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ABSTRACT

TuEe Lire CycLE ENERGY-WATER USAGE EFFICIENCY OF ARTIFICIAL GROUNDWATER
RECHARGE Via THE REUSE OF TREATED WASTEWATER
BY

Eric DANIEL FOURNIER

This dissertation investigates the dynamic energy-water usage efficiency of civil engi-
neering projects involving the recharge of subsurface groundwater aquifers via the reuse of
treated municipal wastewater. For this purpose a three-component integrated assessment
model has been developed. The first component uses a cartographic modeling technique
known as Weighted Overlay Analysis (WOA) to determine the location and extent of sites
that are suitable for the development of groundwater recharge basins given a regional geo-
graphic context. The second component uses a novel Genetic Algorithm (GA) to address
the multi-objective spatial optimization problem associated with locating corridors for the
support infrastructure required to physically transport water from the treatment facility to
the recharge site. The third and final component takes data about the anticipated recharge
treatment source location, reuse destination location, and proposed infrastructure corridor
location and uses them to populate a spatially explicit Life Cycle Inventory (LCI) model
capturing all of the process energy consumption associated with the reuse system. Five case
studies involving the planning of new basin scale artificial recharge systems within the state

of California are presented and discussed.
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We have arranged a civilization in which most crucial

elements profoundly depend upon science and technology.

Carl Sagan (1934-1996)
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o.1 RESEARCH OBJECTIVES

THE OVERARCHING RESEARCH OBJECTIVE of this dissertation can be stated as follows:
develop an integrated modeling framework, incorporating data depicting local geographic
context, that is capable of quantifying the life-cycle energy-water usage efficiency of pro-
posed new infrastructural systems supporting the reuse of treated municipal wastewater for
the purpose of artificial groundwater recharge. In order to achieve this goal the following

three canonical problems were identified and addressed in sequential order:

1. Given multiple independent objectives — propose a systematic method for selecting
sites that are suitable for the development of new artificial groundwater recharge

infrastructure.

2. Given multiple independent objectives — propose a systematic method for routing
optimal corridors for new water distribution infrastructure linking a designed treated

effluent source to a designated recharge destination.

3. Given a fixed influent flow rate, a set of mean influent pollutant concentrations, a
set of maximum effluent pollutant concentrations, and the topological structure of
the effluent distribution network — propose a systematic method for determining the

life-cycle energy-water usage efficiency of an integrated wastewater reuse system

The remainder of this Chapter (o) provides an in-depth background discussion of the
both the academic and social relevance of the stated research objective. Subsequent Chap-
ters (1-3) are organized with respect to the various independent research activities that were
undertaken to address each of the three canonical problems listed above. The final Chapter
(4) provides an in depth analysis of a set five case study implementations that were devel-

oped to assess the framework’s efficacy in satisfying the stated research objective.



0.2 THE ENERGY-WATER NEXUS

Nearly all modern industrialized societies rely upon energy generation technologies which
are derivative of a thermodynamic process known as a heat engine. In a typical heat engine
the chemical energy stored within a fuel source such as coal, petroleum, or natural gas, must
be first be released as ambient thermal energy through the process of combustion. The heat
engine then, by virtue of its design, converts this ambient thermal energy into mechanical
energy for the purpose of performing some sort of meaningful work — i.e. generating elec-
tricity.

The history of the advancement of the human species is a story which can be cast in
terms of the progressive discovery new, higher density chemical energy stores and their en-
hanced exploitation via the development of new, ever more sophisticated heat engines*%.
Interestingly however, is the fact that nowhere in our history has there ever occurred a sin-
gle substantial deviation in the choice of the working fluid that actually performs the crucial
energy conversion process within a heat engine: water. For all of the advances which have
been made in terms of improved fuel processing, boiler and combustion chamber design,
etc., so long as our energy economy continues to rely upon carbon based fuels, water will
continue to remain stubbornly positioned as a critical component of nearly all major com-
mercial scale energy systems.

As interesting aside, although much of the current rhetoric which is used to support a
large scale shift towards renewable energy technologies focuses on the benefits of decar-
bonization; another key benefit of renewable energy technologies, which may be of equal
or greater value going on into the future, is the dramatically reduced water intensity relative
to that of traditional heat engine based systems. For example, just as photovoltaic electric-
ity generation systems are associated with minimal carbon emissions, so too do they not

require substantial inputs of water to facilitate their operation. This is something to watch



out for in the future, particularly in the context of long term infrastructure scale planning
excises such as the one that shall be introduced as part of this dissertation.

Another technological system which can also be viewed as a foundation pillar of modern
industrialized societies is the mechanized disposal of human and animal wastes via engi-
neered sewage conveyance and treatment processes®. Here again, the advancement of the
human species might alternatively be cast in terms of the progressive improvement in the
reliability and efficiency of these systems over time. Furthermore, just as the advancement
of our energy system appears to be bounded by the physical properties of the water, so too
has the advancement of wastewater management been similarly constrained.

For example, in terms of water treatment processes, the upper bound on process efhi-
ciency is determined by The Second Law of Thermodynamics. This law states that, for any
closed system, there is a tendency for the entropy of that system to increase over time*.
Cereris paribus, wastewater, a heterogeneous mixture, possesses higher entropy than pure
water does. This means that any attempt to purify a polluted wastewater stream must nec-
essarily incur the cost of some energy input to facilitate the requisite reduction in entropy.

In terms of water distribution processes, the key physical determinant of energy effi-
ciency stems from the density of water. At 1000 kg/m?, considerable energy must be ex-
pended whenever large quantities of water must be moved over a distance or lifted against
an elevation gradient. Many treatment processes utilize pressurized sieving techniques
where water is physically pushed through a porous membrane in order to forcibly remove
dissolved pollutant species. As a consequence of this practice, the energy inputs required to
overcome the previously mentioned entropic gradient are often supplied for the immediate
purpose of moving quantities of water from place to place.

The energy-water nexus is a term which has emerged from within the academic research
community to describe these types of dynamic interrelationships which are inherent to our

energy and water systems. There are two perspectives from which the energy-water nexus
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Figure 1: Perspectives on the Energy-Water Nexus °

can be alternatively studied. The first emphasizes the water for energy dimension, and is
generally concerned with the study of processes and technologies that are involved with the
direct withdrawal and consumption of water for the production of both primary and final
energy resources. The second of these perspectives, focuses alternatively on the energy for
water dimension; investigating processes and technologies which consume energy for the
purpose of transmitting or purifying freshwater resources.

Here in the United States, approximately 50% of total annual freshwater withdrawals are
used for the cooling of thermoelectric power plants. Alternatively, roughly 4% of the na-
tion’s total energy consumption is dedicated to the transmission and purification of water
and wastewater. While these national figures speak to the overall significance of this issue,
the situation becomes more acute when one begins to consider different regional contexts.

The criticality of the energy-water nexus becomes greatly exacerbated in those areas
where either water is scarce, energy is scarce, or both. Unfortunately, the state of California
suffers from both of these conditions to varying degrees, making the energy-water nexus a

frequent source of regional interest within both the academic research and socio-political



Figure 2: The dimensions of the energy-water nexus 60

circles. For example, in a 2005 report published by the California Energy Commission
(CEC) it was found that 19% of the electricity and 32% of the natural gas consumed within
the entire state were used for purpose directly related to the supply and treatment of fresh-

water resources*°.

0.3 WATER DISTRIBUTION SYSTEMS

One of the main drivers for of this tremendous energy consumption within the state of
California is the large scale transfer of freshwater resources between physically distinct hy-
drologic basins. California is crossed latitudinally by a massive network of interconnected
hydraulic engineering projects including pipelines, aqueducts, reservoirs, and pump sta-

tions®. These systems, which have been funded by a mixture of Federal, State, and Local



agencies, were designed to reconcile discontinuities between the spatial and temporal distri-

butions of the supply and demand for freshwater resources within the state®.

[ State Project
I Federal Project
I Local Project

67

Figure 3: The geographic extent of water distribution infrastructure in the state of California

Inter-basin transfers typically involve the movement of water against a considerable el-
evation gradient. Due to water’s previously mentioned high density, there are substantial
energetic costs associated with operating the infrastructure required to facilitate these trans-

fers. For example, the bar graph to the right of Figure 4 compares the energy intensity of



several different sources of municipal water within the state of California®. According to
this research water resources which are supplied via inter-basin transfer, either through
branches of the State Water Project or through the Colorado River Aqueduct, rank very

poorly in terms of energy usage efficiency relative to a number of other water supply sys-

tems.
QOcean Desalter | ] 13,503
East Branch State Water Project | 19,820
& West Branch State Water Project | 17672
o
?‘_‘ Colorado River Aqueduct | 16,138
o
S Chino Desalter [ 5.217
3
(7]

lon Exchange [ 3.222
OkWh/MG

Groundwater Pumping [T 2,915

Figure 4: The geographic extent of water distribution infrastructure in the state California*

0.4 WASTEWATER TREATMENT

The term wastewater treatment refers to a set of physical and chemical processes that have
been individually designed and are collectively composed for the purpose of removing a
suite of physical, chemical, and/or biological contaminants from a quantity of water**. The
operational goal of a wastewater treatment process is typically defined in terms of a set of
desired effluent pollutant concentrations that are sufficiently low to enable that efluent

to be used for a specific end-use application*. Crucially implicit in this definition there-
fore, is the notion that the precise combination and configuration of the individual, atomic
treatment processes, will vary on the basis of the purity requirements associated with the

anticipated end-use application. Figure s provides a high level view of the separate treat-



ment processes that are typical to modern wastewater treatment facilities; assigning them to
a somewhat informal hierarchy consisting of: primary treatment, secondary treatment, and
tertiary treatment*.

The collection of processes described in Figure 5 represent the required suite of treat-
ment operations necessary to produce effluent water that is suitable for groundwater recharge
applications (also known as: indirect potable reuse) given a normal stream of influent mu-
nicipal wastewater. Typically, wastewater treatment plants (WWTPs) — normal in the sense
that they are producing treated effluent from generic municipal sources for release into
natural surrounding environs — are only required to provide up to a secondary treatment
level*. This level of treatment, on the diagram provided in Figure s, corresponds to the
fourth row of processes from the top. As the figure shows, providing treated effluent for
reuse applications necessitates the implementation of as many a seven additional layers of
tertiary treatment in order to manage issues such as suspended colloids, disinfection, and
phosphorous removal7°.

This hierarchy of treatment processes depicted in Figure s is only meant to be represen-
tative of the types of processes that are typically required for reuse applications. In reality
however, neither the rigid segregation of treatment processes nor the association of each
treatment level with a set of designated end-uses have been precisely codified into a coher-
ent regulatory framework at the Federal level. In general, primary and secondary treatment
are Federally mandated as part of the generic WWTP under provisions of the Clean Water
Act®™. However, tertiary treatment processes and requirements for their application in the
context of different desired end-use applications, are, at present, regulated at the state or
local levels in a more ad-hoc manner. Figure 6 attempts to illustrate the complexity of this
landscape by mapping treatment levels to different end-use types, with annotations where

additional restrictions may apply”’“.
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0.5 WASTEWATER RECYCLING AND REUSE

Over the past ten years the reuse of treated wastewater has emerged as the fastest growing

source of new water supply for municipal wat@r districts in the Western United States*”*.
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Figure 6: Appropriate End Use Categories for Different Levels of Treated Wastewater %

There are a variety of reasons for this growth trend. For example, some districts enjoy the
degree of self determinism that ownership of a reuse system affords them; particularly in
cases where they are beholden to a the whims of a third party water wholesalers or are ju-
nior water right holders within their basin. In general however, the primary driving force
behind the increased interest in reuse has been down to the fact that treated municipal
wastewater is perceived to be an efficient means of new water supply for a number of low
quality end use cases**.

If one looks at existing reuse systems, these assumptions regarding system efficiencies ap-
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pear to be valid. This is because the vast majority of reuse systems which have been imple-
mented to date have taken advantage of favorable circumstances such as where the destina-
tion location for the treated effluent is positioned in fairly close proximity to the WWTP.
An illustrative example of such a situation might be the use of wastewater which had been
subjected to basic secondary treatment for the irrigation of a nearby cemetery or golf course.
These types of reuse systems can be thought of as low hanging fruit because the only addi-
tional energy process based energy expenditures associated with their operation come from
whatever tertiary treatment processes must be added into the WWTP operations to meet
the effluent purity requirements associated with the designated end-use.

More recently however, many municipalities have begun to actively investigate the possi-
bility of expanding both the scale and extent of their reuse operations: capturing larger frac-
tions of their WWTP plants’ throughput and distributing the treated effluent to a more
diverse portfolio of end-use recipients. Among these proposed new end-use applications,
perhaps the most attractive has been for artificial groundwater recharge.

An artificial groundwater recharge operation is one which takes some stream of input
water, it need to necessarily be treated wastewater, and either passively or forcefully intro-
duces it to the subsurface aquifer™. The goal of this process is typically undertaken to rem-
edy a condition of overdraft wherein the aquifer has been subjected to increased rates of
withdrawals, decreases rates of natural infiltration, or both®. Typically artificial ground-
water recharge systems adopt one of two approaches in terms of the mechanism by which
they physically deliver the water back to the subsurface. The first approach is passive — in-
volving the construction of one or more large scale infiltration basins into which water is
pumped and then allowed to percolate into the subsurface through a porous media under
the force of gravity*®®. The second approach is active — involving the construction of one or
more pump wells through which water is forced into the subsurface under the action of a

mechanized pump®.
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Due to the considerable cost associated with pump operation as well as the limited recharge
capacity associated with each individual wellhead, recharge basins have, up until this point,
proven to be far and away the more attractive of the two options in terms of existing facili-
ties. The primary exemption to this rule being locations where the reason that the recharge
operations have been undertaken is create a target increase in subsurface hydrostatic pres-
sure for the purpose of mitigating the encroachment of brackish water into the aquifer —
which can often occur in coastal regions — or for the purpose of halting or redirecting the
movement of some subsurface groundwater pollutant plume .

Despite the fact that artificial recharge basins take advantage of the force of gravity to in-
troduce the water back into the subsurface they can still be expected to be associated with
fairly large operational energy requirements. This is because, for a host of practical engi-
neering as well as political and economic constraints, recharge basins tend not to be con-
structed as close to the source of their supply water as one might initially think. As a resul,
considerable amounts of energy must be continually invested to pump water, often against
an elevation gradient, from its source of production to the recharge basin where it will ulti-

mately be consumed for the purpose of artificial groundwater recharge.

0.6 THE ENERGY-WATER FEEDBACK LooP

The suggestion that all forms of artificial groundwater recharge are likely to be associated
with non-trivial process based energy demands leads to an interesting question regarding
the net life-cycle energy utilization efficiency of reuse systems. This question stems from an
understanding of the water usage intensity of various electricity generation technologies can
vary significantly and is often much high than one mights initially expect.

For example, Figure 7 plots the water usage intensity — measured in terms of units of

water consumed per unit of electric power produced — for a suite of electricity generation
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technologies that make up a substantial portion of the municipal energy generation port-

folio here in the United States®. As Figure 7 illustrates, depending upon the details of how

electricity is produced in a given region, artificial groundwater recharge operations that uti-

lize heavily treated municipal wastewater as their source feedstock have the potential to be

associated with significant process energy related water consumption levels at the point of

electricity production.
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produced, for various electricity generation technologies 6
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In light of the presence of this significant feedback loop, the hypothesis that this disser-
tation has been designed to test is whether or not there exists a specific set of circumstances
in which it may be possible for municipal wastewater reuse systems involving a substantial
artificial groundwater recharge components to produce a situation where they are saving
some water locally, but at the cost of consuming more water regionally. This hypothesized
negative net water savings, at the regional scale, would therefore be the result of water con-
sumption which is embedded in the energy that must be imported to facilitate the reuse

and recharge operations.
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Do not lose your faith - for a mighty fortress is our

mathematics. It shall rise to the occasion. It always bas.

Stanislaw Ulam (1909-1984)

Selecting Suitable Sites
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1.1 SELECTING SUITABLE SITES FOR ARTIFICIAL GROUNDWATER RECHARGE BASINS

THE FIRST PRINCIPLE CHALLENGE which must be overcome in an attempt to quantify
the life-cycle energy water usage efficiency of a proposed new water reuse system involving
artificial groundwater recharge is the need to develop of a systematic method for selecting
sites that are suitable for the construction of the requisite recharge basins. This problem of
selecting suitable sites, relative to one or more criteria of suitability, is one which is extremely
common within the domain of Geographic Information Science (GIScience). And indeed,
the need to develop consistent methodologies and capable tools for achieving this purpose

were among the core research goals which initially stimulated the early development of the

field7877 |

1.2 MULTI-CRITERIA SITE SUITABILITY ANALYSES

One methodology which has emerged as a reliable means of approaching this type prob-
lem, and the one which was adopted for the purposes of this dissertation, is a procedure
known as multi-criteria site suitability (MCSS) analysis. MCSS analyses mathematically
combine two or more input geographic data layers that each correspond to some indepen-
dent measure of site suitability for a given landuse application?. The output of this MCSS
computation is a single geographic data layer in which the value at each location represents
a composite measure of overall site suitability relative to all of the independent criteria, si-
multaneously*?*2.

MCSS analyses are typically conducted using geographic information that has been
stored in a continuous raster format. This means that prior to conducting this type of anal-

ysis each of the input geographic data layers that are to be used must be preprocessed rel-

ative to some reference raster format so as to ensure the feasibility and consistency of the
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MCSS computation. For example, in order for the computation to be feasible: all of the
input data layers must have the same number of cells and occupy that same geographic ex-
tent. Similarly, in order for the computation to be consistent: the ordinality and the scaling
of the values in each raster must accurately reflect the relative weighting and directionality
of each independent suitability criterium.

Geographic information system (GIS) software packages are commonly used to con-
duct both these types of data preprocessing operations as well as the MCSS computation
itself* . This is because they provide pre-built functions which facilitate the import of spa-
tial data layers from disparate sources as well as the manipulation of geographic data layers
such that they satisfy the previously mentioned feasibility and consistency constraints. Of-
ten, the MCSS analyses itself is not the endpoint goal of a given research effort however.
Many times, MCSS analyses are used as inputs to some other, more complex, numerical
optimization model®. This situation is frequently encountered in the fields of operations
research (OR) and location science (LS) where MCSS outputs are used to derive network
topologies or linear programming constraints for optimization problems related to vehicle

routing, flow maximization, or facility location +*.

1.3 THE MCSS DATA PREPROCESSING WORKFLOW

The generic data preprocessing workflow for MCSS analysis involves one or more of the
three phases illustrated conceptually in Figure r.1. First, all of the input spatial data layers
must be checked to determine whether or not they possess the same coordinate system. If
they do not, a single reference coordinate system must be chosen by the analyst to function
as the standard for all of the input layers. The choice of this reference coordinate system is
generally driven by the scale of spatial domain involved as well as the desired tradeoft be-

tween distance versus areal measurement error. The output of this Reproject operation is a
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set of duplicate data layers that are all projected as the reference coordinate system.

The second phase of the workflow involves clipping the various input data layers on the
basis of their overlap with some reference spatial extent. This reference extent may corre-
spond to the boundaries of a single input layer or may be arbitrarily designated by the ana-
lyst. The output of this Clip operation is a set of duplicate data layers that all have the same
spatial extent as the reference extent.

The third and final phase of the workflow involves rasterizing all of the input layers such
that they have the same cell size and cell alignment. During this phase, input data layers
that are stored using a different geographic data model must be algorithmically converted
into a raster based representation. As part of this algorithmic conversion process, a refer-
ence cell size, usually corresponding to the largest cell size contained within the input data
layers, is used as a reference. The output of this Rasterize operation is a set of duplicate lay-

ers that all share the same cell size and cell alignment as the designated reference.

1.4 THE MCSS CoMPUTATIONAL WORKFLOW

Instead of executing the MCSS data preprocessing steps manually for each of the five case
study regions that were going to be investigated as part of this dissertation, the decision was
made to implement a more generic data preprocessing software framework which enable
any researcher — not necessarily the author of this dissertation — to conduct a similar anal-
ysis for any region in which sufficient input data was available. These tools, which shall be
described in subsequent sections, were implemented in the the MATLAB® programming
environment and have been made publicly available as a source code repository hosted at:
https://github.com/ericdfournier/woss. The control flow logic which guided
their development is described in the pseudocode in Figure 1.2.

Prior to the initiation of any MCSS analysis the researcher must provide a set of raw spa-
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Figure 1.1: Conceptual illustration of the input data preprocessing operations and workflow phases typical to
most MCSS analyses

tial data input files and designate a set of spatial reference criteria. Once these requirements
are met, all of the input spatial data files are then subjected to a sequence of conditional
statements. Depending upon the result of these conditional statement evaluations various
transformation functions are then sequentially applied to the input data files so as to pro-
duce a set of outputs whose projection, spatial extent, cell size, and cell alignment all match
a set of designated spatial reference criteria.

The current version of the toolset only supports the reprojection of input spatial data
layers that are represented using geographic coordinates — i.e. data stored in latitude & lon-
gitude coordinate space. This constraint not only limits the directionality of the reprojec-
tion operation but also greatly simplifies the spatial interpolation routines required for
the rasterization process. The authors plan to lift this restriction in future versions of the

toolset as the MATLAB® language’s native support for forward map projection as well as
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. procedure PREPROCESS INPUT DATA
for all inpur do

R

3: if input,,; # reference,,; then

4: input = Reproject(input)

5: else if input,, # reference,y then
6: input = Clip(inpur)

7: else if isRaster(inputyy,,) # True then
8: input = Rasterize(input)

o: else if input,; # reference then
10: input = Resize(input)

1 end if

12: output = input

13: end for
14: return output

—

s: end procedure

Figure 1.2: Control logic for MCSS input data preprocessing workflow.

the automated parsing of standard formatted spatial reference data strings improves.
Following the preprocessing of the spatial data inputs, the next phase of the MCSS mod-
eling process is the user guided reclassification of the data values in each layer into a quanti-
tative measure of suitability for the land use application in question. Routines are provided
in the toolset to facilitate this process. Among these are an automated histogram equal-
ization based reclassification procedure which assigns suitability values ensuring an even
distribution of all the values contained within some range across all of the areas within the
spatial data layer. Other tools allow the user to manually specify the range of the bins used

for the reclassification of raw input data values to site suitability rankings.

1.5 THE SOFTWARE TOOLSET REPOSITORY ARCHITECTURE

The directory structure of the WOSS toolset repository is illustrated in Figure 1.3. Be-
low the top level root directory are four standalone files: (1) a LICENSE.md file, (2) a
README.md file, (3) a GULm file and (4) GULfig file. The first two files contain the soft-

ware license and general repository usage guidance, respectively. The third and fourth, are
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the source code files supporting the standalone graphical user interface that visually guides a

user through this same data preprocessing workflow.

o/
| LICENSE.md
| README.md
| GUI.m
| GUI.fig
| src/
LA,*.m (functions)
| _smp/
L,data/
vector/
| x(filename)/
| _x.shp, *.shx, x.dbf, x.prj
raster/
LA,*(filename)/
*.tif, *.tfw

. __output/
binary/
*.mat
raster/
| x.tif, *.tfw

Figure 1.3: Directory tree structure for the toolset repository. Filetypes required for input data and automat-
ically generated as output data are shown.

Also below the top level root directory are the following three subdirectories: (1) s7c/,
(2) smp/, (3) output/. The sre/ directory contains the MATLAB® source code m-files com-
prising the toolset’s various functions. The smp/ directory contains MATLAB® .m-file
scripts that can optionally be called to automate the execution of multiple data preprocess-
ing workflows. The /smp/dara/ directory contains two sub-directories: vector/ and raster/.
Each of these houses the corresponding sub-directories, one for each vector and raster based
raw input spatial data files provided by the user. The tiles used for each of these “(filename)
sub-directories are automatically assigned to the outputs generated by the tool. The sup-

ported vector input filetype is the ESRI shapefile format. Alternatively, the supported
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raster input file type is the open source Geol'iff format. Finally, the output/ directory con-
tains two sub-directories: binary/ and raster/. These subdirectories comprise the default
destination locations for all of the outputs generated by the toolset tools. Outputs can be
produced in either the mat-file MATLAB® ASCII-binary format or in the same GeoTiff
format as the input raster data.

The toolset supports the use of composite raster data sets which are made up of multiple,
possibly overlapping, individual raster data tiles. It does this by performing a bounding box
intersection test for each input raster data tile with the reference spatial domain. For those
tiles whose bounding boxes are found to intersect that of the reference domain, values are
iteratively compiled into a new composite mosaic data layer made up of, potentially several,
individual tiles. This makes it possible to use input raster data layers that are of arbitrarily

high resolution covering large geographic domains.

1.6 AN ExXAMPLE IMPLEMENTATION

The raw input datasets which were selected for the example implementation were collected
from several publicly available sources. A brief topical description of each source as well as
alink to its source web repository is given in Figure 1.4. In addition to these raw input data
sources, a number of derived data products are generated automatically from the digital el-
evation model (DEM) for use in this particular case study analysis. These derived products

include: slope & aspect.

