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ABSTRACT 

Optimality and flexibility in utilizing predictive spatial cues during visual search 

 

by 

 

Stephen Christopher Mack 

 

 Visual search is a critical and pervasive part of our everyday lives. However, the 

ease of which we perform search can mask its remarkable computational complexity. 

Search targets are often difficult to detect and embedded in statistically complex 

backgrounds. To optimize search, human observers often exploit known statistical 

properties of the visual environment which provide information about target location. 

Regularities in the spatial organization of the visual environment (e.g. predictive cues) 

have shown to be one such type of statistical property which can be leveraged to increase 

search efficiency. Here, a series of three studies examines how well human observers can 

exploit spatially predictive cues during multi-fixation search. Further exploration focuses 

on highlighting human flexibility in altering search strategy to enhance perceptual 

performance, as well as delineating situations in which predictive information in the 

environment may actually hurt search performance. 

 Predictive spatial cues have been shown to improve perceptual performance for a 

variety of tasks, including visual search, under conditions of forced fixation. However, 

the potential benefits of predictive cues during multi-fixation search are poorly 

understood. In the first study, we present a letter identification search task, done in the 
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presence and absence of an array of spatial cues which framed potential target locations. 

We show that human observers direct their eye movements towards cued locations to 

improve their search performance compared to when the cues are absent. We also 

develop a foveated eye movement model, which takes into account the diminishing 

acuity of the human visual system in the periphery, for the task. Model predictions reveal 

substantial performance benefits via predictive cues, the size of which are much larger 

than what is seen in human data.  

 In the second study, we investigate whether human observers will utilize 

peripheral predictive cues which reside in display regions which have no chance of 

containing the target (which we call remote cues). In doing so, observers must depart 

from a commonly used "saccadic targeting" strategy, where eyes are directed to likely 

target locations. When informed of the predictive nature of the remote cues, observers 

readily adopt an atypical eye movement strategy which favors non-target locations to 

enhance task performance. A foveated model which ignores the cues reveals that these 

performance benefits are a likely result of foveating peripheral predictive information.  

Interestingly, a version of the remote cue task in which observers were not informed of 

cue contingencies, reveals that while observers can adopt atypical saccadic strategies to 

improve performance, they do not readily engage in such behavior without explicit 

information. 

 In the final study, we explore a situation in which predictive cues actually hinder 

search performance. In natural viewing environments and everyday search tasks, 

predictive cues often do not mark the only target locations, but merely likely ones. We 

return to the letter identification search task and modify the cues so that they are only 
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partially predictive of target location. With this increased uncertainty, the presence of 

predictive cues actually leads to worse performance when the target is highly visible, 

compared to when cues are absent. A control task in which the spatial cues were not 

predictive rules out the possibility of the effect being driven by exogenous attentional 

capture, and a foveated eye movement model reveals that cues hindering search 

performance would not be predicted by a rational observer. Implications for real-life and 

vocational search are discussed. 

 In all, we see that human observers are willing and able to utilize predictive 

elements via intelligent eye movement selection of the environment to enhance search 

performance. In addition, when cue information is made clear, observers are able to 

readily adopt even extremely atypical eye movement strategies to optimize performance. 

However, human efficiency in implementing these strategies often falls short of that 

predicted by a near-optimal observer, even leading to a decrement in performance in 

extreme cases. Understanding the interaction between human performance and predictive 

cues, then, is critical to assessing natural visual search and optimizing vocational and life-

critical search displays. 
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 I. Introduction 
 Visual search is a pervasive and remarkably computationally complex task. From 

locating car keys on a cluttered coffee table to finding a friend’s face in a crowd, we’re 

constantly surveying the visual environment for objects of interest. In natural visual 

environments, search targets are often difficult to detect, variable in appearance, and 

embedded in rich and statistically complex backgrounds (Eckstein, 2011; Geisler, 2008; 

Torralba & Oliva, 2003). Although our experience of search may be effortless and 

automatic, our continued success with it is an impressive accomplishment.  

 Part of the reason human observers are able to perform search with such 

proficiency is that search is not random. There are large amounts of structural and 

statistical regularities in visual environments which can be learned and exploited by human 

observers to enhance search accuracy and efficiency. These regularities can be in the form 

of knowledge about what the target does or should look like, the spatial structure of the 

environment, or the relationship between the two. 

 Much previous research has been done regarding the first of these sources of 

information: target appearance. It is intuitive to think that, when searching for a target of a 

known (or inferred) appearance, human observers may move their eyes towards things that 

look like the target. Behavioral research has revealed that this is in fact the case, as human 

observers preferentially deploy saccades to image regions which share visual properties 

with the target (Beutter, Eckstein, & Stone, 2003; Findlay, Brown, & Gilchrist, 2001; 

Findlay, 1997; Malcolm & Henderson, 2010; R. P. N. Rao, Zelinsky, Hayhoe, & Ballard, 

2002), an oculomotor strategy deemed “saccadic targeting.’ These findings have since led 

to a number of computational models of search which utilize the known or expected 
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appearance of the target to guide model saccades and enhance search efficiency and 

accuracy (Eckstein, Drescher, & Shimozaki, 2006; R. P. N. Rao et al., 2002; Wolfe, 1994; 

Zelinsky, 2008). 

 While directing the eyes towards image regions which resemble the target is 

certainly a valuable strategy, it is certainly not a complete description of the strategies used 

to guide eye movements during search. Take, for example, looking for a bowl in an 

unknown kitchen. Before entering the kitchen, you know there are places where the bowl is 

likely to appear (on the counter, in a cupboard) and places that are not so likely (on the 

ceiling, in the coffee machine). These spatial relationships, learned through visual 

experience, cannot be captured by any amount of target features, but are clearly a can play 

a large part in our search strategies. 

 Regularities in the spatial structure of the environment can enhance search 

performance by providing information for the strategic planning of saccadic eye 

movements to likely target locations. This has been most widely examined in terms of 

scene context, or the spatial relationship between the search target and the organization of 

the surrounding scene. Observers consistently tend to bias saccades towards either scene 

regions (Brockmole & Henderson, 2006; Castelhano & Heaven, 2011; Ehinger, Hidalgo-

Sotelo, Torralba, & Oliva, 2009; Henderson, 2003; Hollingworth, 2009, 2012; Neider & 

Zelinsky, 2006; Spotorno, Malcolm, & Tatler, 2014; Torralba, Oliva, Castelhano, & 

Henderson, 2006) or individual objects which tend to spatially co-occur with the search 

target (Castelhano & Heaven, 2011; Eckstein et al., 2006; Mack & Eckstein, 2011). 

Moreover, there is growing evidence that spatial scene context information is explicitly 

represented in the brain and accessed during search (Giesbrecht, Sy, & Guerin, 2013; 
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Preston, Guo, Das, Giesbrecht, & Eckstein, 2013). These results suggest that observers can 

effectively internalize and exploit spatial relationships in the environment to guide search. 

 But how well are observers integrating these statistics into their search strategies? 

Unfortunately, the statistics of natural scenes (Chun, 2000; Eckstein, 2011; Geisler, 2008) 

and object co-occurrence (Bar, 2004; Mack & Eckstein, 2011) are poorly understood. 

Without knowing the underlying statistics, it becomes difficult to objectively assess 

observer strategies. The use of synthetic spatial cues and images, however, provides a way 

of knowing (and controlling) the statistics of visual displays, allowing the formulation of 

computationally tractable models of visual search to objectively assess the efficiency of 

how human observers integrate information about spatially predictive elements of the 

scene into search behaviors and performance. 

 The use of synthetic spatial cues is common in visual perception research. The 

presence of spatially predictive cues nearly invariably improves performance on a variety 

of tasks such as simple detection (Bashinski & Bacharach, 1980; Eckstein, Shimozaki, & 

Abbey, 2002; Luck et al., 1994; Posner, Snyder, & Davidson, 1980; Posner, 1980), 

discrimination (Henderson, 1991, 1996; Lee, Koch, & Braun, 1997), measurement of 

contrast sensitivity (Cameron, Tai, & Carrasco, 2002; Pestilli & Carrasco, 2005), letter 

identification (Talgar, Pelli, & Carrasco, 2004), and, critically, visual search (Droll, Abbey, 

& Eckstein, 2009; Eriksen & Yeh, 1985; Nakayama & Mackeben, 1989; Vincent, 2011; 

for review see Carrasco, 2011). However, the effect of predictive cues on search 

performance has primarily focused on the deployment of covert visual attention, utilizing 

simple search displays with targets of known constant visibility, a relatively small number 

of target locations, and paradigms which do not include eye movements. Given the 
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ubiquity of eye movements in everyday search, an assessment of how spatially predictive 

cues impacts more naturalistic multi-fixation search seems sorely needed. 

 Predictive spatial relationships provide valuable information which can be utilized 

to enhance search performance. Scene context literature provides evidence that human 

observers can integrate information about predictive elements of the visual environment 

into their search strategies to enhance performance. However, without knowing the 

underlying statistics of scenes, objective assessment of these strategies is not possible. The 

use of experimenter controlled synthetic cues and images provides an environment in 

which to objectively assess search strategies, but previous literature has focused on single-

fixation search, which fails to represent the vast majority of naturalistic search scenarios. 

Here, three studies are described which attempt to begin to fills these gaps in the literature 

and provide an objective assessment of human ability, inability, and flexibility in 

effectively utilize spatial cues during multi-fixation search. 

Chapter II addresses the question of whether human observers can effectively 

integrate predictive cue information into their eye movement and perceptual decisions to 

increase search performance. We develop a free eye movement letter identification search 

task in which observers are to identify which one of five letters is present in a noisy image. 

The signal strength of the target varied and was unknown to the observer, simulating the 

variable detectability of targets in natural search. Critically, the task was performed in the 

presence and absence of an array of predictive cues which were fully predictive of target 

location when present. In this paradigm, variations in perceptual performance and eye 

movement selection can provide valuable insight into the nature of and degree to which 

predictive spatial cues influence search. To supplement this behavioral work, a Bayesian 
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foveated model observer is developed to serve as a benchmark against which to compare 

human performance and provide objective assessment of expected performance gains. The 

model simulates the diminishing acuity of the human retina with retinal eccentricity as it 

implements a near-optimal maximum a posteriori (MAP) decision rule, in which the eyes 

are directed to the portion of the visual display containing maximum evidence for the 

target. In tandem behavioral data, the implementation of the foveated MAP searcher can 

shed light onto the rationality and quality of predictive cue integration into human observer 

eye movement strategies and perceptual decisions. 

In Chapter III, the investigation turns to observer flexibility in utilizing predictive 

cues. In Chapter II, as well as the vast majority previous cueing literature, the predictive 

cues spatially co-occur with the target (or potential target locations). Thus, search guidance 

via the cues can often be difficult to dissociate from that driven by the target. In Chapter 

III, we outline a novel search task in which observers were to indicate the presence of a 

target embedded in noise at one of ten potential target locations. The orientation of three 

peripheral spatial cues, which we call remote cues, indicated where the target would appear 

if it were present, and observers were explicitly informed of their predictive nature. 

Critically, the region of the image which contained the peripheral cues had no chance of 

containing the target, so investigating them would necessarily draw the eyes away from 

potential target locations. Variants of the task manipulate the visibility and availability of 

remote cue information to determine the relative impacts of remote cue information and 

eye movement strategy on perceptual performance. A foveated Bayesian eye movement 

model, which can only move its eyes to potential target locations, is developed to provide a 

baseline of expected performance in the absence of a remote-cue-driven eye movement 
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strategy. A version of the task in which observers are given no information about the 

predictive nature of the remote cues explores whether observers are willing to adopt 

uncommon eye movement strategies when benefits are not readily apparent. In all, these 

studies highlight human flexibility in utilizing predictive information in the visual 

environment. 

The work described above focuses heavily on describing the benefits that may arise 

from the effective integration of predictive cue information into search strategies. 

However, is it necessarily so that predictive cues always lead to enhanced performance? In 

Chapter IV, we return to the letter identification search task and describe a situation in 

which performance in the presence of predictive cues actually suffers compared to when 

cues are absent. Eye movement patterns reveal possible causes for this unexpected reversal 

in performance. A control study, in which cues are present, but not at all predictive of 

target location, seeks to rule out the alternative explanation of our data via exogenous 

attentional capture, and the foveated MAP developed in Chapter II is implemented to 

determine whether such an anomalous result would be predicted by a rational observer. 

Additionally, the implications of understanding human-cue interactions in vocational and 

life-critical search tasks are discussed.  

Visual search is a deeply intricate computational undertaking. Fortunately, there is 

a wealth of spatial structure in the visual environment which can be extracted to aid 

observers in this task. The research outlined here provides bridges the gap between scene 

context and spatial cueing work to provide an objective assessment of human cue use 

during multi-fixation search. While observers are willing to integrate such information into 

their oculomotor strategies and demonstrate surprising flexibility in their search behaviors 
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to optimize performance in the face of changing task demands, it is also clear that the sheer 

presence of predictive information is not necessarily sufficient to enhance task 

performance. With the increasing popularity of spatial cues meant to aid performance in 

vocational search tasks (Baker et al., 2003; Philpotts, 2009; V. M. Rao et al., 2010; 

Willhauck, Schneider, De Kok, & Ammer, 2000), having an intimate understanding of 

human-cue interaction (including when cues may actually hurt performance) is critical to 

designing effective search displays and aids. 

 II. Predictive cues aid multi-fixation visual search 
 Spatially predictive cues have nearly invariably been shown to improve perpetual 

performance on a variety of tasks under conditions of forced fixation, including visual 

search. However, the effects of predictive cues on eye movement selection and multi-

fixation search performance are poorly understood. Although evidence exists from the 

scene context literature that human observers direct their eyes to predictive elements of the 

environment during search, it is unclear how well they do this or the benefits of predictive 

cues on perceptual decision accuracy. 

 Here, we develop a letter identification search task to assess whether human 

observers can effectively leverage information from an array of predictive spatial cues to 

enhance performance compared to when cues are absent. Search performance is markedly 

improved when predictive cues are present, particularly at low contrasts. This performance 

enhancement is reliably related to a pattern of eye movements which systematically targets 

cued locations, indicating the integration of cue information into eye movement strategies. 

 To compare the gains in perceptual performance afforded by the cues with an 

objective benchmark of performance, a foveated maximum a posteriori (MAP) eye 
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movement model is developed. The model also shows a cue-driven pattern of eye 

movements when cues are present which, as seen in human data, leads to enhanced 

performance. However, the gains in perceptual performance predicted by the model far 

exceed those of human observers and human eye movement patterns depart significantly 

from model predictions, indicating suboptimalities in human search strategies and/or 

perceptual performance.  

 A. Introduction 

Uncertainty about the spatial location of a target often hinders its detection and 

identification (Burgess & Ghandeharian, 1984; Swensson & Judy, 1981). Yet, cues 

predictive of the spatial location of a target nearly invariably improve performance on a 

variety of tasks such as simple detection (Bashinski & Bacharach, 1980; Eckstein et al., 

2002; Luck et al., 1994; Posner, 1980), discrimination (Henderson, 1991, 1996; Lee et al., 

1997), measurement of contrast sensitivity (Cameron et al., 2002; Pestilli & Carrasco, 

2005), letter identification (Talgar et al., 2004), and, critically, visual search (Droll et al., 

2009; Eriksen & Yeh, 1985; Nakayama & Mackeben, 1989; Vincent, 2011); for review see 

Carrasco, 2011). However, the effect of predictive cues on search performance has 

primarily focused on the deployment of covert visual attention, utilizing simple search 

displays with targets of known constant visibility, a relatively small number of target 

locations, and paradigms which involve short presentation times and no eye movements. 

Typically, real world search involves both covert deployments of visual attention as 

well as active eye movements which direct the high resolution fovea to potential regions of 

interest in the scene (Henderson, 2003; for review see Eckstein, 2011), yet few studies 

have investigated the role of predictive spatial cues in multiple fixation search. 
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Additionally, although most studies investigating predictive spatial cues utilize targets of 

known and constant discriminability or detectability (e.g. luminance or orientation 

difference with respect distractors and/or the background; (Eckstein et al., 2002; Eriksen & 

Yeh, 1985; Posner, 1980), in most real world scenarios the visibility of search targets 

varies across instances and is not known to the observer. Furthermore, in many applied 

settings of human visual search with various imaging modalities (e.g. medical images: 

(Gur & Sumkin, 2006; V. M. Rao et al., 2010); satellite and aerial images: Willhauck et al., 

2000; air traffic control: Metzger & Parasuraman, 2006; Wickens, Conejo, & Gempler, 

1999), search images are presented with highly visible cues indicating the locations an 

image analyst or computer vision algorithm considers likely to contain a target. 

