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Abstract

Memory Page Stability and its Application to Memory

Deduplication

Karim Yehia Elghamrawy

In virtualized environments, typically cloud computing environments, multiple

virtual machines run on the same physical host. These virtual machines usually

run the same operating systems and applications. This results in a lot of dupli-

cate data blocks in memory. Memory deduplication is a memory optimization

technique that attempts to remove this redundancy by storing one copy of these

duplicate blocks in the machine memory which in turn results in a better utiliza-

tion of the available memory capacity.

In this dissertation, we characterize the nature of memory pages that con-

tribute to memory deduplication techniques. We show how such characterization

can give useful insights towards better design and implementation of software and

hardware-assisted memory deduplication systems. In addition, we also quantify

the performance impact of different memory deduplication techniques and show

that even though memory deduplication allows for a better cache hierarchy perfor-

mance, there is a performance overhead associated with copy-on-write exceptions

that is associated with diverging pages.
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We propose a generic prediction framework that is capable of predicting the

stability of memory pages based on the page flags available through the Linux

kernel. We evaluate the proposed prediction framework and then discuss various

applications that can benefit from it, specifically memory deduplication and live

migration.
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Chapter 1

Introduction

In this chapter, we give a brief introduction to virtualization and memory

deduplication. We also present the outline of the dissertation and our contribu-

tions.

1.1 Hardware Virtualization

Hardware virtualization is the technology that allows the creation of virtual

machines. These virtual machines act as if they are real physical machines. They

run on top of a software layer called the virtual machine monitor or the hypervisor.

This software layer separates the virtual machines from the underlying hard-

ware resources which allows for better utilization of the hardware resources, better

isolation among virtual machines, easier and faster portability, and fault tolerance.

All of these features made virtualization the enabling technology of cloud comput-

ing.
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There are different types of hardware virtualization:

• Full virtualization: The guest operating system is not aware that it is run-

ning in a virtualized environment and it runs unmodified on the virtual

machine.

• Paravirtualization: The guest operating system is aware that it is running

in a virtualized environment. It is modified in a way that allows better

performance in such environments.

1.2 Memory Deduplication

In virtualized environments, typically cloud computing environments, there

are multiple virtual machines that run on the same physical host. These virtual

machines often run similar operating systems and applications which may result

in a lot of identical data blocks in the machine memory.

Efficient management of the available memory system is crucial. The memory

system dominates the cost of the whole system and it consumes the majority of

the power. Memory deduplication allows for efficient utilization of the available

memory capacity by storing only one copy of the duplicate memory blocks in the

machine memory.
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Due to its effectiveness, memory deduplication techniques are widely used in

popular hypervisors, and heavily studied in research. In the next chapter, we

discuss in detail how memory deduplication works.

Specifically, memory deduplication allows for:

• Better utilization of the virtual machine memory. For example, all zero

pages are reduced to only one zero page in the host memory allowing other

virtual machines to use the available memory that is not otherwise used.

• Better consolidation since reclaiming memory will allow more virtual ma-

chines to run on the same host. This increases the processor utilization and

the overall performance of the system.

1.3 Thesis Statement and Dissertation Roadmap

Data similarity in virtualized environments can be exploited to use the avail-

able memory capacity efficiently if the data is relatively stable. We investigate

the nature of this similarity and propose a generic prediction framework that can

efficiently predict relatively stable pages.

This dissertation presents the following contributions:

1. We characterize the nature of identical and similar memory pages based

on the origin and stability of these pages. We explore the importance of

3



page stability for memory deduplication and we also characterize and quan-

tify the different performance aspects associated with memory deduplication

techniques.

2. After discussing the importance of page stability for memory deduplication,

we propose a generic prediction framework that can predict the stability of

memory pages based on the page flags that are already available through

the Linux kernel.

3. We explore, study, and evaluate some applications that can benefit from the

proposed prediction framework. Specifically, we thoroughly investigate how

the proposed prediction framework can improve memory deduplication and

live migration techniques.

The rest of the dissertation is laid out as follows: Chapter 2 gives an overview

of various memory deduplication techniques and characterizes the nature of data

similarity in memory and the performance impact of memory deduplication. In

chapter 3, we characterize the stability of memory pages based on their kernel

page flags and propose a generic stability prediction framework that can pre-

dict relatively stable memory pages. In chapter 4, we discuss and evaluate some

applications that can benefit from the prediction framework proposed. Finally,

Chapter 5 concludes our work and discusses future work.
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Chapter 2

Characterization of Memory
Similarity in Virtualized
Environments

“Share our similarities, celebrate our

differences.”

— M. Scott Peck

Memory systems dominate the system cost so it is crucial to utilize the avail-

able memory capacity efficiently. In virtualized environments, virtual machines

running on the same physical host often run identical or similar operating systems

and applications. This results in identical blocks of data in the physical memory.

Memory deduplication is a widely used technique in virtualized environments that

is used to reduce the memory footprint of virtual machines by eliminating these

redundant blocks and storing only one copy of them in the machine memory. In

this chapter, we give a general overview of software-based and hardware-assisted

5



memory deduplication techniques, characterize the nature of the pages involved in

memory deduplication, and quantify the performance impact of such techniques.

2.1 Introduction

The memory system is generally the most expensive component of computing

systems and hence an efficient utilization of the available memory capacity is

very important. Memory deduplication is a memory optimization technique that

tries to reclaim memory capacity by sharing identical blocks of data. Memory

deduplication is already adopted by popular hypervisors [4, 103] and there is a

lot of work proposed that aims at extending its functionality or enhancing its

performance [70, 69, 20, 33, 91, 71]. Some of the ideas suggested are based on

software only [70, 69, 20, 33, 71]. Others rely on hardware assistance [91]. We

believe that a deeper understanding and characterization of the nature of these

identical memory blocks can provide some useful insights that can be exploited to

enhance the design and implementation of memory deduplication techniques.

The rest of the chapter is laid out as follows: Section 2.2 gives a brief overview

of memory deduplication. In section 2.3, we characterize the nature of identical

memory blocks in virtualized environments. Section 2.4 characterizes the perfor-

mance implications of memory deduplication. Finally, section 2.5 concludes this

chapter.
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2.2 Background

This section gives an overview of memory deduplication techniques. Mem-

ory deduplication techniques can be classified based on their implementation to

software-only and hardware-assisted techniques. They can also be classified based

on the granularity of sharing. The most popular and commercially adopted dedu-

plication techniques use page-size granularity for sharing due to the simplicity of

its implementation. However, sub-page granularity might lead to more memory

savings than a full-page granularity at the expense of a more complex imple-

mentation. In this section, we will introduce a candidate memory deduplication

technique for each of the aforementioned classifications: a software-based memory

deduplication at a page granularity, a software-based memory deduplication at a

sub-page granularity, and a hardware-assisted memory deduplication. We start

by discussing content-based page sharing which is the most widely used technique

for memory deduplication and it relies on sharing identical pages. Afterwards, we

talk about how the idea of sharing identical pages was extended in the Difference

Engine [33] to allow for sharing pages at a sub-page granularity. After we discuss

these software-based mechanisms and illustrate their advantages and shortcom-

ings, we talk about Page Overlays [91] which is a hardware-assisted mechanism

that was proposed to alleviate the shortcomings of software-only memory dedu-

plication.

7



2.2.1 Content-based memory sharing

Content-based memory sharing is a memory deduplication technique that was

introduced by VMware [103]. The basic idea is to identify duplicate memory pages

at run time through the hash values of the content of the page [35, 36]. The hash

value is used to index a hash table that is maintained by the VMware ESX server.

If a collision happens, this indicates that there is a possibility that the pages in the

hash table entry can be identical to the colliding page. A byte-by-byte comparison

ensues to detect duplicate pages. Figure 2.1 illustrates the idea of content-based

memory sharing.

If a duplicate page is found, then a page can be shared by updating the page

table such that all identical pages are mapped to the same machine address.

Moreover, these pages are also marked as read-only. Any writes to shared pages

are handled by a copy-on-write exception.

The basic idea of copy-on-write was introduced in [11]. The general idea of

copy-on-write is to share identical objects instead of creating identical copies.

One of the most popular applications of the copy-on-write technique in the Linux

operating system [32, 62, 14, 98] is the fork system call. The fork system call is

used to create a process that is an exact copy of the process that is executing the

fork. The created process is called the child process and the process creating it

is called the parent process. To speed up the creation of the child process, Linux

8
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Figure 2.1: Memory Deduplication using a hash table. The content of the page

is hashed and checked against a hash table to identify duplicate pages. In the

figure, three pages have a hash h1 and two pages have a hash h2. If a duplicate

is found, the hypervisor maps the duplicate pages into the same host machine

memory frame. The figures show five pages from three different virtual machines

reduced to only two pages in the machine memory.
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shares the memory pages of the parent with the child by mapping the virtual

pages of the child to the same physical pages of the parent. These shared pages

are further marked as read-only. Any updates to these pages is handled by a copy-

on-write exception where a new private page is allocated and a corresponding page

table update is performed.

In [103], it was shown that sharing identical pages can reclaim up to 40% of

the machine memory for homogeneous workloads. Content-based memory sharing

is also used [4, 52, 20] in other open source hypervisors like Xen [6] and KVM [50].

One of the shortcomings of the copy-on-write mechanism is the performance

penalty of copy-on-write exceptions. A copy-on-write exception is handled in

two steps. First, a new free physical page is identified and then the content of

the original page is copied to the new page. Second, the virtual memory page

that received the write is remapped to the newly allocated physical page. Both

steps incur high latency and are on the critical path [10, 90, 87, 99, 101]. The

copy operation consumes high memory bandwidth [90] and remapping typically

requires a TLB shootdown [10, 99].

2.2.2 Difference Engine

We introduce the Difference Engine [33] as a candidate software-based memory

deduplication technique that aims at sharing memory at a sub-page granularity.
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The Difference Engine tries to extend content-based memory sharing by addi-

tionally sharing pages that are similar. Sharing similar pages is performed by

patching these pages against a reference page. A page is said to be similar to

another page if the patch size is less than half the size of the page. In addition

to patching similar pages, pages that have not been accessed for a long time are

further compressed. Figure 2.2 shows how the Difference Engine reclaims memory

through identical page sharing, similar page sharing, and compression.

Figure 2.2: The memory reclamation techniques employed by Difference Engine:

identical page sharing, similar page sharing through page patching, and compres-

sion. In this example, five physical pages are stored in less than three machine

memory pages for a savings of roughly 50% [33]

Identical page sharing is performed exactly as described previously. Memory

pages are scanned and hashed. Based on the hash value, an entry in the hash table

is checked for any collisions. If a collision occurs, a byte-by-byte comparison is

performed to detect if the page is identical. In the case of identical page detection,
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the page is merged and the page table entry for this page is updated such that

it points to the same machine memory address. The page is also marked as read

only and writes are handled through copy-on-write exceptions.

Similar page sharing is performed by maintaining another hash table that

is exclusively used for identifying similar pages. The Difference Engine hashes

two 64-byte blocks at two fixed locations in the page. Candidate similar pages

are detected by hashing the 64-byte blocks at these fixed locations and detecting

collisions.

Further, memory compression is used to compress pages that were not accessed

for a very long time to further decrease the memory footprint.

As mentioned earlier, sharing identical and similar pages leads to reclaiming

memory capacity at the expense of potential performance degradation due to

the exceptions that occur when a merged identical page is written to, or a simi-

lar/compressed page is accessed (read or write). For these reasons, the Difference

Engine uses a non-recently-used policy to choose pages that are good candidates

for sharing. This is implemented by using the Modified and Referenced bits in the

page table to track pages. All pages that are recently modified are ignored. Pages

that are recently accessed but not modified are good candidates for sharing and

being a reference page for similar pages. Pages that are not recently accessed are

considered for patching or compression.
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In summary, the Difference Engine allows for the possibility of achieving more

memory savings by sharing memory at a finer granularity than full page sharing.

