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ABSTRACT 
 

Reactions of Homogeneous Gold Catalysis:  

Ligand Design, Alkynes, and Gold-Carbenes 

 

by 

 

Jonathan David Nelson 

 

The last decade has seen a rapid rise in the developments in homogeneous gold catalysis. 

The soft Lewis acidity of cationic gold(I) complexes towards alkynes and allenes and the 

easy access to gold carbene intermediates via oxidation have produced a diverse range of 

synthetically versatile transformations. In my thesis, several novel methodologies have been 

explored and developed, including: (1) The design of novel new ligands to enable highly 

efficient gold-catalyzed nucleophilic addition reactions, including the development of P,S-

bidentate ligands, which enabled the generation of tris-coordinated gold carbene species, and 

provided high selectivity and yields for propargylic ether to undergo a 1,2-C–H insertion; 

(2) The highly regioselective oxidation of carboxylates of primary and secondary 

propargylic alcohols, undergoing 1,2-acyloxy migrations over a 1,2-C–H migration, with 

selectivity was greatly enhanced by using the P,S-bidentate ligand, with ratios ranging from 

16 to over 300; (3) An investigation into the effects of α-oxo gold-carbene electrophilicity 

on product selectivity of propargylic ethers to undergo 1,2-alkyl-migration versus 1,2-C–H  

insertion, along with the application of said 1,2-alkyl migration to both ring expansion and 
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the migration of a propargylic sp2 substituents; excellent regioselectivities were obtained for 

the gold catalyzed oxidation of propargylic ethers while selecting for the hydride migration. 
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1. Introduction and Theory 

1.1 Basic Chemistry of Homogeneous Au(I) Catalysis 

Homogeneous gold catalysis has, in the last decade, seen a rapid evolution in the 

methods developed1 and uses in natural synthesis.2, 3 The most common reactivity pattern in 

gold-catalyzed organic reactions is the nucleophilic addition to C-C π-bonds. The π-bonds of 

alkynes, allenes, or olefins coordinate to gold complexes, and this very efficiently activates 

them for the attack of a nucleophile. Alkynes are the most successful and most frequently 

used reaction partners for gold catalysts,4 although allenes were among the first substrates 

used, and they are still quite popular. An example of the mechanism for a simple nucleophile 

is shown in Scheme 1-1. First, the gold interacts with the π-system to form structure 1-1a, 

then the nucleophile attacks the activated π-system. There is much evidence1 that the 

nucleophile adds anti to gold to deliver a vinyl gold species 1-1b, but as an exemption, the 

nucleophile adds syn in the case of norbornene compounds.5 The organogold intermediate 1-

1b undergoes protodemetallation of the gold catalyst to give the addition product 1-2.  

 

Scheme 1-1: General Form of Cationic Gold(I) Catalyzed Nucleophilic Attack 

 

 

In most gold catalyzed reactions, which proceed via organogold-intermediates 

containing a carbon-gold single bond, an acidic media is required, to invoke the required 

protodemetallation step. The proton may be from a catalytic amount of a Brønsted acid as a 

co-catalyst, or it may be generated in situ previously in the reaction pathway. In fact, there 

R R
+ [Au]

R R
[Au] + NuH

HNu

[Au]

R

R ~ H+

– [Au] Nu
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R

1-1 1-1a 1-1b 1-2
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was a discussion for a long time on the role of the protons in gold catalysis, as it was 

suspected in some cases that the proton was the true catalyst.6  

Cationic gold is able to substitute for Brønsted acids in acid-catalyzed addition and 

elimination reactions, as it has a similar activation effect on the π-system as shown by 

Hashmi et. al.7-8 Where p-toluenesulphonic acid shows an identical catalytic activity as 

AuCl3 in the three-fold reaction of α,β-unsaturated aldehydes9 and the two-fold reaction of 

aryl aldehydes with electron-rich arenes.10 Quite similar results for hydroamination of 

alkenes were found with both a gold catalyst and triflic acid,11-12 as well as for the addition 

of different oxygen nucleophiles. However these are the few examples of equivalent 

reactivity. There are more examples of protons playing the role of co-catalysts.  

First used in a low-pressure Koch-Haaf reaction,13-14 the collaboration of a strong 

Brønsted acid and the gold catalyst is indicated by a significantly lower pressure of 1 atm 

versus the usual 100 atm.  

 

Scheme 1-2: Example of Low Pressure CO Insertion 

 

 

When a Brønsted acid is used as the co-catalyst, the activity of the gold catalyst 

increases for reaction following the general mechanism of Scheme 1-2, and sometimes is 

required for reactivity. For example, in Scheme 1-3, showing the conversion of 1-5 and 1-6 

to 1-7 with a strong Brønsted acid co-catalyst, the TOF, or Turn Over Frequency, of the gold 

catalyst increased almost linearly with the concentration of H+.15 The TOF is the frequency 

R

+ H+

[Au(CO)2]+

1 atm CO, RT

R

HO O
1-3 1-4



 

 3 

 

or speed at which the catalyst completes a catalytic cycle. A low TOF means a slower 

reaction, longer reaction time, and a higher chance of side reactions. 

 

Scheme 1-3: Addition of Alcohol to Alkyne 

 

 

In 1998, for the hydroamination of alkynes, acidic promoters were considered crucial for 

gold catalysis, as neither the gold complexes nor the acids alone were found to be 

adequate.16 The current mechanistic understanding is that a strongly acidic proton is 

essential for a fast proto-demetallation step. Acid can also be added in stoichiometric 

amounts, and is mostly done when the product gains protons, or when the organo-gold bond 

is particularly strong.  

For a number of reactions, especially those reported in recent years, gold catalysts are 

superior to Brønsted acid catalysts. Stradiotto reported in 2010 an acid-free hydroamination 

reaction, progressing through a intramolecular proto-demetallation step with no net pH 

change over the course of the reaction.17 The example in Scheme 1-4 is the cyclization of α-

hydroxyallenes to 2,5-hidydrofurans.18   

 

Scheme 1-4: Example of Gold(I) Catalyzed Cyclization 
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Notice that the cyclization reaction has no net pH change, as the mechanism formally 

requires the transfer of a proton from the hydroxyl group to the new olefin. The presence of 

acid has also been reported to shift the product ratio, for example, by hydrolysis of the final 

product of the gold catalysis.19 The formation of gold carbenes is another reaction class that 

does not utilize acid.  

The increased popularity in its use as a catalyst can be attributed to the potent and 

versatile reactivities of gold complexes. There are the renown soft Lewis acidity of cationic 

gold(I) species towards alkynes and allenes, as well as the ready access to gold carbene 

intermediates, which have a diverse library of transformations. Gold(I) carbenes are 

arguably the most versatile intermediates of gold catalysis, enabling access to a diverse 

range of functional products from often simple substrates.20  

Scheme 1-5 shows a generalized mechanism to making gold carbenes from alkynes. In 

the first stage, coordination with cationic gold complex greatly promotes the attack of a 

nucleophile to the π-bond of the alkyne 1-10, giving the alkenyl gold intermediate 1-10A. 

While formally it is possible for the Au-C(sp2) bond in this intermediate to react with an 

incoming electrophile (i.e. α approach), the alternative attack at the β approach, at the distal 

end of the alkene from gold, would generate a gold-substituted carbocation 1-10B. Electron 

back donation from the metal center would stabilize the electron-deficient trivalent carbon 

center and produce the gold carbene intermediate 1-10C. Although gold is measured as the 

most electronegative metal in the Pauling scale,21 density field (DFT) calculation have 

suggested that such back-donation have a similar stabilization effect offered by a directly 

substituted MeO-group.22  
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Scheme 1-5: General Outline of Gold Carbene Formation 

 

 

Interestingly the overall conversion to a gold carbene of type 1-10C from an alkyne is 

identical in a formal sense to first producing the hypothetical intermediate α-carbene gold 

carbene 1-10D and reacting it with a nucleophile and an electrophile at its free carbene 

center. Hence, a gold-coordinated alkyne, before producing the gold carbene intermediate, is 

formally equivalent to the general structure 1-10D. This formalism is a good model for 

envisioning bond formations produced by the generation of the gold carbene, and can be 

used to discover further reactions.  

The initial nucleophilic attack and subsequent approach of the electrophile could occur 

in a single step. Gold-catalyzed enyne cycloisomerizations, outlined in Scheme 1-6, have 

been a rich area of research, and the formalism between the gold-activated alkyne and α-

carbene gold carbenes is nicely demonstrated.23-24  
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Scheme 1-6: Gold-catalyzed en-yne Cycloisomerization 

 

 

If both the nucleophile and electrophile are oxygen, a α-oxo gold carbene is generated 

(Scheme 1-7). Formally, this can be modeled as the oxidation of the carbene center of 

structure 1-10D.  

 

Scheme 1-7: Alkyne as a Surrogate to Diazo Compounds 

 

 

The principle and most reliable strategy to generate α-oxo metal carbenes/carbenoids is 

through metal-catalyzed dediazotizations of diazo carbonyl compounds, which are versatile 

compounds that can transform via challenging and highly valuable routes, such as C-H 
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insertion, ylide formation, and cyclopropanation reactions.25 Methods using Rh catalyst with 

chiral ligands allow for enantioselective transformations, which are synthetically valuable. 

These methods, however, are less desirable due to the hazardous nature of the diazo 

carbonyl compounds, via the high energy held within these compounds and the potential for 

explosions. Consequently, this family of reactions is only safely performed on a small scale, 

and it takes considerable engineering ingenuity to perform safely on a larger scale, but it has 

been done.26-27 Preparation of these compounds also requires energetic reagents, increasing 

the hazard level, and often require multiple steps unless the methylene group is fairly 

acidic25. A safer, shorter, and less harsh method for the generation of corresponding metal 

carbenes would be synthetically beneficial.  

This oxidative version of formation, summarized in Scheme 1-8, giving the α-oxo gold 

carbene/carbenoid, can be used to generate the same intermediate from an alkyne instead of 

a diazo carbonyl. Hence, for gold catalysis, alkynes can replace the use of hazardous α-diazo 

carbonyl compounds.  

 

Scheme 1-8: Alkyne as a Surrogate to Diazo Compounds via Oxidation 
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2. Ligand Design and Reactivity Studies 

2.1 Introduction 

Ligands play the critical role in gold-catalyzed reactions of stabilizing the cationic gold 

center, and significant variation of the reactivity of the metal center can be preformed by 

varying the ligand used. Catalyzed reactions with high efficiency, excellent chemo-, regio- 

and stereoselectivity depend heavily on selecting the correct ligand. Recently a review 

summarized ligand effects as applied to homogeneous gold catalysis.28 Several popular 

ligands are presented in Scheme 2-1, which are also utilized in various reactions throughout 

this work. 

 

Scheme 2-1: Commonly Used Ligands for Gold(I) Catalysis 
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2.2 Background of Bidentate Phosphine Ligands 

The behavior of the Mor-DalPhos ligand may be used as an example of the function of a 

P,N–bidentate ligand. Originally developed by Stradiotto for Pd catalysis,29 its potential 

usefulness for gold chemistry was also demonstrated by the same group.17 When used to 

generate a gold carbene, it was found to produce much better results, giving high yields over 

previous moderate ones.30 However, the full usefulness is not realized until the catalyst 

complex is examined. Counter to the typical linear coordination undergone by cationic gold 

species, the P,N-bidentate nature of Mor-DalPhos enables the formation of a tris-coordinated 

gold carbene. Tris-coordinated gold complexes are well known, although their use in gold 

catalysis is rare.31-32 This results in a much less electrophilic species due to addition electron 

density donation from the nitrogen atom, and should react more selectively. Therefore, the 

interference of solvents and other weaker nucleophiles are reduced, giving much higher 

yields. DFT calculations support this argument, as the third coordination causes the gold 

carbene to be more stable, as seen in Scheme 2-2 in the shorter coordination bonds within 

the catalyst complex, the lower NBO (non-bonding orbital) charge, and the overall lower 

energy state granted by the Au-N coordination. 

