
UNIVERSITY OF CALIFORNIA
Santa Barbara

Hierarchical Transactions for Hardware/Software
Cosynthesis

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

by

Kunal Arya

Committee in Charge:
Professor Forrest Brewer, Chair
Professor Timothy Sherwood

Professor Li-C. Wang
Professor Tevfik Bultan

December 2014

The Dissertation of
Kunal Arya is approved:

Professor Timothy Sherwood

Professor Li-C. Wang

Professor Tevfik Bultan

Professor Forrest Brewer, Committee Chair

September 2014

Hierarchical Transactions for Hardware/Software Cosynthesis

Copyright © 2014

by

Kunal Arya

iii

Abstract

Hierarchical Transactions for Hardware/Software
Cosynthesis
Kunal Arya

Modern heterogeneous devices provide of a variety of computationally diverse

components holding tremendous performance and power capability. Hardware-

software cosynthesis offers system-level synthesis and optimization opportunities

to realize the potential of these evolving architectures. Efficiently coordinating

high-throughput data to make use of available computational resources requires

a myriad of distributed local memories, caching structures, and data motion re-

sources. In fact, storage, caching, and data transfer components comprise the ma-

jority of silicon real estate. Conventional automated approaches, unfortunately,

do not effectively represent applications in a way that captures data motion and

state management which dictate dominant system costs. Consequently, existing

cosynthesis methods suffer from poor utility of computational resources. Auto-

mated cosynthesis tailored towards memory-centric optimizations can address the

challenge, adapting partitioning, scheduling, mapping, and binding techniques to

maximize overall system utility.

This research presents a novel hierarchical transaction model that formalizes

state and control management through an abstract data/control encapsulation

semantic. It is designed from the ground-up to enable efficient synthesis across

heterogeneous system components, with an emphasis on memory capacity con-

straints. It intrinsically encourages a high degree of concurrency and latency tol-

iv

erance, and provides verification tools to ensure correctness. A unique data/execu-

tion hierarchical encapsulation framework guarantees scalable analysis, supporting

a novel concept of state and control mobility. A front-end language allows concise

expression of designer intent, and is structured with synthesis in mind. Designers

express families of valid executions in a minimal format through high-level depen-

dencies, type systems, and computational relationships, allowing synthesis tools to

manage lower-level details. This dissertation introduces and exercises the model,

discussing language construction, demonstrating control and data-dominated ap-

plications, and presenting a synthesis path that exhibits near-linear scalability

with problem size.

v

To my family, for their love, support, and joy. To Hinal, who always managed to put a

smile on my face. To my friends who kept me in good spirits and (perhaps more

importantly) kept me on my toes. To Forrest, for sharing his enthusiasm,

consideration, time, and singularly unique approach to engineering.

vi

Contents

List of Figures xii

List of Acronyms xvi

1 Introduction 1
1.1 From Codesign to Cosynthesis . 3

1.1.1 The Case for Cosynthesis 4
1.1.2 The State of the Art . 5

1.1.2.1 Exposing and Modeling Dominant System Costs 6
1.1.2.2 A Symbiotic Development Relationship 6

1.2 Contributions . 7
1.2.1 Computational and State Mobility 8

1.3 Overview . 9

2 State of the Field 11
2.1 Behavior and State Representation Models 13

2.1.1 Early Computing Models 13
2.1.2 Moving Towards Novel Models 14
2.1.3 Data-flow and Task Graph 15
2.1.4 Latency Tolerance . 16
2.1.5 Transactions, TLM, and Transactors 17

2.1.5.1 Transaction Level Modeling 17
2.1.5.2 Synthesizable TLM 17
2.1.5.3 Nested Transactions and Software Transactional
Memories . 18
2.1.5.4 Transactors . 19

2.1.6 Hardware/software Partitioning 19
2.1.7 An Overview of Cosynthesis Models 20

vii

2.1.7.1 Magellan . 21
2.1.7.2 Metropolis . 22

2.1.8 Bluespec . 23
2.2 Software-to-RTL . 24

2.2.1 Model Representation . 25
2.3 Moving Towards Hierarchical Transactions 26

3 Hierarchical Transactions 27
3.1 Abstraction . 27
3.2 Challenges in Cosynthesis . 28
3.3 Semantic Model . 31

3.3.1 Hierarchical Transactions 31
3.3.2 Overview . 33
3.3.3 Computational and State Mobility 34
3.3.4 Token-based Control . 35

3.3.4.1 Combining and Forking Tokens 36
3.3.5 Latency Tolerance . 37
3.3.6 Upholding Abstraction . 39
3.3.7 Concurrency . 39

4 Hierarchical Guarded Atomic Rule-based Language 41
4.1 Introduction . 41

4.1.1 Existing Languages . 42
4.1.2 Aesthetics . 43

4.2 Core Language Philosophy . 44
4.2.1 Concision, Meaning, and Abstraction 44

4.3 Rule-based Language . 45
4.3.1 Meta-language vs Language 46

4.4 Syntax . 47
4.4.1 Rules . 49
4.4.2 Atomicity . 51
4.4.3 Conditional Statements . 52
4.4.4 Rule Instances . 53

4.4.4.1 Rule Instance Syntax 53
4.4.5 Functional Rule Instances 55
4.4.6 Classes . 56

4.4.6.1 Instantiation . 57
4.4.6.2 Parameters . 57

4.4.7 Parametric Class Examples 58
4.4.7.1 Complex Class 59

viii

4.4.7.2 Matrix Class . 59
4.4.8 Modifiers . 60

4.5 Compiler . 60
4.5.1 Parsing . 61

4.6 Static Analysis . 63
4.6.1 Static Analysis for Constant Inference 63

4.6.1.1 Local vs. Global 65
4.6.1.2 AST-level Constant Inference 65
4.6.1.3 Rule-level Constant Inference 67

4.7 Simulator . 68

5 Iterators 69
5.1 Motivation . 69
5.2 The Array Primitive . 70
5.3 Communicating Designer Intent 71
5.4 Execution Semantics . 71
5.5 Syntax & Semantics . 72

5.5.1 Token Scoping . 72
5.5.2 Sequential vs. Concurrent Iterators 73
5.5.3 Multiple Iterators through Co-iteration 74
5.5.4 Ordering of Iterator versus Iterator Execution 74

5.6 Built-in Iterators . 75
5.7 FFT through Iterators . 75

6 Practical Analysis and Model Translation 79
6.1 Closure & Distributed Transaction Control 80
6.2 Race Condition Detection . 84

6.2.1 Mutually Concurrent Sets 86
6.2.2 Dependency Classifier Matrix 87
6.2.3 Mutual Concurrent Set Construction 88
6.2.4 Performance . 89
6.2.5 Isolating and Reporting Race Conditions 90

6.3 Conversion into Existing Semantic Models 93
6.3.1 Transactions to Pure Functions 93

6.4 Transactions to Control/Data-Flow Graphs 95
6.4.1 Flow-graphs from Iterators 99
6.4.2 Software Scheduling . 100

ix

7 Control-Dominant Application Study 101
7.1 The MSP430 Microprocessor . 102
7.2 Processor Specification . 102

7.2.1 Decoding . 103
7.3 Race Condition Detection . 105

7.3.1 The Original Problem . 105
7.4 Transactional Simulator . 108
7.5 Direct-to-RTL Realization . 109

8 High Performance Arithmetic Applications 110
8.1 Memory Capacity and Data Motion 111
8.2 Problem Setup . 111

8.2.1 Commercial IP Options 112
8.2.2 Challenges in Digraph Clustering 113

8.3 Scheduler-Driven Partitioning . 114
8.3.1 8-point FFT Clustering Illustration 117
8.3.2 Target Algorithms . 118

8.4 Results . 120
8.4.1 FFT . 120
8.4.2 Matrix Multiplication . 123

8.4.2.1 Complex DSP Algorithm 127
8.4.3 Utility and BRAM vs SPM Effectiveness 128

8.5 Scaling to Very Large Problems 128
8.6 Designer Insight . 131

9 Conclusions 132
9.1 Hierarchical Transaction Solutions 133
9.2 Open Problems . 135

Bibliography 137

A HTL Grammar 152

B FFT and MSP430 Code Listing 158
B.1 FFT HTL Code Listing . 158
B.2 MSP430 Code Listing . 159

C Tables of Matrix Multiplication Clustering 177
C.1 Matrix Multiplication Size Sweep Data 177
C.2 Software-Pipelining Data . 179

x

D Tables of FFT Clustering 181
D.1 FFT Size Sweep Data . 181

E Tables of Large Pipelined DSP Example 182

xi

List of Figures

3.1 A small hierarchical transaction design, annotated with possible
variable values from a single execution. Each transaction shows variables
that are read-in on the left, and variables and tokens committed on the
right. The Parent transaction owns variables w, x, and y. When
each of its child transactions begins, they make a local copy of these
variables. Transaction B owns a variable called z. Tokens are shown in
italicized underlined text in the commit lists. Transaction C illustrates
hierarchical token passing – tokens may only pass through their parent
to reach higher transactions, following the same commit rules as data.
Transaction C1 creates a token tC1 which is passed to C before finally
being passed to D. 32
3.2 (a) Fork nodes replicate tokens when multiple transactions are
guarded by the same token. (b) Join nodes wait for all input tokens
to arrive before generating its output token. (c) Select nodes wait for
any input token, discarding the remainders. 36
3.3 The same transactions from fig. 3.1 shown executing in different
orders. As is demonstrated, the internal workings of transactions B & C
do not need to be included. They are abstracted along the transaction
boundaries. This idea is crucial to bounded concurrency analysis. . . . 38

4.1 Example of token-guarded hierarchical rule language used to spec-
ify transactions. This code describes fig. 3.1. 45
4.2 Rule tree traversal order – it dives into the child rules first, visiting
them in topological order based on their dependency. This guarantees
that by the time a rule is visited, all of its predecessors have already
been visited. 61
4.3 Serial rules with local constant values 64
4.4 Constant inference demonstrating rule-level parallel writes. 64

xii

4.5 AST-level constant value inference – assume that the rule is pro-
vided x with a constant value of Int(3). The AST walker visits each
node hierarchically and returns an evaluated result for the sub-tree. If
the subtree is not constant (dynamic), then it returns a null value. . . 65
4.6 Constant inference for “if” statement example 66

5.1 Illustration of execution semantics between sequential and concur-
rent iterators. 73
5.2 Built-in iterators provided to allow FFT indexing 76
5.3 Code listing of FFT with Iterators. Each iteration is a new transac-
tion. The double-pipe operator composes parallel iterations – elements
are selected from the iterators specified and passed to the iteration trans-
action at the same time. 77
5.4 FFT indexing achieved through iterators 78