However, the shortcomings of the idea are:

1. In addition to the copy-on-write exceptions associated with diverging iden-

tical pages, for patched pages even reads will cause an exception where the

page has to be unpatched before the reading proceeds. This is not the case

with identical page sharing where exceptions only happen in the occasion of

write accesses.

2. Frequently modified pages are ignored. A frequently modified page that

can benefit from sub-page granularity sharing (e.g. a page that frequently

modifies a fixed byte within the page) will not be considered to be a candi-

date for sharing. This is mainly related to the restrictions enforced by the

implementation.

To fix these shortcomings, hardware-assisted deduplication was proposed [91].

The main idea is to introduce some hardware modifications to manage memory

at a finer granularity. With hardware support, the performance overhead of copy-

on-write exceptions can be alleviated. This allows for sharing identical or similar

pages that are frequently modified. In the next section, we give a quick overview

of the page overlays.
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2.2.3 Page Overlays

In general, managing virtual memory [24, 29, 49] at a finer granularity (e.g.

cache granularity) can be useful for a multitude of applications. For example, these

benefits include: 1) Eliminating or reducing the performance penalties associated

with copy-on-write exceptions. 2) Fine-grained deduplication [21, 33] 3) Fine-

grained data protection [106] 4) Compression at the cache block level [26, 43, 82].

The page overlays [91] provides a hardware framework that enables managing

memory at a finer granularity. As shown in Figure 2.3, the framework allows a

virtual page to be mapped to a physical page and an overlay. An overlay has a

smaller size than a physical page and it contains only a subset of the cache blocks

of the page. As Figure 2.4 illustrates, Cache blocks that exist in the overlay have

higher precedence to the cache blocks existing in the physical page. That is, if a

cache block is required to be accessed, the overlay is searched first. Only cache

blocks that do not exist in the overlay are accessed through the regular physical

page.

Virtual Page

Physical Page Overlay

Mapping tables

Figure 2.3: The basic idea of the page overlays. A virtual page can be mapped to

a regular physical page and an overlay.
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Figure 2.4: The access semantics of the page overlays. The figure shows an

example of a page that consists of four cache blocks. Cache blocks that exist in

the overlay are accessed first. Cache blocks in the physical page are only accessed

when they do not exist in the overlay.

To check if a cache block is part of an overlay, the framework maintains a bit

vector of each virtual page called the overlay bit vector. Each bit in the bit vector

corresponds to a cache block and denotes whether the cache block is in the overlay

or not. This bit vector is also cached in the TLB to allow for a fast detection.

If a cache block was found to be in the overlay of a page, the machine address of

the cache block can be fetched through a dual-address mechanism. One address

for the processor caches called the Overlay Address and another for the actual

machine address which is called the Overlay Memory Store Address.

In the overlay address space, the size of an overlay is the same as the size of a

virtual page. This address space is taken from the unused physical address space.
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In this framework, the main memory stores both regular physical pages and

overlays. The overlays are stored in an overlay memory store (OMS). The OMS

stores the overlays in a compact way. Translating overlay addresses to real machine

addresses in the OMS is done through a mapping table called the Overlay Mapping

Table (OMT) which is stored in the memory controller. Figure 2.5 shows how

virtual memory is managed in the page overlays framework.

virtual address 

space

virtual page

physical address 

space

physical page

o
v
e
rl
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y
 

a
d
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ss
  

sp
a
c
e

overlay

Main Memory

physical page

OMS
overlay

OMT
page tables

Figure 2.5: The Figure shows how virtual memory is managed in the page overlays

framework. The overlays address space is part of the unused physical address

space. Overlays are mapped to the OMS through a mapping table, OMT, which

is stored in the memory controller.

In [91], it was suggested to use the page overlays framework for fine-grained

memory deduplication. This can be achieved by storing the differing cache blocks
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in the overlays. This technique has two advantages over the software implemen-

tations [33]. First, instead of patching, similar pages can just store their different

cache blocks in the overlays memory store. This allows for seamless penalty-

free access to the differing cache blocks whether the access is a read or write

without the performance hit caused by unpatching or copy-on-write exceptions.

Second, unlike software implementations, pages that are frequently modified can

contribute to further memory savings if the modification is limited within a few

cache blocks.

All of the above requires a deeper understanding and a thorough characteriza-

tion of the nature of identical and similar pages. This deep understanding might

give more insights about the usefulness of using these systems and/or better de-

sign or improved implementations of these systems. In the following sections, we

will try to analyze, characterize, and understand the nature of memory pages that

contribute to memory savings through deduplication.

2.3 Page Characterization

In this section, we try to characterize the nature of identical and similar mem-

ory pages. We assume a page size of 4 KB. We divide each page into 64 64-byte

blocks which is a typical cache granularity. Identical pages are pages that share

the same content. That is, all blocks of identical pages have the same data. We
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Table 2.1: Virtual Machine Configuration

VM1 Ubuntu 14 running the apache benchmark

VM2 Ubuntu 13 running the apache benchmark

VM3 Ubuntu 14 compiling the Linux kernel

VM4 Ubuntu 14 running redis benchmark

VM5 Ubuntu 14 running sysbench

define similar pages to be pages that have more than 32 blocks that have the

same data. In other words, similar pages have less than 32 differing blocks.

We start by introducing our proposed workload mixes that we use to charac-

terize the desired pages. Table 2.1 shows all the virtual machines, the operating

systems running on them, and the actual benchmark that is running on top of the

operating system. Each virtual machine is configured with 1 vCPU and 512 MB

of memory. Each workload mix is a combination of two virtual machines running

on the same host on top of KVM. Table 2.2 shows all the workload mixes. Work-

load mixes 1, 2, and 3 are the same as mixes 4, 5, and 6 with the only exception

of VM2 running on Ubuntu 13 instead of Ubuntu 14. The reason is we want to

test how introducing a slight operating system heterogeneity (a version change of

Ubuntu) will impact our characterization results.
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Table 2.2: Workload Mixes

Mix1 VM1 and VM3

Mix2 VM1 and VM4

Mix3 VM1 and VM5

Mix4 VM2 and VM3

Mix5 VM2 and VM4

Mix6 VM2 and VM5

Mix7 VM3 and VM5

Mix8 VM4 and VM5

2.3.1 Percentage of Identical and Similar Pages

We start by showing the percentage of identical and similar memory pages

for each of the workloads of Table 2.2. Figure 2.6 shows, for each workload,

the percentage of memory pages that are identical and those that are similar

to at least one other memory page. Even though Mixes 1,2, and 3 run the same

applications as Mixes 4, 5, and 6, it is obvious that introducing a small OS version

heterogeneity to the system decreases both the number of identical pages and

similar pages, which in turn is expected to reduce memory savings. Mix 7 has

the largest percentage of identical pages while Mix 8 has the largest percentage

of similar pages.
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Figure 2.6: This figure shows the percentage of identical and similar pages in each

of the workload mixes.

2.3.2 Origin-based Page Group Classification

To further study the origin of identical and similar pages, we define a page

group to be a group of pages that are shared either because they share identical

or similar content.

If all the pages contained within a page group originate from the same virtual

machine, we call this a pure page group. On the other hand, hybrid page groups
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are groups that contain pages originating from different virtual machines. Barker

et al. [7] did this study for identical page sharing and they concluded that the

majority of page groups are generally pure unless the same OS is running on the

virtual machines.

All the workloads were executed and a snapshot was taken shortly after the

execution. We examined this snapshot to determine all the page groups and

classify these page groups based on their origin to pure and hybrid page groups.

Figure 2.7 shows the classification of page groups containing identical pages.

The results are consistent with the results observed by [7]. Even a slight operating

system version heterogeneity makes almost all of the page groups pure. Hybrid

page groups are significant only when the same version of the same operating

system runs on the virtual machines.

We extend the study by investigating the purity of page groups containing

similar pages. Figure 2.8 shows the pure and hybrid page groups that contain

similar pages for each of the workload mixes. Page groups of similar pages behave

similarly to page groups of identical pages. The majority of page groups are hybrid

if the virtual machines are running the same version of the same operating system.

The slightest version variation leads to making almost all page groups pure.
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Figure 2.7: The total number of pure and hybrid page groups that contain identical

pages for each workload mix.

2.3.3 Stability-based Page Classification

Another classification of identical and similar pages is based on their stability.

By stability, we mean the property that a memory page will remain stable, or

unchanged, for a period of time that is long enough for a full memory scan. In

our work, we will assume this time period to be 5 minutes which we believe to be

a reasonable time for a full scan of a memory of size 1 GB (about 3.5 MB/sec).
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Figure 2.8: The total number of pure and hybrid page groups of similar pages for

each workload mix.

As mentioned earlier, we divide a 4 KB page into 64 64-byte blocks. We classify

pages based on their stability during a specified period of time into three different

stability classes:

• Stable pages are the pages that remain completely unchanged.

• Pseudo-stable pages are pages that are not stable, but they change only

slightly by less than 32 64-byte blocks.

• Unstable pages are pages that change by more than 32 64-byte blocks.
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Stability-based classification of pages that contribute to memory deduplication

is very useful at giving insights into the pages that are actually good candidates

for sharing. For example, sharing a page for a very short time does not contribute

to any real memory savings. Moreover, a diverging page will further result in an

exception which is a performance overhead.

Stable pages are of paramount importance for software-based memory dedu-

plication to achieve long-lasting memory savings and to avoid the negative per-

formance impact of copy-on-write exceptions associated with writes to identical

pages and writes/reads to similar pages. This is the only class of pages that is

suitable for software-based memory deduplication. In hardware-assisted memory

deduplication, stable pages are also good candidates for sharing but they are not

the only good candidates.

Pseudo-stable pages are not good candidates for software-based memory dedu-

plication due to the performance overhead discussed earlier. However, they are

good candidates for hardware-assisted memory deduplication [91] especially when

sharing identical pages.

Unstable pages are not useful for any sort of memory deduplication. They

hurt both software and hardware implementations.

Table 2.3 summarizes how the stability of a page affects how good a page is

for memory deduplication.
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Table 2.3: Determining good page-sharing candidates based on the page stability

class

class software deduplication hardware-assisted dedupli-

cation

Stable Good Good

Pseudo-stable Bad Good for identical pages.

OK for similar pages

Unstable Bad Bad

In Figure 2.9, we try to investigate the stability of all identified identical and

similar pages for each of our workloads. In this experiment, we first identify all

identical and similar pages, then run the workloads for 5 minutes, and then classify

the identified pages based on their stability.

We observe that for all workloads, the majority of identical pages tend to be

stable. There is only a small number of pseudo-stable identical pages. Almost all

identical pages that lose their stability become unstable. For similar pages, the

majority of these pages end up either stable or pseudo-stable.

For hardware-assisted memory deduplication, the above observations indicate

that pages that start out as identical will possibly not benefit from storing the

differing blocks in overlays since these pages will likely end up being unstable.

25



For identical pages, it is more effective to avoid sharing pages that will even-

tually diverge rather than storing the differing blocks. On the other hand, the

stability and pseudo-stability of similar pages make them very good candidates

for hardware-assisted deduplication.
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Figure 2.9: The total number of stable, pseudo-stable, and unstable identical and

similar pages for each workload mix.
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2.3.4 Characterizing Similar Pages

Here we try to focus more on studying similar pages. Shared similar pages

will all have one reference page that is stored in the actual machine memory.

The different cache blocks will be typically stored in a different storage. As we

described earlier, in [91], the different cache blocks are stored in the main memory

as well in the overlay memory store.

Similar pages contribute to memory savings when the number of differing cache

blocks is relatively small. Therefore an important feature of a similar page is the

number of cache blocks that are different from the reference page.