 Here, we ask whether spatial cues aid perceptual performance in more complex 

search scenarios in which there are variations in target discriminability and observers are 

allowed free eye movements. We implemented a letter identification search task in which 

observers were allowed free eye movements to locate and identify letters of varying 

detectability in a noisy display. We compared letter identification performance in the cues 

present condition, where an array of four color coded predictive cues indicated target 

locations, to that of a cues absent condition in which the stimuli remained identical except 

for the absence of the predictive spatial cues. We show that although the spatial cues 

improved identification performance overall, and markedly so at lower signal contrasts. 

Analysis of observers’ fixation selections suggests that underlying this enhancement in 

performance was related to the preferential foveation of the predictive cues, indicating the 

effective integration of cue information into eye movement selection in multi-fixation 

search. 
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We also develop a foveated maximum a posteriori (MAP) eye movement model, 

which simulates the decrease in acuity across the retina, to provide a near-optimal 

benchmark of performance against which to compare human data. The foveated MAP, 

which directs eye movements towards the location in the image most likely to contain the 

target, also shows marked improvement in performance when predictive cues are present. 

As with human observers, this enhancement in search performance is accompanied by an 

increase in cue-driven eye movements. The predicted benefits afforded by spatial cues, 

however, are much larger than what is seen in human data, indicating suboptimalities in 

human eye movement strategies and perceptual decisions.  

 B. Observer study 

 1. Method 

Four naïve observers (3 female; ages 19-22) completed a letter identification search 

task. The observers’ task was to determine which one of five letters (A-E, 1.1 x 1.1º), at 

one of five randomly selected contrasts (10-18%) embedded in a Gaussian luminance noise 

field (25 ± 4.9 cd/m², 22.2 x 22.2º), was present in the display. The signal to noise ratios 

(SNRs) of the letters ranged from 6.5 to 14.   

A letter was always present in the stimulus image. In cues present sessions, four 

cue circles (diameter 2.36º) were overlaid on the images whose color (red, green, blue, or 

yellow) indicated the probability of the letter appearing in that region. The four cued 

regions always contained the target when present, with individual probabilities of 50, 30, 

10, and 10% and a randomized color-probability pairing for each observer. On each trial, 

the locations of the high probability regions were rotated about the center of the image by a 

random angle so that location itself was not a predictor of target location. In cues absent 
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sessions, the structure of the images and statistics governing target location were identical 

(i.e. there were still four locations that could contain the target), but no cue circles were 

present. Prior to starting the task, all participants were explicitly informed of the 

probabilistic structure of target location and the associated cue probabilities. Observers 

completed ten 100 trial sessions of the cued condition and eight 100 trial sessions of the 

uncued condition. 

 

 

Figure 1. Trial structure of the letter identification task. Panel (a) shows the probabilistic distribution of 

search target location. Note that the relative spatial relationship between the high probability regions was 

maintained across trials, although their absolute spatial location rotated about the center of the image by a 

random angle for each trial. (b) shows the temporal structure of a trial.   

 

 Trials were initiated by the observer fixating on one of five fixation points 

distributed in a cross and pressing the space bar. Initial fixation locations were rotated at 

the same angle as their paired stimulus image so that there were only five starting fixation 

locations with respect to the target locations. If fixation was broken during the interval in 

which the fixation point was present (randomized 500-1500ms), the trial was aborted and 

restarted from the beginning. Immediately following the fixation period, the stimulus 



12 

image appeared on the screen for 1000ms, allowing between 2-4 saccades. While the 

stimulus was present, observers were free to move their eyes to identify which letter was 

presented in the image. After stimulus presentation, a response screen appeared on which 

the observer indicated via mouse click which letter they believed to be present in the 

image. If observers were uncertain, they were instructed to make their best guess. 

Following their response, observers were provided with binary feedback 

(correct/incorrect). If they were incorrect, they were not told which letter was present on 

that trial (see Figure 1b for trial structure). 

 Gaze was monitored using an Eyelink 1000 infrared eye tracker (SR Research) 

providing a monocular left eye track at a sampling rate of 250 Hz. Changes in eye position 

that exceeded a velocity of 35º/s and an acceleration of 9500º/s/s were considered to be 

saccades. The first eye movement which deviated more than 2º from initial fixation was 

considered the first saccade for purposes of analysis. A chin rest was used to stabilize head 

position. 
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 2. Results 

 

Figure 2. Identification performance as a function of signal contrast. Perceptual performance was enhanced 

in the presence of cues overall. The size of this benefit was largest at low signal contrasts and decreased with 

increasing signal strength. Error bars represent ±SEM. 

 

Perceptual performance was calculated as a function of signal contrast for both 

cueing conditions. Overall performance in the cues present condition exceeded that of the 

cues absent across all signal contrasts (F(1,3)=50.98, p=.006; see Figure 2), indicating 

overall facilitation of identification performance in the presence of predictive cues. A 

significant interaction between cueing condition and contrast also emerged 

(F(4,12)=37.56, p<.001). Pairwise comparisons revealed that performance was superior for 

cued sessions at the three lowest signal contrasts (paired t, p<.05), with the magnitude of 

the difference decreasing with increasing contrast to the point where identification 

performance converged at the two highest signal contrasts (paired t, p>.4). These results 

are consistent with previous research  which shows that as the target becomes more visible, 

the spatial guidance the cues provide becomes less valuable for locating it, decreasing the 

performance benefit afforded by cues (e.g. Eckstein et al., 2013). 
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Figure 3. Normalized eye movement distributions for the letter identification task. Eye movement 

distributions are shown for a single target location (indicated by the white arrow) for the highest and lowest 

contrast across three eye movements for cues present and cues absent conditions. When cues are present, eye 

movements cluster around cued locations. When cues are absent, eye movements are dispersed throughout 

the image until it convenes on the target location. 

 

 Analysis of eye movement selection clearly revealed that this enhancement in 

performance in the presence of predictive cues was related to a cue-driven saccadic 

strategy when cues were present. Figure 3 shows normalized distributions of the first three 

eye movements for a single target location at the lowest and highest signal contrast for 

both cues present and absent. When cues were present, eye movements grouped not only 

around the target location (indicated by the white arrow), but also around the other cued 

locations, indicating a cue-driven eye movement strategy. When cues were absent, eye 
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movements were dispersed rather evenly throughout the stimulus if not at the target 

location, reflecting the lack of predictive information in the image. 

 

Figure 4. Proportion of eye movements to each cue. Interestingly, the largest proportion of first eye 

movements is directed to the 2
nd

 highest probability cue, potentially a result of it being the closest cued 

location from fixation. In general, however, higher probability cues receive more fixations than lower 

probability cues. The image on the right shows the correspondence between cue location and probability. 

 

 Although human eye movements are clearly driven towards the cues, it is an open 

question how observers prioritized the cue information in saccadic selection. Figure 4 

shows the proportion of saccades towards each cue in cues present trials (labeled by its 

probability of containing the target) as a function of eye movement. Overall, the proportion 

of eye movements towards the cues decreased as trials progressed (F(2,6)=25.06, p=.001). 

Additionally, the cue probability substantially impacted eye movement selection 

(F(3,9)=53.13, p<.001), with higher probability cues (50% and 30%) gaining significantly 

more fixations than low probability cues (paired t, all p<.01). Critically, a significant 

interaction between eye movement and cue (F(6,18)=13.15, p<.001) revealed that the 

preference for observers to target certain cues changed over the course of a trial. Of 

particular interest is the propensity for observers to direct the largest proportion of first 

saccades to the 2
nd

 highest probability cue (even though it was 20% less likely to contain 

the target than the most predictive cue) but prefer the highest probability cue in subsequent 
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eye movements. One potential explanation for this finding lies in the physical setup of the 

task. Human observers have been shown to prefer shorter saccades, regardless of potential 

costs in doing so in terms of information gathering (e.g. Araujo, Kowler, & Pavel, 2001). 

In our task, the 2
nd

 highest probability cue location also happened to be the shortest mean 

distance from all fixations (M=7.23º). Thus, the preference for the 2
nd

 highest probability 

location in the first eye movement may simply represent a strategy to initially make a short 

eye movement. 

 

Figure 5. Assessment of distance-based strategy in first saccade selection. Regardless of contrast, observers 

tend to direct their first eye movement to the cued location which is closest to the starting fixation point 

(indicated by a black arrow for each fixation).  

 

 To assess this claim, Figure 5 shows the distribution of first saccades to each cue, 

broken down by fixation location for the lowest and highest contrast. A distance based 

strategy is clearly present, as the cue to garner the most first saccades is nearly always the 

one nearest the point of fixation (indicated by the arrow), regardless of signal contrast. It is, 

however, worth nothing that the proportion of first eye movements towards the highest 

probability cue increased significantly at the highest contrast (t(3)=10.82, p<.001), 
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suggesting that stronger visual evidence may have provided observers enough information 

to override a distance-based eye movement selection strategy. 

 

Figure 6. Proportion of trials that the target was foveated. In the presence of predictive cues, observers were 

far more likely to foveate the target, particularly at low signal contrasts. The disparity is largest at low signal 

contrasts and decreases rapidly with increasing signal strength, mirroring trends in identification 

performance. Error bars represent ±SEM. 

 

Observers clearly used the cues to guide search, but what were the functional 

consequences of this cue-driven eye movement strategy when cues are present? A two 

(cueing condition) by five (contrast) repeated measures ANOVA revealed that, as a result 

of this cue-driven eye movement strategy, the target was foveated (i.e. eye position fell 

within 2° of target) on substantially more trials when cues were present than when they 

were absent (F(1,30)=127.01, p=2.63e-12; see Figure 6). A significant cueing by contrast 

interaction (F(4,30)=34.6, p=7.70e-11) indicated that while this discrepancy in ability to 

foveate the target was quite large (~10-40%) and highly significant (paired t, all p<.01) at 

the lowest three signal contrasts, cue presence did not significantly impact observers' 

propensity to fixate the target at the two highest signal contrasts (paired t, p>.2), mirroring 

trends in perceptual performance. These converging lines of evidence suggest that the cue 
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driven eye movement pattern displayed when cues were present enhanced observer 

probability of foveating the target, leading to augmented identification performance.  

 3. Discussion 

 In a novel letter identification search task, human observers were able to utilize an 

array of predictive spatial cues to enhance multi-fixation search performance. Moreover, 

this improvement in performance was associated with a cue-driven pattern of eye 

movement selection when cues were present, enhancing observers' ability to foveate and 

identify the target. There was, however, evidence that strategies unrelated to the cue 

information (such as a minimum distance first saccade) may have also been implemented 

into human eye movement select. 

 Although cue presence led to enhance search performance via cue-driven saccadic 

selection, it is unclear how well observers utilized this information. Perhaps larger gains in 

search performance could be attained by more efficient use of cue information in both 

perceptual decision making and eye movement selection. To objectively assess the quality 

of human observer perceptual performance and saccadic strategy, a foveated eye 

movement model, which takes into account inhomogeneities in visual acuity across the 

retina, was developed to provide a benchmark of rational and near-optimal behavior. 

 C. Foveated maximum a posteriori (MAP) eye movement model 

 Here, we develop a foveated Bayesian maximum a posteriori (MAP) eye 

movement model for the task, which directs eye movements towards locations most likely 

to contain the target, to provide a quantitative measure of near-optimal eye movement 

selection and task performance. A foveated model accounts for the well-documented fact 
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that human visual acuity is highest at the fovea and rapidly falls off in the periphery, 

leading to severe declines in perceptual performance for most visual tasks at peripheral 

locations (Najemnik & Geisler, 2005; Peterson & Eckstein, 2012, 2013; Zhang & Eckstein, 

2010). Therefore, any complete model of active search performance should explicitly 

account for this inhomogeneity in acuity. Comparison of foveated model predictions with 

human eye movement patterns across the various tasks can provide a formal basis to 

identify and characterize suboptimalities in the usage of cue information, and provide a set 

of results, in terms of both eye movements and perceptual performance, which would be 

expected from a rational observer. 

 1. Model formulation 

 A foveated Bayesian maximum a posteriori (MAP) model was applied to provide a 

benchmark against which to compare human eye movement selection and search 

performance. A MAP model considers the likelihood ratio that the target is at each location 

in the image by calculating the likelihood the visual evidence at that location reflects both 

signal and noise distributions, and weights that ratio by the prior probability that the target 

will appear there. The next eye movement is directed towards the location which is most 

likely to contain the target (highest weighted likelihood ratio). When there are 

inhomogenieties in processing across the visual field (as in a foveated system), MAP 

models have been shown to produce eye movement patterns that diverge from an optimal 

search model that plans eye movements to maximize decision accuracy for a localization 

task (Najemnik & Geisler, 2005, 2008). However, in many cases, MAP models are a 

reasonable approximation of optimal eye movements (Najemnik & Geisler, 2008; Zhang & 

Eckstein, 2010), lead to similar decision accuracy (Zhang & Eckstein, 2010), and are good 
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predictor of human eye movement distributions (Beutter et al., 2003; Findlay, 1997; 

Verghese, 2012). 

 

Figure 7. Flowchart of the foveated MAP model. A likelihood ratio is calculated for each possible signal (5 

letters x 5 contrasts), which is weighted the prior probability of the signal appearing at that location. Note 

that the likelihood ratio calculations which underlie the eye movement and ID decision are identical. The 

decisions simply differ in what dimensions likelihood ratios are summed across.  

 

 The model receives a noisy image (G, the data) in which one of the five letters is 

embedded at a randomly selected one of five contrasts. The noisy image remained the 

same throughout each simulated trial, reflecting the static image noise utilized in the 

observer study. A likelihood ratio for all signals (25 in all) is calculated for all possible 

signal locations. The likelihood ratio that a single letter at a single contrast appears at one 

location is given by: 
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yxciLR ,,,  is the likelihood ratio of signal i of contrast c at location x given current 

fixation position k(T), cis ,  is signal template i of contrast c, Gx,y is the noisy data at location 

(x,y). Since the background noise is Gaussian and adjusted to be zero mean and unit 

standard deviation, and the strength of the additive signals are known to the model, the pdf 

of the signal (si,c) and noise (n) can be given by: 

)1,0(~ Nn      (2a) 

)1,(~ ,, cici Ns      (2b) 

 Where μi,c is the strength of signal i of contrast c. Thus, the likelihood ratio is given 

by the expression:                                                    
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Where yxicTkr ,,),(  is the linear template response for for signal i of contrast c at 

location (x,y) given fixation k(T), and yxTk ,),(
2  is the overall noise variance at location 

(x,y) given current fixation k(T), which is a combination of the external (i.e. pixel) noise 

and eccentricity dependent internal noise (see next section for further detail).  

Each likelihood ratio is weighted by the prior probability of the target appearing at 

location x, yielding a sum of weighted likelihood ratios, wLR: 

     yxciTkyxciTyxciTk LRprioriwLR ,,,),(,,,,,,,),(     (4) 

 Since the MAP model has perfect memory for previous visual input, the priori 

information is the product of the priors (πx,y; note that this is the only aspect of the model 
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which differs between tasks) given by the cue probabilities and all previous likelihoods. 

Note that when selecting the first eye movement, this term will only be the priors: 
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The location of the next eye movement is determined by selecting the location of 

maximum evidence for all letters combined, summing posteriors across letters and 

contrasts, but not spatial position: 
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The identification decision (ID) after multiple eye movements is made considering 

the total evidence for the presence of each letter, summing likelihoods across spatial 

position and contrast: 


x y c

yxciTk
i

wLRID ,,,),(maxarg    (7)  

A flowchart of the model can be seen in Figure 7.  