 

Scheme 2-2: Partially Optimized Structure of Bis-coordinated Gold Carbene 
Bis-coordinated gold carbene L with fixed Au-N distance of 2.930 Å and the fully optimized 
tris-coordinated gold carbene M. The relative energies are in kcal/mol. Calculated at 
PBE1PBE/6-311+G** level30. Open Access Copyright ©2014 ACS20.  
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An example of further modification of MorDal-Phos ligand, seen in Scheme 2-3, was 

done later by the Zhang group to improve the geometries of the complex.33 Locking the 

pendant ring into fixed chair conformation dramatically improved the yield of carboxylic 

acid trapping of the gold carbene. This shows that the main concerns in designing this type 

of P,N-ligand is the steric shielding of the highly electrophilic gold carbene and maintaining 

the correct conformer for bis-coordination.  

 

Scheme 2-3: Modification of MorDal-Phos 

 

 

2.3 Background of Biaryl-phosphine Ligands 

Bulky and electron-rich biarylphosphines were originally developed by Buchwald,34-36 

and are extremely useful for Pd catalysis,37, 38 as the ridged backbone creates a steric wall, 

which blocks all attack from that side, while leaving the reaction center uninhibited. These 

ligands have been applied in gold catalysis in the past with much success,39-46 however 

modification remains relatively unexplored with few examples.47 In Pd catalysis, 

substitution of the lower half of the second phenyl ring (outlined in Scheme 2-4) is generally 

undesired due to the square planar Pd(II) complexes, where higher substitution would 
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merely crowd the reaction center. The exceptions are SPhos with a C3’ sulfonate and XPhos 

with C4’ sulfonate to increase catalyst aqueous solubility.48 Bis-coordinated gold(I) 

complexes are linear in structure, rather than square planar, which logically leads to a 

different ligand design philosophy from that for Pd catalysis.  

 
 

Scheme 2-4: Ligand Design for Highly Efficient Gold Catalysis.  

(A) Anti-attack at gold(I)-activated alkyne by nucleophile. (B) The advantage of the 
(1,1’-biphenyl)-2-ylphosphine framework. (C) The general concept for quasi-
intramolecular, ligand-directed nucleophilic attack.  

 

 

There are several positions on the ligand where changes could be made based on the 

geometries of the ligand metal center and substrate to each other. Making the P-C2 rotation 

more rigid and locked by placing bulky substituents on the phosphorus, would force the     

P-Au-alkyne linear complex to lay parallel across the pendant phenyl ring. This would place 

the alkyne substrate directly alongside that ring. Should functional groups (FGs) be attached 

to these distant locations, they would be positioned to interact with the catalyzed reaction of 

the substrate. If these FGs were to be H-bond acceptors, they could direct neutrally charged 

nucleophiles, such as MeOH, by H-bonding between the FG and the acidic proton of the 

nucleophile. This stabilization would give a high preference for a quasi-intramolecular anti-

attack on the activated alkyne. The resulting proton would also be stabilized and positioned 

for the rapid protonation of the gold-carbon bond in the catalyst transition state.  
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The choice of such a functional group follows the optimization of these two properties: 

the initial H-bonding to the nucleophile versus the later protonation of the gold-carbon bond. 

The deciding property would then be the pKa of the protonated directing group, but only 

relative to the strength of the gold-carbon bond and the acidic proton of the nucleophile. The 

pKa values of various nucleophiles are well known, as are the general pKa values of possible 

functional groups. However, the thermo kinetic properties of the gold-carbon bond in such a 

situation are not so easily predicted. Hence experimental optimization is required to find the 

best FG. The directing FG should also be capable of handling a broad substrate scope, and 

the conversion to a quasi-intramolecular attack from an original intermolecular process 

would accelerate reaction and give higher catalyst TONs, equating to higher catalyst 

efficiency as a lower catalyst load would be required.  

2.4 Bidentate Ligand Research 

Research efforts have been focused following the described design logic, which centered 

foundationally on nitrogen in MorDal-Phos functioning as a Lewis base to the Lewis acid 

nature of cationic gold. Research was driven forward by theorizing whether other ligands 

developed with various other Lewis base groups would also function well. Hence, the 

development of a variety of ligands was pursued laboriously. 

The promising ligands developed in the Zhang group were eventually published, 

however, it does not tell the whole story of the development. The development of the 

following ligands remained for the most part unpublished due to poor performance results in 

model reactions, however their study remains foundationally instrumental in the developed 

understanding used to design later catalysts.  
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Scheme 2-5: Bidentate Phosphine Ligand Results 

 

 

 As seen in Scheme 2-5, the best results came from the t-butyl sulfane FG, combined 
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2b(Z) over others). This shows the steric bulk of the sulfanyl group is key in directing the 

reaction. The mechanism of this reaction is expanded further in chapter 3, so Scheme 2-6 

has a brief outline of the gold-carbene transition stage involved. From this point the reaction 
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proceeds via 2,3-acetoxyl migration to give the desired product. The isopropyl group would 

allow more freedom in rotation and orientation for the substrate. It should be noted here that 

the synthesis of L3 and L4 were originally designed by another member of the Zhang lab, 

Kegong Ji.30  

 

Scheme 2-6: Transition State Selection for Z over E. 

 

 

The directing effects of the sterically bulky groups on the phosphine and sulfane can 

explain the high selection of the Z over E isomer. If the sterically bulky group is too large, 

the catalyst is inhibited, however, if the group is too small, the catalyst becomes less 

selective as the bond geometries are not locked in place. Adamantyl groups are overall 

larger than the t-butyl, but sterically tied back away from the center, thus giving the catalyst 

center slightly more freedom of motion. The implication for the ligand is such that the 

adamantyl groups will lock the orientation of the phosphorous aromatic bond causing the 

Au-P orientation to occur in the same as the aromatic ring. This would put the sulfane in a 

perfect position to coordinate its lone electrons with the gold to form the bidentate complex, 

and the geometry gives a high preference to remain as the bis-coordinated complex. 

Before the study it was unclear whether allowing the substrate more freedom in 

orientation would improve the efficiency of the catalyst, as sterically bulky groups tend to 
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slow down catalysis. However, as seen from the results in Scheme 2-5, the reaction prefers 

to be in as much of a locked conformation as possible, in order to achieve high product 

selectivity.  

 

Scheme 2-7: Application of Bidentate Ligand Design 

  

 

As outlined in Scheme 2-7, the t-butyl sulfane ligand L1 was utilized in the Chemical 

Communication work “Expanding the horizon of intermolecular trapping of in situ 

generated a-oxo gold carbenes: efficient oxidative union of allylic sulfides and terminal 

alkynes via C–C bond formation” by Jiabin Li, et. al.49 In the reaction of allylic sulfides and 

terminal alkynes, the developed t-butyl sulfane phosphine ligand showed a slightly higher 

activity than Mor-DalPhos, along with allowing for lower excess loadings of reactants to 

starting material. This study expanded the scope of external nucleophiles that can be trapped 

by a α-oxo gold carbene.  
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2.5 Application of Biaryl Phosphine Ligand Design 

In the addition of methanol to an internal alkyne there are three possible products as seen 

in Scheme 2-8. There is a single addition product 2-8, which is the first product formed and 

is more desirable. The second product 2-9, a methoxy acetal, forms from the addition of the 

second methoxy group into the first product. The carbonyl product 2-10 forms from the 

hydrolysis of the acetal product by water.  

 

Scheme 2-8: Biaryl Ligand Model Reaction 

  

 

In the ligand design experiments we were interested to see how such a simple model 

reaction of nucleophilic addition was affected by ligand structural modifications of the 

standard biaryl phosphine ligand. As such, the reaction was performed with a variety of 

ligands while measuring the product ratios by 1H NMR to show the reaction kinetics. The 

charts of results are placed in the appendix, and discussed here.  
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Scheme 2-9: Custom Ligand Variant for Addition Reaction 

 

 

Firstly, ligand L5 with a diethyl amide on the secondary ring, showed a mild reactivity 

with a high preference for the single addition methoxy-ene 2-8 (75% peak yield at 25hrs), 

and was slow to produce the acetal and hydration products. Ligand L6, very similar to the 

first but with a di-isopropyl amide, performed very similarly but on a longer reaction time 

(peak yield of 2-8, 70%, at 49hrs). It logically follows that the additional steric bulk of the 

isopropyl groups slightly inhibited the rate of the catalytic process. Ligand L7 produced no 

reaction, but the purpose of this ligand was to show that the phosphine structure was 

important to the high yield and fast reaction time.  

Ligand L8, similar to L5 and L6 with a piperidin-amide substituent, showed a much 

higher reaction speed to both L5 and L6 (6 hr peak amount of 2-8, 65%, versus 30 hrs and 

45 hrs respectively). This can be attributed to the six-membered piperidine ring representing 

sterically a more tied-back and compacted version of the diethyl amide of 2-8, with less 

freedom of motion. However, this faster reaction time also seemed to greatly increase the 
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amount of acetal 2-9 generated, giving lower selectivity for 2-8. JohnPhos, a basic biaryl 

ligand developed by Buchwald, was used as a control as it has no substituents on the 

secondary ring. It showed a preference for product 2-8, but at the peak yield (62%) it had 

also generated a considerate amount of acetal (28%) and hydrolysis (10%) products.  

Ligand L9, with a para-dimethylamine substituent on the secondary ring, showed a 

unique activity by being highly selective to the acetal over the single addition product 2-8. 

This result is interesting mainly in contrast to ligand L10, where the dimethylamine is 

moved to the meta position, which showed a higher preference for 2-8 initially, with the 

acetal yield increasing over time. All of these results are included as Figure 6-1 to Figure 6-6 

in the experimental section. 

These results showed substituents at the meta-position of the secondary ring are 

positioned to better promote the production of single addition products over the acetal and 

hydration products with higher selectivity than ligands without a substituent group. Further 

research was based on this realization, and developing the model that such a substituent 

would actually direct the nucleophile towards bonding.  

2.6 Biaryl Phosphine Ligand Modification and Variants 

In the course of furthering research for the lab as a whole, I produced several variations 

of the nucleophile directing group ligands. Variations L11 and L12 replaced the amide 

group of L5 with a ethyl ester, to show whether or not it was a conjugated carbonyl that was 

key, or the amide specifically, and how important the amide was to the selectivity.  
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Scheme 2-10: Biaryl Phosphine Ligand Variants.  

 

 

The ester carbonyl would form a weaker H-bond with incoming nucleophiles, which 

would cause them to be slower to react. However, the protonation of the gold-carbon bond 

would proceed much faster, due to the lower pKa of the resulting acid. 

