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ABSTRACT 

 

Reconstructing Fire Severity and Post-Fire Recovery in a Southern California Watershed 

Using Hyperspectral Imagery and LiDAR 

 

by 

 

Mingquan Chen 

 

Wildfire is a serious threat to millions of people living in the Western United States, yet also 

an integral part of Southern California ecosystems. Therefore, it is important to quantify fire 

impacts and patterns of post-fire landscape recovery in order to understand the links between 

fire events and ecosystems. This research combined Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) remote sensing imagery and Light Detection and Ranging (LiDAR) 

data to produce a comprehensive, multi-year analysis of the May 2009 Jesusita Fire 

landscape within the Mission Creek Canyon watershed in Santa Barbara, California, USA. 

Combining passive and active remote sensing datasets allowed for a more detailed analysis 

of fire severity and the post-fire landscape recovery. Passive hyperspectral data provided 

information for a spectrally based assessment of fire severity and for mapping land cover 

types, while LiDAR provided geometric information such as topography and above ground 

vegetation structure. The study proposed a new fire severity definition based on multiple 
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hyperspectral and LiDAR metrics: Multiple Endmember Spectral Mixture Analysis 

(MESMA) fractions and differenced Normalized Burn Ratio (dNBR) from AVIRIS; and a 

Canopy Height Model (CHM) from LiDAR. The study also examined the topographic effects 

on fire severity and post-fire recovery, using a LiDAR derived Topographic Wetness Index 

(TWI) and riparian areas defined from river locations collected from fieldwork. The result 

showed that the dNBR-MESMA-CHM based severity definition depicted a more detailed 

severity distribution in the Jesusita fire scar compared to the traditional spectral fire indices, 

especially for those areas with significant amounts of dead trunks. The riparian zone or areas 

with high soil water content were less affected by the fire, and the level of green vegetation 

cover returned to pre-fire status earlier compared to the fire scar average.   
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I. Introduction 

A. Background 

Wildfires are often viewed to be harmful to ecosystems but modern ecological research has 

shown that fire is an integral component in the function and biodiversity of many natural 

habitats. Thus, fire is now regarded as a natural disturbance (Keddy, 2007). Different 

ecosystem types in the United States have a characteristic frequency of fire ranging from 

once every 10 to 500 years (Brown & Smith., 2000). Fires are one of the most significant 

sources of disturbance in Mediterranean ecosystems (Moreno & Oechel, 1991; White et al., 

1997) with a natural burn return interval of 20 to 100 years (Davis & Michaelsen, 1995). 

Native vegetation is widely considered adapted to fires, and some of them can grow back 

naturally from the root crown even after all above-ground vegetation is burned (Hanes, 

1977). Ecological influences of wildfire can be divided into fire severity (short-term) and 

ecosystem response (long-term). Fire severity, or burn severity, is a measure of the 

magnitude of the effect that a wildfire has on the environment during the event (Keeley, 

2009). The ecosystem response is referred to as the post-fire recovery of the ecosystem, such 

as vegetation growth (Bastos, Gouveia, Dacamara, & Trigo, 2011; Chen et al., 2011; 

Schimmel & Granstrom, 1996). Both fire severity and post-fire recovery can be affected by 

topography, soil wetness, precipitation etc. As wildfires often cover large areas with limited 

accessibility, satellite remote sensing is essential for gathering and analyzing spatial 

information, enabling the assessment of fire severity and post-fire recovery without extensive 

field sampling (Chu & Guo, 2014; Chuvieco, 2009; French et al., 2008; Miller & Yool, 

2002). 
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Remote sensing technology can be divided into passive and active sensors. Passive sensors, 

i.e. multi-spectral and hyperspectral images, have been used to track burn severity (van 

Wagtendonk, Root, & Key, 2004) and changes in vegetation (Riano et al., 2002; White, 

Ryan, Key, & Running, 1996) on a spectral signal basis. Spectral indices, e.g. normalized 

difference vegetation index (NDVI) and Normalized Burn Ratio (NBR), have been used 

extensively to assess fire severity and post-fire recovery (Escuin, Navarro, & Fernández, 

2008; García & Caselles, 1991; Veraverbeke, Lhermitte, Verstraeten, & Goossens, 2011, 

2010). Methods based on a change in land cover composition also exist, since they have 

actual physical meaning and are easier to interpret than spectral indices (Adams et al., 1995). 

As the fire environment typically consists of a mixture of vegetation and ash, techniques that 

solve the mixed pixel problem are required (Kokaly, Rockwell, Haire, & King, 2007). Linear 

spectral mixture analysis (LSMA), the most widely used method, assumes measured 

reflectance of a mixed pixel is a linear combination of the spectra of each endmember (Riano 

et al., 2002; Roberts, Smith, & Adams, 1993; Röder, Hill, Duguy, Alloza, & Vallejo, 2008; 

Sankey, Moffet, & Weber, 2008; Smith, Lentile, Hudak, & Morgan, 2007; Souza, Firestone, 

Silva, & Roberts, 2003; Vila & Barbosa, 2010). LSMA is also able to estimate fractional 

cover of green vegetation, dead vegetation and soils in the fire scar, which is very similar to 

traditional field severity assessment (Lentile, Holden, Smith, Falkowski, & Hudak, 2006). 