 2. Internal noise and foveation 

 There are multiple methods to incorporate the degradation in the quality of visual 

processing with increasing retinal eccentricity into models. These methods include 

spatially variant filtering of the image with different contrast sensitivity functions 

(Peterson & Eckstein, 2012, 2013), adjusting the strength of the signal (Najemnik & 

Geisler, 2005, 2008; Zhang & Eckstein, 2010), and varying the additive internal noise to 

the scalar response of linear models.   
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Here, the foveated properties of the visual system were implemented into the model 

by directly adding zero-mean eccentricity-dependent white internal noise ( yxTkI ,),(

2 ) to 

the stimulus image. This method was selected due to the non-linear form of the ideal 

Bayesian observer which makes the addition of internal noise at the decision level more 

complex. Therefore, the overall noise variance at any location in the image is given by: 

    yxTkIEyxTk ,),(

22
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 Where 2 k(T),x ,y is the total noise variance at position (x,y), which is the sum of 

external (pixel) noise ( E
2 )  and the internal noise variance ( yxTkI ,),(

2 ) at position (x,y) 

given current fixation position k(T). The variance of the internal noise is dependent the 

distance from the current fixation k(T), with the lowest values at the point of gaze and then 

monotonically increasing with eccentricity. An illustration of the additive internal noise is 

shown in Figure 8. This eccentricity dependent noise increase serves to decrease the 

quality of peripheral visual information, simulating the drop in perceptual performance 

across the across the retina moving away from the fovea. Internal noise levels were 

selected by developing an ideal observer via an independent visibility map task (described 

below) and adjusting internal noise to match individual observer performance. A new 

internal noise sample was selected after each eye movement. 
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Figure 8. Visualization of the eccentricity dependent internal noise. The internal noise, whose variance 

increased monotonically with distance from the current fixation point, was added directly to the stimulus 

image to simulate the decline in visual acuity across in the peripheral retina.  

 3. Calibrating the model to human visual system properties 

 Measurement of visibility maps. An established way quantifying how the foveated 

nature of the visual system affects task-specific performance is through the measurement 

of visibility maps (Najemnik & Geisler, 2005, 2008; Peterson & Eckstein, 2013; Zhang & 

Eckstein, 2010). A visibility map measurement generally involves performing a simplified 

version of the original search task, measuring performance using the same (or similar) 

stimuli under conditions of forced fixation while systematically varying the retinal 

eccentricity of target elements. The end result is an estimate of sensitivity (e.g. d’) or 
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perceptual performance as a function of eccentricity, which is both task- and participant-

specific. 

 To quantify the task-specific impact on performance of the foveated nature of the 

visual system, three participants (all who had participated in letter identification search 

task) completed a two part detect-then-identify task at a systematically varied range of 

eccentricities. Trials began with participants fixating on a precue image which contained a 

fixation cross as well as a small black precue dot above which a letter (A-E) would appear 

in the stimulus image on 50% of the trials. The precue could appear either at fixation (0º) 

or at 3, 6, 9, or 12º above fixation. Following a 300ms delay, an image of Gaussian noise 

which could contain a letter at the precued location was presented for a short duration 

(~100-150ms) which was dependent on the mean first saccade latency for each participant 

in the original search task. The probability of a target occurring was 50% (i.e. 50% target 

present). Participants were required to maintain fixation on a small cross throughout the 

duration of the trail. If a letter was present, its identity and contrast were chosen randomly. 

The parameters of the noise and letters were identical to those in the previously described 

tasks. 

Participants were required to respond first whether they believed a letter was 

present. If they responded that a letter was present, they then chose which letter they 

believed was in the image via mouse click response. Binary feedback (correct/incorrect) 

was provided for both responses (see Figure 9 for task structure).   
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Figure 9. Structure of the visibility map task. The task consisted of a two part detect-then-identify task. If 

participants indicated that there was in fact a letter present (“yes” response), an identification decision was 

required. 

 

 Visibility map fitting. To estimate the profile of the eccentricity-dependent internal 

noise variance, visibility map data for each contrast and each participant were averaged 

across letter identity, yielding a performance profile across the five measured 

eccentricities. Hit rates, false alarm rates, and identification performance were calculated 

each contrast and eccentricity. Due to a small, but considerable, number of ceiling (100% 

hit rate) or floor (0% false alarm rate) values on individual contrast/eccentricity pairings in 

hit and false alarm data, fits were performed on the raw hit and false alarm data (as 

opposed to implementing an arbitrary correction on hit/false alarm rates) to avoid 

attempting to model infinite d'. 

 The relationship between retinal eccentricity and internal noise standard deviation 

was assumed to be linear, such that: 
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 Where σFov is the standard deviation of the internal noise at the point of fixation, s 

is the linear scaling factor, and ecck(T),x,y is the retinal eccentricity of point (x, y), given 

fixation k(T). Although more complex monotonically increasing functions could be 

implemented, a linear relationship was chosen to reduce computational complexity 

associated with optimizing visibility map fits. 

 Visibility map simulation. Visibility map task predictions were generated by 

implementing a simple foveated Bayesian Ideal Observer (fBIO). On each simulated trial, 

there was a 50% chance a letter of a random contrast and identity would be present at the 

predetermined target patch. All letter parameters, including external noise variance, were 

identical to the visibility map task. Additive internal noise, dictated by the linear visibility 

map described above, was added to the target patch.  In the remaining 50% of target absent 

trials, no letter was present, leaving only the external and additive internal noise. 

 The fBIO calculated the likelihood ratio of each letter at each contrast appearing at 

the target location. Note that in the visibility map task there was no spatial uncertainty, as 

target location was explicitly cued before each trial. The likelihood ratio of a given letter at 

a given contrast appearing at the target location is given by: 
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 ciLR ,  is the likelihood ratio of signal i of contrast c, cis ,  is signal i of contrast c, g is 

the noisy data at the target location. Notice that there is no index for position (x,y), as the 

signal always appeared at a predefined location (i.e. no positional uncertainty). 
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 The sum of likelihood ratios across all possible states (25 signal present and 1 

signal absent) was calculated. Signals were present on 50% of the trials, and all 

letter/contrast signal combinations were equally likely, yielding: 

    
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ciLRsLR ,
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1
         (11) 

 This sum of likelihood ratios was then compared to a single criterion to determine 

Yes/No response. If the sLR exceeded the criterion (crit), the model responded yes. If not, 

the model selected no: 

   if sLR > crit, respond “yes”; else “no”       (12) 

 If the model correctly concluded the target was present, an identification decision 

had to be made. The identification decision was made by choosing the letter with the 

maximum likelihood ratio, summed across contrast: 

    
c

ci
i

LRID ,maxarg          (13) 

 Visibility map parameter optimization. Due to the relatively small number of trials 

in the visibility map task and the resultant noisy data, visibility map fits were performed on 

the aggregate data of the three observers who performed the visibility map task. Separate 

visibility maps were fit for detection and identification performance. Two visibility maps 

were implemented to account for the fact that while the model uses optimal (i.e. matched) 

letter templates, the human observers likely had suboptimal letter templates, which would 

likely influence identification performance more than simple detection. Creating separate 

visibility maps for identification and detection thus allow us to take into account these 

differences in efficiency without taking on the complex modeling of specific suboptimal 

templates used by humans. 
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 Internal noise parameters for the detection visibility map were estimated by 

minimizing squared error in the detection hit and false alarm rates between fBIO 

predictions and observer data via gradient descent optimization. Similarly, identification 

visibility maps were estimated by minimizing squared error in identification performance 

(PC) between the fBIO and observer data. Each iteration of the optimization consisted of 

10000 simulated trials. Two free parameters were estimated for both the identification and 

detection visibility maps: foveal internal noise (σFov) and the linear scaling factor (s). For 

the detection visibility map, the criterion (crit) was also a free parameter. 

 

Figure 10. Contrast fitting and visibility map fits. (a) Estimated observer operating contrast as a function of 

actual signal contrast. (b) ID performance as a function of contrast and retinal eccentricity aggregate human 

data and ID visibility map fBIO fits. (c) and (d) show observer hit and false alarm rates as a function of 

signal contrast and retinal eccentricity along with the fBIO detection visibility map fits. Overall, the visibility 

maps correspond well to observer data in the visibility map task. 
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 Signal contrast scaling. Driven by known nonlinearities between signal contrast 

and sensitivity (d'), in which sensitivity is much lower than would be predicted by a linear 

model at low signal contrasts (Beutter et al., 2003; Eckstein, Ahumada, & Watson, 1997), 

we modulated the contrast of the signal to better reflect observer sensitivity when doing the 

task. The concept of modulating signal contrast to account for this effect is well established 

(Dosher & Lu, 2000; Lu & Dosher, 2008) Gradient descent optimization was utilized to 

estimate the effective signal contrasts (i.e. the signal contrasts that humans appeared to be 

operating at) within the visibility map fBIO. Using the best fit detection and identification 

visibility maps, signal contrast was free to vary to minimize squared error between 

observer hit and false alarm rates and model predictions.  

 The relationship between actual signal contrast and estimated observer operating 

signal contrast is seen in Figure 10a. Individual points represent the best fit contrasts to 

match human performance with the visibility map fBIO. The solid line represents a best fit 

exponential expression, while the dotted line indicates the identity (i.e. estimated signal 

contrast = physical signal contrast). Note that the contrast of the signal is scaled down at 

lower contrasts (falls below the identity), and slightly up at higher signal contrasts (falls 

above the identity). Since the best fit visibility maps were done on average across all signal 

contrasts, it is reasonable to expect underprediction of internal noise at low signal contrasts 

(effectively increasing signal strength) and overprediction of internal noise at high signal 

contrasts. Figure 10b-c show aggregate human data for identification and detection (hit and 

false alarm rate) elements of the visibility map task. Best fit fBIO predictions for 

identification and detection (using the scaled signal contrast) show good correspondence 
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for both, indicating they were a reasonable estimate of human visibility across the range of 

contrasts and eccentricities used in the current study. 

 E. Human-Model Comparisons 

 Ten thousand simulated trials were run for the foveated MAP model at each signal 

contrast for both cues present and cues absent conditions. As mentioned in the previous 

section, the only aspect of the model which differed between cues absent and cues present 

simulations was the priors (πx,y). That is, in cues present trials the target could only appear 

at the four locations indicated by the cue circles. 

 Note on human-model analyses and comparisons. For all human-model 

comparisons presented in this dissertation, the error bars for model predictions were small 

enough that they could not be displayed. As a result, statistical tests between human data 

and model predictions were run as single sample t-tests against the model prediction.  

 Identification performance as a function of signal contrast for the foveated MAP 

and human observers is shown in Figure 11a. Like human observers, cues present 

performance exceeded that of cues absent overall. Model predictions also displayed a 

pattern of performance where the largest benefit from cues is gained at the lowest signal 

contrasts, with this performance gain diminishing with increasing signal contrast. In 

comparison to human observers, when cues were absent, model predictions mirrored 

human performance and were statistically indistinguishable (t(4)=-1.5,p=.12). However, 

there were large differences between predicted cues present performance and human data 

(t(4)=2.75, p=.02), and thus, the predicted performance increase in the presence of spatial 

cues. 
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Figure 11. Comparison of identification performance for human and model observers. Panel (a) shows that, 

while the foveated MAP predicts human performance on cues absent trials well, model performance far 

exceeds that of human observers when cues are present. The magnitude of this difference is apparent in panel 

(b), which shows the cue benefit as a function of signal contrast. Over all signal contrasts, the model gains a 

much larger benefit from cue presence than human observers, indicating possible suboptimality.  

 

 Direct comparison of the facilitatory nature of the predictive cues on performance 

can be seen in assessment of what we deem the cue benefit, defined as PCpresent-PCabsent 

(see Figure 11b), which provides a simple metric of the additional gain in performance 

afforded by the presence of predictive spatial cues. Although the general shape of the cue 

benefit as a function of contrast is similar between human observers and foveated MAP 

predictions, the model gained a substantially larger benefit from the spatial cues across all 

contrasts (t(3)=-11.59, p<.001), although this difference is particularly great at the lowest 

signal contrasts. Thus, while human performance qualitatively follows that of a near-

optimal foveated MAP searcher, humans do not gain anywhere near the magnitude of 

benefit from predictive cues that would be expected from a MAP searcher. 
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Figure 12. Normalized eye movement distributions for the model observer. Eye movement selection is 

remarkably similar to human observers on comparable trials (see Figure 3), with eye movements clustering 

around cued locations when cues are present, and relatively dispersed when not at the target location 

(indicated by the white arrow) when cues are absent. Note the scale difference between human and model 

observers, indicating higher densities at highly fixated location. 

 

 Eye movement analyses serve to strengthen this interpretation. Normalized 

distributions of the first three eye movements for the foveated MAP across signal contrasts 

and cueing condition are shown in Figure 12. As with observer data, eye movements when 

cues are present are heavily concentrated on both the target (indicated by a white arrow) as 

well as other cued locations. Since a MAP searcher can only move its eyes to potential 

target locations, eye movements are actually exclusively distributed at these locations 

when cues are present. When cues are absent, eye movements spread throughout the image 

when not at the target location. For both cues present and absent, as trials progress (i.e. 



34 

more information is accumulated) and signal strength increases, the density of fixations at 

the target location increases.  

 

Figure 13. Proportion of eye movements to each cue for humans and model. All model eye movements are 

directed towards the cues, and the proportion of eye movements to each cue mirrors the underlying 

probability of the target appearing at that location. In contrast, human observers direct less eye movements 

towards cues as trials progress, and the proportion of eye movements to each cue varies across eye 

movement. Critically, the first human eye movement tends to target the 2
nd

 highest probability cue, which 

falls the shortest mean distance from all fixation points.  

 

 We can also directly compare the nature of model cue-driven saccades to that of 

human observers. Figure 13 shows the proportion of model and human saccades to each 

cue (when present) as a function of eye movement. Two critical points emerge. First, the 

MAP model directs all of its eye movements towards the cued regions, as it can only move 

its eyes to potential target locations. While human observers directed the vast majority of 
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their eye movements to cues when present (M=77.5%), they fell well short of foveated 

MAP predictions in that regard (t(3)=-17.23, p<.001). Second, the distribution of the eye 

movements that went towards the cues differed quite visibly between model and humans. 

For the model, eye movement selection to cues quite closely mirrors the underlying cue 

probabilities, with more likely target locations garnering more fixations. In contrast, 

human cue preference varies as a function of eye movement. As discussed above, human 

observers tend to direct their first saccade to the cue of 2
nd

 highest likelihood of containing 

the target, which we suggested may be related to a preference for shorter saccades. The 

foveated MAP has no such preferences and incurs no cost from making long range eye 

movements, and considers a saccade of 1º to be just as viable as a saccade of 15º. This 

marked disparity in eye movement behavior highlights a potential source of suboptimality 

underlying the lower than predicted human performance when cues are present.  

 

Figure 14. Proportion of trials with target foveated for model and human observers. The foveated MAP 

foveated the target slightly, but significantly, more often than human observers when cues are present.  

 

 The functional consequences of these eye movements are illustrated in Figure 14, 

which shows the proportion of trials in which the target was foveated (i.e. eye position 

within 2° of visual angle of the target) as a function of signal contrast for both cues present 
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and absent conditions for the foveated MAP. Mirroring trends in observer data, the 

proportion of trials in which the target was foveated was overall considerably higher when 

cues were present than when absent. The size of this disparity was largest at low signal 

contrasts and steadily declined with increasing signal strength, reflecting the increased ease 

of detecting the target with increasing contrast. Interestingly, the differences between 

model predictions and human data in this case are quite small. The predicted proportion of 

trials foveated in cues absent sessions did not significantly differ from human data (t(4)=-

1.46, p=.22), and while the model foveated the target significantly more often than human 

observers in cues present sessions (t(4)=5.81, p=.004), the size of the difference (94% vs. 

99%) is rather small compared to the vast difference in perceptual performance between 

human and model on those same trials. 

 Alternative models. Given the considerable differences in human and model 

performance in cues present trials, as well as the disparity in the distribution of first eye 

movements to cues, one alternative explanation of human data were that human observers 

were mistakenly switching the predictive value of the top two most predictive cues (i.e. 

assuming the 2nd most predictive cue was actually the most predictive). The foveated 

MAP was altered so that the priors of the top two cued locations were switched (i.e. the 

30% region was swapped to 50%, and vice versa). It is important to note that the priors 

underlying the actual stimuli present to the model did not change.  

