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Abstract

Determining Phase Stability in the Co-Al-W System

using First Principles Methods

Philip C. Dodge

Co-based superalloys are a promising new material for high strength, high tempera-

ture applications due to their γ-γ′ microstructure. Within the Co-Al-W ternary system,

the γ′ phase manifests as an L12 structure in a small temperature range. Determining

the thermodynamic stability of the L12 phase relative to other phases in this system is

important for guiding the alloy development process. Density functional theory allows

the direct calculation of free energy for these phases. The configurational energy com-

ponent of the energy for the L12 structure was calculated via a cluster expansion, and

the vibrational energy component for all structures was calculated in the quasiharmonic

approximation. The results show that the L12 structures become stable at 600K and

increase stability at higher temperatures, which has not been shown in previous work.

The purpose of this thesis is both to show the encouraging research results in the

Co-Al-W system, and also to be a useful guide for performing first principles calculations

and connecting theory, VASP usage, and the utilization of the CASM code.
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1 Introduction

1.a Turbine blades & superalloy development

The turbine blades inside jet engines and natural gas stationary power generators expe-

rience some of the most extreme man-made environments. Air and fuel are compressed

by fans before being ignited right before the turbine section of the engine. The job of

the turbine blades is to turn this high-pressure, high-temperature explosion into useable

energy, be it thrust or electricity. The spinning blades result in high tensile stresses.

The combination of high temperature and high stresses creates a perfect environment

for creep to occur. Thus, one of the main goals for material selection of the bulk of the

turbine blade is a material’s ability to avoid creep.

Nickel superalloys have been the premier choice in this application for many decades.

With its high melting temperature of 1455◦C , nickel is an excellent base for a high-

temperature alloy. Nickel superalloys’ unique microstructure allows it to operate at 90%

of its melting temperature in chemically extreme environments [1]. This microstructure,

called γ-γ′ , may be thought of as a brick and mortar structure consisting of a cuboidal

γ′ phase with a relatively softer γ phase surrounding the bricks. Under deformation, the

narrow γ channels are thought to restrict the motion of dislocations, resulting in high

strength and excellent creep properties.

The fuel efficiency of a turbine engine increases with its operating temperature. This

provides tremendous financial incentive to develop turbine blades that can operate at

higher and higher temperatures. Significant alloy development in the past 60 years has

resulted in+300◦C operating temperatures. Figure 1 shows the creep lifetime for the

many nickel superalloys developed in the past decades, and also shows the decelerating

advancements in temperature. These latest alloys are reaching the fundamental limit of

nickel’s melting temperature.
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Figure 1: Creep life for selected nickel-based superalloys by year of development. The different
point shapes refer to, by increasing temperature: wrought, conventionally cast, directionally
solidified, and single crystal alloys.

Figure 2: Electron micrograph of Co-9Al-7.5W
alloy showing (a) dark-field image and (b) se-
lected area diffraction pattern [2].

In 2006, Sato et al. [2] discovered that

a Co-9Al-7.5W alloy exhibited the same γ-

γ′ microstructure as the nickel superalloys.

This sparked a new wave of research, en-

couraged by cobalt’s +40◦C melting tem-

perature advantage over nickel. Figure 2

shows a dark-field micrograph of the γ-γ′

microstructure in a Co-alloy, where the γ′

cuboidal particles are seen in clear contrast

to the dark γ . The discovery of this same

γ-γ′ microstructure means that Co-based

superalloys may be a direct competitor to current Ni-based superalloys. However, with

less than ten years development in Co superalloys, much more basic research is required.

In previous years, alloy development would consist of many laborious tests and an

iterative experimental process of adding/subtracting alloying additions over the course

of decades of research. The advent of computational methods allows us to gain a greater
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understanding of the underlying processes governing an alloy system, as well as the

ability to sample a large compositional space in a reduced amount of time. Density

functional theory allows us to explore the relative stability of phases relevant to Co-

based superalloys, based on first principles rather than experimental inputs.

1.b Co-Al-W Ternary System

From Sato et al. [2] we know that the γ-γ′ microstructure occurs in the Co-Al-W ternary

system. At present, there is great debate about whether the γ′ phase in this system is sta-

ble or metastable [3]. Because the γ′ phase is so critical to the high temperature mechan-

ical properties of a superalloy, its stability relative to other phases is important to under-

stand.

Figure 3: Experimental phase diagram of the
Co-rich portion of the Co-Al-W ternary system
at 1173K [2].

Figure 3 shows an experimental Co-Al-W

ternary phase diagram with γ′ occuring

in a small sliver of compositional space.

It also shows some important phases that

show up in this system. The γ phase is an

fcc solid solution, while the γ′ phase has

an L12 structure. An L12 structure is an

fcc cell with the corner atoms replaced by

an alloying addition(s), in this case Al and

W. Figure 4 shows an image of this L12-

Co3(Al,W) cell. The experimental phase

diagram appears to indicate some solubil-

ity of Co on the corner, “B”, sublattice, because the L12 phase exists at >75% total

Co.

Also present in Figure 3 is the D019-Co3W phase, with a hexagonal-based unit cell.

The B2-CoAl phase is based off of a bcc cell. Not shown is the hcp-Co phase. The
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hcp-Co phase is experimentally found to be stable below 690K [4] but undergoes an hcp

to fcc transition above this temperature. The µ phase shows up in experiments but is

not within the compositional space of the L12 phase, so it is ignored in this work. It has

a complicated, very non-cubic 13 atom primitive cell.

Figure 4: L12-Co3(Al,W) unit cell
with variable Al-W sublattice at cor-
ners.

Understanding the thermodynamic stability be-

tween all these phases is an important first step in

establishing a computational framework for work-

ing in this, and other Co-based, alloy systems. In

any phase, there are three energy contributions that

usually dominate: the formation energy, the config-

urational energy, and the vibrational energy. The

first is the energy difference between a compound

and its constituent elements alone. The configura-

tional energy exists based on the solubility of al-

loying additions in a structure. The vibrational energy is the action of phonons in the

material: the main source of thermal energy present when a phase is at elevated tem-

perature. Being able to calculate these energy contributions computationally will give

critical insight into the relative thermodynamic stability between all these phases.

2 Basic Structures

This section introduces basic VASP usage and how to calculate formation energies.

2.a VASP Introduction

The Vienna Ab Initio Simulation Package (VASP) is the computer program used to

perform our first principles DFT calculations. The program has incredible depth and
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there is significant documentation available online1. The software is regularly updated

(calculations in this paper were performed using either VASP version 5.3.3 or 5.3.5,

released in 2012 and 2014 respectively). VASP is often installed onto computing clusters,

allowing multiple calculations to be performed simultaneously or a single calculation to

be parallelized across multiple processors.