Accuracy of LSMA mainly depends on the endmembers selection (Tompkins, Mustard, 

Pieters, & Forsyth, 1997). The number of endmembers must account for the number of 

classes in the pixel, which could vary on a per pixel basis. The same material could also have 

different spectral response in different pixels, thus using a single spectrum for each 

endmember class is potentially problematic. Multiple Endmember Spectral Mixture Analysis 
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(MESMA) can solve this issue by allowing multiple endmembers for each endmember class, 

and decomposing each pixel with a different combination of endmember (Quintano, 

Fernández-Manso, & Roberts, 2013; Roberts et al., 1998). 

However, passive remote sensing data cannot directly provide any geometric properties of 

the topography or the above ground canopy, which leaves parts of the wildfire geography 

unexplored. For example, a trunk with crown mortality after fire will probably be detected as 

“ash or char” by hyperspectral imagery due to the reflectance of its burned surface. The 

ground topography information could also be difficult to extract in areas with certain levels 

of canopy density, since the reflecting feature could be largely blocked by above ground 

vegetation structures. This problem can be solved by using active sensors such as airborne 

LiDAR (light detection and ranging), which can measure accurate geometric X, Y, and Z 

position of reflecting surfaces. This includes measurements of the forest canopy and ground 

surface by high density laser pulses (Casas et al., 2016; Kane et al., 2010; Lefsky, Cohen, 

Parker, & Harding, 2002; Lefsky, Turner, Guzy, & Cohen, 2005). Thus, the combination of 

multiple types of remote sensing data will provide better opportunities for scientific analysis 

(Hyde et al., 2006). As LiDAR often lacks area coverage and is expensive for operation, 

topography and surface structures are not widely considered in fire analysis, leaving many 

questions unanswered regarding the relationship between wildfire and topography.  

B. Motivation  

In Santa Barbara, California, wildfires have been frequent, with major wildfires occurring as 

frequently as nine years or less in the Santa Ynez Mountains since the 1955 Refugio Fire. 

Moreover, more than five of the major wildfires have burned in the last decade, including the 
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Gap, Tea and Jesusita Fires. Hyperspectral data are available over these fires on multiple 

dates before and after the fire, while airborne LiDAR covered parts of the Jesusita fire scar 

after the event.  

In this study, both hyperspectral imagery and LiDAR were combined to produce a 

comprehensive, multi-year analysis of the post-fire landscape within the Mission Creek 

Canyon watershed. With these datasets, we were able to analyze changes to both the land 

cover and watershed structure in the years following the fire. The research goals are: 1) 

combine hyperspectral and LiDAR data to produce a more detailed fire severity definition 

compared to the traditional spectral index based version; 2) understand how topography 

affected fire severity and vegetation survival; 3) understand how topography influenced post-

fire recovery. 
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II. Materials 

A. Study Area   

The study is focused on the Jesusita Fire, which began at approximately 1:45 PM on May 5, 

2009 in the hills of Santa Barbara, California at 34°27' N -119°43' W (Figure II-1). The fire 

burned 35.40𝑘𝑚2, destroyed 80 homes and damaged 15 more before being fully contained1. 

Santa Barbara has a typical Mediterranean climate with hot, dry summers and cool wet 

winters. Seasonal temperature variation is moderate and annual precipitation is low. 

Elevational changes range from sea level to 1310 m along the crest of the Santa Ynez 

Mountains. The east–west orientation of the mountains and its dramatic variation in elevation 

produce a highly contrasting environment, resulting in a significant vegetation diversity 

(Roberts, Dennison, Roth, Dudley, & Hulley, 2015). Dominant vegetation consists of a 

mixture of open grassland, oak savannas, open pine forest and shrubland. 

 

Figure II-1: Location of Jesusita Fire. 

                                                 
1 "Jesusita Fire" from CAL FIRE Archive 

(https://web.archive.org/web/20160304022718/http:/cdfdata.fire.ca.gov/incidents/incidents_details_info?incide

nt_id=310). 

https://web.archive.org/web/20160304022718/http:/cdfdata.fire.ca.gov/incidents/incidents_details_info?incident_id=310
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The Study site can be divided into two parts: the whole fire scar and surrounding area that is 

covered by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the eastern 

part of the fire scar in the Mission Creek and Rattlesnake Canyon Watershed, which were 

covered by LiDAR (Figure III-1). 

B. Remote Sensing Data 

1. Hyperspectral Data  

AVIRIS is an airborne optical sensor that delivers calibrated images of the upwelling spectral 

radiance in 224 contiguous spectral bands with wavelengths from 400 to 2500 nm (Green et 

al., 1998). It was deployed on the ER-2 aircraft, and the flight line covered most of the 

Jesusita fire scar and its surroundings. The raw AVIRIS data were processed to surface 

reflectance using MODTRAN (Roberts, Green, & Adams, 1997). Retrieved reflectance was 

further corrected for minor artifacts using a field measured spectrum of a beach sand target 

present on the southern flight lines (Clark et al., 2002). Prior to further analysis, strong water 

vapor bands centered at1400 nm and 1900 nm were removed. The data were then 

georeferenced using a Digital Orthophoto Quarter Quads (DOQQ) as a base image, with a 

second order polynomial transformation and nearest neighbor sampling. The data were 

acquired at different spatial resolutions on different dates (Table II-1), and were standardized 

to a uniform 12-meter spatial resolution for further analysis.  
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Table II-1: Acquired date and spatial resolution of the AVIRIS data (http://aviris.jpl.nasa.gov/index.html). 

