
UNIVERSITY OF CALIFORNIA

Santa Barbara

Enabling Wide-Scale Computer Science

Education through Improved Automated

Assessment Tools

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Bryce A. Boe

Committee in Charge:

Dr. Diana Franklin, LSOE, Chair

Professor Timothy Sherwood

Professor Danielle Harlow

September 2014

The Dissertation of

Bryce A. Boe is approved:

Professor Timothy Sherwood

Professor Danielle Harlow

Dr. Diana Franklin, LSOE, Committee Chairperson

September 2014

Enabling Wide-Scale Computer Science Education through Improved Automated

Assessment Tools

Copyright c© 2014

by

Bryce A. Boe

iii

To my brother, Daniel Jacob Boe. You will forever be missed.

iv

Acknowledgements

The path to my Ph.D. was a long and tiresome one. I would never have reached this

point in my life without the love, influence, and support from other people.

First and foremost, thank you Diana Franklin for taking me under your wing these

last few years. I could not have performed the research and completed this dissertation

without your patience and guidance.

The loss of my brother nearly resulted in me abandoning the completion of my

Ph.D. I would have done so without the generosity of Klaus Schauser who mentored

me and provided me funding through Appfolio, Inc. during the final stage of my Ph.D.

Thank you Klaus, and thank you Appfolio, Inc.

Mom, thank you for providing me with the freedom to learn. Dad, thank you for

showing me how the world works. Collectively, you influenced my development of

both an inquisitive nature and a desire to learn. Furthermore, thank you for tolerating

me breaking the computer on a plethora of occasions.

Matt, Daniel (1988–2014), and Connor, thank you for being the best brothers any-

one could ask for. Buz, thank you for introducing me to HTML in 6th grade, and being

a great friend through all these years. Adam and Scott, thank you for the camaraderie,

support, and encouragement during our computer science education. To all the gentle-

men of the GALAGA house, both past and present, thank you for all the great events

and outings. I am eternally grateful to have met such amazing friends.

v

Tim, thank you for organizing the 2004 programming battle and subsequently men-

toring me throughout my college education. Andy, thank you for the encouragement

and all the challenging tasks you entrusted to me at WorldViz, LLC. Cha and Bob, thank

you for convincing me to apply to the Ph.D. program by attempting to discourage me

from doing so. Janet and Peter, and Cheri and Tom, thank you for the unrelenting sup-

port and confidence in my success. Thank you to all my past teachers who challenged

me and encouraged me to succeed.

Sharon and George, thank you for the love, the support, and all the delicious home

cooked meals over the last year. My new sisters, brothers, nieces, nephews, aunts,

uncles, and cousins, thank you making me feel welcome, for the support when my

brother died, and for the encouragement to complete this Ph.D. adventure.

Finally, Julie, my love, thank you for the incredible support during the final year

of my Ph.D. I would not have made it through this last year without your patience,

understanding, and love. The next chapter of my life belongs to you.

vi

Curriculum Vitæ

Bryce A. Boe

Education

2014 Doctor of Philosophy in Computer Science

University of California, Santa Barbara

2013 Master of Science in Computer Science

University of California, Santa Barbara

2008 Bachelor of Science in Computer Science

University of California, Santa Barbara

Publications

July 2013 Hilary Dwyer, Bryce Boe, Charlotte Hill, Diana Franklin, and Danielle

Harlow “Computational Thinking for Physics: Programming Models

of Physics Phenomenon in Elementary School” In Proceedings of the

2013 Physics Education Research Conference (PERC 2013), Portland,

OR

March 2013 Bryce Boe, Charlotte Hill, Michelle Len, Greg Dreschler, Phillip Con-

rad, and Diana Franklin “Hairball: Lint-inspired Static Analysis of

Scratch Projects” In Proceedings of the 44th SIGCSE Technical Sym-

posium on Computer Science Education (SIGCSE 2013), Denver, CO

vii

March 2013 Diana Franklin, Phillip Conrad, Bryce Boe, Katy Nilsen, Charlotte

Hill, Michelle Len, Greg Dreschler, Gerardo Aldana, Paulo Almeida-

Tanaka, Brynn Kiefer, Chelsea Laird, Felicia Lopez, Christine Pham,

Jessica Suarez, and Robert Waite “Assessment of Computer Science

Learning in a Scratch-Based Outreach Program” In Proceedings of the

44th SIGCSE Technical Symposium on Computer Science Education

(SIGCSE 2013), Denver, CO

October 2011 Adam Doupé, Bryce Boe, Christopher Kruegel, and Giovanni Vigna

“Fear the EAR: Discovering and Mitigating Execution After Redirect

Vulnerabilities” In Proceedings of the 18th ACM Conference on Com-

puter and Communications Security (CCS 2011), Chicago, IL

July 2010 Nick Childers, Bryce Boe, Lorenzo Cavallaro, Ludovico Cavedon,

Marco Cova, Manuel Egele, and Giovanni Vigna “Organizing Large

Scale Hacking Competitions” In Proceedings of the 7th Conference

on Detection of Intrusions and Malware & Vulnerability Assessment

(DIMVA 2010), Bonn, Germany

April 2009 Christo Wilson, Bryce Boe, Alessandra Sala, Krishna P. N. Puttaswamy,

and Ben Y. Zhao “User Interactions in Social Networks and their Im-

plications” In Proceedings of the 4th ACM European Conference on

Computer Systems (EuroSys 2009), Nuremberg, Germany

viii

August 2008 Gayatri Swamynathan, Christo Wilson, Bryce Boe, Kevin C. Almeroth,

and Ben Y. Zhao “Do Social Networks Improve e-Commerce?: A

Study on Social Marketplaces” In Proceedings of 1st Workshop on On-

line Social Networks (WOSN 2008), Seattle, WA

Fields of Study

2011 – 2014 Computer Science Education with Dr. Diana Franklin, LSOE

2009 – 2011 Computer Security with Professor Giovanni Vigna and

Professor Christopher Kruegel

2008 Computer and Social Networking with Professor Ben Y. Zhao

Awards

2012 Outstanding Computer Science Teaching Assistant,

College of Engineering, UCSB

2011 Outstanding Teaching Assistant,

UCSB Academic Senate

2009 Outstanding Computer Science Teaching Assistant,

College of Engineering, UCSB

Spring 2009 Outstanding Teaching Assistant,

Computer Science Department, UCSB

ix

Winter 2009 Outstanding Teaching Assistant,

Computer Science Department, UCSB

Teaching Experience

Winter 2014 Teaching Assistant, CS24 Problem Solving with Computers II,

Dr. Diana Franklin, LSOE

Fall 2013 Instructor, CS24 Problem Solving with Computers II

Summer 2013 Instructor, CS24 Problem Solving with Computers II

Summer 2012 Instructor, CS32 Object Oriented Design and Implementation

Winter 2012 Teaching Assistant, CS24 Problem Solving with Computers II,

Dr. Diana Franklin, LSOE

Fall 2011 Instructor, CS501 Teaching Assistant Training

Spring 2011 Teaching Assistant, CS170 Operating Systems,

Professor Ben Y. Zhao

Fall 2009 Instructor, CS501 Teaching Assistant Training

Spring 2009 Teaching Assistant, CS170 Operating Systems,

Professor Christopher Kruegel

Winter 2009 Teaching Assistant, CS160 Compilers,

Professor Timothy Sherwood

x

Professional Experience

2005 – 2014 Software Development and Networking Consultant, WorldViz, LLC.

Summer 2011 Software Engineering Intern, Appfolio, Inc.

Summer 2009 Software Engineering Intern, Appfolio, Inc.

Summer 2008 Software Engineering Intern, Google

2005 – 2006 Software Developer, VCEL, Inc.

2004 Computer Support Intern, Northrop Grumman

xi

Abstract

Enabling Wide-Scale Computer Science Education through

Improved Automated Assessment Tools

Bryce A. Boe

There is a proliferating demand for newly trained computer scientists as the num-

ber of computer science related jobs continues to increase. University programs will

only be able to train enough new computer scientists to meet this demand when two

things happen: when there are more primary and secondary school students interested

in computer science, and when university departments have the resources to handle the

resulting increase in enrollment. To meet these goals, significant effort is being made

to both incorporate computational thinking into existing primary school education, and

to support larger university computer science class sizes. We contribute to this effort

through the creation and use of improved automated assessment tools.

To enable wide-scale computer science education we do two things. First, we create

a framework called Hairball to support the static analysis of Scratch programs targeted

for fourth, fifth, and sixth grade students. Scratch is a popular building-block language

utilized to pique interest in and teach the basics of computer science. We observe

that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale

deployment of computer science curriculum. Second, we create a real-time feedback

xii

and assessment system utilized in university computer science classes to provide bet-

ter feedback to students while reducing assessment time. Insights from our analysis

of student submission data show that modifications to the system configuration sup-

port the way students learn and progress through course material, making it possible

for instructors to tailor assignments to optimize learning in growing computer science

classes.

xiii

Contents

Acknowledgements v

Curriculum Vitæ vii

Abstract xii

List of Figures xvi

List of Tables xx

1 Introduction 1

1.1 Thesis Statement . 3

1.2 Dissertation Overview . 4

2 Using Static Analysis to Assist with the Post-Assessment of a Scratch-

based 6th–8th Grade Summer Camp 6

2.1 Introduction . 7

2.2 Related Work . 10

2.3 Design . 12

2.3.1 Plugin Architecture . 13

2.4 Hairball Plugins . 14

2.5 Methodology . 21

2.6 Results . 23

2.6.1 Initialization . 23

2.6.2 Say and Sound Synchronization 26

2.6.3 Broadcast and Receive . 26

2.6.4 Complex Animation . 28

2.7 Conclusion . 31

xiv

3 Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum 32

3.1 Introduction . 33

3.2 Related Work . 35

3.3 Methodology . 37

3.3.1 Our Scratch Interface . 40

3.3.2 The Sequential Execution Assignment 42

3.3.3 Capturing, Collecting, and Verifying the Accuracy of Snapshot

Generation . 45

3.4 Results . 48

3.4.1 Students by Class . 49

3.4.2 Number of Snapshots to Completion 51

3.4.3 Approach to Solving the Assignment 53

3.4.4 Quantifying Students Affected by a Scratch Race Condition . 59

3.4.5 Snapshots Exhibiting the Double Click to Execute Behavior . . 64

3.5 Conclusion . 68

3.5.1 Curriculum Improvements 68

3.5.2 Static Analysis . 69

4 Analyzing Undergraduate Student Submission Patterns in the Presence of

a Real-Time Feedback and Assessment System 72

4.1 Introduction . 73

4.2 Related Work . 75

4.3 Methodology . 77

4.3.1 Classes . 78

4.3.2 Feedback Delay . 80

4.3.3 The Feedback and Assessment System 82

4.4 Results . 86

4.4.1 Does Starting Early Help? 87

4.4.2 Does Time Pressure Affect Behavior? 91

4.4.3 Does Time Pressure Affect Efficiency? 94

4.4.4 Why Do Students Submit Well After an Assignment’s Deadline? 98

4.4.5 Does Delaying Feedback Impact Student Submission Behavior? 102

4.4.6 Does Delaying Feedback Impact Student Work Sessions? . . . 106

4.5 Conclusion . 118

5 Conclusion 121

Bibliography 124

xv

List of Figures

2.1 Shows the two methods for synchronizing messages from the say MES-

SAGE blocks with sound files played through the play SOUND blocks. While

both methods can produce the desired effect, the method on the right requires

manually setting an appropriate duration in the say MESSAGE for SECONDS

block and thus is not as robust to modifications, whereas the method on the

left guarantees synchronization between the play of the sound file and the

display of the message. 18

2.2 Compares the initialization instance labels. Note that this analysis used

only the correct and incorrect labels. Manual analysis resulted in thirty-two

false positives, and Hairball resulted in thirty-three false negatives. Note

that for this concept there are exactly 348 possible instances as each of the

fifty-eight Scratch programs have six attributes that require initialization if

modified. 24

2.3 Compares the say and sound synchronization instance labels. Manual

analysis and Hairball failed to detect two and four instances respectively and

manual analysis resulted in four false positives. 25

2.4 Compares the broadcast and receive instance labels. Manual analysis

failed to discover twelve instances, and resulted in seventy-nine false posi-

tives. Hairball detected 100% of the instances with three false positives. . . 27

2.5 Compares the complex animation instance labels. Manual analysis

failed to detect three instances whereas Hairball found eleven items that were

determined to not be instances of complex animation. Hairball resulted in

two false negatives. 28

xvi

2.6 Provides a summary of the percent of mislabeled, false positive, and

false negative instances resulting from manual analysis and Hairball for each

of the four computer science concepts and the average. The Manual False

Negative category was omitted as manual analysis resulted in zero false neg-

atives. The y-axis is truncated for the smaller values, thus the tallest bar

should extend to 40.7%. Missing bars represent 0%. 29

3.1 Visualizes the iterative process of evaluating and improving both our

curriculum and our static analysis of Scratch programs. 40

3.2 Depicts the initial screen for Sequential1 including five sprites. Each

student’s task was to move the Net to catch the Bear, the Horse, and the

Zebra in any order while avoiding the Snake. Sequential2 visually differs

only by the absence of the Snake. 43

3.3 Depicts the script and comments provided in the base-project to the stu-

dents in Sequential2. The script was the same in Sequential1’s base-project,

however, the comments were not included. 44

3.4 Compares the maximum number of sprites caught by student by class.

A student is considered complete if any of their snapshots catches two or

more sprites. 49

3.5 Depicts the percentage of students by class that completed the assign-

ment by the number of snapshots indicated on the x-axis. The dashed cyan

line representing S1A was truncated. It would otherwise extend horizontally

out to the twenty-first snapshot. 51

3.6 Shows the completion rate of each approach by student grouped by

Sequential1 and Sequential2. An approach for a student is complete if any

of the student’s complete snapshots utilizes that approach. An approach for a

student is incomplete if they utilize the approach in any incomplete snapshot

and the approach is not found in any of the student’s complete snapshots. . . 55

3.7 Shows how many students utilized each approach in Sequential2 snap-

shots for three categories: all snapshots, snapshots up to the first complete or

last incomplete, and the last snapshot. 57

3.8 Shows the breakdown of students affected by the race condition issue

in Scratch for Sequential1. 61

3.9 Shows the breakdown of students affected by the race condition issue

in Scratch for Sequential2. 61

3.10 Depicts the number of double click to execute snapshots we identified

for each student. 67

4.1 Visualizes the number of groups, students, and average number of sub-

missions by student for each of the seven classes in our study. 78

xvii

4.2 Provides an overview of the system architecture and how components

interact. Pink lines indicate messages being passed to and from the Rab-

bitMQ service. Note that each worker runs in a separate isolated environment. 84

4.3 Compares the number of hours groups started an assignment before

its deadlines to the final score they received. Both the size and color of

each circle correspond to the number of groups represented at that position.

The circles are plotted such that smaller circles are strictly in front of larger

circles. The red line represents a best-fit trend-line of the data. 88

4.4 Compares the average final score of the first 10% of groups to submit to

the average and to the last 10% of groups to submit by assignment. The first

10% of groups to submit had perfect scores on twenty-seven of the thirty-

eight assignments. 90

4.5 Visualizes the time of day submissions were made excluding submis-

sions within a day of their deadline. Note the 4PM peak and the larger peak

starting at 9PM that continues through midnight. 92

4.6 Visualizes the time of day submissions were made including only sub-

missions within a day of their deadline. The 11PM peak corresponds to the

hour prior to the deadline for most assignments. 92

4.7 Shows the number of submissions by the number of days each sub-

mission was made prior to their deadline grouped by improvement category.

Submissions that improve the group’s maximum assignment score are la-

beled Improvement, and those that tie are labeled No Improvement. Worse

submissions are those that result in a local minimum, and all submissions

between the group’s maximum assignment score and the local minimum are

labeled No Improvement 2. 96

4.8 Depicts the percentage of submissions in each improvement category

by the number of days each submission was made prior to its deadline. . . . 98

4.9 Shows the percentage of groups that submit more than two days fol-

lowing an assignment’s deadline. The x-axis groups the assignments by class. 99

4.10 Plots the time between submissions grouped by assignment feedback

delay. Note the shift to a longer time between submissions in the most sig-

nificant portion of each row (indicated by the largest circles) as the feedback

delay increases. 103

4.11 Plots the percent of submissions in each improvement category for each

five-minute delay interval from zero to fifty. Refer to Figure 4.7 for the

legend and its description. 104

4.12 Plots the time between submissions by their improvement category. . . 105

4.13 Plots the number of work sessions as the window size increases. . . . 108

xviii

4.14 Shows the change in work session duration as the window size changes.

The red vertical lines indicate points of interest due to significant changes

in the longest duration work session. The red lines occur at window sizes

seventy-nine, 112, 152, and 285. 110

4.15 Depicts a positive correlation between work session duration and per-

cent score change. The results are statistically significant according to an

F-test. 112

4.16 Depicts a negative correlation between the minutes spent on an assign-

ment and the final score. The results are statistically significant according to

an F-test. 113

4.17 Plots work session length against feedback delay. There is a slight,

nevertheless, statistically significant positive correlation between the two. . 116

4.18 Plots work session improvement against feedback delay. There is a

statistically significant negative correlation between the two. 117

xix

List of Tables

2.1 Lists the five categories of initial state, and provides a subset of the

relative and absolute modification blocks for each category. 17

3.1 Lists the participating classes prefixed by assignment iteration (i.e.,

S0, S1, or S2), including the grade level of each class, the number of stu-

dents with consent, the number of snapshots collected, whether education

researchers took field notes, and whether the class was local to the Santa

Barbara area or remote. 38

4.1 Lists properties of group work times (79 minute window) grouped by

those that scored 0%, between 0% and 100%, and 100%. The mean work

time is the mean time groups in each grouping spent working on the assign-

ment along with the corresponding stderr. No progress represents the mean

percent of time that groups in each grouping spent without improving their

maximum score. 114

xx

Chapter 1

Introduction

A recent report by code.org suggests that by 2020 there will be a one million person

gap in the United States between the number of vacant computer science jobs and the

number of computer scientists available to fill these jobs [9]. The lack of newly trained

computer scientists is a twofold problem:

• There are not enough students interested in computer science coming out of high

school, evidenced by the fact that of the 2.1 million students nationwide who took

AP exams in 2013, only 31,000 (1.4%) students took the AP Computer Science

exam [40]. The low numbers of high school students studying computer science

could be due to the absence of availability of computer science-related instruction

in areas such as computational thinking and elementary programming in primary

through secondary curricula. The Computer Science Teachers Association ac-

knowledges this problem in their 2011 K–12 Computer Science Standards where

1

Chapter 1. Introduction

they detail the path to resolution requiring the incorporation of computer science

concepts beginning in primary school [18].