In L13, a methoxy group was added para to the substituent, which would donate 

electron density into the carbonyl via conjugation, thereby increasing the Lewis basicity of 

the carbonyl, causing it to have a stronger directing effect. Variant L14 followed the same 

logic, but for the amide. Variant L15 added a methyl group ortho to the amide susbstituent, 

with the hypothesis of using sterics between the pyrrolidine ring and the methyl group to 

restrict the freedom of rotation around the aryl-carbonyl bond, and hopefully lock the amide 

in the correct position to interact with the incoming nucleophile. The study and use of these 

variants and many others were taken up by other researchers in the group, and this field of 

research eventually led to the 2014 publication in Nature Communication by Yanzhao 

Wang, et. al.50 

A final variant of the biaryl nucleophile-directing phosphine ligands was produced, with 

a much more basic directing group, in the form of an anionic free carboxylate. Such a ligand 

would, in theory, produce a much stronger hydrogen bonding to any incoming nucleophile, 

as it is much more basic than an amide, and as the resulting acid is a carboxylic acid, it 
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should be adequate to protonate the gold-carbon bond, especially due to its close proximity. 

The synthesis of such a ligand was not without its difficulties, and did spawn two other 

variations, the unadorned ethyl ester, and the carboxylic acid, which were also tested by 

other members of the group in their research. The ligand was produced in both the meta- and 

para-substituted variants, for completeness of variation.  

 

Scheme 2-11: Carboxylate Phosphine Ligands 

 

 

The difficulty with synthesizing L18 and L20 came from the inherent scenario of adding 

an anion carboxylate to a cationic gold ligand and maintaining stability of the complex. How 

would one go about it? Here, the free benzoic acid was subjected to tetrabutylammonium 

hydroxide in MeOH and DCM, and the change in structure verified. It was then complexed 

with cationic gold(I) chloride dimethylsulfide in a mixture of solvents (1:1:1 

DCM:MeCN:MeOH), and the complex verified by 31P NMR and MS. At this point, the gold 

cation was stabilized by the chloride, which is known to prevent the catalyst from reacting. 

Upon removal of the chloride in a solution of AgNTf2 in the same solvent mixture, the 

resulting compound did not behave as expected, as it did not produce any reaction when 

subjected to the model reaction. 
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once the stabilizing ions are removed, the catalyst will form a dimer. The 31P NMR of 

L18AuNTf2 immediately after isolation showed a minor doublet peak downfield of the 

major peak, still within the range for gold-phosphine complex. This could mean the 

phosphorous atom was conjugating with another NMR active atom, such as if another NMR 

active atom had bonded with the gold. 

The catalyst is proposed to have formed a dimer complex upon removal of the protecting 

chloride. This conclusion is also supported by the in situ removal of the chloride by AgNTf2 

producing some initial reaction activity, albeit with very low yield, before stopping. This 

ligand was tested by other members in further experiments and gave overall underwhelming 

results, most probably due to the bis-complexing tendency giving a low catalyst turn over 

number. However, there was no further investigation into this phenomenon, therefore 

whether a dimer is formed cannot be known for certain.   

2.7 Nucleophile Addition to Alkenes 

The attraction of a gold catalyzed nucleophilic addition to an alkene was primarily that it 

had not been very explored in literature. Gold coordinates to alkenes, just as readily as to 

alkynes. What matters or differs is what happens next, if gold is able to activate it for 

electrophilic addition.  

There is evidence that alkenes are activated by Au(I),51 hence there was interest in 

investigating whether this activation was enough for a nucleophile addition. Initially, it was 

not known if alkenes reacted with gold catalysts with an alkyne present. It was later shown 

that at high enough temperatures the intermolecular addition of weak nucleophiles like 

phenols and carboxylates to unactivated alkenes proceeded.52 

 



 

 22 

Scheme 2-12: Insertion of Phenol to Terminal Alkene 

 

 

It was of interest whether the recently developed ligands were capable of performing 

addition under milder conditions. A model reaction was chosen, in which an alkene was 

reacted with a primary alcohol in the presence of a catalyst. Several starting alkenes with 

differing structures were selected, to hopefully collect the results simultaneously.  

The alkenes selected were styrene, a terminal conjugated alkene 2-15a, the polarized 

internal alkene 2-15b, and the terminal alkene 2-15c. Phenyl acrylate, structure 2-15d, was 

later used to represent a conjugated system. The dnucleophiles chosen were methanol as 

solvent, and 2-chloroethanol in DCE, as 2-chloroethanol was expected to perform better as a 

nucleophile, based on the lower pKa value.53 The catalyst chosen first was silver(I) 

complexed to the designed phosphine ligands, then later cationic gold-phosphine catalysts. 

As the silver was expected to be less reactive, the reactions were heated to 60°C. However, 

despite all variations, no reaction was ever observed.  
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Scheme 2-13: Results of Addition to Alkene 

 

 

In retrospect, avenues are evident where this study could have been expanded to be made 

more thorough, but at the time the lack of any positive results caused the project to be put on 

hold. If this project were to be continued, a rigorous investigation of higher temperatures 
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would be recommended, although too high of temperatures would destabilize the phosphine 

catalysts. A broader scope of catalysts, not merely focusing on the nucleophile directing 

aspect, should also be tested, such as ones that give a more electron rich or electron poor 

metal center. In summary, the collected results in no way represent anything beyond an 

initial investigation into mild conditions for the addition of nucleophiles to alkenes, and are 

presented to aid in further studies. 

 

 

 
  



 

 25 

3. Regioselective Oxidation of Propargylic Carboxylates 

3.1 Background 

In 2010,54 Zhang group reported the generation of α-oxo gold carbenes from 

intermediates of gold-catalyzed intermolecular oxidation of alkynes. Mild pyridine N-oxides 

and 8-substituted quinoline N-oxides were used as external oxidants, for a safer alternative 

strategy to dediazotization (Scheme 3-1).  

 

Scheme 3-1: Alkyne as a Surrogate to Diazo Compounds via Oxidation 

 

 

Internal alkynes present an additional challenge compared to terminal alkynes; that of 

control of the regioselectivity of the oxidation. Synthetically useful regioselectivity has been 

shown to be gained if the two sides of the C–C triple bond are biased by steric bulk and/or 

conjugation. However, this has limited use, as the structure of the desired synthetic product 

limits this steric bias. In the interests of improving the regioselective of this oxidation with 

different alkynes, propargylic carboxylates were explored, as they provided an induced 

electronic bias, and a reliable synthesis of α-carboxy α,β-unsaturated ketones and aldehydes 

was developed.  
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3.2 Initial Investigation 

The initial development by Kegong Ji, a member of Zhang group, subjected propargylic 

acetate 3-1 to previously developed conditions: IPrAuNTf2 (5 mol %), and 8-methyl 

quinoline N-oxide (1.5 equiv) in 1,2-dichloroethane at ambient temperatures. The reaction 

yielded the α-acetoxyenone 3-2b (Z/E >50:1) and the isomeric 3-2a in a combined yield of 

92% along with <0.5% of the enone 3-2d. 3-2b was favored over 3-2a by a factor of ~7:1. 

The isomer 3-2c was only detected in trace amounts, showing an exceptional level of 

regioselectivity in the oxidation of this type of internal alkyne.  

 

Scheme 3-2: Model Reaction for Initial Investigation 

 

3.3 Study, Results and Discussion 

To improve the low product selectivity of the reactions, as initial results of IPrAuNTf2 

gave ~7:1 product ratio, several bidentate ligands were screened, the results of which were 

presented in Scheme 2-6. The previously presented bulky P,S-bidentate ligand L3 was found 

to reach a product ratio of 3-2b to 3-2a >200:1. The P,N-bidentate ligand MorDalPhos gave 

a similarly high selectivity, but a lower Z/E ratio. The higher attenuation of the 

electrophilicity of the gold carbene by the tris-coordinated gold complex A in Scheme 3-3 is 

credited for the increase in product selectivity. 
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Scheme 3-3: Summary of Ligand Results 

 

 

From the initial model reaction, the new catalyst system was applied to several 

substrates that reacted with poor selectivity under the IPrAuNTf2 system, according to the 

prior substrate screening performed by Kegong Ji.  As seen in Scheme 3-4, the product 

ratios were greatly improved, however the Z/E ratio never exceeded far above 10. Entry 1 

was not expected to see much improvement in product ratios, due to the simplicity of the 

structure not being as affected by the steric directing groups. The return of the propargylic 

methyl group (Entry 2-4) allowed the effect of the steric directing groups again, as it locked 

the rotation of the C-C bond adjacent to gold carbene in the orientation required for the 2,3-

acetoxy migration. This kinetic direction gave the high yield of the migration product, but 

the results show it also inhibited rotation to the thermodynamically preferred Z conformer.  
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Scheme 3-4: Results of P,S-Bidentate Catalyst System L3AuNTf2 

 

 

When published in Beilstein Journal of Organic Chemistry,55 these results were 

presented along with the IPr-gold catalyst results. The conclusion was that it was not one 

catalyst system that was the best overall, but together the two made a robust means to 

perform this transformation. 

3.4 Mechanism 

In order to understand the transition from this brief investigation to later research, a 

understanding of the mechanism steps involved was required. The mechanism proposed in 

the article for the formation of 3-2b and 3-2a followed divergent pathways from the α-oxo 

gold carbene A. 3-2b resulted from a two-step 2,3-acetoxy migration,56-57 and 3-2a was 

likely the product of a concerted 1,2-C-H insertion to the carbene.58 The selection of the Z 

isomer of 3-2b as preferred followed from the carbene conformation A, seen in Scheme 2-5, 

which minimized the steric interaction between Me, the acetate group, and the sterically 
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bulky tert-butyl groups of the ligand. The intramolecular version of this reaction has already 

been reported.59  

 

Scheme 3-5: Proposed Mechanism of 2,3-Acetoxy Migration 

  

 

These conclusions eventually led to the proposition that if these types of α-oxo gold 

carbenes will undergo a 1,2-hydride shift, it might be possible to selectively undergo a 1,2-

alkyl shift instead. This would lead to α,β-unsaturated carbonyl products with potentially 

complex substituted at both the α and β positions. Having one-step access to such a complex 

and synthetically useful product from the simple alkyne would be great benefit to the library 

of chemistry knowledge, and would be useful synthetically. 
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4. Regioselectivity as Enabled by α-Oxo Gold-Carbene Electrophilicity 

4.1 Investigation of 1,2-Alkyl Shift  

Following the mechanism of the previous project, the hydride shift was an expected side 

reaction. However, with the carboxylate replaced with a methoxy to prevent the acetoxy 

migration, it would also be possible for the methyl group to undergo a 1,2 shift.  The 

methoxy is required to give electronic preference for directing the oxidation.  

 

Scheme 4-1: Model Reaction for 1,2-Methyl Shift 

 

 

 The investigation was separated into two different routes. The investigation of 

optimizing the 1,2-hydride shift was pursued later by myself and Kegong Ji, following my 

initial results while working on the alkyl shift. We eventually published the hydride shift 

work in Journal of Organometallic Chemistry in 2014,60 and while the alkyl shift work was 

initially promising, it produced mainly lack-luster results. The reasoning for the catalyst 

choice seen in Scheme 4-2 followed that as an electron rich metal center produced a high 

preference for the hydride shift, perhaps an electron poor metal center would produce a 

preference for the alkyl shift. This was indeed found to be the case. 
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Scheme 4-2: Initial Screening Results of 1,2-Methyl Shift 

 

 

Upon testing various catalysts in the above model reaction, there was a direct correlation 

found with the electron density of the metal center versus the product ratio. The more 

electron rich the gold center, as seen in the PS-bidentate ligand, the more the ratio favored 

the hydride shift, up to 40:1. The more electron poor the gold center, with electron drawing 

groups attached to the phosphine, such as with the (ArO)3P phosphite ligand, the more the 

methyl shift was favored, up to 3:1.  Exchanging the propargylic methyl group with an 

isopropyl gave an expected lower preference for the alkyl shift, given the increased steric 

congestion around the metal center.   
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Scheme 4-3: Screening for 1,2-Isopropyl Shift 

 

 

The proposed mechanism for the transformation is shown in Scheme 4-4. Upon 

activation by the gold catalyst, and subsequent oxidation, the gold carbene species A in 

Scheme 4-4 is generated. From here, there are two possible routes. 1,2-alkyl migration of the 

methyl group into the gold carbene produces the alkyl shift product. A 1,2-hydride 

migration, followed by elimination gives either the E-hydride shift product 4-2b(E), or the 

Z-hydride shift product 4-2b(Z).  

