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Abstract

Stochasticity and Synchrony in the Mammalian Circadian Network

John H. Abel

A vast majority of life on Earth exists in an environment where resource avail-

ability and environmental conditions are temporally periodic. There is therefore

an evolutionary advantage for organisms to partition behavior into certain times of

day. Circadian rhythms, endogenous near-24 hour oscillations in gene expression,

perform this task. These rhythms exert control over a large fraction of biological pro-

cesses, and as such are implicated in a wide range of diseases, especially metabolic

and mental disorders. Circadian rhythms are generated at a single-cell level through

a complex set of interlocked genetic feedback loops. Individual components of the

circadian network are considered “sloppy” due to stochastic noise, and it is only

through the interaction of cellular oscillators at a network level that precise rhythms

are generated. Medically treating or reverse-engineering this complicated genetic ar-

chitecture necessitates mathematical understanding at multiple physical scales, from

cells to tissue.

This thesis seeks to describe the complex dynamics and hierarchical organiza-

tion of circadian rhythms in mammals through systems dynamics and mathemati-

cal approaches. The overarching theme of this work will be the interplay between

stochasticity and synchronization in circadian rhythms. Stochastic noise and precise

oscillation are not completely at odds, however. In this thesis, I first develop a model

of the circadian oscillator which incorporates the core negative feedback loop and

an important neuropeptide coupling pathway. I use this model to investigate claims

about the roles of Cryptochrome isoforms within the core circadian clock, and show

that despite seemingly-different roles, experimental data is consistent with a parallel
vi



role for Cryptochrome isoforms. Next, I present a method for inferring functional con-

nections within the suprachiasmatic nucleus (SCN), the mammalian “master clock,”

and describe the network structure within the SCN. Finally, I examine growth and

development of the SCN in utero.
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Chapter 1

Introduction

Nearly all life on Earth exists in a temporally periodic environment. The 24-hour

day-night cycle brings with it a wide variety of cyclic effects, including changes in

temperature, light, and radiation. Circadian rhythms function as a biological feed-

forward controller, adapting the physiology and behavior of an organism to these

predictable changes in its environment. Endogenous circadian rhythms have been

observed in nearly all species, from simple prokaryotic cyanobacteria, to plants, in-

sects, and mammals [1–4]. While the genetic mechanism controlling these rhythms

varies, circadian rhythms share three characteristics: they are endogenous, they are

temperature-compensated, and they are entrainable [5]. Importantly, the endogenous

or self-sustaining nature of circadian rhythms indicates that they are not merely re-

sponses to environmental cues, but instead are generated by underlying biological

processes.

Circadian rhythms are thought to have first evolved to protect metabolites in sim-

ple organisms from harsh solar ultraviolet radiation [6]. In complex organisms, cir-

cadian rhythms control gene expression across a wide portion of the genome. Ap-

proximately 10% of all transcripts expressed in human tissue are circadian-regulated,
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Chapter 1. Introduction

affecting nearly every biochemical pathway [7]. As such, circadian regulation impacts

many biological processes including cell cycles, body temperature, metabolism, in-

sulin sensitivity, and activity patterns [8–11].

Developing a quantitative understanding of circadian rhythms is desirable from

both a medical and an engineering perspective. With the emergence of a 24-hour so-

ciety, perturbations to natural circadian rhythms are common. Chronic disturbances,

such as shift work, have been associated with metabolic disorders [12]. Irregular

circadian rhythms have also associated with neurodegenerative and psychiatric dis-

ease [13]. Additionally, due to metabolic differences, medicines taken at different

phases of the circadian cycle differ in effect or effectiveness. Medically, it is desir-

able to develop pharmacological or therapeutic interventions to strengthen circadian

rhythms and improve overall health. To do so requires a strong understanding of

the circadian clock. For an engineering standpoint, the circadian network is a com-

plex yet precise gene network. Understanding how these networks are organized is

desirable in order to create synthetic genetic networks for genetic engineering. The

circadian system provides an interesting and physiologically-relevant case study for

a mathematical understanding of gene networks.

1.1 Circadian Model Organisms

As with much of biology, circadian rhythms are studied through the use of model

organisms. These model organisms include: Drosophila melanogaster (fruit fly, insect),

Neurospora crassa (spore mold, fungus), Arabidopsis thaliana (thale cress, plant), Syne-

chococcus elongatus (cyanobacteria, bacteria), and Mus musculus (common lab mouse,

mammal). Notably missing from this list is Escherichia coli, as these bacteria are

not thought to have circadian rhythms. In many organisms (such as fruit flies and

2



Chapter 1. Introduction

mice), the circadian clock is conserved to a degree. Additionally, eukarotes have

been shown to use transcription-translation feedback loops to generate circadian

rhythms, whereas the few prokaryotic oscillators (such as that in cyanobacteria) use

progressive-phosphorylation oscillators. Interestingly, this means that the KaiABC

oscillator of S. elongatus may be reconstituted in a test tube. In this thesis, I focus on

the mammalian circadian oscillator, through the model organism Mus musculus.

1.2 Organization of Mammalian Circadian Rhythms

Circadian rhythms are generated at a single-cellular level, and are considered to be

cell-autonomous. In multicellular organisms, cell-autonomous clocks must interact

at tissue and system levels to establish a coherent phase across the organism. For

mammals this task is accomplished by a “master clock,” the suprachiasmatic nucleus

(SCN) [14]. The SCN is a small region of the hypothalamus, consisting of approx-

imately 20,000 neurons. It receives light input from the optic chasm to entrain to

external day-night cycles. Signals from the SCN synchronize peripheral cellular os-

cillators which control gene expression in tissues throughout the body.

Single-Cell Rhythms

The mammalian cell-autonomous circadian oscillator is comprised of interlocking ge-

netic transcription-translation feedback loops (TTFLs), as shown in Fig. 1.1 [4]. The

central negative feedback loop driving rhythmicity is the Period-Cryptochrome (Per-

Cry) loop, in which Per and Cry are transcribed and translated, form heterodimers,

and re-enter the nucleus to repress their own transcription through sequestration of

CLOCK-BMAL1 Enhancer box (E-box) activators. PER-CRY heterodimers are then

slowly degraded [15]. As transcription repressors are degraded, transcription re-

3



Chapter 1. Introduction

activates, creating a cycle with a period of approximately 24 hours. Clock-controlled

genes are then regulated by participants in this core loop, through transcription

regulators including E-boxes, DBP/E4BP4 binding elements (D-boxes), and RevEr-

bA/ROR binding elements (RREs) [16]. This circadian network has been identified

in many cell types including fibroblast, adipose, neuronal, liver, and skeletal cells

[17–20].

Despite this complex systems of feedback loops, single cells do not oscillate with

precise rhythms [21, 22]. Rather, extrinsic and intrinsic cellular noise lead to vari-

ability in period length at a single-cell level [23]. Extrinsic sources of noise include

environmental conditions and differences in the physical makeup of each cell. Intrin-

sic sources of noise include low copy numbers of oscillator components and diffusion

of biochemical species within the cell. Because each cell within an organism is indi-

vidually “sloppy,” synchronization between cells and an organizational hierarchy is

required to achieve precise rhythms at an organism-level.

