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Abstract

Estimating Confidences for Classifier Decisions using

Extreme Value Theory

Victor M. Fragoso

Classifiers generally lack a mechanism to compute decision confidences. As

humans, when we sense that the confidence for a decision is low, we either con-

duct additional actions to improve our confidence or dismiss the decision. While

this reasoning is natural to us, it is currently missing in most common decision

algorithms (i.e., classifiers) used in computer vision or machine learning. This

limits the capability for a machine to take further actions to either improve a re-

sult or dismiss the decision. In this thesis, we design algorithms for estimating the

confidence for decisions made by classifiers such as nearest-neighbor or support

vector machines. We developed these algorithms leveraging the theory of extreme

values. We use the statistical models that this theory provides for modeling the

classifier’s decision scores for correct and incorrect outcomes. Our proposed algo-

rithms exploit these statistical models in order to compute a correctness belief:

the probability that the classifier’s decision is correct. In this work, we show how

these beliefs can be used to filter bad classifications and to speed up robust estima-

tions via sample and consensus algorithms, which are used in computer vision for

ix



estimating camera motions and for reconstructing the scene’s 3D structure. More-

over, we show how these beliefs improve the classification accuracy of one-class

support vector machines. In conclusion, we show that extreme value theory leads

to powerful mechanisms that can predict the correctness of a classifier’s decision.
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Chapter 1

Introduction

Humans have developed the ability to assign a confidence to a decision made

under uncertainty before having any evidence about its consequences. Making

decisions under uncertainty is a challenging task because only partial informa-

tion about every possible choice is available. However, when we sense that the

confidence for a decision is low, we either conduct additional actions to improve

our confidence or dismiss the decision. While this reasoning is natural to us, it

is currently missing in most common decision algorithms (i.e., classifiers) used in

computer vision or machine learning. This limits the capability for an intelligent

algorithm to take further actions to improve a result or dismiss the decision.

In many classification tasks in computer vision, only partial knowledge of

some classes of interest is available for training, and unknown classes can be

queried when the system is deployed. For instance, in a biometric recognition

system [5, 35, 49, 51], a classifier decides that a certain user has been recognized
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Chapter 1. Introduction

after scanning the database. However, there may be users without any record

in the system’s database trying to fool the system; it is impossible to collect

information of all the persons in the world. Because several classifiers do not

have a mechanism to detect spurious queries, the biometric recognition system

can mis-recognize users. Clearly, these classification mistakes can lead to security

concerns, e.g., the system can grant access to non-authorized persons.

Another computer vision problem that exposes a similar scenario is the com-

putation of image correspondences given an image pair via local feature match-

ing [1, 27, 28, 33, 41]. The underlying goal in this task is to recognize scene’s

3D points depicted by two images. Finding putative correspondences via feature

matching can be summarized as follows: 1) detect local features (salient patterns)

on both images; 2) compute representations describing every detected feature;

and 3) find feature matches by comparing the representations to recognize the 3D

points. However, local features detected in one image might not be detected in

the other one. In this case, the feature matcher will “confuse” features leading to

wrong correspondences. In structure-from-motion, these confused features makes

the estimation of geometric models from image correspondences slow. Neverthe-

less, the estimation process can use these confidences to select data that is believed

to be correct in order to converge faster to a good model.

2



Chapter 1. Introduction

A mechanism to detect these spurious queries can be implemented following

two steps: 1) calculate a confidence value for a given classifier decision; and 2)

accept the classifier’s decision if its confidence surpasses a threshold. In this work,

we propose algorithms that calculate this confidence value as the probability that

a classifier’s decision is correct. This probability can be interpreted as a quantity

that measures the belief that the classifier’s decision is correct.

Another computer vision application that can leverage confidence values is

the visual recognition task [20, 22, 31, 58]. A common approach for tackling

this problem is to use an ensemble of classifiers, where each classifier is focused

on recognizing a single attribute of a particular class. The ensemble collects

the votes of every classifier in order to produce a single decision. However, the

aggregation of these decisions is not an easy task. This is because interpreting

raw decision scores from every classifier, which often have non-trivial meanings,

is a challenging exercise. On the other hand, confidence values are quantities

normalized ranging from 0 to 1 and have a more intuitive meaning: the closer

to 0, the less likely the decision is correct; and the closer to 1, the more likely

the decision is correct. Therefore, simpler and effective aggregation methods that

leverage these confidences can be devised for ensembles of classifiers.

In this thesis, we describe algorithms for estimating confidence values for the

nearest-neighbor classifier and one-class support vector machines. The algorithms

3



Chapter 1. Introduction

discussed in this work are based on the statistical theory of extreme values. We

leverage the statistical models that this theory provides for modeling the statistics

of the classifier’s decision scores coming from correct and incorrect outcomes.

Our proposed algorithms exploit these statistical models in order to compute a

correctness belief: the probability that the classifier’s decision is correct. We

show how these beliefs can be used to filter bad classifications, and to speed

up robust estimations via sample and consensus algorithms, which are used in

computer vision for estimating camera motions and for reconstructing the scene’s

3D structure. Moreover, we show how these beliefs improve significantly the

classification accuracy of one-class support vector machines. In conclusion, we

show that extreme value theory provides the necessary family of distributions for

developing algorithms that calculate these correctness beliefs.

1.1 Contributions

This thesis makes three main contributions:

1. We introduce two algorithms based on extreme value theory that estimate a

correctness belief for a nearest-neighbor (NN) classifier using Euclidean dis-

tances as decision scores. Our proposed algorithms can be extended without

much effort to a NN classifier using similarities.

4



Chapter 1. Introduction

2. We show how these correctness beliefs are useful for generating non-uniform

sampling strategies for speeding up sample and consensus robust estimators,

e.g., RANSAC. We demonstrate this in the context of estimating homogra-

phies and fundamental matrices from feature correspondences.

3. We present an algorithm based on extreme value distributions for estimating

a correctness belief for the one-class support vector machine (OC-SVM).

We demonstrate that the proposed algorithm is capable of improving the

classification accuracy of these OC-SVMs.

Thesis statement: Extreme value theory provides the necessary family of dis-

tributions to calculate the probability that the decision of a classifier is correct.

These probabilities can be leveraged to improve performance of subsequent pro-

cesses that depend on these decisions.

1.2 How to Read this Thesis

The thesis is organized in such a way that provides the necessary background

for discussing in detail the aforementioned contributions. We review in Chapter 2

the statistical theory of extreme values as well as various classification algorithms,

such as, the k-nearest neighbor classifier, and support vector machines. In Chap-

ter 3, we review prior and related work on different areas, such as, computer vision,

5



Chapter 1. Introduction

image processing, signal processing, pattern recognition, and machine learning,

using extreme value theory. We then introduce and describe the algorithms that

cover contributions 1 and 2 in Chapter 4. In Chapter 5 we describe an algorithm

for computing a correctness belief for the one-class support vector machine, i.e.,

our 3rd contribution. Lastly, we describe our conclusions and future directions in

Chapter 6.

6



Chapter 2

Background

In this chapter we review the required material for developing the discussion

presented in the subsequent chapters. We start by reviewing the statistical theory

of extreme values (EVT). Subsequently, we review several decision algorithms,

used frequently in computer vision and machine learning applications.

Notation. In this thesis we use the following notation:

• Cumulative distribution functions (cdf) are denoted with capital letters, e.g.,

F , and we use distribution in the chapter to refer to cdfs.

• Probability density functions (pdf) are denoted with lower case letters, e.g.,

f , and we use density in the chapter to refer to pdfs.

• Vectors are represented with bold lower case letters, e.g., x.

• Matrices are written with upper case letters, e.g., A.

7



Chapter 2. Background

• Sets are denoted with an upper case calligraphy letter, e.g., X .

2.1 Extreme Value Theory

We review in this section the statistical theory of extreme values and discuss

its main theorems. We begin by describing the two different concepts that define

what an extreme value is, and we finalize with the description of two theorems

describing a family of distributions that model these extreme values.

For both concepts, we assume we are given a sequence of n independent and

identically distributed (i.i.d.) samples {Xi}ni=1 drawn from some distribution F .

The first concept considers an extreme value as a sample that is the lowest or

the highest in the sequence, i.e., mn = mini {Xi}ni=1 and Mn = maxi {Xi}ni=1,

respectively. The second concept considers a sample Xi as an extreme value if it

exceeds a threshold u, i.e., if u < Xi is true.

The general goal of extreme value theory (EVT) is to provide a family of

distributions that model the extreme values produced by a random process [10, 17].

2.1.1 Main Theorems

We first review the classical Fisher-Tippet-Gnedenko Theorem (also known as

the Block-Maxima Theorem) which relates to the first concept of extreme value.

8



Chapter 2. Background
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Figure 2.1: Left: Gumbel pdf (red) modeling the minimum values generated by the
Normal distribution N (6, 1)(blue). Right: Histogram of the minimum values and fitted
Gumbel distribution.

Theorem: 1. Let Xi be a sequence of i.i.d. random variables and let Mn =
max {X1, . . . , Xn} denote the maximum. If there exist sequences of normalizing
constants an > 0, bn ∈ R, and a non-degenerate probability distribution function,
G, such that

P(a−1
n (Mn − bn) ≤ x)→ G(x) as n→∞ (2.1)

then G(x) is of the same type as one of the three extremal-type distributions:
Gumbel, Fréchet, and Weibull.

Theorem 1 intuitively states that the statistics of the maximum value a contin-

uous random process can generate can be modeled by one of the three extremal-

type distributions: Gumbel, Fréchet, and Weibull.

Although Theorem 1 involves maximum values, it can also be used for modeling

the minimum value as we can trivially change a max operator by a min operator,

i.e., max {Xi} = −min {−Xi}; the reader is referred to [10, 17] for a deeper

discussion on this point. In Fig. 2.1 we show the density obtained for the minimum

values of a Normal distribution N (6, 1).

9



Chapter 2. Background

An important implication of Theorem 1 is that regardless of what distribution

F is used to generate the sequence {Xi}, the extreme values can be modeled by

one of the three extremal-type distributions. Thus, for many applications where

the distribution F is unknown, we can still model its extreme values. However,

to determine exactly which of the three extremal-distributions to use, we require

full knowledge of F and a set of domain of attraction tests [9, 10]. Fortunately,

the generalized extreme value distribution (GEV),

G(x;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]− 1/ξ
}
, 1 + ξ

x− µ
σ

> 0, (2.2)

unifies the three extremal-distributions. Thus, we can use the GEV distribution

for modeling the extreme values in a unified manner.

The GEV distribution has three parameters: location parameter µ; scale pa-

rameter σ; and shape parameter ξ. The support of the GEV distribution is

x ≤ µ + σ/ξ, if ξ > 0, or x ≥ µ + σ/ξ, if ξ < 0, where −∞ < µ < ∞, σ > 0, and

−∞ < ξ <∞. The family of distributions when ξ = 0 is obtained by taking the

limit of Eq. (2.2) as ξ →∞:

G(x;µ, σ) = exp

{
− exp

[
−x− µ

σ

]}
(2.3)

where −∞ < x < ∞. The shape parameter indicates the type of extremal-

distribution: Gumbel when ξ = 0; Fréchet when ξ > 0; and Weibull when ξ < 0.

10
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Figure 2.2: Left: Rayleigh distribution and the threshold u that defines the extreme
values as those greater than the threshold u. Right: Model of the exceedance by using
the Generalized Pareto Distribution.

We now review the Pickands-Balkema-de Hann Theorem, which considers an

extreme value as the one exceeding a threshold u.

Theorem: 2. Let Xi be a sequence of i.i.d. random variables with distribution F
such that Theorem 1 holds. Then, for a large enough threshold u, the distribution
function of X − u, conditional on X > u, is approximately

H(x; ξ, σ̄) = P(X − u ≤ x|X > u) = 1−
(

1 +
ξx

σ̄

)− 1/ξ

(2.4)

where σ̄ = σ + ξ(u− µ), and defined for x > 0 and
(
1 + ξx

σ̄

)
> 0.

Theorem 2 intuitively states that the tail of the distribution F can be modeled

by using a family of distributions called the generalized Pareto distributions (GP)

and described by Eq. (2.4). The GP distribution has two parameters: the scale

parameter σ and the shape parameter ξ. In Fig. 2.2 we present the model of the

exceedance (u > 4) of a Rayleigh distribution.

We can obtain different distributions from the GP distribution as a function

of the shape parameter ξ. For instance, the exponential distribution with mean µ

11



Chapter 2. Background

is obtained when ξ = 0; the uniform distribution U [0, µ] is obtained when ξ = 1;

and we obtain the Pareto distribution when ξ < 0.

2.2 A Review of Classification Algorithms

In this section we review two main classification algorithms that are widely

used in computer vision, namely, the nearest neighbor classifier and support vector

machines. The classification methods that we examine in this section belong to

the class of supervised learning algorithms. This means that the dataset used for

training them contains a class label for every instance.

2.2.1 The Nearest Neighbor Problem

The nearest neighbor (NN) problem can be stated as follows: given a query

point q ∈ Rd, a set of reference points pi ∈ P , and a distance d : Rd × Rd → R,

calculate the closest point p? to the query point. The problem can be stated more

formally as follows

p? = arg min
pi∈P

d(pi,q), (2.5)

and can be illustrated as in Fig. 2.3. The NN problem can be seen as a search for

proximal points to the given query and where the distance function d defines the

concept of proximity.

12
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q

p1 p2

p3

d1

q
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p3

d1

Figure 2.3: The closest point p? for a given query point q is determined by the distance
d and the set P. The Nearest Neighbor (NN) problem can be seen as a proximity search
where the distance function defines the proximity concept. Left: NN search using
Euclidean distance. Right: NN search using Mahalanobis distance.

Applications

The NN problem occurs with small variations in a vast number of applications,

such as pattern recognition, computer vision, computer graphics, computational

geometry, databases, coding theory, and many others [2, 65]. We review in this

section a variation of the NN problem, the k-Nearest Neighbor classifier, that falls

in the domain of pattern recognition, and which is widely used in several computer

vision applications, and other classification tasks.

2.2.2 The k-Nearest Neighbor classifier

The k-nearest neighbor classifier (k-NN) is one of the most simple and yet

effective algorithms for example-based classification. The algorithm requires a

pool of feature vectors X , their corresponding class labels Y , and a distance or

similarity function for comparing feature vectors d : X × X → R. The goal of

13



Chapter 2. Background

Algorithm 1 The k-NN Classifier

Require: Training feature vectors X = {x1,x2, . . . ,xN}
Require: Labels Y = {y1, y2, . . . , yN}
Require: Distance d : X × X → R
Require: Parameter k
Require: Query instance q
Ensure: Predicted class label ŷ

1: Find the k closest feature vectors Xk = {xi1 , . . . ,xik} w.r.t. d, where i ∈
[1, . . . , N ].

2: Count the number of feature vectors in Xk, kj, that support the class label yj.
3: Predict ŷ = yj? , where j? = arg maxj{kj}.

this algorithm is to predict a class label ŷ for a given query input q. The k-NN

classifier is summarized in Algorithm 1.

The k-NN classifier first finds the k-closest feature vectors Xk ⊂ X to the query

q using the distance d (Step 1). Subsequently, the classifier counts the number of

feature vectors contained in Xk that support a specific class yj (Step 2). Finally,

the classifier predicts that the query q belongs to the class that produced the

largest count (Step 3). Intuitively, the k-NN classifier decides that the best class

for a given query is the one that provided the largest number of “votes” considering

a subset of k closest feature vectors.

The simplest version of the algorithm is obtained when k = 1, which is known

as the nearest-neighbor classifier (NN). Considering this setup, then the predicted

class for the given query is taken to be the same class to that of the nearest feature

vector. The NN rule performs good when the number of training samples (feature

14



Chapter 2. Background

vectors) is large. It can be shown that as the size of the training set tends to

infinity, i.e., N →∞, then the classification error probability PNN is bounded by

PB ≤ PNN ≤ PB

(
2− M

M − 1
PB

)
≤ 2PB, (2.6)

where PB is the optimal Bayesian error, and M is the number of classes in the

training set. Similarly, for the k-NN classifier we have that its probability of error

PkNN is bounded by

PB ≤ PkNN ≤ PB +

√(
2PNN
k

)
. (2.7)

Hence, we can observe that the performance obtained by the NN and k-NN

classifiers provide a good performance in comparison with the optimal Bayesian

classifier [65]. For this reason, these classifiers are widely used by several applica-

tions in computer vision and pattern recognition.