 This switched prior model, however, produced negligible differences compared to 

the original foveated MAP (with optimal priors). In fact, at all contrast levels, predictions 

of the switched priors model were within ±0.5% in performance of the unaltered foveated 
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MAP, suggesting that a misattribution of prior values was not sufficient to describe the 

suboptimal human performance when cues were present. 

 

Figure 15. Comparison of eye movement selection for human observers and minimum distance eye 

movement model. (a) Shows the deterministic distribution of first saccade selection for the minimum 

distance model. The model always moves its eyes to the cued location closest to the initial starting fixation 

(shown by the arrow). Human eye movement distributions are also biased to the closest cue, but not to such 

an extreme. (b) Comparison of the overall distribution of first saccades to cued regions . The overall pattern 

of saccade distribution for humans is better predicted by a minimum distance model, although there are 

considerable differences, indicating other factors influence human eye movement selection.  

 

 We also suggested that the eye movement distributions to cues exhibited by human 

observers, particularly for the first eye movement, may be attributed to a strategy which is 

more likely to go to nearby cue locations, even if their predictive value isn't as high as 

further away alternatives (Araujo et al., 2001). To evaluate this interpretation, we 

implemented a variant of the foveated MAP in which the eyes always moved to the nearest 

cued location, regardless of the visual information in the image. The proportion of first eye 
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movements to each cue as a function of fixation location can be seen in Figure 15a. The 

deterministic nature of the model is clear in that the fixation location completely 

determines where the first eye movement will go. There are some similarities between 

human first eye movement selection in the minimum distance model (e.g. the preferred 

location for the first eye movement is the same). However, the broader distribution in 

human eye movement selection patterns suggest that they are taking the visual information 

into account, and not choosing the first saccade solely on distance. Comparison of overall 

distribution of first saccades for human observers, the standard foveated MAP, and the 

minimum distance model can be seen in Figure 15b. Despite considerable differences, it is 

clear that the cost incurred by making a long distance eye movement is surely a part of 

how human observers selected their eye movements in the current task, as the distance 

model provides relatively good descriptor of human eye movement distributions, and 

certainly a better one than the standard foveated MAP. 

 F. Conclusions 

 Predictive spatial cues nearly invariably enhance perceptual performance on a 

variety of visual tasks (Cameron et al., 2002; Posner, 1980; Talgar et al., 2004), including 

single fixation visual search (Hawkins et al., 1990; Nakayama & Mackeben, 1989). 

However, whether these effects translate to multi-fixation visual search and targets of 

unknown and varying detectability, conditions more akin to natural visual search, is poorly 

understood. 

 In a letter identification task with an array of predictive cues, human observers 

were able to reliably direct eye movements to spatially predictive cue elements and 

displayed enhance search performance, particularly at low signal contrasts. This increase in 
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perceptual performance was coupled with a pattern of eye movements which preferentially 

foveated predictive cues when present, leading to increased foveation of the target, 

ostensibly, enhanced perceptual performance. These results mirror the common finding in 

scene context literature that humans are willing and able to move their eyes to elements of 

the visual environment that predict target location to enhance perceptual performance 

(Castelhano & Heaven, 2011; Eckstein et al., 2006; Mack & Eckstein, 2011; Neider & 

Zelinsky, 2006; Spotorno et al., 2014; Torralba et al., 2006). Additionally, human 

observers seemed to bias their initial eye movement towards the closest cued locations 

when cues were present, regardless of cue predictiveness, indicating that additional 

strategies likely contributed to observer saccade distributions. However, what remains 

unresolved is how well, in an objective sense, human observers integrate this predictive 

information into both their eye movement behavior and perceptual decisions. 

 The implementation of a foveated MAP eye movement model, which takes into 

account the decreasing sensitivity of the human visual system with retinal eccentricity, 

provided an objective benchmark of eye movement selection and perceptual performance 

against which to compare human behavior. Although MAP searchers are not truly optimal 

models of visual search (Najemnik & Geisler, 2005), they often approximate ideal search 

behavior (Najemnik & Geisler, 2008; Zhang & Eckstein, 2010) and are good predictors of 

human eye movement distributions (Beutter et al., 2003; Verghese, 2012). 

 The predictions of the foveated MAP searcher qualitatively mirrored the search 

behavior and performance of human observers, as identification performance was 

enhanced overall in the presence of predictive cues, and most markedly so at low signal 

contrasts. This enhancement in performance was also reliably related to model eye 
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movements which preferentially (and, in fact, exclusively) targeted cued locations when 

cues were present, leading to enhanced probability of foveating the target location.  

 However, the foveated MAP exceeded human observers substantially in the benefit 

gained by the predictive cues (i.e. the cue benefit), indicating considerable suboptimality in 

human search strategy and execution. Potential insight into the origin of this suboptimality 

may be seen in the eye movement selection by both human and model observers. Since the 

MAP can only move its eyes to potential target locations, all eye movements were directed 

towards the cues. In contrast, only 78% of human eye movements foveated the cued 

regions when present. Perhaps human observers could have benefited from a strategy 

which more tightly targeted cued locations when present. Additionally, observers departed 

substantially from model predictions in how they chose to distribute their saccades to cues, 

particularly during the first eye movement. This apparent preference for shorter, lower 

physical costs saccades has been documented in human observers (Araujo et al., 2001; 

Kowler, 2011) and has been shown to persist even at the cost of task performance. 

However, despite a small but significant difference, human observers managed to foveate 

the target nearly as often as the model in cues present trials. Thus, while there were 

considerable differences in observed and predicted eye movement behaviors, it seems 

likely that sources of suboptimality underlying the vast difference in model and human 

performance in cues present trials likely extend beyond saccadic selection.  

 A number of other factors also may have played a role in the discrepancies between 

human and foveated MAP perceptual performance and eye movement behaviors. First, the 

MAP model integrates information optimally and with perfect memory over time and 

space (Geisler, 2003, 2011; Watson, 1987). However, it is well known that human 
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observers do not do this optimally (Irwin, 1991, 1996; Najemnik & Geisler, 2005), 

potentially leading to wide-reaching suboptimalities in perceptual performance and eye 

movement selection. A MAP model also makes its decisions based off of a Bayesian ideal 

decision rule, which consists of calculating and aggregating a set of complex likelihoods 

(Eckstein et al., 2002; Geisler, 2011; Shimozaki, Schoonveld, & Eckstein, 2012). 

Calculation and maintenance of such complex terms given limited neural machinery seems 

dubious at best. Additionally, factors which fall outside the scope of the model such as 

spatial masking (Polat & Sagi, 1993; Smith, 2000) or crowding (Balas, Nakano, & 

Rosenholtz, 2009; van den Berg, Roerdink, & Cornelissen, 2007; Whitney & Levi, 2011), 

in which visual elements adjacent to the target can perceptually degrade its appearance, via 

the cues could certainly have played a role in reducing perceptual performance when the 

target appeared at those locations.  

 In all, it is clear that observers are capable of leveraging predictive cue information 

to guide eye movements and enhance search performance. However, their proficiency in 

doing so falls short of a near-optimal eye movement model, indicating substantial 

suboptimality in eye movement selection, the mechanisms underlying perceptual decision 

making, or both.  

 III. Observer flexibility and peripheral predictive 
information (remote cues) 

In Chapter II, we saw that human observers were able to utilize predictive spatial 

cues (albeit suboptimally) to guide visual search and enhance search performance. Our 

results provide a quantitative backing to complement a growing literature that humans 

often direct their eyes towards toward objects which often spatially co-occur with search 

targets (Castelhano & Heaven, 2011; Eckstein et al., 2006, 2006; Torralba et al., 2006). 
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But what about the cases when predictive information about target location does not appear 

right next to (or around) it? Here, we probe human observers' ability to flexibly adopt new 

and atypical search strategies when predictive visual information occurs spatially separated 

from potential target locations.  

We report a scenario in which humans initially look away from the target in the 

presence of remote spatial cues to optimize performance. Observers performed a free eye 

movement search task in which they were to indicate the presence of a Gabor embedded in 

white luminance noise. The target appeared at one of ten locations arranged in two semi-

circles. The orientation of three remote spatial cues (large C’s), situated between the two 

groups of target locations indicated where the target would appear if it were present.  

Observers performed task variants in which the cues differed in whether they 

provided target location information, how visible the cue information was, or whether the 

cues could be foveated. Performance when remote cues were predictive vastly exceeded 

that of when the cues did not predict location. Moreover, observers systematically directed 

early saccades towards the cues when they provided target location information. When 

cues were non-predictive, they were largely ignored and a sequence of eye movements 

which surveyed as many target locations as possible prevailed. Critically, when cues were 

predictive but observers were prevented from foveating them, performance suffered 

compared to when saccades were unrestricted, highlighting the importance of a cue-driven 

eye movement strategy.  

Three variants of a foveated MAP eye movement model are developed, which 

differed in their saccadic planning and whether they used peripheral remote cue 

information. It is shown that when remote cue information is unavailable, a MAP eye 
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movement strategy closely approximates human eye movement distributions and 

perceptual performance. However, when the remote contain information predictive of 

target location, incorporating cue-driven eye movements is necessary to match human 

proficiency. 

Finally, a learning version of the remote cue task, in which participants were given 

no information about the predictive nature of the remote cues, was run to assess how 

willing observers would be to adopt atypical eye movement strategies when the benefits 

are not made explicitly clear. Only two of nine observers effectively learned and utilized 

the remote cues over the course of two thousand trials, indicating that while observers may 

be effective at adopting atypical eye movement strategies when the benefits are apparent, 

they are not necessarily actively looking to do so.  

In all, while moving the eyes to likely target locations is a common and often 

effective strategy, we show that human observers can adopt atypical eye movement 

strategies when this behavior has clear benefits for the current search task. 

 A. Introduction 

Due to inhomogeneities in the anatomy of the retina, visual search requires the 

orienting of the high resolution fovea to points of interest in the visual environment to 

gather information about potential target locations and identities (for review, see Eckstein, 

2011). Since the time to complete search is rarely unlimited, selecting efficient and 

informative eye movements is of high priority (Najemnik & Geisler, 2005). As such, what 

types of information drive eye movement selection has been the focus of a wealth of 

research.  
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Not surprisingly, human observers have been shown to consistently direct their 

eyes towards image regions that resemble the target (Beutter et al., 2003; Findlay, 1997; 

Malcolm & Henderson, 2010; R. P. N. Rao et al., 2002), resulting in a number of 

computational models of search which utilize the known or expected appearance of the 

target to guide model saccades (Eckstein et al., 2006; R. P. N. Rao et al., 2002; Wolfe, 

1994; Zelinsky, 2008). Additionally, a variety of studies have also shown that observers 

tend to bias saccades towards either scene regions (i.e. scene context; Brockmole & 

Henderson, 2006; Castelhano & Heaven, 2011; Ehinger, Hidalgo-Sotelo, Torralba, & 

Oliva, 2009; Neider & Zelinsky, 2006; Torralba, Oliva, Castelhano, & Henderson, 2006) 

or individual objects which tend to spatially co-occur with the search target (Castelhano & 

Heaven, 2011; Eckstein et al., 2006; Mack & Eckstein, 2011). As a result, many modern 

models of search now explicitly incorporate scene context into the guidance of eye 

movements (Ehinger et al., 2009; Torralba et al., 2006).  

Although the guidance of eye movements in search via target appearance and scene 

context reflect markedly different search strategies and underlying knowledge about the 

task at hand, their effects are largely similar: observers' eyes are directed towards locations 

likely to contain the target (often referred to as saccadic targeting). Not only has this 

strategy shown to be effective behaviorally (Eckstein et al., 2006; Mack & Eckstein, 2011; 

Torralba et al., 2006), but it also corresponds closely to a Bayesian maximum a posteriori 

(MAP)  eye movement model (Beutter et al., 2003; Eckstein et al., 2006; Torralba et al., 

2006). A MAP model optimally weights visual evidence for target appearance at each 

location in the visual display by prior knowledge (via context, object co-occurrence, or 

spatial cues) about how likely the target is to appear at that location and moves its eyes to 
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the location of the highest posterior probability of containing the target. Although MAP 

models are not truly optimal in terms of maximizing perceptual performance, under many 

circumstances they approximate a computationally ideal searcher (as derived by Najemnik 

& Geisler, 2005). Given its strong computational underpinnings, it's not surprising that 

observers would adopt such an eye movement strategy. 

Despite the benefits of saccadic targeting, there are often cases in which objects in 

distal regions of the visual environment contain information about the possible location of 

the target. In these cases, an observer which only moves its eyes to likely target locations 

may miss out on critical task-relevant information. For example, take the scenario depicted 

in Figure 16. When searching for the man in the image (labeled "target"), most observers 

would direct their eyes to street level since (which experience suggests is where 

pedestrians nearly invariably appear) and search through the individuals in the image 

(Ehinger et al., 2009; Torralba et al., 2006). However, if told that the man will appear 

underneath a red sign, a rational observer should direct their eyes to well above street level 

to locate the sign (even though the target cannot appear there) and vastly reduce potential 

target locations, increasing search efficiency.  
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Figure 16. Example of a remote cue in a natural scene. If told to search for the man with no further 

instructions, observers tend direct the eyes toward likely pedestrian locations at street level (Torralba et al., 

2006). However, if told the man will appear under a red sign, a rational observer should first move its eyes to 

a location where a target cannot appear (the sign) to subsequently reduce uncertainty about target location. 

 

The idea of moving the eyes to a location which has no chance of containing the 

target to enhance search performance is absent in the current literature and clearly 

contradicts the well established saccadic targeting strategy utilized by observers and 

mirrored in modeling efforts. Although the ideal searcher and human observers have been 

shown to move their eyes to non-target locations, these so-called "center of mass" saccades 

target the centroid of a cluster of potential target locations to gather information about 

multiple nearby regions of interest (Najemnik & Geisler, 2005, 2008; Zelinsky, 2008; 

Zhang & Eckstein, 2010), and thus are largely target driven. As such, how well observers 

utilize predictive elements in the environment which are spatially separated from the 

target, which we call remote cues, and how effectively they can learn the spatial 

contingencies of remote cues in the absence of instruction are poorly understood. 
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Here, we present a scenario in which, for a simple search task in white noise, 

human observers initially move their eyes away from potential target locations the 

presence of spatially predictive remote cues to optimize performance. Moreover, we show 

that manipulating the availability and quality of remote cue information leads to drastic 

alterations in eye movement selection and search performance consistent with a rational 

observer. We develop three variants of a foveated maximum a posteriori (MAP) eye 

movement model for the task. The model reveals that cue-driven eye movement strategies 

are likely necessary to reach search proficiency displayed by human observers. 

Additionally, while we show that human observers are able to break from a common 

"saccadic targeting" strategy when given explicit information about remote cue 

contingencies, they have difficulty learning peripheral cue information in the absence of 

instruction. This difficulty in learning, however, is separable from ability to effectively use 

the remote cues when later given explicit instruction.  

Thus, while moving the eyes to potential target locations is a valuable and well 

established search behavior, human observers appear capable of adopting atypical eye 

movement strategies when doing so enhances task performance. However, observers may 

be slow (or unable) to adopt such atypical patterns if the predictive nature of peripheral 

scene elements is not explicitly understood. 

 B. Remote cue study 

 To see whether human observers could break from a target-driven eye movement 

strategy to enhance search performance, participants performed a simple search task in 

which they were to determine the presence of a Gabor embedded in luminance noise in the 

presence of three spatially remote cues. The presence and visibility of the remote cue 
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information was manipulated to determine the relationship between eye movement 

selection and the use of remote cue information. 

 1. Method 

 Observers. Observers were three undergraduate students (all female; ages 19-21) at 

the University of California-Santa Barbara. All observers had normal or corrected to 

normal vision. 