Organism-Wide Rhythms

In the suprachiasmatic nucleus, cells exchange neuropeptides, including VIP, AVP,

and GABA, to maintain synchrony of the oscillator population [14, 24]. Fig. 1.2 shows

many of the signaling pathways thought to play a role in maintaining synchrony in

the SCN. Explanted SCN maintain precise rhythms for over a month when plated in

the absence of any external cues. Oscillators in peripheral tissues are thought to lack

paracrine signaling, and as such do not maintain coordinated rhythms in the absence

of an entraining signal. Entraining cues from the SCN as well as time-dependent

feeding, rather than intercellular coupling, are required to maintain precise, coordi-

nated rhythms in peripheral tissue. Likewise, destruction of the SCN in otherwise-

healthy animals results in loss of rhythmic behavior, while SCN transplants restore

4



Chapter 1. Introduction

Figure 1.1: The mammalian cell-autonomous circadian clock. The mam-
malian clock is comprised of interlocking genetic feedback loops. The
core negative loop is the Per-Cry loop. Ccg represents a family of clock-
controlled genes, here symbolically controlled by an E-box region. Figure
from [4].
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Chapter 1. Introduction

rhythms across the organism [25].

1.3 Mathematical Approaches

The inherent complexity in circadian genetic networks necessitates a quantitative ap-

proach to understanding the underlying dynamics. Dynamics of gene expression are

frequently modeled using ordinary differential equation (ODE) approaches. When

coupled, these systems of ODEs can be used to represent and understand complex

genetic networks. Historically, ODE modeling is a well-established approach to un-

derstanding circadian rhythm dynamics [26–29]. ODE models are of the form:

dx
dt

= f(x(t), p), (1.1)

where f is comprised of rate equations for biochemical states x, and is parameterized

by p. It is also common to treat the circadian gene network as an attractive limit cycle

oscillator, in which Eqn. 1.1 satisfies:

lim
t→∞

[x(t)− x(t + τ)] = 0 (1.2)

indicating that concentrations x oscillate with period τ. ODE models are easily con-

structed, but are not easily parameterized as limit cycle oscillators. While highly

useful, ODE approaches cannot capture intrinsic molecular fluctuations which play

an important role in circadian behavior.

Stochastic approaches, through Gillespie (or kinetic Monte Carlo) algorithms, are

computationally expensive, but directly capture intrinsic molecular noise due to low

copy numbers. Stochastic approaches have also been previously applied to circa-

dian rhythms at a single-cell level [30, 31]. Rather than using a deterministic set of
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Chapter 1. Introduction

Figure 1.2: Intercellular signalling pathways in the suprachiasmatic nu-
cleus. Figure from [14].
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Chapter 1. Introduction

rate equations, stochastic simulation algorithms solve the chemical master equation

(CME), of the form:
ds
dt

= A(t)s, (1.3)

where s is a vector of n states si and A is an n× n matrix of propensities. As A may

depend on s(t), the resulting Markov process is nonstationary.

For this work, both ODE and stochastic approaches will be used, as they are each

suitable for specific situations. Additionally, understanding circadian data requires

mathematical tools from a variety of fields, including sensitivity analysis, discrete

signal processing, and statistics; these methods will be introduced ad hoc.

1.4 Biological Methods

The research presented in this thesis is purely computational, however mathematical

understanding necessitates understanding of experiment.

The earliest method for understanding circadian behavior in mammals is through

recordings of actograms. Actograms are generally recordings of wheel activity of

mice or other rodents, but have also been used to monitor circadian behavior of

larger animals including bears. As shown in Fig. 1.3, when under 12:12 light:dark

(LD) conditions, mouse wheel running starts at the same time each day. When in con-

stant darkness (DD), the intrinsic period of the mouse clock is slightly shorter than

24 hours, leading to the slanted rhythms shown. Genetic or environmental pertur-

bations may affect this wheel running behavior, and these phenotypes are captured

via actograms. Actogram still often used to record behavioral reactions to genetic

perturbation. In Chapter 2, actogram recordings are among the data used in fitting a

model of the circadian clock to long or short period knockout phenotypes.

Aside from common biological techniques, circadian research often uses the Pe-

8



Chapter 1. Introduction

riod2::Luciferase bioluminescent reporter to observe circadian gene expression [32].

This fusion allows the real-time observation of Period production in individual cells

and also in cells within a tissue. A gene for destabilized Luciferase (dLuc) is attached to

the Period propoter region (Fig. 1.4). The destabilized protein produced is degraded

rapidly, so the output state of the Period gene is near-instantaneously observable.

These methods have largely replaced wheel-running behavior, and are currently the

state-of-the-art method for analyzing circadian phase, as they provide increased in-

formation about the state of the core circadian oscillator. Per2::Luc bioluminescence

traces are used extensively to monitor single-cell rhythms in Chapters 2 and 3.

1.5 Significance Within Chemical Engineering

Chemical engineering is based on the fundamental principles of thermodynamics,

transport phenomena, and reaction kinetics. This thesis is not constrained to those

topics alone, but is grounded in them. Most prominently, the equations describing ge-

netic network dynamics are equivalent to, and based on, chemical kinetic equations.

The rate equations governing biochemical species take familiar forms: mass-action,

Michaelis-Menten, and Hill type kinetics. Mathematically, these equations may be

solved identically to the more traditional reactor design equations. Here, control the-

ory can be applied as well–concepts such as frequency domain analysis and transfer

function model representations may yield significant insight into the dynamics of bio-

chemical pathways. When these systems of reactions are broken down into stochastic

processes, statistical mechanics concepts apply as well. The Gillespie algorithm, com-

monly used in stochastic systems biology, is effectively a kinetic Monte Carlo scheme

[34]. As in statistical mechanics, fluctuations can play a significant role in system

behavior, leading to dynamics that cannot be well-approximated by deterministic

9



Chapter 1. Introduction

Figure 1.3: Example of a mouse actogram. Figure from [33]. Two mouse
genotypes are shown in their free-running (DD) periods. (A) BTBR/J
mouse. (B) C57BL/6J mouse. The difference in period length is due only
to the different mouse strains shown. In LD conditions, period is precisely
24 hours.
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Intracellu
lar

Nuclear

Cry
Per
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CRY

E box
E box

Luciferase

dLuc

PER-CRY

Figure 1.4: Schematic of the Per2::Luc fusion. Destabilized luciferase
degrades rapidly (half-life 30 hours), and therefore provides the ability to
monitor Per expression in real-time.
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Chapter 1. Introduction

solutions.

Transport phenomena plays a significant role in intra- and intercellular movement

of biomacromolecules. To this point, mathematical research in circadian biology has

primarily considered the interior of the cell to be spatially homogeneous. While this

is physically incorrect, it is a useful approximation. Future models may account for

transport between compartments of the cell with simple rate equations, using either

partial differential equation or spatial stochastic solvers [35]. A strong understanding

of diffusive processes can assist in determining the validity of these approximations

and building physical understanding of cellular dynamics. Although intercellular

transport is thought to be primarily synaptic, diffusive connections are thought to be

the primary communication between the SCN and peripheral oscillators [25].

Mathematics from chemical engineering may also arise unexpectedly. For ex-

ample, the phase of uncoupled stochastic oscillators was recently captured with a

reaction-diffusion equation [36].