2.2.3 Support Vector Machines

In this section we review one of the most successful classification algorithms,

namely, the support vector machine (SVM). This algorithm aims to compute a

hyperplane that best separates the data of two different classes. More formally,

given a training set X = {x1, . . . ,xn} and their corresponding class labels set Y =

{y1, . . . , yn}, where yi ∈ {+1,−1}, the SVM algorithm computes a hyperplane

(w, b) such that the margin between the two classes is the largest. The geometric

15
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Figure 2.4: The support vector machine (SVM) computes a hyperplane (continuous
line) defined by a normal vector w and an offset b such that the distance between the
hyperplanes 〈w,x〉+b = 1 and 〈w,x〉+b = −1 is the maximum (right). Samples falling
on the margin are called support vectors. Thanks to the kernel trick, the SVM can map
the samples xi efficiently via the Φ transform to a new feature space (left) wherein the
hyperplane is computed (right). This hyperplane in the original input space yields a
non-linear decision boundary (left).

meaning of the hyperplane parameters are a normal vector w and an offset b.

Before describing how the SVM computes such a hyperplane, we need to review

kernels because they implicitly and efficiently map the samples xi to a new feature

space wherein the SVM computes the separating hyperplane; see Fig. 2.4 for an

illustration of the map and the hyperplane used in the SVM.

Kernels

A very important mathematical tool in SVMs are the kernel functions. These

functions can be interpreted as a similarity measure that can be thought of as a

dot product in some feature space. In this section we only focus on kernels k that
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correspond to dot products in feature spaces H via a map Φ : X → H. Thus, the

kernel function is

k(x,x′) = 〈Φ(x),Φ(x′)〉 . (2.8)

The advantage of kernel functions is that they evaluate the dot product effi-

ciently without computing the map Φ. In other words, the kernel function im-

plicitly evaluates the map Φ and computes the inner product in the new feature

space. An example of a kernel function is the radial basis function (RBF) which

is computed as follows:

k(x,x′) = exp
(
−γ‖x− x′‖2

)
. (2.9)

We now review a pair of definitions that are useful for the subsequent discus-

sion. The first definition we review is Gram matrix or kernel matrix K. Given a

kernel function k : X ×X → K, where K = C or K = R, the ij-entry in the kernel

matrix is computed as follows:

Kij = k(xi,xj), (2.10)

where i and j are indices running over the set X .

The second useful definition is the one describing positive definite kernels.

A kernel is said to be positive definite if the Gram matrix K computed from a

non-empty set X is a positive definite matrix, i.e., zTKz ≥ 0.
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A very important remark is the so called kernel trick. This trick states that an

algorithm using a positive definite (pd) kernel k can be replaced with a different pd

kernel k̃, yielding to a different algorithm. This trick can be very useful because a

learning algorithm can improve its performance by simply using a different kernel.

This trick is very important in SVMs as it allows the algorithm to compute more

elaborate decision functions. The reader is referred to [61] for a deeper and more

rigorous discussion on kernels.

Training a Support Vector Machine

In this section we review the procedure to train a Support Vector Machine

(SVM). The goal of these classifiers is to find a hyperplane (w, b) such that the

margin (or distance) in between two classes (positive and negative) is maximized.

To compute this hyperplane for m samples from both classes, we have to solve

the following optimization problem:

minimize
w,b,ξ

1

2
‖w‖2 + C

m∑
i=1

ξi

subject to yi (〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . ,m,

(2.11)

where yi ∈ {+1,−1} is the label of the i-th sample; ξi is a slack variable compen-

sating for non-linearly separable cases; and C is a parameter. Note that the slack

variables in this problem compensate and penalize those samples that violate the

constraint yi (〈w,xi〉+ b) ≥ 1.
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Cortez and Vapnik [18] showed that the solution to this problem, in the case

when the samples are not linearly separable, computes a hyperplane with the

minimal number of errors, namely, samples violating the inequality constraints.

When the m samples are linearly separable the solution to the aforementioned

problem still is the hyperplane with the largest margin.

This optimization problem (2.11) is solved by means of its dual problem:

minimize
α

1

2
αTY KYα− ‖α‖1

subject to αTy = 0, 0 ≤ αi ≤ C, i = 1, . . . ,m,

(2.12)

where α ∈ Rm is the vector of dual variables (Lagrange multipliers), Y ∈ Rm×m is

the diagonal matrix holding the labels yi, y is the vector holding the labels yi, K

is the Gram or kernel matrix, C is the penalty factor for the slack variables ξi, b is

an offset, and w is the normal of the hyperplane separating the two classes. This

dual problem (2.12) can be solved with a quadratic program (QP) solver. Note

that the dual problem uses the kernel trick to generalize the training procedure.

The solution to the dual problem is a vector α whose entries are mostly zero.

Those non-zero entries of α correspond to the identified support vectors, i.e.,

training samples falling on the margin. The decision function after solving the

dual problem is then computed as follows:

f(x) = sign

(
m∑
i=1

yiαik(x,xi) + b

)
, (2.13)
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-
+

(w, ⇢)

Figure 2.5: The one-class SVM computes a hyperplane normal w and an offset ρ such
that the margin between the origin and the samples is maximized. Thanks to the kernel
trick, the OC-SVM can find non-linear decision boundaries.

where

b =
1

NSV

NSV∑
i=1

yi −
m∑
j=1

yjαjk(xj,xi), (2.14)

and NSV is the number of support vectors. An important observation of the

decision function is that only the support vectors are used to make a classification

decision.

One-Class SVM

We review in this section a support vector machine (SVM) whose goal is to

identify objects of a target class amongst several classes, by learning from a train-

ing set containing only samples from the target class. Under these new training

constraints Schölkopf et al. [62] proposed the one-class support vector machine

(OC-SVM).
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The idea behind this new machine is to find a hyperplane (w, ρ) that separates

with the largest margin the m target class training samples from the origin; see

Fig. 2.5 for an illustration. The optimization problem to find this hyperplane is

minimize
w,ρ,ξ

1

2
‖w‖2 +

1

νm

m∑
i=1

ξi − ρ

subject to 〈w,xi〉 ≥ ρ− ξi, ξi ≥ 0, i = 1, . . . ,m,

(2.15)

where ν is an upper-bound on the fraction of “outliers” and a lower bound on the

fraction of support vectors (SV), and ρ is the offset. The solution to this problem

is computed via its dual problem:

minimize
α

1

2
αTKα

subject to ‖α‖1 = 1, 0 ≤ αi ≤
1

νm
, i = 1, . . . ,m,

(2.16)

which again can be solved using a QP solver. We compute the offset ρ as follows:

ρ =
1

NSV

NSV∑
i=1

∑
j

αjk(xi,xj), (2.17)

and compute the OC-SVM decision function for a given testing sample x is

f(x) = sign

(
m∑
i=1

αik (xi,x)− ρ
)
. (2.18)

Note that the decision function as well as the training procedure use the kernel

trick to generalize the OC-SVM algorithm. Moreover, the decision function only

uses the support vectors, i.e., those i-th samples that hold αi > 0.
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Prior Work Leveraging Extreme
Value Theory

In this chapter we review previous work using extreme value theory (EVT) in

the fields of pattern recognition, computer vision, image processing, and machine

learning. Extreme value theory currently is still finding new applications in these

areas. However, previous work have shown the benefits that this theory can

provide for various applications.

3.1 Computer Vision

Previous work have shown the benefits that extreme value theory (EVT) can

provide to applications such as image search, low-level image processing, visual

search via attributes, among others.
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In the context of image search, Furon and Jégou [30] proposed a confidence

measure for the image retrieval problem based on the generalized Pareto distribu-

tion (GPD). They formulated the image search as an outlier detection problem,

and they introduced a framework based on EVT for detecting outliers. Their

framework produces a relevance score which is normalized in the sense that it is

more consistent across queries.

The calibration of scores (or decision scores) from an ensemble of classifiers

is another problem where EVT can be useful. The calibration process can be

challenging because a meaningful score aggregation function used for making a

decision from different classifier votes is difficult to formulate; these scores can have

unknown and non-trivial meanings. This scenario happens in a visual search task

where attributes describing a query are detected via classifiers. To address this

issue, Scheirer et al. [58] proposed a method based on the Weibull distribution that

calculates a normalized score for every SVM classifier detecting visual attributes.

Their proposed method then searches for an image that maximizes the sum of

these normalized scores.
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3.2 Image Processing

Zografos et al. [70] leveraged the relationship between pixel difference type

of filter functions and the Weibull distribution to propose a framework for low-

level processing of images. An image is mapped to a 2D-Weibull manifold once

it is filtered with a difference-type filter, and because the 2D-Weibull manifold is

known, several operations such as clustering, extrapolations on the manifold, and

others, can be applied easily as opposed to work directly with another feature

space used to represent the image.

Zografos et al. [69] proposed a new set of descriptors based on spatio-chromatic

information for image content descriptors, and showed that the statistics of these

descriptors are well modeled by EVT distributions. Important characteristics,

such as high-frequency textures, uniform and high contrast regions, of large image

datasets become visible in the parametric representation of these descriptors.

3.3 Signal Processing

Extreme value theory has also been useful to estimate a threshold for detectors

in signal processing. Several detectors used in signal processing assume invalid

underlying parameters. As a consequence, the thresholds used for detection are

not optimal and can cause a high false-alarm rate. Broadwater and Chellappa [7]
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proposed an adaptive method to estimate a threshold for detectors using extreme

value distributions. The computed thresholds achieved a low false-alarm rate for

detection problems in signal processing.

Lee and Roberts [39] proposed an algorithm that detects outliers and changes

in a time series. The proposed algorithm combines EVT and a Kalman filter

to detect novel observations as well as to detect state changes of the underlying

process.

3.4 Pattern Recognition

The most relevant work to the methods we present in the subsequent chapter

is the Meta-Recognition algorithm proposed by Scheirer et al. [56]. This algo-

rithm aims to predict when a classifier is correct or incorrect based on the scores

(similarities or distances) that the classifier use for taking the decision. Their

algorithm proposes to use Weibull distribution to model the tail of a process that

produces scores corresponding to incorrect classifications. The score correspond-

ing to the classifier’s outcome is tested using the tail-model. When the tail-model

supports the tested score, the algorithm predicts incorrect decision, and correct

decision otherwise. Scheirer and colleagues showed that in practice the Weibull

distribution performed well for the tasks of object recognition, face recognition,
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and others. As we discuss in Chapter 4, we will show that Rayleigh distribution, a

special case of Weibull distribution, performs similarly or better while being more

efficient to compute.

Scheirer et al. [59] proposed a method for computing scores based on the

Weibull distribution for a recognition system. The method is similar to Meta-

Recognition [56], where the best k scores are considered to model the tail of the

process that generates scores of incorrect classifications. However, instead of using

a recognition score directly (e.g., a distance or similarity), the proposed w-scores

use the probability of being an outlier. Thus, the more likely to be an outlier the

more likely the recognition system is correct.

3.5 Machine Learning

In several applications in machine learning and computer vision classifiers are

trained with a set of known classes. However, in some of these applications there

exist the possibility for the classifier to receive a spurious query,i.e., a sample

from an unknown class during training time. This problem is known as open-set

recognition [60]. To address potential classification errors using support vector

machines (SVM) in this scenario, Scheirer et al. [57] proposed the Weibull-SVM

(W-SVM) algorithm, which exploits the benefits from the statistical theory of
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extreme values to calculate a calibrated SVM score in combination with one-

class and a binary SVMs. In the same spirit, Jain et al. [36] proposed a method

based on EVT for SVMs that accounts for multiple known classes and detects

novel/unknown classes during testing time.

Clifton et al. [16] use a tailored multivariate EVT for the problem of novelty

detection, a problem which consists in detecting “abnormal” samples with re-

spect to a learned “normal” model. Clifton and colleagues proposed a numerical

method for determining the extreme value distribution of a multivariate multi-

modal distribution, which is a transformation of the probability density contours

of the generative distribution of the data. A novelty threshold is used on the

corresponding univariate cdf, which is obtained after applying a proposed trans-

formation, which describes where the most extreme samples produced from the

generative distribution will lie. Clifton et al. [15] later proposed a framework that

extends the generalized Pareto distribution (GPD), which is defined for univari-

ate random variables, for detecting novel samples of probability distributions over

high dimensional spaces.

Obtaining data is sometimes expensive and limited in number in several engi-

neering applications. This problem then limits the capability of estimating various

quantities of interest, such as, extreme multivariate quantiles as well as to esti-

mate probabilities of failure. To address this issue, Piera et al. [44] proposed a
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method that combines one-class SVMs and EVT for estimating extreme multi-

variate quantiles and probabilities of failure.

Previous work has focused on several applications in the areas of pattern recog-

nition, computer vision, image processing, and machine learning. Nevertheless, to

the best of our knowledge the techniques described in Chapter 4 are the first be-

ing applied to image feature matching as well as robust estimations from putative

correspondences. Moreover, the algorithms presented in Chapter 5 are the first

procedures using the generalized Pareto distribution to improve the performance

of one-class SVM classifiers, to the best of our knowledge.
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Chapter 4

Estimating Confidences for the
Nearest Neighbor Classifier

In this chapter we describe how extreme value theory (EVT) can help in pre-

dicting when a nearest neighbor (NN) decision (e.g., a classification or a retrieval

result) is correct or incorrect via the decision confidences. To this end, we assume

that there is a stochastic component in the data the NN classifier uses. This is

a valid assumption specifically for applications where several instances of a single

class present variations due to several factors that are hard to model in a deter-

ministic manner. As an example, consider the face recognition problem, where

several images of a single face can present different illumination conditions and/or

aging variations. All these factors can be seen as the stochastic components in

the data, and thus the entire classification mechanism can be seen as a random

process.
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The common goal of the algorithms presented in this chapter is to compute

a confidence value, which we call belief, whose range is in the closed interval

[0, 1]. The lowest belief (i.e., a value of 0) is a strong indication that the decision

is wrong, while the highest belief (i.e., a value of 1) is a strong indication of

a correct decision. These beliefs can be used in combination of a threshold to

predict if a NN decision is correct or incorrect. We also present in this chapter

algorithms that use these beliefs for “filtering” bad correspondences, computed

using a NN classifier. As shown later in this chapter, these beliefs can also be

used for speeding up robust estimations of models such as homographies from

image correspondences.

4.1 The Nearest Neighbor Classifier: A Stochas-

tic Process Perspective

We begin by analyzing the decision process of a nearest neighbor classifier

where the input data contains a stochastic component. As reviewed in Sec. 2.2.1,

the NN classifier receives a query feature vector q ∈ S; a pool of feature vectors

X = {xl}Tl=1 with their class labels Y = {yl}Tl=1; the different classes C = {cj}Nj=1;

and a distance or similarity function for comparing feature vectors d : S×S → R.

Because we assumed that the data had a stochastic component, then xl can be
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seen as a single sample drawn from the j-th class distribution Fj. Thus, we can

consider that the pool of feature vectors X is a collection of independent samples

taken from all of the class distributions. In this chapter we assume that d is

a distance function. Nevertheless, the algorithms described in this chapter are

applicable to similarity functions as well.

4.1.1 Single Sample per Class Analysis

We begin by exploring the simplest case, where there is a single sample of

every class in the pool of feature vectors. Moreover, we also start by analyzing

the case when we use the NN classifier (i.e., Algorithm 1 where k = 1). These

conditions imply then that |X | = |C| and N = T .

The NN classifier, as a first step, compares the query input q against all the

class samples contained in the pool of feature vectors X by using the distance

or similarity function d. As a result of these comparison we obtain a collection

of “scores” (D = {dj : dj = d(q,xj)}), where each score indicates a measure

of proximity of the query to the corresponding class. As a consequence of the

stochastic component of every xj, the scores dj have a stochastic element as well

(see Fig. 4.1 for an illustration). The classifier then selects the best guess of the
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Figure 4.1: Every stochastic process generates a single class sample xl. These class
samples are passed to the NN classifier who later compares the query vector q with
every class sample using the distance function d. Finally, the NN classifier decides to
assign the class label of the sample j? that produced the smallest distance to the query.

class, or takes a decision, by following the NN rule:

j? = arg min
j
{dj}Nj=1. (4.1)

Since there is a stochastic component in the decision process, it is possible

that j? is a correct or incorrect decision; the minimum distance not always can

correspond to the correct class. In this work, we are interested in predicting as

accurate as possible when j? is likely to be correct or incorrect. To this end, we can

consider that D, the collection of scores, is a composition of independent samples

taken from two different processes: one that generates scores corresponding to
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correct decisions following distribution Fc and another one that generates scores

corresponding to incorrect decisions following distribution Fc̄.