6.1 Centralized control to determine parent transaction termination . 80
6.2 Centralized control with synthesized logic to determine parent clo-
sure. 81
6.3 Distributed control using counter tokens to implement synthesized
closure logic. 81
6.4 Constructing the condition under which Parent can be closed, demon-
strating how conditional tokens may terminate paths and must be ac-
counted for. 82
6.5 A trace of the closure algorithm 85
6.6 Possible concurrent transactions captured in sets. Every covered
set is a strict subset of one of the minimal sets. Minimal sets are used
for CCR analysis, while the both set types are used in race condition
detection (if they commit to the same variables). 86
6.7 Mutual concurrency scaling with different hierarchy depth. “A”
indicates the range for ANTP – the average number of transactions per
parent. “A(0,50)” means hierarchies with ANTP between 0 and 50. . . 90
6.8 Mutual concurrency set construction runtime. 91
6.9 Race condition detection scaling. 91
6.10 Hierarchical transactions to pure function example. 94
6.11 Hierarchical Transactions to CDFG Example. Solid lines are data
edges. Dotted lines are control edges. 98

8.1 Left: System point-to-point architectures with 1, 2, and 4 acceler-
ators. Right: Accelerator without and with scratchpad memory (SPM) 112
8.2 Illustration of clustering that can induce cycles 113

xiii

8.3 Internal architecture for peripheral. The bus provides initial operands
and the program. A controller executes this program and uses the local
operand block RAM (BRAM) to store intermediate operations. Af-
ter the program has completed, the controller initiates a transfer to the
DMA controller while simultaneously asserting an interrupt for the main
CPU. When the DMA is configured in scatter-gather mode, the next set
of operations arrives automatically, based on an internal linked list of
data copying blocks. The peripheral on the right adds a local scratchpad
memory to provide local, higher utility access to operand data. 115
8.4 Scheduler-driven clustering of FFT with corresponding cluster graph
and system-level schedule for FFT . 118
8.5 FFT total schedule length (including bus transfers) versus size of
BRAM for a 2-accelerator architecture. 122
8.6 Heuristic runtime scaling with increasing node counts on FFT in-
stances. 122
8.7 For fixed BRAM size, both FFTs of size 1K and 256 exhibited the
same shape across different peripheral accelerator configurations. . . . 123
8.8 Across different BRAM sizes, the SPM size was varied. Clearly,
there is little to no improvement with larger BRAM. This correlates to
utility limits stemming from a single port constraint. 124
8.9 Matrix multiply total schedule length versus BRAM size constraint
for 2-accelerator architecture. 125
8.10 Matrix multiplication (of a 14x16 matrix with a 16x12 matrix)
performance versus software pipeline depth & number of accelerators.
It is interesting to note the trade-off between performance and device
area. The jump for high-depth software pipelined designs shows a Pareto
point that trades throughput for area. 126
8.11 Scaling for complex DSP application illustrates the heuristics abil-
ity to preserves near-linear scalability for a variety of design shapes. . . 127
8.12 Algorithms chained together to form a complex DSP demonstration. 128
8.13 For each application, the utility represents the ratio of the used
versus idle cycles in the arithmetic pipeline. As the BRAM size is varied,
the utility remains relatively constant. Introducing a small scratchpad
immediately increases utility; scratchpad size has a much greater impact
on performance than BRAM size does. 129
8.14 Visualization of scratchpad memory (SPM) and arithmetic pipeline
utility for the same selected clusters of an FFT1024. The two are highly
correlated: SPM size correlates strongly with higher performance, since
fast access to operands allows the pipeline to remain busy. 130

xiv

8.15 Heuristic runtime up to millions of nodes 131

xv

List of Acronyms

LT Latency Tolerant/Tolerance
RTL Register Transfer Logic
FPGA Field-Programmable Gate Array
HTL Hierarchical Transaction Language
HTSS Hierarchical Transaction Simulator and Synthesizer
SoC System-on-a-Chip
RSoC Reconfigurable System-on-a-Chip
ASIC Application-Specific Integrated Circuit
CPU Central Processing Unit
GPGPU General Purpose Graphics Processing Unit
DSP Digital Signal Processor
ABI Application Binary Interface
RAM Random Access Memory
BRAM Block RAM
CDFG Control/Data-flow Graph
TLM Transaction-Level Modeling
KPN Kahn Process Network
AST Abstract Syntax Tree

xvi

Acknowledgements

We thank the National Science Foundation for their generous funding. We also

thank Intel, along with the Silicon Research Corporation, through whom we

received custom funding into latency tolerant synthesis (the foundation of this

work).

xvii

Chapter 1

Introduction

Heterogeneous hardware/software cosynthesis is the automated binding, allo-

cation, and scheduling of an application onto hardware and software components.

The target architecture spans the spectrum across arithmetic units, microproces-

sors, memory hierarchies/allocations, and the myriad bus/communication inter-

faces that allow them to execute cooperatively. This dissertation introduces the

hierarchical transactional semantic, an abstract application specification model

designed from the ground up to target cosynthesis in a way that balances high-level

behavior abstraction with high performance synthesis. This balance is achieved

through a novel hierarchical data/control encapsulation semantic, encouraging

architectural exploration through tool-accessible flexibility in how state and ex-

ecution are realized. With any abstract specification model comes the risk of

imposing performance-hindering constraints, such as handshaking or tight syn-

chronization mechanisms that prevent exploitation of parallel performance. The

model, however, enables scalable synthesis, bounded analysis, clean and concise

design specification, and verification without sacrificing performance. Finally, the

management of memory and memory capacity is crucial to meeting high perfor-

1

Chapter 1. Introduction

mance implementations. The presented semantics allow direct control over data

motion, capturing cost models that genuinely reflect their underlying architecture.

The evolution of computationally diverse heterogeneous platforms has opened

new opportunities to meet high performance constraints across remarkably di-

verse architectures. Device advances have shaped the system-on-a-chip (SoC)

landscape, including field-programmable gate arrays (FPGAs), hybrid FGPAs,

full custom integrated chips, and commercial fixed-architecture platforms. The

common thread across these platforms is the integration of complex distributed

memory architectures, including caching hierarchies and local scratchpad memo-

ries (SPMs); in fact, the majority of silicon real estate is dedicated to memory and

caching resources. Conventional automated approaches focus on functional com-

ponents, specifically operations and arithmetic resource binding. Management of

state and caching resources, however, are often treated as a secondary effect. In

this work, clear representation and management of global state ensures that op-

erational units are adequately used, and becomes a primary goal of the synthesis

strategy. The importance of this effort grows as application memory demands

scale beyond the capacity of local resources. Making efficient use of available data

resources is an enormous ongoing challenge, and calls for a fundamental rethinking

of the computational and memory models.

This research introduces a novel specification model with unique underlying

data and execution semantics designed to enable cosynthesis across varying com-

putational domains without sacrificing performance. Its focus is on application

specification, restricting designer behavior while encouraging explicit and clear

expression of designer intent. At its core is the hierarchical transactional model, a

2

Chapter 1. Introduction

formal, abstract model of computation that captures state and execution common

across heterogeneous semantic and execution models. The model enables struc-

tured cosynthesis that is resilient to shifting platforms and varying constraints, all

the while leveraging a unique data/execution encapsulation framework to guaran-

tee scalable analysis. At the front end is a practical, understandable specification

language that encourages concise design of complex applications.

1.1 From Codesign to Cosynthesis

The impetus behind software/hardware co-design is simple: software models

are sufficiently abstracted from hardware, allowing easy adaptation to new ar-

chitectures. A stringent set of abstractions shield software from changes in e.g.

caching layout, protocol interfacing, and physical memory constraints, none of

which affect correct execution. Comprehensive tool suites and well-honed design

practices allow software to be practically scalable and are key to faster time-to-

market.

In addition to easy adaptation, co-design is a mature field with a wealth of

research, industry support, and tools to ameliorate challenges that may arise

during software development. Device vendors maintain stable ABIs to assist de-

velopment on shifting platforms, encouraging incremental design coinciding with

platform upgrades. Co-simulation packages simplify validation and integrate well

with existing engineering methodologies, facilitating short design iterations and

quick exposure of otherwise-evasive bugs.

3

Chapter 1. Introduction

When software can no longer meet application performance demands (be it

high throughput, low latency, and/or meeting real-time deadlines), designers em-

ploy hardware accelerators. Manually converting software into hardware is prac-

tical for small-to-medium applications and often involves significant algorithm re-

structuring to better leverage available concurrency. Mixing concurrent software

and hardware, however, can quickly lead to a litany of component integration

challenges. Reaching high performance, high utility designs involves significant

engineering effort to navigate around concurrency bugs, resource arbitration com-

plexity, and mixed protocol integration. At the same time, there are no global

strategies for maximizing use of distributed, heterogeneous memories. The reality

of state-of-the-art co-design exposes a gap between potential performance versus

practicable design methods. Automated cosynthesis

1.1.1 The Case for Cosynthesis

In the most general sense, cosynthesis optimizes applications across varying

computational domains. The most common instance refers to embedded sys-

tem synthesis: the automatic creation of hardware accelerators interacting with

a larger software application. At the very minimum, it includes scheduling and

binding of bus interfaces and memories, along with synchronization infrastructure

required to make it work coherently.

Specification-to-silicon cosynthesis holds tremendous potential to provide a

fundamentally robust design methodology that not only adapts to shifting plat-

forms, but exploits available resources to reach unprecedented performance. Its

benefits are across the board: improved time-to-market, rapid development itera-

4

Chapter 1. Introduction

tions to determine system costs early in the design process, and effective architec-

tural level optimization. Such a framework would allow designers to exploit novel

memory architectures and complex intrachip networks, all the while equipping

them with the tools they need to validate and verify otherwise difficult-to-debug

concurrent applications.

1.1.2 The State of the Art

In reality, the heterogeneous computing landscape is rife with scaling chal-

lenges, ill-suited specifications that are incompatible with the underlying hard-

ware, concurrency bugs, and poorly modeled system costs. Available cosynthesis

tools simply cannot cope with meeting difficult constraints against such a diverse

design space, especially as applications scale up in size. One of the fundamental

issues is a distinct lack of a unified model capable of bridging different computa-

tional domains together. Without a comprehensive representation model, there is

strong reliance on graph-based approaches and software-to-RTL models. Scalable,

practical synthesis is possible with an expressive specification language designed

around system-level optimization, rather than adapted from existing approaches.

A unified computation model can accommodate vastly different data and execu-

tion models to exploit varying degrees of potential parallelism. It requires capture

of dominant system costs and a high degree of flexibility in realizing behaviors

across different classes of components.

5

Chapter 1. Introduction

1.1.2.1 Exposing and Modeling Dominant System Costs

When profiling applications, designers rely heavily on experience, as there are

no straightforward ways to intuit a system’s cost without comprehensive simu-

lation and implementation. Even with rich modeling tools, the true costs of a

system may not become apparent until the application is executing in silicon.

In current generation heterogeneous computers, application performance is

dominated by the motion and storage of information. Computational pipelines

vastly outpace memory interface speeds, often by several orders of magnitude.

Hierarchical transactions were designed to expose and codify real system costs,

particularly with respect to data motion. They allow direct capture and manage-

ment of data motion costs to reflect modern architectural realities.