12



Chapter 2

The Role of Cryptochrome in the

Cell-Autonomous Oscillator 1

2.1 Background

Within the mammalian feedback loop, there exist multiple isoforms of core clock

genes Period and Cryptochrome: Per1,2,3 and Cry1,2 [4, 37]. Particular interest has been

shown in the redundant Crys, due to differing effects on period length and single-

cell rhythmicity when knocked out in mice [18, 38]. Cry1−/− mice display shortened

circadian periods in constant darkness (DD), and individual neurons from Cry1−/−

mice show arrhythmic oscillation. Cry2−/− mice have longer periods in DD, and

retain rhythmicity in individual neurons. Importantly, whole-tissue SCN explants

in Cry1−/− mice retained rhythmicity, indicating that intercellular coupling plays

1Portions of Section 2 appear in J. H. Abel, L. A. Widmer, P. C. St. John, J. Stelling, and F. J.
Doyle III, “A Coupled Stochastic Model Explains Differences in Circadian Behavior of Cry1 and Cry2
Knockouts,” IEEE Life Sciences Letters, vol. 1, no. 1, pp. 3-6, 2015. ©2015 IEEE. Personal use of this ma-
terial is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, cre-
ating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
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Chapter 2. The Role of Cryptochrome in the Cell-Autonomous Oscillator

a role in rescuing rhythms despite single cell arrhythmicity [18, 39]. Recent work

has proposed that Cry1 and Cry2 play a parallel role in the oscillator [15], however,

other studies have suggested that parallel roles are inconsistent with the observed

knockout rhythmicity [40]. Alternately, phase delays or strength of repression have

been suggested as possible causes for these differences [41, 42].

In this section, the parallel role of Cry1 and Cry2 is examined mathematically

through the construction of a coupled stochastic model of the Per-Cry feedback loop.

Results indicate that stochastic noise and relative protein abundances are sufficient

to account for the difference in single-cell rhythmicity. This confirms that observed

knockout behavior is in fact consistent with a parallel role for Cry isoforms.

2.2 Model Construction and Parameter Identification

Model Components

A model of the core oscillator was constructed to capture essential components of

the Per-Cry feedback loop, and intercellular coupling through the neurotransmitter

vasoactive intestinal peptide, VIP (Fig. 2.1A). The model explicitly includes states:

Per, Cry1, Cry2, and VIP mRNA; PER, CRY1, CRY2, and VIP protein; and PER-CRY1,

PER-CRY2 and CREB transcription factors. CRY1 and CRY2 have parallel roles in

the model, and differ in degradation rates and abundances, as experimentally shown

[15, 43]. This resulted in an 11-state model with 34 kinetic parameters. For a full list

of equation and parameters, please see Tables 2.1 and 2.2.

Rate Laws

Kinetic rates were captured by either mass-action terms (for translation and dimeriza-

tion reactions) or Michaelis-Menten terms (for enzyme-mediated degradation, shared

14
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Figure 2.1: VIP model diagram and wild-type simulation results. (A) A
schematic of model components and interactions. Results of deterministic
(B-C) and stochastic (D-E) solution of a single dissociated cell (center) and
coupled model (right). Period mRNA is the state shown. Model cells are
decoupled by setting VIP concentration to 0.
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enzyme-mediated degradataion, or transcription factors). The model did not require

nonphysical Hill terms (those with cooperativity greater than unity) to form a limit-

cycle oscillator, in part due to the effects of the positive feedback VIP loop [44].

A “shared degradation” term occurs when a single enzyme degrades two species

competitively. Here, a single enzyme (FBXL3, denoted “E”) is considered to have

primary responsibility for nuclear degradation of CRYs (denoted “S1” and “S2”) [45]:

[E] + [S1]
k1−−⇀↽−−
k−1

[ES1]
kd,1−−→ [E]

[E] + [S2]
k2−−⇀↽−−
k−2

[ES2]
kd,2−−→ [E].

As in [15], identical equilibrium constants are assumed for CRY1 and CRY2 binding

with FBXL3. However, kd,1 and kd,2 differ. Upon simplification and use of the pseudo-

steady state hypothesis (as in [15]), this yields shared degradation terms of:

rd,1 =
Vmax,1[S1]

KM + [S1] + [S2]

rd,2 =
Vmax,2[S2]

KM + [S1] + [S2]
.

Similarly, we derive terms for the co-repression of Cry expression, assuming equal

affinity of nuclear CRY1-PER and CRY2-PER (repressors R1 and R2) for the E-box

binding site, resulting in transcription rates of the form:

rtrans =
Vmax

KM + [R1] + [R2]
.

16



Chapter 2. The Role of Cryptochrome in the Cell-Autonomous Oscillator

Derivation of an Activation Co-repression Rate

Unlike Cry expression, Per transcription is additionally impacted by CREB through

the C-regulatory element box, a transcriptional promoter. This requires the derivation

of an activation and co-repression equation, where CREB is not necessary for gene

expression, but increases the rate at which transcription occurs. Because the CRY-

PER transcription repressors act at the E-box, we assume they do not interfere with

binding of CREB. Thus, with nuclear CRY-PER repressors R1 and R1, with CREB

activator A1, with Per gene G, and Per mRNA M, the set of possible reactions at the

17



Chapter 2. The Role of Cryptochrome in the Cell-Autonomous Oscillator

Per gene is as follows:

[G] kt−→ [G] + [M]

[G] + [R1]
k1−−⇀↽−−
k−1

[GR1]

[G] + [R2]
k2−−⇀↽−−
k−2

[GR2]

[GA]
kprom−−−→ [GA] + [M]

[G] + [A]
k3−−⇀↽−−
k−3

[GA]

[GA] + [R1]
k4−−⇀↽−−
k−4

[GAR1]
k5−−⇀↽−−
k−5

[GR1] + [A]

[GA] + [R2]
k6−−⇀↽−−
k−6

[GAR2]
k7−−⇀↽−−
k−7

[GR2] + [A]

There are ultimately two mRNA-producing reactions here, involving the gene with-

out activator or repressor bound, or the gene with only the activator bound. Here,

we make simplifying assumptions about repressor binding, namely that R1 and R2

bind with equal affinity, and activator and repressor binding do not affect each other.

For repressor binding and dissociation:

k1 = k2 = k4 = k6 ≡ krb, (2.1)
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k−1 = k−2 = k−4 = k−6 ≡ krd; (2.2)

and for activator binding and dissociation:

k3 = k−5 = k−7 ≡ kab, (2.3)

k−3 = k5 = k7 ≡ kad. (2.4)

Furthermore, we define equilibrium constants KR and KA in their standard form:

KR ≡
krd
krb

(2.5)

KA ≡
kad
kab

(2.6)

By invoking the equilibrium approximation, we can assume that equilibrium is

formed between the gene and its transcription factors much more rapidly than gene

expression. Thus, we have two mRNA-producing equations:

rg = vg[G]

rga = vga[GA].

Additionally, by performing a balance on G (that is, noting that [G] + [GA] + [GR1]

+ [GR2] + [GAR1] + [GAR2] = [G0]), we can find the concentrations [G] and [GA]:

[G] = [G0]

(
1

1 + [R1]
KR

+ [R2]
KR

)(
1−

[A]
KA

1 + [A]
KA

)
(2.7)
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[GA] = [G0]

(
1

1 + [R1]
KR

+ [R2]
KR

)( [A]
KA

1 + [A]
KA

)
. (2.8)

By assuming that KA is large, that is kad � kab, and refactoring [G0], KA, and KR

into rates vA and vR, we ultimately arrive at our simplified activation co-repression

transcription rate equation:

rtrans =
vA[A] + vR

KR + [R1] + [R2]
. (2.9)

This equation is ultimately used for Per mRNA production only.