• At this point in time, the university system does not have the resources to ade-

quately handle the rapid, yet insufficient, increase in numbers of students apply-

ing to computer science programs. The future does not look much more encour-

aging, as departments may not be able to support computer science enrollment

growth through an increase in resources including faculty size. For example,

Lazowska et al. report that while the student body of both Princeton and MIT

comprises more than 10% computer science majors, it is unlikely that 10% of

the total university faculty will ever be part of computer science [28]. The unfor-

tunate result is that university computer science departments are turning away a

significant number of qualified students from a discipline where they are severely

needed.

This dissertation describes methods I developed along with my colleagues that have

a positive impact on solving both the challenge to get more students interested in com-

puter science coming out of high school, as well as the challenge to support the growth

in number of university-level computer science students. My work focuses on ways

to help increase student interest in computer science by introducing a 4th–6th grade

Scratch-based computational thinking curriculum by supporting rapid curriculum de-

2

Chapter 1. Introduction

velopment via a design-based research approach. The upcoming wide-scale deploy-

ment of this curriculum in California will reach more than a thousand young students

in the next year alone, with more reach in subsequent years. My work also investi-

gates the important issue of how to increase the number of university-level computer

science students through the incorporation of a real-time feedback and assessment sys-

tem into existing computer science curriculum. My goal is for the system to reduce

the amount of time that instructors currently devote to the labor-intensive assessment

process, thereby making more time available to spend with students who need extra

assistance. My research, in combination with future efforts, has the promise to enable

the university system to produce more computer scientists.

1.1 Thesis Statement

The increase in interest in computer science has resulted in a need to scale com-

puter science instruction from the primary school grades through undergraduate level

university programs. These two ends of the spectrum, however, are in far different

places in their development, with very little curriculum existing for primary schools

and mature curriculum available at the university level. Assessment automation can

greatly enhance both efforts by allowing us to understand certain important aspects

of student learning and behavior. At the primary school level, assessment automation

3

Chapter 1. Introduction

through static analysis of student work can provide instructors with insight into student

comprehension, enabling rapid curriculum changes that result in faster deployment of

new curriculum. At the university level, automated feedback and assessment systems

provide large numbers of students with immediate insight into their success with class

assignments allowing them to iteratively achieve mastery of course topics, and reduce

assessment time, permitting instructors to focus their efforts on students in need of

assistance.

1.2 Dissertation Overview

The remainder of this dissertation is structured as follows. To promote young stu-

dents’ interest in computer science — and hopefully their continued interest through

secondary levels — I investigate the use of static analysis in the curriculum develop-

ment and assessment processes for 4th–8th grade students that focuses on computational

thinking and introductory programming. Specifically, in Chapter 2 I look at the use of

static analysis to assist with the post assessment of five Scratch assignments given in

a two-week Scratch-based summer camp for 6th–8th grade students. In Chapter 3 I ex-

tend the use of static analysis of Scratch assignments to aid in the development of a

4th–6th grade classroom-based computational thinking curriculum. In an effort to sup-

port increasing numbers of computer science students in university level classes, in

4

Chapter 1. Introduction

Chapter 4 I look at submission behaviors of undergraduate computer science students

in the presence of my real-time feedback and assessment system. Finally, in Chapter 5

I summarize my findings and discuss the impact of my research on computer science

education at both the primary and university instructional levels.

5

Chapter 2

Using Static Analysis to Assist with the

Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

In this chapter, I look at the significant role that static analysis plays in the evaluation

of the overall effectiveness of our two-week Scratch-based 6th–8th grade summer camp.1

Static analysis is a technique for automatically analyzing computer programs to gain

insights into properties such as correctness, soundness, and simplicity. Scratch is a

building-block programming language designed for kids which allows them to create

programs in a manner similar to how they would construct physical structures with

LEGO R©. I apply static analysis to Scratch programs created by 6th–8th grade students

in order to assess student success with camp assignments.

1The content of this chapter was published in SIGCSE 2013 under the title “Hairball: Lint-inspired

Static Analysis of Scratch Projects”. http://dx.doi.org/10.1145/2445196.2445265

6

http://dx.doi.org/10.1145/2445196.2445265

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

2.1 Introduction

There is a movement toward both more interactive and more engaging assignments

and languages for introductory and AP computer science courses. This movement in-

cludes the push for Python with Multimedia approaches, the various approaches to the

AP Computer Science Principles course, as well as Alice and Scratch [1, 11, 19, 30, 35,

36].

One drawback of assignments written in building-block programming languages

such as Alice and Scratch is that their evaluation can be more difficult than traditional

text-based programming assignments. A common and straightforward practice in eval-

uating text-based assignments is to perform functional testing. That is, to write a script

to run all submitted programs and compare their output with solution files [26]. More

recently, unit-testing frameworks have been employed as part of automated assess-

ment [15, 38]. When students are given creative freedom with a sensory assignment

— an integral feature of languages such as Alice and Scratch — there is neither a text-

based output file to compare to an expected output, nor a straightforward way to per-

form unit-testing. For example, Scratch evaluation typically requires that each Scratch

program be individually opened and run. Inspection of Scratch program code requires

many mouse clicks and navigation through a number of Scratch objects including the

stage and all sprites as well as the associated scripts of each.

7

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

stage A single background object in Scratch that is otherwise nearly identical to a

sprite.

sprite An object in Scratch. Any number of sprites can be added to a Scratch program

each of which has its own set of attributes (e.g., position and orientation) and can

be associated with any number of scripts.

script A series of one or more executable code statements (a block). Each script is

associated with either a sprite or the stage.

To assist with assessment of Scratch programs, we propose a static analysis tool.

Inspired by the Scratch mascot, a cat, and the concept of lint, a static analysis utility for

C that looks for potential defects with program code, we call our system Hairball [27].

We propose two roles for Hairball:

formative assessment Black and Wiliam broadly define formative assessment as, “all

those activities undertaken by teachers, and/or by their students, which provide

information to be used as feedback to modify the teaching and learning activities

in which they are engaged” [5]. Inspired by lint, we envision students will use

Hairball as a form of formative assessment by receiving feedback on potential

problems in the Scratch programs they are working on.

summative assessment Summative assessment generally refers to an overall assess-

ment of a course or an assignment. In our context, researchers and instructors

8

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

can accelerate manual analysis of Scratch programs required for summative as-

sessment by using Hairball to verify the presence and correct use of required

computer science constructs within their students’ Scratch programs.

We developed a plugin architecture so that, in Python, Hairball can be extended

and adapted for evaluation of specific assignments, and tested Hairball on fifty-eight

assignments created by 6th–8th grade students during our two-week Scratch-based sum-

mer camp in 2012.

The challenges we explore in this chapter relate to where the line should be drawn

between what Hairball can do with static analysis, and where manual examination of

the Scratch program is necessary. We find that each has its own strengths. Hairball

can quickly differentiate between Scratch programs that do, or do not, contain certain

targeted constructs. Hairball is also particularly helpful for identifying instances of

various constructs and implementations that are not robust, but may not immediately

cause obvious errors at runtime. Manual analysis, however, is still needed to evaluate

the overall aesthetic effect and cohesion of a visual or auditory assignment.

We begin in Section 2.2 by providing a background on automated analysis in gen-

eral and for Scratch in particular. We describe our Hairball framework in Section 2.3.

The Hairball plugins we developed for our analysis are described in Section 2.4. We de-

scribe our methodology in Section 2.5, and results in Section 2.6. Finally, in Section 2.7

we conclude.

9

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

2.2 Related Work

Providing automation for analyzing traditional programs is not a new concept. Both

ASSYST and Marmoset are automated assessment systems that perform end-to-end,

or input/output, type testing of submissions [26, 38]. Web-CAT performs testing of

code using student written unit tests [15]. All of the aforementioned tools supplement

the feedback students receive with code coverage analysis and feedback from static

analysis tools such as FindBugs by Cole et al. [10]. Douce et al. performed a more

detailed analysis of existing automated assessment systems [14]. The problem with

these existing systems is that they are not applicable to Scratch programs.

Scratch is a block-based programming language from MIT [30]. Scratch programs

consist of two-dimensional interactive animations. Objects, or sprites, move on the

screen as a result of either user input or the execution of scripts in a Scratch program.

Sound and video can also be integrated into Scratch programs. Scratch was designed to

allow students to learn computer science programming while employing great creativity

in their work. This creative freedom is one of the reasons that Scratch programs are

challenging to analyze.

An additional challenge in Scratch analysis compared to typical programming lan-

guage analysis is that Scratch programs are developed and run within a graphical user

interface. Rather than producing an easy to analyze text file, independent segments of

10

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

code, known as scripts, are associated with Scratch sprites, e.g., the Scratch Cat, and

tied to a triggering event. There is no central main point of execution. Instead, Scratch

programs might begin when a parallel set of scripts beginning with a when green flag

clicked hat block are triggered.

Little prior work has looked at automated Scratch analysis. Adams and Webster

describe using scripts and custom modifications to the Squeak source code of Scratch

to perform their quantitative analysis of Scratch programs from the Imaginary Worlds

summer camp [1]. Additionally, Burke and Kafai developed Scrape as a visualization

tool to aid humans in understanding patterns across Scratch programs [42]. Scrape was

used to assess Scratch programs produced in a middle school writing workshop [8].

Scrape is useful in answering questions such as:

• How many Scratch programs use loops?

• How many loops are present in each Scratch program?

• What level of nesting does the Scratch program use?

Hairball has two purposes — it quantifies the appearance of computer science con-

structs (e.g., loops, conditionals, nesting) like Scrape, and it also permits instructors

to gain insight how students understand these constructs. We want to answer questions

not just about the use of computer science constructs, but about the competence demon-

11

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

strated for different computer science concepts. Hairball can answer questions similar

to those mentioned above and additionally can be used to answer questions such as:

• Which Scratch programs contain unmatched broadcast EVENT and when I re-

ceive EVENT blocks?

• Which Scratch programs contain broadcast and receive events that result in infi-

nite loops?

• Which Scratch programs do not properly initialize the start state?

• Which Scratch programs do not properly implement complex animations (requir-

ing the application of timing, costume change, motion, and loops)?

2.3 Design

We have two goals in designing Hairball. Our first goal is to perform analysis on

a set of Scratch programs automatically. Without automated analysis, inspection and

execution requires opening each Scratch program manually. This manual process is

time-consuming and error-prone. Our second goal is that Hairball is easily extendable

so that new Scratch analysis plugins can be created with only a basic amount of Python

experience. Moreover, anyone should be able to make use of available plugins.

12

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

2.3.1 Plugin Architecture

We used the object-oriented features of Python to develop a base class from which

Hairball plugins can be derived. Python was chosen due to the authors’ experience

with Python and its increased adoption in introductory computer science classes. A

strong contributing factor to this decision is the open source Python package Kurt that

provides simple access to all the elements contained within a Scratch program, i.e., the

images, sounds, stages (backgrounds), sprites and most importantly the scripts [33].2

Implementing a Hairball plugin simply requires extending the base class and over-

loading a single method. The method’s sole parameter is a handle to the Scratch pro-

gram from Kurt. The method should return a dictionary containing the results of the

desired static analysis. In principle, any type of static analysis of a Scratch program that

can be described algorithmically can be implemented as a Hairball plugin in a straight-

forward manner by anyone with basic Python programming skills. The following code

provides an example of a simple Hairball plugin that counts the number of times each

Scratch block is used in a Scratch program.

class BlockCounts(HairballPlugin):

def analyze(self, scratch):

blocks = Counter()

for block, _, _ in iter_blocks(scratch):

blocks.update({block: 1})

return blocks

2As part of our work, we made a few contributions that are now a core part of the Kurt Python

package.

13

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

2.4 Hairball Plugins

In this section, we describe four Hairball plugins written to perform Scratch pro-

gram static analysis. The plugins were designed to analyze Scratch programs submitted

as part of our two-week interdisciplinary Animal Tlatoque summer camp [21]. The plu-

gins target the computer science concepts used in the camp’s cumulative assignment, an

interactive movie about an animal. For this assignment, students were to demonstrate

state initialization, use of broadcast EVENT and when I receive EVENT blocks, syn-

chronization between say MESSAGE and play SOUND blocks, and creation of complex

animation. While these plugins were developed for our summer camp, each provides

valuable feedback that is generally useful both as a lint-like tool for individual develop-

ers of Scratch programs and for others who are tasked with analyzing numerous Scratch

programs.

Each Hairball plugin for the camp was designed to evaluate whether, or to what

extent, the Scratch program demonstrated competence in an area. More precisely, these

plugins were designed to discover instances of the aforementioned concepts contained

within a Scratch program and label each instance as correct, semantically incorrect,

incorrect, or incomplete. Instances labeled correct should indicate that the concept

was implemented correctly. Instances labeled semantically incorrect should indicate

that the concept was implemented in a way that may not always work when executed.

14

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

Instances labeled incorrect should indicate the concept was implemented incorrectly.

Finally, instances labeled incomplete should indicate that only a subset of the required

blocks for a concept was discovered. A single Scratch program may contain multiple

instances of a concept distributed across any or all of the labels. Ideally, instances

labeled correct should not require manual analysis, whereas instances with any other

label should be inspected manually.

Initial State

In any program, correctly setting the initial state is important. In Scratch programs,

the significance is different. Scratch programs are comprised of animations, and in the

runtime environment, they may run from start to finish and be restarted again. Alter-

natively, they may be stopped in the middle and restarted again. We want to determine

via static analysis whether the code runs the same way in these two events.

The first problem is where to start the analysis. In traditional programs, execution

starts at main. However, Scratch programs have no such globally defined starting point.

Therefore, we taught our students to start their Scratch program using the green flag

button. Thus the starting point for our evaluation is the when green flag clicked block.

The most complex problem, and the problem that introduces the possibility of er-

ror into our analysis, is that sprites are placed on the stage during implementation thus

giving them an implicit set of attributes, which we will refer to as the base attributes.

15

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

Explicit initialization for a particular attribute, e.g., position or orientation, is only re-

quired when that attribute is modified by a script of the Scratch program. Thus, the

challenge is distinguishing segments of scripts that perform initialization from those

that perform general modification. To discover instances of initialization, we first de-

termine the set of blocks that can be considered initialization blocks and then we restrict

the location within the scripts that we search for these blocks. We call this location the

initialization zone.

Attribute modifying Scratch blocks can be labeled as relative or absolute. Relative

Scratch blocks alter the attribute based upon its current value, whereas absolute Scratch

blocks directly set the attribute. As such, only absolute blocks can be considered initial-

ization blocks. Table 2.1 shows our categorization for a subset of attribute modifying

Scratch blocks.

For an absolute block to be considered an initialization block, it must appear in the

initialization zone. We define the initialization zone only for scripts beginning with a

when green flag clicked block. The initialization zone begins at the start of the script

and ends when either a relative block or a broadcast EVENT block is encountered.

We take a conservative approach when encountering blocks contained within loops or

conditionals—absolute blocks are ignored due to the possibility that the block is not

executed, and relative blocks continue to signify the end of the initialization zone due

to the possibility that the block is executed.

16

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

Category Relative Absolute

Costume next costume switch to costume x

Visibility show/hide

Orientation turn clockwise x degrees point in direction x

Position move x steps go to x,y

Size change size by x% set size to x%

Background next background switch to background x

Table 2.1: Lists the five categories of initial state, and provides a subset of the relative

and absolute modification blocks for each category.

The initialization plugin labels a modified attribute of a sprite as correct when an

absolute block for the same attribute exists in the initialization zone. Instances are

labeled as incorrect otherwise. Non-modified attributes are ignored. Finally, despite

this plugin’s ability to detect unnecessary initialization, we did not include it as part of

our analysis.

Say and Sound Synchronization

Synchronization between a speech bubble (say MESSAGE block) and sound file

(play SOUND block) is not straightforward in Scratch. The desired behavior is that

whenever a speech bubble appears with a message, a sound file of a voice speaking the

message plays. When the sound is complete, the speech bubble disappears.

17

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

Figure 2.1: Shows the two methods for synchronizing messages from the say MES-

SAGE blocks with sound files played through the play SOUND blocks. While both

methods can produce the desired effect, the method on the right requires manually set-

ting an appropriate duration in the say MESSAGE for SECONDS block and thus is not

as robust to modifications, whereas the method on the left guarantees synchronization

between the play of the sound file and the display of the message.

Achieving this effect is complicated by the timing semantics of the two forms of the

say MESSAGE block, and the two forms of the play SOUND block in Scratch. One form

of the say MESSAGE block places the speech bubble on the screen indefinitely (until

replaced by another say MESSAGE block, or erased with an empty say MESSAGE

block), while the other, say MESSAGE for SECONDS, puts a speech bubble on the

screen for n seconds and, as a side-effect, delays execution of the script for n seconds.

Similarly, there are two forms of the block for playing a sound clip: play SOUND until

done plays the entire sound file before continuing execution of the script, while play

SOUND starts playing the sound and immediately continues with the script execution.

Figure 2.1 depicts the two methods to produce the desired effect. The first, dis-

played on the right, is to asynchronously play the sound via the play SOUND block

18

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

followed by a say MESSAGE for SECONDS block with duration equal to the elapsed

time of the sound. Unfortunately, the timing must be manually determined and needs

to be updated whenever the sound file changes. The second, displayed on the left, is

to use a say MESSAGE block to display the message, followed by a play SOUND until

done block, ending with an empty say MESSAGE block to remove the speech bubble.

The campers were taught the latter method as the correct approach because it is robust

to modifications of both the sound file, and to the message in the say MESSAGE block.

Thus the say and sound synchronization plugin detects instances of this concept

by looking for sequential say MESSAGE and play SOUND blocks and verifies the in-

stances are implemented using the appropriate method. A correct instance contains the

previously described three blocks in the proper order. Instances following the method

requiring manual timing are labeled semantically incorrect. Instances that have both

say MESSAGE and play SOUND blocks, but do not match either of these methods

are labeled incorrect, and isolated uses of say MESSAGE or play SOUND blocks are

labeled incomplete.

Broadcast and Receive

One use of Scratch’s broadcast EVENT blocks is to trigger the execution of other

sprites’ scripts beginning with the appropriate when I receive EVENT block. We taught

our campers the broadcast and receive concept in the context of two animal sprites

19

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

conversing, where each sprite would signal the other’s turn via an event broadcast. In

the camp’s cumulative assignment, the campers demonstrated an understanding of the

broadcast and receive concept by transferring this idea to the new context of triggering

scene changes in their interactive movie.