1.1.2.2 A Symbiotic Development Relationship

Robust design methods are clearly advantageous to designers. There is another

key benefit: it has the potential to liberate commercial vendors and IC manufac-

turers from legacy interfaces. When a company releases an SoC product, they are

beholden to uphold the same or compatible ABI for further versions of their prod-

uct. The first iteration effectively sets in stone core architectural features that

define its platform. Pressure to preserve these configurations comes from both

sides: significant effort goes into developing compilers, simulators, libraries, etc.

and vendors are reticent to redesign their tool chain. On the other side, customers

demand backwards compatibility to avoid the risky task of reimplementing their

application.

6

Chapter 1. Introduction

For example, a first iteration SoC may contain a centralized, cache-coherent

RAM. In the next design iteration, newer research or device technology could make

available e.g. distributed, lower power memories through crossbars. However,

neither side is incentivized to adopt the technology because of rigidly coupled

specifications paired with long, cumbersome design and verification times. Worse,

customers’ applications are tightly coupled to the platform’s original architecture;

leveraging the next generation’s architecture may require a rewrite.

1.2 Contributions

The hierarchical transaction computational model lays groundwork for a uni-

fied semantic data and execution model. It codifies high-level application behavior

through a carefully constructed semantic and syntactic model designed to ensure

robust design methodology. Transactional data semantics guarantee verifiable

behavior of latency-tolerant concurrent tasks. The notion of computational and

state mobility supports maximal exploitation of parallelism – at their core, hi-

erarchical transactions localize all state and control. This encapsulation enables

use of hierarchy that is scalable to very large designs. As a result, access to the

optimization space is not hindered by complexity in analyzing a specification.

At the front end is a novel specification language to directly represent hierar-

chical transactions. It focuses designer intent through specific limitations in how

state is accessed. Designers are empowered with tools to directly identify and

address concurrency bugs. The language is structured with synthesis in mind – it

provides methods of expression that are confined to actions commensurate with

7

Chapter 1. Introduction

optimization. Designers express families of valid executions in a minimal format

through high-level dependencies, type systems, and computational relationships.

Low-level resources such as computational pipelines, protocols, and memories ap-

pear as interchangeable resources.

A corresponding compiler enables rapid behavioral simulations including fast

identification of race conditions while providing direct paths to high-utility syn-

thesis. Through a unique iterator specification, a compiler generates bounded-

lifetime dataflow representations well suited for high performance computation.

Often, in an embedded system, heterogeneity arises from the use of highly concur-

rent arithmetic pipelines. The primary bottleneck becomes the management and

allocation of local state. This is addressed with a series of clustering heuristics

that exploit controlled variable lifetime and high-flexibility transactional tasks to

make efficient use of distributed memories and computational pipelines.

1.2.1 Computational and State Mobility

Traditional scheduling contains a notion of mobility for a given node/task

– this describes its relative ability to “shift” in time, essentially describing its

scheduling flexibility. Hierarchical transactions enforce a notion of computational

and state mobility. This extends the concept of operational mobility to include

a task’s overall behavior, its intermediate and long-term storage, and its timing

characteristics, especially across varying memory granularities.

There are three dimensions to the mobility of a behavior: (1) computational

mobility describes flexibility of the domain that can implement the behavior; (2)

state mobility describes where it may be realized, essentially representing how

8

Chapter 1. Introduction

tightly coupled the operations are to their associated storage; and (3) scheduling

mobility describes when a task may begin or end. The tighter any of the three

properties are constrained, the less opportunity there is to reach a feasible archi-

tectural implementation. Contrawise, greater flexibility across all three enables a

design space amenable to architectural, system-wide optimization.

Computational mobility can only occur if the application specification is suf-

ficiently abstract, e.g. it is not bound to any particular computation unit. State

mobility requires that any computation be localized to its state – if a task needs to

be done, both its state and its computation/control is treated as a discrete, mobile

object. Scheduling mobility requires true timing decoupling through intrinsically

latency tolerant design (intrinsically, as opposed to explicit, requires a fundamen-

tal guarantee a priori and a natively latency tolerant input specification).

Hierarchical transactions enforce true computational & state mobility through

hierarchical encapsulation of state and control. All of the information a given

behavior needs is encapsulated into a transaction, and its read/write interactions

occur on well-defined transaction boundaries.

1.3 Overview

This research lays groundwork for a novel specification approach, evaluating

its potential as a complete cosynthesis solution. As such, it is not a comprehensive

exploration of the model. Instead, this dissertation details studies that exercise dif-

ferent aspects of the model with four goals in mind: (1) encouraging clear, concise

application specification that communicates designer intent, (2) providing prac-

9

Chapter 1. Introduction

tical design tools to address correctness, (3) representing real control-dominated

applications, and (4) enabling automated paths to efficient high-performance re-

alizations.

First, Chapter 2 briefly surveys specification and representation models in

cosynthesis. Chapter 3 introduces hierarchical transactions, including the novel

concept of state and control mobility through hierarchical encapsulation.

To support clear and concise expression of the semantic model, a novel guarded

rule-based language is presented in 4. It efficiently captures complex control as

well as arithmetic-heavy applications. A full featured compiler and simulator pro-

vide front-end features to guide designs and discover correctness errors. Chapter

6 presents design analysis methods that demonstrate feasibly scalable isolation

of race conditions. Additionally, algorithms are provided that directly translate

selective portions of an application into control/data-flow graphs, outlining how

hierarchical transactions can maps into different existing semantics.

Real-world heterogeneous systems exhibit a mix of complex control and high-

performance computation demands. The final two goals represent either end of

this spectrum. Chapter 7 discusses implementation of a microprocessor, describ-

ing control specification as well as practical race condition detection. Finally,

Chapter 9 presents a high-performance cosynthesis methodology targeting hard-

ware acceleration of Fast Fourier Transform (FFT), matrix multiplication, and

image convolution. The presented near-linear clustering and scheduling heuristic

scales up to million-node problem sizes.

10

Chapter 2

State of the Field

Cosynthesis (also called embedded system level [ESL] synthesis) is part of a

broader co-design research field including hardware/software partitioning, software-

to-RTL, and co-simulation. Each of these sub-fields have developed a diverse range

of heuristic and exact solutions, many of which are surveyed in [86, 23, 33, 88,

87, 64, 71, 80, 84, 3]. Approaches range over a variety of language, semantic

model, and domain & application-specific solutions. It is important to note that

there is no single definition of cosynthesis – instead, automation is used to vary-

ing degrees depending on the problem setup, the target environment, and the

assumptions underlying design flow. For instance, some approaches view cosyn-

thesis as an extension to cosimulation: models are generated at a high level, then

manually partitioned and synthesized into their respective domains. Others take

a single-specification format and perform full automation down to silicon.

Despite a wide gamut of approaches, a unified solution has not yet emerged

due simply to the sheer extent of the challenge – instead, a variety of methods

have evolved to address specific architecture classes and problem scales. Unlike

RTL, which has a relatively mature Boolean logic-based foundation, there are

11

Chapter 2. State of the Field

as many variations of the problem setup as there are solutions. This not only

complicates methodology comparison, but there are no straightforward ways of

comparing generated design performance. Common benchmarks (such as JPEG

and MPEG encoding/decoding) provide a similar basis for initial specification;

however, divergence in optimization criteria renders any comparison uneven. The

broad scope has prompted taxonomy classification suggestions [80]. The magni-

tude and breadth of computation, data management, and myriad interfaces mean

that the heterogeneous design space is difficult to automatically traverse and par-

ticularly prone to scaling difficulties.

This chapter will discuss the common used models, particularly input spec-

ification format/underlying semantic models, and how that affects automation

methodology. It will extrapolate fundamental assumptions that comprise both

problem setup and results. The primary differentiators in the proposed hierar-

chical transactional model are: built-in scalability, data/control mobility in the

input specification, and direct capture of memory capacity. These factors will be

the basis for comparison against existing approaches.

This chapter first provides a general discussion on existing system represen-

tation formats (particularly graphs), introduces challenges arising from address-

ing/indexing, and is followed by an overview of existing work in the above sub-

fields.

12

Chapter 2. State of the Field

2.1 Behavior and State Representation Models

The single most common method of representing heterogeneous-targeted appli-

cations is the data-flow graph. Representation granularity ranges from fine grained

operation-centric formats to coarse task-scale graphs aimed at abstracting lower-

level detail. Hierarchy is occasionally used to target scalability[15, 26, 67, 75],

often in the form of control hierarchy[56] (as opposed to state hierarchy). While

control hierarchy simplifies reasoning of application flow, it does not ease handling

of memory capacity constraints.

2.1.1 Early Computing Models

Early computing relied on an execution model based on the physical realities

of its era. Both processors and volatile memories were of relatively similar speed.

Large, nonvolatile storage were approximately an order of magnitude slower, but

ultimately, arithmetic computing dominated costs in high performance applica-

tions. These constraints shaped the entire philosophy behind computing design,

particularly in software and at the hardware/software boundary.

Much of the early technology constraints are still visible today in co-design/co-

synthesis. The idea that hardware design centers around operations is a pervasive

one, and has driven the field of high level synthesis towards operation-centric

optimizations. As transistor technology has improved (through miniaturization),

the performance gap between arithmetic operators and memory access speeds has

grown tremendously. A significant portion of architectural engineering revolves

around mitigating the gap through caching strategies, prediction/look-ahead, la-

13

Chapter 2. State of the Field

tency hiding paired with deep pipelines, deep memory hierarchies, and a variety

of manual memory localization tricks (i.e. design philosophies that attempt to

keep operands as physically close to their arithmetic logic).

As a result, dominant costs in high performance software is the motion of

data. General-purpose graphics processor (GPGPU) pipelines are a prime exam-

ple: they accelerate high operational computations, but are largely useful only

when computational requirements far exceed data requirements. A significant

portion of accelerated applications runtime is dedicated to moving information to

and from the memory attached to the GPGPU – in fact, standard design practices

are centered around overlapping this transfer with computations reach maximum

throughput.

2.1.2 Moving Towards Novel Models

Data-flow graph techniques straddle the technological boundary between oper-

ation-dominant and data motion-dominant systems. Graphs are a straightforward

representation of operations, although they do not explicitly represent state –

instead information is captured in the dependencies between operations (i.e. graph

edges). As dominant system costs shift, so should representation models. An

overview of data-flow graphs follow, along with a discussion on why additional

control complicates verification in the codesign space.

14

Chapter 2. State of the Field

2.1.3 Data-flow and Task Graph

A data-flow graph is a directed graph consisting of vertices/nodes represent-

ing behavior, often arithmetic operations. Directed edges represent informa-

tion passing from one node to another, and therefore induce a dependency be-

tween the nodes. Graphs comprise the majority of existing research and commer-

cial tools as they are easy to reason about and lend themselves to many well-

understood heuristics. Adapting meta-heuristics such as simulated annealing and

genetic algorithms is often straightforward[84]. Further, graphs can be directly

scheduled[4, 16, 44, 91], as they contain the minimum dependency information

required to apply any of the well-known scheduling algorithms.

Data motion is along the edges, between operations. Initially, edges are not

bound to any specific resource element; instead, a cosynthesis solution maps these

edges to either software registers, hardware latches, and/or bus transfers. When

partitioning an application into hardware and software domains, data motion costs

are measured by observing the amount of information that flows across a parti-

tion’s boundary – this eventually becomes the hardware/software communication.