Model Fitting

To model a single dissociated neuron, external VIP concentration was set to 0 to

mimic the lack of physical connections in plates of mechanically-dissociated neurons.

To model a population, VIP was shared between the nearest four neighboring cells

on a 15-by-15 2D grid, with periodic (toroidal) boundaries. Parameter optimization

was performed by fitting the data to experimental mRNA and protein stoichoimetry,

relative amplitudes, phase relationships, and RNAi knockdown experiments (for a

full list, see Table 2.3). Additionally, the model was fit at a population rather than a

single-cell level, with the VIP coupling pathway active. The coupled cell was required

to be a limit cycle oscillator Parameters and equations were converted to stochastic

propensities through a volume parameter Ω, fit by the desynchronization rate of

uncoupled oscillators [36, 46]. The optimization and simulation was performed with

the CasADi computer algebra package, the SUNDIALS ODE solvers suite, the DEAP

evolutionary algorithm toolkit, and the StochKit2 stochastic simulation algorithm

package [47–50].
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Table 2.1: Ordinary differential equations comprising the coupled circa-
dian model. [51]

State Variable Symbol Model Equation

Per mRNA p
dp
dt

=
v1ppCREB + v2pr

K1p + C1P + C2P
−

v3pp
K2dp + p

Cry1 mRNA c1
dc1
dt

=
v4c1r

K3c + C1P + C2P
− v5c1c1

K4dc + c1

Cry2 mRNA c2
dc2
dt

=
v6c2r

K3c + C1P + C2P
− v7c2c2

K4dc + c2

VIP mRNA vip
dvip

dt
=

v8vr

K5v + C1P + C2P
− v9vvip

K6dv + vip

Per Protein P

dP
dt

= k1pp− v10PP
K8dP + P

− v11aCPP× C1− v11aCPP× C2

+v12dCPC1P + v12dCPC2P

Cry1 Protein C1
dC1
dt

= k2cc1− v13C1C1
K9dC + C1

− v11aCPP× C1 + v12dCPC1P

Cry2 Protein C2
dC2
dt

= k2cc2− v14C2C2
K9dC + C2

− v11aCPP× C2 + v12dCPC2P

VIP Protein VIP
dVIP

dt
= k3vvip− v15VVIP

CRY1-PER Dimer C1P
dC1P

dt
= v11aCPP× C1− v12dCPC1P− v16C1PC1P

K10dCn + C1P + C2P

CRY2-PER Dimer C2P
dC2P

dt
= v11aCPP× C2− v12dCPC2P− v17C2PC2P

K10dCn + C1P + C2P

CREB Protein CREB
dCREB

dt
=

v18VVIP
K11V + VIP

− v19CRCREB
K12dCR + CREB
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Table 2.2: Parameter descriptions for the coupled circadian ODE model.
[51]

Parameter Description Value Units

v1pp CREB-induced Per mRNA promotion 0.235 [-]/hr

v2pr Per mRNA transcription 0.415 [-]2/hr

v3p Per mRNA degradation 0.478 [-]/hr

v4c1r Cry1 mRNA transcription 0.350 [-]2/hr

v5c1 Cry1 mRNA degradation 1.44 [-]/hr

v6c2r Cry2 mRNA transcription 0.124 [-]/hr

v7c2 Cry2 mRNA degradation 2.28 [-]/hr

v8vr VIP mRNA transcription 0.291 [-]2/hr

v9v VIP mRNA degradation 1.35 [-]/hr

v10P Per protein degradation 13.0 [-]/hr

v11aCP PER-CRY dimer formation 0.493 ([-]× hr)−1

v12dcp PER-CRY dimer dissociation 0.00380 1/hr

v13C1 Cry1 protein degradation 4.12 [-]/hr

v14C2 Cry2 protein degradation 0.840 [-]/hr

v15V VIP protein degradation 0.723 1/hr

v16C1P PER-CRY1 dimer degradation 0.0306 [-]/hr

v17C2P PER-CRY2 dimer degradation 0.0862 [-]/hr

v18V CREB activation by VIP receptors 0.789 [-]/hr

v19CR CREB deactivation 1.27 [-]/hr

k1p PER translation 7.51 1/hr

k2c CRY translation 0.572 1/hr

k3v VIP translation 5.50 1/hr

K1p Per transcription constant 0.264 [-]

K2dp Per degradation constant 0.00795 [-]

K3c Cry transcription constant 0.156 [-]

K4dc Cry degradation constant 1.94 [-]

K5v VIP transcription constant 0.115 [-]

K6dv VIP degradation constant 0.110 [-]

K7dP Per protein degradation constant 0.0372 [-]

K8dC Cry protein degradation constant 4.23 [-]

K9dCn PER-CRY dimer degradation constant 0.0455 [-]

K10V CREB protein activation constant 1.46 [-]

K11CR CREB protein deactivation constant 1.01 [-]
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Table 2.3: Components of the model fitness function for optimizing a
parameter set. [51] Criteria 1-11, 14-18 from [43, 52]; criteria 12, 13 from
[18, 38, 43]; criterion 20 from [53]; and criteria 19, 21 from [54].

Index Description Weight Desired Result

1 Per mRNA Peak-trough ratio 0.5 Large Large

2 Cry1 mRNA Peak-trough ratio 0.5 2.16 2.30

3 Cry2 mRNA Peak-trough ratio 0.5 2.24 2.20

4 Per protein Peak-trough ratio 3 Large Large

5 Cry1 protein Peak-trough ratio 3 3.247 2.41

6 Cry2 protein Peak-trough ratio 3 1.98 1.60

7 Fraction PER of total PER, CRY1, CRY2 3 0.10 0.06

8 Fraction CRY1 of total PER, CRY1, CRY2 3 0.56 0.63

9 Fraction CRY2 of total PER, CRY1, CRY2 3 0.34 0.31

10 Cry1 siRNA sensitivity 5 < 0 < 0

11 Cry2 siRNA sensitivity 5 > 0 > 0

12 Cry1 knockout period 12 < 0.95 0.89

13 Cry2 knockout period 12 > 1.15 1.16

14 Fraction PER-CRY1 of total CRY1 1 0.40 0.22

15 Fraction PER-CRY2 of total CRY2 1 0.35 0.10

16 tmax mRNAs - tmax complexes 3 0.75 0.81

17 tmax cytocsolic protein - tmax mRNAs 3 0.25 0.01

18 tmax PER-CRY - tmax cytosolic protein 3 0 0.18

19 tmax CREB - tmax mRNAs 8 > 0.80 0.93

20 VIP protein peak-trough ratio 5 3.00 3.48

21 CREB peak-trough ratio 5 3.00 2.76

22 Deterministic coupled cells must synchronize 20 True True
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2.3 Results and Discussion

In the wild-type (WT) single-cell deterministic case (Fig. 2.1B), the model shows

damped oscillations. This may appear to conflict with self-sustained oscillations

observed in WT individual neurons, however, damped oscillators driven by noise

cannot be experimentally distinguished from noisy limit cycles [55]. Here as well,

single-cell stochastic simulation displays sustained oscillation (Fig. 2.1D). When cou-

pled, the single cell oscillators cross a Hopf bifurcation to form a deterministic limit

cycle (Fig. 2.1C), and maintain synchrony in the stochastic case (Fig. 2.1E).

