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 ABSTRACT 

 
 

Explaining Change in Production and Distribution of Olivine-Tempered Ceramics in 

the Arizona Strip and Adjacent Areas in the American Southwest 

by 

Sachiko Sakai 

 

 The Arizona Strip and adjacent areas in Utah and Nevada are in a very 

marginal environment.  This dissertation investigates how small-scale farmers who 

survived more than 1000 years in this area coped with the challenges of this 

marginal environment by examining how and why social interaction patterns varied 

over time in different parts of the region.  

 Artifact assemblages from this area that date between A.D. 200 and 1350 are 

characterized by widely distributed ceramics tempered with olivine, a volcanic 

mineral.  Sources of olivine lie in the vicinity of Mt. Trumbull and Tuweep, near the 

northwestern part of the Grand Canyon.  The olivine-tempered ceramics were 

distributed mostly westward from Mt. Trumbull, up to 100 km to the lowland Virgin 

area in southern Nevada.   

 Ultimately, the goal of this study is to understand why ceramic production 

and circulation patterns changed during the Ancestral Pueblo occupation of this 

peripheral area of the American Southwest.  I hypothesize that ceramic production 

 xiii 



 

and regional interaction patterns were shaped in part by the need to minimize 

subsistence risk in this marginal agricultural environment.   

 To reconstruct ceramic production and consumption pattern, laser-ablation 

inductively couple plasma mass spectrometry (LA-ICP-MS) was conducted on 1,069 

sherds from the Mt. Trumbull/Tuweep and the lowland Virgin areas, along with 

source clay samples collected from the same areas.  To examine how the use of clay 

resources changed over time, optically stimulated luminescence (OSL) dating was 

conducted on 113 sherd samples with compositional information.   

 The data presented here suggest that different environmental conditions 

favored different social interaction and local ceramic production patterns.  In Mt. 

Trumbull, under unstable climatic conditions and low population density, near the 

beginning of the Puebloan occupation, pots moved along with human migration.  

Later, when populations were higher and environmental conditions were equally 

unstable, pots were moved through interregional trade.   In addition, clay resource 

specialization was favored early but was replaced later by exclusive use of optimal 

clays when population numbers were higher.  In the lowland Virgin area, exchange 

played an important role as a risk minimization strategy throughout the Puebloan 

occupation, but clay-resource specialization gained importance later on, when 

populations increased.    

 

 

  

 xiv 



 

TABLE OF CONTENTS 
 
 
ACKNOWLEDGEMENTS ....................................................................................... v 
CURRICULUM VITAE ......................................................................................... vii 
ABSTRACT  .......................................................................................................... xiii 
 
 
CHAPTER I.  INTRODUCTION ............................................................................. 1 
 Adaptation to Marginal Environment in the Arizona Strip and Adjacent Areas .... 8 
 Research Problems ................................................................................................ 12 
 Data Produced in this Study .................................................................................. 18 
 
CHAPTER II.  BACKGROUND TO STUDY ...................................................... 21 
 Geography and Natural Environment .................................................................... 21 
  The Plateaus Area ............................................................................................. 21 
  Lowland Virgin Area ........................................................................................ 23 
  St. George Basin Area ...................................................................................... 24 
 Previous Research in This Study Area .................................................................. 24
 Cultural History and Chronology .......................................................................... 26 
  Paleoindian/Archaic Period .............................................................................. 27 
  Formative Period .............................................................................................. 28 
   Basketmaker II Period ca. 300BC–AD 400 ................................................. 29 
   Basketmaker III Period ca. AD 400–800 ..................................................... 30 
   Pueblo I Period ca. AD 800–1000 ............................................................... 32 
   Pueblo II Period ca. AD 1000–1150 ............................................................ 33 
   Pueblo III Period ca. AD 1150–1300 (?) ..................................................... 35 
  Neo-Archaic Period .......................................................................................... 36 
 The Study of Ceramic Production and Consumption Patterns in the American 
 Southwest .............................................................................................................. 37 
  A Critique of the Early Provenance Studies ..................................................... 38 
  Techniques for Testing Assumptions ............................................................... 40 
 Development of Ceramic Chronology in the American Southwest ...................... 42 
 The Study of Olivine-Tempered Ceramics............................................................ 44 
  Olivine Used as Temper ................................................................................... 44 
  Formal Attributes of Olivine-Tempered Ceramics ........................................... 48 
  Spatial Distribution Pattern ............................................................................... 50 
  Temporal Distribution Patterns ......................................................................... 53 
  Source of Olivine and Olivine-Tempered Ceramics......................................... 54 
  Olivine-Tempered Ceramic Exchange Issues ................................................... 56 
 Chemical Compositional Analysis to Source Olivine-Tempered Ceramics ......... 57 
  INAA Study on Ceramics in the Lowland Virgin Area.................................... 58 
  Microwave Digestion ICP-MS Study of Olivine-Tempered Ceramics ............ 59 
  

 xv 



 

CHAPTER III.  RESEARCH QUESTION AND THEORETICAL 
BACKGROUND ...................................................................................................... 62 
 Research Focus ...................................................................................................... 65 
 Ceramics and Evolution ........................................................................................ 66 
 Models for Explaining the Compositional and Formal Diversity in Olivine-
 Tempered Ceramics ............................................................................................... 68 
  Selection that Acted on Local Ceramic Production .......................................... 68 
   Clay Resource Specialization ...................................................................... 69 
   Absence of Clay Resource Specialization in Ceramic Raw Material

 Procurement ................................................................................................. 71 
 Selection that Acted on Economic Interaction Patterns ........................................ 72 
  Movement of Pots Coupled with Local Specialization .................................... 72 
  Movement of Pots without Local Specialization .............................................. 73 
 Research Question ................................................................................................. 76 
 Hypothesis ............................................................................................................. 76 
  Step One: Hypotheses ....................................................................................... 76 
  Step Two: Identify and Interpret the Compositional Groups ........................... 83 
   Bulk Data: Instrumental Neutron Activation Analysis (INAA) .................. 83 
   Point Analysis Data (Clay Matrix Only): Laser Ablation Inductively 

Coupled Plasma Mass Spectrometry (LA-ICP-MS) .................................... 84 
 Summary................................................................................................................ 86 
 
CHAPTER IV.  DATA COLLECTION ................................................................ 87 
 Fieldwork  ............................................................................................................ 87 
 Method   ............................................................................................................ 89 
  Mapping ............................................................................................................ 89 
  Surface Collection Units (SCUs) ...................................................................... 90 
  Surface General Collection (Grab Samples) ..................................................... 92 
  Soil Augering .................................................................................................... 92 
  Test Pit Excavation ........................................................................................... 92 
  Clay Sampling .................................................................................................. 93 
  Background Sediment Collection for Luminescence Dating ........................... 96 
 Site Descriptions .................................................................................................... 98 
  AZ:A:12:30 (BLM) ........................................................................................ 100 
  AZ:A:12:131(BLM) ....................................................................................... 103 
  AZ:A:12:204 (BLM) ...................................................................................... 107 
  AZ:A:12:136 (ASM) ...................................................................................... 108 
  AZ:A:12:71(ASM) ......................................................................................... 111 
  AZ:A:12:214 (ASM) ...................................................................................... 114 
  AZ:A:12:14 (MNA) ........................................................................................ 115 
 Changes in the Frequency of Ceramic Types in Mt. Trumbull ........................... 117 
  Distribution of Ceramic Types ....................................................................... 118 
  Changes through Time in Olivine-tempered Ceramics .................................. 120 
  Corrugated Wares ........................................................................................... 120 

 xvi 



 

 Extant Collection from Previous Work ............................................................... 123 
  Lowland Virgin Ceramic Samples .................................................................. 123 
  Tuweep Ceramic Samples .............................................................................. 123 
  Conclusion ...................................................................................................... 124 
 
 
CHAPTER V.  METHODS OF ANALYSIS AND DESCRIPTIVE  
RESULTS   .......................................................................................................... 127  
 Compositional Analysis....................................................................................... 128 
  Instrumental Neutron Activation Analysis (INAA) ....................................... 129 
   Instrumentation and Analysis .................................................................... 129 
   Data set ....................................................................................................... 131 
   INAA Results ............................................................................................. 132 
    Compositional Group and Provenience   ............................................... 132 
    Compositional Group and Surface Treatment ....................................... 135 
    Compositional Groups and Core Color ................................................. 135 
    Compositional Groups and Site Chronology ........................................ 137 
   Summary of the INAA Analysis ................................................................ 139 
  Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)  
      .......................................................................................................... 141 
   Instrumentation and Analysis .................................................................... 141 
   Sample Preparations ................................................................................... 144 
   Analysis Procedure and Calibration ........................................................... 144 
   Pilot Study on a Smaller Data Set .............................................................. 146 
   The Larger Data Set ................................................................................... 151 
   Procedures Used in Compositional Pattern Recognition ........................... 151 
    Statistical Analysis ................................................................................ 153 
    Identification of Compositional Groups in Olivine-tempered  
    Ceramics ................................................................................................ 154 
     Recognition of the initial four compositional groups   ..................... 154 
     Recognition of Subgroups in Group 1 .............................................. 163 
     Summary of Compositional Groups among Olivine-tempered 
     Ceramics ........................................................................................... 171 
     Comparison of Clay Data to Ceramics Groups    ............................. 179 
    Identification of Compositional Groups among All Sherds .................. 181 
     Five Compositional Groups .............................................................. 181 
     Subgroups in Five Compositional Groups   ..................................... 182 
     Six Compositional Groups ............................................................... 188 
      Case 1: Assigned to a known group and included in the 

Mahalanobis distance classification: solid member ..................... 190 
      Case 2: Assigned to a known group but not included in the 

Mahalanobis distance calculations: possible member ................. 191 
      Case 3: Unassigned ...................................................................... 193 
     Possible Compositional Groups among Unassigned Samples ......... 197 

 xvii 



 

     Comparison of Clay Data with Ceramic Groups .............................. 213 
      Group 2 ........................................................................................ 213 
      Group 1G ..................................................................................... 220 
      Group 1VV .................................................................................. 222 
      Group 1VM .................................................................................. 222 
      Other Groups ................................................................................ 223 
 Formal Attribute Analysis ................................................................................... 227 
 Optically Stimulated Luminescence Dating ........................................................ 230 
  Background ..................................................................................................... 232 
   History of Luminescence Dating and Ceramic Dating .............................. 236 
  Measurement Protocols .................................................................................. 238 
   Sample Preparation .................................................................................... 239 
   Luminescence Measurements .................................................................... 241 
   Estimation of Averaged Equivalent Dose and Error .................................. 243 
   Dose Rate Information   ............................................................................. 244 
  Results of OSL Dating in This Study ............................................................. 246 
   Evaluation of Equivalent Dose .................................................................. 246 
   The Background Sediment Sample Issue in the Lowland Virgin Area ..... 249 
   Evaluating Equivalent Dose and Dates in Each Compositional Group ..... 252 
    Group 1G ............................................................................................... 253 
    Group 1VM ........................................................................................... 255 
    Group 1VV ............................................................................................ 256 
    Group 2 .................................................................................................. 257 
    Group 3 .................................................................................................. 258 
    Group 4 .................................................................................................. 259 
    VR1  ..................................................................................................... 260 
    VR3  ..................................................................................................... 261 
   
CHAPTER VI.  ANALYTICAL RESULTS ........................................................ 263 
 Interpretation of Compositional Groups .............................................................. 263 
  Compositional Groups and Provenience ........................................................ 266 
   Compositional Groups and Sites ................................................................ 269 
  Compositional Groups and Surface Treatments ............................................. 275 
  Compositional Groups and Temper Types ..................................................... 285 
  Compositional Groups and Core Colors ......................................................... 291 
  Compositional Groups and Sherd Thickness .................................................. 293 
  Compositional Groups and Ware Type .......................................................... 294 
   Moapa Ware    ............................................................................................ 294 
   Tusayan Ware ............................................................................................ 299 
   Shivwits Ware ............................................................................................ 300 
   Red ware and Polychrome ......................................................................... 307 
   Black-on-gray Ware ................................................................................... 309 
    Moapa Black-on-gray (Olivine Temper) ............................................... 309 
    Tusayan Black-on-gray (Sand Temper) ................................................ 311 

 xviii 



 

  Compositional Groups and Site Chronology (Rough Scale) .......................... 312 
  Compositional Groups and Post-Depositional Alternation ............................ 314 
  Comparison of LA-ICP-MS Compositional Groups to INAA Compositional 

Group  .......................................................................................................... 314 
  Evaluation of Compositional Groups ............................................................. 315 
   Group 1G: Mt. Trumbull Local Group ...................................................... 316 
   Group 1VM: Unknown, But Potentially a Mt. Trumbull Local Group. .... 317 
   Group 1VV: Lowland Virgin Local Group................................................ 317 
   Group 2: Mt. Trumbull Local Group ......................................................... 317 
   Group 3: Unknown but Potentially Mt. Trumbull Local Group. ............... 317 
   Group 4: Unknown, but either Mt. Trumbull or the Lowland Virgin Group 

 (likely to be a lowland Virgin local Group) ............................................... 318 
   VR1: Unknown, Neither Mt. Trumbull Nor the Lowland Virgin Area ..... 320 
   VR3: Lowland Virgin Local Group ........................................................... 320 
  Conclusion ...................................................................................................... 321 
 Optical Luminescence Dating Results ................................................................. 321 
  Distribution of OSL Dates in Mt. Trumbull and the Lowland Virgin Area ... 327 
  Ceramic Physical Attributes and OSL Dates .................................................. 329 
  Summary of OSL Dates in Each Compositional Group ................................. 332 
   Group 1G ................................................................................................... 333 
   Group 2 ...................................................................................................... 336

 Group 1VM ................................................................................................ 339 
   Group 3  ..................................................................................................... 340 
   Group 1VV ................................................................................................. 341 
   Group 4 ...................................................................................................... 342 
   VR3  .......................................................................................................... 344 
   VR1  .......................................................................................................... 345 
 
CHAPTER VII.  DISCUSSION ............................................................................ 348 
 Trends in Ceramic Production and Circulation at the Macro-Regional Scale .... 349 
  Production and Circulation of All Ceramics .................................................. 349 
  Production and Distribution of Olivine-Tempered Ceramics ......................... 356 
  Production and Distribution of Sand-Tempered Ceramics ............................. 359 
 Trends in Ceramic Production and Circulation in Mt. Trumbull ........................ 360 
  Ceramic Production Pattern in Mt. Trumbull ................................................. 361 
  Ceramic Consumption Patterns in Mt. Trumbull ........................................... 363 
   All Ceramics .............................................................................................. 364 
   Olivine-tempered Ceramics ....................................................................... 367 
   Sand-tempered Ceramics ........................................................................... 370 
 Trends in Ceramic Production and Circulation in the lowland Virgin Area ....... 371 
  Ceramic Production Pattern in the lowland Virgin area ................................. 372 
  Ceramic Consumption Patterns in the Lowland Virgin Area ......................... 374 
   All Ceramics .............................................................................................. 375 
   Olivine-Tempered Ceramics ...................................................................... 379 

 xix 



 

   Sand-Tempered Ceramics .......................................................................... 382 
 Summary of the Observation on Data and Evaluation of Hypotheses ................ 383 
  Ceramic Production and Circulation at the Macro-Regional Scale ................ 385 
  Ceramic Production and Circulation in Mt. Trumbull .................................... 388 
  Ceramic Production and Circulation in the Lowland Virgin Area ................. 397 
 Conclusion  .......................................................................................................... 400 
 
REFERENCE CITED ........................................................................................... 403 
 

 
APPENDICES 

 
 

APPENDIX A: SAMPLE INFORMATION FOR THE LA-ICP-MS  
ANALYSIS .............................................................................................................. 421 
 
APPENDIX B: OSL DATING DATA .................................................................. 445 
 
 
 
  
  

 xx 



 

LIST OF FIGURES 
 
 
Figure 1.1 Map of the western section of the Arizona Strip .................................... 9 
Figure 1.2 Map of the Study Area .......................................................................... 10 
Figure 2.1 Olivine ceramic frequencies by site in each region .............................. 51 
Figure 2.2 Refired colors of olivine-tempered ceramics ........................................ 56 
Figure 2.3 INAA results of ceramics from the lowland Virgin area ...................... 58 
Figure 2.4 Microwave digestion ICP-MS results for the ceramics from Tuweep 

and the lowland Virgin area .................................................................. 60 
Figure 3.1 Geologic map of the Mt. Trumbull  ...................................................... 69 
Figure 4.1 Map of archaeological sites in Mt. Trumbull included in this study .... 88 
Figure 4.2 Map of the lowland Virgin area showing background sediment 

collection locations for the OSL dating and archaeological sites 
involved in this study ............................................................................ 98 

Figure 4.3 Map of site 30 BLM ............................................................................ 100 
Figure 4.4 Map of site 131 BLM .......................................................................... 104 
Figure 4.5 Variation in artifact frequencies from test pit excavations at 131 BLM

............................................................................................................. 106 
Figure 4.6 Frequency of olivine-tempered ceramics (> 1 inch) and corrugated 

ceramics from TP 2 at 131 BLM ........................................................ 107 
Figure 4.7 Map of site 204 BLM .......................................................................... 108 
Figure 4.8 Map of site 136 ASM .......................................................................... 109 
Figure 4.9 Map of site 71ASM_A area showing Features 1-4 ............................. 112 
Figure 4.10 Map of site 71 ASM_B area showing Feature 6 ................................. 113 
Figure 4.11 Map of site 214 ASM .......................................................................... 114 
Figure 4.12 Map of site 14 MNA ........................................................................... 116 
Figure 4.13 Frequency of olivine-tempered ceramics (> 1 inch) and corrugated 

ceramics from TP 2 at 30 BLM .......................................................... 121 
Figure 4.14 Frequency of olivine-tempered ceramics (> 1 inch) and corrugated 

ceramics from TP 2 at 131 BLM ........................................................ 121 
Figure 4.15 Frequency of olivine-tempered ceramics (>1 inch) and corrugated 

ceramics from TP2 at 136 ASM ......................................................... 122 
Figure 4.16 Frequency of olivine-tempered ceramics (>1 inch) and corrugated 

ceramics from TP14 at 14 MNA ......................................................... 122 
Figure 5.1 Bivariate plot of europium and antimony in INAA data to show five 

compositional groups in olivine-tempered ceramics from Mt. Trumbull 
and the lowland Virgin area. ............................................................... 133 

Figure 5.2 Bivariate plot of principal components 1 and 2 in INAA data showing 
five compositional groups in olivine-tempered ceramics from Mt. 
Trumbull and the lowland Virgin area. ............................................... 134 

Figure 5.3 Bivariate plot of canonical discriminant functions 1 and 3 showing six 
compositional groups in the pilot LA-ICP-MS study of ceramics from 

 xxi 



 

Mt. Trumbull and the lowland Virgin area (olivine and non-olivine 
ceramics) ............................................................................................. 148 

Figure 5.4 Bivariate plot of magnesium and rubidium from the LA-ICP-MS 
analysis of all olivine ceramics ........................................................... 155 

Figure 5.5 Bivariate plot of principal components 1 and 3 showing four 
compositional groups in the LA-ICP-MS data derived from all olivine-
tempered ceramics .............................................................................. 159 

Figure 5.6 Bivariate plot of principal components 1 and 3 with elements showing 
four groups in the LA-ICP-MS data derived from all olivine-tempered 
ceramics .............................................................................................. 160 

Figure 5.7 Bivariate plot of canonical discriminant functions 1 and 3 showing four 
groups in the LA-ICP-MS data derived from all olivine ceramics ..... 161 

Figure 5.8 Bivariate plot of rubidium and magnesium showing four compositional 
groups in the LA-ICP-MS data delivered from all olivine ceramics ........ 
............................................................................................................. 162 

Figure 5.9 Comparison of Group 1 identified in the larger data set with the 
compositional group identified in pilot study of smaller data set ....... 166 

Figure 5.10 Cluster analysis of Group 1 based on principal component scores .... 167 
Figure 5.11 Bivariate plot of principal components 1 and 3 showing five 

compositional groups in olivine-tempered ceramics .......................... 172 
Figure 5.12 Bivariate plot of principal components 1 and 3 showing five 

compositional groups in olivine-tempered ceramics with elemental 
vectors ................................................................................................. 173 

Figure 5.13 Bivariate plot of canonical discriminant functions 1 and 2 showing five 
compositional groups in olivine-tempered ceramics. ......................... 174 

Figure 5.14 Bivariate plot of canonical discriminant functions 3 and 4 showing five 
compositional groups in olivine-tempered ceramics .......................... 175 

Figure 5.15 Bivariate plot of rubidium and magnesium showing five compositional 
groups in olivine-tempered ceramics .................................................. 176 

Figure 5.16 Bivariate plots of lanthanum and magnesium showing five  
compositional groups in olivine-tempered ceramics. ......................... 177 

Figure 5.17 Frequency of olivine-tempered ceramics by the five compositional 
groups and surface treatment. ............................................................. 178 

Figure 5.18 Frequency of olivine-tempered ceramics by the five compositional 
groups and provenience. ..................................................................... 178 

Figure 5.19 Bivariate plot of principal components 1and 3 showing clay data and 
olivine-tempered ceramic compositional groups. ............................... 180 

Figure 5.20 Bivariate plot of principal component scores 1 and 3 based on only 
Group 1 ceramic data to examine subgroups, G1VV and G1VM ...... 186 

Figure 5.21 Bivariate plot of canonical discriminant functions 1 and 3 showing 
Groups 1VV, 1VM and 1G. ................................................................ 189 

Figure 5.22 Bivariate plot of principal component scores 1 and 3 showing the final 
six compositional groups among all ceramics from Mt. Trumbull, 
Tuweep and the lowland Virgin areas ................................................ 194 

 xxii 



 

Figure 5.23 Bivariate plots of canonical discriminant functions 1 and 2 showing the 
final six compositional groups among all ceramics from Mt. Trumbull, 
Tuweep and the lowland Virgin areas ................................................ 195 

Figure 5.24 Bivariate plot of canonical discriminant functions 1 and 2 showing the 
final six compositional groups among all ceramics from Mt. Trumbull, 
Tuweep and the lowland Virgin areas (ellipse only) .......................... 196 

Figure 5.25 Bivariate plots of canonical discriminant functions 1 and 4 showing the 
final six compositional groups among all ceramics from Mt. Trumbull, 
Tuweep and the lowland Virgin areas ................................................ 198 

Figure 5.26 Bivariate plots of canonical discriminant functions 1 and 4 showing the 
final six compositional groups among all ceramics from Mt. Trumbull, 
Tuweep and the lowland Virgin areas ................................................ 199 

Figure 5.27 Bivariate plot of canonical discriminant functions 1 and 2 showing 
Groups 1G, 1VM and 1VV. ................................................................ 200 

Figure 5.28 Bivariate plot of principal components 1 and 3 showing VR1 and VR3 
ceramic data from the lowland Virgin area ......................................... 203 

Figure 5.29 Bivariate plot of principal component scores 1 and 3 showing VR1 and 
VR3 groups and unassigned samples in the LA-ICP-MS data. .......... 204 

Figure 5.30 Bivariate plot of canonical discriminant functions 2 and 3 showing 
VR1 and VR3 are independent compositional groups in the LA-ICP-
MS data set .......................................................................................... 206 

Figure 5.31 Bivariate plot of canonical discriminant functions 3 and 6 showing that 
VR1 and VR3 are independent compositional groups in the LA-ICP-
MS data set. ......................................................................................... 207 

Figure 5.32 Bivariate plots of canonical discriminant functions 2 and 3 to examine 
whether unassigned samples are grouped as VR1 and VR3 ............... 208 

Figure 5.33 Bivariate plot of principal components 1 and 3 showing the final eight 
compositional groups among all ceramics in Mt. Trumbull, the lowland 
Virgin area, and Tuweep ..................................................................... 209 

Figure 5.34 Bivariate plot of principal components 1 and 3 with element vectors 
showing the final eight compositional groups in among all ceramics in 
Mt. Trumbull, Tuweep, and  the lowland Virgin area ........................ 210 

Figure 5.35 Bivariate plots of canonical discriminant functions 1 and 3 showing the 
final eight compositional groups among all ceramics in Mt. Trumbull, 
Tuweep and the lowland Virgin area .................................................. 211 

Figure 5.36 Bivariate plot of canonical discriminant functions 2 and 3 showing the 
final eight compositional groups among all ceramics in Mt. Trumbull, 
Tuweep and the lowland Virgin area .................................................. 212 

Figure 5.37 Location of Mt. Trumbull clays matched to Group 2 ......................... 218 
Figure 5.38 The deposit of sedimentary clay near the Nixon Spring Trail on the 

slope of Mt. Trumbull. ........................................................................ 219 
Figure 5.39 The location of clay collection near Mt. Logan. ................................. 221 

 xxiii 



 

Figure 5.40 Bivariate plot of principal component scores 1 and 3 showing the final 
eight ceramic compositional groups among all ceramics in Mt. 
Trumbull, Tuweep and the lowland Virgin area and clay .................. 224 

Figure 5.41 Bivariate plot of canonical discriminant functions 1 and 3 showing the 
final eight ceramic compositional groups among all ceramics in Mt. 
Trumbull, Tuweep and the lowland Virgin area and clay .................. 225 

Figure 5.42 Bivariate plot of canonical discriminant functions 2 and 3 showing the 
final eight ceramic compositional groups among all ceramics in Mt. 
Trumbull, Tuweep and the lowland Virgin area and clay. ................. 226 

Figure 5.43 An example of a regeneration curve and the interpolation of the natural 
signal to determine equivalent dose (s) ............................................... 242 

Figure 6.1 Frequency of all sherds from Mt. Trumbull/Tuweep and the lowland 
Virgin area by compositional group and provenience ........................ 267 

Figure 6.2 Percentage of Mt. Trumbull/Tuweep sherds by compositional  
 group ................................................................................................... 268 
Figure 6.3 Percentage of lowland Virgin sherds by compositional group ........... 268 
Figure 6.4 Percentage of all sherds by compositional group from sites where 

ceramic samples were obtained, within the Mt. Trumbull, Tuweep, and 
lowland Virgin areas ........................................................................... 271 

Figure 6.5 Percentage of all sherds within each compositional group by the site 
where ceramic samples were obtained, within Mt. Trumbull, Tuweep 
and lowland Virgin areas .................................................................... 272 

Figure 6.6 Frequency of all sherds from Mt. Trumbull/Tuweep and the lowland 
Virgin area by compositional group and surface treatment ................ 282 

Figure 6.7 Percentage of all sherds from Mt. Trumbull/Tuweep and the lowland 
Virgin area by compositional group ................................................... 282 

Figure 6.8 Frequency of all sherds from Mt. Trumbull, Tuweep and lowland 
Virgin area by compositional group and temper................................. 287 

Figure 6.9 Percentage of all sherds within temper types from all areas by 
compositional groups .......................................................................... 287 

Figure 6.10 Frequency of all sherds from Mt. Trumbull, Tuweep, and the lowland 
Virgin area by compositional group and core color ............................ 292 

Figure 6.11 Distribution of all sherds based on compositional group and sherd 
thickness .............................................................................................. 293 

Figure 6.12 Frequency of Mt. Trumbull and lowland Virgin sherds by time interval 
based on OSL dates ............................................................................. 328 

Figure 6.13 Frequency of all sherds  from the Mt. Trumbull and lowland Virgin 
areas by time interval based on OSL dates and surface treatment ...... 330 

Figure 6.14 Frequency of all sherds from the Mt. Trumbull and the lowland Virgin 
areas by time interval based on OSL dates and temper ...................... 332 

Figure 6.15 Distribution of OSL dates for sherds in Group 1G. ............................ 334 
Figure 6.16 Distribution of OSL dates for sherds in Group 2 ................................ 337 
Figure 6.17 Distribution of OSL dates for sherds in Group 1VM. ........................ 340 
Figure 6.18 Distribution of OSL dates for sherds in Group 3. ............................... 341 

 xxiv 



 

Figure 6.19 Distribution of OSL dates for sherds in Group 1VV. ......................... 342 
Figure 6.20 Distribution of OSL dates for sherds in Group 4. ............................... 343 
Figure 6.21 Distribution of OSL dates for sherds in VR3...................................... 345 
Figure 6.22 Distribution of OSL dates for sherds in VR1...................................... 346 
Figure 7.1 Frequency of sherds by time interval and the compositional group. .. 351 
Figure 7.2 Percentage of all sherds from both Mt. Trumbull and the lowland 

Virgin areas by time period and temper type. ..................................... 353 
Figure 7.3 Percentage of all sherds (olivine and non-olivine) by time period and 

compositional group............................................................................ 353 
Figure 7.4 Percentage of all sherds by time period and geographic source. ........ 355 
Figure 7.5 Frequency of olivine-tempered sherds by time interval and 

compositional group (Mt. Trumbull and Lowland Virgin). ................ 357 
Figure 7.6 Percentage of olivine-tempered sherds by time period and 

compositional group (Mt. Trumbull and Lowland Virgin). ................ 358 
Figure 7.7 Frequency of sand-tempered sherds by time interval and compostional 

groups (Mt. Trumbull and Lowland Virgin). ...................................... 359 
Figure 7.8 Percentage of sand-tempered sherds by time period and compostional 

group (Mt. Trumbull and Lowland Virgin). ....................................... 360 
Figure 7.9 Percentage of all sherds produced in Mt. Trumbull Source by time 

period and temper type........................................................................ 361 
Figure 7.10 Percentage of all sherds produced in Mt. Trumbull (olivine and non-

olivine) by time period and compositional group. .............................. 362 
Figure 7.11 Frequency by time interval of local vs. non-local wares represented 

among sherds from Mt. Trumbull. ...................................................... 364 
Figure 7.12 Frequency by time interval of local vs. non-local wares represented 

among sherds from Mt. Trumbull. ...................................................... 365 
Figure 7.13 Frequency of all Mt. Trumbull sherds (olivine and sand temper) by 

time interval and compositional group. .............................................. 366 
Figure 7.14 Percentage of all Mt. Trumbull sherds (olivine and sand temper) by 

time period and compositional group. ................................................ 367 
Figure 7.15 Frequency of Mt. Trumbull olivine-tempered sherds by time interval 

and compositional group. .................................................................... 368 
Figure 7.16 Percentage of Mt. Trumbull olivine-tempered sherds by time period 

and compositional group. .................................................................... 369 
Figure 7.17 Frequency of Mt. Trumbull sand-tempered sherds by time interval and 

compositional group............................................................................ 370 
Figure 7.18 Percentage of Mt. Trumbull sand-tempered sherds by time period and 

compositional group............................................................................ 371 
Figure 7.19 Percentage of all sherds produced in the lowland Virgin source by time 

period and temper type........................................................................ 372 
Figure 7.20 Percentage of all sherds (olivine and non-olivine) produced in the 

Lowland Virgin area by time period and compositional group. ......... 373 
Figure 7.21 Frequency by time interval of local vs. non-local wares represented 

among sherds from the lowland Virgin area. ...................................... 375 

 xxv 



 

Figure 7.22 Percentage by time period of local vs. non-local wares represented 
among sherds from the lowland Virgin area. ...................................... 376 

Figure 7.23 Percentage by time period of sherds of which the raw materials are 
from Mt. Trumbull. ............................................................................. 377 

Figure 7.24 Frequency of compositional groups by time interval in the lowland 
Virgin area (olivine and sand temper). ............................................... 378 

Figure 7.25 Percentage of lowland Virgin area sherds (olivine and sand temper) by 
time period and compositional group. ................................................ 379 

Figure 7.26 Frequency of olivine-tempered sherds from the Lowland Virgin area by 
time interval and compositional group. .............................................. 380 

Figure 7.27 Percentage of lowland Virgin olivine-tempered sherds by time period 
and compositional group. .................................................................... 381 

Figure 7.28 Distribution of OSL dates for olivine-tempered sherds from the lowland 
Virgin area. ......................................................................................... 381 

Figure 7.29 Frequency of sherds from the lowland Virgin area by time interval and 
compositional group............................................................................ 382 

Figure 7.30 Percentage of the lowland Virgin sand-tempered sherds by time period 
and compositional group. .................................................................... 383 

Figure 7.31 Comparison by time period of local and non-local wares represented 
among sherds from Mt. Trumbull and the lowland Virgin area. ........ 390 

Figure 7.32 Five-year average of the Palmer Drought Severity Index PDSI between 
A.D. 600 and 1380. ............................................................................. 395 

 
 

 xxvi 



LIST OF TABLES 
 
 
Table 4.1 List of the archaeological sites in Mt. Trumbull included in this study 

along with their UTM coordinates, elevations and site types ............... 99 
Table 4.2 Number of total artifacts from systematic surface collection units 

(SCUs)................................................................................................. 101 
Table 4.3 Number of artifact counts of test pit excavation ................................. 101 
Table 4.4 Frequency of sherds with olivine temper, sherd temper (with olivine 

inclusion) and sand temper. ................................................................ 102 
Table 4.5 Ratio of corrugated ware from surface collection units (SCUs) and test 

pits (TPs), as well as radiocarbon dates from each site in Mt. Trumbull
............................................................................................................. 102 

Table 4.6 Summary of decorated wares from test pits and surface collection units 
at each site in Mt. Trumbull included in this study............................. 103 

Table 4.7 AMS radiocarbon dates for sites in Mt. Trumbull .............................. 105 
Table 5.1 Frequency of olivine-tempered sherds by INAA compositional group 

and provenience .................................................................................. 135 
Table 5.2 Frequency of olivine-tempered sherds from Mt. Trumbull and the 

lowland Virgin area by INAA compositional group and surface 
treatment. ............................................................................................ 136 

Table 5.3 Frequency olivine-tempered sherds from Mt. Trumbull by INAA 
compositional group and surface treatment ........................................ 136 

Table 5.4 Frequency of olivine-tempered sherds from the Lowland Virgin area by 
INAA compositional group and surface ............................................. 136 

Table 5.5 Frequency of olivine-tempered sherds from Mt. Trumbull and the 
Lowland Virgin area by INAA compositional group and core color . 137 

Table 5.6 Frequency of olivine-tempered sherds from Mt. Trumbull by INAA 
compositional group and site chronology ........................................... 138 

Table 5.7 Frequency of olivine-tempered sherds from the Lowland Virgin area by 
INAA compositional groups and site chronology .............................. 138 

Table 5.8 Results of the pilot LA-ICP-MS study of 311 ceramic samples and 90 
clay samples ........................................................................................ 150 

Table 5.9 Number of ceramic and clay samples involved in the LA-ICP-MS 
analysis ................................................................................................ 152 

Table 5.10 Number of ceramic samples involved in the LA-ICP-MS analysis by 
temper type and provenience .............................................................. 152 

Table 5.11 Number of ceramic samples involved in the LA-ICP-MS analysis by 
provenience and surface treatment...................................................... 152 

Table 5.12 Number of clay sources involved in the LA-ICP-MS analysis........... 152 
Table 5.13 Hypothetical Compositional Groups................................................... 154 
Table 5.14 Comparison of cluster groups in this study and compositional groups in 

a smaller data set, as well as the hypothetical subgroups in Group 1 .......  
 ............................................................................................................. 168 

xxvii 



 

Table 5.15 Summary of classification success using principal component scores 
derived from olivine-tempered ceramics ............................................ 170 

Table 5.16 Summary of classification success using canonical discriminant 
analysis scores of olivine-tempered ceramics ..................................... 170 

Table 5.17 Summary of classification success using log 10 based values derived 
from olivine-tempered ceramics ......................................................... 170 

Table 5.18 Results of first projection of non-olivine ceramics (sand temper, and 
sherd temper including olivine particles) and olivine-tempered ceramics 
unassigned to any of the five compositional groups ........................... 183 

Table 5.19 Summary of classification success in Groups 1VV and 1VM using 
principal components scores. .............................................................. 187 

Table 5.20 Summary of classification success in Groups 1G, 1VV and 1VM using 
canonical discriminant scores. ............................................................ 187 

Table 5.21 Mahalanobis distance projection of unassigned specimens to a known 
group.  An example of moving unassigned specimens to known groups: 
Case 1 (MT131-247) ........................................................................... 191 

Table 5.22 Mahalanobis distance projection of unassigned specimens to a known 
group.  An example of moving unassigned specimens to known groups: 
Case 2 (MT214-19) ............................................................................. 192 

Table 5.23 Mahalanobis distance projection of unassigned specimens to a known 
group.  An example of moving unassigned specimens to known groups: 
Case 3 (MT204-24) ............................................................................. 193 

Table 5.24 Summary of members in compositional groups in all ceramics in Mt. 
Trumbull, Tuweep and the lowland Virgin areas ............................... 197 

Table 5.25 Summary of classification success in all ceramics in Mt. Trumbull, 
Tuweep and the lowland Virgin areas based on principal component 
analysis scores ..................................................................................... 201 

Table 5.26 Summary of classification success in all ceramics in Mt. Trumbull, 
Tuweep and the lowland Virgin areas based on canonical discriminant 
scores................................................................................................... 201 

Table 5.27 Comparison of LA-ICP-MS compositional groups to the lowland 
Virgin ceramic INAA groups.............................................................. 201 

Table 5.28 Summary of final eight compositional groups among all ceramics .... 213 
Table 5.29 Mahalanobis distance probabilities showing how clays are matched to 

four compositional groups (Groups 1G, 1VV, 1VM and 2). .............. 214 
Table 5.30 Coarse-grain Sample Preparation Protocol. ........................................ 239 
Table 5.31 OSL/SAR Sequence (BOSL). ............................................................. 242 
Table 5.32 XRF settings and calibration ............................................................... 245 
Table 5.33 Number of sherds with OSL dates. ..................................................... 246 
Table 5.34 Summary of radiation samples from the lowland Virgin area. ........... 251 
Table 6.1 Frequency of all sherds from Mt. Trumbull/Tuweep and the lowland 

Virgin area by compositional group and provenience ........................ 267 
Table 6.2 Frequency of all sherds from Mt. Trumbull/Tuweep and lowland Virgin 

area by compositional group and site .................................................. 270 

 xxviii 



 

Table 6.3 Frequency and all sherds from Mt.Trumbull/Tuweep and the lowland 
Virgin area by compositional group and surface treatment, and 
percentage of the sherds within type of surface treatment by 
compositional group............................................................................ 276 

Table 6.4 Frequency of all sherds from Mt. Trumbull/Tuweep and the lowland 
Virgin area by compositional group and surface treatment, and 
percentage of the sherds within the compositional group by surface 
treatment ............................................................................................. 277 

Table 6.5 Frequency of Mt. Trumbull/Tuweep sherds by compositional group and 
surface treatment, and percentage of the sherds within the type of 
surface treatment by compositional group .......................................... 278 

Table 6.6 Frequency of Mt. Trumbull/Tuweep sherds by compositional group and 
surface treatment, and percentage of the sherds within the 
compositional group by surface treatment .......................................... 279 

Table 6.7 Frequency of lowland Virgin sherds by compositional group and 
surface treatment, and percentage of the sherds within the type of 
surface treatment by compositional group .......................................... 280 

Table 6.8 Frequency of lowland Virgin sherds by compositional group and 
surface treatment, and percentage of the sherds within the 
compositional group by surface treatment .......................................... 281 

Table 6.9 Frequency of all sherds from Mt. Trumbull/Tuweep and the lowland 
Virgin area by compositional group and temper, and percentage of the 
sherds within the temper type by compositional group ...................... 286 

Table 6.10 Frequency of all sherds from Mt. Trumbull/Tuweep and the lowland 
Virgin area by compositional group and temper, and percentage of the 
sherds within the compositional group by temper type ...................... 286 

Table 6.11 Frequency of Mt. Trumbull/Tuweep sherds by compositional group and 
temper, and percentage of the sherds within the temper type by 
compositional groups .......................................................................... 289 

Table 6.12 Frequency of Mt. Trumbull/Tuweep sherds by compositional group and 
temper, and percentage of the sherds within the compositional group by 
temper types ........................................................................................ 289 

Table 6.13 Frequency of lowland Virgin sherds by compositional group and 
temper, and percentage of the sherds within the temper type by 
compositional groups .......................................................................... 290 

Table 6.14 Frequency of lowland Virgin sherds by compositional group and 
temper, and percentage of the sherds within the compositional group by 
temper types ........................................................................................ 290 

Table 6.15 Frequency of all sherds from Mt. Trumbull/Tuweep and the lowland 
Virgin area by compositional group and core color ............................ 292 

Table 6.16 List of ceramic wares and types included in this study ...................... 294 
Table 6.17 Frequency of all sherds from Mt. Trumbull/Tuweep and the lowland 

Virgin area by compositional group and ware type ............................ 295 

 xxix 



 

Table 6.18 Percentage of all sherds from Mt. Trumbull/Tuweep and the lowland 
Virgin area within the ware type by compositional group .................. 296 

Table 6.19 Percentage of all sherds from Mt. Trumbull/Tuweep and the lowland 
Virgin area within the compositional group by ware type .................. 297 

Table 6.20 Frequency of Mt. Trumbull/Tuweep sherds by compositional group and 
ware type ............................................................................................. 301 

Table 6.21 Percentage of Mt. Trumbull/Tuweep sherds within the ware type by 
compositional group............................................................................ 302 

Table 6.22 Percentage of Mt. Trumbull/Tuweep sherds within the compositional 
group by ware type.............................................................................. 303 

Table 6.23 Frequency of lowland Virgin sherds by compositional group and ware 
type ...................................................................................................... 304 

Table 6.24 Percentage of lowland Virgin sherds within the ware type by 
compositional group............................................................................ 305 

Table 6.25 Percentage of lowland Virgin sherds within the compositional group by 
ware type ............................................................................................. 306 

Table 6.26 Frequency and percentage of black-on-gray sherds by source and 
provenience. ........................................................................................ 309 

Table 6.27 Frequency and percentage of black-on-gray sherds by compositional 
group and provenience ........................................................................ 310 

Table 6.28 Frequency of lowland Virgin sherds by site, compositional groups, 
percentage of corrugated wares, and 14C dates ................................... 313 

Table 6.29 Frequency of sherds by INAA and LA-ICP-MS compositional groups
............................................................................................................. 315 

Table 6.30 OSL dates of sherds from Mt. Trumbull sites..................................... 323 
Table 7.1 Frequency of sherds by time interval and compositional group (Mt. 

Trumbull and the lowland Virgin area). ............................................. 350 
Table 7.2 Frequency of Group 1VV sherds by time period and temper type. .... 374 
 

 

 xxx 



Chapter I: INTRODUCTION 

 

Once humans became dependent on domesticated crops for subsistence, 

climatic conditions that affected the growth potential of those crops became crucial 

challenges.  Too little rainfall, too much rainfall, too much variability from year to 

year, conditions too favorable to insect pests, and other conditions related to the 

climate could tip the balance between survival and starvation.  As a result, 

agricultural populations have devised a variety of means to buffer their subsistence 

risk and maintain conditions favorable for their survival, and this is especially true in 

environments that are marginal for agriculture.  Agricultural adaptations to marginal 

environments are found throughout the world, such as in Saharan Africa (Clark 

1984), the Peruvian coastal area (Willey 1963), and the Southern Central Andes, 

where annual rainfall totals only 10–20 mm (Zori and Brant 2012).   

Some risk-buffering strategies are inferable from the archaeological record, 

and their long-term developmental trajectories can be investigated archaeologically.  

This is the basic premise of the study presented in this dissertation, in which I 

examine the evolution of human adaptation to the highly variable environment of the 

northwestern periphery of the American Southwest during the period of Puebloan 

occupation roughly from A.D. 200 to 1350. 

The climate in most of the American Southwest is marked by low 

precipitation and high temporal fluctuations.  Climatic conditions are also highly 

variable over space.  Current annual precipitation in the low desert regions is less 
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than 200 mm, while that in the steppe/mountainous region can exceed 500 mm 

(Cordell 1997).  Climatic variations are present even over short distances; 

temperature, for instance, is affected by local and regional topography in addition to 

elevation (Dean et al. 1994).   

Dendroclimatic reconstruction suggests that the Colorado Plateau has 

experienced several periods over the past 2000 years during which the climate varied 

greatly (Dean 1988a; Dean et al. 1994).  During periods of high temporal variability, 

rainfall amounts fluctuated substantially from one year to the next, and spatial 

variation in rainfall was unpredictable (Dean et al. 1994).  Tree-ring data suggest that 

the past 2000 years have been marked by a number of droughts of variable duration, 

magnitude, and frequency.  Two major droughts had devastating impacts on 

Southwestern populations: one was the modest but prolonged drought between A.D. 

1130 and 1180, which caused the collapse of villages in many areas, including the 

major culture centers in Chaco Canyon (Kantner 2004), and the other was “The 

Great Drought” between A.D. 1276 and 1299, which eventually caused 

abandonments in many areas of the American Southwest, including the Kayenta area 

(Dean 2002).  Dendroclimatology also shows that, in addition to these major 

droughts, minor droughts lasting several years were relatively common during the 

last 2000 years.  

Two climatic zones are recognized in the American Southwest—one with a 

bimodal distribution of annual precipitation in the western region and the other with 

a summer-dominant rainfall pattern in the eastern region (Dean 1988a).  
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Collaborative work based on the dendroclimatic reconstruction by Dean, Funkhouse 

and Graybill suggests that the boundary of the zone shifted through time and 

occasionally broke down (Dean 1996).  Winter precipitation is crucial for maize 

agriculture in the Southwest, especially in the more elevated areas (Dean 1988a).  

Thus, a sudden change in the location of the boundary between bimodal and 

summer-dominant rainfall would have had a severe negative impact on maize 

agriculture in areas affected by the shift.   

 Low precipitation and unpredictable climatic conditions made dry farming in 

the American Southwest extremely challenging.  Maize requires a minimum of 150–

250 mm in annual precipitation (Kantner 2004).  Although high-elevation areas may 

have enough annual precipitation for maize agriculture, farming was still risky.  This 

is because summer afternoon rainwater evaporates quickly due to high temperatures.  

Moreover, intense thunderstorms can often destroy agricultural crops.  In addition, 

temperatures in the highland area are low during the winter, so many highland areas 

are very close to the limit of maize agriculture, which requires a minimum of 120 

frost-free days (Cordell 1997).  Despite these challenging environments, Puebloan 

people survived for approximately 1300 years in the American Southwest with a 

subsistence system based at least partially on agriculture.  In this dissertation, I 

would like to explore some of the means by which these small-scale farmers 

managed the risks and adapted to this marginal environment. 

 A number of researchers have developed models to explain how humans cope 

with risk in marginal environments.  Risk is generally defined as an “unpredictable 
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variation in some ecological or economical variable (e.g., variation in rainfall, 

agricultural production, hunting return),” and an outcome is viewed as riskier if it 

has a greater variance (Cashdan 1990).  Risk can be caused by year-to-year 

variability, including environmental fluctuations and human-resource interactions 

(Winterhalder et al. 1988).  Several tactics that promote subsistence stability may 

reduce the risks associated with agriculture (Larson et al. 1996).  These include (1) 

changing resource production techniques (Hegmon 1991); (2) increasing storage of 

resources (Leonard 1989); (3) exchanges (e.g., Braun and Plog 1982; Glassow 1980; 

Jochim 1981); (3) pooling harvests within exchange networks (Boone 1992); (4) 

warfare to protect territories (Smith 1988); (5) community aggregation (Leonard and 

Reed 1993), and (6) reciprocity.   

 These tactics to reduce risks can also be observed among modern small-scale 

farmers.  Ethnographic studies among the Basarwa of Northern Botswana suggest 

that reciprocity buffers fluctuations in food production among small-scale farmers 

(Cashdan 1985).  Cashdan suggests sharing and gifting as the simplest forms of 

reciprocity acting as insurance to reduce risk.  A risk is shared by a number of 

different individuals who participate in the reciprocity networks, and therefore each 

is protected from the chance of a catastrophic loss.  In return for this protection, 

individuals incur obligations to help when someone else is in need.  Generalized 

reciprocity refers to a situation in which those who have an abundant supply give to 

those who encounter a deficit.  Reciprocity protects individuals from losses but 
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prohibits accumulating a surplus.  In this sense, reciprocity conflicts with storage, 

which is another method of risk reduction.   

Cashdan (1985) discusses when and under what conditions reciprocity is 

favored over other risk reduction strategies, such as storage.  The costs and benefits 

of various risk reduction strategies need to be considered to decide the most 

economical choice.  The costs are determined by the nature of the risk, which might 

be an environmental factor such as climate, and are determined by mobility and 

geographical distance within the network.  For example, reciprocity among 

sedentary populations is considered to have a high cost because of increased 

transportation costs.   

 Choices among risk management strategies also depend on the interaction of 

environmental, demographic, and behavioral variables that define the adaptive 

system at any point in time (Cordell and Plog 1979; Dean 1988a; Dean et al. 1985).  

Patterned behavior is a response mechanism that populations employ to adapt to 

environmental and demographic change (Dean 1988b).  Thus, both population level 

and environmental factors need to be considered to understand which risk 

minimization strategy would be favored over others in a particular place and time.  

Based on dendroclimatic reconstruction, Dean et al. (1994) point out two aspects of 

high environmental variability (temporal and spatial) that favor different risk 

management strategies.  During a period of high temporal climatic variability, 

accumulation of food storage to offset production failure is favored.  During a period 

of high spatial climatic variability, which results in interlocality production 
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differentials, interareal exchanges or plunder are more likely strategies for leveling 

out production differentials.  Spielmann et al. (2011) suggest that small-scale farmers 

developed two types of strategies to cope with stress: short-term strategies that 

include storage and community-scale sharing and long-term strategies such as 

migration.  

 As discussed above, although a number of strategies can help minimize 

subsistence risk, I will focus here on those that involve social interaction.  Numerous 

previous studies suggest that long-distance networking minimizes subsistence risks 

(Braun and Plog 1982) and that social interaction was a vital risk-buffering strategy 

for agriculturalists coping with variable environmental conditions of the American 

Southwest (Rautman 1993).  Social interaction can take the form of population 

mobility, exchanges, and aggregation, and all of these may leave an imprint on 

ceramic compositional and formal diversity, the precise patterning of form on 

composition depending on the nature of risk-buffering strategies adopted at a 

particular time and place (Neff et al. 1997).   

For example, in situations with low population densities, mobility is a viable 

adaptive strategy to cope with resource variability.  This can be expressed as a high 

degree of compositional diversity in ceramics, as shown by Eerkens et al. (2002) in a 

study of brown wares from Death Valley.  Even for agriculturalists, seasonal 

exploitation of wild resources of uplands and lowlands may supplement agricultural 

production in order to increase subsistence yields (e.g., Fairley 1989 for the Pueblo I 

period).  A study undertaken in Black Mesa indicates that storage and mobility may 
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have been combined to cope with risk during Basketmaker period (Wills and Huckell 

1994).  Although people moved frequently, they had a geographically fixed location 

where resources were stored (Graham and Roberts 1986). 

 With an increasing population, mobility becomes restricted, and instead 

sedentary residences with exchanges become a more viable adaptive strategy.  In 

addition to the constraints on mobility, larger populations may also lead to 

agricultural intensification, thus reducing the time available for other non-

agricultural activities.  At the same time, however, a heavy dependence on 

agriculture was risky in this unstable environment, so exchanges to buffer the 

agricultural risk were required.  Exchanges among small agricultural groups under 

conditions of high population can buffer risk in several ways: (1) by compensating 

for resource imbalances; (2) by reducing production cost (e.g., exporting excess 

production to exchange for goods not available locally); and (3) by maintaining 

social ties that allow people to ask for help from each other in case of agricultural 

failures.       

Several studies demonstrate how ceramic compositional data can provide 

insights into exchanges that could have buffered agricultural risk in the American 

Southwest.  In Chaco Canyon, a large number of ceramics were imported from 

multiple production areas from A.D. 900 to 1150, when the population density of the 

San Juan Basin probably reached its peak (Neitzel et al. 2002).  Compositional data 

also suggest that San Juan Red Ware was distributed widely from specialized 

production centers in southeast Utah (Hegmon et al. 1997).  Neff et al. (1997) 
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proposed two models of exchange: one is exchanges with local specialization under 

stable environmental conditions and the other is exchanges without local 

specialization under unstable environmental conditions (e.g., gift-exchange).  They 

found that the patterning of compositional groups on formal characteristics in an 

assemblage from Pottery Knoll, southern Utah, conformed to the expectations of the 

latter situation.    

When a population reaches even higher levels, village aggregation may 

emerge as a viable adaptive strategy.  For instance, ceramic compositional data from 

14th century sites in the Silver Creek area of the southern Colorado Plateau suggest 

that at aggregated villages White Mountain Red Ware was produced with local 

materials but with non-local decorations presumably favored by the various 

aggregating immigrant populations (Triadan 2002).  

 

Adaptation to Marginal Environment in the Arizona Strip and Adjacent Areas 

 The study area for investigating these ideas includes the Arizona Strip, 

located at the far northwestern corner of Arizona and defined as the lands north of 

the Colorado River to the Utah border (Figure 1.1).  Part of the study area is also 

within Nevada directly west of the Arizona Strip.  The population of this region 

depended on small-scale agriculture for at least part of their subsistence between 

A.D. 200 and 1350.  Archaeologists call the culture of this population the Virgin 

Branch Ancestral Pueblo and consider it as a regional branch of Ancestral Pueblo 

culture.  The Virgin Branch Ancestral Pueblo tradition includes the Arizona Strip and  
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Figure 1.1.  Map of the western section of the Arizona Strip. 
 

the Virgin and Muddy river drainages of southern Nevada and southwestern Utah.  

Like other parts of the Colorado Plateau, the Arizona Strip and adjacent areas in 

Utah and Nevada are very marginal environments, due to extremely arid and 

fluctuating climatic conditions.  Spatial variation is also pronounced, with 

environmental conditions varying markedly over short distances.  Based on 

physiographic characteristics, the Arizona Strip and adjacent areas are divided into 

three ecological zones: the Plateaus, the lowland Virgin area in southern Nevada, and 

the St. George Basin (Figure 1.2).  This study focuses on two of these areas: Mt. 

Trumbull and Tuweep in the Plateaus area and the lowland Virgin area.  Because  
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Figure 1.2.  Map of the study area. 
 

these two areas differ significantly, they provide comparative case studies of how 

adaptive responses to climatic fluctuation vary between different environments.   

 Mt. Trumbull is located on the Uinkaret Plateau at the western edge of the 

Colorado Plateau in Northern Arizona, 1,800 to 2,400 m above sea level (Moffitt and 

Chang 1975).  The climatic conditions are typical of the plateau desert, with cool 

summers and a bimodal precipitation regime characterized by summer monsoon 

rains and winter snows.  Current average annual precipitation is between 250 and 

380 mm.  Geologically, Mt. Trumbull is marked by past volcanic activities that left 

behind basaltic lava and cinder cones.  The Mt. Trumbull locality represents one of 

the places most intensively occupied by prehistoric populations in the Plateaus area.  
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Although settlement patterns are not fully understood, one of the reasons why this 

locality attracted past population may be the winter snows and coarse texture of 

surface soil containing cinders (Buck et al. 2012), which could have facilitated the 

percolation of melting snow immediately before evaporative loss, while retaining 

subsurface moisture that would have helped the germination of maize in early spring, 

when most of the area experienced a lack of precipitation.  Despite this favorable 

potential for agriculture, the dry farming of maize was still risky here, due to the 

absence of permanent streams, limited frost-free days due to the high elevation, and 

marked variability in rainfall already discussed.  

The lowland Virgin area is a valley drained by two rivers, the Muddy River 

and the Virgin River (Larson and Michaelsen 1990).  The topographic features are 

typical of the Great Basin, where steep, rugged mountains rise abruptly from flat 

basin floors (Hunt 1967) in sedimentary rock formations.  The sites are located about 

450 m above sea level, much lower than sites in the Plateaus area.  The climatic 

conditions are characteristic of a desert environment—long, hot summers and short, 

mild winters.  Precipitation is very limited, at approximately 100 mm annually 

(Larson 1987; Larson and Michaelsen 1990).  Although most habitation sites are 

found adjacent to the two permanent rivers, farming in this extremely arid climate is 

very risky.  

 The early agricultural evidence in the Arizona strip area dates to as early as 

A.D. 1.  Although one point of view holds that the Virgin Branch Ancestral Puebloan 

people depended heavily on agriculture in southern Utah (Martin 1996), most agree 
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that populations in this study area practiced a mixed subsistence economy, 

combining agriculture with wild resource procurement (Moffit and Change 1978; 

Lyneis 1992).  Most agree also that agricultural intensification occurred in later 

Puebloan times (Larson 1996; Larson and Michaelsen 1990; Larson et al. 1996).  

The population started to increase about A.D. 800, with a peak around A.D. 1150 

(Larson and Michaelson 1990).  Abandonment occurred in the Arizona Strip and 

adjacent areas sometime between A.D. 1150 and 1350.  The relative population 

reconstruction in Tuweep in the Plateaus area suggests that lower-elevation sites 

were abandoned earlier than higher-elevation sites, even within small areas (Sakai 

2001).   

 

Research Problems 

 In this study, my aim is to investigate how populations coped with the 

challenges of the marginal environment of the Arizona Strip and adjacent areas by 

examining how and why social interaction patterns varied over time in different parts 

of the region.  Several forms of social interactions may have been used as risk 

reduction, including mobility, exchanges with local specialization, exchanges 

without local specialization (e.g., gift exchange), and population aggregation.  My 

strategy will be to examine the modes of social interaction that appear in different 

times and places in Mt. Trumbull and the lowland Virgin area.  I assume that social 

interaction patterns would have responded to both environmental and demographic 

variability.  Under stable environmental conditions, people would have experienced 
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stability in agricultural production and therefore would not have worried about risk, 

and under conditions of predictable productivity they would have favored exchanges 

with local specialization (e.g., of pottery) to reduce costs.  Under unstable 

conditions, which were more likely the case in this study area, mobility or exchanges 

without local specialization would have been favored to cope with risk.  When 

population density was low in this unstable environment, mobility would have been 

favored over exchanges to manage the risk.  With higher population density, on the 

other hand, mobility would have been less favored because the rising population 

density in the surrounding area would limit population movement.  Instead, regional 

exchanges without specialization would have been favored to reduce agricultural 

risk, such as gift-exchanges to maintain social ties in case of agricultural failures in 

the future.   

 Ceramics in the Arizona Strip and adjacent areas in Utah and Nevada include 

widely distributed ceramics tempered with olivine, a volcanic mineral.  The source 

of this olivine is thought to be at Mt. Trumbull and Tuweep, near the northwest rim 

of the Grand Canyon.  The ceramic assemblages in Mt. Trumbull and Tuweep are 

dominated by olivine-tempered sherds, which make up more than 80 percent of both 

assemblages.  Olivine was used for ceramic temper in these areas for at least two 

potential reasons.  First, olivine is more accessible than quartz sand because there is 

no permanent streams in this area where quartz sand would be formed (the Colorado 

River is too difficult to access).  Second, olivine is likely to be a better tempering 

material than quartz or calcite.  Due to its stable thermal properties and much lower 
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thermal expansion rate than quartz, which are closer to those of clay fabric, adding 

olivine can avoid thermal stress during the production and consumption of pots, 

which minimizes production failure and breakage.  Olivine-tempered ceramics are 

distributed westward from these olivine source areas over a radius of more than 100 

km, including the lowland Virgin area.   

The wide distribution of olivine-tempered ceramics has stimulated earlier 

investigations of interregional exchanges in the Arizona Strip and adjacent areas.  

Lyneis (2000) regards the presence of olivine ceramics in the lowland Virgin area to 

be an indicator of economic and social ties between the Plateau area and the lowland 

Virgin populations.  Allison (2000) argues that the lack of wood for fuel in the 

lowland Virgin area is the driving force behind the import of olivine-tempered pots 

from the Plateau.  Left unanswered by these interpretations is whether the olivine-

tempered pots were transported as a result of exchanges between sedentary 

communities or carried along with population movements.  Under low population 

density, I would expect that olivine-tempered pots were carried along by the groups 

of people moving between different environmental situations.  Under higher 

population densities, I would expect olivine-tempered pots to have been transported 

as a result of exchanges.  Although temper does not travel over long distances 

generally (Arnold 1985), I also consider the possibility that olivine itself may have 

been transported from Mt. Trumbull to the lowland Virgin area.  Thus, the focus of 

my research is on how human migrations and exchanges, as observed in olivine-

tempered ceramics, fit into the broader adaptive strategies of populations inhabiting 
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the marginal environments of the Arizona Strip and adjacent areas.  For instance, 

does the relative importance of exchanges and mobility change according to 

population levels and climatic variability either over time or across space?  Another 

concern is whether ceramic production patterns may have changed in response to the 

need for agricultural intensification in order to feed a growing population.   

 In order to use olivine-tempered ceramics as evidence for interaction patterns 

that may have buffered subsistence risk, ceramic production and consumption 

patterns have to be reconstructed, and the trajectory of changes over time in 

production and consumption have to be described.  Reconstruction of production and 

consumption patterns requires the investigation of formal and compositional 

diversity in ceramics.  Formal variation arises from choices made during ceramic 

production (forming, finishing, and decorating) together with consumption practices.  

Meanwhile, compositional variations, which may be defined as the mineralogy and 

chemistry of the ceramic paste, arise from choices made during raw material 

procurement and paste preparation together with consumption practices (Neff 1992, 

1995; Neff et al. 1997; Neff and Larson 1997).  In Neff’s discussion (1992; Neff et 

al. 1997), ceramic artifacts are directly observable parts of phenotypes of past 

individuals and phenotypic variations are structured over time due to the effects of 

the differential persistence of inherited information caused by selection, chance, and 

linkage of neutral traits with other traits controlled by selection (see also Dunnell 

1980).  In this sense, compositional data and the patterning in the relationship 

between compositional and formal variations record the evolutionary history of 
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ceramic production practices as they are shaped by selective forces originating in the 

natural and social environments (Neff 1992).   

  In this study, I propose models to explain how environmental instability 

affected social interaction in coping with risk based on two different levels of 

selection by using examples of the production and circulation of olivine-tempered 

ceramics.  One level of selection acts on economic interaction and the other acts on 

local ceramic production.  Based on the models proposed by Neff et al. (1997), I will 

test two models of how selection acted on economic interaction to shape the 

circulation of olivine-tempered ceramics.  Under a stable environment, where 

locations have predictable comparative advantages from year to year, local 

specialization should be favored, and exchanges would then move goods from where 

they are relatively cheap to where they are relatively dear.  Potters in different areas 

would have exploited distinct raw materials and specialized in different shapes or 

decorations.  In this situation, a strong correlation between compositional groups and 

formal attributes would be expected.   

However, since the environment in the Arizona Strip is unstable, local 

specialization would be a risky strategy because agricultural producers, ceramic craft 

specialists, and other specialists would face unpredictable returns from year to year.   

With specialization selected against, ceramics might still circulate, but the value of 

circulation in this case would lie in the population’s ability to maintain social 

networks, which would mitigate unpredictable imbalances in agricultural 

productivity.  In this model, olivine-tempered pots would have been moved as a 
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byproduct of human mobility or through gift-giving to maintain social networks.  

Archaeologically, weak or no association between form and composition would be 

expected (i.e., similar formal attributes should be found in multiple compositional 

groups).   

 The other level of selection would have acted on local ceramic production to 

explain ceramic compositional and formal diversity.  I consider models of how the 

properties of local raw materials might have been selected for different patterns of 

production and circulation of olivine-tempered ceramics.  Clay-resource 

specialization can be defined as the use of different clays with different performance 

properties for pots intended for different purposes.  Clay-resource specialization 

would reduce the total cost of local ceramic production to the extent that the use of 

optimal clays improves vessel performance and reduces vessel-replacement costs.  

Archaeologically, it is expected that all compositional groups of olivine-tempered 

ceramics would match local clays in the Mt. Trumbull/Tuweep areas and that there 

should be a strong correlation between compositional groups and formal attributes.  

Additionally, some compositional groups may consist of only utilitarian wares found 

in Mt. Trumbull, while some groups may consist of only non-utilitarian wares found 

predominantly outside the Mt. Trumbull and Tuweep areas, which would have been 

exchanged as trade items. 

 

17



Data Produced in this Study 

 As discussed above, I am concerned with how and why clay resource 

procurement patterns for olivine-tempered ceramics changed over time, the larger 

goal being to understand how human migrations or exchanges fit into the broader 

adaptive strategy by which Puebloan people of the Arizona Strip coped with a 

marginal environment.  Since ceramic compositional data record the historical 

trajectory of pottery production and circulation, I want to determine how and why 

ceramic production and consumption patterns observed in the chemical composition 

of olivine-tempered ceramic paste changed over time in order to examine the role of 

interaction as a buffering strategy and how this role changed over time.  In order to 

understand particular types of social interaction as adaptive strategies to cope with 

risk, I would like to answer the following questions concerning the movements of 

olivine-tempered ceramics between localities within the study area: (1) Did olivine-

tempered pots circulate as a result of human migrations under unstable 

environmental conditions when population density was low? (2) Did olivine-

tempered pots circulate through exchanges without specialization when 

environmental conditions were unstable and population density was higher? (3) Did 

olivine-tempered pots circulate through exchanges with specialization when 

environmental conditions were stable?  

The compositional data used here include that analyzed by instrumental 

neutron activation analysis (INAA) and laser ablation inductively coupled plasma 

mass spectrometry (LA-ICP-MS).  INAA is a bulk analysis (entailing 
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homogenization of all materials) that has been the most popular technique for 

chemical compositional analysis in archaeology for more than 40 years.  ICP-MS is 

a relatively new technique for material characterization in archaeology.  Combined 

with laser ablation, ICP-MS can analyze individual components of heterogeneous 

materials, which allows analysis of the clay matrix and inclusions separately.  In this 

study, I analyzed 1,069 sherds from Mt. Trumbull/Tuweep and the lowland Virgin 

area using LA-ICP-MS.  Of the 1,069 specimen sample, 50 olivine-tempered 

ceramics from Mt. Trumbull were also analyzed by INAA, as a check on the 

compositional groups found in the LA-ICP-MS data set.   

To add a temporal dimension to the evidence of clay resource use, I also 

dated a large sample of sherds included in the compositional study by Optically 

Stimulated Luminescence (OSL) dating.  OSL dating is a direct ceramic dating 

technique and use of OSL to date potsherds is a relatively new application in 

archaeology.  OSL dating was conducted on 113 sherds for which compositional 

information was also available.  Combining chemical compositional analysis for 

source determination with direct ceramic dating by OSL provides a chronologically 

resolved picture of change in ceramic production and distribution patterns. 

 In the following chapters, I develop various themes touched on above.  In 

Chapter II, I present detailed information, including environmental and cultural 

backgrounds.  This chapter also includes a summary of ceramic provenance (i.e., 

source) studies in the American Southwest, ceramic dating, and the study of olivine-

tempered ceramics.  Chapter III provides a detailed discussion of the theoretical 
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background and research questions followed by a series of hypotheses to be tested.  

Chapter IV provides details of data collection, including the fieldwork and 

description of the archaeological sites where the sherd samples were collected.  

Chapter V provides a discussion of the methods used and consists of two parts, 

compositional analysis and OSL dating.  Each section describes the methods, the 

process used to obtain the results, and the descriptive results.  Chapter VI is a 

discussion about the analytical results with interpretations of the data.  Finally, 

Chapter VII considers the compositional and luminescence dating results as they 

relate to the hypotheses advanced in Chapter III.  
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CHAPTER II: BACKGROUND TO STUDY 

 

Geography and Natural Environment 

 The Arizona Strip encompasses five million acres in the far northwestern 

corner of Arizona, including lands north of the Colorado River to the Utah border 

(Figure 1.1).  The Arizona Strip and adjacent areas in southern Utah and southern 

Nevada, which have multiple ecozones based on geography, are the focus of this 

study (Figure 1.2).  Lyneis (1995, 1996) divided this region into three areas: the 

lowland Virgin area in southern Nevada, the St. George Basin, and the Plateaus.  In 

the present study, I will examine these three areas, placing special emphasis on three 

localities within the Plateaus area: Mt. Trumbull, Tuweep, and the Shivwits Plateau.   

 

The Plateaus Area 

 The Plateaus area is located at the western edge of the Colorado Plateau.  

Most archaeological sites have been identified in the southern part of the Plateaus 

area, which includes three localities: Mt. Trumbull, Tuweep, and the Shivwits 

Plateau.  Considerably fewer sites have been recognized in the northern part of the 

Plateaus area, which is covered with grasslands.  The Plateaus area features a 

bimodal pattern of precipitation, with summer monsoon rains and winter snows 

(Lyneis 1995; Moffitt and Chang 1975).  As compared with the lowland Virgin area, 

fewer archaeological studies have focused on the Plateaus area. 
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 The Mt. Trumbull locality (also simply stated as “Mt. Trumbull” in this 

dissertation) is located on the Uinkaret Plateau in Northern Arizona, and its elevation 

is 1,800 to 2,400 m above sea level (Moffitt and Chang 1975).  The locality falls 

under the jurisdiction of the Grand Canyon-Parashant National Monument.  The 

climatic conditions are typical of the plateau desert and are characterized by cool 

summers with monsoon rains and winter snows, with the current annual precipitation 

averaging between 25 and 38 cm.  There are no permanent streams in Mt. Trumbull, 

but several year-round springs may have supported prehistoric populations.   

Geologically, Mt. Trumbull is marked by past volcanic activity that left 

behind lava, basalt, and cinder cones, and small areas in the region have exposed 

sedimentary rocks.  The basalt flows and cinder cones in Mt. Trumbull are the source 

of olivine for tempering pottery.  Vegetation in this area includes juniper-piñon 

woodland, sagebrush, and ponderosa pine (Moffitt and Chang 1975).  The Mt. 

Trumbull locality represents one of the places most intensively occupied by 

prehistoric populations in the Plateaus area, with more than 300 sites recorded since 

the 1970s within a five-km radius of Mt. Trumbull.  Most of these sites, however, are 

too poorly described to help in understanding the site structure, size, affiliation, or 

chronology (Buck et al. 2004).  The site types include crescent-shaped pueblos 

ranging in size from 4 to 20 clusters of rooms, pit house depressions, storage cists, 

and numerous artifact scatters.     

 Tuweep is located in the northwestern part of the Grand Canyon National 

Park within the Plateaus area and is between 1,350 and 2,000 m above sea level.  
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Multiple ecozones are found at different elevations within Tuweep.  The locality 

includes two prehistoric permanent habitation areas: (1) the Pine Mountains, at 1,524 

to 1,980 m above sea level, which are characterized by volcanic formations where 

olivine is found, and (2) the Kanab Plateau at 1,680 to 1,830 meters above sea level, 

which is underlain by sedimentary bedrock.  The climatic conditions in the low-

elevation areas in Tuweep are characterized by hot summers and relatively mild 

winters, with average annual precipitation of slightly more than 28 cm (Thompson 

1970).  The vegetation communities include juniper-piñon pygmy forest, scrub oak, 

yucca, and Mormon tea, with big sage dominant along the bottoms of the washes 

(Thompson 1971).  

 The Shivwits Plateau is located between the Uinkaret Plateau and the 

lowland Virgin River area, with an elevation that is slightly lower than the Uinkaret 

Plateau.  Geologically, the southern part of the plateau consists primarily of ancient 

basalt flows (Allison 2000), though large sedimentary formations are also present.  

This locality is argued to be the possible production area of Shivwits ware, which 

has crushed sherd temper embedded with olivine inclusions (Jensen 2002).  Shivwits 

ware is also found in the lowland Virgin area and in Mt. Trumbull. 

 

Lowland Virgin Area  

 The lowland Virgin area, a lowland valley, is drained by two rivers: the 

Muddy River and the Virgin River (Larson and Michaelsen 1990).  The topographic 

features are typical of the Great Basin, where steep, rugged mountains rise abruptly 
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from flat basin floors (Hunt 1967).  The sites are located about 450 m above sea 

level.  The climatic conditions are characteristic of a desert environment, with hot, 

long summers and short, mild winters.  Precipitation is only 10 cm annually (Larson 

1987; Larson and Michaelsen1990).  Vegetation in the lowland Virgin area includes 

edible plants such as mesquite, cat claw, screw bean, seep willow, sedges, rushes, 

cattails, and abundant grasses.  The riparian environment attracts migratory 

waterfowl, rabbits, bobcats, and numerous rodents and reptiles.  Mule deer and 

bighorn sheep also reside in this community (Larson and Michaelsen 1990).  

Geologically, this locality is composed of sedimentary rock formations, so there is 

no olivine source in this area.  

 

St. George Basin Area   

 The St. George Basin is intermediate in elevation between the Plateaus and 

the lowland Virgin area, with an annual rainfall of about 21 cm and more than 200 

days in the growing season (Lyneis 1995).  Many archaeological sites were recorded 

during cultural resource management projects in the 1980s.  Only a small percentage 

(less than one percent on average of all ceramics in this area) of olivine-tempered 

ceramics have been found in the ceramic assemblages in this area.   

 

Previous Research in This Study Area 

 The cultural manifestations in this study area during the Formative Period are 

traditionally called the Virgin Branch Anasazi.  Recently, however, archaeologists 
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have more often used the term Ancestral Pueblo to refer to the Anasazi.  Studies of 

the Virgin Branch Ancestral Pueblo have been carried out since the late 1920s, and 

Harrington (1927) was the first to publish a study undertaken in the lowland Virgin 

area.  Synthesizing Harrington’s (1927) work, Shutler (1961) defined four phases of 

Virgin Branch Ancestral Pueblo prehistory: Moapa, Muddy River, Lost City, and 

Mesa House Phases.  During the 1960s, survey work increased, including 

Schroeder’s (1955, 1961) Zion National Park and Willow Beach surveys, Rudy’s 

survey in Southern Utah (Rudy and Stirland 1950), and Gunnerson’s (1960) work in 

the St. George area.  In the 1960s, Aikens developed a reconstruction of changes 

over time in subsistence, demography, and social organization among the Virgin 

Branch Ancestral Pueblo (Aikens 1965; Fowler and Aikens 1963).  Aikens’s work 

(1966) also contributed to understanding the Virgin-Kayenta cultural relationships.  

The first typology of ceramics in the Virgin Branch Ancestral Pueblo was developed 

by Harold Colton (1952) and later modified and updated by Thompson 

(unpublished), Dalley and McFadden (1985), Lyneis et al. (1989), and Lyneis (1992, 

1999, 2008).   

In the 1970s, site-specific investigations were undertaken by various 

institutions, including the Muddy River survey by the University of Nevada, Las 

Vegas (UNLV), the Tuweep survey by Richard Thompson of Southern Utah 

University (formerly named Southern Utah State Collage), and the Mt. Trumbull 

survey by Moffitt and Chang (1978) of the Museum of Northern Arizona.  The 

Tuweep and Mt. Trumbull surveys are the only large-scale archaeological 
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investigations in the Plateaus area until recently.  UNLV field schools excavated 

various sites in the Muddy River valley within the lowland Virgin area in the 1980s 

(Lyneis et al. 1989).  Buck and Sakai recently conducted the first systematic 

archaeological investigation in Mt. Trumbull through a field school sponsored by the 

Nevada State College and the Desert Research Institute (DRI) between 2001 and 

2008 (Buck 2002, 2005, 2006, 2007, 2008, 2009; Buck et al. 2004; Buck and Sakai 

2005), as well as by California State University, Long Beach, between 2010 and 

2012 (Sakai 2011, 2012, 2013).  MacFadden (2010a, 2010b) also conducted 

systematic surveys in the Little Spring and Potato Valley areas of Mt. Trumbull.     

 Since the 1980s, issue-oriented research has been conducted.  Larson (1987) 

and Larson and Michaelsen (1990) investigated the role of climatic change and 

population pressure in the abandonment of the lowland Virgin area, and Lyneis 

(1992) identified a system of pottery production and distribution in this area.  Allison 

(2000) examined craft specialization and exchange in small-scale societies through 

the investigation of ceramic distribution patterns, and Jensen (2002) examined the 

production area of Shivwits ware. 

 

Cultural History and Chronology 

 The focus of this study is a time period characterized by a small agricultural 

population, the Virgin Branch Ancestral Pueblo.  However, I will start with a review 

of the time period after the population started living in this location, even before 

agriculture began to be practiced, in order to understand how earlier populations 
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coped with this marginal environment without agriculture.  Also, I will review the 

time period after the Ancestral Pueblo left in this area.  I used for this study 

luminescence dating to determine when the pots were last fired, although the dates 

determined by the luminescence technique may or may not be the time of pottery use 

by the Ancestral Pueblo (e.g., reuse of the pots by later occupants resulting in 

anomalously later dates). 

 

Paleoindian/Archaic Period 

 As discussed above, the focus of my dissertation is ceramic production, 

which started during the Formative Period, so only a brief summary of the period 

prior to the Formative Period is included here.  The Paleoindian Period began 

approximately 9500 BC on the Colorado Plateau (Fairley 1989), and Paleoindian 

finds are isolated and rare in the Arizona Strip.  Although Clovis Points and other 

Paleoindian artifacts from the Mohave/Great Basin tradition have been reported 

(Fairley 1989), their presence may best be explained by curation and introduction by 

later mobile Archaic groups, particularly the Southern Paiute, who appear to have 

maintained connections with the Great Basin to the north and west (as evidenced by 

occasional obsidian flakes and early projectile point fragments [McFadden 2010a, 

2010b]).  The projectile points from the Archaic Period (7000 BC to roughly 300 

BC) are also reported for the Arizona Strip; however, the number of Archaic finds is 

much lower than the artifacts found in Formative sites.  The population levels of 
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foragers during the Archaic Period presumably were much lower than those during 

the Formative Period, when dependence on agriculture increased. 

 

Formative Period 

 In the study area, Ancestral Pueblo or Anasazi is commonly used to designate 

the Formative Period.  The regional branches of Ancestral Pueblo culture are divided 

based on variations in ceramics and architecture (Fairley 1989).  The olivine-

tempered ceramics of the Virgin Branch Ancestral Pueblo culture compose one 

artifact type that is recognized as widely distributed in this area.  The Virgin branch 

tradition includes the Virgin and Muddy river drainages of southern Nevada, 

southwestern Utah, and the Arizona Strip.  Olivine-tempered ceramics are widely 

distributed in the Arizona Strip and adjacent areas. 

 There are two ways to divide the Virgin Branch Ancestral Pueblo temporal 

sequence of the Formative Period.  One was proposed by Shutler (1961) for the 

Moapa Valley in the lowland Virgin area, and the other is a chronology based on the 

Pecos Classification.  In this study, I employ the chronology proposed by Fairley 

(1989) based on the Pecos Classification with the modification of terminal dates of 

the Pueblo III Period.  The dates for the Pecos Classification are based on well-dated 

ceramic types using radiocarbon dating or dendrochronology.  However, no Virgin 

Branch ceramic types have been dated in this manner.  The Virgin Branch Ancestral 

Pueblo ceramic types have been traditionally dated by reference to those of the 

Kayenta Ancestral Pueblo region, which is east of the Virgin Branch region (ceramic 
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cross-dating) (Allison 2000), because the temporal trends and styles in the Kayenta 

Ancestral Pueblo ceramics are similar to those in the Virgin Branch Ancestral 

Pueblo.  Moreover, the Kayenta Ancestral Pueblo ceramic types are well-dated using 

radiocarbon dating and dendrochronology.  The application of ceramic cross-dating 

is considered the “most viable alternative” for dating Virgin Branch Ancestral Pueblo 

sites (Allison 2000) because no ceramic types found at these sites are well dated.  

However, the assumption that ceramic change is contemporaneous across a large 

area could be questioned, and similarities of style are sometimes exaggerated 

(Allison 2000).  Therefore, true chronometric dating of Virgin Branch Ancestral 

Pueblo ceramic types is required to establish a better chronology.  The application of 

luminescence dating of Virgin ceramics, undertaken as part of this study, will 

contribute to the development of a better chronological sequence of Virgin Branch 

Ancestral Pueblo ceramics.  In the following section, the chronology proposed by 

Fairley (1989) is summarized.  Note that I have modified the terminal date of Pueblo 

III Period. 

 

Basketmaker II Period ca. 300 BC–A.D. 400 

 This period is characterized by the extensive use of baskets, sandals, rabbit 

fur blankets, human hair cordage, fiber and hide bags, dart foreshafts, atlatls, snares, 

nets, and other items commonly used by hunter-gathers (Fairley 1989).  No ceramics 

were used during the Basketmaker II Period.  The bow and arrow had not yet been 

introduced, so dart-sized points are common at Basketmaker II sites.  During this 
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period, the population consisted of highly mobile hunter-gatherers, but small-scale 

cultivation of corn and squash are recognized in the archaeological record.  The 

earliest corn in the Arizona Strip dates prior to A.D. 1 (Fairley 1989).  Slab-lined 

cists, basin milling stones and one-hand manos, and Gypsum and Elko-like side-and-

corner-notched projectile points are common in the Basketmaker II sites.  

 

Basketmaker III Period ca. A.D. 400–800 

 The Basketmaker III Period is characterized by the introduction of the bow 

and arrow as well as the production of ceramics.  During this time, two-hand manos 

and trough metates also came into use.  The atlatl and spear were replaced by the 

bow and arrow, so small projectile points started to dominate the point types.  There 

are several arguments regarding the function of the earliest ceramics in the American 

Southwest.  One argument is that large ceramic vessels were used as an alternative to 

cists in dry caves for storing seeds and perishable items.  Another is that ceramic 

vessels replaced baskets for storing water and cooking (Fairley 1989).   

The timing of the beginning of the Basketmaker III Period, which marks the 

start of pottery production, is controversial.  The excavation of the Little Jug site in 

the Tuweep area, south of Mt. Trumbull, where early ceramic artifacts were found, 

supports dates before A.D. 400 (Thompson and Thompson 1974, 1978).  The six 

radiocarbon dates from this site range between 1,850 ± 90 rcy B.P. and 1,630 ± 

90 rcy B.P.  The radiocarbon dates for two other Basketmaker III sites in the Arizona 

Strip also indicated occupation during the fourth century, suggesting that ceramic 
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production may have begun prior to A.D. 400 (Fairley 1989).  Gaining more 

information on the date for the beginning of ceramic production through the use of 

luminescence dating is one potential outcome from this dissertation.  Utilizing 

information on luminescence dating from various locations and contexts will 

contribute to a better understanding of the introduction of pottery production in the 

study area.  Early ceramics include gray ware and a limited amount of black-on-gray 

ware.  In a typical Basketmaker III ceramics assemblage, decorated sherds are less 

than about 5 percent of the total number (Fairley 1989).   

Fairley listed Lino Gray, Boulder Gray, and North Creek Gray Ware as 

Basketmaker III plain gray ware types.  The early gray ware tends to have a dark 

core color.  Dalley and McFadden (1985) reported that early gray ware has “earthy 

colors” that suggest a poorly controlled or predominately an oxidizing atmosphere 

for ceramic firing.  Schroeder (1955) also recognized that the early Moapa Ware with 

olivine temper has a darker core.   

During the Basketmaker III Period, both wild resources and agricultural 

products were utilized.  The dependence on agriculture increased toward the end of 

Basketmaker III Period (Fairley 1989).  Pithouses were still the dominant habitation 

form, and small pithouse clusters were often found with storage cists during this 

period (Fairley 1989).   
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Pueblo I Period ca. A.D. 800–1000 

 The Pueblo I Period is characterized by the development of small masonry 

pueblo units with a few rooms associated with pithouses.  The architecture during 

this period shows considerable diversity (Fairley 1989).  The pit structures continued 

to be used for habitation (Lyneis 1995), and the pithouses were often associated with 

contiguous storage rooms.  The typical pithouses during this time had round, 

benched, and slab-lined walls with deep slab-lined storage cists arranged in a 

contiguous arc-shaped pattern (Fairley 1989; Dalley and McFadden 1985).  The 

dependence on agriculture increased during the Pueblo I Period.  Despite the lack of 

archaeological evidence, it is proposed that seasonal use of both uplands and 

lowlands for acquiring wild resources and for agriculture was practiced in order to 

increase productivity (Fairley 1989).   

 Although technological improvements in pottery and lithic production are 

recognized between the Basketmaker III and Pueblo I periods, many ceramic and 

projectile point types are common during both periods.  This makes it difficult to 

distinguish Pueblo I sites from Basketmaker III sites on the Arizona Strip (Fairley 

1989).  Decorated pots became more common during the Pueblo I Period and are 

often decorated in a style similar to the Kana-a style of the Kayanta Ancestral 

Pueblo, with “narrow lines and solids with appended ticks” (Allison 2000).   

 The archaeological record suggests some degree of interregional exchange 

during the Pueblo I Period.  In the lowland Virgin area, olivine-tempered ceramics 

have been found at sites dated as early as around A.D. 600 (Larson and Michaelsen 
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1990; Lyneis 1992), and olivine-tempered ceramic frequency approached a peak 

around A.D 1050.  Lyneis (1986) reported that the olivine-tempered ceramics found 

at the Lost City site of the lowland Virgin area began to increase around A.D.  950.  

Thus, it is believed that the exchange between the upland and lowland in Virgin 

Branch Ancestral Pueblo area increased during the Pueblo I Period.  Salt, turquoise, 

shell, mesquite beans, and agricultural products, including cotton, are believed to 

have been transported to Mt. Trumbull in return for olivine-tempered pots or even 

olivine itself (Fairley 1989).   

 

Pueblo II Period ca. A.D. 1000–1150 

 More sites date to the Pueblo II Period than to any other period.  The Pueblo 

II period was characterized by substantial population growth in the Arizona Strip and 

adjacent areas.  Increased use of the uplands is also recognized archaeologically 

during this time (Fairley 1989).  Climatic records suggest increased moisture across 

the central Colorado Plateaus between A.D. 1050 and 1150 (Dean et al. 1985), and 

this condition is likely applicable to other areas on the Colorado Plateau.  Better 

climatic conditions along with the introduction of new crops that were more adapted 

to arid conditions made dry farming possible even in uplands (Euler et al. 1979).  

This is evidenced by the appearance of terraced agricultural fields, check dams, and 

other agricultural features in uplands during this time (Schwarts et al. 1981).  

Permanent occupations were established at certain optimal localities, and the 
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seasonal use of particular localities (even within a single environmental zone) were 

also involved (e.g., summer field houses and winter pueblos) (Effland et al. 1981).   