Acquisition 

Date 

Flightline Solar 

Zenith 

(º) 

Solar 

Azimuth (º) 

Resolution 

(m) 

Pre-

Fire 

Post-

Fire 

       

Mar-09 f090330t01p00r08 30.61 181.87 12 ✓   

f090330t01p00r09 31.42 194.19   

Jun-09 f090617t01p00r06 12.16 205.17 12   ✓ 
f090617t01p00r08 17.88 236.07   

Aug-09 f090826t01p00r09 30.22 221.63 12   ✓ 
f090826t01p00r10 32.80 228.53   

Apr-10 f100430t01p00r05 26.66 132.69 12   ✓ 
f100430t01p00r07 21.88 151.06   

Jul-11 f110719t01p00r09 51.00 186.35 7.5   ✓ 
f110719t01p00r10 51.80 192.72   

Apr-13 f130411t01p00r10 26.54 184.15 18   ✓ 
f130411t01p00r12 28.98 207.68   

Jun-13 f130606t01p00r08 12.20 170.67 18   ✓ 
f130606t01p00r14 30.57 256.33   

2. LiDAR Data 

The Lidar data were collected using an airborne Lidar sensor in December 2009 and August 

2010 after the Jesusita Fire had burned (Figure II-2.A). Imagery was acquired over an area of 

15,530,802 𝑚2 in 2009 and 69,942,152 𝑚2 in 2010 with a point density of 30-40 points/𝑚2, 

which overlaps with the eastern part of the fire scar. 

In order to preprocess the LiDAR point cloud data, a Python wrapper script was used to 

implement LAStools (http://www.cs.unc.edu/~isenburg/lastools/). First, duplicate LiDAR 

points were removed, and then the whole point cloud dataset was split into tiles smaller than 

250MB to make it more manageable. Feature detection was applied to the raw point cloud 

tiles to classify them into buildings, ground, and vegetation points based on specific 

thresholds.  Then the ground points were gridded into raster using Triangulated Irregular 

http://aviris.jpl.nasa.gov/index.html
http://www.cs.unc.edu/~isenburg/lastools/
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Network (TIN) interpolation, which creates the Digital Elevation Model (DEM).  Similarly, 

vegetation point heights above ground are calculated and gridded into the Canopy Height 

Model (CHM). Both DEM and CHM raster images were created with 1-meter pixel 

resolution (Figure II-2.B). 

 (A) 

  (B) 

Figure II-2 

A: Lidar data coverage is shown as a hillshade layer, with the red boundary representing the final fire boundary;  

B: Digital Elevation Model and Canopy Height Model extracted from the 2009 LiDAR dataset. 
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III. Methods 

The methods proposed in this study can be divided into three parts (Figure III-1). Detailed 

procedures (Figure III-2) will be provided in later sections. 

 LiDAR related data processing: this covers part of the eastern Jesusita fire scar area 

and adjacent area outside the fire scar. Data outside of the Mission Creek Canyon 

watershed is excluded for watershed analysis.  

 AVIRIS related data processing: this covers the whole Jesusita Fire region, and is 

available on multiple dates both pre-fire and post-fire. 

 Data fusion analysis: LiDAR image and AVIRIS image are stacked together for 

fusion analysis. 

 

Figure III-1: Data coverage of AVIRIS and LiDAR sensor over the Jesusita fire area that is included in this 

research.  The whole fire scar and its surrounding area are covered by AVIRIS. LiDAR covers the red part of 

the fire scar and green part outside the fire scar. 
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Figure III-2: Flow chart of processing approach. 
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A. NBR Based Fire Severity 

Remote sensing data have been used to calculate NBR with near-infrared and short-wave 

infrared bands (Escuin et al., 2008). The temporal difference between the pre- and post-fire 

NBR values is called the differenced Normalized Burn Ratio (dNBR), which represents the 

burned area from unburned surroundings by a scaled index of the change caused by fire. The 

dNBR is widely used to assess landscape-level fire severity (Lutes et al., 2007). 

Hyperspectral data, such as that provided by AVIRIS, have been used to validate 

assumptions about the response sensitivity of Landsat bandwidths to burn severity (van 

Wagtendonk et al., 2004). NBR for AVIRIS is calculated using band 47 and 210 at 

wavelength of 788 and 2370 nm as: 

𝑁𝐵𝑅𝐴𝑉𝐼𝑅𝐼𝑆 =
𝑅47 − 𝑅210
𝑅47 + 𝑅210

 

While dNBR for burn severity is calculated as: 

𝑑𝑁𝐵𝑅𝐴𝑉𝐼𝑅𝐼𝑆 = 𝑁𝐵𝑅𝑝𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡 

The reflectance differences in each channel quantified the spectral response over the time 

interval and indicated the degree of spectral change due to the fire. Temporal response in 

apparent reflectance was measured from pre-fire to post-fire for high severity, moderate 

severity, low severity, and unburned areas. These four severity regions are mainly used for 

grouping pixels for comparison, not as a rigorous a priori definition of the severity.  

The images used for dNBR calculation were 03/2009 and 08/2009. Ranges of different levels 

of burn severity were selected based on USGS FIREMON (Lutes et al., 2007). The severity 

levels are somewhat flexible with a shift of 0.01 to 0.1, due to the image-timing factor. When 
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the post-fire scene is drier than the pre-fire scene, the burn-unburned threshold tends to 

increase because of phenology. There is also considerable confusion between low severity 

burned pixels and dry unburned pixels (Lutes et al., 2007). This is actually the case for a 

Mediterranean climate with a dry 2009 summer. The dNBR in north Mission Creek Canyon 

outside of the fire scar was also calculated, where no fire occurred three years prior to 

Jesusita Fire (Figure III-3).  As can be observed in the histogram, non-fire related changes 

caused the dNBR to increase by 0.1. As a result, the upper end of the unburned category was 

raised from 0.1 to 0.2 for this study (Table III-1). 