VASP requires a minimum of four input files: INCAR, KPOINTS, POSCAR, and

POTCAR. The INCAR file contains most of the setting for a calculation, which are

denoted in the form of capitalized INCAR “tags” (or “flags”). There are many flags,

all with descriptions and options detailed in the VASP manual. Below are detailed the

important INCAR flags used in these calculations, examples in the case of calculating an

fcc-Co structure, and a description of their use:

SYSTEM = Co FCC The system name appears in various output files.
PREC = Normal Influences the precision of the calulations. “Accurate” is

critical for phonon calculations.
ENCUT = 400 The energy cutoff for the system; generally 1.5*ENMAX

(found in the POTCAR files). Increasing this only in-
creases computational time, while decreasing this can cause
cutoff errors.

LREAL = .FALSE. Determines if the calculations are performed in reciprocal
space (false) or real space (true). All calculations in this
these performed in reciprocal space.

ISMEAR = 1 Always stayed at “1” for these calculations.
SIGMA = 0.2 Always stayed at “0.2” but it is important to set SIGMA

such that T×S <1 meV/atom (see Starting Structures sub-
section).

NSW = 0 The number of ionic relaxation steps. “0” entails a “static
run” , where no ionic relaxation will take place. For non-
zero values, this serves as the maximum number of ionic
relaxation steps performed before the calculation stops.

IBRION = 2 Determines how ions are updated and moved: “2” was al-
ways used in these calculations.

ISIF = 3 Determines which degrees of freedom are allowed to change.
“3” allows the most freedom: ions can relax, and both the
cell shape and cell volume can change.

1https://www.vasp.at/index.php/documentation
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ISPIN = 2 Performs spin-polarized calculations. This is essential for
systems that may have intrinsic magnetic moments, such
as cobalt alloys. Increases computational time, but does
not change end results for calculations that do not require
spin-polarization.

MAGMOM = 3*2 3*(number of ions).
EDIFF = 1.0E-4 The allowed error in the total energy needed for electronic-

step convergence. For high precision calculations, “1.0E-7”
was used.

IALGO = 38 Determines the algorithm used to optimize the band struc-
ture. Many of the larger structures required “48” to be
used to avoid critical errors.

The POSCAR file contains the lattice vectors and atomic positions for the starting

structure. The format and description is given for the primitive B2-CoAl structure:

B2-CoAl Name.
1.00 The scaling factor for the cell.
2.86 0.00 0.00
0.00 2.86 0.00 Lattice vectors.
0.00 0.00 2.86
Co Al Elements of the structure.
1 1 Number of each element.
Direct The atoms are placed at fractions of the lattice vectors.
0.00 0.00 0.00 Co is placed at the origin.
0.50 0.50 0.50 Al is placed at the center of the cell.

The KPOINTS file determines the reciprocal lattice grid upon which calculations are

performed. The format and description for a B2-CoAl structure:

k-points for CoAl Name.
0 Sets the k-points to be generated automatically.
Gamma The grid with be centered at the Gammapoint in reciprocal

space. Used for all these calculations.
9 9 9 Number of grid spacings in each direction.
0 0 0 Allows the mesh to be shifted. Always zeros in these cal-

culations.

The POTCAR file contains the pseudopotential data for the DFT calculations. All

these calculations were performed using projector augmented wave (PAW) potentials

with parameters from Perdew, Burke, and Ernzerfhof (PBE). For structures with multiple
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elements, the individual POSCARs are concatenated based on their order in the POSCAR

file.

2.b Starting Structures

The six important structures in these initial investigations are hcp-Co, fcc-Co, B2-CoAl,

D019-Co3W , bcc-W, and fcc-Al. Each phase’s crystal structure and experimental lattice

parameters can be found from various sources, with an especially useful reference being

the Materials Project[5]. It can be useful to build these structures using visualization

tools such as VESTA2. Also, it is important that the structures be in their primitive form.

For example, the conventional and primitive POSCARs for fcc-Co are given below:

Co FCC conventional Co FCC primitive
1.00 1.00
3.52 0.00 0.00 0.00 1.76 1.76
0.00 3.52 0.00 1.76 0.00 1.76
0.00 0.00 3.52 0.00 0.00 3.52
Co Co
4 1
Direct Direct
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.50 0.50
0.50 0.00 0.50
0.50 0.50 0.00

Using the primitive form minimizes errors and aids in manipulating the structure in

future calculations.

Choosing the correct number of k-point grid spacings is essential for ensuring sufficient

precision. A k-points convergence test should be performed for every primitive structure.

This involves running a number of static calculations (NSW=0) with increasingly larger

values of k-point spacing. As seen in Figure 5, the energy for CoAl converges to a value

of -6.030 eV/atom at sufficiently high numbers of k-points. The k-point grid is deemed

converged when the energy difference between different successive k-point runs is <0.5

meV/atom. This ensures that any calculations will be independent of the number of

2http://jp-minerals.org/vesta/
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k-points chosen. During these calculations, it is important to keep the entropy low.

While DFT calculations are meant to take place at 0K, numerical concerns determine

that the calculations are performed at slightly elevated temperature then shifted back to

0K. The >0K entropy present (T×S) should be small, and is determined by the smearing

parameter (INCAR flag SIGMA). This manifests itself in the energy difference between

the calculated energy and the shifted energy (F vs E0 in the OSZICAR energy output

file). The value of T×S should remain <1 meV/atom. SIGMA=0.2 was sufficient in all

these calculations.

Figure 5: K-point convergence test for CoAl. A k-point grid with 3375 (153) k-points was
chosen for high precision calculations.

K-point selection is more complicated in structures with non-cubic symmetry. The

reciprocal lattice vectors in k-space are the inverse of the real-space lattice vectors, so the

ratio between k-point spacings in each direction should be the inverse of the real-space

ratios. For example, the D019-Co3W structure has a hexagonal unit cell with lattice

constants a = 5.1Å and c = 4.1Å, resulting in a ratio c
a

= 0.8. A good choice for the
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k-point grid spacings would be 8×8×10. The result should be a k-point grid that has

roughly equal reciprocal-length spacing in each direction.

2.c VASP Relaxation

To find the true ground state energy of a structure, it must be fully “relaxed”. With full

freedom of movement (ISIF = 3), VASP can nudge the atoms in a structure to achieve

a lower energy state. When allowed to relax (NSW>0), the structure can converge to

the lowest energy state where there are no residual forces. Some structures, especially

structures with a large number of atoms, can take many ionic steps to converge ( 10-

100+). Structures should be successively re-relaxed until they converge in only three

ionic steps. Then a static run is performed to get the ground state energy.

Sometimes, fully relaxing a structure can result in breaking the symmetry of the crys-

tal. Structures that are unstable may relax down to a more stable orientation. However,

any mechanically stable structure should relax to its ground state, even if it is thermo-

dynamically metastable (ex. fcc-Co metastable above hcp-Co). Some structures may

not converge for various reasons. In this case, an alternative relaxation algorithm can be

tried (IBRION tag), or the original POSCAR file may need to be reevaluated.

