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Abstract

Dry-etched features for advanced waveguide design in GaN laser diodes
by
Joseph George Nedy

Blue and violet laser diodes (LDs) made from the (AlIn)GaN material system
were first demonstrated in 1995 and have since been commercialized for applications in
data storage and display technology. As the material and device technology continues
to mature, these laser diodes are being investigated for use in solid state lighting
and wireless communications, most recently being utilized for high-end automobile
headlights. Competitiveness in these markets will require new device designs of GaN-
based LDs to improve the efficiency and optical output power.

A key structural element of a laser diode is the set of cladding layers around
a waveguiding core which, together, confine the optical mode. This confinement is
dependent on the refractive index contrast between the cladding and core. However,
it is difficult to grow lattice-mismatched AlGaN and InGaN layers with high enough
composition and thickness to provide the required index contrast. Therefore, research
efforts have begun to explore new low index cladding options such as transparent
conductive oxides and lattice-matched quaternary alloys.

In this work, I explore an alternative cladding design using etched nano-structures
to lower the effective refractive index and create a high index-contrast top cladding
layer. I present detailed simulations, design, and fabrication of blue (435.5nm,
451 nm) laser diodes. I also consider the effect of sub-surface dry etch damage which
can destroy the light emitting active region. While prior work on light emitting GaN

nano-structures required GaN regrowths or recovery anneals, I have developed a low-

viil



damage dry etch that avoids the etch damage issue. The resulting process is a new

fabrication method for surface etched nano-structures in GaN light emitting devices.
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Chapter 1
Introduction & background

r]::IE design and fabrication of a finely patterned & etched waveguide cladding
layer is carried out on the IIl-nitride material system for the purpose of improving
the existing laser diode (LD) performance. Fundamentally, the concept of an etched
cladding is not unique to IlI-nitrides or even to LDs. However, the advantages and
disadvantages are measured within the context of III-nitride LDs, specifically around
the blue wavelength (435nm — 465nm). The existing growth and fabrication chal-
lenges of the chosen device platform provide an opportunity, and thus a vehicle, to
demonstrate this new fabrication technology. In doing so, the more general design
concepts associated with an etched, high-index contrast cladding layer are developed.

Furthermore, the design and fabrication work presented leverages the wealth of
knowledge on blue m-plane LDs that is present in the nitrides research group at
the University of California, Santa Barbara (UCSB). [1-13] As such, this work will
focus on addressing the platform-specific issues by developing a start-to-finish fabri-

cation process. It is left to the reader to translate the developed design concepts and



CHAPTER 1. INTRODUCTION & BACKGROUND

fabrication processes to other devices and/or material systems.

1.1 Applications for blue III-nitride LDs

Currently, optical devices made from the IIl-nitride material system consist of
GaN and its aluminum & indium alloys. The epitaxial layers — light emitting (ac-
tive) region, waveguiding layers, and some or all of the cladding layers — are grown by
metal organic chemical vapor deposition (MOCVD) at UCSB. The light emitting lay-
ers consist of InGaN quantum wells (QWs) that provide spontaneous and stimulated
emission in the ultraviolet to yellow spectrum. [3] More importantly, the ITI-nitrides
is currently the most efficient semiconductor material system for electroluminescence
in the UV to green spectrum, making it essential for efficient lighting and display
applications.

The band gap of GaN corresponds to the near UV wavelength, about 3.435eV or
361 nm. Mixed with the larger band gap AIN (6.16 €V or 201.3nm) or the smaller band
gap InN (0.675eV or 1837 nm) can produce light ranging from UV to IR, respectively.
For instance, an InGaN/GaN LD with quantum wells (QWs) emitting blue light
(450 nm) will have around 16% of the gallium lattice sites replaced by indium. The
exact composition required is dependent on the QW geometry and orientation to the
crystal plane.

Blue LDs have found a unique place in commercial devices for the purposes of
lighting or display applications. Electrically injected blue LDs are an efficient way
to produce high-power, collimated light from a small device, often the size of button
when fully packaged. This light can then be used as is, or down-converted to other

visible wavelengths before projection.
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1.1.1 LDs for lighting and display

Lighting and display applications generally require the red-green-blue (RGB) pri-
mary colors to emulate white visible light. This is most often accomplished in one
of two ways. The first method is to directly produce each of the RGB wavelengths
separately and combine them at the output. The second method is to use a high
energy wavelength like blue or UV and down convert some of light into the other
visible wavelengths, with the end result approximating a white spectrum.

Down conversion is accomplished using phosphor materials. The phosphor cerium-
doped yttrium aluminum garnet (Ce:YAG) down-converts near-UV to green wave-
lengths to a broad, yellow emission (FWHM ~ 120 nm, peaked at 565 nm), absorbing
most efficiently at blue (425nm — 475nm). [14,15] Therefore, with just a blue light
source and Ce:YAG, one can create a white visible light source.

Blue LDs for lighting has been well explored in research. [16] Blue LDs have the
potential to overtake the commercially successfull LEDs (that use the same blue-
pump/Ce:YAG down-conversion scheme), but would compete better if made more
energy efficient. However, an LD does have an advantage when a small device pack-
age and directionality of emission are desired. With these benefits in mind, blue LDs
entered the automobile market in 2014. [17] Lasers for lighting will have similar ad-
vantages in any application that requires a bright, directional beam such as a spot
light.

Separately driven RGB(Y) lasers can also produce white light, [18] but are more
useful in display applications. Reasonable power, size and efficiencies for the red and
blue wavelengths have enabled small, palm-sized video projectors. [19] Currently, the
green wavelength in these devices is produced by a frequency-doubled near-IR LD,

at the cost of large footprint and poor efficiency compared to the other two wave-
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lengths. With further development of III-nitride-based green LDs as replacements,

these devices can shrink to much smaller dimensions.

1.1.2 Value-added laser lighting

Using the same principles of RGB LD display, RGB LED or LD lighting can bring
a larger functionality to our everyday lighting. In particular, RGB lighting allows for
the color to be tuned across the entire visible spectrum; for white lighting, the color
temperature can be tuned “warmer” or “cooler”. Adjusting the color temperature can
help with regulating the human circadian rhythm — for instance, a cool white light
(~ 2700 K) gives our bodies cues to stay awake and alert compared to a warm, white
light (~ 6500 K). [3]

Another value-added use of laser lighting is visible light communications (VLC)
using white light installations. With the spectral crunch of the currently used com-
munications bandwidth, the unregulated visible spectrum is increasingly valuable for
high-speed, large-volume, short-distance communications. [20]

A simple example of this technology is a blue LD pumping a phosphor to produce
white light, but with a high-speed modulation (~ 4 Gbps) of the LD to transmit data.
[21] The achievable data rates are many orders of magnitude larger than current Wi-
Fi standards. The pump laser modulation rate is much too fast to be observed by the
human eye as well as being much faster than the relaxation time of Ce:YAG phosphors.
With a proper DC-balanced encoding scheme, the white lighting functionality will be

virtually unchanged while providing excellent line-of-sight communications.
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1.2 The III-nitride material system

For this work, the bulk GaN, non-polar m-plane substrate (supplied by the Mit-
subishi Chemical Corporation) was chosen as the test platform. Even though this
crystal plane has been well-developed at UCSB, there are still areas that can be
improved. Therefore, it serves as a good demonstration vehicle for new LD design

geometries.

1.2.1 Substrates and epitaxial growth

The waveguiding layers surrounding the light emitting QWs typically consist of
GaN or lower indium content In,Ga;_,N. The outer cladding layers are lower refractive
index materials like GaN, AlGaN, or material deposited during microfabrication.
Often times an electron blocking layer of AlGaN is grown on the p-side of the active
region to better confine electrons, but to the slight detriment of the optical mode
profile. A detailed look at the optical properties of (Al,,In,)Ga; N materials is
presented in Appz. A.

Together, these layers form a waveguide to direct light emission, confining the light
vertically around the QWs. For electrically pumped devices, these layers must also
form a p-i-n diode via p-type and n-type dopants. During GaN growth by MOCVD,
the magnesium p-type dopant must be at the top of the epitaxial growth. This con-
straint is because the as-grown Mg-doped GaN is not conductive until an atmospheric
anneal at > 600 °C drives the hydrogen impurities out through the surface. [22] This
hydrogen diffusion is blocked by n-type material. Therefore, the junction orientation
is fixed, with p-type material above the active region (extending to the surface), and

Si-doped n-type material below.
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These epitaxial structures are most often grown on either bulk GaN substrates
or sapphire substrates, and on a variety of crystal planes. The current industry
standard is to grow the c-plane orientation on 6in. or 8in. diameter single-crystal
sapphire substrates. Using large wafers lowers the per-device cost, but the strained
heteroepitaxy of GaN on sapphire produces 3 x 10% cm~?2 threading dislocations [23]
that will reduce the efficiency of light generation. Advanced growth techniques like
lateral epitaxial overgrowth can stifle the propagation of threading dislocations in
localized areas. [24]

Alternatively, one can use bulk GaN substrates for low dislocation density
(5 x 105cm™2) growth. [25] Currently, bulk substrates are limited to 2in. diameter
wafers for the maximally polarized, basal c-plane and only ~ 6 mm x 12 mm wafers for
the (nearly) perpendicular-to-c-plane planes of non-polar and semi-polar (NP/SP).
Laser diodes on NP/SP substrates will only be commercially viable competitors to

c-plane GaN if they can be made on larger surface area substrates.

1.2.2 Consequences of heteroepitaxy on waveguide design

Due to the polar nature of the GaN unit cell, heterojunctions of (Al,In)GaN
layers produce a substantial polarization charge in the c-direction. Fundamentally,
the reduced polarization of NP /SP substrates promises better LD device performance
than c-plane. [3] Unfortunately, the critical thickness on NP/SP substrates is lower
and the impurity concentration is higher. Recently at UCSB, great strides toward
high power continuous-wave blue LDs have been made on the (2021) plane, [26] but
have yet to prove better performance than industry c-plane devices.

Only GaN and the ternary alloys of Al,Ga;,N & In,Ga; N are used in this

work. The quaternary Al,In,Ga;_, ,N is not used for optical devices at UCSB, simply
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because the growth space and material properties are not well explored. The result
is that all of the heteroepitaxial layers are lattice-mismatched and under tremendous
strain.

The mismatch to GaN trends with alloy content, with Al,Ga; N under tensile
strain and In,Ga; N under compressive strain. This strain restricts the thickness
of heteroepitaxial layers, restricting general laser diode design. If the critical thick-
ness is exceeded, catastrophic breakdown of the surface morphology will ruin device
performance. [27]

The restriction of alloy amount & thickness drives a lot of the waveguide design.
Without the ability to grow thick, high-index contrast layers, this work focuses on
a fabrication approach as a substitute for the top waveguide cladding. However,
the resulting etched cladding is not necessarily in competition with other cladding

options, but can be integrated together if desired.

1.3 Fabrication challenges for III-nitride LDs

Besides the growth restrictions imposed by the ternary heteroepitaxy, the GaN-
based material system has two major areas of difficulty for LD device design. First,
the only known p-type dopant is the deep acceptor, magnesium-vacancy complex.
Because of its low ionization ratio of ~ 1%, [28] 100x more Mg is required to dope a
bulk (Al,In)GaN layer p-type than the desired carrier density.

Second, GaN is very resistant to chemical etching, leaving few etching options. In
fact, using standard photoresist masks, there is no acceptable wet etch to transfer a
lithographic pattern into GaN. [29] Therefore, dry etch is the only etch method to

shape the as-grown waveguide into the desired LD device geometry.
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1.3.1 Difficulties with Mg-doped GalN

Fabrication with an exposed surface of Mg-doped GaN is very restricted. It has
been previously observed that any plasma exposure compensates the doping, leading
to highly resistive electrical contacts. [30,31] Therefore, the p-GaN surface must
be protected before any plasma deposition or etch can be performed. Usually, this
protection layer is not the electrical contact layer, so it must later be removed to
make contact. A functional fabrication process must accommodate these restrictions.

To make an ohmic contact, a top layer of highly doped p-GaN ([Mg] = 10%° cm™3)
is required. This layer is very optically lossy (see Appz. A), simply due to the presence
of the vast quantity of unionized dopant. [32] To avoid these optical losses, the contact
layers must either be far away from the waveguide core, or be optically blocked by a
distinct cladding layer. With the limited epitaxy options described above, many LD

device designs on NP/SP use a thick p-GaN layer of 700 nm or more.

1.3.2 Etching options for (Al,In)GaN

The GaN material system is very resistant to both wet etch and dry etch
chemistries. For wet etching, hot (> 100°C) solutions of KOH or H3PO, have been
found to etch GaN crystallographically, etching the m-plane the fastest while leaving
the c-plane untouched. [33] They have been used to create surface roughening for
light emitting diodes (LEDs), [34,35] but have not been successful in transferring
lithographically defined patterns.

For anisotropic transfer of a lithographic pattern, halogen-based chemistries have
proven successful. [36] Chlorine-based dry etches are the most common, using either

Cl,, BCl;, or SiCly as the carrier for the reactive species, and H,, Ny, or Ar as the



CHAPTER 1. INTRODUCTION & BACKGROUND

plasma-enhancing species. [37]

Fluorine-based dry etches typically use SF¢ as reactive species source. This dry
etch is useful when etch selectivity between (In)GaN and AlGaN is needed — the
fluorine bonds to Al forming AlF,, which is much less volatile than the other etch
products and therefore retards etching. [38] In general, the (Al,In,Ga)F, compounds
are much less volatile than (Al,In,Ga)Cl, compounds, so etch rates will be slower.

In this work, we will focus on a Cly/Ar-based dry etch in order to lithographically
pattern GaN. This chemistry shows high etch rates [39] and has been previously used

to fabricate m-plane GaN LD devices.

1.4 Dissertation overview

A new cladding layer consisting of alternating etched and un-etched stripes of
GaN is fabricated as part of an advanced waveguide design for GaN LD devices. This
cladding layer is dubbed an “etched-gap cladding” (EGC), or more specifically an
“air-gap cladding” (AGC) if the etched trenches are left unfilled and capped.

This new approach to GaN LD device design is first simulated with various 1-D
and 2-D techniques. Supporting these simulations is a cohesive collection of material
parameters. The simulations provide both an initial design and analysis tool for the
fabricated devices.

During fabrication of AGC- and EGC-LDs, a number of new fabrication steps were
developed. A new low-damage dry etch was developed and experimentally verified
for use near layers sensitive to mid-gap defects, e.g. light-emitting QWs. An electron-
beam lithography process was developed for low line-edge-roughness features. More

process steps were developed to provide a start-to-finish fabrication process for EGC-

LDs.
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1.4.1 Simulation of III-nitride waveguides

Optical simulation of IIl-nitride waveguides begins with a good foundation of the
optical material parameters. Appz. A provides a cohesive model for the band gap
energy, refractive index, and absorption for GaN, AlGaN, and InGaN.

Using these material parameters, the transfer matrix method (TMM, Appz. C) is
applied to different III-nitride waveguide designs implemented using the MATLAB®
code platform. [40] A simple model for the effective index of the EGC layer (Appz. B)
is incorporated into TMM so that simulated 1-D optical modes can be investigated.
The 1-D optical mode simulations are then compared to 2-D mode simulations using

the commercial software FimmWave. [41]

1.4.2 Design and fabrication of a new cladding layer

Using simulation, the geometry of an etched gap cladding was laid out. A fill-factor
of 50% and a pattern period of 300 nm produces a layer that optically performs nearly
identical to a uniform layer of much lower index. The next step was to reproduce
the simulated geometry through microfabrication processes at the Nanofabrication
Facility at UCSB.

The fabrication of this geometry hinged on two important aspects: first, the EGC
had to be close enough to the optical mode to affect it. Since a laser mode is generally
centered on the light-emitting QWs, this means that the dry etch to create the EGC
comes dangerously close to the QWs. To prevent detrimental defect formation, a new,
low-damage dry etch was developed and thoroughly tested.

Second, the EGC had to be patterned and etched at the small scale of a 300 nm

period. To this end, a holography process and a new electron beam lithography
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process were developed for use on GaN.

1.4.3 LD device demonstrations

The end result of device simulation and process development was two generations
of etched-gap clad laser diodes. The 1%° generation is a simpler design, utilizing
a metal capping technique to leave air-holes, resulting in an AGC-LD. These LD
devices lased at 435.5nm at room temperature under pulsed electrical injection.

The 2" generation of EGC-LDs leveraged the learning from the 1% generation
and a new electron beam lithography process to allow for both EGC-LD and standard
ridge LD devices on the same substrate. An electrical shorting issue was discovered
across the pn-junction of the LDs. Detailed failure analysis points to a single process
step and not to the EGC layer. Regardless, only a select few of the ridge LD devices
lased under pulsed electrical injection, but none of the EGC-LDs lased.

The simulation, process development, and device demonstration of EGC-LDs set
the stage for new LD device designs. In addition, the unique processing tools de-
veloped allow more flexibility for in designing future IIl-nitride optoelectronic and

electronic devices.
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Chapter 2
(Al,In) GaN waveguide simulation

TIE geometry & refractive index of the constituent layers that comprise the
(Al,,In,)Ga;_,N LD will determine the shape of the supported optical modes. In
non-magnetic media (i.e. the relative magnetic permeability, p,, is unity) as we most
often have in GaN waveguides, this electromagnetic (EM) wave can be uniquely char-
acterized by the electric phasor profile at a 2-D cross-sectional plane of the waveguide.
The implied time-varying factor e!“? is determined by the chosen wavelength. We
also assume that the waveguide geometry is invariant in the dimension perpendicular
to the chosen 2-D cross-sectional plane.

The interaction of the complex electric field with the volume of material can tell
us what some of the external characteristics of the LD mode will be. Specifically,
the overlap of the electric field with each volumetric feature of the waveguide can tell
us the confinement factor of each feature and thus the resulting absorption, gain, or
scattering of the mode.

By using a variety of semi-analytical and numerical techniques, we can simulate
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these modes and inspect the resulting internal LD characteristics. The accuracy of our
simulation and the determined internal LD characteristics are subject to the assump-
tions we make in regards to material parameters, spatial symmetry, and boundary
conditions. For all of the following simulations, n, the refractive index and «, the
absorption (collectively, the complex refractive index, 1) of various materials used are
provided in Appz. A.

For the entirety of this work, we will restrict ourselves to in-plane waveguides,
meaning that the power flow of the modes is parallel to the growth surface. Further-
more, we will most often consider TE(-like) modes, meaning the electric field of the
EM wave oscillates nearly perpendicular to the power flow. In slab-like waveguides
(e.g. ridge waveguides) that contain epitaxially grown quantum wells (QWs), the
electric field is approximately parallel to the growth surface and planes of QWs —
for 1-D slab waveguides, it is exactly so. We assume TE modes simply because QWs
exhibit higher gain for TE modes; [1] thus, in-plane laser modes of interest are all TE

polarized.

2.1 Methods for simulations of optical modes

In this work, we use two different techniques to simulate optical waveguides: the
Transfer Matrix Method (TMM) and Film Mode Matching (FMM). In both cases, we
must start with the electromagnetic properties of the constituent materials derived

from free-space constants, so the following definitions are provided:
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Table 2.1: Electromagnetic constants for free-space and material properties.

Property Free-Space Free-Space Material
Constant Value Property

Permittivity o 8.854 x 1072 F/m € = €48y

Permeability Lo 1.257 x 107 H/m  p = poftr = flo

Speed of light Co=1/\/Eofto 2998 x10°m/s ¢~ c,/Re(\/E)
TE: n = 770/\/5

Wave impedence 1, = 1/ to/o 376.3)
TM: n = 770\/5_0
user-defined, _
Wavelength Ao e.g. 450 nm A= Ao/ Re(\/Er)
2m user-defined, _
Wavenumber ko = )\—O e.g. 13.96 um k = kov/2r

Table 2.2: Definitions of material and modal properties.

Property Constant
Dielectric constant e = N2
Refractive index n=mn-+1ik
Modal effective index L —> Mo
Absorption (or gain') o= 47;/%&
o
Propagation constant = 273\”6&
o
Wavenumber k= 2 et =pF+i-
Ao
'Material gain, g = —a, occurs when & is negative instead of positive

18
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2.1.1 Transfer Matrix Method — MATLAB®

TMM is used to view the effect of epitaxial layers and vertical geometry on the
supported modes. It is implemented using code written with the MATLAB [2] plat-
form (Appz. C) to quickly return a 1-D profile of the mode(s) based on the refractive
index (n) and thickness of each layer (Fig. 2.1). For a TE mode, the computational
program finds the electrical field such that the field intensity transmitted from the
top to the bottom is minimal. The TM modes can be found in a similar fashion,
but the program must evaluate the transmission of the magnetic field instead. The
resulting standing-wave profile is a mode. Its unique propagation constant can be

characterized by an “effective” refractive index, neg-.

b) T T T N/;-:\

. 2.651 3
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5 o2

z st =
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GaN w2457 1 5

)

241 =

GaN: 1 =2.467, = 10 cm’! 535k , . £
InGaN: n =2.507, & = 20 cm™ 0 0.5 1 1.5 2 4

Depth from Epitaxial Surface (um)

Figure 2.1: a) Schematic cross-section of an In,Ga; ,N/GaN waveguide. b) Time-
averaged power density for the 1-D mode profile (TE, fundamental mode) with assumed
material properties and thicknesses of (a) — the refractive index profile is given (blue
line) and the effective index of the mode is indicated (dashed orange line). Note that

the integrated power is 1 W for a 1 pm-wide slice of waveguide in the y-direction.
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Table 2.3: Formulae for TE(-like) & TM(-like) modes of a slab(ridge) waveguide.