 

Figure III-3: dNBR outside Jesusita Fire, which reveals the NBR value change result from phenology factor 

rather than wildfire. 
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Table III-1: The original dNBR levels definition (Lutes et al., 2007) and the modified  levels with 

corresponding dNBR value. 

Original dNBR Level  Modified dNBR Level Burn Severity 

-0.5 to 0.1 -0.4 to 0.2 Regrowth or Unburned 

0.1 to 0.27 0.2 to 0.37 Low Severity burn 

0.27 to 0.66 0.37 to 0.76 Moderate Severity burn 

0.66 to 1.2 0.76 to 1.3 High Severity burn 

 

Within the Mission Creek and Rattlesnake Canyon watershed, the 2009 Jesusita Fire event 

can be clearly detected using AVIRIS. Following the fire, the watershed largely transformed 

into high severity fire scar (Figure III-4). A visual analysis indicates that riparian areas were 

more protected from the fire, with lower severity present after the event. Uplands appear 

more uniformly charred. 
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  (A) 

        (B) 

Figure III-4 

A: Fire severity derived from dNBR. Most of the Jesusita fire scar is defined by high severity. The transparent 

hillshade area shows the LiDAR data coverage area. There is a gap with no data between the two AVIRIS flight 

lines. 

B: A monochrome dNBR map overlaid on the whole LiDAR DEM, which shows pattern of the fire severity in 

terms of topography. The fire scar boundary matches well with the dramatic change in dNBR in the northern 

part of this map. 
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The dNBR indicates that more than 50% of the whole Jesusita fire scar area had high burn 

severity (Table III-2). The average burn level of the whole fire scar was less severe than the 

area covered by LiDAR.  

Table III-2: Area percentage of different fire severity defined by dNBR in the whole Jesusita fire scar and 

LiDAR covered fire scar. 

Burn severity level 

from dNBR 

Whole fire scar  

(35.40 km^2) 

LiDAR coverage in fire scar 

(9.75 km^2) 

Unburned 7.03% 4.23% 

Low 7.83% 4.88% 

Moderate 34.40% 24.50% 

High 50.74% 66.40% 

 

B. MESMA Based Fire Severity 

An AVIRIS image is likely to have a mixture of ground cover types with a spatial resolution 

of 7.5~18 meters. Traditional linear spectral mixture analysis (LSMA) only allows one 

spectrum for each endmember. MESMA resolves this restriction by allowing endmembers to 

vary on a pixel basis (Roberts et al., 1998). The capability of testing multiple models on each 

image pixel can map more land materials while minimizing pixel fraction errors by choosing 

the best-fit model for every single pixel. Regarding the focus or fire burn severity in this 

study, the endmembers used included green vegetation (GV), non-photosynthetic vegetation 

(NPV), ash and soil. The MESMA procedure here consisted of three steps: 1) building a 

spectral library from AVIRIS images; 2) endmember optimization for the final spectral 

library; 3) AVIRIS image unmixing. All of these approaches were done with the 

Visualization and Image Processing for Environmental Research (VIPER) tools software 

(Quintano et al., 2013; D. Roberts, Halligan, & Dennison, 2007; Veraverbeke et al., 2012). 
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1. Building the spectral library:  

The spectra retrieved from the AVIRIS image were used as endmember candidates (image 

endmember). Considering phenological variability present in images acquired over different 

dates, two libraries with ash, GV, NPV and soil were developed: a spring library from June 

2009 that was applied to images between March and June, and a summer library from August 

2009 applied to July to November images. 

2. Endmember optimization: 

The accuracy of a mixing model depends  highly on the quality of endmembers (Tompkins et 

al., 1997). In this study, three techniques were applied to identify those candidate endmember 

spectra that are most representative of a specific class and least likely to confuse with a 

different class. These methods included: 1) Count- based Endmember Selection (CoB): 

endmembers are selected that model the greatest number of endmembers within their class 

(Roberts et al., 2003). 2) Endmember Average RMSE (root mean squared error) (EAR): 

endmembers are selected that produce the lowest RMSE within a class (Dennison & Roberts, 

2003a, 2003b); and 3) Minimum Average Spectral Angle (MASA): endmembers are selected 

that have the lowest average spectral angle (Dennison, Halligan, & Roberts, 2004). After the 

optimization process, each ground cover type in each library had less than or equal to six 

sample spectra (Figure III-5). 
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Figure III-5: Endmembers spectra of spring and summer library derived from AVIRIS image acquired on June 

2009 and August 2009, respectively. 
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3. AVIRIS image unmixing: 

Every pixel in the AVIRIS image was modeled as a linear combination of the four fractional-

cover types mentioned previously: GV, NPV, ash and soil (Quintano et al., 2013). The 

images were unmixed into those fractions and shade using MESMA. The criteria of 

selections were: 0 and 1 as the minimum and maximum permissible fraction values; 0.8 as 

maximum permissible shade fraction value, and 0.025 as maximum permissible RMSE 

(Roberts, Quattrochi, Hulley, Hook, & Green, 2012; Roberts et al., 2003). Multiple models 

were tested on a pixel basis, and the model with the lowest RMSE was selected. A pixel 

would be marked as unclassified if the RMSE exceeded the threshold.  