2.d Formation Energies

The ground state energies outputted by VASP need to be converted into formation en-

ergies. The formation energy is the energy difference between a compound and its con-

stituent elements alone; a stable compound will have a negative formation energy. For

our ternary system, the equation for formation energy is:

Ef (xAl, xW ) = E0(xAl, xW )− xAlE
Al
0 − xWEW

0 − (1− xAl − xW )ECo
0 (1)
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where xAl and xW are the atomic fractions of Al and W, and EAl
0 , E

W
0 , and ECo

0 are the

ground state energies for fcc-Al, bcc-W, and hcp-Co respectively. The single-element, 0K

stable structures of fcc-Al, bcc-W, and hcp-Co that make up the endpoints of the ternary

phase diagram naturally have a formation energy of zero. Different ways of performing

DFT calculations may result in a systematic shift in the ground state energies, so using

formation energies ensures reliable comparison. The ground state energies and formation

energies for the important phases are given below:

Table 2: Energies for phases in the Co-Al-W system, meV/atom. Also comparison to published
calculations.

Ground state Formation calculated Formation [5]
hcp-Co -7 108 0 0
fcc-Co -7 089 19 20
fcc-Al -3 745 0 0
bcc-W -13 013 0 0
B2-CoAl -6 031 -604 -603
D019-Co3W -8 665 -80 -81

The convex hull is the energy surface that connects the stable structures in composi-

tional space. For this ternary system, and in the compositional domain relevant to this

paper, the convex hull exists as a plane connecting hcp-Co, B2-CoAl, and D019-Co3W .

This means that the lowest energy state within this domain is a three phase mixture of

hcp-Co, B2-CoAl, and D019-Co3W .

3 L12 Pseudobinary & Cluster Expansion

3.a Methods

From the experimental phase diagram of the Co-Al-W ternary system, Figure 3, we expect

that the all-important γ′ phase may only be stable in a small region of compositional

space. The L12 structure has two sublattices: the corner atoms and the face centers.
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The composition of the L12 phase found experimentally predicts that there is Al or W

at the corners with some solubility of Co on these sites. This corresponds to the shaped

region of Figure 6. To start out, it is much easier probe along a pseudobinary line, where

the corner lattice sites are restricted to hold only Al or W (the dotted line in Figure 6.

Figure 4 shows the unit cell of this pseudobinary L12 structure which will have varying

amounts of Al and W in the corner positions. Thus, the initial goal is to obtain the

formation energies for the L12-Co3(Al,W) pseudobinary, and compare it to the convex

hull formed by the fcc-Co, D019-Co3W , and B2-CoAl phases.

Figure 6: Schematic Co-Al-W ternary
phase diagram showing the important
phases. The shaded region indicates
the compositional space where the L12
structure may occur. The dotted line
shows the L12-Co3(Al,W) pseudobi-
nary line.

There are an infinite number of unique con-

figurations that have the L12 structure and exist

along this pseudobinary line. Two different struc-

tures that have the same composition may have

vastly different energies due to their local ordering.

The solution to this problem comes to us through

statistical mechanics: macroscopic thermodynamic

properties are linked directly to the energy of mi-

crostates through a partition function. For exam-

ple, at constant T, P and concentration, the Gibbs

free energy is G = −kT lnQ, where the partition

function

Q =
∑
s

exp

(
−Es

kBT

)
(2)

This sum is over all accessible microstates and Es is the energy of a particular microstate,

s. These microstates exist in every degree of freedom available to the system, which

can include configuartional, vibrational, electronic, magnetic, strain, or others. Two

important papers by Anton Van der Ven [6] [7] describe cluster expansion Hamiltonians
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and their use in thermodynamic and kinetic simulations. These effective Hamiltonians

use the DFT results from a limited number of microstates to predict the energy of any

other microstates within the given degrees of freedom. Monte Carlo simulations can

then be performed on these effective Hamiltonians in order to calculate thermodynamic

averages by sampling a large number of microstates. A thorough understanding of this

topic should be gained by reading the two papers above.

The CASM program enables the use of these effective Hamiltonians and Monte Carlo

simulations in a highly automated fashion. CASM documentation details the use of the

code, but an overview of the steps used to perform these specific calculations is given

here. The three initial files required are the PRIM, SPECIES, and CSPECS. The PRIM

is the primitive unit cell that will be manipulated to generate microstates/supercells. Its

structure is almost identical to a POSCAR. For the L12-Co3(Al,W) pseudo-binary cluster

expansion, the PRIM is given below:

Gamma prime Co3(Al,W) Name
1.000 Scaling factor
3.576 0.000 0.000
0.000 3.576 0.000 Lattice vectors
0.000 0.000 3.576
1 3 Number of each species
Direct
0.000 0.000 0.000 Al W This lattice site is a configurational degree of freedom, oc-

cupied by either Al or W
0.000 0.500 0.500 Co Lattice coordinate occupied by Co
0.500 0.000 0.500 Co Lattice coordinate occupied by Co
0.500 0.500 0.000 Co Lattice coordinate occupied by Co

This primitive cell was created by building an L12 2x1x1 supercell (eight atoms,

Co6Al1W1) and fully relaxing it to get the primitive lattice parameters. A 9×9×9 k-

point grid was chosen based on a k-point convergence test. The SPECIES file contains

the atomic masses and starting guesses for the magnetic moments, used to generate the

proper INCAR files:
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Al W Co
mass 26.982 183.84 58.933
magmom 0 0 2.0

The CSPECS file establishes the cutoff radii for the cluster functions used to fit the

effective Hamiltonian:

Gamma Prime Name
cluster size within sphere radius

2 15.0 Cutoff radius for pair clusters
3 12.0 Cutoff radius for triplet clusters
4 10.0 Cutoff radius for quadruplet clusters clusters

These CSPECS parameters resulted in one point cluster (the Al-W sublattice site), 17

pair clusters, 75 triplet clusters, and 100 quadruplet clusters; this is sufficient for a good fit

to the effective Hamiltonian in a binary system. From here, CASM is used to generate 3-

dimensional supercells up to a certain size (contained in the “SCEL” file) and the resulting

configurations that can be made from these supercells (in the “configuration” file). Using

clusters to generate structures removes the structures that are symmetrically equivalent,

resulting in unique structures being used to fit the effective Hamiltonian. Supercells up to

size six (24 atoms) were generated, resulting in 143 unique configurations spread across

13 different compositions (including the endpoint structures, Co3W and Co3Al). The

CASM code automatically generates the necessary INCAR, KPOINTS, and POTCAR

files for each configuration (based on the respective files from the primitive cell).

