T"u (2.4.1a)
VA ST 0 = (S + 1)1V A 4, (2.4.1b)

where L = [0, — A70; —vBV, as defined in [2.1.1a} while a in any multi-index and
k > 0 is an integer.

For the nonlinear terms 2.1.1dl we define the commutators as:
[0;, N|(u, Vv) = 0;N(u, Vv) — N(0yu, Vv) — N(u, Vo;v)
[(S+1),N]|(u, Vv) = SN(u, Vv) — N(Su, Vv) — N(u, VSv)
€%, N](u, Vv) = QN (u, Vo) — N(Qu, Vo) — N (u, VQ,v)
and we have the following commutation properties:
Lemma 2.4.1. The nonlinear commutators satisfy the relations
[0,N] =[S,N] =0

21



and
[, N](u, Vv) = CLlu®9;0°, (2.4.2)
with
Cily = CLp(Z)ar + CLA(Zi)ox + Co 5(Zi) 0.

The higher order commutators are obtained inductively according to the Leibnitz-

type formula:

Lemma 2.4.2.

(S + )TN (u, Vv)

! k!

- ¥ a4 0%, N](SM T u, VS2T%0),

CLl! 0/2! CL3! l{/’1| k’g'

al+ag+az=a
k1+ko=k

Lemma 2.4.3. For any quadratic nonlinearity of the form (2.1.1d)
QzPN(y) = P[Qi,N] (y); 1= 17 27 3.
If N is null, then [;, N| is also null.

Proof. We have @y = Oy + Zyy = 0, for all y € R*. Thus, from the chain rule

and (2.4.2) we obtain the first statement:
QiPy(y) = DyPy(y)[Qiy] = DyPy(y)[=Ziy] = Pa,n(v)-

Suppose that N is null. The one-parameter family of rotations U(s) = exp(—sZ;)

leaves the set of null vectors N invariant. Thus, for any y € N/, we have

0= SPU(E)| = DPat)l-Z] = Pla,(v)
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This shows that P, nj is also null. O

Lemma 2.4.4. For any |a| < p*, we have

(127, N(u(z), Vo(x)), w(@))zs

— 1P (@) (@, u(@))s (@, 0,0(2))ss w'(x) + O(R), (2.4.32)

=

with
R = [1Qu(@)] 18,0(2)| + [u(@)] 1QD,v(x)| +rJulx)] [90(x)| | (@),
and also
4P (@) (@, 0@t (@, 0,0(2)es w(2)
<6 fu(a)] 10,0(2)] [u(z)], (2.4.3b)
with 0 defined in (2.3.1).

Proof. By (2.1.1d), N = NV, so using (2.2.1]), we can write

([0, N](u(x), Vo(@)), w(@))e

= ([, N](u(z),w ® 0:v(x)), w(z))ps

+ O (r~Hu(@)||[Qu(z)|[w’(2)]) .

With the projections defined in (2.2.5a), (2.2.5b]), we obtain

[Q, N)(u(z),w @ 8,v(z)) = [Q%, N](Pu(z),w ® PO, v(z))

+ [0, NJ(Qu(z),w @ PO,v(x)) + [, N(u(z),w ® Qd,u(z)).
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Denoting the coefficients associated with the quadratic nonlinearity [Q“,N | as

522, we can write the key term as:

[Q, N](Pu(z) w ® Pd,v(x)) = C24(Pu(r)*(w @ POv(x)) s

from which ([2.4.3al) now easily follows.

Notice that Lemma [2.4.3| gives
Bige (@) = Q" Py (@),
Now &/+/2 belongs to {||y|lzs = 1} NN, so by homogeneity we have
Q2 Py ()] < 23/26,

and (12.4.3b) follows. m

2.5 Sobolev Inequalities

Lemma 2.5.1. Suppose that uw € X*°. Set r = |x|. Then

Jullze < ZHVQUHB (2.5.1a)
la|<2
Irtulle S 10wl .2 (2.5.1b)
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Il S Y IVQ g2 (2.5.1¢)
la|<1
1/2
Irullzee S [ D0 100 2qyisry Y 190 2qypsr | -(2:5.1d)
la]<1 la]<2

Proof. The inequality (2.5.1a]) is the standard Sobolev lemma, and (2.5.1b)) is

Hardy’s inequality. Inequalities (2.5.1c|) and ([2.5.1d]) were proven in Lemma 3.3

of [20]. O
Proposition 2.5.2. Suppose that u : [0,T) x R3 — R* satisfies
20wl (t) + V5o lul(t) + Eaplu](t) < oo

Then using the weights (2.2.4a)), we have

| Cult) e < (EERI@)" + (0 €L W] (1) (2.5.2a)
| ¢ Vu(t) o~ S (Vinld @) + (&5 () (2.5.2b)
7' Cu(®) e S (ll() + ()~ &5 ul 1) (2.5.2¢)
Il nu@®lle S (07 EF () (2.5.2d)

I Qule S (072 (O55®) " +EFMWM) . (252)

Proof. Using the cutoff function ¢ defined in (2.2.4b)), apply (2.5.1a) to u(t),

¥ = 1(ly|). This produces

lpu®ll= S D IV )l + l[ul)ll2qm<).

la|]=1,2
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where we have used that on the support of derivatives of i) we have % <ly| <1.

We apply (2.5.1c)) to the second integral
lull2qui<ny S 17 2a@) | zellr ™22y S D IVQ ()] 22.
lal<1

Thus, we see that

lu®)lle S IV u(t)]|2.

la|<1

On the other hand, we have using (2.5.1¢) again
1 = @)u®llz= < lu®l (1) S I Pu@ e < D 1V ()] 22
lal<1

This shows that

lu@)llz= S D IVT u(t)]| 2. (2.5.3)

lal<1
To prove ([2.5.2a]), apply (2.5.3)) to the function (u(t). We also use ([2.2.4d)),

the identity Q,;¢ = 0, and the fact that on the support of ¢’ we have % < % <1
Applying (2.5.1d) to (Vu(t) yields (2.5.2b]).
The inequality (2.5.2c)) follows by applying (2.5.1b)) to Cu(t).

Since

O llnu(®)l|ze < llrmut)|lze,

we can get (2.5.2dl), by applying (2.5.1d)) to nu(t).

Finally, we prove (2.5.2¢)). By ([2.5.1d)) applied to nQu(t), we have

OnQu(t)||z < [[rnQul e
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1/2

Y102 0Qu) ez Y 199Qu(B)]lz2 | - (2.54)

la]<1 la]<2

Using (2.2.4d]) and the commutation property (2.2.6)), we see that

> 0.2 nQu(t)l[z2 S D InQAO u(®) |2 + (1) Y 1QQu(t)]|12-

lal<1 lal<1 lal<1

By linearity, we have Q0, = Quw’d; = w/QJ;, so

> mQa Q2 u()|z2 $ > Z 17Q; Q% u(t)]| z2 S () V5 [u] ()2

la|<1 la|<1 j=1

Since

Yol u®)e S Y 194l < EF (),

la|<1 la]<1

we obtain the bound

> 190 nQut)llz2 S () (V55 [ul(8)"? + £ [u] (£))-

lal<1

Noting that

Yo Qu(t)lz = Y IInQQu(®)lle S Y I19°u(®)]l22 S Ex [l (1),

la|<2 la|<2 la|<2

we deduce from (|2.5.4))

Blnunle~ < (07 (V5502 + E410) E8n) "

from which ([2.5.2¢]) follows by Young’s inequality. ]

2.6 Calculus Inequalities

Lemma 2.6.1. Suppose that u: [0,T) x R® — R*. If
k1+k2+\a1]+|a2]§p and k1+k2§q,
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then we have

Ic(S™ T u(t))* (ST u(t))”|| 2

2 )

S (1) " + 07 1 10) 4 Jul)

provided the right-hand side is finite.

In the special case when ks + |as| < p, we have

IC(SM T ()™ (S™T > u(t)) 7 2

< ((yf?ims] 0) "+ el

(™S
—
—
<
=
—~
~
N—
SN—
| =
N
¥
—
<
i
—~
~
N—

provided the right-hand side is finite.

Proof. In the case k1 + |a1| < ko + |aso| + 1, i.e. k1 + |a1] < [g], using the Sobolev

inequality (2.5.2a)) we have the following bound:

Ic(SM T () (S™T  u(t)) e S IICSH T u(t)l| e | S™T  u(t) | 2

1/2

< ((yf;tﬂ[g] () "+ <t>—155ﬁﬂ7[3][m<t>) &1l (®)

2

And in the case ko + |ao| + 1 < ky + |aq], i.e. ko + |as| < [p;l}, we likewise have:

IC(S™ T () (ST u(t)? [l < ST u(t)]| o | ST ult) | 22

S (O ) 7L oy 1)) 851000

2

The second statement of the lemma follows similarly from the preceding argu-

ments. OJ
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Lemma 2.6.2. Suppose that u: [0,T) x R® — R*. If
ki 4 ke + |ai| + |ao] <P and ki + ke < g,
then we have

(ST () (S0 () Nz S ()€ pss) 15 WO (1),

provided the right-hand side is finite.

In the special case when ks + |as| < p, we have

D, gbar

(ST u(®) (=T u®) llz S (0 €t 15[ (V! g l0](0)
provided the right-hand side is finite.

Proof. In the case ki + |a1| < ko + |az| + 1, i.e. k1 + |a1] < [g], using the Sobolev

inequality (2.5.2d|) we have the following bound:

In(S™ T u(e) (S™ T u(®)
S ST u(t) = 57 () 2
S (07 € b [ (DEL gl]0)

And in the case ky + |as| + 1 < ki + |a1], Le. ko +|as| < [E2], we similarly have:

In(SH T u(t)* (S™T u(t)) " 2
S ST ()| [ SM T u(t) | 2

~Y

S 07

#2122

1/2
w05 Tl (1),
The second statement of the lemma follows analogously. O
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Two slightly more specialized instances of this basic argument occur in the

proof of Proposition [2.10.1

2.7 Estimates of the Linear Equation

In this section we provide estimates on the solutions of the linear system

(2.1.24)), (2.1.2D)), and (2.1.2¢)):

o’ —V -1 —vAu’ =G (2.7.1a)
ou— (Vu)" =0 (2.7.1b)
VAu=0. (2.7.1c)

Lemma 2.7.1. Assume that o in (2.2.4a)) is sufficiently small and that v < 1.

Let G € L*([0,T); L*(R3)), for some 0 < T < oo. If u = (u’,u) is a solution of

(2.7.1a), (2.7.1b), (2.7.1c)) such that

sup Enafu](t) < oc,
0<t<T

then for any 0 <60 <1,
/0 07 [ICVut) 2 + 21 CAW()]2] dt
T
< (T2, oful(T) + / (1)028,  [u] (t)dt

" / G |2adt.

Multiplying (2.7.1al) and (2.7.1b|) by ¢ and recalling that S = t9; + 10, we have:

t(V -+ vAu®) = Su’ — rou’ —tG
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tvVu® = Su — ro,u.
Multiplying by ¢? and taking the L2-inner product we obtain:

ElICV - all7s +2v(CV - @, (A" 2
+V2ICAW 7 + ¢Vl IZ:]

S Cropullzs + Evau](t) + lICG T2, (27.2)
where we have used that [|(Sul|7. is bounded by & 1[u](t). By we have:
A’ =V -V’ =V - o,

so we can estimate the cross term as:
20(CV - 1, CAU®) 2 = 20(CV - @, CO,(V - 1)) 2 = v y C20,(V - 1)*dx
=0l -l = [ AT e
> 0CV -l —v [ GV 0
Cyv?