In Figure 2.10, we show the total number of similar pages for all workloads

and classify them based on the number of cache blocks (d) that are different from

their corresponding reference pages. We call d the divergence size. Similar pages

with small divergence sizes contribute to memory savings more than similar pages

with high divergence sizes.

2.3.5 Block Threshold Analysis

We define block threshold to be the maximum number of allowable differing

blocks per page. For an infinite capacity of the storage where these differing blocks

can be stored, a higher block threshold is always better because a higher block
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threshold will lead to more memory saving. So as the block threshold increases,

the memory savings increases.

However, in reality the storage where these differing blocks are stored is finite.

Having higher threshold in this case will not necessarily mean more savings. For

example, filling this storage with pages of low divergence size is more useful than

filling it with pages of high divergence size.

For a given specific block threshold, We define efficiency η to be the ratio of

the absolute memory savings achieved for this block threshold to the storage size

required for the savings. A higher η means that the storage has, on average, a

lower divergence size per page which is good for memory savings. We also define

savings (S) to be the absolute memory saving due to similarity for this particular

block threshold. As block threshold increases, (S) is expected to increase, but

(η) is expected to decrease. Since both memory savings and the storage size are

important factors, we plot the product of the two metrics η and S. Figure 2.11

shows the efficiency-savings (η−S) product for each mix of workloads. All work-

loads show a peak around approximately 4 blocks. To put things in perspective,

Figures 2.12 and 2.13 show, for each workload, the memory savings achieved at

different block thresholds and the required storage size required to store the dif-

fering blocks respectively. For the majority of workloads, a block threshold of 4

or 8 leads to reasonable memory savings with a small storage size. Increasing the
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block threshold to 32 results in a very big increase in the storage size requirements

without a proportional increase in savings. For example, in Mix 6, the storage size

requirements for a block threshold of 32 is up to 35 times the size requirements

of 8 blocks with only a 3.5x increase in memory savings.

2.4 Performance Characterization

In this section, we try to characterize the performance impact of sharing iden-

tical and similar pages. As discussed earlier, sharing pages has a performance

overhead associated with the exceptions that happen in the occurrence of a write

to an identical page or a read/write access to a patched (similar) page in the

software-based memory deduplication.

We use simics [64] which is a full system simulator to evaluate the performance

characterization of three different scenarios.

1. baseline: no sharing of identical or similar pages.

2. traditional: sharing identical pages only.

3. diffEngine: sharing identical and similar pages like the Difference Engine.

We run the Xen hypervisor [6] on top of simics and then we run three virtual

machines on top of Xen. Each VM is configured with 1 GB of memory. Simics
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is configured with 4 GB of memory. The simics source code was modified to

implement the above scenarios. All the three VMs running on top of Xen run the

same benchmark. We have three workload mixes.

• Sysbench: the sysbench benchmark

• GemsFDTD: a SPEC CPU2006 benchmark

• CactusADM: a SPEC CPU2006 benchmark

We simulate each of the above workloads for 24 seconds on simics and report

our results. Figure 2.14, Figure 2.15, and Figure 2.16 show the memory distribu-

tion of these workloads between private pages, shared pages, and patched pages

(for the diffEngine implementation).

Figure 2.17 shows the miss rate of the last-level cache for each of the workloads

for the baseline, traditional, and the diffEngine scenarios. Even though sharing

pages lead to a performance overhead in the occasion of a diverging page, it has a

good impact on the cache hierarchy performance. That is because all of the shared

pages will share the same space in the cache hierarchy leaving more space for other

cache blocks. This results in a decrease in the miss rate. As the figure shows,

the CactusADM shows a significant improvement in the LLC cache performance

for the traditional and diffEngine scenarios relative to the baseline case. This
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is because CactusADM has the highest percentage of shared pages as shown in

Figure 2.16.

To characterize the performance impact of copy-on-write exceptions, we in-

troduce the ideal scenario. In the ideal scenario, identical and similar pages are

shared like the diffEngine scenario. However, the side effects of copy-on-write

exceptions are ignored. Figure 2.18 shows the normalized IPC for each of the

workloads for all the mentioned scenarios. The difference of performance between

traditional/diffEngine and ideal denotes the performance lost due to copy-on-write

exceptions. The results show that the performance overhead can be significant.

For example, copy-on-write exceptions result in a performance reduction by 6.3%

and 7.1% for GemsFDTD and CactusADM respectively.

We also observe that for cactusADM, the IPC of the traditional and diffEngine

scenarios are significantly better than that of the baseline. This is due to the

enhanced LLC performance of CactusADM.

2.5 Conclusion

In this chapter we provide an overview of all related work to memory dedupli-

cation. We explain how characterizing memory pages can provide some insights

towards better design and/or implementation of memory deduplication systems.
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We also characterize the performance issues related to memory deduplication.

Based on our previous study, we can draw the following conclusions:

• A slight heterogeneity in the operating system will lead to a significant

decrease in the number of identical and similar pages identified. Placing

homogeneous VMs on the same physical host is advantageous for memory

savings.

• In heterogeneous VMs, almost all of the page groups are pure.

• For hardware-assisted deduplication, having a block threshold for the num-

ber of the differing blocks is important and our analysis shows that the best

block threshold is around 4 blocks for all the studied workloads.

• The majority of pages that start out as identical remain stable.

• The majority of diverging identical pages become completely unstable. This

means these pages will not benefit much from hardware-assisted deduplica-

tion.

• The majority of similar pages are stable or pseudo-stable. This means similar

pages can benefit from hardware assisted deduplication, especially if these

pages are frequently read from.
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• Software-based memory deduplication techniques suffer from the perfor-

mance overhead of copy-on-write exceptions which can be significant.

• Memory deduplication allow multiple cache blocks to share the same cache

space giving more free space for other cache blocks. This leads to an increase

in the performance of the cache hierarchy.
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Chapter 3

Memory Stability Prediction
Framework

“Trying to predict the future is like trying to

drive down a country road at night with no

lights while looking out the back window.”

— Peter Drucker

Prediction has always been an integral part in improving the performance of

computer systems. At a lower level, branch prediction techniques [94, 109, 110, 81]

are widely used to predict the direction of branches and avoid the performance

penalty associated with branches in pipelined processors. As the performance gap

between processors and memory increases [34], improving the memory system per-

formance became significantly important through memory access transformation

and reordering [47, 67], memory and file prefetching [39, 73, 40, 30, 41, 54, 19, 46],

etc. Prefetching techniques are widely used to increase the performance of mem-
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ory systems by caching memory blocks that are predicted to be accessed soon

avoiding the very expensive cost of accessing data from the main memory.

At a higher level, prediction algorithms [25, 75] were used in software to im-

prove the web performance such as web caching [1, 18, 92], recommendation sys-

tems [23, 83], web prefetching [79, 27, 80, 57, 89], and enrich the user experience

with search engines [15] and personalized web [84].

In this chapter, we attempt to predict a different aspect of the behavior of

the memory that we believe might be useful for many applications. We try to

characterize and predict the stability behavior of memory pages. By stability, we

mean the property that the content of a certain memory page remains unchanged

for a desirable period of time. This desirable period of time depends on the

application or the operation that is using the stability predictor.

We propose a software-based prediction framework that relies on the infor-

mation provided by the page flags that are available through the Linux kernel.

The Linux proc file system provides a lot of information related to the physical

memory pages. This information is represented through different flags that are

assigned to every page of the main memory. In our characterization, we try to

see if there is any correlation between the flags that the Linux kernel assigns to a

page and its stability behavior.

44



Characterizing the stability of memory pages and being able to predict their

future behavior can provide some insights that can be useful for various applica-

tions. For example, in virtualized environments, both virtual machine live migra-

tion and memory deduplication techniques can benefit from an accurate memory

page stability prediction. Chapter 4 discusses in detail how such prediction can

be effectively used to improve the performance of such applications. We also

think that hybrid cache/memory systems can benefit a lot from correctly pre-

dicting future writes [2, 3, 60]. Hybrid cache/memory systems are immensely

researched as future candidates of caches and main memory systems. This type

of memories is designed with both traditional volatile memory like DRAM and

non-volatile memory (like STT-RAM and PCM). Predicting stable pages for this

type of hybrid memory systems can increase overall performance, cost, and en-

ergy efficiency by decreasing memory write latency, write energy, and the write

endurance of non-volatile memory cells.

After we characterize the stability of memory pages based on their page flags,

we propose a stability prediction framework that can be used to predict memory

pages that are highly likely to be relatively stable. For the rest of the thesis,

a relatively stable page means that the majority of the page content will remain

unchanged during the desired time period. We will give a more thorough definition

later in section 3.4 when we introduce our prediction framework.
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We propose two classes of prediction: a conservative prediction which focuses

mainly on prediction accuracy, and an aggressive prediction which tries to balance

prediction accuracy with prediction coverage. We evaluate and show the results

of the proposed prediction framework.

3.1 Introduction

As we mention earlier, a lot of performance can be achieved if we can accurately

predict the future behavior of some aspects of hardware and/or software. In this

chapter, we focus on trying to predict the stability of a memory page. We believe

that an accurate prediction of the stability behavior of memory pages can give

insights that can improve the performance of many applications.

For example, in cloud environments where a lot of virtual machines run on

many physical hosts, live migration of these virtual machines is a very common

operation. Live migration of virtual machines is the process of migrating one

virtual machine (VM) from a source host to a destination host while the VM is

alive and running. The user of the virtual machine should not notice, ideally, any

difference while the VM is being migrated. Live migration is an operation that

is triggered by the administrator for multiple reasons like online maintenance,

fault tolerance, load balancing, etc. One of the most widely used live migration

techniques is the precopy technique. In precopy, The dirty memory pages are
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transferred over several iterations from the source host to the destination host

until a maximum number of iterations has been reached or a threshold of dirty

pages has been met. Afterwards, the VM is stopped at the source, one further

iteration of memory page transmission is performed, and then the VM resumes

at the destination. The downside of precopy is the waste of network bandwidth

associated with the successive transmission of dirty pages. To alleviate this prob-

lem, some compression techniques have been used that tries to send a compressed

version of the updates rather than sending the whole page. Having some infor-

mation about the nature and the stability behavior of the memory pages that are

being migrated can result in fewer bytes being transferred over the network. This

will be discussed in detail in Chapter 4.

Another very common memory optimization technique in virtualized environ-

ments is memory deduplication. This is also another example of a technique that

can use the knowledge of the future stability behavior of memory pages to achieve

better performance. Memory deduplication is a memory optimization technique

that tries to reclaim physical memory capacity by identifying duplicate pages and

storing only one copy of these pages in the actual machine memory. This is ac-

companied by marking these merged pages as read only. Further writes to shared

memory pages are handled through a copy-on-write exception. When a copy-on-

write exception occurs, a new page is allocated for the faulting page. This is
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followed by a copy of the full page and then an update to the page table which

in turn is accompanied by a TLB shoot down. This means that writes can result

in a big performance loss. If we are able to predict the future faulting pages and

prevent them from being shared, then the number of copy-on-write exceptions can

be reduced. We will also discuss this in detail in Chapter 4.

At a much lower level, we also think that hybrid volatile/non-volatile memory

systems may benefit from characterizing and predicting the future stability be-

havior of memory pages. Non volatile memory systems like PCM are considered

to be potential candidates for future cache and/or memory systems. However,

these novel non-volatile memories have some inefficiencies. For example, writes

are very slow compared to reads, the memory cell can not endure as many writes

as a DRAM can, and the energy of writing to these memory cells is very expensive.

One solution that has been researched is to have a hybrid memory system where

the majority of writes can happen in the DRAM while the stable memory pages

can reside in PCM or other non-volatile memory technologies. This technique

however requires accurately predicting the write accesses [2, 3, 60]. We believe

that hardware and software based predictions will be necessary to reach a level of

prediction accuracy that is satisfactory for such systems to be viable candidates

for future cache and memory systems.
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In this chapter, we start by giving an overview of some relevant page flags that

we hypothesize to be correlated with the stability of memory pages. We charac-

terize these pages based on their flags and test the validity of our hypotheses.