3.b Configurations

The 143 unique configurations were relaxed until their energy converged. If any configu-

rations could not converge they would have been thrown out, but that did not occur in

these calculations. All the configurations were checked to ensure that they retained their

fcc-related symmetry, and had not relaxed to a different crystal structure. The forma-

tion energies were calculated based on Equation 1, and are plotted in Figure 7a. Also

plotted in Figure 7a is the line created by the convex hull intersecting the pseudobinary.
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If any configurations fall below this line, “breaking” the convex hull, then the L12 phase

is stable in that configuration. However, all the L12 configurations lie above this line,

so the lowest energy state along this pseudo-binary is a three-phase mixture of hcp-Co,

B2-CoAl, and D019-Co3W .

(a) (b)

Figure 7: (a) Formation energies for the 143 L12 configurations; the line indicates the pseudo-
binary intersection with the convex hull. (b) Stability energy for the 143 L12 configurations.

In our quest to find an L12 structure that is stable, it use useful to define a new energy

term that describes the energy difference between the L12 phases and the convex hull.

This “stability energy” is defined below and plotted in Figure 7b:

Estab(xW ) = Ef (xW )− 1

2
(1− xw)ECoAl

f − xWECo3W
f (3)

where xW is the volume fraction in Co3(Al1−x,Wx) and ECoAl
f and ECo3W

f are the for-

mation energies for B2-CoAl and D019-Co3W respectively. More generally, the stability

energy in the ternary system is given by
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Estab(xW , xAl) = Ef (xW , xAl)− 2xalE
CoAl
f − 4xWE

Co3W
f (4)

where xW and xAl are the volume fractions in Co1−xW−xAl(AlxAl,WxW ). From Figure 7b,

we can see that most stable structure is on the W-rich side of the pseudobinary line, and

is only ∼ 25 meV/atom above the convex hull. This is an interesting result because the

γ′ phase tends to appear experimentally with almost equal amounts of Al and W.

3.c Hamiltonian fitting & Monte Carlo

The coefficients that make up the Hamiltonian require fitting from the energy of the

individual structures calculated in DFT. It must be determined which basis functions

of the cluster expansion are significant to include, and then the coefficients must be

determined by a least-squares fit. The important basis function coefficients are referred

to as effective cluster interactions (ECIs). The fitting process is performed by a genetic

algorithm[8] that determines the optimal set of cluster expansion basis functions and

fits them. The fitness of the genome produced by the genetic algorithm is judged by

its cross-validation (CV) score [9]. It is the average error of the predicted energy for an

excluded configuration,

CV 2 =
1

N

N∑
i=1

(
Ẽi − Ei

)2
(5)

where Ei is the formation energy of configuration i, and Ẽi is the energy predicted for

configuration i by the fitted Hamiltonian with configuration i excluded. A properly

performed genetic calculation results in a low CV score, i.e. a cluster expansion that is

able to predict any given structure’s energy with a high degree of accuracy. Running the
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genetic optimization algorithm resulted in a final basis set comprised of 25 clusters with

the CV score of the ECIs being 0.45 meV/atom. This resulting basis set consisted of

zero-order, first-order, two pair, 10 triplet, and 11 quadruplet clusters.

Since we are now able to calculate a structure’s energy with low computational cost

by using the fitted Hamiltonian, the next step is to perform Monte Carlo simulations

to determine the macroscopic thermodynamic properties. The MC simulations are per-

formed between -100 and 1500◦C in increments of 100◦C. The calculations add alloying

additions of Al and W in a 12×12×12 simulation cell, with the energies calculated by

using the cluster expansion. The chemical potential data is obtained once MC energetic

equilibrium is achieved. This chemical potential is integrated across concentration, re-

sulting in free energy. This configurational energy componenent at finite temperature is

an important contribution to the total energy landscape. However, at 0K, the smooth

configurational energy curve is not much lower than the individual structures shown in

Figure 7a. Since line compounds have no configurational entropy, the fcc-Co, B2-CoAl,

and D019-Co3W phases cannot be compared at nonzero temperature yet. In order to

compare the relative stabilities of all the phases at elevated temperature, the vibrational

energy component of the total energy must be calculated for all phases of interest in the

system.

In experiments, we know that the L12 structures are only potentially stable in a small

range of elevated temperatures. In order to explore this system at higher temperature, the

energy contribution due to lattice vibrations must be included in our calculations. This

energy contribution can have a large effect on the relative stability between phases. As

seen in the next section, vibrational calculations are based off the primitive cell of a phase.

But these L12 structures exist across a range of concentrations and innumerable struc-

tures. In order to calculate the vibrational energy contribution that the L12-Co3(Al,W)

structures experience, the endpoints of the pseudo-binary line are chosen as primitive L12

structures. The vibrational energy contribution may be different between the L12-Co3Al
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and L12-Co3W structures, so the assumption is made that the vibrational energy of any

structure on the pseudobinary line is derived from the rule of mixtures. That is,

Fvib(xW , T ) = xWF
L12−Co3W
vib (T ) + (1− xW )F

L12−Co3Al
vib (T ) (6)

3.d Results

From statistical mechanics, we can calculate an upper limit for the magnitude of the

configurational energy contribution in the L12-Co3(Al,W) structures:

Gmix(T ) =
1

4
kBT

∑
i

xiln(xi) (7)

where xi is the atomic fraction of species i on the B sublattice of L12 , in this case Al

and W. The comparison between the calculated and upper limit for the configurational

energy is shown in Table 3. These numbers show that the L12 structures will be stabilized

by configurational energy, but alone will not be enough to render L12 stable relative to

the convex hull.

Table 3: Ideal vs calculated configurational energies at different temperature for the
Co3Al0.5W0.5 structure.

Temperature Ideal Configurational Energy Calculated Configurational Energy
(◦C ) (meV/atom) (meV/atom)

0 0.0 0.0
300 -8.6 -4.5
600 -13.0 -8.6
900 -17.5 -12.9

1200 -22.0 -17.2
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4 Vibrational Energy - Phonons

4.a Theory

The vibrational energy carried by phonons in a material can be a significant portion

of a phase’s internal energy at elevated temperature. The simplest analysis regarding

phonons is called the harmonic approximation and assumes that an atom undergoing

motion in a phonon experiences a restoring force that is proportional to its displacement.

The derivation of the harmonic approximation is given below and is used to obtain the

Helmoltz free energy: the free energy at constant volume.