When compared to experimental results from [18] (Fig. 2.2), both single-cell (A-F)

and population (G-L) simulations show good agreement with experimental data. In

single dissociated cells, WT and Cry2−/− appear significantly more rhythmic than

Cry1−/−. Furthermore, Cry knockouts display increased Per expression (309% of WT

for Cry1−/−, 104% of WT for Cry2−/−) in both experiment and simulation. This

is consistent with a parallel role for Cry isoforms, in which Per expression must

compensate for decreased Cry expression in order to repress transcription. Coupling

is shown to maintain rhythms and synchrony for all genotypes in experiment and in

simulation, as it causes the cells to cross a Hopf bifurcation.

When using a quantitative rhythmicity metric, the fraction of energy in the circa-

dian discrete wavelet bin (Fig. 2.3), model oscillatory behavior closely agrees with

experiment. It is important to note that this stochastic behavior was not tuned or

fit, but rather is a natural consequence of parallel Cry roles with more abundant and

stable Cry1. Ultimately, this indicates that parallel roles for Cry are consistent with

experimental evidence. This also underlines the essential role stochastic noise and

mathematical analysis plays in understanding the circadian oscillator, as this consis-

tency is not explicitly evident from experiment. Lastly, this result suggest that single
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dissociated cell circadian gene networks may not be limit cycle oscillators, but rather

fixed points with noise driven oscillation.
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Figure 2.2: Experimental and VIP model Cry knockout phenotypes. Ex-
perimental Per2::Luc bioluminescence traces (A-C, G-I) and simulation Per
mRNA trajectories (D-F, J-L) are shown. In single cells (A-F), Cry1 knock-
out leads to decreased rhythmicity. Coupling (G-L) restores rhythms and
synchrony for all genotypes. Experimental data (from [18]) and simulation
show good agreement.
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Chapter 3

Functional Network Structure of the

Suprachiasmatic Nucleus 1

3.1 Background

The suprachiasmatic nucleus is the mammalian “master clock,” responsible for syn-

chronizing the body to external light cues, and coordinating rhythms across systems

in the body. Collective dynamics of neurons within the SCN is contingent upon

properties of the underlying cell-autonomous oscillator, communication pathways

through neuropeptides such as VIP and γ-aminobutyric acid (GABA), and the overall

structure of the network connecting these neurons [44, 56–59]. The cell-autonomous

oscillator and neuropeptide coupling effects are relatively well-understood, however,

the network structure has remained elusive. Previous works (including that in Sec-

tion 2) have assumed nearest-neighbor, small-world, or mean-field networks on a

semi-arbitrary basis [27, 59–62]. Recent work has focused on fast-scale coupling of

1Portions of Section 3 are in preparation for submission as J. H. Abel†, K. Meeker†, D. Granados-
Fuentes, P. C. St. John, T. Wang, B. Bales, F. J. Doyle III, E. D. Herzog, and L. R. Petzold, “Functional
Network Inference of the Mammalian Suprachiasmatic Nucleus.” All experimental procedures were
performed by members of the Herzog lab.
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neuron firing rather than the slow-scale biochemical coupling tied to synchronization

[63].

Inferring slow-scale neuropeptidergic coupling in the SCN presents significant

challenges. Cells within the SCN display tightly-synchronized low-frequency non-

stationary oscillations in gene expression, preventing the use of common techniques

such as transfer entropy, directed transfer functions, or between-sample analysis of

connectivity (BSAC) [63–66]. In this section, the functional network within the SCN is

examined through a novel tetrodotoxin (TTX)-driven resynchronization experiment,

along with the application of the maximal information coefficient (MIC) [67]. Func-

tional connections are mathematical (non-physical) connections between correlated

nodes. These connections are not necessarily indicative of underlying physical con-

nections, but rather aim to examine how the network functions. MIC is ideally suited

to this network inference, as it can detect nonlinear relationships between noisy

oscillatory states. Results indicate that the SCN is functionally connected with an

exponentially-distributed small-world network. The hubs of this network are largely

constrained to the ventrolateral SCN (“core”) region. This structure is thought to be

optimally robust to random error, and rapidly synchronize to day-night cycles.

3.2 Experimental Design and Inference Methodology

In the suprachiasmatic nucleus, oscillation is highly synchronized. To identify con-

nections within the SCN, it is necessary to perturb those oscillations away from syn-

chrony. Tetrodotoxin (TTX), a neurotoxin carried in several species of fish, provides a

unique means of weakening and desynchronizing these connections. TTX blocks Na+

channels and represses circadian output [69]. Within several days of TTX washout,

phase relationships between SCN cells are restored to match pre-TTX phases [70].
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Figure 3.1: Experimental resynchronization protocol for network infer-
ence . (A) Microscope images taken at four points during the protocol.
(B) Bioluminescence traces from neurons identified within the SCN. Units
are count ×103 per hour. (C) Radial histogram of phase, and calculated
Kuramoto parameter ρ at each of the four locations highlighted in (A) and
(B) [68].
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This brief resynchronization allows for differentiation between tightly-connected cells

and more loosely connected cells, which take longer to synchronize.

For this experiment, SCN were explanted from 7 day old homozygous Per2:Luc

mice housed in 12:12 L:D conditions. TTX is applied, as described in [71], and re-

mains in the meduim for six days of imaging. Examples of this imaging are shown as

Fig. 3.1A. The TTX is then washed out by full-volume medium exchange. Biolumi-

nescence is then recorded for an additional 8-12 days, as the networks reform initial

phase relationships. The full time course for SCN A is shown as Fig. 3.1B. Kuramoto

parameter ρ and a radial histogram of phases at four points along the time course

(corresponding to points demarcated in A and B) are shown in Fig. 3.1C.

The maximal information coefficient (MIC) applies an efficient pairwise binning

algorithm to maximize the mutual information for a pair of trajectories. Mutual

information I(X; Y) is intuitively understood as the reduction in entropy of a discrete

random variable X, H(X), given by observing Y. That is,

I(X; Y) = H(X)− H(X|Y). (3.1)

The entropy H(X) is defined as

H(X) = − ∑
x∈X

PX(x) log PX(x), (3.2)

and the conditional entropy H(X|Y) is defined as

H(X|Y) = ∑
y∈Y

PY(y)
[
− ∑

x∈X
PX|Y(x|y) log

(
PX|Y(x|y)

)]
. (3.3)

Recalling that PX|Y(x|y) = PXY(x, y)/PY(y), the mutual information takes the com-
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mon form

I(X; Y) = ∑
x∈X,y∈Y

PXY(x, y) log
PXY(x, y)

PX(x)PY(y)
. (3.4)

MIC applies a gridding algorithm to X and Y to maximize I(X; Y) with respect to

partitioning. This removes the arbitrary nature of selecting a bin size for finding the

mutual information of sampled continuous random variables, as bin selection affects

raw mutual information score. A limit to bin numbers on X and Y, nx and ny, is

applied to prevent the trivial binning of individual data points. This limit is set to

nx × ny ≤ N0.6, (3.5)

where N is the number of samples, as suggested by [67]. The maximum mutual

information score possible for random variables X and Y given the above binning, is

log min(nx, ny). The MIC is therefore normalized by this value to restrict its range

to [0, 1]. For this study, X and Y are bioluminescence traces from single neurons

within the SCN. Although MIC has received significant criticism for reduced sta-

tistical power, all neurons within the SCN are correlated due to direct or indirect

connections[72]. As such, the p-values associated with MIC are not used, rather, a

between-sample analysis of correlation is used to identify a critical MIC threshold.