C. DEM Based Soil Surface Moisture Model 

Topographic features may influence surface runoff, subsurface water movement, the 

development of zones of surface saturation, and the distribution of soil water content across a 

catchment (Chirico, Western, & Grayson, 2005; Moore, Burch, & Mackenzie, 1988; 

Western, Grayson, Bschl, & Willgoose, 1999; Zaslavsky, 1981). The topographic wetness 

index (TWI), which combines local upslope contributing area and slope, is commonly used 

to quantify topographic control on hydrological processes (Beven & Kirkby, 1979; Moore, 

Grayson, & Ladson, 1991). In many cases, it is not possible to carry out direct measurements 

of these environmental processes because of physical, time, or economic constraints. If 

elevation data are accessible through LiDAR, topographic attributes can be readily calculated 

without these constraints. TWI, a unitless index that estimates soil water content and surface 

saturation zones, can be calculated from a DEM as: 
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𝑤 = ln(
𝐴𝑠
𝑡𝑎𝑛𝛽

) 

Where 𝐴𝑠 is defined as the upslope area draining across a unit width of contour. It measures 

surface or shallow subsurface runoff at a given point on the landscape, which integrates the 

effects of upslope contributing area, together with catchment convergence and divergence on 

runoff; β is slope. 

First, the DEM was aggregated to 12-meter resolution to remove delicate sinkholes and 

depressions, and the TWI was generated based on that (Figure III-6). The pattern of the TWI 

image matches the actual river map acquired from the Santa Barbara Coastal Long Term 

Ecological Research (SBC LTER: http://sbc.lternet.edu/) well, especially for those area with 

high TWI. Moreover, it provides more detail of the estimated soil moisture based on the local 

topography.  

    

Figure III-6: 3D visualization of the 2009 DEM derived TWI.  

D. Data Fusion Approach 

Data fusion deals with association, correlation, and combination of information and data 

from different sources. In this study, data derived from both AVIRIS and LiDAR were 

http://sbc.lternet.edu/
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integrated into a single image for further analysis (Figure III-2). Since the airborne LiDAR 

did not cover the whole fire scar area, only the area within the Mission Creek Watershed that 

overlapped with the LiDAR area in 2009 is included (Figure III-1). These AVIRIS image and 

LiDAR data were not collected on the exact same day. However, there was not enough 

precipitation during that time gap to greatly change the landscape or produce significant 

biomass increase, and very little growth typically takes place prior to October due to dry 

summers (Table III-3). Therefore, it is legitimate to treat the LiDAR derived CHM as if it 

was acquired on the same date as AVIRIS. Precipitation and fog data were collected from 

Coal Oil Point Reserve (http://www.geog.ucsb.edu/ideas/) which lies 25 km to the west of 

Mission Creek (Roberts, Bradley, Roth, Eckmann, & Still, 2010). As for the TWI, the 

average change from 2009 to 2010 (first year after the fire event) in the LiDAR fire scar was 

0.001, with 60.92% of the pixels remaining unchanged. So, the 2010 TWI was also used for 

AVIRIS images later than 2010. 

The fusion images included are the four MESMA fraction bands, the dNBR band, and the 

two LiDAR rasterized images CHM and TWI (Figure III-7). Three different fusion images 

for different dates were created based on data availability (Table III-4). All pixels were 

resized to 1m resolution, and projection converted to NAD83 / UTM zone 11N.  

The next chapter will focus on integrating those hyperspectral and LiDAR based metrics. The 

CHM will be an extra input for the dNBR and MESMA for detecting dead trunks, also 

extending the traditional dNBR based fire severity definition. The TWI would be an indicator 

to examine how soil water content could affect the fire severity and post-fire recovery 

process.  

http://www.geog.ucsb.edu/ideas/
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Table III-3: The amount of precipitation and fog moisture accumulation between the gap of AVIRIS and 

LiDAR acquisition in 2009 and 2010. 

Year 

AVIRIS 

Date 

LiDAR 

Date 
Precipitation 

(mm) 

Fog 

(mm) 

2009 August December 138.938 56.1 

2010 October August 69.858 30.2 
 

Table III-4: Components of fusion images. 

Fusion Image MESMA dNBR CHM TWI 

2009 Image ✓ ✓ ✓ ✓ 

2010 Image ✓ X ✓ ✓ 

2009 - 2013 time series image ✓ X X ✓ 

 

 

Figure III-7: The fusion image bands.  
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IV. Results and Discussion 

A. A dNBR-MESMA-CHM Combined Fire Severity Definition 

In addition to the spectrally based fire severity alone (Table IV-1), the CHM derived from 

LiDAR data provides information on vegetation height metrics. A comparison was made 

between the dNBR level and CHM values both inside and outside of the fire scar area (Figure 

IV-1, A and C). Note that elevated dNBR outside of the fire scar does not indicate the 

existence of fire, but acts as a control group and quantifies the impact of phenology on 

dNBR. The Mediterranean summer dryness was a major contributor to elevated severity both 

inside and outside the fire scar, which requires a control group. The plants outside the fire 

scar that showed moderate or high dNBR are probably drought deciduous shrubs, such as 

coastal sage, which senesces between March and August (Harrison, Small, & Mooney, 

1971).  

Table IV-1: A summary of area with different dNBR level inside and outside the fire scar covered by LiDAR. 

The “burn” outside fire scar is more of an artifact caused by phenological dryness during summer, although a 

small portion of that could be caused by ash flowing away from the fire event. 