 Artifact assemblages are characterized by the appearance of corrugated ware 

around A.D. 1050.  Lyneis (1986) postulates a beginning date of corrugated ware 

around A.D. 950 or slightly later.  Corrugated ware increased over time and became 

more than 20 percent of the entire pottery assemblage during the middle of the 

Pueblo II period (Allison 2000).  During the Pueblo II Period red ware made a 

regular appearance (Allison 2000) in the Arizona Strip and adjacent area.   

The habitation sites during this period are characterized by one to three 

masonry living rooms on the ground surface with associated storage rooms in a more 

formal arrangement.  The large pueblo sites, containing up to 30 rooms, were often 

C- or U-shaped, but linear L-, V-, and E-shaped pueblos were also constructed 

(Fairley 1989).  The existence of kivas in the Arizona Strip has been debated.  

Although kivas were found in the eastern part of the Arizona Strip (Schwartz et al. 

1979, 1980), kiva architecture has not been discovered in the western sector of the 

study area, that is, the lowland Virgin area.  Extensive trading networks existed 

during this time period, as evidenced by increased Kayenta-style pottery in the 

Arizona Strip and adjacent areas and olivine-tempered ceramics transported from 

Mt. Trumbull/Tuweep into the lowland Virgin area.  The olivine-tempered ceramics 

in the lowland Virgin area increased to a peak during the early to middle Pueblo II 

Period, after which they decreased to less than 5 percent of all sherd assemblages 

(Lyneis 1986). 
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Pueblo III Period ca. A.D. 1150-1300 (?) 

 The introduction of polychrome ware and the high frequency of corrugated 

ware characterize the Pueblo III Period.  Polychrome ware is very rare in the Arizona 

Strip but some has been found.  The traditional argument concerning the 

abandonment of the Virgin Branch Ancestral Pueblo occupation is that it occurred 

around A.D. 1150.  However, increasingly more post-A.D. 1150 radiocarbon dates 

from sites of this time period have been reported recently.  Farley (1989) defined 

A.D. 1250 as the terminal date, and Allison (1996) suggests abandonment date as 

late as A.D. 1300 based on radiocarbon dates.  In this dissertation, the terminal date 

of the Pueblo III Period, the occupation by the Ancestral Pueblo/Virgin Branch 

Ancestral Pueblo in the Arizona Strip is set around A.D. 1300.    

 The abandonment of Ancestral Pueblo occupation in the northern American 

Southwest is a controversial issue.  According to Larson and his colleagues (Larson 

1987; Larson and Michaelsen 1990), a prolonged drought occurring around A.D. 

1150 and population pressure led to the abandonment of the lowland Virgin area.  

However, the abandonment may have occurred at different times in different areas.  

The reconstruction of relative population change in Tuweep in the Plateaus area 

demonstrates that only high-elevation areas saw a slight population increase after 

dramatic population decreases around A.D. 1150, when a prolonged drought 

occurred over large areas of the American Southwest.  No sites dating after A.D. 

1300 have been found in this area (Sakai 2001).   
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Neo-Archaic Period 

 Thompson et al. (1983) and Walling et al. (1986) refer to the period 

following the Ancestral Pueblo abandonment of the Arizona Strip as the Neo-

Archaic Period.  Three subdivisions were proposed: Late Prehistoric (A.D. 1200–

1600), Protohistoric (A.D. 1600–1776), and Historic (after A.D. 1776).  Historically, 

the Southern Paiute are known to have been present in the vicinity of Little Spring in 

the Mt. Trumbull area (Dellenbaugh 1907).  However, the timing of the Southern 

Numic expansion, including the Southern Paiute, onto the Colorado Plateau, is not 

clear (Fairley 1989).  Linguistic evidence indicates that Southern Numic speakers 

drifted eastward out of the Great Basin as early as A.D. 1000 (Lamb 1958).   

Some archaeological evidence suggests the presence of the Southern Paiute 

in the Arizona Strip by the beginning of the 14th century (Jones 1986; Agenbroad et 

al. 1987), but the earliest date of their arrival is still in question.  However, it seems 

clear that the reuse of Ancestral Pueblo artifacts by the Southern Paiute was a 

common practice in the Mt. Trumbull area (Kelly 1964; McFadden 2010a, 2010b).  

The diagnostic artifacts of the Southern Paiute, who were mobile hunter-gatherers, 

include the brown ware that is very different from the Ancestral Pueblo brown ware.  

Southern Numic sites are far fewer numbers than Formative Ancestral Pueblo sites in 

the study area (McFadden 2010a, 2010b).  By the 1860s, Mormon settlements 

expanded into the Arizona Strip (Fairley 1989). 
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The Study of Ceramic Production and  

Consumption Patterns in the American Southwest 

 Assumptions about ceramic production and circulation patterns are based on 

at least three sources of data: (1) “the criterion of abundance,” (2) stylistic 

description of sherds, and (3) materials used to make the pottery.  “The criterion of 

abundance” is the argument that the ceramic types abundant at sites in the American 

Southwest are local wares (Rice 1987; Zedeño 1994).  Early in the 1900s, this 

criterion of abundance was the popular way for determining the source of ceramics 

in the American Southwest (Rice 1987; Zedeño 1994).  This traditional idea suggests 

that most prehistoric pueblos were self-sufficient communities that produced their 

own pots within the village (Cordell 1991; Plog 1980a; Neff et al. 1997; Zedeño 

1994).   

Between the 1960s and 1970s, scholars devoted their efforts to design 

analysis because they assumed that similar designs represented close social or 

economic relationships (Plog 1977, 1980b; Washburn 1977).   Plog (1977, 1980b) is 

the first to explore style as being a result of exchanges or other processes in the 

American Southwest.  Washburn (1977) established a method to describe similarities 

of ceramic attributes as objectively as possible.  Somewhat earlier, the analyses of 

ceramics from Broken K Pueblo by Hill (1965, 1970) and from Carter Ranch by 

Longacre (1964, 1970) were the major studies entailing the investigation of intra-site 

stylistic variations.   
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 The painted design styles of sherds are still widely used to investigate the 

source of pots in the American Southwest, such as Flagstaff Black-on-white as a 

trade ware from the Kayenta Ancestral Pueblo area to the Arizona Strip (Fairley 

1989).  The stylistic information, however, does not help to source the plain wares 

unless they are whole pots, which allows for examining distinctions in form.  In the 

case of plain-ware sherd sourcing, the materials observed in the sherd core, such as 

temper and clay matrix (e.g., color or texture) can be used to investigate the 

production area.  The particular temper type, such as olivine, may pinpoint the 

production area, providing clues about where the item was produced (Colton 1952; 

Lyneis 1992, 1999), since olivine occurs in a restricted area.  Lyneis (1992) suggests 

Shivwits Ware found in the lowland Virgin area originated on the Shivwits Plateau 

based on its temper and clay color.  Shivwits Ware contains the crushed Moapa Gray 

Ware (olivine-tempered pots) as a temper and is made with dark-firing clays that are 

not found in the Moapa Valley of the lowland Virgin area. Dark-firing clays are often 

found on the Colorado Plateau portion of the Virgin Ancestral Pueblo area.  This area 

is considered to be near the source of olivine-tempered ceramics.  Thus, Lyneis 

proposed the source of Shivwits Ware on Shivwits Plateau.  

 

A Critique of the Early Provenance Studies 

 The largest problem in the visual characterization of ceramic design is that it 

is a subjective method and often lacks quantitative measurement of similarity.  

Furthermore, it is questionable whether pots with similar design styles always come 

38



from the same production area.  The small sample size of specimens to be examined, 

as well as small sherd size, has also contributed to the ambiguity of ceramic typology 

and design analysis, further hindering the identification of ceramic sources (Plog 

1977; Washburn 1977).   

 Depending on temper as the sole determinant of source also may be 

problematic.  The existence of olivine-tempered pots in areas beyond the olivine 

source area suggests that there was movement of olivine from the source area to 

other areas, but this does not necessarily indicate the movement of olivine-tempered 

pots.  The olivine-tempered ceramics found in non-olivine source areas, such as the 

lowland Virgin area, may have been made in Mt. Trumbull, the olivine source area, 

and brought to the lowland Virgin area.  It also may be that olivine was transported 

from Mt. Trumbull to the lowland Virgin area, where potters made the pots with 

imported olivine temper with locally available clay.  A better understanding of the 

sourcing of olivine-tempered ceramics requires more detailed objective testing such 

as chemical analysis.   

 Abbot and Watts (2010) provided another example of masking source 

information by examining only temper type.  Phyllite-tempered Hohokam pottery 

from the Phoenix Basin was thought to be made within the basin as well as in the 

upland zone adjacent to the northern margin of the Phoenix Basin, where phyllite-

containing bedrock is found.  The exact source of phyllite-tempered pottery, 

however, cannot be distinguished based on temper alone because phyllite-containing 

bedrock is found at many locations.  Thus, how many phyllite-tempered pots were 
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made within the basin or in the upland zone is not known.  The application of 

electron microprobes of clay and temper particles enabled the determination of a 

specific source locality of phyllite-tempered pottery, suggesting that quite a few 

phyllite-tempered pots were imported from the northern upland region. 

 

Techniques for Testing Assumptions 

 As discussed above, assumptions about the production area of pottery have 

been based on the criterion of abundance, stylistic analysis, and the materials used 

for pottery production.  The techniques for evaluating production locations based on 

the assumptions about these data sources are compositional analyses, including 

mineralogical and chemical analysis.  The use of mineralogical analysis to identify 

the production locality of ceramics, such as optical petrography, has been applied 

since Shepard (1936) conducted a petrographic analysis of Rio Grande Glaze Ware 

from Pecos Pueblo in the 1930s.  Many provenance studies (e.g., Abbott and Walsh-

Anduze 1995) in the American Southwest still involve petrography.   

Chemical analysis, on the other hand, has become popular within the last 

three decades.  Colton was the one of the early archaeologists to challenge traditional 

self-sufficient models for pottery production, developing visual observations of 

ceramic paste constituents that were compared to raw materials such as clay and 

temper in order to examine the source (Colton and Hargrave 1937).  Colton (1939) 

used refiring analysis of ceramics, a “low-tech” approach to the elemental 

characterization of ceramics, to indicate different raw materials of ceramic paste 
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(Neff  2005).  Chemical compositional analysis, however, did not become popular 

until the 1980s, when instrumental neutron activation analysis (INAA) became the 

prevailing technique for the study of ceramic composition.   

 While other types of chemical analyses are used in the provenance study of 

ceramics in the American Southwest (e.g., Mills 1995; Habicht-Mauche 1995), 

INAA is the most popular technique and has become widespread during the last 30 

years (Neff 2002, 2012; Speakman and Glascock 2007).  INAA has been used to 

identify ceramic sources on large geographic scales such as the studies on black-on-

white vessels from the Chaco Canyon area by Neitzel and Bishop (1990) and Gila 

Polychrome by Crown and Bishop (1991).  INAA has also been conducted on 

smaller geographic scales, such as in a ceramic provenance study in the Grasshopper 

region by Zedeño (1994) as well as a study of White Mountain Red Ware in the 

Grasshopper region by Triadan (1994).  Other examples include a study of Hohokam 

ceramics in the Tucson Basin by Fish et al. (1992), Hopi ceramics by Bishop et al. 

(1998), red ware and white ware in the Four Corners Region by Hegmon and her 

colleagues (1995), and black-on-white wares from the vicinity of Mesa Verde by 

Glowacki and her colleagues (Glowacki 1995; Glowacki et al. 1995, 1998).   

More recently, INAA was used to study the Fremont Snake Valley series 

sherds from southwestern Utah (Reed and Speakman 2005).  In the Arizona Strip 

and adjacent areas, a few chemical analyses have been conducted, including pottery 

from the lowland Virgin area (Larson et al. 2005), sherds from the Pottery Knoll site 
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in southern Utah (Neff et al. 1997), and Shivwits Ware pottery from the Moapa 

Valley and Shivwits Plateau (Harry et al. 2013).   

An INAA study of ceramics in the lowland Virgin area (Larson et al. 2005) 

resulted in new information about the sources of pottery in that area.  First, two non-

local groups were found within the ceramic assemblages: one includes only olivine-

tempered sherds and the other includes only black-on-gray sherds, although some 

black-on-gray sherds were also assigned to the local group.  Second, all red ware 

resulted from local production, contradicting the traditional belief that it is of non-

local production.  Recent ceramic provenance studies have incorporated ICP-MS, 

another technique for chemical compositional analysis.  Those studies include 

provenance studies of ceramics from the lowland Virgin area and Tuweep using bulk 

digestion ICP-MS (Sakai 2001), microchemical analysis of pigments, slips, and 

glaze on Mesa Verde ceramics using LA-ICP-MS (Speakman and Neff 2002), and 

glaze and pigment analysis of Pueblo IV ceramics from east-central Arizona using 

LA-ICP-MS (Duwe and Neff 2007).  The use of chemical compositional analyses of 

ceramic samples not only has provided source information regarding pots but has 

also demonstrated that the same design style is NOT synonymous with the same 

production area (e.g., Triadan 1994).   

 

Development of Ceramic Chronology in the American Southwest 

 The traditional approach to the chronology of ceramics in the American 

Southwest combines seriation of ceramics with absolute dates through radiocarbon 
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dating or dendrochronology.  Although this approach is widely used in many areas in 

the American Southwest, it has several problems.  First, the traditional approach has 

an inherent dating accuracy issue.  Dated events through dendrochronology or the 

radiocarbon dating of tree log specimens (e.g., the age of death of the tree) often did 

not happen simultaneously with the targeted event (e.g., the use or production of 

pottery).   

 The second problem, which is especially troublesome in the Arizona Strip, is 

lack of a well-dated ceramic typology.  As discussed above in the section concerning 

the chronology of the Virgin Branch Ancestral Pueblo, the ceramic chronology in the 

Arizona Strip and adjacent area is based on the assumption that the temporal trends 

of ceramic style in the Virgin Ancestral Pueblo are similar to those in the Kayenta 

Ancestral Pueblo region.  Thus, the chronology in the Arizona Strip and adjacent 

areas is primarily based on the well-dated ceramic typology developed in the 

Kayenta Ancestral Pueblo area.  The necessity of having an independent, well-dated 

typology in the Arizona Strip and adjacent areas has been suggested by many 

researchers.  However, governmental restrictions that prevent larger-scale excavation 

make it difficult to obtain radiocarbon and dendrochronological samples to establish 

well-dated ceramic typology in Mt. Trumbull and Tuweep because sites are now 

within National Park and Monument lands.  The direct dating of sherds from the 

surface collection or limited testing in the middens using luminescence dating 

represents a viable solution to the issue of inadequate control of ceramic chronology 

in Mt. Trumbull/Tuweep.  
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 Although the ceramic chronology in the Arizona Strip and adjacent area 

remains “under development” (Lyneis 1992), there are some established diachronic 

trends based on temper, surface treatment, style, and form.  Corrugated ware, for 

example, is believed to date around A.D. 1050.  Lyneis (1986) proposed that the 

beginning of corrugated ware is about A.D. 950 or slightly later.  It is also 

recognized that abundance of corrugated ware increased over time (Lyneis 1992; 

Allison 2000; Larson 1987).  Red ware is generally thought to have started during 

the Pueblo II Period (Allison 2000).  Logandale Gray Ware, which is tempered with 

limestone, is thought to be an early ceramic ware.  All of this information may be 

useful for assessing the general site chronology, especially at the first stage of 

survey.  However, many more well-dated ceramic assemblages, especially those 

using luminescence dating, are necessary to confirm these diachronic trends.   

 

The Study of Olivine-Tempered Ceramics 

 Olivine-tempered ceramics are material remains that are unique to the 

Arizona Strip and adjacent areas.  Because of this, numerous studies have been 

conducted on olivine-tempered ceramics.   

 

Olivine Used as Temper 

 Lyneis (2008) describes in detail the temper used in olivine-tempered 

ceramics (Moapa Gray Ware).  The temper used in Moapa Gray Ware is “crushed or 

disaggregated xenoliths from the vicinity of Mt. Trumbull” (Lyneis 2008).  The most 
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common xenoliths are made up about 65 percent olivine, 25 percent orthopyroxene, 

10 percent clinopyroxene (chrome diopside), plus small quantities of amphibole and 

spinel.  Xenoliths of other compositions are also found in the area (Menzies et al. 

1987) and could show up as temper (Lyneis 2008).    

 Olivine is a volcanic mineral, a magnesium iron silicate with the formula 

(Mg,Fe)2SiO4 (Chesterman 1979).  Olivine is a common mineral in the Earth’s 

subsurface but weathers quickly on the surface.  Because the main chemical 

constituents of olivine are iron and magnesium, the color of olivine varies depending 

on the degree of oxidization and the amount of iron.  The color of olivine can be 

yellow-green (olive-green), dark green, red, brown, or almost black.  Olivine occurs 

as inclusions of various sizes in basalt.  It also may occur as nodules or sand.  

Olivine is found in various rocks in North America, but there are only few localities 

where one can find the mineral in any size other than grains (Chesterman 1979).   

 In Mt. Trumbull and the Tuweep area, olivine is found in various forms 

including grains and nodules embedded in basalt, nodules weathered out of ash 

deposits associated with cinder cones, and sand.  During the field seasons between 

2007 and 2012, I collected basalt specimens with olivine inclusions from various 

lava flows.  The chemical composition of olivine from different lava flows is the 

subject of my future study determining a specific source of olivine temper, but it is 

recognized that olivine occurs in lava of various ages.  I also found olivine nodules 

ranging from a few cm to more than 25 cm in length that weathered out of ash 

deposits at Mt. Trumbull.  Lyneis (2008) suggests that olivine nodules in this form 
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are likely source of olivine temper.  She reasons that extracting the olivine nodules or 

grains from basalt would be difficult with stone tools.  The olivine nodules are found 

in various areas in Mt. Trumbull and Tuweep, but there is a particular cinder cone 

area south of Mt. Trumbull where olivine nodules are abundant.  The olivine nodules 

are easily found on/near the cinder cone and in drainages emanating from the cinder 

cone.  Manos made of olivine have also been found in sites near this cinder cone 

area, although they are rare.  The grains within nodules are easy to disaggregate, so 

not only are olivine nodules easy to access in Mt. Trumbull and Tuweep, they are 

easy to process into temper.   

Olivine sand, another form of olivine, can be a potential source of temper for 

ceramics.  However, Lyneis (2008) argued that olivine sand was not used as temper.  

Olivine sand can be found in many localities in the Mt. Trumbull area, but the 

olivine sand in Mt. Trumbull is not pure olivine such as that found on Green Beach 

in Hawaii.  In Mt. Trumbull, the sand contains various other rock materials in 

addition to olivine grains.  Nonetheless, it seems possible that the potter just grabbed 

sand at the bottom of the drainage and added it to the ceramic fabric to make pots, 

especially during earlier time periods.  However, a lack of petrographic studies of 

Mt. Trumbull olivine-tempered sherds entailing comparison with olivine sand from 

Mt. Trumbull prevents the formation of conclusions on whether the olivine sand was 

used as temper.  Considering the accessibility, ease of processing into temper, and its 

abundance, I concur that olivine nodules are the most likely the source of olivine 

temper, as Lyneis (2008) suggests.  
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 There are at least two proposals regarding why olivine was used as a temper 

in Mt. Trumbull and Tuweep, the olivine source area discussed above.  First, in this 

area, olivine is more accessible than quartz sand because there are no permanent 

streams.  Second, olivine is likely to be a better temper material than quartz or 

calcite.  Used as a refractory in industry (Amethyst Galleries, Inc. 1995), olivine has 

stable thermal properties, which makes it a particularly good tempering material.  

The study of the thermal expansion rates of minerals indicates that minerals with 

lower thermal expansion or those with expansions close to the clay fabric are 

especially suitable as a temper for avoiding thermal stresses during repeated heating 

and cooling of pots (Rye 1976; Arnold 1985).   

According to Arnold (1985), olivine has a much lower thermal expansion rate 

than quartz, and the expansion rate of olivine is closer to that of the clay fabric than 

quartz.  This may explain why olivine was a preferred temper.   On the other hand, 

the thermal expansion rate of calcite, which was used in Logandale Gray Ware (often 

found in the lowland Virgin area), is actually much closer to that of the clay fabric 

than olivine.  Indeed, the expansion rate of calcite is the closest to that of the clay 

fabric among the possible tempering materials.  However, the problem with using 

calcite as a tempering material is the firing temperature.  Calcite decomposes to 

calcium oxide and carbon dioxide at a firing temperature as low as 620 degrees (C), 

which results in spalling, cracking, and crumbling (Rye 1976).  Some of the sherds 

from both Mt. Trumbull and the lowland Virgin area show cavities on the surface 

and inside the core, which may be a result of limestone being used as a temper or the 
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inclusion of calcite in the clay fabric.  Olivine has a high melting point and 

resistance to chemical reagents (Palmour et al. 1981, Goldschmidt 1938, Furlani et 

al.  2013) and can thus be used at higher temperatures.  Therefore, olivine is a highly 

suitable material for temper when considering both the thermal expansion rate and 

the firing temperature of the pots.  

 

Formal Attributes of Olivine-Tempered Ceramics 

 The pottery with olivine temper is classified as Moapa Gray Ware.  There are 

different types of Moapa Gray Ware based on the clay color and surface treatment.  

Colton (1952) originally classified Boulder Gray as a type of Moapa Gray Ware that 

has a light color core, and Moapa Brown as a type that has a dark color core.  

Schroeder (1955) used Boulder Gray to refer to the early Moapa Gray Ware type 

with a dark color core and Moapa Gray to refer to the later Moapa Gray Ware with a 

light color core.  Lyneis (1992, 2008) categorized all olivine-tempered gray plain 

sherds as Boulder Gray because the color/texture shift likely represents a gradual 

change rather than a dichotomy.  In order to avoid confusion, I do not use a 

particular type name but instead use the term olivine-tempered plain ware or Moapa 

plain ware.  One fact to note about the definition of the Boulder Gray type employed 

by previous researchers is that variations in the core color and texture of olivine-

tempered ceramics do exist, with the early olivine-tempered ceramics tending to 

have a darker core color.   
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 Colton (1952) stated that Moapa Gray Ware/olivine-tempered ceramics were 

constructed by coiling and scraping, after which they were fired in a badly controlled 

atmosphere.  The olivine-tempered pots are either bowls or jars and included both 

utilitarian and non-utilitarian ware.  The surface treatments include plain, corrugated, 

and black-on-gray paint.  Occasionally, the plain ware is fugitive red, which is “a 

thin coating of finely ground hematite (red ocher) diluted in water and applied to the 

exterior of the vessel after fining” (Van Alfen 2008).  The black-on-gray ware was 

decorated using organic paint (Colton 1952; Lyneis 1992, 2008).  I also confirmed 

this through the cross-section analysis using LA-ICP-MS.  Mineral paint has much 

higher concentrations of some elements such as manganese, and the LA-ICP-MS 

analysis of black paint on olivine-tempered ceramics shows no difference in 

manganese concentrations compared to that of the background surface.  This 

suggests that the black paint is not mineral but organic.   

The decoration style of black-on-gray Moapa Ware is similar to that of the 

Tusayan Black-on-Gray Ware (sand temper) found in the study area.  The sherd 

assemblage from the Mt. Trumbull area shows that the black-on-gray Moapa Ware 

does not have a slip, with very rare exceptions.  No red ware or polychrome sherds 

with olivine temper have been found.  The shape, size, and amount of olivine 

included in sherds vary.  Occasionally, other inclusions are found along with olivine, 

such as crushed sherds, sand, basalt, or other rocks.  In this dissertation, sherds with 

olivine temper are categorized as olivine-tempered ceramics/Moapa Ware with the 

exception of Shivwits Ware.  Shivwits Ware is a pottery with a very dark color, iron-
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rich clay matrix, and crushed sherd temper (sherds are primarily Moapa Gray Ware) 

(Lyneis 1992, 2008).  Shivwits Ware is found both in the Plateaus and the lowland 

Virgin areas.  Lyneis (1992) suggests that the production area for Shivwits Ware is 

on the Shivwits Plateau, as discussed above.  An investigation of the production area 

of Shivwits Ware found in Mt. Trumbull is also included in this dissertation because 

these sherds include olivine particles.   

 

Spatial Distribution Pattern 

Olivine-tempered ceramics are most common in the Mt. Trumbull/Tuweep 

olivine source area.  In Mt. Trumbull and Tuweep, the majority of ceramics are 

tempered with olivine (Thompson 1970; Moffitt and Chang 1975, 1978; Lyneis 

1992; Allison 2000).  Thompson (1970) reported that the average frequency of 

olivine ceramics in all sites in Tuweep is over 75 percent of all ceramic assemblages.  

However, the olivine-tempered ceramics do not seem to be evenly distributed within 

the Mt. Trumbull or Tuweep olivine source areas (Figure 2.1).  Although the 

majority of sites have an abundance of olivine-tempered ceramics, a few sites in both 

Mt. Trumbull and Tuweep have a small frequency of olivine-tempered ceramics.  

Olivine-tempered ceramics are distributed westward from the Mt. 

Trumbull/Tuweep area over a range exceeding 100 km, to include the lowland Virgin 

area and the Shivwits Plateau.  Although the frequency of olivine ceramics declines 

when moving west, the olivine-tempered ceramics are distributed widely within the 

lowland Virgin area, and as far as the Las Vegas Basin in Nevada.  In the lowland  
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Figure 2.1.  Olivine ceramic frequencies by site in each region.  This graph is based on published 
data. Site designations are given for outliers.  Tuweep olivine-tempered ceramics (Kanab 
Plateau and Pine Mountain) are from the sites with more than 20 sherds, and Mt. Trumbull and 
lowland Virgin olivine-tempered ceramics are from the sites with more than 30 sherds. Number 
of sites included in this graph is shown as “n”.  Percentage shows the proportion of olivine-
tempered ceramics in all ceramics in the site.  

Virgin area, the frequency of olivine-tempered sherds changed over time, and the 

peak of the olivine tempered ceramics within sherd assemblages reached as high as 

36 percent (Larson 1987).   

Olivine-tempered ceramics do not extend eastward of the olivine source areas 

(Figure 2.1).  Olivine-tempered ceramics were found in large quantities a little 

farther east of Tuweep on the Kanab Plateau, but beyond the SB Point, which is 20 
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km east of Tuweep, the frequency of olivine-tempered ceramics declines to as low as 

30 percent of the assemblage.  The frequency of olivine-tempered ceramics at the 

Pinenut site, which is located 30 km east of Mt. Trumbull, is 29.4 percent of the 

assemblage.  Very few olivine-tempered ceramics can be found beyond the Kanab 

Creek, which is 40 km east of the Mt. Trumbull/Tuweep areas.   

Olivine-tempered ceramics are also rare in the area north of Mt. Trumbull 

area.  At the north end of the Plateaus Area near Kanab, which is 80 km northeast of 

Mt. Trumbull, the frequency of olivine-tempered ceramics is extremely low.  In Zion 

National Park near Kanab, hardly any olivine-tampered sherds are found (Schroeder 

1955).  In the St. George basin, which is about 100 km north of Mt. Trumbull, the 

frequency of olivine-tempered ceramics is also low.  Olivine-tempered ceramics on 

Yellowstone Mesa, which is 50 km northeast of Mt. Trumbull, are around 13 percent 

of the assemblages (Allison 1988).  There are few data available in the area within 

40 km north of the Mt. Trumbull area from previous surveys.  Because of this, it is 

unknown how the frequency of olivine-tempered ceramics changed based on the 

distance northward from Mt. Trumbull/Tuweep, or even whether there were any 

long-term occupations at habitation sites in this area.  

Olivine-tempered ceramics were found in large quantities in Tuweep, within 

Grand Canyon National Park, the Colorado River being its southern boundary.  No 

olivine-tempered ceramics are found south of the Colorado River.    

At the southern foot of Mt. Trumbull where the olivine nodules originated, 

olivine is obviously the dominant temper type, although the frequency of olivine-
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tempered ceramics varies among sites.  Recent pedestrian surveys conducted in 2010 

and 2011 on the north side of Mt. Trumbull show that the ceramic assemblages 

immediately north of Mt. Trumbull are similar to those in the south side, in which 

olivine-tempered ceramics are dominant (Sakai 2011, 2012).  The survey in 2011 

was conducted at a distance of eight kilometers north of Mt. Trumbull and showed 

that the site densities are extremely low, with hardly any ceramic artifacts found in 

this locality.  Further research is required to examine the nature of settlement 

patterns and artifact assemblages, including olivine-tempered ceramic frequency, in 

the area north of Mt. Trumbull.   

Temporal Distribution Patterns 

Olivine-tempered ceramics existed from the earliest time of Puebloan 

occupation in Mt. Trumbull and Tuweep.  As discussed above, corrugated ware 

increased over time.  The comparison of the olivine-tempered ceramic frequency to 

corrugated ware frequency suggests no change in the frequency of olivine-tempered 

pots in Tuweep over time, with an average of about 80 percent of all ceramics (Sakai 

2001).  In the lowland Virgin area, the use of olivine-tempered ceramics in the 

lowland Virgin area began around A.D. 600 (Larson and Michaelsen 1990; Lyneis 

1992), and the frequency of olivine ceramics approached a peak around A.D. 1050.  

Olivine ceramics disappeared prior to the demise of the Virgin Ancestral Pueblo in 

the lowland Virgin area (Larson and Michaelsen 1990; Allison 2000).  Allison (2000) 

noted a strong westward distribution of olivine-tempered pottery from 
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Mt. Trumbull/Tuweep toward the lowland Virgin area, reaching farther west to the 

Muddy River area in the lowland Virgin area during the Pueblo II time period 

(A.D.1050–1100) (Allison 2000).  In the St. George Basin, olivine-tempered 

ceramics increased during the Late Pueblo II times (Lyneis 2008), although the 

frequency of olivine-tempered ceramics is low, as mentioned above.   

Source of Olivine and Olivine-Tempered Ceramics 

The source of olivine is thought to be the basalt flows and cinder cones in 

Mt. Trumbull and Tuweep (in the northwest part of the Grand Canyon area) 

discussed above.  Petrographic analysis of sherds from Main Ridge Site in the 

lowland Virgin area and the Arizona Strip shows that olivine-tempered ceramics 

from both areas were tempered with crushed xenoliths from Tuweep, including in the 

Vulcan’s Throne, Toroweap Valley, and Mt. Emma areas (Lyneis 1988, 1992).  The 

nearest alternative olivine source is near Flagstaff, Arizona, which is 200 km 

southeast of Mt. Trumbull on the other side of the Grand Canyon.  However, it is 

unlikely that olivine temper was transported over such a long distance to the lowland 

Virgin area or even to Mt. Trumbull or Tuweep.  Moreover, I did not see any large 

nodules in the lava near the Flagstaff area during my quick visit.  No olivine-

tempered pottery has been found near Flagstaff either.  Large olivine nodules are 

reported to occur in Gila County in southern Arizona, which is also too far to 

transport (400 km from Mt. Trumbull).   
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The investigation of the olivine-tempered ceramic production areas is more 

complicated, although it is assumed to be near the olivine source in Mt. Trumbull 

and Tuweep.  The ware name, Moapa Gray Ware, came after the locality where 

olivine-tempered ceramics were first reported in 1940s (Lyneis 2008), so this name 

does not necessarily represent a production area.  Colton (1952) originally suggested 

that the source of the clay for Moapa Gray Ware “appears to have been from the lava 

in the Toroweap area.”  Schroeder (1961) suggested that the source of olivine-

tempered ceramics is based on the location of olivine, not the clay.  Allison (2000) 

conducted refiring experiments on olivine-tempered ceramics from Mt. Trumbull 

and the lowland Virgin area and observed multiple colors after refiring.  He 

concluded that several different clays or clay recipes were involved in olivine-

tempered ceramic production.  Allison (2000) also recognized that the some colors 

were identified more often in the clay matrix of Mt. Trumbull olivine ceramics, 

although all colors are present in both areas (Figure 2.2).   

Little is also known about the particular production zone within the Mt. 

Trumbull/Tuweep area.  Olivine-tempered ceramics have been found at most of the 

sites in Mt. Trumbull and Tuweep, both of which are olivine source areas.  However, 

no production sites have been identified in the Mt. Trumbull/Tuweep area during 

limited excavations.  During the testing of the 131BLM site in 2005, unfired clay 

nodules/objects were found, but it was uncertain whether this was “waste from 

pottery production.”  It is interesting to note that large pueblos are concentrated near 

the cinder cone, where an abundance of olivine nodules is found.   However, the  
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Figure 2.2.  Refired colors of olivine-tempered ceramics (after Allison 2000). 

evidence is not convincing enough to conclude that the location of the large pueblos 

was selected just because of easy access to the olivine source.  The location of the 

large pueblos may have derived some benefit from easy access to olivine source, but 

the location may have been due to many other factors such as hydrogeology, which 

impacts successful agriculture, as suggested by Buck et al. (2012).   

Olivine-Tempered Ceramic Exchange Issues 

Although there is a scant amount of detailed information on the production 

area of olivine-tempered ceramics, as discussed above, because olivine is found only 

at particular locations, such as Mt. Trumbull and Tuweep, the existence of olivine 

ceramics in the lowland Virgin area indicates long-lasting economic and social ties 

between these populations (Lyneis 2000).  Furthermore, the compositional analysis 

of ceramics from the lowland Virgin area demonstrates that olivine ceramics as well 

as some black-on-gray ceramics were produced outside the lowland Virgin area 
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(Sakai 2003; Larson et al. 2005).  Thus, frequent movement of ceramics among 

various areas in the Arizona Strip and its adjacent areas may have occurred.   

Based on a compositional study of the ceramics found at Pottery Knoll, 

Southern Utah, Neff et al. (1997) argue that ceramic exchange decoupled from local 

specialization was favored in order to buffer risk in unpredictable environments 

(Neff et al. 1997; Neff and Larson 1997).  Thus, the reason for ceramic movement 

could be related to the risk management associated with the agriculture.  Further 

discussion of this idea will be presented in Chapter III.  Allison (2000), on the other 

hand, argues that the lack of wood for fuel in the lowland Virgin area is the driving 

force behind the import of olivine-tempered pots from the Plateaus.   

Chemical Compositional Analysis to Source Olivine-Tempered Ceramics 

As discussed above, the production areas of olivine-tempered ceramics and 

resource procurement strategies used for olivine-tempered ceramic production are 

relatively unknown.  Two chemical analysis studies were conducted to source 

olivine-tempered pottery prior to this dissertation.  As discussed in detail in Chapter 

V and also briefly discussed above in this chapter, two approaches are involved in 

chemical compositional analysis: (1) a bulk analysis in which all materials are 

homogenized including INAA or microwave digestion ICP-MS, and (2) point 

analysis (microchemical analysis), which targets only a specific portion of 

heterogeneous samples such as ceramics (e.g., temper particles in ceramic paste).  

LA-ICP-MS is one technique that allows for conducting this microchemical analysis.  

57



The two chemical analyses used to source olivine-tempered ceramics prior to the 

research for this dissertation were both bulk analyses.  

 

INAA Study on Ceramics in the Lowland Virgin Area 

 Instrumental neutron activation analysis (INAA) was used to investigate the 

source of pottery from the lowland Virgin area, involving a comparison with local 

source clay (Larson et al. 2005).  At least four compositional groups were identified 

in the lowland Virgin area ceramic assemblage (Figure 2.3).  Two groups were  

 

 
 
Figure 2.3.  INAA results of ceramics from the lowland Virgin area (after Larson et at. 2005).  
Group names are modified in this dissertation to avoid confusion with Mt. Trumbull INAA 
study.  VR-INAA-1 and VR-INAA-2 are non-local group.  VR-INAA-2 includes exclusively 
olivine-tempered ceramics.  VR-INAA-3 and VR-INAA-4 are local groups in the lowland Virgin 
area.   

VR-INAA-1 

VR-INAA-4 

VR-INAA-3 

VR-INAA-2 
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matched to the lowland Virgin local clay while the other two were not.  Olivine-

tempered ceramics in the lowland Virgin area (which comprises a single group) did 

not match the local clay and thus were considered non-local wares imported into the 

lowland Virgin area.   

 

Microwave Digestion ICP-MS Study of Olivine-Tempered Ceramics  

 Microwave digestion ICP-MS was conducted on ceramic specimens from the 

Tuweep and lowland Virgin areas (Sakai 2001).  This study demonstrated that the 

olivine-tempered ceramics from Tuweep and the lowland Virgin area are in the same 

compositional group (Figure 2.4).  The clay samples from the two areas were also 

compared with the ceramic groups. The clay samples from Tuweep matched with the 

olivine-tempered ceramic group including sherds from both Tuweep and the lowland  

Virgin area, although some of the clay samples from the lowland Virgin were close 

to the olivine-tempered ceramics chemically.  These findings suggest that most 

olivine-tempered ceramics were produced in Tuweep.   

 Microwave Digestion ICP-MS demonstrated that olivine-tempered ceramics 

from Tuweep and the lowland Virgin area probably have the same origin.  However, 

this study did not show evidence of any subgroups.  Thus, the use of various clay 

sources or recipes in olivine-tempered ceramic production, which was suggested by 

Allison (2000), was not demonstrated.  Further analysis with point analysis, such as 

LA-ICP-MS, is required to investigate various clay sources and recipes used for the 

production of olivine-tempered ceramics in different areas. 
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Figure 2.4.  Microwave digestion ICP-MS results for the ceramics from Tuweep and the lowland 
Virgin area (after Sakai 2001).  Ellipses indicate 95% probability level of membership in the 
groups.  Three ceramic groups (olivine, non-olivine, VR1) and two clay groups (TW clay—
Tuweep clay, and VR clay—the lowland Virgin clay) are presented.   
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 In conclusion, this chapter covered the environmental background and 

cultural history of the Arizona Strip and the adjacent area.  Included is a review of 

previous studies of the olivine-tempered ceramics, which are the focus of this 

dissertation.  This information serves as a basis for understanding the context of my 

specific research question, which concerns the changes in production and 

distribution of olivine-tempered ceramics and a series of hypotheses proposed as 

possible answers to this question.     
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Chapter III: RESEARCH QUESTION AND THEORETICAL 

BACKGROUND 

 

 As discussed in the previous chapter, the Arizona Strip and adjacent areas in 

Utah and Nevada are very marginal environments.  The climatic conditions of this 

part of the American Southwest are extremely arid and fluctuate frequently.  Spatial 

variation is also pronounced, with environmental conditions varying markedly over 

short distances.  Although current average annual precipitation is between 25 and 38 

cm in Mt. Trumbull, which may be suitable for maize agriculture, the dry farming of 

maize was very risky here without permanent streams and limited frost-free days due 

to the elevation.  Despite the challenging environments, the Virgin Branch Ancestral 

Pueblo people in both the lowland Virgin and Mt. Trumbull areas adapted 

successfully for at least 1,300 years.   

 The evidence of early agriculture in the Arizona strip area dates as early as 

A.D. 1.  Although one point of view holds that the Virgin Branch Ancestral Pueblo 

people were heavily dependent on agriculture in southern Utah (Martin 1996), most 

agree that populations in this study area practiced a mixed subsistence economy, 

combining agriculture with wild resource procurement (Moffit and Change 1978; 

Lyneis 1992).  Most also agree that agricultural intensification occurred in later 

Puebloan times (Larson 1996, Larson and Michaelsen 1990, Larson et al. 1996).  

Population started to increase about A.D. 800, with a peak around A.D. 1150 (Larson 
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and Michaelsen 1990).  Abandonment of the Arizona Strip and adjacent area 

occurred sometime between A.D. 1150 and 1350.   

 In this study, my aim is to investigate how populations coped with the 

challenges of such a marginal environment by examining how social interaction 

patterns varied over time in different parts of the region.  Numerous previous studies 

suggest that long-distance networking minimized subsistence risks (Braun and Plog 

1982) and that social interaction was a vital risk-buffering strategy for 

agriculturalists coping with the variable environmental conditions of the American 

Southwest (Rautman 1993).  Social interaction can take the form of population 

mobility, exchanges, and aggregation.   

As discussed in Chapter I, in marginal environmental conditions, different 

forms of social interaction would be preferred at different levels of population 

density.  With low population density, mobility is a viable adaptive strategy to cope 

with resource variability.  With increasing population, however, mobility becomes 

restricted, and instead sedentary residence with exchange becomes a more viable 

adaptive strategy.  In addition to the constraints on mobility, higher populations may 

also lead to agricultural intensification, thus reducing time available for other 

nonagricultural activities.  At the same time, exclusive dependence on agriculture 

was risky in this unstable environment, so exchange to buffer agricultural risk were 

required.  Exchange among small agricultural groups under conditions of high 

population can buffer risk in several ways, as discussed in Chapter I.  When 
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population reaches even higher levels, village aggregation may emerge as a viable 

adaptive strategy.   

 Various forms of social interaction discussed above may be inferable from 

the archaeological record, ceramic data being a prime example.  The different forms 

of social interaction may leave an imprint on ceramic compositional and formal 

diversity, the precise patterning of form and composition depending on the nature of 

risk-buffering strategies adopted at a particular time and place (Neff et al. 1997).  In 

the Arizona Strip and adjacent areas, the presence of olivine ceramics in the lowland 

Virgin area indicates economic and social ties between the Plateaus area and the 

lowland Virgin populations (Lyneis 2000), which were discussed in Chapter I.  

Allison (2000) argues that the olivine-tempered pots were imported in the lowland 

Virgin area from the Plateaus due to the lack of wood for fuel, necessary for pottery 

production.  Left unanswered by these interpretations is whether the olivine-

tempered pots were transported as a result of exchanges between sedentary 

communities or carried along during population movement.  Under low population 

density, I would expect that olivine-tempered pots were moved with groups of 

people moving between different environmental situations.  Under higher population 

densities, I would expect olivine-tempered pots to have been moved as a result of 

exchange.  Although temper does not travel for a long distance generally (Arnold 

1985), I also consider the possibility that olivine itself may have been transported 

from Mt. Trumbull to the lowland Virgin area.  Thus, the focus of my research is on 

how human migration and exchange, as observed in olivine-tempered ceramics, fit 
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into the broader adaptive strategies of the populations inhabiting the marginal 

environments of the Arizona Strip and adjacent areas.  For instance, does the relative 

importance of exchange and mobility change according to population levels and 

climatic variability, either over time or across space?  Another concern is whether 

ceramic production patterns changed in response to the need for agricultural 

intensification in order to feed a growing population.   

  

Research Focus 

 Previous research on olivine-tempered ceramics was focused on their spatial 

and temporal distributions outside the olivine source area.  However, very little is 

known about the loci of their production and the resource procurement strategies for 

their production.  Allison’s (2000) refiring study, including samples from the Mt. 

Trumbull and the lowland Virgin areas, showed the existence of variations in 

chemical composition in ceramic paste that may indicate that multiple resources 

were used to make olivine-tempered ceramics.  Thus, my research interest centers on 

how and why the production and consumption patterns of olivine-tempered ceramics 

changed over time among populations that lived as small-scale societies in unstable 

agricultural environments.  To understand ceramic resource procurement patterns, I 

look at space, form and time in the distribution of ceramic artifacts and their 

interrelationships (Spaulding 1960).  

 Spaulding defined spatial loci as the three-dimensional locations where 

artifacts are found; here, space will also include the spatial locus where an artifact 
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was made.  That is, the spatial characteristics of artifacts will include where the 

artifacts are found as well as their sources.  Form, on the other hand, is any physico-

chemical property of an artifact: color, chemical composition, weight, length, shape, 

and so on (Spaulding 1960).  A time dimension must be based on the analysis of the 

formal dimension, spatial dimension, or both.  Direct-dating techniques, such as 

luminescence dating, applied to ceramic samples are based on the analysis of the 

radiogenetic properties of the ceramics, which are considered formal attributes. 

 

Ceramics and Evolution 

 The diversity within a ceramic assemblage can be measured with reference to 

compositional properties as well as conventional formal properties.  Formal variation 

arises from choices made during ceramic production (forming, finishing, and 

decorating) together with consumption practices.  On the other hand, compositional 

variation, which may be defined as the mineralogy and chemistry of ceramic paste, 

arises from the choices made during raw material procurement and paste preparation 

together with consumption practices (Neff 1992, 1995; Neff et al. 1997; Neff and 

Larson 1997).  Composition of an artifact made at any particular location within 

geographic space is a concrete manifestation of the raw material used by an 

individual in the past, which is a characteristic of a past human phenotype (Neff 

1995).  Thus, ceramic artifacts are directly observable parts of phenotypes of past 

individuals, and an investigation of ceramic variation constitutes an investigation of 

variation in past human phenotypes (Neff 1992; Neff et al. 1997; O’Brien et al. 
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1994).  Phenotypic variation is structured over time due to the effects of differential 

persistence of inherited information caused by selection, chance, linkage of neutral 

traits with other traits controlled by selection, and historical processes (Dunnell 

1980; Neff et al. 1997).  Compositional data record the historical continuity, 

branching, and extinction of past traditions of ceramic production as well as past 

selective pressures that arose out of variation in the opportunities for survival 

through pottery production (Neff 1992). 

 One of the goals in my effort to explain changes in compositional and formal 

diversity is to address how cultural practices, such as ceramic production and 

distribution patterns, structure ceramic compositional and formal diversity.  Neff et 

al. (1997) discuss models to explain ceramic compositional and formal diversity 

among the prehistoric Southwestern Pueblos.  In the traditional self-sufficient 

models discussed in Chapter II (Cordell 1991; Plog 1980a; Zedeño 1994), low 

compositional diversity among the ceramics within the region is expected because all 

ceramic items are made locally.  As alternatives, Neff et al. (1997) proposed two 

models to explain high diversity in compositional data within a single assemblage: 

(1) local specialization and exchange and (2) exchange decoupled from local 

specialization.  The local specialization and exchange model concerns instances in 

which particular types of pottery, such as red ware, were produced only in one 

location/community and subsequently distributed over space.  If exchange is 

decoupled from local specialization, however, one type of pottery, such as red ware, 

may be produced at multiple locations and exchange will bring red ware from 
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multiple production centers together in the same consumption assemblages.  A 

detailed discussion of these models is presented below.  

  

Models for Explaining the Compositional and Formal Diversity in 
Olivine-Tempered Ceramics  
 

 I propose four models based on two different levels of selection to explain 

how ceramic production and consumption patterns create the compositional and 

formal diversity found in widely distributed olivine-tempered ceramics.  These 

evolutionary models compare traits in terms of how well their design qualifies them 

to persist under particular environmental conditions (O’Brien et al. 1994; Neff et al. 

1997).   

 

Selection that Acted on Local Ceramic Production 

A set of circumstances may exist that leads to a strong association between 

formal and compositional properties of pottery.  In this case, selection acts on 

ceramic production on a local level, shaping potters’ choices about which local 

resources to exploit for particular classes of vessels.  This process can affect resource 

procurement when a population has multiple choices of raw materials within a 

relatively small geographic area.  This “clay resource specialization model” specifies 

that potters use specific clays to make certain types of pots, or pots with special 

functions or purposes, whenever they have choices between various clays with 

different performance characteristics.   
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Map Legend (not all legend is described) 
 Surficial Deposit 
      Qay: Young alluvial fan deposit (Holocene and Pleistocene)  
      Ql: Landslide deposit(Holocene  and Pleistocene)  
      Qv: Valley-fill alluvium (Holocene and Pleistocene) 
 Sedimentary Rocks 
      TRm: Moenkopi Formation 
      TRc: Chinle Formation 
      Pk: Kaibab Formation 
      Pt: Toroweap Formation 
 Volcanic Rocks 
      Qp: Basat of the Uinkaret Plateau (Pleistocene) pyroclastic deposits,  
      Qb: Basat of the Uinkaret Plateau (Pleistocene) basalt flows  
      Tmi: Basalt Mt. Trumbull (Pliocene) basalt rocks 
      Tmb: Basalt Mt. Trumbull (Pliocene) basalt flows 
     Qlsp: Little Spring Basalt (Holocene) pyroclastic deposit 
      Qlsb: Little Spring Basalt (Holocene) basalt flows 
 
Figure 3.1.  Geologic map of the Mt. Trumbull (Billingsley and Wellmeyer 2003) 
 
 

Clay Resource Specialization  

As the geology map of the study area (Figure 3.1) indicates, the Mt. Trumbull 

locality consists of multiple geologic formations, both volcanic and sedimentary.  

1 mile 
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These geologic formations and most of the archaeological sites in Mt. Trumbull are 

located within an area with about a five kilometer radius.  Thus, all clays from these 

different formations would be within the range that individuals could travel to 

procure clay, as suggested by ethnographic examples (Arnold 1985).  Although 

volcanic rocks are prevalent in this area, a few small outcroppings of sedimentary 

rock have been identified, including those of the Chinle and Moenkopi formations.  

The clays derived from these sedimentary formations are generally considered to be 

more suitable for ceramic production than clays from the volcanic rock formations.  

The sedimentary rock outcrops are located close to the Grand Canyon rim and in 

small pockets on the slope of Mt. Trumbull, as well as the area close to the west edge 

of the plateau.  Many of these favorable clay sources are difficult to access but are 

nonetheless accessible.   

Resource specialization, entailing different clays with different performance 

properties used for pots with different purposes, would reduce the total cost of local 

ceramic production to the extent that use of optimal clays improves vessel 

performance and reduces vessel-replacement costs.  This would be one reason why 

potters might have invested more time to obtain better-quality clay for special 

purposes, such as the manufacture of items intended for gift exchange, and used 

lower-quality clay only for the manufacture of daily-use ware.  For example, using  

good clay, potters could have produced stronger pots that might have been more 

attractive gift items and less breakable while transporting.  
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Archaeologically, it is expected that all compositional groups of olivine-

tempered ceramics would match local clays in the Mt. Trumbull/Tuweep areas and 

that there should be a strong correlation between compositional groups and formal 

attributes.  Additionally, some compositional groups may consist of only utilitarian 

wares found in Mt. Trumbull, while some groups may consist of only non-utilitarian 

wares found predominantly outside the Mt. Trumbull and Tuweep areas that may 

have been exchanged as trade items.  

 

Absence of Clay Resource Specialization in Ceramic Raw Material Procurement 

 Another model for how selection acts on local ceramic production involves 

an absence of resource specialization in the ceramic raw material procurement.  I 

consider two selective environments.  One is the case of clays from different 

geological formations that do not differ in performance.  This may not be the case 

with clays in the Mt. Trumbull and Tuweep vicinities, since multiple geologic 

formations with different qualities are found in these areas. 

   The second possibility is where there is no demand for better-quality or 

costly pots.  As generally recognized, the study area is a risky agricultural 

environment.  As discussed earlier, when population density is low, mobility is 

preferred over exchange to buffer agricultural risk.  People can move to change 

locations of agricultural fields or even resort to a greater dependence on wild 

resources.  Under these circumstances, people would be expected to use locally 

available clay from areas close to their sites to make pots and to allocate more time 
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to preparing or maintaining agricultural fields or acquiring wild food resources.  In 

this case, each compositional group will consist of sherds from only one area, and 

each group will match clay sources adjacent to the sites where it is found.  It is also 

expected that similar formal attributes could be found in the variable compositional 

groups of all these ceramic assemblages.   

 

Selection that Acted on Economic Interaction Patterns 

 Another set of circumstances that could create ceramic compositional and 

formal diversity involves the selection that acted on economic interaction patterns.  

Based on the general models proposed by Neff and colleagues (Neff et al. 1997), I 

propose two models for examining how selection acted to shape circulation of 

olivine-tempered ceramics.   

 

Movement of Pots Coupled with Local Specialization 

 One theoretical model is exchange coupled with local specialization in a 

particular resource or goods.  Neff et al. (1997) suggested that in predictable 

environments, geographic differences in the return from subsistence and other 

productive activities are consistent from year to year and that these consistent 

differences in comparative advantage favor differentiation of productive strategies.  

In this environmental context, local specialization of ceramics and regional exchange 

are favored to reduce the cost of producing subsistence resources and other goods, 

such as pottery.  This is because the strategy of producing a slight excess of pots, 
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which are produced easiest in one location, and obtaining necessary goods through 

exchange, minimizes the cost of obtaining these goods.  Local specialization means 

that potters in different areas exploit distinct raw materials and specialize in different 

shapes or decorations.  Therefore, a strong correlation between compositional groups 

and formal attributes is expected in all regional ceramic assemblages.   

In line with this model, I propose that olivine-tempered ceramics were 

produced in particular shapes or types in the Mt.Trumbull/Tuweep localities and then 

exchanged with people living in geologically different areas.  I also propose that 

particular types of pots, such as red ware, were produced in other locations and 

imported into the Mt. Trumbull/Tuweep localities.  However, considering the general 

environmental conditions in the northern American Southwest, where subsistence 

resource productivity was unpredictable, this theoretical model may not be 

applicable to explain the circulation of olivine-tempered ceramics. 

 

Movement of Pots without Local Specialization 

 An alternative model for explaining the circulation of olivine-tempered 

ceramics is exchange without local specialization in particular resources or goods.  

In the American Southwest, where climate tends to vary from year to year, returns 

from agricultural production also would have varied.  Under these conditions, 

economic specialization would be a risky strategy, and one would not expect to see 

specific locations specializing in the production of particular types of pottery or 

other goods.  Under these conditions, pots would have moved as a byproduct of 
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population movement or through gift-giving and maintenance of social networks 

(Neff and Larson 1997).  Thus, movement of pots in different geographic settings 

would have been a mechanism to buffer agricultural risk and would have been 

decoupled from local specialization.  In this situation, each community made all 

kinds of pots that were needed, and non-local pots in the community were a result of 

gift-giving or population movement.    

Archaeologically, weak or no association between form and composition is 

expected (i.e., similar form attributes found in varying compositional groups) in 

accordance to this model.  I propose that olivine-tempered ceramics produced in the 

Mt. Trumbull/Tuweep areas were dispersed as a result of the movement of people or 

as a result of exchanges to mitigate the imbalance of agricultural productivity or to 

maintain social networks.   

 Based on this model, I also expect that not only olivine-tempered pots but 

also olivine itself was moved, as a result of population movement or as a result of 

exchange.  As briefly introduced in Chapter I, ethnographic studies of ceramic 

resource procurement suggest that potters do not travel more than nine kilometers to 

obtain temper materials (Arnold 1985).  Considering the long distances between the 

olivine source area and the areas where olivine-tempered ceramics are distributed, it 

is likely that all olivine-tempered ceramics were produced near the olivine sources in 

the Mt. Trumbull and Tuweep areas.  However, because olivine is not ubiquitous 

within the study area, being found only in the Mt. Trumbull and Tuweep areas, it is 

also possible that olivine itself moved from Mt. Trumbull/Tuweep along with an 
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emigrating population or as an exchanged commodity.  Consequently, olivine-

tempered ceramics would have been produced at multiple locations with locally 

available clay.  

 It is worthwhile considering here why olivine minerals might have been 

moved independently of manufactured ceramics.  For formal reasons, olivine is an 

excellent tempering material for clay pots.  As discussed in previous chapters, 

olivine has stable thermal properties (Amethyst Galleries, Inc. 1995).  Furthermore, a 

thermal expansion rate of olivine is lower than quartz and close to that of clay, which 

can avoid thermal stress during heating and cooling of the pots (Rye 1976; Arnold 

1985).  These factors imply that the olivine is a good tempering material.  Potters 

living in unpredictable environments also may have imported olivine and made 

olivine-tempered pots in various areas to buffer the imbalance of agricultural 

productivity or even to maintain social networks.  The archaeological expectations of 

this possibility, that olivine itself was moved and olivine-tempered pots were made 

in multiple locations with locally available clay, would be a high correlation between 

at least some of compositional groups and spatial loci where the olivine-tempered 

ceramics were found.  It is also expected that some compositional groups will match 

local clay in areas where olivine is not locally available (e.g., the lowland Virgin 

area).  
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Research Question 

 As discussed above, I am concerned with how and why clay resource 

procurement patterns for olivine-tempered ceramics changed over time, the larger 

goal being to understand how human migrations or exchanges fit into the broader 

adaptive strategy by which Puebloan people of the Arizona Strip coped with a 

marginal environment.  Because chemical compositional data are the product of the 

historical sequence of ceramic production and consumption patterns, I propose this 

specific research question: how and why did ceramic production and consumption 

patterns observed in chemical composition of olivine-tempered ceramic paste change 

over time?   

 

Hypothesis 

 To address the research question stated above, two steps must be taken: (1) 

propose and evaluate a series of hypotheses, and (2) identify and interpret the 

compositional groups. 

 

Step One: Hypotheses  

 Based on the models discussed above, I propose several hypotheses to 

investigate why the ceramic production and consumption patterns observed in the 

compositional data changed over time.  As a basis for testing the hypotheses, I dated 

the ceramic samples analyzed by INAA and LA-ICP-MS using the dating technique 

of optically stimulated luminescence (OSL).  I also analyzed the formal attributes of 
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vessels within each compositional group to determine whether compositional groups 

correlate with particular formal attributes, such as vessel shape or presence of 

painted decoration, in order to understand what contributes to the formation of the 

compositional groups.   

Hypothesis 1: Under conditions of environmental instability and relatively high 

population density, social networks as opposed to migration would have been 

favored as a risk-reducing strategy; the existence of social networks, in turn would 

have favored clay-resource specialization.   

Test implications: Olivine-tempered pots during Pueblo II and III, under the 

condition of environmental instability with high population density, would be 

expected to have moved between communities as a result of exchange, and clay-

resource specialization would be expected to have occurred. 

 In marginal agricultural settings, such as the Arizona Strip, an exchange 

model decoupled from local specialization predicts the movement of pots to 

minimize risk, as discussed above.  In this model, the mechanism for moving pots 

between different communities may be either exchange or population movement.  In 

early time periods when the population density was relatively low it is more likely 

that pots moved as a byproduct of population movement, such as migration or 

seasonal movement, than as a result of economic exchange.  I predict, therefore, that 

during the late Basketmaker and Pueblo I periods, when population density was low, 

people in Mt. Trumbull/Tuweep moved with their olivine-tempered pots to different 

communities during periods of food shortage, even if only seasonally.  If population 
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mobility rather than exchange is the buffering mechanism, there would be no need to 

make better pots that are more attractive for trade.  In this case, it is expected that the 

pots were made in Mt. Trumbull and Tuweep with locally available resources 

obtained immediately adjacent to the habitation sites, and that the compositional 

groups represent various clay sources in the Mt. Trumbull and Tuweep vicinities.  

With no need to produce pots for exchange, potters would not have expended the 

extra energy required to obtain high-quality clays suitable for making pots as gifts.  

Instead, they would have used the most easily accessible suitable clay to make all 

pots they needed for domestic use.  Although domestic pots ideally should have been 

made with high-quality clay to reduce breakage, considering the situation that people 

often moved, procuring especially high-quality clay, which would have required 

extra time, would not have been an economical choice.  Accordingly, the olivine-

tempered pots made in Mt. Trumbull and Tuweep would be expected to have moved 

to the lowland Virgin area with the populations migrating into this area during the 

time when population density was low.  

 Generally, in the Arizona Strip and adjacent areas, population size 

dramatically increased around A.D. 1000.  When population density reached its 

highest level, I predict that exchange was preferred over mobility as a way to buffer 

agricultural risk.  A growing population with restricted mobility also invests more 

time in the construction of storage facilities or intensification of agriculture.  Thus, it 

is expected that a demand for better-quality pots to serve as attractive trading items 

stimulated resource specialization, as discussed above.  In an environment where 
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clays with different performance characteristics are available within a small area, the 

specialized use of locally available clays for different types of pottery, or pottery 

with different functions, would be favored.  This resource specialization model 

entailing the use of locally available clay sources predicts that clay types with 

varying levels of performance were used to make pots intended for different 

purposes.  Thus, it is predicted that in late times ancient potters spent more time 

obtaining better-quality clay that was less accessible or more distant from their home 

villages for the manufacture of pots for gift exchange, whereas any clay adjacent to 

their occupation areas, regardless of the quality, was still used to manufacture 

utilitarian pots.  

 Observable expectations of the archaeological data include: (1) a match of all 

compositional groups in olivine-tempered ceramics to local clays from the Mt. 

Trumbull/Tuweep area, (2) occurrence of any compositional group both early and 

late during the prehistoric sequence of the area, and (3) stronger associations 

between compositional groups and formal attributes of pots in late compared with 

earlier in time.  For example, overall the ceramic compositional data should show 

use of all sources during all time periods, but later on, some compositional groups 

may be represented preferentially in the non-utilitarian wares found in the lowland 

Virgin area.   

Hypothesis 2: Under conditions of environmental instability and relatively high 

population density, social networks as opposed to migration would have been 
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favored as a risk-reducing strategy; the existence of social networks, in turn, would 

have favored production of olivine-tempered pots outside of Mt. Trumbull. 

Test implications: During Pueblo II and III under the condition of environmental 

instability with high population density, not only olivine-tempered pots but also 

olivine itself would be expected to have moved between communities as a result of 

exchange.  As a result, it is expected that potters in the lowland Virgin area would 

have made pots with olivine using their local clay during late times.   

 As discussed in Hypothesis 1, it is likely that while population density 

remained relatively low during late Basketmaker and Pueblo I period, olivine-

tempered ceramics produced in Mt. Trumbull/Tuweep were distributed to sites in 

different biotic communities by means of population movement.  As the population 

density in various areas increased, prospects for population movement became more 

constrained, so exchange was preferred over population movement.  Therefore, it is 

predicted that under circumstances of high population density, the olivine-tempered 

ceramics were distributed as exchanged items or as containers for other exchanged 

items, such as food products.  Moreover, it is also possible that the olivine (e.g., 

olivine nodule) itself was brought to other areas as a trade item.  It is likely that the 

use of olivine as a temper was inherited from immigrants migrating from 

Mt. Trumbull and Tuweep as part of ceramic production traditions.  Descendants of 

immigrants in other areas, including the lowland Virgin area, may have used local 

clay to make ceramics with olivine imported from Mt. Trumbull and Tuweep.  As a 

result, it would be expected that more production centers of olivine-tempered 
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ceramics came into existence during later periods, not only at Mt. Trumbull and 

Tuweep but also in other areas such as the lowland Virgin.  Under circumstances 

when exchanges were preferred over migration to buffer risk, it is also likely that 

clay resource specialization occurred, as discussed in Hypothesis 1.  

 For Hypothesis 2, the observable expectations of the archaeological record 

include: (1) an increase in the number of compositional groups over time, (2) 

stronger associations in later assemblages between compositional groups and the 

locations where the ceramics were found, and (3) greater presence later during the 

prehistoric sequence of some compositional groups outside of Mt. Trumbull. 

Hypothesis 3: Under conditions of short-term relative environmental stability and 

relatively high population density, maintenance of social networks as a risk-buffering 

strategy would have been selected against; the absence or minimal importance of 

social networks, in turn, would have favored specialized production of olivine-

tempered pots within each community.   

Test implications: During late Pueblo II and Pueblo III, when there were a few 

episodes of short-term stable climatic conditions and population density was high, 

olivine-tempered pots would have been produced within a community and moved less 

between communities as a result of exchange, and specialized production of olivine-

tempered pots with optimal clay within the community would be expected to have 

occurred.   

 Although archaeologists generally agree that climatic conditions were 

unstable in the American Southwest throughout the time of human occupation, 
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detailed dendroclimatic reconstructions using the Palmer Drought Severity Index 

(PDSI) demonstrate that the period between A.D. 1050 to 1120 was characterized by 

generally wet conditions, including some of the wettest consecutive years in the 

whole thousand-year record.  Few years during that period were particularly dry 

(Larson et al. 1996).  Therefore, one can hypothesize that the relatively favorable 

climatic conditions of this period selected for labor specialization in local ceramic 

production.  During this interval of favorable climatic conditions, it is predicted that 

returns from subsistence and other productive activities remained relatively 

consistent from one year to the next and that labor specialization became a viable 

strategy within communities.  Favorable climatic conditions also would have 

generated agricultural surpluses during some years, leading to the construction of 

more storage facilities to buffer the agricultural risk and a reduction in the advantage 

of exchange or population movements as buffering strategies.  Thus, I propose that 

during this time period olivine-tempered ceramics were produced by increasingly 

specialized potters.  In circumstances when the climatic conditions were favorable 

for agriculture, the accumulated surplus allowed specialized potters to devote more 

time to pottery production activities, including clay procurement.  It is expected, 

therefore, that potters in Mt. Trumbull and Tuweep would have chosen only clay 

with better performance characteristics to make better and stronger pots even for 

daily use, despite the added expense of acquiring better clay.  This growing 

specialization would have freed the non-potters to devote more time to agricultural 

production.  As a result, archaeologically observable expectations include: (1) a 
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decrease in the number of compositional groups over time, and (2) a continued weak 

association between compositional groups and formal attributes throughout the 

prehistoric sequence.   

  

Step Two: Identify and Interpret the Compositional Groups 

 To test the hypotheses proposed above, the first task is to interpret what 

compositional groups identified in ceramic data represent with respect to ceramic 

production patterns.  Both bulk analysis and pinpoint analysis discussed in Chapter II 

are involved in this study to test hypotheses.  I will propose several potential 

interpretations of compositional groups based on these two approaches.  

 

Bulk Data: Instrumental Neutron Activation Analysis (INAA) 

 In bulk analysis, all materials within the ceramic paste are homogenized.  

Fifty olivine-tempered sherds from Mt. Trumbull were analyzed by INAA in this 

study (see detail discussion in Chapter V).  In the INAA analysis, surface materials 

such as paint were excluded, and the rest of the sample, including clay and 

tempering materials as well as other inclusions in the clay matrix, were all mixed 

together for the analysis.  I will propose three potential interpretations of chemical 

compositional groups identified in INAA bulk analysis.   

Proposition 1: Compositional Groups Represent Different Clay Sources.  

 The finding of distinct compositional groups may derive from different 

production areas or different resource procurement locations.  The interpretation of 
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the compositional groups includes two possibilities: (1) clay from various sources 

within the olivine source area (Mt. Trumbull and Tuweep), and (2) clay from the 

olivine source localities (Mt. Trumbull and Tuweep) as well as other localities. 

Proposition 2: Compositional Groups Represent Different Paste Recipes.   

 This alternative proposition entails use of different paste recipes with two 

main possibilities.  The first is the mixing of clay from one source with: (a) different 

amounts of olivine temper, (b) olivine and other temper materials such as quartz, or 

(c) olivine temper from different sources (e.g., from different lava flows with 

different ages).  The second possibility is the mixing of clays from different sources.   

Proposition 3: Compositional Groups Represent Chemical Alterations Due to 

Diagenesis.  

 Chemical alternation of paste may occur due to various uses of pottery, such 

as storing vs. cooking foods.  Different groups may also result from diagenesis, that 

is, post-depositional chemical change in pastes.  In this case, the chemical 

compositional groups do not represent either the clay sources or paste recipes.   

 

Point Analysis Data (Clay Matrix Only): Laser Ablation Inductively Coupled Plasma 

Mass Spectrometry (LA-ICP-MS)  

 Another chemical compositional analytical technique involved in this study is 

LA-ICP-MS, which is a pinpoint analysis.  In this analysis, only clay matrix is 

analyzed, avoiding temper or any inclusion.  I will propose four potential 

interpretations of the compositional groups identified in clay matrix of sherd samples 
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with LA-ICP-MS.  The data set includes ceramic samples with both olivine and non-

olivine temper from Mt. Trumbull/Tuweep and the lowland Virgin area. 

Proposition 1: Compositional Groups Represent Different Clay Sources.  

 The compositional groups may indicate different production areas or 

different resource procurement locations.  The interpretations of compositional 

groups include: (1) clay from various sources within the olivine source area (Mt. 

Trumbull and Tuweep), and (2) clay from the olivine source localities (Mt. Trumbull 

and Tuweep) and other localities. 

Proposition 2: Compositional Groups Represent Different Paste Recipes.  

 The various paste recipes that created different compositional groups in the 

point analysis could have entailed mixing clays from multiple sources.   

Proposition 3: Compositional Groups Represent Clay Preparation/Quarrying 

Techniques. 

 The compositional groups may be the result of using different techniques to 

prepare the clay; each technique resulting in different chemical properties of the 

substance, thus changing the chemical properties of clay matrix.  If larger minerals 

are removed from the raw clay and only finer particles are used for pottery 

production, some of the element composition may change compared to the raw clay.  

In addition, clay from deeper deposits may have different chemical signatures than 

clay from shallower deposits because the deeper deposits may contain finer clay.  

Thus, the compositional groups may represent the acquisition of clay from different 

depths of deposits, even if they come from a single source.  
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Proposition 4: Compositional Groups Represent Chemical Alterations Due to 

Diagenesis.  

 As mentioned in the discussion about how to interpret bulk data, the chemical 

alteration of paste may occur due to various uses of pottery, such as storing vs. 

cooking.  Different groups in the point analysis may also result from diagenesis, that 

is, post-depositional chemical change of pastes.  In this case, the chemical 

compositional groups do not represent clay sources or paste recipes.   

 

Summary 

 The ultimate goal of this study is to understand how small-scale farmers 

coped with a marginal environment through various forms of social interaction and 

why the pattern changed over time.  These social interaction patterns can be inferable 

from production and consumption patterns of widely distributed olivine-tempered 

ceramics inferred from chemical compositional analysis combined with formal 

attribute analysis.  Therefore, my specific research question is: how and why did 

ceramic production and consumption patterns observed in chemical composition of 

olivine-tempered ceramic paste change over time?  To answer this question, I 

proposed three hypotheses based on two levels of selection; one acting on 

social/economic interaction patterns, and the other acting on ceramic local 

production, under the condition of different levels of environmental instability as 

well as population density.  In the next chapter I will discuss the data collection 

procedures for the data analysis and for testing the hypotheses.   
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Chapter IV: DATA COLLECTION 

 

The previous chapter presented a series of hypotheses to explain how and 

why the production and consumption patterns observed in the chemical composition 

of olivine-tempered ceramics changed over time.  As the first step to test these 

hypotheses, ceramic samples were obtained for compositional analyses and 

luminescence dating.  These samples were derived from my own fieldwork and from 

earlier collections.  The ceramic samples from Mt. Trumbull were gathered from 

surface collections and test excavations during my fieldwork and those from Tuweep 

and the lowland Virgin area are from previous collections.  

 

Fieldwork 

Fieldwork that I conducted for this dissertation includes site recording/test pit 

excavation in Mt. Trumbull to collect ceramic samples, source clay samples for 

chemical compositional analysis, and background sediments for optically stimulated 

luminescence (OSL) dating.  Site recording/test pit excavations were conducted at 

the following seven sites in Mt. Trumbull: AZ:A:12:30 (BLM); AZ:A:12:204 

(BLM); AZ:A:12:131 (BLM); AZ:A:12:71 (ASM); AZ:A:12:136 (ASM); 

AZ:A:12:214 (ASM); and AZ:A:12:14 (MNA).  For the sake of brevity, the 

“AZ:A:12” prefix will not be included in the site designations in this dissertation.  

The locations of these sites are shown in Figure 4.1.  There were three purposes for 

site recording and test pit excavations.  The first purpose was to obtain ceramic  
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Figure 4.1.  Map of archaeological sites in Mt. Trumbull included in this study.  Olivine nodules 
are found at various locations in the area.  The cinder cone indicated in this map is where 
olivine nodules are found most abundantly.  
 

samples for compositional analysis and luminescence dating from both surface and 

subsurface contexts.  The second was to gather contextual information for ceramic 

samples, such as the kind of site (e.g., C-shaped pueblo, pithouse), function of the 

site (e.g., house, storage), and time and duration of occupation of the site.  This 

contextual information was used to understand the compositional groups, changes in 

compositional patterns, and consequently, changes in the production and distribution 

of olivine-tempered ceramics.  The third purpose was to examine changes in the 

frequency of ceramic types, including olivine-tempered ceramics.  The site 

recording/test pit excavations were conducted during archaeological field schools 

(Nevada State College/Desert Research Institute) co-taught by Paul Buck and me, 
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except for site recording and testing of a looted room at 14 MNA.  The clay and 

sediment samples were collected by me and volunteer helpers between the field 

school seasons.    

 

Methods 

 The fieldwork for recording archaeological sites and collection of ceramic 

samples were conducted during annual field schools between 2001 and 2006 (except 

2002), and the collections of clays for compositional analysis and sediments for 

luminescence dating were conducted between 2003 and 2008.  Although small 

changes or adjustments were made for each site, standardized methods were 

generally employed.   

  

Mapping 

All seven sites in Mt. Trumbull considered in this dissertation were mapped 

at the onset of this study.  Although all sites have structures/possible structures, site 

boundaries were based on the change in surface artifact densities.  In order to 

determine a site boundary, field crews walked transects in the four cardinal 

directions from the center of the structure area marking with pin flags the locations 

of artifacts, artifact concentrations, and other features until no artifacts/features were 

found within 20 m of the last finds.  However, the general background “noise” of 

artifacts is very high in most areas in Mt. Trumbull; artifacts are widely distributed 

and are often found continuously in areas between sites.  Thus, in some cases, a site 
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boundary was not based on “no artifacts/features found within 20 m of the last find.”  

Instead, when we did not see many artifacts/features roughly within 10–15 m, we 

stopped the survey and determined a site boundary arbitrarily based on the change in 

number of pin flags, which reflected changes in artifact frequency.  A handheld GPS 

was used to record site boundary coordinates for a site boundary map.   

Before mapping structures and other features, each room or room block was 

inspected carefully.  A plane table, alidade and Philadelphia rod were used to prepare 

plan maps for five sites, including 30 BLM, 204 BLM, 71 ASM, 136 ASM, and 214 

ASM.  We mapped only those rocks that seemed to indicate the original wall 

alignments.  The plan view maps of site 14 MNA and 131 BLM were produced 

differently.  In both sites, grid systems were established using a total station, and 

surface features were mapped in each unit.  These unit maps were combined and 

scanned to make electronic versions of the maps of the entire set of structures.  

 

Surface Collection Units (SCUs) 

In order to obtain representative samples of artifacts from site surfaces, I 

collected artifacts using surface collection units (SCUs) randomly laid over the 

surface of the site.  In most sites, I used a stratified sampling strategy.  At four sites 

(204 BLM, 136 ASM, 214 ASM, and 131 BLM), I separately collected surface 

ceramics from SCUs in the central structural parts of the site (SCU-A stratum) and 

from those within areas of artifact scatters and other features (SCU-B stratum).  At 

the 71 ASM site, three dispersed structural areas were identified.  Therefore, SCUs 
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were placed at each of these: the SCU-A stratum was in the bottom of the hill area, 

the SCU-C stratum was in the middle of the hill area, and the SCU-D stratum was at 

the top of the limestone hill.  The SCU-B stratum was placed on the periphery.  At 

site 30 BLM, there were two structural areas, so the SCU-A and SCU-C strata were 

placed in those areas, while the SCU B stratum was placed outside of the structural 

areas.  SCUs in SCU-A stratum and SCU-C and D strata at 71 ASM were 2 x 2 m 

grids due to the high density of artifacts, while the SCUs in the SCU-B grids were 

either 4 x 4 m or 5 x 5 m.  The random number generator in MS Excel was used to 

choose at least 10 units in each sample stratum to avoid bias in selecting the area of 

surface collection.  A handheld GPS was used to find the southwest corner of the 

SCU selected, and pin flags and metric tapes were used to triangulate the remaining 

three corners of the SCU.  Covering vegetation within the SCU was removed to 

enhance visibility of artifacts, and the vegetation was also screened using 1/8” sieves 

to collect artifacts within the vegetation.  Only artifacts visible on the surface were 

collected.  The total area of the SCUs is a very small portion of the site, usually 

about 1 percent or less.  Simple random sampling was used to select the SCU at 14 

MNA.   

Artifacts from each SCU were bagged by category (e.g., ceramics, lithics).  

Once they were brought to the laboratory, the ceramics were sorted and bagged by 

size (larger than 1 inch vs. smaller than 1 inch).   
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Surface General Collection (Grab Samples). 

In addition to systematic surface collection, diagnostic artifacts were 

collected outside the randomly chosen SCUs.  Decorated sherds are rare at all sites in 

Mt. Trumbull, so larger decorated sherds, which provide detailed design elements, 

and rim sherds, which may be time indicators, often were collected.  Luminescence 

dating requires the larger, thicker sherds, so occasionally large sherds were also 

collected.  

 

Soil Augering 

A bucket auger (3” diameter-bit) was used to estimate the depth of the 

deposits and also to collect charcoal samples for 14C dating.  The soil augering was 

conducted prior to the year when test pit excavation was conducted.   

 

Test Pit Excavation 

For the research reported here, the purpose of test pit excavations was to 

obtain subsurface ceramic samples and to examine the change over time in 

frequency of ceramic types, including particularly olivine-tempered types.  

Therefore, the test pits were excavated in midden areas where artifacts from daily 

use had accumulated over substantial periods of time.  The locations of test pit 

excavations were chosen intuitively within areas of high densities of artifacts, while 

avoiding the interiors of structures due to the permit limitations.  Excavation in the 

cultural level was conducted using a trowel and dustpan.  A small pick and/or shovel 

92



were used when artifacts were not present, especially close to the bottom of a test pit.  

Surface artifacts were collected before proceeding to excavation.  The excavation 

was conducted in arbitrary 10 cm levels.  All artifacts/ecofacts from the same level 

were bagged by artifact category.  Small soil samples were also collected within each 

level for flotation and luminescence dating analysis.  The remainder of the soil was 

sieved through 1/8”mesh.  When a large diagnostic sherd suitable for luminescence 

dating analysis was found, the sherd was bagged separately from the rest of the 

artifacts, and the soil directly underneath the sherd was also collected.  Large pieces 

of charcoal or potential carbonized seeds/corn kernels were collected with a trowel 

and then wrapped in aluminum foil for 14C dating.  Sherds with associated charcoal 

were also bagged separately.  No further excavation was carried out if no artifacts 

were found within one or two successive levels.  When a level of excavation was 

completed, a level recording form was filled out, and the profile of one or more of 

the walls was drawn.  When a cultural feature was found during excavation, a plan-

view map was drawn showing the location of the feature.  After all excavation was 

completed, the test pits were backfilled to conserve the site and to prevent potential 

looting.  

 

Clay Sampling 

Clay samples for compositional analysis were collected between 2003 and 

2008 in Mt. Trumbull.  Clay samples were also collected from various other areas, 

including the lowland Virgin area and between Mt. Trumbull and the lowland Virgin 
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area.  In both Mt. Trumbull and the lowland Virgin areas, the clay samples came 

from various geologic formations.   

Volcanic rock formations cover most of the Mt. Trumbull area (Billingsley 

and Hamblin 2001; Billingsley et al. 2003).  Samples of mostly volcanic-derived 

clay were collected during site excavations from walls of washes near the seven 

archaeological sites and from wash walls or road cuts at other locations in Mt. 

Trumbull.  In addition to volcanic formations, small pockets of sedimentary rock 

formations occur in Mt. Trumbull.  For example, Chinle formation exposures were 

identified west of Mt. Logan and west of Hurricane Fault, less than 10 km from the 

area of archaeological site concentration in Mt. Trumbull.  Small exposures of 

possible Chinle formation with petrified wood on the south slope of Mt. Trumbull 

were also identified during the field season.  Most of the Triassic Moenkopi 

formation is covered by Quaternary basalt flows and landslide debris in the Sawmill 

Mountains, Mount Logan (both are within 5 km from the site concentration area), 

and Mt. Trumbull areas.  Thus, some clay samples were acquired from exposures of 

the Moenkopi and Chinle formations.  In most places, I collected these clay samples 

on the very steep slopes where the surface soil slid down.  There are also secondary 

clay deposits just south of Mt. Trumbull, near site 14 MNA.  The secondary clay 

samples collected from this location likely contain both weathered volcanic and 

sedimentary clays, because this deposit appears to be just below the location of the 

Chinle formation exposures. 

94



In the lowland Virgin area, mostly sedimentary and secondary clays occur.  

Larson and his students collected clay samples in 1997 for INAA analysis (Larson et 

al. 2005), which I analyzed by LA-ICP-MS for this dissertation.  Additional clay 

samples from various formations were also collected in the lowland Virgin area from 

along both the Virgin and Muddy Rivers.   

In most cases in both Mt. Trumbull and other areas, clay was obtained either 

from road cuts, subsurface deposits between 10 cm and 50 cm below the surface, or 

from testing at the sites in Mt. Trumbull.  When clay samples were obtained from 

road cuts or drainage walls, they were at least 10 cm from the exposed surface to 

avoid contamination.  The clay was collected using a trowel and then bagged.  Once 

clay samples were returned to the lab, a portion of the clay was dried.  A portion was 

also “prepared” before analysis (see sample preparation for ICP-MS in Chapter V).   

The following is a summary of the clay collections.  Except for the test units, 

most of the clays were from relatively shallow deposits (10–50 cm below the ground 

surface).  The clays in the test units came from deposits that were as much as 100 cm 

deep.  Clays from 170 locations were sampled, including both primary (volcanic and 

sedimentary) and secondary clays that may be weathered volcanic or sedimentary 

clay, or clay from landslide deposits.  

Clay samples were collected in the vicinity of Tuweep and on the Shivwits 

Plateau in addition to those obtained from Mt. Trumbull.  Over 30 clays were 

collected in Tuweep during 2000, with a clay collection permit from Grand Canyon 

National Park.  Most of the clays were from relatively shallow deposits.  Fifteen clay 
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samples were collected on the Shivwits Plateau in 2002.  Again, the deposits of clay 

were relatively shallow (~40 cm). 

In the lowland Virgin area, 37 samples of both sedimentary and secondary 

clays were collected.  In addition to the clays in Mt. Trumbull and the lowland Virgin 

area, clay samples from more distant areas were collected and included in the 

analysis.  Although it is unlikely that potters used clay from distant areas to make 

their pots, these clay samples were compared to the ceramic compositional groups, 

especially when the compositional groups did not match either Mt. 

Trumbull/Tuweep or the lowland Virgin clays.  Comparing these compositional 

groups for which I could not identify the source to the distant clays may help in 

discovering what kinds of clay could be potential sources for the groups.  These 

distant clays are of very good quality for pottery production; they include Chinle 

clays collected from southern Utah (near Hurricane and Quail Creek) and from near 

the road between Mt. Trumbull and Colorado City.   

 

Background Sediment Collection for Luminescence Dating  

From each level of the test excavations in Mt. Trumbull, a small portion of 

sediment was saved for luminescence dating as discussed above.  Radioactive 

elemental concentrations of potassium, uranium, and thorium from the background 

soil will contribute to calibrating the luminescence dates.  Thus, ideally, soil should 

be collected from exactly the same provenience of the analyzed sherds.  However, 

because it is not realistic to choose in the field the samples that will be used for 

96



luminescence dating, at least 100 g of sediment was collected from each level in all 

instances where the matrix of the level is homogenous.  When a large diagnostic 

sherd that was likely to be analyzed for this dissertation was found, it was saved, 

along with the sediments directly beneath it.  When a cultural feature was found and 

a sherd associated with the feature was collected for luminescence dating, the 

sediment in which the sherd was embedded was also collected.  For surface 

collection from SCUs and general surface collections, at least 100 g of sediment 

were collected within a 25 m diameter of the ceramic samples.  

In the lowland Virgin area, Larson collected ceramic samples in the 1970s.  

The sediments for luminescence dating were collected in 2009 from a few locations 

along the Virgin River, which entailed collecting samples from all possible 

geological formations—the top of the mesa, the riverbank, and the flood plain.  Four 

luminescence dating background sediment samples were collected from the east 

bank of the Virgin River and eight sediment samples were collected from the west 

bank.  When calibrating the luminescence dating data, the distance between the site 

where the sherds originated and the locations of the sediment samples were 

considered in order to choose the appropriate luminescence dating sediment sample.  

The locations of the sediment samples in the lowland Virgin area are shown in 

Figure 4.2.   
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Figure 4.2.  Map of the lowland Virgin area showing background sediment collection locations 
for the OSL dating and archaeological sites involved in this study.  OSL sediment locations are 
shown as *LB###_R# (e.g., LB619_R2) and site locations are shown as +VR## (e.g., VR1). 
 

 

Site Descriptions 

All recording/test excavation was conducted during the archaeological field 

schools and also the field projects of the Desert Research Institute (DRI) and 

California State University, Long Beach (CSULB).  The locations of the 

archaeological sites are shown in Table 4.1.   
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Table 4.1.  List of the archaeological sites in Mt. Trumbull included in this study along with their 
UTM coordinates, elevations, and types. 
 
Site 

 
East North Elevation (m) Type of site 

30 BLM 12S 309380 4025340 1908 C-shaped pueblo 
131 BLM 12S 304960 4030030 1969 Room blocks 
204 BLM 12S 311080 4026170 1868 Depressions 
71 ASM 12S 298650 4030800 1890 Room blocks 
136 ASM 12S 309480 4025840 1917 E-shaped pueblo 
214 ASM 12S 310246 4025563 1893 Room blocks 
14 MNA 12S 306960 4029470 1987 C-shaped pueblo 

 

 

In 2001, Paul Buck of DRI conducted a field project that involved mapping, 

systematic surface collection, and limited testing of disturbed rooms at site 14 MNA.  

During the 2003 field season, mapping, systematic surface collection, and augering 

were conducted at 131 BLM during a DRI archaeological field school.  In 2004, the 

field school of DRI/Nevada State College (NSC) started mapping, systematic surface 

collection, and auguring at 30 BLM, 204 BLM, 136 ASM, and 71 ASM.  The later 

fieldwork was carried out with the help of student volunteers at CSULB.  In 2005, 

test pit excavations were conducted at 30 BLM, 204 BLM, 131 BLM, 71 ASM, and 

136 ASM during a DRI/NSC field school, with the help of CSULB student 

volunteers.  Mapping, systematic surface collection, and test pit excavation at 214 

ASM was conducted in the same field season.  Test pit excavation at 14 MNA was 

conducted during a DRI/NSC field school in 2006.    
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AZ:A:12:30 (BLM) 

 This site consists of a large C-shaped pueblo constructed of basalt rocks with 

a detached storage room and a dense artifact scatter.  Approximately 15 rooms have 

been identified in this pueblo.  The central plaza area is indicated by a shallow 

depression, which may be a pithouse structure.  A map of the C-shaped pueblo is 

shown in Figure 4.3.  The second structure, consisting of one to three rooms, is on a  

low knoll about 60 m west of the main C-shaped pueblo.  It is not clear if these 

structures are contemporaneous.  Collections from 29 SCUs were made, and about 

2,300 sherds were collected (Table 4.2).  A carbonized corn kernel was collected 

 
 

 
 
Figure 4.3.  Map of site 30 BLM.  The squares indicate 2 x 2 m surface collection units in area A.  
The figure in lower left lower corner is a cross sectional profile along the line shown on the map. 
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Table 4.2.  Number of artifacts from systematic surface collection units (SCUs). 
 