 Stimuli. Observers performed four variants of a simple search task which consisted 

of determining whether a single Gabor (12 cycles/°, SD of spatial envelope .5°)
1
 embedded 

in white noise (25±4.9 cd/m²)  was present at any of ten target locations indicated by thin 

black circles arranged in two evenly spaced semi-circles. The high spatial frequency and 

low contrast of the target were selected so that accurate detection would be extremely 

difficult if it were not foveated. Three remote cues were situated between the two clusters 

of target locations. The middle cue was in the center of the display with the peripheral cues 

at an eccentricity of 5° to either side. Target locations were an additional 5° eccentric from 

the respective peripheral cue (see Figure 17).  

                                                 
1
 Gabor contrast was determined on a per observer basis so that performance in the absence of predictive 

remote cues was approximately 60%. 
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Figure 17. Temporal structure of a trial. The general structure and timing for all remote cue conditions was 

identical. 

 

 Task. Each trial began by the observer fixating on a randomly selected one of two 

fixation points located 7.4º directly above and below the center of the display (randomized 

250-750 ms). A noisy stimulus image then appeared for 1400 ms (with a new noise field 

sampled every 100ms), easily enough time to make 3-5 saccades, during which observers 

were free to move their eyes to determine if a target was present in the image. A target was 

present in 50% of trials. Following stimulus presentation, observers indicated via mouse 

click whether they believed a target was present in the image and were provided binary 

(correct/incorrect) feedback about their response (see Figure 15 for trial structure). 

Observers performed 800 trials per remote cue condition. 
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Figure 18. Illustration of remote cue conditions. In Small, Big Gap, and Forbidden C conditions, the 

orientation of the middle cue indicates which side the target will appear on if present while the cue on the 

target side points to the target location if present. The cue on the non-target side points to a random target 

location in that semi-circle. The remote cues in the No Gap condition are closed and provide no information 

about target location. Quality of remote cue information was manipulated via the size of the cue opening 

(Small vs. Big Gap) or whether the cues could be foveated (Small Gap vs. Forbidden C). Red circles indicate 

the area within which observers could not move their eyes in the Forbidden C condition and were not 

actually present in the stimulus. 

 

 Remote Cue Conditions. Stimuli and eye movement instructions were modified 

between conditions to manipulate both the availability and quality of predictive spatial 

information that the remote cues afforded. In the Small Gap condition, eye movements 

were unrestricted and three large C's (diameter 1.85°) served as remote cues and were fully 

predictive of target location (see Figure 18). The direction (left/right) of the opening in the 

central cue (.075°) indicated what side the target would appear on if present, while the 

orientation of the peripheral cue on that side indicated which of the five locations would 
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contain the target if present. The peripheral cue on the non-target side was oriented 

randomly to one of the target locations in that semi-circle.  

 To determine how the visibility of remote cue information influenced eye 

movement selection and performance, two additional conditions were devised. In the Big 

Gap condition, the visibility of remote cue information was increased by widening the gap 

in the C’s (.37º) and eye movements were left unrestricted. For the Forbidden C condition, 

the appearance of the stimuli were exactly the same as in the Small Gap condition, but 

observers’ eye movements were restricted in that they were not allowed to move their eyes 

within 3° of any of the remote cues, degrading the quality of cue information that could be 

sampled. If observers moved their eyes into the restricted area, they received a message 

indicating the error and the trial was aborted. Finally, to provide a baseline against which 

to compare potential remote cue benefits, the No Gap condition employed remote cues that 

did not provide any predictive spatial information as the gaps in the C's were closed. There 

was no restriction of eye movements.  

 With the exception of remote cue appearance and restriction of eye movements in 

the Forbidden C condition, task structure and stimulus appearance was otherwise identical 

between conditions. Observers were informed verbally about the meaning of the remote 

cues before each condition.  

 Monitoring Gaze. Gaze was monitored using an Eyelink 1000 infrared eye tracker 

(SR Research) providing a monocular left eye track at a sampling rate of 250 Hz. Changes 

in eye position that exceeded a velocity of 35º/sec and an acceleration of 9500º/s/s were 

considered to be saccades. The first change in eye position which deviated 2° from initial 

fixation was considered the first saccade for purposes of analysis. 
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Figure 19. Performance in the remote cue task. Performance, in terms of both proportion correct and d', was 

markedly improved when remote cue information was present and able to be foveated (Small Gap and Big 

Gap) as compared to when it was unavailable (No Gap) or available but foveation of the cues was not 

allowed (Forbidden C). Dotted line indicates chance performance in terms of proportion correct. Chance for 

d' is a value of 0. Error bars represent ±SEM. 

 2. Results and discussion 

 Both the quality and the availability of remote cue information drastically impacted 

search performance. A one way repeated measures ANOVA (F(3,6)=55.42, p<.001) 

revealed that while observers performed (in terms of proportion correct) nearly at ceiling 

when they were able to freely use predictive remote cues (Small Gap and Big Gap 

conditions), a reduction in the quality of remote cue information by preventing foveation 

of cue (Forbidden C) or elimination of predictive cue information altogether (No Gap) 

reduced performance to barely above chance levels (paired t, p<.05; see Figure 19). In fact, 

when remote cues could not be foveated, performance was indistinguishable from when 

there was no predictive information in the images at all (t(2)=.36, p=.37). A nearly 
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identical picture can be seen in analysis the of d', a measure of sensitivity which is 

invariant to individual variation in decision criterion (i.e. propensity to say "present" or 

"absent"; see Green & Swets, 1989 for a review). A one way repeated measures ANOVA 

revealed significant differences in sensitivity across remote cue conditions (F(3,6)=9.67, 

p<.001). The direction of all pairwise comparisons was identical to those described for 

proportion correct. 

 

Figure 20. Eye movement selection in the remote cue task. Blue lines depict observer SE’s scanpaths starting 

at the top fixation point for trials in which the target appeared at the location indicated by the white arrow. 

When the remote cues are informative and able to be foveated (Small and Big Gap), initial eye movements 

are directed towards them to help determine target location. When remote cue information is either unable to 

be foveated (Forbidden C) or unavailable altogether (No Gap), an eye movement strategy which simply 

surveys as many target locations as possible is adopted. 

 

 Insight into the origin of these performance differences can be gathered 

qualitatively by inspecting eye movement selection. Scanpaths for a single observer (SE) 



54 

and single target location across all conditions can be seen in Figure 20. In both the Small 

Gap and Big Gap condition, early saccades were clearly directed away from potential 

target locations as eye movement selection favored the predictive remote cues to gather 

information about target location. Only after the remote cues were inspected were the eyes 

directed toward a target location to determine target presence. In stark contrast, eye 

movements in the No Gap condition almost completely ignored the remote cues since they 

provided no information about target location. Mirroring metrics of perceptual 

performance, eye movement selection in the Forbidden C condition closely mirrored that 

of the No Gap condition. Although the remote cues were predictive in this case, preventing 

foveation of the cues appeared to degrade their usefulness to the point that that eye 

movement selection devolved into the brute force "inspect as many locations as possible" 

strategy observed when no predictive information was available.  

 

Figure 21. Proportion of eye movements to the central cue. When the central cue contains predictive 

information (Small and Big Gap), it is heavily fixated (eye position falls within 2° of cue) in the first and 

second eye movement. When it contains no information about target location, it is rarely, if ever, foveated 

(No Gap). Error bars represent ±SEM. 

 

 Quantitative measures of eye movement selection across participants supported the 

notion that observers sought out remote cue information via saccadic selection to 
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determine target location and enhance perceptual performance. The mean proportion of 

saccades to the central remote cue (defined as a fixation landing within 2° of visual angle 

of the cue) as a function of eye movement is seen in Figure 21. A three (remote cue 

condition) by four (eye movement) repeated measures ANOVA (F(2,4)=67.01, p=.001) 

revealed that the central cue was fixated much more heavily in remote cue conditions 

where the cues contained predictive information (Small and Big gap) than when it did not 

(No Gap)
2
. Moreover, a significant interaction (F(6,12)=26.64, p<.001)  showed that in the 

Small and Big Gap conditions, the central cue was heavily fixated on the first eye 

movement (80-90%), but this propensity to target the central cue dropped drastically in 

subsequent eye movements (down to 5-10% at the fourth eye movement), indicating that 

observers had moved to other elements of the display.  

 
Figure 22. Proportion of eye movements to the correct side cue. When predictive information is available 

(Small and Big Gap), eye movements after the first are often directed towards the flanking cue on the side of 

the target. Note the discrepancy between the Small and Big Gap condition, as the peak of side cue-driven eye 

movements occurs later when the cue information is less visible (Small Gap). As with the central cue, the 

side cue is almost completely untargeted by eye movements when it contains no location information.  

 

 Analysis of the proportion of fixations directed towards the flanking remote cues 

(either side) provides further evidence compatible with a cue driven fixation selection 

                                                 
2
 Note that the Forbidden C condition was not included in this analysis as foveating any of the cues was not 

possible by design. 
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pattern when remote cues were predictive. The proportion of times the side remote cues 

were fixated as a function of eye movement is seen in Figure 22. The flanking remote cues 

were fixated far more often when they contained predictive information (Small and Big 

Gap) than when they did not (No Gap, F(2,4)=443.23, p<.001). A significant interaction 

(F(6,12)=16.39, p<.001) revealed that, while the side cues were almost never fixated in 

any task on the first eye movement, they were rather heavily fixated in the Small and Big 

Gap tasks on the 2nd and 3rd eye movements. Taken with analyses of the central cue 

fixations, it appears that observers used their initial eye movements to survey the central 

cue, then the corresponding side cue when remote cues provided predictive information.  

 The functional consequences of this early eye movement selection can be seen 

clearly when analyzing the cumulative probability that observers had foveated the target as 

a function of eye movement (Figure 23). While a significant main effect of eye movement 

(F(4,8)=237.5, p<.001) indicated that the probability of foveating the target increased 

markedly for all tasks with increasing number of eye movements, a significant cueing 

condition by eye movement interaction (F(12,24)=45.73, p<.001) revealed considerable 

cueing condition-dependent differences in the shape of this increase. When predictive 

information present (Small and Big Gap), the target location was almost never fixated 

within the first two eye movements. However, the proportion of target fixations then jumps 

markedly from the third eye movement on (reaching 85-95% by the fourth eye movement), 

indicating that observers utilized their early fixations to gather remote cue information, 

then move to the target location with considerable certainty. It is interesting to note that 

there were considerably less target foveations by the third eye movement of the Small Gap 

task compared to the Big Gap task (t(2)=-7.53,p=.008), potentially reflecting the 
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differences in the visibility of the remote cue information (i.e. smaller gap in Small Gap 

condition). 

 

Figure 23. Cumulative probably of foveating the target by eye movement. When remote cue information is 

not available (No Gap) or unable to be foveated (Forbidden C), the probability of foveating the target on the 

first eye movement starts low (~10%) and slowly increases (~40% by EM5), indicating a lack of guidance in 

eye movement selection. In contrast, the probability of fixating the is nearly zero for the first two eye 

movements when remote cue information is available (Small and Big Gap), as early eye movements are 

directed to the cues. After the 2nd eye movement, the probability of fixating the target rapidly ostensibly as a 

result of exploiting previously gathered remote cue information. Error bars represent ±SEM. 

 

 In contrast, the cumulative proportion of target foveations when remote cue 

information was unavailable (No Gap) or unable to be fixated (Forbidden C) was well 

above zero (~10%) from the start, but increased rather slowly with increasing eye 

movements (to a maximum of roughly 40%). These results are consistent with an observer 

who is seemingly surveying conditions at random (i.e. probability of each eye movement 

landing on the target location is equal). Interestingly, the proportion of trials foveated for 

these two conditions exceeded that of the Small and Big Gap conditions for the first two 

eye movements (paired t, p<.01), reflecting the fact that early eye movements in conditions 

where remote cue information was available to be fixated were directed to the cues. As 

seen in analyses of perceptual performance and qualitative scanpath inspection, it appears 
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that for the Forbidden C and No Gap conditions, observers essentially attempted to fixate 

as many locations as possible, but with very little guidance.  

 Taken together, our results indicate that observers are able to incorporate remote 

cues into their eye movement selection to enhance task performance. Clearly, however, the 

quality and availability of this predictive information has strong functional consequences 

on both oculomotor behavior and search performance. 

 C. Foveated MAP eye movement models 

 Here, we implement a foveated MAP eye movement model, which is nearly 

identical to that described in Chapter II. The foveated MAP provides a benchmark of 

expected performance for a model which can only move its eyes to potential target 

locations. In the case of the remote cue task, where targets cannot appear at cue locations, 

the MAP model cannot move its eyes to the cues. 

 As a result of this property, a MAP searcher may seem poorly suited for modeling 

the remote cue task. However, given the prevalence of "saccadic targeting" strategies in 

human data (Beutter et al., 2003; Eckstein et al., 2006; Findlay, 1997) and models of visual 

search (R. P. N. Rao et al., 2002; Zelinsky, 2008), a MAP model provides a.) a benchmark 

of performance and behavior for a searcher which adopts a saccadic targeting eye 

movement strategy, and b.) a point of comparison to quantitatively evaluate potential 

search benefits gained by human observers when they break from such a strategy. 

Moreover, MAP models have been shown to be nearly optimal when target visibility falls 

off rapidly with eccentricity (Zhang & Eckstein, 2010), which is the case with the high 

spatial frequency signal used in the remote cue task. 
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 Three variants of a foveated MAP are outlined which differ in how much they use 

cue information and how eye movements are selected. Specifically, we describe 1.) a 

simple foveated MAP which ignores all cue information, 2.) a foveated MAP which 

peripherally gains information from the remote cues, and 3.) a foveated model in which the 

first 2 saccades are preprogrammed to go towards the remote cues. Evaluation of these 

three models provides insight into the origin of human performance benefits via remote 

cues as well as interesting comparisons with human eye movement selection. 

 1. Ignore cues (fMAP) 

 The basic form of the foveated MAP eye movement model is nearly identical to the 

model outlined Chapter II. The critical difference for the remote cue task, however, is the 

fact that the model needs to make a detection (i.e. present/absent) decision as opposed to 

an identification decision. As such, the decision rule for the foveated MAP of this 

detection task consists of taking the sum of likelihood ratios, weighted by the prior 

probability that the target will appear at each one of the target locations, and comparing 

that to a criterion. If the sum of weighted likelihood ratios exceeds this criterion, the model 

gives a target present decision; if not, the model gives a target absent decision. The 

weighted sum of likelihood ratios is given by: 

    
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 It is also important to note that, since target location was randomly selected on each 

trial πx,y=.1 for all target locations.  

 If the weighted sum of likelihood ratios exceeds a criterion crit, the model responds 

target present. Otherwise, it responds target absent: 

   if wLR>crit; “target present”; else, “target absent”  

To select eye movements, the model moves its gaze to the target location of 

maximum weighted likelihood ratio (i.e. posterior probability) as described in Chapter II: 

                                            yxTk
yx
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,

maxarg)1(         (16) 

 Note that these expressions are heavily simplified compared to the letter 

identification foveated MAP as the remote cue task only had one possible target of a set 

contrast as opposed to 25 possible targets in the letter identification task. Additionally, 

since human observers were presented with noise fields which refreshed every 100ms, the 

external (i.e. image) noise field updated with each eye movement, as well as the internal 

noise sample. 

 The implementation of eccentricity dependent internal noise to simulate the 

decrease in acuity in the peripheral retina was identical to that described in Chapter II, save 

for the fact that only a single visibility profile underlied the perceptual decision.  

 2. Peripheral cue use (Use Cues) 

 While a basic foveated MAP does not seek out non-target (in this case, remote cue) 

information, we augment the model to incorporate remote cue information, while 

maintaining a MAP eye movement strategy. In the remote cue tasks, the cues essentially 

serve as priors: if the observer knows which target location is indicated by the cues, they 
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can base their perceptual decision solely off of information at that location. Here, we 

incorporate an additional foveated Bayesian Ideal Observer (fBIO) for the remote cues to 

modify the priors at each target location. 

 The fBIO consists of peripherally assessing the visual evidence at the remote cue 

locations and determining 1.) the likelihood that the central cue is pointing left or right, and 

2.) the likelihood that the side cues are pointing in one of the five possible directions. The 

model handles both situations identically; the only difference being the number of possible 

remote cue orientations. The likelihood (Lk(T),i ) of a single cue orientation (si) given the 

noisy evidence at the remote cue location (g) and current fixation position k(T) is given by: 

     )|(),( iiTk sgpL         (17) 

 Likelihoods are calculated for both possible orientations for the central cue, as well 

as all five possible orientations for each side cue. The estimated prior probability that the 

target appears at any one location is then given by the product of the likelihood of each 

side cue orientation with the likelihood of the target appearing on that side (corresponding 

middle cue likelihood). 