Data-flow is designed to model a specific class of application and thus avoids

the issue of arbitration. For control/data-flow graphs, if they do include arbitra-

tion nodes, formally verifying correct behavior becomes very difficult – deadlock is

common when concurrent paths arbitrate resources over varying latencies[18, 61,

60, 11, 24]. When multiple elements need to share a single resource, arbitration

becomes the synthesis tool’s responsibility, inducing performance-limiting syn-

chronization mechanisms. When these mechanisms show up in the cost model,

15

Chapter 2. State of the Field

they effectively pre-partition the graph (since the alternative mapping bears a

prohibitively high cost).

Hierarchical transactions, on the other hand, are an abstraction layer above

data-flow. They capture more information and specify very large families of po-

tential mappings and executions. Interaction between shared state resources are

explicit – there are no implicit arbitration points. Instead, any potential reorder-

ing of shared data writes are passed to the designer to resolve, thus avoiding race

condition situations. Better yet, there are direct paths to data-flow graphs. A

method in chapter 9 selects one of the families of valid execution and localizes data

along the edges. In situations where data-flow may not be appropriate, the syn-

thesis tool may leverage existing arbitration techniques to ensure correct behavior.

For example, control-heavy sections of an application well-suited for software may

use built-in atomic instructions to arbitrate shared data.

2.1.4 Latency Tolerance

One of the aims of our model is to leverage existing research that is com-

patible with presented semantics. Domain-specific models can be appropriately

targeted depending on system constraints to make maximal use of available plat-

forms. Therefore, transactions leverage existing latency tolerance technology

[13, 21, 22, 49] to manage control, accurately reflect the way heterogeneous compo-

nents interact, and apply existing verification techniques to ease designer burden.

16

Chapter 2. State of the Field

2.1.5 Transactions, TLM, and Transactors

2.1.5.1 Transaction Level Modeling

Transaction Level Modeling (TLM) is a popular method of improving sim-

ulation speed, and therefore improving design quality and time-to-market. The

primary “transaction” in TLM is largely focused on simplified data motion isolated

from bus semantics. Rather than simulating complex concurrent state machines,

they simulate black boxes emulating those machines with dramatically lower com-

putational requirements. TLM was introduced as a way of performing sensible

design exploration and validation of complex systems [12]. Recent research has

emerged in directly synthesizing TLM designs, particularly individual parts of the

system (e.g. bus communication [72], emulation/verification/simulation [62], and

task-centric solutions[57]).

2.1.5.2 Synthesizable TLM

Recent pragmatic system synthesis approaches transform SystemC TLM 2.0

models into Kahn Process Networks (KPNs), assuming the inputs follow certain

bounded looping behavior[38, 65, 53]. Since the approach begins with a C-based

specification, state and control must be manually preallocated into smaller sub-

tasks to fit into their target model (task partitioning). As a method of codifying

interactions, this approach has proved capable in full-stack specification to sili-

con, in large part due to guarantees in the KPN model. Unfortunately, not all

applications in this space can be represented with KPN, and thus the application

17

Chapter 2. State of the Field

space is limited. Further, there were few scalability guarantees discussed in their

respect papers.

2.1.5.3 Nested Transactions and Software Transactional Memories

While the hierarchical transactional model differs in critical ways from current

TLM work, it does share semantics with nested transactions applied to transac-

tional software memories and database systems. These models have proved to

be sound and complete, wrapping data and control [2, 1]. The same challenges

facing database coherency appear in heterogeneous systems, for many of the same

reasons – primarily, databases are distributed to share a large workload over mul-

tiple computational units. Since these units (database server nodes) each run at

their own pace, they cannot be statically scheduled. All of the information must

remain coherent over a complex data network. Similarly, cosynthesis must ensure

correct data exchange over buses (rather than ethernet) using arithmetic accelera-

tors (rather than database nodes). Transactional memories [37, 50, 43] are similar

models addressing the issue of data coherence.

This work differs in that it includes functionality in the transactions rather

than just state. Further, latency tolerance is explicitly specified via a rich token-

based abstraction, thus concisely describing functional dependence. While the

problem setup may share similarities, the heterogeneous design space exhibits

dramatically different costs and must be tuned accordingly.

18

Chapter 2. State of the Field

2.1.5.4 Transactors

Asasnovic’s work in [7] transactors is another closely related semantic; how-

ever, in their approach, communication is handled through explicit FIFO channels

between transactors, and follows a BlueSpec-like model. Further, they did not ex-

ploit hierarchy. Work by Belarin [9] uses the transactor nomenclature, but focuses

on bridging high-level and low-level models, eventually using Hierarchical Finite

State Machines (HFSMs) for code generation. The latter model puts no bounds

on control, and can run into many of the same problems that traditional control

flow graphs suffer.

2.1.6 Hardware/software Partitioning

Efficient hardware/software partitioning is a well-researched topic[86, 83, 30,

51, 41, 42, 40, 52], leveraging popular heuristics [8] including simulated annealing

(SA)[30], genetic/evolutionary algorithms (GA)[76, 6, 28, 84, 45, 75], dynamic

[60, 66] and linear programming[68, 6]. The myriad approaches are surveyed in

[84].

Partitioning is generally grouped under the co-design umbrella and involves

deciding which functional elements from an input specification should be imple-

mented on software versus hardware targets. Input specifications are relatively

abstract functional descriptions in order to facilitate this flexibility. Heteroge-

neous architectural targets are either assumed to be capable of implementing all

functions, or are categorized into groups.

19

Chapter 2. State of the Field

Input specifications are almost universally represented in the form of control/-

data graphs. The solutions assume a one-to-one mapping between input graph/-

tasks and the target architecture, or they construct mapping data structures to

represent all valid architectural maps. The latter can grow exponentially. As a re-

sult, they are not amenable to large designs that exceed locally available hardware

resources.

2.1.7 An Overview of Cosynthesis Models

Early work by [34, 35, 89, 17, 79] established the basis for future cosynthesis

work. These approaches universally use tasks graphs (with some applying hi-

erarchy for control compactness[15]). Variations include timing annotated and

periodic task graphs [28, 25]. Multi-mode approaches [55, 70] focus on mapping

task graph sets according to different modes of operation.

The Hierarchical extended Task Graph (HeTG) introduced in [59] extends

basic task graphs with control nodes, specifically fork, join, and select nodes.

Their primary goal is to allow powerful control that is compatible with scheduling.

Further, they encapsulate behavior into hierarchical nodes, allowing coalescing of

control logic (i.e. a hierarchical task is responsible for the control overhead of its

children). This work applies similar techniques, but pushes data encapsulation to

the forefront.

Chinook [17] accepts an HDL-like input specification, adopting RTL-style data

and control semantics; that is, data and control are not constrained and therefore

the design do not express state & control mobility.

20

Chapter 2. State of the Field

The Daedalus system [82, 69] accepts KPN-based inputs to perform full system

synthesis, taking advantage of accurate system modeling to correctly model and

optimize the system accordingly. They benefit from KPN’s guaranteed bounded-

ness and straightforward data exchange; however, not all applications are well-

suited for KPN, as it precludes any application that requires control.

Hierarchy has been used to different effect in cosynthesis models. For instance,

[39] leverages hierarchy to describe alternative realizations of the same coarse-

grained task – this simplifies the search space and improves convergence.

The PeaCE [36] multimedia research included full-stack cosynthesis based on

the Ptolemy[63] mixed computation modeling system. It restricts Ptolemy to two

models: a “piggybacked” synchronous data flow (SDF) and an extended “flexible”

finite state machine (fFSM)[56]. Piggybacked SDF models are introduce control

tokens, much in the same way [59] extended task graphs. Without formal deadlock

resolution, traversing this design space can be difficult and cumbersome. The

fFSM is particularly interesting because it constrains state machine transitions

along hierarchical boundaries, thus confining control scope; this goal is shared by

hierarchical transactions and motivates the encapsulated token model.

2.1.7.1 Magellan

The MAGELLAN [15] project shares many philosophical goals as this research,

and provides a complete cosynthesis package. At its core, it iteratively maps hi-

erarchical control/data-flow graphs onto a heterogeneous architecture, decoupling

specification from target. Its input semantic uses hierarchy primarily to coalesce

control complexity, thus avoiding the need to identify control symmetry. It fur-

21

Chapter 2. State of the Field

ther leverages hierarchy to make multi-grained moves during optimization. The

separate graphs – application and architecture – are constructed into a new graph

representing groups of possible architectural maps. A heuristic iterates over this

structure and incrementally improves latency and area.

The demonstration JPEG application is relatively small, although a large part

of their compaction arises from hierarchy. The presented data is notably fast (on

the order of 11 seconds to optimize the design) – however, there is no discussion

on how the approach scales. For a design on the order of tens or hundreds of

thousands of nodes, it is clear that the architectural mapping alone would render

the approach infeasible. Hierarchy is an option to keep this in check, but it is

not clear that a large, deep hierarchy will converge. Their optimization heuris-

tic requires the ability to make multiple, multi-scale moves; if each step is too

computationally or space intensive, then the heuristic simply would not get the

opportunity to try many system configurations.

2.1.7.2 Metropolis

Metropolis[10] similarly shares the same goals as this research. Their approach

is built on concurrent communicating processes (CCP)[46], a well-researched,

clearly defined formal model for concurrent tasks. CCP evolved from message

passing where deadlock/liveness issues were common[5] – thus, a heterogeneous

application model based on CCP benefits from this research. Metropolis also rep-

resents an abstract model (philosophically similar to hierarchical transactions) and

is clearly capable of representing lower level architectural models. While CCP is

an abstraction well suited for representing complex control and semantically sim-

22

Chapter 2. State of the Field

ilar applications, it does not directly model data/intermediate operand storage.

As such, its data modeling is limited to the information captured through mes-

sage passing interfaces. In situations where the task contains persistent state, its

interactions are treated as abstract behaviors rather than explicitly codified state

modification.

Its quasi-scheduling technique is amenable to hierarchical transactions through

two paths: first, by converting transactions into Petri nets (similarly to the method

used for data-flow projection), Metropolis’ methods can be applied directly. When

constructing this Petri net, Metropolis effectively selects a specific execution path

through its internal mapping network before passing this to the scheduler to de-

termine timing. An alternative transaction strategy can select one of the valid

families of execution and apply the techniques without the Petri net intermediary.

The primary benefit would be leveraging Metropolis’ communication overhead

optimization.

2.1.8 Bluespec

Bluespec is an operation-centric rule-based guarded action language. It rides

on a FIFO-based communication network that is ultimately realized through

handshaking (ready and stall signals). Its power is in its ability to meld high-

level functional type semantics with low-level RTL-style semantics. Designers

reach fast design convergence, quickly determining the true costs of the system.

The methodology is compatible with RTL design, and thus makes the transition

smoother.

23

Chapter 2. State of the Field

While low-level signaling and clock-scale design are easier to use, they also leave

the Bluespec compiler with few options when realizing the design. Scheduling is

relegated to the limited freedom the designer allows (if they, for instance, explicitly

design with several clock cycles of latency tolerance in mind).

