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ABSTRACT 

 

Multiscale Modeling of Mesoscale and Interfacial Phenomena 
 

by 

 

Nikolai Dimitrov Petsev 

 

With rapidly emerging technologies that feature interfaces modified at the nanoscale, 

traditional macroscopic models are pushed to their limits to explain phenomena where 

molecular processes can play a key role. Often, such problems appear to defy explanation 

when treated with coarse-grained continuum models alone, yet remain prohibitively expensive 

from a molecular simulation perspective. A prominent example is surface nanobubbles: 

nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled 

researchers for over two decades due to their unusually long lifetimes. We show how an 

entirely macroscopic, non-equilibrium model explains many of their anomalous properties, 

including their stability and abnormally small gas-side contact angles. From this purely 

transport perspective, we investigate how factors such as temperature and saturation affect 

nanobubbles, providing numerous experimentally testable predictions. However, recent work 

also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms 

of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale 

heights may require molecular detail to capture the relevant physics, in particular near the 

bubble three-phase contact line. 



 

 viii

Therefore, there is a clear need for general ways to link molecular granularity and 

behavior with large-scale continuum models in the treatment of many interfacial problems.  In 

light of this, we have developed a general set of simulation strategies that couple mesoscale 

particle-based continuum models to molecular regions simulated through conventional 

molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that 

opens the possibility for a wide range of applications in biological and drug delivery problems, 

and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple 

multiple length scales for fluid mixtures are largely absent in the literature, and we provide a 

novel and general framework for multiscale modeling of systems featuring one or more 

dissolved species. This makes it possible to retain molecular detail for parts of the problem 

that require it while using a simple, continuum description for parts where high detail is 

unnecessary, reducing the number of degrees of freedom (i.e. number of particles) 

dramatically. This opens the possibility for modeling ion transport in biological processes and 

biomolecule assembly in ionic solution, as well as electrokinetic phenomena at interfaces such 

as corrosion. The number of particles in the system is further reduced through an integrated 

boundary approach, which we apply to colloidal suspensions. In this thesis, we describe this 

general framework for multiscale modeling single- and multicomponent systems, provide 

several simple equilibrium and non-equilibrium case studies, and discuss future applications. 
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1 Introduction 

 

Due to the advent of technologies at the nanoscale, researchers are faced with 

numerous problems in molecular and interfacial physics that involve processes spanning many 

different length scales. These advancements are central to a wide range of applications, yet 

pose significant challenges in applying traditional modeling techniques. One such problem is 

surface nanobubbles, which are nanoscopic gaseous domains typically found on hydrophobic 

surfaces. These bubbles have heights and widths on the order of ~10 nm and ~100 nm, 

respectively, and feature a number of surprising properties. First, nanobubbles have high 

internal Laplace pressures due to their small radii of curvature, which is expected to drive 

dissolution on microsecond time scales. However, nanobubbles have been observed to stably 

exist for days. Second, nanobubbles exhibit small gas-side contact angles that appear 

substrate-independent, and hence violate Young’s law. In the second chapter of this thesis, we 

present a simple non-equilibrium model for the stability of nanobubbles that assumes that the 

outflux of gas due to their internal pressure is balanced by an influx of gas near the three-

phase contact line, driven by the hydrophobic attraction of the gas molecules to the substrate. 

Next, we demonstrate that this recirculating gas mechanism accounts for the stability and 

small contact angles of nanobubbles, as well as experimental data showing that nanobubbles 

nucleate in a narrow range of temperature and gas saturation, and appear larger at lower 

temperatures. 

 Ultimately, understanding the stability of nanobubbles and their properties requires 

fully detailed molecular simulations in order to capture the necessary physics near the 

substrate and three-phase contact line, where continuum models break down due to the 
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extremely small bubble heights. This is challenging since the problem of nanobubbles is 

characterized by multiple length scales, including ones beyond what is traditionally accessible 

using molecular dynamics (MD). In light of this general difficulty in modeling phenomena at 

interfaces, we have developed a multiscale simulation strategy using a stochastic particle-

based technique called “smoothed dissipative particle dynamics” (SDPD). SDPD is a 

thermodynamically-consistent formulation of continuum solvers such as smoothed particle 

hydrodynamics that features scale-dependent thermal fluctuations, making it ideal for 

selectively coarse-graining regions that require less detail. Using our multiscale approach, it is 

possible to couple a MD region to a hierarchy of SDPD domains, where each one is 

characterized by a different length scale. This allows for simulations that simultaneously 

include regions spanning from the atomistic to the non-fluctuating continuum limit. Using 

simple case studies, we demonstrate that this technique is applicable to both equilibrium and 

non-equilibrium situations in Chapter 3. 

Extending these types of multiscale techniques to multicomponent systems such as 

nanobubbles, drug particle margination, corrosion, and many others, remains a major 

challenge, and in the final part of this thesis, we describe a novel generalization of our 

multiscale methods to systems that involve one or more dissolved species. In Chapter 4, we 

develop a new multicomponent formulation of SDPD through a particle discretization of the 

diffusion equation. This approach is thermodynamically-consistent, featuring thermal noise in 

the concentration field in accordance with the fluctuation-dissipation theorem. In addition, we 

extend protocol for coupling two regions containing SDPD fluids with different resolution to 

miscible fluid mixtures. The interface between these two regions featuring a different degree 

of coarse-graining is constructed such that mass, momentum, and the amount of solute is 

conserved. Since domains with different degrees of coarse-graining contain fluid particles with 
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different masses and number density, it is necessary to perform splitting of large particles into 

smaller ones, and combining of small particles into large ones over the course of a simulation. 

We describe the combining splitting rules for multicomponent systems, which makes it is 

possible to simulate binary mixtures for both equilibrium and non-equilibrium problems across 

a wide spectrum of length scales beyond what is accessible to MD, even all the way to the 

continuum limit where fluctuations vanish. Finally, we consider several simple case studies and 

demonstrate that these approaches reproduce correct thermodynamic properties at 

equilibrium, and proper diffusion dynamics in non-equilibrium problems involving chemical 

potential gradients. 

The MD-continuum method described in Chapter 3 can be generalized to 

multicomponent systems thanks to the fluid mixture extension of SDPD described in Chapter 

4. Hence, the hybrid molecular-continuum approach in Chapter 3 and multicomponent 

continuum solver in Chapter 4 are unified in Chapter 5, which provides a general framework 

for coupled MD-continuum simulations of miscible fluid mixtures. The most challenging 

aspect of reconciling the molecular world with a coarse continuum description is the fact that 

at the molecular level, matter is composed of distinct units (molecules and atoms), which have 

discrete identities for the case of fluid mixtures (e.g. a particle is either solute or solvent). 

Meanwhile, in the continuum description, a fluid particle is interpreted as a volume of fluid or 

cluster of molecules/atoms, and hence has a concentration associated with it that can assume a 

continuum of values between 0 and 1. The heart of the problem is how to interface these 

fundamentally different descriptions for the concentration. Therefore, in Chapter 5 we discuss 

the protocol for splitting large, coarse continuum particles into fine ones having discrete 

identities of either solute or solvent, and vice versa. As a simple case study, we consider ideal 

mixtures and perform MD-continuum simulations for both equilibrium and non-equilibrium 
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cases, demonstrating that this approach reproduces correct solute properties at equilibrium 

and captures the solute transport process when gradients in concentration are present. 

In addition to multiscale simulation techniques, which reduce the number of particles 

in the system through coarse-graining, we have developed other tools that significantly lower 

the computational expense of large-scale multiscale/coarse-grained simulations. This includes 

a new set of techniques for enforcing boundary conditions in simulations using smoothed 

particle techniques such as SDPD, as well as more traditional particle-based continuum 

solvers including smoothed particle hydrodynamics (SPH). Applying boundary conditions 

(e.g. no-slip) at solid boundaries is challenging with particle-based continuum methods, 

typically requiring the use of “ghost” boundary particles (which increases the number of pair 

interactions one must compute). With the integrated boundary method detailed in Chapter 6, 

the contribution to the dynamics of a single fluid particle due to the wall is integrated out and 

treated as a single quantity, analogous to the Lennard-Jones 9-3 potential commonly used in 

MD simulations, in the place of explicit walls. The integral associated with the wall is 

computed analytically for simple solid geometries (spheres and planar surfaces). Finally, we 

generalize these integrated boundary methods for problems at the mesoscale, where a 

boundary may exchange solute or momentum with the surrounding fluid both due to 

concentration/velocity gradients as well as hydrodynamic fluctuations. In particular, we derive 

the appropriate integrated boundary expressions for spherical particles, opening the possibility 

for efficiently simulating colloidal suspensions using SDPD. Combining this boundary 

approach with our multiscale techniques affords additional computational savings, which 

makes it possible to consider larger and more complex systems than using traditional 

simulation techniques. Throughout Chapters 3-6, and in the conclusion in Chapter 7, we 
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discuss the numerous potential future applications of the modeling framework outlined in this 

thesis. 
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2 Dynamic Equilibrium Explanation for Nanobubbles’ Unusual 

Temperature and Saturation Dependence 

 

  

Surface nanobubbles are nanoscopic gaseous domains that form along hydrophobic 

substrates when immersed in water. They have been observed to persist for days, in stark 

contrast to classical predictions that suggest microsecond dissolution times. The so-called 

“dynamic equilibrium” model suggests that nanobubbles can be stable due to an influx of gas 

in the vicinity of the bubble contact line, driven by substrate hydrophobicity, that balances 

the outflux of gas from the bubble apex due to high capillary pressure. We use a variety of 

thermodynamic, transport, and numerical arguments to critically asses the dynamic 

equilibrium mechanism and, more generally, understand the determinants of nanobubble 

stability according to this non-equilibrium picture. First, using the COMSOL software 

package, we consider a simple diffusive model and explore the general feasibility of this 

recirculating gas hypothesis by investigating the strength required for the hydrophobic 

attraction of the gas molecules to the substrate. Following this analysis, we develop a simple, 

analytical transport model for the dynamic equilibrium mechanism that predicts rich behavior 

in agreement with experimental measurements. Namely, we find that stable nanobubbles 

exist in narrow temperature and dissolved gas concentration ranges, that there is a maximum 

and minimum possible bubble size, and that nanobubble radii decrease with temperature.  
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2.1 Background 

 

Interfacial nanobubbles form on solid hydrophobic substrates when immersed in 

water with dissolved gas (e.g. nitrogen, oxygen, argon, etc.), and are spherical-cap-shaped 

gaseous domains with heights of ~20 nm and widths of ~100 nm [1–18]. Due to the small 

radius of curvature, a typical nanobubble has extremely high internal capillary pressure (~2-

10 atm), which provides a substantial driving force for dissolution. Simple diffusion 

arguments therefore suggest microsecond dissolution times, yet nanobubbles have been 

observed to persist for days [16]. In addition to this mysterious stability, they exhibit a wealth 

of other anomalous properties that are not successfully addressed by classical theory, such as 

a universal contact angle (~10-30°, gas-side) that appears to be influenced by the gas 

type [19] and is independent of the substrate chemistry, as well as temperature/saturation-

dependent contact angles and radii [12,20–22]. Finally, nanobubbles are observed to form in 

a very narrow range of temperatures and dissolved gas concentrations [21]. These unusual 

features represent a fundamental problem in nanoscale interfacial phenomena, even though 

nanobubbles have already become important in technological applications such as increasing 

slip along surfaces [23–26], removing biological fouling [27], templating at the 

nanoscale [28,29], and in a host of other technologies [30,31].  

Why are nanobubbles stable? One possibility is surfactant-like impurities aggregating 

along the liquid-gas interface, which lowers the surface tension and internal capillary 

pressure that drives dissolution [32]. Furthermore, a coating of contaminants may also pose a 

kinetic barrier to gas molecules dissolving out of the bubble and diffusing into the fluid [32], 

although thermal fluctuations would reduce this effect [31]. However, Das et al. have 

demonstrated that the reduction in the Laplace pressure due to impurities is not substantial 
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enough to yield stable bubbles, corroborating experimental work that demonstrates 

contamination alone is an insufficient explanation [31,33–35]. Another possibility is a more 

recent transport-based idea that suggests nanobubble lifetimes are due to slow gas diffusion 

(a ‘traffic jam’ effect) across the liquid film above [36]. In this model, gas can only escape 

the bubble vertically away from the apex since it is assumed that high surface coverage of 

nanobubbles prevents gas flux in the radial direction. Furthermore, gas can only leave the 

system by escaping into the atmosphere after diffusing over the full length of the 

macroscopic liquid film over the bubble. The traffic jam model reproduces the observed 

nanobubble lifetimes (~40 hours for typical system parameters), although it is yet unclear 

whether this provides the full picture, since convective currents would dramatically expedite 

mass transfer in real experiments. Also, this model requires high surface coverage of 

nanobubbles, which is often but not always observed. Other recent work suggests 

nanobubbles may exist in a thermodynamically metastable state due to contact line 

pinning [37–39], although bubbles have been observed to adjust their lateral size [22] and 

may be moved along the substrate using the tip of an atomic force microscopy 

apparatus [7,40].  

In this chapter, we consider a very different explanation for nanobubble stability: the 

dynamic equilibrium model  [41] (Fig. 2.1, next page), which suggests that the outflux of gas 

from the top of the bubble is recirculated and re-absorbed near the three-phase contact line 

due to the attraction and enrichment of dissolved gas at the hydrophobic substrate. If the 

outflux from the bubble apex and the influx near the contact line are nearly in balance, the 

bubbles can persist for much longer than predicted by simple diffusion arguments. It was 

later suggested that the recirculation currents are induced by shear stresses imposed on the 

liquid-gas interface due to Knudsen diffusion of the gas inside the bubble and the bubble’s 
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small height [42]. While the ultimate driving force for recirculation is unknown at present 

(i.e. there must exist an energy source to prevent violation of the second law), one  

reasonable possibility is subtle temperature gradients due to evaporation [31].  

In this chapter, we first assess the feasibility of the dynamic equilibrium picture 

through a simple diffusive model. We do not attempt to explain the driving force for 

recirculation; instead, we assume that it exists, and examine the implications of the dynamic 

equilibrium hypothesis. Specifically, in Section 2.2 we investigate the strength of the 

hydrophobic attraction necessary to yield a sufficient influx of gas into a nanobubble such 

that the outflux of gas due to the internal pressure is balanced, giving zero net flux of gas 

across the bubble surface. This analysis overestimates the strength of the hydrophobic 

attraction, but gives an order-of-magnitude value suggesting that the gas recirculation model 

is feasible. In Section 2.3, we develop an analytical transport-based model for the 

 

Fig. 2.1. Schematic of the dynamic equilibrium mechanism for nanobubble stability. Here, there is an 

outflux of gas (jout) near the bubble apex due to the high capillary pressure. This outflux is balanced by an 

influx of gas (jin) near the bubble three-phase contact line due to the hydrophobic interaction between the 

dissolved gas and substrate. 
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temperature and saturation dependence of nanobubbles and discuss its predictions in the 

context of recent experimental data. Ultimately, full molecular simulations are necessary for 

a comprehensive understanding of nanobubble stability across all length scales (including 

molecular ones), although this is challenging due to the large scales involved for parts of the 

dynamic equilibrium mechanism (e.g. the recirculation currents, which presumably extend 

over microns). Therefore, we also seek to develop new methodology for hybrid simulations 

that will enable detailed simulation of nanobubbles, as well as other multiscale phenomena. 

To this end, we describe a number of novel hybrid simulation strategies in Chapters 3, 4, and 

5 that collectively provide a general approach for investigating both single- and 

multicomponent multiscale systems. 

 

2.2 Diffusive Model for Dynamic Equilibrium Hypothesis 

 

The dynamic equilibrium hypothesis posits that gas lost from the apex of a surface 

nanobubble is balanced by an influx of gas near the three-phase contact line due to surface 

hydrophobicity (Fig 2.1). We investigate the feasibility of this mechanism for nanobubble 

stability from a purely diffusive, continuum perspective. First, we consider the case of a 

hydrophobic boundary immersed in a liquid that contains a dissolved gas, without any 

bubbles present in the system. Assuming a simple, experimentally-motivated hydrophobic 

potential of the form [43] 

   ,BzU z Ae   (2.1) 
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we can obtain an analytical expression for the equilibrium dissolved gas distribution  C z  

(unperturbed due to the presence of a bubble) near the surface from the time-independent 

equation for diffusion in a field,  

 / .D C C U      (2.2) 

Here,   is the solute mobility, and D is the diffusion constant of the gas molecules in the 

liquid. Solving Eq.(2.2) for the simple one-dimensional case with the potential in Eq.(2.1) 

gives 

    exp .
B

U z
C z C

k T

 
  

 
 (2.3) 

Hence, there is an enhancement of the concentration immediately next to the substrate due to 

the potential given by    0 exp BC z C A k T  . Here, C  is the concentration infinitely 

far away and Bk  is Boltzmann’s constant; the concentration at the interface is thus 

augmented from the bulk value by the field through an exponential factor that depends on the 

strength of the attraction A, and the system temperature T. Clearly, increasing the factor A 

results in greater enhancement of the gas concentration near the surface. Similarly, increasing 

the system temperature acts to decrease the enhancement by giving gas molecules additional 

thermal energy, which allows them to more readily overcome the attractive influence of the 

potential  U z . This increase in the gas concentration near the boundary due to its 

hydrophobicity is known as a gas-enrichment layer [14,44], and is believed to be closely 

linked to the phenomenon of nanobubbles. 

Next, we place a single nanobubble on top of a hydrophobic boundary that features a 

gas-enrichment layer described by Eq.(2.3). The concentration of dissolved gas in the liquid 

at the air-water bubble interface (on the liquid-side)  C R  depends on the internal bubble 
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pressure, and is therefore specified through a combination of Henry’s law and the Young-

Laplace equation, 

   0
2 sin ,c

HC R k P
R

    
 

 (2.4) 

where c  is the bubble contact angle,   gives the surface tension, kH is the Henry’s law 

constant, P0 is the ambient pressure, and R is the bubble footprint radius. By requiring that 

the concentration at the solid-liquid interface due to gas enrichment is greater than the 

concentration at the bubble surface in order to drive an influx of gas,    0C z C R  , we 

obtain an order-of-magnitude estimate for the minimum possible value of the hydrophobic 

interaction strength, 

 
0

2 sinln 1 .c
BA k T

P R
  

  
 

  (2.5) 

Using realistic values for the parameters in this expression, we find that for a typical 

nanobubble with R = 50 nm and c = 25° under normal conditions (T0 = 30 °C, P0 = 1 atm), 

A > 1.8 kcal/mol. Note that this estimate is greater than the actual value required, since we 

assumed that the influx is driven indirectly by the hydrophobic interaction through a 

concentration gradient. In principle, this influx occurs purely by the attraction of the gas 

molecules to the substrate, which is due to a combination of the hydrophobic attraction, as 

well as van der Waals interactions (ignored altogether in this analysis) that become important 

over small length scales.  

This approximate analysis can be made more precise by explicitly placing a 

nanobubble on top of a surface featuring a gas-enrichment layer and hydrophobic potential, 

and numerically calculating the full concentration field, holding the concentration at the 

bubble surface and substrate constant. Once the steady-state distribution of concentration 
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across the system is determined, it is possible to evaluate the flux of gas along the bubble 

surface due to concentration gradients. In order to obtain the value of A necessary for 

balanced flux (i.e. zero net flux across the bubble surface) in this simple diffusive picture, we 

develop a 2D transport model involving a full solution to the equation for diffusion in a field 

using the COMSOL package. In this approach, an attractive potential [an approximation for 

the hydrophobic attraction, Eq.(2.1)] acts on the gas solute molecules in the liquid. If a 

bubble with fixed concentration at its surface is placed on top of such a hydrophobic 

substrate, it is possible to drive an influx of gas into the bubble near the contact line if the 

concentration increase at the surface due to the external field is sufficiently high. Here, there 

are two free parameters: (1) the ratio of the concentration at the hydrophobic surface to the 

concentration at the bubble air-water interface (which is related to the parameter A), 

   0 /C z C R , and (2) the decay length for the exponential potential acting on the solute 

molecules (non-dimensionalized by the bubble width), 1 / 2B R . Provided that

   0 / 1C z C R  , there will be an influx of gas into the bubble near the contact line 

(assuming that a continuum level description is sufficient and that concentration gradients 

alone are responsible for mass transfer in the system). 

By varying the two free parameters in this numerical model, we develop a state-space 

diagram that indicates parameter combinations giving zero total flux across the bubble 

surface (Fig. 2.2). The diagram is for a bubble with fixed geometry and a gas-side contact 

angle of 45°. The insets show the concentration profile in the vicinity of the bubble for two 

different balanced flux points featuring a different decay length for the hydrophobic 

potential, with red hues corresponding to regions of high dissolved gas concentration. As 

expected, the stable points asymptote as    0 / 1C z C R  , since the concentration 
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difference, and hence driving force for influx, disappears in this limit. As the concentration 

difference approaches unity, the decay length necessary for balanced flux increases to 

compensate. Conversely, if the decay length is shortened, the magnitude of the concentration 

at the substrate surface    0 /C z C R  necessary for stability dramatically increases in 

order to provide adequate influx over a smaller region of the bubble surface. 

From this diagram, we can obtain an estimate for the strength of the hydrophobic 

attraction necessary for balanced flux. The decay length for the hydrophobic interaction has 

been empirically determined to be ~1 nm [43]. Therefore, for a nanobubble with a radius of 

50 nm, we have B-1/2R = 0.01. A linear interpolation using the data in Fig. 2.2 suggests that 

for a bubble of this size,    0 / ~1.9C z C R  for zero net flux across the bubble surface. 

The value of A that yields    0 / 1.9C z C R   for a typical nanobubble (T0 = 30 °C, P0 = 1 

atm) is 2.4 kcal/mol, slightly above the theoretical minimum of 2.1 kcal/mol given by 

 

Fig. 2.2. Combinations of allowed parameters for balanced flux in the purely diffusive numerical model. 

The insets show the concentration profile near the bubble for two of these points, with red corresponding 

to high gas concentration and blue to low concentration.  
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Eq.(2.5) for a nanobubble with c  = 45°. It is important to note that if a smaller contact angle 

was used in this analysis, the value of A required for balanced flux would be lower since 

more bubble surface area would be situated in the high-gas region, giving considerably 

greater influx across the bubble surface. In addition, decreasing the contact angle while 

keeping the bubble footprint radius constant leads to a reduction in the bubble internal 

pressure, and therefore lowers the value of  C R . If  C R is reduced, this implies that the 

value of  0C z   (and therefore A) necessary for influx is decreased as well. Generally, 

nanobubble contact angles are smaller than the 45° angle used in these simulations, which 

was selected for numerical reasons. 

We can compare this result to values for the strength of the hydrophobic attraction 

measured from experiment and simulation. Potential of mean force values for two 

hydrophobes (e.g. methane molecules) associating in water has been found from simulation 

to be around 0.5 kcal/mol [45]. On the other hand, the energy change per unit area in 

bringing together two like surfaces (type I) in a medium II equals twice the surface tension of 

the I-II interface [43]. Thus, we can also approximate the hydrophobic strength parameter as 

2 I IIA a  , where a is the area of contact. The experimental surface tension for a typical 

hydrocarbon in water is on the order of 50 mJ/m2 [43]. Assuming a molecular area of contact 

of a ≈ 10 Å2, we find that A ≈ 0.72 kcal/mol using the above-formula. The values of A from 

our diffusive model are approximately three times as large (A~2.4 kcal/mol), although 

choosing a smaller contact angle in the calculations would further reduce the required value 

of A and bring it closer to these estimates. Ultimately, this numerical study demonstrates that 

given a gas-rich region near the substrate, it is possible to drive an influx of gas into a bubble, 

even if we neglect molecular effects (though molecular contributions such as disjoining 
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pressure effects have been recently considered [46], including specifically in the context of 

the dynamic equilibrium model [47,48]). As discussed previously, this diffusive analysis 

overestimates the necessary strength of this parameter and only provides an order-of-

magnitude assessment. If we assume the hydrophobic potential draws solute molecules 

across the liquid-gas interface near the contact line, rather than relying on a concentration 

gradient to drive gas transport, the value required for the parameter A is lower, which we 

demonstrate in the following sections. 

 

2.3 Dynamic Equilibrium Model 

 

In this section, we develop a new formulation of the dynamic equilibrium mechanism 

and show that a stability analysis explains many unexpected experimental observations 

regarding the influence of temperature and gas saturation on nanobubbles. In particular, there 

is remarkable qualitative agreement with the results of Seddon et al., who reported that 

nanobubbles nucleate in a narrow temperature range, and that the total volume of 

nanobubbles decreases with temperature [21]. Moreover, by using a realistic, empirical 

potential for the hydrophobic attraction, we find that the dynamic equilibrium mechanism 

does not require unphysical contact angle corrections as in the original model [41]. In Section 

2.2, we discussed preliminary numerical calculations in COMSOL for this model, which 

demonstrate that this hypothesis does not require unrealistic values for the hydrophobic 

attraction. We now develop a different picture based on the primary diffusive fluxes, 

neglecting recirculation explicitly, and show that this new formulation of the dynamic 

equilibrium mechanism explains many unexpected experimental observations regarding the 

influence of temperature and gas saturation on nanobubbles. Our model treats the influx and 
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outflux components of the dynamic mechanism independently by assuming that the relevant 

length scale for the outflux [which is O(R), where R is bubble radius] is much larger than that 

for the influx (which is on the order of the thickness of the gas-enrichment layer, around a 

nanometer). Moreover, this approach focuses on the region immediately surrounding the 

bubble, where mass transfer is diffusion-limited, rather than the full convective recirculation 

problem. In subsection 2.3.1, we derive an expression for the gas outflux from a flat 

nanobubble. In 2.3.2, we consider the influx of gas near the contact line, and in 2.3.3, we 

discuss the predictions of this analytical model in the context of the available experimental 

literature. Additional details about this model, including a sensitivity analysis to system 

parameters, are provided in the appendix. 

 

2.3.1 Dynamic Equilibrium Outflux 

 

In this subsection, we derive the outflux of gas from a nanobubble that is 

approximated as being completely flat (a simplification motivated by the small gas-side 

contact angles of nanobubbles); readers not interested in the details of this derivation can skip 

to the following subsections. Assuming there exists a dynamic equilibrium due to a nearly 

balanced influx and outflux of gas to/from a nanobubble such that the system changes very 

slowly with time, we can develop an approximate steady-state solution for the outflux by 

solving the time-independent diffusion equation, 

 2 0.C   (2.6) 

Here,  C r  is the concentration of gas molecules in the liquid. This equation is subject to the 

boundary conditions 
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   
 

,

.

C S C R

C C

 

 

r

r
 (2.7) 

S denotes the bubble surface. In this expression, R is the bubble radius,  C R  is the liquid-

side gas concentration at the bubble surface, and C  is its concentration infinitely far away. 

We will solve for the case of steady diffusion in all directions from a completely flat bubble 

in oblate spheroidal coordinates, which are particularly convenient for the problem geometry. 

The oblate spheroidal system can be related to Cartesian coordinates via [49] 

 
cosh sin cos ,
cosh sin sin ,
sinh cos ,

x a
y a
z a

  
  
 





 (2.8) 

where x a  denotes the location of the ellipse foci. The Laplace equation 2 0C   in this 

coordinate system takes the form 

  
2 2

2 22 2 2

2

2 2 2 2

1 tanh cot
cosh sin

1 0.
cosh sin

C C C C
a

C
a

 
    

  

    
        


 



 (2.9) 

If we assume the problem is axisymmetric, and there is effectively no concentration variation 

in θ (a consequence of the approximation of two characteristic length scales that can be 

treated separately), then we can simply write: 

 
2 * *

2 tanh 0.d C dC
d d


 

   (2.10) 

Here, we have also scaled C such that it vanishes at infinity, *C C C  . The boundary 

conditions are now given by 

 
   
 

*

*

,

0,

C C R C

C

 


  

 
 (2.11) 
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where    is the surface describing the bubble interface. The height h of the bubble at its 

apex is given by sinhh a  . A small value for the non-dimensional parameter ε guarantees 

a flat bubble. We will eventually take the limit as 0  , which gives the completely flat 

case.  

The general solution to Eq.(2.10) is 

  * 1
1 2tan tanh .

2
C K K

         
 (2.12) 

Applying the boundary conditions, we find the concentration profile for diffusion from a 

bubble with arbitrary height described by the surface   : 

      
     

1

1

1 4 / tan tanh / 2
.

1 4 / tan tanh / 2
C C R C C

 


 



 

          
 (2.13) 

Note that here we have written our solution in terms of the non-rescaled variable C through 

   *C C C    . Allowing ε to go to zero, we recover the concentration profile for gas 

diffusing from a completely flat bubble: 

      14 tan tanh .
2

C C C R C R






            

 (2.14) 

This concentration profile includes both diffusion in the radial and z-directions.  

We now integrate along the bubble surface to obtain the total outflux. The differential 

element for the integral over the bubble surface (surface of constant η) is given by: 

 2 2 2cosh sin cosh sin .dA a d d         (2.15) 

Thus, the outflux of gas from a bubble with arbitrary height is written as 
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 (2.16) 

Here, D is the diffusion constant for the gas in the liquid. Taking the derivative of the 

concentration given in Eq.(2.13) and substituting into Eq.(2.16), 
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 (2.17) 

Integrating, we find that  
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J



 




   
   

 (2.18) 

Here we have used the relationship 2 2a R h   that relates the major and minor axes of an 

ellipse to its foci. Given the observed small contact angles of nanobubbles [7,12,18,19,40], 

we approximate the steady-state diffusive gas outflux using a completely flat bubble by 

taking the limit 0  , giving the total outflux from a completely flat bubble: 

  4 .outJ DR C R C     (2.19) 

This expression is similar to the result of Bobbert et al. for the problem of diffusion towards a 

disk-shaped nucleus [50]. Here, C  can be related to the ambient pressure P0 if the bulk 

liquid is open to the atmosphere and saturated, with 0HC k P  , where kH is a temperature-

dependent Henry’s law constant. As before,  C R  is specified through the Young-Laplace 

equation and Henry’s law [Eq.(2.4)].   gives the surface tension, here described by the 

Eötvös relation with parameters for an air-water interface. Because 
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experiments [7,12,18,19,40] suggest the contact angle of small bubbles and drops deviates 

from the macroscopic value (e.g., due to surface inhomogeneities or line-tension 

effects [19,51–56]), we introduce an R-dependent c   [19,41]:  

 0cos coscos cos .
1c R
 

 






 


 (2.20) 

In this expression,   is the macroscopic gas-side contact angle, which we take to be 40°. 0  

is the contact angle as 0R  , and equals zero.   sets the length scale for the onset of 

microscopic corrections, and is a parameter that empirically corrects for the collective 

contribution of line-tension, surface inhomogeneities/roughness, and other similar effects. 

Experimental fits to this parameter suggest that it is on the order of a few nanometers, 

depending on the gas type [19]. An interesting aside is that previous formulations of the 

dynamic equilibrium model required unrealistically high values of   (e.g. 70  nm, as in 

the original Brenner and Lohse model [41]). Because we use a more realistic hydrophobic 

interaction [Eq.(2.1)], we resolve this issue and find that 3.2   nm yields realistic 

predictions.  

 

2.3.2 Dynamic Equilibrium Influx 

 

The influx is determined by inJ D C dS    n , where the integral is over the bubble 

surface and n is the surface normal. Gas molecules experience an attractive interaction with 

the hydrophobic substrate according to a potential  U z ; therefore, using Eq.(2.2), we obtain 

      
 

cos ,in c
z h r

C R C R dUJ R U dS rdrd
dz

 
  

        n  (2.21) 
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where /Bk T D   is the solute mobility and h is the shape function for the bubble in the 

vicinity of the contact line, which we approximate as being linear,     tan ch r R r   . 

After substituting the attractive potential [Eq.(2.1)] into Eq.(2.21), the integral over r can be 

rewritten in terms of h. Eq.(2.21) can be evaluated analytically by assuming that  U z  

decays rapidly to yield 

    
2

2 cos 1 tan .
tan

c c
in

B c

DC R A BRJ R
k T B

  


 
  

 
 (2.22) 

This expression generally gives a negative value for the flux, indicating mass transfer in a 

direction opposite to the outward surface normal to the bubble. It is worthwhile to note that 

for very small values of R and c , Jin becomes positive and inaccurate since the separation of 

length scales and the linear shape approximation fail when the bubble radius or height 

approach the potential decay length, B-1 = 1 nm. The magnitude of the attractive potential at 

the solid-liquid interface (set by A) is treated as approximately constant, and a value of A ≈ 

0.40 kcal/mol was found to yield realistic results. This is on the order of magnitude of the 

hydrophobic interaction between two methane molecules in water [45], and similar to the 

values considered by Brenner and Lohse [41]. Furthermore, it is comparable to the estimates 

for this parameter described in Section 2.2, and considerably lower than the value required in 

the diffusive model discussed previously. Note that Eq.(2.22) reduces to the expression for 

the influx derived by Brenner and Lohse in the limit 1 0B  , and hence their model is a 

limiting case of the more general one presented in this subsection. This is due to their 

assumption that  U z  is a step function that equals some value A at the surface and is zero 

everywhere else, which simplifies the gradient of the potential in Eq.(2.21) to a delta 

function. 
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2.3.3 Dynamic Equilibrium Model Predictions for Nanobubbles’ Temperature and 

Saturation Dependence 

 

Fig. 2.3a shows that the net flux of gas into the bubble, normalized by C(R), can have 

a non-monotonic dependence on bubble radius that is quite sensitive to temperature. These 

results are shown for the fully saturated case. Stable bubbles of radius R* occur when 

     * * * 0out in netj R j R j R    and  * / 0netdj R dR  . The derivative condition must be 

satisfied so that a bubble will return to its original size in response to small perturbations to 

radius (i.e., perturbations to smaller R cause a net influx, 0netj  , and vice versa). Fig 2.3a 

illustrates that there is only one unstable point at T = 26 °C, but at T = 36 °C, a stable point 

occurs at R* = 40 nm in addition to two unstable ones. As temperature is raised, the stable 

point shifts towards smaller bubble radii, and ultimately vanishes at T = 56 °C. Therefore, 

 

Fig. 2.3. (a) Sum of influx and outflux, scaled by the concentration at the bubble surface versus bubble 

radius for several different temperatures. The blue curves denote temperatures at which stable points 

are found. (b) Stable bubble radius versus temperature according to dynamic equilibrium model, shown 

for different values of A.  
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this formulation of the dynamic equilibrium model suggests that, for fully saturated liquid in 

contact with a hydrophobic substrate, stable nanobubbles exist in a narrow range of 

temperatures, with a minimum and maximum possible bubble size associated with the 

maximum and minimum temperatures, respectively. The exact breadth of the temperature 

range depends on the specific parameters used. 

Surprisingly, the temperature dependence of gas solubility does not affect 

nanobubbles in this model, since both influx and outflux scale linearly with kH. Surface 

tension only weakly influences nanobubbles since it does not vary dramatically over the 

considered temperature ranges. The temperature dependence of R* (Fig. 2.3b) is primarily 

introduced through the influx, which scales as ~1/T due to the solute mobility. With rising 

temperature, solute mobility increases and dissolved gas molecules more readily overcome 

the attractive influence of the hydrophobic potential, which shrinks the gas-rich region [as 

evidenced by the solute concentration profile in the absence of a bubble, given by Eq.(2.3)]. 

This lowers the influx and the outflux shrinks bubbles until the fluxes balance again. Above 

some temperature (Tmax ≈ 48 °C), the effect of the potential falls to levels where the influx is 

too small to ever balance the outflux. Bubbles above this temperature will thus shrink and 

dissolve. Similarly, below some temperature (Tmin ≈ 35 °C), the action of the attractive field 

dominates and bubbles grow without bound until the gas is locally depleted or the 

thermodynamic work required to sustain the influx becomes too great. If a bubble becomes 

sufficiently large, it may also detach from the substrate due to buoyancy. 

The result in Fig. 2.3b qualitatively agrees with the observations of Seddon et al. [21] 

for the case of a saturated liquid in thermal equilibrium with the substrate. The model 

presented in this chapter accounts for the sudden appearance of a high density of 

nanobubbles at a minimum critical temperature, the finite temperature range where bubbles 
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are observed, and why bubbles at lower temperatures appear coarser. Some studies report a 

maximum in the total system nanobubble volume versus temperature [19,22]. The decrease 

in bubble size (Fig. 2.3b), coupled to an experimentally observed increase in bubble number 

density with temperature [8,12] may explain this non-monotonic behavior. Furthermore, the 

prediction of larger bubbles at lower temperatures possibly accounts for the increase in 

average nanobubble separation with decreasing temperature [22], since larger bubbles require 

a greater surrounding unperturbed gas-rich region.  

We do note that other experimental studies have reported more complicated behavior. 

Recent work finds non-monotonic changes in the average nanobubble radius with decreasing 

temperature [20,22]. Differences between the model predictions and these observations are 

possibly due to the complicated temperature dependence of the hydrophobic attractive 

potential, which we ignore here. The complex nature of this potential may also explain the 

sensitivity of bubble morphology to the hydrophobicity parameter A (Fig 2.3b) in our simple 

model. This sensitivity may also be partly responsible for the difficulty in consistently 

producing nanobubbles among earlier experiments, which for a time cast doubt on whether 

nanoscale bubbles exist at all [21]. Finally, it is important to note that a number of 

experimental studies may have observed PDMS droplets rather than nanobubbles due to 

contamination from syringes [57], which adds further difficulty in meaningful comparisons 

to experimental literature at present. 

 Beyond temperature, a second important control parameter is the dissolved gas 

concentration (C ), and Fig. 2.4 shows how it affects the stable radius R*. There exist large 

regions in the space of temperature and saturation where stable bubbles cannot exist, which 

may provide further interpretation for reproducibility problems. Where they do exist, 
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lowering C  reduces bubble size since this elevates the driving force for outflux but has no 

effect on the influx (the concentration immediately next to the bubble at the surface is 

unaffected), as also described by Ref. [41]. As previously discussed, perturbing bubbles to a 

state outside of the viable region will lead to bubbles either dissolving or growing until the 

influx expires. The result in Fig. 2.4 is in agreement with experiments indicating that bubbles 

in supersaturated fluid are larger than those in undersaturated conditions [12]. Interestingly, 

this model also suggests that there may be middle-range temperatures (e.g., 45 °C in Fig. 2.4) 

at which the stable bubble radius is quite insensitive to saturation, as reported by Ref. [40], 

while near the lower temperature limit it can be rather pronounced.  

 Fig. 2.4 also indicates that there are two limits beyond which stable bubbles cannot 

exist, one for low bubble radii, and one for larger bubbles. Beyond the lower limit is a region 

where the outflux dominates, and similarly beyond the upper limit is a domain where the 

influx is always greater than the outflux and bubbles grow unbounded. The lower limit is 

insensitive to changes in saturation since for bubbles with a small radius R,  C R C  due 

to the Young-Laplace equation, and hence the concentration at infinity (which is affected by 

 

Fig. 2.4. Stable bubble radius versus bulk solute concentration for several different temperatures. 
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the saturation) is negligible compared to the saturation-independent  C R . By contrast, for 

the upper limit,  C R  and C  are comparable in magnitude, and therefore the difference 

between these quantities (which is the driving force for the outflux) depends on the saturation 

level. As the saturation in the liquid is increases, the concentration difference, and hence the 

the total outflux, decreases [Eq.(2.19)]. Therefore, for balanced flux, the influx has to 

decrease as well. The influx does not depend on the concentration at infinity, but is affected 

by temperature due to the ~1/T scaling. Hence, the influx can balance the lowered outflux at 

higher temperatures, since the additional thermal energy acts to lower Jin. In other words, for 

high levels of saturation in the liquid, stable bubbles can only exist at higher temperature 

where the influx is lower. For this reason, the temperature range where bubbles can exist 

becomes increasingly narrow with increasing saturation in Fig. 2.4. 