4.1.2 Correctness Prediction using Extreme Value Theory

The minimum sample of D can be considered an extreme value when we have

a large number of classes (see Sec. 2.1 for a review of the two concepts of extreme

value). If we also assume for a moment that the samples in D are independent and

identically distributed, we can use extreme value distributions (see Theorem 1)

to model the statistics of the minimum distance in D. However, we need to

consider the fact that we have two processes, Fc and Fc̄, that can contribute to

the formation of the collection of scores D. To consider that both processes can

contribute to the formation of D we use the following mixture model

F = εFc + (1− ε)Fc̄, (4.2)

where ε is just the mixing parameter. This mixture model captures the following

scenarios: 1) the minimum score in D is produced by Fc and 2) the minimum

score in D is produced by Fc̄. In the first scenario, there exist only one sample

drawn from Fc and is the minimum sample in the set D; a sample drawn from

Fc implies that a query q is a feature vector produced from one of the known

classes and that the NN classifier took a correct decision. The second scenario
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implies that the minimum sample in the set D was produced by Fc̄ and that the

NN took a wrong decision. Note that the second scenario also considers the case

of a spurious query, i.e., when the query q does not have a true class in C.

The goal for predicting correctness is to estimate which of the two processes

Fc or Fc̄ generated the minimum score dj? . To do so, we present two algorithms

that estimate correctness beliefs for a query given different restrictions:

1. Restricted scores: only the distances in D computed for a given query are

available for its correctness prediction; and

2. Collective scores: several collections of distances Di holding the scores for

the i-th query are available for prediction.

Both algorithms are developed with the following premise: it is possible to

compute a model describing the statistics of the minimum distances that the

incorrect decision process Fc̄ generates. This model, which is encoded by a dis-

tribution Gc̄, can be used to check if the minimum distance dj? used to make a

decision is likely to be a sample drawn from such a model.

Prediction from restricted scores

In this section we present an algorithm for the restricted scores case. In this

scenario we only have available the scores D calculated for a given query q to pre-
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dict the correctness of the label assigned to it by the NN classifier. This scenario

happens for instance in image retrieval [14, 19, 30, 37], where only the scores

obtained when the query image was compared against a set of reference set of

images. Because we only have at most a single sample from Fc, it is impossible

to estimate all the parameters for the mixture model shown in Eq. (4.2). How-

ever, we have several samples from Fc̄ that can be used to estimate the model

Gc̄: a distribution describing the statistics of the minimum distance that Fc̄ can

generate.

Under the hypothetical scenario where we have several observations of mini-

mum distances generated from Fc̄, we can fit a generalized extreme value distri-

bution (GEV) to get the model Gc̄. However, in the scenario we consider for this

section, we only have a single observation of a minimum distance generated from

Fc̄. Therefore, it is not possible to compute a reliable model Gc̄. Nevertheless,

we can approximate this model by using samples from the tail of Fc̄, which cor-

respond to the k lowest distances in D. In practice, k is a parameter that can be

determined as a function of the number of samples from Fc̄; see Section 4.3.2 for

specific formulas to calculate this parameter.

Given these k tail samples, we fit an extremal type distribution discarding the

minimum sample. This fit is the considered as our model Gc̄. Once we have a

model for the minima produced by Fc̄, we follow the proposed criterion of Scheirer
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Algorithm 2 Meta-Recognition

Require: Scores D = {d1, d2, . . . , dN}
Require: Parameter k
Require: Threshold α ∈ (0, 1)
Ensure: Predicted correctness c

1: Find the smallest k scores Dk ⊂ D.
2: Fit Weibull to the set Dk \ {dj?}, which discards the minimum distance dj?

from Dk, to find the parameters (σ, ξ).
3: if dj? < W−1 (α;σ, ξ) then
4: Predict c = Correct
5: else
6: Predict c = Incorrect
7: end if

et al. [56] to decide when the decision was correctly or incorrectly made. The

premise of Scheirer’s criterion is that a sample drawn from Fc must be considered

an outlier of the minima-model Gc̄. In this scenario, an outlier is a sample that

cannot be explained by a known statistical model.

Scheirer et al. [56] proposed to use a Weibull distribution to compute the model

Gc̄, as it was the distribution that gave the best results in practice. The Weibull

distribution can be described as follows:

W (x;σ, ξ) =


0 if x < 0

1− exp
[
−
(
x
σ

)ξ]
otherwise

(4.3)

where σ is the scale parameter and ξ is the shape parameter.

Algorithm 2, which summarizes Meta-Recognition [56], shows how to estimate

the Weibull parameters (steps 1 and 2) and how to decide whether the classifier’s

outcome is correct or incorrect (steps 3 to 6). In step 3, the algorithm checks if the
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Figure 4.2: (Left): A Gaussian process (blue), the Gumbel distribution modeling its
minimum (red), and the mode of the Gumbel density as an estimate of the minimum
value generated by the Gaussian process (red line). (Middle): A Rayleigh distribution
(black) and a Weibull distribution (green) computed from the tail of the Gaussian
process as in Meta-Recognition algorithm; the used tail samples correspond roughly to
the 2% of a single collection of i.i.d. samples. (Right): Rayleigh’s mode (black line)
tends to be closer to the mode of the Gumbel density (red line), whereas the Weibull’s
mode (green line) is further apart from the Gumbel’s mode (red line).

minimum sample dj? is less than a sample computed from the Weibull’s inverse

CDF evaluated at α, i.e., W−1 (α;σ, ξ).

The Meta-Recognition algorithm uses one of the extremal-type distributions,

namely the Weibull distribution, from the Block-Maxima Theorem 1 to model the

minima. However, note that Meta-Recognition roughly approximates the mini-

mum, because a portion of the tail (the smallest k scores) is considered instead of

truly minimum samples produced by Fc̄ as required by the Block-Maxima Theo-

rem 1.
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Algorithm 3 Meta-Recognition Rayleigh (MR-Rayleigh)

Require: Scores D = {d1, d2, . . . , dN}
Require: Parameter k
Require: Threshold δ ∈ (0, 1)
Ensure: Predicted correctness c and a belief p.

1: Find the smallest k scores Dk ⊂ D.
2: Find the Rayleigh parameter σ using the set Dk \ {dj?}
3: Compute the belief p← 1−R (dj? ;σ)
4: if p > δ then
5: Predict c = Correct
6: else
7: Predict c = Incorrect
8: end if

Along the same line followed by Meta-Recognition, we proposed to use Rayleigh

distribution,

R(x;σ) =


0 if x < 0

1− exp
(
− x2

2σ2

)
otherwise

(4.4)

to estimate the minimum [26] from samples taken from “tail” of Fc̄ because the

following reasons:

1. Rayleigh distribution is a special case of the Weibull distribution and has a

single parameter to estimate as opposed to two Weibull parameters.

2. The Rayleigh distribution has most of its density leaning towards the mini-

mum (see Fig. 4.2 for a toy example of this point), which is helpful in the

case where a rough estimation of the minima is used for prediction.

38



Chapter 4. Estimating Confidences for the Nearest Neighbor Classifier

Our proposed Meta-Recognition Rayleigh (MR-Rayleigh) algorithm, which is

summarized in Algorithm 3, uses the Rayleigh distribution because the data we

have at hand to estimate the minimum is limited: we only have a single collection

of i.i.d. samples taken from Fc̄. Moreover, estimating the Rayleigh parameter σ

from a set of k distances,

σ̂2 =
1

2k

k∑
j=1

d2
j , (4.5)

not only is more efficient because its complexity is O(k), but in practice outper-

forms Meta-Recognition using the Weibull distribution, as it is shown in Section

4.3 for image feature correspondences. Steps 1 and 2 find the parameters of the

Rayleigh distribution. Step 3 computes the correctness belief, which can be inter-

preted as the probability of being correct given the minimum sample dj? , i.e.,

P (c = Correct | dj?) = 1−R(dj? ;σ). (4.6)

Steps 4 to 7 predict if the decision of the NN classifier is correct or incorrect given

the belief p. These beliefs, as shown in Sec. 4.4, are useful for speeding up robust

estimations from feature correspondences in a RANSAC scheme.

Prediction from collective scores

In the previous Section we analyzed and discussed the case where we had a

single collection of scores (distances or similarity values) given a single query q,
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namely, a single set D. In this section we discuss the case where we have several

collection of scores {Di}Mi=1 given several queries Q = {q1, . . . ,qM}, and that the

scores obtained for every query are i.i.d. samples drawn from the same process

following a distribution F . Moreover, we also assume that there is at most one

true class for every query.

To simplify the discussion, we organize the distance scores obtained for our

M queries in a matrix D ∈ RM×N , where the matrix entry Dij = d(qi,xj),

i = 1, . . . ,M , and j = 1, . . . , N , is a sample drawn from distribution F which

complies with form shown in Eq. (4.2).

Recall that our goal is to guess which process (Fc or Fc̄) produced the minimum

distance in the i-th row. Our strategy to achieve this goal is to model the statistics

of the minimum distances obtained at every row. In other words, we consider

that the minimum distance generated by F is our random variable of interest. To

this end, the statistics of our random variable of interest is also another mixture

distribution

G = εGc + (1− ε)Gc̄, (4.7)

where Gc and Gc̄ describe the minimum distances produced by Fc and Fc̄, respec-

tively, and ε is a mixture parameter.
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To fully characterize the distribution G we need to select the right distributions

for Gc and Gc̄ as well as to develop a method to estimate their parameters as well

as the mixture parameter ε.

Let us begin by isolating the process Fc̄ and find the distribution that describes

the smallest distance that it can generate, i.e., Gc̄. We have at our disposition M

different sequences (i.e., M rows in the matrix D) each containing at least N − 1

samples drawn independently from Fc̄. Recall that the Block-Maxima Theorem

(Theorem 1) states that the generalized extreme value (GEV) distribution can

model the minimum value that a random process can generate provided that we

have a sufficiently large sequence. Hence, assuming that N is sufficiently large, we

can use the GEV to model the minimum distance that Fc̄ can generate. Therefore,

Gc̄ is modeled by the GEV distribution.

Let us consider now the process Fc. We want to find the distribution mod-

eling the minimum distance that this process can generate, i.e., Gc. Again, we

have available M different sequences (i.e., M rows in the matrix D) each con-

taining at most 1 sample drawn independently from Fc. Clearly, we cannot use

the Block-Maxima Theorem (Theorem 1) as used earlier because our sequence

of i.i.d. samples has a size of at most 1, which violates the theorem requirement

of having a large sequence. Thus, the only distribution describing the minimum

distance generated by the process Fc has to be itself, i.e., Gc = Fc. This rationale
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then reveals that the mixture model shown in Eq. (4.7) is

G = εFc + (1− ε)Gc̄, (4.8)

where ε encodes the probability of observing a distance dij? produced by Fc, i.e.,

a distance corresponding to a correct decision by the NN classifier.

In order to predict if the decision of the NN classifier was correct, we can

compute the posterior distribution by using Eq. (4.8) as follows:

P (c = Correct|dij?) =
εfc(dij?)

εfc(dij?) + (1− ε)gc̄(dij?)
(4.9)

where lower case letters indicate density functions over the distances, and ε is the

mixing parameter. A threshold on this posterior can help in predicting when the

NN classifier’s outcome is correct or incorrect. This prediction method requires a

known model of Fc as well as the mixing parameter ε, which can be determined

by prior information of the application at hand.

Unfortunately, a general algorithm to estimate all the parameters character-

izing the distribution G is not possible because the distribution describing Fc is

not known a priori and it must be selected depending on the application. In the

following Section we show a method for estimating ε, the parameters of Fc and

Gc̄ for image feature correspondences.
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4.2 Extreme Value Theory for Image Feature

Correspondences

In this section, we apply our techniques described in previous sections to the

problem of image correspondence. Our techniques fit well in this problem as the

image correspondences are computed using a Nearest-Neighbor (NN) classifier.

4.2.1 The Image Correspondence Problem

The image correspondence problem is an important process in computer vision

because the solution is useful for for several applications such as image stitching,

structure from motion, visual tracking, object recognition, and many others.

The image correspondence problem aims to find pixel locations on both images

depicting the same 3D point from the scene; see Fig. 4.3 for an illustration about

the image correspondence problem. The common solution to compute putative

correspondences is obtained by means of local features and descriptors. This

solution can be briefly described, given a reference image and a query image, as

follows:

1. Detect local features on both images, e.g., by running SIFT [40] or SURF [4]

keypoint detectors.
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Figure 4.3: The image correspondence problem aims to find pixel locations on a query
image (left) and a reference image (right) depicting the same 3D point from the scene.
The common way to estimate a putative set of correspondences is by means of the near-
est neighbor classifier. First, a set of features or keypoints (depicted as circles) in both
images are detected. Subsequently, for every keypoint a descriptor, which is a repre-
sentation encoding photometrical information of the surrounding pixel neighborhood,
is computed. Finally, the nearest neighbor classifier finds the most similar reference de-
scriptor for every query descriptor to establish a putative correspondence. This process
is far from perfect and produces correct and incorrect putative correspondences (shown
in green and red, respectively).

2. For every detected keypoint or feature, compute a descriptor (a photomet-

rical representation of the feature’s surrounding pixel neighborhood), for

instance, SIFT or SURF descriptors.

3. Find the best match of every query descriptor among the reference descrip-

tors by using the Nearest Neighbor (NN) classifier.

As an outcome of this procedure, every query feature x ∈ R2 has a correspond-

ing reference feature x′ ∈ R2 which is assigned by the NN classifier; in this case

we will refer to it as the NN matcher. The main challenge in establishing these
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image correspondences correctly is that the matcher can take erroneous decisions,

either because the query feature was not detected in the reference image, or be-

cause there are “confusing” features, e.g., similar patterns in the image. These

erroneous decisions are called in this domain outliers, while correct decisions or

matches are called inliers. To detect outliers or inliers, we propose to use our

techniques described in Chapter 4.

More formally, the NN classifier computes the set of putative correspondences

{x↔ x′} as follows: given a collection of query descriptors Q = {q1, . . . ,qM},

where qi ∈ Rd is the descriptor for the i-th feature, and a collection of reference

descriptors R = {r1, . . . rN}, where rj ∈ Rd is the descriptor for the j-th reference

feature, the NN matcher assigns the j?-th feature reference to the i-th query

following the NN rule, i.e.,

j? = arg min
j
‖qi − rj‖2, (4.10)

producing a putative correspondence
{
xi ↔ x′j?

}
. In this section it is understood

that i = 1, . . . ,M and j = 1, . . . , N .

For the remaining discussion in this chapter, we use matching score to refer to

distances between descriptors and we use it interchangeably.
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4.3 Predicting Correctness of Image Feature Cor-

respondences

The process of detecting and describing features can introduce stochastic com-

ponents, that make the process of computing image correspondences via feature

matching a random process. For instance, camera motion and different illumina-

tion conditions in both reference and query images can introduce variations in the

detection and description process. Therefore, our techniques fit the problem well.

4.3.1 Previous Work

Lowe’s ratio [40] has been one of the most efficient and widely used heuristics

for predicting the correctness of a putative correspondence. The ratio compares

the first nearest neighbor matching score against the second nearest neighbor

matching score. Lowe’s ratio, computed for a query descriptor when distances are

used to compare descriptors, is

LR =
d1NN

d2NN

, (4.11)

where d1NN is the smallest distances and d2NN is the second smallest distance.

This ratio exploits the fact that correct matching scores tend to be distant from

the incorrect matching scores, consequently producing lower values. Finally, a

threshold on the ratio is used for predicting correctness.
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Brown et al.[8] extend Lowe’s ratio by comparing the first nearest neighbor

matching score against the average of the second nearest neighbor matching scores

of multiple correspondences. The ratio is computed as follows:

BR =
2d1NN

d2NN + d3NN

, (4.12)

where d1NN is the smallest distances, d2NN is the second smallest distance, and d3NN

is the thirds smallest distance. Brown et al.[8] report that this extension improved

prediction performance.

A more elaborate method for predicting correct matches was introduced by

Cech et al.[11]. This method uses a sequential co-segmentation process to obtain

more information about the correctness of the correspondence. The method stops

co-segmenting when it has enough evidence to declare a putative correspondence

correct.

Our predictor, MR-Rayleigh Algorithm (Algorithm 3), uses only matching

scores, as collecting other cues as in [11] can take extra time. Moreover, we

show that MR-Rayleigh applied to this problem outperforms the widely used

Lowe’s ratio, Brown’s ratio, and Meta-Recognition (Algorithm 2) regardless of

the descriptor used (i.e., SIFT or SURF).
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4.3.2 Predicting Correctness of Feature Correspondences

In this section we present an experiment to assess the detection of correct

correspondences using MR-Rayleigh (Algorithm 3), where an image correspon-

dence is correct when the pair of keypoints represents the same 3D point in the

scene. For this experiment, we used Euclidean distances between descriptors as

our scores.