1.7 THE GEOGRAPHIC UNIT OF ANALYSIS

The geographic unit of analysis selected for this example implementation is the US Geo-
logic Survey (USGS) Hydrologic Unit Code (HUC) level five watershed. Specifically, the

level five watershed areas contained within the administrative boundaries of the state of
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Type | Category Source

Vector | Resource Areas Cal-Atlas
Vector | County Boundaries Cal-Atlas
Vector | Surface Geology Cal-Atlas
Vector | Road Network Cal-Atlas
Vector | STATSGO Soils USGS

Vector | State Park Boundaries Cal-Atlas
Vector | Stream Reaches National Map
Vector | Street Network Cal-Atlas
Vector | Surface Water Storage Cal-Atlas
Raster | Crop Data Layer USDA

Raster | Digital Elevation Model | National Map
Raster | NLCD Landcover National Map

Figure 1.4: Table of input data sources used in the case study MCSS model for artificial groundwater recharge
applications.

California. According to the USGS:

The United States is divided and sub-divided into successively smaller hydro-
logic units which are classified into four levels: regions, sub-regions, accounting
units, and cataloging units. The hydrologic units are arranged or nested within
each other, from the largest geographic area (regions) to the smallest geographic
area (cataloging units). Each hydrologic unit is identified by a uniqgue HUC
consisting of two to twelve digits based on the levels of classification in the hydyro-

logic unit system.”

The level five designation within this HUC framework is comprised of closed contigu-
ous regions possessing an average area of 588 square kilometers. These level five HUC des-
ignated areas are often referred to as the HUC-10 watersheds because of their use of a ten
digit unique numerical identification code. Within the state of California, there are 1,040
individual HUC-10 watersheds. These watersheds are non-overlapping and have been de-

rived algorithmically from the national elevation dataset by USGS scientists according to
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the method described by .

1.8 GRAPHICAL USER INTERFACE

The WOSS toolset can be interactively parameterized via the the GUI depicted in Figure 1.5.
The GUI is presented as a three step workflow, with each step building iteratively upon the
product of the previous one to generate a final composite output. The first step involves
the user providing the directory location of the shapefile from which the reference geome-
try will be selected. The user is presented with the option of specifying an alternative Over-
lay Shapefile that can be used to aid in the selection of this reference area. The second step
involves the use of this overlay shapefile to generate an interactive map window that will ap-
pear to the user once it is time for the reference boundary to be selected. It should be noted
that the reference shapefile always provides the source data from which the actual selection
is made.

Next, the user is then prompted to input parameter values for two fields. The first corre-
sponds to the grid density that will be used to generate all of the output layers. The default
setting for this parameter is 1,169.99. This grid cell density roughly corresponds to cells
that are (100 72 x 100 ) or 10, 000 m* within the latitude range bounding the state of Cal-
ifornia. The second input parameter value corresponds to the attribute field name in the
reference shapefile that will be used for the output reference grid encoding. The attribute
field must be of numerical type.

Once the user correctly provides all of these inputs they are then allowed to move onto
the second step of the workflow which by clicking on the Select Reference Boundary but-
ton. During this step a map axis is generated in which the geometry information for the
overlay shapefile is drawn on screen as shown in Figure 1.6. The user may then select their

desired reference polygon by simply clicking on the appropriate location within the map.
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Browse Edit Reference Shapefile Path

Browse Edit Overlay Shapefile Path
Enter Grid Cell Density (Cells/Degree Latitude) 1116.99
Enter Reference Shapefile Attribute Field Field Name
Select Reference Boundary

Figure 1.5: An overview of Step #1 in the GUI based workflow: parameterizing the reference grid.

The latitude longitude coordinates corresponding to this selection are automatically used
to extract the containing polygon from the reference shapefile. This polygon is then au-
tomatically converted to a reference grid with the cell density and attribute field encoding
parameters designated by the user.

The third step of the GUI based workflow, shown in Figure 1.7, involves the user provid-
ing the directory locations of the various spatial data inputs that are to be processed. These
inputs should be organized according to the general directory layout described in the pre-
ceding section. Once these top level directory locations have been provided, the names of
the raw input data layers are automatically populated into the accompanying tables and the
users are prompted to provide one more parameter value for each vector and raster data cat-
egory. For the raw input raster datasets, the users are requested to input to the table the nu-
merical encoding of any NaN values. If none is present the field may simply be left blank.
For the raw input vector datasets, the users are requested to input the text encoded name of
the attribute fields on the basis of which the output grid layers will be encoded. Here again,
as with the generation of the reference grid, these attribute field names should correspond
to numerically encoded values.

Following successful completion of the various data processing steps the user is then
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Figure 1.6: An overview of Step #2 in the GUI based workflow: selecting the reference polygon from the
overlay shapefile geometry.
allowed to choose whether they want to save the output layer stack directly into the MAT-
LAB workspace via the Extract Data to Workspace button, or to disk in a file encoded as
either as a set of Geol'iff (.tiff) formatted rasters or a single MATLAB binary (.mat) via the

Extract Data to File button.
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Browse ‘ Edit Top Level Raster Data Directory Path

Raster Sub-Directory Name | Raster NaN Code (Optional)

LEEE

Browse | Edit Top Level Vector Data Directory Path

Vector Sub-Directory Name | Wector Attribute Name

[2 ]

Extract Data to File ‘ | Extract Data to Workspace

Figure 1.7: An overview of Step #3 in the GUI based workflow: selecting the reference polygon from the

overlay shapefile geometry.

.9 THE WOSS MODEL OUTPUTS

Figure 1.8 illustrates a set of sample outputs that were generated by the data preprocess-

ing components of the toolset for an example HUC-10 reference boundary. The reference
boundary can either be selected manually, by calling a function which prompts the user to
click on map with all of the HUC-10 boundaries drawn on it, or automatically, by speci-
fying the 10-digit code corresponding to the desired HUC-10 watershed. The toolset pro-
cesses generate an output layer stack — the individual component layers of which are illus-
trated in the colored inset map panels. Only layers for which there is at least one non-empty
data value are included in the generated outputs. Thus, the number of output components
may vary depending upon the coverage of the input data layers relative to the domain of
the reference boundary. For vector data inputs, the values which are contained in the out-

put are those corresponding to a single attribute field selected by the user. This field must
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be either a real or coded numeric data type as the raster data format does not support the

native representation of categorical variables.
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Figure 1.8: Graphical lllustration of the WOSS Model Outputs for Reference HUC-10 Boundary

The toolset structure allows for the automated repetition of this data preprocessing
workflow for a large number of reference boundaries. In this case study implementation,

for example, the toolset was used to prepare a single such output layers stack for each of the
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1,040 individual HUC-10 reference boundaries contained within the state of California.
With these outputs, a corresponding the MCSS analysis could then be easily conducted for

any or every such HUC-10 watershed in the State.
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[A computer] takes these very simple-minded instruc-
tions — go fetch a number, add it to this number, put
the result there, perceive if it’s greater than this other
number’ — but executes them at a rate of, let’s say,
1,000,000 per second. At 1,000,000 per second, the results
are indistinguishable from magic.

Steve Jobs (1955-2011)

Locating Optimal Corridors
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2.1 LocaTING OPTIMAL CORRIDORS FOR WATER DISTRIBUTION INFRASTRUCTURE

THE SOURCE OF LOCATION for the delivery of treated wastewater for artificial ground-
water recharge applications is always the Wastewater Treatment Plant (WWTP). WWTDPs
are overwhelming located at low elevation points within the hydrological basins that they
serve; as this feature ensures a minimum energy input requirement to deliver wastewater
from its distributed sites of generation (i.e. the many homes and businesses distributed ge-
ographically throughout the basin) to a single centralized point of treatment. In this way, a
system design based upon a single centralized WWTP is best able to take advantage of the
use of gravity to provide the motive force for the wastewater’s journey through the system.
As a side note, an question which may become of substantial future interest is how a more
prominent role of reuse may alter our thinking about the optimal design of water treat-
ment collection and conveyance infrastructure. Specifically, it remains an open research
question as to whether or not the existing paradigm, with large centrally location treatment
facilities, would persist as the most favorable solution if one were charged with designing an
integrated wastewater treatment and reuse system from the oft.

The salient output of the first model component — WOSS - is the designation of one
or more suitable sites for the placement of either a gravity fed surface spreading infiltration
basin or a pump driven subsurface recharge well. In this way, we are left with one or many
— in the case of multiple suitable sites — combinations of point source and destination lo-
cations. The next modeling challenge which must be overcome therefore is the develop-
ment of a scheme for generating plausible pathways which connect the source locations to
the various destinations. The implicit assumption here being, that in order to deliver the
treated wastewater from its source of production, the WWTP, to the end point of use, the

recharge site, new water conveyance infrastructure must be constructed.
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At this stage it is important to pause to consider whether or not the construction of new
water conveyance infrastructure is in fact a necessary condition of all or any water reuse
projects. There are two perspectives from which a response to this objection can be framed.
The first is technical in nature. If no new conveyance structure is implemented, two fun-
damental technical requirements must be met. The first is that the point of reuse must be
situated favorably with respect to the existing potable water conveyance system such that it
can be readily be connected to, and withdraw from it, large quantities of water for recharge
purposes. The second is that the treated wastewater which is to be reused must be returned
to a sufficiently high standard of quality such that it can be reincorporated directly back
into the potable water supply. This second constraint, while technically feasible given suf-
ficient financial resources, leads naturally to the other category of potential objections to
the development of a reuse project without the addition of new conveyance infrastructure:
namely, the social stigma associated with co-mingling so-called reclaimed black water, with
the potable freshwater supply. There is a considerable body of research in the social sciences
which suggests that a majority of people harbor a very basic, if somewhat irrational, preju-

dice against the direct reuse of reclaimed water for potable applications.

2.2 THE MULTI-OBJECTIVE CORRIDOR LOCATION PROBLEM

The multi-objective corridor location problem can be formally written as Equation 2.1%.
The problem involves the simultaneous minimization of the sums of w independent ob-
jective functions Ow evaluated at the set of discrete locations x,, comprising a corridor of
length 7. A valid corridor x, is subject to the constraint that all of its nodes must be con-
tained with the feasible search domain Q. Additional, optional constraints, as in Equation

2.2, are often imposed upon the structure of x, and shall be discussed in greater detail in
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subsequent sections.

n

Minimize H { Ou(%,), - - - Ow(xn)} (2.1)

n—=1

Sit:x,€Q (2.2)
Where:

x, = The set of discrete row column indices defining a corridor of length 7
Q = The set of discrete row column indices defining the feasible decision space
O,, = The true but unknown forms of w continuous objective functions

O,, = The estimates of O,, defined over the discrete set

As a subset of SPPs, corridor location problems tend to be defined in the context of
networks with large numbers of nodes and highly structured topologies®. These shared
characteristics arise from the fact that corridor location problems are typically posed in the
context of continuous geographic space — a feature which requires that the requisite un-
derlying network structure be generated algorithmically”. In practice, this is frequently
accomplished by automating the conversion of a geographically referenced raster grid into a
set of nodes by referencing the the centroids of the cells within the raster in a process similar
to that described by#'. Once the nodes in the network have been created they can then con-
nected to one another by automatically generating arcs using some standard mode of node

connectivity; again, using methods similar to those described by*.

2.3 GENETIC ALGORITHMS

Genetic Algorithms (GAs) are a family of search heuristics that mimic the process of nat-

ural selection to derive one or more near optimal solutions to a given optimization prob-
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lem.* GAs constitute a subset of Evolutionary Algorithms (EAs) which encode solutions
using data structures that are analogous to biological chromosomes®. This feature allows
the search for new, better solutions to be accomplished via the iterative application of ge-
netic operations such as crossover, mutation, selection, etc.’> GAs have been developed and
profitably used in a wide variety of problem domains from engineering and economics to
chemistry and physics. General purpose reviews of the application of GAs to various prob-
lems are available from the following references.**** For a more specialized reviews regard-
ing state of the art applications of multi-objective genetic algorithms see the excellent book

from Coello & Lamont and, more recently, from Zhou et al.>**

2.4 THE MOGADOR ALGORITHM

MOGADOR is an acronym stands for: Multiple Objective Genetic Algorithm for Cor-
ridor Selection Problems.” The algorithm was introduced as a novel genetic approach to
the problem of multi-objective corridor search.** It development was intended to service
need for a robust method of siting optimal corridors relevant to a variety of environmental
planning and design applications.”"**” A need which persisted despite numerous previous
efforts to adapt general purpose, deterministic, SSP solution techniques for use in corridor
location.****% The continued need for refined algorithmic approaches to the location of
optimal corridors within a broad range of application domains is evidenced by the contin-
ued appearance of closely related publications during the intervening years. »5¢57:¢5¢6.79
Relative to other traditional shortest path finding routines, the MOGADOR algorithm
has been observed to possess a number of favorable characteristics. First among these is the
ability of MOGADOR to accommodate large problem statements (large Q) and or those
which require the simultaneous evaluation of large numbers of independent objectives

(large w)**%. Another useful feature of the MOGADOR algorithm is its ability to generate
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an entire solution set from a single run — as opposed to the single solution per run which is
typical of traditional SPP algorithms™**%. Lastly, but perhaps most importantly, is that
when properly parameterized, each of the solutions generated by the MOGADOR algo-
rithm can be said to be non-inferior to every other®. In this way, the output solution set
approximates the so called Pareto optimal solution set for the given problem statement?®.

In order to proceed with our discussion of the MOGADOR algorithm, some basic ter-
minology must first be defined. In the context of the MOGADOR algorithm a single gene
x is comprised of a pair of row column indices (7, ¢) to a geographically referenced 2-D array
comprising the feasible search domain Q. An individual I,,, is comprised of a sequence of
row column index vectors x, which collectively form a valid pathway between a predefined
set of source *x and destination %x locations. In this way, each individual represents a feasi-
ble solution to the proposed corridor location problem. A population P, is comprised of
individuals. And, finally, an evolution E; is comprised of ¢ populations.

Figure 2.1 provides a pseudocode description of the MOGADOR algorithm. Its struc-
tural components are fairly typical among GAs in general. The search process begins with
a stochastic routine for generating of an initial seed population P,. Following the initial-
ization of this seed population, the fitness F, of each individual in the seed population is
computed by summing the objective function scores corresponding to each set of nodes
comprising each individual. Upon the completion of this initialization phase, the algorithm
then enters a loop wherein successive genetic operations are applied to the initial seed popu-
lation. In the case of MOGADOR, these operators include: the selection individuals for
reproduction on the based upon their fitness, the crossover of selected individuals that
share at least one common feature, and finally, the mutation of crossed over individuals
so as to maintain a degree of random variation within the population. At the end of each
loop iteration a new population is generated, its fitness evaluated, and a convergence pa-

rameter computed on the basis of the observed rate of improvement in population fitness
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across previous iterations. If convergence is achieved (¢, < ‘c) the loop is broken and the

algorithm terminates returning: the evolutionary history of the population Py, the cor-

I:g’
responding fitness values each individual within the population Fi, and the convergence

parameter history Cy.,.

procedure MOGADOR
¢ = 1 < initialize loop iterator

R

3: ¢, = 0 < initialize convergence parameter

4 P, = initializeSeedPopulation(m, Q)

5: F, = computePopulationFitness(Py, O.)

6: while ¢; <'cdo:

7: ¢ += 1 < update loop iterator

8: Sg = selectIndividualsFromPopulation(Py)
9: X, = crossoverSelectedIndividuals(S,)
10: P, = mutateCrossoverIndividuals(X,)

: F, = computePopulationFitness(P,)

n2: ¢g = computeConvergenceParameter(F..,)
13: end
14: end while

150 return: Pyg, Fryp, Cp

gy Lrgs
16: end procedure

Figure 2.1: MOGADOR Algorithm Pseudocode.

2.5 THE MOGADOR DATA STRUCTURE

The optimal data structure for use in concert with the MOGADOR algorithm is a nested
list of lists. Such a list based data structure is well suited to this context as there can be a
high degree of variability in the number of elements produced by the different stochastic
genetic operators. Figure 2.2 illustrates a small but valid example such a nested list of lists
data structure as used in the context of the MOGADOR algorithm. Note, for example,
how the number of row column index vectors 7 in the first individual I, equals s, while the
number of index vectors in subsequent individuals I,., belonging to the same population,

ranges between 3 and 6. The source of this variation has to do with the stochasticity inher-
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ent to the population initialization routine. Similarly, note how the number of populations
gin the first evolution E, is 3 while the number of populations in the second evolution is 4.
The source of this variation has to do with the stochasticity in the crossover and mutation
processes. Indeed, the only level of the data structure’s hierarchy at which a constant num-
ber of elements is required is at the population level. Meaning, in other words, that each
population P, contained within evolutions E, must all possess the same number of 7 indi-
viduals. This requirement ensures that the behavior of the genetic operators is consistent

between separate evolutions.

Individuals: Populations: Evolutions: MOGADOR:
I ={x,..,x} P={,... L} E,={P,..P} M={E,. E}
EFEFEH FERE
an | w2 | a3
Row Column

Indices: enlen|en|; @

x = (rc)
G |G| 63

Figure 2.2: MOGADOR Algorithm Data Structure

2.6 INiTiALIZING THE MOGADOR ALGORITHM

A novel population initialization procedure has been developed for use in conjunction with
the MOGADOR algorithm which improves the global quality of the output solution set
while simultaneously reducing overall computational effort. Atits core, this novel pseudo-
random walk algorithm works by repeatedly sampling a dynamically parameterized bivari-
ate Gaussian distribution. The generic form of the probability density function for the
bivariate Gaussian distribution can be written as Equation 2.34*. Here, the bivariate Gaus-

sian PDF f{7) is function of two inputs. [1] The first is a mean vector u, comprised of the
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means (. , 4, ) of two continuous random variables (7, 7,). [2] The second is a covari-
ance matrix X, comprised of the pairwise covariances ¢ for all possible combinations of the
continuous random variables (7, 7,).

1 —1

A7) = W@(p 7(7 —u) X7 =) (2.3)

Where:

7 = The set of correlated continuous random variables (7, 7,)
p = The set of mean values (u,, i) for (7, 7,)
0-(7-17 TI)? 0-(7-17 7-2)

> = The pairwise covariance structure for (7, 7,)
Arm). ofmm)

Each sampled value for 7,, 7, can be reduced to a unit vector and interpreted as a set of
row column index deltas. The repeated sampling of the distribution therefore provides a
simple yet powerful technique for generating randomized positional changes within a 2-D
lattice. Additionally, as shall be discussed in the subsequent sections, the ability to dynam-
ically adjust the parameters of the bivariate Gaussian PDF at any time during the sampling
process provides a mechanism by which one is able to functionally constrain the random-
ness of the walk; hence the term: pseudo-random walk.

Figure 2.3 provides a pseudocode representation of the proposed pseudo-random walk
procedure. Structurally, the routine consists of two nested while loops. At each iteration &
of the outer loop a single step x, along an individual walk I,,, is taken. This loop continues
until the location of the current step is equal to that of the destination x. Ateach iteration
u of the inner loop a candidate next step Ax,, is produced by random sampling the parame-
terized bivariate Gaussian PDF f{x, ). Candidate next steps are only considered valid if they
are contained within the current valid connected set V,,. The current valid connected set is

comprised of all neighboring nodes that not been previously visited and that are inclusive
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to the search domain Q. If the candidate step is found to be valid the inner loop terminates,

the outer loop iterates, and the walk process continues. If the valid set is ever found to be

empty the outer loop iterator 4 is reset and the entire process is restarted.

. procedure PSEUDO-RANDOM WALK

[

% 2N D A ow

10:
11
12:
13:
14:
15:
16:
17:
18:
19:
20:
21

22:

n = 1 < initialize outer loop iterator
X, = °’x < initialize individual at source
I* = computeEuclideanShortestPath(*x,%x)
while x,, # 4x do:
V, = computeValidConnecredSet(x,.,, Q)
if V,, = () then:
n = 1 < reset outer loop iterator
continue
end if
# = 1 <— initialize inner loop iterator
@, = compuz‘eOrienmtionVector(xn,dx)
d, = computeMinimum BasisDistance(x,, ")
n = n + 1 < update outer loop iterator
while x, € V,, do:
X, = computeCovarianceMatrix(d,, n)
Ax, = sampleBivariateGaussian Distribution(u, , %)
X, = X, + Ax,
# = u + 1 < update inner loop iterator
end while
end while
return: Xy,

23: end procedure

Figure 2.3: Pseudo-Random Walk Algorithm Pseudocode

In the process of sampling the parameterized bivariate Gaussian distribution the follow-

ing three pieces of information are used to functionally constrain the probabilities associ-

ated with each candidate next step Ax,. [1] At the start of each walk the set of array indices

corresponding to the Euclidean shortest path I* from the source to the destination are gen-

erated using Bresenham’s line algorithm™. Using this set of indices the minimum distance

d, from the current position to the nearest point along this Euclidean shortest path is deter-

mined. [2] Next, at each step an orientation vector is computed indicating the orientation
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of the destination location relative to the current position. [3] Finally, each time the bivari-
ate Gaussian PDF is sampled a counter variable # is iterated.

The orientation vector is interpreted as the mean of the bivariate Gaussian PDF(w. ).
Alternatively, the minimum distance and iteration variables (d,,, #) are processed as inputs
to a generator function which produces the covariance matrix %,. This composition of this
generator function ensures that the degree of randomness inherent to the selection of each
next step is directly related to number of iterations while at the same time being inversely

related to the minimum distance from the current location to the Euclidean shortest path.

2.7 AN ExamprLE Pseupo-Ranpom WALk

In an effort to make this pseudo-random walk procedure more comprehensible, particu-
larly with regards to the parameterization of the bivariate Gaussian PDF f{x,), an example
implementation is provided in Figure 2.4. On the far left of Figure 2.4. the current status
of an arbitrary pseudo-random walk is shown midway through completion. Also drawn,

as a broken line, is an abstract representation of the Euclidean shortest path I* connecting
the source location *x to the destination location %x. Show at bottom is the current value of
the distance parameter d,, = 7.1. Just to the right of this, in the zoom inset area, the current
valid connected set V,, is drawn with the previously visited indices (x,, x,—,) greyed out to
illustrate their elimination from consideration as valid next steps in the walk process. Also
shown in this inset are the row column unit vector deltas Ax, associated with movement to
each of the seven nodes contained within the current valid connected set. The small arrow
pointing downwards and to the right depicts the current state of the orientation vector
which describes the position of the destination location 4x relative to the current walk lo-
cation x,,. The current value of this vector (&, = [1,1]) can be thought of as indicating the

row and column deltas associated the next step possible step most directly leading towards
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the destination.

Current Walk State: Define: Then:
\Y%
n d "
X |eoo [ || " u™
_ 1o, 0
0-n| X, |00 2= 0o,
| e | o | ) g oS xon)
; X)=
) v 1>, |(2n)’
~7.1 =111
" m=[11] g=2&u~=1

Figure 2.4: Pseudo-Random Walk Example

Continuing on to the right within Figure 2.4, three functions and two parameter values
are defined. [1] First, the covariance term ¢, for the current sample iteration # is specified
using a covariance generator function whose form enforces the relationship between dis-
tance, iteration count, and covariance previously described. A small demonstration plot
of this function’s form is provided. [2] Next, the covariance matrix %, is defined by insert-
ing the covariance term ¢, to the diagonal elements of an empty square 2-D matrix. This
repeated use of the same covariance term guarantees that for any value of ¢, the output
covariance matrix %, will be positive definite. A square, symmetric, and positive definite
covariance matrix is a hard requirement for the evaluation of the parameterized bivariate
Gaussian PDF f{x,,). The final two variable definitions (g, #) are provided for the sake of
computing illustrative values for the other parameters. Numerical evaluations of these ex-
pressions are given on the far right portion of the figure. Here again, a small demonstration
plot showing the form of the evaluated bivariate Gaussian PDF f{x,) is provided.

One aspect of this process which warrants further discussion is the role of the fixed pa-
rameter ¢ in determining the degree of randomness exhibited by a given pseudo-random
walk. The degree of randomness can be quantitatively defined as the range and extent to

which the bivariate Gaussian PDF f{x,) deviates from its uniform bivariate counterpart.
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To illustrate this concept consider for example the characteristics of the PDF that would be
required to produce a simple random walk using a similarly structured procedure. In such a
case the value of f{x,) would have to be equal for all possible values of Ax,. Due to the way
in which the covariance generator function has been proposed, the g parameter can there-
fore be used to determine the maximum range of variation in ¢, which can be produced
from any combination of (d,,, #) input values. In this way, ¢ does not alter the structure of
the bivariate Gaussian PDF f{x,,) but rather only its magnitude. As a result, while the value
of ¢ must always be greater than zero to produce real outputs from the covariance generator

function, its value is inversely related to the degree of walk randomness.

2.8 INITIALIZING PROBLEMS WITH LARGE DECISIONS SPACES

While the pseudo-random walk procedure can be used to generate an initial seed popula-
tion for any MOGADOR problem statement; a number of circumstances have been iden-
tified in which the performance of the population initialization procedure can be further
refined. [1] The first such situation involves problems with extremely large decision spaces
— defined as being thousands grid cells or more on a side. [2] The second problem speci-
fications where it is known, a-priori, that the Euclidean path connecting the source to the
destination is not entirely feasible.