Field TE Formula TM Formula SI Unit

Electric field Er =0 e = n2 Hy V/m
E=E,j E,=0
jn. 0H,
. =0 Ez = =
2k, Ox
Electric flux D = p% E A-s/m?
H = H,é+ Hyg+ H.2
. H:E - Hot Ey Hx =0
Magnetic field Mo A/m
H,=0 H=Hj
__J %5 H. =0
N kone 0x N
Magnetic flux B = uH V-s/m?
n
In = 5.l
Electric power density ) ° ) W /m?
= n ‘E ’ ~ neffno H ’2
2,1 oo 1T
(S)=3E x H
Time-avg. power flux L Tett o 2 Tl W /m?
2,1 T ooz 1Y
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The coordinate axes of Fig. 2.1.a will be the standard used in this work. In
particular, note that the x-axis points downwards when looking at a standard ridge
cross-section. This is done so that the field profile can be displayed with axis label
depth from epitaxial surface implying that the grown surface is the zero of the z-axis.

The program iteratively checks the solution(s) to the eigenvalue problem. A range
of trial nieg are input into the matrix and checked. The vertical electric field profile is
the eigenmode and neg is the eigenvalue. Thus, it is a semi-analytical technique. For
TE modes (E = E,§), the other field profiles are determined from the electric field
profile, assuming that E, n, and & are functions of y, while TM modes (H = H,§)
are determined from the magnetic field profile (Table 2.3).

In general, the quantities E, D, B, and H are complex vector fields, along with
the wavevector k. Each vector component (e.g. E,, E,, or E,) is itself a function of
x, Yy, and z. For TE modes, vector fields EE and D only have y-components while the
vector fields B and H have z-components as well as z-components that are dependent
on the mode profile in the z-direction. Table 2.3 details how to derive many of the
important EM quantities for a mode using the z-dependent material properties (n(z),
k(z)) and eigenmode (E,(z), or H,(z)), and the eigenvalue (fer). The imaginary part
of the eigenvalue (k) also determines the modal loss.

The quantity S is also known as the Poynting vector. It represents the power flow
of the mode as it travels the transverse axis of the waveguide, and thus the vector
only has a z-component. The time-averaged quantity, (S),varies in the zy-plane, but
will not vary in the z-direction as long as the waveguide is uniform in z.

The electric field is normalized such that the integrated (S) is unity. Now, the

confinement factor, I', of each layer, i, is given by [3]:

Ji, Ie(x) dz
Joo ((S(2))-2) da
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This quantity represents the electric power experienced by a layer per unit of
total power flow.? It is not the fraction of power in each layer (the sum of all layer
confinement factors will not be unity). This becomes clear if we expand the numerator

and denominator of Eq. 2.1:

’ 2

N @) A a5 r

Thus, I; consists of a fractional overlap (which would sum to unity over all layers)
multiplied by the factor 7i/n.s (or the factor nen/n, for a TM mode). However, I is
still referred to as the fractional overlap itself and reported as a percentage.

Since all interactions with a (non-magnetic) material occur through the electric
field, the power gain coefficient (or absorption coefficient) of each layer can be directly

calculated by multiplying I" with the material gain (or material absorption):
G =[] " (2.3)

where G is the power gain over a distance 1, and g; is the material gain (or «; for
material absorption) of layer i.

The fractional overlap is calculated numerical. The accuracy is dependent on how
accurately the eigenmode and eigenvalue are found as well as how fine a vertical grid
is chosen for numerical integration. The fractional overlap multiplied by the material
absorption over all layers (i.e. total modal absorption) can be directly compared to
the imaginary part of the eigenvalue as a quick measure of accuracy.

The TMM assumes the 3-D waveguide acts as a 1-D slab with layers defined in the

a- (vertical) dimension and extending infinitely in the yz-plane. While it is accurate

ZNote that this is the vertical confinement factor, I);. The full accounting is I' = I,T},T,. However,
I’y is assumed to be unity for a slab-like waveguide, and I, is assumed to be unity for sufficiently

long in-plane waveguides.
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in determining the supported slab modes, a waveguide that is highly confined in the
y- (lateral) or z- (transverse) dimension will deviate from the slab mode. There is
also an inherent assumption that each layer is uniform in the yz-plane. If this is not
the case, an effective medium with an effective index must be used in place of the
non-uniform layer (see Appz. B). Then, the assumption is that the size of the non-
uniformities in the replaced layer is smaller than the wavelength of light in each of the
constituent materials and generally has a consistent ratio of constituent materials.
TMM is also subject to boundary conditions at the top and bottom of the ver-
tical dimension. However, since this method is quick and uses minimal computer
resources, the full epitaxial growth including the substrate and a few metal layers can
be simulated if necessary. Therefore, it is not susceptible to spurious results due to
imposed non-physical boundary conditions and can handle large vertical modes that

propagate into a thick substrate (e.g. leaky modes — §2.2.3).

2.1.2 Film Mode Matching — FIMMWAVE®

The FMM method, also called Eigenmode Expansion (EME), is well suited to solv-
ing well-behaved (e.g. non-leaky) 2-D optical modes in the zy-plane. It requires that
the constituent geometries be rectangles of optically-defined material (represented by
their complex refractive index) so that the linear system is locally separable into z-
and y-components. Inherent in a 2-D solution is the assumption that the remaining
z- (transverse) direction is uniform. Due to the semi-analytical nature that is very
similar to TMM, a large number of layers can be represented in the vertical dimen-
sion to find the eigenvalue solutions with minimal computational overhead. In simple
LDs, this is the situation of interest.

For 2-D simulations, we use the commercial software FIMMWAVE [4] that em-
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ploys the FMM technique. Like TMM, the imaginary part of the complex eigenvalue
can be checked against the fractional overlap multiplied by the material absorptions

to see that the required level of accuracy has been achieved.

Xe

Iy
[0}

2.0

vertical/um

o] i)

=
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Figure 2.2: FIMMWAVE simulation — heat map of the fundamental mode power
flux (transverse direction) of a 2-D waveguide. The materials and thicknesses are the

same as those of Fig. 2.1.

Table 2.4: Comparison of 1-D (Fig. 2.1) and 2-D (Fig. 2.2) mode profile simulation

results. The 2-D (v2) is calculated with a higher precision than the 2-D (v1).

Parameter 1-D  2-D (v1) 2-D (v2)

Neft 24775 24774 24774
K (107) 5.18 5.18 5.18

agy (cm™!) 14472 14465  14.465
aoy (cm™) 14471 14443  14.463
Tincan 44.42%  A4.14%  44.34%

In the above figure, the fundamental mode of a deeply etched (SiO, ridge cladding)
waveguide is shown. Isolating the ridge laterally so that it has a uniform boundaries

results in a mode shape that is separable in x and y and increases its similarity to a
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slab mode. A relatively large ridge width (10 pm) was also chosen so that the mode
behaves similarly to a 1-D slab mode.

We mainly use FIMMWAVE as a check of 1-D simulations by comparing modal
effective indices, mode shapes, and layer absorption, especially in the cases of highly
laterally-confined waveguides (see §2.2.1). Table 2.4 shows how similar the results are
between a 1-D structure and a similar 2-D structure that is not well confined laterally.
In this case, we are only considering the fundamental (lateral) mode of a waveguide
that has many lateral modes. Note that two different 2-D simulationa are compared
— the difference between them is that the second version (/textitv2) numerically
calculates the fractional overlaps with an order of magnitude greater precision in
both dimensions: 900 grid points in the lateral dimension and 1200 gridpoints in the
vertical dimension.?

FIMMWAVE simulations are also used to check the validity of the effective
medium assumptions. When these assumptions start to break down, we can see
that the corresponding size of the structures in the layer are large and cause the
mode shape to deform from the intended design (see §2.2.2).

The boundary conditions for this 2-D simulation are more stringent than the
1-D case. Because the simulation takes more computational resources, the cross-
sectional area is limited to ~ 500\ laterally and ~ 50\ vertically for common in-plane
waveguide geometries. Note that the typical waveguide will consist of a few repeated
slices laterally, while each slice may be made up of hundreds of thin layers vertically.

Symmetry in either direction can be leveraged so that only half the simulation area

3Proceeding, all FIMMWAVE simulations will be run with the following solver engine settings:
300 1-D modes and 900 x 1200 grid points. Solving for 300 1-D modes requires intermediate
“polishing” steps of 30 and 100 beforehand, in order to compute in a timely manner. After finding

the eigenmode(s), the fine grid is applied.
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needs to be considered; most waveguides will be horizontally symmetric.

The four boundaries in the zy-plane must be set to the non-physical states of
a perfect electrical reflector (perfect metal) or a perfect magnetic reflector. Thus,
the mode must be well-behaved — it must be fully contained with its evanescent
fields dropping to negligible values at the boundaries, otherwise non-physical solutions
will result. Perfectly matched layers (PMLs) that artificially absorb energy can be
added to the left and right hand side boundaries to negate spurious lateral modes. [5]
Sometimes it will not be clear that the answer is non-physical, as seen with a vertically

leaky mode (see §2.2.3).

2.2 Mode profile simulations of InGaN/GalN
waveguides

We now apply the simulation techniques discussed so far, the optical properties
defined in Appz. A, and approximations of Appx. B in order to view the optical mode
in a typical In,Ga;_,N/GaN ridge LDs (RDG-LD). We then introduce a surface etched

structure at the top of the optical mode called an Etch Gap Cladding (EGC-LD).

2.2.1 Simulations of basic waveguides

We compare the 1-D and 2-D mode profiles of a GaN-In,Ga,_,N-GaN waveguide
at A\, = 450nm. We continue with the material properties and epitaxial thicknesses
of Fig. 2.1 and look at 2-D waveguide cross-sections. Now we consider shallow ridge

designs where we etch a ridge to the InGaN layer and back-fill with SiO, once again.

Fig. 2.3 shows how a shallow ridge confines the lateral dimension of the mode even
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Figure 2.3: Mode intensity of shallow ridge waveguides of 1 pm width (left) and 6 pm

width (right). Material properties are the same as for Fig. 2.1.

though the mode extends below the ridge. However, the mode shape will start to bend
into a bottom-heavy T-shape, causing both the confinement factor and absorption to

deviate from a 1-D slab mode or wide-ridge mode. A summary is provided below.

Table 2.5: Comparison of the waveguide geometries in Fig. 2.1, Fig. 2.2, and Fig. 2.3.

Parameter L pm S g (1-D)
Shallow RDG  Shallow RDG ~ Deep RDG  Slab
Neft 2.4716 2.4772 24774 24775
k (107°) 5.10 5.18 5.18 5.18
Qgpyv (Cm_l) 14.250 14.465 14.465 14.472
oy (cm™1) 14.245 14.464 14.463 14.471
InGanN 39.27% 44.32% 44.34% 44.42%
Eff. Area (nm?) 0.72 2.85 4.56 N/A

Despite the narrow lateral confinement of the 1 pm-wide shallow ridge, there is
very little variation in refractive index, total loss calculation, or the confinement
factor of the center In,Ga,_,N layer. Therefore, the 1-D simulation is taken as a good

estimate of a (shallow or deep) ridge waveguide mode in general.
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2.2.2 The effective medium layer

In this work, we will use an effective medium as a low index cladding layer for
In,Ga,,N/GaN waveguides. The effective medium is created by etching a periodic
tooth-trench geometry into the epitaxial surface, parallel to the transverse direction
of the waveguide. The xy-cross-section remains uniform in the transverse direction,

allowing an accurate depiction of the waveguide using FIMMWAVE:

/_\/ 24
Etched Gap Cladding

i

p-SCH 20

QWs & Barriers

n-SCH

I
f3

vertical/um

n-GaN E) 12 12 13 14 15 16 7
horizantalim

Figure 2.4: Left: Schematic cross-section of an EGC-LD (274 generation LDs). The

trenches are etched a distance d away from the p-doped waveguiding layer. Right: A
2-D simulation of a deep ridge waveguide with an EGC: d = 150nm; A = 451 nm;

fundamental mode only.

Fig. 2.4 shows the schematic and 2-D simulation of a grown and processed 6 pm-
wide deep ridge EGC-LD, given in §5.2. The current feature of interest is the shape
of the mode in the top EGC layer: as the EGC is changed, the mode shape will also
change. We can use the confinement factor of this layer as a measure of how much
the mode shape changes. Now, we can compare ['ggc while changing the tooth & gap
widths, keeping both the ridge width (6 um) and tooth/trench fill fraction (50/50)
the same:

Using the Bergmann EMA from Appz. B, we can replace the EGC with its TE
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Figure 2.5: Confinement factor and modal loss in AGC-LD (1%° generation LDs) vs.

AGC tooth & trench width. For this structure, the mode shape is deviates sharply
from the EMA at a tooth width of 300 nm. The dashed lines represent a deeply etched

structure and shows less deviation from the 1-D EMA simulation (starred points).

approximation. Therefore, we replace the EGC layer with on that has ngya =

1/\/(1*ff)/néaN + f//n2,, where the ff is the fill fraction and the fill material is BCB.
From Fig. 2.5, we see that the EMA simulation is a good approximation until the
tooth & trench width is approximately 300 nm. This upper bound is dependent on
the ridge geometry and the free-space wavelength. Since we will be using similar
structures, we assume the EMA replacing a tooth & width of 150 nm is acceptable
for this work.

The EMA allows us to reduce the 2-D EGC structure into a 1-D layer. Using this
1-D layer, we can create an equivalent 1-D model with the TMM. It allows for an
extra degree of freedom over FMM: we can now represent a variable tooth/trench fill
fraction. Therefore, we also simulate a triangular shape trench (150 nm deep) that

better represents a fabricated structure. With FMM, such a feature would need to be
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discretized into rectangle-based staircase geometry, and the computational overhead

would be prohibitive.

2.2.3 Comparing 1-D vs. 2-D simulations: leaky modes

Now that we have the ability to approximate a 2-D waveguide cross-section as a
1-D slab mode, we can explore more detail in the vertical dimension. First, as men-
tioned previously, we can represent the triangular-shaped etched trench by varying
the fill factor in the vertical dimension. We can also more faithfully represent the
epitaxial layers. For instance, a superlattice of many repeated epitaxial layers are
easily handled in the 1-D TMM solver, but are often approximated as a single layer
in the FIMMWAVE solver to speed up the computation.

In rare cases, the full height of the epitaxial substrate must be simulated to faith-
fully recreate modal parameters. The substrate is often quite thick compared to the
grown epitaxial layers: while a QW may only be a few nm thick, the as-received
m-plane substrate is approximately 300 pm thick, a difference of five orders of mag-
nitude. Due to the nature of discretization in FIMMWAVE, simulating a thick layer

(in comparison to the wavelength) is not possible.

Table 2.6: Comparison of for the AGC-LD (1% generation LDs, A, = 435.5nm).

Paamcter D te subtnate
Neft 2.4691 2.4700 2.4698
agy (cm™!) 18.20 16.12 15.07
Tqw 2.29% 2.15% 1.98%
e 0.13% 2.9% 12.3%
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In Table 2.6, the AGC-LD device described in §5.1 is simulated with both the 1-D
TMM solver and the 2-D FIMMWAVE solver. However, the waveguide simulated in
FIMMWAVE is restricted to a 3pm-thick substrate, while the TMM solver can do
both a 3 pm-thick and a 300 pm-thick substrate.

The values to note are the confinement factors of the QWs and the substrates. Due
to the electric wall boundary at the bottom of the 2-D simulation, very little of the
mode is present in the 3 pm-thick substrate. The 1-D simulation has real (aluminum)
metal at the bottom, which allows for more mode penetration into the substrate. In
the case of the 300 pm-thick substrate, a significant fraction of the power is present
in the substrate and changes all of the laser’s internal parameters as a consequence.

A simple rule can be followed to ensure that a mode is not leaking into the
substrate: the simulated effective refractive index of the mode must be larger than
the refractive index of the substrate. In the above case, the effective index of 2.4691 is
less than that of GaN at 2.4863. Therefore, FIMMWAVE cannot be used to simulate
the AGC-LDs (1% generation LDs).
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Chapter 3

Low damage dry etch for GalN

§ )RY etching is the most common way to etch device geometries in GaN. Features
that have been patterned lithographically are anisotropically transferred to the sub-
strate using the biased plasma in a dry etch tool like a Reactive Ion Etch (RIE) or
Inductively Coupled Plasma (ICP) machine. In contrast, there are no wet etching
options to accurately transfer a lithographically defined pattern. Therefore, dry etch-
ing is the only option to etch nano-scale features like photonic crystals (PhCs) or the
Etched Gap Cladding (EGC) described in Ch. 2.

Nano-scale features like PhCs or an EGC require close proximity to the optical
mode of a waveguide in order to have a significant effect. Typically, the design
requirements demand that the feature of interest be placed within two wavelength
periods (e.g. < 336nm for A\, = 450 nm in GaN) of the light emitting active region.
This means that the dry etched surface will be close enough that plasma damage may
reach the active region and destroy device performance. [1] Though some etch damage

to an active region can be partially recovered with high temperature (> 500°C)
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anneals, [2] avoiding etch damage altogether is preferred.

Special care must be taken to ensure that the active region maintains its light
emitting capability throughout dry etching and the rest of the device fabrication.
Prior to the fabrication of an InGaN/GaN laser diode (LD), we developed and tested
a low damage dry etch to fabricate an EGC. In the experimental setup, the photolu-
minescence (PL) of an InGaN quantum well was carefully monitored for degradation
as the sample was etched. The result was a compatible dry etch process and design

rules for nano-scale features on the surface of LDs.

3.1 Dry etch damage in GalN

A common dry etch chemistry for GaN is a mixture of Cl, and Ar. The charge-
neutral [Cl-] free radical is the most chemically active species used to remove Ga
from the surface through the production of volatile GaCl,. This process is assisted
by bombardment of energetic ions in the plasma, namely [Ar*] and [C1™].

The physical nature of ion bombardment aids both in breaking the [Gal-[N] bonds
as well as sputtering of the volatile species off the surface. [3,4] The directionality of
ions from the positively charged plasma to the negatively charged substrate allows
for preferential etching that transfers the pattern anisotropically. The DC voltage
bias is a direct measure of this electric field and a good way to gauge the force of ion

bombardment.

3.1.1 Etch damage mechanisms

Plasma damage can happen through a variety of mechanisms and damage the

semiconductor crystal below the etched surface. The ion bombardment can be mod-
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elled in the same manner as ion implantation. [5] Thus, the concentration of crystal
damage will extend into the substrate in a tear drop concentration profile and will
depend both on the ion energy and crystal plane. However, even with a DC bias of
—200V, the simulated penetration of [C17] is only ~ 2nm.

It is well known that sub-surface damage extends well beyond 2 nm. For instance,
radiation-induced damage will penetrate deeper, perhaps up to 100 nm, and degrade
InGaN QW emission. [5] In addition, it has been previously shown that planes with the
largest open areas between lattice points will “channel” defects and allow for deeper
penetration. [6] In this case, the c-direction will allow for the deepest penetration of
sub-surface damage, followed by the a-direction and m-direction next (of the low-
miller indices directions).

Dry etch both produces sub-surface defects and aids in their diffusion. [7] There-
fore, the high concentration of surface and sub-surface defects produced by dry etch
will diffuse away from the area of formation, spreading out while penetrating deeper
into the substrate. There are a few energtic mechanisms by which this happens: (1)
the ion bombardment transfers energy to the crystal lattice, raising the “local” tem-
perature and increasing the diffusion constant; (2) visible and UV radiation produced
by the plasma can be absorbed, increasing the diffusion constant; (3) any charged
defect will feel a force exerted by the applied electric bias during the etch process and
drift in accordance with electric field.

All damage-inducing and diffusion-enhancing mechanisms are related to the power
input into the etch chamber. Of the two most common plasma power sources, induc-
tively coupled plasma (ICP) power and capacitively coupled plasma (CCP) power,
the CCP power is responsible for the bias voltage. It is this bias voltage that drives

the anisotropic etching, as well as the first and third defect diffusion mechanisms. In
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ICP dry etch machines, the plasma density and intensity is mostly controlled by the

ICP power and will be the biggest factor in visible and UV radiation production.

3.1.2 Common GalN dry etch conditions

Using an ICP machine, we have a number of parameters to consider: total gas flow,
gas ratio, chamber pressure, ICP power, and CCP power. On some machines, the
cooling temperature can also be adjusted. While the specific gas flows and powers will
be unique to each machine, typical CCP powers are around 100 W, with the resulting
bias field around —200V (DC) from the top electrode to the substrate. [3]

Processing parameters are adjusted according to need. Both DC bias and etch
rate will increase greatly with CCP power, increase slightly with ICP power, but
peak with gas flow, gas ratio and pressure. Side wall verticality will increase with
CCP power and low (~ 1mTorr) pressure. Etch damage will increase with DC bias
(CCP power), slightly with ICP power and decreases slightly with pressure; it will

also increase with radiation, which increases with total plasma power (ICP+CCP).