Datasets

For this experiments we used the publicly available affine covariant features

dataset used in [46]. This dataset contains eight sub-datasets (graf, wall, bark,

boat, bikes, trees, leuven, and ubc), each with systematic variations of a single

imaging condition: viewpoint (graf, wall), scale and rotation (bark, boat), image

blur (bikes, trees), illumination (leuven), or jpeg compression (ubc). Every sub-

dataset contains six images: a reference image and five query images of the same

scene varying a single imaging condition. In addition, every sub-dataset provides

five homographies that relate the reference image with each of the query images

in the sub-dataset. In Fig. 4.4 we show all the eight sub-datasets, where the first

index is the reference image and the remaining five are the query images.

We used OpenCV’s Hessian keypoint detector for finding approximately 2000

interest points per image. We used OpenCV’s implementation of SIFT [40] and
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Figure 4.4: The affine covariant features dataset [46] contains eight sub-datasets: bark,
bikes, boat, graf, trees, ubc, and wall. Each row (or sub-dataset) varies a single imaging
condition in a systematic manner: viewpoint (graf, wall), scale and rotation (bark,
boat), image blur (bikes, trees), illumination (leuven), or jpeg compression (ubc).
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SURF [4] for describing the keypoints and we included (non-optimized) C++ code

to calculate MR-Rayleigh (Algorithm 3), MR-Weibull (Algorithm 2), Brown’s

ratio (shown in Eq. (4.12)), and Lowe’s ratio (shown in Eq. (4.11)) into the brute-

force nearest-neighbor feature matcher (NN matcher) in OpenCV. With these

modifications, the NN matcher returns either a confidence (MR-Rayleigh or MR-

Weibull) or a ratio (Lowe’s or Brown’s) for every putative correspondence. We

matched the reference keypoints (found in the reference image) against the query

keypoints (detected per query image) for every sub-dataset. We then identified

the correct matches by evaluating the following statement

‖xq −Hxr‖2 < ε (4.13)

where xq and xr are the query and reference keypoints in homogeneous coor-

dinates, H ∈ R3×3 is the homography transformation provided in the dataset

that relates the reference and the query image, and ε = 5 pixels is a threshold.

Those matches that did not comply with Eq.(4.13) were labeled as incorrect cor-

respondences (or matches). These identified correct correspondences were verified

manually and used as our ground truth in our experiments.

We generated a parameter-tuning dataset for determining the values of k and

δ for MR-Rayleigh (Algorithm 3), threshold α for Meta-Recognition (Algorithm

2), and the threshold τBR for Brown’s ratio. We did not tune the threshold used

for Lowe’s ratio because we used the suggested values from [40]. For every sub-
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dataset we generated eight different random affine transformations [33]. Then,

we use these generated transformations to obtain eight images from the reference

image of each sub-dataset. We then detected approximately 1000 interest points

on every image, we calculated their descriptors (SIFT and SURF), and computed

the correspondences between the reference image and each generated image per

descriptor. Subsequently, we then identified the correct correspondences in a

similar manner as described earlier but using the affine transformations instead

of the homographies in Eq. (4.13).

In this experiment we are interested in measuring the performance of MR-

Rayleigh on detecting correct putative correspondences; and we use the labeled

correct correspondences as our ground truth. We considered a True-Positive when

the predictor accurately detects a correct correspondence, and a False-Positive

when the predictor labeled an incorrect correspondence as a correct one, i.e., a

false alarm. We used the False-Positive rate (FPR) and True-Positive rate (TPR)

to determine the values of k and δ for MR-Rayleigh and MR-Weibull (see [21] for

FPR and TPR calculation). We ran large series of predictions using the tuning

dataset mentioned earlier and selected k and δ for MR-Rayleigh and MR-Weibull

per descriptor such that the operation point op = (FPR,TPR) was as close as

possible to the ideal operation point op? = (0, 1), i.e., the lowest FPR and the

maximum TPR. We found that kMR-Rayleigh = 0.5% of N and kMR-Weibull = 2% of N
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Figure 4.5: ROC curves for evaluating the prediction of correct SIFT matches using
MR-Weibull 1(MRW), MR-Rayleigh (MRR), Lowe’s ratio (LRW), and Brown’s ratio
(BR). The top row presents the results (from left to right) over all sub-datasets, bikes
sub-dataset, boat sub-dataset, leuven sub-dataset, and wall sub-dataset. The higher
the curve for any false alarm rate the better.© 2013 IEEE.

worked the best for SIFT and SURF matches, where N is the number of reference

features. We also tuned Brown’s ratio (BR) on the same dataset and in the

same manner and found τBR = 0.73 and τBR = 0.709 were good thresholds for

SIFT and SURF matches respectively, while for Lowe’s ratio (LWR) we used the

recommended threshold of τLWR = 0.8 for both SIFT and SURF matches.

We present five different receiver operating characteristics (ROC) curves per

descriptor in Figs. 4.5a and 4.6a. The top row corresponds to SIFT matches

1Part of the curve for this method was not possible to obtain because of lack of data.
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Figure 4.6: ROC curves for evaluating the prediction of correct SURF matches using
MR-Weibull2(MRW), MR-Rayleigh (MRR), Lowe’s ratio (LRW), and Brown’s ratio
(BR). The top row presents the results (from left to right) over all sub-datasets, bikes
sub-dataset, boat sub-dataset, leuven sub-dataset, and wall sub-dataset. The higher
the curve for any false alarm rate the better.© 2013 IEEE.

and the bottom row to SURF matches, and each column presents results for a

different imaging condition; with the exception of the first column, which presents

the results over all imaging conditions. We used the best values found for k where

n ≈ 2000 reference features (i.e., kMR-Weibull ≈ 40 and kMR-Rayleigh ≈ 10). For Lowe’s

ratio and Brown’s ratio we predict a correct match when such a ratio is lower than

a threshold τ . We varied every threshold of each predictor in the range of 0 to 1

with steps of size 10−4.

2Part of the curve for this method was not possible to obtain because of lack of data.
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We can observe in Figs. 4.5a and 4.6a that MR-Rayleigh (MRR) outperformed

MR-Weibull (MRW), Lowe’s ratio (LWR), and Brown’s ratio (BR) over all imag-

ing conditions for SIFT and SURF matches. From the subsequent columns we

can conclude that MR-Rayleigh tends to perform better in most cases: the rate

of true-positives overall tends to be higher than for MR-Weibull, Lowe’s ratio and

Brown’s ratio. A problem we observed with MR-Weibull is the sensitivity of its

threshold: the effective range is between 0.9 and 1 to be discriminative; in fact,

this is the reason for choosing a small step size for the thresholds. This threshold

sensitivity explains the abrupt “jumps” in the ROC curves for SIFT matches in

the first, second, fourth, and fifth columns, as a tiny variation in the threshold

can affect drastically the prediction accuracy of MR-Weibull; the True-Positive

rate drastically drops when the False-Positive rate is low. Consequently, MR-

Weibull can struggle in detecting correct matches when a low False-Positive rate

is required. In contrast, MR-Rayleigh does not suffer this threshold sensitivity

and it can be used when a low False-Positive rate is required. Lowe’s ratio in

general performs competitively for SIFT and SURF matches, whereas, Brown’s

ratio tends to perform competitively for SIFT matches but tends to fall short for

SURF matches.

We also conducted an experiment on detecting correct matches per descriptor

on the entire testing dataset using the thresholds found during our tuning stage.
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Table 4.1: Predictors’ performance at optimal operation points. © 2013 IEEE.

SIFT
Predictor Thld. FPR TPR F
Lowe’s ratio 0.8000 0.07 0.76 0.78
Brown’s ratio 0.7300 0.10 0.80 0.78
MR-Weibull 0.9999 0.21 0.90 0.74
MR-Rayleigh 0.6000 0.11 0.85 0.80

SURF
Lowe’s ratio 0.8000 0.04 0.64 0.73
Brown’s ratio 0.7090 0.05 0.61 0.68
MR-Weibull 0.9999 0.06 0.69 0.72
MR-Rayleigh 0.6000 0.06 0.71 0.75

The goal of the experiment is to assess the performance of these predictors using

the best parameters found in our tuning stage. We present False-Positive rate

(FPR), True-Positive rate (TPR), and the F-score per descriptor (see [21] for F-

score calculation) as the results of this experiment in Table 4.1. We calculated

the F-score,

F =
2× precision× recall

precision + recall
, (4.14)

to assess performance in a unified manner. From the results of this experiment

we can conclude that Lowe’s ratio returned the lowest False-Positive rate (FPR)

regardless of the descriptor. MR-Weibull produced the highest True-Positive rate

for SIFT matches but with the highest False-Positive rate, while MR-Rayleigh

produced a high True-Positive rate and a low False-Positive rate. For SURF

matches MR-Rayleigh produced the highest True-Positive rate and a low False-
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Positive rate. MR-Rayleigh has the highest F-score for SIFT and SURF matches,

which suggests that MR-Rayleigh is a good detector of correct image feature

correspondences.

Conclusions

Our experiments showed that MR-Rayleigh [26], our proposed algorithm, out-

performed Lowe’s ratio [40], Brown’s ratio [8], and MR-Weibull [56] in predicting

correct matches across several image correspondences obtained in different imag-

ing conditions. This prediction is efficient to compute and can be useful in many

applications such as image-based localization where only good correct correspon-

dences are kept; in estimating the inlier-ratio, which can be used to estimate the

maximum number of iterations in RANSAC, and others.

MR-Rayleigh computes a correctness confidence considering the k smallest

matching scores produced by the nearest neighbor classifier when comparing the

query descriptor against the reference descriptors. MR-Rayleigh assigns a higher

confidence when the lowest matching score is closer to zero and gradually decays

as it gets closer to the tail of the incorrect matching scores distribution. Moreover,

MR-Rayleigh estimates a single parameter which is more efficient to compute and

can be more robust to the data used for its estimation than the two Weibull

parameters required in MR-Weibull [56].
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4.4 Speeding up Sample and Consensus Robust

Estimations using Correctness Beliefs

Many applications in computer vision use image correspondences to estimate

important model parameters such as homographies, fundamental matrices, and

others. However, these correspondences can often be “corrupted” by measurement

noise or features that do not comply with the “true” model to be estimated,

i.e., outliers. Random Sample Consensus (RANSAC) [23] has been the method

of choice to estimate model parameters in the presence of outliers, and many

improvements have been proposed to increase its speed and its accuracy, e.g.,

[13, 50, 53, 54, 55, 67].

4.4.1 RANSAC: A Brief Review

The main idea of RANSAC is to sample a minimal set of correspondences

following a Uniform distribution to generate a hypothesis (a potential model).

Subsequently, this model is tested against all the correspondences by evaluating

a cost or loss function, e.g., by counting how many correspondences the model

was able to explain. Finally, RANSAC keeps the model that explains most of the

data until convergence. The reader is referred to [52] for a deeper discussion and

extensions to RANSAC.
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Figure 4.7: A set of image feature correspondences are passed to the robust model
estimation process. For every correspondence, a correctness-confidence is computed.
Subsequently, these confidences are used for sampling image correspondences to generate
a model hypothesis. Finally, the estimation process stops iterating when a good model
is found.© 2013 IEEE.

A potential problem of sampling correspondences following a Uniform distri-

bution is that the convergence of RANSAC can be delayed. To speed up this

convergence, several approaches (e.g., [6, 12, 32, 66]) have exploited the informa-

tion about correctness that the matching scores (i.e., the descriptor distances) can

provide. These approaches use the correspondences that are likely to be correct

more frequently to generate hypothesis in the RANSAC scheme. This strategy,

which is known as non-uniform sampling, often decreases the convergence time of

RANSAC.

We propose to use the confidences computed from MR-Rayleigh (Eq. (4.6)) for

generating a feature correspondence non-uniform sampling strategy for RANSAC.

Therefore, instead of sampling following a Uniform distribution, we follow the

distribution obtained after normalizing the confidences of all the image corre-

spondences. We called this sampling method SWIGS: A Swift Guided Sampling
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Method [26]. We show an overview of this non-uniform sampling applied to

RANSAC in Fig. 4.7.

4.4.2 Homography Estimation Experiments

In this experiment we aim to evaluate the performance of SWIGS for homog-

raphy estimation in a dense matching scenario, and compare it with several other

sampling methods: BEEM [32]; a Guided-Sampling [66] with a general distribu-

tion considering all the imaging conditions (GEN); a Guided-Sampling [66] that

considers only the distribution for a specific imaging condition (SPEC); BLOGS

[6] with parameters ml = 1/d1 and mlr = mlc = 1/d2 where d1 and d2 are the small-

est and second smallest distance, respectively; and a classical random sampling

(uniform distribution) for a baseline.

Each of these methods was plugged in to our own MLESAC [67] implementa-

tion, where the standard deviation of the residuals distribution was set to σ̄ = 5

pixels, and w = 20 as the parameter for the mismatched residuals distribution.

Matlab was used to obtain the distributions required for the two Guided-Sampling

[66] methods and to fit Weibull and Generalized Extreme Value distributions for

correct and incorrect correspondences respectively (see Fig. 4.8). We implemented

only the prior estimation stage of BEEM and BLOGS’ global search mechanism,

as we aim at comparing the confidence mechanism used for data sampling in a
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Figure 4.8: Fitted distributions for SIFT matches (left) and SURF matches (right)
used in GEN. Similar distributions were obtained per sub-dataset for SPEC.© 2013 IEEE.

robust estimation. We used OpenCV’s findHomography() function (without the

RANSAC option) to generate homography hypotheses.

We executed the experiment 5000 times with a stopping criterion of 100% of

correct matches found and a maximum of 1000 iterations, since we are interested in

applications that have a limited budget of iterations; an iteration is a completion

of the loop in Fig. 4.7. We report the median of the number of iterations a

method took to find the best model within the required number of iterations

and the median of the percentage of correct matches that the best model found

considered as a correct match. We used the same ground truth as in the previous

experiment.

The results are shown in Fig. 4.9, where the first two rows show the results

obtained for SIFT, and the rest for SURF matches. The percentage of correct

matches are presented in the first and third rows, while the iterations are in the

second and fourth rows. The x-axis indicates the index of the images contained
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in the considered sub-datasets (omitting the reference image, which is index 1);

an increasing index represents increasing variation with respect to the reference

image. Each column presents the results for a different sub-dataset: bikes, boat,

trees, and wall, from left-to-right. The experiments show that SWIGS tends to

find comparable solutions to the ones found by BEEM, BLOGS, and Guided-

MLESAC (GEN and SPEC). However, SWIGS tends to require fewer number of

iterations in order to converge to a solution.

4.5 EVSAC: Non-Uniform Sampling Strategy for

Low Inlier Ratios

Algorithms based on RANSAC that estimate models using feature correspon-

dences between images can slow down tremendously when the percentage of cor-

rect correspondences (inliers) is small. To address this issue, we present in this

section a non-uniform sampling strategy based on the discussion presented in Sec-

tion 4.1.2. The main goal is to find the parameters of the mixture model described

in Eq. (4.8), i.e., the mixture parameter ε, the parameters of the generalized ex-

treme value (GEV) distribution Gc̄, and the parameters for the distribution Fc.

The distribution Fc must be selected depending the application at hand. In

this case, we deal with a feature matching process using Euclidean distances; as
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Figure 4.9: Performance evaluation across several sub-datasets (bikes, boat, trees, wall
from left-to-right). Of all the 5000 repetitions of the experiment, the first and third rows
present the median of the percentage of correct matches found by the best computed
models within the allowed number of iterations, while the second and fourth rows present
the median number of iterations at which the best model was found. The first and second
rows present the results for SIFT, and the third and fourth for SURF. Although SWIGS
overall performs similarly in comparison with Guided-MLESAC, BEEM, and BLOGS,
our approach required fewer iterations to converge to a solution © 2013 IEEE.

described in Section 4.2.1. We assume that the statistics of the correct matching

scores will be skewed towards the minimum since many of the state-of-the-art de-

scriptors such as SIFT or SURF are designed to be as invariant as possible, result-

ing in low scores. Therefore, we can expect distributions with longer right-tails,

and so we pose that the correct matching scores follow a Gamma distribution, i.e.,
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Fc(d) = Gamma(d;α, β); in Fig. 4.10 we illustrate these distributions modeling

real data.