 

Scheme 4-4: Mechanism for 1,2-Alkyl Shift 
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Interestingly enough, screening with various catalysts gave a variable product ratio, 

depending on the ligand used. Election-deficient ligands, such as the first three entries in 

Scheme 4-5, saw a increase in selection for the alkyl shift, while electron donating ligands, 

such as PN and PS bidentate type, saw an increase in selection for the 4-2b(Z) product. 

Ligands not characterized as electron rich or poor, and instead direct more via sterics, such 

as triphenylphosphine or IPr, produced more of a mixture of products.  

 

Scheme 4-5: Spectrum of Reactivity for Gold Catalysts 

 

 

Anhydrous conditions (dry, NaBArF4 instead of AgNTF2) yielded poorer results, 

supporting the conclusion that gold catalysis often requires catalytic water to aid in reaction. 
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These results while initially promising, presented an unavoidable obstacle in the form of 

attempting to create a more electron poor ligand.  A 3:1 product ratio was a promising initial 

result, however it would not yet synthetically useful. Attaching more electron withdrawing 

groups to phosphine, would eventually produce a ligand that did not have enough electron 

density to coordinate to cationic gold. There is no clear literature evidence of successfully 

creating a more electron withdrawing ligand for gold catalysis, especially one strong enough 

to bring the alkyl shift product ratio much above 10:1, without which the reaction remains 

synthetically inefficient. Overall, this was determined to be a dead end as far as producing a 

synthetically useful reaction.  

4.2 Application for Ring Expansion 

Attention was turned to ring expansion. If the catalysts were not strong enough to 

produce a good result with a methyl shift, perhaps the removal the H-substituent to 

migrating from a tertiary center would serve as a sufficient driving force. Compounds 4-5a 

through 4-5d were made to test this hypothesis, and were subjected to a number of different 

catalyst and oxidant conditions. It was concluded that there was a misjudgment in starting 

hypothesis made in the selection of these compounds, as at no point was the desired product 

4-6 generated.  

Thermodynamically a ring expansion from 5-membered such as 4-5c and 4-5d to 6-

membered rings would be favorable, as 6-membered rings have lower ring strain energy.  

However, kinetically the driving force of reacting with the gold-carbene was found to be 

inadequate to overcome the energy barrier. Cyclohexane 4-5a and cyclohexene 4-5b in 

Scheme 4-6 performed similarly. Another explanation would be poor orbital overlap of the 

tertiary center with the gold-carbene due to sterics of bond rotation. 
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Scheme 4-6: Ring Expansion Application 
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group,	  to	  facilitate	  the	  desired	  reaction	  through	  electronics.	  However, the only product 

formed was an unsubstituted enone product, still bearing the cyclopropyl ring, which was 

hypothesized to be the oxidation product on the electronically disfavored side. With	  no	  

generation	  of	  the	  cyclobutene	  product,	  it	  may	  be	  that	  the	  tertiary	  acetate	  caused	  too	  

much	  steric	  crowding	  near	  the	  alkyne,	  and	  prevented	  the	  desired	  reaction	  from	  

occurring.	  For	  the	  same	  reasons	  as	  stated	  in	  the	  following	  section,	  this	  research	  

remains	  incomplete.	  	  

 

4.3 Selection of the sp2 1,2-Alkenyl Shift 

The	  final	  stage	  in	  this	  project	  followed	  the	  idea	  that	  while	  a	  sp3	  1,2-‐alkyl	  shift	  may	  

not	  be	  favorable,	  perhaps	  a	  sp2	  1,2-‐alkenyl	  shift	  would	  be.	  Two	  substrates	  were	  chosen,	  

one	  with	  a	  furan-‐substituent	  and	  another	  with	  a	  simple	  unconjugated	  alkene,	  and	  

bother	  were	  screened	  under	  a	  variety	  of	  catalysts.	  Reaction	  under	  the	  described	  

conditions	  led	  to	  an	  initial	  result	  of	  a	  90%	  NMR	  yield	  for	  the	  furan,	  and	  a	  50%	  NMR	  

yield	  for	  the	  propargylic	  alkene	  group.	  Reproduction	  of	  these	  results	  proved	  difficult,	  

however,	  giving	  a	  50-‐70%	  yield	  for	  the	  furan	  and	  20-‐40%	  yield	  for	  the	  alkenyl	  shift	  in	  

later	  trials.	  These	  roadblocks	  contributed	  to	  the	  project	  being	  shelved	  and	  as	  this	  was	  

at	  the	  end	  of	  my	  time	  in	  the	  Zhang	  lab	  and	  at	  UCSB,	  completion	  was	  not	  reached. 
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Scheme 4-7: sp2 1,2-Shift Results 

 

 

This methodology should be investigated further, as it would allow for rapid access to α-
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highly substituted α,β-unsaturated carbonyls.   
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Scheme 4-8: Hydride shift by PS-Ligand 
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of	  the	  1,2-‐hydride	  shift,	  and	  showed	  an	  89%	  isolated	  yield	  for	  the	  1,2-‐shift	  of	  a	  

propargylic	  phenyl	  group	  under	  similar	  conditions	  to	  the	  reactions	  I	  had	  performed.	  	  

 

Scheme 4-9: Published 1,2-Phenyl Shift 
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pyrrolidine-containing L22AuNTf2 catalyst. He applied it to several substrate examples, 

selecting for the hydride shift over the alkyl. These examples are presented in our 

publication. 

 

Scheme 4-10: Optimization of Conditions for Publication 
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5. Conclusions 

A novel ligand design has been realized of the P,S-bidentate type. It enables the 

generation of tri-coordinated and less electrophilic gold carbene species, and provides 

greater selectivity and yields for reactions involving α-oxo gold carbene intermediates. 

Application in 1,2-acyloxy migrations and the addition of external nucleophiles has 

produced highly efficient and selective results under mild conditions. 

A study of the nucleophilic addition of methanol to a gold-activated alkyne with a 

variety of biarylphosphine catalysts demonstrates the impact of substituents on the 

secondary ring. Substituents at the meta-position react faster and with better selectivity than 

unsubstituted or para-substituted ligands.  

Several new biarylphophine catalysts variants were synthesized for the purpose of 

examining the impact of structure modifications on ligand performance. 

A novel carboxylate substituted phosphine ligand was synthesized, however it was found 

to have low performance.  

An initial investigation was performed into applying the developed catalysts to the gold-

activated addition of a nucleophile to an alkene. A variety of substrates were tested, 

however, no reaction was ever observed. 

A gold-catalyzed, highly regioselective oxidation of carboxylates of primary and 

secondary propargylic alcohols has been realized for compounds with electron-withdrawing 

carboxy moiety to induce polarization of the C–C triple bond. The α-oxo gold carbene 

intermediates generated selectively underwent 1,2-acyloxy migrations over 1,2-C–H 

migration, and the selectivity was greatly enhanced by using the P,S-bidentate ligand, with 



 

 41 

ratios ranging from 16 to over 300. α-Acyloxy-α,β-unsaturated ketones/aldehydes can be 

obtained with fair to excellent yields.  

A study of the effects of α-oxo gold-carbene electrophilicity on product selectivity has 

been performed. Under mild conditions propargylic ethers can undergo selective 1,2-

migration of either the propargylic alkyl group, by utilizing an electron-withdrawing ligand 

to form a highly electrophilic gold carbene species, or the propargylic hydrogen, by utilizing 

an electron-donating ligand to form a less electrophilic gold carbene species.  

The application of the 1,2-alkyl migration to ring expansion was examined, and it was 

found that propargylic tertiary centers do not undergo an alkyl migration, possibly due to 

steric crowding of the reaction center and poor orbital overlap for migration. 

The application of the 1,2-alkyl shift to the migration of a propargylic sp2 substituent 

was examined, and was found in good yields. This methodology would allow for rapid 

access to α-alkenyl-β-alkoxy-α,β-unsaturated ketones from the aldehyde in two steps.  

Excellent regioselectivities were obtained for the gold catalyzed oxidation propargylic 

ethers. The regioselectivity is driven by polarization of the C–C triple bond by α-alkoxy 

groups, with ratios typically ranging from 10 to >50. The developed P,S-bidentate ligand 

enables the minimization of competing alkyl group migration to the gold carbene center over 

the desired hydride migration.  

To conclude, the mild condition, good efficiency, and broad reaction scope, with general 

tolerance of functional groups, of oxidative gold catalysis to rapidly access α,β-unsaturated 

ketones from readily accessible propargyl ethers without the use of hazardous diazo 

compounds provides a valuable retrosynthetic tool for synthetic design, especially 

considering the synthetic versatility of this enone moiety.   
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6. Experimental 

6.1 General Information and Disclaimer 

1,2-Dichloroethane (HPLC grade), ethyl acetate (ACS grade), hexanes (ACS grade) and 

diethyl ether (ACS grade) were purchased from Fisher Scientific and used without further 

purification. Anhydrous tetrahydrofuran in Pure-PacTM from Aldrich was used directly 

without further purification. Commercially available reagents were used without further 

purification. Reactions were monitored by thin layer chromatography (TLC) using silicycle 

pre-coated silica gel plates. Flash column chromatography was performed over silicycle 

silica gel (230–400 mesh). 1H NMR and 13C NMR spectra were recorded on a Varian 500 

MHz Unity plus spectrometer and a Varian 600 MHz spectrometer using residue solvent 

peaks as internal standards. 31P NMR was performed on Varian 400 MHz spectrometer. 

Infrared spectra were recorded with a Perkin Elmer FT-IR spectrum 2000 spectrometer and 

are reported in reciprocal centimeter (cm−1). Mass spectra were recorded with Micromass 

QTOF2 Quadrupole/Time-of-Flight Tandem mass spectrometer using electron spray 

ionization.  

DMF is N, N-dimethylformamide; DCM, dichloromethane; Dippf, 

bis(diisopropylphosphinyl)ferrocene; Tol, toluene; DMS, dimethylsulfide; MeCN, 

acetonitrile; DMSO, dimethylsulfoxide. 

Disclaimer: NMR spectra and characterization data is presented ‘as is’, with no 

additional characterization information available, due to sudden halt in research caused by 

medical illness on the part of the author. Displayed 1H NMR integrations might sum to a 

higher value and spectra may contain additional peaks due to impurities.  
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6.2 Chapter 2 Experimental 

General Procedure A: Addition of MeOH to Alkyne 

 

The catalyst (0.002mmol) and MeOH (0.8ml, 0.5M to alkyne, not anhydrous) were 

combined in a screw-cap vial. 82µl of 6-dodecyne (0.388mmol) were added, and the 

solution was stirred at room temperature and monitored by TLC (25:1 hexanes:EtOAc). At 

the chosen times, 0.1ml samples were removed and worked up by the addition of 

tetrabutylammonium chloride solution (0.2ml, 0.100M in MeOH), followed by 

concentration and dried on high vacuum before NMR.  