The broadcast and receive plugin verifies that for each broadcast or receive event,

there is a broadcast EVENT block and at least one corresponding when I receive EVENT

block. Such instances are labeled correct. All instances with a broadcast EVENT

block appearing in the same script with another instance’s broadcast EVENT block are

labeled as semantically incorrect. All other instances are labeled incomplete. Note that

this plugin does not use the incorrect label.

Complex Animation

We have a very specific definition of the term complex animation for the purpose

of our assessment. We use this term to refer to animation involving integration of cos-

tumes, motion, timing, and repetition control structures such as loops. This definition

of complex animation is to distinguish from, for example, the glide to SPRITE block

built into Scratch. One example of complex animation is realistic motion of sprites rep-

resenting people and animals, e.g., people walking, birds flying, and snakes slithering.

Creating these complex animations requires the correct integration of several computer

20

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

science concepts. For example, creating an animation sequence where a sprite spins

around, requires integration of loops, rotation, and timing.

A necessary component of complex animation instances is the pairing of costume

change blocks with either rotation blocks, or motion blocks. We define a complex

animation instance as either a loop containing these necessary components or a repeated

sequence of these necessary components, since a repeated sequence can be considered

an unrolled loop. In order to be labeled correct, an instance must also make use of a

Scratch block that introduces a delay; otherwise the instance is labeled semantically

incorrect. The plugin additionally labels instances that use repeated sequences instead

of loops as semantically incorrect because the student did not demonstrate competence

in the computer science concept of loops. Finally, if the Scratch program is missing

any critical element, e.g., repetition, it is labeled incomplete.

2.5 Methodology

In the remainder of this chapter, we will use the term Hairball to refer to both the

Hairball framework and its set of plugins as described in Section 2.4.

We tested Hairball on the Scratch programs submitted during our two-week summer

camp. There were five assignments total, with a distribution of concept requirements.

For example, complex animation was taught toward the end of the camp, thus instances

21

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

of this concept were only present in the last two assignments, whereas initialization was

present in all assignments [21].

We first performed a manual analysis on all fifty-eight of the submitted Scratch

programs. Three members of our staff independently analyzed the first five Scratch

programs submitted for a given assignment using a common rubric. We discussed any

discrepancies in our scores, and after coming to a consensus, we analyzed the remaining

Scratch programs. Once again, any score discrepancies were reconciled.

Hairball was then programmed to match the methodology agreed upon by the staff

members when classifying the concepts, and subsequently used to statically analyze all

of the Scratch programs. We define our ground truth data set as all instances that were

labeled identically by both manual analysis and Hairball. We performed a second man-

ual analysis for each instance that Hairball and the manual analysis labeled differently

to determine which was correct, Hairball or the initial manual analysis. The results of

this second manual analysis were added to our ground truth data set. In Section 2.6, we

compare both Hairball and our initial manual analysis to our ground truth data set.

Because the assignments are sensory in nature (auditory, visual), we are not at-

tempting to create Hairball to replace manual analysis. Instead, we are automating the

identification of the easy cases in order to accelerate manual analysis of the remaining

cases. As the results in Section 2.6 show, Hairball did an excellent job of identifying

issues that all three of our staff members missed.

22

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

2.6 Results

In this section, we present the results of using Hairball to assist in determining the

level of competence demonstrated by students’ Scratch programs for several computer

science concepts. For each concept, we will compare the labels Hairball assigned to

instances of the concept with those assigned via manual analysis. We look at both the

false positive and the false negative rates for Hairball and the manual analysis based on

comparison to the ground truth. Although our results include the labels semantically

incorrect, incorrect, and incomplete to demonstrate that Hairball can be used for more

than binary labeling, our assessment focuses on instances that are either labeled correct

or not. Thus, we consider a false positive to be an instance that was labeled correct,

when in fact it is not, and a false negative to be an instance that is actually correct,

but was not labeled as such. For manual analysis, both false positives and false nega-

tives represent the inaccuracies of manual assessment. For Hairball, false negatives can

be considered warnings, i.e., they are used to indicate the need for additional manual

analysis. However, any false positives produced by Hairball are cause for concern.

2.6.1 Initialization

We begin with initialization. Recall from Section 2.4 that Hairball looks for at-

tributes that are modified, and expects to find a corresponding absolute block in the

23

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

Figure 2.2: Compares the initialization instance labels. Note that this analysis used

only the correct and incorrect labels. Manual analysis resulted in thirty-two false pos-

itives, and Hairball resulted in thirty-three false negatives. Note that for this concept

there are exactly 348 possible instances as each of the fifty-eight Scratch programs have

six attributes that require initialization if modified.

initialization zone in order to consider an instance correct. The manual analysis, on the

other hand, only involved running the Scratch program twice, and confirming that the

two executions matched.

Figure 2.2 provides the classification of the 348 initialization instances discovered

across the fifty-eight Scratch programs. Of the sixty-five instances that Hairball and

the initial manual analysis labeled differently, Hairball was accurate for thirty-two of

the instances based on the ground truth, i.e., our second manual analysis. Many of

24

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

Figure 2.3: Compares the say and sound synchronization instance labels. Manual

analysis and Hairball failed to detect two and four instances respectively and manual

analysis resulted in four false positives.

the remaining thirty-three instances were not possible for Hairball to label as correct

due to initialization taking place outside of the initialization zone. For example, an

initially hidden sprite can correctly have its position initialized just before the sprite

becomes visible. In spite of this discrepancy, these results overall indicate that Hairball

is successful at pointing out problems in initialization.

25

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

2.6.2 Say and Sound Synchronization

Figure 2.3 shows the results of identifying and labeling instances of synchroniza-

tion between speech bubbles and sound files. Manual analysis identified 237 correct

instances, and a total of thirty-one other instances. Hairball identified 229 correct in-

stances and thirty-seven others. Manual analysis and Hairball failed to find two and

four instances respectively.

Comparison with the ground truth results in four false positives for manual analysis.

Hairball labeled its instances with 100% accuracy. Two of the four instances undetected

by Hairball were labeled incomplete by manual analysis. Hairball failed to detect these

instances due to a separation of the say MESSAGE and play SOUND blocks with a

broadcast EVENT block. To detect such instances, Hairball would need to additionally

inspect all scripts triggered by the broadcast event to ensure none of them interfered

with either the display of the speech bubble or the playing of the sound file.

2.6.3 Broadcast and Receive

Figure 2.4 shows the results of detecting and labeling instances of broadcast and

receive. Here, the manual analysis differed from Hairball by additionally verifying

that the intended action is performed for correct instances. Hairball is limited to static

analysis, thus it is unable to perform this additional step.

26

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

Figure 2.4: Compares the broadcast and receive instance labels. Manual analysis failed

to discover twelve instances, and resulted in seventy-nine false positives. Hairball de-

tected 100% of the instances with three false positives.

Overall, manual analysis failed to discover twelve instances, and identified 388 cor-

rect instances, of which, seventy-nine were false positives. Hairball discovered 100%

of the instances with zero false negatives. However, three of the 312 instances Hair-

ball labeled as correct were false positives. Although these three instances technically

represent correct usage of the broadcast EVENT and when I receive EVENT blocks,

our staff members labeled these instances incorrect in our ground truth set because the

code in each case did not produce the intended behavior upon execution.

27

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

Figure 2.5: Compares the complex animation instance labels. Manual analysis failed

to detect three instances whereas Hairball found eleven items that were determined to

not be instances of complex animation. Hairball resulted in two false negatives.

2.6.4 Complex Animation

Complex animation was especially difficult for Hairball to detect. As Figure 2.5

shows, manual analysis was 100% accurate at labeling the forty-six instances found,

and only failed to detect three instances. Hairball, on the other hand, labeled eleven

items as incomplete that the ground truth analysis determined to not be instances at

all. Excluding these instances, Hairball identified twenty-eight correct instances, and

twenty-one others with only two false negatives.

28

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

Figure 2.6: Provides a summary of the percent of mislabeled, false positive, and false

negative instances resulting from manual analysis and Hairball for each of the four

computer science concepts and the average. The Manual False Negative category was

omitted as manual analysis resulted in zero false negatives. The y-axis is truncated for

the smaller values, thus the tallest bar should extend to 40.7%. Missing bars represent

0%.

Hairball identified too many instances of complex animation due to the subjective

nature of what is considered an animation. For example, Hairball detects an animation

according to where the loops and repetition are located. Several times, Hairball detected

two separate animations, when manual analysis determined that those two actions were

working together to create a single larger animation. Additionally, Hairball considered

a move, wait, and change in appearance as an incomplete animation instance. In such

cases, manual analysis recorded nothing.

29

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

Summary Results

Figure 2.6 shows three sets of results across all four computer science concepts

and the overall average. The first is the mislabel rate of manual analysis and Hairball.

Percentages closer to zero indicate higher accuracy. We see that Hairball is actually

slightly more accurate overall than manual analysis; largely due to Hairball’s accuracy

in labeling broadcast and receive instances.

The second set of results is the rate of false positives. Manual analysis’s overall

false positive rate of 11.7% indicates that manual analysis is quite error prone. On the

other hand, Hairball’s false positive rate of 0.4% strongly indicates Hairball is accurate

at labeling correct instances.

Finally, the third set of results is the rate of false negatives. The lack of false neg-

atives for manual analysis makes sense, considering Hairball was created according to

the first manual analysis. Although Hairball has an overall false negative rate of 13.5%,

we believe this rate to be acceptable due to the fact that four out of five instances in our

ground truth set were labeled correct, meaning the use of Hairball on a similar corpus

of Scratch programs would reduce the set of instances requiring manual analysis by

80%.

30

Chapter 2. Using Static Analysis to Assist with the Post-Assessment of a Scratch-based

6th–8th Grade Summer Camp

2.7 Conclusion

We presented a case study showing Hairball, a new static analysis tool that provides

an extendable framework for automatically analyzing Scratch programs. In addition,

we provide an initial set of plugins that analyze the implementation of Scratch programs

for competence in four areas: initialization, broadcast and receive, say and sound syn-

chronization, and animation. Our evaluation shows that Hairball is extremely useful

in identifying correctly implemented instances, with a false positive rate of less than

0.5%. Overall, the mislabel rate of Hairball is less than half that of manual analysis.

Therefore, we propose Hairball as an addition to, not replacement of, manual analysis.

We have made the complete Hairball source code available under the open source

simplified BSD license. The source is hosted on github at

https://github.com/ucsb-cs-education/hairball.

Our future work entails writing Hairball plugins suitable for widespread summative

assessment in both AP Computer Science Principles courses, and other summer camps.

Finally, we want to launch a web service that provides a convenient way to utilize

Hairball for formative assessment of individual Scratch programs.

31

https://github.com/ucsb-cs-education/hairball

Chapter 3

Using Static Analysis to Assist with the

Development of a Scratch-based

4th–6th Grade Classroom Curriculum

In the previous chapter, we detailed the role that static analysis plays in the post-

assessment of Scratch-based 6th–8th grade summer camp assignments. We showed that

the use of static analysis increased both the speed and accuracy of assessment. In

this chapter, we describe our work that extends the application of static analysis from

a summer camp context to the context of 4th–6th grade classroom curriculum devel-

opment informed by design-based research. Using feedback from static analysis of

student-created Scratch programs we direct changes to both the Scratch interface and

the assignments that make up our curriculum. We found that static analysis helps reduce

the time to complete the analysis portion of the curriculum development cycle.

32

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

3.1 Introduction

Computer science is becoming one of the most ubiquitous areas of education at the

University level due to the importance of its core concepts within numerous other fields

of study, including materials science, biology, medicine, and economics. The need

for individuals to solve simple and complex problems using computers continues to

grow. While there is great demand in the work-force for people with computer science

experience, little effort has gone into classroom curricula to prepare young students for

careers involving computer science skills. In fact, high school graduates have little, if

any, idea of what computer science entails.

The Computer Science Teachers Association (CSTA) has created a set of standards

in an effort to introduce students to computer science and to prepare them to meet the

demands of the future. These standards detail how to incorporate computer science

concepts into existing primary and secondary school curricula [18]. The standards

created by the CSTA are a tremendous step in the right direction, shifting the focus of

computer science education from existing after-school outreach programs and summer

camps to required learning in schools [2–4, 12, 20, 24, 30].

The incorporation of computer science into 4th–6th grade curricula poses a chal-

lenge, as few research studies have focused on formal instruction of computer science

for this age group. We focus our attention toward this effort. Using a design-based

33

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

research approach, we begin with a simplified version of our summer camp curricu-

lum and deploy this curriculum in a number of 4th–6th grade classes in California [21].

Through analysis of field notes collected by education researchers who observed many

of the students in these classrooms in combination with analysis of the students in-

progress work, we are able to identify computer science concepts that are difficult for

these students to understand, as well as identify other issues with both the content of our

curriculum, and our modified Scratch programming environment. We use this knowl-

edge to improve our curriculum, and then we repeat this procedure with each wave of

classes.

In this chapter, we focus on the use of static analysis to assist with computer science

curriculum development. We concentrate our analysis on a single Scratch assignment

that requires students to demonstrate the concept of sequential execution by program-

ming a Net to catch three other sprites through a sequence of actions.

The remainder of this chapter is organized as follows. We provide a brief summary

of related work in Section 3.2. In Section 3.3, we present the methodologies used in

our study. We then present our results in Section 3.4. Finally, Section 3.5 contains our

conclusion.

34

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

3.2 Related Work

Significant work has focused on teaching young students the basics of computer

science in the context of outreach programs such as summer camps and after school

programs. In these programs, young students learn the basics of computer science

using languages such as Alice or Scratch. Computer Science Unplugged is another ap-

proach to help students learn computer science concepts without the use of a computer.

Along with the curricula for these outreach programs, researchers have also developed

improved ways of evaluating student success with computer programming in these lan-

guages.

Early research pertaining to assessment focused on student surveys to assess stu-

dent attitudes about the concepts they were taught in these outreach programs. More

recent work, however, moves toward detailed assessment of the computer science con-

cepts applied in students’ completed assignments to discover how these assignments

reflect what the students have learned. An example of this type of study was com-

pleted by Maloney et al., where they analyzed 536 completed Scratch programs created

by young students over an 18-month period in an after school program. They found

that students demonstrated an ability to use key programming concepts with help only

from inexperienced mentors [31]. Wilson et al. adapts the coding scheme of Denner et

al. to identify the most frequently used programming concepts by children who created

35

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

games in Scratch [13,41]. Using their Progress of Early Computational Thinking Model

on an existing set of Scratch programs, Seiter and Foreman worked to identify differ-

ences in computational thinking comprehension between students in 1st–6th grade [34].

While their work provides an excellent example of extracting student understanding

from completed Scratch programs, their results depend on the inclusion of a computer

science concept in a Scratch program to determine whether a student appears to under-

stand the concept. Brennan and Resnick argue, however, that the mere inclusion of a

concept in a student’s Scratch program is not indicative of the student’s understanding

of the concept, especially when encouraged to modify existing Scratch programs [7].

Through a combination of field notes collected during observation of student work

along with both manual and automated analysis of student Scratch programs, Franklin

et al. attempt to more precisely determine the specific computer science concepts mid-

dle school students learned during a two-week summer camp. Franklin et al. also

measure their students’ ability to apply taught concepts to the camp’s final assign-

ment [6, 21]. However, Piech et al. assert that student understanding of computer sci-

ence concepts is not entirely reflected by the student’s final version of an assignment.

By using machine learning on the sequence of student in-progress programs, i.e, snap-

shots, Piech et al. report a correlation between success in the class and the path students

took to solve an assignment [32]. This correlation appears to be to be more significant

36

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

than the final score on an assignment, suggesting that future analysis should look at

multiple snapshots in order to more accurately evaluate student understanding.

Our work uses a combination of field notes along with both manual and automated

assessment of student’s in-progress work to provide a depth of knowledge about student

understanding of our curriculum concepts.

3.3 Methodology

Table 3.1 details the eight 4th grade, one 5th grade, and one 6th grade classes from

across California included in this study. In all of these classes, we collected snapshots

of the student created Scratch programs. Additionally, in the first five classes, education

researchers both observed teacher instruction, and conducted student interviews.

In what we refer to as wave 0, classes S0A, S0B, and S0C piloted the curriculum.

This wave was used exclusively to test our snapshot creation and collection procedure,

as well as to test our ability to disseminate the curriculum to instructors. Wave 0’s field

notes and snapshots are therefore not useful in comparison to classes of the subsequent

waves, and thus the data from wave 0 is not included in this chapter.

All classes, save for S2A, were local. Education researchers accompanied these

local classes in order to assist teachers with the instruction of our curriculum, and to

help students with issues they experienced while completing our assignments. The

37

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

Class Grade Students Snapshots Notes Location

S0A 4th 18 74 Yes Local

S0B 4th 24 94 Yes Local

S0C 5th 39 219 Yes Local

S1A 4th 17 208 Yes Local

S1B 4th 12 89 Yes Local

S2A 6th 31 268 No Remote

S2B 4th 20 69 No Local

S2C 4th 23 117 No Local

S2D 4th 21 67 No Local

S2E 4th 25 117 No Local

Table 3.1: Lists the participating classes prefixed by assignment iteration (i.e., S0, S1,

or S2), including the grade level of each class, the number of students with consent,

the number of snapshots collected, whether education researchers took field notes, and

whether the class was local to the Santa Barbara area or remote.

38

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

education researchers’ presence in the classroom, along with the field notes recorded

following each visit, served as a form of participant observation enabling us to become

aware of concepts that were difficult for the students to learn [39]. In addition, for all

classes, we automatically generated and captured multiple snapshots of the students’

Scratch programs. We did this because prior work reported that the final result of a stu-

dent’s development process does not accurately represent the student’s understanding

of the material [7, 32]. The snapshot generation, collection, and verification process is

described in Section 3.3.3.

Once obtained, an analysis of the field notes resulted in an initial set of student

issues on the assignment. We manually inspected a sample of the snapshots in order to

both gauge the prevalence of each issue, and begin defining a model for the detection

of each issue. Additionally, we looked for other unexpected student behavior that was

not mentioned in the field notes, such as the addition of new sprites, or the addition

of scripts to sprites that were not intended to be modified. Once we had a grasp on

the issues encountered by the students and how to detect them, Hairball plugins were

written in order to quantify the number of snapshots and/or students affected by each

issue. Finally, we met with the education researchers to discuss both the cause of

these issues, and what modifications could be made to our assignment, and our Scratch

programming environment in order to minimize occurrences of these issues in future

39

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

Figure 3.1: Visualizes the iterative process of evaluating and improving both our cur-

riculum and our static analysis of Scratch programs.

iterations of the assignment. This process is visualized in Figure 3.1, and was repeated

after both waves of classes.