LiDAR 

coverage area 

Inside fire scar: 9,731,319m^2 Outside fire scar: 2,924,970m^2 

(control group) 

Area (m^2) Area (%) Area (m^2) Area (%) 

Unburned dNBR 411,542 4.23% 2,396,387 81.93% 

Low dNBR 474,766 4.88% 452,568 15.47% 

Mod dNBR 2,383,732 24.50% 74,545 2.55% 

High dNBR 6,461,279 66.40% 1,302 0.04% 
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Figure IV-1: Different CHM heights and its corresponding dNBR level within LiDAR covered places. Statistics 

are presented in percentage and actual cover area in m^2. Results are divided into area inside and outside the 

fire scar, the whole region (A and C) and riparian zone (B and D). The definition of riparian zone is discussed in 

section IV-B (Figure IV-6). 
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These statistics show that the fire scar was dominated by a high dNBR level. In addition, a 

certain portion of high dNBR area retained above ground vegetation structure after the fire, 

including trunks taller than 10m. The area outside of the scar was mostly unburned, with 

minor areas of low and moderate dNBR caused by phenological dryness. Similar patterns can 

be observed in the comparison between MESMA fractions and CHM in 2009 (Figure IV-2, 

A and C), where a certain amount of vegetation structure remains in ash-dominated places.    
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Figure IV-2: Different CHM heights and its corresponding MESMA domination type within LiDAR covered 

places in both 2009 (A and C) and 2010 (B and D). Statistics are presented in percentage and actual cover area 

in m^2. “Domination” is defined by more than 75% more a certain fraction type. Ash with zero CHM is 

excluded in the chart. 
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A typical height of Chaparral species in California is around 5m. If 5m is set as a threshold 

for the CHM, many pixels in the fire scar taller than this threshold are still dominated by ash 

or recorded as high burn severity in dNBR. However, the portions of those that exceed the 

5m threshold and have high burn severity consist of less than 1% outside of the fire scar 

(Table IV-2). The distribution of pixels that meet all the three criteria, i.e. ash dominated, 

high dNBR and CHM > 5m, are heavily concentrated adjacent to the riparian zone and its 

adjacent valley, i.e. high TWI places (Figure IV-3).  

Table IV-2: Percentage of pixels with CHM > 5m that are dominant by ash or with high dNBR. 

  Inside scar (m^2) Outside scar (m^2) 

Total LiDAR coverage area 9,731,319 2,924,970 

CHM > 5m, in ash dominated area 851,678 8.75% 55 0.00% 

CHM > 5m, in high burn severity area 965,514 9.92% 17 0.00% 

CHM > 5m, both ash dominated & high dNBR 775,323 7.97%   

 

 

Figure IV-3: Distribution of pixels with CHM > 5m, ash dominated and high dNBR in the LiDAR covered fire 

scar area. 
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It is obvious that a certain amount of vegetation inside the fire scar is completely burned, but 

the trunk and branches remain above ground. Hyperspectral spectroscopy is not able to detect 

this alone without the CHM derived by LiDAR. A new method of burn severity definition is 

required to consider all those factors.  

According to the dNBR-MESMA-CHM statistics (Table IV-3), the ash fraction in high 

dNBR area is high and consistent with a mean value of 0.945 and RSD (relative standard 

deviation) of 0.177. Moreover, the mean CHM of high dNBR pixels is the smallest (3.398m) 

among all dNBR levels, while the RSD is the highest (1.574), which quantifies the high 

variability of bare earth and dead trunks in the fire scar (Figure IV-1.C). In moderate dNBR 

area, the ash fraction is still high (mean 0.607, RSD 0.679) with large variation on CHM as 

well (RSD 1.386). As high and moderate dNBR consist of more than 90% of the area (Table 

IV-1), more detailed burn level separation is needed. 

Also, a high severity does not guarantee a landscape is stripped of biomass, especially when 

that area was densely vegetated prior to the fire (Miller & Thode, 2007). As a result, a post-

fire MESMA fraction map will be a significant input for the new fire severity map.  
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Table IV-3: Different dNBR level with its corresponding CHM and MESMA fraction statistics inside the fire 

scar covered by LiDAR. 

 dNBR 

level 

Unburned 

dNBR 

Low 

dNBR 

Mod 

dNBR 

High 

dNBR 

Mean 

CHM (m) 5.354 4.226 2.680 2.159 

Ash 0.093 0.173 0.607 0.945 

GV 0.587 0.330 0.067 0.006 

NPV 0.266 0.398 0.255 0.042 

Soil 0.054 0.099 0.071 0.007 

Standard 

deviation 

CHM (m) 4.892 4.378 3.715 3.398 

Ash 0.226 0.290 0.412 0.167 

GV 0.331 0.302 0.149 0.031 

NPV 0.307 0.339 0.360 0.153 

Soil 0.166 0.244 0.206 0.055 

Relative 

standard  

deviation 

CHM 0.914 1.036 1.386 1.574 

Ash 2.430 1.676 0.679 0.177 

GV 0.564 0.915 2.224 5.167 

NPV 1.154 0.852 1.412 3.643 

Soil 3.074 2.465 2.901 7.857 

 

Here, a new dNBR-MESMA-CHM based fire severity definition is proposed (Table IV-4). 