Summarizing from Kundu [10], the Hamiltonian of a vibrating crystal is given by

H =
∑
nli

Mn

2
u̇2i (n, l) +

1

2

∑
nli

∑
ml′j

φij

m, n

l, l′

ui(n, l)uj(m, l
′), (8)

where the first summation is the kinetic energy, the second summation is the potential

energy, and

φij

m, n

l, l′

 =

(
∂2U

∂ui(n, l)∂uj(m, l′)

)
0

(9)

Here, Mn is the mass of the nth atom, ui(n, l) is a small displacement of the nth atom

in the lth cell along the ith direction, i, j represent components of the Cartesian coordinate

axes and U is the ion-ion interaction potential. Moreover, φij(m,n; l, l′) is defined as the

force acting on the nth atom in the lth cell along the ith direction due to a displacement

of the mth atom in the l′th cell along the jth direction. From Newton’s second law, the

equation of motion of the nth atom in the lth cell is given by

Muüi(n, l) = −
∑
ml′j

φij

m, n

l, l′

uj(m, l
′). (10)
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We can see that by displacing atoms and then calculating the resulting force ma-

trix acting on other atoms in the cell (φij), we can set up a force balance. From the

translational symmetry of a crystal the small displacement can be written as

ui(n, l) = M
− 1

2
n uin exp[i~k · ~Rn(l)] (11)

where uin is the amplitude of vibration along the ith direction of the nth atom, ω is the

angular frequency, k is the wave vector, and ~Rn(l) is the position of the nth atom in the

lth cell. Further,

ω2uni =
∑

m, jDij(mn, k)umj (12)

where Dij(mn, k) = (MmMn)−1/2
∑

l φij

m, n

l, l′

 exp(−i~k · ~Rn(l)) (13)

is the dynamical matrix which contains all the information regarding the vibration of the

lattice. As seen in Equation 13, the dynamical matrix is the Fourier transform of the

force constants, with the square of the eigenvalues of this matrix giving the frequency of

the normal modes of oscillation in the crystal.

The thermodynamic properties are calculated from the frequencies. It is useful to

summarize the information from the dynamical matrix by calculating the phonon density

of states, which gives the number of modes of oscillation having a frequency ν:

g(ν) =
1

N

3N∑
m=1

δ(ν − νm). (14)

It can be shown that the Helmholtz free energy of the system is given by [11]

Fvib

N
=
E∗

N
+ kBT

∫ ∞
0

ln

[
2 sinh

(
hν

2kBT

)]
g(ν)dν (15)
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where E∗ is the potential energy of the system at its equilibrium position and h is

Planck’s constant.

4.b Quasiharmonic approximation

Because the harmonic approximation is performed at constant volume, the calculations

do not take into account thermal expansion. This shortcoming alters the true energy of

the phases, especially at higher temperatures. At elevated temperatures, we know that a

structure will want to hydrostatically expand, so the constant volume Helmholtz energy

essentially has an artificial strain energy associated with it. At elevated temperatures,

the expanded structure will have lower energy. The solution to this problem is the

quasiharmonic approximation. This involves generating Helmholtz energy curves at non-

equilibrium volumes and finding the lowest energy path with temperature, resulting in

the Gibbs free energy curve. Mathematically, this is calculated as

G(T, p) = min
V [E0(V ) + Fvib(V, T ) + pV ] (16)

where E0 is the ground state energy and p is the pressure (zero in all these calculations).

These Gibbs free energy curves will allow a more accurate comparison between phases

at elevated temperatures.

The vibrational free energy is ultimately derived from the force-constant tensors (φij).

With a variety of simplifying assumptions, these force-constant tensors can be determined

using a managable number of atomic perturbations[12][13]. Specific atoms are chosen to

be perturbed slightly in a specific direction with the highest degree of dimensionality.

This minimizes the number of DFT calculations required while maintaining an accurate

result. This method requires the creation of a supercell from the primitive cell, with one

atom in the supercell perturbed away from its equilibrium position. The force response of

the atoms to the perturbation is calculated using DFT, with the resulting force-constant
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tensor given by

F (i) = φiju(j). (17)

The perturbation selection process is mostly automated by CASM, but supercell

selection is dictated by the user. The next section details the full process of obtaining

vibrational free energy data.

4.c Methods

A very well relaxed primitive cell is essential for producing an accurate result. Be-

cause calculations rely on determing the forces caused by just a small perturbation in

a supercell, even just minute variations away from true equilibirum can cause spurious

results. This requires high precision relaxation: INCAR tag PREC=ACCURATE and

EDIFF=1.0E-7. The latter tag sets a very low tolerance for achieving convergence during

the electronic relaxation steps. During minimization, errors in the energy are of second

order in the minimization parameters, while the errors on the forces are of the first order.

If any significant residual forces remain after relaxation, this can cause major errors in

subsequent calculations. The force vectors are found at the end of the OUTCAR file and

should, for a converged cell, have a magnitude of <1 meV/Angstrom. Forces on atoms

due to the perturbations are around ∼ 10 − 50 meV/Angstrom in our calculations, but

will vary considerably with perturbation magnitude.

Careful thought must be put into constructing the supercells for vibrational calcu-

lations. Since the DFT calculations are based on an infinite crystal utilizing periodic

boundary conditions, supercells must be sufficiently large such that the perturbed atom

does not interact with itself. Ideally a very large supercell would be used, but the com-

putation time increases rapidly with cell size. A supercell size convergence test should be

performed for each phase. Supercell shape is also important: the supercells should be as
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“cubic” as possible. This is trivial for structures with cubic supercells, but requires cre-

ativity for more complex geometries. A clever trick for finding the most cubic/spherical

supercells is to find the surface area to volume ratio. If the cell is a parallelepiped defined

by the lattice vectors ~a,~b,~c, the surface area to volume ratio is,

SA

V
=
|~a×~b|+ |~b× ~c|+ |~c× ~a|

|~a · (~b× ~c)|
(18)

The supercells chosen for our important phases are shown in Table 4.

Another factor in supercell generation is the choice of k-points. The k-point grid of

the supercell should keep the same reciprocal space grid length as the k-point grid of

the primitive cell. This requires that the supercell size divide the primitive k-point grid

evenly. Keep in mind that the k-point grid must also pass a k-point convergence test.

The k-point grids chosen are shown in Table 4.

Table 4: Supercell size specifications for phonon calculations.

atoms/cell prim k-grid supercell size supercell k-grid total # atoms
hcp-Co 2 15×15×10 3×3×2 5×5×5 36
fcc-Co 1 21×21×21 3×3×3 7×7×7 27
B2-CoAl 2 15×15×15 3×3×3 5×5×5 54
D019-Co3W 8 10×10×12 2×2×2 5×5×6 64
D019 -Co3Al 8 10×10×12 2×2×2 5×5×6 64
L12-Co3W 4 22×22×22 2×2×2 11×11×11 32
L12-Co3Al 4 22×22×22 2×2×2 11×11×11 32

To start using CASM for vibrational energy calculations, a PRIM file is required.

The PRIM is simply the CONTCAR file from the high-accuracy primitive cell relaxation.

CASM will analyze the primitive cell and calculate prospective supercells and appropriate

atomic perturbations (perturbations with the highest degree of dimensionality should

be chosen). Next, the desired supercell is inputted and the perturbation magnitude is

selected. A perturbation magnitude of 0.01 Angstroms was chosen for all structures

(see Appendix A for an analysis of the perturbation magnitude). The CASM code will

then generate the required supercells with their respective perturbations. The code
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is generally good about choosing an appropriate number of perturbations to calculate,

however, additional perturbations can be generated and included in the calculations if

required.