  In the model described thus far, we constrained the contact angle such that it depends 

explicitly on the bubble radius [Eq.(2.20)], which is generally attributed to the combined 

effect of factors such as line-tension and surface roughness. We now relax the ad hoc 

constraint imposed by Eq.(2.20) and treat the contact angle as an independent variable, which 

allows us to examine the stability of bubbles to perturbation in c and R separately. Fig. 2.5 

(next page) shows the net flux versus both contact angle and radius, where the two are treated 

as independent. The solid black curve corresponds to the points where the fluxes balance (

0netj  ). For a fixed contact angle, it is not possible to generate stable bubbles with respect 

to perturbation in R; a bubble perturbed to the left of the stable curve at constant angle enters 

a region where the sum of fluxes is positive and the outflux dominates, and thus will shrink 

and disappear.  
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Bubbles are stable, however, to perturbations in c  at fixed R. If a bubble pinned at 

the contact line begins to dissolve and lose vertical height, the contact angle decreases, which 

leads to an increase in the bubble surface area that is situated within the gas-rich region 

(which has fixed width). Ultimately, this increases the influx and stabilizes the bubble. 

Moreover, reducing the contact angle of a pinned bubble increases its radius of curvature and 

lowers the internal pressure, giving further stability. The size of a pinned bubble exhibits the 

same qualitative behavior as described previously, with increases in T  leading to smaller *
c , 

and increases in saturation leading to a taller bubble with larger *
c , as observed by Ref. [58]. 

Without the constraint posed by Eq.(2.20), however, the model does not predict physical 

limits on the temperature and saturation ranges where bubbles can exist. Furthermore, the 

model no longer predicts a single preferred radius, but rather a distribution of radii and 

contact angles for a given temperature. An analytical expression for the allowed 

 

Fig. 2.5. Sum of influx and outflux versus both radius and contact angle for T = 27 °C. Points where the 

fluxes balance are shown by the solid curve. The dashed curve is Eq.(2.20), with   = 30° and   = 10 

nm.  
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combinations of contact angles and radii within this model can be derived by equating the 

influx [Eq.(2.22)] and outflux [Eq.(2.19)], and then solving for the stable bubble radius, 

giving 

 

2 * *
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0 0
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 (2.23) 

Note that the stable contact angle *
c  is less than 30° for a wide range of bubble radii 

in Fig. 2.5, as reported in numerous experimental nanobubble studies. Furthermore, a bubble 

perturbed in any arbitrary direction from the black curve in Fig. 2.5 may be stable if the 

bubble’s response to perturbation in c  is more rapid than its response to perturbation in R. 

This is likely to be the case since surface roughness and inhomogeneities will inevitably lead 

to at least partial contact line pinning. With this in mind, the predicted curve indicating 

possible combinations of c  and R that yield stable bubbles [solid black curve, Eq.(2.23)] 

looks remarkably similar to the ad hoc R-dependent contact angle constraint that we applied 

previously, which is shown for comparison as the blue dashed curve. Therefore, this model 

suggests that a possible dynamic phenomenon may also explain deviations from macroscopic 

contact angles in nanobubbles.  

 Even if the dynamic equilibrium model cannot ultimately describe long-term stability, 

it may still be relevant to the nucleation process since it poses a means by which bubbles may 

grow. As indicated by the stability analysis, a bubble will tend towards a preferred radius 

determined by the solution conditions, and may begin as a fluctuation in gas density that 

inflates via the dynamic equilibrium mechanism until it reaches this size. At this point, the 

influx may expire and the bubble might be stabilized by different means, such as the 
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diffusive traffic jam effect described by Weijs and Lohse [36], contact line pinning [37], or 

some other hitherto undiscovered means. This would also explain why our predictions agree 

with the experimental data of Seddon et al. [21] where bubbles were explicitly nucleated for 

every data point.  

While the dynamic equilibrium model developed here predicts rich behavior, it may 

also have limitations. First, the source of energy for recirculation remains an unresolved 

issue. Also, the model cannot explain the presence of nanoscopic bubbles along hydrophilic 

substrates. A transient localized gas-rich layer, similar to those in systems with hydrophobic 

substrates, can develop along a hydrophilic interface during solvent exchange [10], but it is 

unclear what mechanism might draw gas solute molecules from this gas-rich region into the 

bubble. Furthermore, a recent study [59] using tracer particles in the vicinity of nanobubbles 

reported no evidence for an influx near the contact line. However, the particles used are 

comparable in diameter to the actual nanobubbles, and it is not clear whether velocities 

localized to a region just a few nanometers over the substrate can be resolved with this 

technique. Lastly, a study using optical interference-enhanced reflection microscopy [60] 

reports that nanobubble sizes remained constant over a broad temperature range, in conflict 

with other experimental studies and our predictions. Ultimately, a more consistent 

experimental picture is needed under varying conditions, but expounding the detailed 

behaviors and implications of models like the dynamic equilibrium one remains an essential 

step in guiding such efforts and in building a deeper understanding of the phenomena at play, 

even if eventually they are not the full picture. 

 In summary, we demonstrated through a stability analysis that the dynamic 

equilibrium hypothesis for nanobubble stability indicates that nanobubbles should only be 

observed in a narrow range of temperatures and that their radii should decrease 
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monotonically with temperature. Both predictions have been observed in experiment. 

Interestingly, the model also predicts large regions of temperature-gas saturation state space 

where nanobubbles cannot be observed. We believe a thorough understanding of the 

consequences of this hypothesis may finally settle whether it is a valid picture of nanobubble 

stability or nucleation through future experimental work. 
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2.4 Appendix 

 

2.4.1 Model Dependence on the Parameters A and δ 

 

Fig. A2.1 shows the minimum stable bubble temperature (indicated by dotted lines) 

and maximum temperature (solid lines) versus the strength of the hydrophobic attraction 

(parameter A). The different colors denote curves generated with a different value of δ. A and 

δ together constitute the most uncertain parameters in the dynamic equilibrium model. 

Roughly speaking, the parameter δ controls the width of the temperature range over which 

bubbles can exist, with smaller values of δ corresponding to narrower temperature ranges. 

The system is quite sensitive to A, which can shift this range of fixed width to higher or 

lower temperatures. 

 

 

 

 

 

 

 

 

 

Fig. A2.1. Influence of the strength of the attractive potential (A) and length for the onset of microscopic 

corrections to the contact angle (δ) on the minimum (dotted lines) and maximum (solid lines) 

temperatures at which stable bubbles exist. 
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2.4.2 Sensitivity Analysis 

 

The following table indicates how changing a given parameter by some amount 

affects the minimum and maximum temperatures at which stable bubbles can exist, and the 

Parameter percent change R*
min (nm) R*

max (nm) Tmin (°C) Tmax (°C) 

A 10% 9.54 44.58 67.2 81.0 

 

20% 9.64 41.45 99.8 113.7 

 

-10% 9.90 48.93 3.5 16.1 

 

-20% 9.50 51.73 -27.9 -16.2 

B 10% 8.36 48.08 36.0 54.4 

 

20% 7.72 50.28 36.6 60.3 

 

-10% 11.45 42.61 34.3 42.6 

 

-20% 14.02 37.47 33.0 36.8 

δ 10% 9.26 51.11 37.2 54.7 

 

20% 9.01 53.83 39.0 60.8 

 

-10% 10.11 41.97 33.1 42.3 

 

-20% 10.89 36.52 30.8 36.1 

θ∞ 10% 7.29 62.85 -20.9 6.5 

 

20% 5.94 79.99 -68.5 -27.4 

 

-10% 15.09 25.54 101.5 102.6 

 

-20% 

     

Table. A2.1. Summary of sensitivity of gas recirculation model with respect to the free model 

parameters. Parameters are adjusted by some amount, and the resulting minimum/maximum 

allowed radii and temperatures are listed. 
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corresponding maximum and minimum stable bubble radii. The predicted temperature ranges 

are most sensitive to the strength of the hydrophobic interaction (parameter A), and the 

macroscopic gas-side contact angle (θ∞). The stable bubble radii associated with the limits of 

the predicted temperature ranges are relatively insensitive to changes in all parameters other 

than θ∞, which can inhibit the existence of stable bubbles if it is made sufficiently small. 

 

2.4.3 Sensitivity to Parameter A Without Contact Angle Constraint 

 

By relaxing the constraint of an R-dependent contact angle [Eq.(2.20)], the strong 

influence of the parameter A is partly diminished. Fig. A2.2 indicates that changes in the 

parameter A by +/- 50% still yield realistic combinations of bubble contact angles and radii. 

 

 

 

 

 

 

Fig. A2.2. Combinations of stable bubble radii and contact angles that yield zero net flux across the 

bubble surface, described by Eq.(2.23). The blue curve here is the balanced flux curve that appears in 

Fig. 2.5 in the chapter. Here, we show the influence of parameter A when the constraint of an R-

dependent contact angle is relaxed.  
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3 Hybrid Molecular-Continuum Simulations Using Smoothed 

Dissipative Particle Dynamics 

 

 

We present a new multiscale simulation methodology for coupling a region with atomistic 

detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating 

Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD).  In 

this approach, chemical potential gradients emerge due to differences in resolution within the 

total system and are reduced by introducing a pairwise thermodynamic force inside the buffer 

region between the two domains where particles change from MD to SDPD types. When 

combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et 

al. [P.M. Kulkarni, C.-C. Fu, M.S. Shell, and L. G. Leal, J. Chem. Phys. 138, 234105 

(2013)], this method makes it possible to systematically couple atomistic models to 

arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We 

test this technique by showing that it correctly reproduces thermodynamic properties across 

the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate 

that this approach is also suitable for non-equilibrium problems by applying it to simulations 

of the start up of shear flow. The robustness of the method is illustrated with two different 

flow scenarios in which shear forces act in directions parallel and perpendicular to the 

interface separating the continuum and atomistic domains. In both cases we obtain the correct 

transient velocity profile. We also perform a triple-scale shear flow simulation where we 

include two SDPD regions with different resolutions in addition to a MD domain, illustrating 

the feasibility of a three-scale coupling. This kind of three-scale coupling requires a finely-
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resolved SDPD region to bridge the MD fluid to the coarse SDPD region; therefore, we also 

describe how this triple-scale approach can be adapted to directly couple a MD fluid to 

coarse SDPD regions featuring more massive particles, without requiring intermediate SDPD 

zones to bridge the different length scales. 

 

3.1 Introduction 

 

Numerous problems in molecular physics are characterized by multiple time and 

length scales, a feature that poses significant challenges in applying traditional simulation 

techniques. For instance, a problem involving localized nanoscale processes or phenomena at 

a solid surface in contact with a liquid may require molecular-scale resolution (e.g.  

molecular dynamics) for the solid-liquid boundary, whereas the bulk fluid region away from 

the surface may not necessitate this kind of detail, and an atomistic treatment of the full 

system may be prohibitively expensive from a computational standpoint. In fact, the problem 

of multiple characteristic length scales is one that frequently arises in fluid flow problems 

involving interfaces, such as the contact line of a three-phase flow [1], slip along 

hydrophobic substrates [2], dynamics of thin films [3], and surface nanobubbles (see Chapter 

2 for a comprehensive discussion). Similarly, a broad range of problems involving biological 

molecules in explicit solvent (e.g. proteins) may not require the same level of detail for the 

solvent in the bulk far away from the molecule as in the region immediately surrounding it. 

In these cases, it is desirable to preserve a detailed description for the system in localized 

regions where necessary, and use a simpler coarse-grained model such as a continuum or 

mean-field approximation for parts of the problem domain where less resolution is 

required [4–8].  
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In light of this, there have been numerous efforts [9,1,10–15] to directly couple 

continuum-based (i.e. Navier-Stokes) solutions with molecular dynamics (MD). These 

studies have generally employed finite-difference/element/volume methods for the 

continuum region and transferred information between the continuum and MD domains via 

flux exchange within an overlap region. This is achieved by constraining the MD particle 

dynamics inside this overlap region such that the averaged particle mass and momentum 

fluxes equal those in the overlapping continuum solution [9,11]. This approach was extended 

by Delgado-Buscalioni and De Fabritiis [12] by coupling MD to a finite-volume fluctuating 

continuum domain using the fluctuating hydrodynamic equations of Landau and 

Lifshitz [16]. However, flux exchange has been challenging in certain situations such as gas-

phase calculations where fluctuations in the atomistic region can induce error and instability 

in the continuum solution [17]. Similarly, molecularly-resolved and continuum domains may 

be coupled through the Schwarz alternating method, where state-exchange is instead 

achieved by matching boundary conditions, and the individual regions are iterated until they 

converge to a steady-state solution [10,1,18]. Due to noise in the MD part of the system, 

fitting of the local velocity is necessary to smooth the boundary condition from the MD fluid 

that is applied to the continuum region in a given iteration. The Schwarz alternating method 

has already been used for multiscale simulations bridging the nano- and meso-scales  in 

coupling MD and lattice Boltzmann domains [19]. Fedosov and Karniadakis [18] also 

adapted it to interface MD to a mesoscale region simulated using dissipative particle 

dynamics (DPD), which in turn was coupled to a numerical Navier-Stokes solution. While 

this strategy decouples both time and length scales, it is less suitable for dynamic problems 

since each time-step is treated as quasi-steady-state and requires iteration, although often a 

single iteration per time-step may be sufficient for non-equilibrium systems [1]. 
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A different multiscale approach involves molecular to coarse-grained molecular 

coupling rather than molecular-continuum coupling, and one such strategy for interfacing 

atomistic models to a coarse-grained particle-based description has been proposed by 

Praprotnik et al. [20] The coarse-grained representation in their work is obtained from the 

molecular one by structure matching. Their “adaptive resolution scheme” (AdResS) then 

smoothly interpolates from the molecular to the coarse-grained particles as they pass between 

an atomistic region and a coarse-grained one [20–26]. Of course, a molecule’s degrees of 

freedom are not conserved and continuously change as it traverses the intermediate region 

between the atomistic and coarse domains [20]. This method has been used to develop 

simulations of liquids with tetrahedral structure, including water, which are coupled to 

coarse-grained molecules with isotropic pair potentials obtained through Boltzmann 

inversion [20,21,23,25,26]. While it was originally described in the constant temperature 

case, recently this technique has been adapted for constant energy simulations, although the 

latter formulation results in a drift force such that momentum is only weakly conserved [27]. 

Importantly, this method has also been used in triple-scale simulations of water in which 

atomistic and coarse-grained mesoscale regions are coupled to a finite-volume continuum 

solution by exchange of fluxes between the different domains [24]. One issue of concern in 

such approaches is the lack of transferability in the coarse-grained model. Typically the 

structure-matched coarse-grained potential is a function of the system thermodynamic state, 

and thus simulating systems with temperature or density gradients, or across a variety of 

conditions, can be difficult to implement in a thermodynamically-consistent manner. 

Smoothed particle methods offer an alternative and particularly convenient approach 

to incorporating coarse-grained mesoscale and continuum regions in multiscale simulations, 

and this is the main strategy that we consider in this chapter. Such particle-based continuum 
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solvers include smoothed particle hydrodynamics (SPH) [28–30] (also see Chapter 6 for 

detailed discussion) and smoothed dissipative particle dynamics (SDPD) [31]. In SPH, the 

problem domain is discretized into a set of Lagrangian particles or nodes. At each time-step, 

the strain or strain-rate at a selected particle is computed from the particle velocities/positions 

in the system at that time. With the strain/strain-rate known, the stress at each particle is 

calculated, from which the corresponding particle acceleration can be determined. Particle 

positions and velocities are integrated in time as in traditional MD [30], although the 

equations of motion are distinct and formulated from a top-down, continuum assumption. 

Thus, SPH is essentially a method for numerically solving the hydrodynamic equations with 

a formalism that is reminiscent of MD [30]. SDPD is an extension of SPH to the mesoscale 

proposed by Español and Revenga that introduces thermal fluctuations in the field variables 

of the continuum solution [31]. In SDPD, the size of the fluid particles is determined by the 

choice of a parameter called the “smoothing length”. Decreasing the smoothing length results 

in finer resolution and less massive particles that are subject to larger thermal fluctuations, 

whereas in the limit of large smoothing lengths, fluctuations disappear and continuum 

hydrodynamics in the form of SPH is recovered.  

Particle-based solvers of the continuum equations offer a natural method of coupling 

with inherently particle-based descriptions of the molecular world. The use of discrete 

particle methods for all length scales in a multiscale simulation seems to have been first 

suggested by Dzwinel et al [32]. This perspective was subsequently adopted by Liu and Liu, 

who demonstrated that SPH can be stably coupled to MD [30]. These authors provide two 

possible schemes: (i) In the first approach, particles within an overlap region interact through 

both MD and SPH forces. (ii) In the second, force-bridging eliminates the need for an 

intermediate domain; MD particles interact through an atomic potential (e.g. Lennard-Jones), 
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SPH particles interact through SPH forces, and at the interface between the two regions, MD 

and SPH particles interact symmetrically through some arbitrarily chosen interaction (SPH or 

MD). A similar approach was suggested by Ganzenmüller et al. [33], who instead used an 

algebraic mean of MD and SPH forces for cross interactions. These techniques require a 

thermostat for the MD region since the (non-fluctuating) SPH particles otherwise dissipate all 

heat in the MD portion of the system through viscous interactions.  

While successful in reproducing velocity profiles for a number of flow types, these 

existing coupling methods are not ideal if the smoothed particles are subject to fluctuations. 

For very small particles, the presence of thermal noise can lead a softly-repulsive SPH 

particle to jump across an interface and instantaneously change type to a MD atom; since 

MD potentials frequently feature a steeply-repulsive core, catastrophic forces result when 

such a particle enters the overlap region [approach (i)] or the MD region [approach (ii)] and 

lands close to another MD atom. Alternatively, if fluid particles are much larger than MD 

atoms such that fluctuations no longer yield large particle displacements per time-step, mass 

conservation requires performing particle insertions and deletions when particles cross the 

fixed boundaries. This is difficult to realize in an efficient manner that does not artificially 

disrupt either domain’s equations of motion. 

In our work, we recognize that the tunability of the characteristic length scale (the 

smoothing length) makes SDPD an ideal candidate for multiscale simulation. Moreover, 

fluctuations in the MD part of the simulation will not disrupt the continuum solution since 

SDPD already features thermal noise in the velocity field. Kulkarni et al. [34] demonstrated 

that it is possible to couple two SDPD regions with different resolutions (i.e. smoothing 

lengths) and reproduce correct thermodynamic equilibrium properties across an entire 

simulation box containing both domains. This opens the possibility for multiscale simulations 
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spanning length scales from the mesoscopic to the continuum. Moreover, these authors 

showed that there is a smoothing length at the atomistic scale at which a collection of SDPD 

particles can successfully reproduce both dynamic and thermodynamic properties associated 

with a Lennard-Jones fluid. Therefore, coupling MD to a reduced-scale SDPD fluid seems to 

be the major missing link in using such methods to cover the spectrum of length scales from 

macroscopic to atomistic. Flux/state-exchange between MD and continuum domains is often 

difficult to implement due to the fundamentally different fluid description in the molecular 

region (particle-based) versus the continuum one (grid-based); hence, by employing a 

particle description for the continuum fluid, we can readily determine the flow field across 

all length scales in the Lagrangian frame. Another significant advantage in employing a 

particle description throughout the simulation box is that conservation of quantities such as 

mass and momentum is incorporated in a natural and intuitive fashion. 

 In this chapter, we develop a technique for coupling an atomistic MD region to a 

fluctuating continuum solution obtained using SDPD, which in turn can be coupled to 

increasingly coarse SDPD regions via the strategy of Kulkarni et al. [34] Instantaneously 

changing particle types at a sharp interface can incur catastrophic forces; hence, we follow 

the adaptive resolution approach and introduce a switching function such that particles 

change type gradually across an “overlap” region. For the atomistic region, we choose a 

Lennard-Jones fluid and demonstrate that with the method described here, correct 

thermodynamic properties are reproduced within the entire system. In order to reduce 

chemical potential gradients present due to differences in resolution, we introduce a pairwise 

thermodynamic force that performs work on the particles in the buffer region between the 

atomistic and continuum fluids. A derivation and discussion of this force is provided in 

Section 3.5. Finally, in Sections 3.7 and 3.8, we show that our method for coupling MD and 
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SDPD correctly captures hydrodynamics by performing dual- and triple-scale simulations of 

shear flow. In order to illustrate the robustness of this approach, we consider two different 

cases: one in which shear forces act in a direction parallel to the interface between the 

continuum and atomistic region, and one in which they are perpendicular. This multiscale 

method is generalized for ideal fluid mixtures in Chapter 5. 

 

3.2 Smoothed Dissipative Particle Dynamics 

 

Because it is the key element of the multiscale approach described in this chapter (as 

well as essential to Chapters 4-6), we first provide a brief summary of smoothed dissipative 

particle dynamics. To date, SDPD has been used to simulate a variety of mesoscale 

hydrodynamic phenomena including simple polymers [35,36], pinned DNA subjected to 

shear flow [37], colloidal particles [35], the flow of blood [38], suspensions [39], and 

viscoelastic flows [40]. In this method, the domain is composed of a collection of particles or 

fluid volumes that evolve in time according to equations of motion obtained from a 

discretization of the fluctuating Navier-Stokes equations based on interpolation theory. The 

Navier-Stokes equation in Lagrangian form is [41] 

 2 .
3

d p
dt

          
 

v v v  (3.1) 

In applying the aforementioned particle discretization to this expression, it is possible to 

obtain an equation of motion for all the particles in the system, i.e. Eq.(3.1) can be solved 

numerically by deriving an appropriate interaction between particle pairs and integrating 

particle positions in time. The reversible contribution to the dynamics of particle i in the 

resulting equation is [31,35] 
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where N is the number of particles in the system, pi is the pressure at particle i, ρi is the 

density at particle i, mi is the mass of the ith particle, Wij is the smoothing kernel (discussed 

below), and eij is a unit vector joining the centers of particles i and j, /ij ij ije r r  with 

ij i j r r r . Eq.(3.2) determines the force on particle i due to the local pressure distribution 

and corresponds to the discretization of the pressure gradient term in Eq.(3.1). The 

irreversible, viscous contribution to the Navier-Stokes dynamics is represented in SDPD by 
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Here, η is the fluid shear viscosity, ζ is the bulk viscosity, and ij i j v v v  is the relative 

velocity between particles i and j. The contribution of Eq.(3.3) to the SDPD equations of 

motion accounts for dissipative interactions between neighboring SDPD particles [i.e., the 

second and third terms on the right-hand side of Eq.(3.1)].  

The last component of SDPD is the presence of thermal noise in the velocity field. 

Fluctuations are introduced in a thermodynamically-consistent manner through the 

GENERIC [42–44] formalism (see Appendix 4.8.1 in the following chapter for a brief 

review),  and are described by [31,45] 
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ijdW  is a tensorial generalization of the stochastic Wiener process*, and ˆ
ijdW  is the traceless, 

symmetric part of ijdW , i.e. 1ˆ tr
2 3ij ij ij ijdW dW dW d


            W . The form of this 

random contribution to the dynamics is postulated such that it is consistent with the tensorial 

structure of the friction forces in the hydrodynamic equations [45]. This final contribution to 

the equations of motion is the force on particle i due to random stresses induced by thermal 

fluctuations in the fluid. Fluctuation-dissipation is satisfied by the following choice for the 

magnitudes of the noises Aij and Bij: 
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r

 (3.5) 

Equations (3.2), (3.3) and (3.4), together with the noise magnitudes given in Eq.(3.5), 

collectively yield a set of stochastic differential equations governing the velocity field for a 

SDPD fluid at constant temperature. All these terms, including the viscous and random 

forces, act symmetrically on pairs of particles so that momentum is conserved; in other 

words, particle forces are pairwise and depend only on the position and velocity difference 

vectors.  

                                                             

* We use W in reference to both the Wiener process and the smoothing function for historical reasons, though 

the two are unrelated. 
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The smoothing kernel Wij is an even, monotonically-decreasing function of the 

particle separation rij with compact support, normalized to unity. Here we use the cubic 

spline [46,47,30,34],  

  

2 3

3
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3 31 , 0 1,
2 4

1 1( ) 2 , 1 2,
4
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ij

q q q

W q q q
h
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
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


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 (3.6) 

where q = rij / h. The support domain of a point is determined by the smoothing kernel and 

equals κh, where κ = 2 for the cubic spline. While the sums in Eqs.(3.2), (3.3) and (3.4) 

extend over all the particles in the system, the compact support condition for the weighting 

function implies that only nearby particles contribute to the sums. 

 In the SPH and SDPD approximations, field variables and their spatial derivatives are 

calculated from a weighted average using properties associated with nearby particles, where 

the weight is determined by the kernel Wij or its derivative, respectively, at the neighboring 

particle’s location. For instance, the density at particle i is simply a weighted average over 

neighboring particle masses, 

    
1

, .
N

i j i j
j

m W h


 r r r  (3.7) 

The density field is updated at each time-step by performing this sum; an alternative 

approach is to use a discretized form of the continuity equation [30]. Note that a different 

density is obtained from Eq.(3.7) depending on whether particle i itself contributes to the 

sum. Generally, the particle’s own contribution should be included since the particle 

distribution for an SPH fluid has order [48], although for small smoothing lengths where the 

distribution of particles is more disordered due to thermal noise, this can lead to an 
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overestimated density [49,48,34]. In the present work, we include the self-contribution to 

density. This is an important subtlety that is revisited in later sections. 

 

3.3 Boundary Conditions 

 

Solid boundaries in a SDPD region are treated as a collection of SDPD particles 

frozen on a lattice with the same number and mass density as the fluid. Hence, a particle near 

a boundary experiences the same kinds of forces due to surrounding particles as a fluid 

particle in the bulk far away from any interfaces. The wall-fluid particle pair interactions are 

the same as the fluid-fluid ones, except the velocity difference in the viscous force between 

the particles [Eq.(3.3)] is modified by assigning an artificial velocity to the wall (or “virtual”) 

particle such that no-slip is enforced precisely at the fluid-solid interface. This is achieved by 

calculating the normal distance of the fluid and wall particles from the surface (df and dw, 

respectively) and linearly extrapolating the velocity profile due to the fluid particle into the 

wall such that the velocity is zero at the boundary. New relative velocities between fluid and 

wall particles are computed for every pair at each time-step as the fluid particle positions and 

velocities evolve in time. Wall particle densities may be held constant or evolved in time; in 

this chapter we choose the latter since some work suggests that keeping boundary particle 

densities fixed gives an inaccurate representation of fluid peak pressures near the fluid-solid 

interface [50]. For additional discussion on this approach, see Ref. [50], as well as in Chapter 

6. 
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In this section we provide a brief derivation of how this artificial velocity for the 

virtual particles is computed. For simplicity, we assume a planar boundary located at 0z  , 

though this approach is readily extended for curved surfaces as well [50]. We are interested 

in calculating the pair interaction between a fluid particle located a distance df from the 

boundary and a wall particle located dw from the boundary (see Fig. 3.1 below). The fluid 

particle has velocity vf, and the goal is to assign a velocity vw to the wall particle such that 

no-slip is enforced at the boundary located at 0z  , which moves with velocity vs. Assuming 

the velocity profile is linear in the vicinity of the surface, we obtain an equation for ( )zv  

through interpolation of the fluid particle and boundary velocities, 

     .f s s
f

zz
d

 
    

 
v v v v  (3.8) 

 

Fig. 3.1. Illustration of the boundary particle approach of Morris et al. Solid objects are treated through 

a collection of particles frozen on a lattice, and for every pair interaction, a virtual velocity vw is assigned 

to the wall particle such that no-slip is enforced at the fluid-solid boundary (z = 0).  

vf

vw

z = 0z = -dw z = df

boundary fluid
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Substituting 0z   and fz d  into Eq.(3.8) gives the velocities of the boundary (vs) and the 

fluid particle (vf), respectively. Using this equation for the linearized velocity near the 

surface, we now extrapolate the velocity to the position of the boundary particle. Hence, we 

obtain a velocity for the boundary particle that guarantees no-slip at 0z   by substituting 

wz d   into Eq.(3.8), 

     .w
w w f s s

f

dd
d

 
       

 
v v v v v  (3.9) 

The SDPD viscous force depends on the relative velocity between particle pairs [Eq.(3.3)]. 

Using Eq.(3.9) and following some algebra, we rewrite the velocity difference between the 

fluid and wall particle fw f w v v v  as 

  1 .w
fw f s

f

d
d

 
    
 

v v v  (3.10) 

Note that the velocity difference is now between the fluid particle and the nearest point on 

the solid boundary, rather than between the two particles. If the boundary is stationary (

0s v ), Eq.(3.10) simplifies to [50] 

 ,wf fv v  (3.11) 

where 

 maxmin ,1 .w

f

d
d

 
 

   
 

 (3.12) 

Hence, the velocity difference ijv  in Eq.(3.3) is replaced with Eq.(3.10) when one of the 

particles belongs to the boundary. Note that β diverges in the limit of 0fd  , i.e. when the 

fluid particle closely approaches the fluid-solid interface. This is typically remedied by 

introducing a constant βmax, which restricts the magnitude of the velocity assigned to the wall 
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particle. For the work presented in this chapter, we choose βmax = 1.5 [34,50], which 

numerical tests suggest is an optimal value for this parameter.  

It is important to note that even though an artificial velocity is assigned to the virtual 

particle, this velocity is not used to integrate the wall particle’s position in time since we 

have fixed boundaries, and a new artificial velocity is assigned to a given wall particle for 

every pair interaction. For the simulations described here, the positions of wall particles are 

evolved using the actual boundary velocity vs. The use of fictitious, “artificial” velocities as 

described in Eqs.(3.10) and (3.11) is simply a construct for modifying the pairwise forces 

that ensures interactions between all particles is consistent with no-slip; since all pair 

interactions satisfy no-slip at the boundary, the overall velocity field exhibits no-slip as well. 

If we simply translate the wall particles with the boundary velocity without these modified 

wall particle velocities, no-slip still applies to the fluid, although the location of where the 

velocity relative to the surface vanishes becomes ambiguous and the precise location of the 

surface is no longer clearly defined. 

Finally, note that the modified velocity difference in Eq.(3.11) will not rigidly enforce 

the kinematic boundary condition. Due to the high diffusivity of SDPD particles with a very 

small smoothing length, additional measures such as specular reflection, a higher wall 

particle number density, additional interparticle forces [30], or velocity averaging [30,31,51] 

may be necessary to fully prevent boundary penetration. In the presented work we use 

specular reflection, i.e. if a fluid particle crosses the boundary, the component of its velocity 

normal to the boundary is reversed so that the particle leaves the boundary region during the 

subsequent time integration. 
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3.4 Adaptive Resolution Scheme for Coupling MD to SDPD 

 

We couple MD to SDPD using the adaptive resolution scheme (AdResS) proposed by 

Praprotnik et al. [20] This makes it possible to define a fixed overlap domain between the 

two regions where particles continuously change type from MD to SDPD and vice versa. In 

this scheme, reversible particle pair interactions are turned on/off via a weighting function 

that depends on their positions within the transition domain. Particles within the MD region 

interact through an atomistic potential and in the SDPD domain particles interact through 

SDPD forces [Eqs.(3.2), (3.3), (3.4)]. Within the overlap region, particles interact through a 

linear combination of both interactions, as described below. AdResS has been considered in 

the context of coupled MD/finite-volume continuum solutions previously [24], but has not 

been used with particle-based continuum solvers (e.g. SDPD), even though they present a 

natural option since one only has to consider particle-particle interactions. Importantly, 

through this kind of pairwise MD-SDPD coupling, thermal noise in the MD region will not 

lead to error in the continuum solution since fluctuations are already present in SDPD. 

Moreover, one can avoid particle insertions and deletions by decreasing the smoothing length 

of the SDPD fluid such that the SDPD particles are identically massive to the MD ones. This 

SDPD domain with atomistic resolution can then be coupled to more coarse SDPD regions 

using the method of Kulkarni et al [34]. An attractive feature of the AdResS approach is that 

it can be used for coupling to atomistic fluids with complicated molecular geometries [20–

23,25,26]. 

To implement AdResS, we define a switching function s(z) that is zero in the SDPD 

domain, unity in the MD domain, and smoothly and monotonically transitions between these 

two values in the buffer region. An example of such a function is shown in Fig. 3.2. With this 
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switching function, it is possible to define the quantity    i js z s z  , which can be used 

(as shown below) to interpolate between pairwise particle forces and continuously change 

particle types within the buffer region. Hence, reversible interactions between particle pairs 

can be written as a linear combination between the atomistic MD forces and reversible SDPD 

forces [Eq.(3.2)] [20], 

  1 .MD SDPD
ij ij ijrev rev

   F F F  (3.13) 

The form for the MD force depends on the interatomic potential. More generally, Eq.(3.13) 

describes the reversible dynamics across the entire simulation domain; for example, for 

particle pairs in the MD region, s(z) for both particles is equal to unity, and thus the second 

term vanishes, leaving only MD interactions, as we would expect. Similarly, if both particles 

are within the SDPD region, λ is zero for the pair and the first term involving MD forces 

vanishes, and the reversible dynamics are described by Eq.(3.2). Note that for the buffer 

Fig. 3.2. Adaptive resolution weighting function versus position in the problem domain (dark black 

curve). A snapshot of the system is superimposed for clarity. The part of the domain where ( ) 1s z   is 

the MD region, the part where it is zero is the SDPD region, and particles within the remaining “buffer” 

domains interact through a linear combination of both MD and SDPD forces. 
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region ( 0 1  ), the weighting by λ is only applied to the reversible part of the dynamics, 

and the viscous and random forces [Eqs.(3.3) and (3.4)]  are applied to all buffer particles 

without weighting. This is done in order to thermostat the buffer to the correct temperature 

and is discussed in more detail below. Because Eq.(3.13) interpolates between pairwise 

forces, momentum is conserved. 

 For a simple two-scale AdResS system with periodic boundary conditions in all 

directions and a vector normal to the two overlap or “buffer” regions between the MD and 

SDPD regions in the z-direction (Fig. 3.2), an example for the aforementioned weighting 

function used for interpolating forces inside a buffer bounded by minz z  and maxz z  is [20] 

   2sin , .
2

min
min max

max min

z zs z z z z
z z

  
       

 (3.14) 

This function smoothly transitions from a value of zero in the SDPD domain to unity in the 

MD region. A similar function may be defined for the second buffer, which is necessary due 

to the simulation domain periodicity. The form for the global switching function is shown in 

Fig. 3.2, together with a superimposed example snapshot of the simulation box for a simple 

system with periodic boundary conditions in all directions.  

 Additional care is necessary to address the manner in which the MD potential is 

switched on/off within the buffer since it typically contains a steeply repulsive core. In this 

work, we choose a Lennard-Jones (LJ) potential for the MD region, which diverges at zero 

particle separation. The sudden onset of LJ interparticle forces at the MD/buffer interface 

when λ becomes nonzero can be catastrophic if the SDPD particle enters the buffer region 

close to another particle. Praprotnik et al. remedy this issue by capping the atomistic 

interactions [20]. Instead of this approach, we use the weight parameter λ to gradually switch 

on the atomistic repulsive forces. Specifically, within the buffer region we use core-softened 
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LJ interactions [52] that continuously approach the normal LJ interactions with decreasing 

distance from the LJ/buffer interface, 
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12 6
5

3 26 6 6 6

2
24 , ,

( , , ) 1 1

, .

ij ij
ij ij ij ij cMD

ij ij i j ij ij ij ij

ij c

r r r
r z z r r

r r

 


   

  
                



e
F

0

 (3.15) 

Here, ij  and ij  set the length scale and energy for the interaction, respectively, and rc is the 

cut-off radius. For the case of 1  , this expression reduces to the familiar LJ force. Even 

with these measures, an insufficiently small time-step may still lead to instability, although 

we find that this scheme is stable for typical MD simulation time-steps. It is worthwhile to 

note that the core-softened LJ potential is frequently used in alchemical free energy 

calculations that introduce and remove atoms and their interactions for related numerical 

reasons [53]. 

 Lastly, it is necessary to apply a thermostat either to the full system or to the buffer 

region when using the AdResS approach [20,21]. The two domains in such a dual-scale 

simulation can be considered as different phases in equilibrium  [20,21,26], with a 

corresponding latent heat for particles traveling between the atomistic and coarse regions. 

Without a thermostat, the loss of heat that occurs within the buffer region results in a MD 

domain at a lower temperature than the SDPD region that is by construction thermalized to 

the correct temperature. This undesirable temperature imbalance leads to a pressure 

differential that is relaxed by a transfer of mass into the MD region, resulting in a non-

uniform density distribution. This issue is resolved by applying a thermostat to the entire 

buffer region. In this study, we use the SDPD thermostat, i.e. the irreversible and stochastic 

SDPD forces [Eqs.(3.3) and (3.4)] act on all buffer particles without any weighting by the 
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parameter λ, and the switching function is only used to interpolate between the MD and 

SDPD reversible dynamics. Hence, at one end of the buffer, the particles are simply a SDPD 

fluid, while at the other end they are a MD fluid coupled to a SDPD thermostat. This 

thermostat is similar to the dissipative particle dynamics (DPD) thermostat [54,55] that is 

frequently used in molecular dynamics simulations, which also introduces pairwise viscous 

and random forces between particles. The pure MD region itself is not thermostatted, but is 

still held at fixed temperature due to its interface with the buffer, and thus the correct 

deterministic dynamics in the MD region are preserved. We note that in addition to AdResS, 

hybrid explicit/implicit solvent approaches also typically require a similar stochastic buffer 

region [4,5], as do multiscale simulations using flux exchange [9] and the Schwarz 

alternating method [10]. 

 

3.5 Pairwise Thermodynamic Force 

 

The unphysical mixture of interparticle forces within the buffer region [Eq.(3.13) and 

Fig. 3.3] can lead to deviations from the target density at equilibrium. For example, Lennard-

Jones particles experience both attractions and stiff repulsions, whereas SDPD particles are 

subject to an effectively soft-repulsive many-body force. A mixture of these two 

fundamentally different forces can result in particles with very different properties (e.g. 

effective size, attraction, repulsion) than either of the two original interactions alone—for 

instance, mixed particles may have a repulsive core at a smaller radius, which leads to a local 

density increase at equilibrium. Similarly, the mixture of these forces could lead to a larger 

effective particle size and yield a region of depleted density. The specific implementation of 

λ in the selected MD potential [e.g. Eq.(3.15)] also affects how the effective particle diameter 
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changes with position within the buffer. The emergence of a non-uniform equilibrium density 

distribution in the transition region can be viewed in terms of chemical potential gradients 

due to mixed particles. Indeed, simulations using the hybrid methodology described above 

show significant deviations from the target density in the buffer if no means are taken to 

correct this (red curve, circle markers, Fig. 3.4b). 