3.1.3 Low power plasma limit

The approach we take to lower etch damage is to lower CCP power as much
as possible, and then to lower the ICP power as well. This should reduce both
the penetration depth of sub-surface damage as well as minimizing the diffusion of
defects. Since we will be using this etch for deep aspect ratio trenches that are only
150 nm-wide (EGC), we also use low pressure to facilitate transport (removal) of etch
by-products. The resulting etch profile will tend to deviate from vertical side walls
and is found to be very dependent on the total gas flow. A gas ratio of 50/50 was

chosen simply to limit the variable space, knowing that it is adequate for proper dry
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etch chemistry.

The etch rate will decline monotonically with decreasing CCP power, and will
drop off sharply if too low. As found previously, this drop off occurs at around —20V
of DC bias on the substrate. [8] It is important to consider that subsurface damage is
directly proportional to the time under plasma. [7] Therefore, for a given etch depth,
as the etch rate is decreased, the penetration depth of damage underneath the etched
surface will increase. Minimizing the sub-surface etch damage will correspond to an
optimal DC bias (given other parameters are similar).

After experimentation, it was found that even when fixing the DC bias just above
the minimum of —20V, an etch rate of 26 nm/min in c¢-plane GaN was achievable.

However, at a DC bias of —18 V, there was no measurable etch depth or etch rate

3.2 Low power dry etch

GaN dry etching is performed in a Unaxis VLR high temperature ICP system. The
chamber must be thoroughly cleaned and seasoned before a low power dry etch. This
is because a low power plasma is much less stable and very sensitive to the chamber
environment. Without chamber preparation, the plasma is difficult to maintain and
the etch rate becomes sporadic. Special care must be taken to prevent chamber
contamination and produce repeatable etch rates.

An alternative GaN dry etch was developed on a Panasonic E640 machine, but not
investigated as thoroughly. Though final etch profiles and etch rates were moderately
comparable, the large differences in chamber design prohibit direct comparison of
processing parameters. In addition, the Panasonic machine uses an electrostatic chuck

instead of a physical clamp which prevents measurement of the DC bias.
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3.2.1 Choosing a carrier wafer

Particular care must be taken when choosing a carrier wafer. In the 4in. Unaxis
system, the common choices are either a Si or a sapphire carrier wafer, 1 mm thick.
Considering that the inner lining of this system is entirely alumina, sapphire is a good
choice for a carrier wafer since it will not change the chamber environment during
etch. However, since it is an insulator, it will obscure the DC bias reading. In fact,
the same etch recipe that has a DC bias of —20V bias using a Si wafer registers —38 V
with a sapphire wafer. Whether the increased DC bias is seen at the sample is not
considered here.

Unfortunately, Si is particularly bad to use in a low power Cl,/Ar etch. Si etches
quickly in a Cly/Ar plasma and changes the chamber environment. This was evidenced
by the fact that the slot valve used to maintain a constant chamber pressure started
at 60

Deposited Ni metal is often used as a hard mask during chlorine-based dry etching,
so its usefulness as a carrier wafer was explored. After dry etching using the recipe
of interest for 15 min, 25 nm of electron-beam deposited Ni was removed. The nickel
alloy Inconel 625 has even better corrosion resistance; after 15min of etching, no
noticeable etch depth could be measured. Therefore, wafers of Inconel 625 were

machined to make carrier wafers for GaN pieces.

3.2.2 Etch preparations

The chamber is first cleaned for 5 min with a Cly/Ar etch and a sapphire cleaning
wafer, then 1h using O, plasma. The etch process is run using GaN dummy samples

on a Ni-alloy carrier. The cleaning and chamber preparation removes contaminants
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which have a profound impact on the plasma of the low-power Cly/Ar etch. It was
observed that without this stable environment, the plasma would often go out or even
fail to light during the ignition step.

The sample is mounted in the center of the Ni-alloy carrier wafer using Corning
high temperature vacuum grease. The purpose of the grease is to maintain a repeat-
able and uniform temperature during etch. The sample is then closely packed with
more GaN dummy samples in order to load the chamber.

Chamber loading improves uniformity across the sample. To test this, a 6 mm X
12mm c-plane sample was etched with and without a 2in. GaN wafer (Fig. 3.1.a).
Without chamber loading, the sample varied in etch depth by ~ 30% across 6 mm

(Fig. 3.1.b), while a sample etched in a loaded chamber varied < 10%.

12 mm

Figure 3.1: a) Etch sample mounted on a alumina-coated wafer surrounded by a 2 in.
GaN-on-sapphire dummy wafer. b) Close-up of the c¢-plane etch sample, with the four

etch depth measurement positions indicated.
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3.2.3 In-situ surface clean

A native GaN oxide will delay the etch of GaN in Cly/Ar. Therefore, a pre-etch
to remove GaQ, is used. Table 3.1 lists the process parameters for a Unaxis BCl,
plasma etch of GaO,. [9]

A 40s etch is sufficient to remove the native oxide that grows on a GaN surface.
It will etch ~ 10nm at a DC bias of —154 V. It is only needed if the surface has not
yet been disturbed. For instance, if an SiO5 hard mask is used, the typical CF, etch
used (with over-etch) to pattern the SiO, will suffice to remove GaO,. If the GaN
etch is performed immediately after (< 1h), the pre-etch will not be needed. For the
dry etch experiment described in §3.4, it is always used to maintain consistency.

After a few cycles of pumping and purging following the GaO, etch, the GaN etch

can be started without removing the sample from the chamber or breaking vacuum.
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Table 3.1: Top: Processing parameters for GaO, dry etch on the Unaxis VLR. Bottom:

etch rates for various materials.

Step 1: Step 2:
Parameter Stabilize Etch w/

Gas Flow  BCly
Time (s) 40 40
Pressure (mTorr) 20 10
BCl; Flow (sccm) 10 10
He Pressure (mTorr) 5 5
RF 1 [CCP] (W) 0 40
RF 2 [ICP] (W) 0 500

RF 1 Tune/Load 38.5%,56.4% auto

RF 2 Tune/Load 40.3% auto
Material (Erf;? / lr%n?g;
SiN, 6
Al,O4 28.2
c-plane GaN 12.3
m-plane GaN 15

3.2.4 GaN dry etch

The process steps for the low power GaN etch are listed below. The etch was
thoroughly characterized with an assessment of the sub-surface etch damage (§3.4).
During the etch, the carrier wafer is normally cooled to 200°C (the standard setting

of this tool) with backside He, though a single run at 50 °C did not seem to show a
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difference in etch rate or sidewall profile.

Table 3.2: Top: Processing parameters for low power GalN dry etch on the Unaxis

VLR. Bottom: etch rates for various materials.

Step 1: Step 2: Step 3: Step 4:
Parameter Stablize  Ignite Ramp Etch w/
Gas Flow Plasma Power Cly/Ar
Time (s) 40 5 5 TBD
Pressure (mTorr) 10 10 10 2
Cl, Flow (sccm) 10 10 10 10
Ar Flow (sccm) 10 10 10 10
He Pressure (mTorr) 5 5 5 5
RF 1 [CCP] (W) 0 10 5 5
RF 2 [ICP] (W) 0 500 200 200
RF 1 Tune/Load 40% auto auto 40/30
RF 2 Tune/Load 46% auto auto 40
Material ](Egril / IIDLH?E;
SiNy 7.2
AlLOs 0
c-plane GaN 26
m-plane GaN 46

An alternative low power dry etch was also developed on the 6in. ICP etcher,
a Panasonic E640 (Table 3.3). The resulting etch profile of nanoscale features was

characterized, but the sub-surface dry etch damage was not investigated.
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Table 3.3: Top: Processing parameters for low power GaN dry etch on the Panasonic

E640. Bottom: etch rates for various materials

Step 1: Step 2: Step 3: Step 4:
Parameter Stabilize  Ignite Ramp Etch w/

Gas Flow Plasma Power Cly/Ar
Time (s) 5/5/15/0  5/10/0/0  0/5/0/0 TBD/5/15/0
Pressure (Pa) 2 0.2 0.2 0.2
Cl, Flow (sccm) 22.5 22.5 22.5 22.5
Ar Flow (sccm) 22,5 22,5 22,5 22,5
He Pressure (mTorr) 700 700 700 700
Bias [CCP] (W) 0 0 0 30
Source [ICP] (W) 250 250 250 250

Material ](?;fril/ i?fle)

SiO, 12

m-plane GaN 63

3.3 PL test structure & test setup

The PL of a QW is very sensitive to etch damage. If we control for the various
factors that affect PL, we can use it to determine whether a QW has been affected
by etch damage or not. In contrast, QWs under electrical injection may not readily
show evidence of etch damage, but the operational device lifetime of the final LED
or LD may be significantly shortened.

Compared to electrical injection at typical LED or LD current densities, optically

pumping QWs for PL emission results in a much lower carrier concentration. The

43



CHAPTER 3. LOW DAMAGE DRY ETCH FOR GaN

recombination rate (R) various types of carrier recombination are directly dependent

on the carrier concentration, [n], characterized by the “ABC model”:
Rtotal = A[n] + B[?’L]2 + C’[n]3 (31)

where the A, B, and C terms are the trap-assisted non-radiative (NRR), radiative,
and Auger recombination rates, respectively. We can now define the internal quantum
efficiency as the ratio of the radiative recombination rate to the total recombination

rate:

_ B[n)?
Q= A0 + B[n)? + Cln)?

(3.2)

The NRR coeficient increases with etch damage. [10] Using experimentally fitted
terms for A, B, and C, [11] we find that the NRR coefficient will be the dominate term
in Ryt for low carrier concentrations (< 1 x 10'® cm™3). The radiative coefficienct is
not expected to change with etch damage and the Auger term is more than an order
of magnitude smaller than the other two recombination terms at low carrier densities,
rendering small changes in C' inconsequential. Therefore, any increase in the NRR
coefficient will correspond to a significant (i.e. measurable) decrease in niqr when
measured using a constant, low carrier concentration.

To see changes in NRR centers, we must control for all variables that affect PL.
We can directly measure the change in PL before and after etch, which gives us the
change in external quantum efficiency, ngqr. The external quantum efficiency of the

PL emission is given by:

NEQE = Next X NIQE X Nin (3.3)

where 7., and 7;, are the extraction efficiency and light in-coupling efficiency, re-

spectively. Experimental variance in light collection and differences in sample surface
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roughness before and after etching will change both 7.,; and 7;,, obscuring any change
in NRR centers.

Production and collection of PL must be carefully designed to avoid confounding
factors that arise before and after dry etching. First, the etched sample must have
approximately the same fermi levels and energy band diagram as un-etched, otherwise
the QW carrier concentration and PL will change unexpectedly. Second, the change
in light extraction from the device must be addressed — even a nominally smooth
planar etch of an epitaxially smooth sample will show increased light in-coupling
and extraction due to its unavoidable surface roughening. [12,13] Finally the test
structure and procedure should mitigate the problem of non-uniform light emission

so that repeatable measurements can be taken.

3.3.1 PL test structure

To view etch damage vs. etch depth, we use a double-active region PL test
structure adapted from prior work. [14] The first active region consists of a triple QW
active region 550 nm below the surface. It is used as a single-point depth marker for
etch damage. The second active region is again 3-QWs, another 550 nm below the
first. It is assumed that this deeper set of QWs is deep enough to avoid etch damage
during the first 700 nm of etching. To a first order approximation, changes in light
extraction will scale equally for both active regions. Therefore, the deeper set of QWs
is used as the normalization factor for the shallow set of QWs.

To easily separate the sources of light emission, the shallow and deep active regions
emit at 469 nm and 417 nm, respectively. The c-plane (0001) orientation provides the
narrowest full-width at half-maximum (FWHM) emission of the substrate options at

UCSB. Optically pumping this c-plane sample with a HeCd laser emitting at 325 nm
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allows for all three light sources to be discerned.

The c-plane of GaN should exhibit the worst amount of etch damage compared
to the other crystal planes. As documented above, the Ga-face of GaN etches much
slower than the m-plane. Combined with the largest channeling effect of any GaN
plane, c-plane is the worst case scenario for dry etch damage.

The structure was grown on 2in. double-side polished sapphire by metal organic
chemical vapor deposition (courtesy of Dr. Nathan Young). The structure from
top to bottom was as follows: 548 nm of n-type GaN, three pairs of 2.8 nm-thick
unintentionally doped (UiD) Ing,GagsN QW with 7.1 nm-thick barriers, 548 nm of
n-type GaN, another 3-QWs of Ing;;GagggN, and 8.5 pm of n-type GaN (Fig. 3.2).
After growth, 165 nm of SiN, was sputtered on top for later use as a dry etch hard

mask.

Figure 3.2: Schematic of a c-plane epitaxial growth with sputtered SiN, on top and

a double-side polished sapphire substrate.

46



CHAPTER 3. LOW DAMAGE DRY ETCH FOR GaN

The n-type doping was [Si] = 2 x 10" cm™3, as measured by secondary ion mass
spectrometry. It was chosen so that the predicted change in doping during dry etch
would be minimal — p-type material would be heavily compensated, [15] leading to
unwanted changes in carrier concentration. The thick buffer layer was necessary to
reduce the Fabry-Perot fringing that arises from the cavity of the GaN surface and
the substrate.

The wafer was cleaved into 6 mm x 12mm samples (Fig. 3.1.b), of which the
seven with the brightest PL were selected. The samples were then lithographically
patterned with mesa stripes ranging from 2.5pm to 10 pm wide. These stripes are
used to measure the etch depth via atomic force microscopy (AFM). These mesa
stripes will remain un-etched, but cover < 5% of the total surface area. Prior to the
GaN etch, the SiN, was etched by ICP using a CHF3/CF, etch chemistry in which

GaN does not etch.

3.3.2 PL test setup

The choice of PL setup is greatly dependent on the sample. A typical PL setup
will have a spot size of 1 mm?. For the above sample, slight growth variation together
with a Fabry-Perot fringe spacing of ~ 11 nm resulted in a highly peaked and position-
dependent PL measurement that was un-repeatable. The same growth on a bulk GaN
substrate may have been more successful, but significantly more expensive.

Instead, a Perkin Elmer LS 55 Fluorescence Spectrometer was used to measure
PL spectra. With a spot size of 75 mm?, the spatially-dependent Fabry-Perot fringing
is averaged out to produce a smooth PL spectrum (Fig. 3.3).

The white-light pump source is filtered via diffraction grating to 385nm. The

high intensity pump will excite carriers in the QWs without producing carriers in
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Figure 3.3: Typical PL data of a double-active region sample. Each PL peak is fit

with a Voigt function in the energy domain.

the surrounding GaN. The pump source is further filtered using a 11 nm-bandwidth
external filter centered at 386 nm to clearly resolve the PL spectra.

With this structure and setup, the PL spectra can be resolved clearly and re-
peatably. The Voigt function, a convolution of Gaussian and Lorentzian lineshapes,
proves to be an excellent fit for the PL emission. To evaluate the repeatability, the
same test sample was measured 13 times, breaking down and reassembling the test
setup each time. The integrated intensity of the PL fits had a standard deviation of
13% and 10% for the shallow and deep QWs, respectively. When the intensity of the
deep QWs was used as a normalization factor, the standard deviation was only 5%,

showing that the double-active region technique functions to reduce the experimental

error of the test setup.
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3.4 PL vs. etch depth

After growth and SiN, deposition, the seven cleaved samples underwent the fol-

lowing procedure:

1. The samples were lithographically patterned and the SiN, hard mask was etched
in CHF3/CF, chemistry

2. PL spectra taken using Perkin Elmer LS 55 Fluorescence spectrometer with a

10 nm-bandwidth, 385 nm external filter

3. The seven samples subjected to 2min (24.6 nm) of in-situ surface clean to re-

move GaOy

4. Six of the samples underwent the low-power Cly/Ar dry etch for various times,

up to 1300s
5. The post-etch PL spectra of all samples was taken
6. The SiN, hard mask was removed in HF

7. The etch depth of the seven samples was measured by AFM in four positions
(Fig. 3.1.b)

8. High-angle dark field scanning transmission electron microscopy (HAADF-
STEM) was done on one deeply etched sample for etch surface-to-QW distance

measurements

Careful measurements of the PL, etch depth, and QW depth are taken in order to

view the change in PL versus the etched surface-to-QW distance.
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3.4.1 Etch depth measurement

The seven samples were etched between 0s (in-situ surface clean only) and 1300s.
From AFM measurement, the in-situ surface clean and low-power etch rates were
determined to be 12.3nm/min and 26 nm/min, respectively. The range in etch depth
measurement between the 4 measurement points was ~ 2 nm.

AFM was also used to inspect the etched GaN surface. After the in-situ clean, the
root mean square surface roughness, g5, of a 5pm x 5 pm area was 0.55nm. This
roughness increased linearly at a rate of 0.13 nm per 100 nm etched. More importantly,
it was found that numerous pits formed and were preferentially etched at a different
linear rate than the surface, extending below the nominal etched surface at a rate of

10nm per 100 nm etched (Fig. 3.4).
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Figure 3.4: AFM image of the etched GaN surface (@ Onm), 607 nm below the un-
etched surface. Preferentially etched hexagonal pits extend ~ 60 nm below and cover

2/3 of the surface.
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The hexagonal pits are in the correct order of magnitude to be attributed to
threading dislocations at 3 x 10 cm™ [16] and have been observed previously ob-
served after etching. [4,17] These pits are expected to greatly increase the extraction
efficiency and would confound accurate PL measurement without a normalization
factor. However, since these pits decorate threading dislocations, these pits are not
observed on low dislocation (5 x 106 cm™2, [18]) bulk GaN m-plane substrates.

The etch depth measurements were converted to distances away from the shal-
low QW by measuring HAADF-STEM micrographs (courtesy of Dr. Yanling Hu).
Fig. 3.5 shows the etch profile of a GaN stripe measured to be 530 nm by AFM. The
etched surface is 24.6 nm away from the top of the first QW. With the distance to

the shallow QW calibrated, a precise PL vs. etch depth can be constructed.

o1



CHAPTER 3. LOW DAMAGE DRY ETCH FOR GaN
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Figure 3.5: Cross-section HAADF-STEM images of the c-plane on sapphire double-
active region test structure. The sample has been etched 530 nm and shows a deeper
etched pit next to the un-etched mesa. Platinum is deposited on top as part of the

STEM procedure.

3.4.2 Normalized PL measurement

The relative [post-etch PL] vs. [pre-etch PL] measurements are compared to
give a picture of proportional changes in ngqr. The integrated intensity ratio of the
deep QWs steadily increased with etch depth to 150% of its original after 500 nm of
etching. This is a clear indication that the in-coupling and extraction efficiency have
increased. It is primarily due to the increased surface roughening and pitting of the
etched surface.

The integrated intensity ratio of the shallow QWs also increased with etch depth
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until it dropped off suddenly. This drop-off is due to the decrease in niqgr, a direct
consequence of etch damage. Using the integrated intensity ratio of the deep QWs as

a normalization factor, we can now view the effect of etch damage on the PL as the

etched surface approaches a light emitting QW (Fig. 3.6).
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Figure 3.6: Percentage change of niqr as a low-power dry etch approaches QWs

Niqe Ratio: [post etch] / [pre etch

through a GaN cap. No deterioration of 71qg is observed down to a measured thickness

of 71 nm.

The experiment shows that light emission stays nearly constant up to 71 nm away
(corresponding to a 484 nm etch depth), after which severe deterioration occurs. This
value is extremely conservative: besides occurring on c-plane which has the slowest
etch rate and is most affected by channeling of etch damage, the substantial surface
pitting extending 10% further after 484nm of etching brings much of the etched

surface closer to QW.
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For the data point of interest, the average distance from the QWs is actually 53 nm
away, with the deepest part of the pits approaching 25 nm. Therefore, this etch may
allow for a planar etched surface to come to 50nm away from a QW without the
QW experiencing deterioration of the light emission. At the next data point of 25 nm
away, many of the pits have already penetrated the QWs, removing much of the active

region altogether.

3.4.3 Design rules for surface etched features

We can now use the following design rules with the documented dry etch: on
high dislocation density substrates, e.g. c-plane on sapphire, an etched surface can
approach 50 nm away from a light emitting active region as long as the etched pits do
not exceed 25nm deep. This limiting scenario would be a 250 nm-deep etch. On low
dislocation density substrates, e.g. bulk GaN, a planar etched surface can approach
a QW up to 50 nm, regardless of the etch depth.

This design rule is easily satisfied with the EGC LD designs demonstrated in
Ch. 2. Therefore, this dry etch is a useful fabrication process for EGC LDs and

other nanoscale optical features.
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Chapter 4

Process steps for EGC-LDs

TIE surface-etched nano-structures that constitute the top cladding layer require
a number of specialized processing steps compared to a standard ridge laser design.
Aside from the developed low-damage dry etch, non-standard lithography techniques
and dielectric layers are required to fabricate an etched-gap cladding (EGC).
Patterned features smaller than 0.5 um require lithography beyond the standard
i-line (365 nm light source) lithography systems. In this work, we utilize two different
methods to achieve 300 nm-pitch stripes: holography (at 325nm) and electron beam
lithography. Two more methods for patterning small features are available at the
UCSB nanofabrication facility: nano-imprint lithography and deep UV (248 nm).
For a process compatible dielectric to fill the EGC, we utilize the spin-on dielecric
benzocyclobutene (BCB) in the 2°¢ generation LD devices. Its advantages include a
natural planarization effect and chemical resistance to HF acid. Because it does not
etch in HF, we can use an SiO, layer as an etch hard mask and easily remove the

SiO, afterwards.
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The step-by-step processing followers can be found in Appz. D. §D.1 is the follower
for the holography process used to fabricate the first device demonstration, an air-
gap cladding laser diode (AGC-LD). §D.2 is the full process for the second device

demonstration, the etched-gap cladding laser diode (EGC-LD).