Using VASP, the forces are calculated with a static run (NSW=0). As these supercells

are large in size (27-64 atoms), have high density k-point grids, and are calculated with

high precision and a small convergence cutoff, these calculations can be computationally

taxing.

After forces are calculated in VASP, the CASM code is used to fit the force constants,

generate the dynamical matrix, and ultimately produce thermodynamic data. These

calculations require additional input files: KPOINTS LINE and KPOINTS MESH. In

reciprocal space, each Bravais lattice has a unique Brillouin zone that is defined by its

symmetry. In these Brillouin zones, there are lines of highest symmetry that trace out

the irreducible Brillouin zone. The most interesting phonon information is captured by

isolating the frequencies along these high-symmetry k-paths. Setyawan and Curtarolo

[14] give the coordinates for the high symmetry points in the Brillouin zones of all 14

Bravais lattices. The KPOINTS LINE file contains the coordinates for the k-point path.

The KPOINTS MESH file defines the k-point grid density of the Brillouin zone that is

used to calculate the phonon density of states and the thermodynamic information. A

grid dimension of 50×50×50 was chosen for the hcp-Co, fcc-Co, and B2-CoAl structures

while a 30×30×30 grid was chosen for the D019-Co3W , D019-Co3Al , L12-Co3W , and

L12-Co3Al structures.

The important outputs from these calculations are the dispersion curves, density of

states, and thermodynamic data. The dispersion curve for fcc-Co is shown in Figure

8 and displays the three acoustic phonon modes for the structure. Since fcc-Co is a

single element structure, it only has acoustic modes. In contrast, the dispersion curve

for B2-CoAl is shown in Figure 9 and shows six total phonon modes. This follows the

3N rule, where N is the number of atoms in the primitive cell, and there will be three
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acoustic modes and 3(N − 1) optical modes. The three acoustic modes should always

have zero frequency at the Γ point (the center of the Brillouin zone) and the three optical

phonon modes in CoAl describe the interaction of the Co and Al atoms. All frequencies

are positive, indicating a stable structure (see Appendix B for scenarios with negative

frequencies).

Figure 8: Dispersion curve for fcc-Co along the fcc Brillouin zone k-point path.

Figure 9: Dispersion curve for B2-CoAl along the simple cubic Brillouin zone k-point path.

When the frequencies in the Brillouin zone are integrated across their frequency do-
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main, the result is a density of states (DOS) (Equation 14). This DOS can also be

separated into its consituent parts by projecting the eigenvector of each basis atom onto

the DOS, resulting in the partial density of states. Figure 10 shows the partial DOS

for B2-CoAl. It shows that most of the Co-derived frequencies happen at lower frequen-

cies, while the Al-derived frequencies occur at higher frequencies. This is likely due to

aluminum’s much lower atomic mass resulting in higher frequencies. Summing the two

partial DOS together reveals the total DOS for CoAl. This DOS is used to generate the

finite temperature thermodynamic information.

Figure 10: Partial and total phonon density of states for B2-CoAl.

The energy that results from these calculations is the constant volume Helmholtz

energy. This includes the zero point energy present at 0K, so the starting energy is posi-

tive but decreases monotonically and is concave down with increasing temperature. Also

calculated is the heat capacity and the vibrational entropy as a function of temperature.

4.d Gibbs Free Energy Calculations

Calculating the Gibbs free energy curves requires about ×10 more computational time.

Helmholtz energy curves must be created at a variety of non-equilibrium volumes. The

primitive cells are first scaled to the desired non-equilibrium volumes. These cells must

then be relaxed, allowing for small changes in cell shape and ion position, but no changes
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in cell volume (INCAR tag ISIF=4). It is critical that the residual forces in these cells

are negligible. If the cell relaxes a large amount, to a different crystal structure, then

the scaled cell is likely mechanically unstable and the system may experience a true

structure transition at this volume. However in some calculations, small relaxations occur

in scaled structures. In some cases, the slightly relaxed cells broke the symmetry of the

primitive cell. This is a tolerance issue in CASM and was solved by increasing the global

tolerance. This caused CASM to consider the scaled cells to have the same symmetry as

the equilibrium cells, which is essential for calculating the quasiharmonic approximation.

The scaled cells are then used to created supercells with the same perturbations as the

equilibrium cell. For example in D019-Co3W , Helmholtz energy curves were calculated

for nine volumes. These were -2% to +6% of the equilibrium volume, in intervals of 1%.

If these energies are plotted as a function of volume at a specific temperature, Figure 11 is

the result. These energy versus volume curves fit nicely to a parabola. By a least-squares

regression, a smooth energy curve can be fit for energy vs volume at each temperature,

thus creating our Fvib(V, T ) energy landscape. By applying Equation 16 and minimizing

the energy with respect to volume, the lowest energy path across this energy landscape

can be found, producing the Gibbs free energy curve.

Figure 11: Helmholtz energy vs volume for D019-Co3W at 100K, 500K, and 900K. The indi-
vidual data points are plotted along with the fitted parabola.

Because the energy vs volume data fits to a parabola, the volume with tempera-

ture increases linearly, i.e. a constant coefficient of thermal expansion. The calculated
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coefficients of thermal expansion are given in Table 5,

4.e Relative Vibrational Energies

Table 5: Calculated coefficients of
thermal expansion.

Phase CTE(x10E-6/K)

hcp-Co 12.96

fcc-Co 12.87

B2-CoAl 10.08

D019-Co3W 9.01

The vibrational contribution to the Gibbs free en-

ergy curves for fcc-Co, B2-CoAl, and D019-Co3W are

shown in Figure 12a. This indicates how the rela-

tive stability of the phases changes with temperature.

Fcc-Co and D019-Co3W show similar temperature de-

pendence, with fcc-Co being slightly more stable. B2-

CoAl is significantly less stabilized by vibrational en-

ergy. (While the cause for this is unknown, it is an

encouraging result because the formation energy of

B2-CoAl is otherwise very low, so any destabilization of CoAl bodes well for the relative

stability of the L12 phases.)

(a) (b)

Figure 12: Vibrational Gibbs free energy curves calculated from the quasiharmonic approxima-
tion for (a) fcc-Co, B2-CoAl, and D019-Co3W and (b) L12-Co3W and L12-Co3Al .

Figure 12b shows the relative stability between the L12 endpoint structures. This

shows that they start out at the same energy, but the L12-Co3Al structure is more

stabilized by vibrational energy as the temperature increases. This indicates that as the
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temperature increases, Al-rich L12 structures will experience more stabilization relative

to W-rich L12 structures. Comparing Figures 12a and 12b, we can see that the fcc-Co

and the L12 phases are most stabilized by vibrational energy.