Site 
 

Number of surface 
collection units 

Total artifacts 
 

Sherds 
 

Lithics 
 

30 BLM 29 2476 2270 206 
131 BLM 21 5922 5052 870 
204 BLM 24 138 105 33 
71 ASM 35 462 350 112 
136 ASM 24 2754 2618 136 
214 ASM 24 558 432 126 
14 MNA 13 1941 1096* 845 
Total  14248 11923 1483 

Note: Sherds from  14 MNA include only those greater than 1 inch in length, whereas those from 
other sites are of all sizes. 
 

Table 4.3.  Number of artifact counts from test pit excavation. 
 

Site Number of test pits Total artifacts Sherds Lithic 

30 BLM 3 3410 3027 383 
131 BLM 3 5814 5189 625 
204 BLM 3 147 111 36 
71 ASM 4 256 206 50 
136 ASM 5 4617 4133 484 
214 ASM 5 533 473 60 
14 MNA 15 9509 7412 2097 
Total  24286 20551 3735 
 

from a soil probe (65 cm deep) and was submitted for 14C dating; an AMS date of 

A.D. 1110–1190 was returned.  Three 1 x 1 m test pits were excavated in the area 

with high artifact density, and approximately 3,000 sherds were collected (Table 

4.3).  Test pit 2 was set on a gentle slope immediately west of the opening of C area, 

which may be a midden.  This was the deepest pit and showed that this site contains 

at least 1.20 m of cultural deposits, including well-preserved charcoal and bone, in  
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Table 4.4.  Frequency of sherds with olivine temper, sherd temper (with olivine inclusions), and sand 
temper. 

 

Note: Data are based on sherds (greater than 1 inch size) collected from test pits and surface 
collection units except 14 MNA.  Both sherds from test pits and room testing (greater than 1 inch 
size) at 14 MNA were used.   
 
 
Table 4.5.  Ratio of corrugated ware from surface collection units (SCUs) and test pits (TPs),as well 
as radiocarbon dates from each site in Mt. Trumbull . 

 
Site % sherds >1' 

corrugated 
from SCU 

% sherds >1' 
corrugated 
from TP 

14C dates (2 sigma calibration) 

30 BLM 11.7 16.5 A.D. 1110–1190 
131 BLM 2.0 1.2 A.D. 620–690, A.D. 680–880, A.D. 900–1030 
204 BLM 0.0 0.0 A.D. 810–890 
71 ASM 0.9 0.0 A.D. 880–1010 
136 ASM 15.9 13.3 A.D. 790–1040, A.D. 960–1040, A.D.1020–1270 
214 ASM 44.0 31.4 A.D. 640–770 
14 MNA 39.3 26.6 A.D. 880–1010, A.D. 1000–1170, A.D. 1020–1210,  

1160–1280 
 

addition to abundant sherds and lithics.  The proportion of olivine-tempered ceramics 

(sherds larger than 1 inch) from three test pits is 86.7 percent (Table 4.4).  The ratio  

of corrugated ware from test pits is 16.5 percent, and that from the SCUs is 11.7 

percent (Table 4.5).  The decorated sherds include black-on-gray, red, and black-on-

red wares (Table 4.6).  A few polychrome sherds were found in both the SCUs and  

 

Olivine temper Sherd temper 
(olivine inclusions) 

Sand temper 

30 BLM 86.7% 3.4% 10.0% 
131 BLM 87.9% 0.9% 11.3% 
204 BLM 88.1% 0.0% 11.9% 
71 ASM 98.2% 0.0% 1.8% 
136 ASM 89.6% 2.0% 8.4% 
214 ASM 92.2% 2.3% 5.5% 
14 MNA 91.3% 4.5% 4.2% 
Average of all sites 89.8% 2.9% 7.2% 
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Table 4.6.  Summary of decorated wares from test pits and surface collection units at each site in Mt. 
Trumbull included in this study. 
 

Site Test Pits 
  

Surface Collection Units Presence in 
general surface 
collection  

 Total Black- 
on-gray 

Red Poly-
chrome 

Total Black- 
on-gray 

Red Red Poly- 
chrome 

30BLM 3027 148 18 1 2267 76 13 O O 
  (4.9%) (0.6%) (0.03%)  (3.4%) (0.6%)   
131BLM 5189 171 6 0 5052 226 14 O X 
  (3.3%) (0.1%) (0.0%)  (4.5%) (0.3%)   
204BLM 111 0 0 0 105 3 0 O X 
  (0.0%) (0.0%) (0.0%)  (2.9%) (0.0%)   
71ASM 206 1 0 0 350 30 1 O X 
  (0.5%) (0.0%) (0.0%)  (8.6%) (0.3%)   
136ASM 4133 136 10 1 2618 79 7 O O 
  (3.3%) (0.2%) (0.02%)  (3.0%) (0.3%)   
214ASM 473 9 3 0 432 15 3 O X 
  (1.9%) (0.6%) (0.0%)  (3.5%) (0.7%)   
14MNA 7412 303 34 0 1096* 105 38 O X 

  (4.1%) (0.5%) (0.0%)  N/A N/A   
Note: Percentages in parentheses are the ratio of sherds with decoration to total sherds from the site 
(both greater and less than 1 inch size).  Total sherds in surface collection units at 14MNA include 
only sherds greater than 1 inch; thus, a ratio was not calculated.   

 
test units.  The 14C date (AD 1110–1190) and the existence of polychrome sherds 

suggest that 30 BLM was occupied until the early Pueblo III period.   

 

AZ:A:12:131(BLM) 

 131 BLM (Zip Code Site) is located at the edge of a flat hill overlooking a 

valley covered in sagebrush.  This flat hill extends to the slope of Mt. Logan.  The 

site consists of a large pueblo complex at least 200 m long.  Because about one-third 

of this site is on state land, only the federal portion of the land was surveyed and 

tested.  Detailed mapping revealed the existence of about 20 rooms constructed of  
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Figure 4.4.  Map of site 131 BLM. Squares (2x2 m) are surface collection units.  
 

basalt rocks (Figure 4.4).  Several slight depressions indicate possible pit houses.  

Soil augering in one of the depression revealed a distinctive clay layer 80 cm deep 

that may be a prepared floor.  Approximately 5,000 sherds were collected from 21 

SCUs (Table 4.2).  A very small number of the sherds are corrugated (Table 4.5), 

which implies that the site was occupied during the late Basketmaker III or Pueblo I 

period.  The three charcoal samples from soil auger tests were dated at A.D. 620–

690, A.D. 680–880, and A.D. 900–1300 (Table 4.7).  Three 1 x 1 m test pits were 

excavated outside the structures in areas of high artifact density.  Unlike other sites, 

the non-cultural layer at the base of the test pits was not cinders, but instead it was  
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Table 4.7.  AMS radiocarbon dates for sites in Mt. Trumbull. 
 
Site Provenience Material and method 2 sigma calibration 
14  MNA Fill, Room #1 Wood charcoal AMS A.D. 1000–1170 
14  MNA Fill, Room #2 Wood charcoal AMS A.D. 1160–1280 
14 MNA Fill, Room #3,  3 cm above floor Wood charcoal AMS A.D. 880–1010 
14  MNA Fill, Room 3, 7 cm above floor Wood charcoal AMS A.D. 1020– 1210 
131 BLM Feature 2, slab covered pit Wood charcoal AMS A.D. 680–880 
131 BLM Soil probe #6, 20 cm deep—

possible pithouse 
Wood charcoal AMS A.D. 620–690 

131 BLM  Soil probe #15, 70-80 cm deep Wood charcoal AMS A.D. 900–1030 
204 BLM  Soil probe #10, 111 cm deep Wood charcoal AMS A.D. 810–890 
30 BLM  Soil probe #7, 65 cm deep Maize kernel AMS A.D. 1110–1190 
71 ASM Test Pit 3, Level 3 Wood charcoal AMS A.D. 880–1010 
136 ASM Locus E testing, Unit 2, 

directly under corrugated jar 
Wood charcoal AMS A.D. 960–1040 

136 ASM Test Pit 1, Feature. 1, Level 4 Wood charcoal 
conventional 14C 

A.D. 790–1040 

136 ASM Test Pit 2, Level 5 Wood charcoal 
conventional 14C 

A.D. 1020–1270 

214 ASM Test Pit 5, bottom  
Level 2 

Wood charcoal AMS A.D. 640–770 

 

chalky white, compact silt or possibly volcanic ash.  The distribution of artifacts by 

layer especially in TP3 was bimodal (Figure 4.5).  This suggests that this site had at  

least two phases of occupation, one of which might have been as early as A.D. 620 

followed by a break in occupation and the second occupation after A.D. 900.  

Corrugated sherds (greater than 1 inch) from the test pits accounted for about 1.2 

percent of the sherds (Table 4.5), and the proportion remained low throughout the 

depth of deposits (Figure 4.6).  Although the purpose of the test pit excavation was to 

obtain artifacts from potential midden areas, one of the test pits (TP-2) was dug to 

catch the corner of a pithouse, the floor of which seemed to have been dug into the 

compact layer of white silt or ash.  Initial occupation of the site seems to have been  
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Figure 4.5.  Variation in artifact frequencies from test pit excavations at 131 BLM.  Horizontal 
bars show the frequency of artifacts, including both ceramics and lithics, by excavation level.  
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Figure 4.6.  Frequency of olivine-tempered ceramics (> 1 inch) and corrugated ceramics from 
TP 2 at 131 BLM.  Values in parentheses are the total number of sherds greater than one inch 
from each level. 

 

on top of the compact white ash-like layer.  Test pit 3, which is just outside the 

structure, revealed clear evidence of two occupational phases based on artifact  

frequencies per level.  Burned adobe fragments that could have been a part of a wall 

were found in the upper level.    

 

AZ:A:12:204 (BLM) 

 This site consists of four shallow 4–6 m diameter surface depressions, 

indicating pithouses (Figure 4.7).  Systematic surface collection from 24 SCUs 

resulted in only 105 sherds.  A very small number of black-on-gray ware sherds was 

found (3 of 105 sherds; Table 4.6), and corrugated red wares were absent (Tables 

4.5).  Soil augerings revealed at least 1 meter of cultural material in the  
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Figure 4.7.  Map of site 204 BLM.  Squares (2x2 m) are surface collection units. 
 

depressions.  A 14C sample that yielded a date of A.D. 810–890 was obtained from a 

depth of 80–111 cm, which may be about 20 cm above a pithouse floor.  This  

suggests that 204 BLM is an early Pueblo I period site.  Three test pit excavations 

were made in the area of relatively dense artifact scatter beyond the depressions.  

One hundred and eleven sherds were recovered from the test pits (Table 4.3), and 

these did not include corrugated or decorated wares (Tables 4.5 and 4.6).  The depth 

of all test pits was relatively shallow (< 40 cm).   

 

AZ:A:12:136 (ASM) 

 This site is also known as “Ken’s ‘Big E’ site” or the “E-shaped Pueblo.”  As 

indicated by its name, the main structure of this site is a large E-shaped pueblo.  A 
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shallow depression about 5 m in diameter exists just off the southeast end of the 

upper arm of the E, is suggested to be a kiva or pithouse on the original site record 

(Arizona State Museum Archaeological site card) created in 2004.  A dense 

concentration of artifacts was associated to the structures and the depression.  The 

original sketch map shows a very linear configuration of rooms in the shape of an E, 

which suggests an influence from the Kayenta Ancestral Pueblo culture.  

Traditionally, the arrangement of rooms within the Virgin Branch Ancestral Pueblo 

area is circular, whereas in the Kayenta area it is rectilinear.  A detailed architectural 

map of the E-structure was made in 2005; it depicts the room arrangement as not  

 

 

Figure 4.8.  Map of site 136 ASM.  Squares (2x2 m) are surface collection units.  
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completely a linear E-shape, but rather a C-shape with an attached middle arm  

(Figure 4.8).  This weakens the traditional argument of Kayenta Ancestral Pueblo 

influence in this site.  Approximately 20 rooms were identified in the E-shaped 

pueblo, with a dense midden southeast of the main pueblo.  Systematic surface 

collection was conducted in 24 SCUs, with almost 3,000 artifacts collected, 

including 2,618 sherds (Table 4.2).  Ceramic types identified in the surface 

assemblage are plain, corrugated, black-on-gray ware, red ware, and black-on-red 

ware.  Polychrome sherds were also found.  A small test was conducted in a 

disturbed area with heavy burning and historic clearing activities (e.g., cutting trees), 

and a 14C sample was collected that was associated with large corrugated jar 

fragments; this sample yielded a date of A.D. 960–1040 (Table 4.7).  Twenty soil 

auger samples were collected, these reaching almost 1 m in depth and resulting in the 

recovery of charcoal and sherds.  

 Five test pit excavations were conducted in an area with a high artifact 

concentration.  Although the purpose of the test pit excavation was to understand 

changes in the material remains over time, part of a small circular hearth was 

exposed about 40 cm below the surface in TP-1.  This pit is close to the middle arm 

of the E but outside the visible surface structure.  A wood charcoal chunk recovered 

from this hearth yielded a date of A.D. 790–1040 (Table 4.7).  At this point, it is not 

certain if this hearth was an “outside hearth” or an “inside hearth” that could be 

associated with another occupational period.  TP-2 was the deepest pit, almost 130 
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cm deep, and did not reach to the cinder layer.  Another 14C date, from level 5 of this 

pit, is A.D. 1020–1270 (Table 4.7).  TP-4 and TP-5 were terminated once the cinder 

layer was encountered.   

 The proportion of corrugated sherds (larger than 1 inch) from the test pits 

was 13.3 percent and that from the SCUs is 15.9 percent (Table 4.5).  Considering 

the 14 C dates and presence of polychrome sherds, this site was occupied during 

Pueblo II–III times.  

 

AZ:A:12:71(ASM) 

 This site is isolated from all others in Mt. Trumbull that are considered in this 

dissertation; it is at least 5 km from the nearest site, 131 BLM.  This site is also the 

only one located in an area where sedimentary rock formation outcrops, although the  

area is close to basalt outcrops.  The site consists of several discrete areas (at least 

three), each containing multiple structures at slightly different elevations.  Area A 

(Figure 4.9), which is located at the lowest elevation and just above the sagebrush 

flats, includes several circular structures built mostly of limestone rocks.  They likely 

represent collapsed or damaged slab-lined storage rooms.  Area B is about 200 m 

west on a knoll approximately 10 m higher than Area A.  This area includes at least 

two structures with attached circular rooms (Figure 4.10).  The density of the  

artifacts in Area B is lower than in Area A.  Area D lies farther to the east on a 

limestone plateau about 50 m higher than Area B.  This area contains circular  
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Figure 4.9.  Map of site 71ASM_A area showing Features 1-4.  
 

features near upright limestone slabs and depressions.  The sherds in this area are 

somewhat different from those from the other areas, especially Area A; a large 

proportion of sherds in area C are coarse brown wares.  Systematic surface collection 

from 35 SCUs resulted in a collection of 350 sherds (Table 4.2).  Very few 

corrugated sherds were found, less than 1 percent of the ceramic assemblage (Table 

4.5).  However, this site, 71ASM, is notable for its relatively large number of black-

on-gray ware sherds (Table 4.6), which were mostly found in Area A.  This suggests 

that Area A is not contemporaneous with the other areas.  Three test pits were 
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Figure 4.10.  Map of 71 ASM_B area showing Feature 6. 
 

excavated in Area D (TP-1–3) and one in Area A (TP-4), the area at the lowest 

elevation.  A 14C sample yielded a date of A.D. 880–1010 for level 3 (20–30 cm 

deep) of TP-3 (Table 4.7).  No corrugated ware was found in any of the test pits 

(Table 4.5).  Both the lack of corrugated ware and the 14C date suggest that this site 

is relatively early, possibly pertaining to the Pueblo I period.  Only one example of 

black-on-gray ware was found in the test-pit excavation (Table 4.6), despite the   
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Figure 4.11.  Map of site 214 ASM. 
 

black-on-gray ware was found in the test-pit excavation (Table 4.6), despite the 

presence of a relatively large number of black-on-gray ware sherds from the SCUs.   

 

AZ:A:12:214 (ASM) 

 This site consists of at least six one-room (with diameter of 3~5 m) blocks 

made of basalt boulders (Figure 4.11).  One independent circular feature is located  
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less than 10 m west of the room blocks.  Fewer than 500 sherds were collected from  

five SCUs (Table 4.2), which included a very high frequency of corrugated ware, 

about 44 percent of the ceramic assemblage (Table 4.5).  Five test pits were 

excavated.  Most of the pits were shallow, and very few artifacts were found except 

within level 1 in TP-2.  A high frequency of corrugated ware was also found in the 

test pit excavations, more than 30 percent of all sherds (Table 4.5) recovered from 

the site.  The 14C samples came from TP-5 at 10–20 cm deep and resulted in 

calibrated dates of A.D. 640–770, which contradicted our assumption about the site 

chronology based on the high proportion of corrugated ware found at this site.    

 

AZ:A:12:14 (MNA) 

 This site, 14 MNA, consists of a C-shaped pueblo with a central plaza area 

having a diameter of approximately 33 m.  It is located 1,200 m southwest of Nixon 

Spring on the flanks of Mt. Trumbull.  The original survey sketch map made in 1975 

shows between nine and 14 rooms.  The map shows that most of the rooms are 

rectangular.  Buck (2002) conducted additional work in 2001, including mapping the 

structure (Figure 4.12), making systematic surface collections, and testing three 

partially looted rooms.  Four ASM dates from the 14C samples obtained from these 

looted rooms are A.D. 880–1010; A.D. 1020–1210; A.D. 1000–1170, and A.D. 

1160–1210 (Table 4.7).  The variations in these dates, as well as the chronological 

placement of pottery styles ranging from the late Pueblo I to early Pueblo III period, 

suggests that this site was occupied for a considerable length of time.  The use of the  
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Figure 4.12.  Map of site 14 MNA (after Buck 2002). 
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site was not intensive at any given point in time, and occupation may have been 

sporadic or cyclical (Buck 2002).  The most reliable 14C sample, which came from 

close to the floor of Room 3, yielded a date of A.D. 880–1010.  Thus, the site may 

have been occupied earlier than A.D. 900.  Systematic surface collection was 

conducted in 10 SCUs, and the proportion of corrugated ware (sherds >1 inch) was 

nearly 40 percent (Table 4.5).   

In 2006, 15 1 x 1-m test pits were excavated to understand the change 

through time in material remains at this site.  For this purpose, test pits were selected 

in the high artifact-density area, while avoiding the inside of the structure.  Most of 

the test pits were approximately 50–60 cm deep; excavation was terminated at a very 

compact clay layer in all test units. That is, in all 15 units in site 14 MNA, 

excavations did not reach a cinder layer, unlike at other sites where test excavations 

were conducted.  TP-7 was the deepest pit (100 cm deep), and it yielded a large 

quantity of diagnostic sherds, as well as black-on-gray bowl fragments that could be 

reconstructed as a whole pot.  Decorated wares found at this site were black-on-gray 

and red/black-on-red ware, but there were no polychrome sherds (Table 4.6). 

 

Changes in the Frequency of Ceramic Types in Mt. Trumbull 

 Systematic surface collection and test excavations conducted on seven sites 

in Mt. Trumbull provided almost 12,000 sherds from SCUs (Table 4.2) and more 

than 20,000 sherds from test excavations (Table 4.3).  With these abundant ceramic 
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data, I will examine in the following section the spatial distribution of ceramic types 

and their chronological distribution.   

 

Distribution of Ceramic Types 

The distribution of temper types among seven sites in Mt. Trumbull was 

examined (Table 4.4).  Olivine is a dominant temper at all seven sites, as with other 

sites previously studied in Mt. Trumbull.  The average frequency of olivine-tempered 

sherds from test pit excavations at the seven sites is nearly 90 percent of all sherds 

greater than 1 inch (Table 4.4).  The proportion of olivine-tempered sherds ranges 

between 88 and 92 percent, except for one test pit at 71 ASM, where it is 

exceptionally high (98.2 percent).  Conversely, the average number of sand-tempered 

sherds among all ceramics (greater than 1 inch) from test pit excavations is 7.2 

percent, and especially small numbers of sand-tempered sherds were found at 71 

ASM, 214 ASM, and 14 MNA (Table 4.4).  In addition, the distribution among the 

sites of sherds tempered with olivine is uneven.  While 30 BLM, 136 ASM, 214 

ASM, and 14 MNA have relatively higher proportions of sherd temper with olivine 

inclusions, sites 131 BLM, 204 BLM, and 71 ASM have either none or very small 

quantities of potsherds with sherd temper including olivine particles (Table 4.4).  It is 

interesting that sites with higher proportions of sherd temper with olivine inclusions 

also have a higher proportion of corrugated wares (Table 4.5).  This suggests that the 

use/production of pots with sherd temper with olivine inclusions occurred relatively 

late in Mt. Trumbull. 
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The proportion of corrugated sherds larger than 1 inch varies among the sites 

(Table 4.5).  Most of the sites with higher percentages of corrugated ware have 

relatively late 14C dates, except for 214 ASM.   

The proportion of painted ware is never high at any site (less than 5 percent 

among sherds from test pit excavations) and painted ware was not evenly distributed 

throughout the sites.  Polychrome sherds were found in very small quantities and 

only at two sites, 30 BLM and 136 ASM.  Very small number of red ware sherds was 

found at 204 BLM and 71 ASM, which are early sites based on the relatively low 

percentage of corrugated ware.  Black-on-gray wares from surface collections were 

found at all sites.  However, very little black-on-gray ware came from test pit 

excavations at 204 BLM and 71 ASM.  It is puzzling that a very high percentage of 

black-on-gray ware came from SCUs at 71 ASM, despite the fact that only one 

black-on-gray ware sherd is present among the 206 sherds (> 1 inch) from test pit 

excavations (Table 4.6).  Most of the black-on-gray ware from the surface was found 

in Area A, which is at the site’s lowest elevation.  It is possible that a portion of this 

site may not be contemporaneous with other parts of the site.  Although it is unlikely, 

another possibility is that the large number of black-on-gray ware sherds on the 

surface at 71 ASM is the result of site disturbance, a possible “collector’s pile,” as 

hardly any black-on-gray ware was encountered in the test pit in Area A.  Supporting 

this possibility, several historic features (e.g., historic camp fire, and small 

collector’s pile) were found near Area A.  
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Changes through Time in Olivine-tempered Ceramics 

The frequency of olivine-tempered sherds larger than 1 inch was examined in 

the deepest pits with high numbers of artifacts at 30 BLM, 131 BLM, 136 ASM, and 

14 MNA to assess changes through time in their frequency (Figures 4.13–4.16).  The 

data from 204 BLM, 214 ASM, and 71 ASM were not included, as the number of 

sherds from each level in all test pits was small.  Overall, relatively little variation in 

the proportion of olivine-tempered sherds throughout the levels was recognized, 

except in the deeper deposits.  In deeper deposits, the proportion of olivine-tempered 

sherds was nearly 100 percent in most of the test pits (Figures 4.13–4.16).  However, 

only one or two sherds (>1 inch) were found in the deeper levels at most sites, thus 

the proportion of olivine-tempered sherds, close to 100%, may not be statistically 

significant in deeper deposits.  Overall, the frequency of olivine-tempered ceramics 

was consistently high in all test pits examined here.  

 

Corrugated Wares 

 Changes in the proportion of corrugated wares within the same set of test pits 

were also assessed, including those at 30 BLM, 131 BLM, 136 ASM and 14 MNA.  

Overall, the frequency of corrugated ware decreased with depth, as expected 

(Figures 4.13–4.16), or in the case of 131 BLM, remained low, where the average 

proportion of corrugated wares is very low (Figure 4.14).  Interestingly, the 

frequency of corrugated ware in TP-14 in 14 MNA is relatively high at deeper levels,  
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Figure 4.13.  Frequency of olivine-tempered ceramics (> 1 inch) and corrugated ceramics from 
TP 2 at 30 BLM.  Values in parentheses are the total number of sherds >1 inch in each level.  
 

 

 
 
Figure 4.14.  Frequency of olivine-tempered ceramics (> 1 inch) and corrugated ceramics from 
TP 2 at 131(BLM).  Values in parentheses are the total number of sherds >1 inch in the level.  
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Figure 4.15.  Frequency of olivine-tempered ceramics (>1 inch) and corrugated ceramics from 
TP2 at 136 ASM. Values in parentheses are the total number of sherds >1 inch in the level. 
 

 

 

Figure 4.16.  Frequency of olivine-tempered ceramics (>1 inch) and corrugated ceramics from 
TP14 at 14 MNA. Values in parentheses are the total number of sherds >1 inch in the level. 
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although the proportion slightly decreased with depth.  This suggests that a portion 

of this site was occupied only during a late period.   

The samples obtained from the fieldwork described above include full 

contextual information, which will useful in interpreting the compositional diversity 

of the ceramics collected (see Chapter V).   

 

Extant Collection from Previous Work 

In addition to the ceramic specimens collected during the fieldwork, I was 

able to obtain sherds from several previous investigations for the analysis. 

 

Lowland Virgin Ceramic Samples 

Two hundred ninety-eight sherds from the lowland Virgin area were analyzed 

for this dissertation.  All of these sherd samples were collected by Larson in the 

1980s (Larson 1987), and they are all from surface collections with provenience 

information.  The sherds analyzed for this dissertation included both olivine and non-

olivine ceramics, as well as decorated and non-decorated wares.  Contextual 

information was obtained from Larson’s dissertation (1987).   

 

Tuweep Ceramic Samples 

Twenty sherds from Tuweep were included in this study.  These sherds were 

borrowed from Southern Utah University and were collected by Thomson, primarily 

during his fieldwork in the 1970s (Thompson 1970, 1971; Thompson and Thompson 
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1974, 1978).  Both olivine and non-olivine tempered, as well as decorated and non-

decorated wares, were included; all sherds were from surface collections.  

Information regarding the context of the sherds was summarized in the literature by 

Thomson and his colleague (Thompson 1970, 1971; Thompson and Thompson 1974, 

1978).  

 

Conclusion 

This chapter summarized the sample collections involved in this study, 

including those from the fieldwork in Mt. Trumbull. A detailed description of this 

fieldwork was included and will serve as the basis for interpreting the compositional 

diversity of the sherds.  

All of the ceramic samples from Mt. Trumbull included in this study were 

obtained from systematic surface collections, test excavations, and general surface 

collections during the fieldwork.  The ceramic samples from Tuweep and the 

lowland Virgin area were obtained from previous fieldwork and all are from surface 

collections. Those from Mt. Trumbull were collected from seven sites where either 

Pueblo structures or depressions that may have represented pithouse structures were 

observed.  These sites range chronologically from early to late, based on proportion 

of corrugated ware, 14C dates, and type of structures.  Detailed site descriptions with 

maps were made for each site in order to understand the context of the sherds. 

Ceramic assemblages from both surface collection units and test excavations 

demonstrate that the majority of the sherds from all seven sites were tempered with 
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olivine (around 90% of total sherds), as observed at many other sites previously 

surveyed in Mt. Trumbull.  

Although corrugated ware was found at most of the sites included in this 

study, the proportions varied. A higher proportions of corrugated ware generally 

corresponded to later 14C dates, except at the 214 ASM site.  Polychrome and red 

ware sherds were not evenly distributed among the ceramic assemblages from the 

seven sites, while black-on-gray sherds were found at all sites.  

The ceramic assemblages from the test excavations from 30BLM, 136ASM, 

131BLM, and 14 MNA exhibit that very little variation in the proportion of olivine-

tempered sherds among all sherds over time, although the proportion of corrugated 

ware sherds decreased in deeper deposits as expected.  

The description of the collections of clay samples will be helpful in 

interpreting the compositional diversity of the samples, and that of the sediment 

collections for luminescence dating will assist in assuring the precision of 

luminescence dating for the sherds. Clay samples for compositional analysis were 

collected from Mt. Trumbull, Tuweep, the lowland Virgin area, as well as from 

between Mt. Trumbull and the lowland Virgin area.  In both the Mt. Trumbull and 

the lowland Virgin areas, the clay samples came from various geological formations.  

The sediment samples for luminescence dating were collected during the test 

excavations in Mt. Trumbull.  Additional surface sediment samples were collected 

for dating the surface sherds within a 25 m diameter of the location of the ceramic 

samples at each site.  For the dating for sherds from the lowland Virgin area, the 
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sediment samples were collected from all possible geological formations along the 

Virgin River.  
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Chapter V: METHODS OF ANALYSIS AND DESCRIPTIVE RESULTS 

 

 In order to investigate where the pottery involved in this study was made, I 

conducted two chemical compositional analyses: instrumental neutron activation 

analysis (INAA) and laser ablation inductively coupled plasma mass spectrometry 

(LA-ICP-MS).  I also examined ceramic physical attributes in order to understand 

the compositional groups identified in INAA and LA-ICP-MS data.  Ceramic 

attributes examined in this study include temper type, surface treatment, and core 

colors.   

 I studied temper types visible in the sherd cores and on the surfaces with a 

15x binocular microscope.  Most often I recognized multiple types of inclusions in 

the ceramic paste.  In cases where I was able to recognize olivine particles as 

independent inclusions (i.e., not in sherd temper, which is discussed later), I recorded 

the temper simply as olivine temper.  In some of the specimens, I found that crushed 

olivine-tempered sherds had been used as temper.  This was recorded as sherd 

temper with olivine inclusions, or sherd (olivine). Since this study is focused on 

olivine vs. non-olivine ceramics, sherd temper with olivine inclusions were recorded 

separately from sherd temper without olivine. Sherd tempers without olivine 

particles are occasionally found with sand (quartz, feldspars) temper.  If specimens 

had sherd temper without olivine inclusions, then their temper type was recorded as 

sherd without olivine inclusions or sherd (no olivine). If sand was a dominant 

temper, the temper type was recorded as sand.  I also recorded surface treatments of 
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sherds: plain and corrugated wares which I consider to be utilitarian wares, and some 

decorated wares which include black-on-gray, red, black-on-red, and polychrome 

wares.  In order to investigate how ceramic compositional groups relate to 

chronological time periods I used the method of optically stimulated luminescence 

(OSL) dating.  In this chapter, I discuss each of these analytical techniques and the 

procedure of the analysis. 

 

Compositional Analysis 

 Chemistry-based provenance studies are premised on the “provenance 

postulate,” which states that sourcing is possible as long as there exists some 

qualitative or quantitative, chemical or mineralogical difference between natural 

sources that exceeds the qualitative or quantitative variation within each source (Neff 

2000; Neff and Glowacki 2002).  There are two approaches to sourcing 

archaeological materials (Neff 2000; Neff and Glowacki 2002).  One is used for 

sources that are localized and easily identified, such as obsidian flows. In this case, 

unknowns are tested against the source group.  The other approach is used for 

sources that are widespread and have indistinct boundaries, such as ceramics.  For 

this latter case, the chemical compositional groups are identified among the 

unknowns (e.g., ceramics) first, and then source materials (e.g., clay) are tested 

against the ceramic compositional groups. Two analytical approaches are involved in 

chemical compositional analysis.  One is bulk analysis in which all materials are 

homogenized prior to analysis, as is the case with INAA or Microwave Digestion 
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ICP-MS.  The other approach is point analysis (microchemical analysis), which 

targets only a specific portion of heterogeneous samples like ceramics (e.g., temper 

in ceramic paste).  LA-ICP-MS is one of the techniques that allows this 

microchemical analysis. In the following sections I discuss each of these analytical 

methods.  

 

Instrumental Neutron Activation Analysis (INAA) 

 For several reasons I conducted INAA analysis, a bulk analysis method, on a 

small data set (n = 50) prior to LA-ICP-MS, a method of point analysis, on a larger 

data set.  First, any compositional study ideally should involve multiple analytical 

techniques to minimize the bias associated to a particular type of technique.  Second, 

INAA has been a “technique of choice” in many archaeological applications over the 

past 40 years (Neff 2012).  Furthermore, there are extant INAA data sets that include 

olivine-tempered ceramics in the lowland Virgin area (Larson et al. 2005).  

Therefore, it is worthwhile to conduct INAA on Mt. Trumbull olivine-tempered 

ceramics to examine whether any of them match the lowland Virgin olivine-

tempered ceramic group. 

 

Instrumentation and Analysis 

 Neutron activation analysis is a technique for characterizing the elemental 

composition of virtually any solid material.  The potential of this technique for 

archaeological source determination was recognized in the 1950s.  During the 1970s 
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and 1980s, archaeologists began applying INAA to determine the sources of pottery, 

obsidian, chert, and other materials (Neff 2000).  INAA depends on that fact that 

neutrons in the environment of a sample will interact with the nuclei of atoms in the 

sample, which produce the different isotopes.  Many of the product isotopes are 

radioactive and can be monitored.  Neutrons most commonly used in neutron 

activation analysis come from 235U, produced via a chain reaction inside a nuclear 

reactor (Neff 2000).  Thus, INAA is a technique whereby some of the elements in a 

sample are converted into artificial radioactive elements by irradiation with neutrons.  

Using suitable instrumentation, the radioactive decay can be detected, and by 

measuring the intensity of the emitted gamma-ray, the original concentration of the 

parent element in the irradiated sample is calculated (Pollard and Heron1996).  The 

INAA for this study was conducted at the University of Missouri Research Reactor 

(MURR) using the established MURR procedure for pottery (Glascock 1992).  In the 

case of pottery, the surface of a sample is removed (e.g., paint, slip, and adhering 

sediment) and the remaining portion of the sherd is ground.  Two 200-mg powdered 

unknown samples from a sherd and standards are subjected to short (five second) 

and long (24 hour) irradiation (i.e., one 200-mg sample for short and another 200-mg 

sample for long irradiation), with a single gamma-counter after the long irradiation 

(Neff 2000).  Thirty-three elemental concentrations are determined by comparing the 

gamma spectra in the standard with that of the unknown sample.   

 The strength of the INAA technique for characterizing archaeological 

materials include: (1) extremely high precision, high accuracy, and high sensitivities; 
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(2) small sample size requirement; (3) ease of sample processing; and (4) ability to 

measure simultaneously 30 or more elements (Neff 2000).  Thus, INAA is the best 

bulk analysis technique for characterizing solid materials with heterogeneous 

matrices.  Since it is a bulk technique, INAA will identify chemically distinct groups, 

whether these groups are the result of clay source differences, technology (temper), 

or diagenesis.  Once the chemical groups are identified, additional analyses designed 

to determine the causes of chemical variation can be undertaken.  The disadvantages 

of INAA are high cost, limited availability, and problems with nuclear waste.  

INAA’s inability to identify the cause of group differences is sometimes cited as a 

disadvantage, but, as just mentioned, this is a misunderstanding: identifying a 

chemical variation is the first step, while explaining that variation (clay, temper or 

diagenesis) is the second step in the investigation.   

 

Data set  

 INAA was conducted at MURR on 50 olivine-tempered ceramics obtained 

from Mt. Trumbull.  Only olivine-tempered ceramics were included in this analysis 

to avoid detecting compositional groups with different types of temper.  Both 

utilitarian wares, including 27 plain and 12 corrugated sherds, and non-utilitarian 

wares, including 11 black-on-gray sherds, were included in the analysis.  Data from 

24 olivine-tempered sherds from the lowland Virgin area (Larson et al. 2005) were 

combined with Mt. Trumbull data to increase the sample size for the statistical 

analysis.  No source clay was examined in the analysis of Mt. Trumbull olivine-
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tempered ceramics.  However, Larson et al. (2005) demonstrated in the earlier study 

that the olivine-tempered ceramics in the lowland Virgin area do not match the local 

clay.  The raw data concerning 32 elements were converted to base-10 logs of ppm.  

Bivariate plots of principal component (PC) scores and multiple combination of 

various elemental concentrations were used to define the compositional groups.  

After the initial group recognition based on bivariate plots was achieved, 

Mahalanobis distance probabilities were used to assign more sherds to the two large 

compositional groups. 

 

INAA Results 

 Bivariate plots by PC scores and elemental concentrations show at least five 

compositional groups in the INAA bulk data of the olivine-tempered ceramics from 

the Mt. Trumbull and the lowland Virgin areas (Figures 5.1, 5.2).  Two of them 

(INAA Groups 1 and 2) are large enough to use Mahalanobis distance probabilities 

to examine the validity of group assignment.   

Compositional Group and Provenience   

 Examination of compositional groups and provenience of the ceramics shows 

that some of the groups correlate with ceramic provenience (Table 5.1).  For 

example, INAA Group 3 includes only Mt. Trumbull olivine-tempered ceramics, 

while both INAA Group 4 and VR2 include only lowland Virgin ceramics.  Thus, 

three groups––INAA Groups 3, 4, and VR2–– correlate with proveniences, which 

may suggest that these compositional groups represent production centers.  In  
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Figure 5.1.  Bivariate plot of europium and antimony in INAA data to show five compositional  
Groups in olivine-tempered ceramics from Mt. Trumbull (n = 50) and the lowland Virgin area 
(n = 24). 
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Figure 5.2.  Bivariate plot of principal components 1 and 2 in INAA data showing five compositional groups in olivine-tempered ceramics from 
Mt. Trumbull (n = 50) and the lowland Virgin area (n = 24).   
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Table 5.1.  Frequency of olivine-tempered sherds by INAA compositional group and provenience. 
 

INAA Group Mt. Trumbull Lowland Virgin Total 
INAA Group-1 18 6 24 
INAA Group-2 18 4 22 
INAA Group-3 7 0 7 
INAA Group-4 0 2 2 
INAA VR-2 0 8 8 
Unassigned 7 4 11 
Total 50 24 74 
 
 

 

contrast, INAA Groups 1 and 2 include ceramics from both Mt. Trumbull and the 

lowland Virgin areas.   

Compositional Group and Surface Treatment   

 Examination of compositional groups and surface treatments also shows 

some degree of association (Table 5.2).  Both utilitarian (plain and corrugated wares) 

and non-utilitarian (black-on-gray) wares are included in INAA Group 1.  INAA 

Group 2 includes only utilitarian wares, whereas INAA Group 3 includes mostly 

plain utilitarian wares.  While INAA Group 4 includes plain wares, INAA VR2 

includes mostly black-on-gray wares.  Note that these two groups include only the 

ceramics from the lowland Virgin area.  Interestingly, Mt. Trumbull black-on-gray 

wares fall mostly within INAA Group 1, and the lowland Virgin black-on-gray wares 

are in INAA VR2 (Tables 5.3, 5.4). 

Compositional Groups and Core Color  

 Two compositional groups show relatively clear color distinctions in sherd 

cross-sections.  The core color of INAA Group 2 sherds is relatively dark, and that of  
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Table 5.2.  Frequency of olivine-tempered sherds from Mt. Trumbull and the lowland Virgin area by  
INAA compositional group and surface treatment. 
 
  Black-on-gray Corrugated Plain Total 
INAA Group-1 10 5 9 24 
INAA Group-2 0 5 17 22 
INAA Group-3 1 0 6 7 
INAA Group-4 0 0 2 2 
INAA VR-2 7 1 0 8 
Unassigned 2 2 7 11 
Total 19 13 41 74 
 
 
 
Table 5.3.  Frequency olivine-tempered sherds from Mt. Trumbull by INAA compositional group and 
surface treatment. 
 

 
Black-on-gray Corrugated Plain Total 

INAA Group-1 9 5 4 18 
INAA Group-2 0 5 13 18 
INAA Group-3 1 0 6 7 
INAA Group-4 0 0 0 0 
INAA VR-2 0 0 0 0 
Unassigned 2 1 4 7 
Total 11 11 27 50 
 
 
 
Table 5.4.  Frequency of olivine-tempered sherds from the Lowland Virgin area by INAA 
compositional group and surface. 
 
  Black-on-gray Corrugated Plain Total 
INAA Group-1 1 0 5 6 
INAA Group-2 0 0 4 4 
INAA Group-3 0 0 0 0 
INAA Group-4 0 0 2 2 
INAA VR-2 7 1 0 8 
Unassigned 0 1 3 4 
Total 8 2 14 24 
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Table 5.5.  Frequency of olivine-tempered sherds from Mt. Trumbull and the Lowland Virgin area by 
INAA compositional group and core color. 
 
Group 
 

Dark 
Gray 

Brown 
 

Gray 
 

Tan 
 

Light 
Gray 

White 
 

Total 
 

INAA Group-1 
 

2 7 2 11 2 24 
INAA Group-2 6 3 13 

   
22 

INAA Group-3 
  

2 
 

4 1 7 
INAA Group-4 

    
2 

 
2 

INAA VR-2 2 
 

1 
 

5 
 

8 
Unassigned 2 

 
3 2 4 

 
11 

Total 6 3 20 4 14 3 74 
 

INAA Group 3 is relatively light, although the core color varies within these groups 

(Table 5.5).  

Compositional Groups and Site Chronology 

 Site chronology was investigated by considering the relationship between the 

limited number of radiocarbon dates with frequencies of corrugated wares at 

individual archeological sites.  Generally, corrugated wares are thought to date to 

after A.D. 1050 (Lyneis 2008).  Testing of the middens at the 136 ASM site 

demonstrates that the frequency of corrugated ware sherds decreases in the deeper 

levels of the unit.  Consequently, frequencies of corrugated wares were used as a 

time indicator along with the few available radiocarbon dates.  At Mt. Trumbull, the 

ceramics from the 204 BLM site, which is an early site, belong to only INAA Group 

2 (Table 5.6).  This suggests that the use of INAA Group 2 ceramics started early, 

while INAA Groups 1 and 3 ceramics date later in the regional chronology. In the 

lowland Virgin area, ceramics in Group 2 are also from early sites. Conversely, the 

Lowland Virgin INAA data suggest that INAA VR 2 ceramics are from later sites 

(Table 5.7).  Thus, the compositional groups may have some degree of association to 
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time in both Mt. Trumbull and the lowland Virgin areas.  However, to determine if 

this is actually true, it is necessary to directly date the ceramics by OSL dating 

techniques. 

 

Table 5.6.  Frequency of olivine-tempered sherds from Mt. Trumbull by INAA compositional group 
and site chronology. 
 
 Group 204BLM 131BLM 136ASM 30BLM 14BLM 
INAA Group-1 

 
4 3 5 6 

INAA Group-2 4 4 5 2 3 
INAA Group-3 

 
4 1 1 1 

INAA Group-4 
 

        
INAA VR-2 

     Unassigned 2      2 3  
Total 6 12 9 10 13 
14C dates (A.D.)  810–890 620–690 960–1040 1110–1190 880–1010 

  
680–880 

  
1000–1170 

  
900–1030 

  
1020–1210 

     
1140–1220 

% Corrugated  0% 2% 16% 14% 39% 
 
 
 
Table 5.7.   Frequency of olivine-tempered sherds from the Lowland Virgin area by INAA 
compositional groups and site chronology. 
 

  
VR 
13 

VR 
15 

VR 
23 

VR 
20 

VR 
27 

VR 
34 

VR 
21 

VR 
38 

VR 
32 

VR 
19 

VR 
7 

INAA Group-1         1   3 2       
INAA Group-2 2   2                 
INAA Group-3                       
INAA Group-4         2             
INAA VR-2       1 1 1 1     4   
Unassigned   1           1 1   1 
Total 2 1 2 1 4 1 4 3 1 4 1 
14C dates (A.D.)  600     

 
850 

 
960     

 
1130 

% Corrugated 0 0 0 0 0.70 0.80 0.80 1 2 2.40 77.1 
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Summary of the INAA Analysis 

 INAA bulk analysis demonstrated the existence of at least five compositional 

groups among the olivine-tempered ceramics from Mt. Trumbull and the lowland 

Virgin areas. Examination of compositional groups with respect to ceramic 

attributes, as well as provenience showed some degree of association.  I suggested 

that INAA Group 1 ceramics included both utilitarian and decorated wares that were 

tempered with both olivine and non-olivine inclusions.  At Mt. Trumbull, more 

sherds from later sites belong to this group than from early sites.  INAA Group 2 

includes only olivine utilitarian ware from early sites in both the Mt. Trumbull and 

the lowland Virgin areas.  INAA Group 3 includes only olivine utilitarian wares from 

the Mt. Trumbull area; no lowland Virgin olivine-tempered ceramics belong to this 

group.  On the other hand, two compositional groups include exclusively sherds 

from the lowland Virgin area.  INAA Group 4 includes ceramics from only one site 

in the lowland Virgin area, which dates to around A.D. 850.  INAA VR2 includes 

only the lowland Virgin olivine-tempered ceramics.  Most of the decorated sherds 

from the lowland Virgin area fall within this group. 

 As discussed above, this analysis demonstrated some degree of association 

between compositional groups and provenience.  It is possible that some 

compositional groups (e.g., INAA Groups 3, 4, and VR2) may represent particular 

clay sources or production centers.  However, no compositional groups identified in 

this study were compared to source clays.   
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 INAA data also suggest that multiple compositional groups are represented 

among the olivine-tempered ceramics.  These could represent different paste recipes 

involved in olivine-tempered ceramic production.  Since the data set includes only 

olivine-tempered ceramics, there is no possibility that different types of temper 

contributed to paste recipes.  The possible paste recipes that resulted in different 

compositional groups, may be a product of mixing clay from one source with (a) 

different amounts of olivine temper, (b) olivine and other temper materials such as 

quartz, (c) olivine temper from different sources, and/or (d) mixing clays from 

different sources.  Testing various hypotheses derived from the bulk data requires 

additional analysis, such as LA-ICP-MS microchemical analysis.  

 Because some of the compositional groups show a strong association with 

formal attributes, the possibility of diagenesis creating some of the compositional 

groups is unlikely. It is known, for instance, that barium can be elevated due to 

diagenesis (Golitko el al. 2012: Iizuka 2012).  In this INAA study, barium actually 

contributes to distinguishing compositional INAA Group 2 from other groups; 

however, other elements such as manganese and sodium also contribute to the 

distinction (Figure 5.2).  Furthermore, because INAA Group 2 has a strong 

correlation with surface treatment (only utilitarian ware are included), this group is 

unlikely to be the result of post depositional chemical alternation.  In summary, the 

compositional groups in INAA bulk analysis are likely to represent varying clay 

sources or paste recipes.  They could be also related to temporal or other factors.   
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Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) 

 INAA bulk analysis of olivine-tempered ceramics from both Mt. Trumbull 

and the lowland Virgin areas demonstrated the existence of multiple compositional 

groups, which potentially represent different ceramic production centers or use of 

different paste recipes.  To achieve greater clarification I conducted LA-ICP-MS 

analysis on selected sherds to focus on characterizing just the clay matrix and to 

avoid the temper particles. This distinction is not possible in INAA bulk analysis.  

All LA-ICP-MS analyses in this study were conducted at the Institute for Integrated 

Research in Materials, Environments, and Society (IIRMES) lab at California State 

University, Long Beach. 

 

Instrumentation and Analysis 

 ICP-MS is a relatively new technique in archaeology for solid sample 

characterization. All techniques in material characterization have both strong and 

weak advantages for the archaeologist.  INAA has several strong advantages as I 

discussed above.  One of the advantages of ICP-MS over INAA, especially with the 

application of laser ablation, is the capability to analyze individual components of 

heterogeneous materials such as ceramics. Unlike INAA, LA-ICP-MS is able to 

analyze independently only temper particles or only clay matrices.  The patterned 

elemental variation in ceramic fabric is ascribed not only to provenance differences, 

but also to different paste preparations or to diagenesis.  Microchemical analysis, 

such as LA-ICP-MS or electron microprobe, offers a means to identify where within 

141



the ceramic fabric the important distinguishing elements are concentrated (Neff 

2012).  Moreover, this form of microchemical analysis can also target ceramic slips 

and paint pigments, as well as temper and clay matrices as I discussed above.  The 

other advantage of ICP-MS over INAA is the ability to determine a broad range of 

elements, including copper and lead, which are important elements for any ceramic 

provenance study.  In this study, 60 elements were measured by LA-ICP-MS.  ICP-

MS is also a means to determine isotopic ratios (e.g., strontium isotopes).  Thus, the 

application of LA-ICP-MS has the potential to broaden the kind of archaeological 

questions we can ask about ceramic production and consumption patterns.  

Archaeologists began to use ICP-MS in the early 1990s.  Since then, the application 

of ICP-MS to provenance study in archaeology has increased dramatically.  

Currently, large numbers of papers and posters presented at annual meetings of the 

Society for American Archaeology include the application of LA-ICP-MS. 

 ICP-MS is based on the fact that high-temperature argon plasmas efficiently 

ionize atoms in a sample so that different atomic masses can be measured (Neff 

2012).  There are two ways to introduce solid samples, such as ceramic sherds, to the 

ICP-MS torch for the analysis.  One way is to introduce the solid sample to the 

plasma as a liquid that has been prepared by microwave digestion (Kennett et al. 

2001, 2002; Sakai 2001).  Pulverized ceramic samples are completely digested as 

liquids using a strong acid combined with high temperature and pressure.  

Accordingly, by mixing all ceramic paste constituents together, microwave digestion 

ICP-MS produces only bulk data. The microwave digestion of silicate materials, like 
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ceramics, requires the use of hydrofluoric acid (HF), which is extremely hazardous, 

and this digestion process is also a very time-consuming process.  The alternative 

way to analyze solid samples is to apply a laser beam directly onto a sample. In this 

study I used a 213-nm Nd-YAG laser to ablate the solid sample.  ICP-MS analysis 

with laser ablation in this study was taken place in the IIRMES lab at CSULB.  

When the laser ablates the sample surface, the vaporized materials from the sample 

are ejected and entrained in a helium stream flowing through a chamber and 

eventually into the argon plasma of the ICP torch for the analysis (Neff 2012). 

 There are different types of ICP-MS, including quadrupole ICP-MS and 

Time-of-Flight (TOF) ICP-MS.  Rather than scanning the mass range using 

quadrupole ICP-MS, TOF-ICP-MS entails detecting different masses by monitoring 

how long it takes them to reach a detector at a single instant in time (e.g., the heavier 

ions arrive at the detector later than lighter ions) (Neff 2012).  Thus, TOF-ICP-MS 

allows for very fast analysis, which makes it possible to analyze very thin layers of 

materials, such as paint or slip (Speakman and Neff 2002).  This is also ideal for the 

study of clay matrices exclusive of temper particles, since the chance of ablating 

inclusions under the clay matrices is minimized by this short-time analysis, with less 

ablation of materials.  Long-time analysis of one small spot may ablate surface 

material completely and occasionally start ablating materials under the surface 

materials such as temper.   
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Sample Preparations 

 One of the benefits in using LA-ICP-MS is that it produces a minimum 

destruction of materials.  This analysis requires very little preparation of ceramic 

samples.  The analyst simply nips off a small piece of sherd and places it onto the 

slide of the laser chamber. One slide holds 40–50 pieces.  

 I analyzed both prepared and unprepared clays collected within the study 

region as part of this LA-ICP-MS study.  Source clays were prepared to exclude 

some larger mineral particles, since this process may change the chemical signature 

of the clay.  A portion of each clay sample (about 100 g) was soaked in water, stirred 

thoroughly, and allowed to stand overnight. Very solid clays were partially 

pulverized with an agate mortar and pestle before soaking in water.  The clear water 

on top of the settled clay was decanted slowly, and the settled clay was dried in a 

50°C oven.  After the clay was completely dried, the top part of the dried clay (the 

finest particles) was carefully extracted and ground for the analysis.  A small portion 

of both prepared and unprepared clays, about 30 g, was ground using an agate mortar 

and pestle, and then water was added to make a clay tile.  The clay tile was then fired 

at 1000˚C for one hour.  A small piece of the clay tile was nipped and placed onto the 

slide of the laser chamber. 

 

Analysis Procedure and Calibration 

 A point on the ceramic clay matrix of each sherd sample was ablated by the 

laser and sent to ICP-MS for analysis, avoiding temper or any large inclusion in 
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order to focus on only the clay matrix. The area that I analyzed by LA-ICP-MS was 

always from the core of each sherd, not including any surface materials (e.g., 

pigment).  The material from the first a few seconds of the ablation was not included 

in the analysis in order to avoid the contamination on the surface of the clay matrix.  

The setting for the laser was: “spot” for ablation pattern (there are other ablation 

patterns such as line or raster), output 70–80 percent, rep rate 10 Hz, and spot size 75 

µm.  I conducted three analyses on each shred.  Along with the unknown samples 

(i.e., the sherds), known standards were analyzed to standardize the data.  Since ICP-

MS data fluctuate slightly over time, I analyzed a set of standards after every 30-50 

unknown samples analyzed.  LA-ICP-MS was conducted on clay matrix of ceramics 

and source clays, and also on dosimetry samples for OSL dating as I will discuss 

later in this chapter.  SRM 614, 612, 610, glass buttes, and SRM 679 (brick clay) 

were used to standardize the clay matrix. SRM 612, 610, 679 and New Ohio Red 

Clay were used to standardize powdered dosimetry samples. 

 Calibration of ICP-MS data involves using internal standard method.  In bulk 

analysis, including liquid and ground solid samples, known concentrations of 

internal standards are used.  The internal standards, which are not known to be 

present in the sample, are added in known concentrations (Neff 2012).  In the case of 

dosimetry analysis for luminescence dating, which homogenizes ceramic pastes, an 

indium internal standard (40 ppm) is added to the unknown for calibration purposes.  

In the case of point analysis of solid materials without pulverizing, the internal 

standard sometimes can be assumed.  For example, the silicon concentrations of 
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obsidian are very close to 35 percent; thus, silicon can be used as an internal 

standard, assuming a 35 percent concentration for calibration.  However, unlike 

obsidian, in the case of ceramics an internal standard cannot be assumed.  The 

Gratuze method (Gratuze 1999; Gratuze et al. 2001) is the way to deal with silicate 

materials with unknown internal standard concentrations.  The Gratuze method 

depends on oxide concentrations of elements that are summed to be 100 percent in 

whole ceramic samples.  A modified Gratuze method, in which silica was used to 

standardize intensities, was used in this study to calibrate the unknown clay matrix 

data.  

 

Pilot Study on a Smaller Data Set 

 As a pilot study, I first conducted LA-ICP-MS analysis on a small number of 

samples.  This pilot study had two objectives.  One was to determine whether the 

same compositional groups in the INAA bulk analysis were also identifiable in the 

LA-ICP-MS pinpoint analysis of clay matrix, or instead whether different or 

additional groups were identified.  The other objective was to develop sample 

selection strategies for the larger-scale data analysis.  Each compositional group 

needed to be large enough for vital statistical analysis.  Once compositional groups 

were identified, and if some of these compositional groups were too small, additional 

samples that might potentially belong to the small group were selected for later 

analysis.  The INAA study of olivine-tempered ceramics suggested some correlations 

between compositional groups and ceramic attributes and provenience.  Thus, 
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detailed examination of physical attributes (e.g., a group consisting of only black-on-

gray ceramics with a light core color) in the small groups may suggest selection of 

additional samples for the LA-ICP-MS analysis of the larger data set.      

 In this pilot study, 311 sherd samples and 90 clay samples were included.  

Within the sherd samples, those that were used for INAA analysis discussed above 

(50 Mt. Trumbull olivine-tempered sherds and 23 the lowland Virgin olivine-

tempered sherds) were also included in my LA-ICP-MS pilot study.  The ceramic 

samples included both olivine and non-olivine tempered ceramics from Mt. 

Trumbull, Tuweep, and the lowland Virgin areas.  Clay samples that were collected 

from both Mt. Trumbull and the lowland Virgin areas were also analyzed.   

 Base-10 logs of elemental concentrations, principal component analysis 

(PCA), and canonical discriminant analysis were used to identify compositional 

groups.  The bivariate plot of canonical discriminant function 1 and 3 shows six 

compositional groups identified in the ceramics from Mt. Trumbull, Tuweep, and the 

lowland Virgin areas (Figure 5.3).  Three of the groups were large enough to 

calculate Mahalanobis distances for comparison with the clay data.  Two of these 

compositional groups, S-ICP Groups 1 and 2M, matched to Mt. Trumbull clay, and 

one group, S-ICP Group VR2, matched the lowland Virgin clay.  Thus LA-ICP-MS 

analysis of 311 sherds was able to identify several compositional groups based on 

clay matrix data.  Some of the groups may correspond to INAA groups.  This pilot 

study indicates that these compositional groups that are identified in the INAA bulk 

analysis are not due to different amounts of temper or temper type, but to different  
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Figure 5.3.  Bivariate plot of canonical discriminant functions 1 and 3 showing six compositional  
groups in the pilot LA-ICP-MS study of ceramics from Mt. Trumbull and the lowland Virgin 
area (olivine and non-olivine ceramics) (n = 311). 
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clay sources or paste recipes (e.g., mixing multiple clays, or preparing clay to reduce 

larger particles of minerals).   

 Table 5.8 is a summary of compositional groups in this pilot study.  Note that 

ceramics from Tuweep are included in Mt. Trumbull group in this summary, since 

Tuweep is located adjacent to Mt. Trumbull, and sources of olivine occur in both 

areas.  S-ICP Group1 is a Mt. Trumbull local group matched to Mt. Trumbull clay.  

The ceramics in this group contain both olivine and non-olivine tempers, and they 

are both utilitarian and black-on-gray wares from both Mt. Trumbull and the lowland 

Virgin area.  This group may correspond, at least in part, to INAA Group 1.  S-ICP 

Group 2M is another Mt. Trumbull local group, which is matched to Mt. Trumbull 

clay and includes only Mt. Trumbull olivine utilitarian ware.  This may correspond 

to INAA Group 2.  S-ICP Group 2V includes the olivine-tempered utilitarian wares 

from both Mt. Trumbull and the lowland Virgin area.  The clay source is unknown 

for this compositional group, but potentially it is from Mt. Trumbull, since olivine 

utilitarian wares are strongly represented in the group.  However, this is not certain at 

this point.  S-ICP Group 3 includes olivine and non-olivine wares and both utilitarian 

and black-on-gray wares that derive only from only Mt. Trumbull. The clay source 

for this group is unknown but it is possibly Mt. Trumbull, since all ceramics in this 

group were from only Mt. Trumbull.  S-ICP VR2 is a Lowland Virgin local group 

that matched to local clay in the lowland Virgin area.  This group includes both 

olivine and non-olivine temper, and utilitarian and black-on-gray wares from both 

areas.  S-ICP Group 4 includes only olivine tempered utilitarian and black-on-gray  
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Table 5.8.  Results of the pilot LA-ICP-MS study of 311 ceramic samples and 90 clay samples. 
  

Group 
 

Total 
 

Clay Source 
 

Provenience 
 

Temper Surface Treatment 
Olivine 

 
Non-

olivine 
Plain / 

Corrugated 
Decorate 

 
S-ICP 
Group1  

132 
 

Mt.Trumbull 
 

MT 89 8 76 21 

VR 34 1 30 5 

S-ICP 
Group 2M 
 

59 Mt.Trumbull MT 59  58 1 

S-ICP 
Group 2V 

12 
 

Lowland 
Virgin? 
 

MT 4  4  

VR 8  8  

S-ICP 
Group 3  
 

16 Mt.Trumbull
? 

MT 14 2 11 5 

S-ICP 
Group VR2  

22 
 

Lowland 
Virgin 
 

MT 3 4 3 4 

VR 14 1 4 11 

S-ICP 
Group 4 

7 
 

Lowland 
Virgin? 
 

MT 2  1 1 

VR 5  3 2 

Unassigned 
 

63 
 

 28 35 44 19 

Total 311   260 51 242 69 

MT: Mt. Trumbull, VR: Lowland Virgin 
 
 
wares from both Mt. Trumbull and the lowland Virgin area. Again, the source for the 

clay is unknown, but it is possibly in the lowland Virgin area because most sherds in 

this group are from that area.   

  In conclusion, the pilot LA-ICP-MS study of 311 sherds from Mt. Trumbull 

and the lowland Virgin area demonstrated that some of compositional groups in 

INAA bulk data were also identifiable in the LA-ICP-MS clay matrix data.  Some of 

the groups are small (e.g., S-ICP Groups 2V, 3, VR2 and 4); thus, it was necessary to 

increase the sample sizes in order to undertake statistical analysis of these small 

groups.   
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The Larger Data Set 

 The smaller data set of the LA-ICP-MS pilot study showed at least six 

compositional groups within clay matrices of sherds from Mt. Trumbull/Tuweep and 

the lowland Virgin areas. The next step was to increase the sample size to detect 

more compositional groups to compare with the source clay data using powerful 

statistics.  A total of 1,069 sherd samples from Mt. Trumbull/Tuweep and the 

lowland Virgin area were included in this larger data set for LA-ICP-MS analysis 

(Table 5.9).  Temper materials of these samples include olivine, sherd (with olivine 

inclusion), and sand or sherd (without olivine) (Table 5.10).  Surface treatments 

include plain, corrugated, black-on-gray, red and polychrome (Table 5.11).  Also 

included were 194 source clay samples (98 unprepared and 96 prepared clays).  Clay 

samples were from 111 sources in Mt. Trumbull and its vicinity (e.g., Tuweep), the 

lowland Virgin area, and other distant areas.  Specifically, 75 are in Mt. Trumbull, 

three in the Mt. Trumbull vicinity, 24 in the lowland Virgin area, and nine in other 

distant areas (Table 5.12). 

 

Procedures Used in Compositional Pattern Recognition 

 Since the data set is large, pattern recognition may be easier if analysis starts 

with data exhibiting less variation, such as just one ware type.  Therefore, 

compositional patterns were examined by initially considering only olivine-tempered 

ceramics (n = 819).  After identification of groups within the olivine-tempered 

ceramics, data from non-olivine sherds were added to determine whether they  
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Table 5.9.  Number of ceramic and clay samples involved in the LA-ICP-MS analysis. 
 
Ceramics Mt. Trumbull 751 

 
Tuweep 20 

 
Lowland Virgin 298 

 
Total 1069 

Clay Clay (unprepared) 98 

 
Clay (prepared) 96 

 
Total 194 

 
 
Table 5.10.  Number of ceramic samples involved in the LA-ICP-MS analysis by temper type and 
provenience. 
 

Provenience 
 

Total 
 

Temper 
Olivine Sherd (olivine) Sand or Sherd (non-olivine) 

Mt. Trumbull 751 587 36 128 
Tuweep 20 13 1 6 
Lowland Virgin 298 219 10 69 
Total 1069 819 47 203 

 
 
Table 5.11.  Number of ceramic samples involved in the LA-ICP-MS analysis by provenience and 
surface treatment. 

 
Provenience Total Plain Corrugated Black-on-gray Red Polychrome 
Tuweep 20 7 5 8 0 0 
Mt. Trumbull 751 494 145 94 15 3 
Lowland Virgin 298 211 11 70 6 0 
Total 1069 712 161 172 21 3 

 
 
Table 5.12.  Number of clay sources involved in the LA-ICP-MS analysis. 
 
Source Frequency 
Mt. Trumbull 75 
MT. Trumbull vicinity 3 
Lowland Virgin 24 
Other 9 
Total 111 
 
  

152



belonged to either olivine compositional groups or to new groups.  Once 

compositional groups were determined based on data generated from all sherds, the 

unassigned samples were evaluated against groups to examine if any could be 

included.  After group assignment was completed, source clay data were compared 

with the compositional groups. 

Statistical Analysis 

 Fifty-three elemental concentrations identified by LA-ICP-MS were used for 

the statistical analysis.  The data from the three spots in each sample were averaged 

prior to statistical analysis.  Zero values in the data were excluded during averaging.  

Any anomalies or erroneous values were also excluded.  Averaged values were 

converted to base-10 logs of elemental concentrations in ppm for statistical analysis. 

 The GAUSS statistical program was used to conduct base-10 log 

transformations, PCA, canonical discriminant analysis, hierarchical cluster analysis, 

Mahalanobis distance classification, and Mahalanobis distance projection.  

Mahalanobis distance classification was used to determine if specimen membership 

in a group is valid or misplaced based on PC scores, canonical discriminant function 

scores, and/or base-10 logs of elemental concentrations.  Initial compositional 

groups were hypothesized by observation of bivariate plots of elements.  Once these 

hypothetical compositional groups were detected, the members of each group were 

examined to see if they were a valid member or misplaced.  Mahalanobis distance 

projection was used to determine if miscellaneous specimens (e.g., unassigned 

specimen) could be placed into known compositional groups considering 
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Mahalanobis distance based on PC scores, canonical discriminant function scores, 

and/or base-10 logs of elemental concentrations.  Once all compositional groups in 

the ceramic clay matrices were identified, source clay samples were evaluated 

against these ceramic groups to examine if any could be included in these ceramic 

compositional groups.  

Identification of Compositional Groups in Olivine-tempered Ceramics 

 Recognition of the initial four compositional groups  The first step was to 

examine if chemical compositional diversity exists among the data set by examining 

bivariate plots of various elements.  Elemental concentrations were converted to 

base-10 logs of ppm for bivariate plots.  Several bivariate plots actually showed 

some compositional groups among the olivine-tempered sherds.  Examples of 

combinations of elements that show these compositional groups are magnesium and 

rubidium, rubidium and copper, rubidium and iron, rubidium and lead, and rubidium 

and manganese.  Based on bivariate plot of rubidium and magnesium, four groups 

were hypothetically defined.  As a result, all olivine-tempered ceramics from Mt. 

Trumbull, Tuweep and the lowland Virgin areas were tentatively placed into four 

groups (Figure 5.4).  The cutoff values for each group are shown in Table 5.13.  

 

Table 5.13.  Hypothetical Compositional Groups. 
 
Group Rubidium (log base-10 ppm) Magnesium (log base-10 ppm) Frequency 
Group 1 Rb > 1.6 Mg 3.0 < 3.6 536 
Group 2 Rb > 1.6 Mg > 3.6 221 
Group 3 Rb > 1.6 Mg < 3.0 21 
Group 4 Rb < 1.6  41 
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Figure 5.4.  Bivariate plot of magnesium and rubidium from the LA-ICP-MS analysis of all 
olivine ceramics (n = 819). 
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 The next step was to determine if the tentative assignments of the specimens 

to these compositional groups are valid or misplaced using Mahalanobis distance 

classification.  Prior to this, PC scores were calculated on the complete data set (n = 

1,069), including both olivine and non-olivine ceramics.  All 53 elements were used 

for PC calculation.  Canonical discriminant function scores to separate four 

compositional groups in the olivine-tempered ceramics were also calculated.  PC 

scores 1-10, which explain 68 percent of variability of the data set, and canonical 

discriminant function 1-3 were used for Mahalanobis distance classification.  The 

cutoff values for Mahalanobis distance probability in this data set was 5 percent.  If 

the probability of the specimen being a member of the group was less than 5 percent, 

or if there were high probabilities with multiple groups, then at this point the 

specimen was grouped as “unassigned”. This process was to eliminate any invalid 

member in the group in order to tighten group cohesiveness. When the Mahalanobis 

distance probabilities showed a distinctively higher probability of membership in 

another group than the assigned group, the specimen was moved to the suggested 

group.  

 Mahalanobis distance classification was used to examine mainly Group 1 and 

Group 2, which were large enough for a viable analysis.  To use Mahalanobis 

distance classification, an absolute minimum group size is the number of variables 

plus one.  In this study, I set the preferred minimum number of specimens at 30 for 

most comparisons, since sample sizes less than 30 have been observed to yield 

erroneous results. Group 3 originally had 21 samples, but I included it in the 
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Mahalanobis distance classification with caution.  If all or too many specimens in 

one of the other groups are suggested to be members of Group 3, the suggestions are 

likely erroneous due to the small sample size of Group 3. Only extremely low-

probability samples were excluded from Group 3 and moved to the unassigned 

category.  Group 4, which originally had 41 samples, was not included in 

Mahalanobis distance classification, since extremely low rubidium made this Group 

4 very distinctive.  Thus, no statistical analysis was needed.  Only obvious outliers 

based on bivariate plots by elements and PC scores were excluded from Group 4.  

After excluding or moving specimens in the compositional groups, Mahalanobis 

distance classification was conducted again based on new members to examine if all 

members were assigned correctly.  This process was repeated until most of the 

specimens were correctly assigned.  

 Once most of the specimens were assigned, unassigned samples were 

assessed to determine whether they could be assigned to any of the larger 

compositional groups. This was done by projecting specimens using Mahalanobis 

distance (Mahalanobis distance projection as discussed above).  For small groups, 

bivariate plots by elements, PC scores, and canonical discriminant function scores 

were used to determine whether any unassigned specimens could be assigned to 

these groups.  Any unassigned specimens with extremely low rubidium and low 

potassium were assigned to Group 4 and those with low lead and low magnesium 

were assigned to Group 3. 
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  After all the processes were completed, 589 samples were assigned to one of 

the four compositional groups (Figure 5.5).  Of these, 388 samples were assigned to 

Group 1, 160 samples to Group 2, 18 samples to Group 3, and 23 samples to Group 

4, leaving 230 samples as unassigned.  A bivariate plot of PC 1 and 3 showed lead, 

cadmium, manganese, and magnesium were the elements that explained the diversity 

of the data set (Figure 5.6).   

 The results of Mahalanobis distance classification based on PC scores 

indicated that five specimens were misclassified into Group 2; the remaining 

specimens were assigned to the group successfully. The results of Mahalanobis 

distance classification based on canonical discriminant function scores suggested 

that three samples in Group 1 were misclassified; all others were classified 

successfully.  The results of Mahalanobis distance classification based on both PC 

scores and canonical discriminant function scores suggested all specimens in Group 

3 were assigned correctly.   Thus classification of samples into these three 

compositional groups (Group 1, 2, and 3) were successful based on Mahalanobis 

distance classification. Bivariate plots by PC scores (PC 1-3), canonical discriminant 

function scores (CD1-3), and elements (rubidium-magnesium) showed the clear 

separation of all four compositional groups (Figures 5.5–5.8). 

 Quick observation of ceramic physical attributes and provenience 

information in each compositional group showed some degree of association.  Group 

1 included both utilitarian and black-on-gray ware.  Group 2 included predominately 

utilitarian ware.  Group 3 ceramics were mostly from the 71 ASM site (the only site  
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Figure 5.5.  Bivariate plot of principal components 1 and 3 showing four compositional groups 
in the LA-ICP-MS data derived from all olivine-tempered ceramics. 
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Figure 5.6.  Bivariate plot of principal components 1 and 3 with elements showing four groups in the LA-ICP-MS data derived from all 
olivine-tempered ceramics. 
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Figure 5.7.  Bivariate plot of canonical discriminant functions 1 and 3 showing four groups in 
the LA-ICP-MS data derived from all olivine ceramics 
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Figure 5.8.  Bivariate plot of rubidium and magnesium showing four compositional groups in 
the LA-ICP-MS data derived from all olivine ceramics. 
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located on limestone formation in the Mt. Trumbull vicinity from which sherds for 

the analysis were collected).  Note that rare-earth elements and significantly low 

rubidium distinguish this group (Figure 5.6).  Group 4 specimens were mostly from 

the lowland Virgin area.  

 Recognition of Subgroups in Group 1  Since Group 1 is a very large group, 

subgroups were suspected.  Three questions were raised: (1) Did different surface 

treatments contribute to create the subgroups? (2) Did compositional groups 

identified in the smaller data set of the pilot study or INAA study form subgroups? 

(3) Does cluster analysis identify any subgroups? Mahalanobis distance 

classification based on surface treatment (plain, corrugated, black on gray) revealed 

no subgroups in Group 1 based on surface treatment.  Thus, the answer to the first 

question is no.   

 The second question concerns whether compositional groups found in the 

ICP-MS pilot study and INAA data are related to subgroups in Group 1.  To address 

this question, the four compositional groups identified in the olivine-tempered 

ceramics were compared to the groups identified in the ICP-MS pilot study (smaller 

data set) (Figure 5.3) and INAA analysis (Figure 5.1, 5.2).  In this regard, some 

minor chemical differences within Group 1 were difficult to recognize due to the 

large group size.  Therefore, comparison of compositional groups identified in this 

study to those identified in any other study, such as the INAA or even the ICP-MS 

smaller data sets, may help to identify these subgroups.  In LA-ICP-MS, only clay 

matrices were analyzed to avoid temper.  However, it is possible that three spots 

163



from very small areas of paste analysis by LA-ICP-MS may pick up small inclusions 

in the clay that may not be distributed equally throughout the paste.  INAA data, on 

the other hand, are bulk data, which average everything including temper, clay and 

all inclusions in the clay.  Therefore, comparing LA-ICP-MS compositional groups 

to those in INAA may show subgroups in the large groups in LA-ICP-MS data.  It is 

also useful to compare compositional groups in this large data set with the 

compositional groups in smaller data sets to find subgroups.  Pattern recognition in a 

smaller data set is much easier and clearer, although it could be erroneous due to its 

small sample size.  The large data set, at this point, still contained many specimens 

that may or may not be a part of a group.  This could potentially broaden this large 

group and mask potential subgroups.   

 Comparison between four compositional groups in the LA-ICP-MS data and 

the compositional groups in the smaller ICP-MS data set, as well as the INAA data 

set, suggested that there were some correlations not only with Group 1 but also with 

other groups.  Group 2 includes specimens also included in either S-ICP Groups 2M 

or 2V that were identified in a smaller data set.  Thus, Group 2 in the larger data set 

may correspond to S-ICP Groups 2M and 2V.  S-ICP Group 4 in the smaller data set 

is distinguished from other groups due to lower canonical discriminant function 3 

scores.  This may suggest that this group in the pilot study may correspond to Group 

4 in the larger data set, which is also very distinctive from other groups, due to low 

rubidium concentrations (Figure 5.4).  Group 1 includes most of S-ICP Groups 1, 3, 
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and VR2 in a smaller data set, as well as INAA Groups 3 and 1.  This supports the 

hypothesis that Group 1 in this large data set includes at least two or three subgroups. 

 In order to identify these potential subgroups, Group 1 samples, with 

compositional information in the smaller data set, were plotted with the bivariate plot 

of PC 1 and 3 (Figure 5.9).  This plot was examined to determine if the three groups 

(S-ICP Groups 1, 3, and VR2) identified in smaller data sets, are also distinctive 

within Group 1 (Figure 5.9).  Figure 5.9 shows most of specimens that were assigned 

as S-ICP Group VR2 in smaller data set are plotted with a high score on PC 3 in this 

larger data set and specimens that were assigned as S-ICP-Group 3 in smaller data 

set are plotted with a low score on PC 3.  On the other hand, specimens that were 

assigned as S-ICP Group 1 in smaller data set are plotted randomly within Group 1.  

Therefore, I propose at least two subgroups existed in Group 1 which may reflect 

groups identified in smaller data set, separated by PC 3 scores (high PC 3 group that 

may reflect S-ICP VR2 recognized in the smaller data set and low PC 3 group that 

may reflect S-ICP Group 3), are hypothesized.  The cutoff score for PC 3 to separate 

these two groups is 0.012.  Based on this, members of Group 1 are placed into two 

subgroups: Group 1G, which may reflect S-ICP Group 3 (PC 3 score < 0.012), and 

Group 1V, which may reflect S-ICP VR2 (PC 3 score > 0 012) (Figure 5.9).  

 To determine whether these hypothetical Groups 1G and 1V were valid 

subgroups in Group 1, I conducted cluster analysis within Group 1, using PC scores 

1–10.  This cluster analysis showed that two large clusters (Clusters 1 and 2) can be 

recognized (Figure 5.10).  In order to test if these clusters represented these  
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Figure 5.9.   Comparison of Group 1 identified in the larger data set with the compositional 
group identified in pilot study of smaller data set.  Ellipses are based on Groups 1, 2, and 4.  The 
specimens with circle and triangle symbols also have pilot study compositional group 
information.  Points are based on the PCA of the larger data set and labeled with the smaller 
data set compositional groups if they were also included in smaller data set (S-ICP Groups 1, 3, 
and VR2).  All points and ellipses are derived from the PCA of this larger data set.  The bottom 
plot shows only data that also have smaller data set information. 
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Figure 5.10.  Cluster analysis of Group 1 based on principal component scores.  
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Table 5.14.  Comparison of cluster groups in this study and compositional groups in a smaller data 
set, as well as the hypothetical subgroups in Group 1. 
 
 Groups in Smaller Data Set Hypothetical Subgroups in Group 1 

S-ICP Group1 S-ICP VR2 S-ICP Group3 Group 1G Group 1V 
Cluster 1 56 8  67 112 
Cluster 2 34  11 163 14 
 

hypothetical subgroups (Groups 1G and 1V), memberships in each cluster group 

were examined (Table 5.14).  The comparison of cluster groups to compositional 

groups, identified in smaller data sets, suggests that: (1) most of S-ICP Group 1 

specimens found in the smaller data set belong to both Clusters 1 and 2 of the larger 

data set, (2) eight specimens of S-ICP VR2 belong to only Cluster 1, and 11 samples 

of S-ICP Group 3 in the smaller data set belong to only Cluster 2.  Therefore, it is 

suggested that Cluster 1 reflects S-ICP VR 2 and that Cluster 2 reflects S-ICP Group 

3 of the smaller data set.  The comparison of proposed subgroups to cluster groups 

suggested that 112 specimens of Group 1V, one of the proposed compositional 

groups, belong to Cluster 1, while only 14 of them belong to Cluster 2.  This 

confirmed that proposed Group 1V was actually a subgroup within Group 1.  The 

comparison also suggested more specimens in Group 1G, the other proposed group, 

belong to Cluster 2 other than to Cluster 1.  That is, 163 of Group 1G specimens 

belong to Cluster 2, while 67 samples belong to Cluster 1.  This may suggest Group 

1G is also a potential subgroup, although validity of membership in Group 1G has 

not been examined yet.  In summary, Group 1G corresponds to Cluster 2, which may 

be the same group as S-ICP Group 3 identified in the smaller data set. Group 1V may 

correspond to Cluster 1, which may be the same group as S-ICP VR 2 in the smaller 
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data set.  In conclusion, cluster analysis confirmed that two subgroups exist in Group 

1.  

 As noted in the discussion of cluster analysis, some specimens in these 

subgroups may be misplaced.  As a first step in refining these subgroups, the obvious 

outliers in each subgroup, Groups 1G and 1V, were excluded by observing several 

bivariate plots of canonical discriminant function scores.  After excluding obvious 

outliers, Mahalanobis distance classifications, using PC 1–10, canonical discriminant 

function scores, and base-10 logs of elemental concentrations, were conducted to 

exclude or reassign any mis-assigned samples in each group, including these 

subgroups.  Canonical discriminant function scores were calculated for all five 

groups; however, Mahalanobis distance classification was conducted on only three 

large groups, Groups 1G, 1V, and 2.  Based on Mahalanobis distance probabilities, 

any specimens with low probabilities (< 10 percent) and specimens showing no high 

probability in any of groups were excluded as unassigned.  Specimens with a low 

probability in the currently assigned group and a high probability in another group 

were moved into the suggested group. Specimens with high probabilities in multiple 

groups were unassigned to any other group at this moment. To reassign the 

specimens into another group, specimens were moved to a suggested group only 

when the result of Mahalanobis distance probabilities based on all PC scores, 

canonical discriminant function scores and base-10 logs of elemental concentrations 

all agreed, or at least the results based on PC scores and canonical discriminant 

function scores agreed.  This process was repeated until the summary of 
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classification success showed good separation without many miss-assignments. Once 

most of specimens were assigned correctly, unassigned specimens were examined to 

determine whether they belonged to these compositional groups using Mahalanobis 

distance projection.  In summary, classification success (Tables 5.15–5.17) based on 

 
 
Table 5.15.  Summary of classification success using principal component scores derived from 
olivine-tempered ceramics.  
 

 Into: 
From: Group 1G Group 1V Group2 Total 
Group 1G 182 0 0 182 
Group 1V 0 91 0 91 
Group 2 0 1 147 148 
Total 182 92 147 421 
Variables used: Principal components 1–10. 
 
 
Table 5.16.  Summary of classification success using canonical discriminant analysis scores of 
olivine-tempered ceramics.   
 

 Into: 
From: Group 1G Group 1V Group 2 Total 
Group 1G 180 2 0 182 
Group 1V 1 90 0 91 
Group 2 0 0 148 148 
Total 181 92 148 421 
Variables used: Canonical discriminant functions 1–4. 
 
Table 5.17.  Summary of classification success using log 10 based values derived from olivine-
tempered ceramics. 
 

 Into: 
From: Group 1G Group 1V Group 2 Total 
Group 1G 153 29 0 182 
Group 1V 1 90 0 91 
Group 2 0 5 143 148 
Total 154 124 143 421 
Variables used: LI, BE, NA, MG, AL, SI, K, CA, SC, TI, V, CR, MN,FE, NI, CO, CU, ZN, GA, GE, 
AS, RB, SR, Y, ZR, NB, MO, AG, CD, SN, SB, CS, BA, LA, CE, PR, ND, SM, EU, GD, TB, DY, 
HO, ER, TM, YB, LU, HF, TA, PB, BI, TH, U. 
 
  

170



 all PC scores, canonical discriminant function scores, and base-10 logs of elemental 

concentrations demonstrated that all specimens were assigned correctly into the large 

three groups (Groups 1G, 1V, and 2).  

 Summary of Compositional Groups among Olivine-tempered Ceramics  As 

discussed above, there are at least five compositional groups identified in the clay 

matrices of olivine-tempered ceramics from Mt. Trumbull, Tuweep, and the lowland 

Virgin areas.  The bivariate plot of PC 1 and 3 was examined to confirm these five 

compositional groups (Figures 5.11, 5.12).  The bivariate plot of canonical 

discriminant functions 1 and 2 shows that Groups 3 and 4 are distinct from Groups 

1G, 1V, and 2, which partially overlap (Figure 5.13).  However, the bivariate plot of 

canonical discriminant functions 4 and 3 shows that these three groups (Groups 1G, 

1V, and 2) are independent groups (Figure 5.14).  The bivariate plot of rubidium and 

magnesium clearly shows four compositional groups (Figure 5.15).  As recognized in 

the initial analysis, the subgroups in the original Group 1 (Groups 1G and 1V) 

overlap (Figure 5.15).  However, the bivariate plot of lanthanum and magnesium 

shows that these two subgroups, Groups 1G and 1V, are separate (Figure 5.16).  

Thus, bivariate plots of PC scores, canonical discriminant function scores, and base- 

10 logs of elemental concentrations confirmed these five compositional groups 

identified in the olivine-tempered ceramics.  

 Examination of compositional groups with respect to surface treatment and 

provenience shows some degree of association (Figures 5.17, 5.18).  Group 1G (n = 

181) includes olivine-tempered ceramics from both Mt. Trumbull and the lowland  
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Figure 5.11.  Bivariate plot of principal components 1 and 3 showing five compositional groups 
in olivine-tempered ceramics. 
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Figure 5.12.  Bivariate plot of principal components 1 and 3 showing five compositional groups in olivine-tempered ceramics with elemental 
vectors. 
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Figure 5.13.  Bivariate plot of canonical discriminant functions 1 and 2 showing five 
compositional groups in olivine-tempered ceramics. 
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Figure 5.14.  Bivariate plot of canonical discriminant functions 3 and 4 showing five 
compositional groups in olivine-tempered ceramics. 
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Figure 5.15.  Bivariate plot of rubidium and magnesium showing five compositional groups in 
olivine-tempered ceramics. 
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Figure 5.16.  Bivariate plots of lanthanum and magnesium showing five compositional groups in 
olivine-tempered ceramics. 
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Figure 5.17.  Frequency of olivine-tempered ceramics by the five compositional groups and 
surface treatment.   
 
 

 
 
Figure 5.18.  Frequency of olivine-tempered ceramics by the five compositional groups and 
provenience. 
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Virgin area, although Mt. Trumbull/Tuweep sherds dominate this group.  This group 

also has a relatively strong association with site 131 BLM in the Mt. Trumbull area. 

As well, no ceramics from site 214 ASM in the Mt. Trumbull area are assigned to 

this group.  Both utilitarian and black-on-gray wares are included in this group.  

Group 1V (n = 90) includes a large proportion of the sherds from the lowland Virgin 

area.  A few ceramics from 71 ASM, which is the only site on the sedimentary rock 

formation in Mt. Trumbull, are also included in this group.  Ceramics in this group 

are either utilitarian ware or black-on-gray.  Group 2 (n = 142) includes 

predominantly utilitarian wares.  Group 3 (n = 18) is chemically very different from 

other groups.  Rare earth elements and significantly low magnesium values 

distinguish this group from others (Figures 5.12, 5.15, 5.16).  This group includes 

predominantly sherds from site 71 ASM, which is the only site located on a 

limestone formation among the sites included in this study in the Mt. Trumbull area 

as mentioned above.  Group 4 (n = 23) includes sherds mostly from the lowland 

Virgin area. At this point, 365 olivine-tempered sherds of the total of 819 are 

unassigned to any group. 

 Comparison of Clay Data to Ceramics Groups  Five compositional groups 

identified in the olivine-tempered ceramics were compared to clay data.  Prior to 

Mahalanobis distance projection, bivariate plots of PC scores were examined to 

compare the clay data to compositional groups to determine the degree of 

correlation.  A bivariate plot of PC 1 and 3 shows that many clay data overlap with 

Group 2 (Figure 5.19).  Some clay data also overlap with Groups 1G and 1V.  After  
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Figure 5.19.  Bivariate plot of principal components 1and 3 showing clay data and olivine-
tempered ceramic compositional groups.  Point (+) shows clay data, and ellipses are based on 
the five compositional groups of olivine-tempered ceramics.  
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examination of bivariate plots, the clay data were examined to determine if any clays 

were matched to the larger groups, Groups 1G, 1V, and 2, using Mahalanobis 

distance projections based on PC 1–10.  The results show that: (1) Group 1G is 

matched to one Mt. Trumbull clay sample at a very low probability, which suggests 

this clay (one from sedimentary formation: Chinle clay) is a potential source clay for 

Group 1; (2) Group 1V is matched to a lowland Virgin clay sample with a low 

probability, which suggests that this clay is a potential source clay for Group 1V 

(Mahalanobis distance probability of the clay is extremely small or 0 to any other 

group); and (3) Group 2 is matched to at least 18 Mt. Trumbull vicinity clays with 

high probabilities.  Consequently, some of the compositional groups identified in the 

olivine-tempered sherds potentially represent a production area: two Mt. Trumbull 

local groups (Groups 1G and 2) and one lowland Virgin local group (Group 1V).   