N 1 _
> v,V - a7 — §HCV |7, — (t—>251,0[u](t)-

We have applied above Young’s inequality and have used that 0,(* < Cy((t)71,

for some positive constant C'. Substituting in (2.7.2]) we get:

_ 1 _
PolICY -l + SlICV - allz:
+VICAU e + [I¢Vl | Z2]

S ICropullze + Evalu)(t) + £(ICG] 7.
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Choosing 0 < # < 1, multiplying by (¢)’~2, and integrating in time, we get:

T B 1 -
| e bncv il + VICA 3 + ||<Vu0||%z] dt
T
< / 21 CronullZs + Ena[u)(t) + £CG2a]dt
0
T
—/ ()7 200,||CV - |3 dt.
0
We next treat the time derivative term. We start with:
O, (vt (1)772) = 2ut(t)0 7% 4 vt (6 — 2) (1) 3t (t) ! (2.7.3)
< 2t(t)IT2 Fuht3 ()0 < At (t)02

S tQ(t>9_2—|—Cu2<t)9_2,

1 =

and then, by integration by parts, we obtain:

T
—/ 2(17200,||CV - al|2.dt
0
T
< / <Zt2(t>9_2 + Cu2<t>"—2) ICV - @||2.dt
0
T 1 T
< / ﬁ(t)HHCV |72 dt + C/ {)0728, o[u](t)dt.
0 0
Substituting into [2.7] we obtain:
T 1
/O £ ()" {ZIICV -al|72 + v2(ICAU |72 + ||€Vu0|lia] dt

T
5/ (62 llIcropullis + Enalul(t) + ICG[7:]dt.
0

Thanks to Lemma [2.7.2] we can control the full gradient on the left:
T
| B0 1Tl + v lcan i) de
0
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T
§/ (O 2(ICropullie + Ev[ul(t) + #ICG 7. dt.
0
Using that t* = (t)2 — 1, we can write:
T
|0 levuls + viicanlz) a
T
S / (O 2ICropullte + v ICAWC T2 + Enalul(t) + [ICG72)dt.
0
Since r < o(t) on the support of ¢, we have that
T T
| e s [ o eicoul:
0 0

and for sufficiently small o the above term can be absorbed on the left. This key

steps yields:
T
/0 (0)° [ICVul2s + 2| 2,] dt
T
< / (0022 CAW| R + Eva[u](t) + 2]/ CCI %) dt. (2.7.4)
0
Finally, the first term on the right can be estimated as follows:
T T d t
/ (22D 2t = / 12l / ICA| 2 dsdt
0 0 dt 0

T T t
(02 [t + 2 0) [ ) [ e adsar
0 0 0

T
< U(TY2E o) (T) + v / (1), oful) ().
0
Substituting into (2.7.4)) and recalling that v < 1, we get the desired estimate:
T
| @ levuls + 2can|s] de
0
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T
+ [ @il
In the proof of Lemma [2.7.1 we used the following estimate:
Lemma 2.7.2. Ifw € HY(R3 R3) and V Aw = 0, then
1 2 2 i\ =20,112
SICVwlze = lICV - wlz S (6 [lwllz..
Proof. The constraint V A w = 0 implies that:
—(V - w)? = —0,w'0;u’ = —0;(0w'w’) + 0;0;w'w’
= —aj(aiwiwj) + 8iaiijj
= —@(&szwj) + ((),(&ijj) — @wj@iwj
= —0;(Ow'w?) + ;(Ow'w!) — |Vwl|?.
Therefore, we have:
Vwl* — (V- w)? = 8;(0iw’w’) — 0;(0;w'n’).
After multiplying by ¢? and integrating, we have:
ICVwl[|Z: = (1KY - w]z.
= C?0; (0w’ w?) — 9;(Oyw'w )| da
R3
s [ o wululas
R3
1 2 —2y, 112
< SleVuwllz: + OO lwlz.,
where we have used Young’s inequality and the fact that |[V{?| < ().
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We now establish a higher order version of Lemma [2.7.1]

Proposition 2.7.3. Assume that o in (2.2.4a)) is sufficiently small and that v < 1.

Fiz 0 < g < p. Suppose that

S*G e L2([0,T]; XP~*19 k=0,...,q

for some 0 < T < co. If u is a solution of (2.7.1a)), (2.7.1b)), (2.7.1c) such that

sup Epgi1lul(t) < oo,
0<t<T

then for any 0 <6 <1,

/0 0 [Vl (t) + A2 (1)) dt
< (T2, [u) (T) + / (1)028, ] (£)dt

+ D, /0 7| ¢SFTeG(1)||2 2 dt.

la]+k<p—1
k<q

Proof. We prove the result by induction on ¢q. Recall the commutation properties
EATE) and (E4Ta):
LS*T%u = (S + 1) Lu — vBA[S* — (S — 1)*]I",
V A S T4 = (S + DIV A .

For the case ¢ = 0, first fix |a| < p — 1. Next, from the commutation properties,

we notice that ['u solves (2.7.1a) and (2.7.1b) with I'*G on the right. Applying

Lemma with T"*u, we obtain:
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/0 (1) [ICVTu(t) |25 + V2 [CAT (1) 124] dt
< (T2, o[T*u(T) + / (1)028, [T (1)t
n / 0 CT°G () 2adr,

which after summation over |a| < p — 1 gives the result for ¢ = 0:

/0 (1) [V [u)(1) + 2 20 u](1)] dt
< {TY2E, o [ul(T) + / (1)028,  [u] (t)dt

+ Z/ VY\ICTUG(¢) |2 dt.

|a|<p—1
Next, we take 1 < r < p and assume the result holds for ¢ = r — 1. We choose a

and k such that |a|] + &k < p—1 and k£ < r. By the commutation properties, we

see that S*I"u solves (2.7.1a) and (2.7.1b]) with
(S + 1)T*G — vBA[S* — (S — 1)*"u
on the right. Therefore, application of Lemma gives:
T
[ 07 v Teutozs + 2Icas Tl )]
0
T
S (D)2 [S THIT) + [0 e S T )
0
T
+ [ Iealst — (5 = 1/ r)
T
+ [ @S + DTG
0

S{T)072E, o[SFT (T + / T(t)9_28171[5kfau] (t)dt
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+/0 () [ 25 [ul(t) + 1C(S + 1) TG(1) || 2]t

Summing over |a| +k <p—1and k < r, we get:

| i + vzl
SUTY 26, () + [ 028 a0

b [z + s e e

lal+k<p—1
k<r

We next consider the exterior region:

Lemma 2.7.4. Let G € C([0,T]; L*(R?)), for some 0 < T < oo. Ifu= (u°,a) is

a solution of (2.7.1a), (2.7.1b), (2.7.1c) such that

sup &11uf(t) < oo,
0<t<T

then for all 0 <t < T,
In(rowu® +tV - a@)||72 + [In(roya + tVul) |72 + (v1)?[[nAu’]| 7.
S Enlul(t) + (G2

Proof. We start again by multiplying (2.7.1a) and (2.7.1b]) by t. Using that S =

to; + ro,, we get:

royu’ +tV - + trvAu® = Su® — tG°

ro,a + tVu’ = Sa.
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Next, we multiply the above equations by 1 and take the L?-inner product:

In(ro.u® +1V - @)||72 + [n(roya +tVu) |72 + (v1)*|InAu’|| 72
+2(n(rou’ +tV - a), ntrAu’) 2

< [InSullz> + €[InG|l7..
We will estimate the cross term on the left which we denote as:
I = 2(n(rou’ +tV - a),ntrAu’y . = 2yt/772(7“8ru0 +tV - a)Au’dz. (2.7.5)
To establish the result it suffices to show that:
1] < u(vt)*InAu’||72 + CEL[ul(t) (2.7.6)

for some small enough pu, say p < 1/2 (so that the Laplacian term can be ab-
sorbed). Using the definition S = t9, + r0,, the gradient decomposition V =

w0, — 2 A Q, and the constraint 9,u = Vu', we obtain:

1 t
—w- (—Sa——ata) - (2r0) -
r r r
t_ o 1
=—w- ;Vu +0 ;(|Qu! + [Sul)
to 1
=—=0u + O =(|Qu| +|Su]) ) .
r r
So we can write the cross term I from (2.7.5) as

2
2Vt/7]2 lr@ruo — t—ﬁruo +tO (1(|Qu| + |Su\))} Auldx
r r
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2
= 2yt/772 {(1 - %) rou’ Au’ + O (;(|Qu| + ]Su|)) Auo} de. (2.7.7)

We have the following identity:
ro,uw’Au’ = rou’V - vVl (2.7.8)
=V - (r0,u’Vu) — V(ro.u’) - Vu'.
The last term on the right can be written as:

—V(rou®) - Vu® = —0; (20, u’)Oiu°

= (—2:0;00u° — 550, u”)Ou° = —21,0;0u’ O’ — |V |?

1 1 3
= —Exk0k|Vu0|2 — |VuP)? = -0, (ﬁxk|VuO|2) + §|Vu0|2 — | Vul?

1 1
=-V. <§]Vu0|2x> + EIVUOP.
Substituting into (2.7.8)), we get:
1 1
rou’Au’ = V - (ri?TUOVuO — §I|VUO|2> + §|Vu0|2.

Insertion into (2.7.7) and integration by parts give:

2 t? o, 0 1 012

I'==2vt [V In|1l-= -r@ruVu—§x|Vu| dx
r
2 t? 1 02 t 0
+2uvt [ n — -1 §|Vu "4+ O | =(|Qu| + |Sul]) ) Au”| dx.
r r

We have that Vn? < O(n|/|(t)~1) and V (1 — fé) < O(L5). Also by the fact

that r 2 (t) on the support of n and (t) < r < (t) on the support of ¢/, we have:

ofe (-
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and hence
17| < yt/n[Vu0|2dx + Vt/n(\Qu\ + | Su|) | Au®|dx.
Using integration by parts and the fact that Vi < (¢)71, we get:

yt/77|Vu0\2dx = —mf/(nuOAuo +u'Vn - Vu°) da

< I/t/n|u0Au0|dx + v 1[ul(t),

SO

1< yt/n(|u0| 1Qu + |Sul) | Aw|dz + CE 1 [ul(8).

The estimate (2.7.6) follows from Young’s inequality.

Proposition 2.7.5. Fiz 0 < q < p. Suppose that

SFG e o([0,T), XP~+ 10 k=0,...,q—1,

for some 0 < T < oo. If u = (u’,u) is a solution of (2.7.1d), (2.7.1b)), (2.7.1d)

such that

sup Epgi1lul(t) < oo,
0<t<T

then for all 0 <t < T,

Vel () + P23 ](8) S Epgalul®) + Y LIS TG,

lal+k<p—1
k<q
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Proof. From from the projection definition ([2.2.5a]) and the gradient decomposi-

tion ([2.2.1)), for each j, we have:

IPOjul3 = i(ﬁjuo w-0;u)? < = (0’ — w - 0,u)? +(9(Tl2|§2u|2),

FNH

and by ([2:7.19),
|Q0juliza = (I — P)Djulfs
1
= Z(ﬁjuo —I— w - (‘9jﬂ)2 + |w A\ 8jﬂ|§g3

1 .
= Z(ajuo +w - 0;u)? + |w A V! |gs

—_

1
Z—l(ﬁu +w-0,u)* + (T—2|Qu|2)

Therefore, since r 2 (t +r) > (t — r) on the support of 7, we obtain

I
]

To [l (t) [lln¢t = r)POul|Z + [Int + r)Q0jull7.]

1

In(t = )0’ — w - 0,) 72

IN
=

1
+ ZHn(t + 7Y (O’ +w - &ﬂ)”%z + CHQUH%z

< 7l =r)(0u” — w- Sa)|1

N

1
+ ZHn(t + 1) (0’ + w - 9,a) |72 + C[||Vull72 + || Qul|72].
An algebraic manipulation gives:
1 2089 .0 9 1 2 0 —\2
Z(t —r)*(Ou’ —w - 0u)” + Z<t +7r)*(0ru” + w - O,u)

1 1
= E(raruo + tw - 0,1)* + §(rw - 0,1 + t0,u’)?.
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Thus, we obtain:

1 1
V) < 5o+t Q@)% + 5l - By + 0,40

+ ClIIVullzs + [[QullZ:].
By the gradient decomposition ([2.2.1f), we have:
n|ro.u’ 4 tw - 0,4 < nlroyu’ +tV - a + O(|Qal)
and

nlrw - 0,1 + to,u’| = nlrw - 0,4 + to,u'w - w

= n|w - (ro,u + to,u'w)| < n|rou + tVul|gs + O(|Q°)),

which gives us:

1 _ 1 _
P < S I0 + ¢V - )3 + 5o+ )

+ [Vl Z2 + [I1€ul|Z:).
Application of Lemma gives:
Vo lu)(t) +v* ZE5[u](t) S Enalu](t) + [nG 7.

Now take any multi-index a with |a| < p — 1. By the commutation property

(2.4.1a)), we can apply the preceding inequality to I'u to get:

oL u)(t) + 2 275 M) (1) S Ena [T (t) + £ [l G| L.
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Summation over |a| < p — 1 yields

oLl () + VP25 [u]() S Epal](0) + Y LT G,
la|<p—1
which proves the result in the case ¢ = 0.

The result for 0 < ¢ < p follows from (2.4.1b]) and induction, as in the proof

of Propostion [2.7.3] O

2.8 Decay Estimates

In this section we establish the dispersive estimates for the nonlinear equation

using a bootstrap argument and an application of Propositions [2.7.3] and [2.7.5]

Theorem 2.8.1. Choose (p,q) so that p* = [’%5} < q < p. Suppose that u €

C([0,T), XP9) is a solution of (2.1.1al), (2.1.1b)) with

sup &, 4[ul(t) < oo,
0<t<T

and

sup &y u(t) <e? < 1. (2.8.1)
0<t<T

Then

/0 ) [Vt [u)(t) + 220 [u)(t)] dt
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sup (t) Y&y o+ [u](t), 0<f0+vy<1
0<t<T

AN

., (2.8.2a)

log(e +T) sup Ep p[ul(t), 6=1

L 0<t<T

and

/0 00 [V [l(e) £ 22 [al(1)] dt

S sup (6)77Eul(t), 0<f8+v<1.