The Gibbs free energy difference between hcp-Co and fcc-Co is quite small at every

temperature. The transition temperature where fcc-Co becomes stable occurs at 1190K

according to these calculations. The experimental transition temperature is at 690K[4],

significantly lower. Appendix C explains a possible reason for this difference.

5 Results: L12 stability

Combining the configurational and vibrational energy calculations together gives a much

more complete picture of the energy landscape and allows us to compare the continuum

of L12 structures to the convex hull composed of hcp-Co, B2-CoAl, and D019-Co3W . This

combined free energy as a function of tungsten composition and temperature is given,

G(xW , T ) = E
L12
f (xW ) +

∫ xW

0

µWdxW +Gvib(xW , T ). (19)

The energy fot the three line compounds looks similar, but omits the configurational

energy term. As calculated in Equation 4, the stability energy of the L12 phases is their

energy compared to the three phases at the corners of the convex hull. If the stability

energy is negative, this indicates that the L12 structure is more stable than a three-phase

mixture of hcp-Co, B2-CoAl, and D019-Co3W . We know that at 0K, the lowest energy

L12 structure has a stability energy of 27 meV/atom at a composition of Co3Al0.2W0.8.

As the temperature increases, the L12 structures become more stable compared to the

hcp-Co, B2-CoAl, and D019-Co3W phases. Figure 13a shows that the L12 phase becomes

stable at 600◦C . Above this temperature, the L12 phase continues to gain stability and

the compositional domain of the stable L12 phase grows. At 900◦C (Figure 13b), the most

stable L12 exists at a composition of 69.5% W on the B sublattice, which is relatively
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close to experimental findings.
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Figure 13: L12 free energy vs the three-phase mixture of hcp-Co, B2-CoAl, and D019-Co3W at
(a) 600◦C and (b) 900◦C .

5.a Comparison to other works

No other simulations have found the L12 phases becoming stable relative to the three-

phase mixture of fcc-Co, B2-CoAl, and D019-Co3W . However, this is the first published

study that includes both configurational energy in the form of a cluster expansion and

vibrational energy results calculated using the quasiharmonic approximation. Both of

these calculations increased the stability of the L12 phases relative to the three-phase

mixture.

Saal and Wolverton [15] performed a first principles study on the Co-Al-W system.

They calculated the formation energies and lattice vibration energies (in the harmonic

approximation) for the important phases in the system. For the L12 phase, they used a

special quasirandom structure (SQS) at a composition of Co3(Al0.5,W0.5). At 0K, the L12

SQS had an energy 66 meV/atom above the convex hull. They found that vibrational

effects stabilized the L12 structure by 27 meV/atom at 1200K, a less dramatic effect than

our results. With the inclusion of configuration entropy (-18 meV/atom) and the thermal
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excitation of electrons (-10 meV/atom), the L12 structure was only 11 meV/atom above

the convex hull at 1200K. Our calculations used the quasiharmonic approximation and

used a cluster expansion rather than an SQS for our analysis, which could explain the

discrepancy between our results.

Xu et al. [16] calculated lattice vibrational energy by the quasiharmonic phonon

approach for the related L12 structures, Co3(M,W) (M = Al, Ge, Ga). They, however,

did not relate their results to the other important phases in their systems, so could not

comment on the relative stability of the L12 phases. This study also calculated the energy

contribution due to the thermal excitation of electrons, and found that it had a small

effect on the total energy.

5.b Shortcomings & Future Work

There are assumptions made in these calculations that may effect the true nature of the

energy landscape. First, the fcc-Co, B2-CoAl, and D019-Co3W phases were considered

line compounds. From Figure 3, it is obvious that this assumption is not true exper-

imentally. The phase diagram indicates that while there is negligible solubility of the

D019-Co3W phase, there is some solubility of W and Al in the fcc-Co phase and a large

amount of solubility of Co in the CoAl phase. Full calculations of the effects of this

solubility on the energy is beyond the scope of this study, but preliminary calculations

by Rob Rhein [17] indicate the effects of solubility in the B2-CoAl are negligible.

Second, the phonon calculations become less accurate at higher temperatures. High

temperatures increase the importance of anharmonic effects, which could alter the sta-

bility energy.

Third, these calculations do not include energy contributions from the exitation of

electrons at elevated temperature or other magnetic effects (beyond spin-polarization).

While these contributions are likely to be much smaller than the configurational and

vibrational components of free energy, they could still affect the relative stability.

30



Fourth, comparing experimental findings to calculated results is fraught with poten-

tial problems. These calculations do not include strain, kinetics, or the effects of trace

alloying additions. Experimental results often contain non-equilibrium compounds, in-

dicating that the energy difference between stable and metastable compounds may be

slight. These caveats may explain the dramatic stability of our calculated L12 phase

when compared to previous calculated results and experimental studies.

Future work will explore the Co-Al-W system in greater detail. This includes a ternary

cluster expansion, rather than just a binary cluster expansion along the L12 pseudobinary

line. This requires ternary cluster expansions in the full phase space for each expected

structure: fcc, hcp, and bcc just to start. The ternary cluster expansions will give a much

clearer picture of the true energy landscape, and better insight into where low energy

structures may lie. Solubility should also be explored in phases that were treated as line

compounds in this study.

It is also important to look at stabilizing alloying additions for the L12 structure.

While the results in this paper are encouraging, work needs to be done to increase the

phase space and temperature range where the γ-γ′ microstructure can be created, as

well as increasing the L12 solvus temperature. Based off the work in Ni-based superalloy

development, experimental work is being performed in Co systems to look at the effects of

Ta, Ge, Ga, Ti, Ni, and other elements. Computational work has already been performed

on the effects of Ta [18] and other additions.

6 Conclusion

The results presented in this study indicate that a range of L12-Co3(Al,W) structures are

stable in the Co-Al-W system. By using first principles methods, formation energies were

established for hcp-Co, fcc-Co, B2-CoAl, and D019-Co3W structures. CASM, developed

by the Anton Van der Ven group, was used to generate L12-Co3(Al,W) structures along
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the pseudobinary line between Co3W and Co3Al. These structures were used to create a

cluster expansion and calculate the configurational energy contribution to L12 structures

due to the solubility of Al/W on the L12 B sublattice. The vibrational energy contribu-

tions were calculated in the quasiharmonic approximation using the CASM code. The

results show that the L12 structures first become stable relative to a three phase mixture

of hcp-Co, B2-CoAl, and D019-Co3W at 600K, and continue to become more stable with

increasing temperature.

While these results are the first to indicate stability of the L12 structures, no previous

calculations have been performed using both the quasiharmonic approximation and a

cluster expansion. The stability of the L12 phase shows that Co-based superalloys are

an encouraging alloy system for the development of high strength, high temperature

materials.
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A Perturbation Magnitude

The magnitude of the perturbation used to generate the phonon data can have a large
effect on the results. The default perturbation magnitude is 0.01Å because that is the
magnitude chosen in many earlier works [19][9]. The 0.01Å was chosen for silicon cal-
culations, but is thought to work well for other metals and transition metals. For some
applications much larger perturbations, on the order of 0.1Å, are needed.