 

Identification of Compositional Groups among All Sherds 

 Five compositional groups were identified in the olivine-tempered ceramics 

as discussed above.  The next step was to determine if sherds with temper other than 

olivine belong to any of these compositional groups. 

 Five Compositional Groups  First, non-olivine specimens (with sand temper 

and sherd temper including olivine particles) and unassigned olivine-tempered 

specimens were examined to determine if any could be matched to the five 

compositional groups identified in the olivine-tempered ceramics.  Mahalanobis 

distance projection based on PC scores, canonical discriminant function scores, and 
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base-10 logs of elemental concentrations were used to examine if any of sand-

tempered, sherd/olivine-tempered, or unassigned olivine-tempered could be assigned 

to any of the larger groups, i.e., Groups 1G, 1V, and 2.  Based on the results, the 

samples with high probabilities were placed into the suggested compositional 

groups.  Canonical discriminant function scores were calculated based on all five 

groups, although Mahalanobis distance projection could be applied to only these 

three large groups.  The cutoff probability for assigning a specimen to a suggested 

group is 10 percent.  After adding new specimens to the suggested groups, 

Mahalanobis distance classification was conducted on all specimens, including the 

new specimens, to determine if all were assigned correctly.  Once the validity of 

membership was confirmed, the rest of unassigned non-olivine and olivine-tempered 

ceramics were again projected using Mahalanobis distance to see if any more 

specimens could be assigned to any of the compositional groups.  Canonical 

discriminant analysis needed to be recalculated each time before using this process.  

This process was repeated until no further high probabilities were seen.  

 Subgroups in Five Compositional Groups  My first attempt at placing non-

olivine ceramics (with sand temper and sherd temper including olivine particles) and 

unassigned olivine-tempered ceramics into five compositional groups showed: (1) 

most sherd-tempered (containing olivine particles) sherds were placed into Group 2, 

(2) sand-tempered ceramics from the lowland Virgin area were placed only in Group 

1V, and (3) sand-tempered ceramics from Mt. Trumbull were placed in all three large 

groups (Table 5.18).  As discussed above, in the olivine-tempered ceramic data set,  
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Table 5.18.  Results of first projection of non-olivine ceramics (sand temper, and sherd temper 
including olivine particles) and olivine-tempered ceramics unassigned to any of the five 
compositional groups. 
 

 
Mt. Trumbull Lowland Virgin 

 
Sand Sherd (olivine) Sand Sherd (olivine) 

Group 1G 8 0 0 0 
Group 1V 4 0 6 0 
Group 2 3 19 0 0 
Group 3 NA NA NA NA 
Group 4 NA NA NA NA 
Unassigned 119 18 63 10 
 

Group 1V was matched to local clays from the lowland Virgin area.  In addition, 

based on INAA analysis, most of sand-tempered utilitarian wares in the lowland 

Virgin area were a product of local production (Larson et al. 2005).  However, Group 

1V includes olivine-tempered sherds collected in both the Mt. Trumbull and lowland 

Virgin areas, as well as Mt. Trumbull sand-tempered ceramics.  It is puzzling to find 

Mt. Trumbull olivine-tempered sherds in the lowland Virgin local group.  One 

possible explanation is that lowland Virgin potters imported olivine from Mt. 

Trumbull and made olivine-tempered pots to export back to Mt. Trumbull.  However, 

this scenario does not seem likely, given that the production of Mt. Trumbull olivine-

tempered ceramics in the lowland Virgin area does not seem to have selective benefit 

over production in the Mt. Trumbull area, which is the olivine source area. 

Consequently, Group 1V may include two subgroups, potentially one with a Mt. 

Trumbull origin including Mt. Trumbull olivine-tempered ceramic production and 

the other with lowland Virgin origin.  
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 The bivariate plot of PC 1 and 3 (Figure 5.11) shows that Group 1V is placed 

between Group 4 and Group 1G among the olivine-tempered sherds.  Group 4 

includes mostly the sherds from the lowland Virgin area, and Group 1G is a Mt. 

Trumbull local group, since one local clay sample was matched to this group.  This 

may suggest that Group 1V is, in part, very close to Group 1G, which is of Mt. 

Trumbull origin chemically and, in part, close to Group 4, which is likely from 

lowland Virgin origin. This is consistent with the possibility of subgroups.  One 

subgroup is a Mt. Trumbull local group consisting of Mt. Trumbull olivine-tempered 

ceramics. The other is the lowland Virgin local group consisting of sand-tempered 

ceramics, some of which were transported into the Mt. Trumbull area, as well as 

Lowland Virgin olivine-tempered ceramics. 

 In light of the possibility of subgroups, I tested two propositions.  One 

proposition is that subgroups do not exist, and Group 1V is one compositional group.  

That is, Group 1V is a lowland Virgin local group that includes both Mt. Trumbull 

and lowland Virgin olivine-tempered ceramics, in addition to sand-tempered 

ceramics.  This would be the case if (1) Mt. Trumbull olivine-tempered pottery in 

this group was made in the lowland Virgin area, or (2) the olivine-tempered pottery 

from Mt. Trumbull in this group was made from clay very similar chemically to the 

lowland Virgin clay group.  The alternative proposition is that subgroups exist in 

Group 1V.  If so, the Mt. Trumbull olivine-tempered ceramics in this group are 

similar chemically to the lowland Virgin local group, but they are not in the same 

compositional group.  Thus, one of the subgroups in Group 1V should include 
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exclusively Mt. Trumbull olivine-tempered ceramics.  The other subgroup should be 

a local group pertaining to the lowland Virgin area consisting of sand-tempered 

ceramics.  In addition, the sand-tempered pottery from Mt. Trumbull in Group 1V 

would have been made in the lowland Virgin area, and the same clay may have been 

used to make olivine-tempered ceramics in the lowland Virgin area.  In summary, 

two subgroups were hypothesized: Group 1VM, which includes only Mt. Trumbull 

olivine-tempered ceramics, and Group 1VV, which includes all sand-tempered 

ceramics, as well as the lowland Virgin olivine-tempered ceramics.  

 To investigate further the existence of these proposed subgroups, PC scores 

were calculated on only Groups 1G, 1VV, and 1VM, which were combined in one 

group (Group 1) in the initial olivine-tempered ceramic analysis.  A bivariate plot of 

PC 1 and 3 shows that these subgroups within Group 1V are different compositional 

groups (Figure 5.20). The validity of membership of each subgroup was examined 

by Mahalanobis distance classification based on PC and canonical discriminant 

function scores.  As discussed above, PC scores were calculated only within the three 

groups.  Principal components 1–12, which explain 71.23 percent of the variability, 

were used in the Mahalanobis distance classification. Canonical discriminant 

function scores were calculated also for these three groups.  The first result of the 

Mahalanobis distance classification showed many Group 1VM specimens to have 

high probabilities of membership with Group 1VV, which suggests these specimens 

in Group 1VM should have moved to Group 1VV.  This suggested that Group 1VV 

was still too broad chemically.  Therefore, some specimens with low probabilities  
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Figure 5.20.  Bivariate plot of principal component scores 1 and 3 based on only Group 1 ceramic data to examine subgroups, G1VV and 
G1VM.   
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needed to be excluded from Group 1VV to tighten this group before conducting the 

Mahalanobis distance classification.  The specimens with low probabilities from 

both Groups 1VV and 1VM were excluded, and the specimens with high 

probabilities within another group were moved into the suggested groups.  This 

process was repeated until results of classification success showed clear separation. 

 The result of the Mahalanobis distance classification using PC 1–12 showed 

that seven samples out of 52 were mis-assigned in Group 1VV, and 11 samples out 

of 36 were mis-assigned in Group 1VM (Table 5.19).  This was not as clear a 

separation as expected.  However, Mahalanobis distance classification using 

canonical discriminant scores showed that Groups 1G, 1VV, and 1VM were separate 

groups.  The summary of classification success demonstrated that almost all samples 

were assigned correctly to the three groups (Table 5.20).  The bivariate plot of  

 
Table 5.19.  Summary of classification success in Groups 1VV and 1VM using principal components 
scores. 

 
  Into: 
       Group 1VV  Group 1VM  Total 
From:  Group 1VV           45           7  52 

Group 1VM           11          25  36 
 Total           56          32  88 
Variables used: Principal component analysis scores 1–12. 
 
 
Table 5.20.   Summary of classification success in Groups 1G, 1VV and 1VM using canonical 
discriminant scores.  
 
  Into: 

Group 1VV Group 1VM Group1G Total 
 
From:  
 

Group 1VV  52 0 0 52 
Group 1VM  0 36 0 36 
Group 1G  2 1 188 191 

 Total  54 37 188 279 
Variables used: Canonical Discriminant scores 1–2. 
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canonical discriminant scores 1 and 2 also confirmed that these three groups were 

separate groups (Figure 5.21).  Thus, Groups 1G, 1VV, and 1VM, which are similar 

chemically, were confirmed to be three different groups. 

 Six Compositional Groups  After confirming two subgroups in Group 1V as 

discussed above, six compositional groups are identified so far: Groups 1G, 1VM, 

1VV, 2, 3, and 4.  Now the rest of unassigned olivine- and non-olivine-tempered 

ceramics were evaluated to see if any of them could be placed into any of the six 

groups.   

 Bivariate plots of elemental concentrations, PC scores, and canonical 

discriminant function scores were used to examine if any of unassigned samples 

could be placed in small compositional groups, such as Groups 3 and 4.  Group 3 

was defined by low lead, low magnesium, low chromium and low copper.  Thus, 

unassigned samples with low values in these elements were placed into Group 3.  

Group 4 samples were defined by low rubidium and low potassium.  Unassigned 

samples with low values in these elements were placed into Group 4.  

 The rest of the unassigned samples were evaluated to see if any of them 

could be placed in four large compositional groups using Mahalanobis distance 

probabilities. Only PC scores and canonical discriminant function scores were used 

for the calculations to conduct Mahalanobis distance projection; the base-10 logs of 

elemental concentrations were not used.  Specimens were moved from the 

unassigned to the assigned group only when the Mahalanobis distance projections, 

based on both PC scores and canonical discriminant function scores, agreed.   
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Figure 5.21.  Bivariate plot of canonical discriminant functions 1 and 3 showing Groups 1VV, 
1VM and 1G. 
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Canonical discriminant function scores were calculated for all six compositional 

groups, although Mahalanobis distance projection was conducted only for the four 

larger groups.  After moving the unassigned specimens to either of the compositional 

groups, Mahalanobis distance classification was conducted again to examine if all 

samples were assigned correctly.  This process was repeated until no unassigned 

samples showed high probabilities for any of the groups.   

 Note that unassigned specimens were moved as a solid member or possible 

member based on the Mahalanobis distance probabilities described below.  After 

moving the solid members, the Mahalanobis distance classification was re-examined 

to assure the group was still tight, as discussed above.  If the unassigned specimens 

were identified as a possible member, the Mahalanobis distance probabilities were 

not re-calculated, since adding a possible member to a known group could broaden 

the group’s boundary and could cause problems when the groups were compared 

later to clay samples.  Described below are examples of how unassigned samples 

were assigned as a solid member, possible member, or unassigned based on the 

Mahalanobis distance probabilities.  

 Case 1: Assigned to a known group and included in the Mahalanobis distance 

classification: solid member.  To be a solid member, the cutoff probability was five 

percent.  If the specimen had a probability greater than five percent for multiple 

groups, the cutoff ratio of highest probability group to the sum of probability to other 

groups was 5:1.  In the case of specimen MT131-247 (Table 5.21), Mahalanobis 

distance probability based on canonical discriminant function scores clearly  
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Table 5.21.   Mahalanobis distance projection of unassigned specimens to a known group.  An 
example of moving unassigned specimens to known groups: Case 1 (MT131-247). 
 
 Group1G Group 

1VV 
Group 
1VM 

Group 2 

Mahalanobis distance probabilities based on  
canonical discriminant analysis 

0.001 21.931 0.002 0.000 

Mahalanobis distance probabilities based on  
principal component analysis 

5.800 80.469 6.655 0.001 

 

suggested that this sample should be assigned into Group 1VV, since there is little 

possibility for assigning this specimen to other groups.  However, Mahalanobis 

distance probability based on PC scores shows some probabilities to multiple groups 

other than Group 1VV.  When the probability of being a member of Group 1VV is 

compared to the sum of probabilities for assigning to other groups, the ratio is 

80.469:12.456 (≈6.5: 1).  This ratio is high enough to assign this sample to Group 

1VV.  Thus, this sample is assigned as a solid member of Group 1VV and included in 

the further Mahalanobis distance calculations.  

 Case 2: Assigned to a known group but not included in the Mahalanobis 

distance calculations: possible member.  The criteria to be a possible member of a 

compositional group, especially the four large groups (Groups 1G, 1VV, 1VM, and 

2), are as follows.  Unassigned samples are assigned to one of the known groups 

when the specimen fulfills either of these criteria: (1) The results of Mahalanobis 

distance probabilities based on both PC scores and canonical discriminant function 

scores agree and the cutoff probability is > 5 percent.  (2) Mahalanobis distance 

probability based on either PC scores or canonical discriminant function scores is > 

10 percent in a single group without having equally high probability for assignment 
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to other groups. (3) The probability based on either PC scores or canonical 

discriminant function score is clearly high in a single group and relatively high in 

other groups, and then the ratio of the probability in the suggested group to the sum 

of the probabilities to other groups is much greater than 1:1.  (4) The probabilities 

based on both PC scores and canonical discriminant function scores suggest 

membership in multiple groups, and the ratio in the suggested group to the sum of 

other groups is greater than 3:1.  In the case of specimen MT214-19 (Table 5.22), 

Mahalanobis distance probabilities based on canonical discriminant function scores 

suggest that it may be assigned to Group 1VV, since the probabilities of this 

specimen being a member of other groups are extremely low.  The ratio of this 

specimen’s probability of membership in Group 1VV to others is 75.689:0.569.  

However, those based on PC scores show some probabilities of membership to 

multiple groups as well.  When the probability of this specimen’s membership in 

Group 1VV is compared to the sum of probabilities of membership in others, the 

ratio is 95.692: 24.314 (≈3.9: 1), which is not strong enough to assign it as a solid 

member.  Thus, this sample is assigned as a possible member in Group 1VV and is 

not included in the further Mahalanobis calculations.  

 

Table 5.22.   Mahalanobis distance projection of unassigned specimens to a known group.  An 
example of moving unassigned specimens to known groups: Case 2 (MT214-19). 
 
Group  Group 1G Group 

1VV 
Group 
1VM 

Group 2 

Mahalanobis distance probabilities based on  
canonical discriminant analysis 

0.122 75.689 0.446 0.001 

Mahalanobis distance probabilities based on  
principal component analysis 

9.677 95.692 14.587 0.050 
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Table 5.23.  Mahalanobis distance projection of unassigned specimens to a known group.  An 
example of moving unassigned specimens to known groups: Case 3 (MT204-24). 
 
Group  Group 1G Group 

1VV 
Group 
1VM 

Group 2 

Mahalanobis distance probabilities based on 
canonical discriminant analysis 

16.344 0.005 0.251 22.772 

Mahalanobis distance probabilities based on 
principal component analysis 

0.000 0.000 0.000 52.174 

 

 Case 3: Unassigned.  In the case of specimen MT204-24 (Table 5.23), 

Mahalanobis distance probability based on PC scores for assignment to Group 2 is 

very clear and high (52.174).  However, Mahalanobis distance probabilities based on 

canonical discriminant function scores show high probabilities for being a member 

of multiple groups; that is, the probability for being a member of Group 2 is close to 

others.  The ratio of probability for being a member of Group 2 to the sum of 

probabilities for being a member of others is 22.772:16.6 (≈1.4: 1).  Thus, this 

sample remained unassigned.  

 As a result, 599 specimens out of 1,069 were assigned to either of six groups 

as solid members and 86 samples were assigned as possible members; that is, a total 

of 685 ceramic samples (solid and possible) out of 1,069 were assigned to six 

compositional groups (64 percent of all samples in the data set) (Table 5.24).  The 

bivariate plot of PC 1 and 3 shows that these six compositional groups are separate 

(Figure 5.22).  The bivariate plot of canonical discriminant function scores 1 and 2 

shows that most of the compositional groups are separate, although Groups 1G, 

1VM, 1VV, and 4 partially overlap (Figures 5.23, 5.24).  However, Groups 2 and 3 

are clearly discriminated from the other groups in this plot.  In addition, the bivariate  
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Figure 5.22.  Bivariate plot of principal component scores 1 and 3 showing the final six 
compositional groups among all ceramics from Mt. Trumbull, Tuweep and the lowland Virgin 
areas.  
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Figure 5.23.  Bivariate plots of canonical discriminant functions 1 and 2 showing the final six 
compositional groups among all ceramics from Mt. Trumbull, Tuweep and the lowland Virgin 
areas. 
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Figure 5.24.  Bivariate plot of canonical discriminant functions 1 and 2 showing the final six 
compositional groups among all ceramics from Mt. Trumbull, Tuweep and the lowland Virgin 
areas (ellipse only).  
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Table 5.24  Summary of members in compositional groups in all ceramics in Mt. Trumbull, Tuweep 
and the lowland Virgin areas. 
 
Group Solid or Possible Member Frequency 
Group 1G Solid member 222 

Possible member 20 
Group 1VV Solid member 116 

Possible member 40 
Group 1VM Solid member 41 

Possible member 14 
Group 2 Solid member 173 

Possible member 12 
Group 3 Solid member 24 
Group 4 Solid member 23 
Total  685 
 

plot of canonical discriminant function 1 and 4 shows that Group 3 and 4 are 

discriminated from the others (Figures 5.25, 5.26).  Three subgroups, which were 

initially in one group (Groups 1G, 1VM, and 1VV), are clearly separated in the 

bivariate plots of canonical discriminant function scores calculated within the three 

groups (Figure 5.27).  A summary of the Mahalanobis distance classification results 

(Table 5.25, 5.26) also confirms that samples are correctly assigned to four large 

compositional groups (Groups 1G, 1VM, 1VV, and 2).   

 Possible Compositional Groups among Unassigned Samples.  To examine if 

any other compositional group possibly existed among the unassigned specimens, 

the six compositional groups and the unassigned category were compared to the 

compositional groups identified in the INAA study of the ceramics from the lowland 

Virgin area discussed in Chapter II (Larson et. al 2005).  The comparison between 

LA-ICP-MS compositional groups to INAA groups suggests that most of the 

specimens assigned to VR-INAA-VR4 in the INAA study (Figure 2.3) were assigned  
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Figure 5.25.  Bivariate plots of canonical discriminant functions 1 and 4 showing the final six 
compositional groups among all ceramics from Mt. Trumbull, Tuweep and the lowland Virgin 
areas. 
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Figure 5.26.  Bivariate plots of canonical discriminant functions 1 and 4 showing the final six 
compositional groups among all ceramics from Mt. Trumbull, Tuweep and the lowland Virgin 
areas.  
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Figure 5.27.  Bivariate plot of canonical discriminant functions 1 and 2 showing Groups 1G, 
1VM and 1VV. 
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as Group 1VV in the LA-ICP-MS study (Table 5.27).  VR-INAA-4 and VR-INAA-3 

are two local groups in the lowland Virgin area (Larson et al, 2005) (Figure 2.3).  

The comparison also shows that most of the VR-INAA-3 ceramics are unassigned to 

any of the groups in the LA-ICP-MS data set. Consequently, VR-INAA-3 may be an 

independent compositional group in the LA-ICP-MS data set.  

 
 
Table 5.25.   Summary of classification success in all ceramics in Mt. Trumbull, Tuweep and  the 
lowland Virgin areas based on principal component analysis scores. 

 
  Into:       
  Group 1G Group 1VV Group 1VM Group 2 Total 
 
 
From:  
 

Group 1G 220 0 2 0 222 
Group 1VV 0 109 7 0 116 
Group1VMA 0 6 35 0 41 
Group 2 0 2 0 171 173 
Total 220 117 44 171 552 

Variables used: Principal component analysis scores 1–10. 
 
 
 
Table 5.26.  Summary of classification success in all ceramics in Mt. Trumbull, Tuweep and  the 
lowland Virgin areas based on canonical discriminant scores. 

 
  Into:  
  Group 1G Group 1VV Group 1VM Group 2 Total 
 
 
From:  
 
 

Group 1G 218 1 3 0 222 
Group 1VV 0 115 1 0 116 
Group 1VM 1 1 39 0 41 
Group 2 0 2 0 171 173 
Total 219 119 43 171 552 

Variables used: Canonical discriminant scores 1–5. 
 

Table 5.27.  Comparison of LA-ICP-MS compositional groups to the lowland Virgin ceramic INAA 
groups. 
 

 VR-INAA-4 VR-INAA-3 Note 
ICP-MS Group 1VV 12 3 All three VR-INAA-3 samples are a possible 

member in Group 1VV in ICP-MA data. 
ICP-MS Group 2 1   
ICP-MS Group 4 1   
ICP-MS Unassigned 4 22  
Note: Group members in LA-ICP-MS compositional groups are in both solid and possible members. 
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 In the lowland Virgin INAA data set, there are two non-local groups, VR-

INAA-1 and VR-INAA-2.  VR-INAA-2 includes only the olivine-tempered ceramics 

and is the only compositional group with olivine-tempered specimens.  VR-INAA-1, 

on the other hand, includes mostly black-on-gray wares with very fine sand temper 

in very light-colored paste.  Most of the VR-INAA-1 samples are unassigned in LA-

ICP-MS data set.  It is possible, therefore, that the VR-INAA-1 could also be another 

independent compositional group in the LA-ICP-MS data set. 

 Based on these comparisons, VR-INAA-1 and VRE-INAA-3 in the INAA 

study may be identified as independent groups in the unassigned category of the LA-

ICP-MS data set.  To assess this possibility, PC scores of all unassigned samples, 

including those identified as VR-INAA-1 and VR-INAA-3 in the INAA data, were 

plotted.  Note that the proposed group identified as VR-INAA-1 is named as VR 1 

and that identified as VR-INAA-VR3 as VR 3 in LA-ICP-MS data set.  The bivariate 

plot of PC 1 and 3 shows that VR1 and VR3 generally do not overlap with any of the 

six compositional groups (Figure 5.28).  Close examination of this plot also shows 

that most of VR3 samples are grouped together, as are VR1 samples.  Thus, the 

bivariate plot demonstrates that these groups, originally identified in the lowland 

Virgin INAA data, also form independent compositional groups in LA-ICP-MS data 

sets (Figure 5.29).  Canonical discriminant analysis was also conducted on eight 

compositional groups including VR1 and VR3.  The bivariate plots of canonical 

discriminant functions 3 and 2, as well as canonical discriminant functions 3 and 6,  
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Figure 5.28.  Bivariate plot of principal components 1 and 3 showing VR1 and VR3 ceramic 
data from the lowland Virgin area.  This plot shows that most of the VR1 and VR3 samples do 
not overlap with any of six compositional groups.   
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Figure 5.29.  Bivariate plot of principal component scores 1 and 3 showing VR1 and VR3 groups 
and unassigned samples in the LA-ICP-MS data.  Ellipses are based on compositional groups 
VR1 and VR3.  
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confirm that VR1 and VR3 are independent compositional groups and are 

distinguished from any other groups (Figures 5.30, 5.31). 

 Using multiple sets of bivariate plots of PC scores and canonical function 

scores on eight groups and base-10 logs of elemental concentrations, especially 

vanadium- and magnesium-based combinations, some of the unassigned samples 

could be assigned to VR1 group.  It should be noted that only samples that were 

always found near the center of ellipse of these groups by different bivariate plots 

(PC scores, canonical discriminant function scores, and base-10 logs of elemental 

concentrations) were assigned to VR1.  Figure 5.32 is an example of a bivariate plot 

of canonical discriminant function scores for determining if any unassigned sample 

could be assigned to VR1.  Attempts to place unassigned samples into the VR3 

group using bivariate plots were also made. Since separation of VR3 from the other 

groups was not as clear as that of VR1, samples were assigned as VR3 only when 

bivariate plots of both canonical discriminant function scores and PC scores agreed.  

 After assigning samples to VR1 and VR3, I recalculated the canonical 

discriminant function scores of the eight groups.  Both PC scores and canonical 

discriminant function scores were plotted to ensure that VR1 and VR3 samples were 

grouped within the 90 percent of confidence ellipse on the plots (Figures 5.33–5.36).  

This was the final step in assigning specimens to compositional groups identified 

among all specimens collected from Mt. Trumbull, Tuweep, and the lowland Virgin 

area.  A total of 729 of 1,069 specimens are now classified into eight compositional 

groups, leaving 32 percent unassigned (Table 5.28).  
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Figure 5.30.  Bivariate plot of canonical discriminant functions 2 and 3 showing VR1 and VR3 
are independent compositional groups in the LA-ICP-MS data set.  
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Figure 5.31.  Bivariate plot of canonical discriminant functions 3 and 6 showing that VR1 and 
VR3 are independent compositional groups in the LA-ICP-MS data set.  
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Figure 5.32.  Bivariate plots of canonical discriminant functions 2 and 3 to examine whether 
unassigned samples are grouped as VR1 and VR3.  
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Figure 5.33.  Bivariate plot of principal components 1 and 3 showing the final eight compositional groups among all ceramics in Mt. Trumbull, 
the lowland Virgin area, and Tuweep. This plot does not show possible group members (n = 643). 
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Figure 5.34.  Bivariate plot of principal components 1 and 3 with element vectors showing the final eight compositional groups in among all 
ceramics in Mt. Trumbull, Tuweep, and  the lowland Virgin area.  Some of group names are abbreviated—G1G: Group 1G; G1VM: Group 
1VM; G1VV: Group 1VM; G2: Group 2; G3: Group 3; and G4: Group 4.   
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Figure 5.35.  Bivariate plots of canonical discriminant functions 1 and 3 showing the final eight 
compositional groups among all ceramics in Mt. Trumbull, Tuweep and the lowland Virgin 
area. This plot does not show possible group members (n = 643). 
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Figure 5.36.  Bivariate plot of canonical discriminant functions 2 and 3 showing the final eight 
compositional groups among all ceramics in Mt. Trumbull, Tuweep and the lowland Virgin 
area. This plot does not show possible group members (n = 643).  
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Table 5.28.  Summary of final eight compositional groups among all ceramics. 
 

Group Frequency 
in Group 

Solid / Possible Member Frequency 

Group 1G 242 Solid member 222 
Possible member 20 

Group 1VV 156 Solid member 116 
Possible member 40 

Group 1VM 55 Solid member 41 
Possible member 14 

Group 2 185 Solid member 173 
Possible member 12 

Group 3 24 Solid member 24 
Group 4 23 Solid member 23 
VR1 22 Solid member 22 
VR2 22 Solid member 22 
Assigned Total 729  729 
Unassigned olivine-tempered ceramics 253  253 
Unassigned sand-tempered ceramics 69  69 
Unassigned shed temper  
(including olivine particles) 

18  18 

Total of all ceramics analyzed 1069  1069 
 
 

 Comparison of Clay Data with Ceramic Groups.  To determine the source of 

ceramic groups, the eight groups recognized within the ceramic samples from Mt. 

Trumbull, Tuweep, and the lowland Virgin areas identified above were compared 

with the clay data.  Four large compositional groups, Groups 1G, 1VM, 1VV, and 2 

were examined using Mahalanobis distance projection based on PC 1–10.  Clay data 

were projected against these four ceramic compositional groups to determine if any 

of clays could be matched to the ceramic groups.  

 Group 2  The results suggest that data from 20 clay samples (prepared and 

unprepared clay from 15 sources) from Mt. Trumbull and its vicinities are matched 

to Group 2.  Therefore, Group 2 is a Mt. Trumbull local group.  Some prepared and 

unprepared clay samples were matched to Group 2 (Table 5.29), that is, some clays  
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Table 5.29.  Mahalanobis distance probabilities showing how clays are matched to four compositional groups (Groups 1G, 1VV, 1VM and 2). 
 
ID. NO. Source Clay Area Group 

1G 
Group 
1VV 

Group
1VM 

Group
2 

Clay Type, Note Geology 

MT105C Mt. Trumbull 0.002 0 0 8.659 Secondary 
14 MNA test pit 
70 cm deep 

Surficial deposit, Qt. Talus deposit (Holocene 
and Pleistocene) 

MT105PC 
(prepared) 

Mt. Trumbull 4.637 0.981 0.147 18.77 Secondary 
14MNA test pit 
70 cm deep 

Surficial deposit, Qt. Talus deposit (Holocene 
and Pleistocene) 

MT106PC 
(prepared) 

Mt. Trumbull 0.026 0.001 0 16.94 Secondary 
14MNA test pit 
30 cm deep 

Surficial deposit, Qt. Talus deposit (Holocene 
and Pleistocene) 

MT116PC 
(prepared) 

Mt. Trumbull 0.026 0.012 0 10.17 Volcanic 
Big Spring area 

Basalt flow (Pleistocence), Qb 

MT148C Mt. Trumbull 0 0 0 5.531 Volcanic 
204BLM test pit 
20 cm deep 

Basalt flow (Pleistocence), Qb 

MT17C Mt. Trumbull 0.003 0 0 8.185 Secondary 
Between 14MNA and 
131BLM  

Surficial deposit, Qa2 young-intermediate 
alluvial fan deposit (Holocene and 
Pleistocene) 

MT22C Mt. Trumbull 0.124 1.899 0.114 23.51 Secondary 
14MNA 10cm deep  

Surficial deposit, Qt. Talus deposit (Holocene 
and Pleistocene) 

MT22PC 
(prepared) 

Mt. Trumbull 0.094 0.002 0 23.42 Secondary 
14 MNA 10 cm deep  

Surficial deposit, Qt. Talus deposit (Holocene 
and Pleistocene) 

MT28C Mt. Trumbull 0 0 0 44.52 Secondary 
Near 14MNA road cut 
wall  
30 cm deep 

Surficial deposit, Qt. Talus deposit (Holocene 
and Pleistocene) 

MT63C Mt. Trumbull 4.472 0 0.009 0 Sedimentary 
Mt. Logan possible 
Chinle Formation near 
canyon rim 
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Table 5.29.  Mahalanobis distance probabilities showing how clays are matched to four compositional groups (Groups 1G, 1VV, 1VM and 2). 
(continued) 
 
ID. NO. Source Clay Area Group 

1G 
Group 
1VV 

Group
1VM 

Group
2 

Clay Type, Note Geology 

MT71C Mt. Trumbull 0 0.046 0.001 38.23 Secondary 
2 km west of 131BLM 
Bottom of dried cow 
pond  

Surficial deposit, valley-fill deposit (Holocene 
and Pleistocene) Qv 

MT72C Mt. Trumbull 0 0 0 6.491 Volcanic 
136ASM test digging 

Basalt flow (Pleistocence), Qb 

MT7C Mt. Trumbull 0.051 0.136 0.001 39.51 Volcanic 
Near 131BLM 
drainage wall 

Basalt flow (Pleistocence), Qb 

MT7PC 
(prepared) 

Mt. Trumbull 7.552 0.205 0.051 50.26 Volcanic 
Near 131BLM 
drainage wall 

Basalt flow (Pleistocence), Qb 

MT88C Mt. Trumbull 0.204 0.006 0.001 16.81 Volcanic 
131BLM test pit 30 
cm deep 

Basalt flow (Pleistocence), Qb 

MT92C Mt. Trumbull 0.042 0.044 0.008 53.05 Secondary 
14MNA test pit 
47cm deep 

Surficial deposit, Qt. Talus deposit (Holocene 
and Pleistocene) 

MT95PC 
(prepared) 

Mt. Trumbull 0.001 0.002 0.012 22.34 Sedimentary 
Mt. Logan Chinle or 
Moenkopi Formation 

Chinle Formation (TRcp), Moenkopi 
Formation (TRml) 

MT98PC 
(prepared) 

Mt. Trumbull 0.006 0.004 0 26.42 Volcanic 
131 BLM test pit 30 
cm deep 

Basalt flow (Pleistocence), Qb 

MT99C Mt. Trumbull 0.003 0 0 14.32 Secondary 
Sink Valley, wash wall  
 

Surficial deposit, Qa1 young alluvial fan 
deposit (Holocene) 
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Table 5.29,  Mahalanobis distance probabilities showing how clays are matched to four compositional groups (Groups 1G, 1VV, 1VM and 2). 
(continued) 
 
ID. NO. Source Clay Area Group 

1G 
Group 
1VV 

Group
1VM 

Group
2 

Clay Type, Note Geology 

SV9C Shivwits plateau  
(Plateau region) 

0.001 0.001 0 47.22 Volcanic 
Shivwits plateau, near 
Yellow Jones Mt, 30 
km west of Mt. 
Trumbull 
Drainage wall, 50 
below surface. 

  

TWP1C Tuweep 
(Plateau region) 

0 0.001 0 5.623 Secondary 
Toroweap dry Lake, 
10 km south of Mt. 
Trumbull 

  

VR14PC 
(prepared) 

Lowland Virgin 0 7.142 0 0 Sedimentary 
Wash wall 
10cm below surface 

Chinle Formation (TRcp), Moenkopi 
Formation (TRml) 

VR22C Lowland Virgin 0.159 29.963 0.495 0.675 Sedimentary 
10 cm deep 

Chinle Formation (TRcp) 

VR29C Lowland Virgin 0 6.284 0 0 Secondary 
Near Lost City 
museum  
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matched to Group 2 with preparation and others matched without preparation.  

Moreover, both primary (volcanic and sedimentary) and secondary clays were 

matched to this group.  Secondary clays seem to be matched with the highest 

probabilities.  These latter clays are considered smectite; however, since no XRD 

analysis has been performed, this attribution is not conclusive.  The clays matched to 

Group 2 with a high probability are from the 14MNA and 131BLM site areas (Figure 

5.37).  The geology of the Mt. Trumbull area is characterized by a volcanic 

formation resting on sedimentary bedrocks, both the Chinle and Moenkopi 

formations.  The Chinle formation bedrock of unknown thickness is present under 

the Tertiary basalt flows that cap the Mt. Trumbull area.  This is evidenced by Chinle 

float material occurring in landslide debris on the western and northern flanks of Mt. 

Trumbull (Billingsley and Hamblin 2001).  Indeed, during fieldwork in 2008, some 

small pockets of Chinle and Moenkopi formations were recognized near the Nixon 

Spring Trail on the slope of Mt. Trumbull (Figures 5.37, 5.38).  This geological 

setting may suggest that secondary clays from some locations contain weathered 

Chinle/Moenkopi formation clays mixed with volcanic clays.  

 Most of the best-matched clays near site 14 MNA are secondary clays. This 

site is located at the bottom of steep slope from Nixon Spring on Mt. Trumbull, 

where a small exposure of the Chinle formation was recognized (as mentioned 

above).  Thus, it is likely that clays near site 14 MNA are mixtures of volcanic and 

Chinle clay.  The location of the site of the 131 BLM clays coincides with a volcanic 

formation according to the geologic map.  However, this site is located at the bottom  
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Figure 5.37.  Location of Mt. Trumbull clays matched to Group 2.  Numbers are the 
probabilities based on Mahalanobis distance.   
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Figure 5.38.  The deposit of sedimentary clay near the Nixon Spring Trail on the slope of Mt. 
Trumbull. 
 
 

of the slope of Mt. Logan (5 km downhill), where the Chinle formation is exposed.  

Often petrified woods were found in the vicinity of site BLM131, which suggests the 

clays near the BLM131 site may contain weathered volcanic materials, as well as the 

Chinle and Moenkopi sedimentary formation materials.  Thus, the best-matched 

clays to Group 2 specimens are those containing weathered volcanic clays and some 

portion of Chinle/Moenkopi clays.  Moreover, these clays naturally occur near sites 

14MNA and 131 BLM.  
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 Many clay samples were collected in the section 11 area near Mt. Trumbull 

(Figure 5.37), which contains a very high site density of large C-shaped pueblos.  

The section 11 area includes lava flows and cinder cones, and the clays are primarily 

volcanic.  Interestingly, there were only two clays from the section 11 area that were 

matched to Group 2, with relatively low probabilities (MT148C and MT72C) 

(Figure 5.29).  This supports the proposal that clays used for Group 2 pottery contain 

not only volcanic but also some Chinle/Moenkopi clays.  Since some clays matched 

to Group 2 with high probability are found naturally, the clays used to make Group 2 

ceramics may not have undergone much preparation.  

 Group 1G  Mahalanobis distance probabilities show that three clay samples 

from Mt. Trumbull (MT63C, MT7PC, and MT105PC) were matched to Group 1G 

(Table 5.29).  Therefore, Group 1G is another Mt. Trumbull local group.  One of 

them (MT63C) is from the Chinle/Moenkopi formation on Mt. Logan, a long 

distance from the archaeological site concentration.  Moreover, the location of clay 

collection on Mt. Logan is a very steep slope adjacent to the canyon rim (Figure 

5.39).  Two of the clays are from 131BLM (MT7PC) and 14MNA (MT105PC), 

where many sites are located, including C-shaped pueblos.  These two clays were 

also used for Group 2 ceramics and their probability of matching to Group 1G 

increased only after preparation (Table 5.29). 

 The probabilities of all three clays being matched to Group 1G are relatively 

low, compared to the clays matched to Group 2.  This suggests that clays used for 

Group 1G may have gone through a much more sophisticated preparation process, 
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Figure 5.39.  The location of clay collection near Mt. Logan. 
 

 

which changed their chemical constituents significantly, or were quarried from much 

deeper deposits.  It is possible that clay obtained for the analysis is much different 

chemically from the clay from deeper deposits in the same clay source.  The clay 

used for Group 1G may have been prepared in a more elaborate way than just 

soaking in water to eliminate larger inclusions, or the clay may have been quarried 

from deeper deposits.  In any regard, it is likely that more energy was devoted to the 

procurement and/or preparation of the clay for Group 1G ceramics, compared to 

Group 2 clay. 
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 Group 1VV  Three clays (VR14PC, VR22C, and VR29C) from the lowland 

Virgin area were matched to 1VV (Table 5.29), which suggests Group 1VV is a local 

group in the lowland Virgin area.  This is also confirmed by the fact that samples 

identified as VR-INAA-4, one of local groups in the lowland Virgin area in the 

INAA data, are included in this group.  Two of the clays are from the 

Chinle/Moencopi formations. One is a secondary clay, and the location of the clay 

collection is near exposures of Chinle/Moencopi bedrocks.  Thus, the clay used to 

make Group 1VV pottery contains Chinle/Moencopi formation clay, at least in some 

proportion.  

 In addition to the local clay from Mt. Trumbull and the lowland Virgin areas, 

there are some clays, distant from these areas, that are included in the data set 

(Appendix A: Table A2).  Chinle clays collected near Hurricane, Utah, are also 

matched to Group 1VV.  Since Hurricane is more than 100 km from both Mt. 

Trumbull and the lowland Virgin areas, it is not plausible that the clays were 

transported from Hurricane to Mt. Trumbull or the lowland Virgin areas.  Rather, it is 

possible that the chemical signature of the clays derived from the same formations 

will be similar, wherever they occur.  Consequently, correlations with these two 

distant clays support the proposal that the clays used to make 1VV pottery contain 

Chinle formation clays. 

 Group 1VM  No clays were matched to this group. Identification of the clay 

source for this group requires examination of the relationships between 

222



compositional groups and physical attributes and provenience of the specimens, to 

be discussed later. 

 Other groups  To assess whether the smaller ceramic compositional groups 

can be matched to clay samples collected for this study, bivariate plots of PC scores 

and canonical discriminant function scores were examined (Figures 5.40–5.42).  

Based on these plots, no clays analyzed in this study could be matched to Group 

1VM, Group 3, Group 4, and VR1.   However, previous INAA analysis of ceramics 

and clays from the lowland Virgin area demonstrated that Group VR3 was matched 

to local clays in the lowland Virgin area (Larson et al. 2005).  The number of 

ceramics identified as VR3 in the lowland ceramic INAA study is much larger than 

those in this study.  It is possible that VR3 may be too tight to match to any of 

lowland Virgin clays in this study due to the small sample size.  However, it is still 

possible that the VR 3 is a lowland Virgin local group.  Group VR1 did not match 

with the lowland Virgin clay in the INAA study, nor to Mt. Trumbull local clay in 

ICP-MS analysis. Therefore, VR1 may be a non-local group from beyond Mt. 

Trumbull and the lowland Virgin area.  The clay sources of Groups 3 and 4 are 

unknown at this point; the source determination requires assessment of the 

relationship between the compositional groups and the physical attributes and 

provenience of the studied ceramics.  
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Figure 5.40.  Bivariate plot of principal component scores 1 and 3 showing the final eight 
ceramic compositional groups among all ceramics in Mt. Trumbull, Tuweep and the lowland 
Virgin area and clay. 
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Figure 5.41.  Bivariate plot of canonical discriminant functions 1 and 3 showing the final eight 
ceramic compositional groups among all ceramics in Mt. Trumbull, Tuweep and the lowland 
Virgin area and clay. 
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Figure 5.42.  Bivariate plot of canonical discriminant functions 2 and 3 showing the final eight 
ceramic compositional groups among all ceramics in Mt. Trumbull, Tuweep and the lowland 
Virgin area and clay. 
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Formal Attribute Analysis 

 Formal attributes of ceramics were examined in order to understand what 

contributed to the creation of each compositional group.  The formal attributes 

recorded in this study are temper types, surface treatment, and core color.  Temper 

types included in this study are olivine, sherd (olivine) and sand, as discussed above.  

The surface treatments of sherds included in this study are, plain, corrugated, black-

on-gray, red, and polychrome.  Some of the plain wares have fugitive red on the 

surface, which was also recorded.  Core color was also examined.  Because the 

purpose of recording the core color is to determine only the general color tendency 

in the group, a Munsell color chart was not used.  However, for consistency, the core 

color of all sherds was examined with same microscope light setting.  

 The classification of Virgin Ancestral Pueblo ceramics is not easy work.  

Some of the pottery wares and types in this particular study area are somewhat 

controversial (e.g., Shinarump wares) and difficult to distinguish from others. 

 The ceramic typology has a hierarchical classification system (Colton 1952).  

The first level of classification is ware.  A ware is identified based on materials used 

to make pottery, including clay and temper, according to Lyneis (1999).  Within each 

ware, types are identified based on the way the surface is finished (e.g., plain, 

corrugated or painted) or the painted design.  Another category is series. Originally, 

Colton defined series as “a group of pottery types within a ware which have genetic 

relation to each other” (Colton and Hargrave 1937).  However, the term series 

currently is used in a pragmatic sense (Lyneis 1999), as a regional grouping of types.  
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Series is now used to assign the ware associated to specific region.  For example, 

Virgin series of Tusayan Gray Ware separates the sand-tempered pottery of the 

Arizona Strip and adjacent areas from that of the Kayenta area. This category is 

problematic because it is not clear whether the region means where the pottery was 

found or made.  This study involves pottery from only the Arizona Strip and adjacent 

areas and source of ceramics are identified through chemical compositional group.  

Thus, this category, series, is not used in this study.   

 To avoid the confusion, I will define the ware and types used in this study 

based on the version of the typology proposed by Lyneis (1999, 2008) with some 

modifications listed below. The main focus of this study is the procurement of clay 

and temper for the production of ceramics.  Thus, for this purpose, the presence of a 

slip coating the sherd surface was not considered in distinguishing wares (e.g., white 

ware is with a slip, gray/brown ware is without slip). 

 Moapa Ware:  Sherds with olivine temper are Moapa Ware. The types 

included in this study are: Moapa Plain (MP), Moapa Plain fugitive red (MPF), 

Moapa Corrugated (MC), and Moapa Black-on-gray (MBG). 

 Tusayan Gray Ware:  Sherds with sand temper in a light-to-medium-gray clay 

are Tusayan Ware.  Colton (1952) identified two gray wares: Tusayan Gray Ware and 

Tusayan White Ware (slipped).  Slips on some of the surfaces of the sherds included 

in this study are very difficult to identify with the naked eye.  However, the 

identification of slip is not the focus of this study.  Thus, a distinction between Gray 

and White Ware is not made.  Another ware, Shinarump Ware, also includes sand 
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temper.  The description of Shinarump Ware is still controversial, and it is very 

difficult to distinguish it from Tusayan Ware in some cases.  All other sand-tempered 

ceramics were categorized as Tusayan Gray Ware.  The types in this ware include 

Tusayan Plain (TP), Tusayan Plain fugitive red (TPF), Tusayan Corrugated (TC), and 

Tusayan Black-on-gray (TBG).  

 Shinarump Ware: Shinarump Ware has sand temper in a dark clay or vitrified 

red clay (Lyneis 1999).  As mentioned above, this is very difficult ware to identify, 

since the identification of clay color is very unclear.  In this study, only the sherds 

with extremely dark core (almost black) are considered as Shinarump Ware.  The 

types include Shinarump Plain (SNP) and Shinarump Black-on-gray (SNBG).  

 Shivwits Ware:  This ware includes crushed Moapa Ware sherds as temper 

(with some olivine within the sherds) in dark-gray clay matrix. The types in this 

ware include Shivwits Plain (SVP) and Shivwits Corrugated (SVC).  

 Tsegi Orange Ware (TO): There are at least three red wares found in the study 

area.  Tegi Orange Ware is a red/orange ware with sherd temper in an orange paste. 

 Shinarump Red Ware (SNA): This red ware includes sand temper in dark, 

red, or vitrified clay. 

 San Juan Red Ware (SJR): The dominant temper in this red ware is andesite.  

 Unidentified Red Ware (RED): The red wares not categorized as Tsegi 

Orange, Shinarump Red Ware or San Juan Red ware, are grouped as unidentified red 

ware.  
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 Polychrome (POL): Since there are only a few polychrome sherds included in 

the study, no ware types were assigned.  They were categorized simply as 

polychrome.  

 

Optically Stimulated Luminescence Dating 

  In order to examine the relationship between the compositional groups in the 

ceramic clay matrix and time, ceramic samples from each compositional group have 

to be dated.  Radiocarbon (14C) dating is the chronometric technique most often used 

by archaeologists for dating artifacts.  However, this usage for any ceramic 

assemblage has several problems, the first of which is accuracy: the temporal 

relationship between the radiocarbon-dated event and the targeted event is often 

unknown (Lipo et al. 2005).   

Wood charcoal is used most often in many archaeological contexts for 14C 

dating.  For example, the wood charcoal may have originated from the wooden 

beams used to construct pueblos at the site or it may have been used as the fuel for 

firing pots or cooking.  Whatever its use, the dated event determined by 14C dating 

on wood charcoal is the death of a tree.  The targeted event in this study is the 

production and use of the pots at the site.  If the wood charcoal was from a part of 

the building where the pots were likely used, then we cannot know if the production 

and use of these pots happened at the same time that the tree was cut down or died.  

What is more likely is that the construction of the building long predated the 

production and use of the pots.  Even if the wood charcoal is from wood used as fuel 
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for firing pottery, the dated event may not be contemporary with the targeted event.  

Noted as an “old wood problem” (Schiffer 1986), the 14C dates for the wood 

charcoal can potentially indicate earlier dates than targeted events such as the last 

use of the hearth, since fuel woods may have been dead for decades before use.   

The second problem in associating 14C dates with ceramic samples is related 

to the special association between 14C samples and potsherds.  The main concern is 

that the spatial association between the sherd and the radiocarbon sample is not 

always a reliable indicator of a temporal association (Lipo et al. 2005).  Carbonized 

corn or annual seeds from a house floor can be used for 14C dating to avoid the old 

wood problem discussed above.  However, even in this case, it is not certain that the 

dated radiocarbon sample, which is spatially associated with the sherd sample, is the 

same age due to various transformational processes (e.g., animal burrowing and 

erosion).  Thus, using 14C dating to examine the age of a ceramic assemblage 

involves several uncertainties and a more direct dating technique for ceramics is 

necessary for creating a high-resolution chronological sequence of a ceramic 

assemblage.   

  Luminescence dating of ceramics is a well-established technique that avoids 

the ambiguity of the association between dated events and targeted events (Dunnell 

and Feathers 1994; Feathers 2003; Lipo et al. 2005).  Therefore, luminescence dating 

should be a suitable alternative for this study since it provides direct dating that is 

nearly free from the problem of the association between the dated materials and the 

pottery production.  Moreover, luminescence dating measures the time since the pots 
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were last exposed to a high heat, so the dated event is the firing of the pots for the 

last time, and this should be close to the target event in this study, which is the 

production and use of these pots.   

 

Background  

 The detailed principles and techniques for luminescence dating are discussed 

elsewhere (Aitken 1985, 1998).  Here, only a brief summary of luminescence dating 

is given based on the description of the technique by Feathers (2003) and an 

unpublished IIRMES luminescence dating lab report from California State 

University, Long Beach (Lipo and Sakai n.d.).  Luminescence dating is based on the 

emission of light (luminescence) from crystalline materials that have accumulated 

dose (e.g., dosage by natural radiation) over time by the absorption of natural 

radioactivity (Feathers 2003).  This method of dating is based on the principle that 

crystalline materials in ceramics, such as quartz and feldspar, trap electrons released 

by natural radiation into the materials, and these trapped electrons accumulate over 

time.  Then when sufficient energy is applied, these accumulated electrons are 

released in the form of light (Feathers 2003).  This amounts to a zeroing event.  A 

stimulus required to release the absorbed energy is either heat, resulting in 

thermoluminescence (TL) or, light, resulting in optically stimulated luminescence 

(OSL).  The amount of emitted light is proportional to the time since the last zeroing 

event.  Thus, the amount of time since a sample was fired or exposed to light for the 

last time can be determined when the amount of emitted light, the sensitivity of the 
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sample to luminescence and the dose rate is measured.  The age equation is 

expressed as follows: 

Age (ka) = DE (Gy) / DR  (Gy/ka) 

where DE is an equivalent dose in grays (Gy) (unit for absorbed dose) and DR is the 

average dose rate over time.  Age is shown in thousand years (ka) in this equation. 

An equivalent dose is the amount of radiation dose acquired since the last zeroing 

event, as calibrated against laboratory irradiation (Feathers 2003).  The dose rate 

consists of an internal component from the sample and an external component from 

the environment (Feathers 2003), including the soil surrounding the sample as well 

as cosmic rays.  

 In general, laboratories conduct a luminescence analysis by extracting quartz 

grains from a sherd in the silt-to-sand size of 90–200 microns (coarse-grained 

analysis) or polymineral fine grains of 1–8 microns (fine-grained analysis).  Coarse-

grained quartz analysis has several benefits over fine-grained mixed minerals.  First, 

quartz has relatively few internal sources of radiation, so the interiors of the grains 

are not significantly influenced by alpha radiation.  Second, any influence of alphas 

on the surface may be greatly reduced by etching the grains with hydrofluoric acid 

(HF) in coarse-grain analysis.  This will minimize the required step of alpha 

calibration that is required for fine-grained analysis.  In addition, these grains are 

small enough to limit beta attenuation and avoid complex geometry due to 

irregularities of shape.  Quartz is also preferable over feldspars since it does not have 

problems with anomalous fading, which is a thermal loss of signal with time.  With 
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feldspars, fading is common and can result in the dates appearing younger than they 

really are.  In this dissertation, I chose to use coarse-grained quartz because of the 

apparent large amounts of quartz in the samples.  This study focuses on coarse-

grained, 90–125 micron, quartz.   

 To extract the minerals from the ceramic sample, the outer 2 mm of the sherd 

is removed using a rotary tool.  This outer portion is excluded from the luminescence 

dating since it was exposed to light, which presumably dates to “today” due to the 

bleaching by sunlight/room lights.  The removal of the outer portion also excludes 

influence of betas from the environment.  So only the interior portion of the sample 

was used for the dating process.  All procedures for the preparation are conducted in 

a dark room with minimal filtered light.  The extracted materials are subjected to the 

sample preparation procedure discussed later, including chemical treatment, grain 

size separation, mineral separation, and HF etching.  After the sample preparation 

process, the quartz particles are placed on several disks for measurement.  Each disk 

serves as a separate aliquot for which a date can be determined using a single aliquot 

regeneration technique (Murrary and Wintle 2000).   

 Each sample is analyzed by using the Risø TL/OSL Reader with blue-light 

(BOSL) and infrared (IROSL) stimulation discussed below.  To measure the 

equivalent dose in the sample, a single-aliquot regeneration sequence (SAR) protocol 

is used with a double IR “wash” to eliminate the signals from the feldspar.  When 

measuring optically stimulated luminescence (OSL), we stimulate the material with 

light, usually at a particular wavelength known to release luminescence from the 
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material in a well-understood and measurable fashion (400–550 nm range, centering 

at 470 ± 30 nm for quartz analysis in the IIRMES lab).  The amount of light released 

under stimulation is measured using a photomultiplier tube (PMT) with a UV filter.  

The release of energy simulates a “zeroing” event that empties crystals of the 

charged particles that have accumulated since the paleo-“zeroing event” (e.g., firing 

of the pots).  This “zeroing event” would have occurred during the exposure of 

crystals to the sun or substantial heat.  After the accumulated paleo-signals are 

measured, a series of subsequent measures are made by exposing the material to 

known amounts of beta radiation.  These measurements allow us to determine the 

rate at which luminescence is generated in the sample as a function of dose and thus 

the accumulated dose.   

 In addition, calculating a date requires an estimate of the radioactivity in the 

sample and in the surrounding environment (a dosimetry sample is measured to 

estimate radiation in the sherd, and radiation sample is measured for background 

sediments).  This results in the dose rate.  Because of the long half-lives of the 

relevant radionuclides, the current dose rate is usually assumed to be the average 

dose rate through time.  An annual dose rate of radiation is determined by measuring 

radioactivity that comes from uranium, thorium, and potassium isotopes in the 

sample and in the surrounding sediments.  For ceramic dating, the outer portion of 

the sample, which cannot be used for luminescence measurement, is often used for 

the dose rate analysis.  However, for this study, only the inner portion was used 

because some samples have INAA data for their inner portion, which allowed me to 
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cross-check the radioactive elemental concentrations of potassium, thorium, and 

uranium as determined by ICP-MS and portable X-Ray Fluorescence, which will be 

discussed later.  The contribution from cosmic rays is also estimated based on the 

elevation, latitude, and longitude, as well as the depth of the deposit from which the 

sample came.   

 Using the information discussed above, including the amount of the 

archaeologically accumulated luminescence signal, the sensitivity of a sample to 

radiation, the moisture content of a sherd and soil (moisture affects how much 

radiation reached the quartz grains), and the annual dose rate of radiation, a direct 

date can be calculated.  Since the zeroing event for ceramics is a one-moment event 

(e.g., firing of the pots), assuming all/most of the quartz is bleached at a temperature 

over 500°C, the averaged equivalent dose from multiple aliquots in one sample is 

used to estimate an equivalent dose for age determination.  Dispersion of an 

equivalent dose among aliquots in one sample is examined to estimate an equivalent 

dose of the sample using a central age model or a common age model, as is 

discussed later.   

 

History of Luminescence Dating and Ceramic Dating 

 In the past two decades, the application of luminescence dating has gradually 

increased in the study of ceramics in the U.S.  Several studies using luminescence 

dating for ceramics have been published, including the dating of ceramics from the 

American Southwest (Feathers 2000), Great Basin (Feathers and Rhode 1998; Rhode 
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1994), and the Mississippi Valley (Lipo et al. 2005; Feathers 2008).  During the past 

50 years, luminescence dating for heated materials and sediments has undergone 

three phases of development: the first 22 years (1957–1979) were devoted to 

development of TL dating for heated materials such as ceramics, the second phase 

(1979–1985) involved applying TL dating to sediment dating, and the third phase 

was the development after 1985 of OSL dating for sediments (Wintle 2008).  The 

basic procedure for TL dating was developed by Martin Aitken at the Oxford 

Laboratory (Aitken 1985).  OSL was originally developed for dating sediments 

(Huntley et al. 1985).  More recently, OSL has been used for dating ceramics on the 

premise that the heating events also reset the optically sensitive traps (Liritzis et al. 

2013), although TL dating has continued to be used for dating ceramics even after 

development of OSL (Feathers 2003).  OSL dating was applied to the dating of 

ceramic assemblages from the Mississippian Valley (Lipo et al. 2005: Feathers 2006, 

2008), and the Great Basin (Feathers and Rhode 1998; Eerkens and Lipo 2012).  

 The single-aliquot technique is the way that both the paleodose and the rate at 

which luminescence accumulates in the sample are measured by one aliquot 

analysis, while the multi-aliquot technique requires several aliquots to measure the 

rate of luminescence accumulation, which is required especially in TL dating.  

Single-aliquot OSL appears to be a useful complement for TL dating, as TL and OSL 

dates for the same sample agreed (Feathers and Rhode 1998).  Single-aliquot OSL 

dating has some advantage for ceramic dating.  One advantage of using OSL is that it 

requires a small sample size (Feathers 1997, 2003).  In addition, the application of 
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OSL has rapid and cost-effective throughput of the samples (Liritzis et al. 2013).  

These benefits of using OSL—small sample size and rapid and cost-effective 

analysis—have aided the development of chronologies in archaeology.  Many of the 

targeted events of interest in archaeology have duration, such as the duration of 

occupation of sites or use of the particular clay resources for pottery production.  For 

the occupations, durations can be up to several centuries and therefore a single date 

estimate based on an artifact or ecofact is not sufficient.  Instead, the distribution of 

multiple dates is required to estimate the duration of the event (Lipo et al. 2005).   

Consequently, it is crucial to obtain many single-age estimates to ascertain the 

duration of an event.  In this study, the unit of analysis is the source of a sherd and 

age.  Thus, single-aliquot OSL technique, which is a cost-effective method requiring 

only a small sample size, is the preferred way to estimate the time range of the event 

of interest.  To understand the change in the use of clay resources, multiple samples 

are analyzed by OSL to estimate the duration of the clay use.  

 

Measurement Protocols 

 The samples were prepared according to standard procedures modified from 

Aitken (1985) and Banerjee at al. (2001) and adopted from the University of 

Washington Luminescence Dating Laboratory under the direction of Dr. James 

Feathers.  In this study, the samples were prepared using a coarse-grained quartz 

protocol with grain size at 90–125 μ (Table 5.30), since quite a few quartz particles 

were recognized in most of the ceramic pastes and the sherds were large enough to  
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Table 5.30.  Coarse-grain Sample Preparation Protocol. 
 

Step Procedure 
1 
2 

Calculate percent water absorption  
Remove 2 mm outer portion 

3 Crush sample and disaggregate sample in shaker mill/mortar and pestle. 
4 Treat samples with HCL and H202 to remove carbonates and organics. 
5 Grain size separation using sieve (90-125 μ). 
6 Mineral separation using sodium polytungstate.  
7 Etching quartz surface by HF.  
8 Place quartz particle on the disks. 

 

extract quartz to make a few aliquots.  In this study, I conducted all work, including 

the preparation of the coarse grain samples, OSL measurement, and dosimetry 

analysis, at the Luminescence Dating Laboratory in the IIRMES Lab at CSULB.  

 

Sample Preparation 

 After taking photographs and initial physical measurements (e.g., weight, 

thickness), the water absorption was measured (Step 1) because the presence of 

water in the sample and the environment affected the dose-rate of the sample.  The 

sherd was covered by deionized water in a beaker and weighed after 24 hours 

(saturated weight).  Next, the sherd was dried in an oven at 60°C for 24 hours and 

then weighed (dry weight).  The water absorption was calculated as follows:  

Water absorption = (saturated weight – dry weight)/dry weight 
 

 After the water absorption was measured, all subsequent processes were 

undertaken in a dark room to avoid exposure to light.  Part of the sherd was saved as 

an archive sample and another part was used for dosimetry analysis.  Two 

millimeters from the outer portion of the remaining sherd was removed using a 
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rotary tool with very slow speed to avoid heating or sparking (Step 2).  The inner 

portion of the sherd was roughly crushed and disaggregated using an agate mortar 

and pestle (Step 3).  Then the disaggregated sample was treated with hydrochloric 

acid (HCL) and hydrogen peroxide (H2O2) to remove carbonates and organics, 

which can have spurious luminescence effects (Step 4).  The disaggregated sample 

was transferred with deionized (DI) water into the beaker to which a small amount of 

HCL was added.  After the reaction by HCL was completed, a small amount of 

H2O2 was added.  Neither the Mt. Trumbull or lowland Virgin sherds included much 

limestone and the sherds were fired until most of the organics were burnt out.  Thus, 

the chemical treatments of the samples involved in this study were completed in less 

than two hours.  After completing the chemical treatments, the acid was rinsed off, 

and the rest of the samples were separated using 90-μ and 125-μ screens (Step 5).  

The samples with grain sizes of 90–125 μ were dried completely in the oven at 60°C, 

and the mineral separation of the samples was conducted using sodium 

polytungstate, which is a heavy liquid.  Because quartz has a specific gravity of 2.65 

g/cm3, the samples were separated using sodium polytungstate with a density of 

2.68.  The light fraction from this separation was dried and then the quartz was 

separated from the K-feldspars using sodium polytungstate with a density of 2.58 

g/cm3.  In order to eliminate the portion of the grain that had been given a signal due 

to the alpha particles, the surface of quartz needed to be chemically etched (Step 7).  

The dried quartz was added to about 5 ml of hydrofluoric acid (HF) and soaked for 

40 minutes to remove the surface of quartz.  After HF was neutralized, a small 
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amount of HCL was added to rinse away the chemical byproducts of the HF etching: 

CaF2.  Dried quartz samples were placed onto the disks for the luminescence 

measurements (Step 8).  

 

Luminescence Measurements 

 Luminescence signals were measured by an automated Risø TL/OS 12B/C 

reader with calibrated beta sources (90Sr) to evaluate the rate of luminescence signal 

accumulation.  In this study, blue-light OSL (BOSL) stimulation was used with a 

single aliquot regenerative dose (SAR) protocol (Murray and Wintle 2000).  To 

obtain TL measurements, multiple aliquot additive doses are necessary and multiple 

aliquots require a larger sample size.  For OSL measurement, however, a SAR that 

requires a much smaller sample size can be used.  The SAR protocol allows us to 

complete the measurements of an equivalent dose in one aliquot analysis.  A U-340 

filter was used to eliminate spillover from stimulation light and thus isolate the 

sample luminescence.  A double-IR “wash” was used to eliminate contributions to 

the luminescence signal by feldspar contaminations (Banerjee et al. 2001), although 

feldspar should have been excluded at the stage of sample preparation in this study.  

For this step, samples were stimulated using infrared diodes.  Table 5.31 outlines the 

SAR BOSL stimulation sequence used for this study.   

 In the SAR protocol, accumulated luminescence (paleodose) was measured 

as a part of the stimulation sequence.  The rate at which radiation creates 

luminescence signals was measured through a series of beta irradiations.  The aliquot 
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Table 5.31.  OSL/SAR Sequence (BOSL). 
 

Step Procedure 
1 Give dose, D1, for 5 s 
2 Preheat sample to 240°C for 10 s 
3 Stimulation with infrared light at 125°C for 50 s 
4 Stimulation with infrared light at 200°C for 50 s 
5 Stimulation with blue light at 125°C for 100 s 
6 Measure OSL  
7 Give test dose, Dt, for 15 s 
8 Heat reduced to 160°C for 5 s 
9 Stimulation with infrared light at 125°C for 50 s 

10 Stimulation with infrared light at 200°C for 50 s 
11 Stimulation with blue light at 125°C for 100 s 
12 Measure OSL  
13 Repeat steps 2–12 

  

was irradiated by beta source for 10, 20, 30, 40, 50, and 70 seconds.  The response 

curve based on these artificial doses was used to determine the equivalent dose, 

which is the amount of radiation that must have been present to generate the  

 

 
 
Figure 5.43.  An example of a regeneration curve and the interpolation of the natural signal to 
determine equivalent dose(s).  For this sample (LB655_3), the equivalent dose(s) is 43.83 ±  0.7.  
Each point on the curve is the luminescence from an artificial dose divided by the luminescence 
from the test dose.  
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paleoluminescence signal.  An example of the regeneration curve and the equivalent 

dose (s) is shown in Figure 5.43.  When using the SAR protocol, several checks and  

tests are required to ensure the equivalent dose is valid.  For this study, the criteria 

for passing these tests were as follows: (1) a recycling ratio limit 20 percent to 

ensure the sensitivity correction is consistent for an identical dose (Liritzis 2013), (2) 

a maximum test dose error of 30 percent, and (3) signals > 3 sigma above 

background.  Any equivalent dose that did not pass these criteria was rejected. 

 

Estimation of Averaged Equivalent Dose and Error 

 To estimate the mean value of the equivalent dose and error, the dispersion of 

the equivalent dose values among aliquots in one sample was considered.  Two 

alternative statistical models were used based on the distribution of the equivalent 

dose.  When equivalent doses were the same or very similar for all aliquots with no 

overdispersion, the “common age” model was used to average the equivalent dose 

and error.  When the equivalent doses were dispersed, the “central age model” was 

used (Galbraith and Roberts 2012).  The overdispersion refers to the amount of 

spread beyond what can be accounted for by measurement error. Overdispersion rate 

in this study indicates the ratio of aliquots beyond two standard deviations based on 

the averaged value.   
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Dose Rate Information   

 At the IIRMES facility at in CSULB, measurements were taken to determine 

the amount of radioactivity that was present in the sample and the local environment.  

Measurement of the annual radiation dose rate was calculated from the amount of 

these elements in the surrounding soils as well as estimates of cosmic rays at the 

location of the deposit.  For the latter purpose, the location of the sherd (latitude, 

longitude, the elevation of the site, as well as the depth of the deposit) is required.  

For the analysis of thorium and uranium, laser ablation Time of Flight ICP-MS (LA-

ICP-MS) was used.  Detailed information about LA-ICP-MS was described above in 

the section concerning the analysis of LA-ICP-MS in the compositional analysis.  

Both the sherd and its surrounding soil were ground into extremely fine powder with 

a mortar and pestle and then added to a 40-ppm indium internal standard solution.  

The samples were dried and then mixed thoroughly using a shaker mill.  Since LA-

ICP-MS is a point analysis, it is extremely important to homogenize the solid 

material with a heterogeneous matrix such as ceramics.  Mixed samples were made 

into pellets with a binding powder by using a 15-ton geological sample press.  The 

resulting pellet was analyzed for more than 45 elements, including thorium and 

uranium, by using LA-ICP-MS.  The same settings (e.g., laser power, scan speed) 

were used for the clay matrix analysis as discussed above in the section on 

compositional analysis.  Three analyses were conducted on each sherd using LA-

ICP-MS, and averaged elemental concentrations were used for dose rate information.  

All intensity counts were normalized to the internal standard (indium 40 ppm), and 
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calibration curves for each element were generated using external calibration 

standards, including SRM 610, 612, and 679 (fired-brick clay).  Since all samples 

were prepared as pellets, these standards were also made into pellets at 60 percent 

dilution before the analysis.  

 In order to obtain the concentration of potassium, the same pellets were 

analyzed using a Bruker portable X-ray Fluorescence (pXRF) instrument.  The 

pellets were measured with a titanium filter and a 28-micro-amp current setting and 

15kV voltage utilizing a vacuum for five minutes to simulate low-energy elements, 

including potassium.  All raw counts were calculated into the concentrations by the 

calibration curves based on 30 ceramic samples with known concentrations through 

INAA and ICP-MS analysis, as well as SRM679 and the New Ohio Red Clay 

standard (Table 5.32).  As mentioned in the background to luminescence dating 

section above, only the inner part of the sherd was used for dose rate measurements 

in this study.  Therefore, the elemental concentrations on these pellet samples also 

provide information that is potentially useful for a sourcing and compositional study 

as bulk data.   

 

Table 5.32.  XRF settings and calibration.  
 

XRF setting for low energy elements (Mg, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe)  
 Voltage: 15 kV 
 Current: 26 micro amp 
 With Vacuum and Ti filter 
 Time: 5 minutes 
Calibration standards 
 Thirty ceramic samples with INAA and LA-ICP-MS known values 
 SRM 679 and New Ohio Red Clay 
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Table 5.33.  Number of sherds with OSL dates. 
 

Group OSL dates (Total Sherds in the Compositional  Group) 
Group 1G 29  (242) 
Group 1VM 11 (55) 
Group 1VV 14 (156) 
Group 2 27 (185) 
Group 3 9 (24) 
Group 4 10 (23) 
VR1 8 (22) 
VR3 5 (22) 
Total 113  

 

Results of OSL Dating in This Study 

  In this study, I conducted OSL dating on 113 sherd samples for which 

compositional information was also available (Table 5.33).  Five to 29 samples from 

each compositional group were chosen for this analysis.  Samples were not chosen 

evenly, as some of the groups include more samples than others.  Although an effort 

was made to choose sherds with variations in surface treatment and temper, they do 

not represent the whole population of ceramic physical attributes in the 

compositional group.   

 

Evaluation of Equivalent Dose 

 Overall, the luminescence signals of sherds from both Mt. Trumbull and the 

lowland Virgin are strong and easily measured (Figure 5.43).  Although the majority 

of the samples have strong OSL signals, some of the samples in the VR1 group had 

weak signals and they also produced relatively younger dates than expected.  Ideally 

the sherds for OSL dating should be thicker than 4–5 mm, since the outer 2 mm 
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surface is removed before the OSL analysis.  Although many of the VR1 sherds are 

relatively thin, they were analyzed.  Even thin sherds sometimes give enough OSL 

signals.  However, the dates obtained on some of the VR1 sherds may suggest that 

they probably experienced light contamination that resulted in loss of OSL signals.     

 After the naturally accumulated signal was measured, subsequent measures 

were made by exposing the material to calibrated amounts of radiation as discussed.  

These measures allowed us to determine the rate at which luminescence signals are 

generated in the sample. From these analyses, the regeneration curves of most 

aliquots were shown to be linear.  Generally a linear relation indicates a predictable 

relation between radiation and luminescence.  Either a linear or exponential linear 

curve was applied to most of the aliquots in this study.  After the measurements of 

OSL signals were taken, each aliquot was carefully examined and only the 

equivalent dose of aliquots that passed the criteria discussed above was accepted.  

Although it was not often the case in this study, the aliquots that showed extremely 

small signals or “noisy” luminescence from calibrated known irradiation and did not 

show a linear relationship were rejected.  After each aliquot was examined, two out 

of 113 samples were excluded for the date determination, since I was able to extract 

only one aliquot from each sample and they did not pass all criteria (see detail 

discussion of criteria for equivalent dose to pass in Luminescence Measurement 

section above).  

 All accepted equivalent doses of the samples are shown in Appendix B: Table 

B1.  For the age determination, the averaged equivalent dose was used.  As 
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discussed, the central age model or common age model was used to summarize the 

equivalent dose values.  The overdispersion rates of most samples with a central age 

model are less than 20 percent, with some exceptions.  The overdispersion rate 

information was considered when evaluating the final dates.  Using the dose rate 

information from the sherds and surrounding sediments (Appendix B: Table B2) and 

locational information, thickness, and water absorption (Appendix B: Table B3), the 

final dates were calculated.  All dates were evaluated for reliability after they were 

calculated based on three criteria: (1) number of aliquots, (2) error term of the age, 

and (3) overdispersion rate if the sample has more than one aliquot.  Error term is 

calculated on the years before present as follows.   

Error term (%) = Error (ka) / Age (ka) 

For example, if the date of a sample is A.D. 414 (1600 years) ± 200, then the error 

term of 200 is 12.5 percent.  Overdispersion rate indicates the ratio of aliquots 

beyond two standard deviations based on the averaged value.  The cut-off to pass the 

criteria for number of aliquot is more than two, for error term it is set at 15 percent 

and for overdispersion it is at 25 percent.  Based on three criteria, the dates were 

ranked with A as most reliable date.  If the sample passes all three criteria, then A 

was assigned.  B was assigned to the sample that passes only two criteria and C to 

the samples that passes just one.  If a sample does not pass any of the criteria, then D 

is assigned.  The totals of 87 As, eight Bs, 13 Cs, and three Ds were assigned to all 

111 samples.  These ranks were used when the dates are compared for the change in 

248



the compositional groups.  The results of age evaluation for the 111 samples are 

shown in Appendix B: Table B4.   

 

The Background Sediment Sample Issue in the Lowland Virgin Area 

 In Mt. Trumbull, the background sediment samples (radiation sample) for 

OSL dating were collected from the same context as the sherds, or at least within a 

50-meter distance from the sherds at the same site.  Thus, there is no uncertainty 

regarding the relationship between the sherds and sediment samples among the Mt. 

Trumbull OSL dates.  In the lowland Virgin area, however, some questions remain 

about the soil samples collected from the background environment, and it is 

uncertain whether these soil samples collected for the OSL analysis represent the 

same radiation level as the soil context of the sherd samples.  Since the sherd 

samples were from a collection made during the 1970s, no sediment was collected 

from the same original provenience of the sherds.  In 2009, I made an effort to 

collect sediment samples in the lowland Virgin area.  Unfortunately, I was unable to 

relocate some of the sites identified in the original collection report.  Thus, the 

background sediment samples were collected from eight locations, and all of them 

are from possible landforms on which the sites exist: the top of a mesa, a riverbank, 

and the Virgin River flood plain, as discussed in Chapter IV.  In some locations, the 

matrix of the sediment was not homogeneous and included large rocks and sand.  

Although the finer grains within the soil could be the weathered products of these 

large rocks, both rocks and sandy soil were collected for the comparison.  Both LA-
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ICP-MS and XRF showed that the rocks and soil in the same context have relatively 

similar concentrations of potassium, thorium, and uranium (Table 5.34).  Note in 

Table 5.34 that each of the following pairs of samples, LB684_r1 and 2, LB684_r3 

and 4, LB684_r5 and 6, and LB684_r7 and 8, is from the same location.  Overall, the 

range of potassium, thorium, and uranium concentrations is relatively small for the 

sediment samples analyzed, except the sediment samples collected near the possible 

VR 22 site area (LB684_r5 and 5) from the west bank area (although no site was 

found at the location recorded on the original site record for VR22).  Rocks and soil 

were analyzed separately, and both showed similarly high levels of thorium.   

Therefore, these high thorium values are not an analytical error.  Four other sediment 

samples (LB684_r 1-4) were collected from the west bank area in addition to these 

samples with high thorium values (LB6894_r 5&6), and these four samples have 

much lower thorium (4–10 ppm), as generally expected.  Because all samples on the 

west bank were collected within a two-km diameter area, the high-thorium sediment 

is likely from a distinct “hot spot” that may contain some unique minerals or rocks.  

Based on these results, the high-thorium sediment samples (LB684_r 5&5) were 

excluded from the dose rate information used to generate the final dates of most of 

the samples.  VR22, 23, 24, and 26 are located within a 500-meter diameter area 

based on the original report on the west bank, and the sediments were collected 

adjacent to these sites.  Although the average dose rate values of the west 

bank(LB684_r1-4) were used for the final dates of the samples from VR22, 23, 24, 

and 26, the dates based on the high-thorium sediment (LB684_r 5&6) were also
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Table 5.34.  Summary of radiation samples from the lowland Virgin area. 
 

Sample ID Area Provenience Materials K (ppm) Th (ppm) U (ppm) 
    XRF ICP-MS ICP-MS 
LB619_r 1 East bank VR13 soil 18301.19 9.07 0.37 
LB619_r 2 East bank VR11? soil 14579.78 4.51 0.55 
LB619_r 3 East bank VR3 soil 16934.57 6.42 0.59 
LB619_r 4 East bank VR14 soil 13612.46 7.14 0.75 
LB619_r 1-4 East bank Average of sediments from east bank soil 15857.00 6.78 0.57 
LB684_r 1 West bank Between VR19&22 soil+rock 13315.32 5.60 0.34 
LB684_r 2 West bank Between VR19&22 soil only 13897.82 7.80 0.92 
LB684_r 3 West bank Near possible VR19 soil+rock 8671.10 4.05 0.36 
LB684_r 4 West bank Near possible VR19 soil only 10388.15 10.33 0.55 
LB684_r 1-r 4 West bank Average of sediments from west bank 

except LB684_r 5&r 6 
soil+rock 11568.10 6.94 0.54 

LB684_r 5 West bank Possible VR22 soil+rock 5071.90 32.90 0.11 
LB684_r 6 West bank Possible VR22 sand only 6087.32 22.60 0.20 
LB684_r 7 Mormon mesa 6 km from VR19 sand+rock 8512.19 2.36 0.42 
LB684_r 8 Mormon Mesa 6 km from VR19 sand only 6425.08 4.22 0.24 
LB614_r1-4, LB684_r1-4 and r 7, r 8 all Average all lowland Virgin sediments  

except LB684_R 5 &6 
soil+rock 10590.59 5.08 0.44 

LB614_r 1-4, LB684_r 1-4  all East and west bank sediments average Soil+rock 13712.55 6.86 0.55 
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 evaluated.   

 Sediment samples were chosen by carefully examining the distance between 

the location of the site where the sherds were collected and that of the sediment 

sample collection for the lowland Virgin ceramic dating (Figure 4.2 in Chapter IV).   

A summary of the lowland Virgin sediment samples is presented in Table 5.34.  VR 

7, located upstream along the Virgin River, and VR 32, 33, and 35, located 

downstream close to Lake Mead, may be too far from any of the collected sediment 

samples, thus the final dates were evaluated more carefully.   

 At Mt. Trumbull, the background sediments were collected with sherds in the 

test excavation.  A few sediment samples were collected for dating the surface 

collection sherds within 50-meter diameter radius of the same site.  The 

concentrations of potassium, thorium, and uranium of most of the sediments in Mt. 

Trumbull are similar.  The final dates are shown in Appendix B: Table B4.  In the 

following section, the evaluation of the final dates for each compositional group are 

discussed.   

 

Evaluating Equivalent Dose and Dates in Each Compositional Group 

 As discussed above, the final dates are evaluated for the reliability based on 

three criteria: number of aliquots, error term, and overdispersion.  The date is 

assigned as A if it passes three of them, B if passes two and C if passes one.  The 

following section will summarize the evaluation of dates in each compositional 

group.  The summary of the dates is presented in Appendix B: Table B4.   
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Group 1G 

 Twenty-nine samples were analyzed by OSL dating in Group 1G and 22 

dates are evaluated as A, five dates as B, and two dates as D.  One of the samples 

evaluated as D––MT204-28 (LB126) dating A.D. 1683 ± 93––was rejected since this 

sample has only one aliquot with a very weak signal, which consequently revealed a 

very high error term (28.2 percent).  The other sample with D is MT30-10 dating 

A.D.769 ± 199.  This sample is assigned a D because it is based on only one aliquot 

that produced a date with high error terms.  However, the OSL signal was strong and 

the error term (16 percent) is just beyond the cut-off.  For these reasons, MT30-10 

was not rejected and included for the examination of compositional analysis and 

time.   

 Five samples are evaluated as C.  Three of them are based on only one 

aliquot: MT30-40, VR22-4, and VR27-6.  Since all of them are based on strong 

signals with an error term less than 15 percent, these dates were accepted.  However, 

these dates need to be evaluated carefully when examining the relation between the 

use of clay and time.  The date of MT30-40 (LB146) is A.D. 205 ± 205, which is a 

little older than traditional dates for the start of ceramic production in the area 

(Basketmaker III starting A.D. 400).  VR22-4 (LB1078) is from the VR 22 site close 

to the collection of the high-thorium (LB684_r 5&6) sediment previously discussed.  

Consequently, the average of sediment samples from the west bank of the Virgin 

River without high-thorium samples was used as sediment information.  The final 

date reported here is A.D. 521 ± 172 based on the west bank average.  Using the 
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average of high-thorium sediments, LB684_4 and 5, the date is A.D. 849 ± 126; thus, 

the date may be later than that reported here.  Two samples assigned as C are based 

on multiple aliquots but raise some concerns.  Both MT14-70 and VR32-7 have large 

error terms and high overdispersion rates. The dates of MT14-70 is A.D. 1313 ± 304 

with a 43.3 percent error term and 60.1 percent overdispersion and the date of VR32-

7 is A.D. 553 ± 319 with 21.8 percent error term and 53.1 percent overdispersion 

rate.  Both samples have strong OSL signals, so they were accepted.  However, due 

to these high error term and overdispersion, these dates may or may not be valid.   

 The date of MT136-7 (LB148) is A.D. 1655 ± 28, which is too late for the 

traditional arguments on the Ancestral Pueblo occupation in the study area.  

However, it was accepted since the OSL signals were strong and passed three 

criteria.  It is possible that the date of this sample represents a post-depositional 

event, such as the reuse of the pot by later occupants of the area, the Southern Paiute.   

 The dates for a few samples leave some uncertainty about the dose rate 

information of the background sediment from the lowland Virgin previously 

discussed.  The date of VR35-6 (LB1077) is A.D. 388 ± 132 based on the average 

value of the Virgin River west bank sediment samples (Table 5.34).  The OSL signals 

of all aliquots are strong and they are not dispersed as their overdispersion is just 3.5 

percent.  Thus, the equivalent dose is solid.  However, no sediment samples were 

collected within 5 km for VR32, 33, 35, and 38, and the location of sediment 

samples used for this sherd is at least 5 km upstream.  Thus, the dates may be 

different if the sediment samples were collected adjacent to the VR35.  VR24-1 
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(LB875) is close to the location of sediment sample with high thorium.  The final 

date, which is A.D. 849 ± 118, is based on the west bank average.  Using the average 

of the high-thorium sediment samples, LB684_4 and 5, the date would be A.D. 1107 

± 86.  In conclusion, 28 samples out of 29 are accepted, although some careful 

evaluation will be required for the dates with an evaluation of C and D when 

examining chronological change in the use of clay resource of the sherds.  

Group 1VM 

 Eleven sherds were selected for OSL dating from Group 1VM, and dates for 

all samples are accepted.  The dates for three samples are evaluated as C, two of 

which are based on a single aliquot.  MT131-168 (LB1113) dates to A.D. 696 ± 105 

with 8.0 percent error term based on a single aliquot.  The date for MT214-8, based 

on a single aliquot, is A.D. 1465 ± 43, which is a little late, considering the 

traditional argument about Ancestral Pueblo occupation.  However, these dates based 

on a single aliquot are accepted, since OSL signals are strong and error terms are 

relatively small.  The other sample receiving C is MT30-36 (LB0098), dating to A.D. 

1091 ± 321 based on two aliquots.  Although this sample is accepted, it may or may 

not be valid, since the error term and overdispersion rates are very high (34.8 percent 

and 47.4 percent, respectively).  Two samples are assigned to B: both MT30-151 and 

MT136-76 entail relatively high error terms (15.4 percent and 16.2 percent, 

respectively). MT30-151, dating 1304 ± 109, is accepted, because the date is based 

on multiple aliquots with strong OSL signals.  The date for MT136-76 (LB1111) is 

A.D. 1815 ± 32, which is too late for the Ancestral Pueblo occupation.  This date is 
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accepted because of very little dispersion of three equivalent doses.  However, the 

OSL signals are very small, and two other aliquots did not pass the criteria.  Thus, 

this date is a somewhat questionable.  The date for TW143 (LB1114) is A.D. 569 ± 

149 and it is evaluated as A.  However, the signals of all aliquots in this sample are 

extremely small, thus it may or may not be a reasonable date.   

Group 1VV 

 Fourteen sherd samples from Group 1VV were selected for OSL dating, but 

one sample was rejected since the sample has only one aliquot, of which the 

equivalent dose did not pass all criteria.  Thus a date was not calculated for this 

sample.  The dates for all remaining 13 samples are accepted.  Eleven samples are 

evaluated as A, one is B, and one is C.  The date for VR17-2 (LB679) is A.D. 1478 ± 

93, which may be too late for the Ancestral Pueblo occupation in the lowland Virgin 

area.  This date is evaluated as C, due to large error term (17.4 percent) and 

extremely high overdispersion rate (39.9 percent).  Although it is accepted due to its 

strong OSL signals, this date may or may not be valid.  MT136-336 (LB1130) is 

assigned B since the overdispersion of seven aliquots is very high (30 percent).  

VR26-1 (LB1121) is from the VR26 site, which is close to the location of sediment 

sample with high thorium.  The final date, for VR26-1 (LB1121), is A.D. 866 ± 119 

based on the west bank average sediments.  Based on the average of high-thorium 

sediments, the date of this sherd may be later, A.D. 1078 ± 84.   
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Group 2 

 Twenty-seven samples were selected for OSL dating, but one sample was 

rejected because the sample has only aliquot, of which the equivalent dose did not 

pass all criteria.  Thus no date was calculated on this sample.  The dates were 

calculated on the remaining samples.  Twenty-one samples are evaluated as A, one as 

B, three as C, and one as D.  The date for MT30-18 (LB0135) is A.D. 1984 ± 10, 

which is evaluated as D.  This date was rejected because it is based on only one 

aliquot with weak OSL signals that resulted in a large error term (34.5 percent).   

 Three samples are assigned C because their dates are based on single aliquot.  

Dates for MT204-13 (LB0097), which is A.D. 490 ± 110; MT71-39 (LB0119), 

which is A.D. 587 ± 85; and MT131-14 (LB0129), which is A.D. 476 ± 115 are all 

accepted since the OSL signals are very strong.  MT71-40 (LB0120) is evaluated as 

B because the error term is high (17.3 percent).  Although this is accepted due to 

strong OSL signals, relatively high overdispersion rates of two aliquots raise a 

question about this date.   

 The dates for five samples are too late based on radiocarbon dates for the site, 

as well as the traditional arguments about the Ancestral Pueblo occupation in these 

areas: MT136-27 (LB0099) dating to A.D. 1656 ± 32, MT136-16 (LB0131) dating to 

A.D. 1730 ± 17, MT204-4 (LB133) dating to A.D. 1581 ± 33, MT136-9 (LB0258) 

dating to A.D. 1592 ± 30, and MT30-260 (B0599), dating to A.D. 1461 ± 52.  All 

five dates are evaluated as A because of small error terms, very strong OSL signals, 

and low overdispersion rates.  It is interesting to note that the proportion of the 
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samples that date too late in Group 2 is much higher than for any other 

compositional groups.  The Group 2 sherds are characterized by a dark core color, 

and it may be that the sherds with late dates could be from pottery made by the 

Southern Paiute, the possible later occupants in the area.  However, none of these 

samples are typical Paiute sherds, which have a very crude and rough surface with 

dark surface and core colors. This suggests that these sherds are not Southern Paiute, 

and that they are result of post-depositional events related to later occupants or to 

natural disasters such as wildfires.   