4.1 Holography on GalN

The holography system at the UCSB Nanofabrication Facility is a Lloyd’s mirror
interference lithography system. The light source is a 325nm HeCd laser that is
collimated and expanded to produce a coherent, uniform intensity beam over a 4 cm?
area. The stage for mounting the sample also holds the mirror, fixed at 90° to the
sample. A 2cm X 2 cm sample can be exposed to create a grating aiming the beam at
the intersection of the sample and mirror, so that the coherent light will constructively
and destructively interfere with its angled reflection.

The pitch of the grating pattern is determined by the wavelength of the laser and
the angle of the stage & mirror with respect to the beam. The wavelength of the
HeCd laser is very stable. A pitch of 200nm - 300 nm can be obtained repeatably by

setting the stage angle, according to:

Ostage = 25in~" (;A> (4.1)

where )\, is the light source wavelength (325nm) and A is the desired pitch. The
stage angle is aligned to the normal of the mirror, so that the incident angle on the
sample is:

eincident =90° — estage (42)

The fill factor of the pattern is determined by the photoresist (PR) used and the

exposure energy. The output power of the laser will drift with time. It was found
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to be most stable for a 1h window after a 1h warm-up period. After measuring the
output power, the exposure time is calculated from the required exposure energy.
Even with careful calibration, a 50% fill factor pattern was found to vary by 410
percentage points. An LD design featuring an EGC is generally very tolerant to such
variation. However, the dry etch for the EGC will change depending on the fill factor,
making the processing much more difficult.

Fig. 4.1 shows the progression of holography development, detailed in §4.1.1 and
§4.1.2.

b ) F112nm
H 82.3 nm

L 61.5 nm
jemim‘) nm 219 NiT e

C ) H 150 nm

——1139nm

Figure 4.1: Cross-sectional SEM of developed holography PR on an ARC layer: a)
positive-tone PR + un-calibrated spin-on ARC thickness, un-etched; b) positive-tone
PR + calibrated spin-on ARC thickness, un-etched; c) negative-tone PR + calibrated
SiN, ARC thickness, etched
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4.1.1 The anti-reflection coating

The PR for interference lithography is very sensitive to standing waves within
the resist. An anti-reflection coating (ARC) must be used, otherwise width of resist
features will vary vertically, even to the point of pinching off and causing the resist
to topple. One option is to use a spin-on ARC between the GaN and PR. The ARC
heavily absorbs the light the passes through the resist. Additionally, the thickness
is chosen to minimize reflection, which requires some modeling and/or calibration.
Fig. 4.1.a shows the result of an improper ARC thickness on a holography pattern.

A spin-on ARC works well to reduce standing wave reflections, but must be pat-
terned itself. With small features, developable ARCs tend to undercut too much,
causing the resist to topple once again. Therefore, an “ashable” ARC is typically
used. These ARCs require an O, plasma etch to transfer the resist pattern into the
ARC.

The O, plasma will etch the resist as well, rounding the top and reducing the
amount of resist available to etch the GaN (Fig. 4.1.b). Since interference lithography
resist must be thin (< 300nm), maintaining a tall PR profile for dry etch can be
critical.

Instead, we make the ARC using a layer of deposited SiN,. The refractive index
of the ARC layer should be close to the geometric mean of the PR (~ 1.7) and GaN
(~ 2.57), around n = 2.1. The refractive index of stoichiometric Si3N, is close at

n = 2.13. The layer should also have the correct thickness given approximately by:

mA,
dsin, = T nsm, coS (HSiNX) , m=1,3,5... (4.3)

where the angle in SiN, is derived from Snell’s law:

sin (9incident) ]

Osin, = sin~!
NsiN,
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Choosing m = 5 results in a SiN, thickness of approximately 175 nm for a 300 nm-
pitch grating. The SiN, can now serve as a hard mask for up to 600 nm of GaN

low-damage dry etch in addition to serving as the ARC during holography.

4.1.2 Positive tone vs. negative tone photoresist

The holography fabrication was performed with two photoresists, one positive tone
(THMR-IP3600HP-D) and one negative tone (TSMR-iN027), both from Tokyo Ohka
Kogyo Co., LTD. The positive resist is usually spun on a little thicker at ~ 285 nm,
while the negative resist is ~ 175nm. To get a 50% fill factor, the negative PR
requires more exposure energy at 120mJ compared to 75mJ for the positive PR.
However, the resulting pattern is at the lower exposure limit for the positive PR.

In general, the positive PR is better for producing < 50% fill factor patterns,
while the negative PR is for fill factors > 50%. Otherwise, the pattern will suffer
from severe line edge roughness, to the point of bridging between the individual PR
stripes. Since we intend to have a > 50% fill factor, negative PR was ultimately
chosen.

Though easier to pattern the intended fill factor, the negative PR is thinner than
the positive PR, limiting the etch depth that can be achieved in the hard mask.
Fig. 4.1.c shows the result of a SiN, hard mask etch. After etching the 174nm of
SiN,, only 33 nm of negative resist remains, and the sidewalls are clearly rounded.

In Fig. 4.1.c, the SiN, hard mask is acting as a 5/4 A anti-reflection coating. The
other two options are 3/4 A ARC (104.4nm) and /4 A ARC (34.8nm). The current
layer is capable of masking the GaN beneath it during a dry etch of < 800nm. For
< 480nm or < 160nm, the smaller two thicknesses would work much better and

produce features without any rounding.
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Negative PR can be patterned a second time to prevent etching in certain areas.
Therefore, an i-line stepper process can be applied to the same PR in order to localize
the etch-gap pattern. If instead a lift-off process was used to create a hard mask,
positive PR would serve the same role. Such processes were briefly considered, but

not fully developed in this work.

4.2 Electron beam lithography on GalN

Electron beam lithography is useful for patterning precise and complicated nano-
structures. It is more expensive and time consuming than most lithography options,
but remains an invaluable research tool.

We develop an e-beam lithography process on GaN that produces precise and
repeatable EGC structures while minimizing line-edge roughness and tool time. In
doing so, we realize a new fabrication method to create a lift-off mask on materials

(GaN or otherwise) that have large electron backscatter.

4.2.1 Negative-tone bi-layer resist process

The EGC-LD device demonstration builds upon prior work [1] to create a lift-off
mask for metal. The bi-layer resist consists of a top layer of hydrogen silsesquioxane
(HSQ) and an under-layer of poly methyl methacrylate (PMMA). The HSQ is a
negative-tone electron-sensitive resist that requires high exposure dosages compared
to PMMA, but produces high resolution patterns after development in a 25% TMAH
solution. In addition, a thin (10nm) layer of aluminum deposited on top serves as a
conductive path to ground for trapped electrons, but is easily removed after 10s of

development. In this usage, the PMMA does not play its normal role of a postive-tone

62



CHAPTER 4. PROCESS STEPS FOR EGC-LDS

resist, but is simply an under-layer to assist in metal lift-off.

HSQ is a unique electron beam resist in that it forms a psuedo-SiO, layer when
exposed. This renders the exposed HSQ inert in an O, plasma. Therefore, after
exposure and development, the HSQ can function as an O, etch mask for an under-
layer. With high selectivity, the under-layer can be much thicker than normally
achievable with e-beam lithography. With only a 30 nm layer of HSQ, a 90 nm under-
layer of PMMA can be patterned, with an undercut, for the purpose of Ni lift-off.
In this case, we lift of 30nm - 40nm of Ni (deposited afterwards by electron-beam
deposition).

The under-layer thickness is limited by the pattern dimensions. If the pattern is
too thin compared to the layer thickness, the undercut during O, etch will undercut
the pattern, causing it to fall over. This can be mitigated by using a directional
etching system, like reactive ion etching. However, the O, plasma will inherently
roughen the patterned HSQ. Therefore, one should choose an under-layer that etches
quickly in O, plasma.

There is a lot of freedom when choosing an under-layer. The requirements are that
it spins on to the desired thickness, is easily etched in O, plasma, and is compatible
with e-beam lithography and HSQ. Many photoresists and polymers may suffice, but
PMMA is easy to work with and well developed. One caveat that was discovered
with PMMA is that the high dosage required by HSQ will shrink the PMMA by 50%.
This did not affect the final process for the EGC-LD, but may need to be considered

in other cases.
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4.2.2 Edge-biased exposure technique

The e-beam lithography pattern is heavily influenced by the backscatter of elec-
trons off the semiconductor. This acts as another dosage source, but unlike the sharply
defined beam, it is closer to Gaussian random noise. This noise adds a background
energy level to the original beam. The relative integrated backscatter energy is a
function of the material, while the range and distribution is a function of the incident
energy. The backscatter will reduce the required incident dosage, but increase the
signal-to-noise ratio (leading to increased line edge roughness — LER). It is therefore
very important to determine the amount of relative backscatter energy at a locations
surrounding the beam, then adjust the dosage in that area accordingly. [2,3]

The backscatter cross-section is determined by the material it is impinging on, and
generally increases with increasing atom size. For instance, GaN and GaAs substrates
will backscatter much more than Si substrates, simply due to the fact that the Ga
atom is much larger than Si. [3] Therefore, the dosage required to expose resist on
GaN compared to resist on Si will be less, but the signal to noise ratio will be higher.
Exposure calibrations on Si and GaN showed clear evidence of this — using the same
dosage scheme and pattern, 150 nm-wide lines on Si had LER of 0,,s < 1nm while
on GaN the LER was 0,5 = 4 nm.

The amount of backscatter at a location due to fixed beam shot depends on the
dosage within an area of influence. From Monte Carlo simulations [4] of 100keV
electrons impinging on GaN, this area of influence is approximately 158 nm in radius.
Therefore, reducing the overall dosage in the proximity will reduce the backscatter.
Care must be taken not to underexpose the pattern. Using the commercial software
Beamer, [5] we can input the Monte Carlo simulation and our intended pattern to de-

velop a dosage variation of the base dose. In general, this means the edges and corners
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of patterns require higher dosage than the centers, due to the reduced backscatter in
the proximity. We now apply this proximity area correction (PEC) to the base dose
of all patterns.

The end result of PEC is that the intended pattern is nearly uniformly dosed.
However, it does not address the LER of the pattern. If backscattered electrons is a
source of noise at a specific location, then reducing the backscattered electrons will
reduce the LER. Therefore, regarding only the line edge, as long as the edge of the
pattern is not underexposed, reducing the total exposure dosage of a pattern in the
area of influence will reduce the LER.

Assuming our goal is to use the resist layer as a lift-off mask, we can now develop
a method for reducing the overall dosage. Using negative-tone resist, we can reduce
the exposure in the middle of a patterned geometric shape to the point just above
where the resist clears. Since the resist is only being used for lift-off, it does not
matter if the full thickness is exposed. The only requirement is that a “shell” of resist
remains to be lifted-off.

Reducing the dosage in the middle of a geometric shape will cause the line edge to
be under exposed. To compensate, the exposure dosage on the edge must be increased.
As long as the total increase in edge exposure is less than the total decrease in center
exposure within any area of influence, the total backscattered electrons will decrease,
along with the LER. Therefore, the dose calibration procedure for the edge-baised

exposure technique is as follows:

1. Run a Monte Carlo simulation of the electron beam energy impinging on the ma-
terial stack (substrate, deposited materials, resist) to get a relative backscatter
distribution.

2. Use the backscatter distribution to perform PEC on your intended pattern.
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3. Perform electron beam lithography dose calibrations to find the dosage that
best recreates the original pattern. Use the smallest step size possible at this

dosage.

4. Break the pattern into “center” and “edge” patterns, where the “edge” pattern

consists of a one-step size-wide perimeter of each LER-critical shape.

5. Reduce the dosage of the center pattern until just before the center of the shape
begins to clear; maintain the same edge pattern dosage. If necessary, increase

the step size of the center pattern.

6. Increase the edge pattern dosage until the shape edges reappear. If possible,

decrease the step size of the edge pattern.

7. If necessary, shrink the pattern by pulling the edge pattern inward so that the

intended geometry is reproduced; shrink the center pattern by the same amount.

8. Repeat steps 5-7 until the center pattern dosage cannot be reduced further.

Fig. 4.2 illustrates the exposure scheme of a 150 nm-wide line of negative resist for
lift-off. The equivalent area base dosages of the red, green, and blue shot patterns are
40 mC/cm?; 300 pC/cm?, and 600 pC/cm?, respectively. Compared to the normal,
uniform dosage of 1 mC/cm?, the total dosage has been reduced by 49%.

The edges of the 150 nm-wide stripe are defined using a very high dosage. It is
written in a single line of the smallest step size allowed by the tool. A number of
passes are used to average out statistical noise in shot placement. Combined with the
macroscopic reduction in dosage, the collective effect reduces the LER from o, =

4nm to 1.4nm.
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Figure 4.2: E-beam exposure placement and dosage across a 150 nm-wide line
(right), with a zoom-in of one corner (left). The red circles are 1nm-step shots of
base dose = 0.1 nC per shot; it is repeated four times. The green circles are 8 nm-step
shots of base dose = 0.096 nC per shot, repeated a second time with a 4nm vertical

shift. The blue circles are the same as the green circles, but at twice the dosage.

After metal lift-off, the LER increases to o.,s = 2nm. The LER of the edge-
biased resist is still a large contributor to LER, but it has been reduced by a factor

of 3. This optimized thin metal pattern can then be transferred into a much thicker

SiO, layer (Fig. 4.3) via dry etch.
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Figure 4.3: SEM cross-section of a thin Ni and thick SiO, hard mask patterned by

electron beam lithography and dry etch.

An added benefit of the edge-biased exposure scheme is that the total exposure

time is reduced. A 1-to-1 correlation of dosage and tool time means that the total
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write time is cut in half. As an example, the EGC-LD device demonstration took
3.5h to write instead of 6h. Long write times on an e-beam lithography tool are
expensive, in addition to slowing throughput; using an edge-biased exposure scheme

saves on time and cost.

4.3 Other lithography options

The remaining lithography options available at the UCSB Nanofabrication Faciltiy

are considered for the purposes of future process development.

4.3.1 Nano-imprint lithography

Nano-imprint lithography on GaN has been previously explored by Dr. Jason
Jewell. [6] His process begins with a separate lithography technique (e.g. holography)
on a Si substrate, which is subsequently dry-etched to produce a 2-D pattern of
pillars. The patterned Si is then used as mask or “stamp” to pattern resist on GaN.
The resulting pattern on GaN is the corresponding pattern of 2-D holes. The benefit
of this method is that the same Si mask can be used a number of times before it gets
worn out, after which a new patterned mask is made. However, it was found that
while the process to produce holes was repeatable, other patterns like pillars and 1-D

stripes of PR would often topple over.

4.3.2 Deep UV lithography

Deep UV lithography has a comparable minimum feature size of 120 nm, but these
features can be intricate and non-repeating. It is advanced projection lithography sys-

tem that requires very flat and well-aligned samples, with a minimum wafer diameter
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of 100 mm (for the system at the UCSB Nanofabrication Facility). Unfortunately, the
work done here is on much smaller pieces, disallowing the use of the DUV lithography
system. Otherwise, DUV lithography would be the preferred method of lithography

for etched-gap cladding and similarly sized features on GaN.

4.4 Etched-gap cladding fill material

The effective refractive index of the etched-gap cladding layer can be tuned by
both the fill factor and the material used to fill the etched trenches. Many non-
absorbing dielectric options will produce a sufficient index contrast when using a 50%
fill factor. The larger concern is the process compatibility of the dielectric.

The deposition method of the dielectric must be able to uniformly fill the deep
aspect ratio trenches. A directional deposition method like electron beam deposition
and sputter will be susceptible to shadowing effects that will cause voids within
the trench. Conformal deposition methods like atomic layer deposition and plasma
enhanced chemical vapor deposition will leave “keyhole” voids as the trench is filled
and pinches off. However, this keyhole can be minimized with certain trench sidewall
geometries. If the trench geometry is repeatable, the keyhole void will be as well. The
final method is spin-on of dielectrics. Any spin-on material is well suited to filling
voids, but may come with other processing challenges.

After deposition, the dielectric must withstand further processing. This includes
formation of a ridge and deposition of the p-contact metal. The dielectric must also
be removed from the top GaN surface to allow for the metal contact. Therefore, the
cladding fill process is a planarization process; planarization is, in general, a difficult

fabrication problem.
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4.4.1 Air-gap cladding

An often overlooked dielectric choice is air, making the cladding layer an air-gap
cladding (AGC). Leaving air voids means that the gaps must be sealed in some man-
ner. Previous work has used regrowth to coalesce the etched gaps. [7] The regrowth
was also necessary for etch damage recovery as well. In general, regrowth is a difficult
and expensive step, and puts large constraints on the fabrication process. With-
out the need for etch damage recovery, we can avoid regrowth. Instead, we use an
angled-deposition of metal for the first generation of AGC-LDs.

If a sample is angled within a directional deposition system, any high aspect ratio
features will be shadowed. In an electron beam deposition system, the sample is
angled with respect to the source to take advantage of the shadowing effect. Fig. 4.4

shows the result of Pd deposition after an angled deposition of 60° from normal.

Figure 4.4: SEM cross-section of angled (60°) Pd deposition on a GaN and SiN,

air-gap test structure.

The AGC is capped by the Pd with 80 nm penetration into the air gaps. To avoid
optical absorption by metal, the AGC must be thick enough to isolate the mode from

the metal. Therefore, this technique prohibits the use of a thin (< 150nm) AGC
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layer.

The Pd contact is followed by an Au pad deposition. The Pd does not coalesce
immediately, so the following deposition of Au must be done at 0° from normal to
electrically connect the contact area.

Structurally, air gaps capped by metal are lacking compared to standard device
designs, e.g. a shallow ridge LD structure. By not contacting the entire surface area,
the deposited metal is susceptible to delamination. In addition, the air gaps can
unintentionally be filled with another material. This could be other liquids during
fabrication (e.g. solvents, acids) which would exacerbate delamination. The air gaps
could also be filled with the capping metal itself, either by physical forces or via
electro-migration of metal during operation. However, angled metal deposition is a

quick solution to the planarization issue of surface-etched nano-structures.

4.4.2 Spin-on benzocyclobutene

BCB is a polymer that can be spun-on and re-flowed (baked) for the purpose
of planarization. It is electrically insulating and optically transparent in the visible
spectrum. At 450 nm, the refractive index is 1.54.

The material properties of BCB make it a good candidate for a dielectric fill ma-
terial, with the exception of its adhesion to other materials. Metals easily delaminate
from BCB and other dielectrics require a very clean surface to adhere to BCB. For
this reason, the recommended procedure is to use a thin (10nm) sputtered layer of
SiN, with an in-situ back-sputter clean as an adhesion layer for metals. In contrast,
BCB sticks extremely well to GaN. In a simple test, a stack of BCB, SiN,, Ti, and
Au were deposited on GaN and tested for adhesion using tacky Kapton® tape. The

adhesion strength of the tape is well beyond the device and processing requirements,
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yet none of the stack delaminated, demonstrating that the delamination issues of
BCB can be completely avoided.

BCB is resistant to most acids and bases. For instance, it is unaffected by HF,
allowing for wet etching of other common dielectrics like SiO,. It can be removed
by a combination of acid and oxidizing agent like a piranha etch, or dry etched with
CF,/0O, plasma. Therefore, patterning BCB can be done in two ways: either by using
the photo-sensitive variant and directly patterning it, or patterning with a traditional
PR mask and dry etching.

Planarizing with BCB often requires spinning on a very specific thickness. The
choice of thickness falls broadly into two approaches. First, a thick (many microns)
layer can be deposited, then carefully etched back to reveal the top surfaces of the
sample underneath. For instance, in the case of a 1 pum-tall, 10 pm-wide ridge, 4 pm
of BCB were needed to reduce the height variation to < 100 nm. This method works
well to planarize the entire chip area, but requires careful dry etching to remove the
majority of the BCB. The second method is to spin a thin layer (< 500 nm) that only
planarizes nano-structures. Etched gaps 150 nm wide will be completely filled and
planarized to < 20 nm height variation, but the above ridge will not be planarized at
all. However, the BCB will coat the sidewalls with the same thickness near the top
of a microscopic feature, expanding in a sloped fashion to the lower etched surface.

In our second fabricated device, we used a 300 nm layer of BCB fill the etched gaps.
To deposit this thin layer, non-photosensitive BCB (BCB-3022) was diluted with two
parts Anisole and spun on at 4 krpm. After deposition and baking at 250 °C, the BCB
thoroughly filled in the etched gaps in the GaN and left a nominal 300 nm at the top
of the GaN surface (Fig. 5.9—top).