 This modified prior is implemented into the foveated MAP in place of the uniform 

priors present when cues are ignored. The modified priors bias eye movement selection to 

locations likely to contain the target, and put more weight in the detection decision on 

those locations. However, the computational underpinnings of how eye movements and 

perceptual decisions are made does not change. The foveated MAP still cannot make eye 

movements to non-target locations. Instead, the foveated MAP now peripherally gathers 

information about remote cue information which can be implemented in target-driven eye 

movement selection. 
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 3. Preplanned to cues (Preplan) 

 Both the basic foveated MAP and the version which peripherally gains remote cue 

information are unable to make eye movements toward remote cue locations. To provide a 

metric of performance in which remote cues are foveated, a third variant of the foveated 

MAP model was implemented in which the first two eye movements were essentially 

preselected.  

 The first eye movement of the preplanning model always went to the center of the 

central cue. After assessing the central cue, the model then moved to the side cue on the 

side which was deemed most likely based off the fBIO assessment (i.e. maximum 

likelihood) of the central cue. At the second fixation, the fBIO assessed the most likely 

orientation of the side cue and proceeded to move its eyes to the corresponding target 

location. When at the selected location, the model based its present/absent decision off of a 

single sample of information.  

 4. Calibrating the model to human visual system properties 

 Measurement of visibility maps 

 Visibility maps were measured for the target as well as the remote cues of both big 

and small gap size. For the target visibility map, all three observers from the original 

remote cue study performed a simplified detection task to measure performance as a 

function of retinal eccentricity. For the remote cue visibility maps, two of the observers 

from the original task (observer AF graduated and was not available to participate) 

performed a simplified alternative forced choice (AFC) experiment in which they were 

presented a single remote cue and asked to determine its orientation. There were variants 
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for both the central remote cue (2AFC; left or right) and the side remote cue (5AFC), 

mirroring their possible orientations in the main experiment. 

 Observers performed 2600 trials of the target visibility map task. Trials in the target 

visibility map task began with observers fixating a fixation cross and pressing space to 

initialize the trial. After a randomized delay (500-1500ms), the stimulus image would 

appear for a duration matched to the mean first saccade latency for each observer. Within a 

single bounding circle at the center of a noisy image a target appeared on 50% of the trials 

(i.e. 50% target present). Following the stimulus image, observers made a yes/no response 

and were given feedback on their selection. The fixation cross could appear at one of 

thirteen locations ranging from 0-7.4º of visual angle. The location of the fixation cross 

was constant within each 100 trial session, and changed every two sessions. 

 Observers performed ten 100 trial sessions of the middle remote cue visibility map 

task for both small and large gap sizes. The structure and timing of the task were nearly 

identical to that of the target task. Fixation could begin at one of five locations ranging 

from 0-7.4º from the central cue location. A single remote cue, oriented to the left or right 

(as in the main study) appeared at the center of the stimulus image. Observers were to 

respond whether they believed the opening in the remote cue faced the left or the right and 

were given feedback on their selection. 

   Finally, observers performed fourteen 100 trial sessions of the side remote cue 

visibility map task for both small and large gap sizes. Fixation was set at seven locations 

ranging from 0-8.9º from the target location. The stimulus image consisted of a single side 

remote cue at the same spatial position that the leftmost cue resided in the main 

experiment. The orientation of the cue was randomly selected from the five orientations 
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possible in the main experiment on every trial. Following stimulus presentation, observers 

were shown a response screen with the five possible orientations and clicked on the one 

they believed to be presented and were given binary feedback (correct/incorrect) on their 

response.  

 Visibility map fitting 

 Internal noise parameters were estimated for each observer. The form of the 

eccentricity dependent internal noise as well as the visibility map fitting procedure was 

identical to that described in Chapter II except there was a single set of internal noise 

parameters per observer. 

 D. Human-Model Comparisons 

 Two hundred thousand simulated trials were run for each variant of the model. 

Each trial consisted of four simulated eye movements, matching the mean number of eye 

movements made by human observers in the remote cue task (M=3.98).  

 The most basic comparison to make is that of the basic foveated MAP and human 

performance in the remote cue task. The fMAP has no knowledge of the cues, so its 

predicted performance does not change for any of the remote cue conditions. Additionally, 

the fMAP serves as a baseline against which to assess human performance, as it performs 

the task without cues in a near optimal fashion. As seen in Figure 24, predicted 

performance of the fMAP is nearly indistinguishable from human performance in terms of 

PC in both the No Gap and Forbidden C conditions (single sample t, p>.05). A consistent 

set of results can be seen in the assessment of d’, although predicted foveated MAP d’ 

were slightly higher than human d’ in the No Gap condition (t(2)=-5.56,p=.03). Thus, 

when remote cue information was not available (No Gap) or unable to be foveated 
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(Forbidden C), the fMAP, which has no knowledge of the remote cues, corresponds quite 

well to human performance. Critically, predicted foveated MAP performance, in terms of 

both PC and d’, fell markedly short of human performance in both conditions where 

remote cue information was available and able to be foveated (Small Gap and Big Gap; 

single sample t, all p<.001). Clearly, observer performance when remote cue information 

was available cannot be explained by a model observer which ignores cue information. 

 

Figure 24. Comparison of the foveated MAP (fMAP) to human performance in the remote cue task. fMAP 

predictions correspond well with observer data when cue information is unavailable or unable to be foveated 

(No Gap and Forbidden C). But when cue information is readily accessible, fMAP performance falls far short 

of observer proficiency. Error bars represent ±SEM. 

 

 Assessment of the predicted eye movement patterns of the fMAP provides further 

insight into potential mechanisms underlying observer performance in the remote cue task. 

Figure 25 shows representative observer scanpaths for a target appearing in the location 

indicated by the white arrow in the No Gap task alongside the eye movement predictions 

of the foveated MAP eye movement model. Although there are salient differences (namely 
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the eye movements which cross from one side to another) which reflect the fact that the 

MAP model doesn’t incur a cost for making longer eye movements, these long range eye 

movements only occur on a small minority of trials (<10%). It is also worth noting that 

neither the fMAP (M=50.03%) or human observers in the No Gap (M=50.37%) or 

Forbidden C (M=54.91%) showed significantly above chance guidance towards the target 

(i.e. moved their eyes to the correct side), reinforcing the similarity of the predictions with 

human data when cue information is unavailable or unable to be foveated. 

 

Figure 25. Comparison of human and foveated MAP (fMAP) eye movement patterns. When cue information 

is not available to human observers (No Gap condition), predicted fMAP (a model which has no knowledge 

of cue information) eye movements are remarkably similar to humans. 

 

 Further similarities between fMAP eye movement predictions and human saccadic 

selection when remote cue information is unavailable (No Gap) or unable to be foveated 

(Forbidden C) can be seen in Figure 26, which shows the cumulative proportion of trials in 

which the target was foveated as a function of eye movement. Like human observers, the 

proportion of trials where the target was foveated steadily and slowly increased across eye 

movement for the fMAP. Critically, there were no significant differences between human 

observers in the No Gap and Forbidden C tasks and the fMAP in terms of the proportion of 

trials foveated across eye movements (F(2,4)=.814, p=.505), reinforcing the idea that the 
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fMAP may capture elements of human perceptual performance and eye movement 

behavior when remote cues were absent or unable to be foveated.  

 

 

Figure 26. Cumulative proportion of trials foveated for human observers and the fMAP as a function of eye 

movement. When remote cue information is unavailable or unable to be foveated, human eye movement 

behavior closely mirrors that of a model which has no knowledge of the cues (fMAP). Error bars represent 

±SEM. 

 

It seems clear that the fMAP, which has no access to remote cue information, is a 

relatively good descriptor of human performance when remote cue information is absent or 

degraded. However, the question remains whether the enhanced human performance when 

remote cue information is readily available (Small and Big Gap conditions) is a result of 

the cue-driven eye movement strategy or is achievable simply through efficient use of 

remote cue information.  

Figure 27 shows observer performance in the remote cue task as well as predictions 

for a foveated MAP model which uses peripheral remote cue information for both gap 

sizes (Use Cues-Big and Small) as well as a foveated model which makes two preplanned 

eye movements to the remote cues (Preplan-Big and Small). Models which accrue 

peripheral information about remote cues (Use Cues) show modest gains in performance in 

comparison to human No Gap and Forbidden C performance. However, these models fall 
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well short of human performance in conditions where remote cue information is available 

and free to be fixated. In contrast, the set of models in which the first two saccades were 

preplanned to go towards remote cues (Preplan) nearly matched human levels of 

proficiency when cue information was available and able to be foveated, especially in 

terms of PC. Even though the Preplan models essentially made their decision off of one 

sample of visual information about the target locations (after surveying the remote cues to 

determine likely target location), they come the closest to human performance profiles. 

Taken together with results from the models which peripherally used remote cue 

information, it appears that the cue-driven human eye movement strategy when remote cue 

information was available was instrumental in contributing to the increased levels of 

performance in those conditions.  

 

Figure 27. Predicted performance for all models. Models which peripherally use cues (Use Cues-Small and 

Big) enjoy modest gains in performance in comparison to human data. Models that preferentially target the 

remote cues with the first two saccades (Preplan-Small and Big) much better approximate human 

performance when cue information is available. Error bars represent ±SEM. 
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 E. Learning remote cues 

 In the main remote cue experiment, we demonstrated that observers are able to 

adopt a remote cue-driven eye movement strategy when doing so enhanced task 

performance. Moreover, implementation of multiple variants of a foveated MAP eye 

movement model suggested that this eye movement strategy was instrumental to enhancing 

task performance. However, observers were given explicit information about the predictive 

nature of the cues, so it was simply on the observers to leverage this information. In real 

life search, predictive elements in the visual environment are often obviously labeled and 

must be learned through visual experience. To assess observer flexibility in learning 

predictive information, we ran a modified version of the Small Gap condition in which 

observers were given no information about the remote cues. The readiness with which 

observers adopt an atypical eye movement strategy in the absence of instruction or explicit 

information about potentially predictive cues lends insight into preferred eye movement 

strategies and willingness to explore alternative search solutions. 

 1. Method 

 Observers. Observers were nine undergraduate students (five female; ages 19-23) 

at the University of California-Santa Barbara, none of which had participated in 

Experiment 1. All observers had normal or corrected to normal vision. 

 Stimuli. Stimuli were identical to those in the Small Gap condition in the main 

experiment, except the gap in the remote cues was made slightly larger (.19°). This small 

increase in gap size was chosen so that the necessity to foveate the remote cues to gather 

target location information was maintained while also increasing the accessibility of this 

information if foveated. 
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 Task. The timing and structure of the task were identical to that described for the 

Small Gap condition the main experiment. However, observers were not given any 

information about the nature of the remote cues. If an observer inquired about the cues, 

they were told that the cues were simply "an element of the display." Observers completed 

twenty 100 trial sessions of the task. 

 

Figure 28. Perceptual performance and eye movement selection of learners and non-learners in the remote 

cue task. Panel (a) shows perceptual performance as a function of starting trial on a sliding 100 trial window. 

Learners rapidly learn remote cue contingencies and performance is markedly enhanced. Panel (b) shows the 

proportion of first saccades to the remote cues on an identical sliding window. Increases in performance from 

learners clearly coincides with a more cue-driven pattern initial eye movement selection. This interpretation 

is strengthened by assessment of example learner and non-learner scanpaths shown in panel (c), where initial 

eye movements for learners clearly target remote cues. White arrow indicates target location for those trials. 

 2. Results and discussion 

 To track performance across time, percent correct and sensitivity (d') were 

calculated on a 100 trial sliding window. While the majority of observers failed to 

measurably improve their performance over the course of the experiment (non-learners), 
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two observers were able to markedly and rapidly learn the remote cues (learners; see 

Figure 28a). The learners learned the remote cue contingencies early and reached nearly 

ceiling performance within the first 200-300 trials, and this enhanced performance in 

comparison to non-learners remained throughout the experiment (t(7)=11.40, p=4.4e-06). 

In contrast, performance of non-learners stayed relatively constant (although significantly 

above chance performance; 60-70%) throughout the experiment. 

Insight into the origin of the performance difference between learners and non-

learners can be seen in their initial eye movement patterns. The proportion of first saccades 

within 2° of the remote cues was calculated on a 100 trial sliding window (Figure 28b). 

Clearly, the enhanced performance of learners strongly coincided with more remote cue-

driven eye movements: the vast majority of learners' initial eye movements were directed 

to the remote cues, while very few of the non-learners' initial eye movements were cue 

driven. In fact, for the majority of eye movements, less than 10% of initial eye movements 

were directed to remote cue locations. This interpretation is strengthened by considering 

the example eye scanpaths from a learner and non-learner in Figure 28c. Initial learner eye 

movements are clearly directed towards remote cues to gather target location information, 

while those of the example non-learner almost completely ignore the remote cue region. 

 To assure that the differences between learners and non-learners was not due to 

non-learners inability to effectively utilize remote cues even with knowledge of their 

meaning, four of the non-learners were brought back to perform a brief follow-up 

experiment. The four non-learners were explicitly told the predictive nature of the remote 

cues and re-performed five 100 trial sessions from the original learning study.  
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Figure 29. Performance and eye movements for recalled non-learners. Performance drastically improved for 

non-learners when informed of remote cue contingencies, as seen in panel (a). These post-instruction 

enhancements in performance were reliably associated with considerable changes in eye movement behavior 

(b), with initial post-instruction eye movements being directed towards the predictive remote cues. 

 

 Post-instruction performance for all four observers improved drastically (30-35%; 

t(3)=23.55, p=8.38e-5), reaching almost ceiling (see Figure 29a). Moreover, inspection of 

observer scanpaths pre- and post-instruction reveals a marked disparity (see Figure 29b), 

with initial eye movements in post-instruction trials clearly targeting remote cue 

information to gather task-relevant predictive information; a strategy which did not appear 

prior to instruction. Thus, it appears that non-learners simply were not able to learn the 

remote cue contingencies, not that they were incapable of utilizing remote cues in a more 

general sense.   

 E. Conclusions 

 Moving the eyes to likely target locations, a so-called saccadic targeting strategy, is 

a common and effective way to enhance visual search efficiency. However, there are 

occasionally cases when information predictive of search target location appears at regions 

of the visual environment considerably spatially removed from the search target. 
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 Here, with a novel visual search task employing an array of predictive cues 

spatially separated from potential target locations (which we deem remote cues), we 

demonstrate that human observers are capable of adopting highly atypical eye movement 

strategies, which directly conflict with saccadic targeting patterns of oculomotor behavior, 

when doing so can lead to enhanced perceptual performance. A collection of foveated eye 

movement models, which differed in their saccadic planning and use of remote cues, 

provide converging evidence that human eye movement patterns in the remote cue task 

were reflective of attempts to maximize search accuracy. A learning version of the remote 

cue task provided valuable evidence that, although human observers may be able to adopt 

uncommon oculomotor strategies when the benefits of doing so are apparent, they do not 

necessarily look for opportunities to implement such behaviors when the subsequent 

benefits are not explicitly laid out. 

 In all, human observers demonstrate remarkable flexibility to optimize eye 

movement strategies to maximize search performance.  

 IV. Predictive cues can hinder multi-fixation visual 
search 
 Predictive cues nearly invariably improve perceptual performance on a variety of 

tasks, including visual search. In Chapter II, we showed that human observers were able to 

employ predictive cue information to guide search and enhance multi-fixation search 

performance (albeit less than predicted by a foveated MAP eye movement model). 

However, when cues were present in our letter identification task, they fully predicted 

target location (i.e. the target could not appear outside of the cues). The question remains, 

then, whether human observers are able to effectively utilize spatial cues during multi-
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fixation search when the cues only partially predict target location; conditions more akin to 

real-life and vocational search.  