Based on the characterization, we propose a stability prediction framework

that can be used to predict memory pages that are highly likely to be relatively

stable. We propose two classes of prediction frameworks: conservative prediction

which focuses mainly on prediction accuracy, and aggressive prediction which tries

to balance prediction accuracy with prediction coverage. We evaluate and show

the results of the proposed prediction framework.

The rest of the chapter is laid out as follows:

• Section 3.2 motivates our work.

• Section 3.3 discusses the relevant flags that the Linux kernel assigns to pages

and characterizes the stability behavior of memory pages based on these

flags.

• Based on the characterization, in section 3.4, we propose a pageflag-guided

prediction framework that attempts to identify and predict pages that are

likely to be relatively stable. That is, the majority of the content of these

predicted pages will be unchanged.
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• Section 3.5 evaluates the proposed prediction framework and shows the ac-

curacy and coverage of our prediction.

• Finally, section 3.6 concludes this chapter.

3.2 Motivation

As we mentioned earlier, there are various applications and operations that

rely on memory page stability for their satisfactory performance. An example of

these applications are live migration and memory deduplication.

In memory deduplication, VMware ESX server [103] does not announce if a

stability check is performed before sharing identical pages. However, in KSM [4]

which is the memory deduplication module in KVM [51], two binary red-black

trees are used: A stable tree and an unstable tree. The purpose of these trees is

to track stable and unstable pages respectively. KSM looks into the history of the

page to determine if a page is going to remain stable. The difference engine [33]

also uses a similar method to determine stable pages.

Even though the history of a memory page can give some insightful information

about the stability of a page especially in the short term, we believe that such

mechanism is not sufficient to predict stability, especially if the desired stability

time for the underlying application or operation is relatively high which is the
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case for memory deduplication. For example, it is true that pages that have not

recently changed are not likely to be written to, yet these pages are also very

good candidates for replacement if these pages are not being referenced. To give

an example, we show in Figure 3.1 how a significant portion of pages that had

stable history for some benchmarks ended up not being stable over a period of 5

minutes.
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Figure 3.1: The number of pages that were expected to be stable based on their

stable history, and the percentage of these pages that actually turned out to be

stable.
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In many cases, the absolute stability of pages is not a strict requirement.

Sometimes it is also useful to identify pages that change by a small difference. For

example, hardware implementations for fine-grained memory management [91]

that are poised to provide hardware support for systems like the Difference Engine

would benefit significantly from identifying pages that are relatively stable (either

stable or those that change by a small difference). In this case, similar pages can be

shared allowing shared pages to change dynamically and even rapidly throughout

the execution of the program which results in increase memory savings without

the performance loss associated with copy-on-write exceptions.

In live migration, [22] tries to detect frequently dirtied pages and postpone

the transfer of these pages to the last migration round. Even though this is useful

in the traditional way of performing memory live migration to avoid wasting the

network bandwidth, current live migration techniques use compression methods

that would not adversely impact the network bandwidth only if those frequently

dirtied pages are changing by small differences.

For all the above observations, we believe that a prediction framework that can

detect if a memory page is likely to be relatively stable can be useful for various

applications.
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3.3 Pageflag-based Memory Stability Character-

ization

In this section, we start by giving a brief overview of all the relevant kernel data

structures and page flags. Afterwards, we characterize the behavior of memory

pages based on the page flags that is available through the Linux kernel.

3.3.1 Kernel data structures and page flags

We start by giving an overview of all the relevant kernel data structure and

memory page types.

The Slab Cache

The Linux kernel often needs to allocate memory for kernel data structures

and objects. For example, inodes and task structures are kernel objects that

are allocated in the memory by the kernel. These objects are characterized by

uniform size and they are frequently allocated and released. In earlier Unix and

Linux implementations, the usual mechanisms for creating and releasing these

objects were the kmalloc() and kfree() kernel calls.

The performance of kmalloc() and kfree() are not optimized for the small sizes

of these kernel objects. One way to solve the inefficiency of allocating these kernel
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physical contiguous memory

Slab Cache

Slabs

kernel objects

Figure 3.2: The slab cache data structure and the slab pages

objects is to use a kernel cache that is responsible for allocating and releasing

these objects. This cache is called the slab cache.

Slab memory allocation [13, 12] is a kernel memory management mechanism

that allows for an efficient allocation and deallocation of these kernel objects. As

shown in Figure 3.2, a slab cache is a kernel data structure that manages all the

slabs pertaining to a specific kernel object type. A slab is a set of one or more

contiguous pages of memory set aside by the slab allocator for an individual slab

cache. The slab is further divided into equal segments the size of the object that

the cache is managing. If a kernel module requires the creation of an object, this

object can be fetched directly and efficiently from the preallocated and initialized

cache. Destroying an object simply just returns it back to the cache.
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Compound Pages

Compound pages are a grouping of contiguous physical pages that can be

treated as a single, bigger page. Compound pages can be used to allocate huge

pages. They are most commonly used by the slab allocator to allocate slabs of

higher number of pages.

The first page in a compound page is called the compound head page. All the

other pages comprising the compound page are called the compound tail pages.

Memory Reclamation Policy

Linux uses a least recently used(LRU) replacement policy to replace memory

pages that have not been used in a while. For this purpose, the Linux kernel

maintains two LRU lists. An active LRU list and an inactive LRU list. The

objective is that the active list should hold the working set of all processes and

for the inactive list to hold candidate pages that can be reclaimed and replaced

by other pages. New pages start out in the inactive list. If they get referenced,

they then get promoted to the active list. Pages get reclaimed when they hit the

end of the inactive list.
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Memory Mapped Pages

Memory mapped pages are memory pages that are backed by files in the file

system. Once a file is memory-mapped, reading or writing to the corresponding

memory portion is equivalent to reading from or writing to the file. Memory

mapped pages are typically used by process loader in most modern operating

systems. When a process starts, the operating system maps the corresponding

file to bring the executable segment, associated loadable modules, and shared

libraries into memory for execution.

Kernel Page Flags

The proc filesystem is a pseudo-filesystem in Unix-like operating systems that

presents information about processes and other system information in a hierar-

chical file-like structure, providing an easy and a convenient method of accessing

data held in the kernel. It acts as an interface to internal data structures in the

kernel. It can be used to obtain information about the system and to change

certain kernel parameters at runtime.

In our work, we are particularly interested in the information that the proc file

system can provide regarding the physical pages of the memory. This information

can be accessed through:
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/proc/kpagecount: This file contains a 64-bit number of the number of times

each physical page is referenced, indexed by physical frame number. In other

words, how many processes shares the same physical page.

/proc/kpageflag: This file contains a 64-bit set of flags for each page, indexed

by physical frame number.

Table 3.1 shows a list of the relevant page flags and their descriptions. The

table shows the majority, but not all, of the page flags that the kernel uses. The

remaining flags are irrelevant to our discussion. Slab pages will have the slab flag

set. A page that is part of a compound page will have either the compound head

or the compound tail flag set depending on whether the page is the head of the

compound page or if it is one of the tails. Any page that is part of the LRU lists

will have the LRU flag set. Pages that are in the active LRU list will also have the

active flag set while those belonging to the inactive list will not have the active

flag set. For memory mapped pages, they will have the mmap flag set and most

of the time, they will also be referenced by more than one process in kpagecount.

3.3.2 Memory Page Stability Characterization

We start this section by trying to characterize the stability behavior of memory

pages based on their flags. We assume a typical page size of 4 KB and we divide

a memory page into 64 blocks. Each block is 64 bytes.
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Table 3.1: Page Flags Description

Flag Description

slab The page belongs to a slab

compound head The page is a compound page head

compound tail The page is a compound page tail

LRU The page is in one of the LRU lists

active The page is in the active LRU list

mmap The page is memory-mapped

Given a certain time period τ , we divide the machine memory pages into

different classes as follows:

• Stable pages are the pages that remain unchanged during τ .

• Pseudo-stable pages are the pages that change by less than or equal to 32

blocks, i.e half of the page has changed during τ .

• Unstable pages are the pages that change by more than 32 blocks during the

time period, even if a machine page is replaced by another page, we refer to

this page as unstable because the content at that specific machine address

range has changed by more than 32 blocks.
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Stability hypotheses

We hypothesize that slab pages are expected to be stable or pseudo-stable

since they hold initialized and frequently used kernel objects. The slab allocator

usually assigns slabs that span the size of more than one page associated with one

kernel object. Kernel objects are typically characterized by small sizes, and since

a free slab slot is already initialized, the difference between a free slot and a busy

one is minimal.

Based on our experiments, compound pages are primarily used by the slab

allocator to allocate slabs that spans the size of more than 2 contiguous pages.

Even though this is the case, the tails of a compound page will not have the

slab flag set even if it is part of a slab. Only the compound tail flag will be set.

However, the compound page head will have both the slab and compound head

flags set. For the same reasons a slab page is expected to show relative stability,

we also hypothesize that compound pages will exhibit the same behavior.

LRU inactive pages are pages that have not been used in a while and hence

these pages are likely to be swapped out to disk which makes these pages unstable

for a long enough time period. So we hypothesize that LRU Inactive pages are

not good candidates if finding pages that show long-term stability is required (as

in memory deduplication). LRU inactive pages will have the LRU flag set, but

the active flag will not be set.
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Table 3.2: VM Workloads for testing our hypotheses

Workload description

gobmk AI game playing benchmark

hmmer searching a gene sequence database

libquantum quantum computing benchmark

Another hypothesis we make is about memory mapped files. As we mentioned

earlier, most of the memory mapped files are either the process instructions part

that is memory mapped from the disk, or they are shared libraries. Pages that

belong to shared libraries will, most of the time, have more than one process

referencing them in kpagecount.

Testing the hypotheses

To test our hypotheses, we run a mixture of one-VM and two-VM workloads

over KVM [50]. Each VM is configured with 512 MB of RAM and one vCPU and

runs an Ubuntu operating system. Each VM can also run one of the workloads de-

scribed in Table 3.2. We chose gobmk,hmmer [28], and libquantum from the SPEC

CPU2006 benchmarks because they have a different variety of memory footprints.

We run these different combinations of one-VM and two-VM workloads, execute

one of the benchmarks described in Table3.2, take a snapshot some time after the
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execution starts, and check the page flags of all the memory pages. Afterwards,

we resume the VMs and check how the memory pages that have flags of interest

change over a time period of 1 minute and 5 minutes. We report the cumulative

distribution function (CDF) of all pages of interest in Figures 3.3, 3.4, 3.5, and 3.6

for the two different time periods. The x-axis represents the number of 64-byte

blocks that have changed.

The results show that slab pages are highly stable, both in the short term and

the long term. About 60% of slab pages are stable pages that remain unchanged

during the whole time period. The rest of the pages exhibit pseudo-stability,

since the majority of the diverging pages change by less than 32 segments. The

same behavior is exhibited by compound pages which is intuitive given the strong

correlation between slab pages and compound pages.

Memory-mapped pages also show great stability with up to 90% stable pages

in the short term and 72% stable pages in the long term. However, unlike slab and

compound pages, the majority of diverging pages here are unstable pages with 64

segments of difference. Given the read-only nature of the majority of memory-

mapped pages, the results indicate that the instability of the memory-mapped

pages arises from them being swapped out to disk and replaced by other pages.