Thus, the parameters for the model described by Eq. (4.8) are the mixture

parameter ε; the location µ, scale σ, and shape ξ parameters for describing the

GEV distribution; and the shape α, and scale parameter β for describing the

Gamma distribution:

Fc(d) =
1

Γ(α)
γ

(
α,
d

β

)
, (4.15)

where Γ is the gamma function, and γ is the incomplete gamma function. In the

following section we present an algorithm that estimates these parameters from

the data.

The reader must note that the proper distribution to use for Gc̄ is a reversed

GEV because we are using it to model minima and not maxima. We can use

the GEV distribution function described in Section 2.1, which is the distribution

modeling maxima, to model minima. To do so, we need to transform the data a

priori so that maximum values become minimum values. This is achieved with

the following transformation: let d′ be the original distance obtained from the NN

matcher, then d = −d′. Some implications of this transformations are:

1. We evaluate the reversed GEV pdf as follows: gc̄ = g(d;µ, σ, ξ); and

2. We evaluate the reversed GEV cdf as follows: Gc̄ = 1−G(d;µ, σ, ξ)
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Figure 4.10: (left) Fitted Gamma distributions to matching scores from pre-identified
correct matches. (center) Fitted GEV distributions to matching scores from pre-
identified incorrect matches. (right) The histograms show the distribution of all the
best matching scores (which include both correct and incorrect matches) and the con-
tinuous curve shows that our mixture model of the two densities is a good fit. In all
cases, SIFT matches are shown on top and SURF matches on the bottom. © 2013 IEEE.

In the following sections, we assume we evaluate properly either the GEV cdf

or pdf. However, it is very important to notice in the implementation that the

reversed GEV is the distribution we use for modeling Gc̄.

4.5.1 Building the Probabilistic Model From the Data

We now introduce the EVSAC algorithm (summarized in Algorithm 4), which

was inspired by BEEM’s prior search method [32] and which estimates the pa-

rameters for our theoretical model (Eq.(4.8)) from real image data.

EVSAC requires the m matching scores k-sequences {di,1:k}Mi=1. These se-

quences contain the smallest k distances for a given i-th query feature. We denote
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the r-th element in the sequence di,1:k for the i-th correspondence as di,(r). For in-

stance, the smallest element in the sequence for the i-th query is then di,(1) = dij? .

The goal of EVSAC is to produce the set of weights {w}Mi=1 for every correspon-

dence, which will be used for generating hypotheses.

Our algorithm begins by computing the distributions for correct and incorrect

correspondences for the data provided. In order to start the process, we need

a correct-match predictor to preliminarily label each correspondence as correct

or incorrect (e.g., Lowe’s ratio [40] or MR-Rayleigh [26]). We then fit a two-

parameter Gamma distribution to the data identified as correct to estimate Fc.

Subsequently, we use all the second smallest scores, i.e., di,(2), ∀i = 1, . . . ,M ,

to find the three parameters of the reversed GEV distribution for Gc̄. We use

the second smallest matching scores (instead of all the correspondences labeled

incorrect by the predictor) since in practice this results in a better approximation

of the true GEV, as if we had a perfect incorrect match detector (see Fig. 4.11).

Next, we estimate ε, which is the mixing parameter between these two com-

puted distributions. To find this parameter, we build the empirical cdf of F , see

Eq. (4.2), using all the smallest distances, i.e., si,(1). Subsequently, we solve the
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following constrained least-squares problem:

minimize
y

1

2
‖Ay − b‖2

2

subject to 1Ty = 1

0 � y � u

(4.16)

where the symbol � indicates entrywise comparison, and

A =


Fc(s1) Gc̄(s1)

...
...

Fc(sL) Gc̄(sL)

, b =


F (s1)

...

F (sL)

,

y =

ε
ε′

, and u =

τ
1

.
The first entry of vector u, i.e., τ , is the inlier ratio computed by the predictor in

step 1. We set this upper bound to the estimate of ε as in practice the predictor

introduces some false-positives (false-alarms) and so the true inlier ratio must be

less than or equal to this number.

Intuitively, the solution to (4.16) is the mixture parameter that produces

the lowest error between the observations (the minimum scores returned by the

nearest-neighbor matcher for all query features) and the mixture model that com-

bines our estimates for the correct and incorrect distributions. Once this has been

found, we use Eq. (4.9) to calculate a correctness confidence for each correspon-

dence (step 6). Although the confidences determined by the posterior lead to
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Algorithm 4 EVSAC

Require: {di,1:k}Mi=1

Ensure: {wi}Mi=1 and {pi}Mi=1

1: v← Predict
(
{si,1:k}Mi=1

)
2: (α, β)← FitGamma

({
di,(1) such that vi = 1

})
3: (µ, σ, ξ)← FitGEV

({
di,(2)

})
4: Calculate the empirical cdf using di,j?
5: Find ε by solving (4.16)
6: Calculate posterior-weights pi using Eq. (4.9)
7: Calculate weights wi using Eq. (4.17)
8: Use the weights wi for generating hypotheses

speed ups in the convergence of the model estimation, we noticed that the overlap

between distributions causes some incorrect matches to be assigned a high confi-

dence, costing extra iterations in RANSAC. To alleviate this problem, we calculate

an “agreement” between the predictor in step 1 and the posterior. Assuming that

the predictor returns a binary vector v ∈ {1, 0}M where the i-th entry of this

vector holds 1 when the predictor labeled this correspondence as correct and 0

otherwise, we calculate the final weights as

wi = pivi, (4.17)

where pi is the posterior for the i-th match. In the case where no agreement exists,

i.e., all weights are zero, or when the agreement within some number of iterations

did not converge to a solution, then the confidences pi computed with the posterior

can be used. Finally, we use weights wi to sample matches to generate hypotheses.
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4.5.2 Homography and Fundamental Matrix Estimation

Experiments

We present in this section two different experiments to assess the performance

of EVSAC. The first experiment evaluates the accuracy of calculating the pa-

rameters of our probabilistic framework, i.e., the distribution parameters and

the mixing parameter ε. The second experiment measures the performance of

our approach against well-established non-uniform sampling algorithms for the

estimation task of homographies and fundamental matrices. The estimation ex-

periments consider cases ranging from a very low inlier-ratio to cases where the

inlier ratio is larger, which are more commonly presented in previous work.

Datasets: We use the Oxford affine covariant features datasets [47] (same

dataset used in Section 4.3.2) and Strecha’s multi-view stereo datasets [63] for

our experiments. Each Oxford dataset contains a reference image and five query

images, as well as five homographies that relate the reference image and the query

images. The three Strecha’s datasets provide the set of camera parameters, i.e.,

intrinsic and extrinsic matrices, for every image.

To generate the ground truth of image feature correspondences, we first de-

tected approximately a thousand keypoints per image by using OpenCV’s Hessian

keypoint detector and also computed their SIFT [40] and SURF [4] descriptors
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using OpenCV’s implementation. For the Oxford datasets, we exploited the ho-

mographies provided and mapped the reference image keypoints onto every query

image. Subsequently, we then selected for every query keypoint the closest mapped

reference keypoint with a minimum Euclidean distance less than five pixels. When

no reference keypoint was found with this process, then that query keypoint did

not have a true match. We then manually verified the result of this process, and

used it as our ground truth for the Oxford datasets.

For the multi-view dataset, we calculated the fundamental matrices between

subsequent images (first and second image, second and third image, and so on)

using the provided intrinsic and extrinsic matrices (see [33], pg. 246). We then

matched the keypoints on the subsequent images using their descriptors, and

filtered out those query keypoints that produced a distance greater than or equal

to 3 pixels from the epiline. The resulting set of matches was verified manually

to ensure that only correct matches were left.

Parameter estimation experiment

We now present an evaluation of the performance of our algorithm to find the

parameters of our probabilistic framework: ε, and the distribution parameters

using the predictor from [26] only as the predictor in step 1. We compared the
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Figure 4.11: Comparison of the mixture of densities and posterior probability computed
using EVSAC against the ground truth for a pair of images with SIFT matches (top

row) and SURF matches (bottom row). Our density estimations f̂c and ĝc̄ are close to
the densities fc and gc̄ computed with an oracle. In the second column, we compare our
estimated posterior probability p̂ with the posterior p computed with the oracle. © 2013
IEEE.

Table 4.2: Estimation of ε comparison: ε̂ is the estimation with τ set as an upper
bound (see Eq. (4.16)), and ε̃ is without. The upper bounded estimate tends to provide
more accurate estimations. © 2013 IEEE.

Image Pairs ε ε̂ ε̃
Oxford-Bark (1-4 SURF) 0.0131 0.0141 0.1870
Oxford-Boat (1-6 SURF) 0.0257 0.0270 0.1429
Oxford-Bark (1-3 SIFT) 0.0479 0.0438 0.1291
Oxford-Trees (1-6 SIFT) 0.1028 0.1119 0.2467
Strecha-Brussel (2-3 SIFT) 0.1855 0.2067 0.2263
Strecha-Brussel (1-2 SURF) 0.2964 0.3115 0.3632
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estimated parameters against the parameters obtained assuming that we had a

perfect correct match detector.

We first examine the accuracy of the estimation of ε in Table 4.2. The estimate

of ε using the upper bound in vector u used in (4.16), ε̂, tends to be closer to

the real value, while the estimate without the upper bound (ε̃) can overshoot

sometimes.

Next, we examine the quality of our estimation of the different probability

densities and the posterior we use to compute the weights wi. In the first column

of Fig. 4.11, we can observe that our algorithm (continuous curves) is able to ap-

proximate with a good accuracy the mixture of densities obtained with the ground

truth data (dashed curves). In the second column, we present the posterior proba-

bilities computed from the estimated model (continuous curves) and the posterior

obtained from the ground truth (dashed curves). This means that our algorithm

estimates an accurate posterior that essentially maximizes the information in the

matching score when computing a confidence value.

Homography experiment

In this experiment we assess the performance of our non-uniform sampling

algorithm for estimating homographies. We implemented the probabilistic model

parameter estimation in Matlab, and produced the set of weights for every cor-
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respondence. We also computed the weights produced by BEEM, BLOGS, and

GMLESAC in Matlab. These weights were then read by our C++/OpenCV im-

plementation of the respective algorithms: RANSAC (guided by our weights),

Guided-MLESAC [66], BEEM’s prior estimation step [32], and BLOGS’ global

search mechanism [6]. All these sampling algorithms (along with PROSAC [12]

and classical RANSAC) were then included in a classical hypothesis-test loop,

where the support was always being maximized, and a solution was considered

“good” if it satisfied the maximality constraint, i.e., the constraint that a good

hypothesis was generated within a certain number of iterations (see [12] for more

details on this constraint). The homography was computed using the OpenCV

findHomography( ) function without the RANSAC option. An inlier was con-

sidered if the reprojection error of the homography was less than 5 pixels. The

algorithms were allowed to run until a maximum number of iterations (hypothesis-

test loops) calculated adaptively is reached, and the algorithm converged when

90% of the inliers (correct-matches) were detected. The found hypothesis was

refined afterwards using a non-linear method.

The results of this experiment are summarized in Table 4.3. The Oxford

datasets used for the experiment presented very challenging scenarios, where the

inlier-ratios ε ranged from 1-10% for SIFT and SURF matches. The experiments

were run 300 times. We present the average number of inliers detected; the average
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RMS reprojection error in pixels w.r.t.the error achieved by the ground truth data;

the average number of models/hypotheses generated; the average time in millisec-

onds; the average Frobenius norm of the error between estimated homography and

the computed homography with the ground truth (f-error); and the percentage of

“good” runs where each algorithm converged. The results are sorted in ascending

order by the inlier-ratio. We can observe that our algorithm (EVSAC) tends to

perform overall faster when the inlier ratio is very low (see rows A, B, C, D, and

E), and performs equivalent or faster than BEEM and BLOGS as soon as the

inlier-ratio increased (see rows F, G, H, I). PROSAC and GMLESAC struggled

to converge fast when the inlier-ratio was very low (ε < 11%).

To measure the effect of the inlier-ratio on the convergence time, we used the

entire Oxford-Trees dataset, where we observed that the inlier-ratio decreased as

the blurring increased in a systematic manner. In Fig. 4.12 we present a plot of

the convergence time as a function of the inlier-ratio. We only considered BEEM,

BLOGS, and EVSAC because the other methods did not converge when the inlier

ratio was low. We can observe that EVSAC tends to converge faster when the

inlier-ratio is less than 0.1 and performs equivalently when the inlier-ratio starts

to increase.
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Figure 4.12: Convergence time as a function of the inlier ratio for SIFT matches (left)
and SURF matches (right) on the Oxford-Trees dataset. © 2013 IEEE.

Fundamental matrix experiment

In this experiment, we assess the performance of EVSAC in estimating fun-

damental matrices. We have the same implementation as in the homography

experiment using Matlab and C++/OpenCV implementation. The fundamental

matrix was computed using the 7-point algorithm provided by the OpenCV find-

FundamentalMat( ) function without the RANSAC option. When the function

returned more than one solution, we kept the matrix that had the biggest inlier

support. A match was considered to be an inlier when the distance between a

query keypoint and the epiline was less than a pixel.

The results of this experiment are shown in Table 4.4. Strecha’s multi-view

dataset provided different relatively high inlier ratios; ranging from 29-43% for

SIFT and SURF matches. The experiments were run 300 times, and we present

the same quantities as in the homography experiment. We can observe that in
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all the experiments our algorithm (EVSAC), BEEM, BLOGS, and PROSAC were

the fastest regardless of the descriptor used. GMLESAC was the second fastest

algorithm and RANSAC was the slowest. All of the algorithms converged in all

the trials, and provided an accurate estimation as the Frobenius norm indicates.

This confirms that our algorithm can perform equivalently to other methods when

the inlier-ratio is not so low.

Conclusions

We have introduced in this Section a probabilistic framework that uses ex-

treme value theory to model the statistics of the best matching scores selected

by a nearest-neighbor feature matcher. We then use the posterior probability

(Eq. (4.9)) of our mixture model to compute the correctness weight for every cor-

respondence and thereby accelerate model generation. Our homography and fun-

damental matrix estimation experiments showed that our algorithm (EVSAC) [25]

performs robustly and is faster than existing state-of-the-art methods (BEEM,

BLOGS, PROSAC, and GMLESAC) when the inlier-ratio is low (< 11%). More-

over, the experiments also demonstrated that EVSAC is comparable to these

other methods when the inlier-ratio increases (> 20%). The results suggest that

EVSAC is a very useful algorithm for applications that require fast and robust

model estimation in complex environments where the number of inliers is low.
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Table 4.3: Homography estimation results for SIFT and SURF matches. The results
are sorted by inlier-ratio (ε) in ascending order. EVSAC performed well when the
inlier-ratio is low, and performed equivalently when the inlier-ratio increased. © 2013
IEEE.

Table 2. Homography estimation results for SIFT and SURF matches. The results are sorted by inlier-ratio (") in ascending order. EVSAC
performed well when the inlier-ratio is low, and performed equivalently when the inlier-ratio increased.