Despite being natively latency tolerant, the compiler ultimately schedules the

design by packing as many rules into a single cycle as it can. It is the designer’s

responsibility to ensure timing closure by running synthesis and then manually

cross correlating the violating paths to the original specification. They insert

pragma statements manually rescheduling rules causing timing violations. The

Bluespec compiler makes it remarkably simple to institute necessary scheduling

and resource allocation changes due to its robust type and module instantiation/-

parameterization system. The underlying FIFO model allows a certain degree of

separation from clock timing where hard bounds are unneeded.

Unless the application is very carefully planned with the compiler’s code gen-

erator in mind, the resulting RTL can contain tightly coupled components via

its handshaking control signals. These wires scale poorly with the size of the

application, making timing closure increasingly difficult with scale.

2.2 Software-to-RTL

The class of C-to-RTL/Software-to-RTL research and commercial products

have reached maturity and (for applications that suit their assumptions) com-

mercial viability. These tools directly address hardware acceleration of selected

components from a sequential procedural application[47, 34, 27, 31, 19]. Geared

24

Chapter 2. State of the Field

towards high-arithmetic algorithms, their primary task extracts maximal concur-

rency from a sequential specification through an assortment of advanced loop and

pointer analysis heuristics[71, 14, 77]. They create data-flow graphs which are

mapped into RTL components while their input/output interfaces are mapped

onto buses.

2.2.1 Model Representation

As a result of adopting data-flow models, these approaches largely suffer from

the same drawbacks that existing approaches have. While they do allow fast paths

from software to hardware, ultimately, C is an ill-suited language for hardware[29].

IP Reuse IP reuse is touted as a driving force for using C-to-RTL. For appli-

cations already written and tested in C, the idea of simply applying a turn-key

solution to existing code is immensely appealing. In the real world, this design

flow does not pan. Fundamentally different assumptions in the sequential execu-

tion model yield diminishing returns in extracting concurrency from a sequential

program[29].

Aside from the efficiency argument, C applications often require engineering

effort to comply to the C-to-RTL tool’s subset of C. RTL models are limited to

the expression power of a finite state machine (FSM), and thus the tools can only

accept applications that are isomorphic to FSMs. Further, almost every nontrivial

C program uses dynamic heap and stack allocation; there are noteworthy heuris-

tics that can aid this problem [85, 78] but must carefully avoid intractability.

Thus, in the real world, existing IP must often be rewritten to allow the compiler

25

Chapter 2. State of the Field

to generate static hardware. The code must be sanitized to remove architectural

optimizations such as cache optimality.

2.3 Moving Towards Hierarchical Transactions

A significant amount of research has addressed co-design and cosynthesis through

approaches. While graphs are an excellent method of reasoning about operations

in high-arithmetic applications, they are ill-suited for resolving complex control

or data arbitration. It has become evident that a new model needs to address this

issue while still allowing high-computational portions of an application to leverage

existing work.

Hierarchical transactions can be targeted towards multiple semantic models,

thus granting the benefit of data coherence over large-scale data sharing protocols

(similarly to database systems), and yielding high performance through graph-

based approaches where appropriate (leveraging advances in modern cosynthesis).

The model has been carefully designed to allow a broad spectrum of synthesis

techniques that are suitably adaptable to the often incompatible semantic and

execution models that underpin real-world heterogeneous systems.

26

Chapter 3

Hierarchical Transactions

The hierarchical transactional semantic data and execution model is a novel

approach to specifying complex designs across the control and data spectrum.

The model supports a concept of state and control encapsulation, enforcing local

behavior throughout an application. Through careful design of its execution se-

mantics, the model leads to design analysis and synthesis solutions that are both

practicable and scalable. It brings state capture to the forefront, ensuring access

to automated exploration of different memory management architectures.

3.1 Abstraction

A semantic data and execution model captures either abstract behavior or re-

flects a specific architecture. The advantage to the former is a clear delineation

between high-level application behavior and its target platform. The latter ex-

poses important cost metrics critical to efficient optimization. Historically, com-

mon practical models have attempted to balance both model classes. In RTL,

the execution model is inherently concurrent and can become unintuitive as an

27

Chapter 3. Hierarchical Transactions

application grows; complexity is typically managed through finite state machines

that abstract complex concurrent interactions and enable sequenced behavior and

easy-to-understand semantics. On the other side, the C programming language

maintains a primarily architecture-agnostic specification, but contains inline as-

sembly, pointer arithmetic, and e.g. volatile type classification to reach low-level

architectural optimizations.

Hierarchical transactions (HT) are a purely abstract model – however, what

sets them apart is they are designed from the ground-up to adapt to directly mod-

eled architectures commonly found in the heterogeneous computing space. More

importantly, HT enables better use of existing semantic and data models through

computational and state mobility – it specifies a larger class of configurations that

provide multiple mapping paths to existing hardware or software models. For ex-

ample, there are a variety of options for constructing a synthesis path from HT

and RTL, depending on the particular state and computational constraints for

the target architecture.

3.2 Challenges in Cosynthesis

Hierarchical transactions directly address cosynthesis models through a com-

bination of features that unify heterogeneous models into a codified, analyzable,

and scalable manifold.

Concurrency One of the primary benefits for shifting computation into hard-

ware (besides potential power savings) is its tremendous concurrency/parallelism

28

Chapter 3. Hierarchical Transactions

potential. To reach this potential, the model natively supports and encourages

heavily concurrent behavior. It provides direct paths for mapping RTL, DSPs, and

GPUs (all of which enable high degrees of concurrency), all the while ameliorat-

ing common concurrency problems through a race condition/deadlock reporting

mechanism.

Latency Tolerant Software, FPGA RTL, DSPs, and GPUs all exhibit vastly

different timing characteristics. To enable synthesis across these domains, all of

the specified behavior in an application is required to be latency tolerant. Tradi-

tionally, dynamic timing flexibility had the drawback of increased overheads and

performance penalties. However, this model is designed around the ability to op-

timize unnecessary dynamic latency tolerance in favor of static schedules based

on the architectural optimization criteria. In essence, the compiler decides where

to preserve dynamic latency tolerance based on its assessment of implementation

costs. Latency minimization, therefore, is a synthesis constraint. From the de-

signer’s point of view, they need only specify correct gross ordering, rather than

hard timing (which is relegated to resource models where hard timing is critical,

e.g. bus or protocol timing).

Transactional The combination of concurrency and latency tolerance are key

to model robustness. However, they also lead to difficult-to-find concurrency bugs,

making verification cumbersome and time-consuming. The solution is to enforce

all data interaction to be well-defined and analyzable along transactional events.

29

Chapter 3. Hierarchical Transactions

If the tool knows how and where data and control information are accessed, it is

able to identify potential concurrency bugs very early in the design stage.

Copying Semantic A copying semantic gives each task the illusion that it has

its own local copy of all data & relevant control state. Decoupling dependent

tasks means synthesis tools can realize any part of the behavior in any domain.

Encapsulated behavior further alleviates difficulties in implementing cross-domain

control. It is an optimization opportunity that maximizes architectural search

space: the synthesizer has full knowledge of data and control variable lifetime, and

each transaction copy is a potential design decision that can easily be optimized

out where unneeded.

Hierarchical Another consequence to concurrent, latency tolerant behavior is

potential exponential growth when analyzing execution paths. In order to deter-

mine data operations that may lead to concurrency bugs, every possible path must

be explored. Hierarchical design analysis alleviates this, especially with the combi-

nation of transactional data interaction and a copying semantic. Every subtask or

group of transactions can be completely isolated from the rest of the design, dra-

matically limiting the number of exponential decision paths for well-partitioned

input specifications. Pseudo-linear analysis is now possible since high-order poly-

nomial or exponential growth on the local child network is eclipsed by the linear

traversal of the hierarchy – i.e. 2n is insignificant for small n. Further, this type of

hierarchy is amenable to optimization during synthesis: the overhead traditionally

30

Chapter 3. Hierarchical Transactions

associated with hierarchy is optimized away since that overhead is codified in the

copying semantic.

Controlled Array Access Most, if not all, high-computational applications

(e.g. signal processing) require the ability to traverse (multidimensional) arrays.

Traditional specification languages provide arbitrary indexing into arrays which

has historically made concurrency extraction very difficult, forcing tools to rely on

heuristics and designer feedback to control array stride. Indexing also complicates

accurate determination of variable lifetime. Hierarchical transactions provide an

alternative to arbitrary indexing. Repetitive/looping array behavior is specified

through well-defined, analyzable iterators to achieve the same specification flexi-

bility as traditional looped code. The approach allows large arrays to coexist with

the copying semantic – only the current iteration needs to be copied locally, and

iterators grant information to the compilers about precisely which subsets will be

copied.

From a specification clarity point of view, iterators express designer intent

more concisely and accurately than arbitrary index functions. They signal to the

synthesis tool precisely how data in the array is to be accessed.

3.3 Semantic Model

3.3.1 Hierarchical Transactions

The core component of the semantic model is the hierarchical transaction.

31

Chapter 3. Hierarchical Transactions

Parent xw y

A x:3
y:4
tA

x=3
y=4

Bx:3
y:4

y:7z

B1 z:7
tB1

x:3
y:4

z=x+y

B2 y:7z:7

y=z

Cx:3
y:4

y:2
tC1

C1 y:2
tC1

y=2

Dx:3
y:2

w=x+y

w:5
Operations performed

in transaction

Data owned by transaction

Data read in from parent Data and tokens committed to parent

HIERARCHICAL TRANSACTIONS

Figure 3.1: A small hierarchical transaction design, annotated with possible vari-

able values from a single execution. Each transaction shows variables that are

read-in on the left, and variables and tokens committed on the right. The Parent

transaction owns variables w, x, and y. When each of its child transactions begins,

they make a local copy of these variables. Transaction B owns a variable called z.

Tokens are shown in italicized underlined text in the commit lists. Transaction C

illustrates hierarchical token passing – tokens may only pass through their parent

to reach higher transactions, following the same commit rules as data. Transac-

tion C1 creates a token tC1 which is passed to C before finally being passed to

D.

32

Chapter 3. Hierarchical Transactions

Definition 3.1. An action is a set of one or more statements. Each statement

may be an arithmetic operation, an assignment (state updating), conditional state-

ments based on the local state, or token creation. Every action in the transaction

executes atomically and concurrently. All reads and conditions are evaluated first,

then all of the writes are performed independent of ordering.

Definition 3.2. A transaction consists of: a guard, local state, and either an

action or an acyclic dependency graph of child transactions.

3.3.2 Overview

Every behavior in an application is described by transactions exhibiting well-

defined start and end events. Data and control scope is strictly local – i.e. outside

transactions may not modify or observe internal variables or control state. Trans-

actions may contain child transactions arranged into a directed acyclic dependency

graph, thus forming a hierarchy of transactions.