3.3 Results and Discussion

The resulting MIC connectivity matrices must be thresholded to provide an adja-

cency matrix of connections within each SCN. A threshold was selected by inferring

connections between cells from every SCN (Fig. 3.2). Connections within the same

SCN (Fig. 3.2A) are considered valid, while connections between SCNs from differ-

ent animals (Fig. 3.2B) are invalid. The strongest connections identified by MIC are
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Figure 3.2: MIC identifies strongest connections within each SCN.
(A) Connections identified within a single SCN are biologically feasible,
whereas connections between distinct SCNs (B) are physically impossible.
(C) An adjacency matrix for all SCNs combined identifies valid regions (a,
b, c) and invalid regions (red X). (D) MIC scores for connections between
cells in each SCN. (E) A pseudo-ROC curve shows that cells in feasible re-
gions are preferentially identified as connected by MIC. Colors along this
curve correspond to heatmap values in (D). This curve is useful in select-
ing a critical MIC threshold. (F) Example network of connections in SCN
A identified with a threshold of mc = 0.98.
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primarily in “valid” regions (Fig. 3.2C,D). A pseudo-ROC of valid vs. invalid con-

nections was then generated (Fig. 3.2E), and a threshold was selected to give a false

positive rate of 0.005. This threshold was then scaled to result in an equal average

node degree for each SCN.

Resulting network properties for each SCN are summarized in Table 3.1. The av-

erage path length is approximately equal to that of a randomly-generated network,

and the clustering coefficient is much greater than that of an equivalent random net-

work. Thus, the network may be classified as “small-world.” Small-world networks

commonly arise in biological systems, as they provide more rapid communication

across larger spatial distances than nearest-neighbor networks.

In Fig. 3.3, it is shown the node degree distribution is best fit with an exponential

fit. The exponential network is similar to a scale-free network in that it has many

nodes with low node degree, and relatively fewer “hubs” of very high node degree.

This network type is highly resistant to random error, as these errors are more likely

to arise in nodes of low importance [73].

When spatially identified, hubs of these SCN networks are preferentially located

in the ventrolateral SCN, also called the “core” (Fig. 3.4). This region has previously

been identified as the primary producer of VIP, and the region which receives light

input to entrain the clock [14]. This core-shell orientation, with hubs primarily in

the core, may result in enhanced synchronization and entrainment properties for the

SCN [60, 76].

This inference method identifies functional connections. In Fig. 3.5, the relation-

ship between functional and physical connections is examined. The SCN resynchro-

nization experiment was performed in silico, using networks of various topologies

and node degrees, and two coupled models of the mammalian circadian network

[51, 77]. The functional network was then inferred and compared back to the phys-
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Table 3.1: SCN Network Characteristics

SCN ncells LSCN Lrand C∆
SCN C∆

rand S∆

A 649 4.63 2.67 0.422 0.027 8.98
B 191 2.88 2.13 0.497 0.098 3.77
C 308 4.00 2.36 0.400 0.058 3.93

Characteristic path length L and clustering coefficient C∆ [73, 74], and S∆ [75] com-
pared between the inferred network and equivalent randomly-generated networks
indicate that the SCN has a small-world topology.
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Figure 3.3: Functional node degree distribution within the SCN . Node
degree distribution is best approximated with an exponential fit. Proba-
bility P(k) of a node having degree k is plotted vs. node degree k. Linear
fit on semilog plot R2 = 0.69.
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Figure 3.4: Heatmap of neuronal node degree in each SCN . (A) The
SCN has been previously understood to have a core-shell structure. (B-D)
Heatmaps show neurons with many connections are preferentially located
in the central regions of the SCN. Node size and color are proportional to
log k.
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Figure 3.5: Area under the ROC curve (AUC) for three simulated net-
work types, inferred by MIC . (A) Random, (B) linear, and (C) Watts-
Strogatz β = 0.1 small-world networks were simulated with stochastic
coupled circadian models, then inferred. Average AUC values are shown
for a three state circadian model [77], and the VIP model as described in
Section 2, for 100-cell networks with varying average node degree. This
demonstrates limits on the ability of MIC to relate functional connections
to underlying physical connections.
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ical network. Area under the ROC curve (AUC) is used as a metric to determine

ability to infer connections in these networks. Results show that the method loses

the ability to detect physical connections in random and highly-connected networks.

In these networks, indirect physical coupling is often identified as direct functional

connections. The SCN networks A, B, and C were also simulated, and inferred via in

silico Per mRNA traces. Average AUC values for these networks were 0.89 and 0.78

for the models from [77] and [51], respectively (Fig. 3.6).
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Figure 3.6: Area under the ROC curve (AUC) for the inferred network
types. . The inferred networks were simulated with two models, (A) from
[77], and (B) from [51]. Moderately high ROC values indicate that our
functional connections are largely consistent with the underlying physical
connections.
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Chapter 4

Kinetic Monte Carlo Simulations in

Python with GillesPy 1

4.1 Background

Low gene and protein copy numbers within cells has been shown to result in intrin-

sic stochastic fluctuations in concentration. These fluctuations have been implicated

in a variety of unique cellular constructs, such as noise-induced oscillators or toggle

switches, and have been shown to play a role in cell differentiation and decision mak-

ing [78, 79]. Stochastic noise cannot be captured by traditional ODE models, which

accurately describe molecular dynamics only in the high-concentration limit. Instead

of integrating ODEs, stochastic simulation algorithms (SSAs) solve a chemical mas-

ter equation (CME) consisting of probabilistic propensities, and return an ensemble

of solution trajectories, each of which represents a single possible solution to the

evolution of the system over time.

1Portions of Section 4 will appear as: J. H. Abel†, B. Drawert†, A. Hellander, and L. R. Petzold,
“GillesPy: A Python Package for Stochastic Model Building and Simulation,” in Proceedings of Founda-
tions of Systems Biology in Engineering 2015, Boston, MA, August 2015.
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Since the definition of the CME, there have been many algorithms developed to

simulate or approximately simulate the CME. The first and simplest of these, the

“direct method,” was first presented by D.T. Gillespie in 1977 [34]. Since then, ad-

ditional methods have been developed to reduce the high computational cost of ex-

plicit simulation of the CME, including the optimized direct method (ODM), the

next-reaction method (NRM), the composition-rejection method, and τ-leaping [80–

83]. The StochKit2 suite of C-based SSAs provides a command-line interface to these

solvers, and simulates stochastic models defined in .xml format [50].

In the process of model building, fitting, and simulation, it became necessary to

write a Python module for simple and efficient stochastic model construction and

simulation. It was decided that this module would be expanded for general release

as the high-level interface to the StochKit SSAs (StochKit has a low-level command

line interface, and StochSS provides a GUI). GillesPy (a portmanteau of Gillespie and

Python) is a resulting package for building and simulation of stochastic biochemical

models in Python.