RANSAC BEEM BLOGS PROSAC GMLESAC EVSAC
A: " = 0.01, n = 992, SURF inliers NA 14 ± 0 14 ± 0 14 ± 0 14 ± 0 14 ± 0

error NA 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
models NA 1443 2524 4 1521 11

time NA 563.1 1008.3 2 511 4.2
f-error NA 0 0 0 0 0

good runs 0 % 100% 96% 0.33% 0.33% 100%
B: " = 0.02, n = 992, SIFT inliers 10 ± 2 12 ± 3 12 ± 2 10 ± 2 11 ± 3 12 ± 2

error 0.36 ± 0.1 0.1± 0.02 0.1 ± 0.04 0.37 ± 0.03 0.24 ± 0.04 0.16 ± 0.03
models 2436910 41 17 2752900 10044 10

time 338618 13.3 5.3 375482 1446.4 3.3
f-error 94.4 6.6 10.7 136.7 37.8 12.1

good runs 37% 100% 100% 100% 100% 100%
C: " = 0.035, n = 992, SURF inliers 27 ± 4 24 ± 2 22 ± 4 27 ± 4 29 ± 2 24 ± 2

error 0.1 ± 0.03 0.1 ± 0.01 0.1 ± 0.01 0.1 ± 0.02 0.03 ± 0.05 0.2 ± 0.1
models 1313580 3741 4072 1458250 209963 1965

time 286881 1172.3 1509.5 284838 28092.1 572.3
f-error 2.5 2 9 3.2 2.9 4.2

good runs 89% 100% 99% 100% 100% 100%
D: " = 0.04, n = 981, SURF inliers 38 ± 6 39 ± 2 39 ± 2 38 ± 6 38 ± 9 39 ± 2

error 0.01 ± 0.1 0.04 ± 0.02 0.01 ± 0.001 0.02 ± 0.1 0.01 ± 0.2 0.02 ± 0.01
models 697832 39 82 655073 4151 4

time 155067 10.9 21.5 145207 838.4 1.3
f-error 1.1 0 0.1 1.3 3.9 0.1

good runs 91.33% 100% 100% 98% 99% 100%
E: " = 0.05, n = 807, SURF inliers 38 ± 6 40 ± 2 40 ± 2 38 ± 6 33 ± 9 40 ± 2

error 1.5 ± 0.2 0.04 ± 0.03 0.002 ± 0.001 0.45 ± 0.53 0.02 ± 0.13 0.02 ± 0.01
models 304532 149 355 321952 4713 92

time 61170.4 42.9 98.5 56176.5 2111.9 26.3
f-error 0.3 0.3 0.2 0.6 35.7 0.8

good runs 100% 100% 100% 100% 100% 100%
F: " = 0.05, n = 807, SIFT inliers 37 ± 6 41 ± 3 41 ± 4 36 ± 6 41 ± 3 41 ± 3

error 2.08 ± 0.3 0.08 ± 0.02 0.002 ± 0.01 0.17 ± 0.04 0.05 ± 0.02 0.04 ± 0.02
models 221667 71 14 218811 341 22

time 42002.5 15.7 3.5 40750.7 67.5 5.4
f-error 8.4 1.7 0.7 8.4 1.1 0.1

good runs 100% 100% 100% 100% 100% 100%
G: " = 0.10, n = 992, SURF inliers 58 ± 23 81 ± 8 81 ± 9 60 ± 23 81 ± 8 82 ± 7

error 0.003 ± 0.06 0.02 ± 0.01 0.03 ± 0.009 0.02 ± 0.06 0.02 ± 0.006 0.03 ± 0.004
models 4899 177 193 4507 918 73

time 1738.9 49.6 53.6 1616.2 226.5 21.9
f-error 16 0.8 0.7 13.3 0.6 0.4

good runs 100% 100% 100% 100% 100% 100%
H: " = 0.103, n = 992, SIFT inliers 62 ± 16 82 ± 9 82 ± 9 69 ± 16 80 ± 8 82 ± 8

error 0.1 ± 0.05 0.02 ± 0.016 0.05 ± 0.008 0.09 ± 0.04 0.03 ± 0.003 0.03 ± 0.003
models 4727 72 26 3649 773 8

time 1183.3 13.9 5.5 834 120.1 4.1
f-error 8.9 0.7 1.1 4.5 1 0.8

good runs 100% 100% 100% 100% 100% 100%
I: " = 0.103, n = 992, SIFT inliers 70 ± 15 81 ± 11 81 ± 10 77 ± 13 80 ± 12 82 ± 10

error 0.09 ± 0.02 0.03 ± 0.007 0.003 ± 0.002 0.05 ± 0.001 0.02 ± 0.015 0.002 ± 0.02
models 4675 13 13 1961 89 13

time 1032.4 3.4 3.3 507.2 18.4 3.4
f-error 5.5 0.4 0.8 3.3 1.4 1.3

good runs 100% 100% 100% 100% 100% 100%
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Table 4.4: Fundamental matrix estimation results for SIFT and SURF matches. The
results are sorted by inlier-ratio (ε) in ascending order. EVSAC performed as fast as
BEEM, BLOGS, and PROSAC. © 2013 IEEE.
Table 3. Fundamental matrix estimation results for SIFT and SURF matches. The results are sorted by inlier-ratio (") in ascending order.
EVSAC performed as fast as BEEM, BLOGS, and PROSAC.

RANSAC BEEM BLOGS PROSAC GMLESAC EVSAC
A: " = 0.29, n = 992, SURF inliers 221 ± 30 236 ± 32 241 ± 34 237 ± 34 229 ± 31 237 ± 34

error 0.5 ± 1.5 0.4 ± 2.2 0.3 ± 0.7 0.4 ± 1.0 1.0 ± 7 0.3 ± 0.4
models 160 3 3 3 16 2

time 1349 69 64 67 497 64
f-error 0.07 0.05 0.1 1.0 0.06 0.08

good runs 100% 100% 100% 100% 100% 100%
B: " = 0.33, n = 992, SURF inliers 261 ± 44 278 ± 39 283 ± 38 288 ± 35 262 ± 43 279 ± 38

error 0.8 ± 5 0.4 ± 1.8 0.3 ± 0.6 0.4 ± 1.3 0.4 ± 1.4 0.4 ± 2
models 18 1 1 1 15 1

time 214 60 61 59 95 51
f-error 0.002 0.002 0.002 0.001 0.001 0.002

good runs 100% 100% 100% 100% 100% 100%
C: " = 0.40, n = 992, SIFT inliers 306 ± 34 321 ± 42 335 ± 42 331 ± 41 305 ± 36 330 ± 40

error 0.3 ± 0.5 0.3 ± 0.6 0.2 ± 0.8 0.2 ± 0.3 0.6 ± 5 0.2 ± 0.4
models 59 3 3 3 44 3

time 593 83 75 78 410 81
f-error 1.0 0.3 0.1 0.1 0.1 0.1

good runs 100% 100% 100% 100% 100% 100%
D: " = 0.43, n = 992, SIFT inliers 340 ± 55 368 ± 50 380 ± 38 387 ± 36 353 ± 51 373 ± 50

error 0.1 ± 0.25 0.08 ± 0.13 0.07 ± 0.15 0.06 ± 0.07 0.13 ± 0.32 0.08 ± 0.11
models 5 1 1 1 4 1

time 117 78 76 80 108 78
f-error 0.002 0.003 0.002 0.002 0.002 0.002

good runs 100% 100% 100% 100% 100% 100%
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We also presented SWIGS [26] in this Section, an efficient method to sample

data in a guided manner for robust model fitting that exploits the confidence

delivered by MR-Rayleigh. In comparison with other guided sampling methods

(e.g., BEEM [32] and Guided-MLESAC [66]) that assume a correct or incorrect

matching score distribution for a pair of images or for an entire dataset, SWIGS

considers that every query feature has a correct and incorrect matching scores

distributions. SWIGS then computes the confidence of every correspondence on

the fly and uses these confidences for sampling matches to estimate a model such

as a homography. We believe that SWIGS can help applications that have no

prior information of the environment where they will be used, such as image reg-

istration, feature-based tracking, SLAM, and other applications that use putative

correspondences for estimating different models.

This work opens the possibility of using extreme value theory for developing

models for related problems that involve a minimum (or maximum) which can be

cast as stochastic processes. For example, we are interested in extending this work

to similarity metrics and to develop statistical tools for analyzing and designing

descriptors/metrics for these applications.
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Estimating Confidences for the
One-Class SVM Classifier

In this chapter we present algorithms for improving a different decision pro-

cess, namely, the one-class support vector machine (OC-SVM). We study these

classifiers as they are in theory the ideal tools to solve the open-set recogni-

tion problem [60]: a binary classification problem where classifiers can encounter

novel (unseen) classes. This recognition problem is relevant in object detec-

tion [20, 22, 31, 58], because samples of the target class (i.e., the object of interest)

is available for training, but a meaningful set of samples of the non-target classes

is challenging to collect. Hence, the one-class classifiers are the ideal tools for

learning a decision function only from target samples.

Because these one-class classifiers do not use samples from any novel class for

training, their performance in practice falls short. The lack of knowledge about

novel samples makes the one-class classification problem challenging. In practice,
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the one-class SVM classifier do not perform as well as a regular binary SVM

classifiers that have partial knowledge of some classes in the open-set recognition

problem. This performance gap motivates the work described in this section, as

we aim at closing it.

The OC-SVM decision function (reviewed in Section 2.2.3) can be interpreted

as a function that evaluates if a sample falls on the positive side or on the negative

side of the hyperplane (w, ρ). To do so, the decision function first projects a query

sample onto the learned normal of the hyperplane w. Subsequently, it adds the

offset −ρ to this projection, and finally, the decision function evaluates the sign

of the resultant number.

The problem with this decision function is that novel samples (data not gen-

erated from the target class) can still be mapped to the positive side of the hy-

perplane. Clearly, this scenario can decrease the classification accuracy of the

OC-SVM. To address this issue, we present a method based on the generalized

Pareto distribution (GPD) to model the tails of the probability density over the

SVM scores, i.e., the projected mapped training data onto the learned hyperplane

(w, ρ). We then leverage these parametric tail models to devise a new decision

function. Specifically, our proposed decision function tests if an SVM score falling

in the support of the tail reinforces the learned tail distribution parameters; in

which case we accept the sample, otherwise we reject it. When the score falls
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in between the lower and higher tail models, the decision function accepts the

sample. Our experiments on standard datasets show that our proposed approach

improves the accuracy of the OC-SVM considerably.

Several approaches can be used to tackle the one-class problem, e.g., a mul-

tivariate kernel density estimation (KDE) [68], the one-class SVM proposed by

Schölkopf et al. [62], the support vector data description (SVDD) proposed by Tax

and Duin [64], kernel PCA for novelty detection by Hoffmann [34], and others [43].

However, the performance of most of these methods fall short due to the lack of

information about the negative classes. Kernel PCA for novelty detection [34]

works the best with an RBF kernel but it is expensive to compute. In particular,

the one-class SVM, which is one of the best algorithms for one-class classification

problems [42] in terms of computational efficiency and performance, can be very

sensitive to the parameters and kernels used when training.

5.1 The Proposed Decision Function

In this section, we describe formally our proposed decision function for the

one-class SVM (OC-SVM). The decision function of the OC-SVM, namely,

f(x) = sign

(
m∑
i=1

αik (xi,x)− ρ
)
, (5.1)
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Figure 5.1: The decision function of the one-class SVM (OC-SVM) learns a hyperplane
(w, ρ) in the feature space induced by the map Φ of every target class sample (right).
Thanks to this mapping via the kernel trick, the OC-SVM learns a non-linear decision
function in the input space (left). Because there is no knowledge of where the non-target
classes samples (novel samples) lay, it is likely that some of these novel samples lay on
the positive side of the hyperplane. In this case, the OC-SVM’s will misclassify novel
samples as samples from the target class and its performance will decrease.
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determines if a query sample x falls on the positive or negative side of the learned

hyperplane (w, ρ); see Fig.5.1 for an illustration of the OC-SVM decision function.

This decision function computes the SVM score:

s (x) =
m∑
i=1

αik (xi,x)− ρ, (5.2)

whose sign determines the side of the hyperplane that contains the query sample.

Because the OC-SVM learns the hyperplane (w, ρ) by using only samples from

the target class, there is no guarantee that samples from non-target classes (i.e.,

novel samples) can still be mapped to the positive side. This scenario decreases

the OC-SVM performance.

Before introducing a decision function that alleviates this issue, we assume that

there exist a target-class multivariate distribution that generates i.i.d. patterns

(our observations) x. This implies that the SVM scores, s (x), are i.i.d. random

variables drawn from some target-class univariate distribution S.

Our proposed decision function aims to bound the distribution S+. Extreme

value theory (EVT) can help in this task, because it provides the right statis-

tical tools to estimate the largest and smallest SVM scores that the univariate

distribution S+ can generate; see Fig. 5.2 for an illustration about bounding the

distribution S+. To use the theorems described in Section 2.1, we assume that

there exist normalizing constants for the extremes (minimum and maximum val-

ues) of the distribution S+ which lead to a non-degenerate distribution G.

83



Chapter 5. Estimating Confidences for the One-Class SVM Classifier

-
+

(w, ⇢)

Projection

De
ns

ity

−2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Student Version of MATLAB

- +

SVM scores
target-class

density

s

De
ns

ity

−2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Student Version of MATLAB

- +

s

Higher 
tail model

Lower
tail model

Thresholds

Figure 5.2: The one-class SVM (OC-SVM) learns a hyperplane onto which the target
samples are projected to get the SVM scores (left). These scores are considered con-
tinuous random variables. Thus, we can visualize their density (middle). Our proposed
decision function models the lower and higher tails using the generalized Pareto distri-
bution (right). We use these tail models to discriminate between target samples falling
in the extremes and samples drawn from unknown classes.

We use the generalized Pareto distribution (GPD) to model the higher and

lower tails of the SVM scores density s+. We use these tail models to describe

both extremes of the distribution S+, i.e., the lower and higher SVM score values.

The proposed decision function verifies that a query sample falling in the support

of these tail models support the learned GPD parameters found using the training

set and the learned hyperplane (w, ρ). When the query sample supports the tail

parameters, the decision function labels it a sample generated from the target

class. In the scenario where the query sample falls in between the two tail models,

the decision function labels it as a sample generated from the target class as well.
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5.1.1 Computing the Generalized Pareto Distribution Pa-

rameters

We focus on modeling the tails of the density over the OC-SVM scores. Thus,

as stated by Theorem 2, the generalized Pareto distribution (GPD) can be used

for our goal. The reasonable assumptions for the proposed decision function are:

(1) a sufficiently large training dataset of i.i.d. samples so that Theorem 2 holds,

and (2) the normalizing constants an and bn always exist regardless of the kernel

function so that Theorems 1 and 2 hold.

Given the training set X with m = |X | and the learned optimal hyperplane

normal parameters (w, ρ), we model the lower and higher tails of the probability

density function over the SVM scores s(x) using the GPD.

To model the lower and higher tails of the SVM score distribution, we require

two thresholds ul and uh so that we can identify the lower and higher OC-SVM tail

scores from the training set. These thresholds can be set by computing empirical

quantiles, e.g., ul = Q({si}mi=1 , pl) and uh = Q({si}mi=1 , ph), where si are the one-

class SVM scores computed from the training set, and pl and ph are cumulative

probabilities; e.g., pl = 0.15 and ph = 0.85. We compute the two sets containing
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the tail samples as follows:

Sl = {ul − s : s < ul, s ∈ S} (5.3)

Sh = {s− uh : uh < s, s ∈ S} , (5.4)

where S is the set of the OC-SVM scores computed from the training data. Note

that both sets Sl and Sh contain transformed lower and higher tail samples, re-

spectively, so that we can use Theorem 2. Subsequently, we estimate the GPD

parameters θ̂l =
(

ˆ̄σl, ξ̂l

)
and θ̂h =

(
ˆ̄σh, ξ̂h

)
using the ML parameter estimation

method with the computed sets Sl and Sh, respectively.

To evaluate if a given score falling in the domain of a tail is likely to be

generated from the target class, we use a threshold computed from the distribution

of the negative log-likelihood values for every tail. The intuition for this test is the

following: because the negative log-likelihood can be interpreted as the amount of

surprise of observing a sample drawn from a process, in this case our tail model,

we thus use a threshold defining the boundary between samples with high surprise

and low surprise.

In a more formal setting, we estimate two thresholds tl and th over the negative

log-likelihood values obtained when estimating θ̂l and θ̂h. We calculate these

thresholds as quantiles from the empirical distribution of the random variables

rl = − log fl(s; θ̂l) and rh = − log fh(s; θ̂h) where fl and fh are the generalized
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Algorithm 5 Modeling SVM score density tails using the generalized Pareto
distribution

Require: SVM scores S from the training set X , percentiles pl, ph, ql, and qh
Ensure: Lower and higher GPD parameters θ̂l, θ̂h and negative log-likelihood

thresholds tl and th
1: Calculate threshold for lower tail: ul ← Q(S, pl)
2: Calculate threshold for higher tail: uh ← Q(S, ph)
3: Calculate transformed scores for lower tail: Sl ← {ul − s : s < ul, s ∈ S}
4: Calculate transformed scores for higher tail: Sh ← {s− uh : uh < s, s ∈ S}
5: Estimate GPD parameters for lower tail: θ̂l =

(
ˆ̄σl, ξ̂l

)
← FitGPD (Sl)

6: Estimate GPD parameters for higher tail: θ̂h =
(

ˆ̄σh, ξ̂h

)
← FitGPD (Sh)

7: Calculate negative log-likelihood values for lower tail using the GP density:

Rl ←
{
rl : rl = − log fl(sl; θ̂l), sl ∈ Sl

}
8: Calculate negative log-likelihood values for higher tail using the GP density:

Rh ←
{
rh : rh = − log fh(sh; θ̂h), sh ∈ Sh

}
9: Calculate negative log-likelihood threshold for lower tail: tl = Q(Rl, ql)

10: Calculate negative log-likelihood threshold for higher tail: th = Q(Rh, qh)

Pareto densities for the lower tail and higher tail samples, respectively. In short,

we compute these thresholds as follows:

tl = Q(Rl, ql) (5.5)

th = Q(Rh, qh), (5.6)

where Rl and Rh are the sets containing the negative log-likelihoods, and ql and

qh are percentiles. We summarize the entire procedure to compute the tail model

parameters θ̂l and θ̂h as well as the negative log-likelihood thresholds tl and th in

Algorithm 5.
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5.1.2 The Improved OC-SVM Decision Function

Given a one-class SVM score sq corresponding to a query instance xq, the

estimated GPD parameters θ̂l and θ̂h, and the thresholds tl and th, we propose

the following decision function for the one-class SVM:

f(sq) =



+1 if ul ≤ sq ≤ uh

+1 if − log fl(ul − sq; θ̂l) < tl and sq < ul

+1 if − log fh(sq − uh; θ̂h) < th and uh < sq

−1 otherwise

. (5.7)

Unlike the default decision function of the one-class SVM (Eq. (5.1)), which

accepts a sample when the one-class SVM score is positive, our proposed decision

function can be more robust to those samples coming from an unknown class that

might be mapped positive but outside the support of the target class score density.