Group 3  

 Nine sherd samples were selected for OSL dating and all dates were 

accepted.  Eight samples are evaluated as A and only one is evaluated as B. MT30-81 

(LB0107) yielded a date of A.D. 1472 ± 84, which is a little late for Ancestral Pueblo 

occupation in this area.  This sample is assigned as B, due to a high error term (15.5 

percent).  Although strong OSL signals support this date being accepted, two aliquots 

for this sample do not agree, which results in a relatively higher dispersion rate.  

Thus, this date is questionable.  The date for MT71-57 is A.D. 1467 ± 37, which is 

also a little late.  However, this date was accepted because six aliquots had strong 

OSL signals and overdispersion of equivalent doses was about 10 percent, which 

justifies an A assignment.  It is possible that this date represents an after-deposit 

event.   
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Group 4 

 Ten samples from Group 4 were selected for OSL dating, and all samples 

were evaluated as A and accepted.  Two samples appear to be extremely early dates.  

The date of VR21-22 (LB1100) is 95 ± 207 BC based on nine aliquots.  This sample 

yielded strong OSL signals with a relatively small error term (9.8 percent) but 

relatively high dispersion of equivalents among nine aliquots (14.9 percent).  Of 

note, the potassium concentration in the sherd (dosimetry) is extremely small (3012 

ppm) (Appendix B: Table B2).  There are five more dates from the same site, VR21, 

from which this sample came, and all dates are much later than this sample (A.D. 

763 ± 243 for LB1092, A.D.1075 ± 125 for LB1075, A.D. 509 ± 151 for LB624, 

A.D. 1154 ± 110 for LB1107, and A.D. 838 ± 124 for LB1129) (Appendix B: Table 

B4) and a 14C date for this site is A.D. 960 (Larson and Michaelsen 1990).  Thus, the 

date of sample VR21-22 (LB1100) is an outlier and should not be included in the 

analysis of compositional groups and time.  The date for VR7 (LB1102) is 373 ± 206 

BC, which is also extremely early.  This date is, however, accepted because the OSL 

signals of nine aliquots were strong, the error term is relatively small (8.6 percent), 

and the overdispersion rate among the equivalent doses is small.  However, there are 

a few uncertainties associated with this date.  No sediment samples were collected 

near VR 7 and the potassium concentration of the sherd is very small (3025 ppm).  

Another date for VR 7 is A.D. 1073 ± 73 (LB1086), and a 14C date is A.D. 1130 

(Larson and Michaelsen 1990).  Thus, this extremely early date for VR7 (LB1102) is 

also an outlier and should be excluded for the analysis of compositional groups and 
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time.  The date of VR35-4 (LB1106), A.D. 229 ± 183, also appears to be too early 

for the ceramic production in the lowland Virgin.  However, it was accepted because 

the OSL signals of four aliquots were strong, the overdispersion of equivalent doses 

is small, and the error term also is small (10.3 percent).   

 VR1 

 Eight samples from VR1 were selected for OSL dating.  All dates were 

accepted, although three of them had very weak OSL signals.  The ratio of the 

samples from VR1 with small OSL signals is much higher than that for other 

compositional groups.  Interestingly, all three samples with very low OSL signals are 

from the same site in Mt. Trumbull—the 30 BLM site.  However, it is not certain 

that the provenience of the sherds is the cause for low OSL signals since they were 

from different depths of the deposit, and most of the sherds from 30 BLM in other 

compositional groups had stronger signals.  One possible cause could be the thinness 

of the sherds, which may have caused partial bleaching.  However, two of the sherds 

from the lowland Virgin in the 1VV group also were relatively thin but produced 

stronger OSL signals, so it is not conclusive that the weak OSL signals for sherds 

from 30 BLM were due to the thinness of the sherds.   

 Five samples are evaluated as A, 2 as B, and 1 as C.  The sample assigned a 

C, MT30-77 (LB1094), yielded a date of A.D. 1402 ± 81, which seems a little 

young.  There are four aliquots for this sample and all OSL signals were weak.  One 

of the aliquots yielded extremely small signals that did not exhibit a peak and 

therefore was rejected.  Regenerated values from one of the aliquots were scattered, 
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which provides a less reliable equivalent dose, and one aliquot did not pass the 

criteria.  Thus only one aliquot was accepted for MT30-77.  Although this date based 

on single aliquot is accepted, it may or may not be valid since the date entails 

relatively large error term (13.3 percent).  Two samples are assigned B.  VR21-11 

(LB1092), dating to A.D. 790 ± 238, has a large error term (19.5 percent).  Although 

this date is accepted, it is questionable since overdispersion of two aliquots is 

relatively high (23.5 percent).  VR17-5 (LB1098) dates to A.D. 1188 ± 107 and is 

also evaluated as B because of a high overdispersion rate (28.6 percent) for seven 

aliquots.   

 Two samples evaluated as A raise some concerns due to extremely small OSL 

signals. The date for MT30-266 (LB1093) is A.D. 1494 ± 62, which seems a little 

late.  The OSL signals of four aliquots were too small as most of the regenerated 

signals were scattered.  One aliquot was rejected because it did not pass the criteria.  

This sherd is very thin, about 4.5 mm, and its inner part may be partially bleached.  

The date of MT30-201(LB1097) is also quite late (A.D. 1529 ± 48), and the OSL 

signals from all four aliquots were very small.  Since equivalent doses of three 

aliquots that passed the criteria agree (Appendix B: Table B1), the date was 

accepted.  However, the signals from regeneration were relatively scattered.  In sum, 

these two dates may not be valid.   

VR3 

 Five samples were selected for OSL dating and all dates were accepted.  Four 

samples are evaluated as A and one is as B.  VR28-2 (LB1090), dating to A.D.1156 ± 
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95, is assigned B due to a high overdispersion rate of eight aliquots (25.4 percent).  

VR23-4 (LB1087) was from the site, which is close to the location of sediments with 

high thorium.  The final date of VR23-4 (LB1087), based on the average value from 

the west bank, is A.D. 602 ± 121.  Using the sediment samples with a high-thorium 

value (LB684 r 5&6), the date for this sample is A.D. 850 ± 90.   

 In summary, this chapter has examined the compositional diversity among 

the ceramic samples from Mt. Trumbull and the lowland Virgin area, and eight 

compositional groups were identified.  At least two groups have a Mt. Trumbull 

source, and two groups have a lowland Virgin source.  One group has an unknown 

source.  A total of 111 samples from the compositional groups were dated using OSL 

dating.  As discussed above, two of the samples that were assigned D were excluded 

from examination of compositional groups and time.  In the next chapter, the 

compositional data and OSL dates are combined in order to evaluate what these 

compositional groups represent in terms of ceramic production and consumption 

patterns and how those patterns changed over time.   
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Chapter VI: ANALYTICAL RESULTS 

 

  As a result of the analysis presented in the previous chapter, I found eight 

groups in the compositional data derived from laser ablation ICP-MS (LA-ICP-MS) 

analysis of the clay matrix of ceramics from Mt. Trumbull and the lowland Virgin 

areas.  I also dated sherds from each compositional groups using optically stimulated 

luminescence (OSL) dating.  In this chapter, I will first examine what compositional 

groups found in the clay-matrix data represent in terms of production locations, raw-

material choice, and paste preparation and then will use the OSL dates to examine 

how resource choices and clay preparation changed over time.   

 

Interpretation of Compositional Groups 

 As discussed in the previous chapter, the LA-ICP-MS elemental analysis of 

ceramic matrices demonstrates that at least eight compositional groups exist among 

the ceramics from the Mt. Trumbull and lowland Virgin areas.  The analysis 

presented in the previous chapter also shows that at least two of the groups are Mt. 

Trumbull local groups and two are the lowland Virgin local groups, when comparing 

raw clay samples with the ceramic compositional groups.  These interpretations are 

supported in the present chapter by considering the provenience and physical 

attributes represented in the various compositional groups as well as the INAA 

results.  In brief, the comparison of raw clays to the ceramic groups and the 
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additional evidence presented in this chapter support the following source 

assignments.  

 Group 1G is a Mt. Trumbull local group used for both utilitarian and non-

utilitarian wares and for domestic use and trading.  Three clays from Mt. Trumbull 

are matched to Group 1G.  However, two of these clays resemble Group 2 and fall 

within the range of variation of Group 1G only after clay preparation.  Thus, Group 

1G may be the result of clay preparation (i.e., the removal of larger particles).  

 No clay is matched to Group 1VM, but this group is likely to be the Mt. 

Trumbull local group used exclusively for domestic purpose because only olivine-

tempered ceramics found in Mt. Trumbull are included in this group.  The higher 

frequency of corrugated wares in this group suggests that the use of this clay may 

date late during the occupational sequence.  

 Group 2 is another Mt. Trumbull local group mostly used for utilitarian 

wares.  Data from 20 clays (15 sources) from Mt. Trumbull fall within the range of 

variation of this group with high probabilities.  The best matched clays are found 

near the area where many archaeological sites are concentrated, suggesting that the 

clay used for the ceramics in this group was used in its natural state without further 

preparation.  The ceramics in Group 2 also appear to have been transported to the 

lowland Virgin area.  

 The chemical signature of Group 3 is very different from that of any other 

compositional group, and it also differs from the raw clays in the data set.  Group 3 

is too small for Mahalanobis distance comparison of clays to the group, but it is 
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likely to be a Mt. Trumbull local group, considering that all ceramics in this group 

are from Mt. Trumbull, especially from one particular site: 71 ASM.  

 Group 1VV is the lowland Virgin local group and includes both utilitarian 

and non-utilitarian wares that were used for domestic and trading purposes.  Three 

clays from the lowland Virgin area fall within the range of variation of Group 1VV.  

Although the proportion of sand-tempered ceramics in this group is much larger than 

that in any other group, this group also includes olivine-tempered specimens.  

 The small size of Group 4 did not allow for a Mahalanobis distance-based 

comparison of clays to this group.  However, bivariate plots of canonical 

discriminant function scores show that no clays fall within the range of variation of 

this group.  Considering that Group 4 includes only olivine-tempered ceramics that 

are mostly from the lowland Virgin area, Group 4 is likely to be a lowland Virgin 

local group.  As discussed later in this chapter, Group 4 may represent the result of 

clay resource specialization exclusively for the production of olivine-tempered 

ceramics. 

 VR3 is the lowland Virgin local group used for both utilitarian and non-

utilitarian wares with sand temper.  Clays from the lowland Virgin area are matched 

to this group in the INAA study.  Some VR3 ceramics were moved to Mt. Trumbull 

(only red ware). 

 VR1 includes mostly sand-tempered black-on-gray sherds found in both Mt. 

Trumbull and the lowland Virgin area.  This group could not be matched to clays 

from either of these areas.  Therefore, the source of VR1 is unknown but may lie 

265



outside of Mt. Trumbull and the lowland Virgin area.  It is proposed that Mt. 

Trumbull and the lowland Virgin regions had a common trading partner that 

distributed the VR1 black-on-gray pots. 

 In order to understand what these compositional groups represent, the 

relationship between compositional groups, formal attributes, and proveniences are 

examined in what follows.   

 

Compositional Groups and Provenience 

 As a first step in examining the relationship between compositional groups 

and provenience, I explored whether specimens from particular regions dominate 

any of the compositional groups (Figure 6.1 and Table 6.1).  This examination 

showed that: (1) Groups 3 and 1VM include only Mt. Trumbull/Tuweep sherds, and 

(2) Groups 1G and 2 predominately include sherds from Mt. Trumbull/Tuweep, 

while VR1, VR3, Group 4, and Group 1VV predominately include sherds from the 

lowland Virgin area.  Thus, some of the compositional groups have a strong 

association with specific regions.  

 Second, I examined whether any compositional group dominates in the sherd 

assemblage within each region.  The results show that the compositional groups are 

not equally represented in the sherd assemblages of different regions.  Among the 

sherds from Mt. Trumbull/Tuweep, at least 50 percent are included in Groups 1 and 

2, which are produced locally, and at least seven percent of sherds are from the 

lowland Virgin production centers (Group 1VV; Figure 6.2).  On the other hand,  
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Figure 6.1.  Frequency of all sherds from Mt. Trumbull/Tuweep and the lowland Virgin area by 
compositional group and provenience. 
 
 
 
Table 6.1.  Frequency of all sherds from Mt. Trumbull,/Tuweep and the lowland Virgin area by 
compositional group and provenience. 

 
Group Mt. Trumbull Tuweep Lowland Virgin Total 
Group 1G 216 1 25 242 
Group 1VV 48 3 105 156 
Group 1VM 49 6 0 55 
Group 2 166 3 16 185 
Group 3 24 0 0 24 
Group 4 4 0 19 23 
VR1 7 0 15 22 
VR3 2 0 20 22 
Unassigned 235 7 98 340 
Total 751 20 298 1069 
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Figure 6.2.  Percentage of Mt. Trumbull/Tuweep sherds by compositional group (n = 771). 
 

 
 

 
Figure 6.3.  Percentage of lowland Virgin sherds by compositional group (n = 297). 
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among the sherds from the lowland Virgin area, at least 42 percent come from local 

production centers (Groups 1VV and VR3; Figure 6.3), while at least 14 percent are 

from Mt. Trumbull/Tuweep (Groups 1 and 2; Figure 6.3).  Although not all 

compositional groups are confidently matched to sources, these results indicate that 

at least 40 percent of the sherds are from local production centers in the 

Mt. Trumbull/Tuweep and lowland Virgin areas.  This result shows that the people in 

Mt. Trumbull/Tuweep and the lowland Virgin areas depended on their own pottery 

production to a large degree, while also importing pots from outside the respective 

regions.   

 

Compositional Groups and Sites 

 The association of compositional groups and provenience at the site level was 

also examined.  Since relatively small numbers of samples came from each site in 

the lowland Virgin area and Tuweep, samples from the lowland Virgin area were 

grouped together as “lowland Virgin”, and samples from Tuweep were grouped as 

“Tuweep” for this examination.  In the Mt. Trumbull area, where more ceramics 

from each site were analyzed, the distribution of compositional groups across the Mt. 

Trumbull sites (131 BLM, 204 BLMA, 30 BLM, 136ASM, 71 ASM, 214 ASM, and 

14 MNA) is examined.   

As shown in Table 6.2 and Figures 6.4–6.5, there is some association 

between the compositional groups and sites.  First, Group 1G has a relatively strong 

association with the 131 BLM site and a weak association with the 214 ASM site  
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Table 6.2.  Frequency of all sherds from Mt. Trumbull/Tuweep and lowland Virgin area by compositional group and site. 
 

Site name 131BLM 136ASM 14MNA 204BLM 214ASM 30BLM 71ASM Tuweep Lowland Virgin Total 
Region MT MT MT MT MT MT MT Tuweep Lowland Virgin 

 Group1G 94 22 50 6 1 39 4 1 25 242 
Group1VV 18 9 4 2 5 8 2 3 105 156 
Group1VM 3 13 1 7 5 12 8 6 0 55 
Group2 15 47 39 19 9 25 12 3 16 185 
Group3 0 0 0 2 0 3 19 0 0 24 
Group4 0 0 1 0 0 0 3 0 19 23 
VR1 3 0 1 0 0 3 0 0 15 22 
VR3 0 0 1 0 0 1 0 0 20 22 
Unassigned 26 54 45 15 16 57 22 7 98 340 
Total 159 145 142 51 36 148 70 20 298 1069 

MT: Mt. Trumbull 
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Figure 6.4.  Percentage of all sherds by compositional group from sites where ceramic samples 
were obtained, within the Mt. Trumbull, Tuweep, and lowland Virgin areas.  All sites in Tuweep 
and the lowland Virgin area are grouped as Tuweep and the lowland Virgin, respectively.   
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Figure 6.5.  Percentage of all sherds within each compositional group by the site where ceramic 
samples were obtained, within Mt. Trumbull, Tuweep and lowland Virgin areas.  All sites in 
Tuweep and the lowland Virgin area are grouped as Tuweep and the lowland Virgin, 
respectively.   
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based on percentage of sherds by compositional group within each site (Figure 6.4).  

Group 1G is the Mt. Trumbull local group, so a relatively high proportion of Group 

1G specimens is expected at all Mt. Trumbull sites.  However, Group 1G is 

represented by only a single sherd at the Mt. Trumbull site of 214 ASM.  In contrast 

there is a greater-than expected representation of Group 1G at 131 BLM site: almost 

39 percent of the Group 1G sherds are from the 131 BLM site (Figure 6.5), while 59 

percent of the sherds from this site belong in Group 1G (Figure 6.4). 

 Second, there is a strong association between Group 3 and the 71 ASM site.  

Seventy-nine percent of Group 3 sherds are from the 71 ASM site (Figure 6.5), and 

27 percent of the sherds from the 71 ASM site belong to Group 3 (Figure 6.4).  This 

suggests that the 71 ASM site could be a production center of Group 3 pots, while 

residents at the site also imported pots from other sources.  Unfortunately, however, 

no clay is matched to the 71 ASM site despite the fact that some clay samples were 

collected directly from the 71 ASM site.   

The chemical signatures of Group 3 sherds are very different from those in 

any other compositional group or clay in the data set.  Thus, it is possible that 

specialized potters produced Group 3 pots at or near the 71 ASM site using a special 

clay that I could not find or a special paste recipe/preparation.  It is also possible that 

Group 3 is the result of chemical alteration, i.e., diagenesis.  Because the 71 ASM 

site is the only site located on the limestone formation (other sites are on volcanic 

formations), there is a possibility of chemical alterations that did not occur in any 

other area.  However, the examination of chemical alteration discussed later in this 
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chapter does not show any evidence of diagenesis.  Furthermore, only 27 percent of 

the sherds from the 71 ASM site belong to Group 3 (Figure 6.4), which argues 

against the possibility that local diagenesis produced the distinctive Group 3 

chemical signature.  That is, if chemical alteration occurred in the 71 ASM site, 

Group 3 sherds and all other sherds from 71ASM would be affected by diagenesis, 

which is not shown in the analysis.  The other possibility is that Group 3 is a non-

local group distributed only to a few sites in Mt. Trumbull (mainly the 71 ASM site).  

However, this possibility seems unlikely because most of the sherds have olivine 

temper, as will be discussed later in the section of compositional groups and temper.  

Thus, it is likely that Group 3 is a Mt. Trumbull local group. 

 Lastly, there is a strong association between Group 4 and the lowland Virgin 

sites.  Eighty-three percent of Group 4 samples are from the lowland Virgin area 

(Figure 6.5).  Only four of 23 Group 4 samples are from Mt. Trumbull, three of 

which come from the 71 ASM site (Table 6.2).  I hypothesize that Group 4 is a 

lowland Virgin local group. The other possibility is that Group 4 is a Mt. Trumbull 

local group that was exclusively used for trading purposes.  However, examination 

of compositional groups and surface treatments discussed later in this chapter 

demonstrates that Group 4 includes a relatively high proportion of utilitarian ware 

and small amount of decorated wares for trading purpose (Table 6.3).  This implies 

that the latter proposal that Group 4 is a Mt. Trumbull local group for trading 

purposes should be rejected.  Thus, Group 4 is likely a lowland Virgin local group. 
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 No significant differences were found in the distribution of compositional 

groups between the Mt. Trumbull and Tuweep sherd assemblages.  This makes sense 

because these two localities are in very close proximity and the archaeological sites 

are continuously distributed between the Mt. Trumbull and Tuweep site 

concentration areas.  Therefore, the samples from both Mt. Trumbull and Tuweep are 

grouped as samples from Mt. Trumbull/Tuweep, or simply the Mt. Trumbull area, in 

the following analysis.   

 

Compositional Groups and Surface Treatments 

 Examination of the compositional groups and surface treatments of the 

sherds also shows some degree of correlation (Tables 6.3–6.8 and Figures 6.6–6.7).  

Group 1G includes both utilitarian (plain and corrugated) ware and black-on-gray 

ware.  Group 1VM also includes both utilitarian and black-on-gray wares.  The 

proportion of corrugated ware among all of the ceramic types in Group 1VM, at 27 

percent, is higher than that in any other group (Table 6.4).  Group 1VV includes 

utilitarian (plain and corrugated), black-on-gray, and red ware.  Group 2 includes 

mostly utilitarian wares (plain and corrugated), the proportion being very high (86 

percent plain ware and 11 percent corrugated ware) when compared with other 

groups (Table 6.4, Figure 6.7).  Groups 3 and 4 both include utilitarian ware (mostly 

plain ware and limited corrugated ware) and black-on-gray ware.  Compositional 

group VR3 includes utilitarian (plain and corrugated), black-on-gray, and red ware.  

In the Mt. Trumbull sherd assemblage, only two sherds fall in Group VR3, but they  
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Table 6.3.  Frequency and all sherds from Mt.Trumbull/Tuweep and the lowland Virgin area by compositional group and surface treatment, and 
percentage of the sherds within type of surface treatment by compositional group. 

Group  Plain Corrugated Black-on-gray Red Polychrome Total 
Group 1G 161 23% 46 29% 35 20% 0 0% 0 0% 242 23% 
Group 1VV 99 14% 11 7% 42 24% 4 21% 0 0% 156 15% 
Group 1VM  32 4% 15 9% 8 5% 0 0% 0 0% 55 5% 
Group 2  160 22% 20 12% 5 3% 0 0% 0 0% 185 17% 
Group 3  18 3% 1 1% 5 3% 0 0% 0 0% 24 2% 
Group 4  18 3% 1 1% 4 2% 0 0% 0 0% 23 2% 
VR1  2 0.3% 0 0% 20 12% 0 0% 0 0% 22 2% 
VR3  12 2% 3 2% 2 1% 5 26% 0 0% 22 2% 
Unassigned  212 30% 64 40% 51 30% 10 53% 3 100% 340 32% 
Total 714 100% 161 100% 172 100% 19 100% 3 100% 1069 100% 
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Table 6.4. Frequency of all sherds from Mt. Trumbull/Tuweep and the lowland Virgin area by compositional group and surface treatment, and 
percentage of the sherds within the compositional group by surface treatment. 
 
Group  Plain Corrugated Black-on-gray Red Polychrome Total 
Group 1G 161 67% 46 19% 35 14% 0 0% 0 0% 242 100% 
Group 1VV 99 63% 11 7% 42 27% 4 3% 0 0% 156 100% 
Group 1VM  32 58% 15 27% 8 15% 0 0% 0 0% 55 100% 
Group 2  160 86% 20 11% 5 3% 0 0% 0 0% 185 100% 
Group 3  18 75% 1 4% 5 21% 0 0% 0 0% 24 100% 
Group 4  18 78% 1 4% 4 17% 0 0% 0 0% 23 100% 
VR1  2 9% 0 0% 20 91% 0 0% 0 0% 22 100% 
VR3  12 55% 3 14% 2 9% 5 23% 0 0% 22 100% 
Unassigned  212 62% 64 19% 51 15% 10 3% 3 1% 340 100% 
Total 714 67% 161 15% 172 16% 19 2% 3 0% 1069 100% 
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Table 6.5.  Frequency of Mt. Trumbull/Tuweep sherds by compositional group and surface treatment, and percentage of the sherds within the type of 
surface treatment by compositional group. 

 
Group  Plain Corrugated Black-on-gray Red Polychrome Total 
Group 1G 141 28% 45 30% 31 30% 0 0% 0 0% 217 28% 
Group 1VV  31 6% 4 3% 13 13% 3 20% 0 0% 51 7% 
Group 1VM  32 6% 15 10% 8 8% 0 0% 0 0% 55 7% 
Group 2  144 29% 20 13% 5 5% 0 0% 0 0% 169 22% 
Group 3 18 4% 1 1% 5 5% 0 0% 0 0% 24 3% 
Group 4 3 1% 1 1% 0 0% 0 0% 0 0% 4 1% 
VR1  1 0% 0 0% 6 6% 0 0% 0 0% 7 1% 
VR3 0 0% 0 0% 0 0% 2 13% 0 0% 2 0% 
Unassigned  131 26% 64 43% 34 33% 10 67% 3 100% 242 31% 
Total 501 100% 150 100% 102 100% 15 100% 3 100% 771 100% 
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Table 6.6.   Frequency of Mt. Trumbull/Tuweep sherds by compositional group and surface treatment, and percentage of the sherds within the 
compositional group by surface treatment. 
 
Group  Plain Corrugated Black-on-gray Red Polychrome Total 
Group 1G 141 65% 45 21% 31 14% 0 0% 0 0% 217 100% 
Group 1VV  31 61% 4 8% 13 25% 3 6% 0 0% 51 100% 
Group 1VM  32 58% 15 27% 8 15% 0 0% 0 0% 55 100% 
Group 2  144 85% 20 12% 5 3% 0 0% 0 0% 169 100% 
Group 3 18 75% 1 4% 5 21% 0 0% 0 0% 24 100% 
Group 4 3 75% 1 25% 0 0% 0 0% 0 0% 4 100% 
VR1  1 14% 0 0% 6 86% 0 0% 0 0% 7 100% 
VR3 0 0% 0 0% 0 0% 2 100% 0 0% 2 100% 
Unassigned  131 54% 64 26% 34 14% 10 4% 3 1% 242 100% 
Total 501 65% 150 19% 102 13% 15 2% 3 0% 771 100% 
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Table 6.7.  Frequency of lowland Virgin sherds by compositional group and surface treatment, and percentage of the sherds within the type of surface 
treatment by compositional group. 
 
Group  Plain Corrugated Black-on-gray Red Polychrome Total 
Group 1G 20 9% 1 9% 4 6% 0 0% 0 0% 25 8% 
Group 1VV  66 31% 7 64% 29 41% 3 50% 0 0% 105 35% 
Group 1VM  0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 
Group 2  16 8% 0 0% 0 0% 0 0% 0 0% 16 5% 
Group 3 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 
Group 4 15 7% 0 0% 4 6% 0 0% 0 0% 19 6% 
VR1  1 0% 0 0% 14 20% 0 0% 0 0% 15 5% 
VR3 12 6% 3 27% 2 3% 3 50% 0 0% 20 7% 
Unassigned  81 38% 0 0% 17 24% 0 0% 0 0% 98 33% 
Total 211 100% 11 100% 70 100% 6 100% 0 0% 298 100% 
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Table 6.8.  Frequency of lowland Virgin sherds by compositional group and surface treatment, and percentage of the sherds within the compositional 
group by surface treatment. 

 
Group  Plain Corrugated Black-on-gray Red polychrome Total 
Group 1G 20 80% 1 4% 4 16% 0 0% 0 0% 25 100% 
Group 1VV  66 63% 7 7% 29 28% 3 3% 0 0% 105 100% 
Group 1VM  0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 
Group 2  16 100% 0 0% 0 0% 0 0% 0 0% 16 100% 
Group 3 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 
Group 4 15 79% 0 0% 4 21% 0 0% 0 0% 19 100% 
VR1  1 7% 0 0% 14 93% 0 0% 0 0% 15 100% 
VR3 12 60% 3 15% 2 10% 3 15% 0 0% 20 100% 
Unassigned  81 83% 0 0% 17 17% 0 0% 0 0% 98 100% 
Total 211 71% 11 4% 70 23% 6 2% 0 0% 298 100% 
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Figure 6.6.  Frequency of all sherds from Mt. Trumbull/Tuweep and the lowland Virgin area by 
compositional group and surface treatment. 
 
 
 

 
 
 
Figure 6.7.  Percentage of all sherds from Mt. Trumbull/Tuweep and the lowland Virgin area by 
compositional group.   
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are both red ware (Table 6.6).  In other words, VR3 pots were used for both domestic 

and trading purposes, but only the red ware in this group was transported to Mt. 

Trumbull.  VR1 includes mostly black-on-gray ware, including 20 out of the 22 VR1 

sherds (Table 6.4).   

 Groups 1VV and VR3 are the only compositional groups that include red 

ware, with nine of the 19 red ware sherds analyzed (Table 6.3).  The remaining red 

ware sherds (10 out of 19) are not assigned to any compositional group in the data 

set.  This unassigned proportion of the red ware (53 percent) is higher than that of 

any other ceramic types (Table 6.3), which probably indicates that there are red ware 

sources other than the lowland Virgin and Mt. Trumbull areas.  No red wares are in 

the Mt. Trumbull local groups.  In the Mt. Trumbull red ware assemblage, five red 

ware sherds are in the lowland Virgin local group, leaving 10 red ware sherds 

unassigned (Table 6.5).  In the lowland Virgin red ware assemblage, on the other 

hand, all six specimens belong to lowland Virgin local groups, Group 1VV and VR3 

(Table 6.7).  In summary, this examination of compositional groups and red ware 

demonstrates that: (1) all red ware is non-local to Mt. Trumbull, and some of it 

derives from the lowland Virgin area; (2) all of the red ware in the lowland Virgin 

area was made locally, which confirms the results of the INAA study of lowland 

Virgin pottery (Larson et al. 2005); and (3) some of the red ware found in the Mt. 

Trumbull area was not produced either in Mt. Trumbull or in the lowland Virgin area. 
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 Black-on-gray pots were produced in both Mt. Trumbull and the lowland 

Virgin area, and they seem to have been exchanged between the two areas.  In Mt. 

Trumbull/Tuweep, at least 36 sherds of the 102 black-on-gray sherds are from 

locally made pots (Groups 1G and G2), and at least 13 sherds were from pots made 

in the lowland Virgin area (Group 1VV) (Table 6.5).  In the lowland Virgin area, 31 

black-on-gray sherds of the 70 are from locally made pots (Group 1VV and VR3), 

and four sherds were from Mt. Trumbull pots (Table 6.7).   

 Compositional group VR1, a non-local group in both Mt. Trumbull and the 

lowland Virgin areas, includes mostly black-on-gray ware sherds found in both 

areas.  This suggests that people in the Mt. Trumbull/Tuweep and lowland Virgin 

areas had a common trading partner that distributed the VR1 black-on-gray ware.  

An alternative view is that either the Mt. Trumbull/Tuweep or Lowland Virgin 

people imported the VR1 black-on-gray pots from an unknown area and then 

exported them to the other area (Mt. Trumbull or Lowland Virgin) through down-

the-line trading.  Interestingly, more VR1 type black-on-gray pots were transported 

to the lowland Virgin area than to Mt. Trumbull (20 percent of all black-on-gray 

samples belong to VR1 in the lowland Virgin area, while 6 percent belong to VR1 in 

Mt. Trumbull) (Tables 6.5 and 6.7).   

All polychrome wares are unassigned, suggesting that no polychrome pottery 

was made in either the Mt. Trumbull or lowland Virgin areas.  These results support 

the traditional argument that the source of polychrome is from outside the Mt. 

Trumbull and lowland Virgin areas.  
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Compositional Groups and Temper Types 

 The results show some associations between compositional groups and 

temper types (Figures 6.8-6.9 and Tables 6.9-6.14).  As discussed in Chapter III, the 

temper types are categorized as follows: (1) olivine temper—predominately olivine 

but occasionally containing crushed sherds as well; (2) sherd temper (olivine)—

crushed Moapa Gray ware sherds including olivine particles, that is, the sherd 

temper itself has olivine inclusions; and (3) sand temper or crushed sherd temper 

(without olivine).   

 The associations between temper types and compositional groups can be 

summarized as follows.  Groups 1VM and 4 include only olivine temper, with the 

exception of one sample with sherd temper (without olivine) in Group 1VM (Table 

6.10).  As discussed above, Group 1VM includes only samples from Mt. Trumbull, 

and it is likely that Group 1VM is the Mt. Trumbull local group because all sherds 

have olivine temper.  Olivine is the dominant temper type in Groups 1G, 2, and 3 

(Table 6.10).  VR1 and VR3 include only sand/sherd (without olivine) temper.  There 

is a relatively high frequency of sand or sherd (without olivine) temper in the 

specimens in Group 1VV (Table 6.10).  The sherd temper (olivine) samples are 

mostly found in Group 2 or are unassigned (Table 6.9).   

 I also examined the relation between compositional groups and temper types 

within each area (Mt. Trumbull/Tuweep and the lowland Virgin areas).  In Mt. 
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Trumbull/Tuweep, most of the olivine-tempered ceramics were from local 

production (Groups 1G, 1VM, 2, and 3), which was expected because Mt.  

Table 6.9.  Frequency of all sherds from Mt. Trumbull/Tuweep and the lowland Virgin area by 
compositional group and temper, and percentage of the sherds within the temper type by 
compositional groups. 

 
Group Olivine Sherd (olivine) Sand or Sherd 

(no olivine) 
Total 

Group 1G 226 28% 4 9% 12 6% 242 23% 
Group 1VV 88 11% 0 0% 68 33% 156 15% 
Group 1VM 55 7% 0 0% 0 0% 55 5% 
Group 2  150 18% 28 60% 7 3% 185 17% 
Group 3 21 3% 0 0% 3 1% 24 2% 
Group 4 23 3% 0 0% 0 0% 23 2% 
VR1 0 0% 0 0% 22 11% 22 2% 
VR3 0 0% 0 0% 22 11% 22 2% 
Unassigned 256 31% 15 32% 69 34% 340 32% 
Total 819 100% 47 100% 203 100% 1069 100% 
 
 
Table 6.10.  Frequency of all sherds from Mt. Trumbull/Tuweep and the lowland Virgin area by 
compositional group and temper, and percentage of the sherds within the compositional group by 
temper types. 

 
Group Olivine Sherd (olivine) Sand or Sherd 

(no olivine) 
Total 

Group 1G 226 93% 4 2% 12 5% 242 100% 
Group 1VV 88 56% 0 0% 68 44% 156 100% 
Group 1VM 55 100% 0 0% 0 0% 55 100% 
Group 2  150 81% 28 15% 7 4% 185 100% 
Group 3 21 88% 0 0% 3 13% 24 100% 
Group 4 23 100% 0 0% 0 0% 23 100% 
VR1 0 0% 0 0% 22 100% 22 100% 
VR3 0 0% 0 0% 22 100% 22 100% 
Unassigned 256 75% 15 4% 69 20% 340 100% 
Total 819 77% 47 4% 203 19% 1069 100% 
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Figure 6.8.  Frequency of all sherds from Mt. Trumbull/Tuweep and lowland Virgin area by 
compositional group and temper. 
 

 

 

 
 
Figure 6.9.  Percentage of all sherds within temper types from all areas by compositional 
groups. 
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Trumbull/Tuweep is an olivine source area.  Only a few olivine-tempered sherds (at 

least five sherds in Group 1VV, one percent) from Mt. Trumbull have lowland Virgin 

origin (Table 6.11).  The majority of samples tempered with crushed sherd (olivine) 

are in Group 2, suggesting that the sherd (olivine) tempered pots (most of them are 

Shivwits ware to be discussed later) are likely to have come from local production in 

Mt. Trumbull/Tuweep.  At least 13 percent of sand-tempered sherds are from local 

production in Mt. Trumbull (Groups 1G and 2), while at least 35 percent of the sand-

tempered sherds are from the lowland Virgin area (Group 1VV and VR3), and 5 

percent are from the unknown VR1 area (Table 6.11).  This suggests that more sand-

tempered pots were imported than produced locally in Mt. Trumbull. 

 In the lowland Virgin area, olivine-tempered pots were imported from Mt. 

Trumbull, as suggested in previous research, but they were also made locally in the 

lowland Virgin area.  The lowland Virgin olivine-tempered sherds are in Groups 

1VV, 1G, 2, and 4.  At least 83 of the 219 lowland Virgin olivine-tempered sherds 

belong to the lowland Virgin local group (Group 1VV), and 40 sherds belong to the 

Mt. Trumbull local group (Groups 1G and 2) (Table 6.13).  Consequently, at least 38 

percent (Group 1VV) of the lowland Virgin olivine-tempered pots were made 

locally, and at least 18 percent were transported from Mt. Trumbull (Groups 1G and 

2) (Table 6.13).  The source of Group 4 is unknown at this point (although likely to 

be in the lowland Virgin area).  It is possible that more olivine-tempered pots were 

made locally in the lowland Virgin area than were imported from Mt. Trumbull.   
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Table 6.11 Frequency of Mt. Trumbull/Tuweep sherds by compositional group and temper, and 
percentage of the sherds within the temper type by compositional groups.   
 

Group Olivine Sherd (olivine) 
  

Sand or Sherds 
(no olivine) 

Total 

Group 1G 201 34% 4 11% 12 9% 217 28% 
Group 1VV 5 1% 0 0% 46 34% 51 7% 
Group 1VM 55 9% 0 0% 0 0% 55 7% 
Group 2  135 23% 28 76% 6 4% 169 22% 
Group 3 21 4% 0 0% 3 2% 24 3% 
Group 4 4 1% 0 0% 0 0% 4 1% 
VR1 0 0% 0 0% 7 5% 7 1% 
VR3 0 0% 0 0% 2 1% 2 0% 
Unassigned 179 30% 8 14% 58 43% 242 31% 
Total 600 100% 37 100% 134 100% 771 100% 

 
 
 
 
 
Table 6.12.  Frequency of Mt. Trumbull/Tuweep sherds by compositional group and temper, and 
percentage of the sherds within the compositional group by temper types. 
 
Group  
  

Olivine  
  

Sherd (olivine) 
  

Sand or Sherds  
(no olivine)  

Total  
  

Group 1G 201 93% 4 2% 12 6% 217 100% 
Group 1VV 5 10% 0 0% 46 90% 51 100% 
Group 1VM 55 100% 0 0% 0 0% 55 100% 
Group 2  139 80% 28 17% 6 4% 169 100% 
Group 3 21 88% 0 0% 3 13% 24 100% 
Group 4 4 100% 0 0% 0 0% 4 100% 
VR1 0 0% 0 0% 7 100% 7 100% 
VR3 0 0% 0 0% 2 100% 2 100% 
Unassigned 179 74% 5 2% 58 24% 242 100% 
Total 600 78% 37 5% 134 18% 771 100% 
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Table 6.13.  Frequency of lowland Virgin sherds by compositional group and temper, and percentage 
of the sherds within the temper type by compositional groups. 

 
Group Olivine Sherd (olivine) Sand or Sherds 

(no olivine) 
Total 

Group 1G 25 11% 0 0% 0 0% 25 8% 
Group 1VV 83 38% 0 0% 22 32% 105 35% 
Group 1VM 0 0% 0 0% 0 0% 0 0% 
Group 2  15 7% 0 0% 1 1% 16 5% 
Group 3 0 0% 0 0% 0 0% 0 0% 
Group 4 19 9% 0 0% 0 0% 19 6% 
VR1 0 0% 0 0% 15 22% 15 5% 
VR3 0 0% 0 0% 20 29% 20 7% 
Unassigned 77 35% 10 100% 11 16% 98 33% 
Total 219 100% 10 100% 68 100% 298 100% 

 
 
 
 
 
Table 6.14.  Frequency of lowland Virgin sherds by compositional group and temper, and percentage 
of the sherds within the compositional group by temper types.  
 

Group Olivine Sherd (olivine) Sand or Sherds 
(no olivine) 

Total 

Group 1G 25 100% 0 0% 0 0% 25 100% 
Group 1VV 83 79% 0 0% 22 21% 105 100% 
Group 1VM 0 NA 0 NA 0 NA 0 NA 
Group 2  15 94% 0 0% 1 6% 16 100% 
Group 3 0 NA 0 NA 0 NA 0 NA 
Group 4 19 100% 0 0% 0 0% 19 100% 
VR1 0 0% 0 0% 15 100% 15 100% 
VR3 0 0% 0 0% 20 100% 20 100% 
Unassigned 77 79% 10 10% 11 11% 98 100% 
Total 219 73% 10 3% 69 23% 298 100% 

 
 

Very few sand-tempered pots in the lowland Virgin were transported from 

Mt. Trumbull; they were either made locally or transported from the VR1 unknown 

area (Table 6.13).  All sherd temper (olivine) samples in the lowland Virgin area are 
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unassigned, which suggests that pots with sherd temper (olivine) were not from local 

production in the lowland Virgin area.  This also suggests that sherd temper (olivine) 

pots, which are mostly Shivwits Ware (see discussion about Shivwits Ware in 

Chapter III), in the lowland Virgin area were not from Mt. Trumbull.  

 

Compositional Groups and Core Colors  

 All cores were examined under a light microscope in the same laboratory 

conditions to determine relative differences in core color discussed in Chapter V.  I 

used subjective color categories rather than Munsell Soil Color categories.  The 

results of the comparison of compositional groups to core color are shown in Table 

6.15 and Figure 6.10.  Group 2 sherds have relatively dark cores that may indicate a 

short firing time.  In contrast, sherds in Groups 1VM, 4, and VR1 have cores that are 

relatively lighter in color, which may indicate longer firing times at higher 

temperatures.  Although no further investigation has been made at this point, core 

color may indicate different firing techniques.  Therefore, it is possible that the 

compositional groups are somehow related to different production techniques.  The 

general trends of core color in each compositional group are: (1) Group 1G: medium 

to light core color, (2) Group 1VV: medium to light core color, (3) Group 1VM: light 

core color, (4) Group 2: darker core color, (5) Group 3: either dark or light core 

color, (6) Group 4: lighter core color, (7) VR1: light core color, and (8) VR3: 

medium core color. 
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Table 6.15.  Frequency of all sherds from Mt. Trumbull, Tuweep and the lowland Virgin area by 
compositional group and core color. 
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Total 
 

Group 1G 6 0 1 11 27 77 10 103 1 0 5 1 242 

Group1VV 1 0 0 21 19 44 0 70 0 0 1 0 156 

Group 1VM 1 0 1 2 1 15 1 33 1 0 0 0 55 

Group 2 25 1 6 68 55 21 4 3 0 0 2 0 185 

Group 3 4 0 0 6 4 0 0 10 0 0 0 0 24 

Group 4 0 0 0 0 2 8 0 13 0 0 0 0 23 

VR1 0 0 0 1 2 1 0 18 0 0 0 0 22 

VR3 0 0 0 1 3 14 4 0 0 0 0 0 22 

Unassigned 14 1 1 58 47 82 7 123 1 4 2 
 

340 

Total 51 2 9 168 160 262 26 373 3 4 10 1 1069 
 
 
 

 
 
Figure 6.10.  Frequency of all sherds from Mt. Trumbull, Tuweep, and the lowland Virgin area 
by compositional group and core color. 
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Compositional Groups and Sherd Thickness  

 The thickness of the sherds was also compared across compositional groups.  

No significant differences in the thickness of the sherds among the compositional 

groups were found (Figure 6.11).  However, the range of the thickness in VR1 was 

much smaller compared with other compositional groups.  Considering that most of 

the sherds in VR1 are black-on-gray ware with fine quartz temper and light cores, it 

is proposed that pots in VR1 were made utilizing a relatively standardized technique.   

 

 

 
 
Figure 6.11.  Distribution of all sherds based on compositional group and sherd thickness.   
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Table 6.16.  List of ceramic wares and types included in this study. 
 
Description of Ceramics Type Name Abbreviation 
Olivine-tempered ceramics Moapa Plain MP 
 Moapa Plain Fugitive Red MPF 
 Moapa Corrugated MC 
 Moapa Black-on-gray MBG 
Sand-tempered ceramics Tusayan Plain TP 
 Tusayan Plain Fugitive Red TPF 
 Tusayan Corrugated TC 
 Tusayan Black-on-gray TBC 
 Shinarump Pain SNP 
Sherd- tempered  (olivine) ceramics with Shivwits Plain SVP 
dark clay matrix.  Shivwits Corrugated SVC 
Red ware Tegi Orange Ware TO 
 San Juan Red Ware SJR 
 Shinarump Red Ware SNR 
 Other red ware RED 
Polychrome Polychrome POL 

 
 
Compositional Groups and Ware Type 

 There is some controversy regarding certain ware/types of ceramics in this 

study area, as discussed in the previous chapter (e.g., Shinarump wares).  The wares, 

type names, and abbreviations used for the comparison are summarized in Table 

6.16.  

 

Moapa Ware   

 Table 6.17 shows that Moapa Plain Ware occurs in a relatively high 

frequency in Groups 1G and 2 and that 137 and 140 samples respectively were found 

in these groups, for a total of 562 Moapa Plain Ware sherds.  This was expected 

because Groups 1G and 2 are major Mt. Trumbull local groups.  On the other hand,  
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Table 6.17.  Frequency of all sherds from Mt. Trumbull/Tuweep and the lowland Virgin area by compositional group and ware type. 
 
Ceramic Category 
 

Moapa Ware 
 

Sand Temper 
 

Shivwits Ware 
 

Redware 
 

Poly- 
chrome 

group  Total MP MPF MC MBG TP TC TBG SNP SVP SVC TO SJR SNR RED POL 
Group1G 242 137 17 44 32 6 2 3 1 0 0 0 0 0 0 0 
Group1VV 156 62 2 4 20 32 7 22 1 0 0 4 0 1 1 0 
Group1VM 55 32 0 15 8 0 0 0 0 0 0 0 0 0 0 0 
Group2  185 140 1 12 5 5 0 0 2 12 8 0 0 0 0 0 
Group3 24 17 0 1 3 1 0 2 0 0 0 0 0 0 0 0 
Group4 23 18 0 1 4 0 0 0 0 0 0 0 0 0 0 0 
VR1 22 0 0 0 0 2 0 20 0 0 0 0 0 0 0 0 
VR3 22 0 0 0 0 12 3 2 0 0 0 0 1 0 4 0 
Unassigned 340 156 7 56 38 29 9 13 4 15 0 1 4 3 2 3 
Total 1069 562 27 133 110 87 21 62 8 27 8 5 5 4 7 3 
MP: Moapa plain, MPF: Moapa plan fugitive red, MC: Moapa corrugated, MBG: Moapa black-on-gray, TP:Tusayan plain, TPF: Tusayan plain fugitive 
red, TC: Tusayan corrugated, TBG: Tusayan black-on-gray, SNP: Shinarump plain, SVP: Shivwits plain, SVC: Shivwits corrugated, TO: Tegi orange 
ware, SJR: San Juan red ware, SNR: Shinarump red ware, RED: other red ware, POL: polychrome 
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Table 6.18.  Percentage of all sherds from Mt. Trumbull/Tuweep and the lowland Virgin area within the ware type by compositional group.  
 

Ceramic Category 
 

Moapa Ware 
% 

Sand Temper 
% 

Shivwits Ware  
% 

Redware 
% 

Poly-
chrome

% 
Group  Total MP MPF MC MBG TP TC TBG SNP SVP SVC TO SJR SNR RED POL 
Group1G 23 24 63 33 29 7 10 5 13 0 0 0 0 0 0 0 
Group1VV 15 11 7 3 18 37 33 35 13 0 0 80 0 25 14 0 
Group1VM 5 6 0 11 7 0 0 0 0 0 0 0 0 0 0 0 
Group2  17 25 4 9 5 6 0 0 25 44 100 0 0 0 0 0 
Group3 2 3 0 1 3 1 0 3 0 0 0 0 0 0 0 0 
Group4 2 3 0 1 4 0 0 0 0 0 0 0 0 0 0 0 
VR1 2 0 0 0 0 2 0 32 0 0 0 0 0 0 0 0 
VR3 2 0 0 0 0 14 14 3 0 0 0 0 20 0 57 0 
Unassigned 32 28 26 42 35 33 43 21 50 56 0 20 80 75 29 100 
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
MP: Moapa plain, MPF: Moapa plan fugitive red, MC: Moapa corrugated, MBG: Moapa black-on-gray, TP:Tusayan plain, TPF: Tusayan plain fugitive 
red, TC: Tusayan corrugated, TBG: Tusayan black-on-gray, SNP: Shinarump plain, SVP: Shivwits plain, SVC: Shivwits corrugated, TO: Tegi orange 
ware, SJR: San Juan red ware, SNR: Shinarump red ware, RED: other red ware, POL: polychrome 
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Table 6.19.  Percentage of all sherds from Mt. Trumbull/Tuweep and the lowland Virgin area within the compositional group by ware type. 
 

Ceramic Category Moapa Ware 
% 

Sand Temper 
% 

Shivwits Ware 
 % 

Redware 
% 

Poly-
chrome

 % 
Group  Total MP MPF MC MBG TP TC TBG SNP SVP SVC TO SJR SNR RED POL 
Group1G 100 57 7 18 13 2 1 1 0 0 0 0 0 0 0 0 
Group1VV 100 40 1 3 13 21 4 14 1 0 0 3 0 1 1 0 
Group1VM 100 58 0 27 15 0 0 0 0 0 0 0 0 0 0 0 
Group2  100 76 1 6 3 3 0 0 1 6 4 0 0 0 0 0 
Group3 100 71 0 4 13 4 0 8 0 0 0 0 0 0 0 0 
Group4 100 78 0 4 17 0 0 0 0 0 0 0 0 0 0 0 
VR1 100 0 0 0 0 9 0 91 0 0 0 0 0 0 0 0 
VR3 100 0 0 0 0 55 14 9 0 0 0 0 5 0 18 0 
Unassigned 100 46 2 16 11 9 3 4 1 4 0 0 1 1 1 1 
Total 100 53 3 12 10 8 2 6 1 3 1 0 0 0 1 0 
MP: Moapa plain, MPF: Moapa plan fugitive red, MC: Moapa corrugated, MBG: Moapa black-on-gray, TP:Tusayan plain, TPF: Tusayan plain fugitive 
red, TC: Tusayan corrugated, TBG: Tusayan black-on-gray, SNP: Shinarump plain, SVP: Shivwits plain, SVC: Shivwits corrugated, TO: Tegi orange 
ware, SJR: San Juan red ware, SNR: Shinarump red ware, RED: other red ware, POL: polychrome 
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Moapa Corrugated Ware, which is another type of Moapa utilitarian ware, is 

distributed differently within Groups 1G and 2.  Only nine percent of all Moapa 

Corrugated Ware sherds belong to Group 2, but a much higher frequency of Moapa 

Corrugated Ware sherds belongs to Group 1G (33 percent of all Moapa corrugated 

ware) (Table 6.18).  This suggests that the use of Group 2 clay for pottery production 

stopped relatively early and that the use of Group 1G clay was continued for a longer 

period because the use of corrugated ware is thought to begin in the study area about 

A.D. 1050.  Group 2 Moapa Ware sherds from the lowland Virgin area are 

exclusively plain ware (Table 6.25).  This suggests that Group 2 Moapa Plain pots 

were not transported to the lowland Virgin area as trade items; instead, they 

accompanied human migration or were containers to transport trading items.  This 

also suggests that Group 2 pots were transported to the lowland Virgin area during 

early time periods (no lowland Virgin corrugated wares belong to Group 2).   

 Moapa Black-on-gray ware has a relatively weak association with Group 2  

compared with Group 1G (Table 6.18), suggesting that in Mt. Trumbull Group 2 clay 

was preferred for domestic use and Group 1G for multipurpose use.  The source of 

Group 1VM is not known with confidence at this point (no Mt. Trumbull or lowland 

Virgin clay is matched this group), but it is likely to have a Mt. Trumbull source 

because Group 1VM includes only the Mt. Trumbull Moapa ware, as discussed 

earlier in this chapter.  

 Table 6.17 shows that Group 1VM clay was used for plain, corrugated, and 

black-on-gray ware, which suggests that in Mt. Trumbull, Group 1VM is another 
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clay group used for a variety of purposes, like Group 1G.  A relatively higher 

percentage of corrugated ware (among all ceramic types) was found in Group 1VM 

than in Groups 1G and 2 (Table 6.19).  This suggests that the use of Group 1VM clay 

may be later or that Group 1VM was functionally suitable for corrugated ware 

production.  Moapa Plain Fugitive Red Ware sherds were found in Mt. Trumbull but 

not in the lowland Virgin area. 

 Tables 6.17 and 6.18 show that Moapa Plain Fugitive Red Ware has a strong 

association with Group 1G, 17 samples of the total of 27 Moapa Plain Fugitive Red 

Ware belonging to Group 1G.   

In conclusion, the relation between the three Mt. Trumbull local groups 

(Group 1G, 2, and potentially Group 1VM) and the Moapa ware types suggest that 

there was some degree of clay selection for different functions of pots or differences 

in the time of production in Mt. Trumbull. 

 

Tusayan Ware 

 Some degree of association exists between Tusayan Ware and the 

compositional groups.  There seems to be a strong association between the Tusayan 

Plain/Corrugated Ware and Group 1VV and VR3, which are the lowland Virgin local 

groups, although a small number of sherds are also in the Mt. Trumbull local group 

(Tables 6.17 and 6.18). 

 Table 6.18 shows that 35 percent of all Tusayan Black-on-gray (sand-

tempered) ware belongs to Group 1VV and 3 percent to VR3.  Thus, at least 38 
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percent of Tusayan Black-on-gray originated in the lowland Virgin local area (Group 

1VV and VR3).  About 32 percent of Tusayan Black-on-gray belongs to VR1 

(unknown source, non-local group), leaving only a small number of sherds in the Mt. 

Trumbull local group (Table 6.18).  Thus, the majority of Tusayan Black-on-gray 

sherds are not from Mt. Trumbull.   

Interestingly, much of the VR1 Tusayan Black-on-gray has finer quartz sand 

temper compared with the sherds originating in the lowland Virgin area, and these 

also have a thinner core, as previously discussed.  Therefore, the Tusayan Black-on-

gray in the VR1 group was likely made using a different production technique from 

that used for the pots produced in the Mt. Trumbull and lowland Virgin areas.  

  

Shivwits Ware 

 There is a strong association between Shivwits Ware and Group 2.  No other 

compositional groups include Shivwits Ware (Table 6.17).  All Shivwits Corrugated 

Ware and 44 percent of the Shivwits Plain Ware are in Group 2, leaving 56 percent 

of Shivwits Plain Ware unassigned (Table 6.18).   

A close examination of the ware types by area shows that the sources of the 

Shivwits Ware found in the Mt. Trumbull and lowland Virgin areas are different 

(Tables 6.20–25).  All Shivwits Corrugated Ware and 71 percent of Shivwits Plain 

Ware in Mt. Trumbull/Tuweep belong to Group 2 (i.e., the Mt. Trumbull local group) 

(Table 6.21), while none of the Shivwits Ware in the lowland Virgin area is assigned 

to any of the compositional groups (Table 6.23).  This indicates that the Shivwits  
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Table 6.20.  Frequency of Mt. Trumbull/Tuweep sherds by compositional group and ware type. 
 
Ceramic Category 
 

Moapa Ware 
 

Sand Temper 
 

Shivwits Ware 
 

Redwares 
 

Poly- 
chrome 

Group  Total MP MPF MC MBG TP TC TBG SNP SVP SVC TO SJR SNR RED POL 
Group1G 217 117 17 43 28 6 2 3 1 0 0 0 0 0 0 0 
Group1VV 51 4 1 0 0 25 4 13 1 0 0 1 0 1 1 0 
Group1VM 55 32 0 15 8 0 0 0 0 0 0 0 0 0 0 0 
Group2  169 125 1 12 5 4 0 0 2 12 8 0 0 0 0 0 
Group3 24 17 0 1 3 1 0 2 0 0 0 0 0 0 0 0 
Group4 4 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
VR1 7 0 0 0 0 1 0 6 0 0 0 0 0 0 0 0 
VR3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 
Unassigned 242 92 6 56 25 23 9 9 4 5 0 1 4 3 2 3 
Total 771 390 25 128 69 60 15 33 8 17 8 2 4 4 5 3 
MP: Moapa plain, MPF: Moapa plan fugitive red, MC: Moapa corrugated, MBG: Moapa black-on-gray, TP:Tusayan plain, TPF: Tusayan plain fugitive 
red, TC: Tusayan corrugated, TBG: Tusayan black-on-gray, SNP: Shinarump plain, SVP: Shivwits plain, SVC: Shivwits corrugated, TO: Tegi orange 
ware, SJR: San Juan red ware, SNR: Shinarump red ware, RED: other red ware, POL: polychrome 
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Table 6.21. Percentage of Mt. Trumbull/Tuweep sherds within the ware type by compositional group. 
 

Ceramic Category 
 

Moapa Ware 
% 

Sand Temper 
% 

Shivwits Ware 
 % 

Redwares 
% 

Poly- 
chrome 

% 
Group  Total MP MPF MC MBG TP TC TBG SNP SVP SVC TO SJR SNR RED POL 
Group1G 28 30 68 34 41 10 13 9 13 0 0 0 0 0 0 0 
Group1VV 7 1 4 0 0 42 27 39 13 0 0 50 0 25 20 0 
Group1VM 7 8 0 12 12 0 0 0 0 0 0 0 0 0 0 0 
Group2  22 32 4 9 7 7 0 0 25 71 100 0 0 0 0 0 
Group3 3 4 0 1 4 2 0 6 0 0 0 0 0 0 0 0 
Group4 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
VR1 1 0 0 0 0 2 0 18 0 0 0 0 0 0 0 0 
VR3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 
Unassigned 31 24 24 44 36 38 60 27 50 29 0 50 100 75 40 100 
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 100 
MP: Moapa plain, MPF: Moapa plan fugitive red, MC: Moapa corrugated, MBG: Moapa black-on-gray, TP:Tusayan plain, TPF: Tusayan plain fugitive 
red, TC: Tusayan corrugated, TBG: Tusayan black-on-gray, SNP: Shinarump plain, SVP: Shivwits plain, SVC: Shivwits corrugated, TO: Tegi orange 
ware, SJR: San Juan red ware, SNR: Shinarump red ware, RED: other red ware, POL: polychrome 
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Table 6.22.  Percentage of Mt. Trumbull/Tuweep sherds within the compositional group by ware type. 
 

Ceramic category 
 

Moapa Ware 
% 

Sand Temper 
% 

Shivwits Ware 
 % 

Redwares 
% 

Poly- 
chrome 

% 
Group  Total MP MPF MC MBG TP TC TBG SNP SVP SVC TO SJR SNR RED POL 
Group1G 100 54 8 20 13 3 1 1 0 0 0 0 0 0 0 0 
Group1VV 100 8 2 0 0 49 8 25 2 0 0 2 0 2 2 0 
Group1VM 100 58 0 27 15 0 0 0 0 0 0 0 0 0 0 0 
Group2  100 74 1 7 3 2 0 0 1 7 5 0 0 0 0 0 
Group3 100 71 0 4 13 4 0 8 0 0 0 0 0 0 0 0 
Group4 100 75 0 25 0 0 0 0 0 0 0 0 0 0 0 0 
VR1 100 0 0 0 0 14 0 86 0 0 0 0 0 0 0 0 
VR3 100 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 
Unassigned 100 38 2 23 10 10 4 4 2 2 0 0 2 1 1 1 
Total 100 50 3 17 9 8 2 4 1 2 1 0 1 1 1 0 
MP: Moapa plain, MPF: Moapa plan fugitive red, MC: Moapa corrugated, MBG: Moapa black-on-gray,  TP:Tusayan plain, TPF: Tusayan plain 
fugitive red, TC: Tusayan corrugated, TBG: Tusayan black-on-gray, SNP: Shinarump plain, SVP: Shivwits plain, SVC: Shivwits corrugated, TO: Tegi 
orange ware, SJR: San Juan red ware, SNR: Shinarump red ware, RED: other red ware, POL: polychrome 
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Table 6.23.  Frequency of lowland Virgin sherds by compositional group and ware type. 
 
Ceramic Category 
 

Moapa Ware 
 

Sand Temper 
 

Shivwits Ware 
 

Redwares 
 

Poly- 
chrome 

Group  Total MP MPF MC MBG TP TC TBG SNP SVP SVC TO SJR SNR RED POL 
Group1G 25 20 0 1 4 0 0 0 0 0 0 0 0 0 0 0 
Grroup1VV 105 58 1 4 20 7 3 9 0 0 0 3 0 0 0 0 
Group1VM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Group2  16 15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
Group3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Group4 19 15 0 0 4 0 0 0 0 0 0 0 0 0 0 0 
VR1 15 0 0 0 0 1 0 14 0 0 0 0 0 0 0 0 
VR3 20 0 0 0 0 12 3 2 0 0 0 0 1 0 2 0 
Unassigned 98 64 1 0 13 6 0 4 0 10 0 0 0 0 0 0 
Total 298 172 2 5 41 27 6 29 0 10 0 3 1 0 2 0 
MP: Moapa plain, MPF: Moapa plan fugitive red, MC: Moapa corrugated, MBG: Moapa black-on-gray, TP:Tusayan plain, TPF: Tusayan plain fugitive 
red, TC: Tusayan corrugated, TBG: Tusayan black-on-gray, SNP: Shinarump plain, SVP: Shivwits plain, SVC: Shivwits corrugated, TO: Tegi orange 
ware, SJR: San Juan red ware, SNR: Shinarump red ware, RED: other red ware, POL: polychrome 
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Table 6.24.  Percentage of lowland Virgin sherds within the ware type by compositional group. 
 

Ceramic Category 
 

Moapa Ware 
% 

Sand Temper 
% 

Shivwits Ware 
 % 

Redwares 
% 

Poly- 
chrome

 % 
Group  Total MP MPF MC MBG TP TC TBG SNP SVP SVC TO SJR SNR RED POL 
Group1G 8 12 0 20 10 0 0 0 NA 0 NA 0 0 NA 0 NA 
Group1VV 35 34 50 80 49 26 50 31 NA 0 NA 100 0 NA 0 NA 
Group1VM 0 0 0 0 0 0 0 0 NA 0 NA 0 0 NA 0 NA 
Group2  5 9 0 0 0 4 0 0 NA 0 NA 0 0 NA 0 NA 
Group3 0 0 0 0 0 0 0 0 NA 0 NA 0 0 NA 0 NA 
Group4 6 9 0 0 10 0 0 0 NA 0 NA 0 0 NA 0 NA 
VR1 5 0 0 0 0 4 0 48 NA 0 NA 0 0 NA 0 NA 
VR3 7 0 0 0 0 44 50 7 NA 0 NA 0 100 NA 100 NA 
Unassigned 33 37 50 0 32 22 0 14 NA 100 NA 0 0 NA 0 NA 
Total 100 100 100 100 100 100 100 100 NA 100 NA 100 100 NA 100 NA 
MP: Moapa plain, MPF: Moapa plan fugitive red, MC: Moapa corrugated, MBG: Moapa black-on-gray,  TP:Tusayan plain, TPF: Tusayan plain 
fugitive red, TC: Tusayan corrugated, TBG: Tusayan black-on-gray, SNP: Shinarump plain, SVP: Shivwits plain, SVC: Shivwits corrugated, TO: Tegi 
orange ware, SJR: San Juan red ware, SNR: Shinarump red ware, RED: other red ware, POL: polychrome 
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Table 6.25.  Percentage of lowland Virgin sherds within the compositional group by ware type. 
 

Ceramic Category 
 

Moapa Ware 
% 

Sand Temper 
% 

Shivwits Ware 
 % 

Redwares 
% 

Poly- 
chrome

 % 
Group  Total MP MPF MC MBG TP TC TBG SNP SVP SVC TO SJR SNR RED POL 
Group1G 100 80 0 4 16 0 0 0 0 0 0 0 0 0 0 0 
Group1VV 100 55 1 4 19 7 3 9 0 0 0 3 0 0 0 0 
Group1VM NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
Group2  100 94 0 0 0 6 0 0 0 0 0 0 0 0 0 0 
Group3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
Group4 100 79 0 0 21 0 0 0 0 0 0 0 0 0 0 0 
VR1 100 0 0 0 0 7 0 93 0 0 0 0 0 0 0 0 
VR3 100 0 0 0 0 60 15 10 0 0 0 0 5 0 10 0 
Unassigned 100 65 1 0 13 6 0 4 0 10 0 0 0 0 0 0 
Total 100 58 1 2 14 9 2 10 0 3 0 1 0 0 1 0 
MP: Moapa plain, MPF: Moapa plan fugitive red, MC: Moapa corrugated, MBG: Moapa black-on-gray, TP:Tusayan plain, TPF: Tusayan plain fugitive 
red, TC: Tusayan corrugated, TBG: Tusayan black-on-gray, SNP: Shinarump plain, SVP: Shivwits plain, SVC: Shivwits corrugated, TO: Tegi orange 
ware, SJR: San Juan red ware, SNR: Shinarump red ware, RED: other red ware, POL: polychrome 
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Ware found in the lowland Virgin area came from somewhere other than Mt. 

Trumbull, while most of the Mt. Trumbull Shivwits Ware was produced locally in 

Mt. Trumbull.  These results support the idea, first proposed by Lyneis (1992, 1999, 

2008), that the Shivwits Ware in the lowland Virgin area (especially in the Moapa 

Valley) came from the Shivwits Plateau.  Further investigation is required to confirm 

this argument, such as an analysis with more source clays from the Shivwits Plateau.  

 

Red Ware and Polychrome 

 Previous researchers have been concerned with the source of red ware in the 

Arizona Strip and adjacent areas.  The traditional arguments are that the red ware in 

these areas did not come from local production centers but rather were transported as 

trade items from outside areas.  However, the present study demonstrates that some 

of the red ware was produced locally within the Arizona Strip and adjacent areas, as 

discussed in the compositional analysis and surface treatment sections.  In the 

lowland Virgin area, all six red ware samples involved in this study came from local 

production (Table 6.7).  In Mt. Trumbull, five out of 15 red ware samples were from 

the lowland Virgin area and 10 were not assigned to any group, suggesting that they 

came from a source other than Mt. Trumbull and the lowland Virgin areas (Table 

6.5).  Although the number of red ware sherds included in this study is small, most of 

the San Juan Red Ware from the Mt. Trumbull assemblage is not assigned to any 

compositional group (Table 6.20).  This supports the traditional argument that San 

Juan Red Ware in the study area was a trade ware from outside the Arizona Strip and 
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adjacent areas.  In the lowland Virgin sherd assemblage, only one San Juan Red 

Ware sample was included, belonging to VR3, the lowland Virgin local group (Table 

6.23).  Due to the small sample size, there is still not enough evidence to support the 

proposition that San Juan Red Ware was produced in the lowland Virgin area.   

Lyneis (1992) argued that the source of San Juan Red Ware is southwestern 

Colorado or southeastern Utah.  Further analysis is required to determine the source 

of San Juan Red Ware in Mt. Trumbull and the lowland Virgin area.  Nonetheless, it 

is safe to conclude that the San Juan Red Ware found in Mt. Trumbull was not 

produced in Mt. Trumbull or the lowland Virgin area.  The source determination of 

San Juan Red Ware in the lowland Virgin area is not conclusive in this study due to 

the small sample size.   

Tsegi Orange Ware samples, on the other hand, are only in Group 1VV 

(Table 6.17).  All three Tsegi Orange Ware samples from the lowland Virgin area 

belong to Group 1VV (Table 6.23), and one of two Tsegi Orange Ware samples from 

Mt. Trumbull belongs to Group 1VV (Table 6.20).  Thus, it is likely that Tsegi 

Orange Ware was produced in the lowland Virgin area and that some of the Tsegi 

Orange Ware found in Mt. Trumbull was transported from the lowland Virgin area.   

 All polychrome ware samples are unassigned in this data set.  Thus, it is 

likely that this ware is a product of non-local production outside of the Mt. Trumbull 

and lowland Virgin areas, which supports the traditional arguments.   
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Table 6.26.  Frequency and percentage of black-on-gray sherds by source and provenience. 
 
Provenience Source Frequency % Compositional Groups 
 Mt. Trumbull Local 49 48% Groups 1G 1VM, 2, and 3 
  Lowland Virgin 13 13% Group 1VV 
  VR1 source 6 6% VR1 
  Unassigned 34 33% 

   Total 102 100% 
  Lowland Virgin Local 35 50% Groups 1VV, 4 and VR3 

  Mt. Trumbull 4 6% Group 1G 
  VR1 source 14 20% VR1 
  Unassigned 17 24% 

   Total 70 100% 
  

 

Black-on-gray Ware 

 As discussed, the examination of surface treatment and compositional groups 

shows that black-on-gray ware was traded between Mt. Trumbull/Tuweep and the 

lowland Virgin area.  Close examination of compositional groups and black-on-gray 

ware (Table 6.26) suggests that: (1) almost half of black-on-gray ware was produced 

locally in the Mt. Trumbull and lowland Virgin areas, and (2) more black-on-gray 

pots were moved from the lowland Virgin area to Mt. Trumbull than from Mt. 

Trumbull to the lowland Virgin area.  To better understand the black-on-gray pottery 

exchange among regions with their own black-on-gray pot production, the ware 

types, compositional groups, and proveniences were closely examined.   

Moapa Black-on-gray (Olivine Temper)  

 Examination of the ware types in Mt. Trumbull/Tuweep and the 

compositional analysis (Table 6.27) demonstrates that 44 Moapa Black-on-gray 

sherds, that is, 64 percent of all Moapa Black-on-gray ware in Mt. Trumbull/Tuweep,  
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Table 6.27.  Frequency and percentage of black-on-gray sherds by compositional group and 
provenience. 
 
Ware Type Group Provenience 

  Mt. Trumbull/Tuweep Lowland Virgin 

 Group1G 3 (9%) 0 (0%) 

 Group1VV 13 (39%) 9 (31%) 

 Group1VM 0 (0%) 0 (0%) 

 Group2 0 (0%) 0 (0%) 
Tusayan Black-on-gray Group3 2 (6%) 0 (0%) 

 Group4 0 (0%) 0 (0%) 

 VR1 6 (18%) 14 (48%) 

 VR3 0 (0%) 2 (7%) 

 Unassigned 9 (27%) 4 (14%) 

 Total 33 (100%) 30 (100%) 

 Group1G 28 (41%) 4 (10%) 

 Group1VV 0 (0%) 20 (49%) 

 Group1VM 8 (12%) 0 (0%) 

 Group2 5 (7%) 0 (0%) 
Moapa Black-on-gray Group3 3 (4%) 0 (0%) 

 Group4 0 (0%) 4 (10%) 

 VR1 0 (0%) 0 (0%) 

 VR3 0 (0%) 0 (0%) 

 Unassigned 25 (36%) 13 (32%) 

 Total 69 (100%) 41 (100%) 
 
 

probably had their origins in Mt. Trumbull (Groups 1G, 1VM, 2, and 3).  No Moapa 

Black-on-gray sherds were found in Group 1VV or VR3, which are local groups in 

the lowland Virgin area.  Thus, all Mt. Trumbull Moapa Black-on-gray (olivine-

tempered) was from local production in Mt. Trumbull, and no Moapa Black-on-gray 

produced in the lowland Virgin area was transported to Mt. Trumbull.   

On the other hand, at least 49 percent of Moapa Black-on-gray in the lowland 

Virgin area came from local production (Group 1VV) (Table 6.27).  This suggests 
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that Moapa Black-on-gray was also produced in the lowland Virgin area, but it was 

not transported to Mt. Trumbull.  This may be because using olivine imported from 

Mt. Trumbull to make black-on-gray pots for trading was too costly, considering the 

fact that the potters in the lowland Virgin area likely had easier access to sand temper 

found near the Virgin and Muddy Rivers.  

Tusayan Black-on-gray (Sand Temper)  

 Table 6.27 shows that the Tusayan Black-on-gray sherds from the lowland 

Virgin area belong to Groups 1VV, VR3, and VR1.  Thus, the source of Tusayan 

Black-on-gray in the lowland Virgin area is either local production or from an 

unknown area (VR1), but not Mt. Trumbull.  In Mt. Trumbull, however, a few 

Tusayan Black-on-gray sherds were in the local groups (Groups 1G and 3), but, the 

Tusayan Black-on-gray from Mt. Trumbull sources is much less frequent than that 

originating from outside the area.  Thus, most of the Tusayan Black-on-gray in Mt. 

Trumbull came from outside that area (Table 6.27).  Moreover, no Tusayan Black-

on-gray produced in Mt. Trumbull was transported to the lowland Virgin area (Table 

6.27).  This is not surprising because sand temper used in Tusayan Black-on-gray 

production may have been more expensive and less accessible than olivine in Mt. 

Trumbull, which has no river or permanent stream. 

 In sum, black-on-gray pots were exchanged between Mt. Trumbull and the 

lowland Virgin area.  Only olivine-tempered black-on-gray pots were transported to 

the lowland Virgin area from Mt. Trumbull, and only sand-tempered black-on-gray 

pots were transported from the lowland Virgin area to Mt. Trumbull.  Thus, this 
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study demonstrates that only the black-on-gray pots produced with more 

accessible/less expensive temper (e.g., olivine in Mt. Trumbull) were used for 

trading between areas.  

 

Compositional Groups and Site Chronology (Rough Scale) 

 As discussed, the ratio of corrugated wares in each compositional group 

demonstrates that this ratio in Group 2 is smaller than that in Groups 1G and 1VM 

among the Mt. Trumbull local groups (Figure 6.7).  This indicates that the use of 

Group 2 clay started relatively early and/or stopped early, while Group 1G and 1VM 

clays were not used until a later period.  However, this inference is tentative, and 

further investigation (e.g., luminescence dating of sherds) is required. 

 In the lowland Virgin area, some degree of correlation exists between 

compositional groups and approximate time.  The comparison of compositional 

groups to the area’s chronology based on the ratio of corrugated ware based on a 

limited number of 14C dates shows that: (1) Group 2 sherds came only from early 

sites (0 percent corrugated); (2) Group 1VV sherds were found in various sites 

dating to different time periods, suggesting that Group 1VV pots were made/used 

during all time periods; and (3) Group 1G and 4 sherds came from the later sites 

(corrugated > 0 percent) (Table 6.28).  Based on this comparison, it appears that 

Group 2 olivine-tempered pots were transported from Mt. Trumbull to the lowland 

Virgin area early and that the Group 1G olivine pots were transported later.   
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Table 6.28.  Frequency of lowland Virgin sherds by site, compositional groups, percentage of 
corrugated wares, and 14C dates. 
 
Site 14Cdate Corrugated 1G 1VV G2 G4 VR1 VR3 Unassigned 
VR1 

 
0.0% 

 
4 4 

   
1 

VR4 
 

0.0% 
  

2 
   

1 
VR13 

 
0.0% 

 
1 6 

  
1 1 

VR14 
 

0.0% 
  

2 
    VR35 

 
0.1% 2 7 

 
3 

  
6 

VR17 
 

0.2% 
 

2 
 

2 3 2 6 
VR27 A.D. 850 0.7% 4 9 

 
2 

 
1 10 

VR21 A.D. 960 0.8% 11 5 
 

7 2 
 

7 
VR34 

 
0.8% 

 
7 

  
2 1 6 

VR33 
 

1.4% 1 8 
  

1 2 8 
VR36 

 
4.0% 

 
3 

    
10 

VR28 
 

28.2% 
 

2 
  

1 1 4 
VR22 A.D. 1020 30.2% 1 9 

   
1 3 

VR7 A.D. 1130 77.1% 2 3 
 

2 
 

2 2 
1G: Group 1G; 1VV: Group 1VV; G2: Group 2; G4: Group 4. 
 

For some reason, Group 2 olivine pots were no longer transported to the 

lowland Virgin area during later periods.  It could be that Group 2 olivine-tempered 

pots, which possibly are lower-quality pots due to less clay preparation, were not 

attractive trading items during later periods.  Group 1VV sherds were found in both 

early and late sites in the lowland Virgin area.  This suggests that the lowland Virgin 

potters may have started making their own olivine-tempered pots relatively early and 

that the same clay source/preparation technique was used throughout these time 

periods.  However, this proposition requires further examination using luminescence 

dating, which will be discussed later. 
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Compositional Groups and Post-Depositional Alteration 

 Certain elemental concentrations indicate possible post-depositional chemical 

alteration.  As shown in other studies, the only element elevated by chemical 

alteration is barium (Golitko et al. 2012; Iizuka 2012).  On the other hand, calcium 

decreases under rainy environmental conditions.  In the data set used in the present 

study, barium does not contribute much to group separation (Figure 5.34).  

Moreover, some of the compositional groups have a strong association with formal 

attributes and/or are matched to local clay.  Thus, it is unlikely that the compositional 

groups are the result of post-depositional chemical alteration due to diagenesis. 

 

Comparison of LA-ICP-MS Compositional Groups to INAA Compositional 

Groups 

 As discussed in the previous chapter, the comparison of compositional 

groups derived from the LA-ICP-MS data to those derived from the INAA data 

provided some clues that were used to find possible compositional groups/subgroups 

in the LA-ICP-MS data.  Some of the compositional groups in the microchemical 

analysis using LA-ICP-MS correspond to groups in the INAA bulk data (Table 6.29).  

For example, Group 2 in the LA-ICP-MS data corresponds to INAA Group 2.  This 

suggests that the formation of INAA Group 2 in the bulk data is at least partly due to 

the chemical signature of clay itself, not the amount of temper, natural inclusions 

other than olivine, or olivine from a different source.  Group 4 derived from the LA-

ICP-MS data potentially corresponds to Group 4 in the INAA data.  However, the  
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Table 6.29.  Frequency of sherds by INAA and LA-ICP-MS compositional groups. 
 

 

LA-ICP-MS Group 
1G 1VM 1VV G 2 G 3 G4 VR1 VR3 Unassigned Total 

INAA 
Group 1 9 3 1 

     
8 21 

INAA 
Group 2 

   
18 

    
3 21 

INAA 
Group 3 6 

        
6 

INAA 
Group 4 

     
1 

  
1 2 

INAA VR1 
      

9 
  

9 
INAA VR2 

  
6 

     
1 7 

INAA VR3 
  

3 
    

17 
 

20 
INAA VR4 

  
12 1 

   
2 4 19 

Unassigned 2 
 

3 1 
    

6 12 
Total 17 3 25 20 0 1 9 19 23 117 
 
 

samples sizes are too small for a firm conclusion.  Group 1VV derived from the LA-

ICP-MS data corresponds to INAA VR2 and INAA VR4.  Some of the groups 

defined in the INAA bulk data are likely due to different types of temper; in 

particular, INAA VR2 includes only olivine-tempered sherds and INAA VR4 

contains only sand-tempered sherds, suggesting that the contribution of the tempers 

may be helping to create their distinctive compositional signatures. 

 

Evaluation of Compositional Groups 

 As discussed above, the comparison of the compositional analysis with 

formal attributes and provenience shows some degree of association between 

compositional groups and formal attributes as well as provenience.  The results also 

demonstrate that some of the compositional groups found in LA-ICP-MS correspond 
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to those found in the INAA data.  Four propositions are proposed to interpret the 

compositional groups discussed in Chapter III: compositional groups represent (1) 

clay sources, (2) paste recipes, (3) clay preparation/quarrying techniques, or (4) the 

effects of diagenesis.  The following section presents an examination of what the 

compositional groups defined in this project represent.  As noted above, I have ruled 

out the possibility that chemical alteration due to diagenesis created the 

compositional groups observed in this data set.  The following section concerns the 

other three propositions.  

 

Group 1G: Mt. Trumbull Local Group 

The chemical compositional data of three clays from Mt. Trumbull are 

matched to those of Group 1G sherds.   Thus, Group 1G represents clay sources in 

Mt. Trumbull.  Two of the clays matched to Group 1G are prepared clays, and these 

two prepared clays and the unprepared clay from the same source also match with 

Group 2 (Table 5.29).  This shows the probabilities of these two clays to match 

Group 1G increased only after clay preparation.  Thus, Group 1G represents the 

possible results of clay preparation, which may exclude larger mineral particles that 

could change the chemical signature.  In this sense, Group 1G also represents a paste 

recipe or preparation technique. 
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Group 1VM: Unknown, But Potentially a Mt. Trumbull Local Group. 

No clays are matched to Group 1VM.  However, this group is likely a Mt. 

Trumbull local group because Group 1VM includes only olivine-tempered ceramics 

found in Mt. Trumbull; thus it is difficult to imagine that the source of this group is 

outside Mt. Trumbull/Tuweep.  The lack of a match with a clay could be because I 

did not find the clay that potters used to make the pots represented by sherds used for 

this analysis or because the ceramic paste went through clay preparation to eliminate 

larger particles of particular minerals in order to increase clay performance, thus 

potentially changing the chemical characteristics of the clay matrix.  In this sense, 

Group 1VM may also represent paste recipe/preparation in addition to a clay source.   

 

Group 1VV: Lowland Virgin Local Group 

 Three local clays in the lowland Virgin area are matched to this group, 

suggesting that this group represents a clay source 

 

Group 2: Mt. Trumbull Local Group 

Twenty clay samples in the data (15 sources) from Mt. Trumbull and its 

vicinities are matched to Group 2.  Thus, this group represents a clay source. 

 

Group 3: Unknown but Potentially Mt. Trumbull Local Group 

The sample size in Group 3 is too small for using Mahalanobis distance 

projection to compare clays with this group.  Bivariate plots of the canonical 
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discriminant function scores show that no clay analyzed in this study is matched 

(overlapped) to Group 3 (Figure 5.40).  However, Group 3 is likely a Mt. Trumbull 

local group, considering that all ceramics in this group are from Mt. Trumbull and 

most of them are from one particular site (71 ASM).  Another proposal is that Group 

3 is a non-local group that is distributed only to a few sites in Mt. Trumbull (mainly 

the 71 ASM site).   

This proposal, however, raises questions because most of the sherds in Group 

3 have olivine temper.  It is unlikely that the olivine-tempered pots were produced 

outside of the olivine source area and transported back to the Mt. Trumbull area.  

Thus, it is likely that Group 3 is a Mt. Trumbull local group.  The chemical signature 

of Group 3 is very different from that in any other compositional group and the clays 

in the data set.  Thus, it is possible that Group 3 ceramics were produced in/near the 

71 ASM site using special clay that was not sampled for this study or that was 

manufactured using a special clay preparation.   

 

Group 4: Unknown, but either Mt. Trumbull or the Lowland Virgin Group (likely to 

be a lowland Virgin local Group) 

The sample size of Group 4 is too small for using Mahalanobis distance 

projection to compare the clay data to this group.  Bivariate plots of canonical 

discriminant function scores (Figure 5.40) show that no clay analyzed in this study is 

matched (overlapped) to Group 4, which includes only olivine-tempered sherds from 

relatively later sites.  The olivine-tempered sherds in this group are found in both 
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Mt. Trumbull and the lowland Virgin areas; however, the majority of the Group 4 

sherds come from the lowland Virgin area.  Two alternatives regarding the source of 

Group 4 items are proposed.   

 One proposal is that Group 4 pots was produced in the lowland Virgin area 

using clays that were specifically chosen for use with olivine temper.  This 

hypothesis is suggested by the fact that another clay group for the olivine-tempered 

ceramics, Group 1VV, exists in the lowland Virgin area.  Group 1VV clay was used 

for multiple purposes, both with and without olivine.  It is also noted that the use of 

Group 1VV with olivine-temper potentially started early and continued to be used 

during later periods.  Group 4, in contrast, consists of sherds with only olivine 

temper from relatively later sites.  Thus, it is proposed that the selection of a clay 

(which was not sampled for this study, or is from deeper deposits of the clay source 

where I sampled for this study) or special clay preparation was involved in olivine-

tempered ceramic production in the lowland Virgin area during later periods. Olivine 

seems to be an expensive temper material in the lowland Virgin area, as it was 

imported from Mt Trumbull.  Thus, it is possible that clay selection or special 

preparation of the paste for better performance was required to decrease the breakage 

rates during production so that no olivine temper was wasted.   

 The other proposal for the origin of Group 4 involves resource specialization 

for pottery production in Mt. Trumbull; that is, Group 4 represents clay selection or a 

special recipe for the production of pottery for trade in Mt. Trumbull, especially at 

the 71 ASM site, because three out of four Mt. Trumbull Group 4 sherds come from 
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this site.  However, the majority of sherds in Group 4 come from the lowland Virgin 

area (19 of 23 sherds in Group 4).  If the Mt. Trumbull site is the production center, 

then I would expect that more sherds from Mt. Trumbull would be found in Group 4.  

Moreover, a relatively high proportion of utilitarian ware is present in Group 4, so it 

is unlikely that Group 4 is a Mt. Trumbull local group consisting of pottery produced 

exclusively for trading purposes.  

 Although the second proposal seems less likely, it is not possible to have high 

confidence in the first proposal based on the limited evidence currently available.  To 

support the first proposal, which posits a lowland Virgin source and clay selection 

practices adopted later in time, it is essential to date olivine-tempered ceramics in 

Group 4 and Group 1VV.  

 

VR1: Unknown, Neither Mt. Trumbull Nor the Lowland Virgin Area 

VR1 did not match a lowland Virgin clay in the INAA analysis or Mt. 

Trumbull local clay in the ICP-MS analysis, so VR1 is classified as a non-local 

group with an unknown source.   

 

VR3: Lowland Virgin Local Group 

Lowland Virgin clays were matched to VR3 in the previous INAA study, so 

this group represents a clay source. 
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Conclusion 

 Examination of the relationship between compositional groups and ceramic 

physical attributes, as well as the INAA results suggests that some of the 

compositional groups in ceramics found in Mt. Trumbull/Tuweep and the lowland 

Virgin area represent clay sources and some represent clay preparation/paste recipes.  

In the following chapter, I will examine how the use of these clays changed over 

time considering the results of optically stimulated luminescence (OSL) dating of 

selected potsherds.   

 

Optical Luminescence Dating Results 

 The main purpose for applying OSL dating to the ceramic samples in this 

study is to examine the changing patterns of ceramic resource use over time.  

However, the OSL dates initially need to be compared with the other available 

chronological information related to the study area because cross-checking the dates 

with those derived from other dating techniques is always necessary to ensure their 

validity.   

The distribution of OSL dates based on ceramic attributes and their 

provenience will be also examined to provide better information about the regional 

chronology and an accurate reconstruction of ceramic chronology, which are both 

necessary to understand the evolution of pottery production and consumption 

discussed in this study. 
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 As discussed in a previous chapter, only a few 14C dates are available for 

establishing a site’s chronology and estimating the length of the use of particular 

clays for pottery production.   Nonetheless, it is worthwhile to compare the OSL 

dates with 14C dates to assess the validity of these OSL dates.  Table 6.30 shows the 

OSL dates for each site in the sample, the14C dates, and the ratios of corrugated to 

non-corrugated wares that have been used as a “time indicator” in the study area.  