Historically, corridor location problems which have been posed in the context of ex-
tremely large decisions spaces (large (1) have been considered infeasible both for conven-
tional deterministic SPP optimization techniques as well as for heuristic approaches such
as MOGADOR. With regards to MOGADOR, the source of this infeasibility stems from
the huge runtime commitment associated with generating and processing populations con-
taining a sufficient number of individuals so as to ensure that a sufficient amount of genetic

diversity can be captured during the initialization phase to conduct a global search.
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One strategy which can be employed to ensure enough genetic diversity is produced
within the initial seed population without having to generate populations of unduly large
size or populations with individuals characterized by a high degree of randomness, is the
generation of so called multi-part pseudo random walks. This procedure can be thought
of as somewhat analogous to orthogonal statistical sampling techniques such as Latin Hy-
percube sampling which are used to generate samples from a non-uniformly distributed
population by first dividing it into equally probable subspaces**®. The implicit assumption
here being that the fitness distribution of all possible corridors connecting a typical source

and destination pair is similarly non-uniform.

Figure 2.5: Conceptual lllustration of a Multi-Part Pseudo-Random Walk

The multi-part walk process is described by the sequence of panels moving from left to
right within Figure 2.5. [1] The process begins with the far left panel which plots the value
of the objective variables within the a square 2-D search domain. [2] The first step is to
create a binary mask of feasible nodes by selecting objective surface values less than some
arbitrary threshold. [3] The next step involves determining the cell indices for the set of
centroid nodes ¢ computed from the connected components within this binary mask. [4]
After this, these centroids are assigned rankings on the basis of their inclusion in bins of
progressive Euclidean distance from the source location. 5] Next, the procedure requires
the iterative selection of centroids ¢, ¢,, one from each successive distance bin, until the
bin containing the destination location is reached. The centroid selection process can be
unstructured, random within each bin, or structured (as shown), where the centroids con-

sidered eligible for selection each iteration is restricted to those orientated positively in the
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direction of the destination. [6] Finally, the source is connected to the destination a series

of pseudo-random walks constructed for sequential pairs of the selected centroids.

2.9 INITIALIZING PROBLEMS WITH CONCAVE DECISION SPACES

Another circumstance which has the potential to dramatically effect the performance of the
pseudo-random walk procedure are problem specifications in which all or a portion of the
Euclidean path connecting the source to the destination falls outside the feasible area of the
search domain. Such a circumstance can be described as a concave problem, as the source
and destination locations are not convex to one another within the boundaries of the de-
cision space Q. Concave problem statements have the potential to create a situation where
at each iteration 7 of the pseudo-random walk process large values of # must be attained
before the covariance term is relaxed enough to allow for the sampling process to generate

a Ax, that is contained within the valid set V,,. In a worst case scenario, the entire runtime
improvement associated with the pseudo-random walk based population initialization pro-
cedure might be lost.

An approach which has been developed to address such cases is the so called concave
multi-part pseudo random walk. It is similar to the standard multi-part walk in that the fi-
nal walk is composed of a collection of pseudo-random walk sections. However, it differs
from the standard walk procedure in that rather than partitioning the space on the basis of
distance bands, it iteratively divides the decision space into a series of convex subregions.
Here again, these convex sub region contain the centroids associated with connected re-
gions of low objective variable values. The procedure is illustrated conceptually by the se-
quence of panels contained in Figure 2.6.

The concave multi-part walk process is described by the sequence of panels moving from

left to right within Figure 2.6. [1] In the first panel, on the far left, we can see a problem that
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Figure 2.6: Conceptual lllustration of a Convex Multi-Part Pseudo-Random Walk

has been posed in such a way that the Euclidean path connecting the source to the destina-
tion is not feasible as it exits the boundaries of the search domain. [2] For brevity, the two
subsequent steps are not shown as they are identical to steps 2-3 in the standard multi-part
pseudo random walk procedure. These omitted steps involve the generation of candidate
centroids from the connected components within the objective surface. The next illustrated
step, shown in the panel second from left, involves computing all of the row column in-
dices that are convex to the source location. Within this convex region a the first centroid

¢, is selected. Here again, the process can be unstructured, where the entire convex region

is searched, or structured, as shown, where the initial convex region is restricted to some
maximum distance from the source. [3-4] From here, additional non-overlapping convex
subregions are computed and candidate centroids iteratively selected from within them.

[s] The centroid selection process concludes when the current convex region contains the
destination location. [6] Finally, the source is connected to the destination, as in the simple
multi-part case, by a series of pseudo-random walks constructed for sequential pairs of the

selected centroids.

2.10 MEASURING INITIALIZATION PERFORMANCE

The stochastic processes inherent to the pseudo-random walk procedure, as well as to many
other components of the MOGADOR algorithm, make it difficult to analytically derive

performance characteristics. As a consequence, with MOGADOR, as with many other

46



GAs, features such as runtime performance must be evaluated through empirical obser-
vation. The following sections introduce the results obtained from several such empirical
investigations related to the performance of the pseudo-random walk based population
initialization procedure for the MOGADOR algorithm. For reference, all computations
were performed using a desktop class hardware possessing a 2.3 GHz Intel Quad Core iy
processor (2nd Gen.) with 16 GB of system RAM.

The first of these investigations seeks to understand the role of the fixed parameter g,
embedded in the pseudo-random walk covariance generator function, in determining the
structural characteristics of output populations. In order to study this issue, a synthetic
problem statement was created. This problem statement involves a square search domain
of 100 nodes on a side — resulting in a total problem size of ) = 10, 000 nodes. The value
of the estimated objective function 0,, used to evaluate fitness was set as constant for all of
the nodes in the search domain. In this way, the objective score is roughly equivalent to in-
dividual walk length in Euclidean space. Using this problem statement, twenty seed popu-
lations, all containing 72 = 100 individuals, were generated using monotonically increasing
values of ¢ beginning with 4 = 0.5 and concluding with ¢ = 10. For each the generated
populations, the average objective scores for all individuals as well as the standard devia-
tion of the objective scores among individuals were evaluated. The results of this empirical
investigation are presented in Figure 2.7.

As Figure 2.7 illustrates, increasing the value of the fixed parameter ¢ causes the indi-
viduals within the a population to more closely approximate the Euclidean shortest path
between the source and destination. Similarly, relaxation of this parameter results in an in-
crease in the perceived randomness among the individual walks within a population. These
attributes can be clearly observed in the two images to the right of Figure 2.7 which show
the frequency with which every node within the search domain has been visited by any in-

dividual within two populations generated from different values of 4.
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Figure 2.7: Observing the Role of the Fixed Parameter ¢ in Determining Path Randomness

Another issue warranting empirical investigation is the relationship between runtime

performance of the proposed initialization procedure and problem size. In order to study

this issue a series of ten synthetic problem statements were constructed with near identical

structural components; differing from on another only in terms of problem size. In each

of these problem statements the source location was positioned one fifth of the way down

and to the right from the top left of the search domain and, likewise, the destination loca-

tion was positioned a constant one fifth of the way up from the bottom right corner of the

search domain. For all of the different populations generated, the value of the fixed parame-

ter g was set relatively high ¢ = 10 to reduce computational effort.
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Figure 2.8: Observing the Role of Problem Size on Initialization Runtime

The plot to the left of Figure 2.8 illustrates the the distributional properties of the run-
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times required to generate ten replicate populations for the ten problem statements of
progressively increasing size — resulting in a total of ¢ = 100 unique populations, each
comprised of 7 = 100 individuals. Such repeated simulation is necessary as the proposed
initialization routine is based upon a stochastic sampling process which can and will deliver
variable runtimes for the repeated applications to the same problem context. One feature of
note in this plot is the roughly linear relationship between the mean runtime and problem
size for this type of pseudo-random walk based approach to the problem initialization pro-
cedure for the range of problem sizes considered. The two images to the right illustrate the
effective search extent and frequency for the smallest and the largest populations generated
during this investigation.

One of the considerations previously discussed related to the initialization of the MO-
GADOR algorithm in the context of large problem statements was the need to ensure suf-
ficient diversity within the seed population for the search process to be conducted at the
global level. This problem is clearly evident in the population search extent and frequency
image contained on the far right of Figure 2.8. In this example, the population clearly fails
to explore a sufficiently large portion of the decision space to be considered as a form of
global search. The solution which was previously proposed to this problem involved gen-
erating so called multi-part pseudo-random walks. The subsequent investigation there-
fore, compares the statistical characteristics of a set of populations generated from standard
pseudo-random walk to another set of population generated from multi-part pseudo ran-
dom walks. The results of this investigation are provided in Figure 2.9.

The runtime reductions which can be achieved from the use of the multi-part pseudo
random walk procedure will principally occur in the context of relatively high value set-
tings for the fixed parameter ¢. This is because while the various component segments of
a multi-part walk may not deviate significantly from the Euclidean shortest path however,

the randomized connection of multiple such segments produces composite individuals that
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Figure 2.9: Observing the Characteristics of Multi-Part Pseudo-Random Walks

are significantly more diverse.

2.1 THE MOGADOR ArgorrTEM OUTPUTS

The output of the MOGADOR algorithm is the state of population at the time in which
the algorithm has either achieved convergence or has been terminated upon reaching the
specified limit for evolutionary iterations. This population contains the row-column sub-
scripts for each individual corridor as well as the corresponding fitness values at each of the
row column subscripts along the entire length of each individual corridor. These individ-
uals are ranked on the basis of their aggregate cumulative fitness values. These values are
computed by summing each objective value at each subscript location along the length of
each individual corridor. Because this is a multi-objective context two individuals may have
equivalent aggregate cumulative fitness scores yet the distribution of these scores across the
various objectives may vary. This would represent a situation where those two individuals
— as independent solutions to the mulit-objective corridor location problem — are Pareto

optimal or, alternatively stated, inclusive of the non-dominated set.
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Either the rest of the world can’t live like the developed
world or we need, as a society, to think more about the
technology of providing these services with less intensive

use of at least certain resources. We need to do a more

diligent job of good housekeeping.

Thomas E. Graedel (1940-)

Quantitying Life-Cycle Energy-Water

Resource Utilization
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30  QUANTIFYING LIFE-CYCLE ENERGY-WATER RESOURCE USAGE EFFICIENCY

THE THIRD MAJOR CHALLENGE associated with this dissertation’s stated research objective
involves the development of a systematic method for quantifying the life-cycle energy-water
resource utilization efficiency of water reuse systems involving significant artificial ground-
water recharge components. For this purpose, the decision was made to build upon a sub-
stantial body of previous research on this subject by utilizing an existing life-cycle inven-
tory (LCI) database comprising energy and material process flow data collected from a large
sample of existing WWTP operations and reuse facilities”>7>7#. The novel contribution of
this dissertation to this body of work appears in the form of a new set of methods for the
programmatic parameterization of the LCI model based upon the geographic context and
spatial layout of the proposed reuse project under evaluation.

For example, by first determining suitable sites for recharge infrastructure and then eluci-
dating near-optimal corridors for the distribution network supplying the treated wastewa-
ter from the WWTP, the research analyst is then able to gain a deeper and more fundamen-
tal understanding of the systems behaviors. For example, with a detailed corridor specifi-
cation in hand, it then becomes possible to estimate process energy demands of the system
from first principles rather than having to use vague reference data aggregated from a wide
distribution of empirical measurements*®. As we shall demonstrate in subsequent sections,
these new capabilities go a long way towards improving both the accuracy and the precision

of the model’s outputs.

3.2 LIFE CYCLE ASSESSMENT AND INVENTORY MODELING

Life-cycle assessment (LCA) is an environmental accounting framework that was developed

to systematically quantify the material and energy inputs and outputs from a product, pro-

52



cess, or system throughout all its stages of life. It uses a cradle-to-grave or, in some cases,
cradle-to-cradle perspective, to evaluate the design processes as well as the entire supply
chain associated with manufacturing, transportation, the use phase, and waste manage-
ment®*®. Practically, process based LCA analyses, which shall be the focus of the remainder
of this discussion, incorporate two distinct modeling phases. The first involves the develop-
ment of a Life-cycle Inventory model is a cumulative record of all of the materials and en-
ergy flows required to deliver a single functional unit of the product or process in question.
The second, optional, phase of LCA analyses is the Life-cycle Impact Assessment (LCIA)
component. An LCIA model attempts to translate the raw energy and material flows con-
tained within the LCI into different categories of environmental impacts such as global
warming potential, ocean acidification, freshwater eutrophication, etc.

If we recall, the overarching goal of this dissertation project was to quantify the energy-
water usage efficiency of artificial groundwater recharge projects involving the reuse of
treated municipal wastewater. In order to accomplish this goal customized LCI models
will be developed for five case study regions in which the distribution networks responsi-
ble for transporting the treated wastewater for its point of origin, the WWTP, to its des-
tination point of consumption, an artificial groundwater infiltration basin positioned at
a designated destination location, typically upstream within the regional watershed. The
raw data supporting the creation of each of these custom LCI models was derived from
the University of California at Berkeley supported WWESTweb Tool, which stands for:
WasteWater-Energy Sustainability web Tool”. In each case study, the scope of this LCI
modeling exercise was limited to the construction and operational requirements associated
with the WWTP plant, the treated water distribution network, and the infiltration basin.
This system boundary has been defined in such a way as to emphasize the dynamic con-
tribution of the treated wastewater distribution to the LCI of a given functional unit of

treated wastewater delivered to the sub-surface in the face of variable geographic context.

53



3.3 WASTEWATER TREATMENT PROCESSES

The phrase wastewater treatment encompasses a wide variety of different processes and
operational facilities depending upon: the quality of the influent water, the volume of the
influent water, and the desired quality/end-use application for the treated effluent water+*.
In the United States the operation of WWTDPs are regulated at both the State and Federal
levels#7. At the Federal level the principle regulatory agency is the United States Environ-
mental Protection Agency (USEPA) and the principle regulatory program is the National
Pollutant Discharge Elimination System (NPDES)®*. According to the legal mandate of
the NPDES program, WWTP operators — as well as a wide variety of other entities — are
required to apply, at regular time intervals, for discharge permits which provide them with
the legal right to release waters containing limited concentrations of regulated pollutants
into the environment. Also under this mandate, the USEPA is required to distribute these
permits and enforce non-compliance with their terms.

Since the inception of the NPDES program, the USEPA has worked to make readily
accessibly a centralized database of all registered permit holders within the United States.
This database in interesting for the purposes of this project in that it contains spatially ref-
erenced information about the operational aspects of every operating WWTP in the U.S.*
Crucially, this information includes data on maximum daily permitted flow rates and total
maximum daily loads that can be used to parameterize the type of process based LCI model
facilitated by the WWEST tool.

In terms of their basic physical layout and operational requirements, WWTPs are typi-
cally constructed with a tiered layout; comprising primary treatment, secondary treatment,
and sometimes, various so called tertiary processes’>*. Both primary and secondary treat-
ment are terms that come with narrow legal definitions and are implemented at nearly all

WWTP plants handling municipal sewage discharges. Tertiary treatment processes are
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more loosely defined and encompass a suite of advanced treatment processes that are so
costly that they tend to only be implemented at a minority of WWTP that are subject to a
unique circumstances in terms of influent pollutant loadings/composition or requirements
associated with designed high purity effluent end-use applications™*.

Primary treatment encompasses processes and equipment dedicated to the physical sep-
aration of non-soluble waste constituents present in the influent wastewater stream.
Within a WWTP, a number of distinct processes are often lumped together as being part
of the primary treatment. For example, when water first enters the WWTP it is guided
through a series of progressively refined grates to screen out bulk pollutants such as an-
thropogenic trash or natural plant and animal detritus. Following from this bulk screening
phase, the water is guided into a series of settling basins where its movement is slowed to
crawl to facilitate the settlement of suspended pollutant materials such as sediment*. Due
to the slow rate at which this settling process proceeds, the physical infrastructure which
supports it can comprise a significant fraction of the overall footprint of a WWTP; particu-
larly for those with high flow volume processing requirements.

Secondary treatment encompasses processes and equipment dedicated to the biological
— and sometimes chemical — degradation of soluble waste constitutes present in the influ-
ent wastewater stream**. In most municipal WWTP secondary treatment is accomplished
through a passively aspirated, aerobic biological digestion reactors. In these reactors large
colonies of bacterial species are cultivated on high surface area media using the organic com-
ponents of the influent wastewater stream as a feedstock for the continued growth®. At the
end of their life cycle, the bacteria fall to base of the reactor tank and must be continuously
removed in the form of a product known as activated sludge.

Tertiary treatment encompasses processes and equipment dedicated to the removal of
soluble inorganic and some organic chemical species — including some viruses and pharma-

ceutical agents — present within the influent wastewater stream’*. At present, tertiary treat-

55



ment processes are not mandatory for all WWTP facilities regulated under the NPDES pro-
gram. In general, they tend to only be implemented at those specific locations in which a
last and credible threat to public or environmental health has been identified and for which
a targeted tertiary treatment process exists to address. In this way, mandates for tertiary
treatment are typically instigated at the state or local level and done so on a case by case
basis. Among the most common tertiary treatment processes include: reverse osmosis fil-
tration, batch irradiation with ultra-violent light, the application of specialized chemical
amendments, de-nitrification processes, and others**.

For the purposes of this analysis and the customized LCI models which shall be con-
structed as part of the case study investigations, only primary and secondary treatment pro-
cesses shall be included in the scope. This decision has been made to eliminate a substantial
bias in the inventory models process flows that might be associated with the inclusion of

specialized tertiary treatment procedures.

3.4 WATER DISTRIBUTION INFRASTRUCTURE

The immediate delivery and reuse of treated wastewater for various municipal and agricul-
tural end-use applications is still a relatively new phenomenon®®. As such, the regulatory
landscape surrounding such practices is still not well defined at the Federal level here in the
United States*. Consequently, what regulations due exist, typically have been enacted at
the State and local levels, with the most advanced frameworks, unsurprisingly, existing in
those states such as Florida, California, and Arizona where the popularity of reuse as viable
alternative source of freshwater supply, has been surging in recent years™5*64%,
In all of the locations within the United States for which solid regulatory frameworks

surrounding reuse currently exist, there are strong constraints governing the use of existing

water distribution infrastructure for the transportation of treated wastewater from its point
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of origin, the WWTP, to its point of end-use****. These regulations, without exception,
stipulate that treated wastewater, even if returned to a level of quality consistent with re-
quirements for potable use, cannot be conveyed using existing distribution infrastructure
carrying potable water for human consumption in municipal areas. Due to this regulatory
constraint, all treated wastewater destined for some sort of municipal reuse must be carried
through dedicated parallel distribution infrastructure™. In California, this infrastructure is
easily identified at locations where treated wastewater is being reused due to the bright pur-
ple color of all the pipes. This color encoding is meant to be a strong visual reminder that
the water being carried within them has not been deemed, from a regulatory perspective, as
being fit for direct human consumption™*.

The requirement that treated wastewater, regardless of its standard of treatment and an-
ticipated end use application, be transported using a separate parallel distribution network
is expected to be a crucial factor in determining the overall life-cycle energy-water usage efh-
ciency of large scale water reuse systems feeding into artificial groundwater recharge basins.
The reasoning behind this expectation is based upon the interaction of the following two
key factors. Firstly, water is a dense material, and thus it is very energy intensive to transport
it over long distances and against steep elevation gradients. Secondly, artificial groundwater
recharge basins typically require fairly large amounts of contiguous land area that are situ-
ated in fairly close proximity to highly developed urban and suburban communities. Mu-
nicipal water resource management agencies are tightly constrained in terms of the operat-
ing budgets from which they are able to draw funds to procure new land holdings for the
purpose of constructing artificial recharge basins. Thus, artificial recharge basins , primarily
to economic constraints, are typically located fairly far afield from the WWTPs which feed

them.
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3.5 WWEST REcYycLED WATER REUSE L1FE CYCLE INVENTORY MODEL

The WWEST Recycled Water Reuse Life-cycle Inventory Model refers to an integrated life-
cycle inventory database and modeling framework for understanding the environmental
impacts of wastewater treatment and reuse processes that was developed by a team of aca-
demic researchers operating out of the University of California at Berkeley College of Engi-
neering”. The principal investigators behind the project are Doctor Arpad Horvath, Pro-
fessor of Civil and Environmental Engineering, and Doctor Jennifer Stokes. Doctor Stokes
completed the initial development work for the WWEST model as part of her doctoral dis-
sertation research in the area of environmental impact assessment of civil infrastructure
systems.

The LCI database underlying the WWEST toolset contains process flow information for
the manufacture and operation of equipment and facilities involved in the supply, treat-
ment, and distribution of municipal wastewater for the purpose of non-potable reuse.
Figure 3.1 provides a schematic overview of the WWEST database model components and
their respective input data sources.

The WWEST LCI database can be accessed in two ways. The first, which provides full
access to all of the attribute fields contained within the database, is via an excel spreadsheet
that has been distributed with a built-in set of computational macros. The second method
exposes a more limited range of the data values contained within the database and is acces-
sible via a streamlined web application, also known as WWESTweb. The principle differ-
ence between the WWEST excel model and the web application is in the extent to which
each allows the user to customize the various parameters associated with a hypothetic wa-
ter reuse project and its supporting infrastructure. In this sense, the excel based model is
more appropriate for building an LCI model to quantify the process flows attributable to

an existing facility or which is in a very advanced stage of design planning. Conversely, the

58



TREATMENT

Wastewater COLLECTION/
Phase DISCHARGE
i [ Uqud | | siudge |
l I I ] |
Activity atanial Matenal Equipment Energy Coiraect Sludge
Production Dalivany Lse Froductian Emissions Dizposal
Ulzes EIOLCA & Uses process. Use= process Uses process-bazsd Uses process- L EIOLCA B
EF process-based LA beased LCA bazed LCA LCa based LCA process-based LCA
Source Trousts matesial foputs cargo lnputs: equigmant Inpafa: sisctacdy Inpuds: Epeetar sl
& Input e, cosd Tov weighl | detvenes IV (e, D a8, matural gas use, poyitation faciliy fypa, gas
Data ETQLTAY o vl Feryaar, e & truck, ancavatadl, sy ecovery saned, afiend £ recerery lype &
(or process-basac), ehslance far s amow & proceases, val yse efflvant chemisls afficsanci,
serae g (i, By & Trapuency (e, by oquipman & e, E00, M) trangpant distanca
purchase freguency secondary modes firs, dhalancs) wehuckag
Enangy, GHGs, Enargy, GHGs, All affacts gecapt Al effacts GHiGs I l Al effacts
MO, P, S0, MO, P, B0, S0, for gas except P &
Resuits WL, 0, other WO, G0 vekickae, PM & 50, Ve for
avfwaler Rmissions for diesel wehicles elecinciy
L I I I
I
2 ! ¥ ¥ *
k'f“-ﬂ'ﬂe [ construction | | operation | | maintenance | | operation | | End-of.ife
hase

[tz can be enbered Into WWEST In elther metric or LS, units
malerlals are avallable In WWEST,

Figure 3.1: WWEST Model System Boundaries

Some default Irformation doout system processes and

WWESTweb framework is more appropriate for less well defined scenario based planning

exercises, where the primary goal is to assess the relative impact of major system design alter-

natives that have only roughly been fleshed out.

3.6 PARAMETERIZING PUMP ENERGY REQUIREMENTS

The WWEST model requires a number of key input parameters to be supplied by the user

before it can be run. These parameters correspond to various attributes of the proposed

reuse system including: pipe length and material information derived from the distribu-

tion network topology, estimates of distribution process energy consumption figures, and

process based chemical inputs associated with any required tertiary treatment phases.

In order to facilitate the systematic parameterization of the WWEST model a program-
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matic workflow was developed which automates the calculation of a number of parameters
from two input data sources: [1] the topology of the distribution network (i.e. the corridor
solution from the MOGADOR optimization model) and [2] the expected daily flow rate
derived from the maximum permitted flow value assigned to each WWTP facility through
the NPDES permitting program.

To illustrate how this workflow functions, take for example the process of calculating
the expected energy requirements associated with the distribution of the treated wastewater
from its source at that WWTP to its destination at the reuse facility. Estimating the instan-
taneous power output associated with the operation of a pipeline based water distribution

system begins with Equation 3.14°.

H,
P= Q—* tE*g *¢ (3.1)

Where:

P = The instantaneous pump energy (1)
Q = The instantaneous flow rate (72°/s)
H, = The total head ()
¢ = The gravitational constant (72/s*)
¢ = The density of the fluid (Kg/m?)

E = The pump efficiency factor (unitless)

The first term in this expression (Q), the instantaneous flow rate, can be computed by
dividing the annual volume of water processed by the WWTP by the number of seconds
in a year. The second term (H;), the total system head, can be computed summing the in-

dividual static and dynamic head components as in the following Equations 3.2 and 3.34°.
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The last three terms (g, ¢, E) are constants that are characteristic to the system.

H,=¢ —e, (3.2)

Where:

H; = The static head component
¢; = The elevation at pipeline inlet

¢, = The levation at pipeline output

Equation 3.2 describes how the static head can be computed as the difference between
the elevations at the inlet and the outlet locations for the pipeline. When the corridor spec-
ification is known, this difference can be straightforwardly assessed by referencing the first
and last subscript indices of the corridor to a raster based digital elevation model.

Computing the dynamic component (Hj) of the total system head is a significantly
more complicated process; however, it can, nonetheless, be similarly automated from the
same detailed knowledge of the pipeline corridor specification and its underlying elevation
profile. Equations 3.3 through 3.7 illustrate the sequence of operations by which dynamic

head (H}) can be computed*°.