All transactions encapsulate behavior, data, and control within a strict local

scope. When a child transaction begins, all of the data that it needs is copied

from its parent. When it completes, the transaction may commit changes to its

parent. Every transaction (subtree) can be viewed as a pure function, accepting

input data from its parent and returning updated values. All of their data (owned

and inherited) is local to its scope. This interaction occurs strictly between child

and parent only – a grandchild cannot directly access its grandparent’s data; it

must go through the intermediate transaction. It is important to note that the

final implementation does not need to maintain this copying. Such a system

33

Chapter 3. Hierarchical Transactions

would incur large overhead. Instead, binding and scheduling determines low-level

implementation while preserving the application’s behavior.

An example design is shown in fig. 3.1. The figure illustrates both hierarchi-

cal encapsulation, data interactions on transaction boundaries, and hierarchical

control token passing (described below). Both transactions B and C get their own

copies of variables x and y. B1, the second child of B, reads the local value of y

from its parent. Transaction C1, meanwhile, commits a new value of y to C before

it finally gets committed to the parent.

3.3.3 Computational and State Mobility

The most significant element of hierarchical transactions is computational and

state mobility. Every transaction strictly encapsulates all of its internal behavior

through an abstract copying semantic that guarantees state is always local. These

attributes ensure a high degree of mobility and flexibility when determining where

to map architecturally. For instance, for a given transaction, if its parent exists

in software while it is mapped onto a hardware accelerator, the copying mecha-

nism becomes a bus transaction. If the same transaction remains in software, but

is targeted towards a multicore implementation, then the copying manifests in a

partitioning of the state. Rather than manage memory coherence, the synthesis

tool may map the local state to a separate memory segment and allow it to run

concurrently. If the transaction remains in the same thread as its parent or peers,

then the synthesis tool may remove copying altogether and ensure the same be-

havior by scheduling transactions in a particular order (essentially sequentializing

34

Chapter 3. Hierarchical Transactions

them such that the data dependencies preserve the illusion of copying without the

unnecessary overhead).

3.3.4 Token-based Control

Control flow between transactions is handled through token-passing – when

a transaction completes, it creates tokens that determine the next set of trans-

actions to start. Each transaction contains a guard, describing the tokens that

must exist before it can begin. Tokens are identified with a unique name. Each

transaction has a guard expressed as a Boolean expression of token identifiers, en-

abling complex token control. Once the guard has been satisfied (i.e. the required

tokens have been created by other transactions) all of the tokens involved are

consumed atomically. Thus, a transaction is guarded by tokens. Tokens primarily

describe functional dependencies between transactions (independent of timing).

Their existence implies a local dependency network similar to traditional control-

flow techniques.

Limitations in control expressability ensure that control lifetime is always

bounded. The semantic model’s policies disallow transactions from arbitrarily

observing tokens. A token’s lifetime begins when its creating transaction com-

mits, and it ends once it has been consumed. This decision enforces a limit on the

lifetime of control state. To cover many practical applications, conditional token

creation is allowed – that is, tokens can depend on the value of a variable. In

general, data-conditional control is difficult to bound both in lifetime & scope –

verification requires knowledge of the temporal longevity of any control decision,

otherwise it leads to the halting problem.

35

Chapter 3. Hierarchical Transactions

Figure 3.2: (a) Fork nodes replicate tokens when multiple transactions are

guarded by the same token. (b) Join nodes wait for all input tokens to arrive

before generating its output token. (c) Select nodes wait for any input token,

discarding the remainders.

In this model, however, every operation (including token creation and con-

sumption) falls on a well-defined transaction event. The compiler can always

fully analyze control dependencies, conditional or otherwise. Whole-system anal-

ysis for well-constructed hierarchies is pseudo-linear, since any high polynomial

or exponential behavior for a small number of elements is insignificant. Thus,

the compiler leverages abstraction to keep average runtime linear – it can very

quickly determine all of the conditions that lead to a given transaction’s creation.

The tool always knowns the transaction boundary that a variable falls on and can

determine whether a token condition is satisfied during its execution.

3.3.4.1 Combining and Forking Tokens

Latency tolerant designs require complex control mechanisms to implement

real applications[21, 22]. Three control nodes manage merging and bifurcation:

Fork, Join, and Select. If multiple transactions are guarded by a token, the

36

Chapter 3. Hierarchical Transactions

token gets replicated and each transaction gets its own copy. This induces a

Fork node, where the created token forks into multiple transaction guards, as

shown in fig. 3.2(a). Abstract synchronization is provided through a Join mech-

anism shown in fig. 3.2(b). A transaction guard of “tokenA and tokenB and

tokenC” implies that the transaction will wait for all three to exist before it

may fire. Thus a Join node is inferred and automatically inserted into the net-

work at the appropriate location. Complex control applications often require an

“either-or” selector. A transaction may specify a guard that states this relation-

ship through a guard of e.g. “tokenA or tokenB or tokenC” shown in fig.

3.2(c). A generated Select node will wait for any of the tokens to arrive before

proceeding. The subsequent tokens are ignored. Select nodes proceed regardless

of the order in which their input tokens arrive.

3.3.5 Latency Tolerance

Latency tolerant design is a natural approach to heterogeneous design, partic-

ularly because behavior that is decoupled from timing encourages the design of a

family of executions, rather than a fixed, implied schedule. Covering an array of

valid execution sequences allows tools to evaluate implementations across multi-

ple timescales, supporting true decoupling from application specification and im-

proving design resilience against evolving architectures. The methodology forces

designers to reduce their specification to a minimal description of the problem

being solved. This frees them from including hard timing details at a large scale,

which may not be relevant until design space exploration, when tools have a bet-

ter sense of costs. Hard timing details generally affect lower-level implementation,

37

Chapter 3. Hierarchical Transactions

time

A x:3
y:4 Cx:3

y:4
y:2 Dx:3

y:7
w:10

Bx:3
y:4

y:7

A x:3
y:4 Cx:3

y:4
y:2 Dx:3

y:2
w:5

Bx:3
y:2

y:5

A x:3
y:4 Cx:3

y:4
y:2 Dx:3

y:2
w:8

Bx:3
y:2

y:5

Figure 3.3: The same transactions from fig. 3.1 shown executing in different

orders. As is demonstrated, the internal workings of transactions B & C do not

need to be included. They are abstracted along the transaction boundaries. This

idea is crucial to bounded concurrency analysis.

and these constraints are captured in the resources rather than the application

specification.

Work in the area of latency tolerant design typically refers to gate-level isola-

tion of clock domains. This semantic has generalized the approach, but applies

similar control semantics through the token-based control network presented above

[21, 22].

38

Chapter 3. Hierarchical Transactions

3.3.6 Upholding Abstraction

Hierarchical transactions uphold a combination of functional, temporal, and

spatial abstraction:

1. Temporal abstraction is achieved through latency tolerance and by bound-

ing data/control lifetime. Application specifications omit explicit timing

information, reducing the problem to fundamental functional dependencies.

Transactions tie data/control lifetimes to the length of the transaction.

2. Functional abstraction comes about by wrapping all behavior within finite-

length transactions. The internal behavior of a transaction can be abstracted

at the transaction’s start and end events.

3. Spatial abstraction is enabled through locality of data/control. All design

variables and control decisions are local to their transactions. Data con-

tainment means operations do not need to go beyond their local transaction

scope.

3.3.7 Concurrency

To encourage maximal concurrency wherever possible, hierarchical transac-

tions are designed to be concurrent unless otherwise specified. With the added

parallelism of concurrency comes a host of difficult-to-find concurrency bugs. Typ-

ically, these problems emerge when concurrent tasks share resources, and the ar-

bitration of those resources occurs in an unexpected order. Specifically, they give

rise to race conditions (where data is written multiple times by concurrent tasks),

39

Chapter 3. Hierarchical Transactions

potentially leading to deadlock or starvation. Decades of research have provided

designers with tools to debug these notoriously cumbersome bugs.

Concurrent transaction commits to the same variable have a high possibility

for race conditions. Figure 3.3 illustrates how transactions may commit different

values in different execution orders (using the same design from fig. 3.1). As

shown, the values y and w are written with different values in each execution.

When a designer specifies an application in this form, they are indicating to the

tools that this is correct behavior. The designer is essentially letting the tool

know that functional correctness does not depend on the value being overwritten

by multiple transactions. In situations where this may be critical, the compiler

quickly identifies race conditions (sec. 6.2.5), reporting them to the designer to

resolve.

40

Chapter 4

Hierarchical Guarded Atomic
Rule-based Language

4.1 Introduction

A fundamental rethinking of cosynthesis specification semantics provides the

opportunity to explore a novel domain-specific specification language better suited

to the task.

With any new semantic model comes the choice between designing a new

specification language or writing a library over an existing language (leveraging

existing technology to form the meta-language, i.e. compile-time language). The

former requires a significant amount of initial work, especially in testing as lan-

guage coverage is an often intractable problem. The latter library-based approach

is cumbersome, making designs difficult to express while potentially limiting spec-

ification strength due to inherent drawbacks from the parent language. This re-

search explores the former path via a language that directly and compactly reflects

its underlying transactional semantic model. Despite significant setup effort, the

41

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

payoff is in the ability to concisely express complex designs without any potential

pitfalls.

4.1.1 Existing Languages

There are many programming, hardware design, and abstract model languages

in use; most reflect their respective tools’ function. Often, however, languages are

used simply because of familiarity. C is one such example.

C, however, is ultimately an implementation specification, not an algorithmic

one. Real-world high performance C code is optimized for cached CPU architec-

tures, and thus is built on certain assumptions about how information is exchanged

in the system. Optimized C is structured around different system metrics, partic-

ularly in arithmetic versus data motion costs. For instance, since floating point

operations are generally expensive in microprocessors, arithmetic-heavy C imple-

mentations will improve performance by introducing conditional cases when the

value is zero, avoiding the unnecessary computation. In an ideal specification,

however, such an optimization would not appear; it would instead eliminate any

implementation-specific details in favor of pure algorithmic descriptions.

Bluespec1 is a rapid development language that enables very fast design itera-

tions of operation-centric applications. Quick design iterations allow developers to

determine the primary costs of the system early in the design process – often, these

costs can be counterintuitive or non-obvious. Encouraging a rapid design cycle
1BlueSpec® is a registered trademark of Bluespec, Inc. SystemVerilog® is a registered trade-

mark of Accellera, Inc.

42

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

exposes the costs, and allows designers to manually restructure their architecture

accordingly.

Traditional approaches to co-design use SystemC or similar languages. Recent

work in Bluespec SystemVerilog1 [58, 73] applies guarded rule-based reactive tech-

niques to this field, and has demonstrated the trade-offs involved. In this work, we

present a custom language aimed at directly capturing hierarchical transactional

semantics, enforcing specification limitations as an efficient representation.

4.1.2 Aesthetics

Specification aesthetic refers to an application’s ability to clearly and unam-

biguously express the designer’s intent. In its purest form, a given specification

would aim for true implementation independence boiled down to a concise, prac-

tical, and understandable description of its core algorithms.