The high severity dNBR area with zero CHM and dominated by ash (ash fraction ≥ 0.75) is 

categorized as extreme severity due to the eradication of all vegetation structure above 

ground. As for moderate dNBR level, there is more ambiguity from the spectral perspective 

due to a mixture of ash and significant increase in NPV, which is a typical case for shrub 

crown mortality when CHM is larger than 0. In this case, the moderate level is divided into 

moderate-high (CHM = 0) and the moderate-low (CHM > 0). The fire map produced from 

this new severity definition (Figure IV-4) provided better level resolution for moderate and 

high severity.  
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Table IV-4: A dNBR-MESMA-CHM based fire severity definition and corresponding area of each fire severity 

level, as of August 2009. The “burn” outside fire scar is a control group as (Table IV-1). 

dNBR-

MESMA-

CHM 

Severity 

Criteria 

Inside fire scar: 

9,731,319m^2 

outside fire scar: 

2,924,970m^2  

 (control group) 

Area 

(m^2) 

Area 

(%) 

Area 

(m^2) 

Area 

(%) 

Unburned -0.4 ≤ dNBR ≤ 0.2 411,542 4.23% 2,396,387 81.93% 

Low 0.2 < dNBR ≤ 0.37 474,766 4.88% 452,568 15.47% 

Mod-low 
0.37 < dNBR ≤ 0.76, 

CHM > 0 
1,295,143 13.31% 41,625 1.42% 

Mod-high 
0.37 < dNBR ≤ 0.76, 

CHM = 0 
1,088,589 11.19% 32,920 1.13% 

High 
0.76 < dNBR ≤ 1.3,  

Ash < 0.75 or CHM > 0 
3,313,940 34.05% 1,148 0.04% 

Extreme 
0.76 < dNBR ≤ 1.3,  

Ash ≥ 0.75, CHM = 0 
3,147,339 32.34% 154 0.01% 
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Figure IV-4: Jesusita fire map with the dNBR-MESMA-CHM based severity definition.  

B. Topography and Fire Severity 

Topographic factors are related to fire severity and vegetation structure survival, as shown in 

the CHM model derived from LiDAR (Figure IV-5). More biomass survived at the bottom of 

the valley or riparian area after the fire. In order to analyze the riparian-zone effect, a 50-

meter radius buffer zone was developed along the river line (Figure IV-6). 
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Figure IV-5: CHM model overlaid on DEM, with an orthophoto view (left) and 3D view (right).  

 

Figure IV-6: 50-meter radius riparian zone (light blue) derived from rivers (dark blue). The area outside Jesusita 

fire scar is overlaid with light green. 

The distribution of the CHM in different dNBR level in the fire scar riparian zone shows 

large differences from the fire scar overall average (Figure IV-1), with a higher proportion of 

the vegetation structure over 10 meters in the unburned category. Outside of the fire scar, 

there is only a small difference between the riparian zone and overall average.  

Applying a similar analysis using TWI (Figure III-6), a similar result was found (Figure 

IV-7). In the fire scar, more of the GV dominated area is preserved in the landscape with 
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TWI higher than 10, compared to the area outside the fire scar. If the TWI = 10 threshold is 

applied to the whole area, it is noticeable that a different level of TWI does produce large 

differences in the landscape, in terms of MESMA fraction percentage and CHM after the fire 

(Table IV-5). The largest differences come in Ash (0.399) and CHM (5.443m). For 

comparison, not much of a difference is shown in the area outside of the fire scar with 

different TWI levels. The mean and RSD of TWI tends to decrease as severity increases from 

unburned to the extreme level (Table IV-6), with an exception in the high level. This results 

from the CHM > 0 criteria in this level (Table IV-4), since many of the dead trunks standing 

after the fire come from the comparatively high TWI area. 

 

Figure IV-7: Different TWI and its corresponding MESMA domination type within LiDAR covered places in 

both 2009 (A) and 2010 (B).  
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Table IV-5: Average values of various data both inside and outside the fire scar, with and without the TWI>10 

threshold. 

Data Inside Fire Scar Outside Fire Scar 

Overall average TWI>10 average Overall average TWI>10 average 

Ash 0.683 0.284 0.030 0.032 

GV 0.070 0.334 0.599 0.577 

NPV 0.127 0.296 0.309 0.272 

Soil 0.031 0.013 0.044 0.068 

dNBR 0.803 0.525 0.115 0.076 

CHM(m) 2.493 7.936 2.293 4.688 

Table IV-6: Mean, standard deviation and relative standard deviation for TWI in different fire severity levels 

inside the LiDAR fire scar. 

 fire severity level unburn low mod_low mod_high high extreme 

TWI 

Mean 5.69 5.16 4.73 4.41 4.58 4.41 

SD 2.95 2.55 2.18 1.45 1.66 1.24 

RSD 0.52 0.49 0.46 0.33 0.36 0.28 

 

C. Post-fire Recovery  

Based on the dominant MESMA fraction type and CHM value in 2010 (Figure IV-2, B and 

D), green vegetation was increasing and short GV was balancing out the percentage of high 

GV compared to 2009 (Figure IV-2, A and C). The trend of regrowth is also clearly shown 

from a TWI perspective. There was significant amount of Ash dominated area with TWI 

value around 5 in 2009, but most of it turned into GV in 2010 (Figure IV-7). As a control 

group, there was no similar change pattern outside the fire scar.  

A series of multi-temporal MESMA fraction images were derived from AVIRIS data (Figure 

IV-8) with fraction area percentage displayed in a timeline (Figure IV-9). Note that 

phenology could affect the recovery pattern since the images were acquired in different 

seasons. Major parts of the green vegetation did not recover until 04/2010, probably resulting 
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from the above average rainfall earlier that year. High levels of dead vegetation and soil in 

2013 indicate that the 2012-2015 California droughts are slowing down the landscape from 

recovering to pre-fire conditions.  