To compensate for these unphysical deviations from the target density, we introduce a 

“thermodynamic” force that performs work on the particles within the transition region such 

that the density remains approximately flat. A loose physical interpretation of this work is 

 

Fig. 3.3. Effective time-averaged force-versus-separation between particle pairs as a function of position 

within the buffer. Curves were obtained from simulations where all the particles in the system interact 

through either pure MD or SDPD forces, or some linear combination of the two that is constant 

throughout the simulation domain. The red (solid triangle) and blue (solid circle) curves denote the force 

between pure MD and SDPD particles, respectively. The green (hollow circle) and orange (hollow 

triangle) curves indicate the hybrid force at two different points within the buffer region. The results 

show that hybrid particles with λ between 0 and 1 can experience effective repulsions corresponding to a 

modified particle size. 
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that it gives the necessary effort required to remove or add degrees of freedom to a particle as 

it transitions from one type to the other. A similar approach has already been rationalized and 

tested in work using AdResS [25,26]; specifically, Fritsch et al. introduce a thermodynamic 

force of the form [26] 

  
0

.th m p


 F r  (3.16) 

To a linear approximation, the force acting on particle i can be rewritten as 

  2
0

,th i
i i

T

m


 
  F r  (3.17) 

where κT and ρ0 denote the isothermal compressibility and density, respectively, of the fluid 

at the desired thermodynamic state. Here, the pre-factor 2
01 / T   is interpreted as the 

variation of the local chemical potential due to changes in density [26], since 

  21 / TT
      . It is clear that Eq.(3.17) applies a force to particles only in the presence 

of density gradients, and that the force promotes particles to move from regions of higher to 

lower densities, i.e., opposite the gradient.  

In order to determine the form for the thermodynamic force, it is necessary to perform 

a reference simulation and obtain the density profile within the buffer through a binning 

procedure. With the density profile known, Eq.(3.17) can be used to numerically determine 

an optimal force as a function of position. Then, a new simulation can be performed using 

this force and the new density distribution will appear “flatter”. Subsequent modifications to 

the force may need to be applied through iterations of Eq.(3.17) and additional test 

simulations until the density distribution is deemed sufficiently flat. A potential drawback of 

this type of force is that it is single-body and position-dependent, resulting in loss of 

momentum conservation within the simulation domain. 
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The ideas above can be reformulated in a particularly convenient way that also leads 

to improved behavior for the present scenario involving SDPD particles. For our problem we 

have access to the instantaneous density distribution at every time-step since we calculate 

SDPD interactions within the buffer; therefore, we seek to write an equivalent 

thermodynamic force that acts in real-time and does not require iterative simulations. 

Moreover, we would like to symmetrize this correction force such that it is pairwise and 

momentum is conserved. First, we write the thermodynamic force as 
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Since        21 / 2i i i    r r r , this expression may be rewritten as 
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Let    2 2
0i ig   r r  and note that we can write, 
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Here, we have used the shorthand  i ig g r . In the SPH approximation, the gradient 

operator can be expressed as a sum over particles such that 
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Therefore, we arrive at a pairwise thermodynamic force 
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In the SPH approximation, the subtracted constant ρ0 should vanish due to the antisymmetry 

of the weighting function derivative for a completely uniform particle distribution. If the 

particles are not distributed uniformly, the subtracted constant will lead to a non-zero 

contribution to the pairwise correction force and hence penalize deviations from a flat 

distribution. Note that Eq.(3.22) is equivalent to the reversible SDPD force [Eq.(3.2)] if we 

choose the following equation of state: 

  2 2
02

0

1 .
2i i

T

p  
 

   (3.23) 

The equation of state for a system that is a linear combination of two systems with identical 

equations of state may not necessarily be the same as that in the two individual regions [21] 

and hence we can also think of this thermodynamic force as a modification to the SDPD 

equation of state within the buffer that minimizes density gradients. Note that both the 

iterative and SDPD thermodynamic forces are independent of the specific choice for the MD 

interaction potential and are thus quite general. Here, the density ρ0 includes the particle self-

contribution (discussed in Section 3.2) since the force depends on the density defined at each 

particle, which will be overestimated for small smoothing lengths. Importantly, the force 

described by Eq.(3.22) is pairwise in form and thus conserves momentum. This pair force is 

zero if the density at both particles is precisely equal to the target density, as we would 

expect. If both particles occupy a high-density region and their densities are higher than the 

target value, the net force will be repulsive and drive them apart. If both particles are in a 

low-density region, the net force will be attractive, and thus impede the particles from 

separating.  

 One final modification to the thermodynamic force ensures that it only applies to 

mixed particles in the buffer region and continuously vanishes as both particles approach 
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either the pure MD or SDPD domains. This is achieved by using the switching function 

 i is z s  [Eq.(3.14)] to define a weighting parameter 2[ (1 ) (1 )]i j j is s s s      for the 

thermodynamic force, ensuring that it contributes maximally in the buffer center and 

vanishes at the boundaries. Hence, Eq.(3.13) is modified to include the pairwise 

thermodynamic force so that the reversible dynamics in the buffer are given by 

  1 .buffer MD SDPD th
ij ij ij ijrev rev

     F F F F  (3.24) 

 

3.6 Test of MD-SDPD Coupling at Equilibrium 

 

In order to test this methodology, we first ensure that the coupling scheme yields 

proper thermodynamic equilibrium, that is, thermodynamic properties like the density and 

temperature remain uniform across the simulation domain containing both SDPD and MD 

regions. As a case study, we consider a simple Lennard-Jones fluid with periodic boundary 

conditions in all directions, as illustrated in Fig. 3.2. Values are reported in reduced Lennard-

Jones units and all atoms have a mass of unity.  The extent to which MD particles interact 

with their local environment is determined by the potential cut-off radius rc, whereas the 

extent for the SDPD interaction depends on the particles’ influence domain κh. Hence, we 

can ensure symmetric interactions and momentum conservation for the hybrid particles by 

equating the cut-off radius for the MD potential to the influence domain of the SDPD 

particles. The latter is chosen so that the SDPD particles are identically massive to the MD 

atoms (h = 1.3). Since κ = 2 for the cubic spline, it follows that κh = rc = 2.6. MD atoms are 

held at fixed temperature due to interactions with the buffer particles, which are thermalized 

using the SDPD thermostat as described in Section 3.4. The simulation box features a SDPD 
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domain adjacent to a MD domain with identical dimensions, where the two are separated by 

buffer regions using the AdResS approach discussed in Section 3.4. Periodic boundary 

conditions are used in the x-, y-, and z-directions, and the z-direction is normal to the 

interface separating the MD and SDPD regions.  

A snapshot of the simulation domain is provided for clarity in Fig. 3.2 together with 

the switching function appropriate to this problem geometry. The pure MD and SDPD 

regions of the simulation domain have dimensions Lx = Ly = 13 and Lz = 21 with a reduced 

density of ρ = 0.79. Particles are initialized on a square 12×12×48 lattice inside of a box with 

dimensions 13×13×52, with those between z = 0 and z = 5 (and z = 26 and z = 31) designated 

as buffer particles. Hence, there are a total of 6912 particles. The region between z = 5 and 26 

is the MD domain, and between z = 31 and 52 is the SDPD one. The MD and SDPD regions 

are separated by buffers of width 5. The target temperature is T = 1.0, and the fluid bulk and 

shear viscosities are ζ = 0.9 [56] and η = 1.9 [57,58], respectively. For time-integration, we 

use a modified velocity-Verlet algorithm where SDPD viscous forces are determined from an 

extrapolated velocity computed at the previous time-step [54], and we choose a time-step of 

Δt = 0.002. The system is equilibrated for 2×105 time-steps, and data is averaged over 1×105 

time-steps. 

 In pure SDPD simulations, the fluid thermodynamic properties are specified by the 

equation of state, which is used to obtain the pressure distribution that determines the 

reversible dynamics given by Eq.(3.2). For simulations of incompressible fluids, a common 

choice for the equation of state is 2
i s ip c   [30], where cs is the speed of sound. The 

parameter cs is often selected based on convenience such that small density variations yield 

large pressure gradients, yet not so large that an impractically small time-step is required (i.e. 

such that the fluid is actually quasi-incompressible). However, the above equation of state 
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cannot be used directly for MD/SDPD multiscale simulations since the speed of sound of a 

Lennard-Jones fluid in reduced units at this thermodynamic state is cs = 5 [34], which would 

result in an excessively high pressure in the SDPD domain and drive a flux of mass into the 

MD region. Furthermore, for a SDPD fluid characterized by a small smoothing length, the 

density and hence pressure at a given particle is overestimated due to self-contribution effects 

(discussed in Section 3.2). Therefore, we modify the aforementioned linear equation-of-state 

to ensure that the absolute pressure is not altered by changing the speed of sound, 

  2
0 0.i s ip c p     (3.25) 

Here, p0 is the target pressure, and ρ0 is the target density including the overestimation due to 

self-contribution to density. This expression is simply a local, linear approximation to the full 

equation of state where the absolute pressure and compressibility can be adjusted 

independently, hence making it possible to use the appropriate value for the speed of sound 

and thus match both compressibility and absolute pressure to the target fluid. For the 

temperature and density investigated here, the target pressure for the LJ fluid with a cut-off rc 

= 2.6 is p0 ≈ 1.4. For SDPD particles with a smoothing length of h = 1.3, the overestimated 

averaged density at each particle from Eq.(3.7) is found to be ρ0 ≈ 0.804, which is slightly 

larger than the actual value of 0.787 due to self-contribution effects. This discrepancy is 

important to note: this overestimated SDPD density should be used as the target density in 

the above equation of state [Eq.(3.25)] and the pairwise thermodynamic force [Eq.(3.22)] 

since both of those quantities depend on the density defined at each particle. This quantity 

can be obtained by running an inexpensive pure SDPD simulation at the desired 

thermodynamic state and averaging particle densities. From equilibrium MD simulations, we 
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find that the compressibility of a LJ fluid at the selected thermodynamic state is κT ≈ 0.08, 

and hence the pre-factor for the thermodynamic force is 2
01 / 2 ~ 10T  . 

 The overall approach just described is tested in the absence of flow fields. We find 

that thermal equilibrium is readily achieved and the pure MD and SDPD fluids converge 

within 2.0% accuracy to the correct temperature as estimated from the particle kinetic 

energies. Namely, there are no significant temperature gradients in the direction normal to 

the interface between the two domains (Fig. 3.4a). This accuracy can be further improved by 

coupling the buffer more strongly to a thermostat, or applying a thermostat to the full system. 

 

 

Fig. 3.4. (a) Temperature profile for a LJ system coupled to a SDPD domain at equilibrium with a 

pairwise correction force. The profile is approximately flat, with deviations less than 2.0% from the 

target temperature. (b) Density profiles for the system. The red curve (triangles) is the density without 

corrections, while the blue curve (squares) is with a pairwise correction. The densities within the 

MD/SDPD domains are within 3.2% of the target value with this correction. The black curve (circles) is 

the density profile when the strength of the pairwise thermodynamic force is increased by a factor of 10. 

For the MD and buffer regions, densities are computed by binning the system and counting particles, 

while for the SDPD part of the system, we use the SPH calculation for density [Eq.(3.7)] at randomly 

sampled points. 
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Moreover, the density profile in the system is approximately flat. Fig. 3.4b shows the density 

profile in the z-direction with and without the pairwise thermodynamic correction force. 

While the former exhibits some unphysical deviations in the buffer region from the target 

value, it is improved relative to the case without the thermodynamic force. The uncorrected 

density profile is within 2.8% and 3.6% of the target value within the MD and SDPD regions, 

respectively, with more substantial deviations in the buffer. With this force, the average 

densities inside the MD and SDPD regions are both within 2.9% and 3.2%, respectively, and 

the deviations inside the buffer are noticeably reduced.  The flatness of the density 

distribution can also be further improved by increasing the prefactor in the pairwise 

corrective force. Increasing the strength of this force by a factor of 10 reduces deviations in 

the buffer further and lowers the error in the pure MD and SDPD regions to less than 2.9%. 

Finite-size effects appear to have a measurable, albeit weak, influence on this approach. We 

have performed equilibrium tests in the absence of a thermodynamic force with bulk 

MD/SDPD regions twice as large as the case discussed above, as well as twice as small. 

Increasing the volume of the bulk MD and SDPD regions by a factor of four, while keeping 

the buffer domains identical in size, leads to a change in the density in the SDPD region from 

0.756 to 0.760, and from 0.805 to 0.810 in the MD region. 

 We have also investigated fluctuations in key quantities for the equilibrium case. By 

construction, the multiscale method correctly captures fluctuations in velocity and reproduces 

the appropriate Maxwell-Boltzmann statistics throughout the entire simulation domain. The 

standard deviation of the density in the MD, SDPD, and buffer regions is σρ ≈ 0.027, 0.042, 

and 0.036, respectively. These results suggest that the compressibility is approximately 

matched in all three regions; a more careful choice for the speed of sound in the equation of 

state [Eq.(3.25)] may improve these results. We also note that the unphysical deviations from 
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the target density will affect the compressibilities, and hence some non-uniformity between 

the compressibility values is expected. Finally, the soft potential in the coarse-grained SDPD 

domain leads to a slightly higher diffusivity than in the MD region, which is a common 

feature of coarse-grained systems, and hence mass diffusivity is not completely uniform 

across the full simulation domain.  

We find that the density profile can be further flattened through several approaches. 

One alternative is to use the iterative non-pairwise thermodynamic force, Eq.(3.17). In 

principle, with a sufficient number of iterations and appropriate choice for a thermostat, it is 

possible to obtain a flat density profile to arbitrary precision using this force. This approach 

would be less suited for non-equilibrium problems, however, since it does not conserve 

momentum and may require strong thermostatting. Alternatively, since the Navier-Stokes 

solution does not depend on the absolute pressure of the fluid, we can adjust the p0 parameter 

in the SDPD equation of state [Eq.(3.25)]. Reducing its value to p0 = 0.5, we find that the 

error in density in the pure MD and SDPD regions is improved to 0.5% and 1.2%, 

respectively. It may be possible to reduce the error even further with a more careful tuning of 

p0. Finally, the unphysical density deviations in the buffer region can also be reduced by 

implementing a three-part overlap domain. In this approach, the MD-to-SDPD and SDPD-to-

MD transition regions are separate, with a MD/SDPD coexistence region between them 

where particles of different types interact via SDPD forces. This approach will be the subject 

of future work. 
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3.7 Non-Equilibrium Cases Involving the Start Up of Shear Flow 

 

To levy a more challenging test, we ask how accurately the hybrid method reproduces 

the correct dynamical behavior in a non-equilibrium scenario, when fluxes of momentum and 

mass must be preserved across the buffer region. We again consider a Lennard-Jones fluid 

but in a slab geometry confined between two solid interfaces. After equilibration, we subject 

it to the start up of shear flow by moving one of the solid boundaries with a constant velocity. 

In order to demonstrate the robustness of this multiscale technique, we consider two distinct 

cases: (1) shear forces act in a direction perpendicular to the interface separating the 

atomistic and continuum regions, and (2) shear forces act in a direction parallel to the buffer 

region. In the former case, particles are actually convected by the shear forces through the 

buffer region and thus in some sense are forced (by the flow) to change type. In the latter, 

particles are not convected across the buffer region but diffuse on their own through 

Brownian motion. For all of the non-equilibrium simulations considered, we apply the 

pairwise correction force (Section 3.5) and SDPD thermostat (Section 3.4) in the buffer so 

that momentum in the fluid is conserved. 

 In the perpendicular case, fluid is convected across the buffer region between the MD 

and SDPD domains due to the motion of the solid boundary, as illustrated in Fig. 3.5a. Wall 

particles within the atomistic region are treated as Lennard-Jones atoms tethered to a fixed 

position in space using a harmonic potential with a force constant k = 1000. For the moving 

wall, the equilibrium positions of the harmonic potential for the boundary particles are 

translated at the appropriate velocity. When these atoms enter the buffer region, harmonic 

forces are turned off and the particles freeze at their instantaneous positions, at which point 

they are translated at the wall velocity. These transitional wall particles interact with LJ wall 
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particles through pure LJ interactions and with fluid particles in the buffer through AdResS 

mixed forces, as described previously. We use an Andersen thermostat for the wall particles 

in the MD region. Cross interactions involving hybrid boundary particles are treated as 

described in Sections 3.4 and 3.5, with the pairwise thermodynamic force applied only to 

fluid particle pairs. In order to prevent boundary penetration within the SDPD/hybrid 

domains, wall atoms are initialized on a lattice with a higher number density than the fluid 

(ρn = 1.0), and transition/SDPD fluid particles are specularly reflected at the solid-liquid 

interface, i.e., if a particle crosses the wall boundary, the velocity component of the particle 

normal to the wall is reversed such that it re-enters the fluid domain at the following time-

step. The wall is translated in the x-direction with unit velocity. The thickness of the walls is 

5 and the channel width is 13; in the x-direction, the SDPD and MD domains have a length of 

8 and the buffers have a width of 5. Fluid atoms are initialized at the same number density 

and temperature as in the equilibrium study, and with the same equation of state and 

corrective force magnitude for the buffer. The total number of particles is 6836. Due to the 

large number of hybrid particle interactions, this system setup is not particularly efficient and 

is included to demonstrate the robustness of the technique with respect to the placement of 

the transition regions. 

For the parallel case (Fig. 3.5b), the box dimensions are 13×13×36 and the channel 

width is 26. The fluid atoms are initialized on a 12×12×24 lattice between z = 5 and 31, while 

wall atoms are initialized between z = 0 and 5 and z = 31 and 36 with number density ρn = 

1.0. This results in a total of 5146 particles. The buffer region boundaries are at z = 15.5 and 

20.5. In this case, one solid interface consists entirely of MD particles, while the other is 

always composed of SDPD particles; no transition between particle types ever occurs within 

each wall. Specular reflection is only required at the SDPD fluid-wall interface where the 
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soft SDPD pressure force and high particle diffusivity can lead to boundary penetration. The 

MD harmonically-tethered wall atoms are again held at a fixed temperature of T = 1 using an 

Andersen thermostat and the equilibrium positions of the harmonic potential are translated 

with a velocity of 1. For both cases, we select Δt = 0.001 and equilibrate for 5×104 steps 

before shearing. 

Fig. 3.5c shows the velocity profiles for the perpendicular case in the MD, SDPD, and 

 

 

Fig. 3.5. Snapshots of the system for the (a) perpendicular and (b) parallel flow cases. (c) Velocity profiles 

for the MD, buffer, and SDPD domains for perpendicular start-up shear flow as compared to the 

analytical solution. (d) Velocity profiles for the parallel case. The velocities are averaged over 20 

independent trajectories for both scenarios. 
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buffer regions at various times in the simulation. Rather than performing a local time 

average, results are averaged over 20 trajectories initialized with different random seeds in 

order to correctly capture hydrodynamics [59,60]. The MD fluid is thermostatted by both the 

harmonic oscillating walls in the atomistic region, as well as through contact with the fluid in 

the buffer. We find that the observed velocity profile in each region is in good agreement 

with the exact analytical solution. The absolute error in the velocity per bin, averaged over 

the simulation production trajectory and treating the analytical solution as exact, is 

approximately 0.021 in the buffer, 0.025 in the MD region, and 0.035 in the SDPD region. 

The average velocity in the channel approaches the expected linear profile at steady-state.  

The velocity profiles for the parallel case are shown in Fig. 3.5d, and are also in 

agreement with the exact continuum solution, with an averaged absolute error in the velocity 

profile of 0.025. At steady-state, there is a subtle deviation from the expected velocity profile 

in the buffer region between the MD and SDPD domains for the parallel case. This is due to 

the unphysical, spatially-varying combination of forces, combined with the uniformly applied 

SDPD thermostat, which results in a fluid with a position-dependent viscosity. If better 

accuracy is required, this type of artifact in the dynamics may potentially be remedied by 

introducing a position-dependent thermostat as in Ref. [23]. Since tuning the parameter p0 

may be used to improve the density distribution (Section 3.6), we have also performed 

simulations for the parallel and perpendicular cases at a reduced absolute pressure of p0 = 0.8 

and find no appreciable difference in the results from the case with the true pressure. 
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3.8 Triple-Scale Simulation of Shear Flow 

 

One of the main motivations behind this multiscale approach is that it provides a 

natural interface between MD and continuum models. While the SDPD region considered in 

the examples in Sections 3.6 and 3.7 is of comparable molecular size, it is possible to further 

couple this domain to a series of continuum models of increasing length scale, all the way up 

to the non-fluctuating hydrodynamic limit. To illustrate how such a hierarchy of resolutions 

might work, we consider the parallel shear case and include one MD and two SDPD domains 

of different resolution (Fig. 3.6a). The strategy for bridging SDPD fluids with different 

smoothing lengths is described in greater detail in Chapter 4 and in Ref.  [34], and thus we do 

not elaborate on that approach here. We choose a smoothing length for the coarse SDPD 

particles of h = 1.64, which gives particles twice as massive as the finer SDPD ones next to 

the MD part of the system.  

The triple-scale simulation is performed as follows. The global box dimensions are 

13×13×57. The MD wall has a thickness of 5 and atoms are again initialized at a higher 

density than the fluid (13×13×5 cubic lattice). Next to the wall, atomically-resolved particles 

are initialized on a 12×12×24 lattice across a volume with dimensions 13×13×26, where 

particles within a distance of 10.5 to the wall are designated as MD atoms, particles between 

10.5 and 15.5 units from the wall are hybrid particles, and beyond that particles are 

designated as a SDPD fluid with h = 1.3. Adjacent to this domain is the coarse SDPD region, 

where particles are initialized on a square 9×10×19 lattice over a region with volume 

13×13×26. Coarse particles within a distance of 6 from the box edge are designated as SDPD 

wall particles. The interface region between the fine and coarse SDPD domains has a width 

of 6 and is centered at the point initially separating these two regions. The coarse SDPD 
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number density is half of that in the finely-resolved region; hence, the number of particles in 

the simulation box is reduced by ~1746 as compared to the all-atom case to a total of 6011 

particles. The equilibration time and time-step magnitude are the same as in Section 3.7. 

The system setup and time-dependent velocity profiles are illustrated in Fig. 3.6. 

Once again, we find that the transient solution, averaged over a set of 20 simulations, is in 

agreement with the analytical result throughout the entire problem domain. Hence, 

momentum is correctly transferred across the hierarchy of scales and regions of different 

resolution such that dynamical flows are accurately reproduced.  

 

 

Fig. 3.6. (a) Visualization of the system for the parallel flow, triple-scale simulation. The coarse SDPD 

particles are twice as massive as the finely-resolved ones, with half the number density. (b) Velocity 

profiles across the channel width for different times when the fluid is sheared. The exact solution is 

shown in black. 
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Note that this approach requires simulating an atomically-resolved continuum region 

that acts as a bridge between the molecular region and the coarse-grained continuum one. 

The number of unphysical atomically-sized continuum particles necessary can be 

dramatically reduced by shrinking the fine SDPD region to zero size. The buffer region 

between the MD and continuum region must have width greater than rc so that pure MD 

particles do not interact with continuum ones. Similarly, if the transition zone between SDPD 

domains with different resolution is too small, the abrupt change in smoothing length may 

result in artifacts in the density [61]. However, there is no limitation for the atomically-

resolved SDPD region that separates these transition zones, which can be made arbitrarily 

small. In this kind of setup, MD particles crossing the buffer region gradually transition into 

SDPD particles, and immediately enter into the refining part of the transition zone between 

fine and coarse SDPD particles. We have performed equilibrium tests where the fine SDPD 

region is removed entirely and find no appreciable difference in the density and temperature 

profiles. Density profiles from equilibrium simulations comparing the case with and without 

the atomically-resolved SDPD region are provided in Appendix 3.10.1 and indicate that 

including the fine SDPD region is not required.  Therefore, using the approach described in 

Sections 3.4 and 3.5, it is possible to couple a MD fluid directly to a coarse SDPD region 

where the fluid volumes are more massive than the MD atoms, giving additional significant 

computational savings.  

 

3.9 Conclusions 

 

In this chapter, we describe a new hybrid MD-SDPD coupling strategy for interfacing 

a hierarchy of regions spanning a broad range of length scales from the molecular to the non-
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fluctuating continuum limit. This multiscale modeling approach has both advantages and 

limitations. In terms of advantages, the method ensures mass conservation in a very intuitive 

fashion and does not require iterative simulations to derive a new coarse-grained particle 

model if a different temperature or density becomes of interest, as would be the case for 

structure-, force-, or energy-matching approaches. Furthermore, there is no constraint on the 

atomistic model, provided that it is adequately described as a continuum fluid and the 

appropriate thermodynamic and transport properties at the desired temperature are known. 

However, as discussed in Sections 3.5 and 3.6, the method does require knowledge of the 

system target density with corrections due to self-contribution effects, which necessitates 

running a short, pure SDPD simulation to calculate the overestimated densities at each 

particle as compared to the global system density.  

In the multiscale approach, we couple MD to a region of SDPD particles with the 

same mass as those in the atomistic region. Since SDPD particles are interpreted as volumes 

of fluid, one obvious question is the validity of a SDPD fluid where the fluid volumes have 

the same size as the atoms in the MD region. The viability of a top-down, continuum 

approach at molecular scales is not immediately clear, particularly for non-homogeneous and 

complex fluids. In this respect, the atomically-sized SDPD fluid might simply be interpreted 

as a convenient ansatz that successfully bridges continuum and MD worlds and that satisfies 

an appropriate number of constraints, including the fluctuation-dissipation theorem and basic 

conservation laws. Moreover, the continuum approximation often turns out to work 

surprisingly well when applied to molecular-scale problems (for instance, the accuracy of the 

Stokes-Einstein relation in predicting diffusivities), and this appears to be the case here. For 

the systems considered in this chapter the approach is sufficient, although it may not be 

successful for more complicated fluids. Ultimately, this model provides a bridge between 
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atomistic models and increasingly coarse SDPD regions. Through a hierarchy of SDPD 

domains with different resolutions, it is possible to coarse-grain to a scale where the SDPD 

model is appropriate. Finally, it is also possible to shrink this atomically-sized continuum 

region to zero size such that a very small number of these particles need to be included for a 

given problem, as described in Section 3.8. 

Perhaps the most significant disadvantage of the presented MD-SDPD approach is 

that it does not decouple time scales. The maximum possible time-step is limited by the 

smallest characteristic time scale in the system, determined by the most finely-resolved 

region in the domain. Even if the spatial domains are described by a range of length scales 

from molecular to highly coarse, all regions will be constrained to evolve over the same time 

scales. In this respect, the major computational savings would stem from a reduction in the 

number of particles describing the overall simulation, which of course can be quite 

significant in a simulation with a hierarchy of SDPD regions. However, an attractive feature 

of smoothed particle methods is that particle positions and velocity can be integrated in time 

using algorithms typically used in MD, and there exists a body of literature describing 

modified integrators that allow for multiple time scales. Hence, it may be possible to use 

multiple time-step integrators, such as ones originally developed for MD simulations by 

Tuckerman et al. [62–67], to decouple time scales between the coarse SDPD regions and 

finely resolved ones. In fact, the problem of decoupling time scales in MD simulations 

containing particles with disparate masses has already been addressed [63,62], although it is 

unclear if these techniques will work for SDPD. 

In summary, this work demonstrates that it is possible to employ an adaptive 

resolution scheme in coupling a finely-resolved, molecularly-detailed part of a simulation 

domain treated via molecular dynamics to a fluctuating continuum domain. In contrast to 
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earlier approaches that interface particle-based MD simulations with field-based finite-

volume discretizations, the approach taken here involves representing the continuum solution 

using a particle-based technique, namely smoothed dissipative particle dynamics. The overall 

strategy involves defining a buffer region in which particles smoothly change type when 

passing from the SDPD to MD domain and vice versa. Here we have described how to 

design such a buffer in terms of specific interpolations of reversible interactions and the 

addition of “thermodynamic” forces that account for the change in particle types and 

minimize boundary artifacts. Such simple, modular, and hierarchical approaches in 

multiscale simulation are of growing importance in light of the wide range of problems that 

require the inclusion of multiple length scales. In this work we consider a simple Lennard-

Jones fluid and show that the MD-SDPD approach reproduces proper thermodynamic 

equilibrium globally, as well as accurate transient solutions to simple time-dependent 

hydrodynamic problems independent of the buffer region placement. Because of the success 

in previous studies using AdResS to couple MD fluids with more complicated molecular 

structure to spherically-symmetric coarse-grained particles, we expect that this approach can 

be readily extended to coupling more complicated MD fluids to multiple SDPD domains. 
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3.10 Appendix 

 

3.10.1 Equilibrium Multiscale Simulations with and Without Intermediate SDPD 

Region 

 

We have performed equilibrium simulations of a fluid in a slab geometry (bounded 

by walls, where the vector normal to the boundaries is in the z-direction). For these tests, the 

coarse SDPD fluid particles are four times as massive as the MD particles. All other 

quantities are the same as the ones described in Section 3.6. Two tests were performed, 1) a 

simulation featuring an atomically-resolved SDPD region, similar to the one described in 

 

Fig. A3.1. (a) Density profile for fluid between two walls including the atomically-resolved SDPD region. 

(b) Density profile for a system that is identically set up as in (a), except it does not feature a fine SDPD 

region. Note that there is no discernible difference due to a lack of this domain. As discussed in Section 

3.5, there is a minor mismatch in the densities in the pure MD/SDPD regions, and some deviations of the 

target density in the transition region.  
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Section 3.8, albeit without any fluid motion and 2) a simulation that is identical in all 

respects, except the atomically-resolved SDPD region is removed. For the latter case, the 

MD-SDPD transition region is immediately adjacent to the fine SDPD-to-coarse SDPD 

interface. Hence, for a MD particle moving in the positive z-direction, it gradually transitions 

into a fine SDPD particle, and is immediately combined with another nearby fine SDPD 

particle. 
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4 Multiscale Simulation of Ideal Mixtures Using Smoothed 

Dissipative Particle Dynamics 

 

 

Smoothed dissipative particle dynamics (SDPD) [P. Español and M. Revenga, Phys. Rev. E 

Stat. Nonlin. Soft Matter Phys. 67, 026705 (2003).] is a thermodynamically-consistent 

particle-based continuum hydrodynamics solver that features scale-dependent thermal 

fluctuations. We obtain a new formulation of this stochastic method for ideal two-component 

mixtures through a discretization of the advection-diffusion equation with thermal noise in 

the concentration field. The resulting multicomponent approach is consistent with the 

interpretation of the SDPD particles as moving volumes of fluid and reproduces the correct 

fluctuations and diffusion dynamics. Subsequently, we provide a general multiscale 

multicomponent SDPD framework for simulations of molecularly miscible systems spanning 

length scales from nanometers to the non-fluctuating continuum limit. This approach 

reproduces appropriate equilibrium properties and is validated with simulation of simple one-

dimensional diffusion across multiple length scales. 

 

4.1 Introduction 

 

Stochastic particle descriptions for mesoscale phenomena have become ubiquitous in 

simulation due to their ability to accurately reproduce hydrodynamic behavior over time and 

length scales beyond what is feasible in fully resolved molecular dynamics. In this coarse-

grained picture, the detailed underlying molecular structure is ignored and the problem 
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domain is instead decomposed into a collection of fluid volumes or clusters of 

atoms/molecules, with appropriately chosen interparticle interactions between them such that 

desired thermodynamic and hydrodynamic properties of the original fluid are preserved. 

Coarse-grained particle descriptions of fluids are often obtained from a “bottom-up” 

perspective, where the coarse model is extracted from detailed molecular simulations or 

principles and features a smoother representation of the free energy landscape that allows for 

large time-stepping. Alternatively, it is possible to adopt a “top-down” approach and use a 

coarse-grained fluid description that ignores molecular detail altogether, such as the 

continuum transport equations. Degrees of freedom absent in the coarse model are 

approximated by introducing additional features (e.g. fluctuations of field variables).  

Smoothed Dissipative Particle Dynamics (SDPD) [1] is one such particle-based top-

down approach, and has been applied to a number of phenomena, including pinned DNA in 

shear flow [2], colloidal particles [3], the flow of blood [4], intravascular drug delivery [5], 

suspensions [6], and viscoelastic flows [7,8]. Thieulot et al. [9,10] developed a SDPD-like 

model for a phase-separating fluid mixture by introducing fluctuations through the 

GENERIC formalism [11–13] following a particle discretization of the appropriate 

continuum equations. In addition, Ellero et al. [8] used GENERIC to obtain a discretized 

advection-diffusion equation for a system of Hookean dumbbells in solvent. For the most 

part, however, SDPD has been limited to single-component systems or suspensions where 

dissolved particles are equal in size or larger than the SDPD particles (e.g. colloidal or 

polymeric systems). Multicomponent problems have also been considered in other types of 

particle-based mesoscale simulations [14,15], although this is done in an ad hoc fashion 

where fluid volumes assume a unique identity (e.g. a particle in a two-component mixture is 



87 

either type A or type B). This simple approach is easy to implement and qualitatively 

adequate in many cases, but not consistent with the interpretation of particles as fluid 

volumes, since a single particle in a homogeneous fluid mixture should contain some amount 

of solute and solvent. Therefore, a more rigorous extension of these kinds of particle solvers 

for solutions should instead include an additional variable associated with each fluid volume 

specifying the concentration of solute at the particle. Recently, Li et al. extended traditional 

particle-based solvers to advection-diffusion-reaction systems [16]. There have also been 

recent developments by Kordilla et al. [17], who derived this type of single-scale 

multicomponent stochastic particle method through a direct particle discretization of the 

Landau-Lifshitz fluctuating hydrodynamics equations for mass and momentum transfer [18–

20].  

In this chapter, we take a different approach and instead develop a multicomponent 

SDPD model that provides an appropriate basis for multiscale simulation of hydrodynamic 

phenomena through the GENERIC formalism [11–13] (see Appendix 4.8.1), which 

guarantees thermodynamic consistency. SDPD and other particle-based fluid solvers are 

particularly attractive for designing multiscale simulation strategies that reduce 

computational cost through coarse-graining of select parts of the system, while retaining a 

high level of detail in others. This is motivated by an abundance of problems in molecular 

and interfacial physics that involve processes featuring multiple characteristic length scales. 

In particular, there have been a number of studies describing approaches for coupling 

molecular dynamics (MD) regions to continuum domains, which makes it possible to 

preserve molecular resolution where necessary, and use a simpler, coarse-grained description 

where this level of detail is not required [21–29]. SDPD specifically has already been used in 
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coupled MD-continuum simulations [30]. While there are a number of hybrid simulation 

approaches for single-component problems, developing general multiscale strategies for 

multicomponent systems remains a major challenge. Since SDPD has scale-dependent 

fluctuations, it is ideally suited for multiscale problems, and an approach for coupling two 

SDPD regions featuring different degrees of coarse-graining has been developed by Kulkarni 

et al. [31]. Therefore, generalizing SDPD to multicomponent systems immediately allows for 

a novel approach to multiscale multicomponent simulation, which is the subject of this work. 

This kind of particle-based Lagrangian description offers an alternative to spatially-adaptive 

approaches to solving the fluctuating hydrodynamics equations in the Eulerian frame [32]. 

SDPD addresses a number of issues present in one of the most widespread bottom-up 

particle-based techniques, dissipative particle dynamics (DPD) [33,34]. In DPD, the fluid is 

modeled as a collection of particles, where each particle is interpreted as a cluster of 

molecules that is locally at thermodynamic equilibrium. These mesoscopic fluid volumes 

interact with one another and evolve in time through a Langevin-type equation of motion; 

particles experience a soft repulsion as they approach along the line joining their centers, as 

well as pairwise viscous and random forces with magnitudes chosen in accordance with the 

fluctuation-dissipation theorem. This approach preserves Galilean invariance and conserves 

mass and momentum, giving rise to hydrodynamic behavior [35]. DPD has been applied to a 

wide range of problems, ranging from polymer solutions and melts [36–39], to the rheology 

of spherical and non-spherical colloids [40–42], membranes [43,44], surfactant 

monolayers [45], and vesicles [46,47]. Atomistic interaction potentials, or ones obtained 

from inverse thermodynamic approaches [48,49], can also be used in place of the softly-

repulsive conservative DPD force, i.e. the viscous and fluctuating DPD interactions also 
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provide a basis for thermostatting a fluid in a non-equilibrium setting [50–52]. Despite great 

success in modeling a broad range of mesoscale phenomena, DPD suffers from a number of 

limitations. Fluid transport coefficients (e.g. bulk and shear viscosities) do not appear in the 

equations of motion and are related to the free parameters of the DPD model in an indirect 

fashion through kinetic theory [53,54]. Moreover, traditional DPD fixes the form of the 

conservative force and, in turn, the equation of state such that it is always quadratic in the 

fluid density.  

These issues were resolved by Español and Revenga, who derived the so-called 

“smoothed dissipative particle dynamics” (SDPD) [1] starting from a particle discretization 

of the hydrodynamic equations known as smoothed particle hydrodynamics, or SPH  [55–

57]. SPH is a continuum approach originally developed for modeling astrophysical problems, 

and later modified for simulation of flows in the low Reynold’s number limit [58]. Here, the 

fluid is approximated as a collection of Lagrangian particles that evolve in time according to 

an equation of motion obtained from an interpolation theory discretization of the Navier-

Stokes equations. By introducing fluctuations into the hydrodynamic variables of the SPH 

equations in accordance with the second law, Español and Revenga obtain a general model 

for fluids at the mesoscale that is rigorously derived from a top-down perspective. The 

resulting approach (SDPD) corresponds to a particle discretization of the Landau-Lifshitz 

Navier-Stokes equations and offers a number of advantages over traditional particle-based 

mesoscale techniques such as DPD [1]. Since the basis for SDPD is the continuum 

hydrodynamic equations, transport coefficients are naturally included and appear in the final 

equations of motion, and it is possible to use an arbitrary equation of state for calculating the 

pressure distribution. Importantly, the characteristic length scale in SDPD is properly defined 
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and determined by a parameter known as the “smoothing length”. For systems involving 

small smoothing lengths, the corresponding fluid particles are very small and therefore 

subject to large thermal fluctuations. Similarly, in the limit of large smoothing lengths and 

hence large particles, fluctuations disappear altogether and the deterministic SPH equations 

of motion are recovered. 

We follow the approach in Ref. [1] in this work and start from a continuum, top-down 

perspective to derive a discrete particle model for ideal binary mixtures where the 

concentration field is specified by defining a concentration associated with each fluid 

particle. Unlike Ref. [17], we introduce thermal noise through the GENERIC framework, and 

obtain a model that presents a convenient basis for multiscale simulation. Although this 

approach is only valid for ideal mixtures, it is still useful for a host of problems, such as 

biological and drug delivery applications where the ideal assumption is valid due to the dilute 

concentrations. In using the fluctuating hydrodynamic equations for two-component 

solutions as a basis, we obtain a model where a particle is no longer limited to the discrete 

choice of assuming identity A or B, but rather has associated with it a variable indicating the 

mass fraction of solute contained in the particle volume. We reconcile this multicomponent 

SDPD approach with existing multiscale techniques and provide a general SDPD formalism 

for multiscale multicomponent simulation. In Section 4.2 we derive a fluctuating 

concentration smoothed particle model for a quiescent system (i.e., in the absence of any 

flow fields). In Section 4.3, the model is generalized for systems with flows and fluctuations 

in the velocity field, and in Section 4.5 we describe how this method is used in multiscale 

simulation. The approach is validated through some simple multiscale equilibrium and non-
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equilibrium benchmark problems in Sections 4.5 and 4.6. In Chapter 5, we extend this 

approach to coupled MD-continuum simulations. 