Kx 12
=

(3.3)

d

Where:

H; = The dynamic head component
K; = The total system losses

V' = The flow velocity

The dynamic head term is a representation of the frictional forces that arise from the

movement of water through the pipeline. The cumulative effects of these forces are rep-
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resented by the term (Kj), total losses, and are multiplied by the square of the velocity at
which the water is flowing. The (K;) can be parsed into two separate components, (K,&K5),
as shown in Equation 3.4*°. These two terms represent the relative contribution of the
friction associated with the movement of water over the textured surface of the pipeline’s
interior walls and the friction associated with the movement of water through a tortuous

pipeline that has various connective fittings such as elbow joints and flow control valves.

K, = K, + Ky (3-4)
Where:

K, = The pipe loss component (#nitless)

Kp = The fitting loss component (unitless)

Typically, the velocity term (7) is computed from the product of a specific flow rate (Q)
and a pipeline cross sectional area (1) as in Equation 3.5. However, in the case of this anal-
ysis, the pipeline cross sectional area was solved for by specifying a maximum permissible

flow velocity V. = 10 (m/s) relative to some designated flow rate .

h
AN

(3-5)

Where:
A = The cross sectional area of the pipe (7*)

The component of the total losses attributable to the cumulative friction encountered
along the pipeline’s pipe section walls (K, ) can be calculated from Equation 3.6 as the prod-

uct of a friction coefficient (f) and the pipeline length (L) divided by the diameter of the
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pipeline pipe sections (D).

Where:

f= The friction coefficient of the pipe (unitless)
L = The cumulative length of all the pipe sections ()

D = The diameter of each pipe section ()

The friction component () of the pipeline loss term (X, ) can be computed from the
empirically derived Equation 3.7 where (k) is a roughness factor that is characteristic to the
pipe section material construction and (Re) is the Reynolds number, which is a dimen-
sionless quantity that this associated to the smoothness with which a fluid flows and can be

derived from the fluid’s characteristic kinematic viscosity (v) as in Equation 3.84°.

0.2
f= TRE (3.7)
{ OgIO 3.75%D + Re°<9}
Where:
k = The roughness factor of the pipe material (72)
Re = The Reynolds Number of the fluid (#nitless)
VD
Re = * (3.8)
v
Where:

v = The kinematic viscosity of the fluid (72*/s)

63



The fitting losses (Kf), which make up the second component of the total losses expres-
sion (K;) and which ultimately feeds into the calculation of dynamic head (H;), can be
computed by using the corridor specification to cumulatively assess the need for various
fitting components to facilitate pipeline deviations and flow control systems. The contri-
bution of each fitting component to the total (Kj) factor is empirically defined and can be
computed by iteratively summing the contribution of each fitting (X,), multiplied by its
appropriate fitting loss factor (K,), along the entire length of the pipeline corridor as in

Equation 3.94°.

Ky = (K K)o+ (K K)) (.9)

Where:

K, = The individual fitting loss component (#nitless)

K, = The individual fitting loss factor (#nitless)

3.7 PARAMETERIZING CONSTRUCTION MATERIAL REQUIREMENTS

Once the pump energy associated with the corridor specification has been computed ac-
cording to method laid out in Equations 3.1 - 3.9 the next step is to estimate the volume of
reinforced concrete that must be poured to facilitate the construction of the requisite in-
frastructural components of the proposed reuse system. It is assumed for the purpose of
this analysis that these new infrastructural components will principally be associated with
the need to install one or more pumping houses which will be situated along the length of
the corridor*°. The determination of the size of each of these facilities and their concomi-
tant material footprints will be assessed on the basis of the total pump energy required for

each corridor and the structure of the different elevation profiles. Consideration will be
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given to economies of scale in terms of the efficiency that can be achieved through the oper-

ation of larger pump systems.

3.8 PARAMETERIZING CHEMICAL CONSUMPTION RATES

The third key set of parameters that must be provided to the WWEST model are the vol-
umes of any consumable chemical substances that must be provided to facilitate the ter-
tiary treatment processes associated with the proposed reuse system. Ideally, the determina-
tion of these parameters would be made on the basis of the relative quality of the influent
wastewater to that of the effluent treated water. However, the data requirements for this
level of specificity in the model parameterization are significant and thus were left outside

the scope of this analysis.

3.9 EsTIMATING NET WATER USAGE EFFICIENCY

The final step towards the research program’s overarching goal of estimating the life-cycle
energy-water usage efficiency of proposed new reuse systems involves converting life-cycle
energy consumption into predicted water consumption. This conversion can be accom-
plished by applying known water usage efficiency factors for a suite of energy generation
technologies to the local grid mix responsible for producing the energy that will be supplied
to the reuse system over its life-cycle. For the purpose of this analysis, the calculated metric
will focus on the consumptive use of water for energy production as opposed to the non-
consumptive use. This designation is important as the difference between the consumptive
and non-consumptive water use profiles for a number of energy generation, and in particu-
lar, cooling technologies, can be non-trivial.

While the distribution of energy generation technologies is known from published statis-

tics on the local grid mix associated with each of the five case study regions, a more granular
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breakdown of the precise thermoelectric cooling technology used by each category of en-

ergy producer is not known. In the absence of this detailed information a range of energy
usage efficiencies — corresponding to the min-max range of cooling technology efficiencies
for each production method — will be generated by the analysis, providing bounds to our

uncertainty in the final calculated values.

300 THE WWEST MobpeL OUuTPUTS

The final output of the WWEST based calculation will involve three numbers. The first
corresponds to the volume of wastewater that is to be treated and recycled by the proposed
reuse operation over the course of a given year. The second corresponds to the life-cycle
energy requirements attributable to this volume of water reuse each year at the site in ques-
tion. The third number will be the quantity of water that must be consumed in order to
generate the energy associated with the system’s annualized life-cycle energy requirements.
By computing the ratio of the second number to the third we will thus be left with an es-
timated ratio depicting the life-cycle energy-water usage efficiency of the proposed reuse
system. If this ratio is greater than one it means that the proposed system is highly efficient,
with more water being saved within the local basin each year than is consumed - likely else-
where, outside the basin — to produce the energy associated with its operation. Similarly,

if this ratio is greater than zero but less than one, the system is only partly efficient. And
finally, if this ratio is less than zero, the system is highly inefficient, with more water be-

ing expended to the produce the energy required for the reuse operation that is saved by
the operation of the reuse system. This third condition would essentially amount to a sit-
uation where water was being virtually imported into the basin in the form of the energy

consumed by the reuse system.
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In god we trust. All others bring data.

William Edwards Demming (1900-1993)

Case Study Results
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4.1 SANTA BARBARA REGION

THE FIRST CASE STUDY REGION, comprising the coastal southern portion of Santa Bar-
bara County, was selected to reflect the local interests of the institution supporting this
dissertation research. Hydrologically, this case study region is distinctly enclosed by a steep
coastal mountain range to the north and the pacific ocean to the south. This case study area
is not connected to any of the major inter-basin water transfer projects within the state (i.e.
The State Water Project, the Los Angeles aqueduct, etc.). As such, Santa Barbara municipal
water managers must be both creative and self reliant in terms of their long term municipal
water supply strategies.

Fortunately, from a freshwater management perspective, the region’s unique physical ge-
ography also functions to limit the possibilities for increased population growth and urban
development. Thus, the prospects for severe water shortages due to steep increases in de-
mand are fairly unlikely. Despite this fact however, the recent drought condition through-
out the state have lead to high wholesale water costs for the Santa Barbara district. This is
because they are in competition with regional agricultural interests with long term invest-
ments in costly orchard based crops that cannot be left to fallow.

In terms of alternative water supply options within the region, Santa Barbara has re-
cently renewed talks for the development of a local seawater desalination plant that had
been put on hold following the 2008 economic recession. This willingness to reconsider a
high cost desalination based alternative freshwater supply strategy suggests that large scale
municipal water reuse may also be put forth as a feasible alternative in the near term fu-
ture and thus, that such a prospective analysis of the tradeofts associated with such a system

would indeed be valuable exercise.
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4.1.1  REGIONAL CONTEXT

* HUC-8 Code: 18060013

* Total Area: 1,173.6 km*

* Maximum Elevation: 1,376.7 m

* Minimum Elevation: —o.7 m

* Mean Slope: 13.98 %

+ Standard Deviation of Slope: .07 %

* Dominant Soil Composition: Hydrologic Soil Group - B: 10 — 20% clay, s0 — 90%

sand, 35% rock fragments

Figure 4.1: Santa Barbara Region Overview

4.1.2 SEARCH DoOMAIN

The search domain used for both the weighted overlay site suitability analysis as well as the

corridor location problem specification is depicted in Figure 4.2. The extent and dimen-
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sions of this search domain is depicted in the statistics below.

* Grid Dimensions: 363 cells x 1351 cells

* Grid Cell Resolution: 100 7 x 100 7 (1 ha)

* Feasible Grid Cells: 117, 363 cells

Figure 4.2: Santa Barbara Region Search Domain

4.1.3 DESTINATION SEARCH INPUTS

There are three key inputs to the weighted overlay analysis used to determine the location
and extent of suitable sites for the implementation of artificial groundwater recharge basins
within the region. The four layers which were generated as the discrete inputs to the WOA
procedure are depicted in Figures 4.3 through 4.5. The first layer gives each cell in the search
domain a score between 1 and 10 on the basis of the suitability of its slope for the implemen-
tation of a artificial groundwater recharge basin. Areas with steep slopes are given lower
suitability scores. Areas with shallower slopes are given high suitability scores.

The second input to the WOA destination search process is based upon the permeability
of the surface geology as shown in Figure 4.4. Permeability is a crucial parameter in deter-
mining the rate of infiltration that can be achieved by a recharge basin and thus the requi-

site size of a basin for the purpose achieving a specified total rate of recharge. The geology
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score layer gives each cell in the search domain a ordinal score between 1 and 10 on the basis
of the underlying surface geology layer’s permeability constant.

The final input to the WOA destination search process is based upon the existing lan-
duse as shown in Figure 4.5. The existing landuse can be a proxy measure of both the cost
of procurement for the landholdings required to implement the artificial recharge basin as
well as the regulatory and engineering difficulty associated with artificial recharge basin im-
plementation. Here again, these scores are have been pegged to a 1 to 10 ordinal scale that

aligns with those assigned to each of the other two score layers.

Figure 4.3: Santa Barbara Region Destination Search Inputs: Slope Scores

Figure 4.4: Santa Barbara Region Destination Search Inputs: Geology Scores

4.1.4 DESTINATION SEARCH OUTPUTS

The raw output of the WOA destination search process is a composite layer of which de-

picts a measure of overall suitability for the given landuse application on an ordinal scale
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Figure 4.5: Santa Barbara Region Destination Search Inputs: Landuse Scores

as in Figure 4.6. This single composite suitability layer is then thresholded, selecting only
those areas that have the highest composite suitability scores as shown in Figure 4.7. A set
of morphological operations is applied to this threshold mask which ranks each connected
area of high suitability in terms of its size. Larger connected areas of high suitability are con-
sidered better in this process and thus, in this way, a single destination location for the cor-
ridor search process can be automatically selected as the single largest area of high aggregate

suitability with the study area.

Figure 4.6: Santa Barbara Region Destination Search Outputs: Composite Scores

4.5 PROPOSED CORRIDOR ENDPOINTS

For the Santa Barbara case study region, the final output of the WOA analysis is shown in
Figure 4.8 in red and mapped relative to the location of the source location for the corridor

location analysis that corresponds to the location of the largest WWTP within the basin, in
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Figure 4.7: Santa Barbara Region Destination Search Outputs: Candidate Regions

green. These two points, plus the extent of the search domain, form the basis of the corri-
dor location problem specification that is to be discussed in further detail in the subsequent

section.

* Start Location: (313,1083)

* End Destination: (248, 886)

* Shortest Euclidean Path Distance: 20, 745 72 (21 km)

Figure 4.8: Santa Barbara Region Proposed Corridor Endpoints

4.1.6 ProroSED OBJECTIVE LAYERS

For the corridor location problem specification used as the input to the MOGADOR algo-
rithm, four key pieces of information are required. The first three correspond to the source
location, the destination location, and the search domain boundaries that have been pre-

viously described. The forth key input category corresponds to the objective score layers

73



which capture the cost associated with routing sections of a corridor over each grid cell in
the search domain. For this analysis, the following three distinct objectives were developed.

The first objective category is based upon the accessibility of each location for the pur-
poses of constructing and maintaining the water distribution infrastructure that the cor-
ridor is designed to support and is shown in Figure 4.9. It is fundamentally easier to get
materials and people to a locations that are positioned along road networks. As a result,
the underlying road network topology was used to encode a continuous objective score
layer with values ranging from 1 to 10 that can be described as a measure of Accessibiliry and
which favors those locations that are on and around roads.

The second objective category is based upon the existing land use regime within the re-
gional search domain. The idea behind the composition of this objective can be thought
of as somewhat of the converse of Accessibility in the sense that, regions which are already
heavily developed are likely to be socially, politically, or economically challenging to imple-
ment corridors for large scale water distribution pipeline infrastructure. Using standardized
USGS based land use classification, each grid cell in the search domain is given a nominal
objective score value from 1 to 10 corresponding the relative level of Disturbance that would
be associated with routing a corridor across it. This objective layer is depicted in the layer
plotted in Figure 4.10.

The third objective category is derived from the underlying slope within the search do-
main. Steeper slopes are assigned a higher ordinal score, ranging from 1 to 10. This objective
reflects the desire for corridors to be shorter in length and minimally accumulate slopes over
their length. In this way, the slope score provides a mechanism for the corridor routing al-
gorithm to preferentially favor corridors that would have minimal energy requirements in
terms of the operational energy requirements of the anticipated water distribution infras-

tructure. This slope score objective layer is depicted in Figure 4.11.
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Figure 4.9: Santa Barbara Region Accessibility Based Objective Scores

Figure 4.10: Santa Barbara Region Land Use Disturbance Based Objective Scores

Figure 4.11: Santa Barbara Region Slope Based Objective Scores

4.17 PROPOSED CORRIDOR SOLUTIONS

Shown in Figure 4.12 are the outputs of a series of three runs of the MOGADOR algo-
rithm for the Santa Barbara region problem specification. These three runs differ solely in
terms of the number of individuals contained within the seed population. The size of this
seed population determines the extent with which the input search domain is search and,

consequently, the degree to which the output solution corridor is likely to approximate
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the global optimal solution. The figure contains six panes made up of three rows and three
columns. The columns depict, from left to right, and plan view of the final output solution
set, and line plot of the break down of objective scores for the top 100 ranked individuals in
the final output solution set, and, finally, a histogram plot of the frequency of total aggre-
gate objective scores among the same top 100 individuals. Alternatively, the rows, moving
from top to bottom, reflect the changing results as the population size is increased from
1,000 tO 10,000 tO 100,000.

As the histogram plots of the aggregate objective scores illustrate, with a population size
of 100,000 the aggregate objective scores are quite low, and the quality of the final output
solution set is very high. This improvement in solution quality comes at the expense of
processing time/effort. This tradeoff shall be discussed in greater detail and illustrated com-
paratively across all of the five case studies at the end of this Chapter.

One interesting feature of this exercise which can be readily appreciated from this set of
plots is the source of the improvement in the aggregate objective scores between the differ-
ent runs. For example, note the height of the data series depicted by the blue line, corre-
sponding to the accessibility score, in the three plots in the middle column. The progressive
decrease in the values associated with this line indicates that the reduction in aggregate ob-
jective scores between the three runs can be attributed to a reduction in the Accessibility
score. This is tantamount to saying that the search process is able to provide better solu-
tions as it finds the road network. And indeed, this conclusion is reflected from a simple vi-
sual inspection of the output corridors plotted in the panels contained in the first column.
Here it can be seen that in the 100,000 population size solution set, the pathway sections
have become much more linear, and appear to correspond with the layout of different road
segments which occupy the area in between the source and the destination.

Figure 4.14 provides an illustration of the top ranked final output corridor solution pre-

sented in the context of the full search domain. For all of the case studies the highest quality
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Figure 4.12: Santa Barbara Region Corridor Analysis Results

solution was developed by the model run containing the largest seed population. This was
tully expected however and is in good agreement with the theoretical discussion of the role
of the population initialization procedure in the behavior of the MOGADOR algorithm

described in Chapter 3.

4.1.8 ALONG-CORRIDOR ELEVATION PROFILE

Figure 4.14 illustrates the along-corridor elevation profile that can be generated by super-
imposing the output corridor solution on top of a regional digital elevation model for the

Santa Barbara region. As the Figure shows the total elevation gain between the source and
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Figure 4.13: Santa Barbara Region Top 100 Corridors Basin Wide Overview

the destination location is a modest 200 meters across a distance spread of roughly 25 kilo-
meters. While it may appear that the corridor has a significant amount of vertical fluctua-
tions, these are minor in absolute terms, and stem from the fact that the slope score — the
objective most directly related to the corridor elevation profile structure — was but only
one of three in the multi-objective problem statement. These elevation fluctuations there-
fore can be thought of as the result of a profitable tradeoff between the accumulation of

smoother slopes and more favorable values for the other two objectives.
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Along Corridor Elevation Profiles (Smoothed)
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Figure 4.14: Santa Barbara Region Proposed Corridor Elevation Profile
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4.2 OxNARD REGION

The second case study region consists of the HUC-8 zone containing the Oxnard plain and
its immediate surrounding territories stretching as far inland as Ojai. This second case study
region is located nearly adjacent to the first — separated only by a single HUC-8 basin. The
reason for the choice of two case study regions in such close physical proximity is down to
the recent implementation of a functioning large scale water reuse system by the municipal
water management district there.

The majority of this HUC-8 zone’s area is a comprised of a broad low lying alluvial plain.
This plain has found rich application within the agricultural sector, supporting the pro-
duction of a wide variety of row crops as well as high value orchard stands. Over the past
three decades, the region has also experience significant population growth with sprawl-
ing suburban communities encroaching into the more marginal farmlands or those held by
smaller independent farmers. The combined freshwater demands of these two sectors have
conspired to create a persistent imbalance between freshwater supply and demand in this
coastal region.

Oxnard’s struggle with freshwater management issues can be traced as far back as 1937
when the USGS identified that sustained groundwater pumping to support the irrigation
of surface crops was contributing to the depletion of the underlying aquifer and inviting
the intrusion of brackish seawater into the subsurface hydrologic strata. In response to this
issue, the local municipal water authority enacted a program in which a portion of the re-
gions’ agricultural water was diverted towards a series of subsurface injection wells — strate-
gically positioned along the coast — through which freshwater would be pumped to created
an artificial pressure head barrier to prevent further intrusion of seawater, and thus further
contamination of the aquifer.

This program has operated successfully for a number of decades now; achieving a func-
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tional equilibrium between the level of groundwater pumping occurring within the basin
and the amount of water the is delivered to the artificial intrusion barrier. More recently
however, decreases in available freshwater supply due to a persistent statewide drought have
forced municipal water managers in this region to thing more proactively about develop-
ing alternative sources of water supply. This process began with the creation of a plant to
substitute potable freshwater for reclaimed brackish water for use in the subsurface barrier
injection wells.

The successful operation of this plant for a number of years inspired enough confidence
among the water resource management authorities in this area to pursue and very recently
achieve a goal of implementing a facility capable of reclaiming and reusing the growing vol-
ume of municipal wastewater being generated within the basin. This new facility, commis-
sioned just this year, provides the capability to treat 100% of the wastewater generated in
the basin to a potable standard through a complex treatment chain incorporating a sophis-
ticated chain of tertiary treatment processes including: advanced micro-filtration, reverse
osmosis, ultraviolet filtration, and ozonation. The long term plan for the water currently
being produced by this facility is for groundwater recharge at higher elevation locations
within the basin. As such, this locale represents the ideal candidate for evaluation in this

study.

4.2.1 REGIONAL CONTEXT

HUC-8 Code: 18070102

* Total Area: 5,188.3 km*

* Maximum Elevation: 2, 664.4 m
* Minimum Elevation: —o.05 m

* Mean Slope: 15.54 %

* Standard Deviation of Slope: 1r.11 %
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* Dominant Soil Composition: Hydrologic Soil Group - B: 10 — 20% clay, s0 — 90%

sand, 35% rock fragments

Figure 4.15: Oxnard Region Overview

4.2.2 SEARCH DOMAIN

The search domain comprising the Oxnard study region is described in the statistics below
and depicted graphically in the map panel contained within 4.16. Relative to the total land
area contained within the Santa Barbara study region, the Oxnard domain is quite large,

being nearly four times its total size.

* Grid Dimensions: 677 cells x 1586 cells
* Grid Cell Resolution: 100 72 x 100 72 (1 ha)

* Feasible Grid Cells: 518, 834 cells
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Figure 4.16: Oxnard Region Search Domain

4.2.3 DESTINATION SEARCH INPUTS

In Figures 4.17 through 4.19 the three key inputs to the Oxnard reuse destination search
process are shown. A visual inspection of these three layers reveals that there is an obvious
band of continuously high suitability stretching from the foot of the basin (at the lower
left) along its lower portion nearly across its breadth (to the lower right). This corridor is
flat low lying river bed. It possesses a highly permeable surface geology, a very shallow slope

profile, and relatively low intensity land use applications.

Figure 4.17: Oxnard Region Destination Search Inputs: Slope Scores
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Figure 4.18: Oxnard Region Destination Search Inputs: Geology Scores

Figure 4.19: Oxnard Region Destination Search Inputs: Landuse Scores

4.2.4 DESTINATION SEARCH OUTPUTS

The layer showing the composite suitability of each cell within the study site for the site of
a destination artificial water reuse facility is shown in Figure 4.20. As this figure shows, the

area with the highest composite suitability is that which was mentioned previously as being
clearly visible within each of the individual input suitability layers. The majority of the top
ranked areas of contiguous high suitability are contained within this region, as shown in

Figure 4.21.
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Figure 4.20: Oxnard Region Destination Search Outputs: Composite Scores

Figure 4.21: Oxnard Region Destination Search Outputs: Candidate Regions

4.2.5 PRrRoOPOSED CORRIDOR ENDPOINTS

For the Oxnard case study region, the final output of the WOA analysis is shown in Figure
4.22 in red and mapped relative to the location of the source location for the corridor lo-
cation analysis that corresponds to the location of the largest WWTP within the basin, in
green. These two points, plus the extent of the search domain, form the basis of the corri-
dor location problem specification that is to be discussed in further detail in the subsequent

section.
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* Start Location: (656, 236)

* End Destination: (513, 532)

+ Shortest Euclidean Path Distance: 32, 873 m (32 km)

Figure 4.22: Oxnard Region Proposed Corridor Endpoints

4.2.6 PrROPOSED OBJECTIVE LAYERS

In Figures 4.23 through 4.25 the three independent objective layers used as inputs to the
MOGADOR problem specification for the Oxnard study site are shown. These three lay-
ers correspond to the categories of landuse disturbance, accessibility, and slope described
previously for the Santa Barbara case study region and used for all of the other case studies

in the analysis.

4.2.7 PROPOSED CORRIDOR SOLUTIONS

Figure 4.26 presents a figure panel containing the outputs of the three separate MOGADOR
algorithm runs for the Oxnard study site problem specification using three different pop-
ulation sizes. As this figure panel illustrates, the first algorithm run, with a population size

of 1, 000, delivered a set of 100 top output corridor solutions with aggregate objective score
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Figure 4.24: Oxnard Region Land Use Based Disturbance Objective Scores

values ranging from 3, 585 to 3, 615. With the second run of the algorithm, where the pop-
ulation size was increased to a 10, 000, the top 100 output corridor solutions’ aggregate
objective scores can be observed to have improved markedly, covering a range from 2, 910
to 2, 935. The line plot in the center of the figure attests to the fact that this improvement
came from reductions in both the accessibility and disturbance scores associated with the
new output corridor set.

The final corridor solution set, generated from a MOGADOR model run where the in-
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Figure 4.25: Oxnard Region Slope Based Objective Scores

put population size was fixed at a value of 100,000, produced an output set of top 100 solu-
tions with an even lower range of composite objective scores: ranging from between 2, 740
to 2, 760. The improvement in this overall composite objective scores, as shown by the line
plot at the lower center portion of the figure panel, can be observed as being attributable

to marginal reductions in the accessibility and disturbance objective scores. This can be in-
terpreted as the algorithm locating corridors which route around areas with high intensity
land uses and routing along the more highly accessible transportation network.

Figure 4.277 provides a broad plan overview illustration of the final output corridors pro-
duced by the MOGADOR solution run where the population size was set to a value of
100,000.

The corresponding elevation profile for the solution illustrated in Figure 4.27 can be ob-
served plotted in Figure 4.28. This elevation profile reals that there is only a modest amount
of elevation change along the length of the proposed corridor solution (roughly 130 me-
ters). It also shows that this elevation gain is discontinuous along the length of the pro-
posed corridor solution with there being to two modest hills — each roughly 40 meters in

height — that must be ascended and descended before the destination is reached.
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Figure 4.26: Oxnard Region Corridor Analysis Results

Figure 4.27: Oxnard Region Top 100 Corridors Basin Wide Overview
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Along Corridor Elevation Profiles (Smoothed)
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Figure 4.28: Oxnard Region Proposed Corridor Elevation Profile
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4.3 SanN Dieco ReGIioN

The third case study region investigated as part of this dissertation consists of the HUC-8
basin comprising the city of San Diego and its adjacent metropolitan districts. This basin
is situated at the southwestern most tip of the State of California and adjoins the interna-
tional border between the United States and Mexico as shown by the black filled area plot-
ted in Figure 4.29.