3.3.1 Our Scratch Interface

Prior work by Lewis showed that students using Scratch, ages 10–12, had less con-

fidence in their response to the statement “I am good at writing computer programs”

than students using Logo, a text-based language. Lewis hypothesized that the students

had not used all the blocks available within Scratch, thus distorting the students’ view

of their abilities [29]. As part of our prior work, we ran a two-week Scratch-based

40

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

summer camp, during which we observed that students of similar age to Lewis’s were

often distracted or overwhelmed by the plethora of blocks available when the assign-

ment only required use of a small subset of them [21]. Furthermore, Halgren et al.

reported that children, ages 5–14, have a curiosity to explore available functionality in

their movie-making program:

Our kids quickly got themselves trapped in advanced paint and movie-

making modes which surpassed their expertise. They also loved clicking on

the character buttons at the bottom of the screen. Each click of a character

button placed a new character on the center of the screen [22].

While young students’ curiosity to explore is amazing, it can be a hindrance in the

classroom. Thus, in hope of minimizing both student confusion and student distraction,

and in attempt to focus students’ attention and maximize their programming confidence,

we removed all unnecessary blocks from our Scratch interface. For this assignment, the

only blocks remaining for students to use are:

• glide NUM steps (and a variation that adjusted speed)

• turn clockwise NUM degrees

• turn counterclockwise NUM degrees

• point in direction X (where X is left, right, up, or down)

41

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

3.3.2 The Sequential Execution Assignment

In this study, we consider only the first assignment given to the three waves of

classes. The high-level goal of this assignment was for students to demonstrate compe-

tency programming a sequence of instructions that accomplish the provided task. More

specifically, the goals were for students to:

• have confidence using the interface

• recognize additional blocks are to be added to the provided base script

• understand the importance of block ordering within a script

• understand that execution occurs when NET clicked

While the goals of the assignment in wave 0 were consistent with those in the latter

waves, the collected snapshots are inconsistent among wave 0 students. Therefore,

we will not discuss that iteration of the assignment. However, the latter two waves of

classes had their own iterations of the sequential execution assignment, Sequential1 and

Sequential2, which, we discuss below.

Iteration 1: Sequential1

The first iteration of the sequential execution assignment, referred to as Sequential1,

presents students with the stage and five sprites arranged as shown in Figure 3.2. In this

42

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

Figure 3.2: Depicts the initial screen for Sequential1 including five sprites. Each stu-

dent’s task was to move the Net to catch the Bear, the Horse, and the Zebra in any

order while avoiding the Snake. Sequential2 visually differs only by the absence of the

Snake.

assignment, the students are to program the navigation for the Net, located in the upper

left, such that it catches the Bear, located in the upper right, the Horse, located in the

middle right, and the Zebra, located in the lower left. The students are permitted to

program the Net to catch these sprites in any order they desire. However, in Sequen-

tial1, the students are presented with an obstacle to avoid, the Snake, located in the

lower right.

43

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

Figure 3.3: Depicts the script and comments provided in the base-project to the stu-

dents in Sequential2. The script was the same in Sequential1’s base-project, however,

the comments were not included.

The students were provided with a base-project that moves the Net such that it

already catches the Zebra using a combination of glide NUM steps and point in direc-

tion X blocks as depicted in Figure 3.3. In Section 3.4.3 we classify this combination

of blocks as an orient and glide approach utilizing absolute orientation.

Iteration 2: Sequential2

The second iteration, referred to as Sequential2, presents students with a screen

similar to that of Sequential1 (Figure 3.2). The only visual difference is the removal

44

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

of the Snake. Aside from needing to avoid the Snake, both the students’ objective and

provided base-project remained the same. However, in addition to the blocks included

in Sequential1, we added two other block choices:

• point towards SPRITE

• glide to SPRITE

The glide to SPRITE block is a custom block we added to Scratch after observ-

ing student difficultly during Sequential1 with the two blocks required to successfully

move the Net. The students were not prompted to use either of these blocks. A com-

parison of student block choices is provided in Section 3.4.3. One other notable change

made to the Scratch interface for Sequential2 was the removal of the double click to

execute functionality provided by Scratch. See Section 3.4.5 for a discussion of why

we removed this functionality.

3.3.3 Capturing, Collecting, and Verifying the Accuracy of Snap-

shot Generation

Scratch, like many computer programs, only saves the most recent version of a

Scratch program when explicitly directed to do so via a save action. In order to obtain

snapshots of students’ in-progress Scratch programs, we modified Scratch to automati-

cally generate a snapshot when two conditions are met: the green flag button is clicked,

45

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

and at least four modifications to the Scratch program have occurred since the last snap-

shot. We create snapshots on clicks of the green flag button because these clicks are

likely to occur only when students have made incremental progress on their Scratch pro-

grams as students were taught to test their Scratch programs in this manner. Snapshots

are also created whenever the student explicitly invokes the save action. All snapshots

for a student are labeled by time, and combined in one zip archive to reduce both the

size and number of files we needed to collect.

We did not create a snapshot on every green flag button click due to a network issue

we experienced during teacher training. The computers that we trained the teachers

on were configured such that Scratch program files were stored on a remote server,

thus each save required transferring data over the network. While the creation of a

single snapshot is not an issue, the concurrent creation of many is. Because many

school networks are configured similarly, we introduced the four-modification snapshot

creation condition in hopes of preventing similar network issues; it worked.

Students were asked to submit their single snapshot archive at the end of each work

period by uploading the file through a web service we wrote for collection purposes.

This web service associated students with their uploaded snapshots. While this process

was very effective, and much less error prone than the researchers manually fetching

files from computers, it was not without issue; there were three:

46

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

1. A few students accidentally submitted the snapshots of a student who had used

the same computer in a previous class due to the web browser’s recall of the

directory of the last uploaded file.

2. Instead of starting with the provided base-project, a few students accidentally

started with a snapshot of a student who had used the same computer in a previous

class.

3. Some students submitted only the most recent snapshot due to selecting the final

version file rather than the snapshot archive file.

Fortunately, we were able to utilize the save-log contained within each Scratch pro-

gram file (i.e., our snapshots) to identify students who experienced any of these three

issues. The save-log in a Scratch program file records the history of every save action

with a timestamp and the name of the file saved to, providing us with an expected num-

ber of snapshots for each student. Additionally, from this information we identified

students sharing unexpected common starting points. That is, students who share more

than one consecutive entry in their Scratch programs’ save-logs that immediately suc-

ceeds the save-log of the Scratch program we provided the students to start with. Once

identified, we disassociated these snapshots from the student in the chronologically

later class. This procedure was used to resolve issue #1 and issue #2. Furthermore, we

retroactively obtained the snapshots for some of the students affected by issue #1. We

47

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

resolved issue #3 by comparing the number of snapshots collected for a student to the

actual number of snapshots created as indicated by the save-log. Students for whom

we did not have all snapshots were removed from our dataset. Due to the fact that we

did not analyze any of the wave 0 classes, we did not validate the data for those classes.

Thus the student and snapshot values for the first three columns in Table 3.1 are an

upper bound.

3.4 Results

In this section, we describe the results of our analysis of the Sequential1 and Se-

quential2 data. In general we wanted to gain insight into the following questions:

• How successful were students in creating a Scratch program that completed the

assignment?

• Did the changes we make after Sequential1 improve student completion rates?

• How pervasive were the challenges identified by education researchers via direct

student observation?

To answer these questions we (Section 3.4.1) look at the completion rate of students

by class, (Section 3.4.2) compare the difficulty of Sequential1 and Sequential2 based on

the number of snapshots to completion, (Section 3.4.3) analyze the approach students

48

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

S1A S1B S2A S2B S2C S2D S2E
0

5

10

15

20

25

30

35

40

45
N
u
m
b
e
r
o
f
S
tu
d
e
n
ts

17

12

31

20

23
21

25

Number of Sprites Caught by Students by Class

0 Sprites (4 students)
1 Sprite (43 students)
2 Sprites (12 students)
3 Sprites (90 students)

Figure 3.4: Compares the maximum number of sprites caught by student by class. A

student is considered complete if any of their snapshots catches two or more sprites.

used in solving the assignment, (Section 3.4.4) quantify the number of students who

may have experienced a race condition in Scratch, and (Section 3.4.5) quantify the

number of students who may have utilized the double click to execute approach when

initially working on the assignment.

3.4.1 Students by Class

We analyzed data from seven of the ten classes listed in Table 3.1: two for Sequen-

tial1, and five for Sequential2. This data include a total of 297 snapshots, twenty-nine

49

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

students for Sequential1, and 638 snapshots, 120 students for Sequential2. We have

more data for Sequential2 due to having more participating classes, all of which, con-

tained more students for whom we had consent.

Figure 3.4 compares student completion of the assignment for each class where the

total height of each bar indicates the number of students by class; this number is enu-

merated above each bar. The different colored portions of each bar groups students by

the maximum number of sprites caught. Green, pink, and yellow respectively indicate

that all, two, or only one of the three sprites were caught. Purple indicates none of

those students’ snapshots result in the Net catching a sprite upon execution. The four

students in the 0 Sprites group are interesting because the base-project provided to all

students already catches one sprite, the Zebra. Thus, these four students made changes

resulting in negative progress toward the goal. Also, it is noteworthy that of the 102

students who caught at least two sprites, only twelve (11.8%) did not catch the final

sprite.

We determine the success of a snapshot by running it through a Hairball plugin that

emulates the Net’s movement according to the Net script beginning with the when NET

clicked block. A snapshot is considered complete if the emulated movement of the Net

results in intersection with any two or more sprites corresponding to the Bear, Horse,

and Zebra. In the event intersection with the Snake occurs (only valid for Sequential1),

the snapshot is considered incomplete. Of the 297 Sequential1 snapshots, only one was

50

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

0 2 4 6 8 10 12 14 16
Snapshot Number

0

20

40

60

80

100
Pe
rc
e
n
ta
g
e
 o
f
S
tu
d
e
n
ts
 C
o
m
p
le
te
d

Snapshots to Completion by Class

S1A
S1B
S2A
S2B
S2C
S2D
S2E

Figure 3.5: Depicts the percentage of students by class that completed the assignment

by the number of snapshots indicated on the x-axis. The dashed cyan line represent-

ing S1A was truncated. It would otherwise extend horizontally out to the twenty-first

snapshot.

incomplete due to intersection with the Snake. A student is considered complete if they

have at least one complete snapshot.

3.4.2 Number of Snapshots to Completion

In the previous section, we looked at the total number of sprites caught by students

in the seven classes analyzed. While this information provides us with the overall com-

pletion rate, it does not provide any insight related to the difficulty of the assignment.

51

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

We approximate the assignment difficulty for a student as the number of snapshots

saved up to their first complete snapshot. Recall from Section 3.3.3 that we consider

each snapshot to be a unit of work.

Figure 3.5 plots the number of snapshots saved for students in each class on their

path to completion. An increase in the y-value for a line indicates what percent more

students were able to complete the assignment after the corresponding number of snap-

shots. The end of a line indicates the maximum number of snapshots generated on the

path to completion for students of that class. This figure clearly conveys two discrep-

ancies between Sequential1, indicated by dashed-lines, and Sequential2, indicated by

solid-lines:

• All Sequential2 classes, save for S2B, had a higher completion rate than the two

Sequential1 classes.

• More importantly, this figure shows that Sequential2 was considerably less diffi-

cult to complete than Sequential1 based on the strictly fewer number of snapshots

to completion for all Sequential2 classes, again save for S2B.

Over 50% of Sequential2 students completed by snapshot three, whereas fewer than

25% of Sequential1 students completed by their third snapshot. Furthermore, approx-

imately 20% of Sequential1 complete students required more than ten snapshots to

complete the assignment. Sequential2 was less challenging to the students due in part

52

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

to the addition of the glide to SPRITE block. We look specifically at the impact of the

glide to SPRITE block in the next section.

3.4.3 Approach to Solving the Assignment

As previously described, this assignment asks students to program a set of directions

to navigate the Net to catch the Bear, the Horse, and the Zebra. This set of directions

can be constructed in a number of ways. At the highest level, there are two approaches:

Glide to SPRITE: With a single glide to SPRITE block the Net will glide on a

direct path to the target sprite resulting in an intersection between two. The simplest

complete solution requires only three of these blocks, one for each of the Bear, the

Horse, and the Zebra. This approach was only available in Sequential2.

Orient and Glide: The other high-level approach is to modify the Net’s orientation

via one of three classes of orientation changing blocks, and then to glide an appropriate

number of steps via a glide NUM steps block in order to reach the desired target or

waypoint. The three classes of orientation changing blocks are:

Absolute orientation: This orientation change is accomplished via a point in direc-

tion X block where X can be selected as up (0), right (90), down (180), or left (-90). Al-

ternatively, any number can be manually entered for a more precise orientation. These

orientations are absolute with respect to the stage meaning up always orients toward

the top of the stage, right, toward the right of the stage, etc.

53

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

Relative orientation: This orientation change is accomplished via either a turn

clockwise NUM degrees, or a turn counterclockwise NUM degrees block. The use of

one of these blocks results in a modification to the current orientation of the Net. That

is, if the Net is oriented toward the right of the stage, a turn clockwise 90 degrees block

will result in the Net being oriented toward the bottom of the stage; in this particular

case, the absolute orientation block point in direction down would have the same effect.

Sprite orientation: The third type of orientation change is accomplished via a point

towards SPRITE block. When invoked as point towards Zebra, the Net will orient itself

toward the Zebra. This block was only made available in Sequential2.

A student may utilize a combination of these high-level approaches to complete

the assignment. For instance, in a single snapshot a student may use the orient and

glide approach via a relative orientation block to catch the Bear, and subsequently use

the glide to SPRITE approach to catch the Horse. Alternatively, students may utilize

several different classes of orientation blocks. We wanted to see which combination of

approaches was most preferred among students who completed the assignment.

As mentioned in Section 3.3.2, the base-project used as the starting point for all

students utilized an absolute orientation approach. In order to accurately assess what

approach combination the students explicitly utilized, the code provided in the base-

project was excluded from our approach combination analysis.

54

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

gli
de
 to
 SP

RIT
E

ab
sol
ute

rel
ati
ve

po
int
 to
wa
rds

 SP
RIT

E
0

10

20

30

40

50

60

70
N
u
m
b
e
r
o
f
S
tu
d
e
n
ts

9

45%
20

8

67%
12

57

93%
61

30

54%
56

8

44%
18

5

45%
11

Student Completion Rate by Approach

Sequential1 Complete
Sequential1 Incomplete
Sequential2 Complete
Sequential2 Incomplete

Figure 3.6: Shows the completion rate of each approach by student grouped by Se-

quential1 and Sequential2. An approach for a student is complete if any of the student’s

complete snapshots utilizes that approach. An approach for a student is incomplete if

they utilize the approach in any incomplete snapshot and the approach is not found in

any of the student’s complete snapshots.

Figure 3.6 shows a comparison of the overall completion rate by student of each

approach by assignment iteration. Only snapshots up to a student’s first complete snap-

shot are included in this analysis as some teachers provided additional challenges to

students who had completed the assignment. The height of each bar indicates the total

number of students who had at least one snapshot that utilized the indicated approach.

This value is provided as the upper-most number above the bar. The lower number is

55

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

the completion rate as a percentage, and the number within the lower segment of the bar

quantifies the number of complete students for the approach. An approach is complete

for a student if they utilized that approach in their first complete snapshot, otherwise,

an approach is incomplete for a student. An approach is counted even when used in

combination with another approach. When comparing the fifteen Sequential1 complete

students to the eighty-seven Sequential2 complete students, only two and fifteen re-

spective complete students (13.3% and 17.2%) utilized a combination of approaches in

their first complete snapshot.

This figure shows overwhelming evidence that students understood how to use glide

to SPRITE as the approach was complete for all but four (93.4%) students who at-

tempted the approach. Conceptually, this observation makes sense as the approach

requires only a single block per catch, rather than two or more blocks as required by

other approaches.

The absolute approach had around a 50% completion rate for both Sequential1 and

Sequential2. Considering that all students were provided with a base-project utilizing

the absolute approach to catch the Zebra, this result indicates students struggled with

the absolute approach.

While there are not many students for Sequential1, the figure does not convey that

all of the complete snapshots for the relative approach belong to students in the S1A

class. In fact, only one S1B student attempted a relative approach, whereas all but

56

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

gli
de

 to
 SP

RIT
E

ab
sol

ute

rel
ati

ve

po
int

 to
ward

s S
PR

ITE
0

10

20

30

40

50

60

70
S
tu

d
e
n
ts

Sequential2 Students by Approach by Snapshot Category

All
Up to Last
Last

Figure 3.7: Shows how many students utilized each approach in Sequential2 snapshots

for three categories: all snapshots, snapshots up to the first complete or last incomplete,

and the last snapshot.

four (76.5%) S1A students attempted an absolute approach. None of our field notes

provide any insight as to why the relative approach was so prominent with the S1A

class, especially when compared to the insignificance of the relative approach with

Sequential2.

Finally, we look at students’ usage of an approach across snapshots in three cate-

gories:

57

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

all the student utilized the approach in at least one snapshot, including snapshots made

following a complete snapshot

up to last the student utilized the approach in at least one snapshot up to and includ-

ing their first complete snapshot (includes all snapshots for students who had no

complete snapshot)

last the student utilized the approach in either their first complete snapshot, or their last

snapshot if all of their snapshots were incomplete

Figure 3.7 quantifies the number of students who utilize each approach in Sequen-

tial2 snapshots for each of the aforementioned categories. There are two primary ob-

servations: The first is that the difference in height between the pink and yellow bars

show the number of students who abandoned an approach. The minuscule difference

for the glide to SPRITE approach provides additional evidence for the ease-of-use of

that approach. We make no claims about the abandonment of other approaches due to

the low number of students utilizing those approaches. The second observation per-

tains to the difference in height between the pink and green bars for each category. This

difference indicates students who, only after making their first complete snapshot, at-

tempted a new approach. These additional attempts made by students after a complete

snapshot are likely due to additional challenges posed by instructors. The figure shows

very little growth in the absolute and relative approaches, but a nearly 15% increase in

58

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

the glide to SPRITE approach; once again providing support for the ease-of-use of the

glide to SPRITE approach. A figure for Sequential1 is not provided as there are only

two possible approaches, and none of the students switched approaches after their first

complete snapshot.