0<t<T

Proof. Consider an application of Proposition with G = N(u,Vu) and a

fixed pair (p,q) withg=p—1,2<p <p:

/0 OV (1) + 220 ) (1)) dE
< TV, ,[u)(T) + / (1)02E 31 u] (£)dt

- /0 (B[ CSH TN (u, Va) (£)|2adt. (2.8.3)

lal+k<p—1
k<q

Note the range of the indices: |a|] +k < p—1and k < §=p— 1. By Lemmas

2.4.2| and [2.4.1] we have that ||(S*T*N (u, Vu)||2, is bounded by a sum of terms

of the form:

HCSle“lu SkQF”HuH%Q,

with |a1| + |as| < |a|] and k; + ko < k. Therefore, we have:

ki +ky+laa| + ool <k +la] <p—1 and ki +k <p—1L
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Application of Lemma shows that

l¢stTen SETe i, < [V [u)(1) + (1) 28y 1 4[] Englul(t)

~

with p/ = [w] =2 +2and 7 = [7%1].

Therefore, from we have:
| @ + 2 2
S ATl T) + [ 0" Gt
= [0 D) + 026 o l0)] Epalil)ar, (284

for any 0 < 6 < 1. We are going to apply this for two pairs (p, q).

First, let (p, ) = (p*,p* —1). Since p = p* > 5, we get

k *_1
p’={%}+2§p*, q’={p2 ]Sp*—l-

In this case, (2.8.4) and ([2.8.1)) yield:

/OT<t>0l[ ;ifp*_l[u](t) + VQZ;Iifp*_l[u](t)]dt (2.8.5)
S T8 aldD)+ [ (0026, 0
b [0 DAl + 061y 2 10] a0
S T2y () [ 026 il

T
e /0 OOV [ul(t)dt.
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Choose v > 0 such that 0 < § 4+~ < 1. We have that

()72 Ep pr lul() = (O ) (1) 7 Epe e [u] (1)

for all 0 < ¢ < T'. Thus, from (2.8.5)we have:

/0 OOUYR . [u](t) + 220 Ju)(8)]de

S s (07 &l |2 [ T<t>9+v-2dt}

0<t<T

T
+ &2 / Py . [u](t)dt.
0
For 2 sufficiently small, the last term above can be absorbed on the left and then

the inequalities ([2.8.2a)) follow immediately.
Next, we use the pair (p,q) = (p* + 1,p*) in (2.8.4). Again since p* > 5, we

have

_, pr+1
2
We obtain from ([2.8.4)):
T _
/0 O [Vl (1) + 220 (ul(1)] de
T
SUTY 2 (D) + [0l O
0
T .
+/0 () [V e _a[u) (8) + () 2 Epr 1 e [U) (8)] Eper e [w] (1)l
Choose v > 0 such that 0 < 8 + v < 1. We have:

(O " Epalul®) = (O sup ()7 qlu (1)) and
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for all 0 <t <T'. Since p* + 1 < g < p, we have the estimate:

T
/0 O [Vl () + 220 (ul(1)] de
T
S s (078l |02+ [
0
T .
[0 D) + () 2l O] ] (289
where by (2.8.2a) and (2.8.1]) the last integral is bounded by:

A<wﬂ[;y4wwwww2@wW1wwnﬁ

T T
< /0 Oyl (t)dt + € /O )0 =2qt < Ce

So from ([2.8.6)) we arrive at:

/O @ [V () - 22 (O] dE S sup () Epglul (D).

0<t<T

]

Theorem 2.8.2. Fix p > 11. Assume that p* = [1%5} < q < p. Suppose that

u e C([0,T), XP1) is a solution of (2.1.1a)), (2.1.1b)) with

sup &, 4[ul(t) < oo
0<t<T

and

sup Eprpe[u](t) < 1. (2.8.7)

0<t<T

47



Then

a1 (W (t) + V2250 [u](t) S Epglu](t), 0<t<T.

Proof. Consider an application of Proposition with G = N(u, Vu):

Vo lul () + 2 Z55[ul(t) S Epgnilul )+ Y 108 TN (u, Vu) 7.

la|+k<p—1
k<q

Note the range of the indices: |a|+k <p—1, k < ¢. By Lemmas [2.4.2|and [2.4.1]

we have that ||nS*T*N (u, Vu)||2, is bounded by a sum of terms of the form

|[nS* Ty S*2T %2y,

with |a;| + |az| < |a| and ki + k2 < k. Therefore, we have:
ki+ ko + |ar| +Jas] <k+l]a| <p—1 and ki + ks <gq.
Application of Lemma [2.6.2] shows that
InS¥ T u SET a7, S (672 Epgul(t) Englul(t) S (1) Epglul(t),

where p' = [%] = [2]+2 < p* and ¢’ = [55}] < p* and therefore &, ,[u](t) <

Eppr[u](t) < 1, by (2.8.7). [
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2.9 High Energy Estimates

Proposition 2.9.1. Choose (p,q) so that 5 < p* = [’%5} < q < p. Suppose that

u € C([0,Ty), XP?) is a solution of (2.1.1a)), (2.1.1b|) with

sup Epe - [u](t) < &® < 1. (2.9.1)
0<t<Top

Then there exists a constant Cy > 1 such that

for 0 <t <Ty.
Proof. Taking the L2-dot product of
Lu = Oyu — Ajaju — vBAu
with u(t), we obtain:
(Oru(t), u(t)) L2 — (A0pu(t), u(t) 2 — (vBAu(t), u(t))L:
= (Lu(t),u(t))rz. (2.9.2)
Integration by parts and the symmetry of the coefficient matrices give:
(A05u(t), u()) 2 = —{ult), A0yu(t)) 12,

which implies that (A79;u(t), u(t))z2 = 0. Furthermore, again by integration by

parts and the definition of the coefficient matrix B in (2.1.1d]), we get:

(vBAu(t),u(t)) 2 :/I/Auo(t)uo(t)dm

R
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3
_/ V() Pz = —u | VO (1) .
R
Thus, (3.10.1)) becomes:
18 I Vul ()12, = (Lu(t), u(t
5 HJu(@) |22 + vV (t)]|72 = (Lu(t), u(t)) 2

Integration over time gives:

S + v IVt = SO+ [ (L. u)

which implies that

507()[71] (T) == 5070[’&0] + /OT(Lu(t),u(t))det, 0 S T < T().

For p > ¢ > 0, we apply the above estimate to higher order vector fields and

together with the commutation property (2.4.1a) we get:

Epalu)(T) = &, quo) + 1 + Z / (S + D)*TLu(t), S*Tu(t)) r2dt,  (2.9.3)

\M+k<p
<q

with

- > / (VBA[S — DMrou(t), SFT%(t)) 2 dt.

|\+k<p

For ¢ > 0, using the definition B = ey ® e and integration by parts, we get the

bound

|| B = (5 = 1T u(o). S Tou() e
-/ /RSVA[sM — DT u(0) SH () e

/ /R vVIS — DF(Tu(t)? - VSH(T u(t)) dudt

50



S /0 v[|V[S* — (S = DT u(t))°[| 2| VS* (Tu(t))°| 2t
1/2

: (”/OT”V[S’“ Gk 1>’“1<Fau<t>>°ni2dt) <

(v [ 198t weuce ) "

Therefore, we have:

IS &L ul(T)E2)(T).

~ “pg-1

Applying Young’s inequality and inserting into result in:

Epalul(T) S Epgluo] + Epgr[ul(T) + p&p o[ul(T)

+ Z / 1) Lu(t), SkF“u(t»det' ;

la|+k<p
k<q

where ;1 can be chosen sufficiently small so that the corresponding energy term

can be absorbed on the left. It follows from induction on ¢ that

Epalt)(T) S Epgluo] + Z

I\+k<p

/ (S 4 1) Lu(t ),SkF“u(t)>det‘. (2.9.4)
If we combine with Lemma [2.4.2 n we arrive at

Epglu](T) S Epqluo]

DY

a]+tagtag=a
k1+ko=k
la|+k<p
k<q

T
/ ([0, N](S*1 T, V.S*T%2y), ST ) f2dt| . (2.9.5)
0

Special care must be taken for the terms in the sum with |as| + ks = |a| + k = p.

To simplify the notation when analyzing these terms, set v = S*I"*u. Then using
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the fact that 9,v° = dsv®, we may write:

(N (u, VS*Tu), S Tu)gs = (N (u, Vv), 0)ps (2.9.6)
= N°(u, Vo)o©
= Oﬁ75uaaevﬁvo

= C’ioua(%vovo + Cf;ymu“awmv“

1
= §C§70u0‘84(v0)2—|-
1 0 « m, 0 m, 0
§Caﬁu [Dpv™ 0" + D™ 0.
Furthermore,
O™ " + Op™° = 9p(v™0°) — v™p° 4 O

= 0y (™) — V™" + O (v0?) — 190,,0°
= 0y (™) + O (V0%) — V™V’ — v D™

= 0y (V™) + O (V%) — Op(v™0").
From (2.9.6) we have:

(N (u, VST %), S*T%u) ga
1
=3 [C’fyyoag(u“(vo)Q) + CL L (Be(u®0™0°) + Oy (w0 0®) — Gp(u*v™"))]

— O(|9ul[v]).
Integration over [0, 7] x R3 yields:
T
/ (N (u,VS*T%u), S*Tu) r2dt (2.9.7)
0
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- / [ ot (" (@S T ()" (ST u))) da
+/O /Rsoqauns T u[?)dadt
_ _% /]R G (T)(SFTu(T)) " (S* T u(T))
% /R O (0)(S T u(0))" (' u(0)

T
+0 ( / |8u||SkF“u|2d:pdt)
0 R3

S () || oo 3y /RS \Skrau(T”?dm

+ [|u(0) || Lo re) /R3 |S*Tu(0)|2da

T
+0(/ / |8u||SkF“u|2d.rdt).
0 R3

By and the assumption (2.9.1]), we have
ooy S llull sy < Exf5'lu] < e < 1. (2.9.8)
Using the PDE , we can estimate the time derivative:
|00] < [Vul + [Au| + |u]|Vul
and, together with the smallness condition (2.9.8)), we have
|0u| < |Oou| 4+ [Vu| S (14 |ul) [Vu| + |Au| < [Vu| + |Auyl. (2.9.9)
It follows that the right-hand side of is bounded by

g<5p,q[u](T)+5p,q[uo]> e (/OT /R3(|W| + |Au|)|SkF“u|2dxdt>.
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The remaining terms in b)) satisfy:

POEEDY

\al+k<p ajtaz+az=a
<q k1t+ko=k
lag|+ko<p

T
/ ([0, N](SM Ty, V.S*2T%24), S*T ) p2dt
0

S Y. //|5’f1ra1u||vsk2r“2 )||SF | dadt.

la|+k<p laj+taz|<|al
k<q ky4ko<k
lag|+ko<p

This leads to:

Epalul(T) < Epgluo] Z/ (IVu@)l[ze + [[Au(t)]] L) Epglul(t)dt

la|+k=p

+ Z / | |SF T w(t)] |SPT% ()| || =€, 2 [W](t)dt.  (2.9.10)

lay+ag|+ky+ka<p
k1+ko<q
lag|+ko<p

Using property (2.2.4c)) of the cut-off functions, the Sobolev inequalities (2.5.2a)),
(2.5.2d]), and the fact that 5 < [’%5}, we obtain:
V)| zoe + [|Au(t)|| -
S EVu@)llze + [ICAu@) || + InVu@)lle + [nAu(t)|| -
in 1/2 _
< (V@) + ) e Tl 1)

S (Ve g [00) "+ (07 g WO

By (2.2.4c¢) and Lemmas [2.6.1{ and [2.6.2, we get the bound

> [ 1S* T u(t)] [S*2T  u(t)] |2
|lay+ag|+k1+ko<p
k1+ka<q
|ag|+ko<p
S > I [S* T u(t)] [S*=T= tu(t)] |12
lag+agl+ki+ko<p

k1+ko<q
|ag|+ko<p
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> ISR (SR ()] e

laj+ag|+k1+ko<p
k1+ko<q
lag|+ko<p

S| (Ot psel0) ™ 4 07 e 1000 22000

2

Inserting the two bounds above into the previous energy inequality yields

Epgul(T) S Epqu]

+ /OT {(yir;if,],[m] [u] (t))1/2 + <t>flg[1% [p+5][u] (t)] &, [u](t)dt.

2 2 2

Gronwall’s inequality further implies that:
Epqlul(T)

2 1’L 2 2

St [ (g 10) 4 07161 o 0] . 200

Recalling the definition p* = [’%5] and using Theorem we obtain:

[ (98 g 0) = ([ 09, ) ([ )

1/2
S ( sup &y p+[u](t) log(e +T)) (log(e + T))/?

0<t<T

1/2

< sup 5;*/;* [u](t)log(e + T).

0<t<T

Similarly, we have the bound

|0 g ) 5 sup £ [l og(e+ 7).

=2 0<t<T

With the smallness assumption (2.9.1)), the energy inequality (2.9.11)) becomes:
Epalu](T) S Epgluo] exp [Celog(e + T')] < &, q[uol(T) .
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Returning to (2.9.11)), we can repeat this argument with the pair (p,q) =
(p*,p*), because p* > 5 implies that p* > [’%ﬁ} Therefore, we obtain also the
bound

Epr () S Epr e [wa](T) <.