In terms of its water resource management history, San Diego has become world renowned
as a leader in freshwater management for its innovative approaches to demand management
policy and advanced technological solutions for providing alternatives supply. As is often
the case, necessity has been the mother of this innovation, with the San Diego region ex-
periencing explosive growth in population growth and associated freshwater demand over
the past so years while at the same time being cutoff from major statewide inter-basin water
transfer projects.

For example, from 2009 to 2013 the San Diego Municipal Water District embarked upon
a large scale demonstration project to determine whether the advanced tertiary water treat-
ment systems that would be necessary to facilitate large scale indirect, or possibly even di-
rect, potable reuse could be implemented effectively and reliably at scale. In this project, pu-
rified water was blended with imported water supplies in the San Vicente Reservoir before
going to the standard drinking water treatment plant. Due in large part to this success of
the pilot program, the San Diego city council recently unanimously approved a three and
a half billion dollar direct potable reuse project and plant that is to be constructed over the
next decade. This facility is being planned in conjunction with another large scale desali-
nation plant in a bid to build a portfolio of alternative freshwater supply and groundwater
recharge capacity just as the state enters the fourth year of a crippling drought condition.

The San Diego case study region is unique in the context of the other case study regions
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evaluated as part of this dissertation in that the destination location to be used for the cor-
ridor location problem specification has been designated as the location of the municipal
drinking water treatment plant. As such, no destination search process was undertaken for

this case study region.

4.31 REGIONAL CONTEXT

* HUC-8 Code: 18070304

* Total Area: 4, 338.1 km”

* Maximum Elevation: 1, 977 m

* Minimum Elevation: —o.7 m

* Mean Slope: 9.38 %

+ Standard Deviation of Slope: 8.77 %

* Dominant Soil Composition: Hydrologic Soil Group - B: 10 — 20% clay, s0 — 90%

sand, 35% rock fragments

4.3.2  SEARCH DOMAIN

The search domain comprising the San Diego study region is described in the statistics be-

low and depicted graphically in the map panel contained within 4.30.

* Grid Dimensions: 798 cells x 898 cells
* Grid Cell Resolution: 100 7 x 100 7 (1 ha)

* Feasible Grid Cells: 433, 808 cells

4.3.3 PRrRoOPOSED CORRIDOR ENDPOINTS

The proposed endpoints to be used in the MOGADOR algorithm specification are shown

in Figure 4.31. The source location was determined by the location of the largest NPDES

92



Figure 4.29: San Diego Region Overview

permitted WWTP in the basin while the destination location, in this case, was pre-determined

as the location at which an artificial groundwater recharge basin has already been imple-

mented.

* Start Location: (635, 42)
* End Destination: (453, 363)

* Shortest Euclidean Path Distance: 36, 9o1 72 (36 km)

4.3.4 PROPOSED OBJECTIVE LAYERS

The three proposed objective layers which round out the MOGADOR algorithm prob-
lem specification and depicted in Figures 4.33 through 4.34, consist of the same accessibility,
landuse disturbance, and slope based data layers as those described previously for Santa
Barbara & Oxnard, and used for all of the case studies included in this analysis. In terms of

the structure of these objectives in the San Diego region, the coastal areas tend to be very
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Figure 4.30: San Diego Region Search Domain

highly developed with large land use disturbance scores as well as a dense road network
providing favorable accessibility values. The basin does not contain an extreme amount
of topographic relief as evidenced by the fairly homogeneous distribution of slopes shown

in Figure 4.34.

4.3.5 PROPOSED CORRIDOR SOLUTIONS

The results of the three runs of the MOGADOR algorithm for the San Diego region case
study corridor location analysis are presented in Figure ?? and reflect the same three vari-

ations on the seed population size described for the previous case studies. Here again, the

94



Figure 4.31: San Diego Region Proposed Corridor Endpoints

highest quality solution set was produced by the MOGADOR run using the largest popu-
lation size with the minimum cumulative objective scores for the top 100 output solutions
ranging from 3, 840 to 3, 86s. Between the three algorithm runs, the majority of the aggre-
gate objective score improvement came from reductions in the accessibility and disturbance
scores; this, again, reflecting the algorithm’s iterative discovery of those corridor sections
running in and along road network sections while avoiding areas with higher intensity lan-
duse.

The top output solution for the three runs is depicted in the context of the entire search

domain in Figure 4.36. As this Figure shows the final corridor routes from the location of
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Figure 4.32: San Diego Region Accessibility Based Objective Scores

the coastal WWTP treatment plant, around the large harbor area at the Southwest portion
of the search domain, and up towards the existing groundwater recharge facility located at
the heart of the basin.

Figure 4.37 plots the elevation profile of the land surface along the length of the pro-
posed corridor solution. The maximum elevation gain between the endpoints of the corri-
dor is roughly 230 meters, however there is a considerable amount of ups and downs along
the corridor’s length. The jaggedness of the elevation profile reflects the extremely high den-
sity of the urban environment in the area immediately inland from the coastal WWTP.

It reflects a necessary tradeoft between the accumulation of slope and the need to route
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Figure 4.33: San Diego Region Land Use Disturbance Based Objective Scores

around areas with high intensity existing landuse.
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Figure 4.34: San Diego Region Slope Based Obijective Scores
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Figure 4.35: San Diego Region Corridor Analysis Results
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Figure 4.36: San Diego Region Top 100 Corridors Basin Wide Overview
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Along Corridor Elevation Profiles (Smoothed)
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Figure 4.37: Santa Diego Region Proposed Corridor Elevation Profile
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4.4 SANTA ANA - SAN BERNADINO REGION

The Santa Ana — San Bernadino case study region, filled in black in Figure 4.38, is com-
prised of another coastal HUC-8 basin that is situated north of San Diego and south of
Oxnard. The majority of the basin’ area is positioned inland with a small strip of land
stretching westward towards the coast around the bed of the Santa Ana river. In terms of
total area, the Santa Ana — San Bernadino is the second largest case study region being in-
vestigated as part of this dissertation analysis. It is almost four times the size of the Santa
Barbara case study basin and is only marginally smaller in size that the largest of the five
study sites: Fresno — Tulare.

The Santa Ana — San Bernadino region, which is positioned squarely within Orange
County, shares a number of hydrologic similarities to the San Diego region and as a resul,
it too has been forced to adopt a whole suite of innovative water resource management
policies and technological solutions. In fact, this region is home to the first large scale com-
mercial municipal wastewater recycling and reuse installation in the United States; called
Water Factory 21. This facility takes raw sewage as influent as used a cutting edge treatment
process chain to return that water to levels of purity that are of near potable standard. This
reclaimed water is then pumped uphill to a series of interconnected recharge basins posi-
tioned along the bed of the Santa Ana river where it is allowed to infiltrate back into the
subsurface aquifer, providing a crucial source of artificial recharge.

The Santa Ana — San Bernadino case study site provides a unique opportunity to bench-
mark the results of this modeling framework against an existing reuse facility that incor-
porates a significant component of artificial groundwater recharge. In this way, we can do
things like compare the layout of this corridor solution proposed for this region to that im-
plemented in the real world, as well as, hopefully in the future, evaluate the estimates for

the water-energy usage efficiency associated with the proposed systems specification to that
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experienced by the Water Factory 21 facility.

4.4.1 REGIONAL CONTEXT

+ HUC-8 Code: 18070203

* Total Area: 5, 375.9 km?

* Maximum Elevation: 3, 461.3 m

* Minimum Elevation: —o0.7 m

* Mean Slope: 10.56 %

* Standard Deviation of Slope: 12.21 %

* Dominant Soil Composition: Hydrologic Soil Group - B: 10 — 20% clay, s0 — 90%

sand, 35% rock fragments

Figure 4.38: Santa Ana - San Bernadino Region Overview
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4.4.2 SEARCH DoMAIN

The search domain comprising the San Diego study region is described in the statistics be-

low and depicted graphically in the map panel contained within 4.39.

* Grid Dimensions: 854 cells x 1463 cells

* Grid Cell Resolution: 100 7 x 100 7 (1 ha)

* Feasible Grid Cells: 537, 587 cells

Figure 4.39: Santa Ana - San Bernadino Region Search Domain

4.4.3 DESTINATION SEARCH INPUTS

In Figures 4.40 through 4.42 the three key inputs to the Santa Ana — San Bernadino region
case study reuse destination search process are shown. Here again, a visual inspection of
these three layers reveals that there is a large central plain of highly suitable areas in the left

central portion of the basin. This area of high suitability is connected to the coast region,
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where the WWTDP is located by a thin strip of land area that is marginally suitable according

to the three separated suitability layers which runs along the bed of the Santa Ana river.

Figure 4.40: Santa Ana - San Bernadino Region Destination Search Inputs: Slope Scores

Figure 4.41: Santa Ana - San Bernadino Region Destination Search Inputs: Geology Scores
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Figure 4.42: Santa Ana - San Bernadino Region Destination Search Inputs: Landuse Scores

4.4.4 DESTINATION SEARCH OUTPUTS

The output of the weighted overlay analysis used to engage in the search for suitable sites
for the application of the artificial groundwater recharge surface infiltration basin are shown
in the composite site suitability layer depicted in Figure 2. The largest patches of contigu-
ous high suitability are highlighted in the red portions of Figure ??. The obvious best can-
didate for a recharge basin site within this search domain can been seen as the large red area

positioned along the left center edge of the basin.

4.4.5 PRrRoPOSED CORRIDOR ENDPOINTS

The proposed endpoints for the Santa Ana — San Bernadino corridor location problem
specification to be delivered to the MOGADOR algorithm are plotted in Figure 4.45. The
location of the destination site has been selected as the centroid of the large contiguous area

of high suitability referenced in the previous section.

* Start Location: (840, 48)
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Figure 4.43: Santa Ana - San Bernadino Region Destination Search Outputs: Composite Scores

Figure 4.44: Santa Ana - San Bernadino Region Destination Search Outputs: Candidate Regions

* End Destination: (528, 430)

* Shortest Euclidean Path Distance: 49, 322 m2 (49 km)
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Figure 4.45: Santa Ana - San Bernadino Region Proposed Corridor Endpoints

4.4.6  PrROPOSED OBJECTIVE LAYERS

The three proposed objective layers to be used as part of the MOGADOR algorithm cor-
ridor location problem specification are illustrated graphically in Figures ?? through 4.47.
Structurally, these objective layers were generated according to the same procedures used
to generate the corresponding objective layers for each one of the other five case study sites.
As the figures show, the coastal area is a flat, low lying spit with a high average landuse in-
tensity and a very dense road network. This coastal region is largely separated from other
populated areas in the basin’s interior by coastal mountain range with only a narrow pas-

sage having been cut by the Santa Ana River.

4.4.7 PROPOSED CORRIDOR SOLUTIONS

As illustrated in Figure 4.49 The proposed corridor solutions for the three MOGADOR

model runs with initial population sizes of 1,000, 10,000, and 100,000 show some inter-
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Figure 4.46: Santa Ana - San Bernadino Region Accessibility Based Objective Scores

Figure 4.47: Santa Ana - San Bernadino Region Land Use Disturbance Based Objective Scores

esting results. For example, with a population size of 1,000, the algorithm is not able to

explore enough of the decision space to produce an output solution set which does not exit
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Figure 4.48: Santa Ana - San Bernadino Region Slope Based Objective Scores

the search domain boundary. As a result of this, the range of cumulative aggregate objective
function values for the top 100 solutions produced by this run of the algorithm are enor-
mous in size, reflecting the arbitrarily high objective scores assigned to all grid cells outside
the feasible search domain for all of the objectives.

As the population size is increased however, we can see that the output solution sets
begin to respect the search domain boundary and that the composite aggregate objective
scores for the top 100 solutions in each set decrease dramatically. The top 100 solutions for
the MOGADOR run with a population size of 100,000 can be seen to have relatively lower
disturbance scores compared to the top 100 solutions generated by the algorithm run with
a population size of 10,000. This difference reflects that ability of the run with the larger
population size to route corridors that minimally disturb areas within the study site with
intensive or otherwise sensitive existing landuse types.

The top 100 solutions generated by the MOGADOR algorithm run with a population

of 100,000 are plotted relative to the entire study site’s search domain in Figure 4.50.
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Figure 4.49: Santa Ana - San Bernadino Region Corridor Analysis Results

Figure 4.51 plots the along corridor elevation profile for the best corridor solution pro-
duced as an output of the MOGADOR algorithm. This elevation profile reveals that the
Santa Ana — San Bernadino study site has the largest net elevation gradient of all of the case
study regions: a total of 350 meters. It also shows that the accumulation of elevation along
the length of the corridor is fairly continuous with two small declines which must be navi-

gated at the very end section of the proposed corridor.
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Figure 4.50: Santa Ana - San Bernadino Region Top 100 Corridors Basin Wide Overview

Along Corridor Elevation Profiles (Smoothed)
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Figure 4.51: San Bernadino Region Proposed Corridor Elevation Profile
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4.5 FrRESNO — TULARE REGION

The fifth and final case study region is comprised of the HUC-8 basin containing the cities
of Fresno and Tulare. This case study region is depicted graphically by the region filled in
black in Figure 4.52. This basin differs from those included in the previous case studies in
that it is internally drained - i.e. landlocked. This unique hydrologic feature is due to the
fact that it is situated within California’s Central Valley. In terms of total area, Fresno is the
largest of the five case study regions. However, its topography and landuse characteristics
are significantly more homogeneous than those for the other case study regions. Fresno —
Tulare, and indeed the majority of the southern portion of the California Central Valley are
heavily agricultural. This is a result of the area’s high quality soils, evenly flat topography,
and favorable climactic regime with a large number of annual growing days.

Due to the historic prominence of agricultural activity in this region, the local economy
of the Fresno — Tulare region is heavily skewed towards agricultural activity. As a resul,
there has evolved a sort of lock-in effect where the region is relied upon to produce crop
outputs for national and international export regardless of the local precipitation patterns.
For decades now, this situation has caused farmers to turn to local groundwater resources
to offset deficiencies in freshwater supply in periods of drought. This has lead to unsus-
tainable rates of subsurface aquifer withdrawals; on state of groundwater overdraft that in
many places within the study site threaten the long term health and viability of the aquifers.

In an effort to fight harmful consequences of this overdraft condition such as groundwa-
ter contamination and land surface subsidence, regional freshwater managers have been
exploring the use of treated wastewater to provide and artificial source of groundwater
recharge. The need to better understand the energy-water usage efficiencies of these types
of reuse systems in this area make it a prime candidate for assessment as part of this disserta-

tion project.
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4.51 REGIONAL CONTEXT

+ HUC-8 Code: 18030009

* Total Area: 6, 943.6 km*

* Maximum Elevation: 1, §36.6 m

* Minimum Elevation: o m

* Mean Slope: 2.16 %

+ Standard Deviation of Slope: 6.24 %

* Dominant Soil Composition: Hydrologic Soil Group - B: 10 — 20% clay, s0 — 90%

sand, 35% rock fragments

Figure 4.52: Fresno - Tulare Region Overview

4.5.2  SEARCH DOMAIN

The search domain comprising the Fresno — Tulare case study region is described in the

statistics below and depicted graphically in the map panel contained within 4.53.
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* Grid Dimensions: 1018 cells x 1459 cells

* Grid Cell Resolution: 100 7 x 100 7 (1 ha)

* Feasible Grid Cells: 694, 365 cells

Figure 4.53: Fresno - Tulare Region Search Domain

4.5.3 DESTINATION SEARCH INPUTS

The destination search inputs for the siting of the groundwater recharge basin are illus-
trated in Figures 4.54 through 4.56. Here again, as with the four other case study regions,
these are comprised of the same slope, surface geology, and landuse based nominally stan-

dardized spatial data layers.
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Figure 4.54: Fresno - Tulare Region Destination Search Inputs: Slope Scores

Figure 4.55: Fresno - Tulare Region Destination Search Inputs: Geology Scores
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Figure 4.56: Fresno - Tulare Region Destination Search Inputs: Landuse Scores

4.5.4 DESTINATION SEARCH OUTPUTS

In absolute terms, the majority of the area contained within the Fresno — Tulare search do-
main is actually quite highly suitable for the implementation of a groundwater recharge
basin. In terms of relative suitability however, the most favorable region was found to be
located in the Northwestern portion of the search domain adjacent to an existing surface

water feature and depicted graphically by the connected candidate regions plotted in Figure

4.58.

4.5.5 PRrROPOSED CORRIDOR ENDPOINTS

The proposed corridor endpoints for the MOGADOR algorithm problem specification
are plotted in Figure 4.59. The spacing between the source and destination cells within the

search domain is the largest of that for any of the case studies included in this entire analy-
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Figure 4.57: Fresno - Tulare Region Destination Search Outputs: Composite Scores

sis. This feature, combined with the sheer size of the Fresno — Tulare regions search domain
makes it a challenging candidate candidate for the corridor location optimization proce-

dure.

* Start Location: (435,1037)
* End Destination: (421,387)

* Shortest Euclidean Path Distance: 65, o1s 7 (65 km)

4.5.6 ProOPOSED OBJECTIVE LAYERS

The proposed objective for the MOGADOR algorithm problem specification are plotted
graphically in Figures 4.60 through 4.62. More so than for any other case study region in-
vestigated as part of this analysis, these layers are homogeneous in structure. This presents

an additional challenge to the operation of the corridor location optimization procedure.
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Figure 4.58: Fresno - Tulare Region Destination Search Outputs: Candidate Regions

4.5.7 PROPOSED CORRIDOR SOLUTIONS

The characteristics of the proposed corridor location solutions generated as outputs from
the MOGADOR algorithm for three different population sizes are depicted in Figure 4.63.
As this figure shows, and as might be expected, the best final solution set by the algorithm
very closely approximates the euclidean shortest path between the input source and the in-
put destination provided in the problem specification. The seeming simplicity of this final
solution belies the significant computation effort required to search such a large decision
space. For, as it shall be discussed in greater detail in subsequent sections, the runtime of
the MOGADOR algorithm for the Fresno — Tulare case study region was far and away the
longest among all of the case study sites.

Figure 4.65 plots the along corridor elevation profile for the best output corridor solu-

tion generated by the MOGADOR algorithm with an initial seed population of 100,000.
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Figure 4.59: Fresno - Tulare Region Proposed Corridor Endpoints

As the profile plot reveals, for the Fresno — Tulare region, the corridor solution actually
routes along a path of decreasing elevation from the source to the destination. This feature
is unique among all of the case study regions, with all of the four others involving a route

that moves progressively uphill to a higher elevation location.
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Figure 4.60: Fresno - Tulare Region Accessibility Based Objective Scores
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Figure 4.61: Fresno - Tulare Region Land Use Disturbance Based Objective Scores
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Figure 4.62: Fresno - Tulare Region Slope Based Objective Scores
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Figure 4.63: Fresno Region Corridor Analysis Results
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Figure 4.64: Fresno Region Top 100 Corridors Basin Wide Overview

125



Along Corridor Elevation Profile (Smoothed)
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Figure 4.65: Fresno Region Proposed Corridor Elevation Profile
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4.6 EvaruaTiNG THE MOGADOR ALGORITHM’S RUNTIME PERFORMANCE

Figure 4.66 depicts the runtime performance of the MOGADOR algorithm for the five
case study regions previously introduced with treatments per case study. As the figure
shows, the performance of the algorithm scales roughly linearly with respect to problem
size — as measured both in terms of the scale of the search domain and the breadth of the
search effort. Due to the stochastic nature of the MOGADOR optimization routine and
discrepancies between the source to destination separation distances as well as the morpho-
logical structure of the search domains for each of the case study regions, a more formal
analysis of the runtime performance is discouraged so as not to generate misleading conclu-
sions.

Figure 4.67 plots the number of evolutionary iterations required to achieve convergence
for each run of the MOGADOR algorithm across the five different case study regions and
the three population sizes evaluated per region. No trend was expected between either the
identity of the case study region or the population size. And, as the figure illustrates, indeed

no trend was observed.

4.7 EvALUATING THE MOGADOR ALGORITHM’S SOLUTION QUALITY

Figure 4.68 presents an analysis of the quality of the best output solutions generated by

the MOGADOR algorithm for each of the case study regions compared relative to that of
the euclidean shortest corridor linking the source location to the destination location. Two
plot series are shown, the first, in red, described as the Margin of Deviation, is the percent
increase in the along path distance of the output solution corridor relative to that of the Eu-
clidean shortest corridor. The expectation for this series is that all the values greater than or
equal to 0%. This expectation reflects the understanding that the optimal corridor solution

must be at least as long as the Euclidean shortest corridor. As the Margin of Deviation plot
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Figure 4.66: Algorithm Runtime Performance for Each of the Five Case Study Regions for Three Population
Sizes

series illustrates, the output solutions generated by the MOGADOR algorithm are 18% to
22% longer than the Euclidean shortest path alternatives.

The second plot series, in blue, depicts what is termed as the Margin of Improvement.
These values correspond to the percent decrease in the cumulative aggregate objective scores
associated with the MOGADOR output corridor solution relative to that of the Euclidean

shortest corridor. The initial expectation here is that these values should always be nega-
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Figure 4.67: Algorithm Convergence Rates for Each of the Five Case Study Regions for Three Population
Sizes

tive, or at least equal to zero, reflecting the degree to which the MOGADOR algorithm
was able to deliver a solution that is improved, in terms of reduced along path cost, over
the Euclidean shortest corridor. As the Margin of Improvement plot series illustrates, for
Fresno — Tulare, Oxnard, and Santa Barbara, the MOGADOR algorithm’s best solutions
achieved between a 37% to 46% reduction in cumulative aggregate objective scores over

the Euclidean shortest corridor alternative. For the San-Bernadino and San-Diego regions
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the Margin of Improvement appears to be 100%. This feature reflects the fact that the Eu-
clidean shortest corridor for these two regions exits the search domain and thus results in an

arbitrarily high cumulative aggregate objective score value.

Margin of Deviation Relative to Margin of Improvement
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Figure 4.68: Comparison of the Along Path Distance and Cumulative Objective Scores between the Solution
Corridors and the Euclidean Shortest Corridors
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4.8 EvALUATING THE MOGADOR ALGORITHM’S SOLUTION ELEVATION PROFILES

Figure 4.69 plots the along path elevation profiles for each of the best MOGADOR algo-
rithm output corridor solutions relative to one another. This figure is useful for gauging
(1] the relative length of each corridor [2] the relative elevation gain of each corridor and
(3] the degree to which each corridor is trading a smooth accumulation of slope for routing

either away from high intensity landuse areas or towards highly accessible areas.

Along-Corridor Elevation Profiles
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Figure 4.69: Comparison of the Along Corridor Elevation Profiles for each of the Solution Corridors
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4.9 EvALUATING THE LIFE-CYCLE WATER-ENERGY USAGE EFFICIENCIES OF PROPOSED

REUSE SYSTEMS

Figure 4.70 provides an information rich perspective on the final output results generated
from the synthetic combination all three of the separate modeling components described in
the previous Chapters of this dissertation. It depicts, the ratio of water withdrawals and wa-
ter consumption relative to the volume of water recovered by reuse. This ratio assumes that
the rate of reuse equals 100% of the permitted wastewater flows for each of the WWTPs in
the five case study regions previously discussed.

The water withdrawal and consumption figures presented are generated by combining
a calculated instantaneous flow rate with the the proposed proposed corridor specification
for each case study region into an expected annual pump energy consumption figure. This
pump energy consumption figure is then translated into an expected water withdrawal
figure through an interpretation of the fractional energy generation technology mix respon-
sible for the production of electricity in each region.

The horizontal red line plotted on the figure shows the critical threshold at which the
energy consumed in the operation of a reuse systems results in either the withdrawal or
consumption of more water — at the point of electricity production — than is able to be
reclaimed by the reuse process. The range of values depicted by the plot series bands reflects
an assumed range of pump operational efficiencies of between 25% - 75%.

In only one of the case study regions, Fresno — Tulare, does there appear to be a net sav-
ings of water associated with the practice of reuse. This is largely due to the minimal pump
energy requirements associated with the proposed reuse system in this region, which in-
volves a corridor specification that routes downhill and is able to take advantage of gravity
to overcome most of the total head associated with the water delivery effort. In all of the

other case study regions, the range of consumption and withdrawals exceeds the critical
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threshold. This can be interpreted a situation where the practice of reuse is tantamount to
the importation of water — in the form of energy — from the region in which the requisite
energy has been produced.