 

4.2 Fluctuating Concentration Model Derivation 

 

We first develop a mass diffusion model for a collection of SDPD particles at 

constant temperature with fixed positions. The model is for a two-component incompressible 

fluid in the ideal mixing limit. We then extend this to cases with momentum transfer 

featuring thermal noise in the velocity field in Section 4.3, in which particles are not 

stationary. The diffusion equation in the Lagrangian frame and in the absence of temperature 

gradients is given by [59] 

  1 .d D
dt 

    (4.1) 

Here, D is the diffusion coefficient for the solute and is defined in terms of units ML-1t-1, the 

concentration Φ is a mass fraction (hence, dimensionless), and ρ is the total mass density of 

the solute-solvent mixture. The time derivative on the left-hand side denotes the material 

derivative, although for the present case where particle positions are fixed and there are no 

velocities in the system, it is equivalent to a partial derivative with respect to time.  

 Discretizing Eq.(4.1) through an interpolant function W, we obtain the SPH 

approximation for the diffusion equation [60], 

 
1

12 .
N

i j iji
i ij

j i j ijij

m m Wdm D
dt r 

    
  

 r
 (4.2) 
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In this expression, im  is the mass of the ith particle, i  is the density of the ith particle, 

ij i j     , and rij is the relative position vector for the particles i and j, ij i j r r r . ijW  is 

the smoothing function (described below). For simplicity, transport coefficients are assumed 

to be uniform throughout the system; for the more general case where the diffusion constant 

varies in space, the quantity 2D  in Eq.(4.2) is brought inside the summation and replaced 

with  4 /i j i jD D D D , where iD  is the diffusion constant for the ith particle [60]. 

The density at each particle can be updated from a discretization of the continuity 

equation, or by performing the following summation at each time-step, 

    
1

, .
N

i j i j
j

m W h


 r r r  (4.3) 

In this equation, h is the smoothing length, a parameter that controls the size of the particles 

and hence the length scale for the fluid. The smoothing kernel  ,ij ijW h Wr  is a normalized 

bell-shaped function with compact support. One possibility is a cubic spline, which is used 

for all numerical tests presented in this work [31,57,61], 

  

2 3
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3
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ij

q q q

W q q q
h

q


    

   





 (4.4) 

where q = rij / h. 

The objective of this section is to introduce scale-dependent thermal noise in the 

concentration field, which is achieved through the GENERIC [11–13] framework (for a 

review of this formalism, see Appendix 4.8.1 in this thesis). In GENERIC, the system 

dynamics are governed by the following stochastic differential equations (SDEs): 
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 .B
E Sdx L M k M dt dx
x x x

             
  (4.5) 

Here, x denotes the independent variables that completely describe the system; in this case it 

is fully specified by the set of particle positions and the respective concentration at each 

particle,  , , 1,...,i ix i N  r . M is the dissipative matrix, a positive semidefinite linear 

operator that acts on the entropy gradients to generate the irreversible dynamics.  E denotes 

the total system energy and L is an antisymmetric operator that translates energy gradients 

into reversible dynamics. For the present case, this term is zero since the processes under 

consideration are purely irreversible; this will not be the case in Section 4.3 where fluid 

motion is considered. In the above-equation, dx  is the stochastic contribution. The term 

 /Bk x M    appears due to the Itô interpretation of the stochastic integral [11,13]. 

For a two-component ideal mixture, the entropy of mixing is simply 

  
0

ln (1 ) ln(1 ) ,i
i B i i i i

mS k
m

 
       

 
 (4.6) 

where m0 denotes the mass of a single atom. Hence 0/i im m N , where Ni is the number of 

atoms or molecules inside the ith SDPD particle. The driving force for an irreversible process 

is given by the entropy gradient, 

 
0

ln .
1

i i i
B

i i

S m k
m

    
        

 (4.7) 

Next, we postulate a form for the noise term. If we assume pairwise fluxes between particles, 

the simplest possible choice for introducing noise in a scalar field is 

 
1

.
N

i i ij ij
j

m d G dV


   (4.8) 
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In this expression, ijdV  is an increment of the Wiener process with the antisymmetry 

ij jidV dV  , and ijG  is the noise amplitude, which is symmetric under exchange of particles 

i and j, ij jiG G . In practice, ijdV  is approximated using a randomly-generated number 

drawn from a normal distribution with unit variance and zero mean,  ~ 0,1ijdV tN . Here, 

t  is the simulation time-step magnitude. The above-symmetries ensure that the amount of 

solute is a conserved quantity, i.e. 

 
1

0.
N

i i
i

m d


    (4.9) 

The fluctuation-dissipation (FD) theorem relates the noise in Eq.(4.8) to the 

dissipative matrix M. For any fluctuating state variable x, the FD theorem can be written as 

2T
Bdxdx k Mdt  . Thus, we use the FD theorem to write the ijth component of the dissipative 

matrix as 

 .
2

i j
ij

B

d d
M

k dt
 


 

 (4.10) 

We substitute the postulated noise terms [Eq.(4.8)] into Eq.(4.10), and write ijM  in terms of 

the noise amplitude ijG ,  

 2
' '

' 1

.
N

i j
i j ij ij jj ij

j

d d
m m G G G

dt




 
 

 
 (4.11) 

Here, we have assumed delta correlated noise by applying the mnemotechnical Itô rule 

' ' ' ' ' 'ii jj ij i j ij i jdV dV dt        [1,62].  

For discrete particle models, the dot operator in Eq.(4.5) corresponds to a sum over 

particle indices. Hence, the stochastic dynamics for the concentration field are governed by 
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 .
2

i j ji

j B j

d d Sd
dt k dt

   
    


 
 (4.12) 

All the quantities on the right-hand side of this expression are known. Substituting Eqs.(4.7) 

and (4.11), we arrive at the following evolution equation: 

 2

10

11 ln ln .
2 1

N
ji i

i ij
j j i

dm G
dt m 

     
            

  (4.13) 

In order to compare this with the discretized diffusion equation [Eq.(4.2)], we modify 

Eq.(4.13) by first writing 

 
1 1ln ln ln .
2 2

ji i

j j i

      
               

 (4.14) 

Linearizing the logarithmic terms,  ln / / 1i j i j     , and recombining them,  

 
1 1 1ln .
2

i
ij

j i j

   
             

 (4.15) 

Here, it is assumed that /i j   is close to unity, i.e. that local concentration gradients and 

deviations from equilibrium are small. This approximation is valid since the accuracy of 

particle-based methods in reproducing gradients scales with the smoothing length, and large 

gradients over length scales smaller than typical particle spacing will not be accurately 

resolved in general. It is possible to derive this type of fluctuating concentration model in 

terms of chemical potentials, which does not require the linearization in Eq.(4.15). However, 

this alternate formulation of the method is less numerically stable and robust, and does not 

offer significant advantages. For completeness, we provide a derivation of this alternate 

method in Appendix 4.8.3. 
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The linearization in Eq.(4.15) is applied to both logarithmic terms in Eq.(4.13), which 

gives the following approximation after some algebra: 

 2

10

1 ,
4

N
i ji

i ij ij
j i j

dm G
dt m 

  
     

  (4.16) 

where we have defined  1i i i    . For fluctuation-dissipation to hold, this equation 

governing the dissipation of the stochastic noise must be equivalent to the discretized 

diffusion equation. Hence, by comparing this expression to Eq.(4.2), we find that the 

following equality must be satisfied: 

 2

0

2 1 1 .
4

i j ij i j
ij

i j ij i jij

Dm m W
G

r m 

     
          r

 (4.17) 

Solving for the noise magnitude term ijG , 

 

1/2

08 1 .i j i j ij
ij

i j i j ijij

Dm m m W
G

r 

    
          r

 (4.18) 

This is the SDPD discretized form of the noise amplitude for the stochastic flux in the 

Landau-Lifshitz Navier-Stokes equations for a binary mixture,  02 1G m D    [63].  

Finally, we compute the term in Eq.(4.5) involving the divergence of the dissipative 

matrix,  /Bk x M   , which arises due to the Itô interpretation of the stochastic differential 

equations (see Appendix 4.8.1). Calculating the divergence of the dissipative matrix is 

generally undesirable [13], although since the model features multiplicative noise, including 

this additional term may be important. Hence, we calculate this term from 

 2
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'

1 1 .
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B ij ij jj ij

j j jj B i j j

d d
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    
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  
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 (4.19) 
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Applying the delta function and simplifying, this reduces to 

 
2 21 1 1 .

2
ij ij

ji i i j j

G G
m m m

  
     

  (4.20) 

After substituting Eq.(4.18) into Eq.(4.20) and differentiating, it is possible to write the final 

SDEs governing the concentration field including the Itô term, 

  
1
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N
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i i ij ij i

j i j ijij

m m W
m d D g dt md

r 

 
      
  

 r
  (4.21) 

Eq.(4.21) is the discretized form of Eq.(4.1) with fluctuations in the concentration field. The 

noise term is described by Eq.(4.8) with amplitude given by Eq.(4.18). In the above equation, 

we have defined the quantity: 
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m m
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 
     

 (4.22) 

Note that this contribution to the governing equation scales inversely with particle mass. 

Hence, for large SDPD particles it is much smaller than the other terms and usually 

negligible. For example, in subsections 4.4-4.6 we perform tests with particles having masses 

such that ijg  is a hundred times smaller than the irreversible term in Eq.(4.21). Moreover, the 

SDPD particles cannot be too small or the continuum assumption breaks down, and thus this 

term’s influence will typically be minor relative to the rest. Hence, in all of the numerical 

tests presented in this chapter, we ignore this contribution (i.e. we assume 0ijg  ). In 

Appendix 4.8.3, we provide a different derivation of this approach using chemical potentials. 
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4.3 SDPD Model for Two-Component Ideal Mixture with Flow 

 

We now consider the more general case when particles are allowed to translate due to 

flow fields in the system. In the presence of fluid motion, the positions of the SDPD particles 

evolve according to 

 .i
i

d
dt


r v  (4.23) 

The velocity vi can be determined from the momentum equation in the Lagrangian 

description [59], 
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dt
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          

 
v v v  (4.24) 

Here, p denotes the pressure distribution, and η and ζ are the shear and bulk viscosities, 

respectively. In discretized form, this equation becomes [1] 
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 (4.25) 

As before, transport coefficients are assumed constant for simplicity.  

The expression governing the evolution of the concentration field remains unchanged 

from Section 4.2 since the particles are now free to move, and velocities determined from 

Eq.(4.25) are included in the material derivative of the equation for the solute transfer, 

Eq.(4.21). Equilibrium fluctuations in concentration and velocity are statistically 

independent [64], hence we do not need to impose any correlation between velocity and 
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concentration in the postulated form for the noise of those quantities. Thus, the appropriate 

form for the velocity noise for an ideal two-component system with flow at constant 

temperature is the same as for the single-component case [1,62], 
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
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v W W I e  (4.26) 

In this expression, ijdW  is a tensorial generalization of the Wiener process and ˆ
ijdW  is the 

traceless, symmetric part of ijdW , 
1ˆ tr
2 3ij ij ij ijdW dW dW d


            W . In non-

equilibrium systems, advection of concentration due to velocity fluctuations in the fluid can 

lead to long-ranged correlations between fluctuations in concentration and velocity, which is 

responsible for the so-called giant fluctuation phenomenon [63,65]. This effect is naturally 

incorporated into Lagrangian fluctuating particle models since the velocity that appears in the 

material derivative of Eq.(4.21) includes the stochastic contribution [17].   

The noise magnitudes for the fluctuations in the velocity field are given by [1] 
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The final SDE for the velocity field is [1] 
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where 

 
1 1 .

4
B

ij
i j

kd
C C
 

   
 

 (4.29) 

Once again, the term arising from the divergence of the dissipative matrix scales inversely 

with an extensive quantity (in this case the extensive heat capacity), and hence becomes 

negligible for large SDPD particles. This term is also not included in the present calculations 

since we only consider situations where particles are massive and this contribution is small. 

For the cases considered in this chapter, it is not necessary to solve the entropy equation 

since it is decoupled from the equations of mass and momentum transfer at constant 

temperature. 

 Solid surfaces are treated in SDPD using virtual particles frozen on a lattice, and 

Dirichlet boundary conditions are imposed using the approach of Morris et al. [58], where 

dissipative and random interactions between fluid and wall particles are modified in order to 

enforce the correct boundary values for the fields (see Chapters 3 and 6 for additional 

discussion). For fluid-wall particle pair interactions, the distance of the fluid particle from the 

wall df and the distance of the virtual particle from the wall boundary dw are calculated. Next, 

we calculate a factor β from 
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f

d
d

    (4.30) 

This factor is used to rescale the dissipative terms in both the momentum and diffusion 

equations, ensuring the solution for the concentration and velocity assumes the correct values 

at the interface. For every pair interaction, this is equivalent to extrapolating the fluid 

particle’s concentration and velocity across the interface and assigning values to the wall 

particle such that boundary conditions are satisfied. Note that the stochastic terms are 

rescaled by  rather than β in order to yield the correct fluctuation-dissipation balance. 

 

4.4 Equilibrium Properties of Fluid Mixture 

 

First, it is necessary to ensure that this model yields the appropriate fluctuations at 

equilibrium. SDPD particles have constant mass, but do exchange solute and solvent with 

their neighbors. Therefore, solute and solvent exchange between particle pairs are not 

independent, and if a particle loses some amount of solute to a neighbor, it must gain the 

same amount of solvent in order to conserve its mass. The variance of the solute fluctuations 

at equilibrium for a fluid volume with a constant mass constraint is obtained from a 

derivation similar to that in Ref. [64], detailed in Appendix 4.8.2. The resulting expression 

for the concentration variance in a collection of SDPD particles each having dimensionless 

mass 0/m m  is given by 

    2 0 1
.

m
m

  
   (4.31) 
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In the following simulations, we choose non-dimensional units such that the mass of a single 

molecule or atom is unity ( 0 1m  ). This implies that the dimensionless mass m of a SDPD 

fluid volume equals the number of molecules N0 that it contains, 0N m . Hence, a particle 

with mass m = 100 can be interpreted as a cluster or fluid volume comprised of 100 fluid 

atoms or molecules. 

To evaluate equilibrium fluctuations in the new model, we consider two cases: 1) 

quiescent fluid at equilibrium with fluctuations in the concentration field alone, as described 

in Section 4.2 and 2) quiescent fluid at equilibrium with fluctuations in both concentration 

and velocity (described in Section 4.3). In the first case, particles exist on a cubic lattice and 

their positions do not evolve in time. As a model fluid, we choose parameters that mimic a 

simple Lennard-Jones-like liquid, and all values are reported in reduced Lennard-Jones units 

using the convention described in Refs. [30,31]. According to Eq.(4.31), the concentration 

fluctuations are affected by the degree of coarse-graining (i.e. the SDPD particle mass) and 

the average concentration in the system. Hence, we vary these two parameters and perform 

equilibrium simulations to ensure we obtain the correct distribution of concentrations for all 

cases. The particle masses considered are m = 25, 100, and 200 (with corresponding 

smoothing lengths h = 3.75, 6.00, and 7.50, respectively). The average concentrations tested 

for each case are  = 0.25, 0.50, and 0.75. For the m = 25 case, particles are initialized on 

a 8×8×8 cubic lattice inside a box with dimensions of 25×25×25 and periodic boundary 

conditions in all directions. For the simulations with particles masses m = 100, 1000 particles 

are initially placed on a 10×10×10 lattice inside a periodic 50×50×50 region. Finally, for the 

m = 200 case, we initialize a 8×8×8 cubic lattice of particles inside a box with size 

50×50×50. The system temperature is T = 1.0 and the mass density is ρ = 0.8, For scenario 
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2), we also solve the momentum equation and choose ζ = 0.9 [66] and η = 1.9 [67] for the 

viscosities. For convenience, the diffusion constant is assumed constant and set to unity (D = 

1.0). 

Fluid thermodynamic properties are determined by the choice of equation of state, 

which is an input parameter in SPH and SDPD. In these smoothed particle techniques, fluid 

motion is driven by local density gradients. Therefore, incompressible flows are typically 

approximated by choosing a quasi-incompressible equation of state that leads to large 

pressure gradients for small density perturbations. The equation of state is constructed such 

that density variations are small (it is recommended that density fluctuations remain within 

3% of the target density [58]), while still allowing for practical time-step magnitudes. 

Presently, we choose 2
i i sp c  [31,56,57], where the speed of sound is cs = 5.0 [31], giving 

average particle density fluctuations within 1.1% of the desired value for all tested fluid 

resolutions. The selected smoothing kernel is the cubic spline [Eq.(4.4)]. The Euler-

Maruyama integrator [68] with a time-step of Δt = 0.001 is used for time-integration for case 

1, where we have fixed particles positions. For case 2, the same time-step is used and particle 

positions are evolved in time using a modified velocity-Verlet algorithm commonly used for 

DPD simulations [17,69], where the concentration field is updated at the same points during 

the integration process as the velocity. The system is equilibrated for 1×106 time-steps, and 

the averaging is over 5×106 time-steps. 

In Figure 4.1, the distribution of fluctuations determined from the SDPD simulations 

at three different average concentrations is compared to the analytical result, given by 

Gaussian distributions with the variance of Eq.(4.31). For clarity, we only show results for 

the fixed-position tests (case 1). The results for the runs where particles are allowed to move 
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are indistinguishable from the fixed-position case as expected, since fluctuations in velocity 

and concentration are statistically independent at equilibrium. For all tests, the numerical 

calculations show excellent agreement with the analytical result. The time-averaged variance 

for the 0.25   SDPD simulations is within 0.8% of the theoretical result for the case 

with m = 200. The error in the variance for the cases with m = 100 and m = 25 is 1.7% and 

6.5% respectively. For the simulations with 0.50  , the error in the distribution variance 

is 0.5% for the m = 200 case, 1.1% for m = 100, and 4.0% for m = 25. These errors are 

further reduced by decreasing the time-step. 

 

Fig. 4.1. Concentration probability distributions obtained from simulations using multicomponent SDPD 

(colored markers) as compared to the analytical result (black curves), given by a Gaussian with variance 

given by Eq.(4.31). Solutions with three different average concentrations are simulated,   0.25 

(circle markers), 0.50 (triangles) and 0.75 (squares). For each concentration, we also consider three 

different particle masses, m = 25 (red markers), 100 (green) and 200 (blue). The results shown are for the 

fixed-position tests; simulation results for the case where particle positions evolve in time do not show 

any appreciable difference and are omitted for clarity. 
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We find that low order integrators such as Euler-Maruyama lead to precision issues if 

an insufficiently small time-step is used. Concentration cannot assume negative values (or 

values greater than one), and thus the distribution of concentrations becomes increasingly 

asymmetric with values of the average concentration approaching zero or unity. This is more 

prominent for situations involving very small SDPD particles since fluctuations become very 

large and the distribution of concentrations very broad. A low-order integrator may not be 

sufficiently accurate to prevent fluctuations that lead to unphysical concentrations ( 0i   or 

1i  ). One possible approach to resolve these kinds of issues when dealing with smaller 

SDPD particles and dilute concentrations is to use an adaptive time-step integrator for 

propagating concentrations and/or velocities in time. This can be rigorously implemented 

through use of a Brownian tree algorithm [70]. With this algorithm, it is possible to detect 

unphysical concentrations and dynamically reduce the time-step as needed while preserving 

the original Brownian trajectory of the particle concentrations. For the present work, we 

simply choose an appropriately small time-step to avoid numerical difficulties. 

 

4.5 Multiscale Multicomponent SDPD 

 

In this section, the multicomponent approach outlined in Sections 4.2 and 4.3 is 

generalized to a multiscale simulation approach using the formulation of Kulkarni et al [31]. 

A similar method has been developed for bridging regions featuring traditional DPD particles 

with a coarse-grained DPD particle description [71]. In both of these works, separate parts of 

the simulation box contain SDPD/DPD fluids with varying levels of detail. For the SDPD 

case, the resolution is determined by the smoothing length parameter that controls the particle 
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masses, and hence the magnitude of the fluctuations. Therefore, it is possible to couple a 

finely-resolved SDPD particle region (where particles have smoothing length h1 and some 

corresponding mass m1) to a more coarse one (containing particles with h2 > h1 and m2 > m1) 

by carefully constructing an interface between the two different representations of the bulk 

fluid. Fig. 4.2 illustrates how to interface two SDPD fluids with different level of detail for 

the case of large particles twice as massive as the fine particles, where the large particles 

therefore split into twos. The interface region is itself divided into three separate subdomains 

1) an overlap region, 2) a coarsening region, 3) and a refining region. Particles in the system 

are free to traverse the interface and mass transfer between domains with different resolution 

is unrestricted. Mass is conserved through particle splitting and combining when moving 

across this boundary.  

 If a large SDPD particle is transported into the interface region, either due to 

advection or Brownian motion, and then eventually moves into the refining subregion, it 

splits into two small SDPD particles. Here, we have assumed that the small SDPD particles 

in the finely resolved part of the simulation box have half the mass of the large particles in 

the coarse region, 2 12m m . It is possible to generalize this kind of approach for situations 

where the massive particles are n times more massive than the small particles, where n is an 

integer greater than one, and hence large particles can split into n smaller particles. For 

simplicity, we assume n = 2. The remaining splitting rules are constructed such that 

momentum and the amount of solute are also conserved. Note that there are multiple ways to 

assign new positions to the daughter particles upon splitting. In the work of Backer et 

al. [71], both particles are inserted at the same location as the parent particle. Due to the soft 

DPD interactions, the system remains stable in spite of both particles occupying the same 
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point, and the thermostat dissipates heat generated due to particle overlap after the insertion. 

However, for fluids with quasi-incompressible equations of state, this heating may be 

substantial. Therefore, Kulkarni et al. adopt an alternative perspective where both particles 

are inserted randomly inside a region that corresponds to the influence domain of the parent 

particle (i.e. within a sphere surrounding the parent particle with radius equal to the parent’s 

smoothing length). This reduces the problem of heating, although the center of mass of the 

original particle is no longer conserved. 

Here, we take a different approach and only insert one of the two daughter particles 

 

Fig. 4.2. Depiction of the multiscale SDPD simulation interface region between fluids with different 

resolution. The “fine” SDPD fluid has smoothing length and mass h1 and m1, respectively. The “coarse” 

fluid in this example has a smoothing length of h2 and mass of 2 12m m . The interface is divided into 

three parts, 1) refining, 2) overlap, and 3) coarsening subdomains. Once a large particle crosses into the 

refining region, it splits into two small SDPD particles each having half the mass of the parent particle. 

When a small particle crosses into the coarsening region, it is combined with another nearby particle 

into a large one. Large and small particles coexist within the overlap domain. 
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randomly inside the parent particle’s influence domain. After particle j is inserted at random 

inside a sphere with radius hi surrounding the parent particle i, the second particle k is 

inserted at a position such that the center of mass of the parent particle is preserved. In other 

words, if a large particle i splits into small particles j and k, we generate a random 

displacement vector ij i j  r r r  according to  ij irandom h r . Then, the appropriate rules 

are 
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 (4.32) 

This procedure also ensures that potential energy is conserved upon splitting in simulations 

that feature a linear external potential acting on the particle masses (e.g. gravity).  

The rules for combining smaller particles into larger ones are more straightforward. If 

a small particle j is transported to the interface region and crosses into the coarsening region, 

the nearest small particle k is located, and the two are combined into large particle i using the 

following rules: 
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r r r
 (4.33) 

We note that with the particle splitting and combining steps in this top-down 

multiscale approach, it is not strictly possible to satisfy detailed balance because the 

coarsening and refining subregions, where the “forward” and “reverse” moves take place, are 

spatially separated. However, this splitting/combining scheme maintains conserved physical 
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quantities and has been shown to accurately reproduce hydrodynamic behavior [31,71]. For 

the single-component case, this method yields a flat density distribution at equilibrium [31], 

as well as accurate solutions for the flow field in simple problems such as shear flow. 

Specifically, Backer et al. consider cases where the flow is both perpendicular and parallel to 

the interface separating the regions with different resolution, and in both cases there is good 

agreement of the numerical result with the analytical solution from Navier-Stokes.  

In this and the following section, we benchmark the multiscale multicomponent 

approach by performing simple equilibrium and non-equilibrium problems. Due to the 

presence of multiple length scales, a few additional details require discussion. Note that 

previously it was possible to hold the smoothing length constant for all particles. In the 

present multiscale scenario where the fluid resolution changes with position, the smoothing 

length for every particle must be allowed to vary since the number density varies in space, 

and each particle must maintain the appropriate number of nearest neighbors. Thus, each 

particle is assigned a smoothing length variable that is updated at each time-step based on the 

local SDPD particle number density [31], 

 1/3
0 .i ih h   (4.34) 

Here, νi is the local number density computed from i ij
j

W  . h0 is a constant parameter 

selected so that each particle has ~56 neighbors within its own influence domain, which is 

required for the accuracy of the particle approximation [57]. In this work, we choose h0 = 

1.2 [31,57]. In order to ensure symmetric interactions, we use the arithmetic mean of particle 

smoothing lengths when computing pair interactions,   / 2ij i jh h h  . 
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We have tested the procedure implied by Eqs.(4.32) and (4.33) in the presence of an 

external field by placing two fluids with different resolution next to a wall in a semi-infinite 

domain, with a uniform gravitational force in the direction perpendicular to the wall. The 

results are shown in Fig. 4.3 and compared to the analytical solution for the density, given by 

     0 expz gz   . Here, g is the gravitational constant; presently, we choose 0.01g  . 

 0z   is a parameter giving the density at the surface and is fit to the simulation data. The 

computed density profiles do in fact show the correct equilibrium Boltzmann distribution, 

 

 

Fig. 4.3. (a) Density distribution for fluid in semi-infinite domain next to a solid boundary, located at z = 

0. A uniform external potential is applied and acts to pull particles towards the boundary. We consider 

both cases where the massive, coarse-grained particles are on top (blue/circle markers) and where they 

are on bottom (red/triangles). Both results are compared to the exact analytical solution, shown in black. 

(b) Smoothing function versus position. As expected, h(z) is large in the coarse region and small in the 

fine one. Moreover, h(z) increases with separation from the boundary since the number density of 

particles decreases. 
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without artifacts due to the interface. Moreover, this test is successful whether or not the 

more massive-particle fluid is on top or bottom. Note that while the smoothing length is 

larger in the coarse region than the fine one, it also increases with distance from the surface. 

This is due to the decrease in the particle number density away from the surface. The 

smoothing length is updated such that each particle has ~56 neighbors in its influence 

domain; as the number density decreases, the smoothing length must increase to include a 

sufficient number of particles, as described by Eq.(4.34). 

Unlike previous studies that only focused on single-component systems, Eqs.(4.32) 

and (4.33) include the appropriate splitting and combining rules for a binary mixture. We 

confirm that this approach reproduces correct equilibrium properties uniformly across the 

simulation box by considering a fluid at reduced temperature 1T   with density 0.8   and 

viscosities 1.9   and 0.9  . Initially, we divide the global simulation box (with volume 

50×50×100) in two parts, with 1000 fine particles in the region located at z < 50, and 512 

coarse particles in the region at z > 50. The fine particles are initialized on a 10×10×10 lattice 

inside a 50×50×50 volume. These “fine” particles have mass m = 100 and smoothing length 

h = 6.0. For the coarse region, particles are initially placed on a 8×8×8 lattice inside a volume 

with dimensions 50×50×50. These “coarse” particles have a mass of m = 200 and smoothing 

length h = 7.5. The z-coordinate is perpendicular to the interface separating the coarse and 

fine SDPD domains [see Fig. 4.4a]. Periodic boundary conditions are used in all directions. 

The interface regions have a width of 9.0 and are located between z = 0.0 and 9.0, and z = 

50.0 and 59.0. It is necessary to include two transition zones due to the periodicity of the 

simulation box. Each of the interface coarsening, refining, and overlap subdomains has a 

width of 3.0. The interface region should be sufficiently large to allow for a smooth transition 
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of the smoothing length; when an inadequately sized transition region is used, particles near 

the interface have a different number of neighbors from particles in the bulk, which can result 

in unphysical density gradients [71]. After initializing positions, all the particles are 

translated in the z-direction by half the interface region width so that the initial boundary 

between the coarse and fine particle lattices are located precisely half-way inside the 

interface regions, within the overlap subdomains (z = 4.5 and z = 29.5). We use a time-step of 

0.001t   and collect data for 5×106 steps after equilibrating for 1×106. Five cases with 

average concentrations   = 0.25, 0.40, 0.50, 0.60, and 0.75 are considered. The neighbor 

list is updated every ten steps, unless the number of particles in the system changes due to 

splitting/combining of particles, in which case it is also rebuilt. 

The system is illustrated in Fig. 4.4a, and the smoothing length as a function of 

position is obtained from a binning procedure and shown in Fig. 4.4b. The regions where the 

smoothing length is low (h = 6.0) contains particles with mass m = 100, and the part where h 

= 7.5 features particles with mass m = 200, with a smooth transition between the two values 

of h across the interface separating the two domains. Fig. 4.5a gives the concentration 

profiles for the five different average concentrations investigated. There are no unphysical 

concentration gradients perpendicular to the interface between the fine and coarse regions, 

and the distribution of solute is uniform. The average error per bin in the profiles across all 

five cases is 0.0003%. We also compare the concentration distributions in the fine and coarse 

regions to the exact analytical result [Eq.(4.31)] in Fig. 4.5b and find that both the finely-

resolved and coarse-grained regions in the multiscale simulation exhibit fluctuations in 

concentration appropriate for their respective scales. The distributions for the   = 0.40 

and 0.60 are omitted for clarity.  
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In addition, we have tested this approach for n = 4, i.e. when the coarse-grained fluid 

particles are 4 times as massive as the fine ones. Larger values of n give significant 

computational savings, since the number of particles in the coarse region is significantly 

reduced relative to the fine region. For the particle splitting step, three particles are inserted 

at random, and the final particle is inserted such that the center of mass of the parent particle 

is preserved; an alternative approach is to insert particles in pairs, where each pair preserves 

the center of mass, though this requires that n is an even integer. The concentration profile in 

 

 

Fig. 4.4. (a) Visualization of equilibrium multiscale SDPD simulation. The left bulk region (white 

particles) is the finely-resolved SDPD fluid with smoothing length h = 6.0, and the particles on the right 

(orange) are the coarse ones with h = 7.5. These coarse particles are twice as massive as the fine ones, and 

their number density is half as much. Periodic boundary conditions are used for the x-, y-, and z-

directions. (b) The corresponding smoothing length versus position for an equilibrium multiscale SDPD 

simulation. The interface regions are located between z = 0.0 and 9.0, and between z = 50.0 and 59.0.  
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these tests is also completely flat, similar to the n = 2 case shown in Fig.4.5a, without 

artifacts near the interface (results not shown). Note that as the degree of coarse-graining in 

the coarse region is increased, the number of particle insertions one must perform increases 

as well. Since particle insertions can lead to heating due to the strong repulsion between 

particle pairs, large values of n can lead to sizeable temperature spikes. For the choice of n = 

4, we found more substantial temperature increases than for the n = 2 case, although the 

thermostat kept the fluid stably near the T = 1 target temperature.  

 

 

Fig. 4.5. (a) Concentration profiles for equilibrium multiscale SDPD simulations. We have performed tests 

at several different average concentrations,   0.25, 0.40, 0.50, 0.60, and 0.75, where the results from 

each simulation are shown with a different marker/color. (b) Concentration probability distributions 

from equilibrium multiscale simulations. For clarity, we show results for three of the five cases:  

0.25 (red/square markers), 0.50 (blue/triangle markers), and 0.75 (green/circle markers). The solid 

markers represent the probability distribution in the “coarse” SDPD region, and the hollow markers 

represent the “fine” SDPD region. The black curves are the exact analytical solution. The distributions for 

  = 0.40 and 0.60 are omitted for clarity. 
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4.6 One-Dimensional Diffusion Across Multiple Length Scales 

 

Next we demonstrate that our multiscale multicomponent method captures diffusion 

dynamics correctly across multiple length scales by performing a multiscale simulation of 

quasi-1D diffusion. Once again, we choose T = 1 and ρ = 0.8 as the state point, and D = 1.0, ζ 

= 0.9 and η = 1.9 for the transport coefficients. The system is set up as follows: the global 

simulation box has dimensions 50×50×200, where one side initially contains 2000 fine 

particles, and the other side contains 1024 coarse particles. At the start of the simulation, the 

finely-resolved particles are initialized on a 10×10×20 lattice inside a region with dimensions 

50×50×100, which is a subset of the whole simulation box. These particles have a mass of 

100 and smoothing length of 6.0. Next to this region, we initialize the coarse SDPD particles 

(with mass of 200 and smoothing length of 7.5) on an 8×8×16 lattice inside a part of the 

global simulation box with lengths 50×50×100. The vector normal to the interface separating 

the coarse and fine regions is in the z-direction. The interface region separating the coarse 

and fine domains has a width of 9.0 and is centered at z = 100. The simulation box features 

periodic boundary conditions in the x- and y-directions. The walls are located z = 20 and z = 

180, and particles located z < 20 and z > 180 are labelled as virtual particles; their positions 

and concentrations are not evolved in time. The fluid particles are initialized with an average 

concentration of 0.4. We use a time-step of Δt = 0.01, and equilibrate for 1×106 steps. 

After equilibration a concentration gradient is imposed on the system by increasing 

the concentration of the wall particles located at z > 180 to 0.6. Boundary conditions are 

enforced using the approach described in Section 4.3. The gradient is perpendicular to the 

interface separating the fine and coarse regions, and hence drives solute transfer across the 
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boundary from the region with coarse resolution to the finely-resolved SDPD region. The 

resulting transient concentration profile is shown for several different times and compared to 

the exact analytical solution of the non-fluctuating diffusion equation in Fig. 4.6. The results 

show excellent agreement with the exact solution, mass transfer is correctly mediated across 

domains with different levels of detail and diffusion is independent of the degree of coarse-

graining. At steady-state, the time-averaged concentration profile is perfectly linear and does 

not exhibit unphysical artifacts due to the interface between the two SDPD regions with 

different resolution. 

 

 

Fig. 4.6. Concentration profile at different times for the quasi-one-dimensional diffusion problem across 

multiple length scales. A fluid region is situated between two walls, and the fluid itself is divided into 

finely-resolved and coarse-grained domains, where particles have masses m = 100 and m = 200, 

respectively. After equilibrating, a concentration gradient is imposed by holding the concentration fixed 

at 0.4 at the left boundary, and 0.6 at the right boundary, and the time-evolution of the concentration 

profile is computed. The numerical results (blue curve, circle markers) are shown against the exact 

solution of the non-fluctuating diffusion equation (black curve). 
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4.7 Conclusions 

 

In this work, we provide a new multiscale fluctuating continuum particle approach for 

ideal solutions. The stochastic differential equations governing the concentration field are 

obtained by introducing thermal noise in the Lagrangian SPH equation for diffusion using the 

GENERIC formalism. Random fluxes of solute are pairwise between particles and 

constructed such that fluctuation-dissipation is satisfied. When solved concurrently with the 

SDPD equations of motion, this set of SDEs allows for treatment of advection-diffusion 

problems across length scales ranging from nanometers to microns and the non-fluctuating 

continuum limit. The characteristic length scale of the fluid is controlled by the smoothing 

length parameter, which influences both the distribution of momenta as well as solute 

concentrations. We illustrate that this new multicomponent SDPD reproduces the correct 

fluctuations by performing equilibrium simulations at different average concentrations and 

resolutions (i.e., smoothing lengths). In all cases, the results show excellent agreement with 

the analytical result for the probability distribution of concentrations.  

Importantly, the ability to control the smoothing length parameter makes 

multicomponent SDPD ideal for multiscale simulation. Thus, we use this approach to extend 

the single-component multiscale SDPD techniques of Kulkarni et al. to binary solute-solvent 

systems, and propose refining and coarsening rules for particle splitting/combining such that 

mass, momentum, and solute are conserved. In order to validate this framework for 

multicomponent multiscale simulation, we perform equilibrium simulations involving SDPD 

fluids with different degrees of coarse-graining and demonstrate that there are no unphysical 

artifacts in the concentration profile near the interface between the two regions, and each 
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region features the appropriate fluctuations for its corresponding length scale. Finally, we 

apply these tools to a simple non-equilibrium problem (one-dimensional diffusion across a 

narrow channel), and we demonstrate that this multiscale method correctly captures the 

propagation of a concentration gradient across multiple length scales, and accurately 

reproduces the expected diffusion dynamics with solute transfer from the coarse region to the 

fine one. 

The presented multiscale multicomponent approach does have a number of 

limitations, however. First, for very small SDPD particles with concentration close to zero or 

unity such that the analytical Gaussian distribution of concentrations is truncated, precision 

issues can lead to unphysical negative concentrations (or concentrations greater than one). It 

is possible to remedy this problem either by reducing the time-step, or by using a dynamic 

time-step approach, such as the Brownian tree algorithm described in Ref. [70]. Second, the 

method is based on a discretization of the diffusion equation, which is relevant to a very wide 

range of different problems, but which ultimately assumes ideal mixing. Moreover, constant 

temperature conditions and a quasi-incompressible fluid are also assumed. These 

simplifications may be relaxed, although the resulting equations of motion become more 

complex and for the case of temperature gradients, it is necessary to solve the entropy 

equation in addition to the ones for momentum and solute diffusion. Finally, while this 

approach provides a basis for coarse-graining regions where a high level of detail is 

unnecessary, it is still purely a continuum approach. The power of this framework lies in the 

ability to reduce the number of particles in bulk regions where high detail is not required, 

lowering computational cost. However, for certain problems, it may be necessary to retain 

atomistic resolution in select regions to capture important effects. In a prior study, we 
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developed an approach for embedding a MD region inside a coarse-grained SDPD fluid 

(Chapter 3), and constructing these kinds of MD-SDPD hybrid approaches for 

multicomponent systems is described in Chapter 5. 
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4.8 Appendix 

 

4.8.1 Overview of GENERIC Formalism 

 

In this subsection of the appendix, we provide a brief review of GENERIC, since it is 

central to the approaches presented in Chapters 3-6. For additional details, see 

Refs. [31,44,68,69]. GENERIC (“General Equation for Non-Equilibrium Reversible-

Irreversible Coupling”) provides a framework for beyond-equilibrium problems, which is 

comparable to existing formalisms in traditional equilibrium thermodynamics. Consider that 

in equilibrium thermodynamics, the total change in energy of the system can be divided into 

two separate yet intimately related quantities, 1) “work” (a mechanical, “macroscopic” 

quantity and 2) “heat”, 

 .dE W Q    (4.35) 

This is of course the first law of thermodynamics, which tells us that energy (a conserved 

quantity) for a given system changes through exchange of heat or work with the 

surroundings. The work contribution is specified using mechanical terms (e.g. pdV  and 

dN ), and the heat term depends on temperature through the second law, TdS . Substituting 

these terms into Eq.(4.35) gives the fundamental equation, which in turn can be used to 

obtain expressions for other thermodynamic potentials that depend on different independent 

variables through Legendre transformations.  