Corollary 2.9.2. Under the hypotheses of Proposition |2.9.1, we have

Ep* pr [u](T) 5 Epr p+ (o]

DY

aj+tag +a3:a
k1+ko=k
la|+k<p*
k<p*

T
/ ([0, N](S¥1 T, V.S™T%2y), SFT %) r2dt| .
0

Proof. This is simply ([2.9.5) from the proof of Proposition in the case when

(p,q) = (p*,p"). 0

2.10 Low Energy Estimates

Proposition 2.10.1. Choose (p,q) such that p > 11, and p > q > p*, where

p* = [E2]. Let § < 1 be defined as in (2:3.1). Suppose that u € C([0,T), XP9)

is a solution of (2.1.1al), (2.1.1b)) with

sup Ep - [ul(t) < e? < 1. (2.10.1)
0<t<Top

There exists a constant Cy > 1 such that if

5 2
68 (2) Bl (14 830 < 1. 2102

14
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then

sup Ep p [u](t) < Co&pr p+ [u0)] (1 + 5;’22 [ug]) ) (2.10.3)

0<t<Top

Proof. We start with the inequality in Corollary [2.9.2

Ep* pr [u](T) S Ep p+ (o]

DY

a]+tagtagz=a

T
/ ([T, NJ(SM T, VS*2I2,), SFT) a2 dt| .
0

kq+ko=k
la|+k<p*
k<p*

Using the cut-off function defined in ([2.2.4a)) and satisfying the property (2.2.4¢)),

we can bound the nonlinear term by:

T
3 / ([T, N](SMT® u, VST %), SKT) p2dt
ay +a2 +a3:a 0
k1+ko=k
la|+k<p*
k<p*

T
S D) / C|SFT9 | |V S T2q| | ST | dudt
0 R3

la+ag|<|al
k1+ko=k
la|+k<p*
k<p*

T
+ / /77<[Fa3,N](5k1Fa1U,VS’”F“QU),S’“F“dexdt
a1+ag+taz=a 0 R3
ky+ko=k
Iaztiip*

=1+ 1, (2.104)

where I; and I, are defined correspondingly as the first and second term on the
right-hand side of the above inequality. The time variable T is in the range

0<T < Ty
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Interior Low Energy

The interior intergral I; can be bounded by:

T
L= ) /0 RBCQ\SkTmu\ |VS*2Te2y| |SFTu| dadt

lag+ag|<|al
ky+ko=k
|a]+k<p*
k<p*

T
< > / | ¢2|S* T o] [VS*2T2y| || 2 EM2. [u](t)dt.
k1+ko+|ay|+|ag|<p* 0
k1+ko<p*

In the case ky + |a1| < ko + |az| + 1, ie. ki + |ai| <[], using (2:5.2a), we

have:

¢3S T ||V S*2D %2 || 12

S NCS T ul| o [CV S™T 0| 2

2

1/2
S [(yfr‘g;“]v[?][u](t)) +<t>715[11{*2+2],[§][“](t> (Vi e [ul ()2

We next consider the case when kg + |as| +1 < ki + |aq|, i.e. ko+]az| < [”T_l] )

With the use of Hardy’s inequality (2.5.2¢) and the Sobolev inequality (2.5.2b)),
we have:
1€ [SM T ul [VS*2T 2] |12
< |l CSM T | 12 || r¢V SF2T 20| oo
in 1/2 -
S O [ (0) 4+ 07165 )0

1/2
int —1¢o1/2
X [(y[p*;S]y[p*—l][u](t)) + <t> 5[p*;3]7[p*1][u](t)] .

2
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Recall that [pTJrs] < p* since p > 11. Overall, for the interior low energy we

have:

T 1/2
hs | [( ) +<t>15[15*2;3]7[p;1[“]“)]
X |1 [ 0) 7+ (07165 1ul(0)] €35 )t
S [ O ae)” + e )
X [( it )+ ()€Y ) (t)] Y2 [u](t)dt
S [ o) 3, ) g
= [0 O ) & )
+ / T(t>_25;’f;*[u](t)dt.
Next, we are going to estimate the three integrals from above. We will use

Theorem and Proposition [2.9.1, Furthermore, we will require that 2Ce < 1.
The first integral can be estimated as follows:
s int 1/2 /4 int 1/2 51/2
(Ve [u] ()77 (D e [l (8) 7 €L [u] () dt
0
1/2
< (s (07Ol
0<t<T
r : 1/2 [~y 1/2
< /O OO (Vi )(8) M (Vi [l (1) e
T 1/2 T 1/2
1/2 I in £ in
< &2 [ug ( /0 (H)°: /Qyp*fp*l[u](t)dt> ( /0 ()02 p&l’p*[u](t)dt>
1/2 1/2
< &5 lud (s (070, 10)  ( sup (0708 lul()
’ 0<t<T 0<t<T

S Epr - [W0] 51%12 [uo].
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For the second integral, we have:
r ~ 1/2
| O3 l0) " 6 a0
0

< sup (1)CE e [u] (1) /0 {6y~ (it (1)) d

0<t<T

T
— 1€ 1€ in 1/2
< &y o] / (1) IOyl (i) (1) e

< Epe e 0] (/OT(t>2+Cledt> 1/2 </OT<t>C18 ~ [u](t)dt) 1/2

< Epr pr o] ( sup (£)"C1°E, ,[u] (t))1/2

0<t<T

S Epr - [w0] 5;7{]2 [uo].

And finally, the third integral is bounded by:

T 3/2 T i
/ ()26 Bt S (Sup <t>01€5p*,p*[U](t)> / (1)t
0 0<t<T 0
< ENL Tug)
S Ep e [UO]EI},{f [uo].

Combining these estimates, we have:

Iy S Epe e 0] €/ [uo]. (2.10.5)

Exterior Low Energy

Recall the definition of the second integral I in (2.10.4)):

L= >

ay +a2+a3=a
k1+ko=k
la|+k<p*
k<p*

T
/ / (7%, N](SM T u, V.S2T%0), SFT%) gadad|
0 R3
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Using projection decompositions (Lemma [2.4.4)), we can write:
IQ = [é + IQ”, (2106&)

where

T
! 1 - ~ ~ k11a1
L= E / / 1 1 Pga (@) (@, 5" T u)pa
a1+tag+az=a 0 RB
kq -+ ko=k
la|+k<p*
k<p*

x (@, 0,82 2u)pa (S*T)° ddt| (2.10.6b)

and

T
Iy = > /
0

kyt+ka+lay|+|ag|<p*
k1+ko<p*

| n|QS* T4 | |0,5%T2ul || 2 (2.10.6¢)

+ 19| S* T u] |QO,S* T ul | 2

|7l SR T ] (S5 OT 2l |1 | £33, ul(¢) dt.

p*.p*
We first estimate the terms ). Using the notation

Q1 = || n|QS" T u| |9, 5T u| |12
Q2 = || n|S" T u| |Q,S*T*u| |12
Qs = || v~ nlSM T ] |S*2QT 20l || 12,
we show that
Qi+ Qo+ Qs S (1) E)12. [u)(t) £)2[u) (1), (2.10.7)
We recall the facts that p* + 3 < p and [I’T%} < p* (since p > 11) and also

p* < q.
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With the use of (2.5.2¢)) and Theorem we have:

Q1 = || QST u| 9,5 T |2
< QST ul 1|0, S22l 12
SO (i W)+ 82 e [00) 53 s 1 W) 0)
SO Eltapran W0 &L 0, ()
< ()76 (g1 ),
where in the last line we have used that fact that since ky + ko + |a1| + |as] < p*,
either

p*+3
2

k1—|—|a1|—|—2§[ 1§p* and Ko+ |axl +1<p"+1<p

or

ki+]a|+2<p"+2<p and k2+|a2|—|—1§{p2 }Sp*.

For ()5 we similarly have:

Q2 = || nlSH T u] |Q0, 8T u] || 2
< [|SM T | 2] [9Q8, ™ T | Lo
S OO (Vs 0) " + 6L, ol 0)
SO EL WO E s H®)
SO EL (1) £ e alul(t)

SO EL [u)(t) EX2[u(t),

p*.p*
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since p* + 3 < p and p* < q.
Finally, to estimate (03, we use Lemma [2.6.2}
Qs = || r iy SETM | |SF2QT2y| ||,
S (67 IS Tl |S*2OT 20l | 2
9 p1/2 1/2
S 076 (€ - [Wl()

S (7222 [u) (1) E ] (1).

Thus, from (2.10.6¢)) and (2.10.7)), we have that

ysl%>ﬂawmw%ﬁwww

Next, we return to 15.By (2.4.3b|) we can write:

L=

a1+a2+a3 a
k1+ko=k
la|+k<p*

k<p*

DY /5MWW%WWWMWWUHWR

a1+a2+a3 a
k1+ko=k
la|+k<p*

k<p*

We denote

Qo =10 || 0[S T u] 8,5 T2ul [S*(T*u)°| || 1.

/ / [Qa N] (.:L\}) <d}, SkIF(MU)RAL

x (@, 0,521 %2 s (S*T0)° dadt

(2.10.8)

(2.10.9)

Using ([2.1.2b]) and the definition of the scaling operator S, we have the equal-

ity:

1 t 1 t
Oyu = 0,uley + 0,1 = 0,uleq + —=Su — —0yu = O,uley + —Su — —(VUO)T,
r r r r
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and thus, on the support of 7, we have:
n|0rul < (V| + ()7 |Sul).
Therefore, we have the following estimate for Q:

Qo < Ol [SM T | V8™ (%)’ |S*(Tu)°] || s
+ 67 n [SET 4| |S*FD2 | || 2| S*T | 2. (2.10.10)
Using a slight variant of Lemmal[2.6.2 with (p, q) = (p*, p*), we see that the second
term in ([2.10.10)) satisfies
S()7H| n |SF T | |SF2 T2 || 2] SPT || 12 (2.10.11)
S O Eilis o W) €51 [ (DG [ 1)
S0 Ep e WO L1 alul()
SO(t) 7 Epr e W (), [ (D).
The first term in measures the deviation from the null condition and
it will be estimated with the help of the diffusion term in the energy. Using

(2.5.1b)), we show that
ol [SMT ] [VS* (T%u)’| |S*(Tw)°| |12
< 0l [T | [V (T20)°] |zl S5 (T0) |2 (2:10-12)
S Ol [SMT ™l [VS® (T2u)°] | 2|V S* (D) 2.
In the case that & + |ai| < [2] and ko + |as| < p*, gives:

| 7 | ST | |VS™ (T%2u)°) || 12 (2.10.13)
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S ISP T ul|oo [V 8™ (T*20)°| 2

< &L [W]() ||V S™2 (T%20)°]| .2

~ U]

SEL ) Y IVSHTUu) .

k+|a|<p*

And in the case ky + |as| < [’%} and k; + |a1] < p*, again by (2.5.1d]), we

can estimate:

| 7 [SE T | [VS™ (T2u)°| || (2.10.14)
SNSHT |2 |7V §*2 (T2u) o

S E2 Tl (t) > IV St T thu) o

[b]<2

SEL ) Y VI e,

k+|a|<p*

where in the last line we used that ko + |as| + 2 < [pT%] < p*.

From ([2.10.12)), (2.10.13) and (2.10.14]), we have:

5| |SFT 4w [WS*2(T%2w)0) |S*(T%u)°] || 11 (2.10.15)

< 8EM2 (1) ST IVSHTew) g2 | [VSHIMW)°| 2

k+|a|<p*

<SEL ) S [VSHIUw)°| 2.

k+|a|<p*

Therefore, from (2.10.9)),(2.10.10)), (2.10.11)), and (2.10.15)), we get:

T
ns Y / 5 X2, [u](t) | VSH ()02 dt

k-+la|<p= /0

+ / T5<t)_2 Epr (W) (D EM2TU)(t) dt.  (2.10.16)
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Inserting the estimates (2.10.16)) and (2.10.8)) into (2.10.6al), we find that

bS[%W”%wM@%ﬁW@ﬁ

s /551/2 £ [VSH (T2, db. (2.10.17)

k+|a|<p*

By Proposition [2.9.1] we get

T
bﬁmm(mv%&wwwmﬁmw)/@rﬂ”@ﬁ (21018)
0<t<T 0
+ 0 sup 51/? Z / |V.S*(T )02, dt
0<t<T
k+|a|<p*

0 3/2
S & lul€lfZiucl + 5 sup EX2.[u)(t),

provided that Cie < 1/3.