4.2 Using Gillespy

GillesPy is designed in a straightforward, object-oriented format in order to simply

and efficiently create models. Model construction in GillesPy is performed using

the gillespy.model object. Parameters (with values), species (with initial condi-

tions), and reactions (either mass-action, or with a custom propensity function) are

then attached to the model object. The model object may be output as .xml to use

with StochKit at the command line, or instead simulated directly in Python through

the gillespy.StochKitSolver object. This object is created with a model, the time

of simulation, and any of the other StochKit-available simulation options (includ-
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ing interval, realizations, specified solver). A simulation is performed by calling

StochKitSolver.run(model,**kwargs). The trajectories are returned in the form of

a Numpy array for further processing. This allows stochastic simulations in GillesPy

to be included in larger computational projects with ease, and allows the use of other

third-party data analysis or modeling tools. An example for using this package in a

simple dimer formation and degradation system is included in the Appendix.

4.3 Distribution

This package has since been incorporated into the PySB Python framework for mod-

eling in systems biology as the method for performing stochastic simulations [84].

GillesPy is designed for use with Linux or Mac OS X, and is freely available under

GPL version 3 at http://github.com/GillesPy/gillespy.
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Future Directions

5.1 Temporal Separation in SCN Signal Processing

Intercellular coupling in the mammalian brain is achieved through a variety of means,

from rapid electrical stimuli, to slow neuropeptide signaling cascades. The differ-

ences in these physical processes results in a temporal separation in signal transmis-

sion. Electrical signals are transmitted in seconds, while neuropeptide signals may

take minutes to even hours to process. This separation also results in frequencies

propagating at varying amplification, depending on the dynamics of the coupling

pathway and the frequency of the input signal. It is therefore possible to determine

the temporal scale at which a neuronal signalling pathway is active by applying a

frequency domain analysis.

This is evident from a simple thought experiment, in which we treat each step

along a signalling pathway as a continuous stirred tank reactor (CSTR). Mathemati-

cally, a coupling pathway with two reactions and a pair of CSTRs are equivalent, as

the representation for input x1, intermediate x2, output x3 and kinetic rate parameters
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k would be:

dx2

dt
= f (x1, x2, k)

dx3

dt
= f (x2, x3, k)

(5.1)

where f consists of kinetic rate equations. For linear f , these equations form a linear

time-invariant (LTI) system, and solution of this system is trivial for a wide range of

signals via transfer function formulation [85]. Nonlinear systems may be linearized

about a steady-state in order to apply equivalent analyses with reasonable accuracy.

As with a cascade of CSTRs, this hypothetical biochemical signaling pathway forms a

low-pass filter. In real biological systems, signaling cascades are more complex. Non-

linear Hill-type or Michaelis-Menten kinetic equations are often used to capture these

cellular dynamics [86]. Initial studies of biochemical pathways have highlighted the

importance of signal filtering properties in understanding the dynamics of cellular

processes, however, few systems have been studied in any depth [87, 88].

Circadian systems present an additional challenge: they are not time-invariant,

invalidating the steady-state assumption. Circadian systems could instead be lin-

earized about pseudo-steady states at a range of phases, under the assumption that

the clock moves slowly relative to the speed of the pathway. To validate that this

transfer function linearization corresponds to the actual dynamics of the limit cycle

oscillator, we can compare the linearized analytic solution to the results of simulat-

ing a perturbation in the system. The frequency response can then be determined by

applying a Fourier transform at perturbation frequency to the perturbed input and

the system output, and constructing a Bode magnitude plot.

In Fig. 5.1, we compare these results for two simple circadian models. Fig. 5.1A

uses a simple first-order LTI system to demonstrate the accuracy of constructing a

Bode plot via simulation and applying the Fourier transform. Because the system
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Figure 5.1: Signal processing in the SCN. Frequency domain analysis pro-
vides a method of analyzing coupling dynamics in the SCN. (A) a simple
first-order LTI model validates the Fourier transform method of finding
the gain. (B) Normalized transfer function dynamics of intercellular cou-
pling in the model from [89]. The linearized analytic solution is plotted
as a range of values, as it varies with phase. Weighted mean is shown
as a darker line. This model is second-order. Dashed line represents the
natural frequency of the oscillator. (C) Transfer function dynamics of in-
tercellular coupling in the model from [77]. This model is first-order. (D)
Comparison of analytic solution regions for these models, showing low-
pass filter shape.
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is LTI, the analytical solution is exact. The deterministic simulation results at 20

frequencies lie on the analytic solution, confirming that this method is accurate. In

Fig. 5.1B and C, the analytic and deterministic simulation solutions for two mod-

els of coupling in the circadian clock are compared. The shaded regions represent

the range of analytic solutions, which are phase dependent, and the solid line is the

weighted average of these regions. The natural (circadian) frequency of each oscilla-

tor is normalized to 1.0 and identified with a dashed line. Fig. 5.1B is the solution to

a second-order model from Gonze et al., 2005 [89], and Fig. 5.1C is the solution to a

first-order model from Schroder et al., 2012 [77]. Both models predict that coupling

in the SCN forms a low-pass filter, in which slow scale perturbations are propagated

at a much higher amplitude. The analytic approximation and simulation results also

show reasonable agreement at frequencies ∼ 5 times that of the oscillator. At these

frequencies, the pseudo-steady state hypothesis is more accurate. In Fig. 5.1D, the

analytical solution regions are compared for models from B and C. Although the

transfer function models of the system are of different orders, there is significant

overlap and consistency in overall frequency response properties. Most importantly,

this result provides clear support for the damping of high-frequency signal along

the SCN synchronization pathway, which may be important in filtering errors and

stochastic noise in single-cell rhythms.

This analysis could theoretically be expanded to additional models and pathways,

and also experimental data, to determine the role of each coupling pathway between

cells in the SCN by temporal function. Furthermore, this could be applied to any

limit cycle oscillator model, which are common in models of neuron populations.

Additional analyses should also be performed to determine a theoretical bound on

error in linearization of the coupling pathway, and for limit-cycle systems in general.

Furthermore, this methodology could be applied to stochastic systems and interest-

46



Chapter 5. Future Directions

ing non-circadian biochemical pathways.

5.2 Growth and Development of the Suprachiasmatic

Nucleus 1

In continued collaboration with the Herzog lab, work has begun to examine the onset

of rhythmicity and synchrony in the SCN during development. The gestation period

of the common mouse is approximately 20 days, designated E(mbryonic day)1-20.

Little is known regarding how the SCN develops and circadian rhythms are gener-

ated during this period. It has been recently shown that rhythms begin around day

14-15.