 We return to the letter identification search task and present a modified version, in 

which the cues only partially (80%) predict target location when present. The modified 

image statistics are also applied to cues absent sessions. Surprisingly, with this increased 

spatial uncertainty, we show that cue presence does not lead to enhanced search 

performance overall. In fact, while cue presence does aid search at our lowest signal 

contrast, the presence of predictive cues actually hinders identification performance at high 

signal contrasts. Analysis of observer eye movements shows that this reversal in 

performance at high signal contrasts is associated with a pattern of eye movements which 

appeared to heavily favor the cues, impeding target foveated. A control task, in which the 

cues were not at all predictive of target location, provides evidence that our results are not 

merely the reflection of exogenous attentional capture via the cues. 

 The foveated MAP eye movement model, developed in Chapter II, is applied to the 

modified search task. Model predictions reveal that, even in the face of massive spatial 

uncertainty, a near-optimal observer would never predict this reversal in performance, 

indicating substantial suboptimalities in human cue usage and search performance. 

Moreover, human-model comparisons reveal that cue overuse likely was not the origin of 

the reversal effect, and the reversal in performance may be related to poor cue use in a 

more general sense.  

 It is clear that the mere presence of predictive spatial cues is not enough to improve 

search performance, particularly in more naturalistic situations where there is substantial 

uncertainty about signal strength and target location. With an increasing number of 
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vocational and life-critical search tasks using synthetic cues, a deep understanding when 

cues help (and hurt) search is critical to optimizing and improving human-machine 

interactions. 

 A. Introduction 

 In natural visual search, scene regions or objects predictive of the location of the 

target generally only denote likely target locations, and not certain ones. This considerable 

uncertainty about target location even in the presence of predictive elements of the visual 

environment also extends to common vocational search situations in which synthetic cues 

are overlaid on task relevant images or visual displays (e.g. medical images: Gur & 

Sumkin, 2006; V. M. Rao et al., 2010; satellite and aerial images: Willhauck, Schneider, 

De Kok, & Ammer, 2000; air traffic control: Metzger & Parasuraman, 2006; Wickens, 

Conejo, & Gempler, 1999). In fact, nearly 75% of all breast mammograms are now read 

with computer aided diagnosis (CAD; V. M. Rao et al., 2010), in which cues are inserted 

directly onto the mammogram image to indicate likely pathologies. Critically, there is 

considerable uncertainty within the medical community about whether or not these 

synthetic cues even aid diagnostic performance (Baker et al., 2003; Chan et al., 1990; 

Ciatto et al., 2003; Drew, Cunningham, & Wolfe, 2012). In these important and often life-

critical tasks, understanding the effects of partially predictive cues on human performance 

is necessary to optimize displays for human observers and maximize search accuracy and 

efficiency. 

 We return to the letter identification search task described in Chapter II and modify 

it so that the cues are only partially (80%) predictive of target location overall; conditions 

more akin to real-life and vocational search. Surprisingly, we find that cues present 
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performance does not exceed that of cues absent overall, and that performance when cues 

are present is actually lower than when they are absent at high signal contrasts. It is 

hypothesized that this unexpected reversal is associated with patterns of eye movement 

selection which may overuse the cues when the target is outside of cued locations and of 

high visibility. Implementation of the foveated MAP model demonstrates that such an 

effect is not predicted by a rational observer, and provides evidence that human observers 

may be using cues suboptimally not just when the target appears outside the cues, but in a 

more general sense. 

 B. Main experiment 

 1. Method 

Six observers (five female), four of which participated in the experiment described 

in Chapter II, participated in the modified letter identification search task. In the modified 

task, the four cued regions contained the target 80% of the time in all, with individual 

probabilities of 40, 20, 10, and 10% and a randomized color-probability pairing for each 

observer. In the 20% of trials in which the target letter did not appear in one of the high 

probability regions, it could appear anywhere in the image outside of those regions. The 

statistics of the images in the cues absent sessions were identical to those of the cues 

present sessions except for the absence of cue circles (see Figure 30a). The timing and 

structure of the task and stimuli were otherwise identical to the experiment described in 

Chapter II. Observers completed ten 100 trial sessions of the cues present condition and 

eight 100 trial sessions of the no cues condition. 
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Figure 30. Modified letter identification search task and identification performance. Panel (a) shows the 

modified probabilistic structure of target location. Note that in 20% of the trials, the target appeared outside 

the cue circles when cues were present. Panel (b) shows identification performance as a function of signal 

contrast. At the three highest signal contrasts, task performance is actually superior when cues are absent, 

although performance is enhanced when the cues are present at the lowest signal contrast. As seen in panel 

(c), this reversal at high signal contrasts appears to be driven primarily by comparatively poor performance 

for trials in which cues were present and the target appeared outside the cued regions. Dotted line indicates 

chance performance. Error bars represent ±SEM. * denotes p<.05. 

2. Results 

 Perceptual Performance. Figure 30b shows identification performance across all 

observers as a function of signal contrast for. A two (cueing condition) by five (signal 

contrast) repeated measures ANOVA revealed that, despite the fact that observers were 

given information that was strongly predictive of target location in the cues present 



78 

condition, the availability of this information did not lead to enhanced overall task 

performance in comparison to the cues absent condition (F(1,5)=.75, p=.43). A significant 

interaction (F(4,20)=16.02, p<.001), however, indicated that there were performance 

differences between the two conditions across individual contrast levels. Paired samples t-

tests revealed that while performance in cues present trials was superior at the lowest 

contrast tested (paired t, p<.05), at the three highest signal contrasts, observers performed 

the task better when the cue circles were absent from the image (paired t, p<.05). Cue 

presence actually impeded task performance as the target became more detectable.  

 To evaluate the origin of the reversal in performance, trials for each signal contrast 

condition were separated by whether the target appeared within one of the four high 

probability regions (valid cue; locations inside cue circles in cued sessions or 

corresponding regions in uncued sessions) or outside those regions (invalid cue; see Figure 

31a). The statistics of the images were identical across conditions with the only difference 

being the presence of the cues. As seen in Figure 30c, a significant cueing condition by 

target location (valid/invalid) interaction (F(1,5)=38.15, p=.002) shows that that the 

inferior performance in cues present sessions at high signal contrasts appears to be mostly 

attributable to consistently poor performance in the cues present trials for which the target 

appeared outside of the cue circles (cues present invalid, dashed black line). That is, even 

when the target was easily detectable and identifiable in the periphery (as evidenced by the 

high performance in analogous cues absent invalid trials (dashed grey line) across the same 

contrasts), observers often failed to correctly identify the target. In contrast, performance 

for trials in which the target appeared within the spatially predictive cues (cues present 

valid, solid black line) was superior to that of analogous cues absent valid trials (solid grey 
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line) at the two lowest signal contrasts (paired t,  p<.05). Although performance for the 

inside trials converged at the three highest signal contrasts, there were no statistically 

significant reversals in performance over these contrasts.
3
 

Note that at low signal contrasts, the detrimental effect of cues on performance for 

the 20% of trials in which the target appeared outside the cues is compensated by the 

performance benefits for the 80% of trials in which the target appeared inside the cues, 

resulting in a net positive effect of cues on performance across all trials. However, at 

higher contrasts, the cues provided little to no benefit to identification performance for the 

cued inside trials (as the target is foveated even in the absence of the cues), while the cues 

hindered performance in cued outside trials. Thus, there is a net detrimental effect of cues 

at the high signal contrasts. 

Eye Movements. To assess whether the cue presence changed the observers’ 

oculomotor strategies, we calculated the percentage of trials in which the target was 

foveated at any point during the stimulus presentation as well as the fixation durations 

during target foveations. Given the relatively small size of the target, foveating it was 

critical to achieving accurate identification performance. For our purposes, a foveation was 

defined as any eye movement which landed within 2º of the center of the target (although 

the general pattern of results which follows persisted across a range of radii of analysis 

from 1 to 3º).  

 

                                                 
3
 The data show a small possible advantage of the uncued condition vs. the cued condition at two highest 

SNR conditions which did not reach significance.  If this effect reached significance, it could possibly be 

explained in terms of small spatial masking or crowding effects exerted by the cues on the letter targets.  
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Figure 31. A visualization of analogous inside and outside trials for both cues present and absent sessions 

can be seen in (a). Panel (b) depicts the proportion of trials in which the target was foveated (fixation falling 

within 2º). Of particular note is the comparatively high proportion of trials in which the target was foveated 

for cues present-valid trials even at the lowest signal contrasts, indicating observers employed the cued 

regions to guide search. Conversely, the proportion of trials in which the target is foveated drops 

precipitously (and well below either uncued condition) when the target appears outside the circles, even at 

high signal contrasts when the target was easily detectable. Part (c) shows mean fixation durations for the 

first target foveation. No differences between cues present-valid or either cues absent condition are observed. 

Critically, however, target foveation durations are significantly shorter for cues present-invalid trials. Thus, 

not only are targets in cues present-invalid trials foveated less often, but when they are, less time is spent 

inspecting them. Error bars represent ±SEM.  

 

 Figure 31b shows that observers’ saccadic selection in cues present sessions 

appeared to be dictated by the presence of the cues. A significant cueing by target location 

interaction (F(1,5)=228.35, p<.001) indicated that in cues present sessions in which the 

cues accurately predicted target location (cues present valid; see Figure 31a for 

visualization of conditions), observers nearly always fixated the target regardless of signal 

contrast (nearly 85% of trials even at the lowest signal contrast), indicating that the cues 

provided efficient landmarks to guide visual search. In contrast, in analogous cues absent 

valid sessions, the probability of fixating the target was quite low at low signal contrasts (~ 
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40%), although the proportion of trials in which the target was fixated increased with 

increasing signal contrast until it eventually converged with the cued inside data at the 

highest signal contrast. Also, there was not a substantial difference between the proportion 

of trials in which the target was foveated in cues absent valid and invalid trials (paired t, 

p>.05), suggesting that the slight increase in average starting target eccentricity in outside 

trials (.7º) did not significantly impact performance. Critically, the trials in which the target 

was foveated the least across all signal contrasts were those in the cues present invalid 

condition (paired t, p<.05), where the cues did not accurately predict the target location. In 

this condition, the target was rarely foveated at the lowest signal contrast (~10%) and 

continued to be foveated less than the other three conditions, even at the highest signal 

contrast (83% vs ~95%), mirroring the consistently lower behavioral performance seen in 

cues present invalid trials.  

 Inspection of eye movement distributions provides a potential explanation for these 

foveation patterns. Figure 32a shows eye movement distributions for cues present-invalid 

trials as well as analogous cues absent-invalid trials (which is possible due to the matched 

statistics of the images. In invalid trials, the target can appear anywhere outside the high 

probability regions, so eye movements should be dispersed throughout the image if they 

are directed towards the target. We see that this is the case in cues absent-invalid trials. 

However, when cues are present, we see a large proportion of eye movements being 

directed towards the cues, particularly when signal contrast is low. Critically, this pattern 

perists (although not as strongly) for the highest signal contrast in cues present trials. The 

difference between cues present- and absent-invalid distributions is seen in Figure 32b. 
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When cues are present, more eye movements are still being directed to cued regions by the 

third eye movement, even though the target is quite visible and not at a cued location. 

 

Figure 32. Normalized eye movement distributions for cues present-invalid trials and analogous cues absent-

invalid trials. When cues are present, observers direct their eyes towards cued regions, even when the target 

is highly visible and appears outside these high probability locations. Panel (b) shows the difference maps 

between cues present and cues absent, highlighting this cue-driven strategy in invalidly cued trials when cues 

are present. Note that the target can appear anywhere outside the high probability regions, so there is no set 

target location. 

 

 A complementary picture can be seen in the analysis of fixation durations, which 

have historically been used as a measure of the quality of processing of visual information 

at the point of fixation (Guo, Mahmoodi, Robertson, & Young, 2006; Moffitt, 1980). 

Figure 31c shows the mean fixation durations for the first target foveations. A significant 

cueing condition by target location interaction (F(1,5)=20.51, p<.006) revealed that while 

fixation durations for cues absent valid, cues absent invalid, and cues present valid trials 

did not differ significantly from each other (paired t, p>.05), first target foveation durations 

were significantly (15-30%) shorter across all contrasts in cues present invalid trials than 

any other condition (paired t; p<.05). Thus, in cues present valid trials, where consistently 
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poor performance led to the unexpected reversal in performance at high signal contrasts, 

not only did observers foveate the target far less often, but when they did, they spent 

considerably less time assessing it. 

 3. Discussion 

Here, we demonstrated a case in which the presence of an array of predictive 

synthetic cues actually hindered search for targets with large spatial uncertainty at high 

signal contrasts. Moreover, this result appeared to be attributable to an overuse of cue 

information in eye movement selection, reducing observers' ability to foveate the target 

and decreasing the amount of information gleaned from target locations when they 

appeared outside the spatially predictive cues. Despite our previous demonstration that 

human observers were capable of improving search performance by utilizing spatial cues, 

it is clear that their mere presence is not enough to guarantee this enhancement. 

Observers' cue-driven eye movement selection in the presence of cues, however, 

raises some critical issues about why such eye movements would be made. It was proposed 

that observers were simply overusing the cues: a suboptimal application of a rational 

solution. However, perhaps cue-driven eye movements were simply the reflection of 

exogenous capture from the peripherally presented cues. If this were the case, eyes should 

be driven heavily to the cues even when they hold no meaning, and performance should 

suffer in their presence. To test this alternative explanation to our data, a control study was 

run in which the cues were not at all predictive of the target location. 
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 C. Control experiment 

 Non-predictive cues have been shown to hijack attentional focus and impede task 

performance (Farah, Wong, Monheit, & Morrow, 1989; Fecteau & Munoz, 2006; 

Hietanen, Nummenmaa, Nyman, Parkkola, & Hämäläinen, 2006; Hommel, Pratt, Colzato, 

& Godijn, 2001). Although our cues were partially (80%) predictive of target location, the 

decrease in performance when cues were present may be related to exogenous attentional 

capture by the cues. To test this, a third variant of the letter identification task, in which the 

cues did not provide any predictive information about target location, was evaluated. 

 1. Method 

 Four observers (2 female), none of which had participated in either of the previous 

letter identification search experiments, completed the control experiment. In the control 

experiment, the likelihood of the target appearing at any location across the image was 

equal (as long as the target did not overlap with the edge of the image) in both cues present 

and cues absent sessions. In cues present sessions, cue circles were present in the same 

spatial configuration utilized in the previously described letter identification tasks, but they 

did not hold any predictive value (i.e. targets were no more likely to appear within the 

circles than anywhere else in the image). Observers were informed explicitly that the 

circles did not hold any predictive value. The timing and structure of the trials, as well as 

all other stimulus properties, remained identical to those described above. Observers 

performed ten 100 trial sessions of each the cues present and cues absent conditions. 
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 2. Results and discussion 

 Identification performance as a function of signal contrast in shown in Figure 33a. 

Over all signal contrasts, there was a small (~2-3%) but significant decrease in 

performance when cues were present (t(3)=5.31,p=.013). However, despite this slight 

overall impairment, there were not any significant differences in performance at individual 

contrast levels (paired t, all p>.25). However, examination of the cue benefit as a function 

of signal contrast for the two current variants of the letter identification task (80% 

predictive and cues not predictive) makes it clear that the reversal in performance seen in 

the 80% predictive cue condition cannot be explained solely by exogenous capture alone 

(see Figure 33b). In the 80% predictive condition, there was a substantial cue benefit at the 

lowest signal contrast, which gave way to a deficit in performance when cues are present at 

high signal strengths. In contrast, the slight decrement in performance seen when non-

predictive cues are present was not modulated by signal contrast, as it stayed rather small 

and relatively stable across the range of signal strengths examined. These vastly different 

performance profiles suggest rather strongly that although cues which do not accurate 

predict target location may slightly decrease performance, this small effect cannot explain 

the magnitude or shape of the reversal observed in the main experiment. 
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Figure 33. Identification performance as a function of signal contrast for the control task. When cues had no 

predictive value, their presence has a minimal impact on performance (Panel (a)). Inspection of the cue 

benefit for the letter identification task in which cues were 80% predictive and that of when cues were not 

predictive (b) reveals that the marked reversal in performance in the 80% predictive condition cannot be 

explained simply by the presence of non-informative cues.  