3.4.4 Quantifying Students Affected by a Scratch Race Condition

Our curriculum development and testing process, as described in Section 3.3 and

visualized in Figure 3.1, allowed us to focus analysis on issues we became aware of due

to the in-class researchers’ field notes. However, the field notes did not always capture

the relevant information. During manual analysis of the students’ snapshots we noticed

a number of snapshots that produced inconsistent results across multiple executions.

These snapshots should have consistently caught the Zebra, however, only did so ap-

proximately 50% of the time. We discovered the problem to be a race condition within

Scratch where the detection of the intersection between two sprites may not occur in

the brief period of time that the sprites intersect. Instead, the next block in the script,

always a rotation block, would execute and the rotation would result in the separation

of the two sprites; i.e., the two sprites were no longer intersecting. In-class education

researchers confirmed having observed this issue, however, their field notes did not

quantify the number of students affected. We hypothesized that students affected by

this issue may have struggled completing the assignment.

59

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

In order to quantify the students affected, we wrote a Hairball plugin to track

the Net’s execution sequence, i.e., the sequence of blocks beginning with when NET

clicked. We wanted to discover snapshots where the Net’s execution sequence matches

that of one of the execution sequences we manually verified as exhibiting the race con-

dition. We manually verified execution sequences by programming them in Scratch,

and executing the Scratch program up to twenty times. If we observed inconsistency in

the catching of the Zebra within these twenty executions, then the execution sequence

was labeled as exhibiting the race condition; otherwise it was not. While it is possible

for a race condition to emerge at a lessor frequency, we assume that few, if any, students

were affected by these cases. No race condition exhibiting execution sequence required

more than eight executions to detect.

What resulted was a Hairball plugin with a state machine that handled all execution

sequences of the Net shared by more than any ten snapshots. We only handled execu-

tion sequences up to the point that we could label them as exhibiting the race condition

or not. Of the 297 and 638 snapshots for Sequential1 and Sequential2 respectively, only

thirty-nine and thirty-eight respective snapshots (13% and 6%) contained an execution

sequence not explicitly handled by our plugin.

In addition to labeling execution sequences exhibiting the race condition, we la-

beled those resulting in a consistent intersection with the Zebra. Students with such

a snapshot subsequent to a snapshot exhibiting the race condition are likely to have

60

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

neither fixed nor complete
3

fixed, complete

2

fixed + separately complete

5separately complete

1

no rc, complete 7

no rc, incomplete

11

Sequential1 Race Condition Breakdown

Figure 3.8: Shows the breakdown of students affected by the race condition issue in

Scratch for Sequential1.

neither fixed nor complete8

fixed, incomplete
-

fixed, complete

11

fixed + separately complete

-

separately complete

23

no rc, complete
52

no rc, incomplete
24

Sequential2 Race Condition Breakdown

Figure 3.9: Shows the breakdown of students affected by the race condition issue in

Scratch for Sequential2.

61

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

expended effort to resolve the race condition. We label these snapshots as fixed. Addi-

tionally, for each student with one or more snapshots exhibiting the race condition, we

consider whether or not they completed the assignment.

Figure 3.8 and Figure 3.9 show the breakdown of all students grouped by whether

or not they have at least one snapshot exhibiting the race condition. In total, eleven and

forty-four students (38% and 37%) have snapshots exhibiting the race condition for

Sequential1 and Sequential2 respectively. Of those, three and nine students (27% and

20%) were unable to complete the assignment. Six and twenty-four students (55% and

55%) took a completely separate approach to completing the assignment after experi-

encing the race condition, whereas only two and eleven students (18% and 25%) solved

the assignment by the addition of one or more blocks that fixed the race condition.

Fortunately, a majority of students were able to avoid the race condition. We sam-

pled the snapshots of a few of these students and discovered the following three ap-

proaches that students used to avoid encountering the race condition:

1. The student immediately removed some or all of the provided code, thus starting

with a modified base-project.

2. In Sequential2, the student simply appended glide to SPRITE blocks to the code.

3. The student immediately added an additional glide NUM steps block resulting in

consistent intersection between the Net and the Zebra.

62

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

Students were also able to fix the race condition using the above approaches. Of

the thirteen students who first encountered, and then resolved the race condition, two

students (15.4%) fixed the race condition using approach #2, and the remaining eleven

students (84.6%) fixed using approach #3. Note that while students may have used the

same approach to avoid the race condition, only students for whom we have a prior

snapshot exhibiting the race condition are labeled as fixed in Figure 3.8 and Figure 3.9.

The data show that over one third of students experienced the race condition. Inter-

estingly, the students who experienced the race condition were statistically significantly

more likely to complete the assignment: 73% and 82% compared to 39% and 68% (chi

square, p < 0.028). This result was unexpected, nevertheless, the labels provided by

our static analysis indirectly allowed us to discover the primary reason why students

who did not experience the race condition did not complete the assignment. Manual

inspection of these labeled snapshots revealed that a large majority of these students ei-

ther removed, or significantly altered the provided code in their first snapshot. The only

other reason we discovered was due to race condition avoidance approach #3 where,

in each of these cases, it was apparent that the avoidance of the race condition was

unintentional based on the subsequent erratic modifications made by these students.

Overall, the effect of these results is that we are now able to adjust our assignment

so that students are less likely to encounter a Scratch race condition. Moreover, given

63

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

the negative impact of students removing the provided code, we learned that preventing

students from doing so may have a positive effect on learning.

3.4.5 Snapshots Exhibiting the Double Click to Execute Behavior

Scratch is built such that students can double click on any script, i.e., one or more

connected blocks, in order to execute that script. During Sequential1, in-class educa-

tion researchers described in their field notes that some students took advantage of this

behavior in order to execute scripts they created. While manually executing disjoint

scripts in this manner may trigger the success screen we built into the assignment, the

education researchers found that students exhibiting this behavior did not understand

the concept of a script. Instead, these students viewed the blocks as independent en-

tities not sequentially triggered by an event (e.g., when NET clicked), and therefore

these students did not exhibit the conceptual understanding of sequential execution we

had intended. Furthermore, the education researchers noted that students would double

click to execute a script in order to move from the start location to the first sprite, and

then alter that script to perform the next step of the sequence. Thus, as another use

of instructional scaffolding in the assignment, we disabled the double click to execute

feature in Sequential2 in attempt to prevent students from going down an unintended

path while completing the assignment.

64

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

Double Click to Execute Filters

Once aware of the problem, we sought to retroactively identify students who may

have utilized this double click to execute approach. Ideally, we wanted a plugin that

would positively identify these students based on their snapshots. However, with the

information provided in the snapshots, we could only incrementally filter out snapshots

matching models that we verified do not demonstrate the double click to execute behav-

ior. The following paragraphs detail, in order, the static analysis filters we created in

attempt to approximate the students affected by the double click to execute behavior.

Complete Snapshots Any snapshots that when emulated by our plugin result in the Net

catching any two or more sprites are filtered. Furthermore, any chronologically

subsequent snapshots by the same student are filtered. The subsequent snapshots

are filtered because, once a student demonstrates success, we are not concerned

about their double click to execute use.

Motionless Snapshots Any snapshots that result in no movement due to either having

zero scripts or having only a single when NET clicked script with no movement

blocks are filtered. These snapshots do not result in any motion and thus are not

indicative of double click to execute behavior that we are concerned with.

Net Ends in Expected Location Each Scratch program, i.e., each snapshot, stores the

last location of all its sprites. We compare the stored location of the Net to its

65

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

final location as computed by our Net emulation Hairball plugin. Snapshots con-

taining movement whose emulated Net location matches the Net’s stored loca-

tion are filtered. These snapshots are filtered because our emulation plugin does

not support the double click to execute behavior, thus it is not possible for these

locations to match when the double click to execute behavior is used.

Multiple Net Clicks We expect students’ scripts to execute only once upon when NET

clicked following a reset of the environment via a click on the green flag. How-

ever, it is still possible to click on the Net multiple times resulting in an execution

for each of these clicks. In such cases, the Net will initially be in an invalid state

for all but the first Net click. By performing the expected location test multiple

times, we are able to both identify and filter snapshots exhibiting this multiple

Net click behavior. These snapshots are filtered for the same reason as those

filtered due to ending in an expected location.

Double Click to Execute Snapshots

After applying all the filters, we counted the number of remaining snapshots per

student that may exhibit the double click to execute behavior. Figure 3.10 shows the

number of potential snapshots by student for both Sequential1 and Sequential2. Recall

that the double click to execute functionality was disabled completely in Sequential2,

thus we hoped that this filtering would result in nearly zero Sequential2 snapshots and a

66

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

1 2 3 4 5 6 7 8 9 10 11 12+
Number of Double Click Submissions

0

10

20

30

40

50
N
u
m
b
e
r
o
f
S
tu
d
e
n
ts

Double Click Submissions by Student

Sequential1 (26 students)
Sequential2 (90 students)

Figure 3.10: Depicts the number of double click to execute snapshots we identified for

each student.

significant decrease in the number of Sequential1 students whose snapshots we would

manually inspect. However, that was not the case. In reality, this filtering only re-

moved three of twenty-nine and thirty of 120 students (10.3% and 25.0%) respectively.

Unfortunately, without more precise field notes, we cannot quantify the number of stu-

dents affected because there is not sufficient information in the snapshots for us to even

manually identify students exhibiting the double click to execute behavior.

It is important to note that while we could not proceed, it was not due to a limitation

of static analysis. The Hairball plugin we wrote considerably helped us come to the

67

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

conclusion that we simply had not gathered enough information to either manually or

automatically determine the students affected by the double click to execute behavior.

Based on this experience with a lack of data, we are altering our data collection to

capture every change made by students.

3.5 Conclusion

This chapter detailed our continued use of Hairball for assessment of Scratch-based

assignments. We described our modifications to Scratch in order to apply instructional

scaffolding, and presented the results of two iterations of our sequential execution as-

signment. Two goals of our assignment were that students would recognize the need

to add additional blocks to the base-project, and understand the importance of block

ordering in order to demonstrate proficiency of sequential execution in Scratch. In this

section, we state our conclusions regarding improvements made to our curriculum, and

to the use of static analysis as a curriculum development tool.

3.5.1 Curriculum Improvements

We created and utilized Hairball plugins to help answer the three questions we

sought to answer (Section 3.4). In total, 102 of the 149 students for whom we had

consent completed the assignment. While an overall 68% is not impressive, the per-

68

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

centage increased from 52% to 73% due to modifications we made to both our Scratch

interface and our curriculum after Sequential1. While there is more room for improve-

ment with respect to student success on the assignment, we consider this increase to be

a success of our modifications between the two iterations of the assignment.

The single most important change we made was the addition of the glide to SPRITE

block as it enabled the use of only a single block for each of the three essential pick up

actions. Recall that our goal was not for students to understand position and orientation

changes, but simply for them to program sequential code that picks up all the objects.

Based on these results, we are introducing additional instructional scaffolding to our

curriculum. For instance, students will first be asked to solve the challenge using only

glide to SPRITE, and once mastering that task, will then be challenged with a simi-

lar task using only one of the Orient and Glide approaches. In both cases, only the

necessary blocks will be available for students to use.

3.5.2 Static Analysis

Hairball plugins were written to quantify students challenged with issues identified

by education researchers’ field notes. We described one such plugin identifying that

40% of all students experienced a Scratch race condition. Interestingly, 78% of those

students completed the assignment indicating a statistically significant correlation be-

tween experiencing the race condition and completing the assignment. While we were

69

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

successful in writing a Hairball plugin for the race condition issue, we could not do

the same for the double click to execute issue. The problem was that even with manual

analysis we could not precisely differentiate between snapshots exhibiting this behavior

and normal behavior due to the lack of information contained in the snapshots. In this

regard, we consider the use of static analysis a success as it helped us swiftly determine

the large subset of submissions that may exhibit the double click to execute behavior.

This information, in turn, permitted us to come to the aforementioned conclusion.

The two most significant benefits of using static analysis in assignment assessment

are the speed of assessment, and the accuracy of assessment. While there is overhead

involved in creating static analysis, it is a one-time overhead with essentially infinite

scaling capabilities. The overhead for training a human, on the other hand, may require

less time, but does not scale. Furthermore, static analysis will consistently produce the

same results, whereas humans are significantly less likely to do so.

Another significant advantage of incorporating static analysis in assignment assess-

ment is due to the dramatic reduction in overhead required with each iteration of assess-

ment criteria; of which, we had many. With only the addition of a short amount of time

required to adapt our static analysis to updated assessment criteria, we were otherwise

able to rerun the entire modified assignment assessment across all snapshots in a matter

of minutes. Conversely, a human could at best assess six snapshots in a minute. As-

suming that is feasible, each assessment criteria iteration would have required 2.6 hours

70

Chapter 3. Using Static Analysis to Assist with the Development of a Scratch-based

4th–6th Grade Classroom Curriculum

for analysis of our 935 snapshots. While, in general, the number of assessment criteria

iterations can be reduced with more in-depth up-front preparation, using static analysis

permits a flexibility in assignment assessment that is not limited by human factors.

Finally, the plugins written for our assessment will be used in future iterations of the

assignment to validate additional interface and curriculum changes. The use of Hairball

plugins in our assessment shows the usefulness of static analysis tools in the develop-

ment of 4th–6th grade curriculum. In the future, we hope to incorporate these plugins

in an automated snapshot collection and feedback system in order to provide real-time

feedback and assessment to students and instructors as students progress through an

assignment.

71

Chapter 4

Analyzing Undergraduate Student

Submission Patterns in the Presence of

a Real-Time Feedback and Assessment

System

In this chapter, we move from using static analysis in the assessment of 4th–6th grade

Scratch programs to investigating the submission behavior of university students in the

presence of a real-time feedback and assessment system. Because these systems dra-

matically decrease the required assessment time, many computer science departments

are using them to handle the work related to the growing number of computer science

undergraduates. However, little research is available that has looked specifically at how

students interact with these systems, or how these systems impact student learning. We

focus our investigation on these two neglected areas of research, paying particular atten-

tion to differences in student submission behavior in response to changes in feedback

timing.

72

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

4.1 Introduction

The growing demand for computer science education is resulting in a shift toward

larger class sizes. In order to accommodate these larger classes, many computer science

instructors have begun to utilize automated assessment technology where their students

submit assignments electronically, and a significant portion of the assessment is per-

formed by pre-written test cases and static analysis. Furthermore, a subset of these

automated assessment systems provide students with real-time feedback and unlimited

submission attempts up to the deadline making it possible for students to iteratively

achieve mastery on their assignments. While these feedback and assessment systems

support scaling class sizes with a minimal increase in human resources, little is known

about the impact of such systems on student learning.

We created and deployed a real-time feedback and assessment system for the pur-

poses of supporting scale in University of California, Santa Barbara (UCSB) computer

science lower division courses. From others’ prior work, and our own previous experi-

ence with real-time feedback and assessment systems, we knew that the use of our new

system would significantly reduce assignment assessment time, permitting instructors

and teaching assistants more time to work one-on-one with students in need of addi-

tional help. Our system was tested with 289 consent-giving students in a total of seven

73

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

instances of two UCSB computer science courses from Winter Quarter 2013 through

Spring Quarter 2014.

Anecdotal evidence suggested that while the system permitted students to achieve

success on assignments, the students were observed to rely on the system rather than

develop their own testing and debugging skills — skills they were previously forced to

develop in order to succeed in the absence of real-time feedback. We hypothesized that

students who are able to receive significant feedback in any given period of time will

take advantage of the system to the detriment of their testing and debugging skill devel-

opment. Although our system does not evaluate these skills, it measures the effect that

changes in feedback timing, referred to as feedback delay, have on student assignment

progress. Therefore, we sought to measure this effect on students in attempt to dis-

courage reliance upon the real-time feedback and assessment system, and thus support

students’ continued self-development of testing and debugging skills.

In this chapter, we present the results obtained by an analysis of 20,777 submissions

made by 289 consent-giving students as previously described. We provide a general

overview of student submission behavior in the presence of a real-time feedback and

assessment system, and provide an analysis of the feedback delay’s effect on student

submission behavior.

74

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

The remainder of this chapter is organized as follows. We provide a brief summary

of related work in Section 4.2. In Section 4.3 we describe the methodology of our study.

We then present our results in Section 4.4, and finally, conclude in Section 4.5.

4.2 Related Work

A number of educators have designed and built automated feedback and assessment

systems for programming assignments going back in time as far as 1960. A survey of

the history and application of these systems was performed by Douce et al. in 1995 [14].

Ihantola et al. picks up where Douce et al. left off with a review of computer science

related automated feedback and assessment system literature published between 2006

and 2010 [25]. Despite the plethora of related publications, little has been reported

on student submission behavior in the presence of these systems. Only recently have

researchers begun to look at the behavior of students utilizing automated feedback and

assessment systems in order to gain insight into behaviors that are more likely to con-

tribute to successful programming assignment completion.

Spacco et al. analyzed over 37,000 snapshots from ninty-six students collected us-

ing their Marmoset automated feedback and assessment system in Spring 2006. They

correlated both starting early with better final scores, and the length of a work session

with score improvement. In attempt to encourage students to start assignments earlier

75

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

than they would normally, Marmoset was designed with a renewable token component

that would permit students to receive feedback from additional assignment test cases at

most three times in a one-day period. Spacco et al. reported, however, that their data do

not show significant evidence of students starting earlier in order to be able to utilize

additional tokens [37, 38].

Edwards et al. analyzed nearly 90,000 assignment submissions from 1,101 students

collected over a five year period beginning in Spring 2004 using Edwards’s Web-CAT

automated feedback and assessment system [15]. Edwards et al. found that, among

students who did not score consistently across assignments, these students both started

and finished earlier when receiving an A or B score, than when receiving a C, D, or F

score. Furthermore, they also showed a general correlation between starting earlier and

assignment score [16].

Helminen et al. reported on student programming and testing behaviors collected by

their online code editor and execution environment in Fall 2012. While students were

only required to submit their assignments through the environment, many used it for

development and testing. With this environment, Helminen et al. were able to capture

detailed student activity including when students started and stopped working, edits

made to their code and associated tests, commands issued for testing, and when students

made submissions. They found that few students took advantage of the automated

76

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

feedback provided by their system. Helminen et al. speculated this result was due to

the already significant test coverage from test cases provided with the assignments [23].

Most recently, Falkner et al. looked at the impact of the granularity of assignment

scores on student submission behavior. They found that student scores improved with

an increase in assignment score granularity [17]. While it may seem intuitive that

assignments with more precise scoring will generally improve student scores, their re-

search provides evidence supporting this claim.