Note that there was some potential for human modification of post-fire recovery, e.g. the 

plane hydromulch applied in September 2009. The hydromulch is made up of recycled 

materials, and the goal is to stabilize the land and prevent erosion (Wohlgemuth, Beyers, & 

Robichaud, 2011). However, the covered area was only a small portion of the fire scar, and it 

did not overlap with the LiDAR covered (Figure IV-10). 
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Figure IV-8: MESMA fraction map on multiple dates before and after the Jesusita fire. Significant parts of the 

06/2009 image is unclassified due to smoke from the active fire. 

 

Figure IV-9: MESMA fraction map on multiple dates in the whole fire scar area. 
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Figure IV-10: This map2 shows areas in orange that were covered with hydromulch. The mulch was only 

applied to slopes between 30-60 percent, which is a small portion of the fire scar. Minor overlap occurs with the 

LiDAR covered area.  

In order to examine topographic effects on post-fire recovery, the area covered by LiDAR 

was analyzed (Figure IV-11.A), which shows a similar trend compared to the whole fire scar 

(Figure IV-9). The area outside of fire scar acts as a control group, which reveals the 

phenology effect, e.g. a boost of NPV amount in August 2009 (Figure IV-11.C). GV fraction 

also varies among seasons, with a peak in June or July right before the summer drought 

(Table IV-7). GV fraction in the same season also varies among different years, resulting 

from different amounts of precipitation (Table IV-8). Inside the fire scar, the area with a TWI 

greater than 10 was less affected by the fire event (Figure IV-11.B) and returned to the pre-

fire level at a faster rate. In July 2011, the TWI ≥ 10 areas inside the scar already reached 

                                                 
2  Map created by Ray Ford (http://www.independent.com/news/2009/aug/27/county-unveils-hydromulch-

program-jesusita-burn-ar/). 
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over 64.9% percent GV cover, while the whole scar average was 52.2%. As a result, TWI 

does affect recovery rate. 
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Figure IV-11: MESMA fraction map on multiple dates in the LiDAR area, including inside the fire scar (A), 

inside fire scar with TWI ≥ 10 (B) and outside fire scar (C). The sum of all MESMA fractions in June 2009 is 

low due to a significant amount of smoke and cloud in the scene, which results in large unclassified areas. 
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Table IV-7: Ash and GV fraction of different area, in multiple years. Spring (March and April) data are 

highlighted for comparison. 

  Pre-fire Post-fire   
 LiDAR covered area Mar-09 Aug-09 Apr-10 Jul-11 Apr-13 Jun-13 

Ash 

fraction 

Inside scar 0.9% 67.3% 14.0% 8.3% 0.0% 0.1% 

Inside scar, TWI ≥ 

10 

0.3% 31.3% 6.4% 10.2% 0.0% 0.2% 

Outside scar 0.8% 1.5% 1.3% 0.4% 0.1% 0.1% 

GV 

fraction 

Inside scar 73.3% 6.8% 49.5% 52.2% 58.4% 68.7% 

Inside scar, TWI ≥ 

10 

54.2% 28.1% 52.5% 64.9% 49.0% 81.9% 

Outside scar 66.5% 60.8% 57.0% 67.0% 62.3% 67.5% 

 

Table IV-8: Precipitation and fog data between different AVIRIS acquisition dates, recorded from Coal Oil 

Point Reserve (http://www.geog.ucsb.edu/ideas/). 

 
Duration sum (mm) Daily average (mm) 

 
rain fog rain Fog 

Aug-09 
    

 
473.9 25.6 0.0199 0.00108 

Apr-10 
    

 
664.2 59.1 0.0155 0.00138 

Jul-11 
    

 
507.2 50.2 0.00834 0.00083 

Apr-13 
    

 
1.778 2.4 0.00032 0.00043 

Jun-13 
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Conclusion 

By combining airborne hyperspectral and LiDAR remote sensing data, the 2009 Jesusita Fire 

event can be clearly detected. The MESMA fraction map together with CHM and DEM 

provide more nuanced and detailed analysis of the fire severity and post-fire recovery.  

The dNBR-MESMA-CHM based fire severity provided a better insight into fire severity 

compared to the traditional dNBR metric. dNBR is only able to provide the cover change 

during the fire, while not revealing the actual land-cover fractions and vertical structure after 

the event. More than 60% of the fire scar ended up in high biomass lost or ash dominated 

category, while half of area retained some dead trunks. The LiDAR metric is necessary to 

separate half of the original “high severity” areas into the new “extreme severity” areas.   

The riparian zone and the areas with high surface soil moisture protected the biomass from 

fire. For image pixels with TWI larger than 10, the GV fraction average was 0.334 

comparing to the whole fire scar average 0.070. The average of CHM was also higher, 

increasing from 2.493m to 7.936m. During the post-fire recovery process, the GV and ash 

fraction in those areas also returned to the pre-fire level at a faster rate compared to the drier 

landscape. 

There are limitations of this research, as a pixel based CHM map can produce more error 

when the canopy is spread across several pixels. This could potentially be solved by 

separating individual vegetation crowns from LiDAR point clouds and analyzing biomass on 

an object basis. However, a fieldwork measuring detailed ground vegetation metrics would 

be demanded to verify such delicate algorithms. In addition, it would have been highly 
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beneficial to have pre-fire LiDAR, to evaluate height change following fire. Some high 

severity areas with low CHM may have had low CHM prior to the fire. 
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