HTL syntax is modeled after Python for its attractive minimalist syntax that

is well-suited for algorithm-level specification. Further, whitespace-defined scope

provides a clean visualization of hierarchical scoping without the clutter of e.g.

semicolons; at the same time, whitespace-tied blocks are difficult to manage for

depths greater than 4 or 5, therefore encouraging designers to break up the design

into much smaller pieces. This has the added advantage of encouraging more

hierarchy than is strictly necessary, a property that grants analysis tools more

flexibility. Fine-grained, deep hierarchies come at no additional cost. Unlike

Python (or other hierarchically scoped software languages), there isn’t a scope

context change or stack overhead.

43

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

4.2 Core Language Philosophy

4.2.1 Concision, Meaning, and Abstraction

Conventionally, an application may be specified with a specific architecture in

mind. As the architecture evolves, some of those elements may not be reasonable

assumptions. Rather than rely on the the input specification to detail implemen-

tations suited for the architecture, it should describe the overarching goal with as

little extraneous information as possible. This is one of the core issues plaguing C-

to-RTL tools: C specifications for e.g. signal processing applications are not inher-

ently concurrent, nor are they designed around the potential for distributed mem-

ories that may not be able to maintain coherency without significant overhead.

There are more subtle effects as well – hand-optimized FFT implementations may

include zero-checks to avoid expensive floating point computations. When trans-

lated to RTL, those checks introduce unnecessary performance-hindering synchro-

nization. More significantly, since the original specification targets a single-access,

large memory, it is the compiler’s responsibility to infer local strides of data access

which can be mapped into small, distributed memories.

The ideal cosynthesis language decouples algorithm specification from imple-

mentation, while still supporting synthesis of high-performance realizations. The

language presented below aims to fulfill this goal.

44

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

Parent xw y

A
tA

x=3
y=4

B z

B1
tB1

z=x+y

B2

y=z

C
tC1

C1
tC1

y=2

D

w=x+y

rule Parent:
 var w,x,y:Bits(8)
 rule A:
 x=3
 y=4
 create tA
 rule B(tA):
 var z: Bits(8)
 rule B1:
 z=x+y
 create tB1
 rule B2(tB1):
 y=z
 rule C(tA):
 rule C1:
 y=2
 create tC1
 rule D(tC1):
 w=y+x

Figure 4.1: Example of token-guarded hierarchical rule language used to specify

transactions. This code describes fig. 3.1.

4.3 Rule-based Language

The Hierarchical Transaction Language (HTL) allows direct specification of

transactional semantics in a clear, concise way. The fundamental task expression

is a guarded, hierarchical rule. Guarded rules provide a natural fit for reactive,

concurrent systems, efficiently representing latency tolerant, high-level behavior.

Every rule describes how a transaction begins along with its child relationships

or its internal functionality. Fig. 4.1 outlines the syntax, providing code for the

transactions shown in fig. 3.1. Indentation specifies scope, similar to the Python

language. The language is statically typed and scoped, thus all variables must be

declared and their types must be statically resolvable. Types are expressed using

compile-time “duck typing” – as long as an object can implement the specified be-

havior, it is a valid type relation. The data types are constructed from components

45

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

in a library of generic type components commonly needed to express applications.

In the example shown, the Bits class represents arbitrary finite-length integers

supporting standard arithmetic operations, concatenation, and logic-level bitwise

operations (shifting, masking, etc.). They translate to e.g. registers in hardware

and character arrays in software.

Scope (namespace and variable access) is static, tied to the transaction gener-

ated by the rule.

4.3.1 Meta-language vs Language

There are two classes of specification: language features that directly describe

the target semantic or execution model, and a meta-language that adds one layer of

abstraction through compile-time expression. Put another way, a meta-language

allows code that generates code. As a language’s design evolves and the demands

for concise expression of its behavior increase, a common lesson learned by lan-

guage designers is that any practical specification language benefits tremendously

from a meta-language. Automating and parameterizing repetitive behavior and

variable types improves readability, and broadens the usability of a given specifi-

cation. Without a meta-language, for example, a designer would need to manually

specify separate design instantiations for different types or architectural choices,

despite using the same fundamental algorithm.

Moving beyond trivially sized problems, it is beneficial to allow expression

of meta-behavior; that is, language features that produce language that is then

translated to compiler data structures and eventually code. A meta-language, in

this context, refers to specification code that is used to describe design parameters,

46

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

i.e. behaviors that are indirectly related to the task that needs to be done. In

the C++11 specification, for instance, template metaprogramming is a powerful

technique that allows parametric classes with rather complex generating behavior.

One of the drawbacks, however, is it is syntactically unwieldy and provides a

different expression language over an existing one.

An incidental benefit of transactional semantics is rich static analysis. The

same guarantees that allow data & control mobility also grant the compiler valu-

able information about the behavior of variables. If a variable is written once and

read the remainder of the design, it will determine its write-once value and prop-

agate it throughout the design. By adding this same functionality to types and

functions (through compile-time function evaluation), the same language is used

for both the application expression and generating parameters. Thus, the Hier-

archical Transactional Language (HTL) is both a language and a meta-language

using precisely the same semantics and syntax.

4.4 Syntax

This section will introduce the HTL syntax, providing small demonstrative

examples.

Typographical Conventions Typographical formatting uses sans-serif to

describe variable identifiers, rule identifiers, token identifiers, type names, and

keywords. As a matter of convention, tokens are identified with a lowercase “t”

followed by a capitalized semantic name. Rule and class identifier are capitalized,

47

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

while variables are generally all lowercase (with the exception of large arrays and

iterators, which use an uppercase letter convention). The designer is free to use

any legal identifier that suits their specification style.

Whitespace Scope Whitespace determines scope blocks. A tab character, or

a series of spaces coalesced, determine a lexical indent token in the lexer.

Scoping Rules Scope is syntactically defined, and constrained to source files.

Each source file is treated as a module containing rules and classes. If a given

rule in file A.hr instantiates a rule in B.hr, they remain separate scopes. This

ruletree/source scope preserves readability. In any case where scopes need sharing,

they are done so explicitly to communicate intended and expected behavior.

Identifiers All rules, variables, types, tokens, and classes are represented with

unique identifiers. Identifiers must begin with a letter or underscore, followed by

zero or more alphanumeric or under characters thereafter.

Rule Identifiers/Rule Scope Rule identifiers are scoped to their parent. Iden-

tifiers may be duplicated for different trees; however, the compiler maintains a

global rule identifier list for a given source file. It issues toggleable warnings in

case of a name collision; this enforces unambiguous identifiers.

Variables Variable identifiers are scoped to their parents, and every descendant

of the parent in the same source file. Variables follow ruletree/source scope. Rule

instantiation (via a call statement) delineates a new scope.

48

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

Variables are declared with the var statement, followed by a list of variable

identifiers, a colon, and a type instantiation. If multiple identifiers are provided,

each one receives its own type instantiation – it is equivalent to separate var

statements for each identifier.

Types Type instantiations consist of the type name (i.e. one of the built-in types

or a user-defined class), and its specific parameters in order of the declaration.

All types must be statically resolved at compile time – parametric designs are

realized by allowing variables in the type declaration under the proviso that the

variable’s value is constant and determinable by the compiler.

Tokens Tokens are declared implicitly by use. A create statement declares

a token. Any token guards containing a token with the same identifier will have

that token in its guard. Note that token scoping is different from variable scoping:

they are semi-global to the rule tree in which they’re created (again, limited to

the source file).

Tokens can only be passed up the hierarchy. The compiler reports an error

when a token is created by a rule and guarded by the child of one of its peers, as

that behavior is undefined.

4.4.1 Rules

A rule consists of the rule keyword followed by an identifier, and an op-

tional guard. It then contains a statement block with either variable declaration

and child rules, or variable declarations and atomic statements. The two cannot

49

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

be mixed – rules can either be hierarchical containers or leaf nodes with state-

modifying actions.

The simplest rule contains no guard and no statement (the pass statement

indicates no behavior):
1 rule Foo:
2 pass

A rule’s guard can be a Boolean combination of token identifiers expressing

the condition under which it can fire:
1 rule Bar(tX and tY):
2 pass

In this case, rule Bar will wait for both tokens tX and tY before it executes.

If no guard is present, then the rule may begin whenever its parent begins (po-

tentially after some initial latency). In the following example, child rules B0 and

B1 may run in any arbitrary ordering; since there are no dependencies expressed,

any ordering is assumed valid.
1 rule B:
2 rule B0:
3 x = 1
4 rule B1:
5 y = 1

Tokens can only be passed among parents and ancestors. The following demon-

strates a valid hierarchical token transfer:
1 rule Top:
2 rule Child1 :
3 rule A:
4 create tA
5 rule Child2 (tA):
6 create tB

In this example, rule Top begins, then Child1 executes. Its child, A begins and

creates token tA. Since none of Child1’s children contain tA as a guard, and since

there are no more outstanding rules to execute, Child1 terminates – however, it

50

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

commits token tA to its parent Top. The token is then passed to the guard of

Child2 which may now execute.

The following is an example of an invalid token transfer:
1 rule Top:
2 rule Child1 :
3 create tA
4 rule Child2 :
5 rule B(tA): # illegal
6 create tB

This is undefined behavior and will cause an error. After Child1 executes,

it would need to pass tA to Child2. However, without a dependency between

the two, Child2 may execute before Child1. Further, even if Child2 executes

after Child1, the implicit dependency makes the code unintuitive and difficult to

follow.

4.4.2 Atomicity

Rule bodies are atomic. They only need to be ordered due to naming dec-

larations – e.g. create statements must come before the token’s use in a guard,

encouraging human-readable code.

Any conflicting writes follow the same rules as Verilog. The last (in source

code order) of the valid assignments are accepted. Consider the following rule:
1 rule T:
2 x = 1
3 x = 2
4 x = 3

Only the last of the three assignments (“x = 3”) is synthesized. The other

two assignments are removed.

It is important to bear in mind that atomic statements mean that ordering is

important only for resolving ambiguous concurrent assigns.

51

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

1 rule T:
2 if x > 1:
3 y = 1
4 y = y + 1

All of the references to y on the right side of assignments are the same value

– they are the value that was atomically read in at the beginning of rule T. The

values on the left sides refer to the value being written. The above example is

equivalent to:
1 rule T:
2 if x > 1:
3 y_out = 1
4 y_out = y_in + 1

Thus, the way to interpret this is that the conditional block is obviated, as it

will always be overridden by the second assignment.

4.4.3 Conditional Statements

Conditional statements are very similar to Python: an if keyword is followed

by a condition, a colon, and a block statement. It may be followed by elif

statements and a final optional else statement.

Internally, the compiler rewrites statements into a declarative form, coalescing

conditions into independent atomic statements.

For example:
1 if x:
2 if y and z:
3 create tA
4 elif w == 1:
5 create tB
6 else v == 2:
7 create tC
8 create tD
9 else:

10 create tE

is

internally translated into the following independent atomic statements:

52

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

1 x and (y and z) -> create tA
2 x and not(y and z) and (w == 1) -> create tB
3 x and not(y and z) and not(w == 1) and (v==2) -> create tC
4 x -> create tD
5 not x -> create tE

The latter format is ideal as an intermediate, compiler-interpreted language as

it simplifies and decouples create statements. For many designers, however, it

is unintuitive and difficult to extract its high-level meaning, hence a natural and

familiar if/else if/else syntax.