 The idea of GENERIC is to provide an analogous approach for systems that are not at 

equilibrium. In particular, we make the distinction between “reversible” and “irreversible” 

contributions to the dynamics of the system (similar to the distinction between “work” and 
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“heat” in the equilibrium case) as the starting point, and the process of interest is the 

evolution towards an equilibrium state. The reversible contribution is interpreted under 

mechanistic terms and is associated with Hamiltonian dynamical systems. The structure of 

the reversible terms translates energy gradients into vector fields through linear operators. In 

classical irreversible thermodynamics, it is assumed that entropy gradients drive irreversible 

time evolution towards equilibrium (for small perturbations from the equilibrium state), 

similar to how energy gradients drive reversible dynamics. Thus, it is also necessary to 

introduce a linear operator that translates entropy gradients into vector fields. Combining 

these two distinct contributions, one arrives at a general time-evolution equation for systems 

beyond equilibrium, referred to as GENERIC: 

     ( )( ) .
Edx S xL x M x

dt x x
x 

 
     (4.36) 

Here, x is a set of independent variables that are required to fully describe the state of the 

non-equilibrium system.  E x and  S x  are real-valued functionals for the energy and 

entropy, respectively, which depend on the state variables x.  L x  and  M x  are the 

Poisson and friction matrices that represent geometric structures and dissipative properties in 

terms of linear operators. The first term on the right-hand side of Eq.(4.36) corresponds to the 

reversible part of the dynamics, and the second term corresponds to the irreversible one. The 

dot product implies summations over discrete indices and/or integration over continuous 

labels. Generally, the derivatives of the energy and entropy functions are functional 

derivatives. The GENERIC equation can be viewed as a generalization of the Ginzburg-

Landau equation, which is a simple equation that is found to successfully describe 

irreversible relaxation towards an equilibrium state in many systems. 
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 With the described formalism, it is possible to show that the matrices  L x  and 

 M x  must satisfy a number of properties. In addition to Eq.(4.36), we have the following 

complementary degeneracy requirements: 

 
   

   

0,

0.

S x
L x

x
E x

M x
x






 

 
 (4.37) 

The first condition is due to the reversible nature of the L-matrix contribution to the 

dynamics, i.e. the entropy function is unaffected by the action of the reversible dynamics-

generating L operator. In other words, the first condition is a statement of the 2nd law of 

thermodynamics (the time derivative of the entropy will always be greater than or equal to 

zero). The second condition is a statement of conservation of energy in an isolated system; 

dissipated mechanical energy is converted into internal energy, and globally energy must be 

conserved. Below, we explicitly demonstrate how these conditions, in combination with the 

GENERIC equation, yield energy conservation and irreversible entropy production. In 

addition to these conditions, the matrix  L x  must by antisymmetric, and the dissipative or 

friction matrix  M x  must be symmetric and positive semidefinite. 

 We now incorporate the structure of Hamiltonian dynamics into the reversible part of 

the non-equilibrium process. This is done by defining a bracket operator through the 

antisymmetric matrix  L x , 

   ( ) ( ), ( ) .A x B xA B L x
x x

 
 

    (4.38) 

This operator inherits the antisymmetry of the matrix  L x , 
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  , { , }.A B B A   (4.39) 

It also satisfies Liebnitz’ rule, 

    , , { , }.AB C A B C B A C   (4.40) 

These identities hold for arbitrary functionals A, B and C. Finally, the bracket operator must 

satisfy the Jacobi identity, 

         , , , , , , 0.A B C B C A C A B    (4.41) 

Note that we have essentially defined the Poisson bracket, which guarantees Hamiltonian 

dynamics. 

 Similarly, it is possible to define a bracket operator with the dissipative matrix  M x

, 

   ( ) ( ), ( ) .A x B xA B M x
x x

 
 

    (4.42) 

This bracket operator has the symmetry property  , [ , ]A B B A . Since  M x   is positive 

semidefinite, this implies the operator must satisfy the condition [ , ] 0A A   for any arbitrary 

functional A. 

 Using these definitions, we can reformulate GENERIC. Consider writing the time 

evolution of some arbitrary functional A as 

 
  .

A xdA dx
dt x dt




   (4.43) 

Substituting Eq.(4.36) into Eq.(4.43), we rewrite the GENERIC equation using the bracket 

notation as 



124 

 
         

 , [ , ],

A x E x S xdA L x M x
dt x x x

A E A S

  
  

 
     

 
 

 (4.44) 

where, of course, E and S denote energy and entropy functionals, and  A x  is a functional 

that depends on state variables x. In the second line, we have distributed the /A x   term 

and used the definitions of the brackets. 

We now show that the degeneracy requirements and bracket properties lead to energy 

conservation. Suppose that the function of interest ( )A x  is, in this particular case, the energy 

( )E x . Eq.(4.44) becomes 

    , , .dE E E S E
dt

   (4.45) 

Here, we have also used the symmetry of the dissipative bracket,  , [ , ]E S S E . Thus, we 

are left with 

     ( ), ( ) .
S xdE E xE E M x

dt x x
 
 

     (4.46) 

The second term on the right-hand side is zero due to the degeneracy requirement for the 

dissipative matrix, Eq.(4.37). The first term is zero due to the Poisson bracket property that 

 , 0E E  . Hence, we have energy conservation, i.e., 

 0.dE
dt

  (4.47) 

Similarly, by applying the GENERIC equation to entropy and instead using the 

degeneracy requirement for the  L x  operator, it is possible to prove irreversibility. Once 

again, we start with the GENERIC equation of motion, Eq.(4.44). In this case, we let the 

functional ( )A x  be the entropy, ( )S x , 
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  , [ , ].dS S E S S
dt

   (4.48) 

Using the antisymmetry of the Poisson bracket  , { , }S E E S  , 

 
 , [ , ]

( ) ( )( ) [ , ].

dS E S S S
dt

E x S xL x S S
x x

 
 

  

    
 (4.49) 

The first term on the right-hand side of Eq.(4.49) is zero due to the degeneracy requirement 

/ 0L S x   , Eq.(4.37). The remaining term will always be equal to or greater than zero 

since the dissipative matrix is positive semidefinite. Hence, we can write, 

 [ , ] 0.dS S S
dt

   (4.50) 

This is of course a statement the second law of thermodynamics. 

Finally, it is possible to incorporate thermal fluctuations into GENERIC. Note that 

Eq.(4.36) is purely deterministic, although noise can be incorporated in a natural manner by 

formulating a diffusion/Fokker-Planck equation that governs the time evolution of the 

configurational distribution function ( , )f x t , 

 
     ,

, , .B

f x t E SL M f x t k M f x t
t x x x x x

    
    

                      
 (4.51) 

Omitting the second term on the right-hand side, this equation becomes simply the Liouville 

equation corresponding to GENERIC. The corresponding SDE for trajectories given 

particular realizations of the stochastic process is: 

 .B t
E Sdx L dt M dt k Mdt B dW
x x x

  
  

         (4.52) 
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Here,  B x  is the noise amplitude; it is a matrix that is related to the dissipative matrix 

 M x  through the fluctuation dissipation theorem: 

     2 ( ).T
BB x B x k M x   (4.53) 

Bk  is Boltzmann’s constant and tdW  is the stochastic Wiener process with first and second 

moments: 

  '
'

0,

min , .
t

T
t t

W

W W t t



 I
 (4.54) 

Taking the limit 0Bk   reduces Eq.(4.52) to the non-fluctuating form of GENERIC, 

Eq.(4.36). The term involving the divergence of the dissipative matrix in the Fokker-Planck 

equation is a consequence of the Itô interpretation of the SDE. This occurs because the 

friction matrix M(x) is positioned between the two functional derivatives in the second order 

term, which is necessary to reproduce the appropriate Boltzmann distribution at equilibrium. 

In practice, it is desirable to avoid calculating the term involving the divergence of the 

friction matrix. 

In summary, modeling through GENERIC requires the definition of four building 

blocks  E x ,  S x ,  L x , and  M x  (or the brackets that correspond to these matrix 

operators). The matrix  L x  can be determined through consideration of symmetries, 

whereas dynamical information enters through the friction matrix  M x . As long as the four 

building blocks satisfy the constraints described in this appendix, the system they describe 

will be thermodynamically-consistent by construction, i.e. the first and second laws of 

thermodynamics will be satisfied.  
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4.8.2 Derivation of Concentration Variance for SDPD Particle 

 

Here, we provide a derivation for the variance in concentration of a SDPD particle, 

Eq.(4.31). Note that this closely follows the derivation for the variance in a binary mixture 

described in Ref. [64]. To this end, we consider a small control volume in a large bulk 

solution where that volume contains N solvent and n solute particles. This region of fluid is a 

SDPD particle (defined as a volume of fluid that is locally in equilibrium) and corresponds to 

our system, whereas the remaining SDPD particles constitute the surrounding bath. 

Assuming that the total number of atoms or molecules inside the system does not change, we 

write 

 ,totalN N n   (4.55) 

where n and N can vary, though totalN  is fixed. This constraint is due to the SDPD particles 

having constant mass. Ultimately, we are interested in the probability distribution for the 

concentration of the solute inside the fluid volume (i.e. SDPD particle), which is allowed to 

exchange solute with the surroundings (or remaining SDPD particles). Here, we define the 

solute concentration as / totaln N  . 

At equilibrium, the temperature, pressure, and concentration of this small control 

region are equal to their values in the rest of the solution, which acts as a bath. We need to 

determine the minimum work needed to bring the temperature, pressure, and number of 

solute particles in this volume to values which differ from the equilibrium ones by small but 

finite amounts of T , P , n , and N . These perturbations change the entropy by some 

quantity. Note that the perturbations in n and N are not independent due to the constraint in 

Eq.(4.55). The probability of this thermodynamic fluctuation is 
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  exp .tP S   (4.56) 

Here, tS  is the change in entropy from the maximum value due to the fluctuation. This 

entropy difference can be written as 

 
0

.min
t

B

RS
k T


   (4.57) 

minR  is the minimum work done by the region on the external medium to modify the 

temperature, pressure, and number of solute molecules by T , P , n , and N . 0T  

denotes the temperature in the surrounding fluid. Note that this minimum in the work occurs 

when the process is reversible.  

The work done by an external force is equal to the change in energy of the system, 

 0.minR E E     (4.58) 

In this expression, the zero subscript indicates changes in the external medium 

(surroundings), and the variables without a subscript indicate changes in the small region we 

are considering (system). We rewrite 0E  in terms of changes in the independent variables, 

 0 0 0 0 0 0 0 0 ,a b
minR E T S P V n N             (4.59) 

where 0
a  indicates the chemical potential of the solute in the surrounding fluid, and 0

b

denotes the solvent chemical potential.  

Since the process is assumed to be reversible, we have the condition 

 0 .S S    (4.60) 

Moreover, if we assume that volume and the number of solute and solvent molecules are 

conserved quantities, we can also write 
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0

0

0

,
,

.

V V
n n
N N

 
 
 

 

 

 

 (4.61) 

Substituting these expressions into (4.59), we obtain a new expression for the minimum work 

done, 

 0 0 0 0 .a b
minR E T S P V n N             (4.62) 

We assume that the total number of particles within the system is fixed [Eq.(4.55)]. Hence, 

this expression simplifies to 

 
 

 
0 0 0 0

0 0 0 0 .

a b
min tot

a b

R E T S P V n N n

E T S P V n

       

     

     

    
 (4.63) 

At thermal equilibrium, the temperature, pressure, and chemical potential values are 

uniform at their equilibrium values. Thus, we drop the zero subscript and assume T, P, μ 

denote equilibrium values, 

   .a b
minR E T S P V n            (4.64) 

The minimum work necessary to change n by n is hence given by 

 .ab
minR G n     (4.65) 

Here G denotes the Gibbs’ free energy and we have defined ab a b    . This is an 

effective chemical potential that emerges due to the fact that the two species are not 

independent.  

 Next, we Taylor expand the free energy in the solute change n  

 

   

 

2
2 3

2
, ,

2

,

1
2

1 .
2

P T P T

ab
ab

P T

G GG n n O n
n n

n n
n


                       
  

        

 (4.66) 
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Substituting this expression for G  into Eq.(4.65) gives the following for the minimum 

work, 

  2

,

1 .
2

ab

min
P T

R n
n
  

      
 (4.67) 

Combining Eqs.(4.56), (4.57), and (4.67) gives the probability distribution formula 

  2

,

1exp exp .
2

ab
min

B B P T

RP n
k T k T n

                      
 (4.68) 

The general formula for a Gaussian distribution is 

  
2

22

1 exp .
22

xP x dx dx
xx

 
  
 
 

 (4.69) 

Comparing Eqs.(4.68) and (4.69) yields the following relationship for the variance of the 

solute: 

 
 2

,

1 1 .
22

ab

B P Tk T nn
 

    
 (4.70) 

Solving for the variance, 

  2

, , ,

.B B
ab a b

P T P T P T

k T k Tn

n n n
  

  
       

            

 (4.71) 

Assuming ideal mixing, the chemical potentials are defined as  

 
ln ,

ln ln .

a a
s B

tot

b b b tot
s B id B

tot tot

nk T
N

N nNk T k T
N N

 

  

 
   

 
   

      
   

 (4.72) 
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Here, the s subscript denotes the pure species chemical potential. Using Eq.(4.72), we can 

find the derivatives 

 
,

,

,

.

a
B

P T

b
B

totP T

k T
n n

k T
n N n





 
  

 
    

 (4.73) 

Substituting Eq.(4.73) into Eq.(4.71), 

  2 1 .1 1
tot

n

n N n

 




 (4.74) 

Finally, we divide Eq.(4.74) by 2
totN , and define the solute concentration as / totn N   and 

solvent concentration as    1 /tot totN n N   . Using these definitions, Eq.(4.74) 

simplifies after some algebra to 

  
   

2

2
2

1
.

tot tot

n

N N

  
    (4.75) 

Note that for a SDPD particle, we can write 0/totN m m , where m is the mass of the SDPD 

fluid volume, and m0 is the mass of an individual solute or solvent atom, giving Eq.(4.31). 

 

4.8.3 Derivation of SDPD Multicomponent Model Using Chemical Potentials 

 

In deriving the SDPD model presented in Section 4.2, we linearized the chemical 

potentials for direct comparison with the discretized diffusion equation. Here, we provide an 

alternative derivation of this model using chemical potentials where this simplification is not 

necessary. This different approach first requires deriving the appropriate transport equation 
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for an ideal mixture with the constant mass constraint discussed in Appendix 3.8.2. For small 

concentration gradients, the flux of solute is a linear of function of the chemical potential 

gradient, i.e. 

 ˆ.   j  (4.76) 

The general relationship between the diffusion constant and the coefficient α and the 

derivative of the chemical potential is given by [18] 

 0

,

ˆ
.

p T

mD  


    
 (4.77) 

Here, we have an effective chemical potential due to the constant mass constraint (see 

Appendix 4.8.2, Ref. [18,19]). 

  
0 0

ˆ ln ln 1 .B Bk T k T
m m

      (4.78) 

From α, we can also obtain the fluctuation correlation for the components of the stochastic 

flux vector j  [19], 

        1 1 2 2 1 2 1 2, , 2 .m n
B mnj t j t k T t t     r r r r   (4.79) 

Substituting Eq.(4.78) into Eq.(4.77), 

    ,
ln ln 1 .

1
B B

p T

k T k TD  
 


        

 (4.80) 

Solving for the coefficient α, 

 
 1

.
B

D
k T




 
  (4.81) 

Combining Eq.(4.81) with Eq.(4.79) gives the correlation for solute fluctuations in ideal fluid 

mixtures, 
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          1 1 2 2 1 2 1 2, , 2 1 .t t D t t      j r j r I r r   (4.82) 

Next, we substitute Eq.(4.81) into Eq.(4.76), which results in the following expression for the 

flux of solute, 

 
 1

ˆ.
B

D
k T




 
  j  (4.83) 

By defining a dimensionless chemical potential ˆ / Bk T   and a diffusion constant in terms 

of units ML-1t-1, Eq.(4.83) can be written more simply as 

  1 .D     j  (4.84) 

Taking the divergence of this flux, we obtain the transport equation 

  1 .d D
dt

 
        (4.85) 

As before, the left-hand side is the material derivative. Substituting the appropriate form of 

the chemical potential [Eq.(4.78)] reduces this expression to the familiar diffusion equation. 

For this alternate derivation, we preserve the driving force written in terms of chemical 

potential, rather than concentration, gradients. 

Discretizing Eq.(4.85) using the interpolant W results in 

 
1

14 ,
N

i j i j iji
i ij

j i j i j ijij

m m Wdm D
dt r


 

              
 r

 (4.86) 

where we have defined  1i i i    and the chemical potential difference ij i j    , 

where  ln ln 1i i i     .  

We again postulate noise in the solute number with the form 

 
1

.
N

i i ij ij
j

m d G dV


   (4.87) 
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Following the same procedure described in Section 4.2 (using the fluctuation-dissipation 

theorem and GENERIC), we obtain an equation of motion describing how gradients due to 

concentration fluctuations induced by Eq.(4.87) are relaxed, 

 2

10

11 ln ln .
2 1

N
ji i

i ij
j j i

dm G
dt m 

     
            

  (4.88) 

With the definition of the dimensionless chemical potential given previously, Eq.(4.88) 

becomes simply 

 2

10

1 .
2

N
i

i ij ij
j

dm G
dt m





    (4.89) 

Earlier, we obtained a discrete transport equation in terms of chemical potential differences, 

Eq.(4.86). Comparing Eq.(4.86) to Eq.(4.89), it is possible to determine the unknown 

coefficient for the noise ijG  without having to linearize the logarithmic terms,  

 

1/2

08 1 .i j i j ij
ij

i j i j ijij

Dm m m W
G

r 

    
          r

 (4.90) 

Summarizing, we have the evolution equation for the particle concentrations, 

 
1

14 ,
N

i j i j ij
i i ij i i

j i j i j ijij

m m W
m d D dt m d

r


 

    
           

 r
  (4.91) 

with fluctuations given by Eqs.(4.87) and (4.90). Linearizing the logarithms in the quantity 

ij  reduces Eq.(4.91) to the model presented in Section 4.2. Note that the noise amplitude for 

the alternate model [Eq.(4.90)] is the same as for the linearized case. This approach 

reproduces the correct fluctuations at equilibrium and dynamics in non-equilibrium problems 

(results not shown).  
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While the derivation in this appendix is more elegant, this alternate formulation is less 

numerically stable. Note that in the limit 0i   (or similarly, 1i  ), the ij  term in 

Eq.(4.91) approaches   (or  ) since the chemical potential is not finite for these cases. 

At the same time, the concentration-dependent pre-factor in Eq.(4.91) goes to zero for both 

of these limiting scenarios. Hence, this version of the multicomponent model is not 

numerically suited for problems involving really dilute concentrations, or concentrations 

approaching unity. However, the linearized model presented in Section 4.2 resembles the 

traditional SPH diffusion equation and does not have this stability issue. 
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5 Coupling Discrete and Continuum Concentration Particle 

Models for Multiscale Simulation 

 

 

Multiscale simulation techniques afford a number of advantages for problems in the rapidly 

burgeoning area of nanoscale engineering and technology, though they are typically quite 

complex to implement and limited to single-component fluid systems. We describe an 

approach for modeling multicomponent hydrodynamic problems spanning multiple length 

scales when using particle-based descriptions for both the finely-resolved and coarse-grained 

regions. This technique is based on the multiscale methodology previously developed for 

mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 

84115 (2016)], simulated using a particle-based continuum method known as smoothed 

dissipative particle dynamics (SDPD). An important application of this approach is the 

ability to perform coupled molecular dynamics (MD) and continuum modeling of 

molecularly miscible binary mixtures. In order to validate this technique, we investigate 

multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-

equilibrium cases featuring concentration gradients.  

 

5.1 Introduction 

 

Over the last two decades, numerous approaches for concurrently modeling 

phenomena across multiple length scales have been proposed, driven by a broad spectrum of 

emergent technologies at interfaces and the nanoscale. One tactic is to employ a molecular 
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description for spatial regions that necessitate high detail (e.g. a surface where a nanoscale 

physical or chemical process occurs), and a simpler continuum approximation for other bulk 

regions where high resolution is not required [1–9]. The first approach of this type was 

proposed by O’Connell and Thompson [1], who coupled molecular dynamics (MD) 

simulations to a continuum fluid, where the Navier-Stokes solution was obtained using finite-

element methods, with exchange of fluxes between the two regions. Hadjiconstantinou and 

Patera [3] provided an alternative formulation through the Schwarz alternating method, 

making it possible to couple MD and continuum domains by iteratively matching their 

boundary conditions. This method was subsequently applied to the moving contact line 

problem, resolving singularities that appear in the continuum solution by using a molecular 

description for the region near the boundary [2]. More recently, we developed a different 

MD-continuum approach featuring a MD region coupled to a continuum region simulated via 

a fluctuating hydrodynamic solver called “smoothed dissipative particle dynamics” 

(SDPD) [9]. Unlike previous hybrid simulation methodologies, we used this stochastic 

particle-based technique for the continuum part of the simulation [10,11], allowing for a 

consistent and intuitive particle-based description throughout the entire system [12].  

However, a major shortcoming of all of these so-called “multiscale” simulation 

strategies is that they are limited to single-component scenarios, even though systems 

involving solvated species are ubiquitous in modern molecular and interfacial physics. A 

significant challenge is faithfully reproducing the dynamics of the dissolved species in 

solute-solvent systems across multiple spatiotemporal scales, including atomistic ones, which 

is essential to a number of fundamental problems and applications. For example, a number of 

time and length scales appear in drug delivery and particle transport in cardiovascular 
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flow [13,14], where surface chemistry and functionalization is important over small scales 

while hydrodynamics dominates over larger ones. Other applications include electrolyte 

solutions at interfaces and corrosion [15,16], in which oxidation occurs at the molecular 

level, and transport and the microstructure of the material are relevant over micrometer 

lengths and beyond. Hybrid multiscale techniques may also be useful in coarse-graining 

solvent in bulk regions when simulating biomolecules in solutions containing salt, including 

protein interactions in biomolecular assembly [17] and ion channels in cellular 

membranes [18–20]. Another such example is modeling surface nanobubbles and 

nanodroplets [21–25], where transport over potentially large length scales may occur in bulk 

solvent away from the bubble or drop. In light of the vast body of applications, the goals of 

this chapter are: 1) to outline an intuitive and generalizable framework for capturing the 

transport of solute in a miscible mixture due to diffusion and advection across multiple length 

scales and 2) to assess the applicability of the method in simple and appropriately devised 

test cases.  

A major difficulty in multiscale multicomponent simulations is that at the sub-

nanometer level matter is discrete (e.g. a molecule is either a solute or solvent), whereas over 

larger length scales and in the continuum approximation, the fluid is described in terms of 

fields that can assume a continuum of values (i.e. a fluid volume in solution has a 

concentration associated with it). Therefore, in traditional MD-continuum hybrid methods, it 

is necessary to perform spatial or temporal averages that can translate properties in the 

“discrete” molecular region into continuum variables. Conversely, for free exchange of 

solute, mass, and momentum between the two regions, conveying the averaged information 

contained in the continuum fields to a collection of particles with discrete identities is also 
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required. A hybrid simulation strategy for bridging MD regions to finite-difference 

continuum solutions that allows for heat and solute transport was provided by Alexiadis et 

al. [26,27]. In this work, the authors couple MD simulations of a fluid mixture to finite-

element solutions of the transport equations by solving a Poisson-type equation for the 

continuum variables, where information from the atomistic region enters through the non-

homogeneous term. Techniques for interfacing MD regions to numerical solutions of Navier-

Stokes have also been extended to allow for modeling electroosmotic transport [28]. For the 

most part, however, multiscale multicomponent simulations schemes are largely absent in the 

literature, in spite of an abundance of important systems. 

In this chapter, we provide a simple framework for coupling discrete concentration 

descriptions (MD or coarse-grained) to particle-based continuum ones, opening the 

possibility for multiscale modeling of ideal mixtures, including simulations featuring 

atomically-resolved regions. In particular, we focus on an algorithm for interfacing discrete 

particle models, applicable to finer scales, to a SDPD fluid representing the continuum 

region. SDPD is a Lagrangian particle-based approach for solving the fluctuating 

hydrodynamic equations of Landau and Lifshitz [29–31], and has been applied to a number 

of problems at the nano- and mesoscales [11,14,32–35]. An attractive feature of SDPD is that 

the characteristic length scale (i.e. the degree of coarse-graining in the fluid) is a tunable 

parameter, controlled by a quantity h known as the “smoothing length”, which determines the 

size of the fluid volumes (or “particles”) into which the fluid is discretized. The SDPD 

continuum region can then, in turn, be coupled to increasingly coarse SDPD fluids (i.e. 

regions with more massive SDPD particles having larger h and at a lower number density), 

giving significant computational savings due to the reduction in the number of 
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particles [9,36,37]. SDPD is a thermodynamically-consistent formulation of smoothed 

particle hydrodynamics (SPH), which is a numerical approach for solving the Navier-Stokes 

equations by decomposing the fluid into a collection of Lagrangian volumes, or interpolation 

nodes, whose positions evolve in time according to an equation of motion that approximates 

the hydrodynamic equations [38–40]. SDPD is obtained by using GENERIC [41–43] to 

incorporate thermal noise in the evolution equations for the SPH particles through the 

fluctuation-dissipation theorem. While the techniques described in this chapter are applicable 

to both SPH and SDPD as the continuum description, we focus on the latter. 

Using the coupling techniques described in this chapter, it is possible to perform 

particle-based hybrid MD-continuum simulations of multicomponent systems. Previously, 

we described a fluctuating continuum multiscale generalization of the SDPD method for fluid 

mixtures [37] that provides a particle approach to solving the fluctuating hydrodynamic 

equations for miscible solutions. In addition, we developed a strategy for hybrid MD-SDPD 

simulations [9], allowing for multiscale modeling that includes an atomistic MD fluid 

embedded inside a fluctuating SDPD continuum region. For brevity, we do not discuss these 

methods in detail here, and refer the interested reader to Ref. [9] (Chapter 3) for the MD-

continuum method, and Ref. [37] (Chapter 4) for the multiscale multicomponent extension of 

SDPD. Instead, we focus on a discrete-continuous coupling strategy for MD-continuum 

simulations of a homogeneous fluid mixture, hence reconciling the multiscale techniques in 

Ref. [9] to the multicomponent generalization of SDPD in Ref. [37]. To illustrate this point, 

we perform simple equilibrium simulations, as well as non-equilibrium tests of quasi-1D 

diffusion. Though the ideas presented here are limited to ideal solutions, they are still valid 

for numerous problems where the ideal mixing approximation is appropriate due to dilute 
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concentrations, i.e. any situation where the solute dynamics is governed by the classic 

advection-diffusion equation. Moreover, the technique outlined in the following sections may 

be extensible to non-ideal solutions as well. 

In the first part of this chapter, we focus on the algorithm for coupling discrete 

particle descriptions (i.e. a fluid where a particle is either solute or solvent) to a continuum 

fluid having a concentration value associated with each particle. For the continuum 

description, we use SDPD. In order to test this algorithm, we consider the simplest possible 

case: a multiscale simulation featuring a “fine” SDPD fluid where each particle assumes a 

discrete identity of either 1i   (solute) or 0i   (solvent), coupled to a more coarse 

SDPD fluid where the concentration at each fluid volume can have any value between 0 and 

1*. This coupling of multiple scales is achieved by allowing larger, coarse-grained particles to 

split into finer particles, and for fine particles to combine into coarse ones. The question we 

address is how to split continuous particles into smaller ones having discrete identities, and 

vice versa. Refining and coarsening rules for a single-component SDPD fluid are already 

known [36,37]. Hence, we only need rules for the splitting and combining steps for the 

concentration. First, we provide a brief overview of SDPD and the coupled MD-SDPD 

approach for single-component systems in Section 5.2. The MD-SDPD techniques require 

modification for simulating fluid mixtures, and in Section 5.3 we consider the refining step, 

where a large, continuous SDPD particle enters the refining region and must split into small, 

discrete particles. In Section 5.4, we discuss the combining step, where two (or more) fine 

particles with discrete identities of either 1i   or 0i   are combined into a single coarse 

particle having a concentration j . In Sections 5.5 and 5.6, we test this approach by 

                                                             
* As in Chapter 4, we define concentration in terms of a dimensionless mass fraction. 
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performing simple multiscale simulations (both continuum-continuum and MD-continuum), 

demonstrating that proper equilibrium solute distribution is recovered. Finally, in Section 5.7 

we extend this multiscale multicomponent approach to non-equilibrium situations featuring 

concentration gradients, and consider the simple problem of quasi-1D diffusion as a case 

study. 

 

5.2 Multiscale Modeling Using Smoothed Dissipative Particle Dynamics 

 

Smoothed dissipative particle dynamics is a particle-based approach for solving the 

hydrodynamic equations in the Lagrangian frame. For the case of an incompressible 

Newtonian fluid and ideal mixing, the appropriate transport equations governing the 

momentum and solute dynamics are [44] 

 2d p
dt

    
v v  (5.1) 

and 

  1 .F
d D
dt 

    (5.2) 

Here, ρ is the mass density of the fluid (combined mass density of the solute and solvent for 

the case of a binary mixture), Φ is the concentration defined as the ratio of solute mass to 

total mass, η is the fluid (or fluid mixture) viscosity, and FD  denotes the diffusivity of the 

solute with units ML-1t-1. In SDPD, the fluid domain is decomposed into a collection of fluid 

volumes or “particles” whose positions, concentrations, and velocities are evolved using 

forms of Eqs.(5.1) and (5.2) obtained from a discretization using an interpolant function 

 ,ij i jW hr r . The resulting equations of motion for the SDPD particles are [10,34,37] 
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 (5.3) 

for the particle momenta, while the concentration of each particle evolves according to 

 
1

12 .
N

i j iji
i F ij

j i j ijij

m m Wdm D
dt r 

    
  

 r
 (5.4) 

In the SDPD governing equations (5.3) and (5.4), iv , i , im , i , and ip  denote the velocity, 

concentration, mass, density, and pressure of the ith particle, respectively. Additionally, we 

have the relative position, velocity, and concentration of particles i and j, given by 

/ij ij ije r r  with ij i j r r r , ij i j v v v , and ij i j    . ij i jr  r r  is the separation 

between particles i and j. The level of coarse-graining in SDPD is an input parameter 

controlled by the smoothing length h, which determines the extent of the smoothing function 

ijW  and controls the size of the SDPD particles.  

Small values of h give mesoscopic fluid volumes that stochastically exchange 

momenta and solute with each other due to thermal fluctuations. Therefore, in addition to the 

reversible and dissipative interactions between SDPD particles in Eqs.(5.3) and (5.4), we 

have the additional random contributions to the equations of motion [10,34,37], 

 1

1

ˆ ,

,

N

i i ij ij ij
j

N

i i ij ij
j

m d A d

m d G dV





 

 





v W e


 (5.5) 

where ijdW  and ijdV  are tensorial and scalar increments of the stochastic Wiener process, 

respectively, and ˆ
ijdW  is the traceless and symmetric part of ijdW . ijA  and ijG  are noise 

amplitudes chosen such that the fluctuations introduced into the particle momenta and 
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concentrations by Eq.(5.5) balance the viscous/dissipative terms in Eqs.(5.3) and (5.4) in 

accordance with the fluctuation-dissipation theorem. The noise amplitudes are given 

by [10,34,37] 

 

1 2

1/2

0

8 1 ,

8 1 .

i j B ij
ij

i j ijij

F i j i j ij
ij

i j i j ijij

m m k T W
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r
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  
   

    
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          

r

r

 (5.6) 

Above, 0m  is the mass of a single solute or solvent molecule or atom, and we have defined 

 1i i i   . The smoothing length h (i.e. SDPD resolution) can vary spatially in order to 

selectively coarse-grain parts of the simulation by allowing large SDPD particles to split into 

small ones, and small particles to combine into more massive ones (see Ref. [37] and Chapter 

4). The rules for splitting particles are constructed such that particle momenta, solute, and 

center of mass are conserved [37]. 

 While a purely continuum method, the equations of motion governing the SDPD 

particles [Eqs.(5.3) and (5.5)] are similar to those in molecular dynamics, and hence we can 

perform coupled MD-continuum simulations by allowing particles to change type from MD 

to SDPD and vice versa depending on their location inside the simulation box using an 

adaptive resolution approach [45–51]. We previously coupled MD to SDPD for the single-

component case using a switching function  s r  that is unity in the MD region, zero in the 

SDPD region, and smoothly and monotonically transitions between these values inside a 

buffer zone between the atomistic and continuum domains. Then, the pair interaction 

between particles i and j is written as a sum between MD and SDPD reversible forces with 

weighting given by    i js s  r r   [9], 
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  1 .MD SDPD
ij ij ijrev rev

   F F F  (5.7) 

Here, SDPD
ij rev

F  denotes the pressure force in the SDPD equation of motion [i.e. the first term 

on the right-hand-side of Eq.(5.3)]. Eq.(5.7) guarantees that particles interact through MD 

forces in the atomistic region, SDPD interactions in the continuum one, and through a linear 

combination of both force types inside the intermediate (i.e. “buffer”) zone between the MD 

and SDPD fluids. The dissipative [second term on the right-hand-side of Eq.(5.3)] and 

random [Eq.(5.5)] SDPD forces are applied to all particles inside the buffer region without 

weighting in order to thermostat the fluid.  

Note that there is a work associated with transforming particles from MD to SDPD 

type due to the different fluid description, which is supplied by a so-called “thermodynamic 

force” that acts on particles in the buffer to counter chemical potential gradients that emerge 

due to multiple resolutions [9,51] (see Chapter 3). By incorporating a thermodynamic force 

and using the MD-SDPD force interpolation approach outlined above, a MD region can be 

coupled to an atomically-scaled SDPD fluid (i.e. one where continuum particles have the 

same mass as the MD ones, ensuring mass conservation). This finely-resolved SDPD domain 

can in turn be coarse-grained by coupling to SDPD regions having more massive particles 

and larger values for the smoothing length h by allowing the fine particles to combine into 

more coarse ones, and coarse particles to split into fine ones. This approach has been applied 

to single-component systems and is detailed in Ref. [9] and Chapter 3, and extended to 

binary fluid mixtures in the following sections. 
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5.3 Refining Continuous Particles into Particles with Discrete Identities 

 

Previously, we described how to interface two SDPD fluids featuring a different 

resolution using a transition zone that is divided into three parts: 1) splitting, 2) overlap, and 

3) combining subregions [37] (see Chapter 4). In this approach, the coarse region is 

discretized into large fluid volumes, whereas the finely-resolved one is composed of a 

collection of less massive particles at a higher number density. If a large particle is 

transported to the refining region, it splits into fine SDPD particles. Similarly, a fine particle 

that crosses into the combining region is merged with another nearby fine particle into a 

single coarse one (see Fig. 5.1). The fine and coarse particles coexist in the overlap region, 

whose presence ensures a smooth transition of fluid properties across the interface between 

the two different scales [52]. In this section, we focus on the refining region. Note that in the 

prior work described in Chapter 4, we used a uniform continuum description for the entire 

problem domain, and combining/splitting rules were straightforwardly determined from 

conservation laws, i.e. such that the total mass, momentum, and solute remain constant. The 

rules in Ref. [37] are still used for the particles’ masses and momenta upon splitting and 

combining, and in this chapter we focus on the concentration variable alone, and how 

concentration values are assigned upon splitting and combining of particles. Unlike Chapter 

4, we now consider the case where fine particles assume discrete identities (solute/solvent), 

whereas the coarse particles adopt a continuum of concentration values for the solute. Hence, 

when a continuum particle splits into two or more discrete particles (or vice versa), some of 

the dissolved species may be lost or gained, and will not be precisely conserved globally. 
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Therefore, in the following, we do not preserve the total solute number exactly, and instead 

enforce a constant chemical potential. 

For simplicity, we first consider the case where coarse particles are twice as massive 

as the fine ones (Fig. 5.1), i.e. we have fine particles with mass and smoothing length m1 and 

h1, and large particles with m2 = 2m1 and h2 > h1. Thus, when a coarse particle enters the 

refining region, it splits into two particles, each having half the mass of the parent. Later, we 

generalize this approach for situations involving large fluid volumes that are n times more 

massive that the fine ones, where n is an integer greater than one. For the present case, when 

a large particle i enters the refining region, it divides into two discrete particles j and k. When 

assigning concentrations to the daughter particles j and k, we have the following possibilities 

 

Fig. 5.1. Illustration of discrete-continuous coupling. The left-hand-side of the simulation box features a 

“discrete” SDPD fluid with mass and smoothing length m1 and h1, respectively, where concentrations can 

only assume values of 1 or 0, and hence each particle is either solute (orange) or solvent (green). On the 

right-hand-side, we have a normal SDPD fluid where particles are twice as massive (m2 = 2m1, h2 > h1) 

and can have any concentration Φ. The large, continuous SDPD particles are able to split into fine, 

discrete ones when crossing into the refining region. Similarly, fine, discrete particles can combine into 

large particles upon entering the coarsening region. 

h1

m1

interface

refining overlap coarsening
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(Fig. 5.2): 1) The large particle i splits into two solute particles ( 1j k    ), 2) the large 

particle splits into one solute and one solvent particle (e.g. 1j   and 0k  ), and 3) the 

large particle splits into two solvent ( 0j k    ). Note that for case 2), there are actually 

two possibilities: either 1j   and 0k  , or  0j   and 1k  . Therefore, this splitting 

move has a degeneracy of two ( 2 2  ). For the other two splitting options, there is no 

degeneracy ( 1 3 1    ). 

Next, we construct rules for selecting from these three possibilities such that a 

constant chemical potential is enforced. Consider a mixture of two types of particles (i.e. one 

where the jth particle has concentration of either 1j   or 0j  ) with average bulk solute 

concentration  . From simple combinatorics, we know that the probability of drawing a 

solute particle ( 1j  ) from the box is proportional to the average concentration, 

 1jP     , i.e. a lower concentration of solute particles corresponds to a lower 

probability of drawing a solute particle at random from the box. Therefore, the probability for 

drawing two solute particles (i.e. particles with concentration 1j k    ) is given by 

 

Fig. 5.2. Three different possibilities when splitting a continuous particle into two discrete ones. For case 1, 

the large particle divides into two solute particles. In case 2, the particle splits into one solute and one 

solvent, and finally for case 3, the large particle breaks up into two solvent particles.  

Φi Φi Φi Φi

case 1 case 2 case 3
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1k 

0j 
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    21 1j kP P      . Note that this is only exactly true if the first particle is replaced 

before drawing the second. However, for large systems comprised of many particles, this is a 

good approximation without replacement as well. Moreover, when the chemical potential is 

fixed this is exact, since drawing a particle would not affect the average concentration, which 

is maintained constant by contact with a bath. Hence, the probability for case 1) is: 

 2
1 1 .P     (5.8) 

Similarly, the probability for drawing a solvent molecule is  0 1jP      . 