Because this decision function is based on the generalized Pareto distribution

modeling the extreme values of the target class, we can calculate the following

cumulative probabilities (our beliefs):

P(sq − uh ≤ z|sq > uh, C = +1) ≈ Fh(z; θ̂h) (5.8)

P(ul − sq ≤ z|sq < ul, C = +1) ≈ Fl(z; θ̂l), (5.9)

where Fl and Fh are the generalized Pareto distribution functions for the lower

and higher tail, respectively; and C is a discrete random variable indicating the
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class. These cumulative probabilities (Eq. 5.8 and Eq. 5.9), which in some sense

measure how extreme sq is, can be used to compute a probability that measures

how deep sq is inside of the support of the target class density s+. Formally, this

can be written as follows:

P(sq ∈ supp(s+)|C = +1) =



1− Fh(sq − uh; θ̂h) if uh < sq

Fl(ul − sq; θ̂l) if sq < ul

1 if ul ≤ sq ≤ uh

, (5.10)

where supp(s+) is the support of the density s+. Note that this probability can be

used as a confidence on the classification of our proposed decision function given

our knowledge about the target class (i.e., C = +1) from the training set X .

5.1.3 Computational Limitations

One limitation that our decision function can experience is inherited from the

MLE parameter estimation of the generalized Pareto distribution (GPD). It is

well known (see [10, 17]) that the MLE properties of the GPD are lost when the

estimator returns a ξ < 0.5. In practice, this case rarely happens as discussed by

Coles in [17].

This limitation can be overcome if another parameter estimator is used, e.g.,

the maximum spacing estimator [24]. However, a new test to check if a query

sample supports the parameters of the tail models needs to be devised.
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Figure 5.3: Few images of the MNIST [38] dataset. The MNIST dataset contains
28× 28 images of handwritten digits. The dataset contains 60,000 training images and
10,000 testing images.

Another limitation of our method is that there is no clear rule to select the

percentiles pl and ph used to estimate the thresholds ul and uh. Clearly, pl must

be low enough and ph must be high enough to define the tails of the SVM scores

density. In practice, these percentiles can be chosen in the range of pl ∈ (0, 0.25]

and ph ∈ [0.75, 1.0).

5.2 Experiments

In this section, we present two main experiments evaluating the performance

of our proposed decision function for the one-class SVM (OC-SVM). To assess

this performance, we used two different datasets: MNIST [38] and LETTER [29].

90



Chapter 5. Estimating Confidences for the One-Class SVM Classifier

The MNIST dataset contains images of handwritten digits of size 28 × 28

pixels. The dataset contains 60,000 training images and 10,000 testing images.

In Fig. 5.3 we show a few images of this dataset. The LETTER dataset contains

feature vectors that collect 16 primitive numerical attributes (statistical moments

and edge counts) of binary images of the 26 letters. These attributes are scaled to

fit into a range of integer values from 0 through 15. The dataset provides 16,000

training feature vectors and 4,000 testing feature vectors.

In our evaluation scenario we trained a one-class classifier for every digit. We

used the remaining digits as the unknown classes as well as instances from the

target digit to test our trained one-class classifiers. We used an RBF kernel as

well as a linear kernel for our experiments. We included a linear kernel in our ex-

periments because there are more efficient to compute than the RBF kernel and to

illustrate that bounding the density of the SVM scores improves the classification

accuracy. We compare the following one-class classifiers: Support Vector Data

Description [64] (SVDD), kernel PCA for novelty detection [34] (OC-KPCA), a

multivariate kernel density estimation (KDE) approach, the one-class SVM [62]

(OC-SVM), and our proposed one-class SVM using our proposed decision function

(OC-SVM+EVT). We performed a 5-fold cross validation to determine the kernel

parameters for OC-SVM, SVDD, and OC-KPCA. We used 128 components for
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the OC-KPCA method. The parameters of each one-class classifier used for these

experiments are shown in Appendix A.

We implemented a MATLAB script following the procedure shown in Algo-

rithm 5 to find the required parameters for our proposed decision function. The

percentiles used for these experiments are the following: pl = 0.15, ph = 0.85,

and ql = qh = 0.35. To evaluate our proposed decision function, we computed the

SVM scores of the testing data and passed them to our MATLAB implementation

of our proposed decision function.

5.2.1 Results on MNIST dataset

We used the training data for every class provided by the MNIST dataset to

train the OC-SVM, SVDD, OC-KPCA, KDE, and OC-SVM+EVT. For assessing

the performance of our decision function, we used the provided testing data where

the data corresponding to the target class was labeled as our positive class and the

remaining classes were labeled as our negative class. The implementation we used

for KDE 1 struggles when the dimensionality of the data is high. To alleviate this

issue, we performed PCA and use 512 components to reduce the dimensionality of

the data; note that the original dimensions of the data is 784. Thus, PCA allows

1http://www.ics.uci.edu/~ihler/code/kde.html
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the KDE toolbox to use most of the information for learning a one-class model

for every digit.

The results of these experiments are shown in Table 5.1. We can observe

that our approach, OC-SVM+EVT, overall tends to increase the accuracy of the

OC-SVM. Measured by the average of the accuracies obtained for these exper-

iments, our decision function increased the OC-SVM accuracy considerably for

linear and RBF kernels. OC-SVM+EVT’s performance is comparable to that

one of OC-KPCA in these experiments. However, OC-SVM is more efficient to

evaluate because only a few data points are used to make a decision. On the

other hand, OC-KPCA requires all the data to make a prediction, requiring thus

more computation. The SVDD and KDE methods tend to fall short in these

experiments.

The main motivation for improving the OC-SVM was to identify positive SVM

scores produced by novel samples. To illustrate that this case can occur often, we

show several SVM score histograms for different digits and for different kernels in

Fig. 5.4. In every plot, we display the SVM score histograms for the target class

(shown in red) and novel samples (shown in blue). In the top row, which shows the

SVM scores obtained using a linear kernel, we can observe that the histograms for

the novel samples overlap the histogram of the target samples. Thus, bounding

the density of the target class SVM scores helps in rejecting these false positive
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Figure 5.4: Histogram of SVM scores for digits 1, 3, and 5 (from left to right). Top
row shows the histograms obtained from an OC-SVM using the linear kernel, while the
bottom row shows the histograms obtained when using an RBF kernel. Note how the
SVM score histograms from novel samples (shown in blue) overlap the histograms of
the target class’ SVM scores (shown in red) in the top row. This effect is not prominent
when using an RBF kernel. Hence, bounding the target class’ SVM score density can
help in reject false-positive SVM scores and thus increasing the classification accuracy.

scores and thus increasing the classification accuracy. This explains the significant

increase in accuracy for the linear kernel (see Table 5.1). On the other hand, the

overlapping behavior is not evident for the SVM scores obtained when using an

RBF kernel. Nevertheless, the tail models helped in increasing the classification

accuracy considerably (see Table 5.1).

5.2.2 Results on LETTER dataset

To further explore the improvement of our proposed decision function, we

tested our approach on the LETTER dataset. This dataset contains 20,000 sam-
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ples of the 26 capital characters in the English alphabet and did not require

preprocessing. We used the first 16,000 samples of this dataset to train the OC-

SVM, SVDD, OC-KPCA, and KDE, and used the remaining 4,000 exemplars for

testing. We also ran a 5-fold cross validation in combination with a grid search

to find the parameters for training.

The results of these experiments are shown in Table 5.2 and Table 5.3 for an

RBF and linear kernel, respectively. These experiments overall show that our

approach OC-SVM+EVT improves the classification accuracy of the OC-SVM

significantly. The accuracy of OC-SVM+EVT and OC-KPCA is comparable when

an RBF kernel is used. On the other hand, when a linear kernel is used, the

OC-SVM+EVT outperforms OC-KPCA significantly. The performance of KDE,

OC-SVM is comparable when an RBF kernel is used, and SVDD is the method

that performs the worst. Nevertheless, when using a linear kernel, the OC-KPCA

is the worst performing algorithm. Moreover, the performance of SVDD and OC-

SVM is comparable and below 50%. Note that for this dataset, the KDE method

performs reasonably well compared with the MNIST dataset.

These experiments confirm that our proposed decision function can increase

the accuracy of the OC-SVM considerably. In addition, the approach can be

incorporated without much effort into current software implementing the OC-
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Figure 5.5: Histogram of SVM scores for letters A, D, and K (from left to right). Top
row shows the histograms obtained from an OC-SVM using the linear kernel, while the
bottom row shows the histograms obtained when using an RBF kernel. Note how the
SVM score histograms from novel samples (shown in blue) overlap the histograms of
the target class’ SVM scores (shown in red) in the top row. This effect is not prominent
when using an RBF kernel. Hence, bounding the target class’ SVM score density can
help in reject false-positive SVM scores and thus increasing the classification accuracy.

SVM. Finally, OC-SVM tends to be 1 order of magnitude faster when training,

and almost 2 orders of magnitude when testing than OC-KPCA [34].

We also analyzed the densities of the SVM scores for this dataset using two

different kernels. In Fig. 5.5 we show the obtained SVM score densities for novel

(shown in blue) and target (shown in red) classes. This figure shows the SVM

score densities of the letters A, D, and K using a linear kernel (top row) and

an RBF kernel (bottom row). In this dataset, for both kernels the two densities

overlap. Thus, our strategy of bounding the target SVM score density helps again

in increasing the classification accuracy (see Table 5.2 and Table 5.3).
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Table 5.1: Accuracy on the MNIST dataset using an RBF and linear ker-
nel; highest classification accuracies are shown in bold per row. Overall, OC-
SVM+EVT tends to improve the accuracy of the regular OC-SVM considerably.
OC-SVM+EVT and OC-KPCA are comparable in performance regardless of the
kernel. The performance of SVDD and KDE tend to fall short.

Target Class KDE SVDD OC-KPCA OC-SVM OC-SVM+EVT
Linear kernel

0 13.86 46.41 94.00 71.85 91.63
1 93.26 63.22 99.00 45.08 78.28
2 14.68 20.07 78.00 42.39 84.63
3 16.12 16.71 77.00 45.52 86.37
4 21.96 62.42 79.00 39.79 78.54
5 13.53 16.73 84.00 23.08 69.45
6 14.98 56.54 95.00 51.91 87.29
7 24.90 34.80 88.00 35.02 76.58
8 14.42 24.75 61.00 53.04 87.77
9 21.59 29.81 90.00 39.30 80.35

Average 24.93 37.146 84.50 44.70 82.09
RBF kernel

0 13.86 81.60 99.00 97.26 93.43
1 93.26 75.89 99.00 98.49 92.40
2 14.68 26.14 83.00 54.78 91.59
3 16.12 28.72 82.00 60.83 92.61
4 21.96 70.59 86.00 87.46 93.07
5 13.53 25.74 85.00 50.89 88.76
6 14.98 74.00 97.00 94.04 93.55
7 24.90 57.89 88.00 81.59 92.90
8 14.42 30.04 67.00 63.41 92.46
9 21.59 49.28 90.00 82.92 92.70

Average 24.93 51.99 87.60 77.167 92.35
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Table 5.2: Accuracy on the LETTER dataset using an RBF kernel; highest accu-
racy values are shown in bold per row. Our approach OC-SVM+EVT increases
the accuracy by approximately 20%, based on the average accuracy. Overall, our
approach significantly outperforms all of the one-class classifiers and is comparable
to the OC-KPCA method.

Target Class KDE SVDD OC-KPCA OC-SVM OC-SVM+EVT
RBF Kernel

A 75.15 70.53 99.40 79.33 95.75
B 61.35 35.85 97.55 65.78 91.53
C 63.78 38.80 97.45 74.33 94.23
D 53.88 28.50 97.55 67.45 91.00
E 57.38 52.65 96.08 69.78 91.93
F 55.43 22.00 97.80 69.30 94.73
G 56.40 35.35 96.55 70.75 89.85
H 32.53 21.38 81.70 58.15 85.63
I 71.08 25.70 98.85 66.78 83.63
J 65.90 30.93 98.73 69.23 89.85
K 37.25 23.45 92.95 56.53 86.90
L 55.63 25.45 98.93 72.75 92.03
M 59.18 35.25 97.90 69.10 94.80
N 32.28 24.33 98.10 64.50 91.13
O 80.93 33.25 97.15 65.38 93.80
P 59.20 28.23 97.80 70.00 95.18
Q 47.30 20.30 94.00 76.18 93.40
R 66.58 30.48 95.53 66.03 92.40
S 43.30 34.58 87.83 66.43 91.75
T 60.15 24.05 98.40 76.45 93.30
U 45.00 30.78 98.50 76.48 94.63
V 76.35 31.50 97.45 66.90 93.45
W 72.08 22.13 99.03 92.03 97.05
X 49.55 20.05 96.73 57.53 94.15
Y 47.05 28.38 94.15 67.03 90.33
Z 63.45 29.13 94.93 75.33 94.98

Average 57.24 30.88 96.19 69.59 92.21
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Table 5.3: Accuracy on the LETTER dataset using a linear kernel; highest accu-
racy values are shown in bold per row. Our approach OC-SVM+EVT increases
the accuracy by approximately 50%, based on the average accuracy. Overall, our
approach significantly outperforms all of the one-class classifiers.

Target Class KDE SVDD OC-KPCA OC-SVM OC-SVM+EVT
Linear Kernel

A 75.15 33.35 3.90 5.05 95.48
B 61.35 28.15 4.00 21.65 79.10
C 63.78 33.70 3.68 65.45 94.48
D 53.88 23.48 4.18 16.05 56.00
E 57.38 37.93 3.80 50.48 89.15
F 55.43 18.75 3.90 48.43 84.53
G 56.40 29.65 4.68 27.40 79.30
H 32.53 13.73 4.08 22.25 69.53
I 71.08 22.15 3.68 13.88 85.55
J 65.90 25.10 3.30 29.93 83.15
K 37.25 11.68 3.38 31.53 68.08
L 55.63 16.18 4.00 4.88 94.63
M 59.18 20.95 3.83 26.78 61.90
N 32.28 11.40 3.65 20.00 69.40
O 80.93 28.30 3.63 20.88 66.83
P 59.20 22.73 4.25 31.53 86.10
Q 47.30 15.10 3.60 21.10 82.68
R 66.58 21.05 3.83 15.98 64.80
S 43.30 27.25 3.78 27.28 73.35
T 60.15 20.30 3.83 55.13 61.90
U 45.00 18.13 4.28 36.98 81.28
V 76.35 27.03 3.80 65.73 91.45
W 72.08 14.28 3.43 61.70 93.15
X 49.55 17.43 4.23 21.38 74.83
Y 47.05 23.40 3.60 47.53 84.13
Z 63.45 23.30 3.75 40.05 90.23

Average 57.24 22.48 3.85 31.88 79.27
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Chapter 6

Conclusions and Future
Directions

6.1 Conclusions

In this thesis we have described algorithms based on the extreme value theory

for estimating confidence values for classifier’s decisions. These confidence values

are computed as the probability that the classifier’s decision is correct. In this

work, we called these probabilities correctness beliefs.

We have described in Chapter 4 two algorithms that compute these correctness

beliefs for a nearest-neighbor (NN) classifier dealing with a large set of classes.