The BCB also served as the field dielectric, separating the p-metal from the semi-
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conductor. However, it was found that the PR stripper 1165 causes BCB to swell,
forcing pockets of delamination from the GaN surface. In Fig. 5.9 (left, right), the
delamination of BCB from the GaN ridge sidewall can be seen. Therefore, using BCB
requires using alternative solvents during further processing, like Acetone, which are

not absorbed by BCB.

4.4.3 Other dielectric options

Conformal deposition of Al,O3 was briefly investigated as an EGC fill material.
ALD was chosen for its conformal deposition properties to achieve repeatable fill in
of trenches. However, filling in a 150 nm-wide trench requires a 75nm deposition,
which is beyond the recommended 50 nm limit for the machine used. Regardless, a

long ALD deposition can achieve a clean and extremely conformal fill in of trenches.

Figure 4.5: Cross-sectional SEM of conformally deposited Al,O5 over SiN, nano-
structures. The Al;O5 is the same thickness on the sidewalls and on top of the SiN,

tooth and the gap is beginning to fill in.

The conformal nature of the deposition only partially planarizes nano-structures
(Fig. 4.5). For a true planarization, repeated planar dry etch and conformal deposi-

tion can be used, but will significantly increase the number of processing steps. Since
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no additional lithography is required, this repeated process may be a useful option.
The final requirement for the dielectric fill of the EGC-LD is the ability to remove
the hard mask above GaN p-contact surface. Usually, the procedure is to use an HF
wet etch to remove an SiO, (or similar) hard mask layer. It is this requirement that
renders many dielectric fill processes incompatible. For this reason, BCB was chosen

instead of a conformally deposited dielectric.

4.5 Laser cavity mirrors

For edge emitting GaN LDs, the facet requirements are as follows: the facet should
be vertical (< 2° from normal); the facet roughness should be minimal (< 5nm); the
facet face should be deep enough to interact with the entire optical mode. If possible,
cleaved facets are by far the best option and are the preferred facet in commercial
LDs.

However, some substrates like the semi-polar planes of GaN or devices bonded to
substrates do not have a vertical cleave plane. The remaining options are then to
lithographically mask and vertically dry etch the facet or to dice and polish back to
the plane of the facet. In general, polished facets achieve the GaN facet requirements

to higher degree than (ICP/RIE) dry-etched facets, but are more process intensive. [§]

4.5.1 Dry-etched facets

Many techniques for dry etching can be used to form facets. Reactive ion etching
(RIE), chemically assisted ion beam etching (CAIBE), and the closely related focused
ion beam milling (FIB) have all been used to etch vertical facets for GaN LDs. [9-11]

In this work, we use RIE to etch 2 pm-deep facets for the AGC-LD.
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An issue applicable to the general class of EGC-LDs is the etch memory effect on
the facet surface. As seen in Fig. 5.9 (top), physical milling of a non-planar surface
leaves streaks across the facet surface in the form of surface roughness, and will be
present in all forms of dry etching. Though not quantified, the increase in roughness
will decrease the nominal modal reflection. One partial solution to this issue is to
slowly taper off the EGC towards the laser facet so that a standard ridge LD cross-
section is used for the facet. Then, the scattering loss due to a rough facet can be

avoided, at the cost of a more demanding lithography process.

4.5.2 Polished facets

To address the issues of a dry-etched facet, the EGC-LD device demonstration
was made with polished facets, building off prior work at UCSB. [12] It was quickly
discovered that fragile nano-structures of the EGC layer cannot withstand physical
polishing. As seen in Fig. 4.6, the EGC layer breaks off and disrupts the polished
surface. The resulting rough and non-uniform facet will result in increased scattering

loss at the facet.

7310, m

Figure 4.6: SEM of the polished facet of an EGC-LD.

Once again, the solution is to end the EGC layer before the facet plane in a non-
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scattering fashion. This is more difficult with a polished facet because the facet plane
is not easily fixed before-hand. An acceptable option may be to use a very shallow
EGC layer so that the nano-structures are not as fragile, but the process is as yet

untested.

4.5.3 Distributed Bragg reflector

The fabrication processes developed for the EGC-LD are well suited to producing
a distributed Bragg reflector (DBR) or other photonic crystal effect. To make a
DBR, the EGC structure should be rotated 90° and the pitch carefully controlled.
For instance, a third-order DBR grating requires a pitch of approximately 270 nm,
which is easily achievable with the fabrication processes described in this work.

A DBR LD design can replace dry-etched or polished facets for the purpose of
optical feedback, but the issues of light extraction and prevention of unintended
(disruptive) reflections remain. One straightforward option is to create a dry-etched
or polished facet after the DBR. Then, to prevent disruptive reflections, one can either
(a) anti-reflection coat the secondary facet and collect the light emission or (b) leave
an unpumped region after the DBR to absorb the transmitted light. Implementation
of such device designs is left to further work, leveraging the fabrication methods

described here.
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Chapter 5

Device results

LASER diode devices utilizing a top etched-gap cladding (EGC) were designed
based on the effective medium approximations and simulations described in Ch. 2.
The goal of these devices was to demonstrate the effect of an EGC on the lasing
mode.

The GaN-compatible fabrication techniques described in Ch. 4 were applied to
create the 15 generation of LDs with an air gap cladding and the 2"¢ generation of
LDs with a BCB-filled etched gap cladding. The full process traveler for the 2°d

generation EGC-LD is presented in Appx. D.2.

5.1 Air-gap clad laser diode device results

The air-gap clad laser diode was fabricated utilizing a compatible holography
process (§4.1) to create 150 nm-wide trenches in GaN (300nm pitch). An angled

deposition of the Pd contact metal was used to seal the trenches and complete the
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air gaps, as described in §4.4.1.
The epitaxial structure, simulation, and laser design are discussed before analyzing
the LD device results. Based on detailed simulation, some device failure modes are

explored and design improvements are proposed.

5.1.1 The epitaxial structure

Good laser diode design requires that the epitaxial structure and device geometry
be designed together. The approach taken for the 1st generation was to try and
balance the strong index contrast of the etched air-gap cladding at the top of the
waveguide with an Al,Ga;_ N cladding at the bottom. Growth considerations limit
the thickness and Al content of the Al,Ga;_,N layer, thus limiting the effectiveness
of the bottom cladding. A layer that is too thick for the amount of Al in the layer
will cause a break down in the growth morphology, even to the point of cracking the
epitaxial film. [1]

The epitaxial growth was performed in a metal organic chemical vapor deposition
reactor (courtesy of Dr. Kathryn M. Kelchner). Starting with a 300 pm bulk GaN
m-plane substrate, the growth was as follows: a 2 pm Si-doped n-GaN layer ([Si] =
5x 10® em™?), a 1.3 pm-thick n-Al,Ga;,N/GaN superlattice (SL, 36 periods, x =
10%, [Si] = 5 x 10'¥ cm™3) as the waveguideSs lower cladding (An = 0.02 vs. GaN),
an n-GaN waveguiding layer ([Si] = 5 x 10'7cm ™), an unintentionally doped (UiD)
active region consisting of three 2.8 nm-thick QWs and four 14 nm-thick GaN barri-
ers, an Al,Ga; N (x = 18%, [Mg] = 5 x 10 cm™3) electron blocking layer (EBL),
and a 50 nm low-doped p-GaN layer ([Mg] = 1 x 10’ cm™2). The top 500 nm of epi-
taxial growth are p-doped with stepped increases to make electrical contact ([Mg] =

{2 x 10, 4 x 10, 6 x 10'°, 2 x 102} em~3 for {300, 25, 125, 20} nm) of which
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the upper 275 nm is etched with air gaps.

Pd/Au p-Contact /SiOz
___\ 550 nm
p-GaN Waveguiding Layer
p-AlGaN EBL 7.6 nm
] 3x2.8nm/
InGaN / GaN (QWs / Barriers) 4% 14 nm
n-GaN Waveguiding Layer 64 nm
n-AlGaN / n-GaN SL, Cladding (18ffs>; -
N m-plane GaN Substrate N
\]\\ (1° miscut in -c direction) \ 300 um

Al/Au n-Contact

Figure 5.1: Schematic cross-section of 15 generation, air-gap cladding LD waveguide.

Lasing direction is out of the page.

Experimentally, a super-lattice (SL) of thin, alternating layers of Aly;GaggN and
GaN (36 pairs, 18+18 nm) was found to be close to the growth limits while provid-
ing as thick and high index-contrast cladding layer as possible. Schematically, the

waveguide structure is shown in Fig. 5.1.

5.1.2 Air-gap cladding etch profile and simulation

The periodic trenches in GaN that comprise the AGC are dry etched using the Un-
axis etch tool & process described in §3.2.4. The resulting etch profile of each trench
has nearly vertical sidewalls at the top, but a triangular bottom section (Fig. 5.2).
Thus, the refractive index profile between the AGC at the surface and the GaN wave-
guiding layers is a continuous function. This fact is reflected in the 1-D waveguide
simulation (Fig. 5.3).

Different sidewall and trench-bottom profiles can be achieved by varying the gas
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SiNx Hard Mask

275 nm p-AGC

275 nm p-GaN
3QW @ 443 nm

1.3 um SL

Figure 5.2: SEM micrograph of an LD ridge cross-section after the air-gap dry etch.
Air-gap depths outside the ridge (the “field”) are 50 nm deeper than in the ridge. Note

the triangular shape of the AGC etch.

flow (either total flow or Cly:Ar ratio). The final profile used was the simplest
achieved; other profiles tended to either undercut or produce a protruding mound
at the very bottom of the trench. A protrusion would be highly undesirable as it
would decrease the index contrast without providing any benefits. An undercut side-
wall profile may be desirable, but is not explored here.

The waveguide design has GaN waveguiding layers, with the triple Ing ,GagggN
QW active region helping to center the mode, in addition to the upper AGC and lower
super-lattice cladding layers which push the mode from top and bottom. Without
the AGC on top, the Pd contact would act as the low-index cladding, but the mode
would not be well centered on the active region (Fig. 5.3).

The bottom SL helps to contain the mode, but the index contrast of the AGC
with GaN (An = 1.17) is much greater than the SL (if approximated as Alg g5GaggsN,
An = 0.02). Therefore, the bottom evanescent tail of the mode penetrates quite
deeply into the 1.3 pm SL and the mode shape is extremely asymmetric.

Fundamentally, this waveguide allows some of the modal power to “leak” into
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Figure 5.3: 1-D simulation of the mode profile (orange) given the refractive index
profile (blue) with (solid lines) and without (dashed lines) the air-gap cladding. The

corresponding modal effective index marked with a blue circle and star, respectively.

the substrate. Since the waveguiding layers are GaN, the optical mode will have an
effective index in between that of GaN and the cladding; in this case, neg — ngan =
—0.017. Therefore, the small amount of evanescent tail that leaks through the SL
cladding will be a guided standing wave in the bulk GaN substrate. This results in
the substrate acting as a waveguide that competes with the active region. As long
as this leakage is small enough, the power residing in the substrate will be negligible.
However, as explored in §2.2.3, while the relative electric field magnitude of the mode
in the substrate is small, the thickness of the substrate allows a large portion of the
modal power to reside in the substrate.

There are two approaches to mitigating mode leakage apart from thicker and/or
higher index-contrast cladding. The first is to increase the index of the waveguiding

layers so that the effective index of the mode is greater than index of the GaN sub-
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strate. Then, GaN acts as a cladding layer itself. In the 2"¢ generation of EGC-LD
devices, this is accomplished with 60 nm-thick Ing og5Gag 935N layers on either side of
the active region.

The second approach to mitigate mode leakage is to thin the layer that the mode
leaks into. For instance, many GaN-based LD devices grown on sapphire substrates
suffer from mode leakage into the initial GaN buffer layers, but because this layer
is 1-10 pm thick, the fractional power of the mode leakage is negligible. Applying
this method to bulk GaN LD devices means that the majority of the 300 pm-thick
substrate should be removed in some fashion and replaced with a low index (i.e.

n < Neg) material.

5.1.3 AGC-LD device results

Two die repetitions of LD devices with ridge widths of 3 pm to 12 pm in increments
of 3pm and lengths of 300 pm to 1800 pm in increments of 300 pm were fabricated, for
a total of 24 devices per die. The devices were tested under pulsed electrical injection
on a thermoelectrically stabilized temperature stage. The amount of current required
by these devices were often higher than the maximum output of the pulse generator
(~ 1.8 A), scaling with the device area. Therefore, only the smaller ridge widths of
3pm and 6 pm could be tested.

Electrically injected lasing at room temperature (stabilized at 20 °C) was achieved
(A = 435.5nm) with a 0.25ps pulse width and a duty cycle of 0.25%. An LD light-
current (L-I) curve and series of spectra from a 6 pm x 300 pm device are shown in
Fig. 5.4. The spectra narrowed considerably at current densities above the threshold
current density (Ji,) of 26 kA /cm?, from 7.4nm at 90% of Jy, to 0.16 nm above Jy,.

The temperature dependence of the device in Fig. 5.4 was evaluated at tempera-
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Figure 5.4: Left — L-I curve for a single facet of a 6 pm x 300 pm LD; I;;, = 475 mA.

Inset: spectra (z-axis: wavelength in nm; y-axis: intensity, log scale in decades, a.u.)
from bottom to top: {0.99, 1.01, 1.1} Xx1I,. Right — L-I curves for varied stage

temperature.

tures > 20 °C. The characteristic temperature, T, was determined to be 152 K. This
is comparable to a previously published T, for a blue m-plane LD of 156 K. [2]

The Jy, and differential efficiency (n4) from a single facet of the device in Fig. 5.4
were 26 kA /cm? and 8.25%, respectively. However, these results were not, consistent
among the other devices tested. Fig. 5.5 shows the J;;, of the lasing devices vs.
length. The results do show the known trend of reduced threshold current density
with length, but the data points are too few and varied to draw conclusions about
the other internal device parameters such as internal loss.

Similarly, n4 did not display a consistent enough trend to draw conclusions about

the internal device parameters.
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Figure 5.5: Threshold current density vs. length for all AGC-LD lasing devices.

5.1.4 AGC-LD failure analysis

The most evident failure mode of the AGC-LD devices by visual inspection was
the delamination of the top contacts. Many of the top metal pads peeled away from
the substrate, causing an open circuit condition on 50% of the devices. The angled
metal deposition seemed to deposit a film under more stress and/or less adhesion than
previously observed. It is not known whether the angled nature is part of the issue. A
very likely factor in the delamination is the change in e-beam deposition tool — this
was necessary to accommodate the angled fixture. However, the new deposition tool
does not achieve as low a base pressure which can reduce adhesion of the deposited
film.

The p-contacts also exhibited non-ohmic behavior. The linear transmission line
method (TLM) test structures showed non-linear current-voltage relationships, indi-

cating that the Pd contact metal has a significant electrical barrier to the p-GaN; the

36



CHAPTER 5. DEVICE RESULTS

above-threshold series resistance was about 5.2€). This explains the relatively high
threshold voltage of ~ 11V, compared to typical threshold voltage results of 6V to
8V for similar epitaxial growths. It cannot be determined from the devices or test
structures whether the fabrication process for the AGC plays a role in the p-contact
quality.

The Jy, is also higher than anticipated, in addition to its large variation. A high
threshold voltage also leads to higher threshold current simply due to the increased
operating temperature, though this effect is greatly mitigated under pulsed-current
test conditions. Therefore, unexpected optical mode profiles (e.g. mode leakage)
likely play a bigger role.

The mode leakage into the substrate has a two-fold effect on the lasing mode.
First, the more power that resides in the thick substrate, the less power is guided in
the main waveguide, reducing the confinement factor in the gain material. Reduced
confinement factor directly leads to increased threshold current.

The second effect is that the mode power in the substrate will not be reflected by
a 2nm-deep etched facet mirror, causing the unreflected power to be lost from both
the waveguide and lasing outpu. This parasitic loss significantly increases the total
loss, again increasing the threshold current. In addition, parasitic loss reduces the
light output after lasing has been achieved, resulting in a lower 7,.

The amount of mode leakage is difficult to determine with accuracy. It is very
sensitive to thicknesses of the waveguide layers, including the etch depth and fill
fraction of the AGC. Through simulation, the mode leakage is hypothesized to be
between 10% and 40% of the total modal power, and may vary between devices on
chip. This also means that the modal confinement factor may vary by the same

amount. This variation makes it difficult to determine extrinsic modal parameters
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like total loss, and may be the main confounding factor when analyzing the measured

data.

5.2 Etched-gap clad laser diode device results

The full process traveler for the 2"¢ generation, EGC-LD is given in Appz. D.2.
The fabrication process includes a number of new process steps, including an initial
Au-Au bond to a silicon substrate, e-beam lithography to pattern the EGC, and a
spin-on BCB fill to complete the EGC.

Bonding to a Si substrate adds a significant number of steps on the front end of
the process, but allows for much easier handling of small bulk GaN substrates and
better utilization of the chip surface area. This is particularly apparent in the case of
e-beam lithography — the mounted m-plane substrate is patterned with a die that
is 4.5mm tall. An unmounted chip would be restricted to 3mm due to the limited
mounting options in the particular e-beam lithography tool used.

Additionally, the Si substrate adds much needed mechanical robustness at the end
of the process when the wafer is diced into long, narrow laser bars of ~ 20 mm x 0.6 mm
in surface area and polished on edge. In the final testing stage, the bonded Si substrate
acts as both the backside n-contact and a heatsink without the need for further

mounting or manipulation of the fragile laser bars.

5.2.1 The epitaxial structure, 2"9 generation

For the 2°¢ generation of devices, the goal is to compare LD devices with and
without an EGC. The comparison should have as many commonalities as possible to

isolate the feature of interest. Therefore, the epitaxial design must accommodate both

38



CHAPTER 5. DEVICE RESULTS

LD geometries reasonably well, and both designs must be fabricated simultaneously on
the same wafer. In doing so, neither design will be optimized for device performance.

Building off of the learning from the 1% generation, the epitaxial structure now
focuses on a high index waveguiding layer to eliminate any competing waveguide
and mode leakage in the bulk m-plane substrate. Symmetric n-side and p-side
Ing.065Gag.g3sN layers (each 60nm thick) act as the waveguiding layers, for an in-
dex contrast of An = 0.06 with the lower GaN cladding, and An = 0.65 with the
upper EGC. Thus, the optical mode will be anchored in the waveguiding layer, but
the evanescent wings will be highly asymmetric and push deeper into the lower n-side.

The latest iteration of the three-QW blue (451 nm) active region is utilized
(MOCVD growth courtesy of Leah Y. Kurtizky). In-house experiments show that
the AlGaN electron blocking layer is no longer needed and has since been removed
from the growth. In between the waveguiding layers, the active region consists of four
10 nm-thick UiD GaN barriers and three 4.6 nm-thick Ing ;4GaggdN QWs.

The waveguiding layers surrounding the active region contain a significant por-
tion of the mode field intensity. To limit the modal absorption, the p-waveguiding
layer is doped with [Mg] = 1 x 10’ cm™ and the n-waveguiding layer is doped with
[Si] = 1 x 10® em™3. Tt is not clear if these doping concentrations can be reduced
further without incurring prohibitive electrical losses, though the reduction in modal

absorption is clear.

5.2.2 Etched-gap clad device fabrication and simulation

When comparing the 1-D mode profile of an EGC-LD and a ridge LD, it is clear
that EGC will push the mode down, but may also expand the mode below the ridge.

For a shallow ridge LD, this means that the mode will tend to “flatten out” hori-
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zontally, making the effective width of the mode very different when comparing the
EGC-LD and shallow ridge LD. As a consequence, the injection efficiency and modal
absorption would be different between the two designs.

Thus, a simplified goal of these two waveguide designs is to create different vertical
profiles, but similar horizontal profiles. A deep ridge design that is etched through the
waveguiding layers will laterally confine both modes in a similar manner, regardless
of the top cladding. Now, the injection efficiency can be assumed to be the same for
both the EGC-LD and deep ridge LD.

To create the vertically asymmetric mode (Fig. 5.6), the EGC must be etched
quite close to the waveguiding layer. In addition, the p-GaN in which the EGC is
etched must be quite thick (750 nm), making the EGC a deep etch. This is because the
purpose of this epitaxial design is to provide reasonable device performance without

the EGC as well.

Table 5.1: 1-D simulation comparison of the EGC-LD and ridge LD.

Parameter ~EGC-LD Ridge LD

Neff 2.4738 2.4811
% (10°) 4.56 7.59

apy (cm™') 12717 21.152
oy (em™)  12.716 21.151
[hcan 4.18% 4.16%

Thus, the fabrication demands for these devices are much harder than the 15
generation. The hard mask for the EGC must withstand at least 750 nm of GaN

etching. This is not possible with the previously used holography process.
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Figure 5.6: 1-D simulation of the mode profile (orange) given the refractive index
profile (blue) with (solid lines) and without (dashed lines) the etched-gap cladding. The

corresponding modal effective indices marked with a black circle and star, respectively.

Instead, the electron beam lithography process can accomodate much thicker etch
depths. The lifted-off thin (30 nm - 40 nm) Ni hard mask can then be used to etch a
thicker (~ 500nm) SiO, hard mask. This dielectric hard mask can now be used to
etch the GaN (Fig. 5.7.a).