Overall, a side effect of these studies is an ever growing corpus of student submis-

sion behavior embedded within an extraordinary number of assignment submissions.

These submissions and the student behavior they represent contain a surfeit of knowl-

edge that computer science education researchers have only just begun to understand.

We hope to reveal some of this knowledge by comparing analysis results from our study

with previous results, and by looking at the impact of a delay in feedback on student

submission behavior.

4.3 Methodology

In this section, we describe the classes in our study, explain the concept of a feed-

back delay, and briefly provide an overview of our system architecture.

77

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

24W13 24S13 24M13 24F13 24W14 64F13 64S14
0

20

40

60

80

100

120
Class Information

Groups
Students
Submissions (per student)

Figure 4.1: Visualizes the number of groups, students, and average number of submis-

sions by student for each of the seven classes in our study.

4.3.1 Classes

Our study involves seven instances of two UCSB computer science courses from

Winter Quarter 2013 through Spring Quarter 2014. The first course, CS24, is the second

required course in UCSB’s lower division computer science curriculum and builds upon

students’ prior knowledge of C in order to introduce them to data structures, and object

oriented programming in C++. The second course, CS64, is a lower division computer

architecture course that educates students on assembly programming and the basics

of computer architecture, including digital design. In total, there are five instances

78

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

of CS24, and two instances of CS64 represented. A single instructor taught 24M13

and 24F13, and all others were taught by another individual instructor. All classes

were taught during a ten-week quarter including 24M13, the only summer instance

represented.

While our feedback and assessment system supports both programming assign-

ments and fill in the blank-type assignments, we only consider programming assign-

ments as students were expected to make relatively many more submissions to fill in

the blank-type assignments in order to reach the correct answers. Figure 4.1 provides

useful information for each class in this study. The purple bars indicate the number

of consent-giving students that made at least one submission, and the pink bars indi-

cate the average number of submissions made by each student. Finally, the cyan bars

indicate the number of unique groups that made at least one submission to any of a

class’s assignments. While most students formed the same groups across assignments,

that was not a requirement. Thus, some students changed groups across assignments,

and a few chose to work independently on some assignments. The latter are treated as

single-student groups.

We distinguish between students and groups because our feedback and assessment

system enforces an instructor-defined maximum group size per assignment. When the

maximum group size is more than one, students are able to join into groups with other

students up to the maximum group size. With regard to consent-giving students, we

79

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

only include submissions in this study if we have consent from all group members.

This grouping functionality was introduced in September 2013, therefore it was only

utilized by classes 24F13 and 24W14.

Two classes have an average number of submissions which stand out. First, the

average number of submissions is low for 24W13 due to only using the feedback and

assessment system for half of the quarter. In the first half of the quarter, the students

made submissions using an archaic submission system that provides no feedback. Sec-

ond, the average number of submissions per student for 24M13 is relatively high due to

students making post-deadline submissions as discussed in Section 4.4.4.

4.3.2 Feedback Delay

The primary educational purpose of a real-time feedback and assessment system is

to provide feedback to students so that they may iteratively achieve mastery on their

assignments. The use of these systems has positive side effects for instructors includ-

ing reducing assessment time while increasing assessment equitability. As many in-

structors have previously observed, however, student usage of real-time feedback and

assessment systems may result in dependency upon the system. This dependency could

inhibit students from expanding their knowledge of compilation, execution, testing, and

debugging processes.

80

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

Researchers have made various attempts to solve this dependency problem. Web-

CAT ensures students develop testing skills by requiring students to submit test cases

along with their assignment code [15]. While this approach appears successful to help

students develop testing skills, it is not suitable for our purposes because it would re-

quire a change to our lower-division curriculum in order to emphasize testing. In an-

other attempt, Marmoset restricts the frequency of running a subset of assignment test

cases, called release tests, through a limited number of release tokens. While this no-

tion of feedback reduction was also meant to encourage students to start assignments

earlier, Spacco et al. indicated that the release tokens were seldom used [37]. This re-

sult suggests that the standard assignment test cases, which students could always get

feedback from, provided sufficient coverage for students to complete their assignments.

Furthermore, this observation may be indicative of a problem with requiring instructors

to properly partition their test cases into standard and release tests.

We built our system in order to take an alternative approach that can be transpar-

ently utilized by UCSB’s existing computer science curriculum, and requires minimal

assignment configuration by instructors. Our approach is to introduce a configurable

per-assignment feedback delay for submissions that occur within a short period of time

to each other. For example, if the feedback delay is configured as five minutes, then

students will receive immediate feedback from only one new submission in any five-

minute window. Alternatively, if students make submissions exactly five minutes or

81

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

more apart, they will never experience any delay in receiving feedback. Our hypothesis

was that as the feedback delay increased, students would spend more time testing their

assignments prior to submission, with the result of both lengthening the time between

submissions, and inflating the improvement in score between submissions.

In attempt to measure the effects of the feedback delay on student submission be-

havior, we increased the feedback delay in five-minute increments for each subsequent

assignment in three of our classes: 24S13, 24M13, and 24F13. In all other classes, the

feedback delay was not intentionally altered between assignments. The impact of the

feedback delay is detailed in Section 4.4.5 and Section 4.4.6.

4.3.3 The Feedback and Assessment System

In this section, we describe our rationale for creating a new real-time feedback and

assessment system, as well as provide a high-level overview of the system’s architec-

ture.

Rationale

We chose to design and build our own system for a number of reasons. First, and

foremost, we wanted to have a system that was easy to adopt into existing curriculum in

order to encourage more instructors to use the system in their classes. We specifically

82

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

designed our system to match existing department submission and assessment work

flows.

In a similar vein, we designed the workers — processes that execute student code

as described in detail in Section Architecture Overview — such that they would run

on existing lab machines in order to provide a consistent test and development envi-

ronment without requiring additional resources from the technical support department.

Running the workers in this consistent environment also contributes to instructor adop-

tion of the system due to minimizing the distinct components instructors would require

modifications to in the common event that they need specific software or libraries for

one of their assignments. Additionally, by utilizing existing machines we are able to

provide significant worker redundancy making it possible to have zero issues with the

most volatile part of the system at no additional cost to our department.1

Finally, by building our own system we could ensure that we had total knowledge

of all components of the feedback and assessment system. This knowledge allows

us to easily adjust and control the various aspects of the submission, feedback, and

assessment processes as necessary for both current and future research efforts.

In designing the feedback and assessment system we had two primary goals:

• Students should be able to make assignment submissions from either the web

interface or lab machine terminals with little or no instruction.

1A redesign and implementation of this component was required in order to achieve this result. The

system has since run with a peak activity for three months without a single issue.

83

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

Figure 4.2: Provides an overview of the system architecture and how components

interact. Pink lines indicate messages being passed to and from the RabbitMQ service.

Note that each worker runs in a separate isolated environment.

• To reduce the overall assessment time for instructors and teaching assistants, in-

cluding the time to prepare assignment test cases.

We believe the first goal was met due to the absence of complaints regarding usabil-

ity of our system by the more than 300 students who have used it. We confirmed we met

84

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

the second goal when, on more than one occasion, an instructor had to find additional

work for their teaching assistants due to a significant reduction in assessment time.

Architecture Overview

Figure 4.2 provides a diagram of the system architecture. In a nutshell, the primary

interface to the system for instructors, teaching assistants, and students is their web

browser. An NGINX web server distributes Internet HTTPS requests across a number

of app servers that run the actual web service code. The system data is stored either

in a PostgresSQL database, or deduplicated via an on-disk file store. A submission

verifier process exists that checks new submissions for proper files prior to triggering

one or more relatively resource expensive build and test jobs. A one-to-one mapping

exists between a worker proxy and a worker where the worker proxy is responsible for

selecting a machine for the worker to run on, initiating the build and test processes

via the worker, and comparing the results generated by the worker to the assignment’s

expected results. RabbitMQ is used to pass messages that trigger the jobs run by the

submission verifier and the worker proxies.

All of the components, save for the workers, run on a single machine as we have

yet to experience any web service related performance issues. While there is a single

point of failure at that machine, a manual failover to the development machine requires

only minutes, with at most an hour of data loss. Moreover, providing redundancy on

85

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

these components is trivial because the system was designed to support this expansion

pending available hardware.

In addition to the primary web interface, any number of additional interfaces can

be created that communicate through the system’s REST API. For instance, two such

interfaces exist which both simplify a distinct task for command-line savvy users of the

system:

• A submission creation program was written that creates a submission for a stu-

dent by uploading the specified submission files. This program was written to

provide transparency with the archaic non-feedback submission process.

• An assignment test case synchronization program was written that allows an in-

structor or teaching assistant to quickly synchronize an assignment on the system

with the contents of a directory on their local machine. This program dramati-

cally decreases the time to configure an assignment because, while it is easy to

add test cases through the web interface, it can be tedious if there are more than

a handful of them.

4.4 Results

While our initial motivation for this study was to look at the effect of the feedback

delay on student submission behavior, the data we collected also allow us to offer new

86

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

insights into questions previously investigated by other researchers. The analysis of

our submission data lends support to some existing answers to these questions, and

contradicts others. In particular, we compare our results to those of Spacco et al. col-

lected in Spring 2006. [37]. Where our results differ, we draw new conclusions using

information from both our results, and theirs.

In this section, we present the results obtained from an analysis of the 20,777 sub-

missions collected from seven UCSB computer science classes from Winter Quarter

2013 through Spring Quarter 2014. We seek to answer the following questions:

• Section 4.4.1: Does Starting Early Help?

• Section 4.4.2: Does Time Pressure Affect Behavior?

• Section 4.4.3: Does Time Pressure Affect Efficiency?

• Section 4.4.4: Why Do Students Submit Well After an Assignment’s Deadline?

• Section 4.4.5: Does Delaying Feedback Impact Student Submission Behavior?

• Section 4.4.6: Does Delaying Feedback Impact Student Work Sessions?

4.4.1 Does Starting Early Help?

Many educators encourage their students to start early on assignments. Intuitively,

starting early gives students more time to receive feedback from their instructor and

87

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

1 10 100
Start Time in Hours Prior to Deadline

0

20

40

60

80

100

Fi
n
a
l
S
co
re

Start Time Before Deadline and Final Score
F(1, 4394)=1104.97, p < 0.0001, R^2=0.039

Figure 4.3: Compares the number of hours groups started an assignment before its

deadlines to the final score they received. Both the size and color of each circle cor-

respond to the number of groups represented at that position. The circles are plotted

such that smaller circles are strictly in front of larger circles. The red line represents a

best-fit trend-line of the data.

teaching assistants in order to make improvements to the work they submit by the

deadline. However, with traditional assessment, is it unlikely for an instructor to of-

fer multiple early assessment iterations to all students. With a real-time feedback and

assessment system, on the other hand, starting early additionally offers all students mul-

tiple opportunities for assignment feedback and assessment. Furthermore, the feedback

88

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

provided by these systems can then be leveraged by the student and instructor in office

hours.

Prior work in this field has shown that a positive correlation does in fact exist be-

tween starting early and assignment score [16, 37]. We sought to verify that our results

are consistent with those of the prior work.

Figure 4.3 plots the number of hours between a group’s first on-time assignment

submission and the corresponding assignment deadline against the final score the group

receives. Our data statistically significantly correlate earlier assignment start times with

higher scores. While it may seem odd that groups can receive 100% on an assignment

having started only an hour or less prior to the deadline, this result is merely an artifact

of our active data collection. Our data collection methodology only provides a lower

bound to how long prior to assignment deadline a group began working. We verified

that a small number of groups, distributed uniformly across assignments, would make

their first submission in the last hour. This behavior indicates that some groups mostly

worked without using the system in order to receive feedback.

While Figure 4.3 shows a correlation with start time and final score, we can break

down relative start times even further to a per-assignment basis. Figure 4.4 compares

the average score of the first 10% of groups to make a submission on an assignment,

to that of all groups, and to the last 10% of groups to make their first submission. The

assignments are sorted according to the first 10% value, and then the last 10% value.

89

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

0 5 10 15 20 25 30 35
Projects

0

20

40

60

80

100
A
v
e
ra

g
e
 S

co
re

Comparision of First and Last Submitters

All groups
First 10%
Last 10%

Figure 4.4: Compares the average final score of the first 10% of groups to submit to

the average and to the last 10% of groups to submit by assignment. The first 10% of

groups to submit had perfect scores on twenty-seven of the thirty-eight assignments.

Assignments with fewer than thirty groups are excluded so that at least three groups

make up each of the 10% categories. Of the thirty-seven assignments that meet the

criteria, the first 10% of groups all received 100% on twenty-six (70%) assignments,

only five (20%) of which, the last 10% of groups also all received 100%. In the other

twenty-one, the last 10% scored significantly worse than the average.

In the cases where the first 10% of groups did not receive 100%, there are a few

outliers where the average is higher than the first 10% of groups to submit. All of those

five cases were lab assignments where each student attended one of many lab sessions.

90

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

It is likely that a subset of the first 10% of groups to submit all emanate from an early

lab session where they were directed to make their first submission at a point in their

development process that they would not otherwise have made it.

4.4.2 Does Time Pressure Affect Behavior?

Motivated by the work of Spacco et al., we wanted to see if our real-time feedback

and assessment system, which required students to actively make assignment submis-

sions, measured similar student working behavior to their passively collected snapshots.

Spacco et al. discovered their students produced the most work in days prior to the dead-

line at 4PM. The amount of work significantly dropped at 6PM and remained nearly

consistent until 1AM. Although all of their assignment deadlines were at 6PM, they at-

tributed the peak in work between 4PM and 6PM as the time that students preferred to

work and thus suggested that “setting the deadline a couple of hours later might allow

students to work at their preferred time without the added pressure of an impending

deadline” [37]. Our results indicate otherwise.

Figure 4.5 depicts the number of submissions made at each time of day for submis-

sions made more than a day from their deadline. We observe a steady increase in the

number of submissions beginning at 9AM and peaking at 4PM. This peak is followed

by a decrease in submissions through 6PM. Our results are nearly identical to that of

Spacco et al., however, rather than observing a consistent amount of work for the re-

91

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

0 1 2 3 4 5 6 7 8 9 10 11121314 1516 17181920 212223
Hour of Day

0

200

400

600

800

1000

N
u
m
b
e
r
o
f
S
u
b
m
is
si
o
n
s

Submissions by Time of Day

Figure 4.5: Visualizes the time of day submissions were made excluding submissions

within a day of their deadline. Note the 4PM peak and the larger peak starting at 9PM

that continues through midnight.

0 1 2 3 4 5 6 7 8 9 10 11121314 1516 17181920 212223
Hour of Day

0

200

400

600

800

1000

N
u
m
b
e
r
o
f
S
u
b
m
is
si
o
n
s

Submissions by Time of Day Near Deadline

Figure 4.6: Visualizes the time of day submissions were made including only submis-

sions within a day of their deadline. The 11PM peak corresponds to the hour prior to

the deadline for most assignments.

92

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

mainder of the night, we instead observe an even larger increase in work until 9PM

where the amount of work then remains nearly consistent until midnight. Thus, while

our students are also productive between 4PM and 6PM, they are even more produc-

tive in the three hours before midnight. Coincidentally, seventy-one out of seventy-six

(93%) of our assignments had a midnight deadline. This observation combined with

the results of Spacco et al. lead us to believe that students learn to work most efficiently

in the hours just prior to the time of day of an expected deadline, regardless of the

proximity in days to the deadline.

As previously indicated, we excluded submissions from Figure 4.5 that were made

fewer than twenty-four hours from their respective assignment deadline. Our hypothe-

sis was that a more significant majority of the submissions would be made in the hours

just prior to their assignment deadline. Figure 4.6 confirms that hypothesis. While there

is little difference in the figure shape prior to 11AM, there is only a slight increase in

work during the 11AM to 3PM range. A sharp spike in submissions occurs at 4PM and

has a gradual decrease until 6PM. This decrease in submissions occurs in both figures,

and we suspect this decrease corresponds with the time students leave campus, head

home, and eat dinner, prior to resuming work. Finally, we observe a consistent increase

in work right up to midnight, the most common deadline.

It is important to note that this data include an insignificant amount of error. Prior

to the introduction the feature enabling students to create groups using our feedback

93

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

and assessment system that reflect their actual assignment groups, it was common for

multiple members of a group to make independent submissions to the system, often

only submitting the final complete version of the assignment. We detected and ex-

cluded eighty-seven subsequent exact duplicate submissions (0.4%). Of these, seven-

teen (20%) occurred in the 11PM hour. However, only nine (10%) occurred in the hour

prior to their deadline. While we detected and excluded subsequent identical submis-

sions, we do not do the same for nearly identical submissions because the error they

introduce is insignificant. We come to this conclusion by assuming there are a simi-

lar number of undetected non-exact duplicate submissions, and that these submissions

have a similar hour-prior to deadline distribution.

4.4.3 Does Time Pressure Affect Efficiency?

The previous section describes how submission behavior is altered by assignment

deadlines. In this section, we look at the effect of a pending deadline on submission

efficiency. There are a number of ways we could define submission efficiency. One

metric is to look at the amount of change in source code between submissions. Another

is to look at the change in cyclomatic complexity between submissions. While each of

these metrics may provide interesting insights into student behavior, we are more in-

terested in correlations with changes in groups’ scores between submissions. Thus, we

consider efficiency by looking at improvements and regressions in subsequent submis-

94

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

sions based on the change in score between submissions. A change in score is a result

of a subsequent submission passing more or fewer test cases. We quantify changes

in submission efficiency by classifying subsequent submissions into one of four cate-

gories:

Improvement

The submission increases the group’s maximum score on the assignment.

No Improvement

The submission has the same score as the group’s maximum score.

No Improvement 2

The submission’s score is less than the group’s maximum score and is not lower

than the local-minimum score.

Worse

The submission results in a local-minimum score. That is, it is the lowest score

since the last Improvement submission.

Figure 4.7 depicts the total number of submissions made in the days prior to each

submission’s respective deadline according to their respective category. The figure only

extends to seven days, as the number of submissions more than seven days prior to their

deadline is insignificant. Our results show that a majority of submissions are made in

95

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

01234567
Days Before Deadline

0

1000

2000

3000

4000

5000

6000
N
u
m

b
e
r
o
f
S
u
b
m

is
si

o
n
s

Submissions by Days Before Deadline

Improvement (4825 submissions)
No Improvement (5147 submissions)
No Improvement 2 (1273 submissions)
Worse (1290 submissions)

Figure 4.7: Shows the number of submissions by the number of days each submission

was made prior to their deadline grouped by improvement category. Submissions that

improve the group’s maximum assignment score are labeled Improvement, and those

that tie are labeled No Improvement. Worse submissions are those that result in a local

minimum, and all submissions between the group’s maximum assignment score and

the local minimum are labeled No Improvement 2.

the two days prior to their deadline; this observation is consistent with Spacco et al. In

contrast, however, we observe a much higher percentage of Improvement submissions

when compared to Spacco et al.’s positive snapshots [37].