Even though the LRU inactive pages show great stability in the short-term,

their stability in the long term is very bad. Only 30% of these pages remain stable
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Figure 3.3: Cumulative distribution function of the number of 64-byte blocks that

have changed in pages that have the slab flag set during time intervals of 1 minute

and 5 minutes
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Figure 3.4: Cumulative distribution function of the number of 64-byte blocks that

have changed in pages that have the memory-mapped flag set during time intervals

of 1 minute and 5 minutes
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Figure 3.5: Cumulative distribution function of the number of 64-byte blocks that

have changed in pages that have the compound head or compound tail flag set

during time intervals of 1 minute and 5 minutes
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Figure 3.6: Cumulative distribution function of the number of 64-byte blocks that

have changed in LRU Inactive pages that have the LRU flag set but not the Active

flag during time intervals of 1 minute and 5 minutes

65



Figure 3.7: Cumulative distribution function of the number of 64-byte blocks that

have changed in pages that are unflagged and non-zero during time intervals of

1 minute and 5 minutes. Unique pages are those that are not identical to other

pages in other VMs. Non-unique pages are those that are identical to other pages

in other VMs.
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in a 5-minute interval, with the majority of the diverging pages changing com-

pletely by 64 segments. This also indicates that these pages have been swapped

out to disk and replaced by other pages, which is an expected outcome.

Since there is not enough information about the actual workload running, it is

hard to make an accurate prediction regarding the behavior of LRU pages in the

active list. Their behavior is random and is completely dependent on the running

workload.

There is a population of pages with no flags associated to them whatsoever.

The behavior of this type of pages is also random. However, as we show in

Figure 3.7, we noticed that for workloads of two or more virtual machines, If

these unflagged pages are non-zero non-unique pages, meaning they are identical

to another page in a different VM, then these pages tend to exhibit a very high

stability. This stability tends to last even for the long term. Unique non-zero

unflagged pages, on the other hand, loses their stability with time. Also, unlike

the abrupt transitions in the CDF curves of LRU inactive pages and memory-

mapped pages, the smooth CDF curve of these unflagged pages indicates that

these pages lose their stability because they are being written to, not because

they are swapped out.
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3.4 Prediction Framework

Based on our hypotheses and characterization, we propose a prediction frame-

work that can predict memory pages that are likely to be relatively stable based

on the kernel’s page flags. For the rest of the paper, a relatively stable page means

that a page is either stable or pseudo-stable.

We divide our prediction framework into two classes: First, conservative pre-

diction, which tries to be conservative about prediction. In conservative predic-

tion, we try to avoid all pages that are characterized by an abrupt behavior in their

CDF graphs which indicates that these pages are susceptible to being swapped out

under heavy memory load. Second, aggressive prediction which tries to increase

the range of correctly predicted pages relative to the total number of relatively

stable pages in the memory, at the risk of some loss in prediction accuracy.

Table 3.3 shows the flags of the pages that we predict to be relatively stable

for each of the two prediction classes for the short-term and the long-term. Slab,

compound, and non-unique unflagged pages are always safely predicted to be

relatively stable since those type of pages have a smooth CDF curve indicating

they are pages that are being smoothly written to. They do not have the same

abrupt behavior of memory-mapped and LRU inactive pages.

In the aggressive approach, the LRU inactive pages are predicted to be rela-

tively stable, but the same prediction can’t hold in the long-term because these
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Table 3.3: Page flags associated with conservative and aggressive prediction classes

Class conservative aggressive

short-term slab, compound, non-unique unflagged conservative flags, memory-

mapped, inactive

long-term slab, compound, non-unique unflagged conservative flags, memory-

mapped

pages are more likely to be swapped out even if the memory footprint of the ap-

plications running in the VM can fit inside the memory. Memory-mapped pages,

on the other hand, are predicted to be relatively stable both in the short term

and the long term. Even though both LRU inactive pages and memory mapped

pages have shown an abrupt diverging behavior, they still have a good percent-

age of completely stable pages which we can take advantage of in our aggressive

approach.

3.5 Evaluation and Results

To evaluate the proposed prediction framework, we introduce a set of all possi-

ble combinations of two-VM workloads that contains benchmarks as described in

Table 3.4. Each benchmark runs on a separate VM with one vCPU and a memory
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Table 3.4: Virtual Machine Workloads

Applications description

Apache benchmark A tool used for benchmarking Apache servers

Sysbench A database benchmarking utility

Kernel Compile Compiling the Linux kernel using gcc

Perlbench Spec CPU2006 version of perl interpreter

Xalancbmk Spec CPU2006 version of Xalan-C++

of size 512 MB. The apache benchmark, sysbench, and the kernel compile repre-

sent the type of workloads that typically run in cloud computing environments

and they completely fit within our 512 MB VMs [65, 72].

To test what happens when we run benchmarks that exceeds the available

memory size, we included perlbench and xalancbmk. The large memory footprint

of these benchmarks will lead to a large number of swapping. This will negatively

affect our prediction accuracy.

There are two performance metrics that we use to measure the effectiveness of

the proposed prediction framework. First, prediction accuracy which is the ratio of

the correct predictions we make to the total sum of predictions we made. Second,

prediction coverage which is the ratio of the correct predictions we make to the

total number of relatively stable pages in the memory. Accuracy measure how
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Figure 3.8: Short term accuracy coverage graph of the proposed prediction frame-

work for both the conservative and the aggressive approach.

good our framework is in predicting relatively stable pages. Coverage measures

how much of the total relatively stable pages in the memory we are able to predict.

Figure 3.8 and Figure 3.9 show the accuracy-coverage graph of our prediction

framework for both the short-term and the long-term respectively. In the short

term, conservative prediction results in an accuracy of over 95% for all workloads.

However, the conservative approach results in prediction coverage of about 20%

for all workloads. The large memory footprint of perlbench and xalancbmk does

not seem to cause any problems in the short run.

In the long run, for workloads that are running benchmarks that can fit within

the available VM memory, our prediction accuracy is around 98% and 93% for

both the conservative and aggressive methods respectively. The mean coverage for
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Figure 3.9: Long term accuracy coverage graph of the proposed prediction frame-

work for both the conservative and the aggressive approach.

this type of workloads in the conservative method is 21%. The aggressive method

brings this mean coverage up to 71%.

In the conservative approach, a workload of two VMs running perlbench re-

sults in 89% of prediction accuracy and 58% of prediction coverage. Running

xalancbmk results in 84% of prediction accuracy and 27% of prediction coverage.

The aggressive approach for perlbench brings down the accuracy to only 20% but

increases the coverage to 73%. While for xalancbmk, accuracy declines to 60% and

the coverage increases to 87%. All the workloads that has a poor accuracy in the

aggressive approach has one or two VMs running either perlbench or xalancbmk.

Figure 3.10 dissects the percentage of pages that has remained relatively stable

and those that has become unstable for each of the relevant flags for both perl-

72



Figure 3.10: Percentage of memory pages with relevant flags that have remained

relatively stable for perlbench and xalancbmk

bench and xalancbmk in the long term scenario. The bad behavior of memory

mapped pages, resulting from the large memory footprint of these benchmarks,

causes the poor accuracy performance in the aggressive approach. It is important

to notice that the other flags, and specifically the non-unique unflagged pages are

still doing very well even under the large memory load.

3.6 Conclusion

In this chapter, we give an overview of some page flags that can act as good

indicators for stability of memory pages. We intuitively hypothesize that slab,

compound, and memory-mapped pages should be relatively stable. We test our
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hypotheses by tracking samples of pages with various flags and observing how

they change in the short term and long term. We also perform memory stability

characterization and show that slab, compound, and unique pages lose their in-

stability smoothly and slowly indicating that these pages are pages that are being

written to as opposed to memory mapped and LRU inactive pages that lose their

instability abruptly indicating they are being completely replaced by other pages.

Based on the above characterization, we propose a prediction framework to

predict pages that are relatively stable. We suggest two approaches of prediction:

conservative prediction that cares about high accuracy regarding of the percent-

age of relatively stable pages that are covered, and aggressive prediction that tries

to include more pages to increase the coverage at the expense of prediction accu-

racy. Our results show that for the short term, our conservative and aggressive

prediction works very well even for applications whose memory footprint is larger

than the available memory for the VM. In the long term, the accuracy of the

aggressive approach drops for applications with memory footprint that is larger

than the available memory capacity but it works very well for applications that

fit within the available memory.
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Chapter 4

Applications of the Prediction
Framework

“There does not exist a category of science to

which one can give the name applied science.

There are science and the applications of

science, bound together as the fruit of the tree

which bears it.”
— Louis Pasteur

In the previous chapter, we discussed how we can utilize the page flags to be

able to predict the stability behavior of memory pages. We introduced a prediction

framework that can predict pages that are likely to be relatively stable. We also

introduced two prediction techniques: the conservative technique that tries to

prioritize accuracy over coverage, and the aggressive technique that prioritizes

coverage. We showed that in the aggressive approach, a significant loss of accuracy
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can happen if the memory footprint of the running benchmark is larger than the

available VM memory.

Many applications can benefit from our prediction framework. For example,

hybrid memory and cache systems that include traditional volatile memory and

novel non-volatile memory technologies [2, 3, 60] try to predict memory pages

where writes are frequent and store these pages in traditional volatile memories

like DRAM or SRAM. The reason is that novel non-volatile memory technologies

like PCM and memristors have major inefficiencies in write operations in terms of

latency and write energy. Moreover, these cells also have a relatively smaller limit

on the number of writes before they were wear out. Our prediction framework

can be used to store relatively stable pages in non-volatile memory.

In this chapter, we will discuss two other applications that can benefit from

our prediction framework: Memory deduplication and live migration. These two

operations are widely used in virtualized environments. The objective of memory

deduplication is to reclaim the host machine memory whereas live migration is

the process of transferring a running VM from one host to another seamlessly.

4.1 Introduction

A variety of applications can benefit from accurately predicting the stability

behavior of memory pages. We explore the benefits of our proposed prediction
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framework in two applications that are very popular in the context of virtualized

environments.

First, memory deduplication which is a technique used to eliminate memory

redundancy between virtual machines running on the same physical host. Often

time, these virtual machines are running identical and similar operating systems

and/or workloads which result in a lot of memory redundancy. Memory dedu-

plication attempts to reclaim the host machine memory which allows for higher

memory utilization and higher consolidation ratio, eventually leading to a better

overall performance.

Second, live migration is the process of moving a running VM from one host

to another seamlessly without shutting down the VM. In cloud and virtualized

environments, operations like online maintenance, load balancing, fault tolerance,

and power management are very common. These operations usually entail moving

virtual machines around from one host to another.

In this chapter, we study each of these two applications and explore how our

prediction framework can be utilized to enhance these operations.

The rest of the chapter is laid out as follows:

• Section 4.2 gives an overview of memory deduplication, discusses the related

work, proposes the pageflag-guided memory deduplication, and evaluates

and discusses the results of the proposed memory deduplication.
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• Section 4.3 gives a brief introduction of VM live migration and the related

work. Pageflag-guided live migration is proposed and the results are dis-

cussed.

• Section 4.4 concludes this chapter.

4.2 Memory Deduplication

One of the enabling technologies of the pervasive Cloud Computing [5] is

Virtualization. In a cloud computing environment, multiple virtual machines

(VMs) [31, 88] run on the same physical server. VMs virtualize the whole system

allowing for running multiple operating systems with multiple software configura-

tions on the same physical machine. This results in a better server consolidation

and fault isolation. A Virtual Machine Monitor (VMM) is a software layer that

manages the different virtual machines running on the system and provides re-

source sharing among these virtual machines.

The cost of the memory system dominates the cost of the whole system and

most of the power is consumed in the memory system as well which necessitates

an efficient management of the available memory system. It is expected that

the cost of an exascale system will be $200M. Half of this cost will be spent

on the memory system. Moreover, as the number of cores per chip increases,
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more VMs can potentially run on the same physical machine allowing for more

server consolidation. However, this increase in the number of VMs running on the

same physical machine becomes limited by the system memory capacity. As we

increase the number of VMs per node, each VM is allocated a smaller capacity of

the memory. We are left with two solutions: First, we can increase the capacity

of the system memory. However, Traditional DRAM technology scaling is ending.