From ([2.10.4)), (2.10.5)), and (2.10.18)) we conclude that

Epep [Wl(T) S Epeluc] (14 EVfug]) + 2 sup €42, [u](8),

V 0<t<T P

for every 0 < T < Ty. Therefore, there is a constant Cy > 4 such that

Epe e [u)(T) < o Epe pr[t10] (1—|—€;’{12[u0])+§ sup  E2.[u](8)]

4 V 0<t<T

for every 0 < T < Tg. Denoting

S(T) = sup Epe pe[u](t)

0<t<T

and

C
ZOSPW* [uo] (1+ 5;7{12 [up]) and By =

005
Yy

Ag =
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we have:

S(T) < Ay + BoS(T)*?, 0<T < Ty (2.10.19)

Suppose now that S(T') < 44, (note that S(0) = Epr p[uo] < 4A4p). Then we
have:

S(T) < Ao+ (440)*BoS(T).
If (440)Y2By < 1/2,i.e. (2.10.2) holds, then
S(T) < 2A0

By continuation argument we have that S(T) < 24, < 44, for all 0 < T < Ty,

i.e. (2.10.3)) holds. O]

We now consider the situation when the condition (2.10.2)) does not hold.

Proposition 2.10.2. Choose (p,q) withp > 11 and p > q > p*, where p* = [’%5]

Let 6 < 1 be defined by (2.3.1). Suppose that u € C([0,Tp), XP?) is a solution of

@11a), @-I.10) with

sup Ep e [u](t) < &? < 1.
0<t<Top

There exist constants Cy, C7 > 1 such that if

2

2

Oy (T)©% < ( max iy, Clg}) 7 (2.10.20)
C() ) gp*7p* [Uo]

then

0<t<Ty
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Remark. The constant Cy may be assumed to be the same in Propositions [2.10.1

and [2.10.2] The constant C is the one given by Proposition [2.9.1]

Proof. We continue with the same notation as used in the proof of Proposition

2.10.1, All of the estimates derived there up to and including (2.10.19) are valid
under the current hypotheses, (note that (2.10.2)) is used only in the final para-

graph of the proof).

Using ([2.10.19) with the energy estimate in Proposition [2.9.1, we have:

S(T) < Ay + BoS(T)%/? (2.10.21)
< Ag + Bo(Cr&pe e [uo](To) %)/ S(T)

< Ag + By(C{Ty))Y2 S(T),

where

C J
Bl = Bog;*/;* [UQ] = 0 61/2 [ ]

Recall the definition of I3 in (2.10.6b)):
/ / Pgo (@) (@, SMT " u)ga
R3

x (@, 0,8%2 D) pa (S*Tu)° dadt|.

I, =

a1+a2+a3 a
k1+ko=k
la|+k<p*

k<p*

The term I in (2.10.6b]) can be estimated alternatively without using dissipation.

We consider first the terms in [} for which ky + |az| # p*. Using (2.4.3b)) and
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Lemma [2.6.2] we can write:

4 1 Pga y(@) (@, SM T u)ga (@, 0,5 T u)ga (S*Tu)° dadt

5/ 5 0 |SE T | 0,55 T |SET )] [|pdt (2.10.22)
0

T
</ 5| 9 S* T u| 8,5% T ||2 | S* Tl 2dt
0

T
<6 / ()71E2  [u](t)dt.
0

The remaining terms in I}, i.e. the ones for which ks + |as| = p*, have the form:

/ / L Pag(@0) (&, s (6, D, S* T s (S*T )l
R?j

k+la|=p*
k<p*

/ / NPy (@) @I u 9; (ST ) (SHTu) O dadt.
k+|al=p* R?
k<p*

By (2.4.1d) and (2.4.1D)), v = S*T"u satisfies 9;v* = 9,07, so we can write:

O’ = (0 W + 0jv°)

(9;0"0° + 9,070°)

9;(v"*0?) + 9, (v10°) — v*9:0° — 17 9,0°
j 1 j 1

9:(v"0°) + 9, (v/0°) — v* 9! — v Py
j "

N~ N~ N~ L\:JI»—t o |

[0;(v"0°) + 0, (v70°) = Bp(v* )] .
Thus, we have:

9;(SFT u)*(S*T*u)® = 19; [(S*T*u)*(S*T*u)°]

+ %fh [(SkFau)j (Skfau)o}
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— 10y [(S' T w) (S T u)] .
Using integration by parts, we have:

T
/ / L Pay(@0) (6, s (6, B, S* T s (S*T )l
o Jrs
5/ [w(T)| [STw(T)|* de + / [u(0)] | S*T*w(0)[* dz
R3 R3
T
+ / max |0(n Py ()& |u| | ST u|? dodt
R3 VsHsJ
/ / 0 | Py ()] 10u] |SETul? dadt.
Using (2.10.1)), the bound |Py(@)| < 6 from (2.3.1)), and the fact that dn < (¢)~!
and |0w| < (t)~!, we can bound the above terms by:

E[Spﬂp* [u(T) + Epe p- [uo]} +/0 <t>_3/2||7“1/2u||L°°5p*7p* [u](t)dt

T
6/|wmma%¢mmﬁ‘
0

From the Sobolev inequalities (2.5.1c|) and (2.5.2d]) and the fact that ||[ndul| =~ <

In(IVu| + |Au])ul|z~ by (2.9.9)), the above is in turn estimated by

e[ e [W(T) + & e [0]| + /T (1) ~H2E52 ) (1) d

0
+6 / ty"LEY ] (t)dt.
Together with (2.10.22)), we conclude that:

B S el D)+ &l + [ 0726 M0

+6 / VTLESZ [ (t)dt.
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By Lemma [2.6.2] we have:

I S [ & W)(T) + Epe e o]

~Y

T
+(C15p*7p*[u0])3/2/ <t>73/2(1fclg)dt
0

T
+ 0 sup gp*,p*[u](t)(clgp*7p*[lb0])1/2/ (t>*1+015/2dt
0

0<t<T

AN

e [W(T) + & e [

)
+ (Clgp*J,* [uo])3/2 + C_18

S(T)(C1Ep o] (T) )2,
From (2.9.1) and similarly to the estimates in (2.10.17]) and (2.10.18)), we have:

T
B [0 & l®) 20O db S Epprlunle)ud
0
Therefore, from ([2.10.6a)) we have:

LS AT S e|&pr ul(T) + Epgrluo]] + e 0] €420

5 £
+ ST (Cr&pe o] (1)),
1€

Combining the estimate I1 < &y« [uO]E;/qQ [up] in (2.10.5) with (2.10.4), we have:
Eppr [U)(T) S Epr pr[uo] + 1 + I
S Epprluo] + € [gp* 2 [u](T) + Epr e [UO]} + Epr [uo]gz},{f [uo]
J

+ S (Crty e lua] (1))

Thus, we arrive at:
Epr wl(T) < Epr p+ [uo] + Ep* pr [UO]‘(:;,{;Q[UO]
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+ ——S(T)(C1Epe e [ug) (T)C1%)V2.

Therefore, we have:

with Ay as above and

Cod 1/2
B2 = @SP*W* [UO]

From ([2.10.21)) and ([2.10.23)) we have:

1/2

S(T) < Ay +min{By, By} (Ci{Tp)*¢) '~ S(T).

If holds, i.e.
min{ By, By }(Cy(Tp)*)"? < 1/2,
we obtain the desired conclusion:
S(T) < 24y < 44y = Co&pe o] (1 + Ex2uo])

for 0 <T < Ty.
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Chapter 3

Incompressible Hookean

Viscoelasticity

3.1 Background and PDEs

In this section we will derive the equations of motion for an incompressible
Hookean viscoelastic material in 3D. We will assume that our viscoelastic material
is distributed homogeneously in space and that, at rest, it occupies a region B,
where B C R3 is a (possibly unbounded) subset with a smooth boundary. Each
point m = (my, my, m3) € B corresponds to a point in the material. Those points
are referred to as Lagrangian or material coordinates.

The motion of the viscoelastic material is modeled by a time dependent family

of orientation preserving diffeomorphisms z(t,m) : RT x B — R3. Material points
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m in the reference configuration are deformed to a spatial point x(t,m) at time
t. The new coordinates = x(t, m) are known as Eulerian or spatial coordinates.
The inverse function m(¢,z) returns the material point that has been deformed
to the spatial coordinated x at time ¢. Derivatives with respect to material and
spatial coordinates are correspondingly denoted as (D;, D = 2-) and (9,,V = 2).

The deformation gradient of the motion in spatial coordinates is the matrix
F(t,x) = Da(t,m(t, z))

and we have that det F'(t,z) > 0 because z(t,m) is orientation preserving. More-
over, the incompressibility assumption implies that det F'(t,z) = 1. The deforma-
tion gradient also satisfies:
F%9,F = FY9,F* (3.1.1a)
V-F' =0, (3.1.1b)
where (3.1.1a]) is essentially the chain rule and (3.1.1b)) follows from the incom-
pressibility constraint and Piola’s formula (see [15]).

The equations of motion for our viscoelastic material are derived from the

conservation of mass and momentum balance laws:
op+v-Vp+V-vp=0 (3.1.2a)
p(Oww+v-Vu) =V -T =0, (3.1.2b)

where p(t, z) is density, v(t,z) = Dyz(t, m(t,x)) is spatial velocity, and T'(¢, x) is

the Cauchy stress.
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Assuming that the density of the material in the reference configuration is

unity, i.e. po(m) = 1, and using the relation

_ po(m(t, @)

plt,x) = det F(t,x)’

we see that the density function p(¢,z) must be unity as well (recall det F'(¢,z) =

1). Thus, from (3.1.2a)) we obtain:
V.v=0. (3.1.3)

The Cauchy stress tensor 7" encodes information about the internal self-interaction
of the material and it depends on an unknown pressure p(t,z), on F(t,z), and on
Vou(t, z), ie.

T =T(p, F,Vv).

Objectivity of the material implies that T" depends on Vv thought the rate of
strain tensor D = 1[Vuv + (Vv)?] (this dependence provides information about
the internal frictional forces within the material). If we further assume that the
dependence of the Cauchy stress tensor on the pressure p(¢,z) and the rate of

strain tensor D(t, z) is linear, then we can write:
T = —pl +vyD + T(F).

The tensor f(F ) contains information about the elastic nature of the material.
Elastic forces come from an isotropic and objective strain energy function W (F).

That function satisfies W(F) = W(FU) = W(UF) for every proper orthogonal
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matrix U, which implies that the strain energy function depends on F' through
the principal invariants of FF'T. The Hookean property of our material further

implies that

W(F) = %Tr(FFT). (3.1.4)

The strain energy function W (F) is related to the tensor T'(F) through the Piola-

Kirchoff tensor S(F'), which in the incompressible case satisfies:

S(F):%—Ig and T(F)=S(F)F".

Therefore, simple calculations shows that
T(F)=FFT.
Altogether, the Cauchy stress tensor can be written as:
T = —pl +vyD+ FFT.

Taking the divergence of the above expression and recalling (3.1.3)) and that p = 1,
we can rewrite (3.1.2al) and (3.1.2b)) as:
V-v=0 (3.1.5a)
O +v - Vo + Vp — %AU—V-(FFT) = 0. (3.1.5b)
Furthermore, the deformation gradient F(t¢,x) satisfies the following transport

equation:

OF +v-VF —VuF =0, (3.1.5¢)
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If we consider a perturbation of the deformation gradient defined as:

G=F-1,

we can rewrite (3.1.1a]),(3.1.1b)),(3.1.5a), (3.1.5b), and (3.1.5¢) in terms of G.

Denoting v = %1/0, we arrive at the following system of equations:
0,G — Vv =VuvG —-v-VG
ov—V-G—vAv=V (GG") —v-Vv—Vp

with constraints:

V-v=0

V-G"=0

KhGY — 0,G*F = GY99,G™ — G"9,GY = QY (G, V).

Using the following notation:
U= (G,v), where GeR*®@R? veR’

we define

AV)U = (Vu,V-G) and BU = (0,v).

We can then rewrite (3.1.6a) and ([3.1.6b)) as:

LU =0,U — A(V)U —vBAU = N(U,VU) + (0,—Vp),
where the nonlinearity is of the form
N(U,VU) = (NY(U,VU), N*(U,VU))

7

(3.1.6a)

(3.1.6b)

(3.1.6¢)
(3.1.6d)

(3.1.6¢)

(3.1.7a)

(3.1.7b)



with

NY(U,VU) = VuG — v - VG,
(3.1.7¢)

N*(U,VU) =V - (GG") —v - V.
3.2 Notation

The vector fields that we will use are:
V = (31732,83), Q=xAV, S=to+1r0,, Sy=r0,.

Since we are working with vector-valued functions, the rotational operators €2 are
correspondingly modified so that they are consistent with the rotational invariance
of the linear system. The definition of the modified rotational operators depends
on whether they are applied to a matrix-valued, vector-valued, or a scalar function.

With a slight abuse of notation, we define Q as follows:

QG =G+ [V,,G] for GeR*QR?
(NZZ-v:QZfU—l—V;U for veR?

Qif =Quf for fEeR,
where [, | denotes the commutator of two matrices and
Vi=es®es—ea®e3, Vo=e1Q@e3—e3®ep, Vz=e30e —e @ ey,
with (ey, es, e3) representing the standard basis in R?. Furthermore, we have:

QU = (%G + [Vi, G], Qv + Viv)  for U = (G, v).
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The specific use of Q will be clear from context.