 

 Although the impact of non-predictive cues on performance seems to be minimal, 

another critical point is assessing to what extent the spurious cues may attract eye 

movements. Figure 34 shows the proportion of eye movements within 2º of any cue for 

cues present sessions, and the proportion of eye movements towards analogous image 

regions in cued absent sessions (i.e. regions that would contain the cues if present), as a 

function of eye movement. Although more saccades are directed towards cued regions 

overall when cues are present (F(1,3)=32.78, p=.001), this effect is strongest with initial 

eye movements, but rapidly decreases (F(2,6)=24.24, p=.001). In fact, by the third saccade, 

there is no difference in the proportion of eye movements (t(3)=2.03, p=.13) directed 

towards the region which contains the cues (or would contain the cues, in the case of cues 

absent). These results are consistent with recent work showing that early eye movements 

may first be driven to salient image regions, with top-down influences holding 

progressively more weight in eye movement selection as search progresses (Schütz, 

Trommershäuser, & Gegenfurtner, 2012) 
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Figure 34. Proportion of eye movements within 2º of any cued location in the not predictive cue task. For 

Cues absent data, this is the proportion of eye movements to the region which would contain the cue if 

present. Although more early eye movements are more often directed towards cued locations when they are 

present, this tendency to foveate cued regions falls off dramatically as search progresses. 

 

 In all, there seem to be at least modest effects of non-predictive cues on human 

observer eye movement selection and search performance, indicating a potential source of 

suboptimality in human performance. However, direct comparison of the shape and 

magnitude of the effects in terms of perceptual performance between the control study and 

the main experiment make it clear that the strategy to fixate cues is primarily driven in a 

top down fashion, particularly later in search. These results suggest that the detrimental 

effects of cues seen in the main study may be a result of poor strategic use of cue 

information.  

 D. Human-model comparisons 

 With our finding of a surprising reversal in performance at high signal contrasts in 

the main experiment, we are left with two critical questions: 1) Would such a reversal ever 

be predicted by a rational model of search (in this case, the foveated MAP)? Given that the 

only difference between cues present and cues absent trials is that observers had more 

information about potential target location when cues were present, it seems highly 

unlikely that a foveated MAP would ever produce similar results. If this is in fact the case, 
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this leads us to question 2): If it would not be predicted by a rational model, in what ways 

to human observers differ from the foveated MAP? Identifying differences in 

human/model patterns of behavior and performance provide valuable insight into the 

origins of our unexpected effect and provide a means of potentially identifying observer 

and task characteristics which could lead to such a situation. 

 To assess whether such an effect would be predicted by a rational eye movement 

model, the foveated MAP model described in Chapter II was implemented with the 

modified statistical structure of the main experiment. The model was identical to that 

described in Chapter II (including described visibility map and contrast fitting) with the 

exception of the modified priors. These modified priors corresponded to the probabilistic 

structure described for the current experiment (see Figure 30a). Ten thousand simulated 

trials were run for the foveated MAP model at each signal contrast for both cues present 

and cues absent conditions. 

 

Figure 35. Comparison of human and model performance for the modified letter identification search task. 

As seen in (a), model performance tracks well with human data when cues are absent. However, predicted 

model performance far exceeds that of human observers when cues are present. Critically, the model does not 

predict the reversal in performance seen in human data. This is apparent in (b), where the predicted cue 

benefit for the model is far above that of humans, and critically is always above zero, indicating no reversal 

in performance. 
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 Identification performance as a function of signal contrast for both the foveated 

MAP and human observers is shown in Figure 35a. Although model predictions tracked 

well with observer performance when cues are absent (t(5)=.617, p=.717), the foveated 

MAP far exceeded human observers when cues were present across all signal contrasts 

(t(5)=-3.55, p=.016). Critically, there were no traces of the human performance reversal in 

model predictions. Since the model has more information about potential target locations 

when cues are present, cues present performance consistently exceeded that of cues absent. 

A clear demonstration of this can be seen in Figure 35b, which shows the cue benefit 

(PCpresent-PCabsent) for human and model observers. The predicted cue benefit from the 

foveated MAP was markedly larger than that seen in human data across signal contrasts 

(t(5)=4.98, p=.005) and always stayed well above zero, indicating cues facilitated 

identification performance across the range of contrasts in the experiment.  

 

Figure 36. Model and human performance as a function of signal contrast for cues present trials. Although 

human performance is exceeded by model predictions when the target appears outside of a cued location 

(invalid), there is an even more pronounced difference when the target appears at a cued location (valid). 
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Since the performance differences between human and model observers are most 

pronounced when cues are present, it is worth delving further into this subset of trials. 

Figure 36 shows performance of a function of signal contrast for humans and the foveated 

MAP for cues present sessions when the target appeared at a cued location (valid trials) 

and when it appeared outside of a cued location (invalid trials). We proposed that the 

reversal in performance in human data may be driven by poor performance in these cues 

present invalid trials. Indeed, human performance is poorer than model predictions over all 

contrasts in invalid trials (t(5)=-3.71, p=.01). However, there was an even larger disparity 

in human and model performance when the target appeared at a cued location. Thus, it 

appears that the low observer performance in the cues present trials (which led to the 

reversal in performance at high signal contrasts) may not have only been related to poor 

performance when cues didn’t contain the target, but also when they did.  

 

Figure 37. Normalized eye movement distributions for invalid trials for the foveated MAP. Model eye 

movements cluster around cued locations when cues are present, and are dispersed rather evenly through the 

image when cues are absent (a). Critically, the persistence of cue-driven eye movements into later eye 

movements is seemingly decreased for the model observer (Panel (b)). 
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Further insight into the potential origin of the reversal in human performance can 

be seen in analyses of eye movement selection. One of our primary hypotheses was that 

human observers may have been overusing cue information when cues were present and 

the target appeared outside the cued locations (cues present-invalid). Figure 37a shows 

normalized eye distributions for the model in these invalid trials for both cues present and 

absent. Overall, the patterns are remarkably similar to what is seen in human data. Eye 

movements cluster around cued locations when cues are present, even though the target 

appears outside these locations in invalid trials. Additionally, predicted eye movements to 

cues decrease across eye movements as the model accrues information. This decrease is 

most pronounced when signal contrast is high. When cues are absent, eye movements are 

dispersed thoughout the image. One critical difference between model and human 

predictions is seen in Figure 37b, which shows the difference between cues present and 

absent in normalized eye movements distributions in invalid trials. The human tendency to 

keep fixating cues into the third eye movement even when the signal is of high contrast 

appears to be diminished in the model.  

 

Figure 38. Eye movements to cued regions in cues present invalid trials. Although the model makes more 

first saccades to the cued regions, human observers make more third and fourth saccades to the cues, 

indicating that a cue-based eye movement strategy may be persisting longer than it should. 
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A quantitative assessment of these eye movement patterns is seen in Figure 38, 

which shows the proportion of eye movements within 2º of any cued location in cues 

present-invalid trials for both human and model observers. Although the model made more 

cue driven first saccades (t(5)=-16.03, p=8.59e-6), by the third (t(5)=11.86, p=3.76e-5) and 

fourth (t(5)=4.13, p=.005) eye movements, human observers were consistently directing 

more eye movements towards the cued regions, consistent with inspection of eye 

movement distributions.. This persistent cue-driven eye movement strategy late into trials 

provides at least some evidence for idea that human observers were overweighting the cues 

in their eye movement selection when cues were present and did not contain the target. 

 

Figure 39. Proportion of eye movements to each cue as a function of eye movement when cues are present. 

Observers make less eye movements to all cues overall in comparison to the foveated map. Moreover, the 

distribution of the eye movements which do go to the cues differs considerably in the first eye movement. 

Observers direct a large proportion of their initial eye movements to the 2
nd

 highest probability cue, while the 

foveated MAP directs far more to the highest probability cue.  
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However, our comparisons of human and model performance also showed 

substantial suboptimality in human performance when cues were present and targets 

appeared at cued locations (cues present-valid). Is there any insight to be gleaned by 

inspecting eye movement selection for humans and models in those trials? Figure 39 shows 

the proportion of eye movements to each cue (labeled by its probability of containing the 

target) as a function of eye movement. Critically, observers direct less eye movements 

overall to the cued regions when cues are present than the foveated MAP (t(5)=-16.76, 

p=6.9e-6). Along with the tendency to direct less eye movements to cues when present 

overall, there are marked differences in which cues received the cue-driven eye movements 

that were made. Regardless of eye movement, the foveated MAP prioritized cue-driven in 

a manner which reflects the cue probabilities (higher probability cues garnered more 

fixations). In contrast, what cue human observers directed the most eye movements to 

changed as a function of eye movement (F(26,30)=24.81, p<.001). Although the highest 

probability cue was foveated the most in the second and third eye movement, observers 

actually directed the largest proportion of eye movements to the cue of the second highest 

probability of containing the target in the first eye movement (paired t, all p<.01), similar 

to the pattern of eye movements seen in the original task in Chapter II. Clearly, human and 

model eye movement selection diverged considerably when cues were present.  
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Figure 40. Proportion of trials in which the target was foveated in cues present trials for human and model 

observers. The model is able to foveate the target more often when cues are present, both when the target 

appears at a cued location (valid) and when it does not (invalid).  

 

But what are the consequences of these eye movement patterns on observer ability 

to foveate the target when cues are present? Figure 40 shows the proportion of trials in 

which the target was foveated for human and model observers in cues present trials. The 

foveated MAP was able to direct its gaze towards the target significantly more often both 

when the target appeared at a cued location (valid; t(4)=-6.42, p=.002) and when it did not 

(invalid; t(4)=-3.70, p=.013). We had originally hypothesized that human observers may be 

overusing the cues when the target appeared outside of them, which prevented foveation of 

the target and led to decreased performance. The current analysis suggests that, while this 

may be the case, human observers also failed to fixate the target as well as a foveated MAP 

when the target appeared at cued locations. This provides further converging evidence that 

the reversal in human performance may be related to more general suboptimalities in 

utilizing cue information, regardless of if the target appears at a cued location or not. 
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 E. Conclusions 

 Surprisingly, with a modified version of the letter identification task introduced in 

Chapter II, we found that the presence of partially predictive spatial cues did not improve 

performance overall, and actually hindered search accuracy at high signal contrasts. We 

originally hypothesized that this unexpected effect was due to overuse of the cues when 

they were present, but the target appeared at an uncued location. However, the 

implementation of a foveated MAP eye movement model revealed sizable differences 

between human and model performance an eye movements in a more general sense. Our 

results thus indicate that the reversal in human performance may be attributable to 

suboptimal cue usage both when the target appears at cued locations as well as when it 

does not. 

Despite a plethora of research supporting the idea that predictive cues enhance 

perceptual performance, our results demonstrate that in visual search with the additional 

complexities of the real world (i.e. including eye movements and large uncertainty about 

the target’s location and visibility), predictive cues can surprisingly hinder human 

performance. As such, the conception of predictive spatial cues being purely facilitatory 

deserves further inspection. Whether cues improve performance does not depend simply on 

their presence, but also on how effectively observers can utilize them during task 

performance. In simple tasks with small search areas, targets of known detectability, and 

no eye movements, predictive spatial cues consistently lead to improved performance (e.g. 

Cameron et al., 2002; Eriksen & Yeh, 1985; Posner, 1980). However, when search 

displays become more complex and eye movements are required, we show that 

inefficiencies in how observers integrate cue information into eye movement selection and 
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perceptual decisions can markedly reduce and even reverse cue benefits. To the best of our 

knowledge, the current research is the first to demonstrate such a situation and critically 

calls into question the ubiquity of predictive cue benefits. 

In addition to enhancing our understanding of predictive cues, what are the 

implications of the current findings for specialized real world search tasks? Predictive 

synthetic cues have become an increasingly common tool in potentially aiding human 

search performance in a variety of important and sometimes life-critical vocations. Perhaps 

the most prevalent example is the use of computer aided detection (CAD) systems, which 

overlay synthetic cues on medical image regions likely to contain masses, to aid 

interpretation of x-ray mammograms (Fenton et al., 2011; Gur & Sumkin, 2006). Although 

an estimated 75% of x-ray mammograms are now read with CAD (V. M. Rao et al., 2010), 

how much CAD enhances performance and when it is most (if at all) useful are still topics 

of debate (Drew et al., 2012; Fenton et al., 2007; Gur & Sumkin, 2006; Philpotts, 2009). 

The use of synthetic cues to aid performance has also emerged in the analysis of satellite 

and aerial images (Willhauck et al., 2000) as well as in air traffic control and pilot 

navigation and collision avoidance (Metzger & Parasuraman, 2006; Wickens et al., 1999), 

with mixed results (Fadden, Ververs, & Wickens, 1998). In these life-critical search 

situations, the current work suggests that even though cues provided by complex image 

analysis algorithms may provide information that could enhance search proficiency, a 

detailed understanding of how human observers utilize these cues is necessary to 

understand their impact on task performance. 
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In all, the current research provides an opportunity to reconceptualize putative 

benefits of predictive cues and highlights the necessity of understanding what factors lead 

to performance enhancement in their presence.  

 V. General conclusions 
 We set out to investigate not only if, but how well, human observers can use 

predictive spatial cues to guide eye movements and enhance visual search accuracy. There 

plentiful evidence that humans exploit predictive spatial structure natural images and 

environments to guide search (Eckstein et al., 2006; Mack & Eckstein, 2011; Spotorno et 

al., 2014). However, the underlying statistics of natural scenes are poorly understood, 

thwarting objective assessment of these strategies. The use of synthetic spatial cues allows 

the experimenter control over image statistics, providing the information necessary to 

develop computationally tractable models of rational search. However, previous 

investigations of search with synthetic cues have generally focused on single fixation 

search (Hawkins et al., 1990; Nakayama & Mackeben, 1989), leaving objective assessment 

of cue use during naturalistic, multi-fixation search poorly understood. 

 In a novel letter identification search task, we find evidence that human observers 

are capable and willing to integrate spatially predictive cues into oculomotor strategies to 

enhance search performance. This finding falls in line with scene context literature, which 

has similarly shown that observers move their eyes to regions of the visual environment 

that are likely to contain the target. Critically, the implementation of a Bayesian foveated 

MAP eye movement model revealed that the performance gain experienced by observers in 

the presence of predictive cues falls far short of that of a near-optimal observer. While 

there is evidence for a potential host of suboptimalities (e.g. eye movement selection, 
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spatial masking/crowding, inefficiencies in perceptual decision mechanisms), what is clear 

is that human observers are, at least in the case of synthetic cues, suboptimal in their usage 

of this predictive information during search. 

 Despite this suboptimality, we also see evidence that observers are able to flexibly 

adapt their eye movement strategies to maximize performance in the face of changing task 

demands. In a task which required eye movements be directed to locations of the visual 

display which had no chance of containing the target, observers were able to quickly and 

efficiently adopt an atypical pattern of saccadic selection to enhance search. Although a 

learning study for the remote cue task revealed that human observers may not readily 

explore or adopt such strategies when the benefits of doing so are not explicitly presented, 

the human observers still display remarkable flexibility in their ability to tailor their search 

strategy to novel tasks. 

 Finally, we show a situation in which the presence of predictive cues actually 

hinders human performance at high signal contrasts. Critically, this effect was tied to a 

search situation in which cues did not fully predict target location. The large amount of 

spatial uncertainty linked to partially predictive cues is a hallmark of natural and 

vocational search, generating a clear message the simple presence of predictive cues is not 

sufficient to enhance search performance with human observers. While a foveated MAP 

searcher reveals modest suboptimality in human eye movement patterns, the precise host 

of factors which lead to the surprising performance reversal in human data warrant further 

investigation. With the growing prominence of computer aid in vocational search, there is 

a clear impetus to understand the dynamics of human-cue interactions to maximize 

searcher performance in these often life-critical search scenarios. 
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 Human observers are able to integrate predictive cues into their search behaviors to 

enhance accuracy and efficiency. However, they do not do so without substantial 

suboptimality, with predictive cues even hindering performance in extreme cases. Given 

the growing importance of computer aided search in life-critical settings, the work 

presented here provides a valuable starting point from which to objectively assess and 

begin to optimize human-cue interactions. 
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