The Ni hard mask was considered as a possible mask for the GaN etch, but was
found to be incompatible. The thin Ni layer does act as a high selectivity hard
mask for the GaN. In general, a thin patterned mask causes less shadowing and less
chemical transport issues during dry etch, leading to more repeatable and uniform
etch profile. However, the thin Ni layer contributed to the formation of a chemically
resistant residue that filled the trenches of the EGC in-situ (Fig. 5.7.b). Instead, the

Ni mask was removed via wet etch between the SiO, etch step and GaN etch step,
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leaving the patterned SiO, to mask the GaN.

Figure 5.7: SEM cross-section of patterned GaN dry etch: a) using an SiO, hard
mask only (hard mask has been removed); b) using an SiOy + Ni hard mask (unable

to remove hard mask/residue).

While these process steps are still useful, it is much preferable to have a thin
p-GaN layer and a shallower etch. In a device design optimized for an EGC, this can
be accomplished with a ~ 100 nm-thick EGC layer. Then, the most significant role
of the EGC is to act as an optical barrier to metal absorption, rather than reducing
optical absorption in Mg-doped GaN. This design shift is further reinforced as doping
concentrations around the active region are reduced. The optical benefits (lower
absorption, higher confinement factor) are still apparent (Table 5.1), but are not as
significant after the overall material absorption is reduced. However, the decrease in

series resistance after thinning the p-GaN is another possible, but untested benefit.

5.2.3 EGC-LD device results

The final devices were diced into three uniform laser bars of 600 pm, 900 pm, and
1200 pm. All devices were fixed at 6 pm wide. There were eight repetitions of EGC-
LDs and ridge LDs per die, per laser bar. Nearly four die fit on the wafer for a total

of 60 devices per laser bar.
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For a select few devices, electrically injected lasing was achieved (A, = 451 nm)
at a pulse width of 0.5 us and a duty cycle of 0.5%. The lasing devices were spatially
located in exactly the same position on each die and happen to be non-EGC deep
ridge LDs. The majority of devices were found to be electrically shorted, including all
the EGC-LDs. The light-current-voltage curve of a lasing 6 pm x 600 pm deep ridge

LD is given in Fig. 5.8.
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Figure 5.8: Light-current-voltage plot from one facet of a 6 pm x 600 pm deep ridge LD

lasing at 451 nm. At threshold, Jy, = 27.8kA/cm?, Vi, = 19.7V, and the differential

resistance is 7.4 €.

5.2.4 EGC-LD failure analysis

All devices exhibited high differential resistance across the entire I-V sweep. The
[-V curves of the shorted devices resembled that of a high resistance wire rather than

a diode, while lasing devices exhibited diode behavior with large differential resistance

93



CHAPTER 5. DEVICE RESULTS

at high currents. All the devices tested emitted spontaneous emission, meaning that
the junction itself performed as expected and likely did not contribute to the electrical
short.

A likely cause of the shorting is a metal shunt path along the sidewall of the deeply
etched ridge. If a deep ridge waveguide is not properly isolated with a dielectric,
the top contact metal can directly short the p-n junction. After fabrication, it was
observed that the solvent 1165 caused the BCB dielectric to swell and detach from the
GaN. To investigate this hypothesis, destructive cross-sectional cuts of the EGC-LDs
and deep ridge LDs were performed to see if the spin-on BCB dielectric pulled away

from ridge.

2

———1526 nm

:|:1.25 mm

6.4 pm

Figure 5.9: Cross-sectional FIB and SEM of (top) an EGC-LD ridge; (bottom) a deep
ridge LD; (left) slightly delaminated BCB from left side of the deep ridge LD; (right)
large delamination pocket from right side of the deep ridge LD. FIB & SEM courtesy

of Charles Forman.

Cross-sectional SEMs of an EGC-LD and a ridge LD are shown in Fig. 5.9. The
focused ion beam milling to create the cross-section was performed by Charles Forman
at the California NanoSystems Institute, UC Santa Barbara, allowing us to look at
the final devices geometry.

A few new details about the fabrication process are evident. First, it is clear that
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the BCB did pull away from the ridge sidewall in some places, leaving large voids that
could easily allow for an electrical short. Second, the EGC seems to be over-etched,
possibly penetrating through the active region itself.

Both of these fabrication issues have straight forward solutions. In the case of
BCB, the solvent 1165 should be avoided. Instead, compatible processes using acetone
should be substituted. To avoid over-etching the EGC, the corresponding dry etch
must be made more repeatable. The simple solution is to shorten the designed etch
depth. Another possible fix is to greatly increasing the chamber loading to have
slower, more repeatable etch rates, then carefully re-calibrate the etch.

Finally, it was noted that the linear TLMs on both EGC and non-EGC p-GaN
showed extremely non-ohmic behavior. This means that the e-beam deposited pal-
ladium did not make good metal contact to the p-GaN, regardless of the presence
of the EGC structure. Therefore, even if the threshold current density were in the
10 kA /cm? range, the threshold voltage would still be around 11.8 V.

It is currently unknown whether the bad contact is due to an epitaxial issue or
a fabrication issue, though in both cases well-used process parameters and machines
were employed. A p-contact first approach may mitigate this issue, but is beyond the

scope of this work.
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Chapter 6
Conclusions & future work

» » E have demonstrated a dry etch process that is useful for producing lithograph-
ically defined surface-etched features close to the active region of GaN-based light
emitters. The deleterious effect of sub-surface etch damage on the nqr of c-plane
InGaN/GaN QWs was evaluated using a double-active region structure for calibrated
PL measurements. No damage was observed for an etched surface that is 71 nm from
the top most QW. The onset of sub-surface etch damage occurred between 71 nm and
25nm, after which severe deterioration of the nqr was observed.

As a demonstration of new design applications, this dry etch process was used
to produce a 150 nm-wide, 300 nm-spaced air gap pattern that acted as a waveguide
cladding of an m-plane InGaN/GaN LD. We achieved room temperature lasing at
435.5nm under pulsed electrical injection.

A 2" generation of devices was fabricated with fabrication process versatility
in mind. An etched-gap cladding was patterned using a direct-write electron beam

lithography process, then filled with spin-on BCB dielectric. Both EGC and standard
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ridge design lasers were fabricated on a single wafer. In doing so, we developed a new
way to accomplish deeply etched, low line edge roughness (LER) features on GaN
using electron beam lithography.

The learning obtained from these devices is summarized in §6.1.1 as a cohesive
group of design principles for future EGC-LDs. While the majority of EGC fabrication
process has been worked out, the full role of EGCs in GaN LD design has yet to be
explored.

Furthermore, the combined process development of a low-damage dry etch and
low-LER, deeply etched features opens up a new design flexibility in fabrication pro-
cess flows and GaN device design. Therefore, the process tools developed in this work

have uses beyond etched-gap cladding for laser diodes.

6.1 Next generation EGC-LDs

A small amount of process development for EGC-LDs remains. The conclusions
drawn from the 1% and 2"¢ generation LD devices give a clear road-map for future
EGC-LDs. None of the conclusions require new fabrication steps, only further device
demonstration to confirm the design principles learned.

With these principles in mind, we can explore the possibility of combining the
EGC with another low-index cladding option, transparent conductive oxides (TCOs).
Furthermore, we can look to make more complicated designs integrating photonic
crystals (PhCs) like distributed Bragg reflectors (DBRs) with almost no change to

the fabrication process.
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6.1.1 Continued process development for EGCs

Reviewing the device results and failure analysis from the 15" and 2°¢ generation
LDs, we can summarize a list of conclusions for waveguide design. First, the low
index of an EGC will greatly lower the effective index of a mode and will result in
mode leakage into GaN if unchecked. Therefore, In,Ga, N waveguiding layers are
recommended to ensure a modal effective index greater than the (GaN) substrate. A
lower Al,Ga,_,N cladding can still be used if growth techniques allow it, but is not
sufficient on its own. If instead a low-index cladding on par with an EGC can be
utilized, high-index waveguiding layers may not be necessary.

Second, the EGC should be considered an efficient barrier to mode penetration
first and foremost. In other words, a thin EGC layer above a thin waveguiding layer
(~ 100nm each) can be used to prevent the mode overlap with optically lossy top
metal contacts. In conjunction with low-doped Mg:GaN layers, this has a slight
optical benefit of reducing modal loss and increasing modal gain, though these can
be thought of as secondary benefits. With a much thinner p-type cladding layer,
one should see a significant reduction in series resistance, though this is yet to be
demonstrated.

Third, a timed, deep dry etch of GaN using the developed low-damage process is
not repeatable enough to accommodate the layer thickness tolerance required of an
EGC. Instead, the EGC should be as thin as possible while still providing an adequate
cladding layer. As a processing tool, a deep, low-damage etch is still possible in
situations where the process tolerance is not as tight.

Finally, while a deep ridge design is possible with the developed process, a shallow
ridge design that does not etch through the active region carries less risk of fabrication

error. Furthermore, the fabrication process is greatly simplified if the ridge and EGC
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are patterned simultaneously via electron beam lithography, thus requiring a single
etch step. However, in some instances the deep ridge design did lase despite adhesion
issues with the BCB dielectric, showing that the deep ridge LD design for GaN may be
a viable design. Optically and electrically, the mode should have better confinement;
a robust process for deep ridge LDs in GaN is worth further investigation.
Regardless of ridge etch depth, future process flows using BCB should avoid the
use of the 1165 solvent once BCB has been applied; in fact, further testing is required
to determine which solvents (other than acetone and isopropyl alcohol) are compatible
with BCB. In instances requiring planarization and process compatibility with SiO,

layers, the benefits of BCB out-weigh the trade-offs.

6.1.2 Combining an EGC with indium tin oxide

Transparent conductive oxides (TCOs) can provide a similar index contrast
cladding layer to an EGC. It functions both as the top p-contact to GaN as well
as the conductive cladding layer. However, the optical loss is usually quite high, but
still much lower than metal losses. For example, indium tin oxide (ITO), a well-
explored TCO for GaN light emitters, can have up to an order of magnitude higher
absorption than the p-GaN with which it makes contact. [1]

TCOs also require a different process flow than a normal metal contact. The
standard process flow for ITO is to perform a blanket deposition, then lithographically
pattern and dry etch the ITO and GaN. Since the ITO can be dry etched, it can be
integrated into the EGC process flow itself. Then the EGC would be comprised of
GaN and ITO.

The benefits of an ITO+GaN EGC are many. The final structure is a very efficient

cladding layer. Both the ITO and GaN can be very thin (< 50nm each), while still
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maintaining a low optical loss cladding. The process tolerance for such a short GaN
dry etch is well within most waveguide design requirements. A p-contact first ap-
proach can be adopted to achieve ohmic contacts. With further process development,

this new EGC could be the next generation of EGC-LDs.

6.2 Beyond EGCs

The developed fabrication process allows for a wide variety of etched geometries
close to active layers in GaN-based devices. We have shown that it can be used to
create electrically conductive high index-contrast layers for optical devices. Compa-
rable low optical loss, high index-contrast claddings have not been demonstrated by
other growth or fabrication means in GaN-based devices, making it especially useful
for the next generation of high performance short wavelength laser diodes.

A further application of this process is etched PhCs. For LEDs, PhCs provide a
means of light extraction of guided modes. [2] For LDs, PhCs can either be used for
light extraction, or as a reflecting feedback element in a cavity. [3-5] For example, LDs
with grating lines of appropriate width and pitch oriented perpendicular to the lasing
direction can form a distributed Bragg reflector (DBR). With detailed waveguide
engineering, a sub-wavelength pattern can serve as both cladding and minimally-
coupled grating for distributed feedback (DFB) LDs. As with the demonstrated
LD design, these structures still maintain electrical conductivity and active region

integrity.
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6.2.1 Surface etched PhCs in GaN LEDs

In the case of LEDs, enhanced light extraction can be achieved via etched PhCs.
Previously demonstrated devices [6] required a regrowth to place low-loss, conductive
PhCs near (~ 150 nm from) the active region. Their goal was 2-fold. First, the etch
damage to the 7miqr induced by their dry etch was severe; a regrowth of material in
an MOCVD chamber was sufficient to recover most (but not all) of the active region
performance. [6] In fact, in-house experiments of a high-temperature anneal ~ 900°
with an ammonia overpressure in the MOCVD reactor (no actual material growth)
was sufficient to partially recover the damage.

Second, they wanted to coalesce the film to utilize the full surface area. If the
PhC were below the active region, this means that the subsequently grown active
region volume would be undiminished. Above the active region, the coalescence of
the p-type material allowed for metal contact to the entire surface, rather than a
fraction equal to the GaN fill factor.

By employing the etch process described in this work, PhCs can be applied in
both as-grown and flip-chip orientations without regrowth. Furthermore, the PhCs
could be placed much closer to the active region, which was an explicit desire of Jewell
et al. [6] to achieve better light extraction. Therefore, many new design options are
now feasible. The process compatibility of the demonstrated etch process makes it
a valuable tool when etched features are required near damage-sensitive layers in

III-Nitrides.
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6.2.2 Combining EGCs and Bragg gratings

The electron beam lithography process for EGCs was developed with photonic
crystals (PhCs) in mind. The design flexibility of e-beam lithography easily accom-
modates PhCs like a 1-D Bragg grating. For instance, a third order grating at 450 nm
requires a pitch of ~ 270 nm in GaN, oriented along the lasing direction. This is very
close to the standard 300 nm pitch used throughout this work, but rotated by 90°.

In designing such features for use in an LD device, it is important to keep in mind
that the EGC consists of high index contrast layers of GaN and dielectric. As a top
etched feature, these high index contrast layers cannot be used directly to create the
grating. Alternating layers of GaN and dielectric would cause large scattering at each

interface, leading to unacceptable optical losses.

e (U GE" T e

< 6.51m—Pp>

e 1,35 UM e <] 13.5 ym

Figure 6.1: Top-down schematic of a (shallow ridge) EGC waveguide with a 15* order
grating (A = 90nm) for a GaN-based LD at A = 450 nm. The original EGC pattern is

modulated with a sinusoid to produce an integrated, low scattering-loss DBR.

Instead, the EGC can be slightly modified from its current form to approximate
a low-index contrast grating. Rather than changing the orientation of the etched
trenches, a smooth sinusoidal modulation can be applied to the trenches at the desired

pitch (Fig. 6.1). Electron beam lithography can easily accommodate the change,
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while all other processing remains the same. Furthermore, even a 1st order grating
(~90nm) can be fabricated without any processing compatibility issues.

A mirror made using a low-loss, surface-etched grating is a powerful design element
for semiconductor LDs. Eliminating one or both of the mirror facets can simplify
back-end device processing, lowering both the fabrication risk and fabrication cost.
For instance, with a highly reflective DBR, manipulating a laser bar to coat the edge
with a dielectric mirror is no longer needed. Furthermore, an etched DBR allows for
on-chip optical device integration, opening the door to an entirely new field for GaN

optoelectronics.
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Appendix A

Optical material properties

r]::IE optical properties of the (Al,,In,)Ga; N material system are constructed
from a few sources, spanning both experimental data and theoretical calculations.
While the absolute value of these properties is important for accurate optical mode
simulations, the relative values are even more so. Therefore, a large emphasis is placed
on consistency for determining a particular property across varying alloy content and
wavelength.

Properties of other materials like dielectrics and metals are easier to obtain. Ad-
ditionally, they have less of an influence on the optical mode simulations of this work,

so the accuracy requirement is more relaxed.

A.1 Bandgap of (Al,In)GalN

GaN — the bandgap determined by Sakalauskas et al. [1] is used:

GaN: E, =3.435¢eV, \; = 360.9nm (A.1)

106



APPENDIX A. OPTICAL MATERIAL PROPERTIES

Al,Ga; ,N — the bandgap determined by Buchheim et al. [2] is used, valid for
up to 50% Al content. For consistency, the bandgap of GaN determined above is

utilized. The effect of strain is not considered.

AL Ga;  N: E,=a2-E,an+ (1 —2)- B, gan +2(1 — 2)-E (A.2)
AIN: E, =6.166V, A, = 201.3nm (A.3)
Al,Ga; N bowing: E, =0.9eV (A.4)

In,Ga,_,N— the bandgap is determined using the work of Sakalauskas et al. [1]
In this equation of bandgap vs. In content, x, the effect of a fully strained layer is

considered. The equation for strain is valid over the In content range of 0% - 20%.

n,Gay,N: Ey =2 (Ega + Eo) + (1= 2) Eycax + (1 — 2)- By (A.5)
InN: E, =0.675eV, A\, = 1837nm (A.6)

In,Ga,_,N bowing: E, = 1.65eV (A7)

In,Ga, N strain: Ey =0.79eV (A.8)

In the case of In,Ga;_,N, the bandgap is used in the determination the refractive
index.
(Al,,In,)Ga,,N — to compare the ternary III-nitrides, we plot the bandgap vs.

alloy content of Al,Ga,_,N and In,Ga,_,N.
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Figure A.1: Bandgaps for GaN, In,Ga;_,N and Al Ga;_,N.

A.2 Dispersion curves of (Al,In)GaN

LD simulations require a good approximation of the refractive indices, n, of con-
stituent materials. At wavelengths sufficiently longer than the bandgap wavelength,

the Sellmeier Equation (Eq. A.9) provides a good fit of the real refractive index, n.

PO = A+ Y 2 (A.9)

- (Cm)2
where A is the long-wavelength dielectric constant, B is a weighting factor (unitless),
and C' [pm] is the absorption resonance frequency. These coefficients are always
determined experimentally and are generally valid for wavelengths at or longer than
the probe wavelengths. They are not valid in wavelength ranges of high absorption,
such as near or shorter than the band gap wavelength of a semiconductor.

The refractive indices of GaN and Al,Ga;,N vs. wavelength have been explored

experimentally, while that of In,Ga; N is mostly theoretical. [3] Though data is
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available for In,Ga,_,N over various In composition and wavelengths, [1,2] it is either
over too sparse a wavelength range or suffers from large experimental error.

We fit an m-term Sellmeier Eqn. (Eq. A.9) for wavelengths equal to longer than
the probe wavelengths in experimental data. For shorter wavelengths (e.g. near
bandgap), we take a modification of measured data, as this is accurate enough for
our purposes.

GaN — we fit the Sellmeier coefficients given in the work of Sanford et al. for
both GaN and AlGaN to maintain consistency (Table A.1). The short wavelength
coefficient A is fixed at 1. The birefringence is accounted for by considering the
orientation of the electric field vector with respect to the c-axis of the wurtzite GaN

crystal: perpendicular is labeled “ordinary” and parallel is labeled “extraordinary”.

Table A.1: Sellmeier Coefficients for GaN (valid for 360.9nm < A < 2500 nm).

Refractive Index B, Ci (nm) B, Cy (nm)

Mo 4.0848 179.19 0.0873  354.73
Ne 43172 189.63

For wavelengths shorter than the probe wavelength of 0.442 pm, we use the data
given in Bergmann et al. [4] (digitized from plot on p. 1197), with the index slightly
shifted to make a continuous function.

Al,Ga,,N — we fit a quadratic to the Sellmeier coefficients vs. Al content, x,

given in Sanford et al. [5]
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Table A.2: Quadratic fit to Sellmeier Coefficients vs. Al content (x) (valid for 0 <

r < 60% and 360.9nm < A < 2500 nm).

Refractive Index By C; (nm) By Cy (nm)
4.0848 179.19 0.0873 354.73
Mo -1.3986 = -90.146 «  0.374x  -299.29 z
0.4056 2 49.158 2% 0.2996 x? 82.844 x?
4.3172 189.63
Ne -1.1473 x  -50.439 x
0.2906 z? -15.444 22

The work of Rigler et al. [6] is also quite good, producing very uniform data

between the wavelengths of 458 nm and 1064 nm. It is similar to the data of Sanford

et al., but tends towards a lower value of refractive index. However, the wavelength

range investigated is farther from wavelengths of interest of this work (< 450 nm).

Therefore, we use the Sellmeier fits of Sanford et al., but provide a quadratic fit for

2-term Sellmeier coefficients in Rigler et al. (with A = 1) below for completeness.

Table A.3: Quadratic fit to Sellmeier Coefficients vs. Al content (x) (valid for 0 <

r < 60% and 360.9nm < A < 2500 nm).

Refractive Index By C: (nm)
4.1725 182.58
Mo -1.208 x -66.91 x
0.8127 2% -49.352 z*
4.3005 193.76
Ne -0.8312 z  -125.19 x
-0.6839 x?  198.61 z?
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Again, as we near the band edge, we must supplement the Sellmeier coefficients
with data from Bergmann et al. The measured dispersion curve of GaN is used as
the basis, but shifted by the energy difference of the bandgaps and shifted in index
to form a continuous curve.

In,Ga;_,N — using the technique of Bergmann et al., [4] the full dispersion curve
of GaN is used as the basis for the dispersion curve of In,Ga;_,N, but shifted by the
energy difference of the bandgaps. The validity of this method was further explored
by Laws et al. [3] The valid In content range is 0% - 20% (limited by the bandgap
calculation of the strained layer). Using the constants h-cy = 1239.8 eV-nm to convert

between wavelength and energy, we have:

InxGal—xN: NinGaN (JZ‘, )‘> = nGaN()\/>

hCO

A
(Al,,In,)Ga; N — to compare the ternary IlI-nitrides, we plot the dispersion

curves of Al,Ga,_,N and In,Ga,_,N with varying composition.
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Figure A.2: (Ordinary) dispersion curve for GaN (black), In,Ga; N (red) and

o
w

Al,Ga;_ N (blue). (AlIn,) content increases from 5% - 20% in steps of 5% for each

curve away from GaN.