We will again rely on the decomposition:
w
V =wd, — = NS (3.2.1)
r
For a more concise notation we define:
I ={Vv,Q}.

The scaling operators S and Sj are not included in I' because they do not com-

mute with linear part of (3.1.6a)) and (3.1.6b]). Their occurrence will be tracked

individually as evident in the following definition of the solution space:

XP1={U=(G,v):R* - (R°@R’) x R’ |

|S§T°U || 2 < oo for all |a| + k < p, k < q},
for integers 0 < ¢ < p. This is a Hilbert space with inner product:

<U1,U2>Xp,q: Z <S§FGU1,S(])€FCLU2>L2.

la|+k<p
k<q

Once again, p indicates the total number of derivatives taken, while ¢ indicates

the number of occurrences of 9.

The energy associated with a solution U = (G, v) of the PDEs (3.1.6a) and

(3.1.6b)) with constrains (3.1.6¢)) - (3.1.6€) is given by

1 t
ElUI0) = 3 [GIS U +v [ VSTl ds]

la|+k<p
k<q

79



If U(0) = Uy, then the energy at time ¢t = 0 will be denoted as:
_ 1 2
gp,q[UO] = gp,q[U](O) = §HUO||XP,Q-
As in the damped wave equation case, we use cut-off functions to define two
time-space regions, referred to as interior and exterior. For completeness, we list
again those functions and some of their properties. Denote

||

C(t,z) = ( ) and n(t,z)=1—1 (O_—> , (3.2.2a)

where

The parameter o in the definition of ¢ and n will be later chosen to be sufficiently

small. The cut-off functions satisty the following relations:
1<¢+n and 1-n<¢? (3.2.2b)

and
(r+ 010 2)| + |on(t, 2)l| S 1.

In the interior region, we will provide estimates for

YR = > ICVSTTUU )13
la|+k<p—1

and

ZnUN = ) ICAST ()7,
\a\+kk:<§qp71
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for ¢ < p.
In the exterior region, however, no such weighted L2-estimates are needed.

The special Hookean structure of the quadratic nonlinearity (see (3.1.4])) and the

incompressible constraints (3.1.6¢)) and (3.1.6d|) provide the decay needed through

the Sobolev inequality ((3.5.2]).

3.3 Main Results

Theorem 3.3.1 (Global existence). Choose (p,q) such that p > 11, and p > q >

p*, where p* = [7‘%5}

There are positive constants Cy, Cy > 1 with the property that if the initial

data Uy satisfies

Co&pr e [Uo] (1 + E,121U0]) < €2,

for some &% < 1 then (3.1.6a))-(3.1.6€)) has a unique global solution

U € C(RT; XP9)

with
sup &,4[U](t) < C1&, o[Uo)(t)**
0<t<o0o
and
sup &y [U](t) < 2.
0<t<oo
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Outline of Proof. We follow the same strategy as in the proof of Theorem [2.3.1]

]

3.4 Commutation

The linear operator defined in (3.1.7al):
L=0,—AV)—-vBA
commutes with I', i.e. we have that
LT*U =T“LU

for any multi index a. Here we emphasize that each Q; satisfies the following
commutation properties:
V(Quf) = U(Vf) V- (Qu)=Q(V -0)

V() = (Vo) V- (UG) =%(V-G)

for functions f € R?, v € R?, and G € R3 ® R3.
The scaling operator S, however, does not commute with L. From the following

commutation properties of S:

9SE f = (S + 1)k f
(3.4.1)

AS*f = (S +2)FAF,

for k£ > 0 any integer, we can show that

kol
—_

LS*U = (S+ 1)"LU =Y (—1)* (l;) vBASIU.

I
=)

J
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Altogether, the linear operator satisfies:

k—1
LS*TU = (S + 1) T*LU = > (—1)*7 (l;) vBAST*U (3.4.2a)
j=0

with the following vector field version of the constraints (3.1.6c)), (3.1.6d)), and

BL69):

V- ST =0 (3.4.2b)
V- (Sfrea)t =0 (3.4.2¢)
O (STGYT — 0;(SFTeG)* (3.4.2d)

a! k! .
S J(ShreG vskTreg
ag_a allag!/ﬁ!/@! k( ’ )
k1+k§;k

07 (G,VG).

The vector field constraints (3.4.2b)) and (3.4.2d|) are essentially a consequence of

the commutation properties of the vector fields together with:
QLG = Q67
As for (3.4.2dl), we emphasize that Q.’s satisfy:
(UG — 9;(UG)* = (UG)79,G™ + G0, (G)™
— (LG)*9,G — G*,(uG)Y.

Also note that the rotational operators QZ distribute across the nonlinear terms

as follows:
QLNYU,VU) = V(Q)G + Vo(4G) — (Qw) - VG — v - V(4G)
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QLN2(U,VU) = V- ((QG)GT + G(@ZG)T) — () - Vo — - V(Q0).

Together with (3.4.1]), we have that the vector fields distribute across the nonlinear

terms according to the following Leibnitz-type formula:

! k!
S+ 1) TN(U. VU) = _4 Y N(ShTH U v SkTeR ),
( + ) ( 7v ) al;_a al!aglkl!kgl ( 7V )
k1 +ko=k

3.5 Sobolev Inequalities

Lemma 3.5.1. Suppose that U € X*°. Set r = |z|. Then

Ul S > IIVU 2

ja| <2

Ir="Ullze < [10:U] 22

I 20N = S Y IVR°U 12

la<1
1/2
Ul S | D 182U lli2gyzn Y 19°Ullzqyzn | (3:5.1a)
la|<1 la|<2
Proof. Those inequalities are equivalent to the ones in Lemma [2.5.1] O]

Proposition 3.5.2. Suppose that U : [0,T) x R? — (R3> @ R3) x R? satisfies
o lU(t) + E20[U](1) < oc.
Then using the weights (3.2.2a)), we have

1CU®) e S RUI)* + () &)
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S (VRIUN6) Y + () &L UI)

| 7¢ VU() ||
I U@ e S MUI6) + (1) &R IUIE)

In U@ < (O ELIUN).

~Y

Also, for w = v or u = G*, i.e the j™ column of G, j = 1,2,3, and w = ﬁ, we
have
|l nw-u(t) [l S & 2EFUE). (3.5.2)

Proof. We only need to show (3.5.2). We first prove the following generalized

version of ((3.5.1al):

1/2
Jullpe S Z I |yl =0, | L2y ) % Z I 1y 2% 2y ) . (3.5.3)
lal<1 jal<2
We start with:
)l = | futr)l*d (3.5.4)

< [T [ ot futo) g
S [ o) futw)dy
ly|>r

1/2 1/2
5(/ |y|-”|aru<y>|2dy) (/ |y|2<k—2>|u<y>|6dy) |
ly|>r ly|>r

We can bound the second term on the right of (3.5.4) by:

[ ety = [T ] ) ey
ly|>r T 52

< / PO (pw) [ S g2y dp- (3.5.5)
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An application of Gagliardo-Nirenberg

~a 1/3 2/3
lu(ro)llzoszy S D 19 u(rw) | g gey lu(rw) |74 o)
la|<1
to the last term in (3.5.5)) gives:
/|| 1?2 u(y)|*dy (3.5.6)
y|>r

< [0 [ S i | Vsl

|| <1
< sup||“(ﬂw ||L4 52) Z/ / 20242 Q0 (pw) |2dwdp
‘ |<1 r S2
Sl Y- [ POy
la]<1

Putting (3.5.4)) and (3.5.6) together, we get:

1/2
() Pagsey < ( /| ) \yrmaru@)my)
y_T’

1/2

A e terra ) @s)

o<1 ly|>r

Combining (3.5.7]) with the isoperimetric Sobolev inequality

[u(z)] S Y 19%u(ro)llacse)

o<1

gives (3.5.3).
To prove (3.5.2)), we observe that on the support of the cut-off function n, we

have

&) w-u)llz= < I nw-u)llz= < 1w )] (3.5.8)

86



Then, from (3.5.3)) with A = % we get:

1732w - u(t) || oo (3.5.9)
1/2
Dyl 20,00 (Jy 2w - w(®) Iz Y Iyl =222 (Jyl* 2w - u(#)) |12
la]<1 |a|<2

S SO0, (2w Gu®) e + 3 - Q)1

la|<1 la|<2
SS Tyl w80l + 3 10%u()]| 2.
la|<1 la|<2

Using the the gradient decomposition (|3 and the constraint m we have

the following bound for the first term on the right of (3.5.9):

> 7yl w - 0,9 u(t)]| e (3.5.10)

lal<1

SOyl V- Quu@®)le + Y @A Q) - Qu(t)| .2

la]<1 la|<1

S DI u(®)] e

la|<2

The result (3.5.2)) follows from (3.5.8)), (3.5.9)), and (3.5.10)).

3.6 Calculus Inequalities
Lemma 3.6.1. Suppose that U : [0,T) x R® — (R* @ R?) x R3. If

k1+k2+|a1]+|a2]§p and k1+k2§q,
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then we have

F¢lstTU )] [S=T U @)] |2
. 1/2
< int —lgl2 1z
< (O o10) " + 07y 1 m0) g4 010,
provided the right-hand side is finite.
In the special case when ks + |as| < p, we have
F¢lstru @) [S™T= U @) .2
. 1/2
< int el 1/2
< (O gom) " + 07y mo) g,

provided the right-hand side is finite.

Lemma 3.6.2. Suppose that U : [0,T) x R® — (R* @ R?) x R3. If
ki+ky+lar| +|azl <p  and ki + ko <,

then we have

| IS T U@ ST U] e S (07 1 [VIOEL (U1(0),

provided the right-hand side is finite.

In the special case when ko + |as| < p, we have

I nlSE TR U ST U] e S 07 €y g D& U1,

provided the right-hand side is finite.

The above two lemmas have similar proofs to those of Lemma and Lemma

2.0.2
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3.7 Estimates of the Linear Equation

Consider the linear version of the system ((3.1.6al) and (3.1.6b)):

oG —Vv=H (3.7.1a)
Ov—V-G—-—vAv=nh (3.7.1b)

with constraint (3.1.6¢]):
HhGY — 0,G* = QY. (3.7.1c)

In this section we provide estimates of the linear system (3.7.1a))-(3.7.1¢]).

Lemma 3.7.1. Assume that o in (3.2.2a)) is sufficiently small and that v < 1.

Let H,V-H, Q, and h € L*([0,T); L*(R?)), for some 0 < T < oo. If U = (G,v)

is a solution of (3.7.1al)-(3.7.1c) such that

sup 81’1[U]<t) < 00,
0<t<T

then for any 0 <6 <1,
T
|0 CvUlE: + A canl) ar
T
SuT) e 0T + [0 el
0

+ /0 20V -G, (V- H)p»

+ [ICQNZ: + ICH |72 + [ICRllZ2] dt.
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Proof. Multiplying (3.7.1a)) and (3.7.1b)) by ¢ and using that S = t0; + r0,, we

have that

tVv =—r0,G+ SG —tH

tV -G +tvAv = —ro,v + Sv — th.
Next, we multiply each equation by ¢ and take the L?-inner product:

I¢tVol|Z: < [I¢rd,GlZz + [CSGZ2 + [ICEH |12
¢tV - G122 + v2||CtAV||22 + 2((tV - G, CtrAv) 2

< [¢ropollza + 1€SvllZe + [ICthll .
Adding the two inequalities, we obtain:
2 [ICV - G[72 + 20(CV - G, CAv) 12 + V2 (|CAV| 72 + [[CV 0] 7:]
< N¢roUllze + EaUNE) + £(ICH |22 + [ICAIZ2), (3.7.2)

where U = (G, v).

Taking the divergence of , we have:
Av=0,V-G—-V-H
and so we can write the inner product as:
2v(CV - G, (Avy2 = 2v{((V -G,V - Q)2 —2v(C(V - G,(V - H)[2. (3.7.3)
The first term can be bounded as follows:
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- u/ 20,V - G|*dz
R3
> v0CV Gl — Cv [ ¢V - GPda
R3
1
> v0UCV - Gl ~ 31V - Gl — 26%°() |9 - G,

where we have used Young’s inequality and the fact that 9,(* < C({t)~*, for some

constant C'. Inserting (3.7.3) and (3.7.4)) into (3.7.2)), we have:

1

2 AvolICY - GllLa + S 1CV - GllZz + v lICAvI[E: + 1KV o7

SN¢ronUll7e + Ea[U](t) + 20t*(CV - G, (Y - H)

+(ICH 22 + IChlIZ2)- (3.7.5)
Choosing 0 < # < 1, we multiply (3.7.5) by (¢)°=2, and then we integrate:
T 1

[ 0 3167 Gl 4 1cAR + 1Tl at

T

S [ @2 (160U + £V + 220V - 6.0V - )
0

+ *(ICH |7z + [IChI72)] dt

T
—/ 2 () 7200,||CV - G||22dt.  (3.7.6)
0

Next, we estimate the time-derivative term on the right hand side. We have

shown in (2.7.3) that
1
O, (vt (t)02) < Zt2 )72 + Cv*(t)o2,
so, by integration by parts, we have:

T
—/ 21 200,||CV - G|2.dt
0
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T
< / (im)@ucy?(w“) ICY - Gl 2.t
0

1 /T T
<3 [ 2@ Gl C [0 enalU) e
0 0
Substitution in (3.7.6]) gives:
T 1
[ 0 |3167 - Gl 4 1A + 1Tl

T
S [ 07 [IGra.UIRs + 010 + 208(CV - 6.0V - Hyyo
0

+ *(ICH |7z + [IChIZ2)] dt.