To explore the effects of the perturbation magnitude, Gibbs free energy curves were
constructed via the quasiharmonic approximation for hcp-Co and fcc-Co structures. Per-
turbation magnitude ranged from 0.01 to 0.04Å in intervals of 0.01Å. The larger per-
turbations resulted in higher gibbs free energies, but the effects were very small: at
1200K, the 0.01Å perturbation energy was only 1 meV/atom lower than 0.04Å perturba-
tion energy. When comparing the hcp-Co and fcc-Co energies, the changes in transition
temperature were negligible.

These results indicate that the perturbation magnitude has little impact on the vi-
brational energy results in this system.

B Dispersion curves

The frequencies resulting from a phonon calculation must be positive for the data to be
valid. This comes from the symmetry inherent to the crystal. From Kundu [10], the
dynamical matrix is defined

Dij(mn, k) = (MmMn)−1/2
∑
l

φij

(
m, n

l, l′

)
exp(−i~k · ~Rn(l)). (20)

This matrix is hermitian, i.e. Dij = DT
ji. This implies that the eigenvectors of the matrix

are real and the resulting frequencies are positive. Non-trivial solutions for the matrix
are obtained only if

|Dij(mn, k)− ω2δijδmn| = 0 (21)

So imaginary eigenvalues and negative frequencies are only obtained if something goes
wrong in the calculations. During the process of this report, a few structures showed
negative frequencies, and required fixes.

The most common problem was small negative frequencies just around the gamma
point. Since the magnitude of the negative frequencies were so small, this indicated that
it was likely a numerical error. This problem was removed by increasing the electronic
convergence threshhold (INCAR tag EDIFF to 1.0E-7) as well as ensuring that the
supercell grid in the phonon calculations was “aligned” with the primitive cell grid.
Accuracy issues could also be caused by too small of a k-point grid (not full converged),
using a not fully relaxed primitive cell to construct the phonon supercells (residual forces
in primitive cell should be < 1meV/Å), or boundary effects from using too small of a
phonon supercell.

Of more concern are phonon results that show large negative frequencies. Figure
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14 gives an example of a dispersion curve for D019-Co3Al that shows a large number
of very negative frequency bands. This indicates that the structure is not mechanically
stable. The D019-Co3Al does not appear experimentally, so it is prone to relaxing to a
different structure. The primitive cell in this case was relaxed using INCAR tag ISIF=7
which allows chance in cell volume but no change in cell shape or the position of atoms
within the cell. This produced a structure that is not mechanically stable, and the atoms
experience a force pushing them towards equilibrium even if a perturbation were not
present. This causes the the severe distortions seen in Figure 14, as the calculations are
indicating phonon modes that do not actually exist.

Figure 14: Dispersion curve for D019-Co3Al created using a poorly relaxed primitive cell.

The solution to this problem was to relax the cell properly: until the residual forces
were small. The residual forces in the cell were on the order of 10meV/Å, far too large
to be considered converged. Allowing just a slight change in cell shape during relaxation
caused the forces to drop to converged levels.

The dispersion curve shown in Figure 14 is dramatic, and most mechanically unstable
cells will show fewer negative bands. It is always important to check the a primitive cell is
converged and that the relaxed supercells have kept the same symmetry as the primitive
cell.

C Magnetic Effects

Results from the Vibrational Energy section show that using the Gibbs free energy curves
calculated using the quasiharmonic approximation result in a transition temperature at
1190K. Experimental results indicate that the transition temperature occurs at 690K
[4]; significantly lower. The energy difference between hcp-Co and fcc-Co at 0K is 19

34



meV/atom according to our VASP calculations. This is quite a small amount of energy,
which implies that small energy effects that are otherwise ignored may play a large role
in the hcp-fcc transition.

Due to cobalt being a ferromagnetic element with an intrinsic magnetic moment, the
alignment of magnetic moments plays an important role in its ground state energy (the
reason for including spin-polarization in DFT calculations). In a ferromagnet, the spin
of the electrons align to produce a net magnetic moment in one direction. We know that
as ferromagnets are heated, their intrinsic magnetic moment decreases until it reaches
the Curie temperature when the net magnetic moment goes to zero. The traditional
theory is that thermal fluctuations cause some spins to flip into an antiferromagnetic
orientation, reducing the net magnetic moment. A more complete theory breaks away
from this binary view and introduces the idea of spin-fluctuations: individual magnetic
moments having a two dimensional vector quality. What results are “spin spirals”, where
transition from “up spin” to “down spin” is shared over multiple atoms. Uhl & Kübler[20]
used DFT to calculate the energies resulting from spin-fluctuations in hcp-Co and fcc-
Co. They concluded that the hexagonal phase of Co is stabilized predominantly by its
intrinsic magnetism, with spin fluctuations and the decreasing magnetization at higher
temperatures restoring the natural tendency of cobalt to be fcc. Using solely the energy
contribution from spin fluctuations, they found the transition temperature to exist at
590K. If we make the assumption that the relative fcc stabilization by spin-fluctuations
goes linearly with temperature, we can calculate the spin-fluctuation energy contribution
to be

Es−f (T ) =
19meV/atom

590K
(T ) = 0.032

meV

atom ∗K
(T ) (22)

This energy contribution can be added to our quasi-harmonic energy calculations and
produces a new hcp-fcc transition temperature of 780K. This result compares favorably
to the experimental temperature of 690K and the 90K difference between our result
and experiment represents 2.6 meV/atom of energy difference. This energy difference
could be within the margin of error for our energy results coupled with Uhl & Kübler’s
calculations. Later papers cover spin-fluctuation theory in greater depth[21][22].

My own rudimentary results qualitatively match up with Uhl & Kübler’s. I produced
a variety of hcp and fcc Co supercells with differing degrees of antiferromagnetism, setting
up a binary-spin cluster expansion. This was done by setting a value in the MAGMOM
tag in the INCAR file to a negative value to represent an anti-ferromagnetic flip. These
calculations are finicky because they disrupt some of the automatic variable-choosing in
VASP. Sometimes the number of bands (NBANDS) is lower than it should be, resulting
in skewed energy values. Most of the hcp Co structures did not converge due to errors
that appeared and remain unresolved. My results indicate that the lowest energy state in
fcc Co was ferromagnetic, and the energy increases with degree of antiferromagnetism up
to the purely antiferromagnetic state. In order to calculate the Hamiltonian representing
spin-fluctuations, the LSORBIT tag must be used in the INCAR file. This allows the spin
axis to be changed. This is the method by which DFT can be used to fit the Hamiltonian
and ultimately the energy landscape representing spin-fluctuations in a material.
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