In,Ga;_,N QWs — the refractive index of QWs is notoriously difficult to deter-
mine. [7,8] A well-known result of the Kramer-Kronig relation is that the modi-
fied absorption (or gain) spectra changes the real refractive index from that of bulk
In,Ga,_,N. While there are theoretical treatments [9] that base the dielectric constant
vs. wavelength on the In content and QW geometry, we assume the same index as
bulk strained layers. In a waveguide with In,Ga,_,N waveguiding layers (refractive
index larger than neg), this assumption will not greatly impact modal profiles since
they are sufficiently thin compared to the mode and are close to the index of the
waveguiding layers. However, in the absence of In,Ga; N waveguiding layers, the

refractive index of the QWs becomes a critical parameter.
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A.3 Optical absorption of (Al,In)GaN

The definition will use for absorption (or gain) is the coefficient of exponential
decay (or growth) of the power of an electromagnetic (EM) wave. Since we only deal
with non-magnetic materials, all power decay (or growth) occurs through interactions
with the electric field. Thus, optical absorption (or gain) determines the imaginary
part of the refractive index. In this work, we will choose to represent a “forward”
propagating EM wave with the term e?“?, so that absorption (or gain) is now repre-
sented by a positive (or negative) scalar value as the imaginary part of the refractive
index.

Experimental measurements of (Al,,In,)Ga;_,N absorption have proven difficult.
The limits of growth thickness and material quality have impeded simple bulk mea-
surements. Specifically, the absorption spectra vs. alloy content and doping must
be determined using thin grown layers. The thickness and material composition
must be determined after growth through destructive analysis techniques like trans-
mission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS).
Any growth defects that arise, like those due to built-up strain of heteroepitaxy, will
greatly skew the calculated absorption spectra. For this reason, many experiments
to date only provide an order of magnitude of the absorption spectra.

Our procedure is to use the theoretical work of Kioupakis et al. [10] to model
the shape of the absorption spectra vs. alloy content and doping. Their approach
is to view all absorption as that of free-carrier like particles. These particles are the
dopants in the material. Even in the case of Mg doping, a deep acceptor in GaN, the

majority un-ionized state of Mg still acts as a recombination center, as determined

through their computational first principles approach. Thus, all absorption is pro-
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portional to the doping. This is an unintuitive conclusion: un-ionized states act as
free-carriers, contributing to free-carrier absorption (FCA). We will see that this fact
is an important driving factor in (Al,,In,)Ga; N waveguide design.

The absorption cross-section, o, is what is determined by type of dopant (donor
or acceptor/acceptor-like), type and concentration of alloy content (Al or In), as well
as material quality (i.e. defect concentration). The absorption spectrum exhibits
birefringence in the same manner as the real refractive index. It is important to
recognize that all (Al,,In,)Ga,_,N material is doped in practice, with unintentional
doping (UiD) providing more carriers than true intrinsic material would.

The 4% order polynomial fits to the absorption cross-sections are provided by
Kioupakis et al. Selecting the dopant type and EM field polarization allows one to
calculate o(\) due to phonons, alloy, and defects, with the latter two being a function
of the specific material. These three values are then summed and multiplied by
the doping concentration, denoted as &4 or £p for acceptors or donors, respectively.
However, we find that the quality of epitaxial growth is now good enough that the
absorption cross-section is orders of magnitude less than that due to phonons and
alloy content (though nothing can be said about ray scattering). The polynomial

coefficients and required equations are re-printed below.

Oé(l', )\) = 6 (Uphonon()\) + Ualloy(xa A)) (All)
4
Oéphonon(/\) = 1018 cm2 X Z (aphonon,i> /\l <A12)
=0
1018 a2 z(l —x) : i
Oéalloy(aj, )\) = 10 cm- X m X — (aauoy’i) )\ (A]_S)

The alloy assisted absorption cross-section was calculated using a 32-atom quasi-

random structure of In,Ga,_,N (z = 25%). We extend the use of this fit to the case of
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Table A.4: Polynomial fit coefficients for determining phonon-assisted and alloy-

assisted absorption cross-sections (from Kioupakis et al.).

Ordinary: 1. Extraordinary: ||.
Coefficients € ¢p §a ép
phonons
a0 -2.63E-01 5.55E+00 -2.86E+01 6.05E-01

al (nm™1) 2.00E-01 -5.63E-02  2.13E-01 -6.68E-03
a2 (nm™') -5.41E-04  2.04E-04  -5.67TE-04  2.32E-05
a3 (nm™') 6.29E-07 -3.06E-07  6.55E-07  -2.84E-08
a4 (nm™1) -2.67E-10  1.79E-10  -2.76E-10  1.65E-11
alloy

a0 -7.77TE-01 -5.35E+4+01 1.75E401 -4.85E+01
al (nm™') 6.60E-01 4.50E-01 -1.18E-01  3.73E-01
a2 (nm™') -2.13E-03  -1.39E-03  2.51E-04 -1.06E-03
a3 (nm™1) 3.03E-06 1.88E-06 -1.61E-07  1.36E-06

ad (nm~')  -1.58E-09 -9.16E-10  0.00E+00 -6.40E-10

Al,Gay_N, but recognize that it may deviate significantly. However, we know that the
absorption cross-section of GaN is a lower bound. We also speculate that the equiv-
alent In-content In,Ga;_,N is an upper bound, since the smaller-bandgap In,Ga; N
will have more ionized dopants and free carriers for the same dopant concentration.
Finally, we used the above model to compare to total waveguide absorption (using
the techniques described in this work) to the absorption found experimentally by
Sizov et al. [11] and Melo et al. [12] To better match the experimental data, it was

determined that a multiplicative factor of 2.3 should be use to scale the absorption
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spectra shape.
A comparison of absorption spectra at a fixed doping concentration of

1 x 10¥cem=2 [Mg, Si] for (Al,,In,)Ga,,N (0% - 30% alloy content, steps of 5%)

is shown below.
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Figure A.3: (Ordinary) absorption spectra due to FCA for GaN (black dashed lines)
and GaN alloys at a fixed doping concentration of 1 x 10*® em~2 [Mg] (blue lines) and
1 x 10'8 cm™2 [Si] (red lines). (Aly,In,) content increases from 10% - 30% in steps of 10%
for each curve farther from that of GaN. This model is valid for 380 nm < A < 680 nm.

Note that above-bandgap absorption is not included.

This model calculates the per-dopant absorption value to be higher for [Mg] than
for [Si], and generally increase with longer wavelengths. The absorption of p-type
(Al,,In,)Gay N is exacerbated by the high [Mg] doping concentrations required: for
an intended ionization level (in the absence of an internal electric field), approximately

two orders of magnitude of doping is required. Thus, p-type (Al,In,)Ga,_ N layers
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will have a large material absorption compared to its n-type counterpart in the typical

p-i-n junction of a GaN LD.

A.4 Optical constants of other materials

The optical constants for a large number of elemental and inorganic materials can
be easily accessed online. [13] Selecting the material from a list, then selecting the
appropriate (cited) source with the wavelength range of interest will give many of the
optical constants required. For metals, this is most often a comma-separated list of
wavelength vs. real and imaginary parts of the refractive index. For dielectrics or
other non-absorbing materials, Sellmeier coefficients are most convenient.

Additionally, this work uses the organic material benzocyclobutene (BCB) as an
electrically insulating optical cladding. The refractive index of BCB can be found on
the manufacturer’s website. [14] The absorption is assumed to be negligible around
450nm and longer, [15] and was confirmed by ellipsometery at the Nanofabrication

Facility at UCSB.
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Appendix B
Effective medium approximations

IN practice, simulation of real waveguides often requires regions of the waveguide
to be approximated as a single effective medium with a single dielectric constant,
though it may be comprised of many materials and geometries. Depending on the
nature of the volume to be simulated and the nature of the EM wave in question, we
can simplify many geometries while still maintaining a high degree of accuracy in the
simulation.

In all of the following effective medium approximations (EMAs), the following

assumptions apply:

1. The size of geometries that comprise the volume to be approximated are suffi-

ciently smaller than the optical wavelength (and mode profile) in the volume. [1]

2. The dispersion of the aggregates is inhomogeneous, i.e. distinct volumes or

particles. [1]

3. The materials are non-magnetic.
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4. The real parts of the complex refractive indices of the constituents are either
both larger or both smaller than the imaginary parts [2] (e.g. both non-metal

or both metal).

Furthermore, only volumes of two constituents are considered, but any of the EMAs
can be extended to more than two.

It should be noted that first assumption is dependent on the electric field profile
and its overlap with the effective medium in question. In general, a lower overlap

with the effective medium will yield a more accurate approximation.

B.1 The Bruggeman approximation

Consider a material that is an aggregate of two distinct materials A and B
(Fig. B.1) of fill fraction f4 and (1 — f4). If the shape of the constituent particles
is random (i.e. randomly oriented with respect to the electric field), the dielectric

constant € ¢ is given by solving Eq. B.1. [3]

Figure B.1: Random particles of material A (shaded area) and material B.

fAM—l-(l—fA)M:O (B.1)
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We can solve for .4 by finding the roots of the quadratic formula, choosing either
the negative root for metal materials or the positive root for non-metals:
a=—2
b=fa(ea —2ep)
+ (1= fa) (e —2e4)

C =€ 4ER

This EMA gives reasonable values for all fill fractions, but will generally be more
accurate (< 5% error) for particles of nominal radius ~ 2 orders of magnitude smaller
than the free-space wavelength. Accuracy also increases for fill fractions that approach

the extremes of 1 and 0.

B.2 The Maxwell Garnett approximation

A further simplified equation can be used for f4 approaching 0 or 1. [4] Qualita-
tively, this is the situation consisting of small particles of A dispersed in homogeneous

media B:
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P
P o &

Figure B.2: Small and randomly oriented particles of material A (cross-hatched area)

in matrix B.

ea+2ep+2fa(ea—ep)

Bea+2ep— falea—ep) (B:3)

As we deviate further from f4 = 0, this EMA will give a lower bound if €4 > €p

and an upper bound if e4 < eg. This can be seen in Fig. B.5.

B.3 The (rigorous bound) Bergman
approximations

For the special case of a static electric field parallel or perpendicular on co-planar
plates of material (Fig. B.3), the dielectric function is exactly solvable, regardless of

fill fraction [5]:
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Figure B.3: Layers of material A (green) and B (red) with dielectric constants €4 and

e, respectively, oriented a) parallel and b) perpendicular to the static electric field.

TE: et = fa(ea) + (1 — fa) (eB) (B.4)

TM: ewr = fa (Vea) + (L= fa) (/o) (B.5)

Intuitively, these formulae resemble the formulae for combining capacitors in par-
allel and in series, respectively. A TE- or TM-like guided mode is similar in that
it consists of a nearly planar electric field, but this field happens to be oscillating.
However, the general shape of the (electric) vector field is dependent on material di-
mensions, which is not the case in Fig. B.3 where the electric field is assumed to be
infinite in the - and z-dimension. Therefore, the following becomes a good approxi-
mation in the limit of small layer thicknesses compared to the optical wavelength.

Note that the selected case of polarization is in regards to the patterned feature:
for TE, the oscillating electric field is parallel to the planes of material while for TM,
the oscillating electric field is perpendicular to said planes. Therefore, depending on
the slab orientation, a common TE* mode will be TE- or TM-like (Fig. B.4) for the

purposes of using Eq. B.4.
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a)

Figure B.4: Orientation of the electric field of (a) a TE-like and (b) a TM-like electro-
magnetic wave (blue 2-D mode profile) in a waveguide with respect to a 1-D patterned

layer on top. Note that the optical mode is TE? in both cases.

B.4 Comparison of EMAs

As a simple comparison, Fig. B.5 shows the approximated refractive index, neg

(= Eef), vs. fill fraction, f4, for two materials, A: air (n = 1) and B: GaN

(n = 2.46):
3 T T T T T T T T
g — Bruggeman
= ——MG - air bubbles
255 MG - GaN particles |
3 Bergman - TE
k= Bergman - TM
o 2 4
2
2
g
]
Qo 1.5 n
[
)
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|84
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5 : :
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Figure B.5: Effective medium approximations for a heterogeneous mix of two distinct
materials. Each curve represents an approximation using specific assumptions, as listed
above.

Note that the Maxwell Garnett EMA provides upper and lower bounds for neg
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when considering irregularly shaped materials (i.e. random orientations and shapes).
The Bruggeman EMA exhibits more extreme values for n.g because of the non-random

shape compared to the electric field.
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Appendix C

MATLAB code excerpts — TMM

A good introduction to the formalism of the Transfer Matrix Method is described
in chapter 5 of Confined Photon Systems by V. Savona, [1] as well as in Appx. A of
Embedded Photonic Crystals for High-Efficiency GaN-based Optoelectronic Devices
by Elison Matioli. [2] The goal of this method is to reduce a layered stack of materials
into a single matrix that represents the “transfer” of an electromagnetic (EM) wave
from one side of the stack to the other.

The square matrix represents a linear system describing the change in a forward
propagating wave and a backward propagating wave traveling perpendicular to a
1-D system (Fig. 2.1). Thus, each transfer matrix has dimensions 2 x 2, and can
be directly multiplied together to find the transfer matrix of a combined system.
When we assume all non-magnetic materials, we can fully describe the system with
a 2-element basis vector of the electric field: one traveling “up” in the negative y-
direction, and one traveling “down”, which together form the standing wave in the

shape of a mode.
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This method is very similar to the well-known transmission matrix and scattering
matrix formalisms. The difference is that the formulation of the transfer matrix allows
chain left-hand-side multiplication to represent a system, as we will see below.

This appendix will provide a brief summary of the mathematical formalism of
TMM for both TE* and TM?, then describe a computational approach using the
matrix-based MATLAB (MATrix LABoratory) coding language. The code has been
highly optimized for speed, dealing with equations in a matrix-oriented fashion instead
of the more intuitive sequential “for-loop” approach. Solutions to the linear system
are found using a numerical brute force approach — an array of trial solutions is
used as the input and simultaneously validated. The gains in computational speed
come at the cost of memory resources, which should be judiciously allocated. While a
basic knowledge of MATLAB code and syntax is assumed, specialized functions and

procedures are explicitly defined.

C.1 The TMM formalism

We start with the matrix M that satisfies the transfer of the electric field from

position 1 to position 2:

Bl (Moo Mool 1B, | B 1)

Edn, My Mpagy| |E™ Edm

Therefore, if we want to find out the electric field at position 3, passing through

position 2 and starting from position 1:

_ M2:3 . M1:2 .
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In this fashion, we can find the value of the electric field at the final position given
the value of the initial position and all of the transfer matrices in between. With this
formalism and wording, it is implied that the initial position, and therefore the initial
layer, is at the “bottom” of the stack, and that the final position is at the top. We do
this so that the resulting electric field profile is measured as “depth from the surface”.
Therefore, the labels of “up” and “dn” reflect the positive and negative y-directions
respectively.

A guided mode is a special case of the transfer matrix. In the core of the wave-
guide, there exists a large electric field, while outside the waveguide is only an evanes-
cent tail of small magnitude. Therefore, we expect the indication of a mode to be

that input field at one side of a stack of N layers results in minimal field at the other,

or:
~0 | MUNqy MYNgg| | By ©3)
Edntop Ml:N(Q,l) Ml:N(272) 0

Euptop _ Ml:N(l,l) Ml:N(l,Q) ‘ 0 (C4>

~0 MYNg .y MYN g, EYP,,

For these two conditions to be met, the following relations hold:

[MYNG | =0 (C.5)
[MYN g5 =0 (C.6)

In practice, we search for coinciding local minimum values of ’M I‘N(l,l)’ and
’M LN (2,2)‘. Furthermore, for a well-behaved waveguide, both conditions will always

be met simultaneously.
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This technique gives us insight into what structures may be computationally tax-
ing. For instance, if the cladding layers on one side of the waveguide are too thick, the
magnitude of the evanescent field will become too small for double-floating point pre-
cision, effectively becoming zero for all trial 7i.¢. Then the matrix element minimums

and modes will not be found.

C.2 The propagation transfer matrix

When we reduce each layer into matrices representing the propagation of an elec-

tric field through a uniform material, we find:

e’ kyt 0
prop — A (C-7)
0 et kyt

M

where k, is the vertical component of the wavevector in the layer and ¢ is the thickness

of the layer. For computational ease, we can rewrite this as:

up 0 .
MPT‘OP = ’ up = elkyt7 dn = 1/up (C8)

0 dn

where up represents the positive y-direction propagation of electric field and dn the
reverse. In looking for a mode (standing wave) in the xy-plane that is a traveling in

the z-direction, we know that the components of the wavevector in each layer are:

27T Negr 21N
2 _ 2 2 pry ¢ fry
k; =k +k,, k. N ky N (C.9)

where )\, is the chosen free-space wavelength, n is the complex refractive index of
the material, and n.g is the effective complex refractive index of the mode. This

propagation matrix formulation holds for both TE* and TM?* modes.
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Determining the value of nqg is the main goal of the simulation. Therefore, when
we input an array of trial fieg, we can form the corresponding wavevector components

and propagation matrix. Now, we can create the corresponding MATLAB function:

1 function propMat = PropagationMatrices (kt,tList)
2 % find the propagation matrices for a list of layers of thickness

3 % t, using the array of trial transverse wavevectors, kt

4 % get output dimensions

5 [nLayers, nModes] = size(kt);

6

7 % create elements for layer interface matrices
8 up = exp(lixbsxfun (@times,kt,tlList));

9 up = up.';

10 up = reshape(up, [1,1,numel (up)l]);

11 dn = 1./up;

12

13 % construct output

14 propMat = [up,zeros(l,1l,nlLayersxnModes) ;

15 zeros (l,1,nLayers*nModes) ,dn];

16 propMat = reshape (propMat, 2, 2, nModes,nLayers) ;

17 end

The first input of this function is kt, the transverse wavevector, known to us as
k,. This variable is a two-dimensional matrix, with the first dimension representing
the individual layers of the stack and the second representing the trials of n.g. It can
be a large matrix — if there are 100 layers and 128 trials, then the matrix will be
51,200 elements. The second input, tList, is an array of the layer thicknesses and

should match the first dimension of kt.
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The function bsxfun allows quick element-by-element computation of two matrices
using implicit expansion. Therefore, the input tList is expanded along its singleton
second dimension (repeating the original array) to match the size of kt before each
corresponding element is multiplied together.

The function reshape changes the perceived shape of the matrices. The elements
of the matrix do not actually move in memory, so it is an extremely fast procedure.
By creatively constructing the elements of Eq. C.3, the final output can be created
with a minimal amount of computational resources.

The output of the function is the expanded matrix representation of Eq. C.3. It
is a 4-D matrix, with the first two dimensions representing the 2 x 2 transfer matrix,
the 3" dimension representing the different trials, and the 4" representing the layers

of the waveguide.

C.3 The interface transfer matrix

We define the matrix describing the transfer of the TE*polarized EM wave

through the yz-plane interface of material 1 and material 2 by:

(k) + k1), (o), — (k)]
2 (k2>y 2 (k2>y
MY, = (C.10)
ko), — k1), (ko) + k1),
2 k), 2 (k) |

M1:2inter =21+ ) kr =4 (Cll)
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For TM modes, we have a slightly different interfacial transfer matrix:

[(1)” (), + (2)° (), (0)* (), — (2" (k)|
2 (1)° ()” (o), 2 ()° ()" (ka),
MY¥2, .. = (C.12)
()? (), — ) k), ()* (), + ()” k),
2 (1)” 2)° (k) 2 (n1)° (n2)° (),

Again, we simplify the equation:

The corresponding MATLAB function is:

10

11

12

13

14

15

16

function interMat = InterfaceMatrices (kt,nkList,TEFlaqg)

o\

o\°

o\

find the interfacial matrices for a list of layers with complex
refractive indices nk, using the array of trial transverse wave
vectors, kt. The TE mode is found by default, but can be switched

to TM by setting TEFlag to false.

% check optional input and get output dimensions
if —exist ('TEFlag', 'var'), TEFlag = true; end

[nLayers,nTrialNEff] = size (kt);

% create elements for layer interface matrices
kt_ratio = (kt(l:end—1,:)./kt(2:end, :)).";

if TEFlag, n-ratio = 1;

else n_.ratio = (nkList (l:end—1)./nkList (2:end))."';

end
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17 % construct output

18 interMat = kt_ratio./n_ratio;

19 interMat = reshape (interMat, [1,1,size(interMat)]);

20 n.ratio = reshape(n.ratio, [1l,1,size(n_ratio)]);

21 interMat = [ interMat, —interMat

22 —interMat, interMat];

23 interMat = bsxfun (@plus,n._.ratio,interMat);

24 interMat = interMat./2;

25 interMat = reshape(interMat,2,2,nTrialNEff,nlLayers—1);
26 end

The input kt is the same as the last function; it is a rather large 2-D matrix.
The input nkList is an array of the complex refractive index of each layer. It is only
needed if the TM? mode is requested instead of the usual TE?.