We developed these algorithms considering two different information scenarios: 1)

when only the distances obtained by comparing a single query input against every

sample in the training set are available; and 2) when all the distances obtained

by comparing the query inputs against all the training set are available.
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The goal of both algorithms is to estimate a confidence value by observing

the distances obtained when the classifier compares the query input against the

training data. The idea behind both algorithms dwells in the fact that the class

label of the closest instance to the query input is not always the correct class label

of the input. Thus, we can assume that the minimum distance obtained from

these comparisons can come from two different random processes: 1) a process

generating distances for patterns with the same class labels (true matches); and

2) a process generating distances for patterns with different class labels (false

matches).

To calculate the confidence value for the NN classifications, both algorithms

calculate the probability that the smallest distance obtained by the NN rule is a

sample drawn from the process generating distances for patterns with the same

class. To calculate this probability, the algorithms model the smallest distances

from a random process generating distances for patterns with different class la-

bels. These algorithms assume that the distances between patterns with the same

classes tend to be close enough to zero, while the distances between patterns with

different class labels tend to be distant from zero. Note that this assumption

implies that the pattern representation (e.g., feature descriptors) is very discrim-

inative.
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Because our scenario considers a large set of classes, the number of samples we

can obtain from the process generating distances for patterns with different class

labels is going to be significantly higher than the number of samples we can obtain

from the process generating distances for patterns with the same class. Note that

the samples from these processes are obtained when the NN classifier compares

the query input against the training data.

Since we have more samples from the process generating distances from false

matches, the minimum distance from this process can be described with extremal

type distributions (see Theorem 1). Hence, our algorithms compute the distribu-

tion for such a minimum distance. This distribution according to Theorem 1 is an

extremal type distribution. To compute the correctness belief for a NN classifier,

the algorithms calculate the likelihood that the smallest distance obtained by the

NN rule is not a sample drawn from the computed extremal type distribution.

To demonstrate the utility of these beliefs, we described two applications in

the context of feature matching. The first one is a predictor dubbed MR-Rayleigh

that can be used to remove putative image feature correspondences that are be-

lieved to be wrong. MR-Rayleigh calculates for every putative correspondence

the correctness belief. A threshold on the belief was used to predict if a putative

correspondence is likely to be correct or incorrect.
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Our feature matching experiments, which were conducted using publicly avail-

able datasets and using two different descriptors, confirmed that MR-Rayleigh is a

good predictor for correct putative correspondences. Our predictor outperformed

the widely used Lowe’s heuristic (also known as the SIFT ratio test) by about 5-

8% regardless of the feature descriptor and imaging conditions. In contrast with

this ratio test, our algorithm has a more solid foundation: extreme value theory.

The second one is the development of non-uniform sampling strategies for ro-

bust estimations from putative image correspondences in a sample-and-consensus

scheme, e.g., RANSAC. For this application we developed two different non-

uniform sampling strategies: one that exploits MR-Rayleigh confidences, and

another one that speeds up the estimations even when only a small number of

correspondences is correct.

Our robust estimation experiments showed that these strategies showed speedups

when estimating homographies and fundamental matrices, which are geometric

models that are useful for structure-from-motion, image registration, and others.

More specifically, the non-uniform sampling strategy derived from MR-Rayleigh

confidences, which we called SWIGS, performed similarly to the state-of-the-art.

Nevertheless, our strategy is more efficient to compute and yet delivers a state-of-

the-art performance. The second non-uniform sampling strategy, EVSAC, outper-

formed the state-of-the-art in the challenging scenario where only a small fraction
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(less than 10%) of putative correspondences is available for the estimation of ge-

ometric models. EVSAC showed a good performance regardless of the feature

descriptor used to establish the putative correspondences.

Image feature correspondences via feature matching present several scenarios

where classifiers fail. In other words, this application is representative of difficult

classification scenarios because it presents the following challenges: 1) there is

no full knowledge of all the possible classes that can be queried; and 2) there

exists a strong stochastic component in the data representation that increases the

chances for the classifier to confuse classes. Moreover, the derived non-uniform

sampling strategies for a sample-and-consensus robust estimator is a clear case

where subsequent processes leverage the information captured by the correctness

beliefs.

In Chapter 5 we described the theory and an algorithm for improving the

decisions of a different classifier, namely, the one-class support vector machine

(OC-SVM). The decision process of the regular OC-SVM is prone to have a large

false positive rate because it is trained without knowledge of potential negative

classes. Moreover, the decision process of the OC-SVM ignores the statistics of

the SVM decision scores that the target class generates. Our proposed algorithm

models the extrema of these scores to estimate the support of the SVM score

density to devise a new decision function for the OC-SVM. In other words, our
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proposed decision function is aware of the statistics of the extreme SVM scores

generated by the target class. Thanks to this knowledge, the decision function

is able to identify the normal range where the SVM scores of the target class

frequently occur.

Our one-class experiments, which used the standard and publicly available

datasets MNIST and LETTER, confirmed that our proposed decision function in-

creased the classification accuracy on average 50% when using a linear kernel and

20% when using an RBF kernel. The experiments show that the performance of

our proposed OC-SVM decision function is comparable to the performance of the

one-class kernel PCA (OC-KPCA) method. However, the computational cost of

the OC-SVM is more efficient than that one of the OC-KPCA. Thus, our proposed

decision function increases the performance of the OC-SVM while maintaining a

relatively cheap computational overhead, in comparison with OC-KPCA. More-

over, our experiments showed that our proposed OC-SVM outperformed other

one-class classifiers, such as, support vector data description (SVDD), a kernel

density estimation.

Overall, this thesis has shown that understanding the extreme value statistics

of several decision scores enables a wide range of tools that improve the accu-

racy of various classification algorithms, e.g., nearest-neighbor classifier, and the

one-class SVM. Because we use the statistical theory of extreme values, we can
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calculate the probability that a classifier’s decision is correct. As shown in Chap-

ter 4, these probabilities are useful for predicting the correctness of a classifier’s

decision; provide hints about correctness to subsequent processes (non-uniform

sampling strategies), and to derive decision functions that increase the classifica-

tion performance of one-class SVMs.

The general conclusion of this work is that extreme value theory can provide

useful information about the correctness of several classification decisions that can

be leveraged to improve applications in computer vision and machine learning.

As confirmed by the experiments presented in Chapter 4 and Chapter 5, our

algorithms show benefit for two very different decision processes: the nearest-

neighbor classifier and the one-class SVM.

6.2 Limitations

Although our experiments have shown great improvements to various applica-

tions in computer vision and machine learning, there exist some limitations about

our algorithms. These limitations are inherited by the theory of extreme values.

The main limitation is that these algorithms are not guaranteed to work as

shown in our experiments when the training data is not large enough. In other

words, for classification problems where the number of classes is not abundant,
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our algorithms are not likely to work as well. This is because Theorem 1 and

Theorem 2, which state the extremal type distributions, require a sufficiently

large amount of data.

The second limitation of our algorithms, which one more time is inherited

from the theory of extreme values, is that the training data has to be consid-

ered i.i.d. In many applications, e.g., time series analysis, there may exist a time

dependency between data points, which violates the assumptions of the extreme

value theorems. Nevertheless, there exist extensions that consider these cases.

The reader is referred to [10, 17] for more information about extreme value theory

for non i.i.d. samples.

The third limitation of our algorithms is the maximum likelihood (ML) param-

eter estimators for the generalized extreme value distribution and the generalized

Pareto distribution. It has been shown that these estimators can be unstable;

see [17, 45] for a deeper discussion about alternative parameter estimators.

6.3 Future Directions

In this section we discuss briefly potential future research directions. We dis-

cuss mainly two different applications where extreme value theory can be applied:

feature matching and multi-class SVMs.
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6.3.1 Feature Matching using Similarity Functions

In this thesis, we developed an algorithm for predicting the correctness of

putative image feature correspondences computed via the nearest neighbor rule

using Euclidean distances. Nevertheless, recent advances in feature matching have

proposed new similarity functions, e.g., [3, 37], and it is not clear if the Rayleigh

distribution, as shown in Chapter 4, performs the same for these similarity func-

tions. Moreover, it is possible to use the generalized Pareto distribution (GPD)

for predicting correctness in feature matching. Instead of approximating a model

that describes the smallest/largest matching score, it is possible to model the tail

of the process that generates matching scores for incorrect decisions. These tail

models can be used for discriminating between correct and incorrect matching

scores. The problem with this approach is that discarding the smallest/largest

sample, as used by Algorithm 3 in Chapter 4, can produce bad parameter esti-

mates, yielding to poor tail models. Hence, a robust parameter estimator for the

GPD needs to be devised.

6.3.2 Effect of Approximate Nearest Neighbors

We used a brute force nearest neighbor search for computing putative corre-

spondences. However, in practice approximate nearest neighbor (ANN) techniques

are used to reduce the expensive computation of the brute force approach. It is
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unknown if ANN techniques, e.g., the technique by Muja and Lowe [48], can

introduce artifacts that affect the performance of the predictor.

6.3.3 Multiclass Support Vector Machines

In Chapter 5 we introduced a new decision function that improves the per-

formance of the one-class support vector machine (OC-SVM). The problem of

one-class classification is hard because there is no knowledge of the non-target

(negative) classes. However, in many applications there is knowledge of some

of the negative classes [60], and this knowledge can be used to train a 1-vs-set

SVM [36, 57]. Nevertheless, the scenario where unknown classes can still occur

and produce false positive SVM-scores is still possible. Thus, we propose to ex-

tend the algorithm proposed in Chapter 5 to the 1-vs-set SVMs, where we can

model the tail of the largest SVM scores produced by the positive class in order

to avoid false alarm cases.
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Parameters for the One-Class
Classification Experiemtns

In this chapter we describe the parameters that we use for the experiments

shown in Section 5.2. The parameters used for the experiments are shown in

Table A.1, Table A.2, and Table A.3. These parameters were obtained by running

a 5-fold cross validation with the training sets.

We used the Gaussian kernel,

G(x;σ) =
1(√

2πσ
)N exp

(
−‖x‖

2

2σ2

)
, (A.1)

for estimating the multivariate density. The kernel G(x;σ) requires a point x ∈

RN and the bandwidth parameter σ.

For part of the experiments, we used the radial basis function (RBF) kernel:

K(x,x′; γ) = exp
(
γ‖x− x′‖2

)
. (A.2)
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This kernel depends on two points to compare x,x′ ∈ RN , and the bandwidth

parameter γ. This kernel was used by the the following methods: one-class SVM

(OC-SVM), support vector data description, (SVDD), and one-class kernel PCA

(OC-KPCA).

The support vector data description method [64] (SVDD) requires a parameter

C. This parameter is part of the optimization problem to solve for learning the

ball with the minimum radius enclosing the data in feature space. The one-class

SVM [62] requires a parameter ν that determines the probability of observing novel

samples. Finally, the OC-KPCA [34] requires a threshold over the reconstruction

error used for classification. To estimate this threshold, we calculate the quantile

corresponding to the percentile 0.9 using the training set.
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Table A.1: Parameters used for the one-class experiments on the MNIST dataset.

RBF kernel
KDE SVDD OC-SVM OC-KPCA

Digit σ C γ ν γ γ Percentile
0 1.4142 0.4002 0.0078 0.1000 0.0078 0.0078 0.9000
1 0.5000 0.3001 0.0078 0.1000 0.0078 0.1250 0.9000
2 1.4142 0.1002 0.0078 0.1000 0.0078 0.0156 0.9000
3 1.4142 0.5002 0.0078 0.1000 0.0078 0.0078 0.9000
4 1.0000 0.5002 0.0078 0.1000 0.0078 0.0078 0.9000
5 1.0000 0.1002 0.0078 0.1000 0.0078 0.0078 0.9000
6 1.4142 0.9002 0.0078 0.1000 0.0078 0.0078 0.9000
7 1.4142 0.3002 0.0078 0.1000 0.0078 0.0625 0.9000
8 1.4142 0.2002 0.0039 0.1000 0.0039 0.0039 0.9000
9 1.4142 0.1002 0.0078 0.1000 0.0078 0.0078 0.9000

Linear kernel
0 1.4142 1.4142 - 0.1000 - - 0.9000
1 0.5000 0.5000 - 0.1000 - - 0.9000
2 1.4142 1.4142 - 0.1000 - - 0.9000
3 1.4142 1.4142 - 0.1000 - - 0.9000
4 1.0000 1.0000 - 0.1000 - - 0.9000
5 1.0000 1.0000 - 0.1000 - - 0.9000
6 1.4142 1.4142 - 0.1000 - - 0.9000
7 1.4142 1.4142 - 0.1000 - - 0.9000
8 1.4142 1.4142 - 0.1000 - - 0.9000
9 1.4142 1.4142 - 0.1000 - - 0.9000
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Table A.2: Parameters used for the one-class experiments on the LETTER dataset
using the RBF kernel.

RBF kernel
KDE SVDD OC-SVM OC-KPCA

Letter σ C γ ν γ γ Percentile
A 0.7071 0.9016 1.0000 0.1000 1.0000 1.0000 0.9000
B 0.5000 0.4017 0.5000 0.1000 0.5000 0.5000 0.9000
C 0.7071 0.3017 1.0000 0.1000 1.0000 1.0000 0.9000
D 0.7071 0.2016 1.0000 0.1000 1.0000 1.0000 0.9000
E 0.7071 0.2016 1.0000 0.1000 1.0000 4.0000 0.9000
F 0.7071 0.2016 1.0000 0.1000 1.0000 2.0000 0.9000
G 0.5000 0.7017 1.0000 0.1000 1.0000 2.0000 0.9000
H 0.7071 0.5018 1.0000 0.1000 1.0000 16.0000 0.9000
I 0.3536 0.4016 1.0000 0.1100 1.0000 1.0000 0.9000
J 0.5000 0.2016 1.0000 0.1000 1.0000 4.0000 0.9000
K 1.0000 0.4017 0.5000 0.1000 1.0000 16.0000 0.9000
L 0.7071 0.3017 1.0000 0.1000 1.0000 4.0000 0.9000
M 0.5000 0.8016 0.5000 0.1000 0.5000 1.0000 0.9000
N 1.0000 0.5016 0.5000 0.1000 1.0000 0.5000 0.9000
O 0.2500 0.3016 0.5000 0.1000 0.5000 0.5000 0.9000
P 0.7071 0.9016 0.5000 0.1000 0.5000 2.0000 0.9000
Q 0.7071 0.3016 1.0000 0.1000 2.0000 16.0000 0.9000
R 0.3536 0.4017 0.5000 0.1000 0.5000 4.0000 0.9000
S 0.5000 0.3017 1.0000 0.1000 2.0000 16.0000 0.9000
T 0.7071 0.4016 1.0000 0.1000 1.0000 2.0000 0.9000
U 0.7071 0.4016 1.0000 0.1000 1.0000 8.0000 0.9000
V 0.5000 0.2016 0.5000 0.1000 0.5000 16.0000 0.9000
W 0.7071 0.5016 1.0000 0.1000 1.0000 1.0000 0.9000
X 0.7071 0.3016 0.5000 0.1000 0.5000 2.0000 0.9000
Y 0.7071 0.2016 1.0000 0.1000 1.0000 16.0000 0.9000
Z 0.7071 0.6017 0.5000 0.1000 1.0000 16.0000 0.9000
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Table A.3: Parameters used for the one-class experiments on the LETTER dataset
using the linear kernel.

RBF kernel
KDE SVDD OC-SVM OC-KPCA

Letter σ C ν Percentile
A 0.7071 0.5016 0.1000 0.9000
B 0.5000 0.4017 0.1000 0.9000
C 0.7071 0.4017 0.1000 0.9000
D 0.7071 0.4016 0.1000 0.9000
E 0.7071 0.3016 0.1000 0.9000
F 0.7071 0.3016 0.1000 0.9000
G 0.5000 0.5017 0.1000 0.9000
H 0.7071 0.5018 0.1000 0.9000
I 0.3536 0.4016 0.1000 0.9000
J 0.5000 0.9016 0.1000 0.9000
K 1.0000 0.5017 0.1000 0.9000
L 0.7071 0.5017 0.1000 0.9000
M 0.5000 0.4016 0.1000 0.9000
N 1.0000 0.3016 0.1000 0.9000
O 0.2500 0.3016 0.1000 0.9000
P 0.7071 0.5016 0.1000 0.9000
Q 0.7071 0.5016 0.1000 0.9000
R 0.3536 0.5017 0.1000 0.9000
S 0.5000 0.5017 0.1000 0.9000
T 0.7071 0.3016 0.1000 0.9000
U 0.7071 0.5016 0.1000 0.9000
V 0.5000 0.4016 0.1000 0.9000
W 0.7071 0.5016 0.1000 0.9000
X 0.7071 0.3016 0.1000 0.9000
Y 0.7071 0.4016 0.1000 0.9000
Z 0.7071 0.3017 0.1000 0.9000
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