The likely reason for this discrepancy is the difference between their passively col-

lected snapshots and our actively collected submissions. While a snapshot may not

represent a complete unit of work, a submission often does because groups explicitly

96

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

make submissions in order to receive feedback. One other difference is our Improve-

ment submissions are only submissions that improve upon a group’s maximum score.

It is unclear from Spacco et al.’s description if a snapshot that improves the score of a

negative snapshot is considered positive even if its score does not improve the group’s

maximum score. If this is the case, then the number of positive snapshots is inflated in

their results as compared to ours.

Regardless, we think a comparison of efficiency between submissions is more inter-

esting than a comparison between snapshots, because, despite submissions representing

a unit of work, there are still a significant number of submissions that are not Improve-

ment. Figure 4.8 shows the relative percent of submissions in each category by the

number of days prior to their deadline. Overall, the difference in submission efficiency

is insignificant with respect to the number of days prior to assignment deadline. While

our deadlines were distributed such that 24% and 25% of submissions were made to

assignments with a Monday and Friday deadline respectively, there was no difference

in submission efficiency with respect to the day of the week a submission was made.

An analysis of the hour of the day of each submission also resulted in no significant

changes in submission efficiency. Thus, these results convince us that time pressure

does not affect submission efficiency.

97

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

01234567
Days Before Deadline

0

10

20

30

40

50

60

70

80

90
Pe

rc
e
n
t
o
f
S
u
b
m

is
si
o
n
s

Submission Improvement by Days Before Deadline

Improvement (4825 submissions)
No Improvement (5147 submissions)
No Improvement 2 (1273 submissions)
Worse (1290 submissions)

Figure 4.8: Depicts the percentage of submissions in each improvement category by

the number of days each submission was made prior to its deadline.

4.4.4 Why Do Students Submit Well After an Assignment’s Dead-

line?

An interesting aspect of real-time feedback and assessment systems that prior work

has not touched upon, is student usage of these systems beyond an assignment’s dead-

line in order to make improvements to their work and verify the correctness of those

improvements. These systems inherently provide this functionality, and some students

take advantage of it.

98

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

24
S1
3 (
0)

24
M1

3 (
1)

24
M1

3 (
2)

24
M1

3 (
3)

24
M1

3 (
4)

24
M1

3 (
5)

24
F1
3 (
6)

24
F1
3 (
7)

24
F1
3 (
8)

24
F1
3 (
9)

24
W1

4 (
10
)

24
W1

4 (
11
)

24
W1

4 (
12
)

24
W1

4 (
13
)

24
W1

4 (
14
)

64
F1
3 (
15
)

Assignment

0

10

20

30

40

50

60

70
Pe
rc
e
n
ta
g
e
 o
f
G
ro
u
p
s

Post Deadline Submitting Groups

Figure 4.9: Shows the percentage of groups that submit more than two days following

an assignment’s deadline. The x-axis groups the assignments by class.

Figure 4.9 shows the percentage of groups by assignment that made one or more

submissions more than two days following an assignment’s deadline. Of the seventy-

six assignments, only sixteen are shown in the figure. Five (6.6%) assignments were

excluded for representing fewer than ten groups. A majority of these assignments were

the first assignment of a class for which we had only received a portion of the consent

forms. Twenty-nine assignments (38.2%) had zero post-deadline submitting groups and

are therefore not shown. Finally, twenty-six (34.2%) assignments had only between 1%

99

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

and 4% (average 2.4%) of groups with post deadline submissions. These assignments

are excluded from the figure for space purposes.

A minimum of two days following an assignment’s deadline was chosen because by

this time, all students were beyond any late-credit that may have been offered across all

assignments. Except where otherwise noted, submissions occurring after this two-day

period provided the student with no direct grade-benefits.

Five of the assignments in Figure 4.9 are from 24M13, which comprised only seven-

teen consenting students whereas the next smallest class, 64S14, comprised forty-eight

consenting students. 24M13’s small class size is significant as a larger percentage of the

students were able to receive assistance in office hours from both the teaching assistant

and the instructor.

Additionally, five of the assignments are from 24W14. In this class, half of the

groups submitting post deadline did so for more than one assignment. We discov-

ered that the majority of these post deadline submissions occurred just prior to one

of 24W14’s course examinations. This discovery suggests that a number of students

utilized the real-time feedback and assessment system as a tool for exam preparation.

Messages on the course discussion group confirmed students utilized the feedback and

assessment system to improve upon previous course assignments as a form of studying.

Overall, four of the assignments, 2, 3, 6, and 12, stand out from the remainder. The

first two, 2, and 3, were assignments that subsequent assignments depended on. Thus,

100

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

as reported by the instructor, many students sought help during office hours to correct

issues with the former assignment prior to moving on to the latter. The instructor re-

ported that the real-time feedback and assessment system was invaluable during office

hours for its capability to efficiently verify correctness of modifications to students’

code without exposing the test cases, nor requiring the instructor to manually obtain

and test the students’ in-progress work. Assignment 6 presented students with the op-

portunity to make-up missed points after the deadline, thus not surprisingly, explaining

its spike in post deadline submissions. Finally, assignment 12 had both a number of

students revisit prior to a class exam, and was a dependency of a subsequent assign-

ment.

In summary, our results show that there are three primary reasons why students

continue to work on assignments well after the deadline:

• Intuitively, the most prominent reason we observed is to make up points lost on

an assignment. While abusing this functionality may result in students not taking

initial assignment deadlines seriously, the ability for instructors to easily reassess

student work provides a paradigm of assignment assessment that has never before

been feasible.

• The second most prominent reason we observed is due to inter-assignment de-

pendency. When an assignment depends on the work of a former assignment,

101

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

a number of students found it useful to first verify correctness of improvements

made to the former assignment before advancing to the latter.

• Finally, we observed a small number of students who made improvements to past

assignments as part of studying for their examinations.

Overall, we consider any submissions made after the deadline to be a success of the

real-time feedback and assessment system. Without lowering the barriers to additional

feedback, these students may not have made any effort to improve their comprehension

of the material through improvements to their past assignments.

4.4.5 Does Delaying Feedback Impact Student Submission Behav-

ior?

As indicated in Section 4.3.2, we sought to measure the impact of altering assign-

ment feedback delay on student submission behavior. Here, we first look at the impact

of the feedback delay on the time between subsequent submissions made by the same

group. Figure 4.10 plots the time between subsequent submissions grouped by assign-

ments sharing the same feedback delay value to a five-minute precision and combining

those with a feedback delay of more than thirty minutes. Note that the x-axis is shown

in a log-scale, and the size and color of each circle represents the relative number of

submission gaps represented by that circle. For instance, with a feedback delay of ten

102

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

10 10
0

10
00

10
00

0

Time Between Submissions in Minutes

>30 (240 submissions)

30 (311 submissions)

25 (132 submissions)

20 (566 submissions)

15 (472 submissions)

10 (332 submissions)

05 (1900 submissions)

00 (872 submissions)

Time Between Submissions by Feedback Delay Time

Figure 4.10: Plots the time between submissions grouped by assignment feedback

delay. Note the shift to a longer time between submissions in the most significant

portion of each row (indicated by the largest circles) as the feedback delay increases.

minutes, the most significant gap between subsequent submissions is around ten min-

utes as indicated by the bright cyan large circle in that position. This figure clearly

shows by the shift in position of the bright cyan large circles in each row that as the

feedback delay increases, so does the most significant grouping of subsequent sub-

mission gaps. This result indicates that delays in feedback affect student submission

behavior.

Figure 4.11 shows the relative efficiency of submissions grouped by the feedback

delay. This figure appears to indicate that there is a significant improvement in sub-

mission efficiency with delays of thirty minutes or more. Using Student’s t-test, we

103

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

0 5 10 15 20 25 30 35 40 45 50
Delay

0

20

40

60

80

100
Pe

rc
e
n
t
o
f
S
u
b
m

is
si

o
n
s

Relative Improvement Category by Feedback Delay

Figure 4.11: Plots the percent of submissions in each improvement category for each

five-minute delay interval from zero to fifty. Refer to Figure 4.7 for the legend and its

description.

compared the percent of Improvement submissions for each feedback delay fewer than

thirty minutes, to those of each feedback delay thirty minutes or longer. The difference

was statistically significant with P=0.0095.

For comparison, Figure 4.12 depicts the time between submissions for each of the

improvement categories. The aggregate results from the figure indicate that the most

common time between subsequent submissions is approximately ten minutes. Further-

more, there is a consistent spike in time between submissions just prior to the 1,000-

minute mark. This time corresponds with a diurnal working pattern of our students.

104

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

10 10
0

10
00

10
00
0

Time Between Submissions in Minutes

Worse (1290 submissions)

No Improvement 2 (1273 submissions)

No Improvement (5147 submissions)

Improvement (4825 submissions)

Time Between Submissions by Improvement Category

Figure 4.12: Plots the time between submissions by their improvement category.

Overall, there is not a significant difference in time between submissions with respect

to improvement category. However, the shape of the individual scatter lines provides

two insights:

• Relatively the most No Improvement 2 submissions occur in the first few seconds

as indicated by the size and color of the No Improvement 2 category’s first cir-

cle compared to the first circle of other categories. Recall that No Improvement

2 submissions occur in the period after a Worse submission and prior to an Im-

provement submission. This short period of time between these submissions and

their corresponding former submissions is too small for a group to have under-

stood any feedback received, suggesting these groups did not independently test

whatever changes they made prior to resubmission.

105

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

• Interestingly, with respect to Worse submissions, the spike around the 1,000-

minute mark is the most significant compared to other categories. This data sug-

gest that long breaks have an initially negative impact on assignment progress.

Our results confirm that changes in the feedback delay have an impact on student

submission behavior. In general, as the feedback delay increases, students wait longer

to submit, and when comparing delays of less than thirty minutes to those of thirty

minutes or more, the students are more likely to improve upon their previous score

with longer feedback delays.

4.4.6 Does Delaying Feedback Impact Student Work Sessions?

Section 4.4.5 showed that a delay in feedback has an impact on both the time be-

tween submissions and the likeliness for a group to make an improving subsequent

submission. In this section, we attempt to group submissions into a work session.

Conceptually, a work session is a continuous period of time that students are actively

working on an assignment. Multiple work sessions are separated by periods of inac-

tivity that may be due to sleep, distraction, other work, or some other form of break.

Grouping multiple submissions into a work session provides another level of depth to

insight on student behavior. We use these groupings to both look at the effect of the

feedback delay on work sessions, and to compare our work session results to those of

106

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

prior work. While our data collection methodology does not allow us to express work

sessions with great precision, we make an approximation.

We define work sessions similarly to Spacco et al. Specifically, we define a work

session as a collection of submissions by the same group for the same assignment in

which all subsequent submissions are made within some window of time to its prior

submission. We refer to this window of time as the window size.

Determining an Appropriate Window Size

We investigate the ideal window size for which to discover work sessions. Spacco

et al. arbitrarily chose a window size of twenty minutes [37]. While this window size

may have been appropriate for their data, where snapshots were collected passively

upon changes to students’ code, it is not appropriate for our data due to the fact that

students actively submitted only when they desired feedback. Furthermore, it would

not make sense for us to define a window size fewer than fifty minutes due to inclusion

of assignments with a feedback delay of fifty minutes, where groups regularly make no

more than one submission in any fifty-minute period. Thus, the window size we select

must be at least fifty minutes in length.

There are two forms of error that we must mitigate when selecting a window size:

• The first error is due to not being able to distinguish between work and non-work

time occurring between submissions in a work session. While a student may

107

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

0 100 200 300 400 500
Window Size in Minutes

0

500

1000

1500

2000

2500

3000

3500

4000
N
u
m
b
e
r
o
f
W
o
rk
 S
e
ss
io
n
s

Number of Work Sessions by Window Size

Figure 4.13: Plots the number of work sessions as the window size increases.

make two submissions in a period of time shorter than the window size, they may

not have worked for the entire period between those two submissions. Intuitively,

this error is reduced by minimizing the window size due to the fact that any non-

work periods longer than the window size will not be included as part of the work

session.

• The second error is a result of selecting a window size that is too small to en-

compass actual periods of student working time between two submissions. For

instance, if we select the window size as sixty minutes, then this error corre-

108

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

sponds to the number of subsequent submissions representing more than sixty

minutes of actual work.

Although we can measure the number of subsequent submissions over a given win-

dow size, we cannot measure either error due to a lack of information as to when stu-

dents are actually working. We accept these errors, and assume that they equally effect

working sessions independent of the feedback delay time.

Rather than arbitrarily choosing a value, we attempt to select an ideal window size

based on features of our data. We use the maximum session length as a heuristic for

limiting the window size, as it is unlikely that more than a handful of all sessions are

longer than eight hours in addition to time to account for the error in work time be-

tween two submissions. Figure 4.13 shows the effect of increasing the window size on

the number of work sessions created. This figure reveals that for our data the maximum

number of work sessions occurs with a window size of approximately twenty minutes,

after which the number of work sessions gradually decreases. This decrease indicates

that as the window size grows, the number of work sessions merged together is more

significant than the number of new work sessions created by the grouping of two inde-

pendent submissions. Aside from the twenty-minute peak, there are no other points of

interest in this figure.

Figure 4.14 plots a number of lines corresponding to various work session lengths

as the window size increases. The four non-vertical lines correspond to:

109

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

0 100 200 300 400 500
Window Size in Minutes

0

500

1000

1500

2000

2500
D
u
ra
ti
o
n
 i
n
 M
in
u
te
s

Work Session Duration by Window Size

Longest
Longest 1% Mean
Longest 10% Mean
Mean

Figure 4.14: Shows the change in work session duration as the window size changes.

The red vertical lines indicate points of interest due to significant changes in the longest

duration work session. The red lines occur at window sizes seventy-nine, 112, 152, and

285.

• the duration of the single longest work session

• the mean duration of the top 1% of work sessions sorted by length

• the mean duration of the top 10% of work sessions sorted by length

• the mean duration of all work sessions

Of these four lines, we find only the duration of the single longest work session to

be of interest as there are a number of distinct window sizes that result in increasing

110

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

the longest duration. The red vertical lines on the figure highlight the window sizes of

interest, i.e., they are the window sizes just prior to a significant increase in maximum

work session length. We excluded consideration of points of interest at larger window

sizes due to the infeasibility for 10% of all work sessions to be over eight hours in

length. Additionally, we exclude the point of interest that occurs just after fifty minutes

due to its proximity with our longest feedback delay.

We select the left-most point of interest, seventy-nine minutes, as the window size

we use in the remainder of the results section. Note, however, that where statistical

significance is concerned, we verified that each highlighted window size in Figure 4.14

produces consistent results with those produced using the seventy-nine minute window

size. This comparison shows that our analysis is unaffected by the specific choice of

window size from the options we highlighted with red lines.

Properties of Work Session Lengths

Before considering the impact of the feedback delay on work sessions, we first com-

pare a few general properties of our work sessions to those of the passively collected

work sessions of Spacco et al.

Having defined a window size, we are able to group submissions into work sessions,

and thus approximate the length of a work session as the time between the first and

last submission in a work session. Rather than looking at the improvement between

111

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

1 10 100
Work Session Duration in Minutes

−100

−50

0

50

100

Pe
rc

e
n
t

S
co

re
 C

h
a
n
g
e
 d

u
ri

n
g
 S

e
ss

io
n

Improvement by Work Session Duration (79 minute window)
F(1, 6806)=275.33, p < 0.0001, R^2=0.014

Figure 4.15: Depicts a positive correlation between work session duration and percent

score change. The results are statistically significant according to an F-test.

individual submissions as we did in Figure 4.12, Figure 4.15 plots the percent score

change made between the first and last submission in a work session against the length

of the work session. In this figure, circles at 0% score change on the y-axis would be

considered No Improvement, and a vast majority of changes in work sessions would

be considered Improvement due to the significant imbalance between the number of

sessions that improve the score when compared to those that reduce the score. The red

line represents the trend-line and an F-test of the data confirms that there is a statistically

significant positive correlation between the length of a work session and the percent

112

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

1 10 100 1000
Minutes on Assignment

0

20

40

60

80

100

Fi
n

a
l

S
co

re
Time Worked and Final Score (79 minute window)

F(1, 4532)=36.09, p < 0.0001, R^2=0.002

Figure 4.16: Depicts a negative correlation between the minutes spent on an assign-

ment and the final score. The results are statistically significant according to an F-test.

change in score. This analysis indicates that longer work sessions are more likely to

result in increased improvements in score. These results are consistent with those of

Spacco et al. [37].

We approximate the total time spent on an assignment by summing the length of

all the work sessions by group for an assignment. Figure 4.16 plots the final score

compared to the total time spent on an assignment. The red trend-line shows there

is a statistically significant negative correlation between the total work time and the

final score. This negative correlation indicates that the longer a group works on an

113

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

Score Count Mean Work Time stderr No Progress stderr

0% 142 54m 6 50% 4

0%–100% 616 119m 6 58% 2

100% 1509 60m 2 34% 1

Table 4.1: Lists properties of group work times (79 minute window) grouped by those

that scored 0%, between 0% and 100%, and 100%. The mean work time is the mean

time groups in each grouping spent working on the assignment along with the corre-

sponding stderr. No progress represents the mean percent of time that groups in each

grouping spent without improving their maximum score.

assignment, the less likely they are to score well. These results contradict the results

of Spacco et al. where they found a statistically significant positive correlation between

the two.

This result intuitively makes sense under the assumption that a majority of groups

who do not complete an assignment do not do so due to a lack of effort. Although

groups who complete an assignment are more likely to start earlier, these groups, on

average, spend much less time working on an assignment. Table 4.1 confirms this

intuition by showing that the mean work time of groups who receive 100% on an as-

signment is nearly half that of all groups who receive scores between 0% and 100%,

with little error. The No progress column shows that groups who complete an assign-

ment spend a larger percentage of their time improving upon their assignment score,

114

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

whereas groups, who do not, spend over 50% of their assignment time without making

forward progress.