Overall, at most of the sites in Mt. Trumbull, the OSL dates overlap the 14C dates.   

 All of the 14C dates for the 131 BLM site were found to be within the range 

of OSL dates.   Based on these OSL dates, this site was occupied as early as A.D. 

476 ± 115, and an earlier phase of A.D. 476–830 and a later phase of A.D. 1080–

1350 appears to have occurred at the site.  This pattern corresponds with the 

distribution of artifacts from test pit excavations that show a bimodal pattern of 

distribution.   

 The range of 14C dates from 136 ASM are within the distribution of OSL 

dates.  Although the earliest OSL date is A.D. 436 ± 127, the majority of the dates 

are after A.D. 830, which may correspond to the relatively higher corrugated ware 

ratio.  Five OSL dates in 136ASM are possibly too late, considering the traditional 

arguments of the Anasazi occupations in this area.   

 The 14C dates from 14 MNA are also within the range of the OSL pertaining 

to this site.  Most OSL dates range after A.D. 1000, which corresponds to a very high 

corrugated ware ratio.  A single 14C date is available for 204 BLM and is within the 

range of the OSL dates for this site.  Except for one late date, most of the OSL dates   
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Table 6.30.  OSL dates of sherds from Mt. Trumbull sites. 
 
131BLM 14C dates* A.D. 620–690, A.D. 680–880, A.D. 900–1030 
 % sherds >1' Corrugated ware from SCU: 2.0% 
Cat# ID  date provenience group evaluation 
131-14 LB0129 A.D. 476 ± 115 SCU A-3 G2 C 
131-318 LB1125 A.D. 569 ± 154 TP-2 L6N 1VV A 
131-74 LB0276 A.D. 599 ± 123 SCU A-11 1G A 
131-168 LB1113 A.D. 696 ± 105 surface general 1VM C 
131-9 LB0101 A.D. 739 ± 125 SCU A-2 1G A 
131-53 LB0275 A.D. 830 ± 73 SCU A-7 G2 A 
131-314 LB1071 A.D. 1080 ± 66 TP2 L3N VR1 A 
131-45 LB0130 A.D. 1085 ± 80 SCU A-7 G2 A 
131-308 LB1150 A.D. 1152 ± 79 TP-2 L7S 1G A 
131-244 LB1151 A.D. 1179 ± 83 TP-3 L7 1G A 
131-307 LB0641 A.D. 1236 ± 90 TP-2 L3  1G A 
131-236 LB0655 A.D. 1275 ± 63 TP-1 L3 1VV A 
131-96 LB0139 A.D. 1350 ± 64 SCU B-1 1G A 
136ASM 14C dates* A.D. 790–1040, A.D. 960–1060, A.D. 1020–1270 
 % sherds >1' Corrugated ware from SCU: 15.9% 
Cat# ID  date provenience group evaluation 
136-18 LB0141 A.D. 436 ± 127 surface general 1G A 
136-26 LB0260 A.D. 833 ± 81 surface general G2 A 
136-336 LB1130 A.D. 923 ± 148 TP2 L4 1VV B 
136-271 LB1112 A.D. 941 ± 109 TP2 L3 1VM A 
136-63 LB1123 A.D. 1063 ± 89 surface general 1VV A 
136-34 LB0149 A.D. 1264 ± 61 surface general 1VM A 
136-9 LB0258 A.D. 1592 ± 30 surface general G2 A 
136-7 LB0148 A.D. 1655 ± 28 surface general 1G A 
136-27 LB0099 A.D. 1656 ± 32 surface general G2 A 
136-16 LB0131 A.D. 1730 ± 17 surface general G2 A 
136-76 LB1111 A.D. 1815 ± 32 surface general 1VM B 
14MNA 14C dates* A.D. 880–1010, A.D. 1000–1170, A.D. 1020–1210, A.D. 1160–1280 
 % sherds >1' Corrugated ware from SCU: 39.3% 
Cat# ID  date provenience Group evaluation 
14-140 LB0137 A.D. 590 ± 203 SCU-2 G2 A 
14-83 LB0268 A.D. 1002 ± 52 ROOM 2 FILL G2 A 
14-152 LB0271 A.D. 1067 ± 85 SCU-3 G2 A 
14-116 LB0270 A.D. 1282 ± 45 ROOM 3 FILL G2 A 
14-297 LB1084 A.D. 1299 ± 45 TP1 L1 VR3 A 
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Table 6.30. OSL dates of sherds from Mt. Trumbull sites (continued). 
 
 Cat# ID  date provenience Group evaluation 
14-106 LB0144 A.D. 1309 ± 60 ROOM 3 FILL 1G A 
14-6 LB0264 A.D. 1312 ± 104 SCU-5 1G A 
14-70 LB0138 A.D. 1313 ± 304 ROOM 2 FILL 1G C 
14-120 LB0145 A.D. 1375 ± 62 ROOM 3 FILL 1G A 
204BLM 14C dates* A.D. 810–890 
 % sherds >1' Corrugated ware from SCU: 0 % 
Cat# ID  date provenience group evaluation 
204-13 LB0097 A.D. 490 ± 110 surface general G2 C 
204-41 LB0661 A.D. 798 ± 86 TP3  L1 G3 A 
204-2 LB0279 A.D. 977 ± 109 SCU A-4 1G A 
204-20 LB1122 A.D. 982 ± 106 TP4 L1 1VV A 
204-4 LB0133 A.D. 1581 ± 33 SCU A-6 G2 A 
214ASM 14C dates* A.D. 640–770 
 % sherds >1' Corrugated ware from SCU: 44.0% 
Cat# ID  date provenience group evaluation 
214-11 LB1127 A.D. 938 ± 83 TP-1 L2  1VV A 
214-5 LB0588 A.D. 1049 ± 53 TP-5 L1 G2 A 
214-8 LB0586 A.D. 1465 ± 43 TP-3 L1  1VM C 
30BLM 14C dates* A.D. 1110–1190 
 % sherds >1' Corrugated ware from SCU: 11.7% 
Cat# ID  date provenience group evaluation 
30-40 LB0146 A.D. 205 ± 205 surface general 1G C 
30-7 LB0136 A.D. 493 ± 137 surface general G2 A 
30-10 LB0140 A.D. 769 ± 199 surface general 1G D 
30-88 LB0123 A.D. 804 ± 140 surface general 1G A 
30-36 LB0098 A.D. 1091 ± 321 surface general 1VM C 
30-261 LB0600 A.D. 1130 ± 96 surface general 1G A 
30-158 LB0616 A.D. 1132 ± 63 TP2 L7 G2 A 
30-168 LB0878 A.D. 1141 ± 70 TP3 L2 1VM A 
30-166 LB0673 A.D. 1146 ± 74 TP4 L5 1VM A 
30-37 LB0263 A.D. 1177 ± 123 surface general 1G A 
30-262 LB0601 A.D. 1250 ± 65 surface general 1G A 
30-173 LB0650 A.D. 1253 ± 59 TP3 L6 1VV A 
30-80 LB0106 A.D. 1255 ± 80 surface general G3 A 
30-82 LB0108 A.D. 1264 ± 45 surface general G3 A 
30-151 LB1109 A.D. 1304 ± 109 TP2 L3 1VM B 
30-77 LB1094 A.D. 1402 ± 81 surface general VR1 C 
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Table 6.30.  OSL dates of sherds from Mt. Trumbull sites (continued). 
 

Cat# ID  date provenience Group evaluation 
30-16 LB0262 A.D. 1410 ± 54 surface general 1G A 
30-260 LB0599 A.D. 1461 ± 52 surface general G2 A 
30-81 LB0107 A.D. 1472 ± 84 surface general G3 B 
30-266 LB1093 A.D. 1494 ± 62 surface general VR1 A 
30-201 LB1097 A.D. 1529 ± 48 TP2 L6 VR1 A 
71ASM 14C dates* A.D. 880–1010 
 % sherds >1' Corrugated ware from SCU: 0.9% 
Cat# ID  date provenience group evaluation 
71-64 LB1099 A.D. 468 ± 148 TP4 L1 G4 A 
71-39 LB0119 A.D. 587 ± 85 surface general G2 C 
71-48 LB0868 A.D. 606 ± 83 TP3 surface G3 A 
71-58 LB1117 A.D. 748 ± 90 surface general G3 A 
71-47 LB1119 A.D. 758 ± 110 TP4 L1 G3 A 
71-40 LB0120 A.D. 895 ± 193 surface general G2 B 
71-56 LB1118 A.D. 1055 ± 94 surface general G3 A 
71-57 LB0870 A.D. 1467 ± 37 surface general G3 A 
*2 sigma calibration 14C dates.  Evaluation “A”  is most reliable based on the criterion passed.   
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fall between A.D. 500 and 1000, which corresponds to the absence of corrugated 

ware.   

 Site 214 ASM presents an interesting case of the disagreement between the 

14C date on the one hand, and the OSL dates and corrugated ware ratio on the other.  

Despite the extremely high ratio of corrugated ware, the 14C date at this site is 

anomalously early, A.D. 640–770.  The OSL dates for two sherds from 214 ASM are 

around A.D. 1000 and one is very late.   

 A single 14C date is available for 30 BLM, but this date is based on 

carbonized maize kernels that minimized the old-wood problem.  The date is within 

the range of OSL dates.  These OSL dates range from early to late, and the majority 

of these dates are after A.D. 1150, which corresponds to relatively high ratio of 

corrugated ware.  Like OSL dates from 136 ASM, quite a few dates for 30 BLM are 

after A.D. 1400, which is too late for Anasazi occupation.  Interestingly, the locations 

of 30 BLM, 136 ASM, 204 BLM, and 214 ASM, all of which include post-A.D. 

1400 dates, are within a two-km area containing a concentration of large pueblos.  

Since they are not from the same type of provenience (some are from the surface 

while others are from deeper deposits) and are of various dates, it is unlikely that 

these late dates are due to a single natural event such as a forest fire.  Instead, this 

may be the result of occupation by a later population, such as the Southern Paiutes.  

The large pueblo area may have been attractive to the later occupants for some 

reason.  Indeed, the large pueblo area is likely to have been better for agriculture 

because of its potential subsurface water (Buck et al. 2012) and this environmental 
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feature could have attracted the later occupants.  Although the Southern Paiutes were 

highly mobile and those in Mt. Trumbull probably were not introduced to 

horticulture until 1700–1800s, they tended to choose the location of base camps 

close to permanent water resources (Fairley 1989).  Thus, the OSL dates suggest the 

large pueblo area was also attractive to the later occupants.   

 The single 14C date from 71 ASM is also within the range of OSL dates for 

this site.  The OSL dates are mainly relatively early, as most are before A.D. 1050, 

which corresponds to the small ratio of corrugated ware.   

 

Distribution of OSL Dates in Mt. Trumbull and the Lowland Virgin Area 

 Figure 6.12 shows the distribution of all OSL dates derived from sherds 

found in Mt. Trumbull and the lowland Virgin area.  As discussed in the previous 

chapter, most of the dates after A.D. 1400 presented here appear to be accurate, as 

the equivalent dose passed the criteria with strong signals.  It is likely that these post-

A.D. 1400 dates represent the post-use effects on the ceramic samples, such as 

intense surface firing (e.g., forest fires or campfires) or the reuse of the pots/site by 

later occupants.  Forest fires have occurred often, especially in Mt. Trumbull.  

However, a quick brush fire will not raise the temperature over 500°C, and an event 

to zero luminescence signals must be a very intense fire for a long time, such as a 

fire in the Ponderosa pine forests or the burning of structures rather than a brush fire.  

The later occupants, perhaps the Southern Paiute, could have reused the pots made 

by the Ancestral Pueblo or reoccupied the Ancestral Pueblo sites and made hearths  
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Figure 6.12.  Frequency of Mt. Trumbull and lowland Virgin sherds by time interval based on 
OSL dates.  Basketmaker III is circa A.D. 400–800, Pueblo I is circa A.D. 800–1000, Pueblo II is 
circa A.D. 1000–1150, and Pueblo II is circa A.D. 1150–1300. 
 

that resulted in heating the ground surface, which would then have burned the 

broken Ancestral Pueblo sherds on surface.    

 Among the lowland Virgin sherds, a few dates are very early.  As discussed in 

the previous chapter, the extremely early dates, especially before A.D. 200 (95 ± 207 

B.C. and 373 ± 206 B.C.) may be erroneous, as hardly any very early 14C dates have 

been reported for the Ancestral Pueblo sites in other lowland Virgin areas.  The 

earliest dates accepted for both Mt. Trumbull and the lowland Virgin area seem to be 

sometime in the A.D. 200s.  However, the numbers of the sherds with earlier dates 
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are extremely low, the majority dating from A.D. 400, and the number of dates 

increases gradually over time, with a peak around A.D. 1200–1299 for both Mt. 

Trumbull and the lowland Virgin area.   

 Interestingly, quite a few sherds date to after A.D. 1300 in Mt. Trumbull, 

whereas hardly any sherds date to after A.D. 1300 in the lowland Virgin area.  It is 

therefore likely that people continued to live in Mt. Trumbull, even after the lowland 

Virgin area was abandoned around A.D. 1300.  The OSL dates also suggest that Mt. 

Trumbull was reoccupied or continued to be used by a later population after A.D. 

1400, while hardly any people lived in the lowland Virgin area at this time.  Note 

that the total numbers of sherds from each area does not represent the relative 

population level between Mt. Trumbull and the lowland Virgin area, as more Mt. 

Trumbull sherds were analyzed by OSL dating than sherds from the lowland Virgin 

area.   

 

Ceramic Physical Attributes and OSL Dates 

Figure 6.13 presents OSL date frequencies and surface treatment of the 

sherds from Mt. Trumbull and the lowland Virgin area.  Notably, all of the 

corrugated wares date to after A.D. 900 (A.D. 938 ± 83), except for one sample that 

falls in the A.D. 600s (A.D. 696±105).  This supports the “beginning date of 

corrugated ware around A.D. 950 [being] slightly later”, as proposed by Lyneis 

(1986).  The distribution of OSL dates indicates that corrugated ware increased after 

Pueblo I (after A.D. 1000).   
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Figure 6.13.  Frequency of all sherds  from the Mt. Trumbull and lowland Virgin areas by time 
interval based on OSL dates and surface treatment. 
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 Although dates for black-on-gray sherds span the whole time interval, the 

OSL dates demonstrate that they were more popular after Pueblo II (A.D. 1000–

1150), which supports the traditional arguments about the black-on-gray wares in 

this study area (Chapter II).  Only two red ware sherds were analyzed by OSL in this 

study.  One from Mt. Trumbull dates to A.D. 1299 ± 45, and the other from the 

lowland Virgin area dates to A.D. 1073 ± 73 (Appendix B: Table B4).  Thus the OSL 

dates support Alison’s (2000) argument that the earliest regular appearance of red 

ware occurred after Pueblo II (A.D. 1000–1150).   

 Figure 6.14 presents OSL date frequencies and temper types.  Although more 

olivine-tempered ceramics were dated by OSL than non-olivine-tempered ceramics 

(84 olivine-tempered sherds and 25 sand-tempered sherds), the distribution of the 

OSL dates suggests that the olivine-tempered sherds span the whole chronological 

sequence, whereas sand-tempered sherds to later time intervals.  Their occurrence 

began around A.D. 600–699 (A.D. 602 ± 121 in the lowland Virgin area), and their 

frequency increased during the Pueblo II and early Pueblo III period.  The majority 

of the sherds in the lowland Virgin area are sand-tempered, and if more lowland 

Virgin sherds were analyzed by OSL, their distribution over time may be different.  

However, the data set included in this study suggests that the sand-tempered pots 

appeared later.  
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Figure 6.14.  Frequency of all sherds from the Mt. Trumbull and the lowland Virgin areas by 
time interval based on OSL dates and temper.   
 

Summary of OSL Dates in Each Compositional Group   

 The examination of the ceramic physical attributes and their provenience, as 

well as INAA results, indicates some degree of association among the compositional 

groups over time, as discussed earlier in this chapter.  In this section, the distribution 

of OSL dates within the compositional group is examined closely in order to 

discover temporal trends in the use of these clay sources or recipes represented by 

compositional groups.  As discussed in Chapter V, four Mt. Trumbull local groups 

and three lowland Virgin local groups were identified.  So, in the following section, I 
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will examine if these multiple groups were used contemporaneously or if the use of 

particular clay shifted over time and, if so, what contributed to the change of clay 

use.  The dates of each sherd are presented in Appendix B: Table B4.   

 

Group 1G (Figure 6.15) 

 Group 1G is one of the major Mt. Trumbull local groups used as utilitarian 

and non-utilitarian wares and for domestic and trading purposes.  Both olivine and 

sand-tempered sherds are in this group.  Group 1G sherds chemically matched three 

local clays in Mt. Trumbull.  Two of these clays matched this group only after 

preparation to remove larger particles in the clay.  This may indicate that Group1G 

clay has undergone special clay preparation.  Note also that Group 1G matched much 

fewer clays with lower probabilities compared to Group 2.  This suggests that the 

clay used for Group 1G may have been quarried from a much deeper deposit or from 

a clay source that was remote or difficult to find.  Group 1G sherds have relatively 

lighter cores, which suggest a long firing process.  Thus, considerable time and effort 

were likely devoted to produce the Group 1G pots.  

 The earliest OSL date for the sherds in this group is A.D. 205 ± 205, but most 

dates are after the A.D. 400s (Figure 6.15).  The OSL date distribution for the sherds 

in Group 1G demonstrates that the use of Group 1G pots started relatively early and 

continued until late, even after A.D. 1100 when Group 2, the other major Mt. 

Trumbull group, mainly used for the utilitarian wares, ceased to be used by the 

Ancestral Pueblo.  There are two recognized clusters of OSL dates, one is early,  
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Figure 6.15.   Distribution of OSL dates for sherds in Group 1G.  Black diamonds are the 
samples from Mt. Trumbull and white diamonds are the samples from the lowland Virgin area.   
 
 
around A.D. 400–600 during the Basketmaker III period (A.D. 388–599), and the 

other is later, about A.D. 1130–1400, during Pueblo III.  Interestingly, the sherds in 

the earlier date cluster were mostly found in the lowland Virgin area (five of seven 

sherds) and the sherds from the later date cluster were mainly found in Mt. Trumbull 

(12 of 13 sherds).  This pattern suggests clay resource selection for different 

purposes during early times, when Group 1G clay was more likely used to produce 

pots for trading.  As discussed earlier, the Group 1G pots may have been expensive 

pots entailing either special clay preparations or clay quarried with effort (e.g., 

deeper deposits, distant sources).  These pots also appear to be more resistant and 
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used for longer periods, after firing for longer times at potentially higher 

temperatures.    

 In contrast to Group 1G, Group 2 ware was mainly used for utilitarian wares, 

and more clays matched the ceramic groups without further preparation.  Sherds in 

Group 2 have darker cores that suggest shorter firing times at lower temperatures.  

Indeed, the distribution of OSL dates demonstrates that use of Group 2 wares started 

early (Figure 6.16), and these early uses were exclusively for Mt. Trumbull pots, 

especially before A.D. 600.  Comparing the distributions of OSL dates for Group 1G 

and Group 2 supports the hypothesis concerning clay resource specialization in Mt. 

Trumbull during early times.  Group 1G pots were used for trading purposes, and 

Group 2 pots were used in domestic contexts.   

 The comparison of OSL dates between Group 1G and Group 2 also 

demonstrated that the use of Group 2 for the pottery production by the Ancestral 

Pueblo was replaced by Group 1G clay after A.D. 1130.  This suggests that only 

good-quality clay was used for pottery production during the later time period.  It is 

generally assumed that after A.D. 1000 the population became larger in the study 

area.  To support the large number of people, the people living in Mt. Trumbull may 

have focused on more intensive agriculture and the construction of storage facilities 

during the post-A.D. 1000 period.  Under these circumstances, people may have 

focused their efforts on agricultural activities and minimized efforts on non-

agricultural activities, such as pottery production.  Pots less subject to failure during 

production and more durable during use may have been in high demand because 
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potters did not need to make their pots so often.  The potters may have spent more 

time obtaining and preparing the clay for the pottery production, as the use of a 

better clay such as Group 1G ultimately decreased the production cost for the pots by 

avoiding failure during production or breakage during use.  Once potters produced 

less breakable pots, they would not have to spend much time for additional pottery 

production and would have been able to devote more time to agriculture.  Climatic 

reconstruction by PDSI shows that the time period from A.D. 1175 to 1275 was 

relatively wet in the study area (Larson et al. 1996).  In circumstances where the 

climatic conditions were favorable for agriculture, it is possible that the accumulated 

surplus allowed specialized potters to devote more time to pottery production 

activities, including clay procurement.  This growing specialization would have freed 

the non-potters to devote more of their time to agricultural production to increase 

yields for supporting the large population.   

 

 Group 2 (Figure 6.16) 

 Group 2 is another major Mt. Trumbull local group used mainly for utilitarian 

wares.  The pots in this group not only were used for domestic purpose but were also 

transported to the lowland Virgin area.  Group 2 was matched to more than 20 local 

clays, and as mentioned above the sherds in this group have a darker core color, 

which may indicate a short firing time.  OSL dates for the sherds in this group 

suggest that the use of Group 2 clay started in the late A.D. 400s, similar to the 

beginning date of Group 1G.  However, the use of Group 2 clay decreased after A.D. 
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Figure 6.16.  Distribution of OSL dates for sherds in Group 2.  Black diamonds are the samples 
from Mt. Trumbull and white diamonds are the samples from the lowland Virgin. 
 

1130, although the use of Group 1G continued (Figure 6.16).  Considering the fact  

that more local clays are matched to Group 2 than Group 1G and that a dark core 

color suggests a shorter firing time at a lower temperature, the clay or clay 

preparation used for Group 2 may have been less expensive and resulted in lower-

quality pots than pots made with Group 1G clay.  As discussed, focusing on more 

intensified agriculture at a later time may have favored use of more resistant pots.  

Consequently, Group 2 clay was not favored during later times.   
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 The distribution of OSL dates also suggests that a few sherds in this group 

date very late, after A.D. 1460 (Figure 6.16).  As discussed above, these dates are 

valid and possibly represent after-depositional events such as the reuse of the pots or 

occupation by a later population at the site.  Group 2 has a far higher frequency of 

very late dates than any other compositional group.  In addition to reuse by a later 

population, there are two more possibilities can be considered.  The one possibility is 

that the sherds with very late dates could be from Southern Paiute pottery, which also 

has a dark core.  However, none of these sherds shows the features of the typical 

Southern Paiute sherds, which have a dark clay fabric with a very rough surface.  

The other possibility is related to the presumably lower quality of pottery made with 

Group 2 clay.  The abandonment of Mt. Trumbull by the Ancestral Pueblo is still a 

controversial issue.  Environmental factors such as prolonged droughts may have 

caused the Mt. Trumbull populations either to perish or to migrate eastward.  If they 

migrated out of Mt. Trumbull, they may have carried their high-quality/more 

resistant pots with them and left the lower-quality pots behind.  Thus, it is possible 

that the Ancestral Puebloans left more Group 2 pots than pots of any other group, 

and these abandoned pots could have been reused by the later occupants of the area.  

However, most of the sites where Group 2 sherds are found are open-air, not like 

rock shelters in Mt. Trumbull and it is unlike that the whole pots were left on surface 

and reused by the later occupants.  Thus, the possibility of this circumstance (the 

Southern Paiute’s reuse of the pots left by the Ancestral Pueblo) may be 
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questionable, unless the abandonment of Ancestral Pueblo and the visit by the 

mobile Southern Paiutes happened almost simultaneously.  

 

Group 1VM (Figure 6.17) 

  No clay was matched to Group 1VM, but this group is likely to be the Mt. 

Trumbull local group because Group 1VM includes only olivine-tempered sherds 

from Mt. Trumbull, and it is therefore difficult to imagine this group originating 

anywhere other than Mt. Trumbull.  The sherds in this group have relatively light- 

colored cores, and they are of utilitarian and non-utilitarian wares (black-on-gray).  

All pots were used for domestic purposes, as discussed.  Two sherds date relatively 

early (A.D. 569 ± 140 and A.D. 696 ± 105).  However, these dates may or may not 

be their real ages, due to either a single aliquot being available or weak OSL signals.  

Indeed, one of the sherds with early data, 131-168, is evaluated as C for its validity 

(Appendix B: Table B4).   Two of the samples date late (A.D. 1465 ± 43; evaluated 

as C and A.D. 1815 ± 32; evaluated as B) and these may not be valid dates either, for 

the same reasons.  Thus, to be safe, the majority of the dates in Group 1VM occur 

around A.D. 1100–1300 (Pueblo II and III), which suggests the use of Group 1VM is 

relatively late.  This pattern appears to be consistent with the longer use of Group 1G 

wares, which also have a lighter-colored core indicating longer firing to make more 

resistant pots. 
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Figure 6.17.  Distribution of OSL dates for sherds in Group 1VM.   
 

Group 3 (Figure 6.18) 

 No clay was tested against Group 3 ceramic samples based on the 

Mahalanobis distance, as this group is too small for statistical analysis.  However, 

Group 3 could be a Mt. Trumbull local group since all sherds in this group are from 

Mt. Trumbull and mostly used with olivine tempers.  Group 3 sherds are very 

distinct chemically from any other groups, and they are mostly from one particular 

site (71 ASM) in Mt. Trumbull.  There are two clusters of OSL dates in this group.  

One cluster is early, around A.D. 600–800, and the other is after A.D. 1000.  The 

earlier dates are consistent with the 14C dates for 71ASM. 
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Figure 6.18.  Distribution of OSL dates for sherds in Group 3.   
 

Group 1VV (Figure 6.19) 

 Of the three lowland Virgin local groups, Group 1VV is the major one and is 

matched to the local clays in the lowland Virgin area.  The clay of this group was 

used for multiple purposes, and the pots are both utilitarian and non-utilitarian ware 

used for domestic and trading purpose.  The Group 1VV clay was used with olivine 

temper as well as with sand temper.  The earliest date in this group is A.D. 569 ± 

154; however, the remainder occurs after A.D. 800.  Thus, the use of Group 1VV 

probably started around A.D. 800 and continued until A.D. 1200s.  The distribution 

of the OSL dates suggests that Group 1VV clay was used mainly between A.D. 800  
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Figure 6.19.  Distribution of OSL dates for sherds in Group 1VV.  Black diamonds are the 
samples from Mt. Trumbull and white diamonds are samples from the lowland Virgin area.   
 

and A.D. 1100 (Pueblo I and II) and that use decreased after A.D. 1100, when other 

groups became more important, as will be discussed later. 

 

Group 4 (Figure 6.20) 

 Due to the small group size, no clay was tested against the ceramic 

composition of the Group 4 using the Mahalanobis distance.  Several bivariate plots 

of elements did not show that Group 4 matched any of the clay samples.  However, 

Group 4 may have been a lowland Virgin local group because almost all of the 

sherds in this group are from the lowland Virgin area and were used only with  
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Figure 6.20.  Distribution of OSL dates for sherds in Group 4.  Black diamonds are the samples 
from Mt. Trumbull and white diamonds are samples from the lowland Virgin area.  The two 
early dates (B.C. 373 and B.C. 95) within the rectangle appear to be outliers, and they were 
excluded the analysis of the compositional groups and temporal variation.  
 

olivine temper, as discussed in the previous chapter.  Two extremely early dates (373 

± 206 B.C. and 95 ± 207 B.C.) should be excluded from the examination of 

compositional groups and time because they are far earlier than the expected dates 

and do not agree with other OSL dates from the same site.  The distribution of OSL 

dates suggests the use of Group 4 started early and increased over time.  It also 

shows that OSL dates in Group 4 are mainly later, after A.D. 1100.  Interestingly, this 

is the time when the use of Group 1VV ceased.  As will be discussed later, another 

lowland Virgin group, VR3, was exclusively used with sand temper, and the use of 
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this group was also concentrated after A.D. 1100.  The use of Group 1VV, which was 

used for multiple purposes, was replaced around A.D. 1100 with Group 4, used only 

with olivine temper, and VR3, used only with sand temper.  This indicates that use of 

clay for different purposes became more selective later in time in the lowland Virgin 

area and that the time needed for clay procurement and preparation to make pottery 

became optimized.   

The core color of Group 4 is relatively light, which implies long firing times 

(Figure 6.10).  In addition, Group 4 ceramics do not chemically overlap with any of 

the collected clays, which suggests that the clay used for Group 4 underwent further 

clay preparation to change its chemical characteristics.  Thus, the clay used for 

Group 4 or the preparation may have been more expensive, but its better quality 

would have decreased the failure rate of pottery during production.  The chemical 

signatures of sherds in VR3, on the other hand, were matched to multiple local clays 

in the lowland Virgin area based on INAA, and clay samples were analyzed without 

preparation in INAA study.  Thus, it is possible that more expensive clay was used 

for pottery production with expensive imported olivine temper to avoid breakage 

during production and use, while easily accessed clay without special preparation 

was used with sand temper, which is also easy to obtain in the lowland Virgin area.   

 

VR3 (Figure 6.21) 

 As discussed, the VR3 sherds were matched to the local clays in the lowland 

Virgin and thus this is a lowland Virgin local group used exclusively with sand  
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Figure 6.21.  Distribution of OSL dates for sherds in VR3. The black diamond is the sample 
from Mt. Trumbull and white diamonds are the samples from the lowland Virgin area.   
 

temper.  The earliest date for VR3 sherds is A.D. 602 ± 121, but more dates are 

clustered after approximately A.D. 1100, which suggests the replacement of Group 

1VV with VR3 and Group 4 for various purposes, as discussed.   

  

VR1 (Figure 6.22) 

 The source of VR1 pots is unknown.  The VR1 sherds were found in both Mt. 

Trumbull and the lowland Virgin area, but they were not produced in either area.  

The sherds in this group are mostly black on gray with a very light color core and 

very fine quartz temper.  Thus it is possible that populations in the Mt. Trumbull and  
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Figure 6.22.  Distribution of OSL dates for sherds in VR1.  Black diamonds are the samples 
from Mt. Trumbull and white diamonds are the samples from the lowland Virgin area.   
 

the lowland Virgin areas shared trading partners to import the fine black-on-gray 

pots.  The distribution of OSL dates suggests that the dates of VR 1 are clustered 

after A.D. 1050. Note also that three of the sherds in the VR1 group date late, after 

A.D. 1400, and all of them were found at the same site in Mt. Trumbull (30BLM), as 

discussed in the previous chapter.   

 In summary, the OSL dates of the 109 sherds demonstrated the changes over 

time in the uses of clay and/or clay preparation techniques represented by the 

compositional groups.  In the next chapter, I will discuss how the production and 
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distribution pattern of pots changed over time by combining the results of the 

compositional analysis and OSL dating. 
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Chapter VII: DISCUSSION 

 

 This chapter explores the implications of compositional and OSL dating 

results for spatial and temporal variations in olivine-tempered ceramic production 

and circulation patterns of the Mt. Trumbull (this category includes Tuweep) and the 

lowland Virgin areas.  Results are examined for the entire study region (Mt. 

Trumbull and the lowland Virgin), for the Mt. Trumbull area alone, and for the 

lowland Virgin area alone.  For each geographic area, production patterns are 

addressed by describing changes over time in how local potters used clay and temper 

resources.  Consumption patterns are addressed by examining changes over time in 

the places where locally consumed pots originated.  

 Ultimately, the goal of this study is to understand why ceramic production 

and circulation patterns changed during the Ancestral Pueblo occupation of this 

peripheral area of the American Southwest and to understand how different forms of 

social interaction were favored as risk minimization strategies.  As outlined in 

Chapter III, the basic assumption of the study is that ceramic production and 

circulation were shaped by selection acting on choices of pottery producers and 

consumers.  Selection pressures would have originated in the social environment as 

well as in the natural environment, the latter including such conditions as variability 

in moisture availability for agricultural production and the different availability and 

quality of ceramic resources in different locations and times, and choice of different 

clays and tempering materials.  At the most general level, severe climatic downturns 
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may have decreased agricultural production to the point that populations would have 

decreased across the whole region, with consequent reductions in ceramic production 

and trade.  It may also be expected that different conditions in the Mt. Trumbull and 

lowland Virgin areas would have led to different trajectories of ceramic production 

and circulation in these two areas.  

  

Trends in Ceramic Production and Circulation at the Macro-Regional Scale 

 As the first examination I will focus on the ceramic production and 

circulation pattern involving a large geographic region to understand 

economic/social interaction between distant areas in different environments.  

 

Production and Circulation of All Ceramics 

 At a broad geographic scale, encompassing both Mt. Trumbull and the 

lowland Virgin areas, the OSL dates indicate that humans began producing and 

moving ceramics across the landscape by around A.D. 400 (Table 7.1 and Figure 

7.1).  Since a few sherds date to the A.D. 200s, the beginning of pottery production 

in the region may have been earlier.  The number of OSL dates indicates that the 

population of pottery producers and consumers generally increased after A.D. 400, 

with the peak between A.D. 1200 and 1300.  In addition, there are two phases 

between A.D. 600 and 700 and between A.D. 1100 and 1200 that raise the 

possibility that population decreased, based on the frequency of OSL dates.  These 

two phases of population decrease seem to correspond to times of fluctuating  
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Table 7.1. Frequency of sherds by time interval and compositional group (Mt. Trumbull and the 
lowland Virgin area). 

 
 Group 

1G 
Group 
1VM 

Group 
2 

Group 
3 

Group 
1VV 

Group 
4 

VR3 VR1 Total 

after A.D. 1600 0 1 1 0 0 0 0 0 2 
A.D. 1600-1699 1 0 1 0 0 0 0 0 2 
A.D. 1500-1599 0 0 2 0 0 0 0 1 3 
A.D. 1400-1499 1 1 1 2 1 0 0 2 8 
A.D. 1300-1399 5 1 0 0 0 0 0 0 6 
A.D. 1200-1299 3 2 2 2 2 2 2 1 16 
A.D. 1100-1199 4 2 0 0 0 2 1 1 11 
A.D. 1000-1099 1 1 5 1 2 0 1 2 13 
A.D. 900-999 1 1 2 0 5 1 0 0 10 
A.D. 800-899 2 0 3 0 2 1 0 0 7 
A.D. 700-799 2 0 2 3 0 0 0 1 7 
A.D. 600-699 0 1 1 1 0 0 1 0 5 
A.D. 500-599 4 1 2 0 1 0 0 0 8 
A.D. 400-499 2 0 3 0 0 1 0 0 6 
A.D. 300-399 1 0 0 0 0 0 0 0 1 
A.D. 200-299 1 0 0 0 0 1 0 0 2 
before A.D.200 0 0 0 0 0 2 0 0 2 
Total 28 11 25 9 13 10 5 8 109 

 
 

climatic conditions occurring between A.D. 600 and 700 (Sakai 2001) and the 

prolonged drought around A.D. 1150 (Larson et al. 1996) (Figure 7.32).   

The OSL dates suggest also that the peak usage of the different clay resources 

differed over time.  Whereas Group 1VV peaked around A.D. 900–1000, Group 2 

resources were utilized before A.D. 1100 but decreased thereafter.  Group 1G was 

the dominant clay group during A.D. 1300–1400.  As discussed in the previous 

chapter, OSL dates that fall after A.D. 1400 are more likely the result of after-deposit 
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events.  The absence of post-A.D. 1400 sherds in the lowland Virgin area may 

indicate that occupation ended before A.D. 1400.  

 

 
 
Figure 7.1.  Frequency of sherds by time interval and the compositional group.  
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 Figure 7.2 displays the use of olivine temper over time in the study area.  

More olivine-tempered sherds than sand-tempered sherds were analyzed in this 

study, so the proportions do not reflect the actual proportions of olivine versus sand 

temper in the whole pottery assemblage.  However, it is clear that the use of the 

olivine as temper decreased over time in the region as a whole. 

 Figure 7.3 shows how the use of clay sources and clay preparation techniques 

changed over time, using large chronological categories of the Pecos Classification.  

I expect that using large chronological units gives us a broad picture of how clay 

resource procurement changed over time across the study area as a whole.  This 

figure shows that the use of Group 2, one of the major Mt. Trumbull local groups, 

was important during the Late Basketmaker to Pueblo II periods, but that it 

decreased during the Pueblo III period.  Group 1G, the other major Mt. Trumbull 

local group, was dominant early, decreased during the Pueblo I and II periods, and 

increased again during the Pueblo III period to become a dominant clay group.  The 

use of Group 1VM, which is also a Mt. Trumbull local group, gradually increased 

over time and reached a peak during the Pueblo II period.   

 Only a few sherds assigned to a lowland Virgin source date to the Late 

Basketmaker period.  Group 1VV, which is a major lowland Virgin group, was at its 

peak during the Pueblo I period and became one of the dominant clay groups at this 

time.   
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Figure 7.2.  Percentage of all sherds from both Mt. Trumbull and the lowland Virgin areas by 
time period and temper type.  Sherds dating after A.D. 1400 and before A.D. 200 are excluded 
(n = 92).  Late BM: Late Basketmaker period, PI: Pueblo I, PII: Pueblo II, PI: Pueblo III (these 
abbreviations are used for following figures as well). 
 
 
 

 
 
Figure 7.3.  Percentage of all sherds (olivine and non-olivine) by time period and compositional 
group.  Sherds dating after A.D. 1400 and before A.D. 200 are excluded. (n = 92).   
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 The distribution of OSL dates shows that the number of compositional 

groups changed over time.  The Late Basketmaker samples include all eight 

compositional groups, but for the following comparison Groups 1VV, VR3, and VR1 

are excluded from the Late Basketmaker period because each is represented by only 

a single sherd.  With these remaining Late Basketmaker samples, the number of 

compositional groups increases over time until all eight groups are found in the 

Pueblo III period.   

 During the Late Basketmaker period, all Mt. Trumbull local clays except 

Group 3 were evenly used.  This may suggest that earlier potters did not 

systematically select clay for different purposes, but instead chose clay from areas 

adjacent to their habitation area.  Later, during Pueblo III, Groups 1G and 4 became 

the dominant clay groups, and both clays are good quality.  Thus, during Pueblo III, 

optimal clays were preferred for pottery production over expediently available clays.   

 The total output of Mt. Trumbull and the lowland Virgin potters is compared 

in Figure 7.4.  The distribution of OSL dates suggests that local production in the 

lowland Virgin area increased during Pueblo I (A.D. 800–1000) and decreased 

during Pueblo II (A.D. 1000–1150).  Previously, it was shown (Figure 6.12) that the 

population in the lowland Virgin area increased during the A.D. 800s and remained 

stable until A.D. 1300 based on the distribution of the OSL dates of the sherds.  It is 

therefore not surprising that more pots were produced locally to meet rising demand 

from increasing population after A.D. 800.  However, local production was lower 

between A.D. 1000 and 1150 in the lowland Virgin area, even though the population  
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Figure 7.4.  Percentage of all sherds by time period and geographic source.  Sherds dating after 
A.D. 1400 and before A.D. 200 are excluded. (n = 92).   
 

apparently remained high.  One possible reason why local ceramic production 

declined during this period is that enhanced opportunities for agriculture favored a 

shift away from ceramic production among Lowland Virgin people, considering that 

climatic condition was relatively wet (Larson et al. 1996).  In Mt. Trumbull, climatic 

events apparently had less impact on agricultural practices, and other activities, such 

as pottery production, continued at their earlier levels, with some of the output 

apparently flowing into the Lowland Virgin area.  In other words, excess pots 

produced in Mt. Trumbull could have been exported to the lowland Virgin area in 

exchange of other commodities that were likely obtained more easily in the lowland 

Virgin area, such as salt or cotton.  As well, people who made pottery with the VR1 

group clay, coming from an unknown source area, became trading partners for both 

Mt. Trumbull and the lowland Virgin area during Pueblo II.  Thus, an expanded 
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trading network seems to have stimulated more intensive agriculture, keeping the 

lowland Virgin farmer away from non-agricultural activities such as pottery 

production.  This is one way in which selection acted on regional economic 

environment in order to shape ceramic production and circulation patterns at the 

macro-regional scale.    

 

Production and Distribution of Olivine-Tempered Ceramics 

 Figures 7.5 and 7.6 present changes at the macro-regional scale only for 

olivine-tempered ceramics.  All six compositional groups used for olivine-tempered 

ceramics were present during the Late Basketmaker period (Figure 7.6).  Group 1G 

decreased during Pueblo I and II period but became the dominant group during 

Pueblo III.  The use of Group 1VM increased over time.  Group 2 was constantly 

high until Pueblo II, but seems to have been replaced later by Group 1G and 1VM.  

This pattern suggests that the use of optimal clay for production of olivine-tempered 

ceramics increased over time, and only good quality clays (Groups 1G, 1VM, and 4) 

were used for the production of olivine-tempered pots during the latest time period, 

Pueblo III.  If Groups 2 and 3 are excluded from the Pueblo III sample (each 

represented by only a single sample), the number of compositional groups 

represented among the olivine-tempered ceramics shows a clear decrease over time.   

 The OSL dates and sources of the olivine-tempered sherds suggest that most 

of the olivine-tempered pots were produced in Mt. Trumbull during early time 

periods.  Also, olivine-tempered ceramic production started early in the lowland  
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Figure 7.5.  Frequency of olivine-tempered sherds by time interval and compositional group 
(Mt. Trumbull and Lowland Virgin).   
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Figure 7.6.  Percentage of olivine-tempered sherds by time period and compositional group (Mt. 
Trumbull and Lowland Virgin).  Sherds dating after A.D. 1400 and before A.D. 200 are 
excluded (n = 71). 
 
 

Virgin area and increased during the Pueblo I period.  Interestingly, there was no 

olivine-tempered ceramic production in the lowland Virgin area during the Pueblo II 

period, although local olivine-tempered ceramic production began again during the 

Pueblo III period but with only one clay source (Group 4) represented (Figure 7.6).  

As discussed above, ceramic production declined in the lowland Virgin area during 

Pueblo II, and the ceramics that were made locally were tempered with sand, an 

easier-to-obtain temper in the lowland Virgin area.  This absence of the use of the 

expensive, imported olivine temper during Pueblo II also supports the proposition 

that Lowland Virgin people shifted away from pottery production to maximize the 

investment of time in agricultural activities during this period. 
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Production and Distribution of Sand-Tempered Ceramics 

 Although fewer sand-tempered sherds were analyzed than olivine-tempered 

sherds, the distribution of OSL dates nonetheless suggests that the use of sand 

 

 
 
Figure 7.7.  Frequency of sand-tempered sherds by time interval and compostional groups (Mt. 
Trumbull and Lowland Virgin).   
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Figure 7.8.  Percentage of sand-tempered sherds by time period and compostional group (Mt. 
Trumbull and Lowland Virgin).  Sherds dating after A.D. 1400 and before A.D. 200 are 
excluded (n = 21). 
 

temper started relatively late in the study area and increased over time, with a peak 

between A.D. 1200 and 1300, at least with respect to this data set (Figure 7.7).  The 

data also suggest that more clay sources were involved in the later production of 

sand-tempered ceramics in the study area as a whole (Figure 7.8).    

 

Trends in Ceramic Production and Circulation in Mt. Trumbull 

 The distribution of OSL dates demonstrated that there are regional trends of 

the use of the clay resource/recipe and circulation of the ceramics at a macro-

regional level.  To investigate which social interaction forms were involved in the 

production and circulation of ceramics, the trend is examined in small geographic 
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scale as discussed above.  First I examine the pattern in Mt. Trumbull where the 

majority of ceramics produced have olivine tempers.      

 

Ceramic Production Pattern in Mt. Trumbull 

 During the early part of the sequence (Late Basketmaker through Pueblo II), 

all Mt. Trumbull ceramics were tempered with olivine (Figure 7.9), and sand temper 

was used only during Pueblo III.   

 The distribution of OSL dates of the sherds sourced to Mt. Trumbull shows 

how clay resource use changed over time in Mt. Trumbull (Figure 7.10).  The figure 

suggests increase in the use of optimal clays for ceramic production (Groups 1G and 

1VM) between the Pueblo I and Pueblo III periods, as was also recognized in the 

 

 
 
Figure 7.9.  Percentage of all sherds produced in Mt. Trumbull Source by time period and 
temper type.  Sherds dating after A.D. 1400 are excluded (n = 62). 
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Figure 7.10.  Percentage of all sherds produced in Mt. Trumbull (olivine and non-olivine) by 
time period and compositional group.  Sherds dating after A.D. 1400 are excluded (n = 62).  
 

discussion of ceramic production in the entire areas.  Group 1G was a dominant clay 

group early during the Late Basketmaker period and its use decreased thereafter, but 

it became the single dominant clay group again during the Pueblo III period.  The 

use of Group 1VM increased over time, too.  The ceramics in Groups 1G and 1VM  

seem to be more durable because of better quality clays and/or better clay 

preparation.  These optimal clays were increasingly used for ceramic production in 

Mt. Trumbull, and almost 80% of the pottery was made with these optimal clays 

during Pueblo III, regardless of the intended use of the vessels.   

 The distribution of OSL dates of sherds from Mt. Trumbull sources (Figure 

7.10) also shows that all four local clay groups available in Mt. Trumbull were 

utilized during most time periods, with the exception of Pueblo I.  Group 1G is a 

multiple-purpose clay used for both domestic and traded vessels and for utilitarian 
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and non-utilitarian ware.  Group 2 was used for utilitarian ware, and Groups 1VM 

and 3 were used for only domestic consumption.  These observations suggest that 

clay resource selection was involved in some of the pottery production in Mt. 

Trumbull.  Although Groups 1G and 2 were used for trading and domestic purposes 

during early times, especially before A.D. 600, only Group 1G was used for the pots 

transported to the lowland Virgin area, and Group 2 was used for pots consumed 

domestically.  Thus, clay-resource specialization began soon after people began 

producing ceramics in Mt. Trumbull.  On the other hand, clay-resource specialization 

for pots intended for transport was not emphasized as much later on.  During Pueblo 

I and II, the use of the multiple-purpose clay (Group 1G) decreased, and the use of 

Groups 2 (for mostly utilitarian ware) and 1VM (exclusively consumed locally) 

increased.  This suggests that clay-resource specialization for trade vessels was less 

emphasized but that clay-resource specialization for daily use and local consumption 

was more emphasized.   

 

Ceramic Consumption Patterns in Mt. Trumbull 

 I will investigate how the ceramic consumption pattern changed in Mt. 

Trumbull, examining how the source of all ceramics, olivine-tempered ceramics, and 

sand-tempered ceramics changed independently. 

All Ceramics 

 The distribution of OSL dates for ceramics consumed in Mt. Trumbull 

suggests that, with the possible exception of Pueblo I, non-local ceramics were 
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always a small proportion of the total (Figures 7.11 and 7.12).  Pueblo I is also the 

time when clay resource specialization for trade ware declined in Mt. Trumbull 

(Figure 7.10) and when local production in the lowland Virgin area increased (Figure 

7.4), as I discussed above.  Considering the fluctuating climatic conditions during 

Pueblo I, increased imports from the lowland Virgin area to Mt. Trumbull are not 

likely the result of local specialization and exchange, but rather the result of pots 

moving with migrants from the lowland Virgin area to Mt. Trumbull.     

 

 
 
Figure 7.11.  Frequency by time interval of local vs. non-local wares represented among sherds 
from Mt. Trumbull.  
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Figure 7.12.  Percentage of local vs. non-local wares by time period represented among sherds 
from Mt. Trumbull.  Sherds dating after A.D. 1400 are excluded (n = 58).  
 

 The changes in non-local ware (Figure 7.12) suggest that the pots with a 

lowland Virgin origin were present during all time periods in Mt. Trumbull, while 

VR1 pots were found only during Pueblo II (A.D. 1000–1150).  Considering that 

Pueblo II was a period of generally wet and favorable climate, especially between 

A.D. 1050 and 1120 (Figure 7.32), the addition of ceramics from a new source to the 

Mt. Trumbull assemblage may suggest that trade networks were extended during 

Pueblo II.     

 Figures 7.13 and 7.14 show specific source assignments of all ceramics 

consumed in Mt. Trumbull. The number of compositional groups decreases only 
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during Pueblo I.  Six compositional groups were present during the other time 

periods, but the combination of compositional groups changed.     

 

 
 
Figure 7.13.  Frequency of all Mt. Trumbull sherds (olivine and sand temper) by time interval 
and compositional group.  
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Figure 7.14.  Percentage of all Mt. Trumbull sherds (olivine and sand temper) by time period 
and compositional group.  Sherds dating after A.D. 1400 and before A.D. 200 are excluded (n = 
58).   
 

Olivine-tempered Ceramics 

 Figures 7.15 and 7.16 examine changes in the source of olivine-tempered 

ceramics found in Mt. Trumbull.  Olivine-tempered ceramics from non-Mt. Trumbull 

sources (Groups 1VV and 4) were consumed only during Late Basketmaker and 

Pueblo I (Figure 7.16).  In addition, hardly any sand-tempered pots were transported 

from the lowland Virgin area to Mt. Trumbull during these periods (four olivine-

tempered sherds out of five sherds; Appendix B Table B4).  Since olivine was an 

imported temper in the lowland Virgin area, this observation only makes sense if 

pots from the lowland Virgin area arrived in Mt. Trumbull with human migrants, not 

as trading pots.  That is, it would have been economically irrational to import olivine  
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Figure 7.15.  Frequency of Mt. Trumbull olivine-tempered sherds by time interval and 
compositional group. 
 

temper to the lowland Virgin area, make olivine-tempered pots, and then export 

those pots to Mt. Trumbull, where olivine temper and usable clays are abundant.   

Later on, black-on-gray wares moved to Mt. Trumbull from the lowland Virgin area, 

but these black-on-gray imports were tempered exclusively with sand temper.  This 

movement is more compatible with trade than migration, and it also supports the 

idea that olivine was too expensive to use for the trade pots in the lowland Virgin 

area.  Another observation supporting the migration hypothesis is that all olivine- 
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Figure 7.16.  Percentage of Mt. Trumbull olivine-tempered sherds by time period and 
compositional group.  Sherds dating after A.D. 1400 are excluded (n = 49).  
 

tempered pots imported to Mt. Trumbull from the lowland Virgin area during the 

Late Basketmaker and Pueblo I periods were utilitarian wares (three sherds in Group 

1VV dating A.D. 800–1000 are either plain or corrugated wares, and two sherds 

dating A.D. 200–800 in Groups 1VV and 4 are both plain wares) (Appendix B Table 

B4).  All these lines of evidence support the proposition that the olivine-tempered 

pots from the lowland Virgin area during Late Basketmaker and Pueblo I are the 

result of human migration.  As discussed above, Pueblo I is the only time when pots 

from a lowland Virgin source increased in Mt. Trumbull, and this is also a period of 

unfavorable climate.  In sum, the ceramic circulation data presented here indicate 

that Pueblo I people in the lowland Virgin area may have migrated for brief periods 

to Mt. Trumbull, where more moisture was available due to its higher elevation. 
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Figure 7.17.  Frequency of Mt. Trumbull sand-tempered sherds by time interval and 
compositional group.  
 

Sand-tempered Ceramics 

 Figures 7.17 and 7.18 examine changes in the compositional groups in the 

sand-tempered sherds found in Mt. Trumbull.  As I noted above, these locally made 

sand-tempered sherds appeared late at Mt. Trumbull, during the Pueblo III period, 

and the earlier sand-tempered pots were imports.  It is possible that tempering with 

sand for ceramic production was introduced by potters who emigrated from the 

lowland Virgin area.  Sporadic or short-term population movement from the lowland  
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Figure 7.18.  Percentage of Mt. Trumbull sand-tempered sherds by time period and 
compositional group.  Sherds dating after A.D. 1400 are excluded (n = 9). 
 

Virgin to Mt. Trumbull could have occurred throughout the Ancestral Pueblo 

occupation.  However, the drought between A.D. 1120 and 1150 would have affected 

the lowland Virgin area severely, which may have induced part of the population to 

leave the lowland Virgin area permanently and migrate to Mt. Trumbull, where more 

moisture was available.  Thus, it is possible that these immigrants to Mt. Trumbull 

started making pottery according to their own ceramic tradition by using sand 

temper.   

 

Trends in Ceramic Production and Circulation in the lowland Virgin Area 

 In this section I examine the change in ceramic production and circulation 

pattern in the lowland Virgin area, where environmental conditions are much 
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different from Mt. Trumbull.  I note especially how populations in these two 

different environments survived differently.   

 

Ceramic Production Pattern in the lowland Virgin area 

 Figure 7.19 shows the changes in the temper types among the ceramics 

produced in the lowland Virgin area.  This indicates that the use of olivine as temper 

decreased over time in the lowland Virgin area, and that no olivine was used during 

Pueblo II period.  

 Figure 7.20 shows the change in clay use for potters working in the lowland 

Virgin area.  All three lowland Virgin local groups were present in roughly 

equivalent proportions during Pueblo III.  Although three groups were also present  

 

 
 
Figure 7.19.  Percentage of all sherds produced in the lowland Virgin source by time period and 
temper type.  Sherds dating after A.D. 1400 and before A.D. 200 are excluded (n = 25). 
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Figure 7.20.  Percentage of all sherds (olivine and non-olivine) produced in the Lowland Virgin 
area by time period and compositional group.  Sherds dating after A.D. 1400 and before A.D. 
200 are excluded (n = 25). 
 

during the Late Basketmaker period, the small sample size for this period precludes 

definitive statements about resource use.   

 Group 1VV is a multiple-purpose clay group used for domestic and trade 

vessels, both with and without olivine temper.  The source clay for this group was 

utilized during all time periods in the lowland Virgin area.  It became the dominant 

clay group during Pueblo I, but it decreased after that time.  By Pueblo III times, 

Group 4, used with only olivine temper, and VR 3, used only with sand temper, were 

exploited most heavily based on the available sample (which admittedly is small).  

Interestingly, Group 1VV was used with both olivine and sand temper early on, but 

later it was used only with sand temper (Table 7.2).  All these changes suggest that  
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Table 7.2.  Frequency of Group 1VV sherds by time period and temper type. 
 

 
Olivine temper Sand temper 

A.D. 1150-1399_PIII 0 2 
A.D. 1000-1149_PII 0 2 
A.D. 800-999_P1 3 4 
A.D. 200-799_BIII 1 0 

 

clay resource specialization became more pronounced later, during Pueblo III.  Only 

one clay (Group 4) was used with olivine temper.  Olivine is an expensive temper 

transported from Mt. Trumbull, and it appears that a specific clay, presumably of 

better quality, was preferred for use with this expensive, imported temper.  Such a 

combination of optimal clay and optimal temper would have reduced production 

failures.  In accord with this suggestion, Group 4 sherds have lighter core colors, and 

no local clay matches it, possibly indicating that the clay used for Group 4 

underwent a special preparation process to increase its quality for ceramic 

production.   

 

Ceramic Consumption Patterns in the Lowland Virgin Area 

 I will examine the ceramic consumption patterns in the lowland Virgin area 

based on all ceramics, as well as on different ceramic types, as a comparison to the 

ceramic consumption patterns in Mt. Trumbull discussed above. 
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All Ceramics 

 The sources of all ceramics found in the lowland Virgin area are shown in 

Figures 7.21 and 7.22.  Although the sample may be biased against locally produced 

pots, since more olivine-tempered sherds were analyzed than sand-tempered sherds 

discussed above, the distribution of OSL dates still shows a strong trend toward 

increased local ceramic production over time (Figure 7.22).  Pots from Mt. Trumbull 

 

 

Figure 7.21.  Frequency by time interval of local vs. non-local wares represented among sherds 
from the lowland Virgin area. 

375



 
 
Figure 7.22  Percentage by time period of local vs. non-local wares represented among sherts 
from the lowland Virgin area.  Sherds dating after A.D. 1400 and before A.D. 200 are excluded 
(n = 34).  
 
 
were dominant during the Late Basketmaker period and then decreased over time.  

The early pots were likely brought from Mt. Trumbull to the lowland Virgin area  

along with human migration to the area, as discussed above.  The OSL dates also 

suggest that VR1 pots started to appear in the lowland Virgin area during Pueblo I, 

when the population increased in the lowland Virgin area.  Apparently the growing 

population began to consume pots made with clay from a previously unutilized 

source area associated with VR1.  Consumption of VR1 pots then increased over 

time after Pueblo I, which indicates more intense trading with the VR1 area as time 

went on.   

 Another way to examine the relative importance of non-local goods for the 

lowland Virgin residents is to combine pots made from non-local clays and pots 

made from local clays but tempered with imported olivine (Figure 7.23).  In this  
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Figure 7.23.  Percentage by time period of sherds of which the raw materials are from Mt. 
Trumbull.  The raw materials from Mt. Trumbull includes both clay and olivine temper, thus 
these sherds are either those of pots produced in Mt. Trumbull or olivine-tempered sherds 
produced in the lowland Virgin area.  The sherds dating after A.D. 1400 and before A.D. 200 
are excluded (n = 34). 
 

comparison, samples from Mt. Trumbull include both sherds with a Mt. Trumbull 

clay source (Groups 1G and 2) and sherds with a lowland Virgin clay source to  

which imported olivine temper was added (Groups 1VV and 4).  Although the 

previous comparison (Figure 7.22) indicated that ceramic imports from Mt. 

Trumbull decreased over time as lowland Virgin people produced more local pots, 

Figure 7.23 highlights the continued importance of external interactions with Mt. 

Trumbull during Pueblo III.  Thus, unlike Mt. Trumbull, the lowland Virgin area 

always depended on the circulation of goods from outside the region.  This 

difference in circulation patterns between the two areas highlights a point made 

before, that is, the lowland Virgin residents living in a more marginal environment  
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Figure 7.24.  Frequency of compositional groups by time interval in the lowland Virgin area 
(olivine and sand temper). 
 
 
appear to have depended on population mobility or trading as adaptive strategies to a 

greater extent than did the Mt. Trumbull residents. 

 A more detailed picture of changes in ceramic circulation patterns emerges 

from a consideration of specific sources of sherds found in the lowland Virgin area 

(Figures 7.24 and 7.25).  While these data show an increase in the local production,  
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Figure 7.25.  Percentage of lowland Virgin area sherds (olivine and sand temper) by time period 
and compositional group.  Groups 1VV, 4 and VR 3 are local groups in the lowland Virgin area.  
Sherds dating after A.D. 1400 and before A.D. 200 are excluded (n = 34).  
 

they also show that clay resource specialization for the production of domestic use of 

pots was enhanced during Pueblo III, with some pots tempered exclusively with sand 

(VR3) and others (Group 4) tempered only with olivine.    

Olivine-Tempered Ceramics 

 Changes in the sources of olivine-tempered ceramics found in the lowland 

Virgin area are examined in Figures 7.26 and 7.27.  The OSL dates show that the 

majority of olivine-tempered pots were produced in Mt. Trumbull during the Late 

Basketmaker period, but olivine-tempered pots made with Mt. Trumbull clay sources 

decreased over time.  This supports the idea that the source of olivine-tempered 

ceramics found in the lowland Virgin area shifted over time from Mt. Trumbull to 

local lowland Virgin sources, as proposed above.  An alternative illustration of the  
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Figure 7.26.  Frequency of olivine-tempered sherds from the Lowland Virgin area by time 
interval and compositional group. 
 

same pattern is shown in Figure 7.28, which shows the individual OSL dates of 

olivine-tempered sherds from the lowland Virgin area coded according to source.  

Two extremely early dates are probably erroneous and should be excluded from the 

analysis: VR7-5 and VR21-22.  Based on Figure 7.28, almost all olivine-tempered 

pots consumed in the lowland Virgin area before A.D. 800 were produced in Mt.  
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Figure 7.27.  Percentage of lowland Virgin olivine-tempered sherds by time period and 
compositional group.  Sherds dating before A.D. 200 are excluded (n = 22).  
 
 

 
 
Figure 7.28.  Distribution of OSL dates for olivine-tempered sherds from the lowland Virgin 
area.  Sherds with open circles are from pottery made in Mt. Trumbull, and sherds with solid 
circles are from pottery made in the lowland Virgin area.   
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Trumbull.  Local production of olivine-tempered pots started around A.D. 800, 

coincident with the dramatic increase in local production of ceramics in the lowland 

Virgin area. This pattern intensified even more after A.D. 1000, when the majority of 

the olivine-tempered pots were produced locally.   

Sand-Tempered Ceramics 

 Although the number of sand-tempered sherds analyzed in this study is very 

small, the available data (Figures 7.29 and 7.30) indicate that production of sand-

tempered pots for domestic use started around A.D. 600, and early sand-tempered 

domestic pots actually predate the shift to local production of olivine-tempered pots, 

which occurred around A.D. 800. 

 

 

Figure 7.29.  Frequency of sherds from the lowland Virgin area by time interval and 
compositional group.  
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Figure 7.30.  Percentage of the lowland Virgin sand-tempered sherds by time period and 
compositional group.  Sherds dating after A.D. 1400 were excluded (n = 13).  
 

Summary of the Observation of Data and Evaluation of Hypotheses  

 Based on the above observations on changes in ceramic resource use over 

time, the hypotheses proposed previously will be evaluated in this section according 

to whether they help explain the patterns detected.  

 In Chapter III, three hypotheses were proposed.  Hypothesis 1 states that 

under conditions of environmental instability and relatively high population density, 

social networks as opposed to migration would have been favored as a risk-reducing 

strategy; the existence of social networks, in turn would have favored clay-resource 

specialization.  I predict that under the condition of environmental instability with 

low population density during Late Basketmaker and Pueblo I, olivine-tempered pots 

made with locally available clay in Mt. Trumbull would be expected to move to the 

lowland Virgin area with human movement.  I also predict that olivine-tempered pots 

383



during Pueblo II and III, under the condition of environmental instability with high 

population density, would be expected to have moved between communities as a 

result of exchange, and clay-resource specialization would be expected to have 

occurred.  This hypothesis implies that all compositional groups should be present 

during all time periods and that the association between compositional groups and 

formal attributes should become stronger in the pottery of later periods.  

 Hypothesis 2 states that under conditions of environmental instability and 

relatively high population density, social networks as opposed to migration would 

have been favored as a risk-reducing strategy; the existence of social networks, in 

turn, would have favored production of olivine-tempered pots outside of Mt. 

Trumbull.  I predict under the condition of environmental instability with low 

population density during Late Basketmaker and Pueblo I, olivine-tempered pots 

made in Mt. Trumbull moved along with human movement.  I also predict that 

during Pueblo II and III under the condition of environmental instability with high 

population density, not only olivine-tempered pots but also olivine itself would be 

expected to have moved between communities as a result of exchange.  As a result, it 

is expected that potters in the lowland Virgin area would have made pots with olivine 

using their local clay.  For the second hypothesis, observable expectations include an 

increase in the number of compositional groups over time, stronger associations 

between compositional groups and the locations where the sherds were found in later 

assemblages, and greater presence of some compositional groups outside of Mt. 

Trumbull during the later portion of regional prehistory.   
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 Hypothesis 3 states that under conditions of short-term relative 

environmental stability and relatively high population density, maintenance of social 

networks as a risk-buffering strategy would have been selected against; the absence 

or minimal importance of social networks, in turn, would have favored specialized 

production of olivine-tempered pots within each community.  I predict that during 

late Pueblo II and Pueblo III, when there were a few episodes of short-term stable 

climatic condition and population density was high, olivine-tempered pots would 

have been produced within a community and moved less between communities as a 

result of exchange, and specialized production of olivine-tempered pots with optimal 

clay within the community would be expected to have occurred.  Observable 

expectations based on this hypothesis are that the number of compositional groups 

should decrease during late Pueblo II and Pueblo III, there should be a weak 

association between compositional groups and formal attributes during later periods 

in the production center, and the frequencies of sherds made with optimal clays 

should increase later in time.   

 In the following section, I will summarize the observations on changes in 

ceramic compositional groups and evaluate which hypotheses explain most observed 

changes at the macro-regional and sub-regional scales.   

 

Ceramic Production and Circulation at the Macro-Regional Scale 

 OSL dates on sherds from Mt. Trumbull and the lowland Virgin area suggest 

that ceramic production began before A.D. 400 and then increased until A.D. 1200–
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1300, interrupted by slight downturns between A.D. 600 and 700 and A.D. 1100 and 

1200.  These two phases of decrease partially correspond to dry/fluctuating climatic 

conditions (A.D.600–700 and A.D.1130–1185, respectively).  From a broad 

perspective, these OSL dates support the assumption that ceramic circulation 

patterns were shaped by selective pressures in the natural environment.  Changes in 

the sources of pots that circulated across the entire study area suggest that during 

Pueblo II, circulation of pots produced in the lowland Virgin area decreased, while 

Mt. Trumbull and VR1 area pots increased in frequency.  This time period partially 

overlaps with the time of wet climatic conditions in the study area (A.D. 1050–

1120).  The favorable climatic conditions would have permitted agricultural 

intensification in the lowland Virgin area and, as argued here, a reduction in 

production of ceramics for exchange.  In Mt. Trumbull, where a pattern of clay-

resource specialization was established early, agricultural intensification was 

possible without reduced ceramic production, since clay resource specialization 

lowered the total cost of ceramic production.  The increase in the circulation of VR1 

pots during the Pueblo II indicates extended trading networks, thus supporting the 

view that exchange was a vital risk management strategy associated with agricultural 

intensification.   

 Considering all analyzed ceramics, the number of compositional groups 

increased over time within the study area as a whole.  This observed pattern supports 

Hypothesis 2, which predicts that production centers making olivine-tempered 

pottery should increase over time due to the increased trading under environmental 
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instability with higher population.  The reason for this observed macro-regional 

pattern is that more olivine-tempered ceramics were produced locally in the lowland 

Virgin area later on.  However, it is also true that production of olivine-tempered 

pots in the lowland Virgin area started relatively early, around A.D. 600.  Thus, the 

data do not fully support Hypothesis 2.  In addition, the larger number of 

compositional group in the Pueblo III assemblage arises not from the production of 

olivine tempered pots in the lowland Virgin area but from the expansion of trading 

networks, as indicated by the increased representation of VR1 pots.  The enhanced 

clay-resource specialization involving all three clay sources utilized in the lowland 

Virgin area during this time also contributed to the increase in the compositional 

groups.  Thus, while Hypothesis 2 may partly capture the macro-regional changes, it 

is an incomplete explanation. 

 In fact, the number of compositional groups represented by the olivine-

tempered sherds decreased during Pueblo III.  This could support Hypothesis 3, in 

which potters used optimal clay for pots regardless of the intended purpose or 

function.  Understanding how selective pressures acted on populations to cause this 

change in pottery production requires detailed consideration of environmental as 

well as social factors such as population density.  In other words, changes in the 

production and circulation of ceramics need to be examined separately for each of 

the environmental settings represented in this study.   
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Ceramic Production and Circulation in Mt. Trumbull 

 The OSL dates demonstrate that all four local clay groups were used for 

ceramic production in Mt. Trumbull at all times, except between A.D. 800 and 1000, 

during the Pueblo I period.  The OSL dates also show some changes in relative 

proportions of compositional groups over time in Mt. Trumbull.  There are four local 

ceramic groups present in Mt. Trumbull and all of them have patterned associations 

with particular ceramic physical attributes and/or provenience.  Group 1G is a 

multiple-purpose clay used for both utilitarian and non-utilitarian pots as well as 

domestic consumption and trading purposes.  Group 2 was predominantly used for 

utilitarian wares.  Groups 3 and 1VM were used only in pots intended for domestic 

use.  Clays used in both Groups 1G and 1VM appear to have been better clays, or 

they may have been prepared to enhance their mechanical and firing properties.  The 

existence of clay groups associated with different physical characteristics and 

provenience suggest that clay resource specialization was practiced in ceramic 

production in Mt. Trumbull to some degree.  Interestingly, clay resource 

specialization seems to have started early in Mt. Trumbull.  Especially before A.D. 

600, Group 1G was used for pots transported to the lowland Virgin area, while 

Group 2 was used for domestic ware.  Clay-resource specialization for transported 

pots declined during Pueblo I, since the lesser-quality Group 2 clay began to appear 

among the pots transported to the lowland Virgin area.  However, clay resource 

specialization continued to characterize ceramic production in Mt. Trumbull to some 

degree.  Group 1G, which is a multiple-purpose clay, was an early dominant clay 
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group during the Late Basketmaker period, but its use decreased between Late 

Basketmaker and Pueblo II.  Data indicate a decrease in the use of multiple-purpose 

clay and an increase in use in specialized clay (e.g., Group 2 for utilitarian ware, 

Group 1VM for domestic use) over time until the Pueblo II period.  In sum, clay 

resource specialization started early and increased over time in Mt. Trumbull 

between Late Basketmaker and Pueblo II.   

 A slightly different pattern is evident during Pueblo III, when there is a large 

increase in use of Group 1G after A.D. 1150.  This suggests an increase in the use of 

optimal clay for ceramic production in Mt. Trumbull. This pattern is also evidenced 

by the increase over time in Group 1VM, another optimal clay group.  In all, almost 

80% of the pots were made of these optimal clays (Groups 1G and 1VM) during 

Pueblo III, even for vessels intended to serve domestic and utilitarian functions. 

 The nature of non-local ceramics in Mt. Trumbull suggests possible 

mechanisms for the transport of these ceramics from outside the area.  Unlike in the 

lowland Virgin area, non-local wares in Mt. Trumbull were always a small fraction 

of the pots consumed at Mt. Trumbull, except during Pueblo I (Figure 7.31).  

Olivine-tempered pots produced in the lowland Virgin area moved to Mt. Trumbull 

only during the Late Basketmaker and Pueblo I periods.  Considering the expense of 

procuring olivine temper in the lowland Virgin area, these early olivine-tempered 

pots were almost certainly transported from the lowland Virgin as a result of 

population movement rather than as trade items.  During Pueblo I, the climatic 

conditions were very unstable. Since the lowland Virgin area is at a much lower  
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Figure 7.31.  Comparison by time period of local and non-local wares represented among sherds 
from Mt. Trumbull and the lowland Virgin area.  
 

elevation and drier environment which are more marginal for agriculture than Mt. 

Trumbull, it is likely that the unstable climatic conditions (unpredictable moisture for 

supporting crops) may have affected the population in the lowland Virgin area more 

than those in Mt. Trumbull, which may have forced some lowland Virgin residents to 

move up to Mt. Trumbull.  

 The non-local ceramic circulation pattern changed during Pueblo II.  

Interestingly, ceramics from the VR 1 area (source unknown) arrived at Mt. 

Trumbull only during Pueblo II, while ceramics from the lowland Virgin area were 

present during all time periods.  As argued earlier, this may indicate an expansion of 

trading networks during Pueblo II, when climatic conditions were relatively wet and 

stable.  An enhanced role for exchange is also suggested by the fact that lowland 

Virgin pots moving to Mt. Trumbull during Pueblo II and III were tempered with 

sand, the presumed local lowland Virgin temper, rather than olivine, which would 

have had to have been imported into the lowland Virgin area.     
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 Sand temper was used as ceramic temper in Mt. Trumbull only during Pueblo 

III.  This change at A.D. 1150 coincides with the extremely severe drought, which 

would have had a huge impact on agricultural productivity, especially in the lowland 

Virgin area. This crisis may have forced part of the lowland population to migrate to 

Mt. Trumbull, where more moisture was available.  It is possible that the use of sand 

as temper may have been introduced by potters who emigrated from the lowland 

Virgin area.  In any case, the population increase in Mt. Trumbull during Pueblo III 

and the higher population density appear to have entailed the aggregation of the 

villages.   

 In sum, the OSL dates suggest that earlier non-local ceramics in Mt. 

Trumbull were brought there as a result of population movement, and later non-local 

pots arrived as a result of exchange.  Clay resource specialization was practiced by 

local potters in Mt. Trumbull from the outset, but increased until Pueblo II.  The use 

of optimal clay increased over time, so that by Pueblo III most pots were made from 

optimal clay regardless of their purpose.   

 The ceramic production and circulation pattern in Mt. Trumbull between the 

Late Basketmaker and Pueblo II periods seems to support part of Hypothesis 1, 

because olivine-tempered ceramics produced in Mt. Trumbull were transported along 

with population movement early on and later by exchange, and clay-resource 

specialization increased later on as well.  However, Hypothesis 1 also postulates that 

all olivine-tempered ceramics were produced in Mt. Trumbull, and this is 

contradicted by the data indicating the production of olivine-tempered ceramics not 

391



only in Mt. Trumbull but also in the lowland Virgin area.  Thus, Hypothesis 1 is not 

fully supported by the data presented here for Mt. Trumbull.  Hypothesis 2, on the 

other hand, also proposes an earlier migration and later exchanges as the context in 

which olivine-tempered pots were transported, but it proposes the existence of 

multiple production centers of olivine-tempered ceramics later, including in the 

lowland Virgin area.  Not anticipated by this hypothesis is the fact that production of 

olivine-tempered pots started early in the lowland Virgin area and then increased 

over time.  Thus, the data do not fully support Hypothesis 2.  Hypothesis 1 proposes 

clay-resource specialization by potters later in Mt. Trumbull, but the data 

demonstrate that clay-resource specialization was observed even in the earlier 

ceramic assemblages.  The data also imply that clay resource specialization was 

actually not favored in Pueblo III; instead, optimal clays were used for most ceramic 

production regardless of the intended functions of the pots.   

 During Pueblo III, the population level was apparently high in the Mt. 

Trumbull region.  Pueblo III was also marked by several episodes of wet climatic 

conditions, when the population is expected to have grown, supported by successful 

agriculture under favorable climatic conditions.  After A.D. 1150, however, 

intermittent dry conditions would have forced part of the lowland Virgin population 

to disperse from the lowland Virgin area and relocate to Mt. Trumbull, where more 

moisture was expected.  An earlier abandonment in the lowland Virgin area (Figure 

6.12) also suggests that environmental factors in Mt. Trumbull allowed the 

population to survive even after two severe drought episodes around A.D. 1150 and 
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1275.  Thus, during Pueblo III, population density in Mt. Trumbull may have been 

sustained not only by its local growth but possibly also by some immigration.   

With a growing population, more time/energy would have been devoted to 

agricultural activities, thus reducing the time for other non-agriculture-related 

activities, such as pottery production.  From this perspective, the use of optimal clays 

for the production of all vessel classes may have reduced the replacement cost of 

pottery.  Although the procurement of optimal clay may have required more 

time/energy, the use of better clay would have yielded pots more resistant to 

breakage, thus reducing efforts to replace pots and leaving more time for agricultural 

activities during the later time period, assuming that the amount of energy devoted to 

clay procurement/paste preparation and manufacture of replacement of vessels was 

less than the earlier time period. 

 There are two possible ways to explain the trend toward the emphasis on the 

optimal clays in Mt. Trumbull, resulting in lower energy expenditures during the 

later time period.  One possibility is that pottery production became increasingly 

specialized.  In circumstances where the climatic conditions were favorable for 

agriculture, the accumulated surplus may have allowed specialized potters to devote 

more time to pottery production activities, including clay procurement. If 

specialization within the society in pottery manufacture occurred (i.e., relatively few 

potters who made pottery for everybody), these specialists presumably were making 

pottery more efficiently than was the case earlier, when every household made its 

own pottery, even though they used special clays or paste recipes.  Under this  
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scenario, it is expected that potters in Mt. Trumbull would have selected only the 

clay with better performance characteristics to make better and stronger pots even 

for daily use, despite the added expense of acquiring better clay.  This growing 

specialization would have freed other segments of the population (non-potters) to 

devote more time to agricultural production.    

 Thus, this trend, entailing an increase in the use of the optimal clay over time, 

seems to support the Hypothesis 3: ceramics were produced by specialized potters 

under the condition of relative environmental stability with high population density.  

However, the question remains whether climatic conditions during Pueblo III were 

favorable and stable enough to accumulate agricultural surpluses to support 

specialized potters.  Between A.D. 1150 and 1400, there were several wet climatic 

episodes (around A.D. 1195–1215, A.D. 1255–1270, and A.D. 1300–1335; Figure 

7.32) based on the PDSI record.  However, there were also a few prolonged droughts 

during Pueblo III (A.D. 1125–1195 for 70 years, A.D. 1215–1255 for 40 years, and 

A.D. 1270–1300 for 30 years).  Thus, Hypothesis 3 still leaves some questions about 

whether climatic conditions were stable enough to support labor specialization 

throughout the entire Pueblo III period.  Instead, specialized production could have 

been a temporary strategy adopted whenever the climate allowed, with some 

individuals spending more time for pottery production to provide pots for the rest of 

the community and others focusing on agricultural activities.  Even though 

population density is expected to have been high during Pueblo III in Mt. Trumbull, 

the size of the population was not nearly as high as in Anasazi heartland  
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Figure 7.32.  Five-year average of the Palmer Drought Severity Index PDSI between A.D. 600 
and 1380.  The original data were kindly provided by Larson in 2001.  The data between A.D. 
900 and A.D. 1300 were published (Larson et al. 1996).  The data between A.D. 600 and A.D. 
1300 was also published (Sakai 2001).  
 

communities such as Mesa Verde, so population size still may have been small 

enough to allow Mt Trumbull inhabitants to choose between labor specialization and 

generalized labor depending on the environmental conditions.   

 There is another possible explanation for the trend toward the emphasis on 

the optimal clays in Mt. Trumbull, resulting in lower energy expenditures during the 

later time period.  When the population was very high in Mt. Trumbull during 

Pueblo III, more communication between the villages or potters would be expected.  

This situation could have stimulated the rapid spread of information and technology, 
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so that all potters in Mt. Trumbull soon knew the source of good clay or preparation 

techniques to achieve the most mechanically and thermally effective fabrics.  These 

potters may have spent more time procuring these high-quality clays or preparing the 

clays in special ways, but they would not have spent as much time searching for the 

better clays as the earlier potters because they would have already known where to 

find good clay.  In this case, the later pots were not made by specialized potters, but 

by multiple potters who were not specialists but knew the best clays and/or 

preparation techniques.  While the data presented here seem to support Hypothesis 3, 

they cannot falsify this alternative explanation for the use of the optimal clays during 

Pueblo III.   

 In sum, the three hypotheses proposed at the beginning of this study partially 

fit the data presented here pertaining to changes in ceramic production and 

consumption patterns in Mt. Trumbull.   

 In pottery production, two behaviors, clay resource specialization and the use 

of optimal clay, were proposed to explain the shifts in clay resource use in Mt. 

Trumbull.  Under the condition of environmental instability with increased 

population density, clay resource specialization was enhanced.  Under the condition 

of environmental stability and/or even higher population density, optimal clay was 

used for all pottery types by temporary specialized potters or various potters with 

shared knowledge.  The compositional data demonstrate that clay resource 

specialization started in Mt. Trumbull early and increased over time.  Using different 

clays for different purposes may have been a strategy of a moderate sized population 
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for leaving more time for agriculture and reducing time for non-agricultural activities 

while still producing attractive trading pots.  However, during Pueblo III, a larger 

population required more labor investment in agriculture, which favored the use of 

optimal clay for all pottery production to decrease the replacement cost of pots and 

to increase the value of trading pots discussed above.  A few episodes of wet climatic 

conditions with successful agriculture may have allowed the specialized potters to 

procure better clay or prepare clay in a special manner to make more resistant pots 

whenever the climatic condition was stable.  Potters from different villages may have 

also shared the best clay sources and/or techniques to produce resistant pots under a 

high population density, which would have left more time for agriculture once they 

produced more resistant pots.  Thus, the earlier production of ceramics in Mt. 

Trumbull is explained by clay resource specialization and later production by the 

preferential exploitation of optimal clays by temporary specialists or various potters 

sharing of ideas about the optimal clay.  

 

Ceramic Production and Circulation in the Lowland Virgin Area 

 The ceramic compositional data suggest that olivine-tempered ceramics 

found in the lowland Virgin area are not only from Mt. Trumbull, but also from local, 

lowland Virgin sources.  The production of olivine-tempered ceramics in the lowland 

Virgin area started relatively early, around A.D. 400.  The early olivine-tempered 

ceramics in the lowland Virgin area were from Mt. Trumbull, but olivine-tempered 

ceramics were produced in the lowland Virgin later, especially after A.D. 800.  As 
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seen in the Mt. Trumbull ceramic distribution pattern, the earlier olivine-tempered 

pots were likely transported with population migration and later pots arrived there as 

a result of trade.   

 There are three local clay groups used for the ceramic production in the 

lowland Virgin area: Group 1VV is a multiple-purpose clay used for olivine-

tempered and non-olivine-tempered ceramics, as well as for both domestic and 

trading purpose; Group 4 was used only with olivine temper; and VR3 was used only 

with sand temper.  During the Late Basketmaker period, these three clay groups were 

used evenly, but the number of samples analyzed is small.  Although the same 

numbers of clays were used later, the use of Group 1VV decreased over time. The 

change in ceramic compositional patterns suggests clay resource specialization was 

enhanced in the lowland Virgin area during Pueblo III which supports Hypothesis 1: 

Group 1VV was used for trading pots, Group 4 was used only with olivine temper, 

and VR3 was used only with sand temper.  The olivine may be considered as an 

expensive temper because it was imported from Mt. Trumbull.  To reduce the cost of 

production of olivine-tempered pots by avoiding production failures, it is likely that 

better clay was procured/prepared.    

 The majority of pots in the lowland Virgin area were from Mt. Trumbull 

during earlier times, but local production increased over time, and the local use of 

imported olivine decreased.  Thus, as time went on, lowland Virgin potters 

increasingly used locally available raw materials.  Despite increasing local 

production, exchange still remained an important risk buffering strategy during 
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Pueblo II and III.  Unlike in Mt. Trumbull, ceramic production and circulation in the 

lowland Virgin area does not show evidence of an increase in the use of optimal clay 

for all types of ceramics.  Group 4 is a good clay but was used only with olivine 

temper.  Thus, the data do not support Hypothesis 3, the use of optimal clay for all 

ceramics.   

 As mentioned, olivine-tempered ceramics found in the lowland Virgin area 

were from Mt. Trumbull early, but increasingly more olivine-tempered pots found in 

the lowland Virgin area were produced locally later on.  Thus, the change in 

compositional data partially supports Hypothesis 2 for the production and 

consumption of pottery in the lowland Virgin area.  However, as small numbers of 

olivine-tempered pots were produced early, the data do not fully support the late 

production of olivine-tempered pots proposed under Hypothesis 2.   

 The overall pattern for the early time periods is that population seems to have 

moved often between the lowland Virgin and Mt. Trumbull areas, perhaps to 

optimize access to wild resources.  Even after starting small-scale agriculture, the 

population probably moved periodically or seasonally.  Under these conditions, 

olivine-tempered pots apparently were brought to the lowland Virgin area as a 

byproduct of population movements. When population started to increase in the 

Arizona Strip and adjacent areas, population mobility would have been increasingly 

constrained.  Residence time in each location would have increased as people turned 

increasingly to agricultural intensification.  However, agriculture would have been 

precarious, so risk management strategies would have been important, especially 
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during unstable or dry periods.  Therefore, olivine-tempered pots likely arrived in the 

lowland Virgin area as a part of exchange during later times.  Around A.D. 800, 

when the population started to increase in the lowland Virgin area, people increased 

their local production of pottery, probably to meet growing local demand for daily-

use pots and also for exchange transactions that buffered agricultural risk. More 

olivine-tempered pots were produced in the lowland Virgin area as well, with 

imported olivine temper added to locally available clay.  Clay-resource specialization 

was emphasized later in the lowland Virgin area to increase the attractiveness and 

viability of pots for trading and decrease the production cost of daily-use pots.  This, 

in turn, left more time for investment in agricultural activities.  

 

Conclusion 

 The ceramic compositional analysis and OSL dating reveal changes in 

ceramic production and circulation patterns in the Arizona Strip and adjacent areas.  

The ceramic compositional data demonstrate that multiple clay resource and 

preparation techniques were used for olivine-tempered ceramics distributed in the 

study area and that different clays were used for different purposes.  The ceramic 

compositional data also suggest that olivine-tempered ceramics found in the lowland 

Virgin area were not only transported from Mt. Trumbull, but were also produced 

locally in the lowland Virgin area.  The distribution of OSL dates suggests that the 

local production of olivine-tempered pots in the lowland Virgin area increased over 

time. 
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 Three hypotheses were proposed to explain the ceramic production and 

circulation patterns.  The change in the ceramic production and circulation patterns 

did not support any single hypothesis, but instead different hypotheses explain the 

different components of the pattern in Mt. Trumbull.  The circulation of ceramics 

was largely the result of population migration during earlier time periods, but they 

arrived later as exchanged items.  Clay resource specialization may have been 

practiced in order to leave more time for agricultural production and also to facilitate 

risk-buffering exchange until Pueblo II in Mt. Trumbull.  During Pueblo III, when 

population density was much higher than before, clay resource specialization 

declined in importance; instead, optimal clays were used for the production of all 

pots perhaps in order to leave more time for agricultural activities.  Production of 

ceramics with the optimal clays could have been used by short-term specialized 

potters under relative population stability or various potters with widely shared ideas 

about how to achieve better, more mechanically strong fabrics in high population 

density. 

  The ceramic production and circulation patterns in the lowland Virgin area 

can be explained by Hypotheses 1 and partially by Hypothesis 2.  The olivine-

tempered ceramics were initially brought from Mt. Trumbull to the lowland Virgin 

area along with the population movement under the condition of environmental 

instability with low population density.  With high population density, exchange was 

selected as a risk management strategy instead of migration, which suggests that 

olivine-tempered pots were brought to the lowland Virgin area as a part of an 
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exchange system.  Olivine-tempered ceramics were also produced in the lowland 

Virgin area, and the local production of olivine-tempered ceramics increased over 

time.  Clay resource selection increased over time as well, quite likely in order to 

increase the time available for agricultural production.   

 The data presented here demonstrate that the changes in production and 

distribution patterns observed in ceramic assemblages in different natural and social 

environmental settings require different explanations.  The small-scale agricultural 

communities in Mt. Trumbull adapted to the natural and social environments 

differently than the lowland Virgin people, who had to survive in a more marginal 

environment.  This dissertation suggests that the change in ceramic production and 

circulation pattern was likely related to population growth and consequent 

agricultural intensification.  Future research might focus on documenting change in 

agricultural productivity over time in the study area to demonstrate that agricultural 

productivity increased in response to the change in ceramic production and 

circulation pattern in marginal environment.  