These findings suggest that the systemic benefits of the reuse of treated wastewater for
the practice of artificial groundwater reuse are not so great as initially assumed to be. Fur-
thermore, they demonstrate that the efficiency of a reuse project is highly dependent upon
the local geographic context in which the system is to be implemented. An interesting ques-
tion which remains, is how the energy-water usage efficiency characteristics of these types
of reuse projects — involving significant artificial groundwater recharge components — will
change over time as the energy grid mix evolves, presumably, towards a greater fraction of
renewable energy supply technologies. For, as was mentioned in the introductory Chapter
(o) these renewable technologies tend to have much lower water requirements relative to
their heat-engine based, fossil fueled counterparts. As such, it is possible, that energy-water
usage efficiencies of these systems may improve, not necessarily because of some significant
new development in the actual system design, but rather solely due to a reduction in the

water usage intensity of the overall electricity grid.
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Figure 4.70: Comparison of the Net Water Usage Efficiencies of Reuse for each of the Case Study Regions
Measured in Terms of Both the Withdrawals and Consumption of Water for the Production of Energy Re-
quired for Reuse
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Go Language Source Code Repository for a Parallel + Concurrent Implementation of the

MOGADOR Algorithm for the Multi-Objective Corridor Location Problem

https://github.com/ericdfournier/corridor
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https://github.com/ericdfournier/corridor

<LICENSE>

Copyright ©2015, Eric Daniel Fournier

All rights reserved.

Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:
* Redistributions of source code must retain the
above copyright notice, this

list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or

other materials provided with the distribution.

* Neither the name of corridor nor the names of its
contributors may be used to endorse or promote
products derived from this software without specific

prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
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FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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<initialize.go>

/%
Copyright ©2015 The corridor Authors. All rights
reserved. Use of this source code is governed by a
BSD—style license that can be found in the LICENSE
file .

*/

package corridor

import (
”errors”
”fmt”
,’math’,
“runtime”

p)

>sort”

”github .com/gonum/ diff/fd”
”github .com/gonum/matrix/mat64”

”github.com/satori/go.uuid”

// new problem parameters function
func NewParameters(sourceSubscripts ,
destinationSubscripts []int, populationSize ,

evolutionSize int, randomnessCoefficient float6y4)
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*Parameters {

// set default mutation count

mutationCount := 1

// set defacult mutation fraction

mutationFraction := 0.2

// set selection fraction

selectionFraction := o.5

// set selection probability

selectionProbability := 0.8

// get concurrency size

maxConcurrency := runtime.NumCPU()

// return output

return &Parameters{
SrcSubs: sourceSubscripts ,
DstSubs: destinationSubscripts ,
RndCoef: randomnessCoefficient ,
PopSize: populationSize ,
SelFrac: selectionFraction ,
SelProb: selectionProbability ,
MutaCnt: mutationCount,

MutaFrc: mutationFraction ,
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EvoSize: evolutionSize ,

ConSize: maxConcurrency,

// new domain initialization function

func NewDomain(domainMatrix *mat64.Dense) *Domain {

// get domain size

rows, cols := domainMatrix.Dims ()

// compute band count
bandCount := 2 +
(int(math. Floor (math.Sqrt(math.Pow( float64 (rows),

2.0)+math .Pow(float64 (cols), 2.0)))) / 142)

//return output
return &Domain{
Rows: rows ,
Cols: cols ,
Matrix: domainMatrix ,

BndCnt: bandCount,

// new objective initialization function

func NewObjective(identifier int, fitnessMatrix
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*mat64 . Dense) *Objective {

// return output
return &Objective{
1d: identifier ,

Matrix: fitnessMatrix ,

// new basis solution initialization function
func NewBasis(sourceSubs, destinationSubs []int,

searchDomain *Domain) *Basis {

// compute all minimum euclidean distances for
// search domain
allMinimumDistances := AllMinDistance (sourceSubs ,

destinationSubs , searchDomain.Matrix)

// generate subscripts from bresenham ’s algorithm

subs := Bresenham (sourceSubs, destinationSubs)

// compute maximum permitted chromosome length

maxLength := len(subs) * 10

// return output

return &Basis{

Matrix: allMinimumDistances ,
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Subs: subs ,

MaxLen: maxLength,

// new chromosome initialization function
func NewChromosome(searchDomain *Domain,
searchParameters *Parameters, searchObjectives

*MultiObjective) *Chromosome {

// generate node subscripts
nodeSubs := NewNodeSubs(searchDomain ,

searchParameters)

// generate subscripts from directed walk
procedure
subs := MultiPartDirectedWalk (nodeSubs,

searchDomain, searchParameters)

// initialize empty fitness place holders
fitVal := make([][] float64 ,
searchObjectives. ObjectiveCount)
for i := o; i < searchObjectives.ObjectiveCount;
i++ {

fitVal[i] = make([] float64 , len(subs))
}

totFit := make([] float6y4 ,
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searchObjectives. ObjectiveCount)

var aggFit float64 = o.0

// generate placeholder variables

uuid := uuid.NewV4()

// return output

return &Chromosome({

1d: uuid ,
Subs: subs ,
Fitness: fitVal,
TotalFitness: totFit ,

AggregateFitness: aggFit,

// new empty chromosome initialization function
func NewEmptyChromosome(searchDomain *Domain,

searchObjectives *MultiObjective) *Chromosome {

// initialize subscripts

subs := make([][]int, o)

// generate placeholder id

uuid := uvuid.NewV4()

// initialize empty fitness place holders
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fitVal := make([][] float64 ,
searchObjectives. ObjectiveCount)
for i := o; i < searchObjectives.ObjectiveCount;
i++ {
fitVal[i] = make([]float64 , len(subs))
}
totFit := make([] float6s4 ,
searchObjectives . ObjectiveCount)

var aggFit float64 = o.0

// return output

return &Chromosome({

Id: uuid ,
Subs: subs ,
Fitness: fitVal,
TotalFitness: totFit ,

AggregateFitness: aggFit,

// new population initialization function
func NewPopulation(identifier int, searchDomain
*Domain, searchParameters *Parameters,

searchObjectives *MultiObjective) *Population {

// initialize communication channel

chr := make(chan *Chromosome,
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searchParameters.PopSize)

// initialize new empty chromosome before
// entering loop
newChrom := NewEmptyChromosome(searchDomain ,

searchObjectives)

// initialize concurrency limit channel

conc := make(chan bool, searchParameters.ConSize)

// generate chromosomes via go routines

for i := o; i < searchParameters.PopSize; i++ {

// write to control channel

conc <— true

// launch chromosome initialization go
// routines
go func(searchDomain *Domain, searchParameters
*Parameters , searchObjectives *MultiObjective)
{
defer func() { <—conc }()
newChrom = NewChromosome (searchDomain ,
searchParameters , searchObjectives)
chr <— ChromosomeFitness (newChrom,
searchObjectives)

}(searchDomain, searchParameters,
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searchObjectives)

// cap parallelism at concurrency limit
for j := o; j < cap(conc); j++ {

conc <— true

// initialize fitness placeholder
meanFit := make([] float64 ,
searchObjectives . ObjectiveCount)

var aggMeanFit float64 = o.0

// return output

return &Population{

1d: identifier ,
Chromosomes: chr,
MeanFitness: meanFit ,

AggregateMeanFitness: aggMeanFit,

// new empty population initialization function
func NewEmptyPopulation(identifier int,

searchObjectives *MultiObjective) *Population {



// initialize empty chromosomes channel

chr := make(chan *Chromosome)

// initialize fitness placeholder
meanFit := make([] float64 ,
searchObjectives. ObjectiveCount)

var aggMeanFit float64 = o.0

// return output

return &Population{

1d: identifier ,
Chromosomes: chr,
MeanFitness: meanFit ,

AggregateMeanFitness: aggMeanFit,

// new empty evolution initialization function
func NewEmptyEvolution(searchParameters *Parameters)

*Evolution {
// initialize empty population channel
popChan := make(chan *Population,

searchParameters. EvoSize)

// initialize empty fitness gradient

gradFit := make([] float64 ,
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searchParameters. EvoSize)

// return output
return &Evolution {
Populations: popChan,,

FitnessGradient: gradFit,

// new evolution initialization function
func NewEvolution(searchParameters *Parameters,
searchDomain *Domain, searchObjectives

*MultiObjective) *Evolution {

// initialize seed population identifier

var poplD int = o

// initialize population channel

popChan := make(chan *Population, 1)

// print initialization status message

fmt. Println (" Initializing Seed Population...”)

// initialize seed population
seedPop := NewPopulation(popID, searchDomain,
searchParameters , searchObjectives)

popChan <— PopulationFitness (seedPop,
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searchParameters , searchObjectives)

// initialize raw fitness data slice
rawAggMeanFit := make([] float64 ,

searchParameters. EvoSize)

// initialize fitness gradient variable
gradFit := make([] float64 ,

searchParameters. EvoSize)

// enter loop

for i := o; i < searchParameters.EvoSize; i++ {

// perform population evolution
newPop := PopulationEvolution(<—popChan,
searchDomain, searchParameters ,

searchObjectives)

// compute population fitness

newPop = PopulationFitness (newPop,
searchParameters , searchObjectives)

// write aggregate mean fitness value to

// vector

rawAggMeanFit[i] = newPop.AggregateMeanFitness

// generate inline fitness gradient function
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var fitnessGradFnc = func(n float64) float64

{ return rawAggMeanFit[int(n)] }

// compute fitness gradient
gradFit[i] = fd.Derivative (fitnessGradFnc,

float64 (i), nil)

// skip gradient check on first iteration

if i <1 {

// return new population to channel

popChan <— newPop

// increment progress bar

»

fmt. Println (” Evolution: 7, 1i+1)

} oelse if 1 >= 1 & i <

(searchParameters. EvoSize —1) {

if gradFit[i] > o {

// return current population
// to channel

popChan <— newPop

// close population channel

close (popChan)
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// print success message
fmt. Println (” Convergence Achieved,

Evolution Commplete!”)

// break loop
break

} else if gradFit[i] <= o {

// return new population to channel

popChan <— newPop

// increment progress bar

»

fmt. Println (” Evolution: 7, i+1)

} else if i == searchParameters.EvoSize —1 {

// return new population to channel

popChan <— newPop

// close population channel

close (popChan)

// print termination message
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fmt. Println (” Convergence Not Achieved,

Maximum Number of Evolutions Reached...”)

// break loop
break

// return output
return &Evolution{
Populations: popChan,

FitnessGradient: gradFit,

/*
function to return copies of a user specified
fraction of the individual chromosomes within a
population ranked in terms of individual aggregate
fitness

*/

func NewEliteFraction (inputFraction float64 ,

inputPopulation *Population) (outputChromosomes

[]* Chromosome) {

// count input chromosomes

chromCount := cap(inputPopulation.Chromosomes)
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// initialize aggregate score slice
*

chromFrac := int(math. Ceil(inputFraction

float64 (chromCount)))

// initialize chromosome map

chromMap := make(map[float64 ]* Chromosome)

// initialize chromosome map key slice

chromKey := make([] float64 , chromCount)

// initialize output slice

output := make([]* Chromosome, chromFrac)

// loop through channel to populate slice

for i := o; i < chromCount; i++ {
curChrom := <—inputPopulation.Chromosomes
chromMap [ curChrom . AggregateFitness] = curChrom

chromKey[i] = curChrom. AggregateFitness

// sort on aggregate fitness keys

sort.Float64s (chromKey)
// loop through and generate output slice faction
for j := o; j < chromFrac; j++ {

output[j] = chromMap[chromKey[j]]
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// return output

return output

/*
function to return copies of a user specified

number of unique individual chromosomes from within a
population with each chromosome being ranked in terms
of its individual aggregate fitness

*/

func NewEliteSet(inputCount int, inputPopulation
*Population , inputParameters *Parameters)

(outputChromosomes []*Chromosome) {

// check band count against population size
if inputCount >= int(math.Floor ((o.5 ~*
float64 (inputParameters.PopSize)))) {
err := errors.New(”Input elite set count must
be less than 1/2 the input population size

\n”)

panic(err)

// count input chromosomes

chromCount := cap(inputPopulation.Chromosomes)
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// initialize chromosome map

chromMap := make(map[float64 ]* Chromosome)

// initialize chromosome map key slice

chromKey := make([] float64 , chromCount)

// initialize output slice

output := make([]* Chromosome, inputCount)

// loop through channel to populate slice from

// channel
for i := o; i < chromCount; i++ {
curChrom := <—inputPopulation.Chromosomes

chromMap [ curChrom . AggregateFitness] = curChrom
chromKey[i] = curChrom. AggregateFitness

inputPopulation.Chromosomes <— curChrom

// sort on aggregate fitness keys

sort.Float64s (chromKey)

// initalize iteration counter

var iter int = o

// loop through and generate output slice set

for j := o; j < chromCount; j++ {
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// deal with initial state

if j == o {
output[iter] = chromMap[chromKey[j]]
iter += 1

continue

// get uuids
prevUuid :=
chromMap [ chromKey[j —1]].Id. String ()

curUuid := chromMap[chromKey[j]].Id.String()

// impose uniqueness constraint

if prevUuid != curUuid {
output[iter] = chromMap[chromKey[j]]
iter += 1

}oelse {

continue

// stop if inputCount reached
if iter == inputCount {

break



// return output

return output
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<io.go>

/%
Copyright ©2015 The corridor Authors. All rights
reserved. Use of this source code is governed by a
BSD—style license that can be found in the LICENSE
file .

*/

package corridor

import (
“encoding/csv”
”fmt”

» »

(OB

2

”strconv’

>

”time’

”github .com/gonum/matrix/mat64”

// function to write an input comma separated value

// file ’s contents to an output domain structure

func CsvToSubs(inputFilepath string) (outputSubs
[Jint) {

// open file



data, err := os.Open(inputFilepath)

// parse error if file not found
if err !'= nil {
fmt. Println (err)

return

// close file on completion

defer data.Close ()

// generate new reader from open file

reader := csv.NewReader(data)

// set reader structure field

reader . FieldsPerRecord = —1

// use reader to read raw csv data

rawCSVdata, err := reader.ReadAll()

// parse csv file formatting errors
if err != nil {
fmt. Println (err)

os. Exit (1)

// initialize empty row and column counts
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rows := len(rawCSVdata)

cols := len(rawCSVdata[o])

// initialize output

output := make([]int, 2)

// loop through and extract values
for i := o; i < rows; i++ {

for j := o; j < cols; j++ {

// get string value and convert
// to integer
strVal := rawCSVdata[i][j]

intVal, err := strconv.Atoi(strVal)

// shift value by one to account for
buffer boundaries

output[j] = intVal + 1

// parse error
if err != nil {
fme. Println (err)

os. Exit (1)
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// return output

return output

// function to write an input comma separated value
// file s contents to an output domain structure
func CsvToDomain(inputFilepath string) (outputDomain

*Domain) {

// open file

data, err := os.Open(inputFilepath)

// parse error if file not found
if err != nil {
fmt. Println (err)

return

// close file on completion

defer data.Close ()

// generate new reader from open file

reader := csv.NewReader(data)

// set reader structure field

reader . FieldsPerRecord = —1
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// use reader to read raw csv data
rawCSVdata, err := reader.ReadAll()
// parse csv file formatting errors
if err != nil {

fmt. Println (err)

os. Exit (1)
}
// initialize empty row and column counts
rows := len(rawCSVdata)
cols := len(rawCSVdata[o])
// initialize domain matrix
domMat := mat64.NewDense(rows+2, cols+2, nil)
// write values from rawCSVdata to domain matrix
for i := o; i < rows+2; i++ {

for j := o; j < cols+2; j++ {

// create a 1 pixel boundary buffer of

Zeros
if i == o {

domMat. Set (i, j, o.0)
b} else if i == rows+1 {

domMat. Set (i, j, o.0)
}oelse if j == o {

domMat. Set(i, j, o.0)
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b} oelse if j == cols+r1 {
domMat. Set (i, j, o.0)
} else {

// get string value and

// convert to integer

strVal := rawCSVdata[i —1][j —1]
fltVal , err :=

strconv . ParseFloat(strVal, 64)

// parse error
if err != nil {
fmt. Println (err)

os. Exit (1)

// write value to matrix

domMat. Set (i, j, fleVal)

// initialize new domain

output := NewDomain(domMat)

// return output

return output



// function to write an input comma separated value
// file ’s contents to an output objective structure
func CsvToObjective(identifier int, inputFilepath

strin outputObjective *Objective) {
g) (outp j j

// open file

dataFile , err := os.Open(inputFilepath)

// parse error if file not found
if err != nil {
fmt. Println (err)

return

// close file on completion

defer dataFile. Close ()

// generate new reader from open file

reader := csv.NewReader(dactaFile)

// set reader structure field

reader . FieldsPerRecord = —1

// use reader to read raw csv data

rawCSVdata, err := reader.ReadAll()
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// parse csv file formatting errors
if err != nil {
fmt. Println (err)

os. Exit (1)

// initialize empty row and column counts
rows := len(rawCSVdata)

cols := len(rawCSVdata[o])

// initialize domain matrix

objMat := mat64.NewDense(rows+2, cols+2, nil)

// write values from rawCSVdata to domain matrix
for i := o; i < rows+2; i++ {

for j := o; j < cols+2; j++ {

// create a 1 pixel boundary
//  buffer of zeros
if i == o0 {
objMat.Set(i, j, o.0)
} else if i == rows+1 {
objMat. Set(i, j, o.0)
}oelse if j == o {
objMat. Set(i, j, o.0)

} oelse if j == cols+1 {



objMat. Set(i, j, o.0)

} else {

// get string value and

// convert to float

strVal := rawCSVdata[i—1][j —1]
fleVal , err :=

strconv . ParseFloat(strVal, 64)

// parse error
if err !'= nil {
fme. Princln (err)

os.Exit (1)

// write matrix value

objMat. Set (i, j, fltVal)

// initialize new domain

output := NewObjective(identifier , objMat)

// return output

return output
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/*

function to write a set of input comma separated

value files ’ contents to an output multiobjective
structure

*/

func CsvToMultiObjective (inputFilepaths ... string)

(outputMultiObjective *MultiObjective) {

// get variadic input length

objectiveCount := len(inputFilepaths)

// initialize objective slice
objectiveSlice := make([]* Objective,

objectiveCount)

// initialize objectives identifier

var objectivelD int = o

// loop through and extract objectives

for i := o; i < objectiveCount; i++ {

// read CSV data to objective

objectiveSlice [i] =

CsvToObjective (objectiveID , inputFilepaths[i])

// increment objective identifier
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objectivelD += 1

// return multiObjective output
return &MultiObjective{
ObjectiveCount: objectiveCount ,

Objectives: objectiveSlice ,

// function to write the values from an input
// chromosome structure to an output csv file
func ChromosomeToString (inputChromosome *Chromosome)

(outputRawString [][]string) {

// get input chromosome length

chromLen := len (inputChromosome. Subs)

// count input chromosome objectives

objCount := len(inputChromosome. TotalFitness)

// intitialize raw output string slice

rawCSVdata := make([][] string , objCount+2)

// loop through and format values as strings for

// output encoding
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for j := o; j < objCount+2; j++ {

// allocate inner slice

rawCSVdata[j] = make([]string , chromLen)

for i := o; i < chromLen; i++ {

// transpose subs by one to account for
// boundary buffer
if j == o {
rawCSVdata[j][i] =
strconv . Itoa(
inputChromosome . Subs[i][o] — 1)
}oelse if j == 1 {
rawCSVdata[j][i] =
strconv . Itoa(
inputChromosome . Subs[i][1] — 1)
}oelse {
rawCSVdata[j][i] =
strconv . FormatFloat(
inputChromosome . Fitness [j —2][i],

£7, 2, 64)

// return output



return rawCSVdata

/*

function to write the values from an input elite set
to an output csv file

*/

func EliteSetToCsv(inputEliteSet []*Chromosome,

outputFilepath string) {

// open file

csvfile , err := os.Create(outputFilepath)

// parse file opening errors
if err != nil {
fmt. Println (" Error:”, err)

return

// close file on completion

defer csvfile.Close()

// get chromosome count

chromCount := len(inputEliteSet)

// initialize rawCSVdata and chromosome string

// structures
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var chromString , rawCSVdata [][]string

// loop through chromsomes and generate composite

// string structure

for i := o; i < chromCount; i++ {
chromString =
ChromosomeToString(inputEliteSet[i])
rawCSVdata = append(rawCSVdata,

chromString ...)

// initialize writer object

writer := csv.NewWriter( csvfile)

// write data or get error

err = writer. WriteAll (rawCSVdata)

// parse errors
if err !'= nil {
fmt. Println (” Error:”, err)

return

// flush writer object

writer . Flush ()
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/%
function to write the runtime parameters from an
evolution to an output csv file

*/

func RuntimeLogToCsv(inputEvolution *Evolution,

inputRuntime time.Duration, outputFilepath string) {

// open file

csvfile , err := os.Create(outputFilepath)

// parse file opening errors
if err != nil {
fmt. Println (" Error:”, err)

return

// close file on completion

defer csvfile. Close ()

// initialize rawCSVdata structure

var rawCSVdata []string

// populate string slice
rawCSVdata = append(rawCSVdata,
inputRuntime. String ())

// initalize evolutionary counter
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var evo int = o

// count required evolutions
for i := o; i <
len (inputEvolution. FitnessGradient); i++ {
if inputEvolution.FitnessGradient[i] != o {
evo += 1
} else {

continue

// convert to string
rawCSVdata = append(rawCSVdata,

strconv.Itoa(evo))

// initialize writer object

writer := csv.NewWriter(csvfile)

// write data or get error

err = writer. Write(rawCSVdata)

// parse errors
if err !'= nil {
fmt. Println (” Error:”, err)

return
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// flush writer object

writer . Flush ()
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<lib.go>

/%
Copyright ©2015 The corridor Authors. All rights
reserved. Use of this source code is governed by a
BSD—style license that can be found in the LICENSE
file . package main

*/

package corridor

import (
”errors”

”math »

”github .com/gonum/matrix/mat64”

// compute euclidean distance for a pair of subscript
// indices

func Distance (aSubs, bSubs []int) (dist float64) {

// initialize variables

var xo floaté4 = floaté4 (aSubs[o])
var x1 float64 = float64 (bSubs[o])
var yo float64 = floatés4 (aSubs[1])

var y1 float64 = float64 (bSubs[1])
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var pow float64 = 2.0

var dx float64 = x1 — xo

var dy float64 yI — yo
// compute distance
var output float64 = math.Sqrt(math.Pow(dx, pow)

+ math.Pow(dy, pow))

// return final output

return output

/%
alldistance computes the distance from each
location with the input search domain and a given
point defined by an input pair of row column
subscripts

*/

func AllDistance(aSubs []int, searchDomainMatrix

*mat64.Dense) (allDistMatrix *mat64.Dense) {

// get matrix dimensions

rows, cols := searchDomainMatrix.Dims()

// initialize new output matrix

output := mat64.NewDense(rows, cols, nil)



// initialize destination point subscript slice

bSubs := make([]int, 2)

// loop through all values and compute minimum

// distances

for i := o; i < rows; i++ {
for j := o; j < cols; j++ {

bSubs[o] = i

bSubs[1] = j

output. Set(bSubs[o], bSubs[1],

Distance (aSubs, bSubs))

// return output

return output

/*
compute the minimum distance between a given input
point and the subscripts comprised of a line
segment joining two other input points

*/

func MinDistance (pSubs, aSubs, bSubs []int)

(minDist float64) {
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// initialize wvariables
var x float64 = float64 (pSubs[o])

var y float64 = float64 (pSubs[1])

var xo float6s float64 (aSubs[o])

var yo float64 = float64 (aSubs[1])

var x1 float64 = float64 (bSubs[o])

var y1 float64 float64 (bSubs[1])

// compute difference components

a = X — XO
b :=y— yo
¢ = X1 — x0
d := y1 — yo

// compute dot product of difference components
dot := a*c + b*d

lenSq := c¢*c + d*d

// initialize parameter

var param float64 = —1.0

// if zero length condition

if lenSq != o {

param = dot / lenSq

// initialize transform variables
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var xx, yy float6s

// switch transform mechanism on orientation
if param < o {

XX = XO

yy = Yyo

} else if param > 1 {

XX = XI
yy = ¥yt

} else {
XX = X0 + param®c

yy = yo + param*d

// execute transform

var dx float64 = x — xx

var dy float64 y — ¥y

// generate output

output := math.Sqre(dx*dx + dy*dy)

// return final output

return output

/*

allmindistance computes the distance from each
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location within the input search domain and to the
nearest subscript located along the line formed by
the two input subscripts

*/

func AllMinDistance(aSubs, bSubs []int,
searchDomainMatrix *mat64.Dense) (allMinDistMatrix

*mat64 . Dense) {

// get matrix dimensions

rows, cols := searchDomainMatrix.Dims ()

// initialize new output matrix

output := mat64.NewDense(rows, cols, nil)

// initialize slice

pSubs := make([]int, 2)

// loop through all values and compute minimum

// distances

for i := o; i < rows; i++ {
for j := o; j < cols; j++ {
pSubs[o] = i
pSubs[1] = j
curMinDist := MinDistance(

pSubs, aSubs, bSubs)
output. Set(pSubs[o], pSubs[1],

curMinDist)
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// return final output

return output

/*

distancebands recodes a distance matrix computed from
a single source location to ordinal set of bands of
increasing distance

*/

func DistanceBands(bandCount int, distanceMatrix

*mat64 .Dense) (bandMatrix *mat64.Dense) {

// get matrix dimensions

rows, cols := distanceMatrix.Dims()

// check band count against input distance matrix

// size

if bandCount > rows || bandCount > cols {
err := errors.New(”Input band count too large
for input distance matrix \n”)
panic(err)

}

// initialize output
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output := mat64.