Fig. 5.2 contains initial results for developmental days E13-E17, a time thought

to be critical in development of the SCN. Over this four-day period cells within the

SCN become both rhythmic and synchronized, with the onset of rhythmicity around

day E14.5-E15.5, and synchrony and period length stabilized by day E15.5. SCNs

explanted from fetal mice were too small to identify individual neurons, instead, a

pixel-based analysis was performed. Pixel regions of interest (ROI) were determined

to be rhythmic if the detrended trajectory had its largest Lomb-Scargle periodogram

peak, p < 0.05, for a period between 18 and 32 hours [90]. Detrending was performed

via discrete wavelet transform by removing the lowest frequency (trend) bin (periods

> 128hr). A cosinor analysis was alternately performed, and showed comparable

results. Phase φ, and Kuramoto synchrony parameter ρ, were calculated via a dis-

crete wavelet detrend, restricting signal to the 16-32hr period range, then applying a

Hilbert transform [68]. This initial result is highly interesting, but clearly does not

1This work was performed in collaboration with A. Sun, V. Carmona, and E. D. Herzog, Depart-
ment of Biology, Washington University in St. Louis. All experimental work was performed by the
Herzog lab.
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A

B
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Figure 5.2: Development of the SCN. (A) Distribution of cycle lengths
for all ROIs for the example SCNs shown in (B). The tightening of the
distributions for E15.5 and E17.5 is indicative of oscillations stabilizing
potentially due to intercellular communication. (B) Mean period of each
ROI within the SCN. As cells begin to communicate, the period across the
SCN stabilizes. (C) Fraction of ROI rhythmic at each developmental day
(mean ± S.D.). Most SCNs become rhythmic at E15.5, but with significant
variation due to different development rates of different samples. It is not
until E17.5 that all ROI become rhythmic. (D) Also in day E15.5, mean
SCN cycle-to-cycle variability decreases (mean ± S.D.), and (E) mean ROI
period length reaches its final value (mean± S.D.). (F) Mean SCN period is
shown to increase with the fraction of ROI rhythmic ( f ) until approaching
a final value of approximately 24.5 hours.
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provide a complete explanation of network development.

These preliminary results will be expanded both in theory and experiment. The-

oretically, the synchrony of each SCN will be examined, and tests for changes while

the SCN is plated (growth under observation) will be performed. Experimentally,

staining for neuropeptides will be performed, in order to implicate a mechanism for

achieving synchrony of the fetal SCN. In the future, the network structure should

also be examined, although a new method will be required, since TTX experiments

are likely too harsh for the fetal SCN. This work provides a strong starting point for

understanding the development of the SCN.

Future goals for this project include determining period-to-period variability, am-

plitude, and precision of oscillation throughout the stages of development. Staining

for the presence of VIP and potentially GABA will be used to relate the onset of

rhythmicity and synchrony to the production of specific neuropeptides implicated in

circadian coupling. A more ambitious goal is inferring the network structure as the

fetus develops, to determine how neuronal networks grow. It is thought that initial

synchrony in the network is achieved before functional synapses are fully developed,

and that multiple, possibly-redundant modes of synchronization are involved [91].

However, no detailed single-cell examination of the developing SCN network has

been performed to date.
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Appendix

S1 Example for Constructing and Simulating a GillesPy
Model

import scipy as sp
import numpy as np
import matplotlib . pyplot as plt

import sys
sys.path. append (’../ ’)

import gillespy

class parameter_changing_model ( gillespy . Model ):
"""
This toy example shows how we can simply simulate the same model for
multiple parameter sets. Our model consists of the following reactions :

0 -> S1
S1 + S1 -> S2

S2 -> 0

So S1 being produced , dimerizing , and being degraded .
"""

def __init__ (self , parameter_values =None ):

# Initialize the model .
gillespy . Model . __init__ (self , name=" simple1 ")

# Parameters
k1 = gillespy . Parameter (name=’k1 ’, expression = parameter_values [0])
k2 = gillespy . Parameter (name=’k2 ’, expression = parameter_values [1])
k3 = gillespy . Parameter (name=’k3 ’, expression = parameter_values [2])
self. add_parameter ([k1 , k2 , k3 ])

# Species
S1 = gillespy . Species (name=’S1 ’, initial_value =100)
S2 = gillespy . Species (name=’S2 ’, initial_value =0)
self. add_species ([S1 , S2 ])

# Reactions
rxn1 = gillespy . Reaction (

name = ’S1 production ’,
reactants = {},
products = {S1 :1} ,
rate = k1 )

rxn2 = gillespy . Reaction (
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name = ’dimer formation ’,
reactants = {S1 :2} ,
products = {S2 :1} ,
rate = k2)

rxn3 = gillespy . Reaction (
name = ’dimer degradation ’,
reactants = {S2 :1} ,
products = {},
rate = k3)

self. add_reaction ([ rxn1 , rxn2 , rxn3 ])

if __name__ == ’__main__ ’:

# Here , we create the model objects . We have two different parameter
# sets:

set1 = [100 , 0.1 , 0.1]
set2 = [100 , 0.001 , 0.1]

# For set #2, dimers (S2) form much less readily .

set1_model = parameter_changing_model ( parameter_values = set1)
set2_model = parameter_changing_model ( parameter_values = set2)

num_trajectories = 100

# Let ’s simulate for both parameter sets , and compare the results
set1_trajectories = gillespy . StochKitSolver .run( set1_model ,

number_of_trajectories = num_trajectories )
set2_trajectories = gillespy . StochKitSolver .run( set2_model ,

number_of_trajectories = num_trajectories )

# PLOTTING RESULTS
# here , we will plot all trajectories with the mean overlaid
from matplotlib import gridspec

gs = gridspec . GridSpec (1 ,2)
alp = 0.1 # alpha value

# extract time values
time = np. array ( set1_trajectories [0][: ,0])

# Plot for parameter set #1
ax0 = plt. subplot (gs [0 ,0])

set1_S1 = np. array ([ set1_trajectories [i][: ,1] for i in xrange ( num_trajectories )]).T
set1_S2 = np. array ([ set2_trajectories [i][: ,2] for i in xrange ( num_trajectories )]).T

#plot individual trajectories
ax0.plot(time , set1_S1 , ’r’, alpha = alp)
ax0.plot(time , set1_S2 , ’b’, alpha = alp)

#plot mean
ax0.plot(time , set1_S1 .mean (1) , ’k--’, label = "Mean S1")
ax0.plot(time , set1_S2 .mean (1) , ’k:’, label = "Mean S2")

ax0. legend ()
ax0. set_xlabel (’Time ’)
ax0. set_ylabel (’Species Count ’)
ax0. set_title (’Parameter Set 1’)
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# Plot for parameter set #2
ax1 = plt. subplot (gs [0 ,1])

set2_S1 = np. array ([ set2_trajectories [i][: ,1] for i in xrange ( num_trajectories )]).T
set2_S2 = np. array ([ set2_trajectories [i][: ,2] for i in xrange ( num_trajectories )]).T

#plot individual trajectories
ax1.plot(time , set2_S1 , ’r’, alpha = alp)
ax1.plot(time , set2_S2 , ’b’, alpha = alp)

#plot mean
ax1.plot(time , set2_S1 .mean (1) , ’k--’, label = "Mean S1")
ax1.plot(time , set2_S2 .mean (1) , ’k:’, label = "Mean S2")

ax1. legend ()
ax1. set_xlabel (’Time ’)
ax1. set_title (’Parameter Set 2’)

plt. tight_layout ()
plt.show ()

0 5 10 15 20

Time

0

100

200

300

400

500

Sp
ec

ie
s 

C
ou

n
t

Parameter Set 1

Mean S1
Mean S2

0 5 10 15 20

Time

0

100

200

300

400

500
Parameter Set 2

Mean S1
Mean S2

Figure S1: Gillespy simulation example. Direct output from the above
code, showing simulation of two ensembles of 100 trajectories, each with
differing parameterization.
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