  This dissertation is the first attempt to combine chemical compositional 

analysis and OSL dating of a large collection of sherds to understand changes in 

ceramic production and distribution in detail.  By combining data from these two 

kinds of analysis, I was able to address the issue of whether migration or trading 

moved pots from one area to another.  This type of study could be used elsewhere to 

study change in social interaction patterns though the analysis of ceramic production 

and distribution patterns.   
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APPENDIX A: SAMPLE INFORMATION FOR THE LA-ICP-MS ANALYSIS 
 
 
 Database for Laser Ablation ICP-MS (LA-ICP-MS) of all samples and 
Instrumental Neutron Activation Analysis (INAA) of Mt. Trumbull sherds is 
available at The Digital Archaeological Record (tDAR) web sites. 
(https://core.tdar.org/dataset/392879).  INAA data of lowland Virgin sherds are 
available at University of Missouri Research Reactor (MURR) 
(http://www.murr.missouri.edu).  
 The appendix A includes two tables listed below.  They include the 
information about the ceramic and clay samples for LA-ICP-MS analysis.  
 
Table A1.   Sample Information (Ceramics). 
Table A2.   Sample Information (Clay). 
 
 
Note on Abbreviation  
 

Table A1 
 

 Group  
  1G = Group 1G 
  1VM = Group 1VM 
  1VV = Group 1VV 
  G2 = Group 2 
  G3 = Group 3 
  G4 = Group 4 
  VR1 = VR1 
  VR3 = VR3 
   
 Provenience 
  TP = Test Pit 
  SCU = Surface Collection Unit 
  L = Level 
  S = Surface 
 
 Types 
  MP = Moapa Plain 
  MPF = Moapa Plain Fugitive Red  

MC = Moapa Corrugated  
MBG = Moapa Black-on-gray  
TP = Tusayan Plain  
TPF = Tusayan Plain Fugitive Red  
TC = Tusayan Corrugated  
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TBC = Tusayan Black-on-gray  
SNP = Shinarump Pain  
SVP = Shivwits Plain  
SVC = Shivwits Corrugated  
TO = Tegi Orange Ware  
SJR = San Juan Red Ware  
SNR = Shinarump Red Ware  
RED = Other red ware  
POL = Polychrome  
 

 Surface Treatment 
  P = Plain 
  C = Corrugated 
  BG = Black-on-gray 
  BG_C = Black-on-gray and Corrugated 
  RED = Red 
  BR = Black-on-red 
  POLY = Polychrome 

 
Table A2 
  
 Region 
  MT = Mt. Trumbull 
  VR = Lowland Virgin 
  TW = Tuweep 
  SV = Shivwits Plateau 
 
 Clay Type 
  VOL = Volcanic 
  Sed = Sedimentary 
  Sec = Secondary 
 
 Group  
  G1G = Group 1G 
  G2 = Group 2 
  G1VV = Group 1VV 
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ID Group Region Site Provinience Temper Type Surface
131-2 G2 Mt. Trumbull 131 BLM SCU A-1 olivine MP P
131-3 Mt. Trumbull 131 BLM SCU A-1 olivine MP P
131-4 1VV possible Mt. Trumbull 131 BLM SCU A-1 sand TP P
131-9 1G Mt. Trumbull 131 BLM SCU A-2 olivine MP P
131-11 1VV Mt. Trumbull 131 BLM SCU A-2 sand TP P
131-14 G2 Mt. Trumbull 131 BLM SCU A-3 olivine MP P
131-19 1G Mt. Trumbull 131 BLM SCU A-3 olivine MP P
131-26 1G Mt. Trumbull 131 BLM SCU A-3 sand TP P
131-30 G2 Mt. Trumbull 131 BLM SCU A-3 olivine MC C
131-32 Mt. Trumbull 131 BLM SCU A-3 olivine MC C
131-45 G2 Mt. Trumbull 131 BLM SCU A-7 olivine MP P
131-53 G2 Mt. Trumbull 131 BLM SCU A-7 olivine MP P
131-59 1VM Mt. Trumbull 131 BLM SCU A-7 olivine MC C
131-70 1G Mt. Trumbull 131 BLM SCU A-11 olivine MP P
131-74 1G Mt. Trumbull 131 BLM SCU A-11 olivine MP P
131-80 1VM Mt. Trumbull 131 BLM SCU A-11 olivine MP P
131-84 1G Mt. Trumbull 131 BLM SCU A-11 olivine MP P
131-96 1G Mt. Trumbull 131 BLM SCU B-1 olivine MP P
131-103 Mt. Trumbull 131 BLM SCU A-8 olivine MP P
131-119 Mt. Trumbull 131 BLM SCU A-3 olivine MBG BG
131-136 1G Mt. Trumbull 131 BLM SCU A-8 olivine MBG BG
131-160 VR1 Mt. Trumbull 131 BLM surface general sand TBG BG_C
131-167 1G Mt. Trumbull 131 BLM surface general olivine MBG BG
131-168 1VM Mt. Trumbull 131 BLM surface general olivine MBG BC_C
131-172 1G possoble Mt. Trumbull 131 BLM surface general olivine MBG BG
131-188 Mt. Trumbull 131 BLM surface general olivine MP P
131-189 Mt. Trumbull 131 BLM surface general sand TP P
131-236 1VV Mt. Trumbull 131 BLM TP-1 L3 sand TP P
131-237 1G Mt. Trumbull 131 BLM TP-3 L7 olivine MBG BG
131-238 1G Mt. Trumbull 131 BLM TP-3 L2 olivine MBG BG
131-239 1G Mt. Trumbull 131 BLM TP-1 L2 olivine MBG BG
131-240 1G Mt. Trumbull 131 BLM TP-3 L1 olivine MBG BG_C
131-241 1G Mt. Trumbull 131 BLM TP-2 L3 olivine MBG BG
131-242 1VV possible Mt. Trumbull 131 BLM TP-3 L1 sand TBG BG
131-243 1G possoble Mt. Trumbull 131 BLM TP-3 L7 olivine MPF P
131-244 1G Mt. Trumbull 131 BLM TP-3 L7 sand TBG BG 
131-245 G2 Mt. Trumbull 131 BLM TP-1 L3 sherd_olivine MBG BG
131-247 1VV Mt. Trumbull 131 BLM TP-1 L7 sand TBG BG
131-248 Mt. Trumbull 131 BLM TP-2 L1 olivine MBG BG
131-249 1G Mt. Trumbull 131 BLM TP-1 L6 olivine MBG BG
131-250 1G Mt. Trumbull 131 BLM TP-2 L1 olivine MBG BG
131-251 1G Mt. Trumbull 131 BLM TP-3 L6 olivine MBG BG
131-252 Mt. Trumbull 131 BLM TP-3 L6 olivine MPF P 
131-253 1G Mt. Trumbull 131 BLM TP-3 L4 olivine MP P
131-254 1G Mt. Trumbull 131 BLM TP-3 L1 olivine MP P
131-255 Mt. Trumbull 131 BLM TP-3 L1 sand TP P
131-256 Mt. Trumbull 131 BLM TP-3 L1 sand TC C
131-257 1G Mt. Trumbull 131 BLM TP-3 L1 olivine MC C
131-258 Mt. Trumbull 131 BLM TP-3 L2 olivine MP P
131-259 Mt. Trumbull 131 BLM TP-3 L2 olivine MP P
131-260 1VV Mt. Trumbull 131 BLM TP-3 L2 sand TP P
131-261 Mt. Trumbull 131 BLM TP-3 L2 sand TP P
131-262 Mt. Trumbull 131 BLM TP-3 L2 sand SNP P
131-263 1G Mt. Trumbull 131 BLM TP-3 L3 olivine MP P
131-264 Mt. Trumbull 131 BLM TP-3 L5 olivine MP P
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131-265 Mt. Trumbull 131 BLM TP-3 L5 olivine MP P
131-266 1G Mt. Trumbull 131 BLM TP-3 L6 olivine MP P
131-267 1G Mt. Trumbull 131 BLM TP-3 L7 olivine MP P
131-268 Mt. Trumbull 131 BLM TP-3 L7 olivine MP P
131-269 Mt. Trumbull 131 BLM TP-3 L7 sand SNP P
131-270 1VV Mt. Trumbull 131 BLM TP-3 L7 sand TP P
131-271 1G possoble Mt. Trumbull 131 BLM TP-3 L8 olivine MPF P
131-272 1G Mt. Trumbull 131 BLM TP-3 L8 olivine MP P
131-273 1G possoble Mt. Trumbull 131 BLM TP-3 L8 olivine MP P
131-274 G2 Mt. Trumbull 131 BLM TP-3 S olivine MP P
131-275 G2 Mt. Trumbull 131 BLM TP-1 S olivine MP P
131-276 1G Mt. Trumbull 131 BLM TP-1 S sand SNP P
131-277 G2 Mt. Trumbull 131 BLM TP-1 S olivine MC C
131-278 1G Mt. Trumbull 131 BLM TP-1 L1 olivine MP P
131-279 1VV Mt. Trumbull 131 BLM TP-1 L1 sand TP P
131-280 1VV Mt. Trumbull 131 BLM TP-1 L2 sand TP P
131-281 1G Mt. Trumbull 131 BLM TP-1 L2 olivine MP P
131-282 1G possoble Mt. Trumbull 131 BLM TP-1 L3 olivine MP P
131-283 1G Mt. Trumbull 131 BLM TP-1 L3 sand TP P
131-284 1G Mt. Trumbull 131 BLM TP-1 L4 olivine MP P
131-285 1G Mt. Trumbull 131 BLM TP-1 L4 olivine MP P
131-286 1VV Mt. Trumbull 131 BLM TP-1 L4 sand TP P
131-287 1G Mt. Trumbull 131 BLM TP-2 L5 olivine MP P
131-288 1G Mt. Trumbull 131 BLM TP-2 L5 olivine MP P
131-289 1VV Mt. Trumbull 131 BLM TP-2 L5 sand TP P
131-290 1G Mt. Trumbull 131 BLM TP-3 L5 olivine MP P
131-291 1G Mt. Trumbull 131 BLM TP-1 L6 olivine MP P
131-292 1G Mt. Trumbull 131 BLM TP-1 L7 olivine MP P
131-293 1G Mt. Trumbull 131 BLM TP-2 S olivine MP P
131-294 G2 possible Mt. Trumbull 131 BLM TP-2 S sherd_olivine SVP P
131-295 1VV Mt. Trumbull 131 BLM TP-2 S sand SNP P
131-296 1VV Mt. Trumbull 131 BLM TP-2 S sand TP P
131-297 1G Mt. Trumbull 131 BLM TP-2 L6 olivine MP P
131-298 1G Mt. Trumbull 131 BLM TP-2 L2 olivine MP P
131-299 1G Mt. Trumbull 131 BLM TP-2 L2 olivine MP P
131-300 1VV Mt. Trumbull 131 BLM TP-2 L2 sand TP P
131-301 1G Mt. Trumbull 131 BLM TP-2 L4 olivine MP P
131-302 G2 Mt. Trumbull 131 BLM TP-2 L3 olivine MP P
131-303 1G Mt. Trumbull 131 BLM TP-2 L1 olivine MPF P
131-304 Mt. Trumbull 131 BLM TP-2 L1 olivine MBG BG
131-305 1G Mt. Trumbull 131 BLM TP-2 L5 olivine MP P
131-306 1G Mt. Trumbull 131 BLM TP-2 L7 olivine MP P
131-307 1G Mt. Trumbull 131 BLM TP-2 L3 olivine MP P
131-308 1G Mt. Trumbull 131 BLM TP-2 L7 sand TP P
131-310 1G Mt. Trumbull 131 BLM TP-2 L5 olivine MPF P
131-311 1G Mt. Trumbull 131 BLM TP-3 L7 olivine MP P
131-312 1VV possible Mt. Trumbull 131 BLM TP-2 L3 sand TP P
131-313 Mt. Trumbull 131 BLM TP-2 L3 olivine MP P
131-314 VR1 Mt. Trumbull 131 BLM TP-2 L3 sand TBG BG
131-315 VR1 Mt. Trumbull 131 BLM TP-2 L3 sand TP P
131-316 1G Mt. Trumbull 131 BLM TP-2 L3 olivine MP P
131-317 1G Mt. Trumbull 131 BLM TP-2 L3 olivine MC C
131-318 1VV Mt. Trumbull 131 BLM TP-2 L6 olivine MPF P
131-319 1G Mt. Trumbull 131 BLM TP-3 L7 olivine MP P
131-320 1G Mt. Trumbull 131 BLM TP-3 L7 olivine MP P
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131-321 1G Mt. Trumbull 131 BLM TP-1 L4 olivine MP P
131-322 1G Mt. Trumbull 131 BLM TP-3 L1 olivine MP P
131-323 1G Mt. Trumbull 131 BLM TP-1 L3 olivine MP P
131-324 Mt. Trumbull 131 BLM TP-1 L3 olivine MP P
131-325 G2 Mt. Trumbull 131 BLM TP-3 L4 sand TP P
131-326 1G Mt. Trumbull 131 BLM TP-3 L8 olivine MPF P
131-327 Mt. Trumbull 131 BLM TP-1 S sherd_olivine SVP P
131-328 Mt. Trumbull 131 BLM TP-1 L1 olivine MP P
131-329 1G Mt. Trumbull 131 BLM TP-2 L1 olivine MP P
131-330 1G Mt. Trumbull 131 BLM TP-2 L1 olivine MP P
131-331 1G Mt. Trumbull 131 BLM TP-2 L1 olivine MP P
131-332 1G Mt. Trumbull 131 BLM TP-2 L5S olivine MP P
131-333 1G Mt. Trumbull 131 BLM TP-3 L5 olivine MPF P
131-334 1G Mt. Trumbull 131 BLM TP-3 L5 olivine MP P
131-335 1G Mt. Trumbull 131 BLM TP-3 L6 olivine MP P
131-336 1G Mt. Trumbull 131 BLM TP-3 L6 olivine MP P
131-337 G2 Mt. Trumbull 131 BLM TP-2 L3N olivine MP P
131-338 1G Mt. Trumbull 131 BLM TP-2 6S olivine MP P
131-339 1G Mt. Trumbull 131 BLM TP-2 L2 olivine MP P
131-340 1G Mt. Trumbull 131 BLM TP-2 L5N olivine MP P
131-341 1G Mt. Trumbull 131 BLM TP-2 L3S olivine MP P
131-342 G2 Mt. Trumbull 131 BLM TP-3 L2 olivine MP P
131-343 1G Mt. Trumbull 131 BLM TP-3 L2 olivine MPF P
131-344 1G Mt. Trumbull 131 BLM TP-2 L4N olivine MP P
131-345 Mt. Trumbull 131 BLM TP-3 L3 olivine MP P
131-346 1G Mt. Trumbull 131 BLM TP-3 L3 olivine MP P
131-347 1G Mt. Trumbull 131 BLM TP-2 S olivine MP P
131-348 1G Mt. Trumbull 131 BLM surface general olivine MP P
131-349 1G Mt. Trumbull 131 BLM TP-3 L7 olivine MPF P
131-350 Mt. Trumbull 131 BLM TP-2 L4 olivine MC C
131-351 1G Mt. Trumbull 131 BLM TP-2 L3 olivine MP P
131-352 1VV Mt. Trumbull 131 BLM TP-3 L5 olivine MP P
131-353 1G Mt. Trumbull 131 BLM TP-3 L5 olivine MP P
131-354 1G Mt. Trumbull 131 BLM TP-3 L6 olivine MP P
131-355 1VV possible Mt. Trumbull 131 BLM TP-2 L1 sand TP P
131-356 1G Mt. Trumbull 131 BLM TP-2 L6 olivine MP P
131-357 1G Mt. Trumbull 131 BLM TP-1 L1 olivine MP P
131-358 1G Mt. Trumbull 131 BLM TP-3 L8 olivine MP P
131-359 1G Mt. Trumbull 131 BLM TP-3 L4 olivine MP P
131-360 1G possoble Mt. Trumbull 131 BLM TP-1 L4 olivine MP P
131-361 1G Mt. Trumbull 131 BLM TP-1 S olivine MP P
131-362 1G Mt. Trumbull 131 BLM TP-3 L1 olivine MP P
131-363 1G Mt. Trumbull 131 BLM TP-3 L7 olivine MP P
131-364 1G Mt. Trumbull 131 BLM TP-2 L5 olivine MP P
131-365 1G Mt. Trumbull 131 BLM TP-3 S olivine MP P
131-366 Mt. Trumbull 131 BLM TP-2 S olivine MP P
131-367 1G Mt. Trumbull 131 BLM TP-3 L2 olivine MP P
131-368 1G Mt. Trumbull 131 BLM TP-1 L3 olivine MP P
131-369 G2 Mt. Trumbull 131 BLM TP-2 L5 olivine MP P
136-7 1G possoble Mt. Trumbull 136 ASM surface general olivine MC C
136-9 G2 Mt. Trumbull 136 ASM surface general olivine MC C
136-16 G2 Mt. Trumbull 136 ASM surface general olivine MP P
136-18 1G Mt. Trumbull 136 ASM surface general olivine MP P
136-25 Mt. Trumbull 136 ASM surface general olivine MP P
136-26 G2 Mt. Trumbull 136 ASM surface general olivine MP P
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136-27 G2 Mt. Trumbull 136 ASM surface general olivine MP P
136-31 Mt. Trumbull 136 ASM surface general sherd RED RED
136-32 Mt. Trumbull 136 ASM surface general sand_andesite SJR RED
136-34 1VM Mt. Trumbull 136 ASM surface general olivine MBG BG
136-35 Mt. Trumbull 136 ASM surface general olivine MBG BG
136-36 1VV Mt. Trumbull 136 ASM surface general sand TBG BG
136-38 Mt. Trumbull 136 ASM surface general olivine MC C
136-56 Mt. Trumbull 136 ASM surface general olivine MBG BG
136-57 Mt. Trumbull 136 ASM surface general sand TBG BG
136-58 1G Mt. Trumbull 136 ASM surface general olivine MBG BG
136-59 G2 Mt. Trumbull 136 ASM surface general olivine MBG BG
136-63 1VV Mt. Trumbull 136 ASM surface general sand TBG BG
136-64 G2 Mt. Trumbull 136 ASM surface general sherd_olivine MBG BG
136-67 Mt. Trumbull 136 ASM surface general olivine MBG BG
136-71 Mt. Trumbull 136 ASM surface general sand SNR BR
136-72 G2 Mt. Trumbull 136 ASM surface general olivine MBG BG
136-74 Mt. Trumbull 136 ASM surface general sand TBG BG
136-75 1VM Mt. Trumbull 136 ASM surface general olivine MBG BG_C
136-76 1VM Mt. Trumbull 136 ASM surface general olivine MBG BG_C
136-82 Mt. Trumbull 136 ASM surface general sherd_sand SNR BR
136-218 1VV Mt. Trumbull 136 ASM TP-2 L4 sherd_sand TBG BG
136-219 Mt. Trumbull 136 ASM TP-2 L6 sand TBG BG
136-220 Mt. Trumbull 136 ASM surface general sand TP P
136-221 1VV Mt. Trumbull 136 ASM TP-2 L7 sand SNR RED
136-223 G2 Mt. Trumbull 136 ASM TP-3 L1 olivine MP P
136-224 1VV Mt. Trumbull 136 ASM TP-3 L1 sand TP P
136-225 Mt. Trumbull 136 ASM TP-3 L1 olivine MC C
136-226 1G Mt. Trumbull 136 ASM TP-3 L1 sand TC C
136-227 Mt. Trumbull 136 ASM TP-3 L1 sherd_sand TC C
136-228 G2 possible Mt. Trumbull 136 ASM TP-3 L2 sherd_olivine SVP P
136-229 Mt. Trumbull 136 ASM TP-3 L2 sherd_olivine SVP P
136-230 Mt. Trumbull 136 ASM TP-3 L2 olivine MC C
136-231 G2 possible Mt. Trumbull 136 ASM TP-3 L2 sherd_olivine SVC C
136-232 1VM Mt. Trumbull 136 ASM TP-1 L1 olivine MC C
136-233 1G Mt. Trumbull 136 ASM TP-1 L2 olivine MP P
136-234 Mt. Trumbull 136 ASM TP-1 L3 olivine MP P
136-235 1G Mt. Trumbull 136 ASM TP-1 L2 sherd_olivine MC C
136-236 G2 Mt. Trumbull 136 ASM TP-1 L2 olivine MP P
136-237 1VV Mt. Trumbull 136 ASM TP-1 L2 sand TP P
136-238 1G Mt. Trumbull 136 ASM TP-3 L3 olivine MP P
136-239 G2 Mt. Trumbull 136 ASM TP-3 S sherd_olivine MC C
136-240 G2 Mt. Trumbull 136 ASM TP-3 S olivine MP P
136-241 Mt. Trumbull 136 ASM TP-1 L3 olivine MC C
136-242 G2 Mt. Trumbull 136 ASM TP-1 L1 olivine MP P
136-243 1VM possible Mt. Trumbull 136 ASM TP-1 L2 olivine MC C
136-244 G2 Mt. Trumbull 136 ASM TP-1 L1 olivine MP P
136-245 G2 Mt. Trumbull 136 ASM TP-1 S olivine MP P
136-246 1G Mt. Trumbull 136 ASM TP-1 L3 olivine MP P
136-247 G2 Mt. Trumbull 136 ASM TP-1 L13 olivine MP P
136-248 Mt. Trumbull 136 ASM TP-1 L3 olivine MC C
136-249 Mt. Trumbull 136 ASM TP-1 L5 olivine MP P
136-250 G2 Mt. Trumbull 136 ASM TP-1 L6 olivine MP P
136-251 G2 Mt. Trumbull 136 ASM TP-1 L4 olivine MP P
136-252 Mt. Trumbull 136 ASM TP-1 L4 sand TP P
136-253 G2 Mt. Trumbull 136 ASM TP-1 L5 sherd_olivine MP P
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136-254 1VM Mt. Trumbull 136 ASM TP-2 L6 olivine MC C
136-255 1G Mt. Trumbull 136 ASM TP-2 S olivine MP P
136-256 G2 Mt. Trumbull 136 ASM TP-2 L13 olivine MP P
136-257 Mt. Trumbull 136 ASM TP-2 L4 sand TP P
136-258 1VM Mt. Trumbull 136 ASM TP-2 L4 olivine MC C
136-259 Mt. Trumbull 136 ASM TP-2 L13 olivine MC C
136-260 G2 Mt. Trumbull 136 ASM TP-2 L2 olivine MP P
136-261 Mt. Trumbull 136 ASM TP-2 L3 olivine MC C
136-262 G2 Mt. Trumbull 136 ASM TP-2 L5 olivine MP P
136-263 G2 Mt. Trumbull 136 ASM TP-2 L1 olivine MP P
136-264 1G Mt. Trumbull 136 ASM TP-2 L11 olivine MPF P
136-265 1G Mt. Trumbull 136 ASM TP-2 L5 olivine MC C
136-266 G2 Mt. Trumbull 136 ASM TP-2 L3 olivine MP P
136-267 1VV Mt. Trumbull 136 ASM TP-2 L10 sand TP P
136-268 G2 Mt. Trumbull 136 ASM TP-2 L9 olivine MP P
136-269 G2 Mt. Trumbull 136 ASM TP-2 L6 olivine MP P
136-270 Mt. Trumbull 136 ASM TP-2 L3 olivine MC C
136-271 1VM Mt. Trumbull 136 ASM TP-2 L3 olivine MC C
136-272 Mt. Trumbull 136 ASM TP-2 L2 sand TC C
136-273 G2 Mt. Trumbull 136 ASM TP-2 L12 olivine MP P
136-274 Mt. Trumbull 136 ASM TP-2 L8 olivine MP P
136-275 1VM Mt. Trumbull 136 ASM TP-2 L2 olivine MC C
136-276 1VV Mt. Trumbull 136 ASM TP-2 L2 sand TP P
136-277 Mt. Trumbull 136 ASM TP-2 L8 olivine MP P
136-278 1G Mt. Trumbull 136 ASM TP-2 L9 olivine MBG BG
136-279 1G Mt. Trumbull 136 ASM TP-2 L8 olivine MBG BG
136-280 Mt. Trumbull 136 ASM TP-2 L12 olivine MP P
136-281 G2 Mt. Trumbull 136 ASM TP-2 L13 olivine MP P
136-282 Mt. Trumbull 136 ASM TP-2 L6 sherd POL POLY
136-283 Mt. Trumbull 136 ASM TP-2 L6 olivine MC C
136-284 Mt. Trumbull 136 ASM TP-2 L6 olivine MP P
136-285 Mt. Trumbull 136 ASM TP-2 L5 sand TP P
136-286 1G Mt. Trumbull 136 ASM TP-2 L8 olivine MC C
136-287 1G possoble Mt. Trumbull 136 ASM TP-2 L3 olivine MC C
136-288 1G Mt. Trumbull 136 ASM TP-2 L5 olivine MP P
136-289 Mt. Trumbull 136 ASM TP-2 L1 olivine MP P
136-290 G2 Mt. Trumbull 136 ASM TP-2 L2 olivine MP P
136-291 G2 Mt. Trumbull 136 ASM TP-2 L3 olivine MP P
136-292 1G Mt. Trumbull 136 ASM TP-2 L13 olivine MPF P
136-293 G2 Mt. Trumbull 136 ASM TP-2 L2 olivine MP P
136-294 G2 Mt. Trumbull 136 ASM TP-2 L10 olivine MP P
136-295 Mt. Trumbull 136 ASM TP-2 L8 olivine MP P
136-296 G2 Mt. Trumbull 136 ASM TP-2 L4 olivine MP P
136-297 G2 Mt. Trumbull 136 ASM TP-2 L6 olivine MP P
136-298 1G Mt. Trumbull 136 ASM TP-2 L9 olivine MPF P
136-299 G2 Mt. Trumbull 136 ASM TP-2 L8 olivine MP P
136-300 G2 Mt. Trumbull 136 ASM TP-2 L12 olivine MP P
136-301 G2 Mt. Trumbull 136 ASM TP-2 S olivine MP P
136-302 1VM Mt. Trumbull 136 ASM TP-2 L6 olivine MP P
136-303 Mt. Trumbull 136 ASM TP-2 L6 olivine MP P
136-304 Mt. Trumbull 136 ASM TP-3 L6 olivine MP P
136-305 Mt. Trumbull 136 ASM TP-3 L6 olivine MP P
136-306 Mt. Trumbull 136 ASM TP-3 L6 olivine MP P
136-307 G2 Mt. Trumbull 136 ASM TP-2 L12 olivine MP P
136-308 1G Mt. Trumbull 136 ASM TP-2 L12 olivine MP P
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136-309 Mt. Trumbull 136 ASM TP-2 L14 sherd RED RED
136-310 Mt. Trumbull 136 ASM TP-2 L8 olivine MBG BG
136-311 G2 possible Mt. Trumbull 136 ASM TP-2 L7 olivine MP P
136-312 Mt. Trumbull 136 ASM TP-4 L2 olivine MP P
136-313 Mt. Trumbull 136 ASM TP-4 L4 olivine MP P
136-314 1VM Mt. Trumbull 136 ASM TP-4 L1 olivine MP P
136-315 Mt. Trumbull 136 ASM TP-4 S olivine MP P
136-316 1G Mt. Trumbull 136 ASM TP-4 L3 olivine MP P
136-317 Mt. Trumbull 136 ASM TP-4 L4 sand TC C
136-318 G2 Mt. Trumbull 136 ASM TP-4 L4 olivine MP P
136-319 G2 Mt. Trumbull 136 ASM TP-4 L7 olivine MP P
136-320 Mt. Trumbull 136 ASM TP-4 L1 olivine MC C
136-321 Mt. Trumbull 136 ASM TP-4 L2 olivine MC C
136-322 1VM Mt. Trumbull 136 ASM TP-4 L1 olivine MC C
136-323 Mt. Trumbull 136 ASM TP-4 L6 olivine MPF P
136-324 Mt. Trumbull 136 ASM TP-4 L3 olivine MC C
136-325 1VM Mt. Trumbull 136 ASM TP-4 L1 olivine MP P
136-326 Mt. Trumbull 136 ASM TP-4 L2 sand SNP P
136-328 1G Mt. Trumbull 136 ASM TP-2 L9 olivine MP P
136-329 G2 Mt. Trumbull 136 ASM TP-2 L3 olivine MP P
136-330 G2 Mt. Trumbull 136 ASM TP-2 L6 olivine MPF P
136-331 G2 Mt. Trumbull 136 ASM TP-2 L5 olivine MP P
136-332 Mt. Trumbull 136 ASM TP-2 L2 olivine MC C
136-333 Mt. Trumbull 136 ASM TP-2 L2 olivine MP P
136-334 1G Mt. Trumbull 136 ASM TP-2 L8 olivine MPF P
136-335 G2 Mt. Trumbull 136 ASM TP-2 L12 olivine MP P
136-336 1VV Mt. Trumbull 136 ASM TP-2 L4 sand TP P
136-337 G2 Mt. Trumbull 136 ASM TP-3 L1 olivine MP P
136-338 Mt. Trumbull 136 ASM TP-2 L4 olivine MC C
14-6 1G possoble Mt. Trumbull 14 MNA SCU 5 olivine MBG BG_C
14-28 1G possoble Mt. Trumbull 14 MNA ROOM1 fill olivine MP P
14-34 Mt. Trumbull 14 MNA ROOM1 fill olivine MC C
14-70 1G Mt. Trumbull 14 MNA ROOM2 fill olivine MP P
14-71 Mt. Trumbull 14 MNA ROOM2 fill olivine MP P
14-74 Mt. Trumbull 14 MNA ROOM2 fill olivine MC C
14-83 G2 Mt. Trumbull 14 MNA ROOM2 fill olivine MC C
14-92 Mt. Trumbull 14 MNA ROOM2 fill olivine MBG BG
14-106 1G Mt. Trumbull 14 MNA ROOM3 fill olivine MC C
14-116 G2 Mt. Trumbull 14 MNA ROOM3 fill olivine MP P
14-120 1G Mt. Trumbull 14 MNA ROOM3 fill olivine MBG BG
14-140 G2 Mt. Trumbull 14 MNA SCU 5 olivine MP P
14-152 G2 Mt. Trumbull 14 MNA SCU 3 olivine MP P
14-203 1G Mt. Trumbull 14 MNA TP-14 L5 olivine MBG BG
14-204 Mt. Trumbull 14 MNA TP-7 L4 olivine MBG BG_C
14-205 1G possoble Mt. Trumbull 14 MNA TP-7 L5 sand TBG BG
14-206 Mt. Trumbull 14 MNA TP-13 L2 sand TBG BG_C
14-207 Mt. Trumbull 14 MNA TP-13 L2 olivine MBG BG
14-208 1G Mt. Trumbull 14 MNA TP-7 L3 sherd_olivine MBG BG
14-209 Mt. Trumbull 14 MNA TP-L S sherd TO BR
14-210 1G Mt. Trumbull 14 MNA TP 3 L3 olivine MBG BG_C
14-211 1VV possible Mt. Trumbull 14 MNA TP-12 L2 sand TBG BG
14-212 VR1 Mt. Trumbull 14 MNA TP-7 L2 sand TBG BG
14-213 1G Mt. Trumbull 14 MNA TP-14 L3 olivine MC C
14-214 Mt. Trumbull 14 MNA TP-14 L6 olivine MC C
14-215 G2 Mt. Trumbull 14 MNA TP-14 L7 sherd_olivine SVC C
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14-216 1VV Mt. Trumbull 14 MNA TP-14 L8 sand TP P
14-217 G2 Mt. Trumbull 14 MNA TP-14 L5 olivine MP P
14-218 1G possoble Mt. Trumbull 14 MNA TP-14 L5 sand TP P
14-219 1G Mt. Trumbull 14 MNA TP-14 L5 olivine MC C
14-220 G2 Mt. Trumbull 14 MNA TP-14 L5 sherd_olivine SVC C
14-221 G2 possible Mt. Trumbull 14 MNA TP-2 L7 olivine MC C
14-222 Mt. Trumbull 14 MNA TP-14 L6 olivine MC P
14-223 1G Mt. Trumbull 14 MNA TP-14 S olivine MP P
14-224 1G Mt. Trumbull 14 MNA TP-14 L2 olivine MC C
14-225 1VM possible Mt. Trumbull 14 MNA TP-14 L4 olivine MP P
14-226 Mt. Trumbull 14 MNA TP-14 L4 olivine MP P
14-227 G2 Mt. Trumbull 14 MNA TP-14 L4 olivine MP P
14-228 G2 Mt. Trumbull 14 MNA TP-14 L2 sherd_olivine SVP P
14-229 Mt. Trumbull 14 MNA TP-14 L2 olivine MP P
14-230 Mt. Trumbull 14 MNA TP-14 L4 olivine MP P
14-231 Mt. Trumbull 14 MNA TP-14 L4 olivine MP P
14-232 1G Mt. Trumbull 14 MNA TP-14 L1 olivine MP P
14-233 1G Mt. Trumbull 14 MNA TP-14 L1 olivine MP P
14-234 G2 Mt. Trumbull 14 MNA TP-14 L3 olivine MP P
14-235 1G Mt. Trumbull 14 MNA TP-14 L3 olivine MP P
14-236 1G Mt. Trumbull 14 MNA TP-14 L3 olivine MP P
14-237 1G Mt. Trumbull 14 MNA TP-14 L1 olivine MP P
14-238 1G possoble Mt. Trumbull 14 MNA TP-14 L1 sand TP P
14-239 1VV possible Mt. Trumbull 14 MNA TP-2 L1 sand TBG BG_C
14-240 Mt. Trumbull 14 MNA surface general sand POL POLY
14-241 G2 Mt. Trumbull 14 MNA TP-5 L4 olivine MP P
14-242 G2 Mt. Trumbull 14 MNA TP-14 L5 olivine MC C
14-243 Mt. Trumbull 14 MNA TP-7 L6 olivine MBG BG
14-244 Mt. Trumbull 14 MNA TP-3 L2 olivine MC C
14-245 G2 Mt. Trumbull 14 MNA TP-5 L3 sherd_olivine SVP P
14-246 G2 Mt. Trumbull 14 MNA TP-7 L8 sherd_olivine SVP P
14-247 Mt. Trumbull 14 MNA TP-7 L6 olivine MC C
14-248 G2 Mt. Trumbull 14 MNA TP-13 S olivine MP P
14-249 Mt. Trumbull 14 MNA TP-13 L5 olivine MP P
14-250 1G Mt. Trumbull 14 MNA TP-13 L5 olivine MC C
14-251 Mt. Trumbull 14 MNA TP-13 L4 olivine MC C
14-252 1G possoble Mt. Trumbull 14 MNA TP-13 L2 olivine MC C
14-253 1G Mt. Trumbull 14 MNA TP-13 L2 olivine MC C
14-254 1G Mt. Trumbull 14 MNA TP-13 L8 olivine MP P
14-255 G2 Mt. Trumbull 14 MNA TP-13 L3 sherd_olivine SVP P
14-256 1G Mt. Trumbull 14 MNA TP-13 L3 olivine MP P
14-257 1G Mt. Trumbull 14 MNA TP-13 L6 olivine MC C
14-258 1G Mt. Trumbull 14 MNA TP-13 L2 olivine MP P
14-259 G2 Mt. Trumbull 14 MNA TP-13 L2 sherd_olivine SVP P
14-260 Mt. Trumbull 14 MNA TP-13 L3 sand TC C
14-261 1G Mt. Trumbull 14 MNA TP-13 L3 olivine MC C
14-262 1G Mt. Trumbull 14 MNA TP-13 L4 olivine MP P
14-263 1G Mt. Trumbull 14 MNA TP-13 L4 olivine MC C
14-264 1G Mt. Trumbull 14 MNA TP-13 S olivine MC C
14-265 G4 Mt. Trumbull 14 MNA TP-13 L7 olivine MC C
14-266 G2 Mt. Trumbull 14 MNA TP-13 L1 olivine MP P
14-267 G2 Mt. Trumbull 14 MNA TP-7 L5 olivine MP P
14-268 1G Mt. Trumbull 14 MNA TP-7 L8 olivine MC C
14-269 1G possoble Mt. Trumbull 14 MNA TP-7 L4 olivine MC C
14-270 G2 Mt. Trumbull 14 MNA TP-7 L9 sherd_olivine SVP P

Appendix A: Table A1. Sample Information (Ceramics)(continued)

429



ID Group Region Site Provinience Temper Type Surface
14-271 Mt. Trumbull 14 MNA TP-7 L9 sand TP P
14-272 Mt. Trumbull 14 MNA TP-7 L3 olivine MP P
14-273 1G Mt. Trumbull 14 MNA TP-7 L7 olivine MC C
14-274 1G possoble Mt. Trumbull 14 MNA TP-7 S olivine MC C
14-275 G2 Mt. Trumbull 14 MNA TP-7 L7 sherd_olivine SVC C
14-276 1G Mt. Trumbull 14 MNA TP-7 L2 olivine MP P
14-277 G2 Mt. Trumbull 14 MNA TP-7 L7 sand SNP P
14-278 1G Mt. Trumbull 14 MNA TP-7 L7 olivine MP P
14-279 Mt. Trumbull 14 MNA TP-7 L6 olivine MP P
14-280 1G possoble Mt. Trumbull 14 MNA TP-7 L6 olivine MC C
14-281 Mt. Trumbull 14 MNA TP-7 L1 olivine MC C
14-282 G2 Mt. Trumbull 14 MNA TP-7 L1 sherd_olivine SVC C
14-283 G2 Mt. Trumbull 14 MNA TP-7 L1 olivine MP P
14-284 G2 Mt. Trumbull 14 MNA TP-7 L8 sherd_olivine SVP P
14-285 Mt. Trumbull 14 MNA TP-7 L6 sand TP P
14-286 1G Mt. Trumbull 14 MNA TP-7 L6 sand TC C
14-287 Mt. Trumbull 14 MNA TP-7 L6 olivine MC C
14-288 Mt. Trumbull 14 MNA TP-7 L4 olivine MP P
14-289 Mt. Trumbull 14 MNA TP-7 L3 olivine MC C
14-290 Mt. Trumbull 14 MNA TP-3 L2 olivine MC C
14-291 Mt. Trumbull 14 MNA TP-3 L2 sand TC C
14-292 Mt. Trumbull 14 MNA TP-7 S sherd_olivine SVP P
14-293 G2 possible Mt. Trumbull 14 MNA TP-7 L5 olivine MC C
14-294 G2 Mt. Trumbull 14 MNA TP-7 L5 olivine MC C
14-295 1G possoble Mt. Trumbull 14 MNA TP-7 L2 olivine MP P
14-296 1VV Mt. Trumbull 14 MNA TP-7 L1 sherd RED R
14-297 VR3 Mt. Trumbull 14 MNA TP-1 L1 sand RED R
14-298 Mt. Trumbull 14 MNA TP-1 L5 olivine MBG BG
14-299 Mt. Trumbull 14 MNA TP-3 L2 sherd_andesite SJR R
14-300 G2 Mt. Trumbull 14 MNA TP-6 L2 sand TP P
14-301 G2 Mt. Trumbull 14 MNA TP-6 L2 olivine MP P
14-302 Mt. Trumbull 14 MNA TP-6 S olivine MC C
14-303 1G Mt. Trumbull 14 MNA TP-6 L4 olivine MP P
14-304 1G Mt. Trumbull 14 MNA TP-6 L3 olivine MC C
14-305 1G Mt. Trumbull 14 MNA TP-6 L3 olivine MPF P
14-306 G2 Mt. Trumbull 14 MNA TP-6 L1 sherd_olivine SVC C
14-307 Mt. Trumbull 14 MNA TP-6 L1 olivine MC C
14-308 1G Mt. Trumbull 14 MNA TP-6 L1 olivine MP P
14-309 G2 Mt. Trumbull 14 MNA TP-6 S olivine MP P
14-310 Mt. Trumbull 14 MNA TP-9 L2 olivine MC C
14-311 G2 Mt. Trumbull 14 MNA TP-9 L2 olivine MP P
14-312 Mt. Trumbull 14 MNA TP-9 L5 olivine MP P
14-313 Mt. Trumbull 14 MNA TP-9 L3 olivine MC C
14-314 1G Mt. Trumbull 14 MNA TP-9 L1 olivine MP P
14-315 1G Mt. Trumbull 14 MNA TP-9 S olivine MP P
14-316 Mt. Trumbull 14 MNA TP-9 L1 olivine MC C
14-317 1G Mt. Trumbull 14 MNA TP-9 S olivine MC C
14-318 Mt. Trumbull 14 MNA TP-9 L4 sherd_olivine SVP P
14-319 Mt. Trumbull 14 MNA TP-9 L4 olivine MP P
14-320 G2 Mt. Trumbull 14 MNA TP-9 L3 olivine MP P
14-321 Mt. Trumbull 14 MNA TP-12 L2 olivine MC C
14-322 1G Mt. Trumbull 14 MNA TP-12 L4 olivine MC C
14-323 G2 Mt. Trumbull 14 MNA TP-12 L3 olivine MP P
14-324 1G Mt. Trumbull 14 MNA TP-12 L2 sherd_olivine MP P
14-325 G2 Mt. Trumbull 14 MNA TP-12 L2 sand SNP P
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14-326 G2 Mt. Trumbull 14 MNA TP-12 S olivine MP P
14-327 1G Mt. Trumbull 14 MNA TP-12 L3 olivine MC C
14-328 Mt. Trumbull 14 MNA TP-12 L1 olivine MC C
14-329 Mt. Trumbull 14 MNA TP-12 L1 olivine MP P
14-330 G2 Mt. Trumbull 14 MNA TP-12 L4 olivine MP P
14-331 G2 Mt. Trumbull 14 MNA TP-6 L2 olivine MC C
204-1 G2 Mt. Trumbull 204 BLM SCU A2 olivine MP P
204-2 1G Mt. Trumbull 204 BLM SCU A4 olivine MP P
204-3 G2 Mt. Trumbull 204 BLM SCU A5 olivine MP P
204-4 G2 Mt. Trumbull 204 BLM SCU A6 olivine MP P
204-7 G2 Mt. Trumbull 204 BLM SCU A8 olivine MP P
204-8 G2 Mt. Trumbull 204 BLM SCU A8 olivine MP P
204-9 Mt. Trumbull 204 BLM SCU A8 olivine MBG BG
204-10 G2 Mt. Trumbull 204 BLM SCU B8 olivine MP P
204-11 G2 Mt. Trumbull 204 BLM SCU B3 olivine MP P
204-12 G2 Mt. Trumbull 204 BLM SCU B3 olivine MP P
204-13 G2 Mt. Trumbull 204 BLM surface general olivine MP P
204-14 Mt. Trumbull 204 BLM surface general olivine MP P
204-15 G2 Mt. Trumbull 204 BLM surface general sand TP P
204-16 G2 Mt. Trumbull 204 BLM surface general sherd_olivine MP P
204-20 1VV Mt. Trumbull 204 BLM SCU A8 sand TP P
204-21 1VM possible Mt. Trumbull 204 BLM surface general olivine MP P
204-23 Mt. Trumbull 204 BLM surface general olivine MP P
204-24 G2 possible Mt. Trumbull 204 BLM surface general sand TP P
204-25 G2 Mt. Trumbull 204 BLM surface general olivine MP P
204-27 Mt. Trumbull 204 BLM surface general olivine MBG BG
204-28 1G possoble Mt. Trumbull 204 BLM surface general olivine MP P
204-31 1VM Mt. Trumbull 204 BLM TP-3 L1 olivine MP P
204-32 1VM Mt. Trumbull 204 BLM TP-3 L2 olivine MP P
204-33 1VM Mt. Trumbull 204 BLM TP-1 L1 olivine MP P
204-34 1VM possible Mt. Trumbull 204 BLM TP-3 S olivine MP P
204-35 G2 Mt. Trumbull 204 BLM TP-2 L2 olivine MP P
204-36 1G Mt. Trumbull 204 BLM TP-3 S olivine MP P
204-37 G2 Mt. Trumbull 204 BLM TP-2 S olivine MP P
204-38 Mt. Trumbull 204 BLM TP-1 S sand TP P
204-39 Mt. Trumbull 204 BLM TP-2 L3 sand TP P
204-40 Mt. Trumbull 204 BLM TP-3 L2 sand TP P
204-41 G3 Mt. Trumbull 204 BLM TP-3 S olivine MP P
204-42 G3 Mt. Trumbull 204 BLM TP-3 L1 olivine MP P
204-43 Mt. Trumbull 204 BLM surface general olivine MP P
204-44 G2 Mt. Trumbull 204 BLM surface general olivine MP P
204-45 1G Mt. Trumbull 204 BLM surface general olivine MP P
204-46 1G Mt. Trumbull 204 BLM surface general olivine MP P
204-47 Mt. Trumbull 204 BLM surface general sand TP P
204-48 Mt. Trumbull 204 BLM surface general olivine MP P
204-49 G2 Mt. Trumbull 204 BLM surface general olivine MP P
204-50 Mt. Trumbull 204 BLM surface general olivine MP P
204-51 G2 Mt. Trumbull 204 BLM surface general olivine MP P
204-52 1G Mt. Trumbull 204 BLM surface general olivine MP P
204-53 1VM Mt. Trumbull 204 BLM surface general olivine MP P
204-54 1VV possible Mt. Trumbull 204 BLM surface general olivine MP P
204-55 1VM possible Mt. Trumbull 204 BLM TP-3 L1 olivine MP P
204-56 Mt. Trumbull 204 BLM TP-3 L1 sand TP P
204-57 Mt. Trumbull 204 BLM surface general olivine MP P
204-58 G2 Mt. Trumbull 204 BLM surface general olivine MP P
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204-59 Mt. Trumbull 204 BLM surface general olivine MP P
204-60 Mt. Trumbull 204 BLM surface general olivine MP P
214-1 IVV Mt. Trumbull 214 ASM TP-2 L1 sand TP P
214-2 1VV possible Mt. Trumbull 214 ASM TP-2 S sand TC C
214-3 Mt. Trumbull 214 ASM TP-5 L1 olivine MC C
214-4 G2 Mt. Trumbull 214 ASM TP-2 L2 olivine MP P
214-5 G2 Mt. Trumbull 214 ASM TP-5 L1 olivine MP P
214-6 1VM Mt. Trumbull 214 ASM TP-1 L1 olivine MC C
214-7 1VM possible Mt. Trumbull 214 ASM TP-1 L1 olivine MP P
214-8 1VM Mt. Trumbull 214 ASM TP-3 L1 olivine MC C
214-9 Mt. Trumbull 214 ASM TP-3 L1 olivine MP P
214-10 Mt. Trumbull 214 ASM TP-2 S olivine MP P
214-11 1VM Mt. Trumbull 214 ASM TP-1 L2 olivine MC C
214-12 Mt. Trumbull 214 ASM TP-1 S olivine MC C
214-13 G2 Mt. Trumbull 214 ASM TP-2 L1 olivine MP P
214-14 1VV possible Mt. Trumbull 214 ASM TP-2 S olivine MP P
214-15 Mt. Trumbull 214 ASM TP-1 S olivine MC C
214-16 Mt. Trumbull 214 ASM TP-2 S sand TC C
214-17 Mt. Trumbull 214 ASM TP-1 L1 sand TC C
214-18 1G Mt. Trumbull 214 ASM TP-1 L2 sand TBG BG
214-19 1VV possible Mt. Trumbull 214 ASM TP-3 L1 sand TBG BG
214-20 1VV possible Mt. Trumbull 214 ASM TP-3 S sand TBG BG
214-21 G2 Mt. Trumbull 214 ASM TP-2 S olivine MP P
214-22 Mt. Trumbull 214 ASM SCU A2 olivine MC C
214-23 G2 Mt. Trumbull 214 ASM SCU A12 olivine MP P
214-24 Mt. Trumbull 214 ASM SCU A12 sand TP P
214-25 G2 possible Mt. Trumbull 214 ASM TP-2 L1 olivine MP P
214-26 Mt. Trumbull 214 ASM SCU A6 olivine MC C
214-27 Mt. Trumbull 214 ASM TP-2 L1 olivine MP P
214-28 G2 Mt. Trumbull 214 ASM TP-2 L1 olivine MP P
214-29 1VM Mt. Trumbull 214 ASM SCU A3 olivine MP P
214-30 Mt. Trumbull 214 ASM SCU A3 olivine MC C
214-31 G2 Mt. Trumbull 214 ASM SCU A4 sherd_olivine SVP P
214-32 Mt. Trumbull 214 ASM SCU A12 sand TC C
214-33 Mt. Trumbull 214 ASM TP-2 S olivine MC C
214-34 G2 Mt. Trumbull 214 ASM SCU A1 sherd_olivine SVP P
214-35 Mt. Trumbull 214 ASM SCU A10 olivine MP P
214-36 Mt. Trumbull 214 ASM SCU A10 olivine MC C
30-1 Mt. Trumbull 30 BLM surface general olivine MP P
30-7 G2 Mt. Trumbull 30 BLM surface general olivine MP P
30-9 Mt. Trumbull 30 BLM surface general olivine MP P
30-10 1G Mt. Trumbull 30 BLM surface general olivine MP P
30-11 1VM possible Mt. Trumbull 30 BLM surface general olivine MP P
30-16 1G Mt. Trumbull 30 BLM surface general olivine MBG BG
30-17 G2 Mt. Trumbull 30 BLM surface general olivine MC C
30-22 Mt. Trumbull 30 BLM surface general olivine MC C
30-25 1VV possible Mt. Trumbull 30 BLM surface general sherd_sand TP P
30-31 Mt. Trumbull 30 BLM surface general olivine MP P
30-36 1VM Mt. Trumbull 30 BLM surface general olivine MBG BG
30-37 1G Mt. Trumbull 30 BLM surface general olivine MBG BG
30-40 1G Mt. Trumbull 30 BLM surface general olivine MBG BG
30-46 1G Mt. Trumbull 30 BLM surface general olivine MBG BG
30-47 Mt. Trumbull 30 BLM surface general sand TBG BG
30-60 Mt. Trumbull 30 BLM surface general olivine MBG BG
30-63 IVV Mt. Trumbull 30 BLM surface general sand TBG BG
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30-64 Mt. Trumbull 30 BLM surface general sand_andesite SJR BR
30-77 VR1 Mt. Trumbull 30 BLM surface general sand TBG BG
30-79 Mt. Trumbull 30 BLM surface general sand TP P
30-80 G3 Mt. Trumbull 30 BLM surface general olivine MC C
30-81 G3 Mt. Trumbull 30 BLM surface general olivine MP P
30-82 G3 Mt. Trumbull 30 BLM surface general sand TP P
30-86 Mt. Trumbull 30 BLM surface general olivine MPF P 
30-87 Mt. Trumbull 30 BLM surface general olivine MP P
30-88 1G Mt. Trumbull 30 BLM surface general olivine MPF P
30-146 Mt. Trumbull 30 BLM TP-3 L8 olivine MBG BG
30-147 Mt. Trumbull 30 BLM TP-1 L4 olivine MBG BG
30-148 Mt. Trumbull 30 BLM surface general olivine MBG BG
30-149 1G Mt. Trumbull 30 BLM surface general olivine MBG BG
30-150 Mt. Trumbull 30 BLM surface general sand POL POLY
30-151 1VM Mt. Trumbull 30 BLM TP-2 L3 olivine MP P
30-152 G2 Mt. Trumbull 30 BLM TP-1 L5 olivine MP P
30-153 Mt. Trumbull 30 BLM TP-1 L6 olivine MP P
30-154 G2 Mt. Trumbull 30 BLM TP-1 L3 olivine MP P
30-155 1G Mt. Trumbull 30 BLM TP-3 L3 olivine MC C
30-156 G2 Mt. Trumbull 30 BLM TP-3 L5 olivine MP P
30-157 G2 Mt. Trumbull 30 BLM TP-3 L8 olivine MP P
30-158 G2 possible Mt. Trumbull 30 BLM TP2 L7 sherd_olivine SVP P
30-159 1VM Mt. Trumbull 30 BLM TP2 L6 olivine MP P
30-160 1VM possible Mt. Trumbull 30 BLM TP-2 L1 olivine MP P
30-161 Mt. Trumbull 30 BLM TP-1 L1 olivine MP P
30-162 1G Mt. Trumbull 30 BLM TP-3 L12 olivine MPF P
30-163 G2 Mt. Trumbull 30 BLM TP-3 L6 olivine MP P
30-164 1G Mt. Trumbull 30 BLM TP-2 L5 olivine MC C
30-165 Mt. Trumbull 30 BLM TP-1 L2 olivine MP P
30-166 1VM Mt. Trumbull 30 BLM TP-3 L5 olivine MC C
30-167 1VM possible Mt. Trumbull 30 BLM TP-2 L5 olivine MP P
30-168 1VM Mt. Trumbull 30 BLM TP-3 L2 olivine MP P
30-169 1G Mt. Trumbull 30 BLM TP-3 L4 olivine MP P
30-170 1VM possible Mt. Trumbull 30 BLM TP-3 L1 olivine MP P
30-171 G2 Mt. Trumbull 30 BLM TP-3 S olivine MP P
30-172 Mt. Trumbull 30 BLM TP-3 L9 olivine MP P
30-173 1VV possible Mt. Trumbull 30 BLM TP-3 L6 sherd_sand TC C
30-174 Mt. Trumbull 30 BLM TP-12 2 olivine MP P
30-175 Mt. Trumbull 30 BLM TP-3 L10 sherd TP P
30-176 G2 Mt. Trumbull 30 BLM TP-2 L8 olivine MP P
30-177 1G Mt. Trumbull 30 BLM TP-2 L9 sherd_olivine MP P
30-178 G2 Mt. Trumbull 30 BLM TP-3 L3 olivine MP P
30-179 G2 Mt. Trumbull 30 BLM TP-1 L4 olivine MP P
30-180 Mt. Trumbull 30 BLM TP-2 L4 olivine MP P
30-181 Mt. Trumbull 30 BLM TP-3 L1 olivine MC C
30-182 1G Mt. Trumbull 30 BLM TP-1 L6 olivine MC C
30-183 1G Mt. Trumbull 30 BLM TP-2 L1 olivine MC C
30-184 Mt. Trumbull 30 BLM TP-3 L7 sherd_olivine SVP P
30-185 1G Mt. Trumbull 30 BLM TP-3 L11 olivine MPF P
30-186 1G Mt. Trumbull 30 BLM TP-3 S olivine MC C
30-187 Mt. Trumbull 30 BLM TP-1 L2 olivine MC C
30-188 Mt. Trumbull 30 BLM TP-1 L3 olivine MC C
30-189 1VM possible Mt. Trumbull 30 BLM TP-3 L2 olivine MC C
30-190 1G Mt. Trumbull 30 BLM TP-2 S olivine MP P
30-191 1G Mt. Trumbull 30 BLM TP-1 L1 olivine MC C
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30-192 G2 Mt. Trumbull 30 BLM TP-2 L6 sherd_olivine MC C
30-193 Mt. Trumbull 30 BLM TP-3 L4 olivine MC C
30-194 Mt. Trumbull 30 BLM TP-1 S olivine MP P
30-195 G2 Mt. Trumbull 30 BLM TP-2 L12 sherd_olivine MP P
30-196 Mt. Trumbull 30 BLM TP-2 L2 olivine MC C
30-197 Mt. Trumbull 30 BLM TP-2 L6 olivine MBG BG
30-198 1G Mt. Trumbull 30 BLM TP-2 L2 olivine MBG BG
30-199 Mt. Trumbull 30 BLM TP-2 L6 olivine MBG BG
30-200 1G Mt. Trumbull 30 BLM TP-1 L4 olivine MBG BG
30-201 VR1 Mt. Trumbull 30 BLM TP-2 L6 sand TBG BG
30-202 Mt. Trumbull 30 BLM TP-2 L3 sand_andesite SJR RED
30-203 1G Mt. Trumbull 30 BLM TP-2 L10 olivine MBG BG
30-204 G2 Mt. Trumbull 30 BLM TP-2 L6 olivine MP P
30-205 G2 Mt. Trumbull 30 BLM TP-2 S olivine MP P
30-206 Mt. Trumbull 30 BLM TP-2 L8 olivine MP P
30-207 Mt. Trumbull 30 BLM TP-2 S olivine MC C
30-208 Mt. Trumbull 30 BLM TP-2 L2 olivine MPF P
30-209 Mt. Trumbull 30 BLM TP-2 L7 olivine MP P
30-210 1G Mt. Trumbull 30 BLM TP-2 L3 olivine MC C
30-211 G2 Mt. Trumbull 30 BLM TP-2 L11 olivine MP P
30-212 1G Mt. Trumbull 30 BLM TP-2 L9 olivine MP P
30-213 1G Mt. Trumbull 30 BLM TP-2 L4 olivine MP P
30-214 1G Mt. Trumbull 30 BLM TP-2 L3 olivine MC C
30-215 1G Mt. Trumbull 30 BLM TP-2 L2 olivine MC C
30-216 G2 Mt. Trumbull 30 BLM TP-2 L7 sherd_olivine SVC C
30-217 G2 Mt. Trumbull 30 BLM TP-2 L1 olivine MP P
30-218 Mt. Trumbull 30 BLM TP-2 L1 sand TP P
30-219 1G Mt. Trumbull 30 BLM TP-2 L10 olivine MC C
30-220 Mt. Trumbull 30 BLM TP-2 L3 olivine MP P
30-221 IVV Mt. Trumbull 30 BLM TP-2 L6 sand TC C
30-222 Mt. Trumbull 30 BLM TP-2 L6 olivine MC C
30-223 1G Mt. Trumbull 30 BLM TP-2 L8 olivine MC C
30-224 1G possoble Mt. Trumbull 30 BLM TP-2 L12 olivine MP P
30-225 G2 Mt. Trumbull 30 BLM TP-2 L10 olivine MP P
30-226 1G Mt. Trumbull 30 BLM TP-2 L13 olivine MP P
30-227 Mt. Trumbull 30 BLM TP-2 L5 olivine MP P
30-228 1G Mt. Trumbull 30 BLM TP-2 L4 olivine MC C
30-229 Mt. Trumbull 30 BLM TP-2 L1 olivine MC C
30-230 1G Mt. Trumbull 30 BLM TP-2 L5 olivine MC C
30-231 IVV Mt. Trumbull 30 BLM TP-3 L9 sand TP P
30-232 VR3 Mt. Trumbull 30 BLM TP-2 L11 sand RED R
30-233 IVV Mt. Trumbull 30 BLM TP-2 L6 sherd TO R
30-234 1VV possible Mt. Trumbull 30 BLM TP-3 L2 sand TBG BG
30-235 Mt. Trumbull 30 BLM TP-2 L4 olivine MC C
30-236 Mt. Trumbull 30 BLM TP-2 L7 olivine MC C
30-237 Mt. Trumbull 30 BLM TP-2 L6 sand TP P
30-238 Mt. Trumbull 30 BLM TP-2 L6 olivine MP P
30-239 Mt. Trumbull 30 BLM TP-2 L1 olivine MC C
30-240 Mt. Trumbull 30 BLM TP-2 S olivine MPF P
30-241 1G Mt. Trumbull 30 BLM TP-2 L6 olivine MC C
30-242 G2 Mt. Trumbull 30 BLM TP-2 L8 olivine MP P
30-243 1VM possible Mt. Trumbull 30 BLM TP-2 L8 olivine MP P
30-244 Mt. Trumbull 30 BLM TP-2 L3 olivine MP P
30-245 G2 Mt. Trumbull 30 BLM TP-2 L5 sherd_olivine MP P
30-246 Mt. Trumbull 30 BLM TP-2 L5 olivine MP P
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30-247 1G Mt. Trumbull 30 BLM TP-2 L1 olivine MPF P
30-248 1G Mt. Trumbull 30 BLM TP-2 L4 olivine MP P
30-249 Mt. Trumbull 30 BLM TP-2 L4 sand TP P
30-250 Mt. Trumbull 30 BLM TP-2 L7 olivine MP P
30-251 1VV possible Mt. Trumbull 30 BLM TP-2 L9 sand TP P
30-252 1VM Mt. Trumbull 30 BLM TP-3 L2 olivine MP P
30-253 G2 Mt. Trumbull 30 BLM TP-3 L2 olivine MP P
30-254 Mt. Trumbull 30 BLM TP-3 L5 olivine MP P
30-255 Mt. Trumbull 30 BLM TP-3 L5 olivine MP P
30-256 G2 Mt. Trumbull 30 BLM TP-2 L7 olivine MP P
30-257 Mt. Trumbull 30 BLM TP-3 L1 olivine MP P
30-258 1G Mt. Trumbull 30 BLM TP-2 L4 olivine MP P
30-259 Mt. Trumbull 30 BLM TP-3 L3 olivine MC C
30-260 G2 Mt. Trumbull 30 BLM surface general olivine MP P
30-261 1G Mt. Trumbull 30 BLM surface general olivine MP P
30-262 1G Mt. Trumbull 30 BLM surface general olivine MP P
30-263 1G Mt. Trumbull 30 BLM surface general olivine MBG BG
30-264 Mt. Trumbull 30 BLM surface general sand SNR BR
30-265 Mt. Trumbull 30 BLM surface general sand TBG BG
30-266 VR1 Mt. Trumbull 30 BLM surface general sand TBG BG
30-267 Mt. Trumbull 30 BLM surface general olivine MBG BG
71-1 IVV Mt. Trumbull 71 ASM surface general sand TBG BG
71-7 G3 Mt. Trumbull 71 ASM surface general sand TBG BG
71-8 G3 Mt. Trumbull 71 ASM surface general sand TBG BG
71-9 Mt. Trumbull 71 ASM surface general sand TBG BG
71-10 Mt. Trumbull 71 ASM surface general sand TBG BG
71-11 Mt. Trumbull 71 ASM surface general olivine MBG BG
71-16 1G Mt. Trumbull 71 ASM surface general olivine MP P
71-17 Mt. Trumbull 71 ASM surface general olivine MP P
71-18 1G Mt. Trumbull 71 ASM surface general olivine MC C
71-19 Mt. Trumbull 71 ASM surface general olivine MC C
71-20 G2 Mt. Trumbull 71 ASM surface general olivine MP P
71-21 1G Mt. Trumbull 71 ASM surface general olivine MP P
71-22 Mt. Trumbull 71 ASM surface general olivine MP P
71-23 Mt. Trumbull 71 ASM surface general olivine MP P
71-24 G2 Mt. Trumbull 71 ASM surface general olivine MP P
71-25 Mt. Trumbull 71 ASM surface general olivine MP P
71-26 Mt. Trumbull 71 ASM surface general olivine MBG BG
71-27 1VM Mt. Trumbull 71 ASM TP-4 L1 olivine MP P
71-28 Mt. Trumbull 71 ASM TP-4 L1 olivine MP P
71-29 G2 Mt. Trumbull 71 ASM TP-1 L2 olivine MP P
71-30 G2 Mt. Trumbull 71 ASM TP-1 L1 olivine MP P
71-31 G2 possible Mt. Trumbull 71 ASM TP-3 S olivine MP P
71-32 G2 Mt. Trumbull 71 ASM TP-3 L1 olivine MP P
71-33 1VM Mt. Trumbull 71 ASM TP-4 S olivine MP P
71-34 1VM Mt. Trumbull 71 ASM TP-4 L2 olivine MP P
71-39 G2 Mt. Trumbull 71 ASM surface general olivine MP P
71-40 G2 Mt. Trumbull 71 ASM surface general olivine MP P
71-41 G4 Mt. Trumbull 71 ASM TP-4 L2 olivine MP P
71-42 Mt. Trumbull 71 ASM TP-4 L2 olivine MP P
71-43 G2 Mt. Trumbull 71 ASM TP-2 L3 olivine MP P
71-44 G3 Mt. Trumbull 71 ASM TP-4 S olivine MP P
71-45 G3 Mt. Trumbull 71 ASM TP-2 L1 olivine MP P
71-46 G3 Mt. Trumbull 71 ASM TP-1 L2 olivine MP P
71-47 G3 Mt. Trumbull 71 ASM TP-4 L1 olivine MP P
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71-48 G3 Mt. Trumbull 71 ASM TP-3 S olivine MP P
71-49 G3 Mt. Trumbull 71 ASM TP-3 L1 olivine MP P
71-50 G3 Mt. Trumbull 71 ASM TP-3 L1 olivine MP P
71-51 G3 Mt. Trumbull 71 ASM TP-3 S olivine MP P
71-52 G3 Mt. Trumbull 71 ASM surface general olivine MP P
71-53 G3 Mt. Trumbull 71 ASM surface general olivine MP P
71-54 G3 Mt. Trumbull 71 ASM surface general olivine MP P
71-55 G3 Mt. Trumbull 71 ASM surface general olivine MBG BG
71-56 G3 Mt. Trumbull 71 ASM surface general olivine MBG BG
71-57 G3 Mt. Trumbull 71 ASM surface general olivine MP P
71-58 G3 Mt. Trumbull 71 ASM surface general olivine MP P
71-59 G3 Mt. Trumbull 71 ASM surface general olivine MBG BG_C
71-60 G3 Mt. Trumbull 71 ASM TP-4 L1 olivine MP P
71-61 1VM Mt. Trumbull 71 ASM TP-4 L3 olivine MP P
71-62 Mt. Trumbull 71 ASM TP-3 S olivine MP P
71-63 Mt. Trumbull 71 ASM TP-4 S olivine MP P
71-64 G4 Mt. Trumbull 71 ASM TP-4 L1 olivine MP P
71-65 G4 Mt. Trumbull 71 ASM TP-4 L1 olivine MP P
71-66 Mt. Trumbull 71 ASM TP-4 L1 olivine MP P
71-67 1VM Mt. Trumbull 71 ASM TP-4 S olivine MP P
71-68 G2 Mt. Trumbull 71 ASM TP-1 S olivine MP P
71-69 Mt. Trumbull 71 ASM SCU A8 olivine MP P
71-70 1G Mt. Trumbull 71 ASM SCU A1 sand TP P
71-71 1VM Mt. Trumbull 71 ASM SCU A1 olivine MP P
71-72 Mt. Trumbull 71 ASM SCU B6 olivine MP P
71-73 Mt. Trumbull 71 ASM SCU A7 olivine MP P
71-74 Mt. Trumbull 71 ASM SCU D5 olivine MP P
71-75 G2 Mt. Trumbull 71 ASM SCU C5 olivine MP P
71-76 1VV possible Mt. Trumbull 71 ASM SCU A2 olivine MP P
71-77 Mt. Trumbull 71 ASM SCU A4 olivine MP P
71-78 Mt. Trumbull 71 ASM SCU A4 sherd TP P
71-79 G2 Mt. Trumbull 71 ASM SCU B16 olivine MP P
71-80 1VM Mt. Trumbull 71 ASM SCU A10 olivine MP P
71-81 1VM Mt. Trumbull 71 ASM SCU A9 olivine MP P
71-82 Mt. Trumbull 71 ASM SCU A5 olivine MP P
71-83 Mt. Trumbull 71 ASM SCU B15 sand TP P
TW26 1VM possible Tuweep GC895 surface olivine MP P
TW47 G2 Tuweep GC666 surface olivine MP P
TW93 1VV possible Tuweep GC695 surface sand TC C
TW101 1VM Tuweep GC913 surface olivine MC C
TW118 1VM possible Tuweep GC663 surface olivine MC C
TW119 1G Tuweep GC663 surface olivine MC C
TW124 G2 Tuweep GC671 surface sherd_olivine SVC C
TW128 Tuweep GC888 surface olivine MPF P
TW130 Tuweep GC888 surface olivine MP P
TW135 Tuweep GC671 surface sand SNP P
TW136 IVV Tuweep GC689 surface sand TP P
TW139 Tuweep GC666 surface sand TP P
TW142 1VM Tuweep GC671 surface olivine MBG BG
TW143 1VM Tuweep GC671 surface olivine MBG BG
TW151 Tuweep GC663 surface olivine MBG BG
TW154 Tuweep GC671 surface olivine MBG BG
TW156 G2 Tuweep GC663 surface olivine MBG BG
TW159 1VM Tuweep GC671 surface olivine MBG BG
TW183 1VV possible Tuweep GC671 surface sand TBG BG
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TW185 Tuweep GC671 surface sand TBG BG
VR1-1 IVV lowland Virgin VR1 surface sand TBG BG
VR1-2 1VV possible lowland Virgin VR1 surface sand TP P
VR1-3 IVV lowland Virgin VR1 surface sand TP P
VR1-4 1VV possible lowland Virgin VR1 surface sand TBG BG
VR1-5 G2 lowland Virgin VR1 surface olivine MP P
VR1-6 lowland Virgin VR1 surface olivine MP P
VR1-7 G2 lowland Virgin VR1 surface olivine MP P
VR1-8 G2 lowland Virgin VR1 surface olivine MP P
VR1-9 G2 lowland Virgin VR1 surface olivine MP P
VR4-1 G2 possible lowland Virgin VR4 surface olivine MP P
VR4-2 G2 lowland Virgin VR4 surface olivine MP P
VR4-3 lowland Virgin VR4 surface olivine MP P
VR6-1 lowland Virgin VR6 surface sherd_olivine SVP P
VR6-2 1VV possible lowland Virgin VR6 surface olivine MBG BG
VR6-3 lowland Virgin VR6 surface olivine MP P
VR6-4 1VV possible lowland Virgin VR6 surface olivine MP P
VR6-5 IVV lowland Virgin VR6 surface olivine MP P
VR6-6 IVV lowland Virgin VR6 surface olivine MP P
VR6-7 IVV lowland Virgin VR6 surface olivine MP P
VR7-1 lowland Virgin VR7 surface olivine MP P
VR7-2 VR3 lowland Virgin VR7 surface sand TC C
VR7-3 VR3 lowland Virgin VR7 surface sherd_sand RED BR
VR7-4 lowland Virgin VR7 surface olivine MP P
VR7-5 G4 lowland Virgin VR7 surface olivine MBG BG
VR7-6 1G lowland Virgin VR7 surface olivine MC C
VR7-7 IVV lowland Virgin VR7 surface olivine MBG BG_C
VR7-8 G4 lowland Virgin VR7 surface olivine MP P
VR7-9 IVV lowland Virgin VR7 surface olivine MP P
VR7-10 1VV possible lowland Virgin VR7 surface olivine MP P
VR7-11 1G lowland Virgin VR7 surface olivine MP P
VR8-1 1VV possible lowland Virgin VR8 surface olivine MP P
VR13-1 G2 lowland Virgin VR13 surface olivine MP P
VR13-2 G2 lowland Virgin VR13 surface olivine MP P
VR13-3 VR3 lowland Virgin VR13 surface sand TP P
VR13-5 IVV lowland Virgin VR13 surface sand TP P
VR13-6 G2 lowland Virgin VR13 surface olivine MP P
VR13-7 G2 lowland Virgin VR13 surface olivine MP P
VR13-8 G2 lowland Virgin VR13 surface olivine MP P
VR13-9 G2 lowland Virgin VR13 surface olivine MP P
VR13-10 lowland Virgin VR13 surface olivine MP P
VR14-1 G2 possible lowland Virgin VR14 surface olivine MP P
VR14-2 G2 lowland Virgin VR14 surface olivine MP P
VR15-1 IVV lowland Virgin VR15 surface olivine MP P
VR15-2 G4 lowland Virgin VR15 surface olivine MBG BG
VR17-1 VR1 lowland Virgin VR17 surface sand TBG BG
VR17-2 IVV lowland Virgin VR17 surface sand TBG BG
VR17-3 lowland Virgin VR17 surface olivine MP P
VR17-4 lowland Virgin VR17 surface olivine MP P
VR17-5 VR1 lowland Virgin VR17 surface sand TBG BG
VR17-6 lowland Virgin VR17 surface olivine MBG BG
VR17-7 lowland Virgin VR17 surface olivine MP P
VR17-8 G4 lowland Virgin VR17 surface olivine MBG BG
VR17-9 VR1 lowland Virgin VR17 surface sand TBG BG
VR17-10 IVV lowland Virgin VR17 surface olivine MBG BG
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VR17-11 G4 lowland Virgin VR17 surface olivine MP P
VR17-12 lowland Virgin VR17 surface olivine MP P
VR17-13 VR3 lowland Virgin VR17 surface sand TP P
VR17-14 lowland Virgin VR17 surface sand TP P
VR17-15 VR3 lowland Virgin VR17 surface sand TP P
VR19-1 lowland Virgin VR19 surface olivine MP P
VR19-2 lowland Virgin VR19 surface olivine MP P
VR19-3 IVV lowland Virgin VR19 surface olivine MBG BG
VR19-4 VR1 lowland Virgin VR19 surface sand TBG BG
VR19-5 lowland Virgin VR19 surface olivine MP P
VR19-6 lowland Virgin VR19 surface sand TBG BG
VR19-7 G4 lowland Virgin VR19 surface olivine MP P
VR19-8 IVV lowland Virgin VR19 surface olivine MP P
VR19-9 lowland Virgin VR19 surface olivine MP P
VR19-10 lowland Virgin VR19 surface olivine MP P
VR19-11 IVV lowland Virgin VR19 surface olivine MP P
VR19-12 lowland Virgin VR19 surface olivine MP P
VR19-13 lowland Virgin VR19 surface olivine MP P
VR19-14 IVV lowland Virgin VR19 surface olivine MP P
VR19-15 G4 lowland Virgin VR19 surface olivine MP P
VR19-16 lowland Virgin VR19 surface olivine MP P
VR19-17 1VV possible lowland Virgin VR19 surface olivine MP P
VR19-18 lowland Virgin VR19 surface olivine MP P
VR19-19 lowland Virgin VR19 surface olivine MBG BG
VR19-20 IVV lowland Virgin VR19 surface olivine MC C
VR19-21 lowland Virgin VR19 surface olivine MP P
VR19-22 IVV lowland Virgin VR19 surface olivine MBG BG
VR19-23 IVV lowland Virgin VR19 surface olivine MBG BG
VR19-24 1VV possible lowland Virgin VR19 surface olivine MBG BG
VR19-25 lowland Virgin VR19 surface olivine MBG BG
VR19-26 1VV possible lowland Virgin VR19 surface olivine MBG BG
VR19-27 VR3 lowland Virgin VR19 surface sand TP P
VR19-28 IVV lowland Virgin VR19 surface sand TC C
VR20-1 IVV lowland Virgin VR20 surface olivine MP P
VR21-1 VR1 lowland Virgin VR21 surface sand TBG BG
VR21-2 lowland Virgin VR21 surface sand MP P
VR21-3 lowland Virgin VR21 surface olivine MP P
VR21-4 1G lowland Virgin VR21 surface olivine MP P
VR21-5 1G lowland Virgin VR21 surface olivine MP P
VR21-6 lowland Virgin VR21 surface olivine MBG BG
VR21-7 1G lowland Virgin VR21 surface olivine MP P
VR21-8 1G lowland Virgin VR21 surface olivine MP P
VR21-9 IVV lowland Virgin VR21 surface olivine MC C
VR21-10 IVV lowland Virgin VR21 surface sand TC C
VR21-11 VR1 lowland Virgin VR21 surface sand TBG BG
VR21-12 lowland Virgin VR21 surface sand TP P
VR21-13 lowland Virgin VR21 surface sherd_sand TP P
VR21-14 1G lowland Virgin VR21 surface olivine MP P
VR21-15 lowland Virgin VR21 surface olivine MP P
VR21-16 G4 lowland Virgin VR21 surface olivine MP P
VR21-17 IVV lowland Virgin VR21 surface olivine MP P
VR21-18 1G lowland Virgin VR21 surface olivine MP P
VR21-19 1G lowland Virgin VR21 surface olivine MP P
VR21-20 1VV possible lowland Virgin VR21 surface sand TC C
VR21-21 G4 lowland Virgin VR21 surface olivine MP P
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VR21-22 G4 lowland Virgin VR21 surface olivine MP P
VR21-23 G4 lowland Virgin VR21 surface olivine MP P
VR21-24 1G lowland Virgin VR21 surface olivine MP P
VR21-25 IVV lowland Virgin VR21 surface olivine MP P
VR21-26 lowland Virgin VR21 surface olivine MP P
VR21-27 G4 lowland Virgin VR21 surface olivine MP P
VR21-28 1G lowland Virgin VR21 surface olivine MP P
VR21-29 G4 lowland Virgin VR21 surface olivine MP P
VR21-30 G4 lowland Virgin VR21 surface olivine MP P
VR21-31 1G lowland Virgin VR21 surface olivine MP P
VR21-32 1G lowland Virgin VR21 surface olivine MP P
VR22-1 IVV lowland Virgin VR22 surface olivine MP P
VR22-2 VR3 lowland Virgin VR22 surface sand TP P
VR22-3 lowland Virgin VR22 surface olivine MP P
VR22-4 1G lowland Virgin VR22 surface olivine MP P
VR22-5 IVV lowland Virgin VR22 surface olivine MP P
VR22-6 lowland Virgin VR22 surface olivine MBG BG
VR22-7 IVV lowland Virgin VR22 surface olivine MP P
VR22-8 IVV lowland Virgin VR22 surface olivine MP P
VR22-9 1VV possible lowland Virgin VR22 surface olivine MP P
VR22-10 1VV possible lowland Virgin VR22 surface olivine MP P
VR22-11 IVV lowland Virgin VR22 surface olivine MP P
VR22-12 IVV lowland Virgin VR22 surface olivine MP P
VR22-13 IVV lowland Virgin VR22 surface olivine MP P
VR22-14 lowland Virgin VR22 surface olivine MP P
VR23-1 IVV lowland Virgin VR23 surface sand TBG BG
VR23-2 lowland Virgin VR23 surface olivine MP P
VR23-3 G2 lowland Virgin VR23 surface olivine MP P
VR23-4 VR3 lowland Virgin VR23 surface sand TBG BG
VR23-5 1G lowland Virgin VR23 surface olivine MP P
VR23-6 1VV possible lowland Virgin VR23 surface sand TP P
VR24-1 1G lowland Virgin VR24 surface olivine MP P
VR24-2 lowland Virgin VR24 surface olivine MBG BG
VR24-3 lowland Virgin VR24 surface olivine MP P
VR24-4 IVV lowland Virgin VR24 surface olivine MBG BG
VR24-5 VR3 lowland Virgin VR24 surface sherd_sand RED R
VR26-1 IVV lowland Virgin VR26 surface olivine MP P
VR26-2 lowland Virgin VR26 surface sherd_olivine SVP P
VR27-1 lowland Virgin VR27 surface olivine MP P
VR27-2 G4 lowland Virgin VR27 surface olivine MP P
VR27-3 VR3 lowland Virgin VR27 surface sand TC C
VR27-4 IVV lowland Virgin VR27 surface sand TBG BG
VR27-5 1G lowland Virgin VR27 surface olivine MP P
VR27-6 1G lowland Virgin VR27 surface olivine MP P
VR27-7 lowland Virgin VR27 surface sand TBG BG
VR27-8 lowland Virgin VR27 surface sand TBG BG
VR27-9 lowland Virgin VR27 surface olivine MP P
VR27-10 lowland Virgin VR27 surface olivine MP P
VR27-11 lowland Virgin VR27 surface olivine MP P
VR27-12 1G lowland Virgin VR27 surface olivine MBG BG
VR27-13 lowland Virgin VR27 surface olivine MBG BG
VR27-14 lowland Virgin VR27 surface olivine MBG BG
VR27-15 IVV lowland Virgin VR27 surface olivine MP P
VR27-16 lowland Virgin VR27 surface olivine MP P
VR27-17 lowland Virgin VR27 surface olivine MP P
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VR27-18 1VV possible lowland Virgin VR27 surface olivine MP P
VR27-19 G4 lowland Virgin VR27 surface olivine MP P
VR27-20 1G lowland Virgin VR27 surface olivine MBG BG
VR27-21 IVV lowland Virgin VR27 surface olivine MP P
VR27-22 IVV lowland Virgin VR27 surface olivine MP P
VR27-23 IVV lowland Virgin VR27 surface olivine MP P
VR27-24 IVV lowland Virgin VR27 surface olivine MP P
VR27-25 IVV lowland Virgin VR27 surface olivine MP P
VR27-26 IVV lowland Virgin VR27 surface olivine MP P
VR28-1 lowland Virgin VR28 surface sand TP P
VR28-2 VR3 lowland Virgin VR28 surface sand TP P
VR28-3 VR1 lowland Virgin VR28 surface sand TBG BG
VR28-4 lowland Virgin VR28 surface olivine MP P
VR28-5 IVV lowland Virgin VR28 surface olivine MBG BG
VR28-6 IVV lowland Virgin VR28 surface olivine MBG BG
VR28-7 lowland Virgin VR28 surface olivine MBG BG
VR28-8 lowland Virgin VR28 surface olivine MP P
VR29-1 1VV possible lowland Virgin VR29 surface sand TP P
VR29-2 VR3 lowland Virgin VR29 surface sherd_andesite SJR BR
VR29-3 VR3 lowland Virgin VR29 surface sand TBG BG
VR29-4 lowland Virgin VR29 surface olivine MP P
VR29-5 lowland Virgin VR29 surface sherd_olivine SVP P
VR29-6 VR3 lowland Virgin VR29 surface sand TP P
VR29-7 VR1 lowland Virgin VR29 surface sand TBG BG
VR29-8 IVV lowland Virgin VR29 surface olivine MP P
VR29-9 IVV lowland Virgin VR29 surface olivine MPF P
VR29-10 lowland Virgin VR29 surface olivine MP P
VR30-1 IVV lowland Virgin VR30 surface olivine MP P
VR30-2 lowland Virgin VR30 surface olivine MP P
VR31-1 VR3 lowland Virgin VR31 surface sand TP P
VR32-1 lowland Virgin VR32 surface sherd_olivine SVP P
VR32-2 VR3 lowland Virgin VR32 surface sand TP P
VR32-3 VR1 lowland Virgin VR32 surface sand TBG BG
VR32-4 VR1 lowland Virgin VR32 surface sand TBG BG
VR32-6 lowland Virgin VR32 surface sherd_olivine SVP P
VR32-7 G1 lowland Virgin VR32 surface olivine MP P
VR32-8 lowland Virgin VR32 surface olivine MP P
VR32-9 VR1 lowland Virgin VR32 surface sand TBG BG
VR32-10 lowland Virgin VR32 surface sherd_olivine SVP P
VR32-11 IVV lowland Virgin VR32 surface sand TBG BG
VR32-12 IVV lowland Virgin VR32 surface sherd_sand TO RED
VR32-13 IVV lowland Virgin VR32 surface olivine MP P
VR33-1 VR1 lowland Virgin VR33 surface sand TBG BG
VR33-2 VR3 lowland Virgin VR33 surface sand TP P
VR33-3 lowland Virgin VR33 surface olivine MP P
VR33-4 lowland Virgin VR33 surface olivine MP P
VR33-5 IVV lowland Virgin VR33 surface olivine MP P
VR33-6 lowland Virgin VR33 surface olivine MP P
VR33-7 IVV lowland Virgin VR33 surface olivine MP P
VR33-8 1VV possible lowland Virgin VR33 surface olivine MP P
VR33-9 1VV possible lowland Virgin VR33 surface sand TP P
VR33-10 VR3 lowland Virgin VR33 surface sand TC C
VR33-11 lowland Virgin VR33 surface olivine MP P
VR33-12 lowland Virgin VR33 surface olivine MP P
VR33-13 IVV lowland Virgin VR33 surface olivine MP P
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VR33-14 1VV possible lowland Virgin VR33 surface olivine MP P
VR33-15 IVV lowland Virgin VR33 surface olivine MP P
VR33-16 lowland Virgin VR33 surface olivine MP P
VR33-17 IVV lowland Virgin VR33 surface olivine MP P
VR33-18 1G lowland Virgin VR33 surface olivine MP P
VR33-19 lowland Virgin VR33 surface olivine MP P
VR33-20 lowland Virgin VR33 surface olivine MP P
VR34-1 IVV lowland Virgin VR34 surface olivine MBG BG
VR34-2 VR1 lowland Virgin VR34 surface sand TBG BG
VR34-3 lowland Virgin VR34 surface sand TP P
VR34-4 lowland Virgin VR34 surface olivine MP P
VR34-5 IVV lowland Virgin VR34 surface olivine MP P
VR34-6 lowland Virgin VR34 surface olivine MP P
VR34-7 IVV lowland Virgin VR34 surface olivine MP P
VR34-8 lowland Virgin VR34 surface olivine MP P
VR34-9 lowland Virgin VR34 surface olivine MP P
VR34-10 IVV lowland Virgin VR34 surface olivine MBG BG
VR34-11 IVV lowland Virgin VR34 surface olivine MP P
VR34-12 lowland Virgin VR34 surface olivine MP P
VR34-13 VR3 lowland Virgin VR34 surface sand TP P
VR34-14 VR1 lowland Virgin VR34 surface sand TP P
VR34-15 IVV lowland Virgin VR34 surface olivine MBG BG
VR34-16 IVV lowland Virgin VR34 surface olivine MP P
VR35-1 IVV lowland Virgin VR35 surface olivine MP P
VR35-2 lowland Virgin VR35 surface olivine MBG BG
VR35-3 lowland Virgin VR35 surface sand TP P
VR35-4 G4 lowland Virgin VR35 surface olivine MP P
VR35-5 G4 lowland Virgin VR35 surface olivine MP P
VR35-6 1G lowland Virgin VR35 surface olivine MBG BG
VR35-7 1G lowland Virgin VR35 surface olivine MBG BG
VR35-8 IVV lowland Virgin VR35 surface olivine MP P
VR35-9 lowland Virgin VR35 surface olivine MP P
VR35-10 IVV lowland Virgin VR35 surface olivine MP P
VR35-11 IVV lowland Virgin VR35 surface sand TBG BG
VR35-12 lowland Virgin VR35 surface sand TBG BG
VR35-13 IVV lowland Virgin VR35 surface sand TBG BG
VR35-14 IVV lowland Virgin VR35 surface sand TBG BG
VR35-15 IVV lowland Virgin VR35 surface olivine MBG BG
VR35-16 lowland Virgin VR35 surface olivine MBG BG
VR35-17 G4 lowland Virgin VR35 surface olivine MBG BG
VR35-18 lowland Virgin VR35 surface olivine MBG BG
VR36-1 lowland Virgin VR36 surface olivine MP P
VR36-2 lowland Virgin VR36 surface olivine MPF P
VR36-3 IVV lowland Virgin VR36 surface olivine MP P
VR36-4 lowland Virgin VR36 surface sherd_olivine SVP P
VR36-5 lowland Virgin VR36 surface olivine MP P
VR36-6 lowland Virgin VR36 surface olivine MP P
VR36-7 lowland Virgin VR36 surface olivine MP P
VR36-8 IVV lowland Virgin VR36 surface olivine MP P
VR36-9 lowland Virgin VR36 surface olivine MP P
VR36-10 lowland Virgin VR36 surface olivine MP P
VR36-11 lowland Virgin VR36 surface olivine MBG BG
VR36-12 lowland Virgin VR36 surface olivine MP P
VR36-13 IVV lowland Virgin VR36 surface olivine MP P
VR37-1 IVV lowland Virgin VR37 surface sherd_sand TO BR
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VR37-2 1VV possible lowland Virgin VR37 surface sherd_sand TO BR
VR37-3 IVV lowland Virgin VR37 surface olivine MC C
VR38-1 IVV lowland Virgin VR38 surface olivine MP P
VR38-2 lowland Virgin VR38 surface olivine MP P
VR38-3 IVV lowland Virgin VR38 surface olivine MC c
VR38-4 VR3 lowland Virgin VR38 surface sand TP P
VR38-5 G2 lowland Virgin VR38 surface sand TP P
VR38-6 1G lowland Virgin VR38 surface olivine MP P
VR38-7 VR1 lowland Virgin VR38 surface sand TBG BG
VR38-8 IVV lowland Virgin VR38 surface olivine MP P
VR39-1 1VV possible lowland Virgin VR39 surface olivine MP P
VR39-2 IVV lowland Virgin VR39 surface sand TP P
VR39-3 lowland Virgin VR39 surface olivine MP P
VR39-4 IVV lowland Virgin VR39 surface olivine MBG BG
VR39-5 IVV lowland Virgin VR39 surface olivine MBG BG
VR40-1 lowland Virgin VR40 surface olivine MP P
VR40-2 lowland Virgin VR40 surface sherd_olivine SVP P
VR40-3 lowland Virgin VR40 surface sherd_olivine SVP P
VR40-4 1VV possible lowland Virgin VR40 surface olivine MBG BG
VR40-5 IVV lowland Virgin VR40 surface olivine MBG BG
VR40-6 lowland Virgin VR40 surface sherd_olivine SVP P
VR40-7 IVV lowland Virgin VR40 surface olivine MP P
VR40-8 IVV lowland Virgin VR40 surface olivine MP P
VR40-9 1VV possible lowland Virgin VR40 surface olivine MBG BG
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MT6C MT vol MT90PC MT prepared sec 
MT6PC MT prepared vol MT91C MT vol
MT7C MT vol G2 MT91PC MT prepared vol
MT7PC MT prepared vol G1G, G2 MT92C MT sec G2
MT17C MT sec G2 MT93C MT sec 
MT17PC MT prepared sec MT93PC MT prepared sec
MT22C MT sec G2 MT95C MT sed
MT22PC MT prepared sec G2 MT95PC MT prepared sed G2
MT23C MT sec MT97PC MT prepared vol
MT23PC MT prepared sec MT98C MT vol
MT24C MT sec MT98PC MT prepared vol G2
MT24PC MT prepared sec MT99C MT vol G2
MT25C MT sec MT99PC MT vol
MT25PC MT prepared sec MT100C MT sed
MT28C MT sec G2 MT100PC MT prepared sed
MT28PC MT prepared sec MT101C MT sed
MT33C MT vol MT101PC MT prepared sed
MT33PC MT prepared vol MT102C MT sed
MT37C MT sed MT102PC MT prepared sed
MT37PC MT prepared sed MT103C MT sed
MT44C MT vol MT103PC MT prepared sed
MT44PC MT prepared vol MT104C MT sed
MT47C MT vol MT104PC MT prepared sed
MT47PC MT prepared vol MT105C MT sec G2
MT49C MT vol MT105PC MT prepared sec G1G, G2
MT49PC MT prepared vol MT106C MT sec 
MT52C MT sed MT106PC MT prepared sec G2
MT53C MT sec MT109C MT sed
MT53PC MT prepared sec MT109PC MT prepared sed
MT63C MT sec G1G MT110C MT sed
MT63PC MT prepared sec MT110PC MT prepared sed
MT71C MT sec G2 MT111C MT sed
MT71PC MT prepared sec MT111PC MT prepared sed
MT72C MT vol G2 MT112C MT sed
MT72PC MT prepared vol MT112PC MT prepared sed
MT73C MT vol MT115C MT sed
MT73PC MT prepared vol MT116C MT vol
MT74C MT vol MT116PC MT prepared vol G2
MT74PC MT prepared vol MT117C MT sed
MT75C MT vol MT117PC MT prepared sed
MT75PC MT prepared vol MT118PC MT prepared sec 
MT80C MT vol MT119C MT sed
MT80PC MT prepared vol MT119PC MT prepared sed
MT81C MT sed MT123C MT sed
MT81PC MT prepared sed MT123PC MT prepared sed
MT82C MT vol MT124C MT sed
MT86C MT sed MT124PC MT prepared sed
MT86C MT sed MT125C MT sed
MT87C MT sed MT126PC MT prepared sed
MT87PC MT prepared sed MT127C MT sed
MT88C MT vol G2 MT127PC MT prepared sed
MT88PC MT prepared vol MT131PC MT prepared sed
MT89C MT vol MT132C MT sed
MT89PC MT prepared vol MT134C MT sed
MT90C MT sec MT134PC MT prepared sed
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ID Region Note Clay type Group ID Region Note Clay type Group
MT135C MT sed VR30C VR sec
MT136PC MT prepared sed VR30PC VR prepared sec
MT138C MT sed VR31C VR sec
MT138PC MT prepared sed VR31PC VR prepared sec
MT139C MT sed VR34C VR sec
MT139PC MT prepared sed VR34PC VR prepared sec
MT141C MT sed VR35C VR sed
MT141PC MT prepared sed VR35PC VR prepared sed
MT142C MT sed VR37PC VR prepared sec
MT142PC MT prepared sed CH2-2COMP other sec
MT144PC MT prepared sed CH2C other sec
MT146C MT vol CH2PC other prepared sec
MT146PC MT prepared vol JC2PC other prepared sed
MT147C MT sed JC3C other sed
MT147PC MT prepared sed JO1C other sed
MT148C MT vol G2 JO1PC other prepared sed
MT148PC MT prepared vol JO2C other sed
MT149PC MT prepared sed JO3PC other prepared sed
MT150PC MT prepared sed MP1C other
MT151PC MT prepared sed MP1PC other prepared
MT181C MT QC10C other sed
MT197C MT QC10PC other prepared sed
VR2C VR sed QK1C other sed
VR2PC VR prepared sed QK1PC other sed
VR3C VR sed SV9C SV vol G2
VR3PC VR prepared sed SV9PC SV vol
VR4C VR sed TW40C TW
VR4PC VR prepared sed TW40PC TW
VR6C VR sec TWP1C TW sec G2
VR6PC VR prepared sec TWP1PC TW sec
VR7C VR sed
VR7PC VR prepared sed
VR9PC VR prepared sec
VR10C VR sed
VR10PC VR prepared sed
VR11PC VR prepared sed
VR13C VR sed
VR14C VR sed
VR14PC VR prepared sed G1VV
VR17C VR sed
VR18C VR sed
VR18PC VR prepared sed
VR19C VR sed
VR19PC VR prepared sed
VR22C VR sed G1VV
VR24C VR sec
VR24PC VR prepared sec
VR25C VR sec
VR25PC VR prepared sec
VR26C VR sec
VR26PC VR prepared sec
VR28PC VR prepared sec
VR29C VR sec G1VV
VR29PC VR prepared sec
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APPENDIX B: OSL DATING DATA 
 
 
 
Table B1.   The equivalent doses used for the OSL dating. 
 