By Lemma [3.7.2] we can control the divergence term on the left-hand side by the

full gradient:

T
| E0m 16701+ 2lcav) a
T
S [0 [IGra.UIRs + 010 + 208(CV - 6.0V - Hyo
0

©P(ICQIRe + IICHIEs + [ICh]2%2)] dt.
Using that t* = (t)? — 1, we can write:
T
/0 0 [ICVUIZ2 + 2 CAv]2.] dt
T
< / 02 [ICro U1 + Ea[UN) + 21 Av]2
0

+ 20t ((V - G,(V - H) 12

+ 2(I€QIZ + ICH 172 + [IChlIZ2)] dt.
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We have that r < o(t) on the support of (. Thus, we have the following estimate:

T T
/ (02N CroUladt < / o ()°[1COU |adt.
0 0

For small enough o the last term can be absorbed on the left-hand side of the

main inequality and thus, we obtain:

T
| @ eTUs + v lcaul]
T
S [0 010 + 21 + 2T - GLCT - )
0

+ (ICQIZ: + ICH 122 + [IChIZ2)] dt. (3.7.7)

The Laplacian term on the right has the following bound:

T B T B d t
/0 (1022 Av|Zadt = /0 (1 2y2£/0 ICAv|2dsdt (3.7.8)
T
— (0t [ foaolae + [
0 0

< U(TY=2E,[UNT) + v / T<t>9—251,0[U](t)dt.

T t
(2 = 0)t ()2 / ICAV|Zadsdt
0

Substituting into (3.7.7)) and using that v < 1, we arrive at:

|0 16901+ 2lcavl) a
STl + [ el
+ [ 0 ey 6,0V - o

+ 1CQIIZ: + ICH |72 + IChIL2] dt.
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In the proof of Lemma (3.7.1)), we used the following estimate:

Lemma 3.7.2. If G € H'(R*, R®* ® R?) and
G — 0,GF = QY (3.7.9)
fori,j,k=1,2,3 and |Q||2 < oo, then
SICVGIE — 10V - Cla < ) 21C 1 + 1CQI
Proof. The constraint implies that

—|V-G* = —9;G79,G*

= —0k(0,GYG™) + 9;0,GU G

= —0,(0,GYG™) + 0;(0;G* + QY G*

= —0,(0;G7G™) + 0,0,G*G™ + 9,Q) G*

= —0x(0,GYG™) + 0;(0,G*G™) — 0,G0,G™ + 9,Q) G*

= —0,(0,GYG™) + 9;(9,G*G™) — |VG|* + 9,QV G™.
Therefore, we have:

IVG]> — |V -G|? = 0;(0;G*G™) — 9,(8;G7G™) + 0,QY G™.

We next multiply by ¢? and integrate:

ISVGIZ: = lIcV - Gz

= [ ?[0;(0,G*G™) — 9,(0,GYG™)] dz + / C20;Q7 G*du
R3 R3
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s [ awivalics + [ o @dlictar - [ ¢Qia 6t
R3 R3 R3

< SICVGIIL: + C) PGl + ClICQII L,

N | =

where we have used Young’s inequality and |V¢?| < ((t)~!. The statement of the

theorem follows immediately from the above inequality. O

We now establish a higher order version of Lemma Applying the vector

fields S*T' to (3.7.14) - (8.7.1d) and using the commutation properties ([3.4.2al) -

(3.4.2d)), we obtain the PDEs:
8,G—Vo=H
80 — V-G — vAT = hy,

subject to the constraint

G — 0,G* = QY.

We have used the notation
G = S'1°G 7 = S
H=(S+1)'r°H 7= (S +1)*Th
o - (3.7.11)
P =S+ 1D)TQ)
= 1
ho=h— Z(—l)’”( ,>VBASJ‘WU
j=0 J
Fixing 0 < ¢ < p, summing over k < ¢, |a| < p — 1, and using induction as in

Proposition [2.7.3], we establish:
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Proposition 3.7.3. Assume that o in (3.2.2a)) is sufficiently small and that v < 1.

Fiz 0 < g < p. Suppose that

SFH, V- StH, S*Q, S*h e L*([0,T]|; X*™* 19, k=0,...,q,

Jor some 0 < T < oco. If U = (G, v) is a solution of (3.7.1a) - (3.7.1c) such that

sup &, 4+1[U](t) < o0,
0<t<T

then for any 0 <6 <1,

/0 () [ViU)(t) + v 220N ()] di
< (T2, o[ul(T) + / (1028, g [U) (1)t

2 {/OT<t>9[2u<cv L SMTUGLCV - (S + 1) T H) 1o

la|+k<p—1
k<q

+IC(S + D)FTQl72 + IC(S + DT H||7. + [I<(S + 1)’“F“h|!%2]dt} :

3.8 Decay Estimates

In this section we establish the dispersive estimates for the nonlinear equation

using a bootstrap argument and an application of Propositions

Theorem 3.8.1. Choose (p,q) so that p* = [’%5} < q < p. Suppose that U =

(G,v) € C([0,T); XP) is a solution of (3.1.6a]) - (3.1.6€) with

sup &,,4U](t) < o0,
0<t<T
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and

sup &y [U](t) < * < 1.
0<t<T

Then

/O 1 [Vimt . UNE) + 22 [U)()] de

sup () 7Ep p [U](2), 0<f+~v<1
0<t<T
S :
log(e+1T) sup &Ep < [U](t), O0=1
L 0<t<T

and

/0 1) [Vimt L UNE) + 22, [U)(8)] de

S sup (6)77E,,[UI(t), 0<f+~<L1
0<t<T

Proof. We start with an application of Propositions [3.7.3

/0 )7 [YU(t) + v 22U ()] dt
< T 26, ,[ul(T) + / ()28, g [U](£)dt

T
> { | @Rucv -SG5+ D1
lal+k<p-1 V0

<q

HIC(S + 1) TQZ2 + [I6(S + DT H |72 + [1C(S + 1)’“F“h|\%z]dt} (3.8.2)
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with the following quadratic terms:

H=VuvG —v-VG
h=V-(GG")—v-Vv—Vp (3.8.3)

;=G 0,G* — G0,,GY.
We will first show that the inner product term
T
/ t)20(CV - SFTG, (V- (S + )T H) f2dt (3.8.4)
0

is bounded by the sum of the four integrals (defined in (3.8.7a)) and (3.8.7b))):
|| + | L] + [13] + |14].

Each of those four terms will be further estimated by

?A@WM%M@Hw%%WWﬂﬁ

T
OUD) 2, (D) + C [ )24 V)0
0
T
+ c/ t)?||CR*||2,dt. (3.8.5)
0
In the above expression, R** = R**(U, VU) represents any of the following terms:
|VSETeU| |VU|, V- [(VSMT%0)(S%T%q)], and (3.8.6)
V- (SMTay . vSkreq),
for |ai| + |az| < |a] and ky + ko < k with ky + a3 # k + a in the second term and
ko + as # k + a in the third term.
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Upon distributing the derivatives (S + 1)*T*H in (3.8.4]), we will treat sepa-
rately the two instances in which all the vector fields fall on the gradient term,
ie.

(VS T0)G  and  —wv - (VSTG).
The remaining terms in (S + 1)*T*H are of the form:

(VSHT99)(S7I2G) and  — (SMT"w) - (VS*F2I2Q),

for |ai| + |az| < |a| and ky + ko < k with k; + a1 # k + a in the first term and
ko + as # k + a in the second term.

Therefore, in order to control (3.8.4]), we need to estimate the following inte-

grals:
T ~
[1=/ (H)?20(CV - G, ¢V - (VUG)) f2dt (3.8.7a)
0
T ~ ~
L= [ 002007 G.CY - (o 98 e,
0
together with
T ~
I; = / $)2w(CV - G,V - (VSHT 0 SPT2@G)) f2dt (3.8.7b)
0

T
142/ tY020(CV - G, ¢V - (=SH T - VSHT92Q)) 2 dt,
0

where k1 +ay # k+a in I3 and ko + as # k+ a in I;. Note that we have adopted
the notation from (|3.7.11]).

We start first with I; by considering

WV -G, (V- (ViG)) 2 = 2v | (V-G [V - (ViG)]ida, (3.8.8)
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where
[V - (VIQ)]" = (VG = 0k(0,0 ' G™)
= (040 0") (G™) + (0,,0") (0:G™).  (3.8.9)
Consider ((3.8.8)) with the first term of :
2w 9 AV - G)(0p0, ) (G™ ) da (3.8.10)
= 2 5 C(0,G™) (0400 (G™) d
< IOV + Cr2 (@0 G
< 2 ICVTIE + O GI ICVal,
< VTR + eIV
where M is some big enough constant. Also, in the last step we have used that
IG5 < E20[U](F) < &2
The second term in has the following bound:
Cr2e?||(V |72 = Cve? . (2 (OrOm0") (OO 0" ) d (3.8.11)
_ e /R (OO (D4
— CvPe? g (00" (020,,0" ) d
= —Cv?e? 43(8kc2)(8m5i)(6k8mﬁ)dw
+ CvPe? /Rs(é?m@)(ﬁmii)(a,zﬂi)dm

+ovet | (02005 da.

RS
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Using that |[V?| < ¢(t)~!, (3.8.11)) implies that
CrPe|| V% < Cv / C VA [V25lde + Ce2|CAT|E
R3
1 " - -
< M!\vaﬂiz + O V|7 + Ce®?||CAT]|7.. (3.8.12)

In (3.8.12) we have also relied on v < 1, €2 < 1.

Next we estimate (3.8.8]) with the second term in (3.8.9):

w [ (V-G (00 (8,G™)da

R3

1 ~
< MIICVUH%Z + C||¢|VSkTeU| VU] ||2.. (3.8.13)

Altogether, from (3.8.8) - (3.8.13]), we conclude that:

3 [T -
h< 57 [ O1CTT
T
e / (0022 | V252, dt
0
T
—|—C€2u2/ (OO CAT||2.dt
0

T
+c/ )¢V S TeU| VU ||2.dt.
0
Similarly to (3.7.8)), we can show that

C/O t)0720%| V20| 2. dt
< OUTY 28, ul(T) + O [ (0726, U]

Imposing smallness conditions % < % and Ce? < %, we show that I; satisfies the

bound ([3.8.5)).
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Next, we estimate I,. We have:

2W(CV -G, (V- (—v- V@) = 21// C(V-G)[V-(—v-VG)dr. (3.814)

R3

We can write:
V- (—v-VG)] = 0p(—v-VG)*
= —0,(0"0,G™*) = —(00™) (0 G*) — v™(0,,0,G™). (3.8.15)

Consider (3.8.14]) with the second term of (3.8.15)). Applying the constraint V-v =

0, we have:
—2u / C(V - Q) 0™, 00 G da (3.8.16)
R3
——2w [ (V- G0, (V - G)idx
R3
- —y/ Cu"0,|V - G2 da
RC&
_ ,,/ (O ™|V - G2da
RS
S [ ¢tV -Gl
R3
Application of Young’s inequality gives:
. ~ | _ ~
/RS<<L‘> Ho V- GPde < MHCVUII%HC(@ 2l ol IV - Gl |72

1 ~ -
< VUL + C2(1) 2V - GllZa, (38.17)

where in the last line we used ||v]|2, < &E[U](t) < &2
From (|3.8.16)) and ([3.8.17]), we obtain:

~ ~ 1 ~ ~
~2 | (V-G " 0,0:G dr < —[ICVU 7 + OV - Cllfa. (38.18)
R3
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We now estimate (3.8.14}) with the first term of ([3.8.15)):

— g?( G) (8™ (0, G da:

1 ~
< MHCVUH%Q + C||¢IVStTeU| VU] ||2.. (3.8.19)

From ((3.8.18) and ([3.8.19) we arrive at:

T
I < M/ PICTT e +C [ 00217 - G

v [Larlavs o vo Ik,

which shows that I, satisfies ((3.8.5 ) for 2 i <

1
T

Finally, we treat I3 and I . Application of Young’s inequality gives:
L+l < —/ VT2t
0 [ ey (wstrm st
0
T
+C [ 1oV - (shree - VST G)
0

which is again bounded by (3.8.5)) for = <

2 1
M = 8
If we apply the bound (| on the inner product term (3.8.4)), we can write

the estimate in the interior region (3.8.2)) as:

/0 )7 [YmU(t) + v ZRUN(t)] dt
< AT 26, ,[ul(T) + / ()28, g [U](£)dt

_> {/ WSS + VT QI + 11C(S + DT H2,

la]+k<p—1
k<q
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+[[¢(S + D)ETeR||2, + |ng’“a||§2]dt} . (3.8.20)

Recall the definitions of R** (see (3.8.6)), and Q, H, h (see ) All terms
are quadratic except for the linear portion of h involving the pressure term. By
Lemma [3.9.1] however, Vp can be bounded by quadratic terms. Therefore, we
have that all the L? norms appearing on the righthand side of can be

bounded by the sum of terms of the form:
[¢[SM T U] [S*T= U] |7,

where |a1] + |az| < a|, k1 + ks < k < g, and ks + |as| # k + a = p.