Therefore, the probability for drawing one solvent and one solute is    1 0j kP P    , 

and thus for case (2) we have 

  2 2 1 .P       (5.9) 

Finally, the probability for a large particle splitting into two solvent particles [case (3)] is: 

  2
3 3 1 .P      (5.10) 

Therefore, Eqs.(5.8), (5.9), and (5.10) with degeneracies 1 3 1     and 2 2  give 

the probabilities for each of the three cases in Fig. 5.2. When a particle crosses into the 

refining region and divides into two daughter particles, we have to choose from one of these 

three possibilities, and therefore the total probability that we pick one of these three 

outcomes must be unity. Due to the definition of the concentrations as mass fractions, the 

probabilities are normalized, i.e. 1l l
l

P  . Summarizing, P1 gives the probability to split 

into two solute particles relative to the probabilities for the other two options, P2 is the 

probability to split into one solute and one solvent relative to the other possibilities, and P3 is 

the probability of splitting into two solvents relative to cases 1 and 2. In practice, selecting 
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from one of these three outcomes is done using a Monte Carlo algorithm, where a uniformly 

distributed random number X is generated [  ~ 0,1X U ]. Then, if 1X P , the particle splits 

into two solutes, 1 1 2P X P P    results in a solute and solvent, and 1 2X P P   gives two 

solvent particles. 

It is straightforward to extend these rules for large fluid volumes splitting into more 

than two small particles. For the general case of a coarse particle splitting into n fine 

particles, the probabilities become  
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 (5.11) 

Here, the lth degeneracy factor is the 
1

n
l
 
  

 binomial coefficient. By coupling to a fluid with 

coarse particles significantly more massive than the fine ones, there is greater reduction in 

the total number of particles used, giving further computational savings. However, note that 

if the discrepancy in the particle masses is too large, this leads to artifacts in properties such 

as the density distribution, as well instability due to heating upon particle insertion [52,37]. 

We have performed tests with n = 2, 4, and 6, and in this work present results from the n = 2 

and 6 cases. 
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5.4 Coarsening Discrete Particles into Particles with Continuous 

Concentration Labels 

 

We now consider the converse situation, when two small, discrete particles are 

combined into a single continuous particle. This combining step occurs inside the coarsening 

region (Fig. 5.1) and is the reverse move to the particle splitting illustrated in Fig. 5.2. Note 

that for the particle splitting discussed in the previous section, the amount of solute is not 

conserved exactly, and instead we enforce the desired chemical potential. Similarly, we 

construct a coarsening procedure that imposes the same target chemical potential (i.e. 

average concentration) as the splitting rules. This guarantees that at equilibrium, there is no 

net loss or gain of solute due to the splitting and combining steps, even if the total amount of 

solute is not conserved precisely. The concentration inside a small, finite region within a 

binary mixture can assume a number of different values due to thermal fluctuations, since 

this region is free to exchange solute with its surroundings. At equilibrium, this results in a 

distribution of concentration values. For a collection of SDPD particles, each having 

dimensionless mass 0/m m , these concentration values are described by a Gaussian 

distribution with variance 

     1
2 0

,

,B

P T

m k T
m




          
 (5.12) 

where  denotes the difference between the solute and solvent chemical potential, a 

consequence of the constant mass constraint for the SDPD particles. Eq.(5.12) is obtained 

following a derivation similar to the one for concentration fluctuations in Ref. [53]. 

Assuming an ideal solution, i.e.  ln ln 1B Bk T k T    , the variance in Eq.(5.12) 
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becomes simply    2
0 1 /m m      [37] (also, see Appendix 4.8.2), and the 

concentration distribution is therefore 

    
 

 

2

0 0

exp .
2 1 2 1

mmP d d
m m

   
     

       
 (5.13) 

Here, m is the mass of the coarse SDPD particle, and m0 is the mass of in individual solute or 

solvent molecule; hence, the dimensionless mass 0/m m  is also equivalent to the total number 

of molecules contained in a single fluid particle. We can therefore assign a concentration 

value to the newly-formed daughter particle upon coarsening by sampling this distribution. 

Similar to the splitting move, the amount of solute contained in the parents is irrelevant to the 

concentration of the newly formed fluid volume, which only depends on the chemical 

potential of the bath. Note that by drawing values at random from Eq.(5.13), the new 

continuous particle is automatically equilibrated with the surrounding fluid. Furthermore, this 

is readily extensible to coarsening steps where the large particle is arbitrarily more massive 

than the fine particles, since the parameter n is proportional to the coarse particle’s mass, m, 

which affects the distribution in Eq.(5.13). Eq.(5.12) gives a basis for determining the 

distribution one needs to sample in a coarsening step when dealing with non-ideal solutions 

where the chemical potential features a different functional form. 

Alternative approaches for combining particles include giving the daughter particle a 

concentration that is equal to the equilibrium concentration ( i   ), or assigning a value 

based on the concentrations of the parent particles such that solute is conserved (e.g. a pair of 

discrete particles with concentrations 1.0j   and 0.0k   combine into a single coarse 

particle with concentration 0.5i  ). However, these approaches bias the solute distribution 
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inside the coarsening region such that it no longer represents the appropriate equilibrium one, 

given by Eq.(5.13). When coarse particles that do not comply with the equilibrium 

distribution are then destroyed to form smaller fluid volumes, this may result in a net loss or 

gain of solute over time. In other words, when considering the distributions of solute left over 

after a collection of coarsening steps, and after a collection of refining steps, the distributions 

are perfectly symmetric when using Eq.(5.13). On the other hand, if a different approach is 

used for the coarsening step, the average solute left over from the combining steps may not 

balance the leftover solute from the refining steps. There will thus be a net creation or 

destruction of solute over time (depending on the average concentration) that is balanced by 

an unphysical constant outflux or influx of solute from the bath. Therefore, in this work we 

assign coarse particle concentrations by sampling Eq.(5.13).  

 

5.5 Test of Discrete-Continuous SDPD Concentration Coupling at 

Equilibrium 

 

 We use simple two-scale SDPD simulations to test this approach at equilibrium. 

Specifically, we perform a multiscale simulation having a finely-resolved SDPD fluid 

coupled to a coarse one where the particles are twice as massive, and the number density is 

halved. Concentrations are defined as dimensionless mass fractions, and all values are 

reported with the reduced unit convention in Refs. [36] and  [37]. The particles in the fine 

region are “discrete” and can only take on values of 1j   (solute) or 0j   (solvent), 

whereas the particles in the coarse region have a concentration assigned to them that can 

have any value between 0 and 1. The simulation of a discrete SDPD fluid coupled to a more 
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coarse continuous one is a toy model for testing the discrete-coupling splitting and 

combining rules in Sections 5.3 and 5.4. Hence, the splitting probabilities are given by 

Eqs.(5.8), (5.9), and (5.10), and the concentration of a coarse particle resulting from a 

combining step is drawn from Eq.(5.13). Initially, 1000 fine particles are placed on a 

10×10×10 cubic lattice inside a volume with dimensions 25×25×25. The coarse region is 

prepared by creating 512 particles on a 8×8×8 lattice inside a 25×25×25 region. This coarse 

fluid is placed adjacent to the fine one such that the normal vector to the interface between 

fine and coarse regions points in the z-direction. The system features periodic boundary 

conditions in all directions, and the two transition regions are located between z = 0 and 6, 

and z = 25 and 31, with each transition zone being divided into refining, overlap, and 

coarsening subregions having a width of 2. Hence, the total simulation box has dimensions 

25×25×50, with the fine-grained region located at 6 < z < 25, and the coarse-grained one at 

31 < z < 50. Before starting the equilibration, the particle lattice positions are translated in the 

positive z-direction by half the transition region width so that initially the interfaces between 

fine and coarse particle domains are precisely centered inside the overlap subregions.  

For the SDPD model, we choose parameters that correspond to a Lennard-Jones fluid 

at reduced temperature T = 1.0 and mass density ρ = 0.8. With this mass density and lattice 

number density, the resulting particles have mass m1 = 12.5 in the fine region, and m2 = 25.0 

in the coarse (henceforth the 1 subscript denotes the fine region, and 2 is the coarse-grained 

one). The corresponding smoothing lengths are h1 = 3.00 and h2 = 3.75, respectively. At the 

selected state point, the fluid bulk and shear viscosities are ζ = 0.9 [54] and η = 1.9 [55]. 

Finally, in SDPD it is necessary to specify the equation of state for the fluid, and thus its 

thermodynamic properties, in order to calculate the pressure force between particle pairs. 
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Rather than using the full Lennard-Jones equation of state, we use a simple linearized version 

with the form 2
i s ip c   [36,39,40], where pi is the pressure at particle i, ρi is the density at 

the ith particle, and cs is the speed of sound. Incompressible fluids in SDPD are 

approximated as quasi-incompressible by choosing a large value for the speed of sound, such 

that particles are highly-repulsive and density variations are low [40,56,57], typically within 

3% of the target density [56]. Hence, we select cs = 5.0 [36], which gives small fluctuations 

in density without requiring a prohibitively small time-step. The particle concentrations are 

updated using the Euler-Maruyama integrator [58] with a time-step of Δt = 0.01. 

An important detail is that the self-diffusivity of the fine, discrete particles (MD or 

SDPD) must equal the effective solute diffusion constant in the continuum part of the 

simulation, i.e. the diffusive transport of solute should be uniform throughout the system 

independent of the degree of coarse-graining. In the fine region, solute diffusion occurs 

purely due to the motion of the discrete particles, and hence it is described by the discrete 

particles’ self-diffusion constant. However, the solute diffusivity in the coarse, continuous 

SDPD region has two distinct contributions since particles not only move, but also exchange 

solute with each other in a pairwise fashion. In other words, solute transfer occurs in the 

coarse SDPD region even if the particles are stationary due to solute fluxes between particle 

pairs [described by Eqs.(5.4) and (5.5)], and the actual thermal motion of the SDPD particles 

enhances solute transport further. Matching diffusivities in this case requires care since for 

small fluid volumes, velocity fluctuations lead to an enhancement of diffusive 

transport [59,60]. In light of this, the diffusion constant characterizing the total or “effective” 

rate of solute transfer in the continuous SDPD region is written as a combination of these two 

contributions: 1) the “bare” Fickian diffusion constant FD  for the solute transferred from one 
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particle to a neighbor (either due to a difference in chemical potential between the two 

particles, or due to a stochastic flux of solute), and 2) an additional quantity 2D  that accounts 

for the random motion of the fluid particles due to velocity fluctuations. The effective 

diffusion constant for the coarse SDPD fluid is therefore given by summing these two 

distinct parts [61] 

 2 ,eff FD D D   (5.14) 

where 2D  is simply the self-diffusivity of the continuous SDPD particles due to thermal 

stresses. From mean-square-displacement calculations, we find that the self-diffusion 

constant of the SDPD fluid particles with mass m2 = 25.0 is 2D  = 0.0162. 1D   = 0.0325 for 

SDPD particles with m1 = 12.5, which is the self-diffusivity of a discrete SDPD particle in 

the fine region [note that in the discrete SDPD domain we do not solve the diffusion equation 

Eq.(5.4), and hence FD  = 0 and solute transport is purely due to the Brownian motion of the 

SDPD particles].  

Summarizing, the fine and coarse SDPD particles in a multiscale simulation feature a 

different self-diffusivity, and hence the solute dynamics need to be modified to equalize the 

rate at which solute diffuses throughout the simulation box. In the coarse, continuous region 

the overall solute diffusivity is 2eff FD D D   since 1) solute can be transported between 

particle pairs, and 2) the particles themselves move and undergo a random walk, advecting 

solute in the process and enhancing its transport. In the fine, discrete region, however, solute 

diffusivity is simply 1D  since particles cannot exchange solute with one another ( 0FD  ) 

and solute transfer only occurs due to the random motion of the SDPD particles. In order to 

have uniform diffusivity across the simulation box, the finely-resolved fluid self-diffusion 
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constant 1D  therefore must equal the effective diffusion constant in the coarse SDPD region, 

effD [Eq.(5.14)], i.e. 1 effD D , which is achieved by tuning FD  for the continuous SDPD 

particles. Eq.(5.14) suggests a choice of 1 2 0.0162FD D D    for the constant that enters 

the discretized diffusion equation in order to achieve this matching. Note that the diffusion 

constant in the discrete part of the simulation box 1D  must be greater than the self-diffusivity 

of the coarse SDPD particles ( 1 2D D ); if this condition is not met, having uniform 

diffusivity would require a negative value for the bare diffusion constant FD . If a simulation 

features a hierarchy of continuum SDPD domains, each having a different level of coarse-

graining (i.e. smoothing length) [37], then the Fickian diffusion constant FD  may need to be 

adjusted for each region such that the effective diffusivity is uniform [although for large 

particles, 2D  is vanishingly small compared to FD , and thus Eq.(5.14) becomes simply 

eff FD D . Hence, modifying the value of FD for more coarse fluids is not necessary].  

Equilibration of the fluid mixture features two stages. This is necessary since initially 

there is a slight transfer of mass from the fine region into the coarse one, a consequence of 

 

Fig. 5.3. Concentration profiles versus position at equilibrium for a discrete SDPD fluid (located at 6 < z < 

25) coupled to a continuum one (31 < z < 50). There are two transition regions due to the box periodicity, 

located at 0 < z < 5 and 25 < z < 31. Results from three separate simulations are shown, having average 

concentrations of 0.4, 0.5, and 0.6.  
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the higher self-diffusivity of the smaller SDPD particles relative to the coarse ones, 

1 2D D  [36]. After the distribution of particles across the system is equilibrated, and the 

number of particles in the fine and coarse regions stabilizes and fluctuates around an 

equilibrium value, the concentrations are reset to the average and thermally equilibrated. In 

other words, we equilibrate the total mass distribution first, and the solute distribution 

second. The total process is over 1×106 time-steps, and the production run is over 1×107 

time-steps, with a time-step magnitude of 0.01t  . Three separate cases, each having a 

different average concentration, are studied: i) 0.4  , ii) 0.5  , and iii) 0.6  . 

The equilibrium concentration profiles from the production runs are shown in Fig. 5.3. The 

profiles are flat, without significant deviations due to the interface between the discrete and 

continuous regions, with errors in the three profiles of 1.36%, 0.88%, and 0.02% in the 

discrete region for cases i), ii), and iii), respectively. In the continuous region, the 

concentrations are within 0.05%, 0.04%, and 0.03% of the target value. By construction, the 

continuous SDPD region reproduces the correct fluctuations [37], i.e. the distribution of 

concentrations is given by Eq.(5.13). Throughout the simulation for case i), there are a total 

of 109712 refining events and 109717 coarsening ones, with particle splitting or combining 

occurring on average every 73 time-steps. The average solute lost/gained in case i) due to a 

refining/coarsening step over the course of the production run is 0.0144 for particles splitting 

and 0.032 for particles combining; hence, there is approximately no net creation or 

destruction of solute, which is on average conserved. Similarly, the average solute gained or 

lost per splitting/combining move is 0.0052 and 0.0004 for case ii), and 0.0355 and 0.0171 

for case iii). 
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5.6 Hybrid MD-Continuum Simulations of an Ideal Fluid Mixture at 

Equilibrium 

 

We now demonstrate how this technique is used to facilitate MD-continuum coupling 

for fluid mixtures. In particular, we consider a binary fluid modeled across multiple 

resolutions, with a molecular region for the small scales, and a continuum description for the 

large ones. The hybrid molecular-continuum approach for single-component systems 

described in Chapter 3 is an essential element in this test. The method involves a MD region 

coupled to a SDPD fluid composed of molecularly-sized particles, using an adaptive 

resolution approach [45–51] that gradually interpolates between MD and SDPD interactions 

across a buffer region using Eq.(5.7). Due to the particle description employed across all 

length-scales, momentum and mass conservation is intuitively prescribed. Note that to 

mediate the MD-to-SDPD transition, this technique requires SDPD fluid “volumes” that have 

the same size as the individual molecules/atoms, which is unphysical [9]. Despite being 

atomically-sized, these particles are Markovian due to their coupling to a momentum bath, 

similar to MD fluids with a DPD thermostat [62]. However, this kind of highly-resolved 

SDPD fluid still satisfies conservation laws and fluctuation-dissipation, and is used to bridge 

MD to coarser continuum domains. Importantly, we previously demonstrated in Chapter 3 

that it is possible to shrink the atomically-resolved SDPD region to zero size, minimizing the 

number of ultrafine SDPD particles required for a multiscale simulation. Thus, the only parts 

of the simulation box where atomically-sized SDPD particles appear is in the refining and 

overlap regions in the interface between the MD and SDPD fluids (see Fig. 5.4).  
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Since the single-species MD-continuum approach briefly summarized in Section 5.2 

has been discussed at length (Chapter 3), we focus only on how concentration is treated 

across the simulation box. In generalizing the MD-continuum approach from Chapter 3 to 

multicomponent systems, there is no ambiguity in how the molecular region is handled; we 

simply have a MD region featuring more than one species. Similarly, the continuum region is 

unambiguously modeled using the multicomponent SDPD formulation described in Chapter 

 

Fig. 5.4. Illustration of MD-continuum coupling for a binary mixture. On the left-hand-side is the MD 

region, comprised of a collection of solute and solvent atoms. On the right-hand-side is the continuum 

region, simulated using SDPD. The interface between them is divided into two separate parts: 1) the MD-

to-continuum transition (orange) and 2) the fine-to-coarse SDPD particle transition (blue). Note that this 

arrangement is identical to the set-up for the hybrid MD-continuum simulations in Chapter 3, except the 

atomically-sized SDPD fluid region has been removed. In the MD-to-SDPD region, particles transition 

from MD atoms to atomically-sized SDPD fluid particles, and vice versa, where their interactions are 

gradually turned on/off using a switching function (shown in black). Here, a solute MD atom changes 

into a SDPD particle with Φi = 1, and a solute MD atom becomes a SDPD particle with Φi = 0. The fine-

to-coarse SDPD transition region (blue) is itself divided into coarsening, overlap, and refining 

subregions. Here, discrete SDPD particles are combined into continuous particles, and continuous ones 

are split into discrete ones.  
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4, where each fluid particle carries solute, has a concentration value assigned to it, and these 

concentrations are evolved according to the discretized diffusion equation. The MD-

continuum coupling is handled as follows: using Eq.(5.7), a solute MD atom/molecule 

becomes a discrete SDPD particle with concentration 1i   upon crossing the MD-to-

continuum transition zone (orange area, Fig. 5.4) into the SDPD region, and vice versa. A 

solvent MD atom/molecule becomes a SDPD particle with 0i  . Then, these fine, discrete 

SDPD particles are coupled to more coarse, continuous ones across the fine-to-coarse SDPD 

transition zone (blue area, Fig. 5.4) using the discrete-continuous coupling described in 

Sections 5.3-5.5 of this chapter. Note that there is no pure atomically-scaled SDPD fluid 

region as in Chapter 3; by removing this domain, the MD-to-continuum and fine-to-coarse 

SDPD transition regions are placed immediately next to each other. Hence, the overall 

interface is divided into these two parts, one where MD particles transition to continuum 

ones, and a second part where these fine SDPD particles are coarsened (see Fig. 5.4).  

A test for this coupling methodology is set up as follows: a MD wall is created by 

initializing 845 atoms on a 13×13×5 lattice inside a volume with dimensions 13×13×5. 

Immediately next to this region, we place the MD fluid domain by creating a 12×12×12 

lattice of atoms inside a 13×13×13 volume. This region is located adjacent to the MD wall 

such that the z-direction is normal to the liquid-solid interface. Next, the transition zone is 

created by placing 1056 particles on a 11×12×8 lattice inside a region with side lengths 

13×13×8. Once again, this part of the simulation box is positioned next to the MD one such 

that the interface between them has a normal in the z-direction. Finally, we initialize the 

coarse SDPD fluid by generating a region with dimensions 13×13×26, and placing a 6×7×14 

lattice of particles inside. This fluid domain is next to the transition region, where the normal 
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vector to the interface between them is in the z-direction. This setup is illustrated in Fig. 5.5a. 

The system features a MD boundary between z = 0 and z = 5 and a MD fluid between z = 5 

and z = 18. The region between z = 18 and 23 is the MD-to-continuum transition zone, where 

MD and SDPD interactions are turned on and off using the adaptive resolution approach 

from Ref. [9], Eq.(5.7). Between z = 23 and z = 29 is the fine-to-coarse particle transition 

described in Sections 5.3 and 5.4, as well as Ref. [37], where fine SDPD particles are 

transformed into coarse ones, and vice versa. This part is itself divided into a refining region 

(located 23 < z < 25), overlap region (25 < z < 27), and coarsening region (27 < z < 29). 

Particles situated between z = 29 and z = 46 are coarse SDPD fluid particles. The SDPD 

particles between z = 46 and z = 52 constitute the wall, and their positions and concentrations 

are not evolved in time. For more details about boundaries in SDPD, see Chapters 3 and 4, 

and Ref. [56]. 

We investigate the same thermodynamic state point (T = 1.0 and ρ = 0.8), and hence 

use identical values for the shear and bulk viscosities as in Section 5.5. In order to 

approximately match both the compressibility and absolute pressure in the MD region, we 

use a linear equation of state with the form  2
0 0i s ip c p     (here 0  and 0p  are the 

target density and pressure, respectively, where for the present case 0 1.4p  ) [9]. Matching 

the absolute pressure of the SDPD fluid to the one in the MD region is required, since a 

pressure mismatch will result in a transfer of mass across the interface separating the 

domains with different resolution. For this test, we couple the MD fluid to a SDPD region 

with particles six times more massive; hence, splitting probabilities are given by Eq.(5.11) 

with n = 6, and the concentration of a newly-formed coarse particle is drawn from a 

numerically pre-computed probability distribution of a single-scale SDPD fluid with 
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0/ 6m m   (discussed in more detail below). Given the initial lattice and choice of mass 

density, the coarse SDPD particles have a mass of 6 and smoothing length h = 2.35, while the 

fine particles (MD and discrete SDPD) have a mass of unity and h = 1.30. Since we have an 

ideal mixture, the SDPD model corresponds to a reference MD fluid where atom interaction 

energies and sizes are uniform, and the distinction between solute and solvent atoms is purely 

in terms of labels.  

Recall that for very small fluid particles, matching diffusivities requires additional 

care since velocity fluctuations result in enhanced diffusion. In other words, the self-

diffusivity of the solute MD molecules should match the effective diffusion constant in the 

continuum part of the simulation, which is composed of a Fickian and self-diffusion 

contribution, as described by Eq.(5.14). Using mean-square-displacement calculations, the 

self-diffusion constant of the SDPD fluid volumes with m = 6.0 is calculated to give SDPDD  = 

0.0486. Our MSD calculations are in agreement with the results of Kulkarni et al. [36], who 

found that SDPD particles with mass between m = 2.0 and 6.0 approximately match the self-

diffusivity of their Lennard-Jones atom counterparts at the current thermodynamic state 

point. LJD   = 0.0737 in the MD region, which is the self-diffusivity of a Lennard-Jones 

particle at the present conditions in a fluid with interaction energy and length ε = 1 and σ = 1, 

respectively, and potential cut-off 2.6cr  . Uniform diffusivity across the simulation box 

requires that the MD diffusion constant LJD  equals the effective diffusion constant in the 

SDPD region, eff F SDPDD D D  , i.e. LJ effD D , where FD  is the diffusion constant that 

enters the discretized SDPD form of the diffusion equation. Eq.(5.14) therefore suggests a 

choice of 0.0252FD   for the Fickian diffusion constant that ensures this matching. 
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As in Section 5.5, three separate equilibrium simulations are performed, each having 

a different average concentration ( 0.4  , 0.5  , and 0.6  ). For the continuum 

part of the system, a Dirichlet boundary condition is applied at the solid boundary such that 

the concentration at this location equals the average, equilibrium value. In addition, a no-slip 

condition is applied to the velocity at the continuum solid-liquid interface. The system is 

equilibrated for 1×106 time-steps, and data is collected for 8×106 time-steps. We choose a 

time-step value of 0.001t  . Care must be taken to use a sufficiently small time-step due to 

precision issues associated with very small particles that result in SDPD particles having a 

negative concentration, or concentration greater than one. 

An issue that appears as a consequence of the small size of the continuum particles 

when coupling to a MD region is that the distribution for the coarsening step [Eq. (5.13)] 

assumes large particles; when particles are small such that concentration fluctuations are 

significant, the breadth of the distribution becomes larger than the interval between 0 and 1. 

In such a case, the probability distribution is no longer Gaussian and it is not possible to 

directly use Eq.(5.13). Hence, the distribution for the solute  P   is numerically 

precomputed beforehand from a single-scale SDPD simulation, and a truncated Gaussian fit 

of this distribution is used in place of the analytical result given by Eq.(5.13). Note that like 

the atomically-sized continuum particles it describes, this distribution is not entirely physical, 

but an artificial construction necessary for mediating the MD-continuum coupling. The 

resulting distribution can also be viewed as a Gaussian approximation to the true distribution 

for small systems with ideal mixing. 
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Concentration profiles from these equilibrium simulations are shown in Fig. 5.5b. The 

error in the MD region is 0.89%, 1.31%, and 0.46% for the   = 0.4, 0.5, and 0.6 cases, 

respectively, while in the continuum region it is within 0.57%, 0.13%, and 0.77% for the 

three tests. The time-average of the solute destroyed per splitting event for the   = 0.4 

case is 0.0081, while the solute created due to coarsening is 0.0110. For the   = 0.5 test, 

the solute destroyed and created is 0.0076 and 0.0092, respectively, and for the    = 0.6 

simulation we have 0.0044 solute created and 0.0085 solute destroyed. As before, the net 

solute created or destroyed per refining/coarsening step is approximately zero. The frequency 

 

 

Fig. 5.5. (a) Illustration of system setup. The left-hand-side is a binary MD fluid, whereas the right-hand-

side is a continuum region modeled using SDPD. The orange zone is the MD-to-continuum transition, 

and the blue is the fine-to-coarse SDPD coupling zone. (b) Equilibrium concentration versus position. 

We show results from three separate simulations, having average concentrations of 0.4, 0.5, and 0.6. The 

transition region between the MD and continuum domains is divided into two parts, 1) the MD-to-

continuum transition region, and 2) the fine-to-coarse particle transition zone. 
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for splitting and combining particles averaged over the three tests is every 206 time-steps. 

Over the course of the simulation, we have 96820 splitting events and 96845 coarsening 

ones. These two numbers are approximately the same, implying no net mass transfer between 

regions at equilibrium. Note that while we focus on MD-continuum simulations in this 

section, this approach is general to any situation involving a particle description for the fluid, 

even ones where molecular regions are not present altogether. For example, the widely used, 

bottom-up, coarse-grained particle technique known as dissipative particle dynamics 

(DPD) [64,65] has been applied to qualitative multicomponent simulations where DPD 

particles are assigned a unique identity (e.g. type A or type B) [66,67]; using the discrete-

continuum technique described here, it is possible to couple a binary DPD fluid region to a 

more coarse continuum one modeled using SDPD. Another possibility is to interface a fine 

binary fluid composed from particles with potentials obtained from Boltzmann inversion to a 

more coarse SDPD continuum fluid. 

 

5.7 Non-Equilibrium Multiscale Simulation of a Binary Mixture 

 

In this section, these methods are extended to non-equilibrium situations, where the 

chemical potential is no longer uniform across the system, giving rise to fluxes of solute. We 

specifically focus on the problem of quasi-1D diffusion as a case study, where a 

concentration gradient is imposed across the system perpendicular to the interface between 

the MD and continuum parts of the simulation box. The system is set up identically to the 

one in Section 5.6, with a fluid bounded by two walls (see Fig. 5.5a). As before, a MD wall is 

placed next to a MD fluid, which is coupled to a SDPD fluid where particles are six times as 
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massive. The difference is that we previously assumed a fixed chemical potential, which 

corresponded to some equilibrium concentration, when performing the splitting and 

coarsening steps. Note that the interface region between fine and coarse SDPD fluids is the 

portion of the simulation box that is coupled to a bath. When gradients are present, we need 

to adjust the chemical potential of the bath to match the chemical potential that would exist at 

this location in the absence of multiple degrees of coarse-graining, i.e. if a uniform fluid 

description was used throughout. In order to generalize this approach to non-equilibrium 

simulations, we therefore calculate the average concentration in the fluid left of the interface 

region, as well as the average concentration to the right of the interface, and then perform a 

linear interpolation to determine the average inside the transition zone (where this average is 

used for the splitting and refining steps). In other words, the average concentration that 

appears in Eqs.(5.11) and (5.13) is no longer a constant value across the simulation box, but 

is calculated from a linear interpolation across the interface region, and the bath enforces a 

chemical potential based on this value. Therefore, we make a local equilibrium assumption 

and linearize the concentration profile near the interface. The accuracy of this approach 

requires that the length scale characterizing concentration gradients is larger than the width 

of the interface region. 

As in the previous section, the probability distribution for the coarsening step is not 

given by Eq.(5.13) owing to the small particle size and requires additional care. Moreover, 

since the average concentration is no longer fixed, the distribution will change as the average 

concentration inside the interface varies while the system evolves towards its equilibrium 

state. Hence, we first set up a series of equilibrium SDPD simulations at a number of 

different average concentrations at regular intervals in order to numerically determine the 
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concentration probability distribution for each one. Next, we use a truncated Gaussian 

function to fit these results. Once the fitting parameters for a number of different average 

concentrations are known, we can interpolate between these values to approximate the solute 

probability distribution for any average concentration that may appear in the transition 

region. Hence, we determine  P   for any   that may potentially appear within the 

interface region between the discrete and continuous domains, and therefore we are able to 

sample the probability distribution appropriate to the instantaneous average concentration 

inside the transition zone. This procedure assumes that the time-scale for the evolution of 

  inside the transition region is slow relative to other time-scales (e.g. the motion of the 

individual particles), and that sufficiently large volumes are used to calculate this average 

value in order to remove effects of statistical noise. 

For the present test, the concentration is initially 0.4 across the entire simulation box, 

and after equilibration, the concentration at the SDPD wall is increased to 0.6, and a gradient 

 

Fig. 5.6. Concentration profiles at different times in a hybrid MD-continuum simulation. The blue curves 

(circle markers) are the results from simulations, averaged over 10 independent simulations. The black 

curve is the exact, analytical solution of the diffusion equation. 
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begins to propagate across the box. The MD wall naturally provides a no-flux boundary 

condition. Since the concentration can vary between 0.4 and 0.6 inside the interface region, 

prior to starting we perform a separate series of equilibrium pure SDPD simulations at the 

following concentrations:   0.40, 0.45, 0.50, 0.55, 0.60. For each one, the distribution 

 P   is calculated, fit to a truncated Gaussian function, and the values for the fitting 

parameters are tabulated. Then, if we are running the full hybrid simulation and the value of 

the concentration inside the buffer is determined to be 0.47 (as an example), we perform a 

linear interpolation using the fitting parameters for the 0.45 and 0.50 distributions, giving the 

distribution for that instant  0.47P   . This distribution is used in place of Eq.(5.13) if it 

is necessary to perform a coarsening step. The splitting probabilities are the same as before, 

except the average concentration in Eq.(5.11) is replaced with the interpolated value. To 

perform the interpolation and determine the average transition region concentration, the 

average concentration is calculated using bins of width 5 immediately to the left and to the 

right of the transition zone. Prior to switching on the concentration gradient, the system is 

equilibrated at an average concentration of 0.40   for 1×106 time-steps. Due to 

significant statistical and thermal noise, we average the time-dependent concentration profile 

over 10 separate trajectories, each initialized using a different random seed. The 

concentration profile at several different instants is shown in Fig. 5.6 (previous page), 

compared to the analytical solution from the diffusion equation. Note that while we capture 

the correct overall diffusion dynamics, the numerical solution may advance slightly ahead or 

behind of the analytical one since the linear interpolation inside the buffer region can 
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overestimate/underestimate the average concentration depending on the curvature of the 

concentration profile. 

 

5.8 Conclusions  

 

 In this chapter, we described an approach for hydrodynamic simulations with 

bridging between high-resolution regions where particles represent individual solute or 

solvent molecules/clusters, to lower-resolution continuum ones where each particle is a fluid 

volume that may contain some amount of solute and solvent. This approach is general to any 

discrete concentration model for the high-resolution molecular region (MD or coarse-

grained), and any continuum particle approach for the more coarse-grained part, though in 

our work we focus on using SDPD. This is achieved by allowing large continuum particles to 

split into finer discrete ones, and vice versa. The splitting and combining rules are 

constructed such that an average concentration (i.e. chemical potential) is enforced, allowing 

for straightforward multiscale equilibrium simulations of fluid mixtures. Moreover, by 

performing a linear interpolation of the concentration profile across the interface region, it is 

possible to adjust the bath chemical potential on-the-fly and perform non-equilibrium 

simulations as well. A simple binning average was used in Section 5.7 to determine the 

concentration profile values to the left and right of the interface region, which gives an 

interpolated value for the concentration inside the transition zone. This approach can be 

generalized to more complicated concentration profiles with variation in all directions by 

calculating bin averages in three dimensions or performing local SPH averages instead, 

though the length scale characterizing gradients in concentration should be larger than the 
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transition zone width to minimize errors due to this local linearization. Importantly, we 

demonstrated how the applicability of this method by performing both equilibrium and non-

equilibrium MD-continuum simulations of a binary ideal mixture. 

 This approach features several shortcomings, however. First, it is limited to ideal 

mixing, where the distinction between solute and solvent is only based on particle identities, 

and interactions between all particles in the fine (e.g. molecular) region are identical. Of 

course, ideal mixing is a good approximation for many situations, and this approach is still 

applicable to any problem where the solute flux is proportional to the gradient of 

concentration. The simple splitting and refining rules can be adjusted for more complicated 

non-ideal fluid mixtures if the functional form of the entropy and chemical potential or 

activity coefficients are known (e.g. a regular solution having an enthalpy of mixing), though 

this would require deriving a new model for the concentration dynamics through GENERIC 

and concurrently solving an equation for the entropy production. Another potential drawback 

is that the self-diffusivity of the atomically-scaled, discrete SDPD particles in a MD-

continuum simulation may not match the diffusivity of the MD atoms precisely, since coarse-

grained particles typically have softer interactions and therefore larger diffusion constants. 

Moreover, this puts a limit on the allowed level of coarse-graining for the SDPD region, 

because an unphysical, negative Fickian diffusion constant is required if the self-diffusivity 

of the SDPD particles is larger than the MD ones. Finally, as the size of the SDPD particles 

shrinks, fluctuations in concentration become increasingly large. In such situations it is no 

longer possible to use Eq.(5.13) for the coarsening steps, and instead the probability 

distribution must be pre-computed numerically prior to starting the multiscale simulation.  
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Ultimately, multiscale simulation methods have been historically difficult to 

implement, and we believe this general extension to multicomponent problems provides a 

basis for not only large-scale modelling of problems involving binary mixtures, but also 

future advancements in the field towards methods that are more efficient and refined. 

Importantly, the framework provided in this chapter opens the possibility for a number of 

applications, including the transport and margination of porous drug particles in intravascular 

drug delivery [13,14]. Here particles experience complex interactions due to surface 

chemistry at the nanoscale, van der Waals and lubrication forces at micron separations, and 

long-range hydrodynamics over larger scales. Using multiscale multicomponent techniques, 

it is possible to perform simulations that also capture the dynamics of the active ingredient 

lost to the surrounding fluid. Another important system is surface nanobubbles and 

nanodroplets, nanoscale bubbles and drops that form along hydrophobic boundaries and 

stably exist over time scales orders of magnitude beyond classical predictions [21–25]. All 

current models that explain this unusual stability feature multiple length scales and multiscale 

multicomponent techniques, such as the one in this work, are essential for capturing the key 

physics at all levels. While everything discussed in this work is for uncharged systems, the 

adaptive resolution approach for bridging MD and coarse-grained fluid representation is also 

applicable to systems featuring electrostatic interactions [47–49], and coarse particle fluid 

descriptions similar to the ones used here have been modified to include the evolution of the 

electrostatic potential [68]. Therefore, the approach presented in this chapter is extensible and 

useful for a host of important electrokinetic phenomena, including corrosion [15,16], 

modeling of biomolecules solvated in ionic solution [17], and bioprocesses featuring ion 

transport (e.g. ion channels)  [18–20]. These techniques allow for molecular detail in the 
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region surrounding the surface, protein, or membrane, while having a more coarse-grained 

description for the bulk fluid further away. 
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6 An Integrated Boundary Approach for Colloidal Suspensions 

Simulated Using Smoothed Dissipative Particle Dynamics 

 

 

One of the most significant challenges in particle-based continuum solvers such as smoothed 

particle hydrodynamics (SPH) and smoothed dissipative particle dynamics (SDPD) is the 

treatment of solid boundaries, whose presence leads to a truncation of the integral 

approximation to functions and their higher derivatives, and hence, error in the numerical 

solution. In this work, we describe an integrated boundary framework for modeling colloidal 

suspensions composed of rigid spherical particles. The integral corresponding to the colloid’s 

contribution is analytically evaluated, giving a simple and computationally inexpensive 

approach relative to other commonly-used boundary particle techniques. We formulate a 

thermodynamically-consistent version of this top-down method for mesoscale simulations, 

where the fluid exchanges momentum and solute with the suspended particles due to thermal 

fluctuations, giving a framework for modeling the dynamics of colloids at arbitrary Reynolds 

and Péclet numbers. The resulting evolution equations are validated for a single colloidal 

particle in a fluid at constant temperature. 

 

6.1 Introduction 

 

Smoothed particle hydrodynamics (SPH) [1–4] is a particle-based continuum solver, 

originally formulated for the simulation of astrophysical phenomena and more recently 

adapted to problems in solid and continuum mechanics. In this numerical scheme, the fluid is 
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decomposed into a collection of volumes whose positions, velocities, and other properties 

evolve in time following appropriately discretized forms of the transport equations. This type 

of meshless, Lagrangian strategy to computational fluid dynamics offers a number of 

advantages for certain types of problems over traditional Eulerian grid-based methods, such 

as applications involving interfaces and deformable or free boundaries [3]. In addition, these 

techniques incorporate advection in a natural way and are easily extensible to include more 

complex physics.  

Furthermore, SPH can be reformulated using the GENERIC formalism [5–7] to 

account for entropy production and include scale-dependent thermal fluctuations in the 

relevant hydrodynamic variables (e.g. momentum, concentration, etc.) associated with each 

material volume [8]. This thermodynamically-consistent version of SPH is known as 

smoothed dissipative particle dynamics (SDPD), and features a random noise term in the 

equations of motion that introduces stochastic fluxes of momentum and solute between 

particles [8,9], giving a generalization of SPH to the mesoscale. SDPD is useful for a number 

of applications ranging from polymer physics [10,11] and pinned DNA dynamics under 

shear [12], to blood flow modeling [13]. Importantly, SDPD has been applied to particles 

dispersed in a fluid medium [10,14], a problem ubiquitous in physics and relevant to 

numerous industrial applications including paints, slurries, composite materials, and 

ceramics. These kinds of suspensions are generally composed of particles that interact 

through interparticle (e.g. electrostatic, van der Walls, etc.), hydrodynamic, and thermal 

forces, a consequence of their dimensions ranging from nanometers to microns, and are thus 

ideally suited for modeling using SDPD. 
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 One major challenge in adapting these particle-based approaches to problems in 

continuum mechanics, including colloidal dispersions, is the presence of solid interfaces and 

rigid objects. When considering low Reynold’s number flows in particular, it is desirable to 

impose the kinematic and no-slip boundary conditions precisely at the solid-liquid interface. 