NewDense(rows, cols, nil)

// generate band range

minDist := distanceMatrix .Min()

maxDist := distanceMatrix .Max()

// initialize band interval unit and slice

bandUnit := (maxDist — minDist) /

float64 (bandCount+1)

bandInt := make([] float64 , bandCount+r1)

// generate band intervals

for i := o; i <

if i ==

} else {

bandCount +1; i++ {
o {
bandInt[i]

Il
o

bandInt[i] = bandInt[i —1] + bandUnit

// perform conversion to the appropriate band

// interval
for i := o; i <

for j :=

len(bandInt) —1; i++ {

0; j < rows; j++ {

for k := o; k < rows; k++ {
if

distanceMatrix . At(j, k) >=
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bandInt[i] &&

distanceMatrix . Ac(j, k)

< bandInt[i+1] {
output.Set(j, k,
float64(i))

b} oelse if

distanceMatrix . Ac(j, k) >=

bandInt[i+1] {
output.Set(j, k,

float64 (i+1))

// return output

return output

/*

bandmask selects the elements in a distance band
matrix corresponding to a specified input band
identification number and outputs a binary matrix of
the same dimensions as the distance band matrix with
the values at those locations encoded as ones and all

other locations encoded as zeros

*/



func BandMask(bandValue float64 , bandMatrix

*mat64 .Dense) (binaryBandMat *mat64.Dense) {

// get row column dimensions of band matrix

rows, cols := bandMatrix.Dims()

// initialize output

output := mat64.NewDense(rows, cols, nil)

// loop through matrix values and perform binary
encoding
for i := o; i < rows; i++ {

for j := o; j < cols; j++ {

// perform elementwise equality test

if i == o ||

i == rows—1 ||
jo==oll

j == cols —1 {

output.Set(i, j, o0.0)
}oelse {
if bandValue ==
bandMatrix. At(i, j) {
output.Set(i, j, 1.0)
}oelse {

output. Set(i, j, o0.0)



// return output

return output

/*

nonzerosubs returns a 2—D slice containing the row
column indices of all nonzero elements contained
wihtin a given input matrix

*/

func NonZeroSubs(inputMatrix *mat64.Dense)

(nonZeroSubs [][]int) {

// get matrix dimensions

rows, cols := inputMatrix.Dims()

// initialize output
output := make([][]int, 1)

output[o] = make([]int, 2)

// initialize iterator and current subscript
// slice

var iter int = o



// loop through and check values
for i := o; i < rows; i++ {

for j := o; j < cols; j++ {

// test for non—zero values

if inputMatrix.Act(i, j) != o.

if iter == o {
output[iter ]
[Jinc{i, j}
iter += 1

} else if iter > o {

output =

append (output,

iter += 1

// return output

return output

/*
findsubs returns a 2—D slice containing the row
column indices of all of the elements contained

within a given input matrix that are equal in value
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to some provided input value
*/
func FindSubs(inputValue float64 , inputMatrix

*mat64.Dense) (foundSubs [][]int) {

// get matrix dimensions

rows, cols := inputMatrix.Dims()

// initialize output
output := make([][]int, 1)

output[o] = make([]int, 2)

// initialize iterator and current subscript
// slice

var iter int = o

// loop through and check values
for i := o; i < rows; i++ {

for j := o; j < cols; j++ {

// test for equality
if inputMatrix.Act(i, j) ==
inputValue {
if iter == o {
output[iter] =
[Jint{i, j}

iter += 1



} else if iter > o {
output =
append (output, [Jint{i,j})

iter += 1

// return output

return output

/*
orientation accepts as inputs a pair of point
subscripts and returns a binary vector indicating the
relative orientation of the first point to the second
in binary terms

*/

func Orientation (aSubs, bSubs []int)

(orientationVector []int) {

// initialize output

output := make([]int, 2)

// generate reference orientation row parameter

if aSubs[o]—bSubs[o] < o {
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/*

output[o] = 1

} else if aSubs[o]—bSubs[o] == o {

output[o] = o

} else if aSubs[o]—bSubs[o] > o {

output[o] = —1

// generate reference
// parameter
if aSubs[1]—bSubs[1] <

output[1] = 1

orientation

o {

} else if aSubs[1]—bSubs[1] == o {

output[1] = o

} else if aSubs[1]—bSubs[1] > o {

output [1] = —I

// return output

return output

column

orientation mask returns a binary encoded matrix for

a given point where all points

orientated

towards

a given second point are encoded as 1 and all points

orientated away from the given second point as o

*/



func OrientationMask (aSubs, bSubs []int,
searchDomainMatrix *mat64.Dense) (orientationMask

*mat64.Dense) {

// generate matrix dimensions

rows, cols := searchDomainMatrix.Dims()

// initialize output matrix

output := mat64.NewDense(rows, cols, nil)

// generate reference orientation vectors
sRefOrientVec := Orientation (aSubs, bSubs)

dRefOrientVec := Orientation(bSubs, aSubs)

// initialize current subs and orientation
// vectors

curSubs := make([]int, 2)

sOrientVec make ([]int, 2)

dOrientVec := make([]int, 2)

// loop through domain matrix and generate
// orientation matrix values
for i := o; i < rows; i++ {

for j := o; j < cols; j++ {

// compute current orientation

curSubs[o] = i
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curSubs [1] = j
sOrientVec = Orientation (curSubs, bSubs)

dOrientVec = Orientation (curSubs, aSubs)

// check for match and assign values

if sOrientVec[o] ==

sRefOrientVec[o] &&

sOrientVec [1] ==

sRefOrientVec [1] {
if dOrientVec[o] ==
dRefOrientVec[o] &&
dOrientVec [1] ==
dRefOrientVec [1] {

output.Set(i, j, 1.0)

// return output

return output

/*
bresenham generates the list of subscript indices
corresponding to the ecuclidean shortest paths

connecting two subscript pairs in discrete space
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*/

func Bresenham (aSubs,

{

// initialize

var Xo int
var XI int
var yo int

var yI1 int

bSubs []int)

variables

aSubs [0]
bSubs [o]
aSubs [1]
bSubs [1]

// check row differential

dx := x1 — xo
if dx < o {

dx =
}

—dx

// check column differential

dy := y1 — yo

// if differential is

if dy < o {

// initialize

var sx, sy

stride

int

negative

variables
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// set row stride direction
if xo < x1 {

SX =1
} else {

SX = —1

// set column stride direction

if yo < yr {
sy = 1
}oelse {
sy = —1
}

// calculate error component

err := dx — dy

// initialize output 2D slice vector
dist := math. Ceil (Distance(aSubs, bSubs))
maxLen := int(dist)

make ([ ][] int, o, maxLen)

output

// loop through and generate subscripts

for {
var val = []int{xo, yo}
output = append(output, val)
if xo == x1 & yo == y1 {

193



break

e2 := 2 err
if e2 > —dy {
err —= dy

X0 += sX

}
if e2 < dx {
err += dx
yo += sy
}

// return final output

return output

/*

function to return the subscript indices of the cells
corresponding to the queens neighborhood for a given
subscript pair

*/

func NeighborhoodSubs(aSubs []int)

(neighSubs [][]int) {

// initialize output slice

output := make([][]int, o)
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/*

function

// write neighborhood subscript values

output

append (output,
aSubs [1] — 1})

output

append (output,
aSubs [1]})

output = append(output,
aSubs [1] + 1})
output = append(output,

aSubs [1] — 1})

output

append (output,
aSubs [1]})

output = append(output,
aSubs [1] + 1})
output = append(output,

aSubs [1] — 1})

output append (output,

aSubs[1]})

output = append(output,
aSubs [1] + 1})
// return output

return output

to validate an input s

[Jint{aSubs[o] — 1,

[Jint{aSubs[o] — 1,

[Jint{aSubs[o] — 1,

[]int{aSubs[o],

[]int{aSubs[o],

[]int{aSubs[o],

[Jint{aSubs[o] + 1,

[Jint{aSubs[o] + 1,

[Jint{aSubs[o] + 1,

ub domain for use in
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generating a chromosomal mutation via the random walk
procedure

*/

func ValidateMutationSubDomain (subSource, subDestin

[lint, subMat *mat64.Dense) bool {

// initialize output

var output bool

// generate sub source neighborhood

sNeigh := NeighborhoodSubs(subSource)

// generate sub destination neighborhood

dNeigh := NeighborhoodSubs(subDestin)

// generate center row

centerRow := subMat.RowView(2)

// generate center column

centerCol := subMat. ColView (2)

// initialize summation variables

var sSum float64 = o.o
var dSum float64 = o.0
var rSum float64 = o.0
var cSum float64 = o.0



// enter for loop for start and destination sums
for i := o; i < 9; i++ {
sSum = sSum + subMat.At(sNeigh[i][o],
sNeigh[i][1])
dSum = dSum + subMat.At(dNeigh[i][o],

dNeigh[i][1])

// enter for loop for row column sums

for j := o; j < s5; j++ {
rSum = rSum + centerRow.At(j, o)
cSum = cSum + centerCol.At(j, o)
}

// check conditions to validate neighborhood

if sSum <= 1.0 || dSum <= 1.0 || rSum == o.0 ||
cSum == o0.0 {
output = false
} else {
output = true
}

//return final output

return output
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function validate the tabu neighborhood of an input
pair of row column subscripts

*/

func ValidateTabu(currentSubs []int, tabuMatrix

*mat64.Dense) bool {

// initialize output

var output bool

// initialize tabu neighborhood sum

var tSum int = o

// generate neighborhood subscripts

tNeigh := NeighborhoodSubs(currentSubs)

// loop through and compute sum

for i := o; i < 9; i++ {
if i !'= 4 {
tSum +=

int(tabuMatrix.At(tNeigh[i][o],

tNeigh[i][1]))

// write output boolean
if tSum == o {

output = false



} else {

output = true

// return output

return output

/*

function to count the number of digits in an input
integer as its base ten logarithm

*/

func DigitCount(input int) (digits int) {
// compute digits as the log of the input
output :=

int (math. Floor (math.Logro(float64 (input))))

// return output

return output
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<operators.go>

/%
Copyright ©2015 The corridor Authors. All rights
reserved. Use of this source code is governed by a
BSD—style license that can be found in the LICENSE
file . package main

*/

package corridor

import (
”math”
”math/rand”

>

”time’

”github .com/gonum/matrix/mat64”

/* fitness function to generate the total fitness and
chromosome fitness values for a given input
chromosome

*/

func ChromosomeFitness(inputChromosome *Chromosome,
inputObjectives *MultiObjective) (outputChromosome

*Chromosome) {
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// get chromosome length

chromLen := len (inputChromosome. Subs)

// clear current chromosome fitness values
inputChromosome . Fitness = make([][] float64 ,
inputObjectives. ObjectiveCount)
for i := o; i < inputObjectives.ObjectiveCount; i
++ {

inputChromosome . Fitness [i] = make([] float64 ,

len (inputChromosome . Subs))

// initialize current & aggregate fitness
var aggFit float64 = o.0

var curFit float64 = o.0

// evaluate chromosome length and objectives to

// compute fitnesses

for i := o; i < inputObjectives.ObjectiveCount; i
++ {
for j := o; j < chromLen; j++ {
curFit =

inputObjectives. Objectives[i].
Matrix . Ac(

inputChromosome . Subs[j][o],
inputChromosome . Subs[j][1])

inputChromosome . Fitness[i][j] =
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curFit
inputChromosome. TotalFitness[i] =

inputChromosome. TotalFitness[i] +

curFit

// compute aggregate fitness
aggFit = aggFit +

inputChromosome. TotalFitness [i]

// calculate aggregate fitness

inputChromosome. AggregateFitness = aggFit

// return outputs

return inputChromosome

/%
fitness function generate the mean fitness values for
all of the chromosomes in a given population

*/

func PopulationFitness(inputPopulation *Population,
inputParameters *Parameters, inputObjectives

*MultiObjective) (outputPopulation *Population) {

// initialize output
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var cumPFit

float64 = o.0

var aggMeanFit float64 = o.0

// iterate over

// drain

channel

o; 1 <

the different objectives and
to compute fitness

inputObjectives . ObjectiveCount; i

0; j < inputParameters.PopSize; j++ {

// read current chromosome from channel

curChrom := <—inputPopulation.Chromosomes

// compute cumulative fitness

cumFit = cumFit + curChrom. TotalFitness[i]

// recieve from channel

inputPopulation.Chromosomes <— curChrom

// compute mean from cumulative

inputPopulation. MeanFitness[i] = cumFit /

float6 4 (

inputParameters.PopSize)

// compute aggreage mean fitness

aggMeanFit = aggMeanFit +

inputPopulation. MeanFitness[i]
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// write aggregate mean fitness to output

inputPopulation. AggregateMeanFitness = aggMeanFit

// return output

return inputPopulation

/*
selection operator selects between two chromosomes
with a probability of the most fit chromosome being
selected determined by the input selection
probability ratio

*/

func ChromosomeSelection (chromr, chrom2 *Chromosome,

selectionProb float64) (selectedChrom *Chromosome) {

// initialize output

output := chromr

// get current time for random number seed

rand . Seed (time .Now (). UnixNano ())

// generate random number to determine selection
// result

dec := rand.Float64 ()
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// perform conditional selection
if dec > selectionProb { // normal
if chromr. AggregateFitness >
chrom2. AggregateFitness {
output = chromr

} else {

output chrom2

}
} else { // inverted
if chromr.AggregateFitness >
chrom2. AggregateFitness {
output = chromz
}oelse {

output chromi1

// return output

return output

/*

population selection operator selects half of the
input population for reproduction based upon
comparative fitness and some randomized input

selection fraction

*/
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func PopulationSelection (inputPopulation *Population,
inputParameters *Parameters) (selection chan

*Chromosome) {

// initialize selection channel size
selSize := int(math.Floor(float64 (cap(

inputPopulation.Chromosomes))

inputParameters. SelFrac))

// initialize selection channel

output := make(chan *Chromosome, selSize)

// initialize selection probability

selProb := inputParameters.SelProb

// initialize selection loop

for i := o; i < selSize; i++ {
chromr := <—inputPopulation.Chromosomes
chrom2 := <—inputPopulation.Chromosomes

go func(chromi, chrom2 *Chromosome) {
// write selection to output channel
output <— ChromosomeSelection (chromr,
chrom2, selProb)

}(chromr, chrom2)
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// return selection channel

return output

/*

intersection determines whether or not the subscripts
associated with two input chromosomes share any in
values in common and reports their relative indices
*/

func Chromosomelntersection(subsr, subs2 [][]int)

(subsiIndices , subs2Indices []int) {

// initialize output index slice
outputr := make([]int, o)

output2 := make([]int, o)
// initialize subscript lengths
lent := len(subsr1)

len2 := len(subs2)

// enter intersection loop

for i := o; i < lenr; i++ {
for j := o; j < lenz; j++ {
if subsi[i][o] == subs2[j][o] &

subsi[i][1] == subs2[j][1] {

outputr = append(outputr, i)

output2 = append(output2, j)
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// return intersection output

return outputI 5 outputz

/*

crossover operator performs the single point
crossover operation for two input chromosomes that
have previously been selected from a source
population

*/

func ChromosomeCrossover (chromiIlnd, chrom2Ind []int,

chromiSubs, chrom2Subs [][]int) (crossoverChrom []

[Jint) {

// initialize maximum length

maxLen := len(chromiSubs) + len(chrom2Subs)

// initialize output

output := make([][]int, o, maxLen)

// get current time for random number seed

rand . Seed (time .Now (). UnixNano ())
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var r int

// generate random number to determine selection
// result while screening out initial source

// index match

for {
r = rand.Intn(len(chromilnd) — 1)
if r == o {
continue
}oelse f
break
}
}

// generate subscript slice 1
for i := o; i < (chromilnd[r] + 1); i++ {

output = append(output, chromiSubs[i])

// generate subscript slice 2
for j := (chromz2Ind[r] + 1); j < len(chromaSubs);
j++ 1

output = append(output, chrom2Subs[j])

// return output
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return output

/*

selection crossover operator performs a single

crossover on each of the individuals provided in an

input selection channel of chromosomes
*/
func SelectionCrossover (inputSelection chan

*Chromosome, inputParameters *Parameters,

inputObjectives *MultiObjective , inputDomain *Domain)

(crossover chan *Chromosome) {
// initialize crossover channel
output := make(chan *Chromosome,

inputParameters.PopSize)

// initialize crossover loop

for i := o; i < inputParameters.PopSize;

for {

// extract chromosomes

chromr := <—inputSelection

chrom2

// initialize empty

var chromilnd []int
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var chromz2Ind []int

// initialize empty chromosome
empChrom :=
NewEmptyChromosome (inputDomain ,

inputObjectives)

// check for wvalid crossover point
chromilnd , chroma2lInd =
Chromosomelntersection (chromi. Subs,

chromz2 . Subs)

// resample chromosomes if no intersection
if len(chromilnd) > 2 {
empChrom. Subs =
ChromosomeCrossover (chromilnd ,
chrom2Ind, chromi.Subs,
chromz2 . Subs)
empChrom = ChromosomeFitness(
empChrom, inputObjectives)
output <— empChrom
inputSelection <— chromr
inputSelection <— chrom2
break
}oelse {
inputSelection <— chrom2

inputSelection <— chromr
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continue

// return output

return output

/%
mutationLocus to randomly select a mutation locus and
return the adjacent loci along the length of the
chromosome

*/

func MutationLoci(inputChromosome *Chromosome)
(previousLocus , mutationLocus, nextLocus []int,

mutationIndex int) {

// compute chromosome length

lenChrom := len (inputChromosome. Subs)

// seed random number generator

rand . Seed (time .Now (). UnixNano ())

// randomly select mutation index

mutlndex := rand.Intn (lenChrom —4) + 2
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// get mutation locui subscripts from mutlndex

mutLocus := inputChromosome. Subs[ mutlndex]

prvLocus inputChromosome . Subs [ mutIndex —1]

nxtLocus := inputChromosome.Subs[mutlndex +1]

// return output

return prvLocus, mutLocus, nxtLocus, mutlndex

/*

mutation sub domain returns the subdomain to be used
for the mutation specific directed walk procedure

*/

func MutationSubDomain( previousLocus , mutationLocus,
nextLocus []int, inputDomain *mat64.Dense)

(outputSubDomain *mat64.Dense) {

// generate mutation locus neighborhood indices

nInd := NeighborhoodSubs(mutationLocus)

// initialize iterator

var n int = o

// initialize sub domain matrix

subMat := mat64.NewDense(s, 5, nil)

// clean sub domain
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for i := o; i < 5; i++ {
for j := o5 j < 55 j++ {
if i == o {
subMat. Set (i, j, o.0)
}oelse if i == 4 {
subMat. Set (i, j, o.0)
}oelse if j == o {
subMat. Set (i, j, o.0)
}oelse if j == 4 {
subMat. Set (i, j, o0.0)
} else if nInd[n][o] == previousLocus[o]
&% nInd[n][1] == previousLocus[1] {
subMat. Set (i, j, 1.0)

// iterate counter

n += 1
} else if nInd[n][o] == nextLocus[o] &&
nInd[n][1] == nextLocus[1] {

subMat. Set (i, j, 1.0)
// iterate counter
n += 1

}oelse {
subMat. Set (i, j,
inputDomain . At(nInd[n]
[o], nInd[n][1]))
// iterate counter

n += 1
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// return output

return subMat

/*

function to generate a generic subDomain for an
arbitrary set of node subscripts contained within a
given input search domain

*/

func SubDomain(sourceLocus, destinationLocus []int,
inputDomain *mat64.Dense) (subDomain *Domain,

subSourceLocus, subDestinationLocus []int) {

// compute row index value ranges

minRow := math.Min(float64 (sourcelLocus[o]),
float64 (destinationLocus [o]))

maxRow := math.Max(float64 (sourcelLocus[o]),

float64 (destinationLocus [o]))

// compute column index value ranges
minCol := math.Min(float64 (sourceLocus[1]),
float64 (destinationLocus [1]))

maxCol := math.Max(float64 (sourcelLocus[1]),

float64 (destinationLocus [1]))
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// generate ranges

rowRng := []int{int(minRow — 1.0), int(maxRow +
1.0)}
colRng := []Jint{int(minCol — 1.0), int(maxCol +
1.0)}

// extract raw domain values
rowSpread := rowRng[1] — rowRng[o]

colSpread := colRng[1] — colRng[o]

// initialize subdomain values
rawDomMat :=
mat64 . DenseCopyOf(inputDomain . View (rowRng[o],

colRng[o], rowSpread, colSpread))

// overwrite matrix if singleton dimension
if rowSpread == 2 {
rawDomMat =
mat64 . DenseCopyOf (inputDomain . View (rowRng[o],

colRng[o], rowSpread+1, colSpread))

if colSpread == 2 {
rawDomMat =
mat64 . DenseCopyOf (inputDomain . View (rowRng[o],

colRng[o], rowSpread, colSpread +1))
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// get subdomain matrix dimensions

rows, cols := rawDomMat. Dims ()

// mask edge values

rawDomMat. SetRow (o, make([] float64 , rows+cols))
rawDomMat. SetRow (rows —1, make([] float64 , rows
+cols))

rawDomMat. SetCol (o, make([] float64 , rows+cols))
rawDomMat. SetCol (cols —1, make([] float64 , rows

+cols))

// generate sub domain structure

subDom := NewDomain(rawDomMat)

// compute sub source and sub destination
// subscript indexes
orient := Orientation (sourcelLocus,

destinationLocus)

// allocate output variables
subSrc := make([]int, 2)

subDst := make([]int, 2)

// pivot output subscript values on orientation
// vector

if orient[o] == —1 & orient[1] == —1 {
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else

else

else

else

else

subSrc[o]
subSrc 1]
subDst[o]
subDst [1]

if orient[o

subSrc[o]
subSrc 1]
subDst[o]
subDst [1]

if orient[o

subSrc[o]
subSrc 1]
subDst[o]
subDst [1]

if orient[o

subSrc[o]
subSrc [1]
subDst[o]
subDst [1]

if orient[o

subSrc[o]
subSrc [1]
subDst[o]

subDst [1]

if orient[o

subSrc[o]

subSrc [1]

]

]

]

]

]

int(rows — 2.0)
int(cols — 2.0)
int(1.0)
int(1.0)

int(rows
int(cols
int(1.0)
int(1.0)

—1 &&
int(rows
int(r.0)
int(1.0)

int(cols

== o && orient [1]

int(rows — 2.0)
int(cols — 2.0)
int(1.0)

int(1.0)

== o0 &% orient [1]
int(r.0)

int (1.0)

int(rows — 2.0)
int(cols — 2.0)

== 1 &% orient [1]

int(1.0)

orient [1]

—1 &% orient [1]

2.0)

2.0)

2.0)

2.0)

int(cols — 2.0)
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subDst[o] = int(rows — 2.0)

subDst[1] = int(1.0)

} else if orient[o] == 1 && orient[1] == o {
subSrc[o] = int(r1.0)
subSrc[1] = int(cols — 2.0)
subDst[o] = int(rows — 2.0)
subDst[1] = int(1.0)

} else if orient[o] == 1 & orient[1] == 1 {
subSrc[o] = int(1.0)
subSrc[1] = int(1.0)
subDst[o] = int(rows — 2.0)
subDst[1] = int(cols — 2.0)

}

// return output

return subDom, subSrc, subDst

/%
function to translate the subscript index values for
a given slice of input loci relative to a given
offset vector

*/

func TranslateWalkSubs(sourceSubs []int,

inputWalkSubs [][]int) (outputWalkSubs [][]int) {

// initialize output

219



wlkLen := len(inputWalkSubs)
outWlkSubs := make([][]int, wlkLen)
outWlkSubs[o] = make([]int, 2)

outWlkSubs[o]

sourceSubs

// loop through and translate subscript values

for i := 1; i < wlkLen; i++ {
nSubs := make([]int, 2)
nSubs[o] = outWlkSubs[i —1][o] +
(inputWalkSubs[i][o] — inputWalkSubs[i—1][0])
nSubs [1] = outWlkSubs[i —1][1] +
(inputWalkSubs[i][1] — inputWalkSubs[i —1][1])

outWlkSubs[i] = nSubs

// return output

return outWlkSubs

/*

function to generate a mutation within a given
chromosome at a specified number of mutation loci

*/

func ChromosomeMutation (inputChromosome *Chromosome,
inputDomain *Domain, inputParameters *Parameters,
inputObjectives *MultiObjective) (outputChromosome

*Chromosome) {
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// compute chromosome len.gth

lenChrom := len (inputChromosome. Subs)

// initialize output chromosome

output := inputChromosome

// initialize reference domain matrix
refDomain := mat64.NewDense(inputDomain.Rows,

inputDomain. Cols, nil)

// clone input domain matrix

refDomain . Clone (inputDomain . Matrix)

// block out cells on current chromosome
for k := o; k < lenChrom; k++ {
refDomain . Set (inputChromosome. Subs[k][o],

inputChromosome . Subs[k][1], o.0)

// enter unbounded mutation search loop
for {
// generate mutation loci
prvLocus , mutLocus, nxtLocus, mutlndex :=

MutationLoci(inputChromosome)

// first check if deletion is valid, else
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// perform mutation

if Distance(prvLocus, nxtLocus) < 1.5 {

// perform simple deletion of mutation
// index

output.Subs =

append (output.Subs [: mutlndex ],

output.Subs[( mutlndex +1):]...)