 

Figure 6-1: Results of L5AuNTf2 
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Figure 6-2: Results of L6AuNTf2 

 

 

Figure 6-3: Results of L8AuNTf2 
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Figure 6-4: Results of JohnPhosAuNTf2 

 

 

Figure 6-5: Results of L9AuCl 
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Figure 6-6: Results of L10AuCl 

 

 

General Procedure B: Synthesis of Phosphine Ligands 
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Scheme 6-1: Synthesis of Coupling Partner L-Bi, for Ligands L14-15  

 

 

The second step outlined in Scheme 6-1 is a literature procedure62 and was performed as 

follows: 5.28mmol of L-Ci was slowly added to a solution of acetic anhydride (1.886ml, 

2.8M to L-Ci), NaIO4 (5.76mg, 0.51eq) and I2 (235mg, 0.35eq) in acetic acid (3.77ml, 2.6M 

to L-Ci) and sulfuric acid (2.03ml, 2.6M to L-Ci) at room temperature. After stirring for 

30min, reaction was heated to 40°C for 6-24hr, and monitored by TLC (2:1 hexanes:EtOAc) 

after mini-workup of 0.1ml of reaction solution (wash with saturated Na2CO3 (aq)/EtOAc, 

check organic layer) for completion. Once all starting material L-Ci was completely 

consumed, the reaction was diluted with 100ml H2O and extracted 3x with DCM. Then the 

organic layer was washed with sat. Na2CO3 (aq), dried over Na2SO4, filtrated, evaporated, and 

purified by flash chromatography (9:1 à 1:1 hexanes:EtOAc) to give L-Bi in 80% yield.  

 

Scheme 6-2: Synthesis of Coupling Partner L-Bii, for Ligands L11-13, L17-20 

 

 

Iodobenzoic acid L-Cii (5.37mmol, 1.0eq) was added at room temperature to a flask 

fitted with reflux condenser. Ethanol (26.9ml, 0.2M) and concentrated sulfuric acid 

(0.268ml, 20M to L-Cii) were added, and the reaction was heated to reflux (95°C) overnight 
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(12hr). Once all starting material consumed by TLC (2:1 EtOAc:hexanes), reaction was 

removed from heat, quenched after cooling with sat. NaHCO3 (aq), diluted with EtOAc, and 

washed with DI water. The aqueous layer was back-extracted 3x with EtOAc, and the 

organic layer washed with brine, dried with MgSO4, filtered and concentrated. L-Bii isolated 

with no further purification as a clear oil, in 80-95% yield.  

 

Scheme 6-3: Cross-Coupling Synthesis of Phosphine Ligands 

 

A mixture of 8 mmol L-B (1 equiv), 8.8 mmol 2-bromophenylboronic acid (1.1 equiv) 

and 24 mmol Et3N (3 equiv) in 40 mL DMF was stirred and bubbled with N2 gas for 15 

minutes, and then 0.4 mmol Pd(PPh3)4 (5 mol %) was added; the reaction mixture was 

heated at 90 °C for 4 - 8 h under nitrogen atmosphere. Once TLC indicated B was 

completely consumed, the reaction was diluted with 500 mL Et2O and washed with water to 

remove DMF. Then the organic layer was dried over MgSO4, filtrated, evaporated, and then 

purified by column chromatography to yield product L-A in 85 - 92% yield.  

Under nitrogen atmosphere L-A (2 mmol, 1 equiv), Pd(OAc)2 (0.04 mmol, 2 mol%), 

DiPPF (1,1'-bis(diisopropyl- phosphino)ferrocene, 0.06 mmol, 3 mol%), t-BuONa (2.4 

mmol, 1.2 equiv) and 5 mL dry toluene were added to a flame-dried Schlenk flask and the 

resulting suspension was stirred until apparently homogeneous. Added di(1-

adamantyl)phosphine (2.2 mmol, 1.1 equiv), the flask was heated at 110°C in oil bath for 20 

Br
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R (Ph3P)4Pd, 
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hours, which then was cooled to room temperature, and purified by column chromatography 

without work-up to yield the final ligand L in 60-80% yield. 

L1 

 

This compound was prepared from 2-bromobenzenethiol according to the literature 

procedure63 to give the (2-bromophenyl)(tert-butyl)sulfane and step 2 in Scheme 6-3 of 

General Procedure B. 1H NMR (500 MHz, CDCl3) δ 7.84 – 7.79 (m, 1H), 7.70 – 7.64 (m, 

1H), 7.30 – 7.22 (m, 2H), 2.00 – 1.87 (m, 18H), 1.66 (s, 12H), 1.39 (s, 9H). 13C NMR (126 

MHz, CDCl3) δ143.75, 140.51, 137.17, 136.77, 128.12, 125.67, 48.02, 41.97, 37.89, 37.21, 

31.98, 29.12. 31P NMR (CDCl3, 162 MHz) δ 23.33. IR(neat): 2902, 2848, 1451, 1362, 1301, 

908, 733. ESI(M+H+):467.24. 

L2 

 

This compound was prepared from 2-bromobenzenethiol according to the literature 

procedure63 to give the (2-bromophenyl)(isopropyl)sulfane and step 2 in Scheme 6-3 of 

General Procedure B. 1H NMR (400 MHz, cdcl3) δ 7.86 (d, J = 23.6 Hz, 1H), 7.76 – 7.41 

(m, 2H), 7.36 (s, 1H), 3.86 – 3.70 (m, 1H), 2.39 – 1.61 (m, 28H), 1.23 (t, J = 7.3 Hz, 5H).  

31P NMR (162 MHz, cdcl3) δ 17.43 (s). 

L11 

P(Ad)2

S

P(Ad)2

S
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This compound was prepared from 4-iodobenzoic acid according to General Procedure 

B. 1H NMR (500 MHz, CDCl3) δ 8.06 – 7.88 (m, 3H), 7.48 – 7.34 (m, 4H), 4.36 (q, J = 7.3 

Hz, 2H), 2.00 – 1.59 (m, 32H), 1.37 (t, J = 7.1 Hz, 3H). 31P NMR (162 MHz, cdcl3) δ 20.50 

(s). 

L12 

 

This compound was prepared from 3-iodobenzoic acid according to General Procedure 

B.  1H NMR (400 MHz, cdcl3) δ 8.10 – 7.89 (m, 2H), 7.72 – 7.58 (m, 1H), 7.56 – 7.29 (m, 

5H), 4.46 – 4.29 (m, 2H), 2.06 – 1.52 (m, 32H), 1.45 – 1.32 (m, 3H). 31P NMR (162 MHz, 

cdcl3) δ 20.57 (s). 

L13 

 

This compound was prepared from 4-methoxybenzoic acid according to General 

Procedure B. 1H NMR (500 MHz, CDCl3) δ 8.13 – 8.09 (m, 1H), 7.86 (t, J = 4.1 Hz, 1H), 

7.65 (dd, J = 8.0, 1.1 Hz, 1H), 7.45 – 7.40 (m, 1H), 7.28 (dd, J = 7.6, 1.8 Hz, 1H), 7.24 – 

PAd2

OEtO

PAd2

O

OEt

PAd2

O

OEt

MeO
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7.21 (m, 1H), 7.01 – 6.98 (m, 1H), 4.37 – 4.34 (m, 2H), 3.85 (s, 3H), 1.94 – 1.70 (m, 32H), 

1.39 – 1.36 (m, 3H). 31P NMR (162 MHz, cdcl3) δ 44.15 (s) [HPAd2 impurity], 24.46 (s). 

L14 

 

This compound was prepared from 4-methoxybenzoic acid according to General 

Procedure B. 1H NMR (500 MHz, CDCl3) δ 7.84 (t, J = 12.3 Hz, 1H), 7.64 – 7.57 (m, 1H), 

7.34 (ddt, J = 18.5, 12.6, 9.2 Hz, 2H), 7.24 – 7.15 (m, 2H), 6.95 – 6.87 (m, 1H), 3.73 (d, J = 

6.9 Hz, 3H), 3.68 – 3.48 (m, 4H), 1.95 – 1.61 (m, 32H). 

L15 

 

This compound was prepared from 2-methylbenzoic acid according to General 

Procedure B. 1H NMR (400 MHz, cdcl3) δ 7.86 (d, J = 7.4 Hz, 1H), 7.33 (dt, J = 16.2, 7.8 

Hz, 2H), 7.25 – 7.23 (m, 1H), 7.22 – 7.06 (m, 3H), 3.66 (t, J = 6.9 Hz, 2H), 3.34 (t, J = 6.6 

Hz, 2H), 2.40 – 2.32 (m, 3H), 1.94 – 1.60 (m, 32H). 31P NMR (162 MHz, cdcl3) δ 20.44 (s). 

L17 
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This compound was prepared from L12 according to literature procedure64. 1H NMR 

(400 MHz, cdcl3) δ 8.04 (dt, J = 7.6, 1.5 Hz, 1H), 7.99 (s, 1H), 7.91 (d, J = 7.2 Hz, 1H), 7.51 

(d, J = 7.5 Hz, 1H), 7.45 (dd, J = 13.2, 5.6 Hz, 1H), 7.42 – 7.33 (m, 2H), 7.31 – 7.27 (m, 

1H), 1.97 – 1.54 (m, 32H). 31P NMR (162 MHz, cdcl3) δ 20.43 (s). 

L18 

 

This compound was prepared from L17 by titration with tetrabutylammonium hydroxide 

(1.0 equiv, 40% solution in MeOH) in 3ml DCM and 3ml MeOH, monitoring with 1H NMR 

for a 1:1 ratio based on 1H integration. 1H NMR (400 MHz, cdcl3) δ 8.09 – 7.70 (m, 4H), 

7.33 – 7.21 (m, 4H), 3.37 (t, J = 8.7 Hz, 8H), 3.23 (s, 8H), 1.93 – 1.50 (m, 32H), 1.35 (d, J = 

6.8 Hz, 8H), 0.98 – 0.87 (m, 12H). 31P NMR (162 MHz, cdcl3) δ 20.37 (s). 

L19 

 

This compound was prepared from L11 according to literature procedure64. 1H NMR 

(400 MHz, cdcl3) δ 8.02 (d, J = 7.8 Hz, 2H), 7.86 (d, J = 7.4 Hz, 1H), 7.36 – 7.28 (m, 2H), 

7.23 – 7.16 (m, 3H), 1.82 (q, J = 12.6 Hz, 14H), 1.64 (d, J = 21.2 Hz, 18H). 31P NMR (162 

MHz, cdcl3) δ 20.37 (s). 