To this end, numerous techniques in SPH have been proposed over the years. For example, 

boundaries may be introduced by renormalizing the integral approximation for points near 

surfaces [15–17,16], modifying the smoothing kernel [18–20], or through Taylor series 

expansions [17]. Most often, they are modeled through “ghost” boundary particles frozen on 

a lattice, or particles generated on the fly through a mirroring algorithm [4,21]. These ghost 

particles exert repulsive forces on the fluid particles in order to enforce the kinematic 

boundary condition and prevent boundary penetration, as well as additional interactions that 

impose other constraints on the flow near the surface. For instance, Morris et al. freeze 

particles in place for solid objects and assign fictitious, “virtual” velocities to these ghost 

particles by extrapolating the velocity profile into the surface such that the modified viscous 

force gives no-slip along a well-defined interface [22]. These types of algorithms for 

extending functions into the boundary domain (see Maciá et al [23]) successfully modify the 

particle dynamics to impose the no-slip condition, though they require additional pair force 

calculations. An elegant solution was provided by Takeda et al. [24], who integrate out the 

contribution of the “ghost” boundary particles and remove the need for computing additional 

forces between pairs. A similar approach has been used in simulations using the so-called 

“dissipative particle dynamics” (DPD) method [25,26], where solid objects interact with fluid 

particles through an effective force contribution that replaces individual boundary particle 

interactions  [27–29], and this is the perspective we adopt in this chapter. 
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 Colloidal dispersions alternatively may be modeled using Brownian dynamics, where 

the solvent is treated implicitly and the velocity of each suspended particle is evolved 

according to the Langevin equation. Brownian dynamics offers a computationally 

inexpensive basis for large-scale modeling of dilute suspensions, though it typically ignores 

hydrodynamic interactions between colloids and is only valid in the zero Péclet number limit 

(though hydrodynamic interactions may be incorporated through the Oseen tensor for the 

friction terms [30]). It may also be generalized to the so-called “Stokesian dynamics” 

method [31–34], which includes hydrodynamic interactions between particles and is 

applicable to any Péclet number, though it assumes creeping flow and therefore ignores 

inertia altogether. Inertial terms are included when using a Lattice-Boltzmann description for 

the fluid [35,36], though this approach is quantitative and traditionally applicable when 

density variations are small, i.e. for systems with incompressible fluids. Another popular 

modeling tool for nano- and micro-scale suspensions is DPD, a bottom-up approach where 

the fluid is divided into clumps of molecules that interact through coarse-grained, softly-

repulsive interactions in addition to dissipative and fluctuating ones. However, the free 

parameters in the DPD model are related to fluid properties (e.g. viscosity) in an indirect 

fashion, and there is no physical length scale associated with the DPD interactions [8,10]. 

SDPD addresses these issues, and hence the integrated SDPD approach in this work can be 

viewed as a top-down alternative to DPD that is rigorously obtained from the continuum 

transport equations. The work in this chapter is a fluctuating Lagrangian equivalent to “direct 

numerical simulation”, which involves no physical approximation for the flow beyond the 

usual continuum assumption  [37], and is valid for arbitrary Reynolds and Péclet numbers, 

including scenarios where inertia is important.  
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 In this work, we provide a framework for treating colloidal particles as continuum 

solid objects in SDPD, rather than being composed of discrete particles that necessitate the 

calculation of additional pair interactions and rigid-body dynamics. This gives a method that 

is less computationally costly than traditional boundary particle methods, since every fluid 

particle that is near a boundary receives a single contribution to its evolution equation due to 

the nearby colloid. In particular, we obtain analytical expressions for simple planar and 

spherical boundaries, and incorporate scale-dependent thermal fluctuations for stochastic 

fluxes of momentum and solute between the fluid and boundary. In Section 6.2, we provide a 

brief summary of SPH and SDPD and the problem of interfaces. Section 6.3 describes the 

integrated boundary approach and gives analytical results for approximating functions near 

surfaces with planar and spherical geometries. In Section 6.4, we develop an integrated 

pressure force that prevents fluid particles from penetrating the solid boundary. A boundary 

term for the Laplacian operator, which is essential to a number of transport problems, is 

derived in Section 6.5, and we generalize the boundary approach to the mesoscale by 

allowing for thermal fluctuations in linear and angular momenta in Section 6.7. In Section 

6.6 we derive an expression for the total torque acting on the colloid due to surrounding fluid 

particles. Finally, in Section 6.8 we perform full scale simulations of a single colloidal sphere 

using these results, and show that they reproduce the correct diffusive behavior. 

 

6.2 Smoothed Particle Methods 

 

 To illustrate the problem posed by solid boundaries when using smoothed particle 

methods, we begin with a brief overview of this subject. A more comprehensive review can 



189 
 

be found in Refs. [3,4]. The key to these approaches is the so-called “integral 

approximation”, where a function  f r  (assumed continuous on Ω) at some point r is 

written as, 

        1 ' , .f f W h d
 

 r r r r' r'
r

 (6.1) 

In this work, the bracket   indicates the approximation. The smoothing kernel W is a 

normalized, positive function with compact support, which reduces to the Dirac delta 

function in the limit 0h . h is the “smoothing length”, a quantity that controls the spread 

of the kernel, and therefore the extent of the integral in Eq.(6.1). Later, we decompose the 

fluid domain into a collection of fluid “particles” and write these integrals as sums over the 

neighboring particles. Note that the delta function requirement for W implies that Eq.(6.1) 

becomes exact in the limit 0h . Hence, h is a factor that controls the accuracy of the 

numerical solution in SPH; choosing a smaller value gives a more precise result, but requires 

using more particles and hence more calculated pair interactions. In the above expression, we 

also have the Shepard normalization factor, which is typically unity due to the normalization 

requirement for the smoothing function, 

    ', '.W h d




 r r r r  (6.2) 

In order to obtain the SPH approximation to a function, the problem domain is 

discretized into a collection of N fluid volumes or “particles”, in which case the integral in 

Eq.(6.1) is approximated as the sum 

      , .
N

j
j j

j j

m
f f W h


 r r r r  (6.3) 
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Here, jm  and j  are the mass and density of the jth particle, respectively. While the sum 

extends over all the particles in the system, the compact support condition for the function W 

ensures that only nearby ones contribute to the average, and the sum is actually performed 

over all the particles within a sphere with radius h  (where κ is a constant that controls this 

cut-off radius for interaction). Similar sum-over-particles approximations can be obtained for 

spatial derivatives of functions as well. The application of the integral and particle 

approximations to the hydrodynamic equations is the basis for SPH, giving equations of 

motion for the particles that are used to evolve their properties such as positions, velocities, 

densities, and concentrations using integrators typically used in molecular dynamics (MD) 

simulations. For example, the incompressible Navier-Stokes equation in the Lagrangian 

frame is given by [38] 

 2 .d p
dt

    
v v  (6.4) 

In this expression, the differential on the left-hand-side is a material derivative, ρ is the fluid 

mass density, and η is the viscosity. Applying the integral and particle approximation to the 

right-hand-side (i.e. the forces acting on a fluid element) gives the following evolution 

equation for the momenta of the ith fluid particle [22], with pairwise interactions between 

fluid particles resulting from the symmetrized discretization, 

 2 2
1 1

12 .
N N

j ij i j iji i
i i j ij ij

j ji j ij i j ijij

p W m m Wd pm m m
dt r r


    

    
            

 v e v
r

 (6.5) 

Here, mi, pi, and ρi give the mass, pressure, and density of the ith particle, respectively. ijv  is 

the relative velocity between particles i and j, ij i j v v v , and /ij ij ije r r  with ij i j r r r . 
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It is also possible to include thermal fluctuations in the velocity field for simulations 

at mesoscopic length scales, giving a thermodynamically-consistent version of SPH known 

as “smoothed dissipative particle dynamics” (SDPD). For the isothermal incompressible 

case, an additional term is included in the equation of motion given by Eq.(6.5) with the 

form [8,39] 

 
1

ˆ .
N

i i ij ij ij
j

m d A d


 v W e  (6.6) 

ijdW  is a tensor of Brownian process increments and ˆ
ijdW  is the traceless, symmetric part of 

i jd W . The noise coefficient ijA  is determined through the fluctuation-dissipation theorem, 

giving [8,39] 

 

1 2

8 1 .i j B ij
ij

i j ijij

m m k T W
A

r

 

  
   

    r
 (6.7) 

Note that when fluctuations appear in SPH, the parameter h takes on a slightly different 

meaning. Previously, h controlled the precision of the numerical solution, similar to the level 

of mesh refinement in a finite-element calculation. In SDPD, however, h controls the size of 

each particle, which is interpreted as a fluid volume locally in equilibrium. Decreasing the 

size of a thermodynamic system produces greater relative thermal fluctuations. Hence, a 

smaller h gives finer particles subject to larger fluctuations, whereas increasing h results in 

more massive SDPD particles with diminished fluctuations. In other words, when thermal 

noise is included, adjusting h actually produces distinct particle dynamics by changing the 

coarse-graining level [10]. 

The problem posed by boundaries is immediately apparent when considering the 

integrals in Eqs.(6.1) and (6.2), which are truncated by the interface for any point r located 
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near a boundary. From the particle perspective [Eq.(6.3)], this truncation corresponds to a 

particle deficiency when summing over neighbors in the support domain of points near the 

surface. This issue is remedied in this work by assuming that functions are defined over a 

space extending into the boundary such that a Dirichlet boundary condition is imposed 

precisely at the interface between the solid and liquid. This is consistent with existing 

particle-based boundary approaches, where sums over particles for points near a boundary 

include both fluid and “ghost” wall particles. Therefore, the support domain for any .point 

  does not only include the fluid domain, but consist of both the fluid and wall, i.e. 

f w   resulting in an additional integral over w  that provides the necessary support 

for points near the boundary. Since the maximum interaction length between particles is 

given by h , w  is the set of points inside the boundary located within a distance h  from 

the liquid-solid interface (though as a convenient approximation, w  may be defined as all 

points inside a surface or colloidal particle, including ones beyond this maximum interaction 

distance since they contribute weakly to the final expressions). The purpose of this chapter is 

therefore to provide analytical results for the wall contribution resulting from integration over 

the wall domain w  when simulating colloidal suspensions. 

 

6.3 Approximation of Function near Boundary 

 

In order to demonstrate how the integrated boundary approach works, we first discuss 

the simplest application: approximating a function near planar and spherical surfaces. 

Consider a point r in a continuum fluid near a boundary. Using the integral approximation 

[Eq.(6.1)] and the linearity of the integral operator, we can write 
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          ' , ' , ,
f w

f f W h d f W h d
 

    r r r r' r' r r r' r'  (6.8) 

where f  is the part of the support domain of r that lies in the fluid, and w  is the part 

inside the wall. Hence, we assume the function is defined and continuous over a space that 

extends into the boundary, f w    , and the Shepard normalization factor [Eq.(6.2)] is 

unity. The first term in Eq.(6.8) is the familiar integral representation of a function and 

therefore does not merit further discussion; discretizing this term using the particle 

approximation yields the familiar SPH sum over nearby fluid particles for approximating a 

function, Eq.(6.3). However, this sum is incomplete due to a deficiency of neighboring 

particles, a consequence of the neighboring boundary that occupies the space w . Hence, we 

are interested in the second integral in Eq.(6.8), which is due to the surface and compensates 

for this lack of surrounding particles, 

  , .
w

wf W h d


 r r' r'  (6.9) 

In writing Eq.(6.9), Dirichlet boundary conditions are assumed, i.e.  f r  adopts some 

constant value wf  at the boundary and can be pulled in front of the integral operator. In this 

section, we focus on Eq.(6.9), which is the contribution of the wall to the function’s value at 

some point r in the integral approximation. In principle, this quantity can be numerically 

determined for objects with complicated shapes and boundaries featuring local curvature 

(though the length scale characterizing surface features or curvature should be larger than 

length scale associated with each fluid particle, given by h). For simple boundary geometries 

and Gaussian kernels, it is possible to evaluate Eq.(6.9) analytically. Previously, Eq.(6.9) has 

been determined for simple cases involving 1D flow past a flat boundary [24]. The goal of 
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this chapter is to generalize this to include thermal fluctuations, and evaluate it for hard 

spheres, allowing for the simulation of suspended spherical particles. 

 

6.3.1 Fluid Particle near Planar Boundary 

 

 Eq.(6.9) is analytically determined for simple geometries assuming the kernel 

 ' ,W hr r  is Gaussian (this is an approximation, discussed below). For a function 

evaluated at a point r located a distance z  from a flat surface with vector normal in the z-

direction, we can explicitly write the integral Eq.(6.9) using cylindrical coordinates, 

    1/22 2

0

, 2 .
w

z

w wf W h d f dZ RdRW R Z
 

 

       r r' r'  (6.10) 

 

Fig. 6.1. Illustration of the particle perspective to the integrated boundary approach versus the 

continuum one. In the former, a function evaluated at the location of particle i depends on a sum over 

neighboring fluid particles (green) and virtual particles that comprise the boundary (light blue). The sum 

is partitioned into a sum over fluid particles, and one over wall particles that is rewritten as an integral. 

In the continuum perspective, the function evaluated at point r is obtained from an integral over a 

volume that is decomposed into an integral over the fluid domain, and an integral over the boundary, 

where the latter is evaluated explicitly. 

particle perspective

i r

κh

continuum perspective

boundary boundary

κh
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Note that the integral limits extend to infinity. In principle, the compact support condition for 

the function W limits the integral to the support domain of point r.  

It is possible to arrive at the result in Eq.(6.10) from a different perspective. 

Assuming virtual or “ghost” particles are used for the boundary, the particle approximation to 

a function, Eq.(6.3), can be decomposed into a sum over fluid particles, and a sum over the 

wall particles within the point’s support domain, 

          
, ,

, , .
f wN N

j j
j j j j

j fluid j wallj j

m m
f f W h f W h

 
    r r r r r r r  (6.11) 

We consider the second sum on the right hand side, which accounts for the wall particles’ 

contribution to the sum, 

  
,

, .
wN

w
w j

j wallw

m f W h


 r r  (6.12) 

Here, we have again assumed Dirichlet boundary conditions [   wf fr  at the wall, where fw 

is a constant], as well as uniform mass and density for the wall particles. Similar to the 

derivation of the Lennard-Jones 9-3 potential, this sum-over-particles is replaced with an 

integral scaled by the particle number density of the wall  /w w wm  , 

    
2

1/22 2

, 0 0

, .
w zN

w w
w j w w

j wallw w

m mf W h f d dZ RdRW R Z


 
 

 



        r r  (6.13) 

Simplifying, we arrive at the same result as Eq.(6.10). This illustrates that, when deriving the 

integrated contributions of boundaries, we can begin either with the general integral 

approximation to a function, or from a fluid particle near a boundary composed of 

subparticles, and in both cases obtain the same result (Fig. 6.1).  

Eq.(6.10) is evaluated straightforwardly for the Gaussian smoothing function, 
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  
2

3/2 3
1, exp .rW r h

h h

     
   

 (6.14) 

Substituting Eq.(6.14) into Eq.(6.10) and integrating, we obtain the following result: 

 1 erf .
2
wf z

h
        

 (6.15) 

This is the expression derived by Takeda et al. for approximating the density near a 

boundary [24]. Note that Eq.(6.15) is an approximation to the actual integral representation 

of a function since one of the requirements for smoothing kernels in SPH is compact support, 

and therefore the integral in Eq.(6.10) should extend over a finite region where the smoothing 

function is nonzero. In practice, when using a Gaussian smoothing function in SPH, the 

kernel is truncated beyond some point to give compact support. However, in the above 

derivation, we integrate to infinity and hence have additional contributions that would not 

exist with a properly local smoothing function. Due to the exponential kernel, these 

contributions are typically negligible. 

 

Fig. 6.2. Illustration showing the integration variables for the planar boundary contribution in spherical 

coordinates. The coordinate origin is set at the position in the fluid r. 

r

θ0

Δz
r

boundary fluid

θ

r' Δz'
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To obtain a more precise expression, we must integrate over a region that corresponds 

to a sphere surrounding the point r where we are approximating the function, with size 

determined by the support domain of the point, namely h . We therefore exactly compute 

the integral approximation in Eq.(6.9) for a planar boundary using spherical coordinates, 

  
02

2

0 0

, sin ,
h

w
z

f dr d d W r h r
 

  

    (6.16) 

where we have defined  1
0 cos /z r    and the coordinate origin is set at the position r in 

the fluid where  f r  is approximated. Fig. 6.2 illustrates the variables used to write 

Eq.(6.16). Integrating over the angular coordinates, we are left with 

    2 , .
h

w
z

f drW r h r r z





  (6.17) 

Substituting the Gaussian kernel [Eq.(6.14)] and applying the remaining integral operator, we 

find that the exact contribution to the function near a boundary is 

     2
1/2erf erf exp .

2
w wf fz h z

h h
  


          

 (6.18) 

Note that the limit    , this reduces to the approximate expression derived by Takeda et 

al., Eq.(6.15). Therefore, the full approximation of a function at a point r located near a 

boundary is 

 
     

    

,

2
1/2

,

erf erf exp ,
2

fN
j

j j
j fluid j

w w

m
f f W h

f fz h z
h h



  


 

           

r r r r
 (6.19) 

where z  is the distance of the point r from the surface. The summation is only over nearby 

fluid particles, and the second term on the right-hand-side gives the contribution of to the 
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boundary. Without this term, Eq.(6.19) is simply the normal SPH approximation of a 

function. This additional contribution is included when the interface is located within the 

support domain of the point r, z h  , and compensates for the lack of surrounding 

particles.   

Eq.(6.19) can be applied to the density evaluated at each particle’s position, a quantity 

that appears in the equations of motion in SPH [see Eq.(6.5)], giving 

 
   

    

,

2
1/2

,

erf erf exp .
2

fN

i j i j
j fluid

w i w
i

m W h

z h z
h h



   


 

           

r r r
 (6.20) 

Here, iz  is the distance of the ith particle from the boundary. The sum in Eq.(6.20) is 

performed at each time-step to evolve the density of each particle. This is the so-called 

“summation density” approach, which now features an additional term due to the presence of 

a nearby solid object. The density update equation given by Eq.(6.20) matches the one used 

by Takeda et al. in the limit    . Note that assuming a constant density for the boundary 

does not reproduce peak pressures as accurately as evolving the densities of the wall 

particles [22], though we find it sufficient in the test studies that follow below. 

 

6.3.2 Fluid Particle near Spherical Body 

 

The goal of this chapter is to apply this approach to suspensions composed of hard 

spheres, and therefore we also evaluate Eq.(6.9) for a point in the fluid located near a solid 

spherical object. Writing this integral in spherical coordinates by setting the coordinate origin 

at the point in the fluid r, 
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  
02

2

0 0

sin , .
c

c

R R

w
R R

f dr d d r W r h


  



    (6.21) 

Here, R is the distance between the center of the spherical body and r, Rc is the radius of the 

sphere, and we have the relationship 2 2 2
02 coscR R r rR    . These quantities are 

illustrated in Fig. 6.3. Integrating over the angular variables and substituting Eq.(6.14),  

  
2

22
1/2 3 exp .

c

c

R R
w

c
R R

f r rdr R R r
h h R





             
  (6.22) 

Integrating again yields the final result, 

    2 2
1/2 exp exp .

2
wf h A A G

R   
        

 (6.23) 

The following quantities are defined for convenience: 

 

Fig. 6.3. Illustration of integration variables in spherical coordinates for the boundary contribution for a 

fluid point near a spherical solid object (e.g. colloid) with radius Rc. The coordinate origin is once again 

set at the position in the fluid r. 
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 (6.24) 

The approximation for the density at the position of the ith fluid particle, located a distance 

R  from the center of a solid spherical object having radius Rc and uniform density w  is 

therefore given by 

 
   

   
,

2 2
1/2

,

exp exp .
2

fN

i j i j
j fluid

w

m W h

h A A G
R




   

 

         

r r r
 (6.25) 

 

6.4 Integrated Boundary Approximation for Pressure Term 

 

The SDPD equations of motion Eqs.(6.5) and (6.6) feature three terms, (i) a pressure 

force between particle pairs, (ii) a viscous interaction proportional to the particles’ velocity 

difference, and (iii) a random force due to thermal stresses. In this and the following two 

sections, we use the general approach above to derive integrated boundary terms 

corresponding to each of these three contributions. We first consider the conservative term 

due to the pressure distribution. Without the presence of boundary ghost particles to exert a 

pressure force, fluid particles may penetrate the solid interface. This is especially true for 

simulations of quasi-incompressible fluids, where the equation of state leads to strong 

repulsions between particle pairs that may drive them outside of the simulation box without a 

restraining force. Hence, we need to obtain an integrated pressure force that prevents 
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boundary penetration and enforces the kinematic boundary condition. We determine this 

integrated pressure force for planar and spherical boundaries in Subsections 6.4.1 and 6.4.2, 

respectively.  

 

6.4.1 Pressure Force near Planar Boundary 

 

Obtaining a symmetrized integrated expression for the pressure gradient term is more 

intuitive and simple starting from the particle perspective, which is how we proceed in this 

subsection. The pressure force in SPH is the first term on the right-hand-side of Eq.(6.5). 

Splitting this summation into wall and fluid contributions, we again focus on the sum over 

the wall particles and assume a constant value for the density and pressure at the wall, 

 2 2
,

,
N

i i w
i i w ij ij

j walli w

d p pm m m F
dt  

 
  

 
v r  (6.26) 

where i ij ij ijW F  r  and   0ij ijF F r  . With the choice of Eq.(6.14) for the smoothing 

function, we have 

  
2

3/2 5

2 exp .rF r
h h

     
   

 (6.27) 

Note that components of the force in Eq.(6.26) parallel to the boundary will cancel due to 

symmetry. Hence, we only sum the component of this force that is perpendicular to the wall, 

  2 2
,

.
N

i i w
i i w ij ij

j walli w

d p pm m m F
dt  

 
   

 


n

v r n n  (6.28) 

Here, n is the vector normal to the boundary. For a planar surface with normal in the z-

direction, we replace the sum with the following integral, 
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  1/22 2 2
2 2 .

z
i w

w i w
i w

p pm m dX dY dZZF X Y Z
 

  

  

           
  n  (6.29) 

For simplicity, we allow the integral limits to extend to infinity. Substituting Eq.(6.27) into 

Eq.(6.29) and integrating gives the final result, 

 
2

1/2 2 2 exp .w i i w

i w

m p p z
h h


  

          
     

n  (6.30) 

Hence, for a particle located within a distance h  of the wall, the equation of motion due to 

the pressure distribution features an additional contribution, 

 
2 2

,

2

1/2 2 2 exp .

fN
ji i

i i j ij ij
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w i i w i

i w
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m p p z
h h

 


  

 
   

 
          
     

v r

n

 (6.31) 

Eq.(6.31) is readily extended to situations where the fluid particle is near a planar boundary 

with a vector normal in a different direction, or near multiple planar boundaries. In the 

general case, the particle has a separate boundary term in its equation of motion for each 

planar surface, where n is the normal for each surface, and iz  is the corresponding 

separation distance. For the case of a particle near a corner where two surfaces meet, 

however, including a separate boundary term for each surface may not give accurate results 

since some boundary-fluid interactions will be double-counted, and the integral of the kernel 

may need to be evaluated numerically. 

 

6.4.2 Pressure Force near Spherical Object 

 

Near a spherical object, the integral due to the boundary is instead  
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 (6.32) 

Integrating over θ and ϕ, 

  3 2
02 2 sin .

c

c

R R
i w

w i w
i w R R

p pm m drr F r 
 





 
  

 
n  (6.33) 

Substituting  F r  and 0 , once again specified through 2 2 2
02 coscR R r rR    , gives 

after integration the final result, 

  2 1/2 2 2 , , .
2

w i i w
c

i w

m h p p M R R h
R


  
 

  
 

n  (6.34) 

Here we have the dimensionless factor 

        2 2, , exp 1 exp 1 ,cM R R h A C A C        (6.35) 

where we have also defined 

 2

2 .cRRC
h

  (6.36) 

In colloidal simulations, this additional force prevents fluid particles from penetrating the 

suspended spheres. 

 

6.5 Second Derivative Approximation for Viscous Term 

 

The Laplacian of a scalar or vector field appears in the transport equations for 

momentum and solute diffusion, and hence integrated boundaries must approximate this 

quantity near surfaces. In the integral approximation, the Laplacian is typically written as [3] 
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        2 .k f k f f F d


        r r' r r' r'  (6.37) 

As in the previous section, we separate this integral into fluid and wall contributions, and 

focus on the latter, 

    2 .
w

wk f f F d


     r r r' r'  (6.38) 

Dirichlet boundary conditions are once again assumed, and we now compute analytical 

expressions for planar and spherical boundaries that are straightforwardly incorporated into 

the equations of motion for the fluid particles. 

 

6.5.1 Fluid Particle near Planar Boundary 

 

Determining the correct form of the Laplacian boundary term merits further 

discussion. Note that when using ghost particles in SPH, it is necessary to take additional 

measures in order to enforce a boundary condition at an arbitrarily-specified surface. Takeda 

et al. linearly extrapolate the function into the boundary in order to enforce no-slip precisely 

at the fluid-solid interface. Similarly, Morris et al. assign fictitious values of the function to 

boundary ghost particles such that for any pair interaction, the correct boundary condition is 

met. This is achieved by using the value of the function in the fluid [  f r ], the value of the 

function in the wall [  'f r ], and the distances of the fluid and wall points relative to the 

boundary ( z  and 'z , respectively) (See Section 3.3 and Fig. 3.1 for an illustration) to 

determine a modified function difference    'f fr r . In other words, it is possible to 
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perform a linear extrapolation to determine what value must be assigned to the wall point, 

 'f r , giving the relationship 

      '' 1 .w
zf f f f
z

         
r r r  (6.39) 

As an example, when calculating the relative velocity between a fluid particle and a ghost 

particle, Eq.(6.39) suggests that the relative velocity can be replaced by the velocity of the 

fluid particle relative to the wall, where this velocity difference is rescaled by a factor that 

depends on the distances of the fluid and ghost particles from the boundary, 1 '/z z     . 

This ensures that the fluid velocity assumes the wall value precisely at the liquid-solid 

interface when the full velocity field is computed (for a derivation and more detailed 

discussion, see Section 3.3). 

For this same reason, it is necessary to modify the function difference in Eq.(6.38) by 

extrapolating the function into the boundary, i.e., 

    '2 1 .
w

w
zk f f F d
z

          r r r' r'  (6.40) 

Here, z  is the distance of the point r  from the boundary (where r is located inside the fluid 

region), and 'z  is the distance of the point 'r  from the boundary (where ' wr ). The 

correction factor 1 '/z z      ensures that the value of the function is strictly enforced at 

the desired surface. 

As in the previous section, we use spherical coordinates with the origin set at the 

point in the fluid r where the function is approximated to obtain an exact result for a 

truncated Gaussian kernel. The expressions can be simplified by the taking the limit    . 
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In spherical coordinates, the distance between a point 'r  inside the solid and a planar 

boundary is given by 

 ' cos .z r z    (6.41) 

Substituting Eq.(6.41) into Eq.(6.40) and writing the integral explicitly gives 

    
02

2

0 0

cos2 sin .
h

w
z

rk f f dr d d F r r
z

    


          r  (6.42) 

Integrating over the angular variables, 

    3 2
0

2 sin .
h

w
z

k f f drr F r
z






    r  (6.43) 

Next, we introduce  1
0 cos /z r    into Eq.(6.43) together with the expression for  F r

given by Eq.(6.27), resulting in 

    
2

2 2
1/2 5

4 exp .
h

w
z

k rf f dr r r z
zh h



 

              
r  (6.44) 

Integrating again, we obtain the final result for the wall term, 

  1/2
2 .w

k zf f K
h z h

        
r  (6.45) 

Here, we have defined the dimensionless quantity 

    
2 2

2 2
2 2exp exp 1 .z z zK

h h h
 

                
     

 (6.46) 

Note that if we had integrated over all space (i.e. the approximation where   ), this 

equation simplifies to    2 2/ exp /K z h z h   . Due to the exponentially decaying kernel, 

the boundary contribution beyond the radius h  is generally small, and therefore this 

approximation is often useful. 
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 As an example, the Laplacian boundary term in Eq.(6.45) is applied to each 

component of the velocity vector to enforce no-slip in simulations involving incompressible 

flows past a planar boundary, in which case the equations of motion [Eq.(6.5)] become 
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v e
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 (6.47) 

Note that the boundary term diverges in the limit 0iz  , a consequence of the linear 

extrapolation of the function into the boundary described by Eq.(6.39). Large forces arising 

from lack of numerical precision are typically avoided by capping the scaling factor [22]. 

Some work suggests that integrated boundaries work well for compressible fluids and 

moderate Reynold’s numbers, but may be unstable for low Reynold’s number incompressible 

flows [22], though we do not encounter any such issues in our tests below. 

 

6.5.2 Particle near Spherical Boundary 

 

We now obtain an expression for the Laplacian near a spherical object, which can be 

used to apply a no-slip condition at the surface of a colloidal particle. In this case, the integral 

in Eq.(6.38) is 

    
02

2

0 0

'2 1 sin .
c

c

R R

w
R R

zk f f dr d d r F r
z
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The integration limit 0  is specified through the relationship 2 2 2
02 coscR R r rR    , where 

cR  is the radius of the spherical object, R is the separation between the center-of-mass of the 

sphere and point in the fluid r. For this geometry,  

 ' cos .z r z    (6.49) 

Substituting into Eq.(6.48) and integrating over θ and ϕ, 
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r  (6.50) 

It is straightforward to obtain an exact analytical solution by replacing the upper limit in the 

integral in Eq.(6.50) with h . For simplicity, we integrate over the entire colloidal particle 

after substituting Eq.(6.27) into Eq.(6.50), arriving at the result, 
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For simulations of fluid flow near a sphere, no-slip is applied by modifying Eq.(6.5) 

and including the boundary term to give 
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 (6.52) 

In this equation, ω is the angular velocity of the sphere, n is a normal vector pointing from 

the colloid center towards the fluid particle, and we have defined i i c  v v V , where cV  is 

the linear velocity of the sphere center of mass. Following Newton’s third law, the colloid 

receives a contribution to its equation of motion [in addition to the integrated pressure 

contribution, Eq.(6.34)] given by 
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  
   1/2 2 , , .i i cc

c c
i c

m RdM M R R h
dt R R

h
R


 

  



v ω nV  (6.53) 

Here, cM  is the total mass of the colloidal particle. 

 To test these results, we compute the drag on a solid sphere in uniform flow using the 

present numerical approach and compare it to the expected result from Stokes’ law. This is 

done by initializing a lattice of SDPD fluid particles and placing a colloidal particle inside 

the box. Velocities are assigned to the fluid particles surrounding the colloid according the 

flow field solution for Stokes’ flow around a sphere, and the drag on the colloidal particle is 

calculated by summing interactions between the surrounding fluid particles and the colloid, 

given by Eq.(6.53). As a reference, we use parameters for a Lennard-Jones fluid at 

temperature T = 1.0 and density   = 0.8, with non-dimensional units as described in 

 

Fig. 6.4. Total force acting on spherical particle in uniform flow due to viscous forces versus particle 

radius. The black curve is the analytical result in the Stokes flow limit. This solution is compared to the 

numerically-computed drag on the particle, determined using traditional boundary particle techniques 

(diamond and square markers) and the same calculation using the integrated boundary approach (hollow 

triangle and circle markers). For the numerical results, we show data for two different fluid resolutions, a 

fine case where fluid particles have a smoothing length of h = 3.0, and a more coarse one where h = 7.5. 
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Ref. [40]. At this thermodynamic state, the fluid viscosity is   = 1.9 [41].  

We consider two different resolutions for the fluid, one where the fluid particles have 

mass and smoothing length m = 12.5 and h = 3.0, respectively, and one with m = 200.0 and h 

= 7.5. For the first case, the 64000 particles are initialized on a 40×40×40 lattice inside a 

simulation box with dimensions 100×100×100. For the coarser test, 4096 particles are placed 

on a 16×16×16 inside a volume with side lengths 100×100×100. After the lattice is prepared, 

a solid sphere with some radius is placed at the center of the simulation box, and fluid 

particles located inside the colloid are deleted. Note that particles are held at their initial 

positions after initialization; hence, as the colloid’s radius is adjusted, the distance of the 

nearest shell of particles around the boundary changes, affecting the error in the integral and 

sum approximations. The influence of the particle distribution on the numerical accuracy is 

the so-called “particle inconsistency” issue in SPH  [42]. To reduce this effect, when creating 

the lattice we place particles randomly within 0.4dx  of the ideal cubic lattice site, where dx 

is the lattice spacing. We initialize 10 independent random initial fluid particle distributions, 

and data points are obtained from an average over this ensemble of fluid particle 

configurations.  Following this initialization, velocities are assigned to the fluid particles 

using the Stokes flow solution for uniform flow past a sphere, i.e., we calculate the distance r 

of every fluid particle from the colloid center and give it a velocity according to [43]  
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 (6.54) 
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U  is the velocity far from the sphere, assumed in the z-direction; for the present 

calculations we assume U  = 0.1. Once a velocity has been assigned to every fluid particle, 

we calculate the instantaneous force acting on the colloid using Eq.(6.53). For simplicity, we 

neglect the pressure interactions and only include viscous ones. The computed drag from this 

calculation is compared to the analytical result for Stokes’ drag around a sphere, which, 

neglecting the pressure contribution, is given by [43] 

 4 .D c zR U F e  (6.55) 

In addition to using the integrated boundary approach, we also perform a control test using 

the same SDPD calculations but without deleting the fluid particles inside the colloid, instead 

converting those fluid particles to boundary “ghost” particles and using traditional boundary 

particle techniques. Table 6.1 summarizes the number of ghost particles comprising the 

Rc <Nc> <Fint> <Fpar> <Factual> <Fint> % error 

15 908 34.871 35.300 35.814 2.634 

20 2151 46.645 47.329 47.752 2.318 

25 4193 58.710 59.276 59.690 1.642 

30 7244 70.523 71.178 71.628 1.543 

35 11510 82.465 85.156 83.566 1.318 

 

Table 6.1. Summary of results from Stokes’ flow calculations for the net force acting on spherical 

colloid. Brackets denote averaging over an ensemble of fluid particle initial configurations. The table 

includes the colloid radius Rc, average number of fluid particles deleted when creating colloid Nc (i.e., 

those that fall inside it), the average force calculated using the integrated boundary approach Fint, the 

force from the traditional ghost particle method Fpar, the actual force Factual from the analytical result, 

and finally the percent error in the force determined from the integrated boundary technique. 
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colloid for each case, as well as summarizing the drag force computed from these 

simulations. Fig. 6.4 compares the drag force on the spherical particle computed using the 

integrated boundary approach to the result using traditional boundary particle methods, and 

to the analytical result given by Eq.(6.55). For a fixed fluid resolution, we find that the error 

in the integrated boundary solution decreases with increasing colloid radius, since the fluid 

particles with fixed resolution are able to more accurately resolve the flow field around the 

particle as the radius of curvature of the colloid increases. As expected, increasing the 

resolution of the fluid from h = 7.5 to h = 3.0 dramatically decreases the error. The integrated 

boundary results for the h = 3.0 case are always under 3%, with the largest error at 2.6% for 

the smallest colloid tested, and lowest error at 1.3% for the largest. Table 6.1 summarizes the 

data for the h = 3.0 tests and the associated errors. The boundary ghost particle technique 

gives slightly more accurate results, with errors ranging between 0.6% and 1.9%, due to a 

consistent particle-based description throughout. However, the gain in accuracy is modest 

and comes at significant computational cost. 

 

6.6 Integrated Torque Applied to Colloid Due to Surrounding Fluid 

 

In Section 6.5 we derived the resultant force on the colloid, which acts on the center 

of mass of the sphere; with this location of the force action, we must compute the associated 

torque on the colloidal particle about it. The torque arises due to the viscous SDPD 

interaction between boundary and fluid particle pairs, 

 
2 .ij ij ij
i j

F
 

f v  (6.56) 
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For convenience, we define the number density /i i im  . The derivation in this section 

again proceeds from the particle perspective, where the colloid is composed of a lattice of 

subparticles that are later integrated out. Only the viscous interactions are relevant, since the 

overall pressure force will exert a force along the vector joining the fluid particle and colloid 

center of mass and therefore not result in a net torque. Each viscous pair interaction between 

fluid particle and colloid subparticle exerts a torque about an axis passing through the colloid 

center of mass, which is given by the cross product of the displacement vector and force 

ij j ij τ δ f , 

  2 .ij ij j ij
i j

F
 

  τ δ v  (6.57) 

Here, jδ  is the displacement vector pointing from the colloid center of mass to the jth colloid 

subparticle, j j c δ r R , where cR  is the position vector for the suspended sphere. 

 

Fig. 6.5. Illustration of variables when computing the torque on a colloidal sphere due to a single fluid 

particle i. In order to determine the total force acting on the colloid center of mass, we begin from the 

particle perspective, i.e. the colloid is decomposed into a collection of particles. We write the sum of forces 

acting on the colloid center of mass, and then replace the summation with an integral. 

i

j

fji

fij

δj
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Summing all torques due to each pair interaction gives the total on the colloid due to the ith 

particle, 

  
1

2 .
cN

ij
i j ij

j i j

F




  τ δ v  (6.58) 

The modified velocity difference for enforcing no-slip in this case is 

    
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ij i s i c z
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R
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R R



 
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  

δ
v v v v ω e  (6.59) 

Substituting into Eq.(6.58) and splitting into two sums, 

  
1 1

22 .
c cN N

c
i i ij j ij j z

j ji w i w

RF F  
    

      τ v δ δ ω e  (6.60) 

The second term is rewritten using the vector triple product, 

       ,j z j z z j     δ ω e ω δ e e δ ω  (6.61) 

giving 

  
1 1

22 .
c cN N

c
i i ij j ij j z

j ji w i w

RF F  
    

     τ v δ ω δ e  (6.62) 

To simplify the expression, we used the fact that ω  is orthogonal to the displacement vector 

jδ  (i.e. 0j  δ ω ), a consequence of the rigid body motion of the particle. Assuming a 

number density w  of subparticles that comprise the colloid, the sums in Eq.(6.62) can be 

replaced with the following integrals, 

      22 ' ' ' ' ' '.
c c

c
i i z

i i

RF d F d  
  

     τ v r r r ω r r e r  (6.63) 

We express these integrals explicitly using spherical coordinates by setting the coordinate 

origin at the center of the colloidal particle, with the unit vector in the z-direction ze  
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pointing from the colloid center towards the ith fluid particle. In this case, the dot product in 

the second integral is ' ' cosz  r e r . 