Also, increasing the number of cores per chip and power density constraints limit

the number of DIMMs per node which in turn limit the maximum capacity of

memory per node. There is an ongoing research on novel memory technologies

that provide higher density and scalability [42, 58, 85] properties than the DRAM.

The second solution is to manage the available memory capacity efficiently. There

are many ways that were proposed to efficiently manage the available memory

capacity. One technique is to use in-memory compression [105] which essentially

use compression and decompression techniques to compress pages in memory. A

different technique is to use memory deduplication [16, 51, 33, 20]. The basic idea

of memory deduplication is to find duplicate memory blocks and only store one

copy of these blocks effectively freeing up some redundant memory.

The idea of memory deduplication was preceded by storage deduplication [53,

66]. Storage deduplication was used to reduce bandwidth and storage demands

in distributed file systems [74] which is crucial because in distributed file systems,
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data blocks are replicated to guarantee reliability and availability. A loss in storage

capacity caused by a duplicate data block in this case is multiplicated by the

replication factor. Deduplication was also used to reduce the storage demands of

VM disk images and checkpoints [44] and backup environments [68].

Memory deduplication allows for:

• Better utilization of memory per virtual machine. For example, all zero

pages are reduced to only one zero page in the host memory allowing other

virtual machines to use the available memory that is not used.

• Better consolidation since reclaiming memory will allow more virtual ma-

chines to run on the same host. This increases the processor utilization and

the overall performance of the system.

4.2.1 Background

Memory deduplication is a technique that is used to remove memory redun-

dancy and reclaim some memory capacity. This technique is widely used in vir-

tualized environments. In virtualized environments, it is usually the case that

multiple virtual machines that are running on the same physical machine may

share the same guest operating system, run similar or identical applications, or

work on the same data. All these scenarios create a big possibility that the virtual
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machines will have identical memory pages in their memories. Memory dedupli-

cation tries to leverage this by storing only one copy of these pages in the host

machine memory.

The idea of transparent page sharing was introduced in Disco [16]. The down-

side of Disco was that it required significant guest OS modifications to identify

duplicate pages. Later, VMware ESX server proposed using a hash table to iden-

tify memory page duplicates. First, the content of the page is hashed and then

the hash table entry is checked for any collisions. If a collision occurs, then a byte

by byte comparison is applied to check if the collided pages are identical. If pages

are found to be identical, the hypervisor modifies the page table such that these

identical pages are mapped to the same machine address.

These merged pages are marked as read only. Writes are handled through a

copy-on-write exceptions. When a copy-on-write exception occurs, the hypervisor

allocates a new machine page to the faulting page. The content of the page is

copied to the new location. These writes cause a performance overhead due to the

page fault handling and the TLB shootdown that usually accompanies the page

table update.
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4.2.2 Related Work

There is a large body of work exploring memory deduplication. We classify

prior work into two categories according to the source of memory similarity. The

first category is memory deduplication in virtual environments. Independent vir-

tual machines run similar operating systems and applications which result in mem-

ory sharing opportunities. Sharing opportunities are sought within the same VM

and across different VMs. Typical applications that run on these virtual machines

are web servers, database servers, mail servers, etc... The second category is mem-

ory deduplication in high performance computing (HPC) environments. Typical

applications running on HPC environments are scientific applications. Memory

sharing opportunities are sought within the address space of the application itself.

Virtualization-inspired Similarity

Virtual machines on the same physical node often run similar operating sys-

tems and similar applications, leading to many duplicate blocks in the machine

memory, motivating work on deduplication. Disco [16] first introduced the idea of

transparent page sharing. Disco shares only specific pages and requires operating

system modifications.

VMWare’s ESX server [103] improves on this by not requiring operating system

modifications, instead using the copy-on-write mechanism. It hashes the contents
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and compares pages with identical hash values. This can result in reclaiming 60%

of the memory capacity.

The Difference Engine [33] introduced the idea of similar pages - pages with

almost all identical data. They also use memory compression to further increase

memory savings. They show that the Difference Engine outperforms VMWare

ESX server by a factor of 1.5 for homogeneous workload and by a factor of 1.6-2.5

for heterogeneous workloads. The downside though is the performance overhead.

Every time a compressed or patched page is accessed, an exception occurs that is

handled by the VMM. As a result, only infrequently accessed similar pages can

be merged.

Kernel SamePage Merging (KSM) [4] implements content-based page sharing.

Although it was initially developed for KVM [51]. It uses programmer hints to

search for merged pages on memory allocation. They have higher comparison

overhead. Classification-based memory duplication (CMD) [20] improved this by

classifying the pages likely to be similar.

HPC-inspired Similarity

Similar to virtual workload applications, HPC applications are also limited by

the system memory. As the problem size increases, a bigger demand on the mem-

ory capacity is required. The limits imposed by the number of DIMMs per node
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and the significant cost of the memory system, along with power considerations,

put a limit to the memory capacity per node. Efficiently managing the memory

system is therefore required in HPC systems. In [61], an elaborate study of eight

HPC applications running on a Cray XE6 system [100] is presented. Results show

that, for HPC applications, there is a significant potential for exploiting memory

similarity (identical and almost-identical). Also, the effect of sharing memory

pages among processes within the same NUMA domain was studied. Counter-

intuitively, increasing the search space to include all processes within the same

NUMA domain does not necessarily increase identical and similar pages.

SBLLmalloc [9] is a transparent user-level memory allocation library that inter-

cepts memory allocation requests from MPI applications, automatically identifies

identical memory blocks and merges them into one copy using a shared memory

object. It limits comparisons to pages of different processes with the same virtual

address.

4.2.3 Pageflag-guided Memory Deduplication

In cloud computing environments, multiple VMs typically run on the same

physical machine. Most of the time, these VMs run the same operating systems

and workloads. This results in a lot of redundancy in the machine memory.

Memory deduplication aims at eliminating this redundancy by storing only one
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copy of these redundant pages in the machine memory. Detection of duplicate

pages is handled by the hypervisor using additional data structures like hash

tables [103] or binary trees [4]. After duplicate pages are detected, the hypervisor

updates the page table such that these pages share the same physical page in the

machine memory. These merged pages are also marked as read only pages. Writes

to any merged page is handled through a COW exception. For some workloads,

especially homogeneous workloads, memory deduplication can reclaim up to 40%

of the machine memory [103].

For memory deduplication, the long-term stability of merged pages is very

crucial to both the effectiveness of the memory savings resulting from deduplica-

tion, and the performance impact associated with deduplication. From a memory

savings perspective, true memory savings are the savings that last long enough

until at least following round of memory duplicate detection since these savings

can be used for other purposes. Transient memory savings however does not re-

sult in any realistic memory savings that can be used for any practical purposes.

On the performance impact side, a diverging page causes a COW exception. A

COW exception is handled in two steps. First, a new free physical page is iden-

tified and then the content of the original page is copied to the new page. Sec-

ond, the virtual memory page that received the write is remapped to another

machine memory page. Both steps incur high latency and are on the critical
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path [10, 90, 87, 99, 101]. The copy operation consumes high memory band-

width [90] and remapping typically requires a TLB shootdown [10, 99]. For these

reasons, a better version of copy-on-write has been suggested [91] that handles

copy-on-write at a finer granularity.

In our work, we use our prediction framework to predict stable pages and only

merge identical pages that were predicted to be stable. After the hypervisor iden-

tifies a duplicate page, the flags of the page are checked. If the page is predicted

to be stable based on its flags, then this page is a good candidate for merging. If

the page is not predicted to be stable, then it is ignored. Both prediction accuracy

and prediction coverage are important for memory deduplication. On one hand,

prediction accuracy is crucial to avoid the performance penalty associated with

the copy-on-write exceptions that occur when a merged page is written to. On

the other hand, prediction coverage is important for memory savings.

4.2.4 Evaluation and Results

In our experiment, we have different combinations of two VMs running on the

same Linux host on KVM. We chose our VM combinations to represent workloads

with variable true memory savings and transient memory savings. We take an

initial snapshot for each VM during the execution of the workload. Afterwards,

we identify all identical pages and their respective page flags and page count at
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Figure 4.1: True and transient memory savings for each workload for traditional,

conservative pageflag-guided, and aggressive pageflag-guided memory deduplica-

tion. The figure shows that our aggressive prediction framework results in roughly

the same true savings as traditional page sharing without the performance loss as-

sociated with diverging pages. The results hold even for benchmarks with memory

footprints larger than the VM memory capacity.
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Figure 4.2: The percentage of the number of copy-on-write exceptions occurring

throughout the execution of the workload in pageflag-guided memory dedupli-

cation relative to that of traditional memory deduplication. The figure shows

that our proposed prediction framework can reduce the total number of exception

drastically.
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this initial snapshot. We then run the workload for 5 minutes and record the

true savings and transient savings that occurred during the workload execution.

We also record the total number of copy-on-write exceptions that occurred during

this period. Traditional deduplication presents an upper bound on the memory

savings we can get, since it merges all pages regardless of the stability of these

pages. This may result in a lot of ineffective transient savings if some of these pages

that started out as identical diverged later. That’s why traditional deduplication

should exhibit the highest number of copy-on-write exceptions. The proposed

pageflag-guided deduplication should result in less performance penalty because

of the fewer copy-on-write exceptions, depending on our accuracy, at the expense

of less memory savings, depending on our coverage.

Figure 4.1 shows the memory savings for each workload for traditional, con-

servative pageflag-guided, and aggressive pageflag guided memory deduplication.

The memory savings shown are the memory savings at the beginning of the work-

load execution due to sharing identical pages. Not all the savings are significant.

The significant portion of the savings, the true savings, is the portion that lasts

until the end of our run. The other portion, the transient savings, are the savings

that do not last due to diverging pages. The results show that our prediction

framework can help in eliminating most of the transient memory savings without

significantly affecting the true memory savings.
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Figure 4.2 shows the percentage of the total number of copy-on-write excep-

tions that occurred during the execution of the workload relative to the exceptions

that occurred in traditional deduplication. Our results show that up to 98% re-

duction of can be achieved using out prediction framework.

4.3 Live Migration

Live migration is the process of moving a VM from a source host to a des-

tination host seamlessly while the VM is running. Many common operations in

cloud environments such as fault tolerance, online maintenance, power manage-

ment, and load balancing require live migration of VMs. In this section, we start

by giving an overview of live migration and the related work, then we propose a

version of live migration that is guided by our prediction framework and evaluate

and discuss our findings.

4.3.1 Background

Virtualization technology allows multiple operating systems to run on the same

physical machine providing server consolidation and isolation. Moreover, it is

the main enabling technology for cloud computing. In such environments, some

operations like online maintenance, load balancing of VMs among the physical

90



resources, fault tolerance, and power management are quite common for adminis-

trators of data centers and clusters. These operations require moving a VM from

one physical host to another. The process of moving a VM from a source host

to a destination host is called VM migration. Migrating a running VM is called

live migration [48]. Live migration entails moving the CPU state, disk state, and

the memory state from the source to the destination. The focus of our work is on

memory live migration.

The basic idea of live migration in virtual machines was introduced by Clark

et. al. [22]. In the paper, memory migration is generally thought of as a process

comprising some or all of the following three phases:

Push phase Also called the warm up phase, in this phase, the memory pages

are transferred from the source to the destination in the background while

the VM is still running at the source. Dirty pages are iteratively resent.

Stop-and-copy phase The VM is stopped at the source host. Dirty pages are

transferred for one last time and then the VM starts at the destination.

Pull phase The VM resumes at the destination and any memory page that is

requested that is not already at the destination is pulled from the source

host.
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Based on the above generalized phases, many memory migration approaches

have been adopted in research and implemented in hypervisors. The most two

common adopted techniques are Pre Copy memory migration and Post Copy live

migration.