L20 

PAd2

O

ONBu4
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OHO
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This compound was prepared from L17 by titration with tetrabutylammonium hydroxide 

(1.0 equiv, 40% solution in MeOH) in 3ml DCM and 3ml MeOH, monitoring with 1H NMR 

for a 1:1 ratio based on 1H integration. 1H NMR (400 MHz, cdcl3) δ 8.06 (d, J = 8.1 Hz, 

2H), 7.87 (d, J = 7.4 Hz, 1H), 7.40 – 7.29 (m, 2H), 7.21 (d, J = 7.9 Hz, 2H), 3.47 – 3.26 (m, 

8H), 2.24 (s, 8H), 1.85 (q, J = 13.0 Hz,14H), 1.64 (s,18H), 1.51 – 1.36 (m, 8H), 0.99 (t, J = 

7.3 Hz, 12H). 31P NMR (162 MHz, cdcl3) δ 20.37 (s). 

 

General Procedure C: Coordination of Au(I) to Phosphine Ligand  

 

To a solution of 1 mmol ligand L in 5 mL anhydrous DCM was added dimethylsulfide 

gold (I) chloride (294.5 mg, 1 mmol). The mixture was stirred for 30 min at room 

temperature and the solvent was evaporated off under reduced pressure to give the desired 

gold catalyst LAuCl as white to light beige solid in quantitative yield. 
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This compound was prepared according to General Procedure C. 1H NMR (500 MHz, 

CDCl3) δ 7.92 – 7.83 (m, 2H), 7.51 – 7.42 (m, 2H), 2.20 – 2.10 (m, 12H), 1.98 (s, 6H), 1.67 

(s, 12H), 1.50 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 141.54, 140.29, 135.61, 130.40, 

130.06, 127.10, 52.02, 42.66, 42.22, 36.51, 31.75, 28.81. 31P NMR (162 MHz, CDCl3) δ 

62.45. IR(neat): 2906, 2851, 1447, 1301, 1162, 914, 730. ESI(L1Au+): 663.16. 

L2AuCl 

 

This compound was prepared according to General Procedure C. 1H NMR (400 MHz, 

cdcl3) δ 7.86 (d, J = 23.6 Hz, 1H), 7.76 – 7.41 (m, 2H), 7.36 (s, 1H), 3.86 – 3.70 (m, 1H), 

2.39 – 1.61 (m, 28H), 1.23 (t, J = 7.3 Hz, 5H). 31P NMR (162 MHz, cdcl3) δ 64.35 (s), 60.66 

(s). 

L4AuCl 

 

 This compound was prepared according to General Procedure C. 1H NMR (400 MHz, 

cdcl3) δ 7.93 – 7.31 (m, 4H), 3.91 – 3.68 (m, 1H), 1.50 (dt, J = 40.6, 7.3 Hz, 18H), 1.39 (s, 

3H), 1.24 (dd, J = 18.0, 6.7 Hz, 3H). 31P NMR (162 MHz, cdcl3) δ 65.83 (s), 59.56 (s). 
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This compound was prepared according to General Procedure C. 31P NMR (162 MHz, 

cdcl3) δ 62.60 (s). 

L15AuCl 

 

This compound was prepared according to General Procedure C. 1H NMR (600 MHz, 

cdcl3) δ 8.87 – 8.65 (m, 1H), 7.91 (ddd, J = 25.3, 19.3, 11.7 Hz, 1H), 7.78 – 7.53 (m, 3H), 

7.48 – 7.39 (m, 1H), 6.66 – 6.26 (m, 1H), 3.39 – 3.22 (m, 1H), 3.15 (s, 3H), 3.11 – 3.06 (m, 

1H), 2.39 – 2.33 (m, 1H), 2.24 – 2.15 (m, 1H), 2.14 – 0.93 (m, 32H). 31P NMR (162 MHz, 

cdcl3) δ 61.36 (s). 

L15AgNTf2 

 

This compound was prepared according to General Procedure C, with the change of 

adding anhydrous silver(I) triflimide (1mmol), instead of dimethylsulfide gold (I) chloride. 

1H NMR (400 MHz, cdcl3) δ 7.89 (dd, J = 9.7, 4.4 Hz, 1H), 7.60 – 7.47 (m, 3H), 7.34 – 7.28 

(m, 1H), 7.21 (d, J = 7.5 Hz, 1H), 7.02 (t, J = 5.9 Hz, 1H), 3.65 (t, J = 6.7 Hz, 2H), 3.45 – 

3.34 (m, 1H), 3.20 – 3.09 (m, 1H), 2.43 (s, 3H), 2.14 – 1.64 (m, 32H).  31P NMR (162 MHz, 

cdcl3) δ 51.71 (d, J = 52.0 Hz), 47.21 (d, J = 52.4 Hz). ESI (L15Ag+):672.36 
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This compound was prepared from L17 according to General Procedure C. 1H NMR 

(400 MHz, cdcl3) δ 8.27 (d, J = 7.8 Hz, 1H), 7.89 (s, 1H), 7.84 (s, 1H), 7.55 (dd, J = 9.7, 5.5 

Hz, 3H), 7.39 – 7.29 (m, 2H), 2.07 (d, J = 59.6 Hz, 18H), 1.67 (s, 14H). 31P NMR (162 

MHz, cdcl3) δ 61.37 (s). 

L18AuCl 

 

This compound was prepared from L18 according to General Procedure C, using a 

mixture of DCM, MeOH, and MeCN (1ml:1ml:1ml) as solvent. 1H NMR (400 MHz, cdcl3) 

δ 8.19 (d, J = 7.8 Hz, 1H), 8.03 (s, 1H), 7.82 (t, J = 7.2 Hz, 1H), 7.45 (p, J = 7.2 Hz, 2H), 

7.33 (dt, J = 15.2, 4.8 Hz, 2H), 7.11 (d, J = 7.4 Hz, 1H), 3.39 – 3.29 (m, 8H), 2.30 – 2.06 (m, 

8H), 2.07 – 1.91 (m, 11H), 1.67 (dd, J = 28.6, 19.6 Hz, 18H), 1.52 – 1.40 (m, 8H), 1.00 (t, J 

= 7.3 Hz, 12H). 31P NMR (162 MHz, cdcl3) δ 61.66 (s). ESI(-) (M-NBu4
+):729.21 

L20AuCl 

 

This compound was prepared from L20 according to General Procedure C, using a 

mixture of DCM, MeOH, and MeCN (1ml:1ml:1ml) as solvent. 1H NMR (400 MHz, cdcl3) 
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δ 8.15 (d, J = 7.9 Hz, 2H), 7.91 – 7.81 (m, 1H), 7.50 (dd, J = 9.0, 5.6 Hz, 2H), 7.26 – 7.21 

(m, 1H), 7.14 (d, J = 7.9 Hz, 2H), 3.35 (s, 8H), 2.11 (t, J = 20.9 Hz, 12H), 2.02 (t, J = 12.3 

Hz, 8H), 1.67 (s, 22H), 1.42 (dd, J = 23.9, 6.4 Hz, 8H), 0.99 (t, J = 7.0 Hz, 12H). 31P NMR 

(162 MHz, cdcl3) δ 61.49 (s). 

 
General Procedure D: Synthesis of L18AuNTf2 and similar structures 

To a solution of 0.8 mmol catalyst LAuCl in 4 mL anhydrous DCM was added Silver 

bis(trifluoromethanesulfonyl)imide (309 mg, 0.8 mmol). The mixture was stirred for 20 min 

at room temperature and the precipitating silver chloride was filtered. The solvent was 

evaporated off under reduced pressure to give the desired gold complex LAuNTf2 in 

quantitative yield. 

L1AuNTf2 

 

This compound was prepared according to General Procedure D. 1H NMR (400 MHz, 

cdcl3) δ 7.90 (s, 2), 7.52 (s, 2H), 2.53 – 1.56 (m, 32H), 1.47 (d, J = 4.6 Hz, 9H). 31P NMR 

(162 MHz, cdcl3) δ 65.17 (s), 58.59 (s). 
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This compound was prepared according to General Procedure D, using a mixture of 

DCM (2ml anhydrous) and MeCN (2ml anhydrous) as solvent. 1H NMR (400 MHz, cdcl3) δ 

8.14 (d, J = 7.9 Hz, 1H), 8.05 – 7.81 (m, 2H), 7.59 (s, 1H), 7.55 – 7.42 (m, 2H), 7.29 (d, J = 

4.0 Hz, 1H), 7.14 (d, J = 7.4 Hz, 1H), 3.15 (dd, J = 10.1, 7.0 Hz, 8H), 2.40 – 1.89 (m, 20H), 

1.69 (t, J = 20.4 Hz, 12H), 1.65 – 1.55 (m, 8H), 1.47 – 1.37 (m, 8H), 1.00 (t, J = 7.3 Hz, 

12H). 31P NMR (162 MHz, cdcl3) δ 57.74 (d, J = 4.6 Hz), 57.21 (s). 

 

6.3 Chapter 3 Experimental 

General Procedure E: Preparation of propargylic acetate 
To a solution of the propargylic alcohol (2.0 mmol), pyridine (1.65 mL, 20.0 mmol) and 

catalytic amount of DMAP in anhydrous CH2Cl2 (6.0 mL) at 0 °C, was slowly added acetyl 

chloride (0.29 mL, 4.0 mmol). The reaction was stirred at the same temperature for 30 min 

before being diluted with hexanes (30 mL). The solid precipitates were filtered off and the 

filtrate obtained was concentrated. The residue was purified through silica gel flash column 

chromatography (hexanes/ethyl acetate = 20/1) to yield the desired acetate. 

3-1 

 

This known compound 3-1 was prepared in 90% yield through the General Procedure E 

and its spectroscopic data were in accordance with the literature data.65 . 1H NMR (500 

MHz, CDCl3) δ 5.43 (qt, J = 6.6, 2.0 Hz, 1H), 2.19 (td, J = 7.1, 2.0 Hz, 2H), 2.06 (s, 3H), 

1.51 – 1.43 (m, 5H), 1.40-1.36 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, 

CDCl3) δ 169.96, 85.54, 78.53, 60.84, 30.53, 21.88, 21.81, 21.15, 18.33, 13.55 

n-Bu
Me

OAc
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3-3 

 

This compound 3-3 was prepared in 88% yield through the General Procedure E. 1H 

NMR (500 MHz, CDCl3) δ 4.66 (dt, J = 2.2, 1.1 Hz, 2H), 2.21-2.09 (m, 2H), 2.09 (s, 3H), 

1.53 (h, J = 7.3 Hz, 2H), 0.97 (t, J = 7.3Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 170.37, 

87.54, 74.00, 52.86, 21.84, 20.82, 20.71, 13.43. IR(neat): 3392, 2969, 1749, 1380, 1226, 

1033. ESI(M+Na+): 163.01. 

3-5 

 

This compound 3-5 was prepared in 85% yield through General Procedure E. 1H NMR 

(500 MHz, CDCl3) δ 7.40 – 7.27 (m, 5H), 5.50 (qt, J = 6.7, 1.6 Hz, 1H), 4.58 (s, 2H), 4.20 

(d, J = 1.6 Hz, 2H), 2.08 (s, 3H), 1.51 (d, J = 6.7 Hz, 3H).13C NMR (126 MHz, CDCl3) δ 

169.87, 137.28, 128.41, 128.09, 127.87, 84.95, 80.66, 71.61, 60.30, 57.26, 21.32, 21.04. 

ESI(M+Na+): 255.11. 

3-7 

 

This known compound 3-7 was prepared in 95% yield through General Procedure E and 

its spectroscopic data were in accordance with the literature data.65 1H NMR (500 MHz, 

CDCl3) δ 7.51 – 7.40 (m, 2H), 7.36 – 7.26 (m, 3H), 5.69 (q, J = 6.7 Hz, 1H), 2.11 (s, 3H), 

OAc
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Ph
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1.58 (d, J = 6.7 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 131.84, 128.55, 128.21, 122.25, 

87.39, 84.53, 60.79, 21.50, 21.10 

3-9 

 

This compound 3-9 was prepared in 90% yield through General Procedure E. 1H NMR 

(600 MHz, CDCl3) δ 7.39 – 7.22 (m, 5H), 5.42 (dt, J = 8.6, 4.7Hz, 1H), 4.51 (s, 2H), 3.55 (t, 

J = 6.2 Hz, 2H), 2.34 (td, J = 7.1, 1.9 Hz, 2H), 2.06 (s, 3H), 1.86 – 1.74 (m, 2H), 1.44 (d, J = 

6.6 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 169.95, 138.44, 128.33, 127.56, 127.52, 84.77, 

78.92, 72.92, 68.66, 60.75, 28.59, 21.75, 21.14, 15.53. IR(neat): 2989, 2937, 2859, 1740, 

1371, 1235, 1106, 1060, 1019, 944, 737. ESI(M+Na+): 283.15. 