Table B2.   Dose rate information for OSL dating. 
 
Table B3.   Locational information, thickness and water absorption of the sample for 

OSL dating. 
 
Table B4.   Summary of OSL dates. 
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Appendix B: Table B1.  The equivalent doses used for the OSL dating. 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

G2 LB0097 204-13 A.D.490 ± 110 1 5.07 ± 0.21 Single aliquot 
1VM LB0098 30-36 A.D.1091 ± 321 summary 2.88 ± 0.97 Central age (47.4) 
    1 4.65 ± 0.28  
    2 1.79 ± 0.11  
G2 LB0099 136-27 A.D.1656 ± 32 summary 1.16 ± 0.07 Central age (8.1)  
    1 1.07 ± 0.01  
    2 1.26 ± 0.01  
1G LB0101 131-9 A.D.739 ± 125 summary 4.18 ± 0.08 Central age (2.3) 
    1 4.08 ± 0.04  
    2 4.30 ± 0.06  
G3 LB0106 30-80 A.D.1255 ± 80 summary 2.67 ± 0.15 Common age (NA) 
    1 2.67 ± 0.20  
    2 2.68 ± 0.22  
G3 LB0107 30-81 A.D.1472 ± 84 summary 1.89 ± 0.28 Central age (19.4) 
    1 1.56 ± 0.07  
    2 2.38 ± 0.24  
G3 LB0108 30-82 A.D.1264 ± 45 summary 2.39 ± 0.08 Common age (NA) 
    1 2.39 ± 0.08  
    2 2.11 ± 0.66  
G2 LB0119 71-39 A.D.587 ± 85 1 3.14 ± 0.13 Single aliquot 
G2 LB0120 71-40 A.D.895 ± 193 summary 2.20 ± 0.37 Central age (22.7) 
    1 1.73 ± 0.13  
    2 2.77 ± 0.13  
1G LB0123 30-88 A.D.804 ± 140 summary 2.53 ± 0.24 Central age (15.1) 
    1 2.68 ± 0.19  
    2 3.00 ± 0.21  
    3 2.01 ± 0.15  
1G LB0126 204-28 A.D.1683 ± 93 1 0.63 ± 0.18 Single aliquot 
G2 LB0129 131-14 A.D.476 ± 115 1 4.58 ± 0.25 Single aliquot 
G2 LB0130 131-45 A.D.1085 ± 80 summary 2.69 ± 0.18 Central age (13.1) 
    1 2.95 ± 0.09  
    2 3.10 ± 0.07  
    4 2.57 ± 0.11  
    3 2.20 ± 0.07  
G2 LB0131 136-16 A.D.1730 ± 17 summary 0.89 ± 0.01 Common age (NA) 
    1 0.96 ± 0.08  
    2 0.89 ± 0.01  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

G2 LB0133 204-4 A.D.1581 ± 33 summary 1.35 ± 0.06 Central age (4.6) 
    1 1.45 ± 0.09  
    2 1.25 ± 0.02  
G2 LB0135 30-17 A.D.1984 ± 10 1 0.61 ± 0.01 Single aliquot 
G2 LB0136 30-7 A.D.493 ± 137 summary 5.03 ± 0.36 Central age (8.7) 
    1 4.60 ± 0.18  
    2 5.66 ± 0.38  
G2 LB0137 14-140 A.D.590 ± 203 summary 4.33 ± 0.57 Central age (18.4) 
    1 3.58 ± 0.14  
    2 5.20 ± 0.05  
1G LB0138 14-70 A.D.1313 ± 304 summary 2.84 ± 1.22 Central age (60.1) 
    1 1.55 ± 0.14  
    2 5.18 ± 0.28  
1G LB0139 131-96 A.D.1350 ± 64 summary 2.27 ± 0.08 Common age (NA) 
    1 2.74 ± 1.57  
    2 2.27 ± 0.08  
1G LB0140 30-10 A.D.769 ± 199 1 3.71 ± 0.50 Single aliquot 
1G LB0141 136-18 A.D.436 ± 127 summary 4.49 ± 0.05 Common age (NA) 
    1 4.83 ± 0.21  
    2 4.47 ± 0.05  
1G LB0144 14-106 A.D.1309 ± 60 summary 2.15 ± 0.02 Common age (NA) 
    1 2.10 ± 0.08  
    2 2.15 ± 0.02  
1G LB0145 14-120 A.D.1375 ± 62 summary 1.86 ± 0.08 Common age (NA) 
    1 1.92 ± 0.13  
    2 1.83 ± 0.10  
1G LB0146 30-40 A.D.205 ± 205 1 4.07 ± 0.34 single aliquot 
1G LB0148 136-7 A.D.1655 ± 28 summary 1.03 ± 0.01 Common age (NA) 
    1 1.05 ± 0.05  
    2 1.03 ± 0.01  
1VM LB0149 136-34 A.D.1264 ± 61 summary 2.04 ± 0.07 Common age (NA) 
    1 1.76 ± 0.16  
    2 2.09 ± 0.08  
G2 LB0258 136-9 A.D.1592 ± 30 summary 1.14 ± 0.05 Central age  (9.2) 
    1 1.18 ± 0.01  
    2 1.01 ± 0.01  
    4 1.03 ± 0.03  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

G2 LB0258 136-9  3 1.26 ± 0.02  
    6 1.26 ± 0.03  
G2 LB0260 136-26 A.D.833 ± 81 summary 3.73 ± 0.13 Common age (NA) 
    1 3.62 ± 0.17  
    2 3.84 ± 0.18  
1G LB0262 30-16 A.D.1410 ± 54 summary 1.93 ± 0.01 Common age (NA) 
    1 1.93 ± 0.01  
    3 1.93 ± 0.01  
    4 1.91 ± 0.02  
    5 1.90 ± 0.02  
1G LB0263 30-37 A.D.1177 ± 123 summary 2.33 ± 0.30 Central age (12.9) 
    1 2.79 ± 0.06  
    2 1.94 ± 0.03  
1G LB0264 14-6 A.D.1312 ± 104 summary 2.49 ± 0.27 Central age (10.7) 
    1 3.13 ± 0.03  
    2 2.47 ± 0.02  
    3 1.99 ± 0.04  
G2 LB0268 14-83 A.D.1002 ± 52 summary 3.00 ± 0.02 Common age (NA) 
    1 2.99 ± 0.02  
    2 3.21 ± 0.10  
G2 LB0270 14-116 A.D.1282 ± 45 summary 2.50 ± 0.02 Central age (0.8) 
    1 2.48 ± 0.01  
    2 2.54 ± 0.02  
G2 LB0271 14-152 A.D.1067 ± 85 summary 3.36 ± 0.12 Central age (11.3) 
    1 2.87 ± 0.02  
    2 2.77 ± 0.03  
    3 3.40 ± 0.03  
    6 3.52 ± 0.03  
    7 3.19 ± 0.03  
    8 3.40 ± 0.03  
    9 3.35 ± 0.02  
    10 4.28 ± 0.02  
    11 3.56 ± 0.04  
    12 3.43 ± 0.04  
G2 LB0275 131-53 A.D.830 ± 73 summary 2.98 ± 0.04 Central age (1.3) 
    2 3.02 ± 0.02  
    3 2.91 ± 0.04  
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Appendix B: Table B1. The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

1G LB0276 131-74 A.D.599 ± 123 summary 4.32 ± 0.15 Central (3.4) 
    1 4.73 ± 0.07  
    2 4.37 ± 0.08  
    3 4.25 ± 0.08  
    4 3.85 ± 0.15  
1G LB0279 204-2 A.D.977 ± 109 summary 3.41 ± 0.15 Central age  (4.5) 
    1 3.67 ± 0.02  
    2 3.08 ± 0.01  
    3 3.10 ± 0.01  
    4 4.04 ± 0.02  
    5 3.49 ± 0.02  
    6 2.84 ± 0.01  
    7 3.81 ± 0.02  
1VM LB0586 214-8 A.D.1465 ± 43 1 1.65 ± 0.05 Single aliquot 
G2 LB0588 214-5 A.D.1049 ± 53 summary 2.95 ± 0.09 Central age (5.4) 
    1 2.98 ± 0.03  
    2 2.75 ± 0.02  
    3 3.15 ± 0.05  
G2 LB0599 30-260 A.D.1461 ± 52 summary 2.13 ± 0.04 Central age  (1.7) 
    1 2.37 ± 0.01  
    2 2.58 ± 0.01  
    3 2.37 ± 0.01  
    4 2.46 ± 0.01  
    5 2.33 ± 0.01  
    6 2.25 ± 0.02  
    7 2.11 ± 0.01  
    8 2.22 ± 0.01  
    9 1.99 ± 0.01  
    10 2.06 ± 0.01  
    11 2.18 ± 0.01  
1G LB0600 30-261 A.D.1130 ± 96 summary 2.54 ± 0.17 Central age  (16.9) 
    1 2.71 ± 0.12  
    2 3.42 ± 0.18  
    3 2.76 ± 0.14  
    4 2.27 ± 0.11  
    5 2.17 ± 0.07  
    6 2.83 ± 0.16  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

1G LB0600 30-261  8 1.97 ± 0.07  
1G LB0601 30-262 A.D.1250 ± 65 summary 2.14 ± 0.09 Central age (4.2) 
    1 2.32 ± 0.02  
    2 2.14 ± 0.01  
    3 2.26 ± 0.02  
    4 1.87 ± 0.01  
G2 LB0616 30-158 A.D.1132 ± 63 summary 2.13 ± 0.06 Central age (7.1) 
    1 2.24 ± 0.04  
    2 2.05 ± 0.03  
    3 2.10 ± 0.05  
    4 2.10 ± 0.05  
    5 2.22 ± 0.03  
    6 1.86 ± 0.03  
    7 2.47 ± 0.08  
    8 2.12 ± 0.04  
1G LB0624 VR21-5 A.D.509 ± 151 summary 4.50 ± 0.19 Central age (15.5) 
    1 4.63 ± 0.19  
    2 3.93 ± 0.15  
    3 3.87 ± 0.13  
    4 4.92 ± 0.22  
    5 3.73 ± 0.15  
    6 4.57 ± 0.21  
    7 4.22 ± 0.16  
    8 5.82 ± 0.18  
    9 4.71 ± 0.14  
    10 5.68 ± 0.18  
    11 4.89 ± 0.19  
    12 4.64 ± 0.16  
    13 4.15 ± 0.18  
    14 5.40 ± 0.19  
    15 3.18 ± 0.14  
1G LB0641 131-307 A.D.1236 ± 90 summary 2.22 ± 0.17 Central age (12.6) 
    1 1.91 ± 0.03  
    2 2.59 ± 0.03  
    4 2.23 ± 0.12  
1VV LB0650 30-173 A.D.1253 ± 59 summary 2.48 ± 0.02 Central age (2.2) 
    3 2.53 ± 0.01  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

1VV LB0650 30-173  4 2.40 ± 0.01  
    5 2.49 ± 0.02  
    6 2.42 ± 0.02  
    7 2.13 ± 0.26  
    8 2.64 ± 0.08  
    11 2.51 ± 0.06  
    12 2.49 ± 0.07  
1VV LB0655 131-236 A.D.1275 ± 63 summary 3.84 ± 0.17 Central age (12.8) 
    1 3.98 ± 0.03  
    2 3.83 ± 0.04  
    3 4.47 ± 0.05  
    4 4.40 ± 0.04  
    5 3.34 ± 0.04  
    6 3.37 ± 0.04  
    7 3.50 ± 0.06  
    8 4.67 ± 0.07  
    11 3.26 ± 0.15  
G3 LB0661 204-41 A.D.798 ± 86 summary 3.54 ± 0.13 Central age (9.1) 
    1 3.41 ± 0.07  
    2 3.76 ± 0.08  
    3 3.89 ± 0.07  
    4 3.20 ± 0.10  
    5 3.74 ± 0.12  
    8 3.83 ± 0.07  
    9 2.90 ± 0.14  
1VM LB0673 30-166 A.D.1146 ± 74 summary 1.97 ± 0.08 Central age (9.5) 
    1 1.82 ± 0.07  
    2 1.90 ± 0.03  
    3 2.38 ± 0.11  
    4 1.74 ± 0.05  
    5 1.95 ± 0.08  
    6 2.24 ± 0.10  
    8 1.89 ± 0.08  
G2 LB0674 VR14-1 A.D.969 ± 57 summary 3.17 ± 0.06 Central age (5.2) 
    1 3.30 ± 0.03  
    2 2.91 ± 0.02  
    4 3.12 ± 0.03  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

G2 LB0674 VR14-1  5 3.12 ± 0.06  
    6 3.22 ± 0.04  
    7 3.48 ± 0.03  
    8 3.07 ± 0.04  
1G LB0676 VR7-11 A.D.439 ± 169 summary 4.53 ± 0.32 Central age (15.1) 
    1 3.42 ± 0.08  
    2 4.46 ± 0.25  
    3 5.09 ± 0.21  
    4 4.96 ± 0.39  
    5 5.07 ± 0.22  
1VV LB0679 VR17-2 A.D.1478 ± 93 summary 3.10 ± 0.40 Central age (39.9) 
    2 5.17 ± 0.09  
    3 5.01 ± 1.54  
    4 2.85 ± 0.35  
    5 2.30 ± 0.15  
    7 1.43 ± 0.62  
    8 2.93 ± 0.16  
    10 4.06 ± 0.41  
    11 4.35 ± 0.55  
    12 4.87 ± 0.31  
    13 2.18 ± 0.25  
    14 1.47 ± 0.13  
G3 LB0868 71-48 A.D.606 ± 83 summary 3.98 ± 0.15 Central age (8.4) 
    1 4.47 ± 0.10  
    2 4.14 ± 0.07  
    3 3.45 ± 0.07  
    6 3.86 ± 0.11  
    5 4.06 ± 0.08  
G3 LB0870 71-57 A.D.1467 ± 37 summary 1.33 ± 0.07 Central age (10.1) 
    1 1.25 ± 0.09  
    2 1.51 ± 0.09  
    3 1.07 ± 0.09  
    4 1.18 ± 0.11  
    5 1.48 ± 0.06  
    11 1.40 ± 0.07  
1G LB0875 VR24-1 A.D.849 ± 118 summary 2.84 ± 0.22 Central age (18.9) 
    1 2.81 ± 0.25  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

1G LB0875 VR24-1  2 3.83 ± 0.21  
    3 3.30 ± 0.35  
    4 2.55 ± 0.35  
    5 3.31 ± 0.29  
    6 2.14 ± 0.16  
    7 2.29 ± 0.18  
1VM LB0878 30-168 A.D.1141 ± 70 summary 2.03 ± 0.04 Central age (3.8) 
    1 2.12 ± 0.03  
    2 2.04 ± 0.03  
    3 1.91 ± 0.03  
    5 2.12 ± 0.04  
1VM LB0878 30-168  6 1.98 ± 0.03  
VR1 LB1071 131-314 A.D.1080 ± 66 summary 4.04 ± 0.19 Central age  (13.2) 
    1 4.26 ± 0.21  
    2 4.49 ± 0.10  
    3 3.53 ± 0.10  
    4 3.68 ± 0.10  
    5 3.99 ± 0.14  
    6 3.83 ± 0.11  
    7 3.52 ± 0.08  
    8 5.41 ± 0.19  
VR1 LB1072 VR32-3 A.D.1099 ± 78 summary 4.69 ± 0.29 Central age (13.6) 
    1 4.98 ± 0.07  
    2 3.98 ± 0.08  
    3 4.37 ± 0.13  
    4 6.07 ± 0.31  
    5 4.44 ± 0.11  
G4 LB1073 VR27-19 A.D.924 ± 129 summary 1.85 ± 0.16 Central age (19.6) 
    1 1.58 ± 0.02  
    2 1.71 ± 0.02  
    3 1.51 ± 0.02  
    4 2.58 ± 0.05  
    5 2.06 ± 0.04  
VR3 LB1074 VR33-2 A.D.1282 ± 52 summary 2.54 ± 0.08 Central age (8.7) 
    1 2.48 ± 0.02  
    4 2.32 ± 0.03  
    5 2.32 ± 0.02  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
  
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

VR3 LB1074 VR33-2  6 2.46 ± 0.03  
    7 2.99 ± 0.03  
    8 2.65 ± 0.02  
    9 2.36 ± 0.02  
    10 2.80 ± 0.03  
G4 LB1075 VR21-16 A.D.822 ± 170 summary 2.91 ± 0.33 Common age (NA) 
    3 2.17 ± 0.48  
    5 3.11 ± 0.81  
    7 2.83 ± 0.54  
    9 4.14 ± 1.02  
1G LB1076 VR27-12 A.D.1222 ± 79 summary 2.10 ± 0.07 Central age (10.9) 
    2 2.09 ± 0.02  
    3 2.44 ± 0.03  
    5 1.70 ± 0.02  
    6 2.29 ± 0.07  
    7 2.05 ± 0.05  
    8 2.37 ± 0.06  
    9 1.82 ± 0.05  
    10 2.09 ± 0.04  
    13 1.97 ± 0.08  
    14 2.38 ± 0.06  
    15 2.06 ± 0.10  
1G LB1077 VR35-6 A.D.388 ± 132 summary 4.78 ± 0.08 Central age (3.5) 
    2 4.65 ± 0.08  
    3 4.77 ± 0.08  
    4 5.04 ± 0.13  
    5 4.80 ± 0.14  
    6 5.16 ± 0.15  
    7 4.75 ± 0.27  
    8 4.70 ± 0.11  
    9 4.24 ± 0.18  
1G LB1078 VR22-4 A.D.521 ± 172 2 3.72 ± 0.34 Single aliquot 
1G LB1079 VR32-7 A.D.553 ± 319 summary 3.63 ± 0.73 Central age (53.1) 
    1 5.96 ± 0.68  
    2 6.68 ± 1.32  
    3 5.50 ± 0.51  
    4 3.51 ± 0.56  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

1G LB1079 VR32-7  5 0.35 ± 0.29  
    6 1.39 ± 0.20  
    7 3.86 ± 0.28  
    8 4.11 ± 0.46  
1G LB1080 VR27-6 A.D.1086 ± 101 1 3.06 ± 0.12 Single aliquot 
VR3 LB1084 14-297 A.D.1299 ± 45 summary 3.06 ± 0.09 Central age (7.7) 
    1 2.93 ± 0.03  
    2 3.06 ± 0.04  
    3 2.92 ± 0.03  
    5 2.99 ± 0.05  
    6 3.70 ± 0.14  
    8 2.71 ± 0.07  
    9 3.01 ± 0.06  
    10 3.31 ± 0.05  
VR3 LB1086 VR7-3 A.D.1073 ± 73 summary 2.69 ± 0.14 Central age (4.7) 
    1 2.85 ± 0.10  
    2 2.63 ± 0.35  
    3 2.92 ± 1.62  
    4 2.16 ± 0.30  
    6 1.21 ± 0.50  
VR3 LB1087 VR23-4 A.D.602 ± 121 summary 4.66 ± 0.22 Central age (15.4) 
    1 4.15 ± 0.12  
    2 5.70 ± 0.15  
    3 4.47 ± 0.12  
    4 4.05 ± 0.11  
    5 5.47 ± 0.12  
    6 4.45 ± 0.16  
    7 5.57 ± 0.11  
    8 4.26 ± 0.13  
    9 3.51 ± 0.12  
    10 5.76 ± 0.15  
    11 4.43 ± 0.10  
VR3 LB1090 VR28-2 A.D.1156 ± 95 summary 2.20 ± 0.22 Central age (25.4) 
    1 1.51 ± 0.03  
    2 1.84 ± 0.04  
    4 2.28 ± 0.06  
    3 3.41 ± 0.07  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

VR3 LB1090 VR28-2  5 2.32 ± 0.09  
    6 2.66 ± 0.08  
    7 1.74 ± 0.34  
VR1 LB1092 VR21-11 A.D.790 ± 238 summary 6.53 ± 1.22 Central age (23.5) 
    3 5.09 ± 0.52  
    4 8.65 ± 1.20  
VR1 LB1093 30-266 A.D.1494 ± 62 summary 2.81 ± 0.28 Common age (NA) 
    1 3.18 ± 0.70  
    4 3.34 ± 0.66  
    5 2.46 ± 0.34  
VR1 LB1094 30-77 A.D.1402 ± 81 2 4.14 ± 0.50 Single aliquot 
VR1 LB1096 VR38-7 A.D.1238 ± 54 summary 3.89 ± 0.10 Central age (8.9) 
    1 4.28 ± 0.10  
    2 4.09 ± 0.12  
    3 3.44 ± 0.08  
    5 3.69 ± 0.14  
    7 3.83 ± 0.15  
    8 4.09 ± 0.21  
    9 4.05 ± 0.23  
    10 3.41 ± 0.12  
    11 3.89 ± 0.17  
    12 3.52 ± 0.23  
    13 4.65 ± 0.11  
    14 3.64 ± 0.18  
    15 3.61 ± 0.12  
    16 4.44 ± 0.18  
VR1 LB1097 30-201 A.D.1529 ± 48 summary 2.62 ± 0.21 Common age (NA) 
    1 2.85 ± 0.30  
    2 2.39 ± 0.50  
    3 2.31 ± 0.35  
VR1 LB1098 VR17-5 A.D.1188 ± 107 summary 4.90 ± 0.55 Central age (28.6) 
    1 2.80 ± 0.11  
    2 5.39 ± 0.15  
    3 4.64 ± 0.47  
    5 7.97 ± 0.46  
    6 4.59 ± 0.42  
    7 4.91 ± 0.21  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

VR1 LB1098 VR17-5  8 5.45 ± 0.46  
G4 LB1099 71-64 A.D.468 ± 148 summary 4.28 ± 0.14 Central age (9.6) 
    1 4.35 ± 0.10  
    2 4.36 ± 0.14  
    3 4.38 ± 0.14  
    4 4.24 ± 0.26  
    5 3.77 ± 0.21  
    6 4.26 ± 0.25  
    8 5.02 ± 0.19  
    9 5.07 ± 0.33  
    10 3.47 ± 0.15  
    11 4.08 ± 0.24  
G4 LB1100 VR21-22 B.C.95 ± 207 summary 4.48 ± 0.23 Central age (14.9) 
    1 5.67 ± 0.17  
    2 4.49 ± 0.20  
    3 4.15 ± 0.16  
    4 4.37 ± 0.12  
    5 4.75 ± 0.16  
    6 4.44 ± 0.17  
    8 3.13 ± 0.12  
    9 5.12 ± 0.12  
    10 4.57 ± 0.14  
G4 LB1101 VR17-8 A.D.1180 ± 90 summary 1.74 ± 0.08 Central age  (15.9) 
    1 1.91 ± 0.04  
    2 1.54 ± 0.03  
    3 1.89 ± 0.04  
    4 1.46 ± 0.03  
    5 1.96 ± 0.06  
    6 1.90 ± 0.02  
    7 1.40 ± 0.03  
    8 1.72 ± 0.04  
    9 1.59 ± 0.05  
    10 1.64 ± 0.06  
    11 2.61 ± 0.09  
    12 1.59 ± 0.05  
G4 LB1102 VR7-5 B.C.373 ± 206 summary 4.08 ± 0.10 Central age (6.9) 
    1 3.54 ± 0.05  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

G4 LB1102 VR 7-5  2 4.45 ± 0.09  
    4 4.15 ± 0.08  
G4 LB1102 VR7-5  5 4.31 ± 0.13  
    6 4.05 ± 0.14  
    7 3.88 ± 0.15  
    8 4.39 ± 0.15  
    9 4.23 ± 0.15  
    10 3.83 ± 0.17  
G4 LB1103 VR15-2 A.D.1263 ± 80 summary 1.95 ± 0.04 Central age (5.0) 
    1 2.03 ± 0.02  
    2 1.98 ± 0.02  
    3 1.98 ± 0.02  
    4 1.99 ± 0.03  
    5 1.99 ± 0.04  
    6 1.72 ± 0.04  
G4 LB1105 VR35-17 A.D.1279 ± 74 summary 1.82 ± 0.07 Central age (10.5) 
    1 1.60 ± 0.02  
    2 1.99 ± 0.02  
    3 1.84 ± 0.03  
    4 1.57 ± 0.02  
    5 2.09 ± 0.03  
    6 2.01 ± 0.02  
    7 1.71 ± 0.02  
G4 LB1106 VR35-4 A.D.229 ± 183 summary 4.41 ± 0.14 Central age (5.0) 
    4 4.40 ± 0.15  
    6 3.92 ± 0.19  
    8 4.49 ± 0.14  
    9 4.80 ± 0.20  
G4 LB1107 VR21-29 A.D.1154 ± 110 summary 2.17 ± 0.18 Central age (9.1) 
    2 2.59 ± 0.29  
    7 1.99 ± 0.10  
1VM LB1109 30-151 A.D.1304 ± 109 summary 2.00 ± 0.26 Central age (21.2) 
    1 1.50 ± 0.09  
    2 2.11 ± 0.16  
    3 2.56 ± 0.19  
1VM LB1111 136-76 A.D.1815 ± 32 summary 0.49 ± 0.07 Common age (NA) 
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

1VM LB1111 136-76  1 0.45 ± 0.08  
    3 0.56 ± 0.18  
    4 0.58 ± 0.19  
1VM LB1112 136-271 A.D.941 ± 109 summary 3.03 ± 0.19 Central age (6.3) 
    1 3.22 ± 0.30  
    2 2.72 ± 0.22  
    3 2.86 ± 0.48  
    4 2.04 ± 0.67  
    6 4.16 ± 0.68  
1VM LB1113 131-168 A.D.696 ± 105 1 3.34 ± 0.07 Single aliquot 
1VM LB1114 TW143 A.D.569 ± 149 summary 3.52 ± 0.23 Common age (NA) 
    1 3.28 ± 0.46  
    2 2.92 ± 0.41  
    3 4.15 ± 1.11  
    4 2.87 ± 0.77  
    5 4.59 ± 1.26  
    6 3.35 ± 0.96  
    7 5.54 ± 1.45  
    8 3.99 ± 0.68  
    9 3.52 ± 0.69  
1VM LB1115 TW101 A.D.1275 ± 82 summary 1.84 ± 0.14 Central age (9.6) 
    2 1.89 ± 0.17  
    4 2.23 ± 0.26  
    5 1.86 ± 0.23  
    6 1.34 ± 0.20  
G3 LB1117 71-58 A.D.748 ± 90 summary 3.36 ± 0.16 Central age (11.5) 
    1 3.00 ± 0.02  
    2 3.16 ± 0.02  
    3 3.83 ± 0.02  
    4 3.78 ± 0.02  
    5 3.66 ± 0.02  
    7 2.84 ± 0.11  
G3 LB1118 71-56 A.D.1055 ± 94 summary 3.02 ± 0.19 Central age (19.6) 
    1 2.99 ± 0.13  
    2 4.13 ± 0.23  
    3 3.72 ± 0.17  
    4 2.91 ± 0.11  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

G3 LB1118 71-56  5 1.96 ± 0.08  
    6 2.45 ± 0.09  
    7 2.86 ± 0.18  
    8 3.36 ± 0.26  
    9 3.16 ± 0.27  
    10 3.37 ± 0.12  
G3 LB1119 71-47 A.D.758 ± 110 summary 3.38 ± 0.10 Central age (10.2) 
    1 3.20 ± 0.14  
    2 2.68 ± 0.07  
    3 3.84 ± 0.19  
    4 3.44 ± 0.08  
    5 3.39 ± 0.10  
    6 3.04 ± 0.10  
    7 3.36 ± 0.11  
    8 4.04 ± 0.13  
    9 3.14 ± 0.14  
    10 3.64 ± 0.11  
    11 3.30 ± 0.13  
    12 3.70 ± 0.12  
1VV LB1120 VR39-2 A.D.1094 ± 74 summary 2.45 ± 0.11 Central age (12.2) 
    2 2.56 ± 0.01  
    4 2.26 ± 0.01  
    4 2.94 ± 0.02  
    6 2.12 ± 0.02  
    7 2.59 ± 0.10  
    8 2.84 ± 0.09  
    12 2.02+-/0.05  
    13 2.45 ± 0.05  
1VV LB1121 VR26-1 A.D.866 ± 108 summary 3.13 ± 0.11 Central age (6.3) 
    2 3.44 ± 0.20  
    4 2.89 ± 0.09  
    6 3.52 ± 0.24  
    7 2.71 ± 0.27  
    8 3.20 ± 0.29  
    11 3.26 ± 0.20  
    12 2.68 ± 0.35  
1VV LB1122 204-20 A.D.982 ± 106 summary 3.40 ± 0.23 Central age (20.4) 
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

1VV LB1122 204-20  1 2.43 ± 0.08  
    2 5.32 ± 0.13  
    3 3.95 ± 0.11  
    4 3.17 ± 0.08  
    5 3.36 ± 0.09  
    6 3.48 ± 0.09  
    7 3.33 ± 0.09  
    10 2.80 ± 0.05  
    11 3.39 ± 0.11  
1VV LB1123 136-63 A.D.1063 ± 89 summary 3.45 ± 0.15 Central age (11.9) 
    1 3.53 ± 0.03  
    2 3.00 ± 0.03  
    3 4.30 ± 0.05  
    4 3.58 ± 0.06  
    5 2.96 ± 0.03  
    6 3.85 ± 0.05  
    7 3.40 ± 0.05  
    8 3.17 ± 0.04  
1VV LB1124 VR35-11 A.D.940 ± 88 summary 2.97 ± 0.10 Central age (10.0) 
    1 2.83 ± 0.04  
    2 2.80 ± 0.03  
    3 3.51 ± 0.04  
    4 2.72 ± 0.04  
    5 3.53 ± 0.03  
    6 2.67 ± 0.03  
    7 2.86 ± 0.04  
    8 2.78 ± 0.05  
    9 3.13 ± 0.06  
1VV LB1125 131-318 A.D.569 ± 154 summary 3.84 ± 0.30 Central age (15.1) 
    2 3.59 ± 0.29  
    3 4.62 ± 0.46  
    4 2.89 ± 0.21  
    7 4.19 ± 0.41  
    12 4.35 ± 0.42  
1VV LB1127 214-11 A.D.938 ± 83 summary 4.51 ± 0.22 Central age (11.6) 
    3 4.85 ± 0.03  
    4 4.92 ± 0.04  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

1VV LB1127 214-11  5 5.05 ± 0.04  
    6 4.68 ± 0.04  
    7 4.11 ± 0.06  
    8 3.60 ± 0.10  
1VV LB1128 VR39-4 A.D.980 ± 94 summary 2.74 ± 0.11 Central age (10.1) 
    1 2.80 ± 0.04  
    2 2.70 ± 0.03  
    3 3.12 ± 0.04  
    4 2.62 ± 0.04  
    5 3.20 ± 0.06  
    6 2.50 ± 0.04  
    7 2.36 ± 0.05  
1VV LB1129 VR21-17 A.D.838 ± 124 summary 2.98 ± 0.18 Central age (16.7) 
    1 3.90 ± 0.12  
    2 3.37 ± 0.11  
    3 3.40 ± 0.33  
    4 2.99 ± 0.21  
    5 2.31 ± 0.04  
    6 2.24 ± 0.11  
    12 2.99 ± 0.28  
    13 3.03 ± 0.21  
    14 3.03 ± 0.11  
1VV LB1130 136-336 A.D.923 ± 148 summary 3.48 ± 0.42 Central age (30.5) 
    2 5.44 ± 0.09  
    3 2.99 ± 0.08  
    5 2.55 ± 0.06  
    6 2.80 ± 0.09  
    8 4.71 ± 0.10  
    9 4.71 ± 0.11  
    11 2.34 ± 0.18  
1G LB1150 131-308 A.D.1152 ± 79 summary 2.78 ± 0.09 Central age (10.4) 
    2 2.82 ± 0.05  
    3 2.54 ± 0.06  
    4 2.51 ± 0.09  
    5 3.04 ± 0.16  
    6 3.09 ± 0.14  
    7 3.15 ± 0.09  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

1G LB1150 131-308  8 2.68 ± 0.09  
    9 2.82 ± 0.08  
    10 2.61 ± 0.09  
    11 2.20 ± 0.10  
    12 3.26 ± 0.10  
1G LB1151 131-244 A.D.1179 ± 83 summary 2.58 ± 0.12 Central age (10.4) 
    2 2.29 ± 0.02  
    3 2.82 ± 0.04  
    4 2.32 ± 0.04  
    5 2.97 ± 0.06  
    7 2.56 ± 0.11  
G2 LB1153 VR14-2 A.D.923 ± 87 summary 3.35 ± 0.20 Central age (15.4) 
    1 3.44 ± 0.02  
    2 2.40 ± 0.01  
    3 3.85 ± 0.03  
    4 3.80 ± 0.03  
    5 3.64 ± 0.03  
    6 3.55 ± 0.05  
    11 3.05 ± 0.10  
G2 LB1154 VR1-8 A.D.660 ± 76 summary 4.23 ± 0.07 Central age  (2.9) 
    4 4.41 ± 0.03  
    5 4.14 ± 0.03  
    6 6.64 ± 1.05  
G2 LB1156 VR4-2 A.D.889 ± 76 summary 3.38 ± 0.13 Central age  (6.3) 
    1 3.68 ± 0.05  
    2 3.15 ± 0.03  
    3 3.33 ± 0.04  
G2 LB1157 VR38-5 A.D.1236 ± 70 summary 2.52 ± 0.15 Central age  (15.3) 
    1 2.40 ± 0.02  
    2 2.19 ± 0.02  
    3 2.78 ± 0.05  
    4 2.35 ± 0.07  
    5 3.15 ± 0.08  
    6 3.00 ± 0.05  
    7 1.99 ± 0.09  
G2 LB1158 VR13-9 A.D.769 ± 124 summary 3.54 ± 0.29 Central age (16.1) 
    1 3.19 ± 0.04  
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Appendix B: Table B1.  The equivalent doses used for the OSL dating (continued). 
 
Group LB# Sample  

ID 
Date  Disc# Equivalent  

Dose (Gy) 
Age model 
(overdispersion %) 

G2 LB1158 VR13-9  2 3.08 ± 0.03  
    3 4.64 ± 0.07  
    4 3.45 ± 0.05  
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Appendix B Table B2.  Dose rate information for OSL dating. 
 

ID Cat# Sherd (ppm) Sediment Sample ID Surrounding Sediments (ppm) 
  K-39  Th-236  U-238   Distance 

to sherds 
K-39 Th-236  U-238  

  (XRF) (ICP-MS) (ICP-MS)  (XRF) (ICP-MS) (ICP-MS) 
LB0097 204-13 20403.51 11.66 0.83 LB133 r1, LB133 r2 < 40 m 13554.14 7.14 0.76 
LB0098 30-36 8778.57 17.21 2.21 LB135 r1, LB135 r2 < 40 m 13014.19 8.38 0.86 
LB0099 136-27 15502.20 14.40 1.01 LB131 r1, LB131 r2 < 40 m 13554.14 9.79 1.12 
LB0101 131-9 10084.38 21.21 1.32 LB129 r1, LB129 r2 < 40 m 17177.71 6.90 0.92 
LB0106 30-80 6986.41 16.60 4.16 LB105 r1 < 30 m 13385.90 10.93 0.79 
LB0107 30-81 21145.88 10.21 0.90 LB105 r1 < 30 m 13385.90 10.93 0.79 
LB0108 30-82 17646.12 7.71 1.23 LB105 r1 < 30 m 13385.90 10.93 0.79 
LB0119 71-39 16762.77 1.73 0.23 LB119 r1 < 20 m 13006.61 3.44 0.80 
LB0120 71-40 13466.42 2.16 0.19 LB119 r1 < 20 m 13006.61 3.44 0.80 
LB0123 30-88 6646.35 5.51 1.33 LB135 r1, LB135 r2 < 40 m 13014.19 8.38 0.86 
LB0126 204-28 8880.86 3.56 0.46 LB133 r1, LB133 r2 < 40 m 13554.14 7.14 0.76 
LB0129 131-14 17415.41 7.39 0.95 LB129 r1, LB129 r2 < 40 m 17177.71 6.90 0.92 
LB0130 131-45 15613.02 7.45 1.09 LB129 r1, LB129 r2 < 40 m 17177.71 6.90 0.92 
LB0131 136-16 16148.05 10.85 1.10 LB131 r1, LB131 r2 < 40 m 13554.14 9.79 1.12 
LB0133 204-4 16934.16 9.34 1.49 LB133 r1, LB133 r2 < 40 m 13554.14 7.14 0.76 
LB0135 30-17 22091.81 9.43 1.63 LB135 r1, LB135 r2 < 40 m 13014.19 8.38 0.86 
LB0136 30-7 19926.04 9.43 1.14 LB135 r1, LB135 r2 < 40 m 13014.19 8.38 0.86 
LB0137 14-140 19255.73 8.65 0.97 LB137_r1 < 30 m 14620.10 5.21 0.60 
LB0138 14-70 12685.00 19.52 3.77 LB138_r1 < 30 m 18255.38 10.71 1.09 
LB0139 131-96 8433.19 17.84 3.12 LB129 r1, LB129 r2 < 40 m 17177.71 6.90 0.92 
LB0140 30-10 8565.51 14.95 2.04 LB135 r1, LB135 r2 < 40 m 13014.19 8.38 0.86 
LB0141 136-18 7569.40 13.10 1.93 LB131 r1, LB131 r2 < 40 m 13554.14 9.79 1.12 
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Appendix B Table B2.  Dose rate information for OSL dating (continued). 
 

ID Cat# Sherd (ppm) Sediment Sample ID Surrounding Sediment (ppm) 
  K-39  Th-236  U-238   Distance 

to sherds 
K-39 Th-236  U-238  

  (XRF) (ICP-MS) (ICP-MS)  (XRF) (ICP-MS) (ICP-MS) 
LB0144 14-106 7488.25 13.06 3.24 LB138 r1, LB137 r1 < 40 m 16437.74 7.96 0.84 
LB0145 14-120 6983.90 15.09 2.47 LB138 r1, LB137 r1 < 40 m 16437.74 7.96 0.84 
LB0146 30-40 4854.47 9.24 1.61 LB135 r1, LB135 r2 < 40 m 13014.19 8.38 0.86 
LB0148 136-7 7390.22 12.40 2.21 LB131 r1, LB131 r2 < 40 m 13554.14 9.79 1.12 
LB0149 136-34 7390.22 10.04 2.27 LB131 r1, LB131 r2 < 40 m 13554.14 9.79 1.12 
LB0258 136-9 12490.22 7.78 1.18 LB131 r1, LB131 r2 < 40 m 13554.14 9.79 1.12 
LB0260 136-26 16397.53 10.50 0.95 LB131 r1, LB131 r2 < 40 m 13554.14 9.79 1.12 
LB0262 30-16 9094.36 18.24 2.17 LB135 r1, LB135 r2 < 40 m 13014.19 8.38 0.86 
LB0263 30-37 10226.26 11.53 1.68 LB135 r1, LB135 r2 < 40 m 13014.19 8.38 0.86 
LB0264 14-6 10667.81 24.78 2.19 LB137_r1 < 30 m 14620.10 5.21 0.60 
LB0268 14-83 18844.62 6.52 0.85 LB138 r1, LB137 r1 < 40 m 16437.74 7.96 0.84 
LB0270 14-116 18930.03 12.13 1.63 LB671 r1, LB900 r1,  

LB1084 r1 
< 40 m 15976.87 7.50 0.90 

LB0271 14-152 18397.03 19.59 0.75 LB137 r1 < 30 m 14620.10 5.21 0.60 
LB0275 131-53 12619.78 8.47 0.57 LB129 r1, LB129 r2 < 40 m 17177.71 6.90 0.92 
LB0276 131-74 10055.37 14.79 1.92 LB129 r1, LB129 r2 < 40 m 17177.71 6.90 0.92 
LB0279 204-2 11078.00 21.06 1.54 LB133 r1, LB133 r2 < 40 m 13554.14 7.14 0.76 
LB0586 214-8 8114.17 11.08 2.75 LB586 r1 0 m 16847.94 13.25 1.06 
LB0588 214-5 17416.30 5.09 0.92 LB588 r1 0 m 13630.85 12.86 1.80 
LB0599 30-260 8101.48 13.17 6.00 LB599 r1 0 m 14519.67 8.54 1.03 
LB0600 30-261 5233.02 10.70 3.71 LB600 r1 < 10 m 13639.68 9.08 0.81 
LB0601 30-262 7764.45 11.00 2.24 lb601 r1 < 5 m 14017.87 9.66 1.06 
LB0616 30-158 12074.20 9.56 0.98 LB616 r1 0 m 14148.50 4.84 0.76 
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Appendix B Table B2.  Dose rate information for OSL dating (continued). 
 

ID Cat# Sherd (ppm) Sediment Sample ID Surrounding Sediment (ppm) 
  K-39  Th-236  U-238   Distance 

to sherds 
K-39 Th-236  U-238  

  (XRF) (ICP-MS) (ICP-MS)  (XRF) (ICP-MS) (ICP-MS) 
LB0624 VR21-5 6164.43 15.32 3.14 LB619 r1-4 (east bank 

average) 
< 10 km 15857.00 6.78 0.57 

LB0641 131-307 7076.41 15.64 2.26 LB641 r1 0 m 19025.06 6.52 0.77 
LB0650 30-173 16079.80 15.66 1.85 LB650 r1 0 m 12767.89 4.92 0.65 
LB0655 131-236 22539.20 17.65 5.27 LB655 r1 0 m 15685.48 12.89 1.47 
LB0661 204-41 15993.87 9.98 1.05 LB661 r1 0 m 15565.63 5.91 0.79 
LB0673 30-166 7628.57 9.01 1.86 LB650 r1 0 m 12767.89 4.92 0.65 
LB0674 VR14-1 18562.70 7.62 0.97 LB619 r1 0 m 13612.46 7.14 0.75 
LB0676 VR7-11 9145.80 12.67 2.20 LB614 r1-4, LB684 r1-4 

(east and west bank average) 
< 20km 13712.55 6.86 0.55 

LB0679 VR17-2 11338.60 27.89 10.18 LB614 r1-4, LB684 r1-4, r7, r8 
(average all except LB684 
r5&6 with high Th) 

< 10 km 10590.59 5.08 0.44 

LB0868 71-48 17790.86 3.77 0.86 LB868 r1 0 m 17237.03 6.43 1.12 
LB0870 71-57 16370.84 3.33 0.68 LB119 r1 < 20 m 13006.61 3.44 0.80 
LB0875 VR24-1 10550.10 4.50 2.32 LB684 r1-4 (west bank 

average) 
< 1 km 11568.10 6.94 0.54 

LB0878 30-168 6715.38 5.91 3.01 LB878 r1 0 m 13443.01 5.23 0.56 
LB1071 131-314 30864.20 10.10 2.38 LB1071 r1 0 m 15850.91 5.01 0.71 
LB1072 VR32-3 36024.20 14.44 3.41 LB684 r1-4 (west bank 

average) 
<12 km 11568.10 6.94 0.54 

LB1073 VR27-19 2937.93 7.22 1.14 LB619 r2 2.5 km 14579.78 4.51 0.55 
LB1074 VR33-2 18791.00 12.20 1.77 LB684 r1-4 (west bank 

average) 
<11 km 11568.10 6.94 0.54 

LB1075 VR21-16 4606.55 13.32 1.84 LB619 r1-4 (east bank 
average) 

< 10 km 15857.00 6.78 0.57 
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Appendix B Table B2.  Dose rate information for OSL dating (continued). 
 

ID Cat# Sherd (ppm) Sediment Sample ID Surrounding Sediment (ppm) 
  K-39  Th-236  U-238   Distance 

to sherds 
K-39 Th-236  U-238  

  (XRF) (ICP-MS) (ICP-MS)  (XRF) (ICP-MS) (ICP-MS) 
LB1076 VR27-12 4774.97 12.23 3.38 LB619 r2 2.5 km 14579.78 4.51 0.55 
LB1077 VR35-6 9387.65 12.88 2.50 LB684 r1-4 (west bank 

average) 
<11 km 11568.10 6.94 0.54 

LB1078 VR22-4 9602.27 8.78 1.76 LB684 r1-4 (west bank 
average) 

<1 km 11568.10 6.94 0.54 

LB1079 VR32-7 6183.42 11.07 2.35 LB684r1-4 (west bank 
average) 

<12 km 11568.10 6.94 0.54 

LB1080 VR27-6 6747.70 19.47 3.85 LB619 r2 2.5 km 14579.78 4.51 0.55 
LB1084 14-297 29814.00 14.14 1.23 LB1084 r1 0 m 15344.66 7.09 0.99 
LB1086 VR7-3 16435.10 7.54 1.68 LB614 r1-4, LB684 r1-4, r7, r8 

(average all except LB684 
r5&6 with high Th) 

< 20 km 10590.59 5.08 0.44 

LB1087 VR23-4 18314.40 14.79 1.32 LB684 r1-4 (west bank 
average) 

<1 km 11568.10 6.94 0.54 

LB1090 VR28-2 16619.30 5.91 0.83 LB619 r2 <5 km 14579.78 4.51 0.55 
LB1092 VR21-11 39903.00 14.75 2.48 LB619 r1-4 (east bank 

average) 
< 10 km 15857.00 6.78 0.57 

LB1093 30-266 32932.60 16.50 4.63 LB135 r1, LB135 r2 < 40 m 13014.19 8.38 0.86 
LB1094 30-77 48442.00 17.99 4.26 LB135 r1, LB135 r2 < 40 m 13014.19 8.38 0.86 
LB1096 VR38-7 31281.00 16.86 3.48 LB684 r1-4 (west bank 

average) 
<13 km 11568.10 6.94 0.54 

LB1097 30-201 37406.70 17.10 3.27 LB880 r1 0 m 14526.89 5.58 0.55 
LB1098 VR17-5 36537.70 17.81 5.02 LB614 r1-4, LB684 r1-4, r7, r8 

(average all except LB684 
r5&6 with high Th) 

< 10 km 10590.59 5.08 0.44 

LB1099 71-64 3603.18 12.59 2.37 LB866 r1 0 m 28021.76 6.77 0.86 
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Appendix B Table B2.  Dose rate information for OSL dating (continued). 
 

ID Cat# Sherd (ppm) Sediment Sample ID Surrounding Sediment (ppm) 
  K-39  Th-236  U-238   Distance 

to sherds 
K-39 Th-236  U-238  

  (XRF) (ICP-MS) (ICP-MS)  (XRF) (ICP-MS) (ICP-MS) 
LB1100 VR21-22 3011.90 9.93 1.84 LB619 r1-4 (east bank 

average) 
< 10 km 15857.00 6.78 0.57 

LB1101 VR17-8 3011.23 11.40 1.89 LB614 r1-4, LB684 r1-4, r7, r8 
(average all except LB684 
r5&6 with high Th) 

< 10 km 10590.59 5.08 0.44 

LB1102 VR7-5 3024.56 7.28 1.31 LB614 r1-4, LB684 r1-4, r7, r8 
(average all except LB684 
r5&6 with high Th) 

< 20 km 10590.59 5.08 0.44 

LB1103 VR15-2 3395.86 12.96 3.21 LB619 r2 < 0.5 km 14579.78 4.51 0.55 
LB1105 VR35-17 3965.04 11.90 2.89 LB684 r1-4 (west bank 

average) 
<11 km 11568.10 6.94 0.54 

LB1106 VR35-4 3174.44 14.47 2.37 LB614 r1-4, LB684 r1-4  
(east and west bank average) 

< 20km 13712.55 6.86 0.55 

LB1107 VR21-29 4329.45 14.75 2.48 LB619 r2 < 2.5 km 14579.78 4.51 0.55 
LB1109 30-151 7013.58 11.12 3.48 LB1109 r1 0 m 13274.99 7.28 0.58 
LB1111 136-76 7065.99 9.01 1.62 LB131 r1, LB131 r2 < 40 m 13554.14 9.79 1.12 
LB1112 136-276 6047.87 12.57 2.23 LB590 r1 0 m 15555.93 12.73 0.87 
LB1113 131-168 6062.57 9.43 2.27 LB129 r1, LB129 r2 < 40 m 17177.71 6.90 0.92 
LB1114 TW143 5602.89 10.52 2.00 LB1114 r1 < 1 km 18300.90 5.76 0.81 
LB1115 TW101 5864.88 10.06 2.49 LB1115 r1 < 2 km 16137.12 5.83 0.42 
LB1117 71-58 16326.60 6.26 0.89 LB119 r1 < 20 m 13006.61 3.44 0.80 
LB1118 71-56 8787.45 11.09 2.59 lb1118 r1 < 30 m 29285.91 6.06 0.89 
LB1119 71-47 3492.04 10.51 2.61 LB866 r1 0 m 28021.76 6.77 0.86 
LB1120 VR39-2 13048.60 9.62 1.79 LB614 r1-4, LB684 r1-4, r7,r8 

(average all except LB684 
r5&6 with high Th) 

< 20 km 10590.59 5.08 0.44 
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Appendix B Table B2.  Dose rate information for OSL dating (continued). 
 

ID Cat# Sherd (ppm) Sediment Sample ID Surrounding Sediment (ppm) 
  K-39  Th-236  U-238   Distance 

to sherds 
K-39 Th-236  U-238  

  (XRF) (ICP-MS) (ICP-MS)  (XRF) (ICP-MS) (ICP-MS) 
LB1121 VR26-1 6180.76 12.26 3.02 LB684 r1-4 (west bank 

average) 
<1 km 11568.10 6.94 0.54 

LB1122 204-20 14596.10 15.86 1.57 LB133 r1, LB133 r2 < 40 m 13554.14 7.14 0.76 
LB1123 136-63 14314.30 19.64 1.66 LB131 r1, LB131 r2 < 40 m 13554.14 9.79 1.12 
LB1124 VR35-11 11287.30 12.48 1.49 LB614 r1-4, LB684 r1-4  

(east and west bank average) 
< 20km 13712.55 6.86 0.55 

LB1125 131-318 6341.62 10.57 1.89 LB1150 r1 0 m 15749.27 13.61 0.81 
LB1127 214-11 24305.70 14.60 1.88 LB656 r1 0 m 17197.76 10.66 1.26 
LB1128 VR39-4 9138.49 12.04 2.37 LB614r1-4, LB684r1-4, r7, r8 

(average all except LB684 
r5&6 with high Th) 

< 20 km 10590.59 5.08 0.44 

LB1129 VR21-17 5876.05 11.33 2.80 LB619 r2 < 2.5 km 14579.78 4.51 0.55 
LB1130 136-336 14134.20 12.15 1.43 LB590 r1 0 m 15555.93 12.73 0.87 
LB1150 131-308 7538.21 17.16 2.12 LB1150 r1 0 m 15749.27 13.61 0.81 
LB1151 131-244 7191.00 16.30 2.58 LB589 r1 0 m 17078.71 7.49 1.23 
LB1153 VR14-2 18745.60 8.75 0.83 LB619 r1 0 m 13612.46 7.14 0.75 
LB1154 VR1-8 18621.80 8.54 1.04 LB619 r3 < 50 m 16934.57 6.42 0.59 
LB1156 VR4-2 17565.90 9.38 0.99 LB619 r3 < 50 m 16934.57 6.42 0.59 
LB1157 VR38-5 17826.90 13.74 1.41 LB684 r1-4 (west bank 

average) 
<13 km 11568.10 6.94 0.54 

LB1158 VR13-9 16261.60 9.61 0.77 LB619 r3 < 50 m 16934.57 6.42 0.59 
 
 

470



Appendix B: Table B3.  Locational information, thickness and water absorption of the sample for 
OSL dating. 
 
ID Cat# Latitude Longitude Altitude 

(m) 
Burial  
Depth (m) 

Thickness 
(cm) 

Water 
absorption 

LB0097 204-13 36.362 -113.106 1868 0 0.70 0.090 
LB0098 30-36 36.3586 -113.124 1908 0 0.50 0.096 
LB0099 136-27 36.359 -113.123 1917 0 0.70 0.105 
LB0101 131-9 36.396 -113.175 1962 0 0.70 0.090 
LB0106 30-80 36.3586 -113.124 1908 0 0.62 0.095 
LB0107 30-81 36.3586 -113.124 1908 0 0.63 0.086 
LB0108 30-82 36.3586 -113.124 1908 0 0.82 0.076 
LB0119 71-39 36.401 -113.245 1889 0 0.50 0.080 
LB0120 71-40 36.401 -113.245 1889 0 0.58 0.075 
LB0123 30-88 36.3586 -113.124 1908 0 0.50 0.109 
LB0126 204-28 36.362 -113.106 1868 0 0.50 0.060 
LB0129 131-14 36.396 -113.175 1962 0 0.50 0.075 
LB0130 131-45 36.396 -113.175 1962 0 0.45 0.059 
LB0131 136-16 36.359 -113.123 1917 0 0.50 0.086 
LB0133 204-4 36.362 -113.106 1868 0 0.40 0.063 
LB0135 30-17 36.3586 -113.124 1908 0 0.50 0.109 
LB0136 30-7 36.3586 -113.124 1908 0 0.48 0.075 
LB0137 14-140 36.391 -113.153 1987 0 0.50 0.087 
LB0138 14-70 36.391 -113.153 1987 0.5 0.50 0.087 
LB0139 131-96 36.396 -113.175 1962 0 0.42 0.072 
LB0140 30-10 36.3586 -113.124 1908 0 0.47 0.070 
LB0141 136-18 36.359 -113.123 1917 0 0.55 0.080 
LB0144 14-106 36.391 -113.153 1987 0.5 0.52 0.067 
LB0145 14-120 36.391 -113.153 1987 0.5 0.55 0.092 
LB0146 30-40 36.3586 -113.124 1908 0 0.57 0.088 
LB0148 136-7 36.359 -113.123 1917 0 0.73 0.074 
LB0149 136-34 36.359 -113.123 1917 0 0.63 0.093 
LB0258 136-9 36.359 -113.123 1917 0 0.55 0.094 
LB0260 136-26 36.359 -113.123 1917 0 0.50 0.063 
LB0262 30-16 36.3586 -113.124 1908 0 0.50 0.093 
LB0263 30-37 36.3586 -113.124 1908 0 0.40 0.103 
LB0264 14-6 36.391 -113.153 1987 0 0.50 0.107 
LB0268 14-83 36.391 -113.153 1987 0.3 0.50 0.075 
LB0270 14-116 36.391 -113.153 1987 0.3 0.45 0.094 
LB0271 14-152 36.391 -113.153 1987 0 0.50 0.081 
LB0275 131-53 36.396 -113.175 1962 0 0.48 0.120 
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Appendix B: Table B3.  Locational information, thickness and water absorption of the sample for 
OSL dating (continued). 
 
ID Cat# Latitude Longitude Altitude 

(m) 
Burial  
Depth (m) 

Thickness 
(cm) 

Water 
absorption 

LB0276 131-74 36.396 -113.175 1962 0 0.48 0.088 
LB0279 204-2 36.362 -113.106 1868 0 0.51 0.116 
LB0586 214-8 36.356 -113.115 1893 0.1 0.42 0.116 
LB0588 214-5 36.356 -113.115 1893 0.1 0.61 0.088 
LB0599 30-260 36.3586 -113.124 1908 0 0.77 0.079 
LB0600 30-261 36.3586 -113.124 1908 0 0.55 0.108 
LB0601 30-262 36.3586 -113.124 1908 0 0.83 0.097 
LB0616 30-158 36.3586 -113.124 1908 0.7 0.50 0.105 
LB0624 VR21-5 36.646 -114.307 395 0 0.60 0.092 
LB0641 131-307 36.396 -113.175 1962 0.3 0.40 0.118 
LB0650 30-173 36.3586 -113.124 1908 0.6 0.56 0.104 
LB0655 131-236 36.396 -113.175 1962 0.3 0.50 0.074 
LB0661 204-41 36.362 -113.106 1868 0.1 0.40 0.098 
LB0673 30-166 36.3586 -113.124 1908 0.5 0.50 0.090 
LB0674 VR14-1 36.7199 -114.235 451 0 0.60 0.077 
LB0676 VR7-11 36.6585 -114.314 497 0 0.60 0.092 
LB0679 VR17-2 36.658 -114.314 415 0 0.45 0.130 
LB0868 71-48 36.401 -113.245 1889 0 0.50 0.095 
LB0870 71-57 36.401 -113.245 1889 0 0.70 0.092 
LB0875 VR24-1 36.62959 -114.328 394 0 0.60 0.091 
LB0878 30-168 36.3586 -113.124 1908 0.2 0.75 0.110 
LB1071 131-314 36.396 -113.175 1962 0.3 0.50 0.074 
LB1072 VR32-3 36.54666 -114.34 371 0 0.40 0.114 
LB1073 VR27-19 36.6512 -114.305 425 0 0.55 0.084 
LB1074 VR33-2 36.54665 -114.34 373 0 0.80 0.091 
LB1075 VR21-16 36.646 -114.307 395 0 0.60 0.092 
LB1076 VR27-12 36.6512 -114.305 425 0 0.50 0.095 
LB1077 VR35-6 36.55582 -114.34 370 0 0.45 0.099 
LB1078 VR22-4 36.63169 -114.326 393 0 0.50 0.076 
LB1079 VR32-7 36.54666 -114.34 371 0 0.65 0.094 
LB1080 VR27-6 36.6512 -114.305 425 0 0.45 0.110 
LB1084 14-297 36.391 -113.153 1987 0.1 0.50 0.104 
LB1086 VR7-3 36.6585 -114.314 497 0 0.43 0.098 
LB1087 VR23-4 36.63165 -114.326 398 0 0.50 0.138 
LB1090 VR28-2 36.63605 -114.31 400 0 0.45 0.100 
LB1092 VR21-11 36.646 -114.307 395 0 0.70 0.102 
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Appendix B: Table B3.  Locational information, thickness and water absorption of the sample 
(continued). 
 
ID Cat# Latitude Longitude Altitude 

(m) 
Burial  
Depth (m) 

Thickness 
(cm) 

Water 
absorption 

LB1093 30-266 36.3586 -113.124 1908 0 0.45 0.119 
LB1096 VR38-7 36.5332 -114.342 371 0 0.50 0.076 
LB1097 30-201 36.3586 -113.124 1908 0.6 0.55 0.061 
LB1098 VR17-5 36.658 -114.314 415 0 0.60 0.065 
LB1099 71-64 36.401 -113.245 1889 0.1 0.65 0.108 
LB1100 VR21-22 36.646 -114.307 395 0 0.50 0.107 
LB1101 VR17-8 36.658 -114.314 415 0 0.50 0.118 
LB1102 VR7-5 36.6585 -114.314 497 0 0.43 0.098 
LB1103 VR15-2 36.67505 -114.296 421 0 0.35 0.094 
LB1105 VR35-17 36.55582 -114.34 370 0 0.40 0.108 
LB1106 VR35-4 36.55582 -114.34 370 0 0.40 0.114 
LB1107 VR21-29 36.646 -114.307 395 0 0.70 0.102 
LB1109 30-151 36.3586 -113.124 1908 0.3 0.75 0.110 
LB1111 136-76 36.359 -113.123 1917 0 0.50 0.097 
LB1112 136-276 36.359 -113.123 1917 0.3 0.50 0.097 
LB1113 131-168 36.396 -113.175 1962 0 0.48 0.088 
LB1114 TW143 36.22824 -113.147 1645 0 0.60 0.095 
LB1115 TW101 36.3364 -112.965 1815 0 0.60 0.101 
LB1117 71-58 36.401 -113.245 1889 0 0.60 0.069 
LB1118 71-56 36.401 -113.245 1889 0 0.60 0.136 
LB1119 71-47 36.401 -113.245 1889 0.1 0.70 0.121 
LB1120* VR39-2 36.55582 -114.34 370 0 0.60 0.108 
LB1121 VR26-1 36.63293 -114.325 393 0 0.60 0.108 
LB1122 204-20 36.362 -113.106 1868 0 0.45 0.098 
LB1123 136-63 36.359 -113.123 1917 0 0.50 0.104 
LB1124 VR35-11 36.55582 -114.34 370 0 0.50 0.110 
LB1125 131-318 36.396 -113.175 1962 0.6 0.50 0.107 
LB1127 214-11 36.356 -113.115 1893 0.1 0.70 0.128 
LB1128* VR39-4 36.55582 -114.34 370 0 0.45 0.100 
LB1129 VR21-17 36.646 -114.307 395 0 0.60 0.101 
LB1130 136-336 36.359 -113.123 1917 0.4 0.40 0.108 
LB1150 131-308 36.396 -113.175 1962 0.25 0.50 0.074 
LB1151 131-244 36.396 -113.175 1962 0.25 0.50 0.074 
LB1153 VR14-2 36.7199 -114.235 451 0 0.40 0.087 
LB1154 VR1-8 36.80418 -114.01 497 0 0.60 0.092 
LB1156 VR4-2 36.73183 -114.217 451 0 0.40 0.099 
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Appendix B: Table B3.  Locational information, thickness and water absorption of the sample 
(continued). 
 
ID Cat# Latitude Longitude Altitude 

(m) 
Burial  
Depth (m) 

Thickness 
(cm) 

Water 
absorption 

LB1157 VR38-5 36.5332 -114.342 371 0 0.50 0.119 
LB1158 VR13-9 36.5332 -114.342 451 0 0.45 0.110 
*LB1120 and LB1128: exact provenience information is not available for these two samples.  
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Appendix B: Table B4.  Summary of OSL dates. 
 

Group 1G (n = 29) 
Cat# ID Equivalent  

Dose (Gy) 
 Date Error 

term* 
# Age 

model 
Over-
dispersion 

Evaluation Surface Temper 

30-40 LB0146 4.07 ±  0.34 A.D. 205 ± 205 11.3% 1 single NA C B/G olivine 
VR35-6 LB1077 4.78 ± 0.08 A.D. 388 ± 132 8.1% 8 central 3.5% A B/G olivine 
136-18 LB0141 4.49 ± 0.05 A.D. 436 ± 127 8.1% 2 common NA A plain olivine 
VR7-11 LB0676 4.53 ± 0.32 A.D. 439 ± 169 10.7% 5 central 15.1% A plain olivine 
VR21-5 LB0624 4.50 ± 0.19 A.D. 509 ± 151 10.0% 15 central 15.5% A plain olivine 
VR22-4 LB1078 3.72 ± 0.34 A.D. 521 ± 172 11.5% 1 single NA C plain olivine 
VR32-7 LB1079 3.63 ± 0.73 A.D. 553 ± 319 21.8% 8 central 53.1% C plain olivine 
131-74 LB0276 4.32 ± 0.15 A.D. 599 ± 123 8.7% 4 central 3.4% A plain olivine 
131-9 LB0101 4.18 ± 0.08 A.D. 739 ± 125 9.8% 2 central 2.3% A plain olivine 
30-10 LB0140 3.71 ± 0.50 A.D. 769 ± 199 16.0% 1 single NA D plain olivine 
30-88 LB0123 2.53 ± 0.24 A.D. 804 ± 140 11.6% 3 central 15.1% A plain olivine 
VR24-1 LB0875 2.84 ± 0.22 A.D. 849 ± 118 10.1% 7 central 18.9% A plain olivine 
204-2 LB0279 3.41 ± 0.15 A.D. 977 ± 109 10.5% 7 central 4.5% A plain olivine 
VR27-6 LB1080 3.06 ± 0.12 A.D. 1086 ± 101 10.9% 1 single NA C plain olivine 
30-261 LB0600 2.54 ± 0.17 A.D. 1130 ± 96 10.9% 7 central 16.9% A plain olivine 
131-308 LB1150 2.78 ± 0.09 A.D. 1152 ± 79 9.2% 11 central 10.4% A plain sand 
30-37 LB0263 2.33 ± 0.30 A.D. 1177 ± 123 14.7% 2 central 12.9% A B/G olivine 
131-244 LB1151 2.58 ± 0.12 A.D. 1179 ± 83 10.0% 5 central 10.4% A B/G sand 
VR27-12 LB1076 2.10 ± 0.07 A.D. 1222 ± 79 10.0% 11 central 10.9% A B/G olivine 
131-307 LB0641 2.22 ± 0.17 A.D. 1236 ± 90 11.6% 3 central 12.6% A plain olivine 
30-262 LB0601 2.14 ± 0.09 A.D. 1250 ± 65 8.5% 4 central 4.2% A plain olivine 
14-106 LB0144 2.15 ± 0.02 A.D. 1309 ± 60 8.5% 2 common NA A COR olivine 
14-6 LB0264 2.49 ± 0.27 A.D. 1312 ± 104 14.8% 3 central 10.7% A B/G_COR olivine 
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Appendix B: Table B4.  Summary of OSL dates (continued). 
 

Group 1G (n = 29) (continued) 
Cat# ID Equivalent  

Dose (Gy) 
 Date Error 

term* 
# Age 

model 
Over-
dispersion 

Evaluation Surface Temper 

14-70 LB0138 2.84 ± 1.22 A.D. 1313 ± 304 43.4% 2 central 60.1% C plain olivine 
131-96 LB0139 2.27 ± 0.08 A.D. 1350 ± 64 9.7% 2 common NA A plain olivine 
14-120 LB0145 1.86 ± 0.08 A.D. 1375 ± 62 9.7% 2 common NA A B/G olivine 
30-16 LB0262 1.93 ± 0.01 A.D. 1410 ± 54 9.0% 4 common NA A B/G olivine 
136-7 LB0148 1.03 ± 0.01 A.D. 1655 ± 28 7.8% 2 common NA A COR olivine 
204-28 LB0126 0.63 ± 0.18 A.D. 1683 ± 93 28.2% 1 single NA D plain olivine 
Group 1VM (n = 11) 
Cat# ID Equivalent  

Dose (Gy) 
 Date Error 

term* 
# Age 

model 
Over-
dispersion 

Evaluation Surface Temper 

TW143 LB1114 3.52 ± 0.23 A.D. 569 ± 149 10.3% 9 common NA A B/G olivine 
131-168 LB1113 3.34 ± 0.07 A.D. 696 ± 105 8.0% 1 single NA C B/G_COR olivine 
136-271 LB1112 3.03 ± 0.19 A.D. 941 ± 109 10.2% 5 central 6.3% A COR olivine 
30-36 LB0098 2.88 ± 0.97 A.D. 1091 ± 321 34.8% 2 central 47.4% C B/G olivine 
30-168 LB0878 2.03 ± 0.04 A.D. 1141 ± 70 8.0% 5 central 3.8% A plain olivine 
30-166 LB0673 1.97 ± 0.08 A.D. 1146 ± 74 8.5% 7 central 9.5% A COR olivine 
136-34 LB0149 2.04 ± 0.07 A.D. 1264 ± 61 8.1% 2 common NA A B/G olivine 
TW101 LB1115 1.84 ± 0.14 A.D. 1275 ± 82 11.1% 4 central 9.6% A COR olivine 
30-151 LB1109 2.00 ± 0.26 A.D. 1304 ± 109 15.4% 3 central 21.2% B plain olivine 
214-8 LB0586 1.65 ± 0.05 A.D. 1465 ± 43 7.8% 1 single NA C COR olivine 
136-76 LB1111 0.49 ± 0.07 A.D. 1815 ± 32 16.2% 3 common NA B B/G_COR olivine 
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Appendix B: Table B4.  Summary of OSL dates (continued) 
 

Group 1VV (n = 13)  
Cat# ID Equivalent  

Dose (Gy) 
 Date Error 

term* 
# Age 

model 
Over-
dispersion 

Evaluation Surface Temper 

131-318 LB1125 3.84 ± 0.30 A.D. 569 ± 154 10.7% 5 central 15.1% A plain olivine 
VR21-17 LB1129 2.98 ± 0.18 A.D. 838 ± 124 10.6% 9 central 16.7% A plain olivine 
VR26-1 LB1121 3.13 ± 0.11 A.D. 866 ± 108 9.4% 7 central 6.3% A plain sand 
136-336 LB1130 3.48 ± 0.42 A.D. 923 ± 148 13.6% 7 central 30.5% B plain sand 
214-11 LB1127 4.51 ± 0.22 A.D. 938 ± 83 7.7% 6 central 11.6% A COR olivine 
VR35-11 LB1124 2.97 ± 0.10 A.D. 940 ± 88 8.2% 9 central 10.0% A B/G sand 
VR39-4 LB1128 2.74 ± 0.11 A.D. 980 ± 94 9.1% 7 central 10.1% A B/G olivine 
204-20 LB1122 3.40 ± 0.23 A.D. 982 ± 106 10.3% 9 central 20.4% A plain olivine 
136-63 LB1123 3.45 ± 0.15 A.D. 1063 ± 89 9.4% 8 central 11.9% A B/G sand 
VR39-2 LB1120 2.45 ± 0.11 A.D. 1094 ± 74 8.1% 8 central 12.2% A plain sand 
30-173 LB0650 2.48 ± 0.02 A.D. 1253 ± 59 7.8% 8 central 2.2% A COR sherd_sand 
131-236 LB0655 3.84 ± 0.17 A.D. 1275 ± 63 8.5% 9 central 12.8% A plain sand 
VR17-2 LB0679 3.10 ± 0.40 A.D. 1478 ± 93 17.4% 11 central 39.9% C B/G sand 
Group 2 (n = 26) 
Cat# ID Equivalent  

Dose (Gy) 
 Date Error 

term* 
# Age 

model 
Over-
dispersion 

Evaluation Surface Temper 

131-14 LB0129 4.58 ± 0.25 A.D. 476 ± 115 7.5% 1 single NA C plain olivine 
204-13 LB0097 5.07 ± 0.21 A.D. 490 ± 110 7.2% 1 single NA C plain olivine 
30-7 LB0136 5.03 ± 0.36 A.D. 493 ± 137 9.0% 2 central 8.7% A plain olivine 
71-39 LB0119 3.14 ± 0.13 A.D. 587 ± 85 6.0% 1 single NA C plain olivine 
14-140 LB0137 4.33 ± 0.57 A.D. 590 ± 203 14.3% 2 central 18.4% A plain olivine 
VR1-8 LB1154 4.23 ± 0.07 A.D. 660 ± 76 5.6% 3 central 2.9% A plain olivine 
VR13-9 LB1158 3.54 ± 0.29 A.D. 769 ± 124 10.0% 4 central 16.1% A plain olivine 

477



Appendix B: Table B4.  Summary of OSL dates (continued) 
 

Group 2 (n = 26) (continued) 
Cat# ID Equivalent  

Dose (Gy) 
 Date Error 

term* 
# Age 

model 
Over-
dispersion 

Evaluation Surface Temper 

131-53 LB0275 2.98 ± 0.04 A.D. 830 ± 73 6.2% 2 central 1.3% A plain olivine 
136-26 LB0260 3.73 ± 0.13 A.D. 833 ± 81 6.9% 2 common NA A plain olivine 
VR4-2 LB1156 3.38 ± 0.13 A.D. 889 ± 76 6.8% 3 central 6.3% A plain olivine 
71-40 LB0120 2.20 ± 0.37 A.D. 895 ± 193 17.3% 2 central 22.7% B plain olivine 
VR14-2 LB1153 3.35 ± 0.20 A.D. 923 ± 87 8.0% 7 central 15.4% A plain olivine 
VR14-1 LB0674 3.17 ± 0.06 A.D. 969 ± 57 5.6% 7 central 5.2% A plain olivine 
14-83 LB0268 3.00 ± 0.02 A.D. 1002 ± 52 5.1% 2 common NA A COR olivine 
214-5 LB0588 2.95 ± 0.09 A.D. 1049 ± 53 5.5% 3 central 5.4% A plain olivine 
14-152 LB0271 3.36 ± 0.12 A.D. 1067 ± 85 9.0% 10 central 11.3% A plain olivine 
131-45 LB0130 2.69 ± 0.18 A.D. 1085 ± 80 8.6% 4 central 13.1% A plain olivine 
30-158 LB0616 2.13 ± 0.06 A.D. 1132 ± 63 7.2% 8 central 7.1% A plain sherd_olivine 
VR38-5 LB1157 2.52 ± 0.15 A.D. 1236 ± 70 9.0% 7 central 15.3% A plain sand 
14-116 LB0270 2.50 ± 0.02 A.D. 1282 ± 45 6.2% 2 central 0.8% A plain olivine 
30-260 LB0599 2.13 ± 0.04 A.D. 1461 ± 52 9.4% 11 central 1.7% A plain olivine 
204-4 LB0133 1.35 ± 0.06 A.D. 1581 ± 33 7.6% 2 central 4.6% A plain olivine 
136-9 LB0258 1.14 ± 0.05 A.D. 1592 ± 30 7.1% 5 central 9.2% A COR olivine 
136-27 LB0099 1.16 ± 0.07 A.D. 1656 ± 32 9.0% 2 central 8.1% A plain olivine 
136-16 LB0131 0.89 ± 0.01 A.D. 1730 ± 17 6.0% 2 common NA A plain olivine 
30-17 LB0135 0.61 ± 0.01 A.D. 1984 ± 10 34.5% 1 single NA D COR olivine 
Group 3 (n = 9) 
Cat# ID Equivalent  

Dose (Gy) 
 Date Error 

term* 
# Age 

model 
Over-
dispersion 

Evaluation Surface Temper 

71-48 LB0868 3.98 ± 0.15 A.D. 606 ± 83 5.9% 5 central 8.4% A plain olivine 
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Appendix B: Table B4.  Summary of OSL dates (continued) 
 

Group 3 (n=9) (continued) 
Cat# ID Equivalent  

Dose (Gy) 
 Date Error 

term* 
# Age 

model 
Over-
dispersion 

Evaluation Surface Temper 

71-58 LB1117 3.36 ± 0.16 A.D. 748 ± 90 7.1% 6 central 11.5% A plain olivine 
71-47 LB1119 3.38 ± 0.10 A.D. 758 ± 110 8.8% 12 central 10.2% A plain olivine 
204-41 LB0661 3.54 ± 0.13 A.D. 798 ± 86 7.1% 7 central 9.1% A plain olivine 
71-56 LB1118 3.02 ± 0.19 A.D. 1055 ± 94 9.8% 10 central 19.6% A B/G olivine 
30-80 LB0106 2.67 ± 0.15 A.D. 1255 ± 80 10.6% 2 common NA A COR olivine 
30-82 LB0108 2.39 ± 0.08 A.D. 1264 ± 45 6.0% 2 common NA A plain sand 
71-57 LB0870 1.33 ± 0.07 A.D. 1467 ± 37 6.8% 6 central 10.1% A plain olivine 
30-81 LB0107 1.89 ± 0.28 A.D. 1472 ± 84 15.5% 2 central 19.4% B plain olivine 
Group 4 (n=10) 
Cat# ID Equivalent  

Dose (Gy) 
 Date Error 

term* 
# Age 

model 
Over-
dispersion 

Evaluation Surface Temper 

VR7-5 LB1102 4.08 ± 0.10 BC 373 ± 206 8.6% 9 central 6.9% A B/G olivine 
VR21-22 LB1100 4.48 ± 0.23 BC 95 ± 207 9.8% 9 central 14.9% A plain olivine 
VR35-4 LB1106 4.41 ± 0.14 A.D. 229 ± 183 10.3% 4 central 5.0% A plain olivine 
71-64 LB1099 4.28 ± 0.14 A.D. 468 ± 148 9.6% 10 central 9.6% A plain olivine 
VR21-16 LB1075 2.91 ± 0.33 A.D. 822 ± 170 14.3% 4 common N/A A plain olivine 
VR27-19 LB1073 1.85 ± 0.16 A.D. 924 ± 129 11.8% 5 central 19.6% A plain olivine 
VR21-29 LB1107 2.17 ± 0.18 A.D. 1154 ± 110 12.8% 2 central 9.1% A plain olivine 
VR17-8 LB1101 1.74 ± 0.08 A.D. 1180 ± 90 10.8% 12 central 15.9% A B/G olivine 
VR15-2 LB1103 1.95 ± 0.04 A.D. 1263 ± 80 10.7% 6 central 5.0% A B/G olivine 
VR35-17 LB1105 1.82 ± 0.07 A.D. 1279 ± 74 10.1% 7 central 10.5% A B/G olivine 
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Appendix B: Table B4.  Summary of OSL dates (continued) 
 

VR1 (n=8) 
Cat# ID Equivalent  

Dose (Gy) 
 Date Error 

term* 
# Age 

model 
Over-
dispersion 

Evaluation Surface Temper 

VR21-11 LB1092 6.53 ± 1.22 A.D. 790 ± 238 19.5% 2 central 23.5% B B/G sand 
131-314 LB1071 4.04 ± 0.19 A.D. 1080 ± 66 7.1% 8 central 13.2% A B/G sand 
VR32-3 LB1072 4.69 ± 0.29 A.D. 1099 ± 78 8.5% 5 central 13.6% A B/G sand 
VR17-5 LB1098 4.90 ± 0.55 A.D. 1188 ± 107 13.0% 7 central 28.6% B B/G sand 
VR38-7 LB1096 3.89 ± 0.10 A.D. 1238 ± 54 7.0% 14 central 8.9% A B/G sand 
30-77 LB1094 4.14 ± 0.50 A.D. 1402 ± 81 13.3% 1 single N/A C B/G sand 
30-266 LB1093 2.84 ± 0.28 A.D. 1494 ± 62 11.9% 3 common N/A A B/G sand 
30-201 LB1097 2.62 ± 0.21 A.D. 1529 ± 48 9.9% 3 common N/A A B/G sand 
VR3 (n=5) 
Cat# ID Equivalent  

Dose (Gy) 
 Date Error 

term* 
# Age 

model 
Over-
dispersion 

Evaluation Surface Temper 

VR23-4 LB1087 4.66 ± 0.22 A.D. 602 ± 121 8.6% 11 central 15.4% A B/G sand 
VR7-3 LB1086 2.69 ± 0.14 A.D. 1073 ± 73 7.8% 5 central 4.7% A B/R sherd_sand 
VR28-2 LB1090 2.20 ± 0.22 A.D. 1156 ± 95 11.1% 7 central 25.4% B plain sand 
VR33-2 LB1074 2.54 ± 0.08 A.D. 1282 ± 52 7.1% 8 central 8.7% A plain sand 
14-297 LB1084 3.06 ± 0.09 A.D. 1299 ± 45 6.3% 8 central 7.7% A RED sherd_sand 

* Error term is on the years before present.  Overdispersion rate indicate the ratio of aliquots beyond t2 standard deviation based on the averaged value.  
Cut-off to pass the criteria for number of aliquot is more than two, error term is set 15% and for overdispersion is 25%.  The based on three criteria, the 
dates were ranked with A as most reliable date.  If the sample passes all three, A is assigned.  B is assigned for the sample that passes two, and C for the 
sample that passes just one. If the sample does not passes any of the criteria, D is assigned.   
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