Pre-copy Memory Migration

Pre-copy memory migration is the approach introduced by [22]. This approach

combines the Push phase and the Stop-and-copy phase. First, the memory pages

are transferred from the source to the destination while the VM is running at the

source . Afterwards, dirty pages are iteratively resent for multiple iterations. This

keeps going for a specific number of iterations or until the number of dirty pages

reaches a certain threshold. After this step, the VM is stopped at the source and

the remaining dirty pages are copied to the destination followed by the CPU state

and registers and then the VM is resumed at the destination. Figure 4.3 shows the

precopy live migration timing as depicted by [22]. In stage 0, the VM is running

at the source host A. Afterwards in stage 1, the resources on destination host B

is reserved. The actual migration starts at stage 2 where the dirty pages of the

memory are iteratively copied to the destination. In stage 3, the VM is suspended

at the host and a final round of dirty page copying occurs. The last two stages

are the stages where the VM finally runs on host B.
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Stage 0: Pre-Migration

Active VM on Host A

Alternate Physical Host may be preselected for migration

Block devices mirrored and free resources maintained

Stage 1: Reservation

Initialize a container on the target host

Stage 2: Iterative pre-copy

Enable shadow paging

Copy dirty pages in successive rounds

Stage 3: Stop and copy

Suspend VM on host A

Generate ARP to redirect tra c to host B

Synchronize all remaining VM state to host B

Stage 4: Commitment

VM state on host A is released

Stage 5: Activation

VM starts in host B

Connects to local devices

Resumes normal operation

VM running normally 

on host B

Downtime (VM is 

out of service)

Overhead due to 

copying

VM running normally 

on host A

Figure 4.3: VM precopy live migration as depicted by [22].
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Pre-copy live migration is the most widely used live migration technique in

systems like Xen [6] and Qemu [8]. The premise of pre-copy live migration is to

try to minimize the VM downtime by iteratively resending dirty pages until the

number of dirty pages reaches a certain threshold or the iteration cap is reached.

One of the advantages of pre-copy is that there is no service degradation other

than the VM downtime. Pre-copy does very well when the memory pages are

largely unchanged over the duration of migration. However, pages that are writ-

ten to frequently can significantly impact the performance of pre-copy migration

because these dirty pages should be resent over and over again. This wastes valu-

able network bandwidth, leads to a longer migration time, and increases the VM

downtime.

Post-copy Memory Migration

The post-copy memory migration approach [37, 38] adopts the stop-and-copy

and the pull phases of the memory migration phases discussed earlier. Post-copy

memory migration starts with suspending the VM at the source. Afterwards, the

CPU state and registers are transferred to the destination and the VM is resumed.

Any memory page that is requested afterwards causes a page fault that requires

fetching the required memory page from the source. Also the memory pages can

be transferred in the background while the VM is running at the destination.
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Post-copy live migration alleviates the shortcomings of pre-copy by immedi-

ately suspending the VM at the source, transferring registers and CPU state and

resuming execution at the destination. This results in a very small VM downtime

and possibly smaller migration time. However, post-copy can result in an unac-

ceptable performance drop due to page faults. If a memory page is requested that

is not already at the destination, a page fault occurs and the requested memory

page is pulled from the source through the network. Another big drawback of

post-copy is that it requires guest OS kernel modifications. The complexity of

post-copy prevents it from being widely adopted by common hypervisors.

Figure 4.4 shows the timeline of a post copy live migration to move a VM from

host A to host B. In post copy, we first start by a stop and copy phase where the

minimal VM state is transferred to host B and the VM is resumed. Afterwards, the

page push stage is reached. There are many variants to this stage. As described

in [37], the page push stage can have the following variants:

• Demand Paging, this is the slowest of all the variants. Pages are not trans-

ferred until they are demanded by the destination. This causes the longest

migration time and incurs a significant service degradation

• Active push paging, in addition to demand paging. Pages are also being

pushed from the source to the destination.
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Host A (source) Host B (destination)

Guest VM Guest VM

Page fault response

Page fault request

VM live on A Stop and copy Page push VM live on B

Figure 4.4: VM post copy live migration timeline. A VM is live at host A. If a

migration request is initiated to migrate the guest VM from host A to host B, a

stop and copy phase takes place where only a minimal VM state is transferred

and then the VM starts running on host B. Afterwards, pages are transferred from

host A to host B either through demand paging, active push, or prepaging.

• Prepaging, an enhanced active push technique that relies on spatial locality

to reduce the number of faulting pages. When a page is demanded, the

nearby pages are actively pushed

There is also a variant of live migration which is a hybrid between pre-copy

and post-copy. A precopy iteration is performed once before switching to the stop

and copy phase. Hybrid migration was first studied in process migration in [77].
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4.3.2 Related Work

As we mentioned, the precopy live migration is the most widely used live

migration technique due to its simplicity. However, one of the shortcomings of

precopy is that it wastes a lot of network throughput due to the iterative transfer

of dirty pages. The precopy technique works well if there is a large set of pages

that are not updated very frequently because this will minimize the VM down-

time. The size of the pages that are frequently updated are called the working

set size (WSS). The problem of the WSS in precopy was first discussed by [22].

Some workloads have a small WSS rendering them good candidates for pre-copy

migration while others have a large WSS rendering them problematic for pre-copy

migration. In [22], pages that has been dirtied since the last iteration are skipped

and relegated to the stop and copy phase.

In Svard et. al. [96], the WSS problem is addressed using a combination of

techniques. Migration time is reduced through page reordering. Pages of less fre-

quently updated pages have more priority to be transferred over pages with high

frequency of updates leaving the frequently updated pages for the last iterations.

The VM downtime is reduced by compressing the memory pages that are trans-

ferred in the stop-and-copy phase [97]. In Ma et. al., [63], also a bitmap is used

to keep track of the frequently updated pages and those pages are sent in the last

pre-copy iteration. All these techniques rely on correctly identifying pages that
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are not frequently updated by looking into the history of a page. That is, if a

page has not been updated for a while, then it likely that this page will remain

unchanged.

Another way to solve the WSS problem is to use delta compression techniques

to compress the memory pages sent over the network [97, 93]. A compressed

version of the memory means that a pre-copy iteration will finish faster allowing

for a fewer dirty memory pages to arise between iterations. Delta compression

is a compression technique originated from the problem of trying to find the

minimum number of edits required to convert one string to another [102]. The

compression technique stores data in the form of differences between versions

rather than storing everything. In the context of memory migration, a simple

bitwise XOR operation between the older and the newer version of the page can

be used to generate the delta page. This delta page can be transferred in a

compressed form by using a run length encoder (RLE).

However, for the delta compression technique to work. The older version of the

dirty page has to be stored in a cache at the source. It is not possible to store all

the previous versions of memory pages because this will require a cache size that is

equal to the memory size of the virtual machine. Therefore, a cache of smaller size

is used to possibly store the pages that are regularly updated. Figure 4.5 shows the

delta compression based migration algorithms suggested by [97]. At the source,
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each dirt page is checked against the cache. If there is a hit, a compressed version

of the delta page is transferred, otherwise, the whole page is transferred. At the

destination, if an RLE encoded delta page is received, the original page is decoded

and saved.

Qemu adopted the idea of using an XOR based zero run length encoder

(XBZRLE) to send a compressed version of the updates of a page instead of

sending the whole page completely. This compression needs a cache to store the

old contents of the pages being transmitted. In [93], an LRU cache was proposed

to hold the older values of memory pages.

4.3.3 Pageflag-guided Live Migration

We propose to use our memory page characterization to anticipate the pseudo-

stable pages and give higher preference to these pages to reside in the cache. That’s

because these pages are predicted to change slowly over the following iterations

which in turn translates into a better compression ratio of the cache. Our replace-

ment algorithm depicted in Figure 4.6 tries to combine the advantages of using an

LRU cache and the advantages of storing pages that will result in a higher cache

compression ratio.

We achieve this through maintaining two LRU lists:
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Figure 4.5: The precopy live migration technique that is based on delta compres-

sion and run length encoding of memory pages. At the source, each dirt page is

checked against the cache. If there is a hit, a compressed version of the delta page

is transferred, otherwise, the whole page is transferred. At the destination, if an

RLE encoded delta page is received, the original page is decoded and saved [97].
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A stable LRU list and an unstable LRU list. The stable LRU list holds all

the dirty pages in the cache that were predicted to be relatively stable by our

conservative prediction approach. The aggressive approach is not used because the

inclusion of memory mapped pages and LRU inactive pages is not useful since the

abrupt divergence of these type of pages makes them in either a completely stable

state or an unstable state. Both states are not useful to have in the migration

cache. Moreover, we include all the unflagged pages, because these pages are also

characterized by a smooth divergence curve.

The unstable LRU list holds all the dirty pages that were not predicted to be

relatively stable. If the cache is full, any new dirty page attempts to replace the

LRU page in the unstable list first before attempting to replace the LRU page in

the stable list.

4.3.4 Evaluation and Results

In our experiment, both the source and destination are connected to the same

network through a 100 Mbps Ethernet card. We perform a memory live migration

for each VM running a workload as described in Table 3.4 using an XBZRLE cache

of different sizes. For fair comparison between the traditional LRU replacement

policy and our pageflag-guided replacement policy, we continue the live migration

until a pre-set total number of dirty pages is reached. We evaluate and discuss the
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Cache Full?

Add page to the 
cache in the 

corresponding 
LRU list

unstable LRU list 
empty?

Replace the LRU 
page in the 

unstable LRU list

Replace the LRU 
page in the 

unstable LRU list

No

Yes

Yes

No

New dirty page

Figure 4.6: The proposed cache replacement policy. Pages that are predicted

by our framework to be pseudo-stable are given more preference to reside in the

cache than other pages. This is achieved by maintaining two LRU lists. Pages

that were not predicted to be pseudo-stable are attempted to be replaced first

before replacing pseudo-stable pages.
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results of using the pageflag-guided replacement policy to improve the compression

ratio of the cache and the number of bytes transferred over the network.

The average compression ratio of the cache is the ratio of the number of bytes

transferred over the network for an uncompressed dirty page to the average num-

ber of bytes transferred over the network for a page in the occasion that a cache

hit occurs. The higher the compression ratio of a cache the better because a higher

compression ratio results in a fewer bytes transferred over the network. Figure 4.7

shows the average compression ratio of a 32 MB cache for both replacement poli-

cies: the traditional LRU replacement policy, and our proposed pageflag-guided

LRU replacement policy. Since our pageflag-guided LRU replacement policy gives

preference to pages that are predicted to be pseudo-stable to reside in the cache,

depending on the accuracy of our prediction, this should result in a higher com-

pression ratio and fewer bytes transferred. This is especially more pronounced

when there is a lot of contention over the finite capacity of the cache. That is,

when the number of dirty pages is more than what the capacity of the cache can

accommodate. With the exception of xalancbmk, our proposed pageflag-guided

replacement policy results in a compression ratio improvement that ranges from

8% up to 67%. xalancbmk is the only workload where both replacement policies

don’t work very well. This is because there is a large number of unstable pages
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that are changing more frequently than pseudo-stable pages. This fills up the

cache with unstable pages.

Figure 4.7: Average compression ratio of a 32 MB XBZRLE cache for different

workloads. The figure shows that giving higher preference to pages that are pre-

dicted to be pseudo-stable increases the average compression ratio of the cache.

Our work mainly aims at decreasing the total number of bytes transferred

over the network by increasing the compression ratio of the underlying cache. As

mentioned earlier, in precopy live migration, there is an initial iteration where

the whole memory pages is transferred from the source to the destination. The

cache plays no role in this initial phase since all the memory pages will have to

be transmitted anyways. Afterwards, only dirty pages are subsequently resent
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Figure 4.8: The total bytes transferred over the network after the initial iteration

while migrating perlbench for cache sizes of 32, 64, and 128 MBs

in later iterations. If the old content of a dirty page exists in the cache, then a

compressed version of the updates of the page is sent instead of the whole page.