 

General Procedure F: Gold-catalyzed oxidation/acetoxy migration reaction of 
propargyl acetates to α-acetoxyenones 

 

8-methylquinoline-N-oxide 8-MQ (0.36 mmol, 1.2 equiv) and L3AuNTf2 (13.1 mg, 

0.015 mmol, 5 mol %) were added in this order to a solution of the propargyl acetates A (0.3 

mmol) in DCE (6 mL) at room temperature. The reaction mixture was stirred at the same 

temperature until the propargyl acetates was completely consumed. The reaction mixture 

was concentrated under vacuum. The residue was purified by chromatography on silica gel 

(eluent: hexanes/ethyl acetate) to afford the desired α-acetoxyenones B.  

3-2b 

OAc

Me OBn

R
R'

OAc

N
Me O

L3AuNTf2, 
(5 mol%)

DCE, rt

8-MQ (1.5 equiv)

R'

O

R
OAc

+

A B



 

 61 

 

The compound 3-2b was prepared in 82 % yield according to the General Procedure F 

(eluents: ethyl acetate: hexanes = 1: 10). 1H NMR (500 MHz, CDCl3) δ 6.53 (q, J = 7.0 Hz, 

1H), 2.59 (t, J = 7.4 Hz, 2H), 2.24(s, 3H), 1.77 (d, J = 7.0 Hz, 3H), 1.58 (p, J = 7.4 Hz, 2H), 

1.31 (h, J = 7.4 Hz, 2H), 0.89 (t, J = 7.4 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 193.71, 

168.52, 147.05, 126.84, 36.76, 26.20, 22.24, 20.22, 13.79, 11.69. IR(neat): 2961, 2875, 

1764, 1688, 1371, 1207, 1033. ESI(M+Na+): 207.09. 

3-4 

 

The compound 5b was prepared in 80 % yield according to General Procedure F 

(eluents: ethyl acetate: hexanes = 1: 10). 1H NMR (500 MHz, CDCl3) δ 5.90 (d, J = 2.4 Hz, 

1H), 5.58 (d, J = 2.4 Hz, 1H), 2.64 (t, J = 7.3 Hz, 2H), 2.23 (s, 3H), 1.67 (h, J = 7.4 Hz, 2H), 

0.95 (t, J = 7.4 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 194.14, 168.89, 151.63, 113.05, 

39.39, 20.42, 17.39, 13.61. IR(neat): 2967, 1729, 1687, 1374, 1207, 1044, 750. 

ESI(M+Na+):157.08. 

3-6 

 

The compound 3-6 was prepared in 60% yield according to General Procedure F 

(eluents: ethyl acetate: hexanes = 1: 10). 1H NMR (600 MHz, CDCl3) δ 7.36-7.26 (m, 5H), 

6.60 (q, J = 7.1 Hz, 1H), 4.59 (s, 2H), 4.38 (s, 2H), 2.26 (s, 3H), 1.78 (d, J = 7.1 Hz, 3H). 
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13C NMR (151 MHz, CDCl3) δ 190.35, 168.45, 145.22, 137.10, 128.61, 128.46, 128.07, 

127.98, 73.23, 71.64, 20.22, 11.72. ESI(M+Na+): 271.09. 

3-8 

 

The compound 3-8 was prepared in 75% yield according to General Procedure F 

(eluents: ethyl acetate: hexanes = 1: 10). 1H NMR (600 MHz, CDCl3) δ 7.75 (d, J = 7.5 Hz, 

2H), 7.54 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 6.24 (q, J = 6.9 Hz, 1H), 2.27 (s, 3H), 

1.85 (d, J = 7.0 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 189.65, 168.56, 146.63, 136.91, 

132.19, 129.90, 129.17, 128.16, 20.31, 11.80. IR(neat): 3065, 2938, 1760, 1664, 1371, 1275, 

1020, 846, 777, 709. ESI(M+Na+): 227.06. 

3-10 

 

The compound 3-10 was prepared in 75% yield according to General Procedure F 

(eluents: ethyl acetate: hexanes = 1: 10). 1H NMR (500 MHz, CDCl3) δ 7.38 – 7.24 (m, 5H), 

6.56 (q, J = 7.1 Hz, 1H), 4.48 (s, 2H), 3.50 (t, J = 6.1 Hz, 2H), 2.74 (t, J = 7.2 Hz, 2H), 2.26 

(s, 3H), 1.99 – 1.88 (m, 2H), 1.77 (d, J = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 

193.29, 168.50, 146.96, 138.37, 128.28, 127.55, 127.47, 127.16, 72.78, 69.06, 33.63, 24.14, 

20.20, 11.69. IR(neat): 3346, 2859, 1760, 1683, 1369, 1201, 1027, 805, 735. IR(neat): 3346, 

2859, 1760, 1683, 1369, 1201, 1027, 805, 735. ESI(M+Na+): 299.12. 
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6.4 Chapter 4 Experimental 

4-1 

 

This compound was prepared according to literature procedure66. 1H NMR (500 MHz, 

CDCl3) δ 3.70-3.68 (m, 1H), (t, J = 7.4 Hz, 2H), 3.99 (sept, 1H), 3.63 (s, 3H), 2.40 (t, J = 6 

Hz, 2H), 1.58 (q, J = 6 Hz, 2H), 1.33 (sext, J = 12 Hz, 2H), 1.04 (d, J = 6 Hz, 6H), 0.91 (t, J 

= 6 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 87.00, 77.41, 77.26, 56.51, 33.01, 30.90, 29.69, 

21.91, 18.57, 18.37, 17.68, 13.57. IR(neat): 2960, 2931, 2874, 1467, 1351, 1203, 1094, 760. 

GC-MS (M-H): 167 

4-3 

 

This compound was prepared according to literature procedure66. 1H NMR (600 MHz, 

CDCl3) δ 3.70-3.68 (m, 1H), (t, J = 7.4 Hz, 2H), 3.99 (sept, 1H), 3.63 (s, 3H), 2.40 (t, J = 6 

Hz, 2H), 1.58 (q, J = 6 Hz, 2H), 1.33 (sext, J = 12 Hz, 2H), 1.04 (d, J = 6 Hz, 6H), 0.91 (t, J 

= 6 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 87.00, 77.41, 77.26, 56.51, 33.01, 30.90, 29.69, 

21.91, 18.57, 18.37, 17.68, 13.57. IR(neat): 2960, 2931, 2874, 1467, 1351, 1203, 1094, 760. 

GC-MS (M-H): 167. 
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General Procedure G: Synthesis of Propargyl Ethers  
The general synthesis of the 2-methoxy-3-yne framework structure is outlined in Scheme 

6-4. The preparation follows literature procedure67 .  

Scheme 6-4: Synthesis Outline for 2-Methoxy-3-yne Framework 

 

To a solution of terminal alkyne (0.0115 mmol) in dry tetrahydrofuran (6.76 mL) at -

78°C was added n-butyllithium (2.5M in hexanes, 4 mL, 0.01 mmol) slowly. The solution 

was stirred for 10 min, then warmed to 0°C. After stirring for 10 mins, the solution was re-

cooled to -78°C and a solution of carbonyl A (0.01 mmol) in dry tetrahydrofuran  (0.5 mL) 

were added dropwise via syringe.  After addition, the cooling bath was removed and the 

reaction solution was stirred at room temperature for 3 h. MeI (1.5eq) dissolved in DMSO 

(10ml, 1.5M to MeI) was added and the reaction heated at 50°C for 6hr. TLC (95% 

hex:EtOAc). The cold mixture was hydrolyzed and extracted with pentane. The organic 

layer was washed once with saturated aqueous ammonium chloride. dried over magnesium 

sulfate and concentrated. The resulting oil was distilled on Kuegel Rohr (110°C) under 

vacuum to give propargylic ester B. 

 

4-5a 

 

This compound was prepared from cyclohexanone according to General Procedure G, 

with the addition of anhydrous LiBr (0.5eq, 4M solution in dry THF) prior to addition of 

carbonyl. 1H NMR (600 MHz, cdcl3) δ 3.34 (s, 3H), 2.23 (t, J = 7.0 Hz, 2H), 1.89 – 1.80 (m, 
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2H), 1.62 (dd, J = 12.1, 4.3 Hz, 2H), 1.58 – 1.47 (m, 8H), 1.42 (dq, J = 14.2, 7.1 Hz, 2H), 

0.91 (t, J = 7.3 Hz, 3H). 

4-5b 

 

This compound was prepared from cyclohex-2-en-1-one according to General Procedure 

A, with the addition of anhydrous LiBr (0.5eq, 4M solution in dry THF) prior to addition of 

carbonyl. 1H NMR (600 MHz, cdcl3) δ 5.81 (ddd, J = 36.7, 20.2, 6.8 Hz, 2H), 3.37 (s, 3H), 

2.22 (t, J = 7.1 Hz, 2H), 2.08 – 1.96 (m, 2H), 1.94 – 1.86 (m, 2H), 1.81 – 1.65 (m, 2H), 1.55 

– 1.47 (m, 2H), 1.42 – 1.33 (m, 2H), 0.88 (t, J = 7.0 Hz, 3H). 

4-5c 

 

This compound was prepared from cyclopentanone according to General Procedure G, 

with the addition of anhydrous LiBr (0.5eq, 4M solution in dry THF) prior to addition of 

carbonyl. 1H NMR (600 MHz, cdcl3) δ 3.31 (s, 3H), 2.22 (t, J = 7.0 Hz, 2H), 1.95 (ddd, J = 

8.6, 7.9, 3.6 Hz, 2H), 1.86 – 1.77 (m, 2H), 1.76 – 1.63 (m, 4H), 1.53 – 1.45 (m, 2H), 1.45 – 

1.36 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H). 

4-5d 

 

This compound was prepared from cyclopent-2-en-1-one according to General 

Procedure G, with the addition of anhydrous LiBr (0.5eq, 4M solution in dry THF) prior to 
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addition of carbonyl. 1H NMR (600 MHz, cdcl3) δ 6.01 (dd, J = 5.1, 2.6 Hz, 1H), 5.85 (dd, J 

= 4.9, 2.5 Hz, 1H), 3.34 (s, 3H), 2.53 – 2.46 (m, 1H), 2.43 – 2.36 (m, 1H), 2.26 – 2.20 (m, 

2H), 2.17 (tt, J = 17.3, 8.9 Hz, 1H), 1.54 – 1.48 (m, 2H), 1.39 (dd, J = 21.6, 15.2 Hz, 2H), 

0.87 (dd, J = 13.5, 6.5 Hz, 3H). 

4-5e 

 

This compound was prepared from 1-Ethoxy-1-trimethylsiloxycyclopropane according 

to literature procedure68, followed by an in-situ trapping of the propynylmagnesium bromide 

with MeI (3.0eq) dissolved in DMSO (1M to 4-5e) and heated at 45°C for 6hr. TLC (95% 

hex:EtOAc) rf:0.95. The cold mixture was hydrolyzed and extracted with DCM. The organic 

layer was dried over magnesium sulfate and concentrated. Purified with flash 

chromatography (loading in hexanes, elude 5% EtOAc in hexanes). 1H NMR (400 MHz, 

cdcl3) δ 5.30 (s, 1H), 3.37 (s, 3H), 2.22 (dt, J = 14.1, 7.1 Hz, 2H), 1.54 – 1.45 (m, 2H), 1.43 

– 1.33 (m, 2H), 1.26 (s, 14H), 1.00 – 0.93 (m, 2H), 0.90 – 0.83 (m, 5H). 