First we address the first integral on the right-hand-side of Eq.(6.63). Note that the 

vector 'r  is given by 

 ' sin cos sin sin cos .r x y zr r r r       r e e e e  (6.64) 

With our choice for the coordinate system centered inside the colloid, it is necessary to 

evaluate a separate integral for each of the three components of 'r ,  
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 (6.65) 

We recognize that, due to our choice of coordinate origin, the function F now depends on 

both r and θ, 
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 (6.66) 

Integrating Eq.(6.65) with respect to  , two of the integrals vanish due to the antisymmetry 

of the integrand, and only the z-component (i.e. the vector joining the centers of the colloid 

and the fluid particle) remains, 

   3

0 0

cos4 1 , sin cos .
cR

c
i z

i c

R rdr d F r r
R R

     


 
    

 v e  (6.67) 

Substituting Eq.(6.66) into Eq.(6.67) and integrating over θ, 



216 
 

 
 

   

3

4 2 2 2 2 2 2
2

2 2

1/2 3 2
0

2

4
exp

2 22 sinh 2 cosh .

cR
i z

i cR

rR rRh h R r R rR h

r Rdr

R
h

h R R h

h

r


 
   



     

   

          


v e

(6.68) 

Note that the unit vector ze  appears in this expression due to our choice of coordinates for 

the integration such that the unit vector pointing from the colloid towards the fluid particle is 

in the z-direction. More generally, this vector is a normal vector pointing from the center of 

the colloid towards the fluid particle, regardless of the location of the fluid particle with 

respect to it. We therefore introduce a surface normal vector n that henceforth replaces ze  in 

the derivation. Integrating over the radial variable, we obtain the final expression for the first 

integral in Eq.(6.63), 
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Above we have defined 
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where 

      erf erf .G R A A     (6.71) 

Next, we consider the second integral in Eq.(6.63), which is written explicitly in 

spherical coordinates as 
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Substituting Eq.(6.66) into Eq.(6.72) and integrating with respect to  , 
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Integrating over the remaining variables,  
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Combining Eqs.(6.69) and (6.74), we arrive at the final result 
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As expected, the torque exerted on the colloid due to fluid particle i is a function of the 

colloid and fluid particle’s linear velocity, the colloid’s angular velocity, the separation of the 

fluid and colloid particles, the location of the fluid particle relative to the colloid, as well as 

constants including the colloidal particle radius, fluid density and viscosity, and fluid 

resolution (i.e. smoothing length). Eq.(6.75) is the torque acting on the colloid due to a single 

nearby fluid particle; the total torque on the colloid is the sum of the individual torques due 

to all of the surrounding fluid particles, c i
i

τ τ . Note that in SDPD, including the 

integrated boundary approach presented here, angular momentum is not conserved exactly, 

though formulations of SDPD that include a spin variable for each fluid particle have been 

recently developed [44]. 
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 We test the integrated expression for the torque by placing a stationary, non-rotating 

colloidal particle inside a flow field, calculating the instantaneous torque on the colloid, and 

comparing to the analytical result. As in subsection 6.5.2, a collection of SDPD fluid 

particles are initialized on a cubic lattice with spacing dx, and a colloidal particle is placed in 

the center of the simulation box. Ten separate particle configurations are initialized with 

independent random displacements from the ideal lattice positions, and fluid particles 

residing inside the colloid are deleted from the system. The remaining fluid particles are 

assigned a velocity based on the analytical solution in the zero Reynold’s number limit for a 

particle in linear shear flow, where the spherical particle has no angular velocity [43] 

 

Fig. 6.6. The torque exerted on a stationary, non-rotating spherical particle in linear shear flow versus 

particle radius. The analytical result from Faxén’s second law is shown as the black curve. This trend is 

exact in the zero Reynold’s number limit, and compared to numerical calculations using SDPD.  The 

diamond and square markers denote results using the traditional boundary particle method, and the 

hollow triangle and circle markers give the torque calculated using the integrated boundary approach. 

For the numerical calculations, we consider two different resolutions for the surrounding fluid, a case 

with h = 3.0 and one where h = 7.5 
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 (6.76) 

Г is the shear rate. This solution corresponds to flow in the x-direction, and velocity gradient 

in the y-direction. The creeping flow result for the torque on the particle due to the above 

flow field is given by Faxén’s second law, assuming no other colloids are present and zero 

angular velocity for the particle [43], 

 34 ,c c zR  τ e  (6.77) 

with the torque acting in the direction of the unperturbed flow vorticity. In Fig. 6.6 we 

Rc <Nc> <τint> <τpar> <τactual> <τint> % error 

15 908 -69.554 -69.600 -80.582 -13.686 

20 2151 -170.971 -171.334 -191.009 -10.490 

25 4193 -344.272 -343.595 -373.064 -7.718 

30 7244 -604.070 -600.904 -644.655 -6.296 

35 11510 -962.753 -964.297 -1023.688 -5.952 

 

Table 6.2. Summary of torques acting on non-rotating sphere in uniform shear flow. As before, 

brackets denote averages over an ensemble of fluid particle initial configurations. In this case, the table 

includes the average torque calculated using the integrated boundary approach τint, the torque from the 

traditional ghost particle method τpar, the actual creeping flow torque τactual given by Faxén’s 2nd law, 

and the percent error in the torque determined from the integrated boundary technique. The integrated 

and particle sum calculations are for the h = 3.0 case. 
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compare numerical results using the integrated boundary SDPD approach developed in this 

chapter, averaged over the different random particle configurations, to the analytical result in 

Eq.(6.77). For completeness, we also include the same calculation using the traditional 

boundary ghost particle approach commonly employed in SPH and SDPD simulations. We 

find that errors are more significant when calculating the torque for both the integrated and 

boundary particle methods when compared to the linear force calculations in Subsection 

6.5.2. While the errors for the integrated boundary tests in Table 6.2 appear substantial, they 

are comparable in magnitude to ones obtained using the established ghost particle approach. 

For colloidal particles with radii of curvature greater than 25.0 and fluid particles with h = 

3.0, the error remains below 10% for both the integrated and boundary particle methods. For 

smaller colloids, a fluid composed of a higher number density of fluid particles is required to 

accurately resolve the flow around the highly curved particle in order to give the correct 

torque. When using particles with a larger smoothing length (h = 7.5), the inaccuracy in the 

torques is more significant, but still comparable to the error when using the ghost boundary 

particle method. The errors for the h = 3.0 case are summarized in Table 6.2. 

 

6.7 Colloid Stochastic Force and Torque 

 

Finally, we must consider the case in which the boundary can exchange momentum 

with the fluid due to random thermal stresses. Including this stochastic contribution to the 

dynamics is essential when the boundary is a colloidal particle, in which case these 

fluctuations will result in its Brownian diffusion. We treat the boundary as a super-particle 

such that the fluctuations have the same structure as those between two fluid particles. For 
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simplicity, we consider an incompressible Newtonian fluid and postulate noise in the velocity 

field of the form, 

 
,

ˆ ˆ .
N

i i ij ij ij i i
j fluid

m d A d d    v W e V n  (6.78) 

Here, ijdW  and idV  are dyadic tensors of Gaussian process increments. ˆ
ijdW  and ˆ

idV  are 

the traceless, symmetric part of ijdW  and idV , respectively.  ˆ
ijdW  gives the stress between 

particles i and j, and ˆ
idV  is the stress between the ith particle and the wall. Here, n is the 

vector normal to the wall for a planar boundary. For a fluid particle near a spherical object, n 

instead corresponds to a unit normal between the centers of particle i and the solid sphere. 

Ignoring the boundary terms, Eq.(6.78) reduces to the form of the noise for an 

incompressible SDPD fluid [8,14,39], Eq.(6.6). Above we assume that the stochastic fluid-

boundary momentum exchange has the same structure as the random fluid-fluid interaction. 

This assumption is due to the fact that the integrated dissipative boundary terms have the 

same form as the viscous fluid-fluid force.  

Following a derivation similar to the one in Chapter 4, it is possible to use the 

GENERIC formalism to determine the correct form of the noise amplitudes ijA  and i  in 

Eq.(6.78). In Appendix 6.10 the noise amplitude due to stochastic fluxes of solute across the 

boundary is derived to illustrate how GENERIC is applied. The noise amplitude for the 

stochastic interactions between fluid particles is given by Eq.(6.7); the noise amplitude for 

the stochastic wall-fluid interaction for a planar boundary is 
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 (6.79) 

If instead we consider a spherical object (e.g. colloid), the noise amplitude becomes 
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Since there is a dissipative term that acts to reduce angular velocities, the fluctuation-

dissipation theorem suggests that there is also a stochastic torque that introduces thermal 

noise in the angular momenta of the colloids. In other words, the stochastic interaction 

between fluid particle i and colloid subparticle pairs [Eq.(6.6)] results in a torque on colloid j, 

for which we postulate the form, 

  ˆ ,j j j jI d d   ω V n n  (6.81) 

where Ij is the moment of inertia of the jth colloidal particle, which for a sphere is simply 

22
5j j cI m R . The noise magnitude for fluctuation-dissipation is given by 
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 (6.82) 

 

6.8 Equilibrium Simulation of a Colloid Using Integrated Boundaries 

 

 In Sections 6.5.2 and 6.6, we demonstrated that the integrated boundary expressions 

for the instantaneous force and torque on the colloid are faithful to their traditional particle 

counterparts; in this section, we combine these results in a full simulation of a colloidal 

particle immersed in a fluid at thermal equilibrium undergoing Brownian motion, and hence 

validate the fluctuation-dissipation relationships given by Eqs.(6.80) and (6.82). We initialize 

a colloidal particle in a fluid modeled using a collection of SDPD volumes, then evolve the 

system in time and track the colloid’s random walk. The interactions between all particles are 
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pairwise and symmetric. Fluid particle pairs experience the normal SDPD interactions, 

summarized in Section 6.2. Fluid particles interact with the colloidal particle through 

conservative interactions due to the pressure field [(Eq.(6.34) in Section 6.4.2], viscous 

forces due to friction [Eq.(6.52), Section 6.5.2], and random forces resulting from thermal 

fluctuations [Eq.(6.78), Section 6.7]. Since the colloid has rotational degrees of freedom, it 

experiences stochastic torque according to Eq.(6.81), which is balanced by a dissipative term 

Eq.(6.75). Densities of fluid particles near the colloid are updated using Eq.(6.25). Note that 

Eq.(6.34) alone does not guarantee the kinematic boundary condition and particles may 

penetrate the boundary unless a prohibitively small time-step is used. Moreover, the 

dissipative and random forces and torques diverge for zero separation between fluid particle 

and colloid cR R . For stability, fluid particles that penetrate the colloid ( cR R ) experience 

a constant repulsive pressure and dissipative forces equal to forces if the fluid particle was 

located a small distance outside the colloid R R  . For our numerical tests, we choose R  

= 0.001. 

 The simulation is constructed as follows: 3375 fluid particles are initialized on a 

15×15×15 lattice inside a 75×75×75 volume. Each particle has a mass of m = 100.0, and the 

fluid density is ρ = 0.8, giving a smoothing length h = 6.0. The parameters are chosen to 

represent a Lennard-Jones fluid at this mass density and temperature T = 1.0. At this 

thermodynamic state point, the shear viscosity is   = 1.9. After the fluid is initialized, we 

place a neutrally-buoyant (i.e. w  = 0.8) colloidal particle in the center of the simulation box, 

and delete any fluid particles that overlap with it. Two independent tests are performed, one 

for a colloid with radius cR  = 15 and one with cR  = 25. The fluid and colloidal particle 

positions and velocities are integrated in time using the modified velocity Verlet algorithm in 
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Ref. [45], and the colloid angular velocity is updated at the same time as the linear velocities. 

We use a time-step of t  = 0.001, which gives accuracy such that fluid particle penetration 

of the colloid is infrequent, and equilibrate for 5.0×105 steps prior to starting the production 

run, which lasts for 1.5×106 steps. In Fig. 6.7 we show the probability distributions of a) 

linear and b) angular velocities adopted by the suspended sphere as it undergoes Brownian 

motion, and compare the results from the simulation to the Maxwell-Boltzmann distribution. 

The results from the simulation are in good agreement with this result, showing correct 

diffusive behavior. 

 

6.9 Conclusions 

 

SDPD provides a modeling framework for colloidal suspensions that does not make 

physical assumptions about the flow. This generality makes SDPD more numerically 

expensive, hence necessitating techniques such as the integrated boundary framework 

 

Fig. 6.7. (a) Probability distributions for colloid linear velocities from simulation of single Brownian 

sphere using the integrated boundary approach. (b) Distribution of suspended particle’s angular 

velocities. The results are compared to the Maxwell-Boltzmann distribution. 
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presented in this chapter, which dramatically reduces the number of pairwise force 

interactions calculated at each time-step. This is achieved by decomposing a suspended 

particle in a fluid medium into a collection of SDPD boundary particles. These particles are 

subsequently integrated out, giving a single bulk contribution to the equation of motion of a 

nearby fluid particle and the colloid center of mass, rather than determining pairwise forces 

between the fluid particle and each boundary one. In Sections 6.5 and 6.6, we demonstrated 

that for low Reynold’s number flows, this integrated approach gives results consistent with 

the analytical creeping flow solutions. Results are obtained for the cases of a spherical 

particle in uniform fluid flow, as well as a non-rotating spherical particle in shear flow, and 

the computed forces and torques are comparable to ones obtained from existing methods for 

enforcing no-slip in smoothed particle techniques. Section 6.7 introduces fluctuating forces 

and torques into the colloid’s equation of motion, which are balanced by the dissipative 

forces and torques derived in the previous sections. Finally, in Section 6.8, we combine these 

elements and perform a full simulation of the Brownian motion of a single colloidal particle. 

The results show that the forms for the thermal noise in Section 6.7 give the correct 

relationship between the random and dissipative forces, resulting in the expected Maxwell-

Boltzmann distribution of linear and angular momenta for the suspended sphere. 

The integrated boundary method leads to more efficient simulations of dispersed 

particles, but also features a number of limitations. First, we found that forces and torques 

computed using integrated boundaries are slightly less accurate than ones obtained using 

traditional boundary particle techniques owing to the discrepancy in the fluid description in 

different parts of the simulation box when integrated objects are present. However, this 

increase in error is relatively small and a minor penalty for the computational speedup. In 
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addition, Morris et al. suggest that integrated boundaries are well suited to compressible and 

moderate Reynold’s number flows, but may be unstable in the creeping flow limit [22]. 

Another drawback of this approach is that analytical expressions for boundaries can only be 

obtained for simple geometries such as planar surfaces and spheres. It may be possible to 

obtain analytical results for ellipsoidal objects, which can approximate suspensions of rod-

shaped particles. Our results assume no-slip, though analytical results for boundary 

conditions having a non-vanishing slip length may also be feasible. Finally, the presented 

approach is easily extended to include more complicated physics. For example, integrated 

spherical objects can be tethered using a harmonic potential to model polymers, with each 

integrated sphere acting as a coarse-grained monomer. Furthermore, integrated expressions 

for spheres interacting through van der Waals and/or electrostatic interactions exist and may 

be straightforwardly included. For simulations of two or more Brownian spheres, a short-

ranged repulsive lubrication force can be included, which acts along the line joining colloid 

particle centers and prevents their unphysical overlap, even if the actual SDPD fluid particles 

are excluded from the region that separates the two spheres. DPD has already been used to 

probe the rheology of particle dispersions [46,47], and the integrated boundary approach in 

this chapter presents an approach that allows for similar types of studies and is more rigorous 

while requiring fewer particles. 
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6.10 Appendix 

 

6.10.1 Application of Integrated Boundaries to Mass Transfer in Binary Ideal 

Mixture 
 

We apply Eq.(6.46) to the problem of mass transfer. Starting with the diffusion 

equation, 

  1 ,d D
dt 


     (6.83) 

we discretize this expression and include the extra wall contribution to the dynamics. In this 

expression, Φ is the concentration defined as a mass fraction and D is the diffusion constant 

with units ML-1t-1. Thus, we find that the evolution of the concentration of particles near a 

planar wall is described by the following equation of motion, 
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 (6.84) 

Here, the sum over the fluid particles is the well-known SPH discretization of the diffusion 

equation [Eq.(6.83)]. Due to the nearby surface, there is now an additional term that also 

drives mass transfer if the fluid particle has a different concentration i  from the boundary 

one, w . If instead of a flat surface we have a spherical particle loaded with an active 

ingredient and losing solute to the surrounding fluid, the approximation to the diffusion 

equation in the vicinity of the suspended particle is given by 
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It is possible to extend this approach to the mesoscale, where there are thermal 

fluctuations present in the concentration field. In this case, fluid particles can exchange solute 

with the boundary due to stochastic fluxes in addition to chemical potential gradients. We 

postulate the following form for the noise, 

  
,

,
fN

i i ij ij i i
j fluid

m d G dV z dU      (6.86) 

where we have separated the random flux between the wall and fluid particle from the fluid-

fluid ones. Here we assume that the stochastic mass transfer between wall and fluid particle 

is a Gaussian process, with some effective unknown noise amplitude Λ that depends on the 

separation between particle and wall. The form of the noise between the fluid particle and 

wall is the same as between fluid pairs. Hence, we are treating the wall as a superparticle, 

which acts as a bath due to the Dirichlet boundary conditions.  

Following the same derivation procedure as for the normal multicomponent SDPD, 

we arrive at the following equation of motion for particle i due to its interaction with wall 

particles, 

 

 

2

,0

2

0

11 ln ln
2 1

11 ln ln .
2 1

fN
ji i

i ij
j fluid j i

i w
i

w i

dm G
dt m

z
m

     
            

     
             


 (6.87) 

Rewriting in terms of the solute and solvent chemical potentials    ln ln 1i i i     , 
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Once more, we focus on the wall-fluid interaction, i.e. the second term on the right-hand side 

of Eq.(6.88). Linearizing the logarithm, we find that 
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where we have defined  1i i i   . Comparing Eq.(6.89) to Eq.(6.84), 

      2
1/2

0

21 .
4

i w i i
i i w i w

i w i i

m D zz K
m h z h 

                    
 (6.90) 

Solving for the noise amplitude, 
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If instead of a planar boundary, the fluid particle is near a sphere, the noise has the same form 

as Eq.(6.86), but the amplitude becomes 

      
1/2

0
1/2 2

4 , , ,i i w
c

i c i w

m m hDR M R R h
R R R 

   
         

 (6.92) 

where R is the separation between the sphere center of mass and the fluid particle. For fluid-

fluid particle fluctuations, the noise amplitude due to the fluctuation-dissipation theorem is 

given by [9] 
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In summary, the solute dynamics for a fluid particle near a solid planar boundary are 

governed by Eq.(6.84). For the mesoscale case, fluctuations are introduced in the particle 

concentrations with the form given by Eq.(6.86), and noise amplitudes for the boundary-fluid 

fluctuations and fluid-fluid fluctuations calculated from Eq.(6.91) and Eq.(6.93), 

respectively. If the solid object is a sphere (e.g. a colloidal particle loaded with some species 

that is miscible in the surrounding fluid), then the dynamics are described by Eqs.(6.85), 

(6.86), and (6.92) instead. The dissipative term has been validated in one-dimensional 

diffusion simulations where a concentration gradient is imposed across the system and the 

concentration profile evolves in time. The results from the integrated boundary approach 

show good agreement with the analytical solution and numerical calculations with the 

traditional boundary particle method (results not shown). In addition, we perform tests for the 

fluctuating solute model by placing a single particle near a planar boundary and allowing it to 

 

Fig. A6.1. Distribution of concentrations adopted by single particle placed near boundary, with 

dissipative and random fluxes of solute between the fluid particle and wall. Two cases are considered, 

one where the fluid particle has mass m = 200 and the average concentration is 0.4 (blue/circle markers), 

and another case where the fluid particle has mass m = 100 and the average concentration is 0.6 

(red/triangle markers). Both tests are compared to the exact analytical result, shown in black. 
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exchange solute due to dissipative and random fluxes. The distribution of concentrations 

adopted by the fluid particle near the boundary is shown in Fig.A6.1 and shows good 

agreement with the analytical result. 

  



232 
 

6.11 References 

 

[1] L. B. Lucy, Astron. J. 82, 1013 (1977). 

[2] R. A. Gingold and J. J. Monaghan, Mon. Not. R. Astron. Soc. 181, 375 (1977). 

[3] J. J. Monaghan, Rep. Prog. Phys. 68, 1703 (2005). 

[4] G. R. Liu and M. B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle 

Method (World Scientific Publishing Company, 2003). 

[5] M. Grmela and H. C. Öttinger, Phys. Rev. E 56, 6620 (1997). 

[6] H. C. Öttinger and M. Grmela, Phys. Rev. E 56, 6633 (1997). 

[7] H. C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley-Interscience, Hoboken, 

N.J., 2005). 

[8] P. Español and M. Revenga, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67, 26705 

(2003). 

[9] N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016). 

[10] A. Vázquez-Quesada, M. Ellero, and P. Español, J. Chem. Phys. 130, 34901 (2009). 

[11] S. Litvinov, M. Ellero, X. Hu, and N. A. Adams, Phys. Rev. E 77, 66703 (2008). 

[12] S. Litvinov, X. Y. Hu, and N. A. Adams, J. Phys. Condens. Matter 23, 184118 (2011). 

[13] N. Moreno, P. Vignal, J. Li, and V. M. Calo, Procedia Comput. Sci. 18, 2565 (2013). 

[14] X. Bian, S. Litvinov, R. Qian, M. Ellero, and N. A. Adams, Phys. Fluids 24, 12002 

(2012). 

[15] M. Ferrand, D. R. Laurence, B. D. Rogers, D. Violeau, and C. Kassiotis, Int. J. Numer. 

Methods Fluids 71, 446 (2013). 



233 
 

[16] F. Macià, L. M. González, J. L. Cercos-Pita, and A. Souto-Iglesias, Prog. Theor. Phys. 

128, 439 (2012). 

[17] J. K. Chen, J. E. Beraun, and T. C. Carney, Int. J. Numer. Methods Eng. 46, 231 (1999). 

[18] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, Comput. Methods 

Appl. Mech. Eng. 139, 3 (1996). 

[19] G. R. Johnson and S. R. Beissel, Int. J. Numer. Methods Eng. 39, 2725 (1996). 

[20] G. R. Johnson, R. A. Stryk, and S. R. Beissel, Comput. Methods Appl. Mech. Eng. 139, 

347 (1996). 

[21] A. Colagrossi and M. Landrini, J. Comput. Phys. 191, 448 (2003). 

[22] J. P. Morris, P. J. Fox, and Y. Zhu, J. Comput. Phys. 136, 214 (1997). 

[23] F. Maciá, M. Antuono, L. M. González, and A. Colagrossi, Prog. Theor. Phys. 125, 

1091 (2011). 

[24] H. Takeda, S. M. Miyama, and M. Sekiya, Prog. Theor. Phys. 92, 939 (1994). 

[25] P. J. Hoogerbrugge and J. M. V. A. Koelman, EPL Europhys. Lett. 19, 155 (1992). 

[26] P. Español and P. Warren, EPL Europhys. Lett. 30, 191 (1995). 

[27] Z. Li, Y.-H. Tang, H. Lei, B. Caswell, and G. E. Karniadakis, J. Comput. Phys. 265, 

113 (2014). 

[28] H. Lei, D. A. Fedosov, and G. E. Karniadakis, J. Comput. Phys. 230, 3765 (2011). 

[29] Z. Li, A. Yazdani, A. Tartakovsky, and G. E. Karniadakis, J. Chem. Phys. 143, 14101 

(2015). 

[30] D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69, 1352 (1978). 

[31] J. F. Brady and G. Bossis, Annu. Rev. Fluid Mech. 20, 111 (1988). 

[32] A. Sierou and J. F. Brady, J. Fluid Mech. 448, 115 (2001). 



234 
 

[33] D. R. Foss and J. F. Brady, J. Fluid Mech. 401, 243 (1999). 

[34] T. N. Phung, J. F. Brady, and G. Bossis, J. Fluid Mech. 313, 181 (1996). 

[35] A. J. C. Ladd, Phys. Rev. Lett. 70, 1339 (1993). 

[36] A. J. C. Ladd and R. Verberg, J. Stat. Phys. 104, 1191 (2001). 

[37] N. Sharma and N. A. Patankar, J. Comput. Phys. 201, 466 (2004). 

[38] S. R. D. Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover edition (Dover 

Publications, New York, 2011). 

[39] X. Y. Hu and N. A. Adams, J. Comput. Phys. 213, 844 (2006). 

[40] P. M. Kulkarni, C.-C. Fu, M. S. Shell, and L. Gary Leal, J. Chem. Phys. 138, 234105 

(2013). 

[41] K. Meier, A. Laesecke, and S. Kabelac, J. Chem. Phys. 121, 3671 (2004). 

[42] M. B. Liu and G. R. Liu, Appl. Numer. Math. 56, 19 (2006). 

[43] L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective 

Transport Processes, 1st ed. (Cambridge University Press, 2010). 

[44] K. Müller, D. A. Fedosov, and G. Gompper, J. Comput. Phys. 281, 301 (2015). 

[45] R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997). 

[46] E. S. Boek, P. V. Coveney, and H. N. W. Lekkerkerker, J. Phys. Condens. Matter 8, 

9509 (1996). 

[47] E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker, and P. van der Schoot, Phys. Rev. E 

55, 3124 (1997). 

 

 

 



235 
 

7 Conclusion 

 

7.1 Implications 

 

As modern chemicals and material development become increasingly reliant on nano- 

and micro-scale processes, the need to simultaneously probe molecular-level detail and 

transport phenomena over macroscopic lengths has rapidly expanded. In this thesis, we first 

considered surface nanobubbles, a particular example of this kind of important physical 

system that couples processes at both the molecular and macroscopic levels. These flat, 

gaseous objects, typically found along hydrophobic surfaces, are characterized by molecular 

length scales near the contact line due to their nanometer heights. However, another crucial 

aspect of the nanobubble problem is the transport of gas away from the bubble apex, which 

occurs over macroscopic lengths, and including both of these parts is intractable using 

traditional simulation methods. Beyond numerous applications that range from removing 

biological fouling [1] to nanoscale templating [2,3], nanobubbles pose a fundamental 

challenge to our understanding of hydrophobicity at interfaces because a number of their 

anomalous properties have eluded explanation for over two decades. The most striking 

feature of nanobubbles is their lifetimes, which are seven orders of magnitude greater than 

the prediction from simple scaling arguments [4]. Moreover, they are always flat, with small 

substrate-independent gas-side contact angles typically around ~20° [5].  

In Chapter 2, we discussed these bubbles in detail and developed a continuum model 

that couples the transport of gas molecules over small scales near the bubble three-phase 

contact line to the diffusive outflux of gas over large scales. The resulting gas recirculation 
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model for nanobubble stability predicts rich behavior in their morphologies determined from 

the solution conditions, and we provided phase diagrams summarizing under what conditions 

stable bubbles exist and how factors such as the level of gas saturation in the liquid and 

temperature modify their properties. 

While this model makes compelling predictions that are in agreement with numerous 

experimental studies, it is predicated on the validity of the continuum assumption for the 

influx process near the bubble contact line, which remains unclear. This hydrophobicity-

driven influx of gas is responsible for the observed stability and occurs over nanometer 

scales, and hence investigating nanobubbles requires detailed simulations capable of 

capturing molecular features. In fact, nanobubbles are just one of a multitude of such 

“multiscale” problems that typically arise due to the presence of interfaces, including drug 

particle transport and delivery, three-phase flow, thin film dynamics, slip along hydrophobic 

boundaries, dynamics of biomolecules, and corrosion. We addressed in Chapter 3 this clear 

need to reconcile the granular, molecular picture of matter at the nanoscale with the coarse-

grained continuum description over large scales, where we developed a method for 

embedding a detailed molecular dynamics (MD) fluid inside a continuum region simulated 

using the stochastic particle-based continuum fluid model known as “smoothed dissipative 

particle dynamics” (SDPD). The level of coarse-graining in SDPD is an input parameter, and 

hence by using this particle-based continuum approach, we are able to perform simulations 

that feature lengths ranging from the nanometer level to arbitrarily coarse continuum 

domains.  

In the subsequent chapters, this hybrid simulation approach was generalized into a 

framework that allows for multiscale multicomponent simulation of continuum fluids 
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(Chapter 4), as well as coupled MD-continuum simulations of ideal mixtures (Chapter 5). 

The benefit of the coarse-graining methodology developed in Chapters 3-5 is the substantial 

reduction in the number of particles needed, and in Chapter 6 we described an extension of 

SDPD for introducing boundaries and solid objects that further reduces the system degrees of 

freedom. This “integrated boundary” SDPD approach was applied to the problem of 

Brownian particles in solution. 

 

7.2 Future Work 

 

One immediate next step for the multiscale framework described in this thesis is 

incorporating a multiple time-step algorithm. While in the preceding chapters we focus on 

coarse-graining single- and multicomponent fluids in space only, an important goal is to 

correspondingly adjust the time-step in the continuum region to account for the slower 

dynamics of the coarse-grained particles. Hence, the most finely-resolved region acts as a 

bottleneck by requiring a small time-step, which is then used to evolve the fluid at larger 

scales as well. Multiple time-step algorithms already exist for MD simulations [6–11], and 

due to the similarity between MD and SDPD, these integrators potentially may be adjusted 

for the coarse continuum regions in our simulations. In fact, such integrators for simulations 

having particles with disparate masses, where a larger time-step can be used for the more 

massive species, already exist [7,6]. However, decoupling time-scales in SDPD is made 

challenging by the presence of velocity-dependent forces, and hence such techniques cannot 

be immediately applied and require modification. Once developed and incorporated, 

however, this kind of adaptive integrator would give immense computational savings, 
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beyond the simple but dramatic reduction in the number of particles that our approach 

presently offers. 

Another important future direction and major challenge for the multiscale 

multicomponent framework outlined in this thesis is generalizing the techniques for non-

ideal mixtures, which is necessary for the simulation of nanobubbles. The ideal assumption is 

sufficient for problems where the dissolved species is dilute, giving solute dynamics 

proportional to the Laplacian of the concentration. It may be possible to model nanobubbles 

using a non-ideal MD region, which is sufficiently close to the ideal case that it can be 

coupled to an ideal-mixing continuum domain. However, many systems (e.g. electrolyte 

solutions) exhibit moderate to significant deviations from ideality. A simple first step to 

relaxing this assumption is to consider regular solutions, where the entropy of the solution is 

identical to the ideal case, but the fluid mixture includes an enthalpy of mixing. The existing 

SDPD model would require slight modification; the constant temperature assumption would 

have to be relaxed such that heat can flow between regions where the enthalpy results in 

different local temperatures. With both heat and mass transfer present, it may be necessary to 

allow for coupled heat/mass diffusion (e.g. thermophoresis and the Soret and Dufour effects), 

which is generally negligible for dilute gases, but important in many other situations [12]. 

Beyond small perturbations from ideality, these techniques are generalizable to 

problems that deviate significantly from the ideal case as well, and they have already been 

applied to phase-separating systems [13,14]. In general, constructing a GENERIC model that 

can be coupled to a MD region requires knowing the entropy  S x  and total system energy 

 E x  as a function of state variables x that represent the system (e.g. concentration or 

electrostatic potential). This is trivial for ideal and regular solutions, which feature simple 
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analytical forms for the entropy. The reversible and irreversible dynamics are proportional to 

the derivatives of the functions  S x  and  E x  with respect to the state variables x. For 

systems without analytical expressions for the entropy and energy, these functions can be 

determined numerically from equilibrium MD or Monte Carlo simulations. The resulting data 

from the molecular calculations can be tabulated or fit to a polynomial, then differentiated 

and used to build a GENERIC model. The downside of this approach is the computationally-

intensive pre-calculation of the functions  S x  and  E x , which must be highly converged. 

Despite these outstanding challenges, the multiscale multicomponent framework 

developed in this thesis is an important step towards a number of potential future directions 

and better understanding of numerous nanoscale phenomena, including nanobubbles. While 

there have been efforts to simulate “small” nanobubbles* using molecular dynamics [15–17], 

the work described in Chapters 3-6 allows for larger systems having more realistically-sized 

nanobubbles immersed in a fluid bath, which can be coarse-grained using our MD-continuum 

approach. A convenient aspect of the multiscale technique described in Chapter 5 is that the 

chemical potential of the bath (e.g. the continuum region far from the bubble) is easily and 

straightforwardly specified, giving precise control of the saturation level in the bulk fluid. 

Therefore it is now possible to investigate larger nanobubbles under a variety of conditions, 

including the solution saturation level and temperature, parameters that dramatically 

influence nanobubble morphology according to the analytical model in Chapter 2. The 

computational savings due to these multiscale methods would also allow for more realistic 

water and gas models, which have been absent in many MD nanobubble studies, though this 

                                                             
*MD simulations have probed nanobubbles with < 10 nm footprint radii in order to avoid the computational cost 

of larger systems, even though according to experiments, surface nanobubbles have micrometer diameters. 
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requires coupling molecules with internal degrees of freedom (i.e. atoms bound together with 

harmonic bonds) to the single-site SDPD fluid. The adaptive resolution scheme has already 

been applied to bridge molecules with internal features to isotropic coarse-grained 

models [18–22], and hence the only challenge is introducing the multicomponent aspect, 

where water and gas atoms transition to discrete SDPD particles with different masses, which 

must combine into continuous particles (and conversely, continuous SDPD particles must 

split into discrete ones with this mass discrepancy). 

In addition to equilibrium simulations probing their stability with respect to 

thermodynamic variables such as the temperature and saturation, this modeling framework is 

also important for studying the dynamics of nanoscale bubbles and oil droplets dissolving 

under flow using non-equilibrium hybrid MD-continuum simulations.  We demonstrated in 

Chapters 3-5 that our MD-SDPD framework is not only useful for coarse-graining bulk 

regions in equilibrium simulations, but also correctly captures the transport of momentum 

and solute across multiple length scales. Such non-equilibrium simulations of nanoscopic 

bubbles and drops can be achieved by placing a bubble or droplet along a surface in a MD 

region coupled to a continuum domain with gas- or oil-undersaturated fluid. The system is 

then subjected to shear flow, enabling the investigation of the dissolving bubble or drop 

dynamics. We can also consider the problem of nanobubble or nanodroplet nucleation by 

gradually increasing the fluid saturation under flow in a homogeneous system until a bubble 

or droplet nucleates along a pre-determined nucleation site in the substrate, and compare the 

simulation results to the scaling of theory and experiments of Zhang et al [23]. These studies 

would investigate the influence of flow conditions on nanodroplet/nanobubble 

nucleation/dissolution and effects such as stick-slip modes in nanodroplet growth. 
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Another important future extension of the model is the ability to model charged 

systems and electrolyte solutions. While in Chapter 5 we only discuss systems having neutral 

atoms interacting through dispersion and Pauli repulsion forces, the dissipative particle 

dynamics (DPD) algorithm has been generalized to include electrostatic interactions [24], 

and a similar approach could be straightforwardly integrated into the multiscale framework 

developed in this thesis. For the case of a dilute electrolyte solution with negligible 

correlations and mutual diffusion terms for the ionic species, the present methodology is 

straightforwardly extended by assigning an electrostatic potential variable to each SDPD 

particle and evolving these values by solving the Poisson equation at every time-step. The 

mass transport in the system is coupled to the electrostatics by replacing the discrete form of 

the diffusion equation with a discretized version of the Nernst-Planck equation. Similar to the 

DPD extension to charged systems described in Ref. [24], we have a flux due to the 

electrostatic potential gradient in addition to the flux given by Fick’s first law and a 

stochastic one due to thermal fluctuations. One aspect that may be difficult and requires 

additional care is coupling the long-range electrostatic interactions in the MD region, which 

are typically treated using Ewald sums, to the electrostatic potential in the continuum part of 

the simulation. We note that similar adaptive resolution approaches have already interfaced 

charged MD fluids to coarse-grained ones, though these simulations use a reaction-field 

approach to treat the electrostatics, which is less sophisticated. 

Once implemented, a first step for testing this “charged” MD-SDPD framework 

would be to use the MD-SDPD approach to reproduce electric double layer (i.e. the structure 

of an ionic solution next to an electrode) predictions from theory and simulation for a binary 

Lennard-Jones fluid with electrostatic interactions near a charged interface [25–28]. Using 
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the MD-SDPD method, we can simulate large systems while also including an explicit 

neutral solvent and accounting for the excluded volume of the solvent and ion molecules, 

which can dramatically affect the structure and ion distribution near surfaces [29]. These 

results can be compared to experiment [30–35] and classical density functional theory 

calculations [29,36]. Beyond charged surfaces in electrolyte solution, such a multiscale 

multicomponent framework for ionic systems is also applicable to numerous biological 

problems where the prevailing DLVO theory for describing the stability of aqueous 

suspensions is insufficient [37], including modeling of protein interactions [38] and transport 

of salt through cellular ion channels [39–41]. 

With further development, these techniques can be applied to more realistic water and 

salt models, as well as to design corrosion-resistant materials for the substrate, which is 

another important future direction for these multiscale techniques. Corrosion is inherently a 

problem having multiple spatiotemporal scales [42,43], with oxidation and nucleation of pits 

at the molecular level, transport of ions over larger scales, and bulk concentrations at the 

continuum level dictated by environmental conditions. The existence of these multiple scales 

has made corrosion process modeling difficult, even though it results in billions of dollars in 

damages every year in military ground, water, and air-based vehicles alone [44]. The number 

of available multiscale multicomponent methods in the literature is very limited at present, 

and hence the multi-species MD-continuum technique outlined in Chapter 5 is important for 

studying corrosion phenomena and other multiscale problems involving molecularly-miscible 

mixtures. With the simulation framework developed in this thesis, the dissolved ionic species 

can be included, giving atomistic detail near the interface where oxidation occurs, and a 

simpler description for the transport process further from the liquid-solid interface. The 
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continuum description can be coarsened with increasing separation from the surface, where 

the boundary condition at the interface is introduced through the atomically-resolved region.  

Finally, the integrated boundary SDPD framework described in Chapter 6 paves the 

way for simulations of suspensions that are more rigorous than ones using current DPD 

models while having reduced computational cost. DPD has been used to probe the rheology 

of suspensions [45,46]; using SDPD integrated boundary techniques, it is possible to develop 

a parallelized code to investigate additional quantities in large systems, including the non-

equilibrium structure and long-time dynamics of the colloids. Moreover, these techniques are 

useful for modeling many important systems, including the advection and diffusion of nano- 

and microparticles inside the human body, particle-membrane interactions [47–49], drug 

vehicle transport through membranes [50], and the margination of nanoparticles in 

intravascular drug delivery [51,52]. SDPD has been previously used to investigate this type 

of phenomena [52], though when simulating biological systems the simulation size if often 

problematic, and our approach allows for larger systems due to the reduced particle number.  

One immediate future direction is to derive integrated boundary expressions for 

spheroidal particles, which can be used to approximate suspensions composed of rod-like 

colloids. In addition, the no-slip assumption may be relaxed to allow for a more general 

Navier-slip boundary condition. Beyond this generalization, it may also be possible to 

reconcile the SDPD integrated techniques for colloidal particles with the MD-continuum 

framework described in Chapters 3 through 5. One can imagine simulations where molecular 

resolution is used for a functionalized particle’s surface, while a coarse-grained continuum 

description is applied to the surrounding fluid, with integrated boundaries used for other 

suspended particles in the bulk, or when the functionalized sphere is far from 
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surfaces/adjacent particles and does not require atomistic detail. As illustrated above with 

numerous examples, we believe that the general framework outlined in this thesis provides an 

important basis for an intuitive and efficient Lagrangian modeling strategy that allows for a 

broad spectrum of real-world applications and biological problems, and lays the foundation 

for investigating and understanding a variety of important physical systems. 
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