That begs the questions, why are groups who complete an assignment likely to

spend less time on it, and why are these groups more efficient? While we cannot pre-

cisely answer these questions, we offer two possible explanations:

• In general, successful students simply may have a better understanding of assign-

ment material, resulting in more productive work sessions, and overall reducing

the amount of time to completion.

• Successful students are more likely to start earlier, thus providing them with more

opportunity to attend office hours. Students who attend office hours gain useful

insights to an assignment, resulting in more forward progress, and an overall

reduction in the time required to complete an assignment.

From the opposite perspective of both explanations we can understand why unsuc-

cessful students may spend more time on an assignment. Without a directed approach

to completing an assignment, these students may figuratively spin their wheels requir-

ing significant time with little, if any, progress. In such cases, if these students are

not performing their own testing, and waiting for feedback from the system, delays in

feedback may have a negative effect on student performance.

115

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

0 10 20 30 40 50
Delay In Minutes

0

100

200

300

400

W
o

rk
 S

e
ss

io
n

 L
e

n
g

th
 i

n
 M

in
u

te
s

Work Session Length by Delay (79 minute window)
F(1, 6806)=1511.20, p < 0.0001, R^2=0.007

Figure 4.17: Plots work session length against feedback delay. There is a slight, nev-

ertheless, statistically significant positive correlation between the two.

Impact of Feedback Delay on Work Sessions

Finally, we consider the impact of the feedback delay on work sessions. We first

consider the effect a change in feedback delay has on the length of a work session.

Figure 4.17 shows that there is a statistically significant, though slight, positive corre-

lation between the feedback delay and work session length when using a seventy-nine

minute window size to group submissions. The correlation is consistent, though more

prominent when using the larger window sizes as shown by the red lines in Figure 4.14.

116

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

0 10 20 30 40 50
Delay In Minutes

−100

−50

0

50

100

Pe
rc

e
n
t

S
co

re
 C

h
a
n
g
e
 d

u
ri

n
g
 S

e
ss

io
n

Work Session Improvement by Delay (79 minute window)
F(1, 6806)=923.46, p < 0.0001, R^2=0.025

Figure 4.18: Plots work session improvement against feedback delay. There is a sta-

tistically significant negative correlation between the two.

Despite this correlation, we cannot absolutely attribute this increase in work session

length to the feedback delay because assignments with delays over thirty minutes were

only given in the latter half of the courses. It is common for these assignments to be

more difficult than the initial assignments, and as a result require more time to com-

plete.

Second, we look at the impact of the feedback delay on improvement between the

first submission in a work session and the last submission in a work session when

grouped by assignment feedback delay. Figure 4.18 shows that there is a statistically

117

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

significant negative correlation between work session improvement and assignment

feedback delay. While this result may seem puzzling at first, it is logical. With a smaller

feedback delay, groups have more opportunities to receive feedback and may therefore

make more significant improvement within a single work session. Thus, while their

submission efficiency may be lower, the net result is increased work session improve-

ment. Conversely, with fewer opportunities for feedback, groups working on assign-

ments with longer feedback delays have higher submission efficiency but the relative

amount of improvement within work sessions is not as significant.

4.5 Conclusion

In this chapter, we discover student submission behaviors through the analysis of

20,777 submissions made by 289 students across seven classes. The data were col-

lected by a real-time feedback and assessment system we created that allowed a per-

assignment feedback delay to be configured. Our results show that delaying feedback

impacts student submission behavior. Furthermore, delays of at least thirty minutes

positively affect submission efficiency, as we defined it, when compared to smaller de-

lays. Our results also suggest that delaying feedback impacts student work sessions in

two ways:

• Increases in delay correlate with longer work sessions (Section 4.4.3).

118

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

• Increases in delay correlate with less improvement during work sessions (Sec-

tion 4.4.6).

The aggregate result of the feedback delay suggests that assignments should be

configured with a thirty minute feedback delay. Our results also provide an interesting

comparison to prior work:

• We confirm that starting early correlates with higher assignment scores (Sec-

tion 4.4.1).

• We confirm a high period (not peak) of student activity between 4PM and 6PM

regardless of deadline (Section 4.4.2).

• We identify peak student activity occurring in the hours prior to the time of a

deadline both on the day of the deadline and others. Due to our differences with

prior work, we hypothesize that students adjust their peak working hours to align

with pending deadlines (Section 4.4.2).

• We confirm that a majority of activity is completed in the two days prior to as-

signment deadline (Section 4.4.3).

In addition to our comparison with prior work we offer some other new insights:

• We discover that there is no difference in submission efficiency due to proximity

with an assignment deadline (Section 4.4.3).

119

Chapter 4. Analyzing Undergraduate Student Submission Patterns in the Presence of a

Real-Time Feedback and Assessment System

• We show that students take advantage of the ability to continue using the feed-

back and assessment system in order to receive feedback after the deadline (Sec-

tion 4.4.4).

• We show that, within reason, the selection of the window size used to group

submissions into work sessions is irrelevant (Section 4.4.6).

Overall, this study provided an insight into a few aspects of student submission

behavior. While more research is required to fully understand student submission be-

havior, our results should help guide instructors toward ideal assignment configuration

with respect to feedback delay and assignment deadlines in an effort to improve student

success.

120

Chapter 5

Conclusion

As discussed in this dissertation, it is critical that we in the computer science com-

munity do whatever possible to increase the number of new computer scientists and

prepare them for the challenges they must meet in industry, education, medicine, sci-

ence, and so on. The increase in enrollments in response to job demand will impact all

levels of the educational system. My research contributes to this effort. First, I demon-

strate the effectiveness of static analysis in both the post-assessment of a Scratch-based

6th–8th grade summer camp and the development of a Scratch-based 4th–6th grade class-

room curriculum. Second, I report on the submission behavior of university computer

science students in the presence of a real-time feedback and assessment system. The

significance of this collective research is to support the growth in number of students

who seek computer science education, and to do so while maximizing student perfor-

mance.

121

Chapter 5. Conclusion

My work is but a single step on the journey to increasing the yearly number of new

computer scientists by both increasing student interest in computer science and maxi-

mizing the learning potential of those studying computer science. Continued research

across all levels of computer science curricula from primary school through university

is necessary to complete this journey. In primary school, static analysis can be incor-

porated into the student feedback and assessment cycle much like I have done with

university assignments. However, it is unknown how younger students will respond

to such feedback, thus there is much to be done with respect to how best to provide

feedback for students of various ages and topic mastery. In both areas, the continued

application of machine learning across collected data sets can be used to understand

how students best solve certain programming assignments in order to differentiate suc-

cessful approaches from unsuccessful approaches to solving common programming

problems.

I envision a future where years from now, many students with exposure to and

successful completion of our primary school computer science related curriculum will

ultimately choose a college major that involves some degree of computational thinking.

Their university assignments will include electronic submission, and will be designed

by their instructors to provide them with optimal feedback at the optimal time to maxi-

mize their understanding in the least amount of time. Students of the future will spend

122

Chapter 5. Conclusion

less time to learn more and instructors will have more time to work with students re-

quiring additional assistance.

This evolution in student learning is possible only through analysis and assessment

of student in-progress work via studies similar to those I performed. The iterative

application and subsequent measurement of new and altered techniques will not only

advance computer science education at a fundamental level, it will also make it possible

to educate increased numbers of computer science students without a proportional in-

crease in instructional resources. The resulting cohort of well-educated computational

thinkers with shared knowledge and concrete skill sets will be able to solve more of our

real-world problems. I hope we will all see this future.

123

Bibliography

[1] J. C. Adams and A. R. Webster. What do students learn about programming from

game, music video, and storytelling projects? In SIGCSE ’12, pages 643–648,

2012.

[2] S. Alliance. The stars alliance: A southeastern partnership for diverse participa-

tion in computing. NSF STARS Alliance Proposal.

[3] I. Arroyo, R. Walles, C. Beal, and B. Woolf. Effects of web-based tutoring soft-

ware on students’ math achievement. In AERA, 2004.

[4] T. Bell, I. H. Witten, and M. Fellows. Computer Science Unplugged. 2006.

[5] P. Black and D. Wiliam. Assessment and classroom learning. Assessment in

education, 5(1):7–74, 1998.

[6] B. Boe, C. Hill, M. Len, G. Dreschler, P. Conrad, and D. Franklin. Hairball:

Lint-inspired static analysis of scratch projects. In Proceeding of the 44th ACM

Technical Symposium on Computer Science Education, SIGCSE ’13, pages 215–

220, New York, NY, USA, 2013. ACM.

[7] K. Brennan and M. Resnick. New frameworks for studying and assessing the

development of computational thinking. In AERA, 2012.

[8] Q. Burke and Y. B. Kafai. The writers’ workshop for youth programmers: digital

storytelling with scratch in middle school classrooms. In Proceedings of the 43rd

ACM technical symposium on Computer Science Education, SIGCSE ’12, pages

433–438. ACM, 2012.

[9] Code.org. What’s wrong with this picture?, 2013 (accessed July 26, 2014).

http://code.org/stats.

[10] B. Cole, D. Hakim, D. Hovemeyer, R. Lazarus, W. Pugh, and K. Stephens. Im-

proving your software using static analysis to find bugs. In Companion to the 21st

124

http://code.org/stats

Bibliography

ACM SIGPLAN symposium on Object-oriented programming systems, languages,

and applications, OOPSLA ’06, pages 673–674. ACM, 2006.

[11] S. Cooper, W. Dann, and R. Pausch. Teaching objects-first in introductory com-

puter science. In Proceedings of the 34th SIGCSE technical symposium on Com-

puter science education, SIGCSE ’03, pages 191–195. ACM, 2003.

[12] W. Dann, S. Cooper, and R. Pausch. Making the connection: Programming

with animated small world. In Proceedings of the 5th Annual SIGCSE/SIGCUE

ITiCSEconference on Innovation and Technology in Computer Science Education,

ITiCSE ’00, pages 41–44, New York, NY, USA, 2000. ACM.

[13] J. Denner, L. Werner, and E. Ortiz. Computer games created by middle school

girls: Can they be used to measure understanding of computer science concepts?

Comput. Educ., 58(1):240–249, Jan. 2012.

[14] C. Douce, D. Livingstone, and J. Orwell. Automatic test-based assessment of

programming: A review. J. Educ. Resour. Comput., 5(3), Sept. 2005.

[15] S. H. Edwards. Rethinking computer science education from a test-first perspec-

tive. In Companion of the 18th annual ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications, OOPSLA ’03,

pages 148–155. ACM, 2003.

[16] S. H. Edwards, J. Snyder, M. A. Pérez-Quiñones, A. Allevato, D. Kim, and B. Tre-

tola. Comparing effective and ineffective behaviors of student programmers. In

Proceedings of the Fifth International Workshop on Computing Education Re-

search Workshop, ICER ’09, pages 3–14, New York, NY, USA, 2009. ACM.

[17] N. Falkner, R. Vivian, D. Piper, and K. Falkner. Increasing the effectiveness of

automated assessment by increasing marking granularity and feedback units. In

Proceedings of the 45th ACM Technical Symposium on Computer Science Educa-

tion, SIGCSE ’14, pages 9–14, New York, NY, USA, 2014. ACM.

[18] C. S. T. Force. CSTA K–12 Computer Science Standards. Association for Com-

puting Machinery, 2011.

[19] A. Forte and M. Guzdial. Computers for communication, not calculation: Media

as a motivation and context for learning. In Proceedings of the Proceedings of the

37th Annual Hawaii International Conference on System Sciences (HICSS’04) -

Track 4 - Volume 4, HICSS ’04, pages 40096.1–, Washington, DC, USA, 2004.

IEEE Computer Society.

125

Bibliography

[20] D. Franklin, P. Conrad, G. Aldana, and S. Hough. Animal tlatoque: Attracting

middle school students to computing through culturally-relevant themes. In Pro-

ceedings of the 42nd ACM Technical Symposium on Computer Science Education,

SIGCSE ’11, pages 453–458, New York, NY, USA, 2011. ACM.

[21] D. Franklin, P. Conrad, B. Boe, K. Nilsen, C. Hill, M. Len, G. Dreschler, and

G. Aldana. Assessment of computer science learning in a scratch-based outreach

program. In Proceedings of the 44th SIGCSE technical symposium on Computer

science education, SIGCSE ’13. ACM, 2013.

[22] S. L. Halgren, T. Fernandes, and D. Thomas. Amazing animation: Movie making

for kids design briefing. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’95, pages 519–525, New York, NY, USA,

1995. ACM Press/Addison-Wesley Publishing Co.

[23] J. Helminen, P. Ihantola, and V. Karavirta. Recording and analyzing in-browser

programming sessions. In Proceedings of the 13th Koli Calling International

Conference on Computing Education Research, Koli Calling ’13, pages 13–22,

New York, NY, USA, 2013. ACM.

[24] C. S. Hood and D. J. Hood. Teaching programming and language concepts using

legos R©. In Proceedings of the 10th Annual SIGCSE Conference on Innovation

and Technology in Computer Science Education, ITiCSE ’05, pages 19–23, New

York, NY, USA, 2005. ACM.

[25] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä. Review of recent systems

for automatic assessment of programming assignments. In Proceedings of the

10th Koli Calling International Conference on Computing Education Research,

Koli Calling ’10, pages 86–93, New York, NY, USA, 2010. ACM.

[26] D. Jackson and M. Usher. Grading student programs using assyst. In Proceedings

of the twenty-eighth SIGCSE technical symposium on Computer science educa-

tion, SIGCSE ’97, pages 335–339. ACM, 1997.

[27] S. C. Johnson. Lint, a c program checker. In COMP. SCI. TECH. REP, pages

78–1273, 1978.

[28] E. Lazowska, E. Roberts, and J. Kurose. Tsunami or sea change? re-

sponding to the explosion of student interest in computer science, July 2014.

http://lazowska.cs.washington.edu/NCWIT.pdf.

[29] C. M. Lewis. How programming environment shapes perception, learning and

goals: Logo vs. scratch. In Proceedings of the 41st ACM Technical Symposium

126

http://lazowska.cs.washington.edu/NCWIT.pdf

Bibliography

on Computer Science Education, SIGCSE ’10, pages 346–350, New York, NY,

USA, 2010. ACM.

[30] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. The scratch

programming language and environment. Trans. Comput. Educ., 10(4):16:1–

16:15, Nov. 2010.

[31] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk. Programming

by choice: Urban youth learning programming with scratch. In Proceedings of

the 39th SIGCSE Technical Symposium on Computer Science Education, SIGCSE

’08, pages 367–371, New York, NY, USA, 2008. ACM.

[32] C. Piech, M. Sahami, D. Koller, S. Cooper, and P. Blikstein. Modeling how stu-

dents learn to program. In Proceedings of the 43rd ACM Technical Symposium

on Computer Science Education, SIGCSE ’12, pages 153–160, New York, NY,

USA, 2012. ACM.

[33] T. Radvan. Kurt. https://github.com/blob8108/kurt, September

2012.

[34] L. Seiter and B. Foreman. Modeling the learning progressions of computational

thinking of primary grade students. In Proceedings of the Ninth Annual Interna-

tional ACM Conference on International Computing Education Research, ICER

’13, pages 59–66, New York, NY, USA, 2013. ACM.

[35] B. Simon, P. Kinnunen, L. Porter, and D. Zazkis. Experience report: Cs1 for

majors with media computation. In Proceedings of the fifteenth annual conference

on Innovation and technology in computer science education, ITiCSE ’10, pages

214–218. ACM, 2010.

[36] L. Snyder, T. Barnes, D. Garcia, J. Paul, and B. Simon. The first five computer

science principles pilots: summary and comparisons. ACM Inroads, 3(2):54–57,

June 2012.

[37] J. Spacco, D. Fossati, J. Stamper, and K. Rivers. Towards improving program-

ming habits to create better computer science course outcomes. In Proceedings

of the 18th ACM Conference on Innovation and Technology in Computer Science

Education, ITiCSE ’13, pages 243–248, New York, NY, USA, 2013. ACM.

[38] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K. Hollingsworth, and N. Padua-

Perez. Experiences with marmoset: designing and using an advanced submission

and testing system for programming courses. In Proceedings of the 11th annual

127

https://github.com/blob8108/kurt

Bibliography

SIGCSE conference on Innovation and technology in computer science education,

ITICSE ’06, pages 13–17. ACM, 2006.

[39] J. P. Spradley. Participant observation. Holt, Rinehart and Winston, 1980.

[40] The College Board. Program summary report 2013, 2013.

http://research.collegeboard.org/programs/ap/data/participation/2013.

[41] A. Wilson, T. Hainey, and T. Connolly. Evaluation of computer games developed

by primary school children to gauge understanding of programming concepts. In

Proceedings of the 6th European Conference on Games-based Learning, ECGBL

’12, 2012.

[42] U. Wolz, C. Hallberg, and B. Taylor. Scrape: A tool for visualizing the code of

scratch programs. Poster presented at the 42nd ACM Technical Symposium on

Computer Science Education, Dallas, TX., March 2011.

128

http://research.collegeboard.org/programs/ap/data/participation/2013

	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	Introduction
	Thesis Statement
	Dissertation Overview

	Using Static Analysis to Assist with the Post-Assessment of a Scratch-based 6th–8th Grade Summer Camp
	Introduction
	Related Work
	Design
	Plugin Architecture

	Hairball Plugins
	Methodology
	Results
	Initialization
	Say and Sound Synchronization
	Broadcast and Receive
	Complex Animation

	Conclusion

	Using Static Analysis to Assist with the Development of a Scratch-based 4th–6th Grade Classroom Curriculum
	Introduction
	Related Work
	Methodology
	Our Scratch Interface
	The Sequential Execution Assignment
	Capturing, Collecting, and Verifying the Accuracy of Snapshot Generation

	Results
	Students by Class
	Number of Snapshots to Completion
	Approach to Solving the Assignment
	Quantifying Students Affected by a Scratch Race Condition
	Snapshots Exhibiting the Double Click to Execute Behavior

	Conclusion
	Curriculum Improvements
	Static Analysis

	Analyzing Undergraduate Student Submission Patterns in the Presence of a Real-Time Feedback and Assessment System
	Introduction
	Related Work
	Methodology
	Classes
	Feedback Delay
	The Feedback and Assessment System

	Results
	Does Starting Early Help?
	Does Time Pressure Affect Behavior?
	Does Time Pressure Affect Efficiency?
	Why Do Students Submit Well After an Assignment's Deadline?
	Does Delaying Feedback Impact Student Submission Behavior?
	Does Delaying Feedback Impact Student Work Sessions?

	Conclusion

	Conclusion
	Bibliography