// loop over objective and remove fitness
// values
for r := o; r <
inputObjectives. ObjectiveCount; r++ {
output. Fitness[r] =
append (
output. Fitness[r ][: mutlndex],

output. Fitness[r][(mutlndex +1):]

-)

break
} else {

// generate mutation subdomain
subMat := MutationSubDomain (prvLocus,

mutLocus, nxtLocus, refDomain)

// generate sub source and sub destination
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subSource := make([]int, 2)
subDestin := make([]int, 2)
subSource[o] = prvLocus[o] —
mutLocus[o] + 2

subSource [1] = prvLocus[1] —
mutLocus [1] + 2

subDestin[o] = nxtLocus[o] —
mutLocus[o] + 2

subDestin [1] = nxtLocus[1] —

mutLocus [1] + 2

// generate subdomain from sub matrix and
// generate sub basis

subDomain := NewDomain(subMat)

subParams := NewParameters(subSource,
subDestin, 1, 1, inputParameters.RndCoef)
subBasis := NewBasis(subSource, subDestin,

subDomain)

// check validity of sub domain
subDomainTest :=
ValidateMutationSubDomain (subSource ,

subDestin , subMat)

// resample if subdomain is invalid
if subDomainTest == false {

continue
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} else {

// generate directed walk based
// mutation

subWlk, tabuTest :=
MutationWalk (subParams . SrcSubs ,
subParams . DstSubs, subDomain,

subParams, subBasis)

// if tabu test fails abort mutation
// and restart
if tabuTest == false {

subWlk = make([][]int, 1)

continue

} else {

subLen

len (subWilk)
subFit := make([][] float64 ,
inputObjectives.

ObjectiveCount)

// translate subscripts
// and evaluate

// fitnesses

for i := o; i <
inputObjectives.

ObjectiveCount; i++
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// initialize
// subfit

// section
subFit[i] =
make ([] float64 ,

subLen)

// translate

// subscripts

// and

// compute sub

// walk fitness

for j := o;

j < subLen;

j++ {

if i == o {

subWlk [j ][o]
= subWlk[j]
[o] — 2 +
mutLocus[o]
subWlk [j ][1]
= subWlk[j]
[r] = 2+

mutLocus [1]
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subFit[i][j] =
inputObjectives.
Objectives [i].
Matrix . At(
subWlk[j J[o],
subWIk[j][1])

// delete mutation locus from
// fitnesses

output.

Fitness[i] =

append (

output. Fitness [i]

[: mutlndex ],

output. Fitness [i]

[(mutlndex +1):]...)

// insert sub

// walk section
// into original
// chromosome

// fitnesses
output.
Fitness[i] =

append (output.
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Fitness[i]
[:mutlndex —1],
append (subFict[i],
output.

Fitness[i][ mutlndex +1:]

D)

// delete mutation

// locus from subs
output.Subs =

append (
output.Subs [: mutlndex ],

output.Subs [( mutIndex +1):]

)

// insert new sub walk
// subscripts into subs
output.Subs =

append (output.

Subs [: mutlndex —1],
append (subWlk ,

output.Subs[mutlndex +1:]

)

break
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// return output

return output

/*

function to generate multiple mutations on multiple
separate loci on the same input chromosome

*/

func ChromosomeMultiMutation (inputChromosome
*Chromosome , inputDomain *Domain, inputParameters
*Parameters , inputObjectives *MultiObjective)

(outputChromosome *Chromosome) {

// loop through mutation count

for i := o; i < inputParameters.MutaCnt; i++ {
inputChromosome =
ChromosomeMutation (inputChromosome ,

inputDomain, inputParameters, inputObjectives)

// return output

return inputChromosome
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/%
function to generate mutations within a specified
fraction of an input population with those
chromosomes being selected at random

*/

func PopulationMutation (inputChromosomes chan
*Chromosome, inputParameters *Parameters,
inputObjectives *MultiObjective , inputDomain *Domain)

(outputChromosomes chan *Chromosome) {

// calculate the total number of chromosomes that
// are to receive mutations

mutations :=

"

int (math. Floor(float64 (inputParameters.PopSize)

float64 (inputParameters. MutaFrc)))

// seed random number generator

rand . Seed (time .Now (). UnixNano ())

// initialize mutation selection test variable
// and iteration counter variable
var iter int

var mutTest int

// initialize throttle size
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conc := make(chan bool, inputParameters.ConSize)

// initialize selection loop

for j := o; j < inputParameters.PopSize; j++ {

// get current chromosome from channel

curChrom := <—inputChromosomes

// generate random mutation selection binary
integer

mutTest = rand.Intn (2)

// screen on mutation indices

if mutTest == 1 {

// write to control channel

conc <— true

// launch go routines
go func(curChrom *Chromosome, inputDomain
*Domain, inputParameters *Parameters,
inputObjectives *MultiObjective) {
defer func() { <—conc }()
curChrom =
ChromosomeMultiMutation (curChrom ,
inputDomain, inputParameters,

inputObjectives)
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}(curChrom, inputDomain, inputParameters,

inputObjectives)

// update iterator

iter += 1

// return current chromosome back to
// channel

inputChromosomes <— curChrom

} else {

// return current chromosome back to
// channel

inputChromosomes <— curChrom

// break once the desired number of mutants
// has been generated
if iter == mutations {

break

// cap parallelism at concurrency limit
for j := o; j < cap(conc); j++ {

conc <— true
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// return selection channel

return inputChromosomes

/*
population evolution operator generates a new
population from an input population using the
selection and crossover operators

*/

func PopulationEvolution (inputPopulation *Population,
inputDomain *Domain, inputParameters *Parameters,
inputObjectives *MultiObjective) (outputPopulation

*Population) {

// initialize new empty population
output := NewEmptyPopulation(inputPopulation.Id

+1, inputObjectives)

// perform population selection
popSel := PopulationSelection (inputPopulation ,

inputParameters)

// perform selection crossover
selCrs := SelectionCrossover (popSel,

inputParameters , inputObjectives , inputDomain)
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// ftill empty population
popMut := PopulationMutation(selCrs ,

inputParameters , inputObjectives , inputDomain)

// assign channel to output population

output.Chromosomes = popMut

// return output

return output
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<random.go>

/%
Copyright ©2015 The corridor Authors. All rights
reserved. Use of this source code is governed by a
BSD—style license that can be found in the LICENSE
file .

*/

package corridor

import (
”math”
”math/rand”

>

”time’

”github .com/gonum/matrix/mat64”

/*

multivariatenormalrandom generates pairs of
bivariate normally distributed random numbers given
an input mean vector and covariance matrix

func MultiVariateNormalRandom (mu *mat64.Dense, sigma

*mat64.SymDense) (rndsmp *mat64.Dense) {

// initialize vector slices
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o := make([] float64 , 2)

j=)
I

make ([] float64 , 2)

// generate random numbers from normal
// distribution , prohibit [o,0]
// combinations

rand . Seed (time .Now (). UnixNano ())

// enter loop
for i := o; i < 2; i++ {

n[i] = rand.NormFloat64 ()

// convert to matrix type
rnd := mat64.NewDense(2, 1, n)

output := mat64.NewDense(2, 1, 0)

// perform cholesky decomposition on covariance
// matrix
lower := mat64.NewTriDense(2, false, nil)

lower . Cholesky (sigma, true)

// compute output

output.Mul(lower, rnd)

output.Add(output, mu)

//return final output
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return output

/*

fixmultivariatenormalrandom converts an input vector
of bivariate normally distributed random numbers into
a version where the values have been fixed to a [—1,
o ,1] range

*/

func FixMultiVariateNormalRandom (rndsmp *mat64.Dense)

(fixsmp *mat64.Dense) {

// initialize vector slice

o := make([] float64 , 2)

// write up down movement direction
if rndsmp.At(o, o) > 1.0 {
o[o] =1

} else if rndsmp.At(o, o) >= —1.0 & rndsmp.At(o,

} else if rndsmp.At(o, o) < —r1.0 {

// write left right movement direction

if rndsmp.At(r, o) > 1.0 {
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o[1] =1
} else if rndsmp.At(1, o) >= —1.0 & rndsmp.At(1,
0) <= 1.0 {

o[1] =o

} else if rndsmp.At(r, o) < —1.0 {

// convert to matrix type

output := mat64.NewDense(1r, 2, o)

// return final output

return output

/*
newrandom repeatedly generates a new random sample
from mvrnd and then fixes it using fixrandom wuntil
the sample is comprised of a non [o, o] case

*/

func NewRandom(mu *mat64.Dense, sigma

*mat64 .SymDense) (newRand []int) {

// initialize rndsmp and fixsmp and output
// variables
rndsmp := mat64.NewDense(2, 1, nil)

fixsmp := mat64.NewDense(r, 2, nil)
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// generate random vectors prohibiting zero—zero
// cases
for {
rndsmp = MultiVariateNormalRandom (mu, sigma)

fixsmp = FixMultiVariateNormalRandom (rndsmp)

if fixsmp.At(o, o) == o &% fixsmp.At(o, 1) ==
o {
continue
}oelse {
break
}

// initialize output

output := make([]int, 2)

// write output values
output[o] = int(fixsmp.At(o, o))

output[1] = int(fixsmp.At(o, 1))

// return final output

return output

/*

newmu generates a matrix representation of mu that
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reflects the spatial orentiation between the input

current subscript and the destination subscript

*/

func NewMu( curSubs, dstSubs []int) (mu *mat64.Dense){
// compute mu as the orientation vector

orientVec := Orientation (curSubs, dstSubs)

// convert mu to float
var muVec = []float64{float64 (orientVec[o]),

float64 (orientVec [1])}

// initialize matrix output

output := mat64.NewDense(2, 1, muVec)

// return final output

return output

/*

newsigma generates a matrix representation of sigma
that reflects the number of iterations in the
sampling process as well as the distance from the
basis euclidean solution

*/

func NewSigma(iterations int, randomness, distance

float64) (sigma *mat64.SymDense) {
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// impose

if distance < 1 {

distance = 1.0
// set numerator
var num float64 = 1.0

// initialize covariance

var cov floaté64

// compute covariance

lower bound on distance

if distance == 1.0 {
cov = 1.0
} else {
cov = math.Pow(distance , (num/randomness))

math .Pow( float64 (iterations ), (num/

randomness ))

// initialize matrix output

output

// set

output

output.

output .

:= mat64 . NewSymDense (2,

values

.SetSym (o, o, cov)

SetSym (o, 1, 0.0)

SetSym (1, o, o.0)
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output.SetSym (1, 1, cov)

// return final output

return output

/*
newsubs generates a feasible new subscript value set
within the input search domain

*/

func NewSubs(curSubs, destinationSubs []int, curDist
float64 , searchParameters *Parameters, searchDomain

*Domain) (subs []int) {

// initialize iteration counter

var iterations int = I

// initialize output

output := make([]int, 2)

/*
generate and fix a bivariate normally

distributed random vector prohibit all zero cases
and validate wusing the search domain

*/

for {
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// generate mu and sigma values
mu := NewMu(curSubs, destinationSubs)
sigma := NewSigma(iterations ,

searchParameters.RndCoef, curDist)
// generate fixed random bivariate normally
// distributed numbers

try := NewRandom(mu, sigma)

// write output

output[o] = curSubs[o] + try[o]
output [1] = curSubs[1] + try[1]
// DEBUG

// test if currentlndex is forbidden
if searchDomain. Matrix.At(output[o],
output[1]) == 0.0 {

iterations += 1

continue

// test if currentlndex inside search domain
if output[o] > searchDomain.Rows—1 ||
output [1] > searchDomain.Cols —1 || output[o] <
o || output[1] < o {

iterations += 1

continue
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} else {
break

// return final output

return output

/%
directedwalk generates a new directed walk connecting
a source subscript to a destination subscript within
the context of an input search domain

*/

func DirectedWalk (sourceSubs, destinationSubs []int,

searchDomain *Domain, searchParameters *Parameters,

basisSolution *Basis) (subs [][]int) {

// initialize chromosomal 2D slice with source
// subscript as first element

output := make([][]int, 1, basisSolution.MaxLen)
output[o] = make([]int, 2)

output[o][o] = sourceSubs[o]

output[o][1] = sourceSubs [1]

// enter unbounded for loop

for {
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// initialize new tabu matrix
tabu := mat64.NewDense(searchDomain .Rows,

searchDomain . Cols, nil)

for i := o; i < searchDomain.Rows; i++ {
for j := o; j < searchDomain. Cols; j++ {
if i == o ||
i == searchDomain.Rows—1
Il j == o ||
j == searchDomain . Cols —1 {

tabu. Set(i, j, o0.0)

} else {

tabu. Set(i, j, 1.0)

//tabu . Clone (searchDomain. Matrix)

tabu. Set(sourceSubs[o], sourceSubs[1], o0.0)

// initialize current subscripts , distance,
// try, and iteration counter

curSubs := make([]int, 2)

var curDist float64

var try []int
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// enter bounded for loop

for i := o; i < basisSolution .MaxLen;

// get current subscripts

i++ {

curSubs = output[len (output) —1]

// validate tabu neighborhood

if ValidateTabu(curSubs, tabu

break

// compute current distance

curDist =

== false

basisSolution . Matrix.At(curSubs[o],

curSubs [1])

// generate new try

try = NewSubs(curSubs, destinationSubs ,

curDist, searchParameters ,

// apply control conditions

searchDomain)

{

if try[o] == destinationSubs[o] && try [1]

== destinationSubs [1] {

output = append(output, try)

break
} else if

tabu.At(try[o], try[1]) ==
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continue
} else {
output = append(output, try)

tabu.Set(try[o], try[1], o0.0)

// repeat walk if destination not reached
if output[len(output)—1][o] ==
destinationSubs[o] && output[len (output) —1][1]

== destinationSubs [1] {

// break unbounded for loop
break
} else {

// re—initialize chromosomal 2D
// slice with source subscript
// as first element

output := make([][]int, 1,
basisSolution . MaxLen)

output[o] = make([]int, 2)

output[o][o] = sourceSubs[o]

sourceSubs [1]

output[o][1]

// restart process

continue
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// return final output

return output

/*

mutationwalk generates a new directed walk connecting
a source subscript to a destination subscript within
the context of an input mutation search domain

*/

func MutationWalk (sourceSubs, destinationSubs []int,
searchDomain *Domain, searchParameters *Parameters,

basisSolution *Basis) (subs [][]int, tabuTest bool) {

// initialize chromosomal 2D slice with source
// subscript as first element
output := make([][]int, 1, basisSolution.MaxLen)

output[o] = make([]int, 2)

output[o][o] sourceSubs [o]

output[o][1] = sourceSubs [1]

// initialize new tabu matrix
tabu := mat64.NewDense(searchDomain .Rows,
searchDomain . Cols, nil)

tabu . Clone(searchDomain. Matrix)
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tabu.Set(sourceSubs[o], sourceSubs[1], o0.0)

// initialize current subscripts, distance, try,
// and iteration counter

curSubs := make([]int, 2)

var curDist float6y4

var try []int

var test bool

// enter un—bounded for loop

for {

// get current subscripts

curSubs = output[len (output) —1]

// compute current distance
curDist = basisSolution.Matrix.At(curSubs[o],

curSubs [1])

// generate new try
try = NewSubs(curSubs,
searchParameters.DstSubs, curDist ,

searchParameters , searchDomain)

// apply control conditions
if try[o] == destinationSubs[o] && try[1] ==

destinationSubs [1] {
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output = append(output, try)
break
} else if tabu.At(try[o], try[1]) == o.0 {
continue
}oelse {
output = append(output, try)

tabu.Set(try[o], try[1], o0.0)

// validate tabu matrix
test = ValidateMutationSubDomain (try,

destinationSubs , tabu)

// reset if tabu is invalid
if test == false {

break

// return final output

return output, test

/*
newnodesubs generates an poutput slice of new
intermediate destination nodes that are progressively

further , in terms of euclidean distance , from

249



a given input source location and are orientation
towards a given destination location

*/

func NewNodeSubs(searchDomain *Domain,

searchParameters *Parameters) (nodeSubs [][]int) {

// initialize output
output := make([][]int, 1)

output[o] = searchParameters.SrcSubs

// check band count against input distance matrix
// size

if searchDomain.BndCnt < 3 {

// asign node subscripts
output = append(output,
searchParameters.DstSubs)

} else if searchDomain.BndCnt >= 3 {

// generate distance matrix from source
// subscripts

distMat :=

AllDistance (searchParameters.SrcSubs,

searchDomain . Matrix)

// encode distance bands

bandMat := DistanceBands(searchDomain.BndCnt,
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distMat)

if bandMat.At(searchParameters. SrcSubs[o],
searchParameters.SrcSubs[1]) ==
bandMat.At(searchParameters.DstSubs[o],

searchParameters.DstSubs[1]) {

// asign node subscripts
output = append(output,
searchParameters.DstSubs)

} else {

// seed random number generator

rand . Seed (time .Now (). UnixNano ())

// loop through band vector and generate
// band value subscripts
for i = 1; i <
searchDomain .BndCnt —1; i++
{
// generate band mask
bandMaskMat :=
BandMask (
float64 (i),

bandMat)

// break loop if the
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// destination is in

// the current band mask

if
(searchParameters.DstSubs[o],
searchParameters.DstSubs[1])
== 1.0 {

break

// generate orientation mask
orientMaskMat :=
OrientationMask (output[i —1],
searchParameters. DstSubs,

searchDomain . Matrix)

// initialize final mask
finalMaskMat :=
mat64 . NewDense(searchDomain . Rows,

searchDomain . Cols, nil)

// compute final mask through
// elementwise multiplication
finalMaskMat.MulElem (bandMaskMat,

orientMaskMat)

// generate subs from final mask

finalSubs :=
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NonZeroSubs( finalMaskMat)

// generate random number of length
// interval
randInd :=
finalSubs [

rand . Intn(len(finalSubs))]

// break out of loop if
// final mask is empty
if randInd[o] == o &&
randInd [1] == o {

break

// extract randomly selected
// value and write to output

output = append(output, randInd)

// set the final subscript to the
// destination
output = append(output,

searchParameters.DstSubs)
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// return output

return output

/*
multipartdirectedwalk generates a new multipart
directed walk from a given set of input problem
parameters

*/

func MultiPartDirectedWalk (nodeSubs [][]int,

searchDomain *Domain, searchParameters *Parameters)

(subs []J[]inc) {

// generate basis solution
basisSolution := NewBasis(nodeSubs[o],

nodeSubs[1], searchDomain)

// initialize output

output := make([][]int, basisSolution.MaxLen)

// catch single part walk case

if len(nodeSubs) == 2 {

// generate output as a single part directed
// walk
output = DirectedWalk(nodeSubs[o],

nodeSubs[1], searchDomain, searchParameters,
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basisSolution)

} else if len(nodeSubs) > 2 {

// generate output as multi part directed walk
output = DirectedWalk (nodeSubs[o],
nodeSubs[1], searchDomain, searchParameters,

basisSolution)

// loop through the band count to generate sub
// walk parts

for i := 1; i < len(nodeSubs)—r1; i++ {

// generate sub domain
subSearchDomain, subSource,
subDestination := SubDomain(nodeSubs[i],

nodeSubs[i+1], searchDomain.Matrix)

// generate basis solution
basisSolution = NewBasis(subSource,

subDestination , subSearchDomain)

// generate initial output slice and then
// append subsequent slices

curWalk := DirectedWalk (subSource,
subDestination , subSearchDomain ,

searchParameters , basisSolution)
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// translate subscripts
transWalk :=

TranslateWalkSubs (nodeSubs[i], curWalk)

// append subscripts to output
for j := 1; j < len(transWalk); j++ {
output = append(output,

transWalk [j])

// return output

return output
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<types.go>

/%
Copyright ©2015 The corridor Authors. All rights
reserved. Use of this source code is governed by a
BSD—style license that can be found in the LICENSE
file .

*/

package corridor

import (
”github .com/gonum/matrix/mat64”

”github .com/satori/go.uuid”

/* parameters are comprised of fixed input avlues
that are unique to the problem specification that are
referenced by the algorithm at various stage of the
solution process
*/
type Parameters struct {

SrcSubs []int

DstSubs []int

RndCoef float64

PopSize int

SelFrac float64
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SelProb float6y4
MutaCnt int
MutaFrc float64
EvoSize int

ConSize int

/%
domains are comprised of boolean arrays which
indicate the feasible locations for the search
algorithm
*/
type Domain struct {

Rows int

Cols int

Matrix *mat64. Dense

BndCnt int

/%
objectives are comprised of matrices which use
location indices to key to floating point fitness
values within the search domain
*/
type Objective struct {

1d int

Matrix *mat64 . Dense
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/%
multiObjective objects are comprised of a channel of
individual independent objectives that are used for
the evaluation of chromosome and population level
fitness values
*/
type MultiObjective struct {

ObjectiveCount int

Objectives []* Objective

/*
a basis solution is comprised of the subscript
indices forming the euclidean shortest path
connecting the source to the destination
*/
type Basis struct {

Matrix *mat64 . Dense

Subs [][]int

MaxLen int

/*
chromosomes are comprised of genes which are

distinct row column indices to some spatially
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reference search domain
*/

type Chromosome struct {

Id uuid . UUID
Subs [][]int
Fitness [1[]float64
TotalFitness []float6y4

AggregateFitness float64

/*

populations are comprised of a fixed number of
chromosomes. This number corresponds to the
populationSize .

*/

type Population struct {

1d int
Chromosomes chan *Chromosome
MeanFitness []float6y4

AggregateMeanFitness float64

/*
evolutions are comprised of a stochastic number of
populations. This number is determined by the

convergence rate of the algorithm.

*/
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type Evolution struct {
Populations chan *Population

FitnessGradient []float64
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<visualize.go>

/%
Copyright ©2015 The corridor Authors. All rights
reserved. Use of this source code is governed by a
BSD—style license that can be found in the LICENSE
file . package main

*/

package corridor

import (

’met”

”github .com/gonum/matrix/mat64”

/*
function to print the properties of a search domain

to the command line
*/

func ViewDomain (searchDomain *Domain) {

// get search domain matrix dimensions

rows, _ := searchDomain.Matrix.Dims()

// print domain values to command line
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fmt. Printf (” Search Domain Values = \n”)
for i := o; i < rows; i++ {

rawRowVals :=

searchDomain. Matrix . RawRowView (i)

fmet. Printf ("\%1.0 f\n”, rawRowVals)

/*

function to print the properties of a basis solution
to the command line

*/

func ViewBasis(basisSolution *Basis) {

// get basis solution matrix dimensions

rows, _ := basisSolution.Matrix.Dims()

// print domain values to command line

fmt. Printf (” Basis Solution Values = \n”)
for i := o; i < rows; i++ {
rawRowVals :=

basisSolution . Matrix . RawRowView( i)

fmt. Printf ("\%1.0 f\n”, rawRowVals)

/*
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function to print the properties of a chromosome to
the command line

*/

func ViewChromosome(searchDomain *Domain,
searchParameters *Parameters, inputChromosome

*Chromosome) {

// get search domain matrix dimensions and empty
// value slice
domainSize := searchDomain.Rows *

searchDomain . Cols

v := make([] float64 , domainSize)

// allocate new empty matrix
blankMat := mat64.NewDense(searchDomain.Rows,

searchDomain. Cols, v)

// assign chromosome values to the empty matrix
for i := o; i < len(inputChromosome.Subs); i++ {
blankMat. Set (inputChromosome. Subs[i][o],

inputChromosome . Subs[i][1], 1.0)

// print chromosome values to command line

fmt. Printf (” Chromosome = \n”)
for i := o; i < searchDomain.Rows; i++ {
rawRowVals := blankMat.RawRowView (i)
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fme. Prinef ("\%1.0f\n”, rawRowVals)

// print output to the command line

fmt. Printf (” Chromosome Length = \%d\n”,

len (inputChromosome . Subs))

fmt. Printf (” Chromosome Total Fitness = \%1.5f\n”,

inputChromosome. TotalFitness)

/*

functions to print the frequency of chromosomes in a
search domain to the command line

*/

func ViewPopulation(searchDomain *Domain,
searchParameters *Parameters, inputPopulation

*Population) {

// allocate new empty matrix
mat := mat64.NewDense(searchDomain .Rows,

searchDomain . Cols, nil)
// accumulated visited subscripts in new empty
// matrix

for i := o; i < searchParameters.PopSize; i++ {

// extract current chromosome from channel
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curChrom := <—inputPopulation.Chromosomes
curInd := curChrom. Subs

lenCurlnd := len(curlnd)

// iterate over subscript indices

for j := o; j < lenCurlnd; j++ {
curSubs := curlnd[j]
curVal := mat.At(curSubs[o], curSubs[1])
newVal := curVal + 1

mat. Set(curSubs[o], curSubs[1], newVal)

// repopulate channel

inputPopulation.Chromosomes <— curChrom

// print matrix values to command line
fmt. Printf (” Population Size = \%d\n”,

searchParameters.PopSize)

fmt. Printf (” Population Frequency = \n”)
for q := o; q < searchDomain.Rows; q++ {
rawRowVals := mat.RawRowView(q)

fme. Printf ("\%*.0o f\n”,
DigitCount(searchParameters.PopSize)+1,

rawRowVals)
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