4-5f 

 

This compound was prepared from 1-Ethoxy-1-trimethylsiloxycyclopropane according 

to literature procedure68, to give the 1-(1-propyny1)cyclopropanol, which was then protected 

with acetyl group following literature procedure69. 1H NMR (500 MHz, CDCl3) δ 2.24 – 

2.13 (m, 2H), 2.03 (d, J = 11.3 Hz, 3H), 1.52 – 1.43 (m, 2H), 1.27 (d, J = 20.7 Hz, 15H), 

1.15 – 1.06 (m, 4H), 0.89 – 0.86 (m, 4H). 13C NMR (126 MHz, CDCl3) δ 170.41 (s), 83.98 
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(s), 78.55 (s), 48.67 (s), 32.12 (s), 31.81 (s), 29.75 (d, J = 7.7 Hz), 29.54 (s), 29.31 (s), 29.07 

(s), 28.75 (s), 22.88 (d, J = 3.3 Hz), 21.32 (s), 19.06 (s), 15.92 (s), 14.33 (s).  

4-7a 

 

This compound was prepared from furan-2-carbaldehyde according to General 

Procedure G. 1H NMR (600 MHz, cdcl3) δ 7.41 (d, J = 0.6 Hz, 1H), 6.50 – 6.44 (m, 1H), 

6.35 (dd, J = 2.8, 1.7 Hz, 1H), 5.17 (s, 1H), 3.38 (s, 3H), 2.33 – 2.26 (m, 2H), 1.61 – 1.50 

(m, 2H), 1.49 – 1.40 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H). 

4-7b 

 

This compound was prepared from but-2-enal according to General Procedure G. 1H 

NMR (600 MHz, cdcl3) δ 5.87 (tt, J = 13.2, 6.5 Hz, 1H), 5.56 – 5.49 (m, 1H), 4.43 – 4.37 

(m, 1H), 3.33 (s, 3H), 2.23 (ddd, J = 7.5, 6.3, 1.9 Hz, 2H), 1.72 (dd, J = 9.2, 4.2 Hz, 3H), 

1.54 – 1.47 (m, 2H), 1.40 (dq, J = 14.3, 7.2 Hz, 2H), 0.90 (td, J = 7.3, 3.9 Hz, 3H). 

4-9a 

 

This compound was prepared according to literature procedure66. 1H NMR (600 MHz, 

CDCl3) δ 3.49 (d, J = 2.2 Hz, 1H), 3.39 (s, 3H), 2.24 (td, J = 6.9, 2.1 Hz, 2H),1.55 – 1.47 

(m, 2H), 1.47 – 1.36 (m, 2H), 0.96 (s, 8H), 0.91 (t, J = 7.3 Hz, 3H). 13C NMR (151 MHz, 

CDCl3) δ 86.88, 80.92, 77.59, 57.27, 35.42, 30.93, 25.77, 21.93, 18.39, 13.58. IR(neat): 

2958, 2905, 2873, 2607, 2221, 1465, 1392, 1327, 1009, 876. GC-MS (M-H): 181. 
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4-9b 

 

This compound was prepared according to literature procedure66. 1H NMR (600 MHz, 

CDCl3) δ 5.92 (ddt, J = 15.4, 10.9, 5.7 Hz, 1H), 5.29 (dq, J = 17.2, 1.8 Hz, 1H), 5.17 (dd, J 

= 10.6, 1.6 Hz, 1H), 4.28 – 4.20 (m, 1H), 3.94 (dd, J = 12.7, 6.2 Hz, 1H), 3.84 (dt, J = 5.6, 

1.9 Hz, 1H), 1.90 (dq, J = 13.2, 6.6 Hz, 1H), 1.54 – 1.47 (m, 2H), 1.46 – 1.38 (m, 2H), 0.98 

(dd, J = 14.6, 6.7 Hz, 6H), 0.91 (t, J = 7.3 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 134.89, 

116.82, 86.84, 77.67, 74.65, 69.49, 33.17, 30.89, 29.69, 21.91, 18.66, 18.39, 17.83, 13.58. 

IR(neat): 3081, 2960, 2932, 2873, 1648, 1467, 1383, 1367, 1083, 1029, 921. GC-MS (M-H): 

193. 

4-9c 

 

This compound was prepared according to literature procedure66. 1H NMR (600 MHz, 

CDCl3) δ 4.07 (qd, J = 6.5, 1.7 Hz, 1H), 3.38 (s, 3H), 2.40 (dq, J = 8.7, 4.4, 3.8 Hz, 1H), 

1.83 – 1.74 (m, 2H), 1.69 (ddq, J = 9.5, 6.9, 3.5, 2.9 Hz, 2H), 1.55 – 1.46 (m, 1H), 1.39 (d, J 

= 6.6 Hz, 3H), 1.35 – 1.23 (m, 4H). 13C NMR (151 MHz, CDCl3) δ 89.85, 79.54, 67.01, 

55.92, 32.70, 28.95, 25.88, 24.79, 22.37. IR(neat): 2985, 2932, 2855, 2233, 1731, 1679, 

1449, 1330, 1115, 969, 934. GC- MS (M-H): 165. 
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General Procedure H: Gold-catalyzed oxidation of propargyl ethers  
8-methylquinoline-N-oxide (0.36 mmol, 1.2 eq) and L1AuNTf2 (0.015 mmol, 5 mol %) 

were added in this order to a solution of the propargyl ethers 1 (0.3 mmol) in DCE (0.05M) 

at room temperature. The reaction mixture was stirred at the same temperature until the 

propargyl ethers was completely consumed. The reaction mixture was concentrated under 

vacuum. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl 

acetate) to afford the desired β-alkoxy-α,β-unsaturated ketones 2. 

4-2b(E) 

 

The compound 4-2b(E) was prepared in 82 % yield according to General Procedure H. 

1H NMR (500 MHz, CDCl3) δ 5.45 (s, 1H), 3.64 (s, 3H), 2.45 – 2.36 (m, 2H), 2.28 (s, 3H), 

1.61-1.56 (m, 2H), 1.36-1.30 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, CDCl3) 

δ 199.77, 172.47, 98.86, 55.27, 44.40, 26.94, 22.46, 19.58, 13.92. IR(neat): 2959, 2932, 

1682, 1589, 1400, 1266, 1068, 925, 866. ESI(M+Na+):179.10. 

4-4b 

 

The compound 4-4b was prepared in 63 % yield according to General Procedure H. (E/Z 

ration 10:1). The crude product was purified with ethyl acetate: hexanes = 1: 10. 1H NMR 

(500 MHz, CDCl3) δ 5.31 (s, 1H), 3.99 (hept, J = 6.9 Hz, 1H), 3.63 (s, 3H), 2.43 – 2.37 (m, 

2H), 1.61 – 1.54 (m, 2H), 1.33 (hept, J = 7.4 Hz, 2H), 1.05 (d, J = 6.8 Hz, 6H), 0.91 (t, J = 

7.3 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 199.43, 179.90, 97.08, 55.33, 44.59, 29.49, 
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26.96, 22.45, 19.59, 13.94. IR(neat): 2963, 2934, 2874, 1678, 1584, 1468, 1107, 1073, 749. 

ESI(M+Na+):207.1383. 

4-8a 

 

This compound was prepared according to General Procedure H, using instead 

IPrAuCl/AgNTf2 as a catalyst. 1H NMR (600 MHz, cdcl3) δ 7.56 (d, J = 6.9 Hz, 1H), 7.34 

(s, 1H), 6.50 (d, J = 3.3 Hz, 1H), 6.44 (dd, J = 3.2, 1.8 Hz, 1H), 3.92 (s, 3H), 2.56 (dd, J = 

15.9, 8.3 Hz, 2H), 1.59 – 1.52 (m, 2H), 1.32 – 1.26 (m, 2H), 0.87 (t, J = 7.4 Hz, 3H). 

4-8b 

 

This compound was prepared according to General Procedure H, using instead 

IPrAuCl/AgNTf2 as a catalyst and heating to 60°C. 1H NMR (600 MHz, cdcl3) δ 7.20 (s, 

1H), 6.35 – 6.27 (m, 1H), 6.18 (d, J = 16.1 Hz, 1H), 3.90 (s, 3H), 2.53 (dd, J = 13.8, 6.5 Hz, 

3H), 1.81 (d, J = 6.6 Hz, 3H), 1.62 – 1.55 (m, 2H), 1.32 (dd, J = 15.4, 7.3 Hz, 2H), 0.91 (dd, 

J = 9.3, 5.3 Hz, 3H). 

4-10a 

 

The compound 4-10b was prepared in 67 % yield according to General Procedure H 

(E/Z ratio 1:3.6). The crude product was purified with ethyl acetate: hexanes = 1: 10. 1H 

NMR (600 MHz, MHz, CDCl3) δ 5.48 (s, 1H), 3.84 (s, 3H), 2.44 – 2.39 (t, J = 6 Hz, 2H), 

1.57 (pent, J = 7.5 Hz, 1H), 1.33 (hept, J = 7.4 Hz, 1H), 1.12 (s, 4H), 0.91 (t, J = 7.4 Hz, 
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2H). 13C NMR (151 MHz, CDCl3) δ 199.37, 179.58, 101.27, 62.86, 44.06, 38.38, 28.09, 

27.11, 22.44, 13.92. IR(neat): 2936, 2873, 1679, 1590, 1481, 1411, 1372, 1350, 1079, 1037, 

929, 820. ESI(M+Na+): 221.16. 

4-10b 

 

The compound 4-10c was prepared in 78 % yield according to General Procedure H (E/Z 

ratio 3.6:1). The crude product was purified with ethyl acetate: hexanes = 1: 10. 1H NMR 

(600 MHz, MHz, CDCl3) δ 5.95 (ddd, J = 22.0, 10.3, 5.1 Hz, 1H), 5.37 (dd, J = 17.3, 1.8 

Hz, 1H), 5.30 (s, 1H), 5.27 (d, J = 10.6 Hz, 1H), 4.31 (d, J = 5.2 Hz, 2H), 4.00 (p, J = 6.8 

Hz, 1H), 2.41 – 2.35 (m, 2H), 1.62 (td, J = 10.9, 10.4, 6.9 Hz, 1H), 1.32 (hept, J = 7.4 Hz, 

2H), 1.08 (d, J = 7.2 Hz, 6H), 0.91 (t, J = 7.3 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 

199.48, 178.60, 131.95, 117.52, 98.01, 77.21, 68.33, 44.63, 29.60, 26.97, 22.44, 19.68, 

13.95. IR(neat): 2962, 2933, 1679, 1468, 1396, 1359, 1206, 1167, 1068, 870, 771. 

ESI(M+Na+): 233.16. 

4-10c 

 

The compound 4-10d was prepared in 73 % yield according to General Procedure H 

(E/Z ratio 6:1). The crude product was purified with ethyl acetate: hexanes = 1: 10. 1H NMR 

(500 MHz, MHz, CDCl3) δ 5.48 (s, 1H), 3.65 (s, 3H), 2.28 (s, 3H), 1.86 – 1.76 (m, 4H), 1.41 

– 1.16 (m, 5H). 13C NMR (151 MHz, CDCl3) δ 202.84, 173.05, 97.94, 55.29, 52.21, 29.14, 

25.97, 25.91, 19.69. IR(neat): 2930, 2854, 1677, 1588, 1488, 1399, 1264, 1095, 929, 892. 

ESI(M+Na+): 205.1. 
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8. Appendix: Selected NMR Spectra 
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