Initially, the inputs are used to compute the reduced variables kr and nr. Then,
the interface matrix is constructed in a similar manner to the propagation matrix,
albeit with more mathematical operations. It has almost the same size as the 4-D
propagation matrix output, but one less 2 x 2 matrix as there is one less interface
than layers to propagate through. This difference will have to be accounted for when

the matrices are multiplied together.

C.4 The combined transfer matrix

Given an array of M., and an array of M ;,;.,, we must multiply each M, of a
layer with the M ;... of the adjacent layer. Then, the array containing these transfer
matrices must be multiplied together in the correct order. This is accomplished by

the following:
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1 function mMat = TransferMatrices (kt,tList,nkList, TEFlaqg)

)

2 % get the final transfer matrix of the stack for all trial nk's

3 % check optional input

4 if —exist ('TEFlag', 'var'), TEFlag = true; end

5

6 INTER = ModeSolver.InterfaceMatrices (kt,nkList, TEFlagqg);
7 PROP = ModeSolver.PropagationMatrices (kt,tList);

8 PROP = PROP(:,:,:,1l:end—1);

9 LAYERS = multiprod (INTER,PROP) ;

10 LAYERS = permute (LAYERS, [1,2,4,3]);

11 mMat = mprod (LAYERS, 'reverse');

12 end

The above function leverages the previously defined functions to create the arrays
of Mp,op and M e, Then, the last matrix of M, is removed. This done so that
the sizes of M., and M., match. If we make sure to pad the layer stack with
zero-thickness air on top and bottom, then removing this 2 x 2 matrix will just be
removing an the identity matrix. Since the following steps are matrix multiplications,
the end result will not be affected. To multiply the two arrays of transfer matrices,
the function multiprod [3] is used. This freely available function efficiently multiplies
two multi-dimensional arrays by their matching non-singleton dimension. It is a great
alternative to using a for-loop, which would exponentially increase computing time.
However, after creating the single array of transfer matrices called LaYERS, we still

need to chain multiply the MIAYEERS] together. For this, we use the function mproa:

1 function sgMats = mprod (M, reverse)

o)

2 % Multiply xmany* square matrices together, stored along 3rd
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

axis.
% Extra dims are conserved;

[

% Speed gained by recursive

if —exist ('reverse', 'var')
elseif strcmp(reverse, 'reve
assert (isa(reverse, 'logical

'Second input must be

% save extra dimensions,
dims = size (M);

M =

use 'permute' to change axes of "M".
use of 'multiprod' (Leva, 2010).

|| isempty (reverse), reverse = false;
rse'), reverse = true; end

")y

"reverse"

or

then reshape

a logical')

reshape (M,dims (1) ,dims (2) ,dims (3), [1);

% Check i1f M consists of multiple matrices...

o

siz = size (M, 3);
extra = [];
while siz > 1 || —isempty (e

o\

if mod(siz, 2)
if isempty (extra),
else M = cat (3,M,ex

end

end

o\

create two smaller 3D

>
Il

:,1:2:end—1,:);

:,2:2:end, :); %

o\

actual matrix multipl

xtra)

extra =

tra);

arrays
[

even p

ication
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32 if reverse, M = multiprod(Y,X);

33 else M = multiprod(X,Y); end

34 siz = size (M, 3);

35 end

36

37 % reshape to original dimensions, minus the third axis.
38 dims (3) = [1;

39 sgqMats = reshape (M, dims) ;

40 end

Rather than multiplying each 2 x 2 matrix sequentially, this function iteratively
breaks the array of matrices in half and uses the multiprod function to combine
them. It is still an iterative process, but cuts the computation time by ~ log,(N). It
also allows for multiplication in the reverse direction, satisfying the right-hand side

multiplication requirement.

C.5 Finding the guided modes

Using the above functions, we can input an array of trial n.g¢ into the given stack
and return an array of transfer matrices M. We choose our array by making an
educated guess as to the bounding limits of the modes. A good guess is that the 7ig
must be between the refractive index of the cladding and waveguiding layers. The
imaginary part must also be set. It should lie between that of the least absorbing
layer and the most absorbing core element (e.g. waveguiding layer or quantum well).
We then choose the linearly spaced grid based on these limits and the number of trials
we would like to test.

By checking the elements of MYV we can find the cases of minimal electric field
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transmission. However, we must account for the fact that we are looking for local

minimums on the 2-D complex plane.

1 % get the (1,1) and (2,2) elements of the 2X2 transfer matrix

2 mMat = obj.TransferMatrices (kt,tList,nkList,ob]j.TEFlaqg);

3 recieve = abs(mMat(1,1,:));

4 transmit = abs (mMat (2,2, :));

5 txrx = transmit + recieve;

6 txrx = reshape (txrx(:), [nNr,nNi,nModes]);
7 neff = reshape (neff, [nNr,nNi, nModes]) ;

9 % find modes from minimum transmission vs. neff's

10 1f complexFlag, minDist = [1,1];

11 else minDist = [1,0]; end

12 [7,minMap,—] = localMin (txrx,minDist,1,1);
13 modes = neff (minMap) ;

The first half of the above code excerpt uses all previous code to create an array
of matrix elements vs. trial n.g. The second half of the above excerpt deals with the
search for the local minima on the complex plane using an in-house function called
localMin. The output minMap returns a logical index array of the same size as the
input indicating the local minima. With the minima found, the corresponding Mg
will be those of valid guided modes.

With a single array of trial n.g, the precision with which we found the mode may
not be sufficient. Since inputting a large array becomes intractable, we can instead
refine our initial bounds to the values immediately surrounding each local minimum,
then re-run the mode finding procedure. Depending on the waveguide, choice in

bounding limits, and size of the trial array, sufficiently precise modes can usually be
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determined in a handful iterations.

C.6 Finding the electric field profile

Once the modes are found, we can find the value of the electric field profile at each

slice of waveguide, given a small input at one side. The computational procedure is

similar to that of finding the modes. Instead of many trials of Nieg, only the nqg of the

modes are used. However, each layer of the stack must now be discretized into many

slices for adequate resolution of the profile. In the code below, the number of layer

slices is provided as the variable obj.nLsSlices; we fix it at 128 to limit computational

resource usage:

)

1 % Break up layers into small slices
2 nSlices=obj.nLSlices*nlLayers;

3 1SliceTs = 1/obj.nLSlices+tList; % layer—slice thicknesses

4 slicing 1/0bj.nLSlices/2:1/0bj.nLSlices:1; % linear spacing

5 slicing = bsxfun (@times,slicing.',tList.");

7 % create kt matrix of size [nLayers,nModes]

8 k_o=2xpi/wg.wl; % freespace wavenumber

9 kList=nkListxk_o; % phase wavenumbers for each layer
10 beta=neffxk_o; % group wavenumbers for each mode

11kt = sqgrt (bsxfun (@minus,kList.”2, (beta.”2).")); % transverse k

[)

12 % no meta-materials, so real component of kt is always positive

13 kt (real (kt)<0) = —kt(real (kt)<0);
14

15 % create layer interface matrices

16 INTER = ModeSolver.InterfaceMatrices (kt,nkList);

140




APPENDIX C. MATLAB CODE EXCERPTS — TMM

17
18 % create propagation matrices

19 % ... half slice propagation first

20 PROP_2 = ModeSolver.PropagationMatrices (kt,1SliceTs./2);
21 % mutliply layers and half—slice propagations

22 PROP_2

PROP_2(:,:,:,1l:end-1);
23 LAYERS = multiprod (INTER, PROP_2);

24

o\

25 kt for each layer slice FROM its layer interface
26 kt = permute(kt,[3 1 2]);

27 kt = repmat (kt, [obj.nLSlices 1 1]);

28 kt = reshape (kt, nSlices, nModes);

29 PROP = ModeSolver.PropagationMatrices (kt,slicing(:));

30 PROP = reshape (PROP, 2, 2, nModes, obj.nLSlices,nlLayers) ;

Breaking each layer into an equal number of slices is the easiest matrix approach.

It has the advantage that small important layers like QWs will have the appropriate

resolution. Unfortunately, if there are many small layers, the computational time will

be greatly increased (we set the upper limit to be 750 defined layers). This is because

the field in each layer of the stack must be found in sequential order, propagating the

input electric field from one side of the stack to the other:

1 % initialize wave and pass wave through layer interface
2 wave=zeros (2,1,nModes,obj.nLSlices,nLayers);

3 % small amount entering bottom of structure, nothing exiting

4 wave_init = [ones(l,1,nModes,obj.nLSlices);
5 zeros (1,1, nModes,obj.nLSlices)];
6 for 1 = 1:(nLayers—1)

7 % propagate wave in current layer
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8 wave(:,:,:,:,1) = multiprod(PROP(:,:,:,:,1),wave_init);
9 % propagate wave of last slice through layer interface
10 wave_init = multiprod(LAYERS (:,:,:,1), ...

11 wave (:,:,:,0bj.nLSlices, 1)) ;

12 % reshape initial layer wave for all slices

13 if nModes==

14 d = wave_init (1l); u = wave_init (2);

15 wave_init = [dxones(l,1,1,0bj.nLSlices);

16 uxones(l,1,1,0bj.nLSlices)];

17 else

18 wave_init = repmat (wave_init, [1 1 1 obj.nLSlices]);
19 end

20 end

21 wave = wave(:,:,:,:,2:end—1);

22 wave = reshape (permute(wave, [4 5 3 2 1]),...

23 nSlices—2%obj.nLSlices,nModes, 2);

24

25 waveDn = wave(:,:,1);

26 waveUp = wave(:,:,2);

The final two lines of the above code excerpt give the electric field profiles of the
upward traveling wave and the downward traveling wave. The addition of these two

fields gives the standing-wave profile that is the guided mode.
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Appendix D
Process travelers

IN §D.1, the process traveler snippet of the holography process used in the AGC-LD
(1% generation) is given. In §D.2 the full process traveler for the EGC-LD device (2™
generation) is given. The EGC-LD was fabricated using an electron beam lithography
process instead of holography:.

The travelers are organized by major process step, usually one per page. For step,
the procedure, up to three parameters (P1, P2, P3), and up to two process times
(T1, T2) are given. Notes and setup time (T0) are also provided. Finally, the total

times for each sub-step and major process step are calculated.

D.1 Process traveler: holography

A snippet of the holography process used in the AGC-LD (1%* generation) device.
Note that the SiN, layer acts as both the anti-reflection coating for the holography

and the hard mask for the subsequent GaN dry etch (provided in Appz. D.2).

144



ssjoyuid s1euiwia] o ,
00:T0:0 , 00:10:0 | 00:10:0 N 1a dnd |y uea)d ul ‘Aip ‘dip Jaiem ‘peojun| o
0} ‘9)dwes pue T# UOA IS

00:ST:0 00:0T:0 .J4d’'NIS[ Apau,, :daQ XNIS wugh.| 6€

00:G0:0 | SSIUXIY} papudlul jjey 03 19s wu gy «24d°NIS[Apau,, jo ssauydiyy 198ie1 Mp3| 8¢

00:50:0 9|dwes pue T# UOIA IS peol| (/€

00:T0:0 .JUd’'NIS[ Apau, 01 ,D4d'0TNIS , AdoD| og

:TO: s9joyuld djeuruiisy :T10: :T0: dnd |y ueajd ul ‘Aup ‘dip Js1em ‘peoju
00:10:0 01 ‘adwWes pue T# U IS 00:T0:0 | 00:T0:0 4\ 1a |V ues|d uf ‘Aup ‘dip us1em ‘peojun| S€ andid
00:50:0 00:20:0 wJYd'STNIS , :dap NIS WugT uny| €
ssjoyuid sjeuiwia] o ,
00:T10:0 , 00:T0:0 | 00:T0:0 N Ia dna |y uea)d ut ‘Aip ‘dip 4o3em ‘peojun| €€
0} ‘9)dwes pue T# UOA IS

00:20:0 |10 Sululydew aAowal 0 1a vdl 9U0192y dno |y ue uesd| g

00:50:0 00:20:0 WOYd'STNIS , :dap NIS wugT uny| T€

00:¢0:0 9|dwes pue T# UO\ IS peo]| O€

0€:¢ - uonisodaq xNIS
00:T0:0 00:T0:0 | 00:20:0 1A 4Hg T# UOIA IS :dlias apixo anneN| 62 youag 4H
00:T0:0 00:T0:0 [ 00:T0:0 N Ia Ap g asund| 8z
- youag 1uan|os

00:T0:0 00:20:0 | 00:20:0 vdl 3U0132Y y3ty uo a3eduos ‘uedd| £z

00:0T:0 00:20:0 | 00:0€:0 NISN1J0€ :uesp uny| 9z andid

¥S:0 - uesd|d-°id
01 sajoN zl Il &d | @ Id 34npasoid | #a1 | 1uawdinbg

145



00:T0:0 00:T0:0 | 00:TO:0 ¢N [q] Mp g asurd| 8y
youag JUaA|0S
00:TO:0 00:T0:0 | 00:T0:0 |OUBYISIN | SU0ITY MO| Uo a1ed1uos| /Y
80:0 - uea[y-aid
00:10:0 | [ 00:00:T | _ Jase| po-aH dnuem| 9y | 1H/1d
T0:T - dn-waepn Jase
oL | sajoN 41 L & | Zd Id a4npasoid | #a1 | auawdinby
00:50:0 1adsu|| 05 2d02s0421IN
HeToH e Asessaoou i [ ] sdais jeads
00:9€:0 3je7 BUEID > SSAUNIIYL 1 AjUO # [81-€€ 151 4| 6v andid
{wug'zeg ‘wusee}
120: : A :SISA|
00:¢0:0 © XapUI pUE SSUNDIYL PJ0IaY wuos9 wupse «Powr’is uo xNIS/ApaN,, :sisAjeuy| 8y (Mmwr)
J919wosdi||3
00:€0:0 00:50:0 0T .98 .59 uPIEBPUE]LS, ‘TH# UON IS 2INSEIN| [P
00:ST:0 00:50:0 «JY¥d'NIS[ Apau,, :da@ XNIS wusz~| 9v
00:¢0:0 a|dwes pue T# Uo\ IS peol| sy
120: 1018In31es wu Ssauy|dl "NIS[Apau 1
00:¢0:0 SupeJ8 Ul punoy anjea asn 14 22141 DU NIS! Apaulip3| b
andad
qT# JO1UON
IS JO Xapul pue SSauddIy}
120: daq@ xNIS :xs|x-J01e|naje) Suieln,, -oe
00:¢0:0 Uo paseq ulodias sSUNIY} «d20a XNIS :Xs[x'1oje|noje) suijels , 'oled| €y
Sujuiewsau puiy 03 2jed2 3N
{wug-zeg ‘wugee}
120: wu wu owr'IS uo XNIS/ApaN,, :sisAjeu
00:¢0:0 © X3pUl pUE SSBUNIIY} PJOIDY 0S9 0S¢ Jpowris NIS/ApaN, :sisAleuy|  zv (mvr)
J912wosdi||3
00:€0:0 00:50:0 0T .98 .SS WPIepuUBlS, (TH# UON IS 3INSeSN| TP

146



00:50:0 Aydea3oyy wadsul| /9 9doosoudIN
sdadaloy ,
00:T0:0 . 00:TO:0 | 00:20:0 Ia 41IN00€ZV asul ‘dojanaq| 99 Youag dojanag
asn ‘uoneyde a3 AISA
60:0 - dojanaqg ¥d
oud wu S ,
00:5S0:0 ;. . Smm_o o 00:50°0 .0€ fwoct %SGS~0 ‘WU 00E~L :9s0dx3| 99
103 {,0€|,5°0¥} 1/Td :2[ed T1 /
00:0T:0 ol ww T o N'8H ‘Jase| p)-aH d1euql|ed| G e
Y (TT ‘eT) @1 9sn ‘suamod paoday 8T/€T/8 :
0¢:0 - AydeisSojoH
00:T0:0 0€:T0:0 2,06 93eq Yos| S
00:20:0 [°ope|q 410zed yum siauaod adesds 00T443 apisyoeq uedd Junowun| €9
sde8 wu saul
- ( 0ST/sauy| - wd /ZON! .
00:T0:0 WU OST) S3Ul| 43PIM 0} Hd 0€:00:0 [S/wd QT | wdiy€g WASL MY WUSET~ Hd uds| S
9AIe33N 4931} Suisn asuadsig youag ¥d
9|18eu) SS9 ,
00:T0:0 . 0€:00:0 | 02:00:0 [s/wdu 0T wdJay € SAINH jua8e 3uimam uids ‘qiospy| TS
Ud Sae 4931y Buisn asuadsig
judde(pe ssaudIY}
00:¢0:0 adel an|q uo wuno| 05
9WES JO Sa|Wwnp Junow
00:T0:0 00:TO:0 | 00:0T:0 JSTT |002 13| ‘@¥eq uoneipAyaa| 6v

T2:0 - uids ¥d

147



9|18eu} 24e Jyd ‘@dwes

150: d !
00:50:0 4o12125 01 10U [NJ2.ED Ia vdl 9U03}32Y a|dwes yunowun ‘Jaj4Jed peojun| 6/
00:20:0 00:50:0| ©d0'S |M 00T/006| W23s O €0T :ad1ay ‘ueap ‘0| 8L
00:T0:0 (zD) 494em Bujuespp ¢o peol| LL

w22s

00:20:0 S¥:00:0( ©dS'0 | M 0S/006 0t/0€ 97T :ad123y ‘Yad £4HD/"4D WwuQTT| 9L

. |to dwnd uoisnyip UO155 s|dwes/m
00:50:0 JBAOIUES 3[1}| B/M JUNOIA| eN/Id vdi 19V J9)EM J311JED Y13 PEO| 13 UB3|D st

z0: von0 ‘TO: edg’ / 28 :adioay 1eo0d ¢ v G dol
00:20:0 pagueys s ‘adiral 29y O0T:TO:0| BdS'0 | M 0S/006 0t/0€ 9CT 90123y 1 dHD/'4D| VL

:50: Allepadsa 9U03}3D Jajem Sujuoseas peo| 1g uea
00:S0:0 SpISYIEq AP 3 UBS) ¢N/1a vdl 190V 4 ! peo| 3 D €L
00:20:0 00:0T:0| ©dO’'S |M 00T/006| W23s O €0T :ad10ay ‘uesp ‘0| L

. Ajeadsa SUO155 g .
00:50:0 SPISOR DAY § UESD) ZN/Ia vdl 190y Jajem Sulueap 2o peo| g uesp| T/
00:€0:0 Asessadau 41|00:10:0]/00:10:0 20T ‘6071 :sadpasisar yn3| os
00:€0:0 Aiessaoau i 00:50:0 EJHD <-4y ‘74D <- 945 :98ueyd sen| 69

v0:T - Y233 Aig xNIS
00:70:0 | INVLYOdINI AY3A| |oz:00:0] | moot | Lwoog | WU g :wndsa@ ¥d| 89 | [EE
¥0:0 - WwNJsag ¥d
01 590N al Il &d ad Id 24npajoid #al| awdinby

148



WUQE + Ulw/Wusg 9z~
00:ST:0 ‘91ed ydie Jeueld 0c:<0:0l0v:00:0 Jojwz | M S/00T |wdds /L «J002-Y213 Ne9 Dyd ApeN, -
WuQT + ulw/wuQg JJ0JWOT [ M 0G/00S | W22s 05 Y213 4v/4D 3 £|Dg wus/e
:91eJ Y213 Jyd 0S/0S
uoSeas WoJj o|dwesgAwwnp/m
00:S0:0 A L8
wuwnp Neo ,,z dwes asM J9JEM J314JED N PEOT]
00:ST:0 00:s1:0|0%:00:0 Jojwg | M S/00T |wdds /L .J00Z-uoseas Neo Jyd Apan, 98 yoi3 sixelun
410 WOT [ M 0S/00S | W2ds 05 :uoseas Jy/0 % f|dg
cen: Awwnp
00:50-0 NED ,z/M Jauied asyddes peo 8
00:0T:0 Jaquieys suea|d 00:00:T |H410LWOT (M 00Z/008 | W3S 05 «J00¢-ulwQg uespP-¢o,| 8
:50: Ajerpadsa QU013 Jajem Suiues|d IS peo| )3 ues
00:S0:0 SpISYIEq I3 3 Uea) ZN/Ia vdl 190V 3 lUes|3d IS peo| B D €8
LT:T - ynjahanNeo
:90: undHOBS I Cn ) .o 20 92IM} unJ {/# 2ddd sojuose
00:90:0 104 paureIUIEW Bnjesadwa) 00:2¢0:0(00:¢0:0 .0S€ IM] -[#:901D3Y| €8 luosen
O0T:0 - YSv ud
00:T0:0 00:70:0|00:T0:0 ‘N Id Aprgosuny| 18
- youag JUaA|0S
00:T0:0 00:T0:0(00:T0:0 vdl 2U013dY anadid/m a1e1de ‘ues|d| 08

90:0 - ue9|)-94id

149



APPENDIX D. PROCESS TRAVELERS

D.2 Process traveler: EGC-LD

The full process traveler for the EGC-LD (2" generation) device. The traveler
starts with an optional epitaxial characterization, then details a full GaN-to-Si bond-

ing process before the actual EGC-LD process.
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