Figures 4.8, 4.9, 4.10, 4.11, and 4.12 show the total number of bytes transferred

over the network after the initial iteration for all workloads and three different

cache sizes. It is expected that when the WSS of the workload is bigger than

the cache capacity, giving preference to pseudo-stable pages to reside in the cache

results in fewer transmitted bytes than if unstable pages are residing in the cache.

This is attributed to the better compression ratio of pseudo-stable pages. It
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Figure 4.9: The total bytes transferred over the network after the initial iteration

while migrating xalancbmk for cache sizes of 32, 64, and 128 MBs

is shown that as the cache size increases, the improvement that the pageflag-

guided replacement technique achieves decreases. This is because as the cache

size increases, both pseudo-stable and unstable pages can be accommodated in

the cache. The strength of our proposed replacement policy appears when the

available cache size is less than the WSS. In other words, when unstable and

pseudo-stable pages are competing for the same finite cache space.

Our results show that our pageflag-guided replacement policy achieves up to

16% decrease in the number of bytes transferred over the network after the initial
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Figure 4.10: The total bytes transferred over the network after the initial iteration

while migrating apache benchmark for cache sizes of 32, 64, and 128 MBs

transfer of all the memory pages. This is equivalent to about 6% decrease of the

total bytes transferred over the network compared to traditional LRU replacement

policy. The poor performance in case of Xalancbmk is due to the low short-term

prediction accuracy as discussed earlier.
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Figure 4.11: The total bytes transferred over the network after the initial iteration

while migrating sysbench for cache sizes of 32, 64, and 128 MBs

4.4 Conclusion

In this chapter, we discuss how the proposed prediction framework can be used

to improve the performance of some applications and operations in the context of

virtualized environments.

We start with memory deduplication, a technique that is used in virtualized

environments to share memory pages that are identical between virtual machines

running on the same physical host. We show that this technique can suffer from a
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Figure 4.12: The total bytes transferred over the network after the initial iteration

while migrating kernel-compile for cache sizes of 32, 64, and 128 MBs

performance penalty resulting from the copy-on-write exceptions associated with

diverging pages. One way to avoid these exceptions is to accurately predict pages

that are stable and only merge those. We use our prediction framework and only

merge pages that were predicted to be relatively stable by our framework. Re-

sults show that, compared to traditional memory deduplication where everything

is shared, we can significantly decrease the number of copy-on-write exceptions

without affecting the memory savings.
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We also discuss VM live migration as a potential application that can benefit

from the proposed prediction framework. Live migration is a very common op-

eration in cloud environments. We show that our prediction framework can be

used to increase the efficiency of the underlying cache used through increasing

the compression ratio of the pages that hit the cache. Our results show that our

pageflag-guided replacement policy achieves up to 16% decrease in the number

of bytes transferred over the network after the initial transfer of all the memory

pages. This is equivalent to about 6% decrease of the total bytes transferred over

the network compared to traditional LRU replacement policy.
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Chapter 5

Conclusion and Future Work

In this chapter, we conclude this dissertation and discuss possible future work

directions.

5.1 Conclusion

In this dissertation, we start by characterizing the nature of pages that con-

tribute to memory deduplication.

We classify page groups based on their origin into pure and hybrid. We show

that the majority of page groups containing identical or similar pages are pure

unless the virtual machines are completely homogeneous.

Due to the importance of stability of memory pages contributing to memory

deduplication, we also classify pages based on their stability into stable, pseudo-

stable, and unstable pages. We show that the majority of pages that start out

as identical remain stable, and the identical pages that lose their stability ends
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up being completely unstable. This indicates that identical pages do not benefit

much from hardware-assisted memory deduplication techniques. On the other

hand, the majority of similar pages are stable or pseudo-stable. This indicates

similar pages can benefit a lot from hardware assisted deduplication, especially if

these pages are frequently read from.

We also show that copy-on-write exceptions associated with software-based

memory deduplication techniques can have a non-trivial performance overhead.

This underlines the importance of carefully choosing good candidate pages for

memory deduplication that have a good relative stability. We also show that

memory deduplication can have a good performance side effect which is a better

performance of the cache hierarchy.

After we introduce the importance of page stability, we propose a generic

prediction framework to predict pages that are relatively stable based on their

page flags that is provided by the Linux kernel. We propose two approaches of

prediction: conservative prediction that cares about high accuracy regardless of

the percentage of relatively stable pages that are covered, and aggressive predic-

tion that tries to include more pages to increase the coverage at the expense of

prediction accuracy. Our results show that for the short term, our conservative

and aggressive prediction works very well even for applications whose memory

footprint is larger than the available memory for the VM. In the long term, the
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accuracy of the aggressive approach drops drastically for applications with mem-

ory footprint that is larger than the available memory capacity but it works very

well for applications that fit within the available memory.

Afterwards, we investigate different applications that can benefit from the pro-

posed prediction framework. We thoroughly discuss how this prediction frame-

work can be used to enhance the performance of memory deduplication by elim-

inating pages that will eventually diverge. We also discuss how live migration,

another common VM operation, can benefit from our prediction framework.

5.2 Future Work

In this section, we discuss possible future work ideas. Our future work ideas

are divided into two parts: ideas related to improving the proposed prediction

framework, and ideas related to more potential applications that can benefit from

the proposed framework.

5.2.1 Stability Prediction Framework

As discussed earlier, looking at the history of the page alone is not enough

especially if long term stability is required. Inactive LRU pages have stable history

by definition yet they are also very susceptible to be replaced. Combining history-
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based prediction with our prediction framework can result in better prediction

especially for LRU Active pages. A stable LRU Active page indicates that a page

is most likely to be a read-only page that is frequently referenced.

We suggest the following as future work ideas to improve the proposed predic-

tion framework:

1. Our prediction framework can work side by side with history-based predic-

tion. The insights provided through history-based prediction can be useful

for predicting the relative stability of LRU active pages.

2. More software hints about memory pages can be utilized for better predic-

tion. For example, what application the page under test belongs to and

what the stability history of this application is.

5.2.2 Potential Applications

We discuss three possible future work ideas that can use our proposed predic-

tion framework. First, we discuss the idea of hybrid volatile/non-volatile caches

and memory systems. Predicting relatively stable blocks or pages can result in

an overall better performance, faster write latency, less write energy, and more

memory cell endurance for non volatile memories. Second, we discuss how our

prediction framework can be used for hybrid precopy-postcopy migration tech-

niques.
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Hybrid Memory Technologies

Persistent storage using hard disk drives relies on mechanical movements and it

is a major bottleneck in designing high-performance large-scale systems. DRAM

and Flash technologies are used to bridge the latency gap between disks and

the rest of the system. However, maintaining the performance growth of such

technologies is a challenge because they are hitting a power wall and they are

facing physical scalability challenges. Researchers have been looking into other

alternative non-volatile memory technologies to sustain this performance growth

of the memory hierarchy system [17] such as STT-RAM [104] and PCM [107, 56].

Out of these new memory technologies, phase change memories are coming off as

one of the leading and most promising memory technologies. Building a memory

system using a phase change material was first discussed in 1960. PCM is based

on the hysteresis behavior of chalcogenide glass which can exist in two states:

1. An amorphous state which represents a high resistance state.

2. A crystalline state which represents a low resistance state.

These two states can represent a binary value in a memory cell. Reading is

performed by allowing a small current to pass through the cell and measuring

its corresponding resistance. Writing to a memory cell means forcing the phase

change material to either the crystalline state (SET operation) or the amorphous
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state (RESET operation). The SET operation is performed by heating the phase

change material above the crystallizing temperature. This is done by passing

a moderate current for a long duration across the phase change material. The

RESET operation is performed by passing a high current across the phase change

material.

The impact that these new non-volatile memory technologies will have on

applications require an in-depth understanding of the properties that these new

technologies offer and how these new technologies compare to other traditional

memory/storage technologies. Table 5.1 [78] shows a comparison between PCM

and other technologies regarding performance and density on a 45 nanometer

technology. A data-intensive disk-centric application will benefit from the very

low read/write latencies of PCMs compared to hard disks without any loss of

persistence but at the cost of total capacity, so if the application data can fit

into the PCM, PCMs will outperform hard disks. If not, then PCMs can be

used as a cache for the hard disk. Although DRAMs are faster than PCM in

terms of reading and writing latencies, the non-volatility, the high density, and

the scalability of PCMs make it more appealing. In [86], the authors suggest a

hybrid main memory system comprised of DRAM and PCM. DRAM offer latency

advantages while PCM offers capacity advantages. The advantage of PCMs over

Flash is a 500x speedup in terms of read and write latency, a better lifetime, but
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less capacity per chip. However, PCMs still hold the scalability advantage over

NAND flash.

In [17], the authors project that by 2020, the properties of PCM will be as

shown in Table 5.2.

Table 5.1: Comparison between different memory and storage technologies

DRAM PCM NAND Flash

non-volatility No Yes Yes

idle power 100 mW/GB ≈1 mW/GB ≈ 10 mW/GB

write bandwidth 1 GB/s per die 50 - 100 MB/s per die 5 - 40 MB/s per die

page write latency 2 - 50 ns ≈1 µs ≈500 µs

page read latency 2 - 50 ns 50 ns ≈25 µs

endurance 1017 107 105

maximum density 4 Gb 4Gb 64 Gb

These novel non-volatile memory technologies have been studied as replace-

ments to current technologies for cache and memory designs [95, 45, 108, 55, 76,

86, 59]. As we see, one major disadvantage of the non-volatile memory technolo-

gies is the write inefficiencies. Writes consume a lot of energy, incurs a lot of

latency, and deteriorates the already limited endurance of PCM cells. This is the

reason why hybrid cache or memory technologies have been suggested [2, 3, 60].
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Table 5.2: Projected PCM characteristics by 2020

capacity 1 TB

Read or Write latency 100 ns

Data rate > 1 GB/s

Write endurance 1012

The idea is to store relatively stable data blocks in non-volatile memory while

blocks that are write intensive can reside in traditional DRAM.

In [2], a hybrid SRAM-STTRAM cache and a write intensity predictor were

proposed. The write-intensity predictor correlates write-intense blocks with the

address of the memory access instructions.

In [60], a hybrid PCM-DRAM memory system is proposed. Writes are pre-

dicted by looking into the write history. Based on the prediction, a new page

replacement policy is suggested which tries to store the write intensive pages in

the DRAM.

We believe that our prediction framework can work side by side to these predic-

tors and result in more informed decisions for these hybrid cache/memory systems.

Using a history-based prediction model combined with some information that the

kernel knows about a memory page via page flags can give deeper insights about

the stability of a page. These insights can be compiled and used to reach a de-
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cision as to where a certain page, or cache block, should reside which may result

in a better life span of non-volatile memory cells, faster writes, less energy, and

better overall performance.

Hybrid Live Migration

Hybrid live migration is a migration technique that combines pre-copy and

post-copy. It is worth noticing that pre-copy is very efficient when the rate of page

dirtying is smaller than the throughput of the network, because this means that

after some number of iterations the number of dirty pages will be small enough

to cause an unnoticeable downtime. Moreover, there is no service degradation

because all the memory pages are at the destination when the virtual machine

resumes. However, when the working set size(WSS) is large and the dirtying rate

of the pages is higher than the network throughput then precopy migration starts

to be problematic.

Post-copy solves the WSS problem at the expense of service degradation at

the destination when the VM starts working. Combining pre-copy and post-copy

may result in a better live migration algorithm. However, for such technique to

be effective, only pages that are relatively stable should be precopied. Unstable

pages should be postcopied.
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Our short-term aggressive prediction framework can be used to predict these

pages that are relatively stable. The remaining pages can be post-copied using

any of the discussed post-copy variants. Also, we believe that our prediction

framework can work side by side with other history-based prediction frameworks

to maximize the number of pages that are precopied and in return decrease the

service degradation associated with post-copy.
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