At this point we can proceed as in the proof of . The main difference
here is that because of the extra V vector field in the R*® term we have k+|a|] < p
(vs. k+ |a] < p—1 in the dissipative wave equation case). As a result, p’ and ¢
would be defined slightly differently. For example, when (p,q) = (p* + 1,p*) we

have:

p':{p;} and q’:{p; ]

However, for p* > 5 we still have [p*; 6} < p* and [”Tﬂ} < p* — 1 and therefore

we can still adopt the proof of (2.8.1)). O
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3.9 Bound for the Pressure

Lemma 3.9.1. Suppose that p satisfies (3.1.6b) with constraints (3.1.6c|) and

(3.1.6d)). Then for any multi-index a and integer k > 0,
IVS*Tp|2 < (S + DT [V - (GGT) — v Vo] [ L.
Proof. From the PDE (3.1.6b]) we have:
Vp=—-0w+V-G+vAv+ V- (GGT) —v- V. (3.9.1)
We apply the vector fields (S + 1)*T'® to each side of to get:
VST = (S+1)'T* [0+ V-G +vAv+ V- (GG") —v-Vv]. (3.9.2)

Next, we take the divergence of (3.9.2)). The constraints (3.1.6¢)) and (3.1.6d])

together with the identity
V- (V-G)=V-(V-G" =0
give:
AS*T'p =V - (S + 1)'T* [V - (GGT) — v - Vv . (3.9.3)

With the notation

Qo= (S+1)r* [V - (GG") — v - Vv]

we can rewrite (3.9.3) as

AS Ty = V - Q. (3.9.4)
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Using (3.9.4]), we can estimate next the L?-norm of the gradient of the pressure

as follows:
IVS* |72 = —(AS*Tp, S"Tp) 2
= —(V - Qo, S'T"p)1»
= (@6, VSkFap>L2
< 1Qoll [V S* TPl 2,
from which the statement of the theorem follows. m

3.10 High Energy Estimates

Proposition 3.10.1. Choose (p, q) so that 5 < p* = [1‘%5} < q < p. Suppose that

U = (G,v) € C([0,Tp), XP?) is a solution of (3.1.6a) - (3.1.6€) with

sup &y [U](1) < &* < 1.
0<t<Ty

Then there exists a constant Cy > 1 such that

5P7Q[U] (t) < Clgpﬂ[Uo] <t>C’15

Epe e [U] () < CLEpe e [Un) (1)1,
for 0 <t < Ty.
Proof. Taking the L? dot product of

LU = 0,U — A(N)U — vBAU
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with U = (G, v), we obtain:
(QU(t), U(t)) 12 — (AV)U(1), U(1)) 12
— (vBAU(t),U(t)) 2 = (LU(t), U(t)) 2. (3.10.1)
The second term on the left of vanishes:
(AV)U(),U(t)) 12 = =(Vu(t),G(t)) 2 — (V- G(1), v(t)) 12
= —(Vo(t),G(t)) 12 + (G(t), Vo(t)) 2 = 0.
Using integration by parts, the third term on left of can be written as:
(VBAU(),U(t)) 2 = (wAu(t),v(t)) = /R 3 V2! (t)v! (t)da
_ /R VO (DO )z = —v]| V().
Therefore, becomes:
ST + Ao 2 = (LU, U)o

Integration over time gives:

SN+ v [ ITuOldt = SO+ [ L0000

which implies that for 0 < T < Ty
T
E0allI(T) = EnolUi + | (LU, U)ot
0

For p > ¢ > 0, we apply the above estimate to higher order vector fields and

together with the commutation property (3.4.2a)) we obtain:

la|+k<p
k<

Ep lUNT) = &, 4[Uo] + I + / T((S + DFPeLU(t), S*TeU (1)) p2dt, (3.10.2)
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where

- > Z / < ~ ( )VBASJF“U(t),S’“F“U(t)> dt.

|a\+k<p j=0 Ly

For ¢ > 0 we show by integration by parts that:
T .

/ (VBAS'TU(t), S*TU (t)) j2dt

0
:/ / vA(STT(t)) (S* T (t)) dxdt

0 JR3
= — / / vV (ST (1)) - V(S T (L)) dadt
0 JR3

T
g/ V||V ST () || 12]| V. S* T (¢) | p2dit
0

T ‘ 1/2 T
< <1/ / Hvswav(t)uizdt) (y / Hvskr%(t)uigdt)
0 0

Therefore, we have:

1/2

[ <& UND)ELUN(T).

~ “p,g—1
Applying Young’s inequality to the above bound and substituting into (3.10.2))

give:

EpalUNT) S EpglUo] + Ep g1 [UNT) + &y o [UN(T)

+ ) / (S + DFTeLU(t), STeU (1)) o dt,
la|+k<p
k<q

where 1 is a small enough constant so that the corresponding energy term can be

absorbed on the left. Induction on ¢ further gives:

Ep lUNT) < &, qlUo) + Z / (S 4 D)*TLU(t), S*T*U (t)) 2dt.  (3.10.3)

I\+k<p
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Using (3.1.7a]), (3.1.7b)), and (3.1.7c|), we can write the inner product inside

the integral as:

(S +DFTLU(t), S TU(t)) 12

VoG —v- VG G
— 1 kl—\a kFa )
(0 (g e v v vp) 8 ()>

We will first address the special case when vector fields distribute onto the gradient

term. Using the notation introduced in (3.7.11f), we start with:

(—v- VG, G2 = —/

R3

~ 1 ~
VPO,GY G dr = —5/ VPO, |GPdx = 0,

R3
where in the above expression we have used integration by parts and the constraint
V.v=0.

Similarly, we show that

(—v- VT, D)2 =0

<_vﬁa/ﬁ>L2 =0.
We continue with:
(V-GGT W) = / (V-GGTYWde = | 0;(GGT)"odx
R3 R3
= [ 9,(G*GHFYidr = | ;GG dx, (3.10.4)
R3 R3

where in the last line we have applied the constraint V - G = 0. Similarly we

show that:
(V-GGT, D)2 = | 0,G*G*5da
R3
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and we note that this expression does not involve a term with & + |a| + 1 vector
fields.

For the last one of the special cases, we once again use V - G = 0, together
with integration by parts to show that:

(ViG, G e = /R (VI G = [ o G

RS

:—/ TG, G*dr. (3.10.5)
R3

We notice at this point that (3.10.4)) and ((3.10.5)) cancel out.
The treatment of the above special cases shows that no single term has more

than k + |a| vector field derivatives and therefore we can write (3.10.3) as:

8p,q [U] (T) S/ 8p,q [UO]

bX [ nisereuensrete) e oa

\a1+a2|+k1+k2<17
k1+ko<q
lag|+ko<p

For the remaining of the proof we refer to the arguments that follow (2.9.10) in

the damped wave equation case.

3.11 Low Energy Estimates

Proposition 3.11.1. Choose (p,q) such that p > 11, and p > q > p*, where

p* = [pT] Suppose that U = (G,v) € C([0,Tp), XP9) is a solution of (3.1.6al]) -
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(3.1.6¢) with

sup Ep p [U(1) < &* < 1.
0<t<Ty

There exists a constant Cy > 1 such that

sup  Epepr [U](1) < Copr - [Uo] (1 + 5;,{12 [Uo]) -

0<t<Top

Proof. We start with (3.10.3)) applied to (p,q) = (p*, p*):

> /OT<(5 + DFTLU(t), S*TeU (1)) f2dt

al+k<p*
k<p*

gp*,p*[U](T) S gp*,p* [UO] +
|

and we recall that

LU = N(U,VU) + (0, —Vp).

Using integration by parts and the constraint V - v = 0, we show that the

pressure term vanishes:

(—(S + 1) T*Vp, S*T0) 12 = (=VSFTp, S*T0) 12

=— | 0,8 Tp(S T v)'dx = ST 0;(S*Tv)'dxr = 0.

R3 R3

Therefore, we can write the energy inequality as:

‘910* ¥ [U] (T> 5 gp*,p* [UO]

ps

a]+tag=a

k1+ko=k

|a|+k<p*
k<p*

/T<N(S’f1ra1U(t),vsk2ra2U(t)),SkraU(t»det . (3.11.1)
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We have shown in section (3.10) that the summation indices satisfy |as| + ko < p*,

but we will not need this fact here.

Using the cut-off functions (3.2.2a}) and the property (3.2.2b)), we can bound

the integral on the right-hand side by:

/ T(N(S’“F‘“U(t), VSRT2U(t)), SFTeU(t)) r2dt (3.11.2)

T
< / / C|SMT U ()| VST U (t)| | S*T*U (t)|dxdt
0 R3

T
+ / (NN (SMT™U(t), V.S*k2I2U (t)), S*T*U (t)) e dt
0

= Il + _[27
where I; and I5 denote correspondingly the two integrals on the right and 7" is in
the range 0 < T < Tj.
Interior Low Energy
Similarly to Interior Low Energy section of damped wave equation case we
show that
I S Epr pr [UO)EM2 UG, (3.11.3)
Exterior Low Energy
By the definition of the exterior term:

T
L= | [ V(P ToU(), TSHTeU (), SUTU ) et
0

where the indices satisfy a; + ay = a, ki + ko = k with |a| + k < p* and k < p*.
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Referring to the definition of N (U, VU) (see and (3.1.7d)) and applying
the constraint , we note that, in components, the quadratic nonlinear
terms are of the form:

(V55T %20) (ST G)]7 = (SHT9G) - V(55T 0)
[(SHT%0) - V(SRT%2@)]7 = SMT%y . V(S™TG)Y
(3.11.4)
[V - {(5"T=@) (ST @)Y = (SHT1G)9 - V(ST G)Y
[SMT%y - VSR %] = SHT%y . V(5RT%0),
where G*7 denotes the vector which is the the j® column of the matrix G.

Using the gradient decomposition V = w0, — %w A ), we can write:

T
I < / (NN (SMTU(t), w0, S22 U (t)), SFTU (1)) r2dt (3.11.5)
0

T
+ / / nro ST U ()| [QS%T%2U ()] |SFTeU (t)|dxdt
0o Jr3
=L+ 1.
By Lemma|3.6.2] we can bound the second term on the right as follows:
T
VS / & InlSB T U @)| [QSFT2U (8)] || 2 |S*TU (¢)|| 2dt (3.11.6)
0
g 1/2 1/2 1/2
< /o (t>_1<t)_1€p*7p*[U] ()&, 1 e U () E e e [U](2)dlt
T
S [ 076 UI0E 00
0

We proceed with estimating ). Substituting V with wd, in (3.11.4), we see

that I is bounded by terms of the form

T
/ | |7 w - ST u(t)] [SF2T2 U ()] || 2||SFTAU ()| 2 dt, (3.11.7)
0
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where SM T y(t) stands for either of:

(Skl | a1 G)*]
SHTuy(t) =
Skiay
Furthermore, recalling the constraints V -v = 0 and V - GT = 0, we have that
V - Skipany(t) = 0.
In the case ki + [a1]| < [2] and ks + |az| < p*, the Sobolev inequality (3.5.2)

gives:
Inw- SHTmu(t)] |STe U )] |2
< llnw - SETMu(t)||p< || ST U () | 2

S 7€ Ry (o UOES 1 U](0)

)

~

< O7PELUIE ).
And in the case ky + |ag| < [’?T_l} and k1 + |ai| < p*, again by (3.5.2), we
have:
Il w- ST u(t)] [SET U ()] |1
<l w - ST u(t)]| o | ST 1T (1) | 12
S (078 Ly WO ) ) U1
< (1) REZUNE (U1,

From the two cases above and ((3.11.7]) we conclude that

I < / T<t>—3/25p*,p* [U]($)EM2[U](¢)dt. (3.11.8)
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Therefore, from (3.11.5)),(3.11.6), and (3.11.8)), we show that

S U G

Referring back to the corresponding estimates for the damped wave equation

case (see (12.10.17)) and (2.10.18))), we have

Iy S Ep (U] €52 U], (3.11.9)

Therefore, from the energy inequality (3.11.1), (3.11.2), and the estimates

(3.11.3) and (3.11.9), we have:

5p*,p* [U] (T) < Cogp*,p* [UO](l + 5;,{12 [UO])

for some constant Cy > 1 and for every 0 < T' < T,. This gives us the desired

result.
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