4.4.4 Rule Instances

Design reuse is pivotal to ensuring ease of IP integration, specification longevity,

and amortizing testing effort over multiple applications. Functions in sequential

software and modules in HDLs serve the same fundamental role: they allow be-

havior to be self-contained (thus making the specification managable), and allow

reusability. Further, they provide designers a way to intuitively break down an

application into its subparts, making the code easier to read, maintain, and isolate

problems in. While the transaction hierarchy provides this functionality, it would

be cumbersome and unreadable to specify full designs within a single, deep hierar-

chy. Rule instances allow easy code management and organization, parameterized

rules, and provide an easy-to-understand reusability mechanism.

4.4.4.1 Rule Instance Syntax

Rule instances use the call statement followed by the name of the rule and

input arguments. Since the token naming scope is semi-global, token namespaces

between caller and callee are kept separate. Otherwise, the token namespace

53

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

would become polluted causing token identifiers to collide. For example, if the

rule process_data is called and it creates a token internally named tDone, and

the caller also contains a token with the same name, it would likely raise compiler

errors due to poor token scoping.

For example, consider the following:
1 rule Top:
2 rule setup:
3 create tDone
4 rule caller (tDone):
5 call Foo
6

7 rule Callee :
8 rule do_some_work :
9 create tDone

To resolve this, all calls are optionally block statements containing a token

identifier map via the creates keyword (explained further below). Control tokens

can now pass from callee to caller, but only through explicitly defined means.

Arguments Input arguments are passed either positionally or by name, follow-

ing Python’s syntax rules. While optional arguments are not yet allowed, named

arguments provide the benefit of clear code documentation
1 call Callee (arg1 , arg2 , named_arg =arg3)

Return Values Callable rules may return a value via a return statement fol-

lowed by the expression being returned. Type is inferred, and all callable rules are

untyped by default. In the following example, rule add is called with arguments

a and b. The return value is the summation of the two input arguments.
1 rule add <-(x, y):
2 return x + y
3 call sum = add(a, b)

54

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

Note that callable rules are full-featured and follow precisely the same seman-

tics as non-callable rules. In reality, the compiler makes no internal distinction –

it simply tags certain rules with argument requirements. To facilitate flexible and

parametric design, arguments may be variables, expressions, or type templates.

In the following, rule foo receives a type template for a Bits type (with bitwidth

of 32). Within foo, variable intermediate instantiates its type based on the

provided template. The compiler will infer types based on use, and thus there is

no need to provide any extra information about the argument.
1 rule foo <-(type , x, y):
2 var intermediate : type
3 rule setup:
4 intermediate = x + y
5 create tNext
6 rule next(tNext):
7 intermediate += 1
8 return intermediate
9

10 call v = foo(Bits (32) , a, b)

Token Maps Token maps are optional statements contained within call blocks

that specify the tokens to export from the callee. Additionally, the designer may

rename tokens to prevent namespace pollution.
1 call Callee (..):
2 creates tDone -> tCalleeDone , tError

4.4.5 Functional Rule Instances

A functional rule instance returns a value, and can be treated as a preamble. If

rule A calls functional rule foo, then foo is an instanced rule that executes before

rule A’s body. Thus, it reads the same data that A reads. The return value of the

55

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

functional rule is made available to A. Note that all of this behavior is implicit –

the compiler manages ordering and correct rule execution.

Consider the following code:
1 rule Top:
2 if add (1, 2) > 1:
3 create tCorrect
4

5 rule add <-(x, y):
6 return x + y

Internally, the rule executes identically to the following code:
1 rule Top:
2 var r: Bits (2)
3 rule do_add :
4 r = x + y
5 create t_do_body
6 rule do_body (t_do_body):
7 if r > 1:
8 create tCorrect

4.4.6 Classes

Managing design complexity is eased through abstraction models. Arguably

the most common such model is the class object – it packages state and behav-

ior such that internal intermediate actions do not need to be exposed to other

components in the design. Classes in HTL specify a user-defined type and may

contain internal parameterizable data along with rules to modify that state. They

encourage object-oriented and help organize large applications into logical sub-

components.

Compared to other languages, HTL classes must follow certain rules in order

to remain compatible with transaction semantics. When a class object is read by

a rule, it is read-in as a whole. Likewise, when it is committed, it is committed

as a whole.

56

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

Classes may contain parameters that conform to “duck typing.” As long as

the compiler is able to determine a parameter’s type statically, the code is valid.

There are no private variables – all variables in a class are public. It is up to the

developer to enforce reasonable access rules, following Python’s access semantics.

4.4.6.1 Instantiation

A class is instantiated by declaring a variable with its type. Consider the

following code:
1 class Foo:
2 var x, y: Bits (16)

Class Foo is instantiated through a declaration, such as:
1 rule Top:
2 var f0: Foo ()

4.4.6.2 Parameters

Parameters are passed to the class at type instantiation. Below, Foo is ex-

tended to include a bitwidth parameter:
1 class Bar <-(bitwidth):
2 var x, y: Bits(bitwidth)

And instantiated using:
1 rule Top:
2 var b0: Bar (32)

Note that the parameters are untyped – instead, their type is determined valid

if they are used correctly. In the example, an integer is a valid type for this specific

instance of the class, since it is a valid type for the Bits class.

Not only can type parameters be arbitrary types, they may also be used as

type templates. A type template simply passes an uninstantiated type along with

57

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

its parameters. Below, the same class is now made generic to accept any type

template:
1 class Baz <-(T):
2 var x, y: T

A valid instantiation must provide a full type instance.
1 rule Top:
2 var bz: Baz(Bits (24))

When the compiler encounters a type declaration, it creates an internal type

template. This may be passed as a parameter, or it may be turned into an

instantiation if it appears in a variable declaration statement. Clearly, an integer

type parameter (var bz: Bar(16)) would cause an error: 16 is not a valid type

template.

Type parameters must be statically resolvable when the compiler reaches the

variable declaration. Consider the four declarations below:
1 var x: Bits (16)
2 var y: Int (20)
3 var z: Bits(y) # Ok: compiler knows y is a constant value
4 var v: Bits(x) # Not statically resolved

An Int object is immediately tagged as static (they are read-only), and thus

the declaration for z is valid. The declaration of v, on the other hand, is illegal:

its bitwidth cannot be determined at compile time.

4.4.7 Parametric Class Examples

Constant analysis enables parametric types – the following examples demon-

strate a container class for complex numbers and a simple matrix class containing

a scalar rule.

58

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

4.4.7.1 Complex Class

1 class Complex <-(type):
2 var real , imag: type
3 var C: Complex (Bits (16))

During object instantiation of Complex, the type instance Bits(16) is passed

as a parameter with the identifier type. In the body of the Complex class, two

variable declarations real and imag are issued the Bits(16) type. In this partic-

ular case, the type parameter can be any available type. If, however, the owner

of the Complex instance attempts to perform addition and multiplication on the

class’s members, and they do not support the operation, the type checker will

raise a compiler error.

4.4.7.2 Matrix Class

1 class Matrix <-(type , N, M):
2 var mem: Array(type , N*M)
3 rule scale <-(self , scalar):
4 for x in IRange (mem):
5 x *= scalar
6 # ...
7 var M: Matrix (Bits (32) , 16, 16)
8 # ... operations to load the matrix ...
9 call M.scale (1.0)

Similarly to the Complex class, the Matrix object creates an member of type

Array whose elements are typed Bits(32). The size of the array is computed

statically and a call to scale executes a simple iteration where each element is

multiplied by the scalar.

Clearly, the code is concise and legible at first glance without sacrificing per-

formance simply by restricting specification expression power.

59

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

4.4.8 Modifiers

Pragmatic statements communicate certain semantic information to the com-

piler. Modifiers use the following syntax:
1 @modifier_name (arg0 , arg1 , ...)
2 rule foo:
3 pass

They are particularly useful for iterators, discussed in the next section. Often,

in order to preserve static data types, it is important to force an iterator to unroll

and resolve its data type. Modifiers used in the Fast Fourier Transform example

(Appendix B.1) to specify how information passes between stages and to ensure

that the types are statically and correctly resolved.

4.5 Compiler

The Hierarchical Transaction Scheduler and Synthesizer (HTSS) compiles and

simulates HTL. It includes a rich type and iterator library, race condition de-

tection mechanism, a static analysis engine to allow design parameterization via

inferred constant variables, scaffolding synthesis (internal bookkeeping such as

token dependencies and variable read/write cataloging), a high-level transaction-

level behavioral simulator, and a synthesis back-end.

Integration of all of these components, as well as associated compiler-specific

options (e.g. whether to unroll certain iterators) is aided through a built-in TCL

parser. Design scripts can be written to simplify and automate the overall design

flow. While the initial implementation is simple, a built-in scripting engine has the

60

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

Figure 4.2: Rule tree traversal order – it dives into the child rules first, visiting

them in topological order based on their dependency. This guarantees that by the

time a rule is visited, all of its predecessors have already been visited.

capability of passing constant values as inputs to top-level rules, thereby allowing

parametric sweeps and automatic architectural discovery.

4.5.1 Parsing

The compiler uses an ANTLR-based parser generator to generate abstract

syntax trees (ASTs). Next, it constructs transaction-scale hierarchies, each con-

taining a local AST. It further catalogs all variable declarations and their types

(although it does not do type instantiation at this phase).

Once the foundations are set up, the compiler traverses the tree, and from

the bottom-up topologically visits each rule. That is, a rule-tree traversal climbs

down the hierarchy. At the leaf rules, local AST walkers analyze variable decla-

rations (for type instantiation), conditions, assigns, “create” statements, and call

statements.

61

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

Next, a local dependency walker iterates through the following visitors:

• Variable Elaborator: Catalogs all reads and writes for the rules (including

all descendents)

• Token Analyzer: Constructs dependencies, appropriately tagging condi-

tional tokens (for later use in closure analysis).

• Type Analyzer: Instantiates types for all of variables for this rule. Note

that it can leverage any incoming static reads/writes, since it assumes full

analysis has already completed for its predecessor rules.

• Constant Analysis: Finally, catalog all write statements to determine which,

if any, variables are written with constant values.

Variable Read/Write Elaboration The simplest, first-cut optimization in-

volves trimming read and write copying where they are not used. If transaction

Parent contains variables x, y, z, and a child transaction A only reads y, then

there is no reason to copy x or z.

Token Analyzer Token scoping and guard enforcement ensure valid, constructable

guards for simulation and synthesis.

Type Analyzer The heart of the inferred type engine collects all known con-

stant variable information and creates type instances for each variable, summa-

rizing their specific, resolved type parameters.

62

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

Constant Analysis Once all of the writes have completed, this module forward

propagates constant-value information.

4.6 Static Analysis

Unlike traditional sequential software, self-contained data/control scope guar-

antees behavior that allows straightforward static analysis. Access to state is

always controlled and well-defined. The compiler can quickly determine if a vari-

able remains constant throughout its data path. If that variable is later used to

conditionally generate a control token, unreachable token paths (and their rules)

are eliminated. Since there is no difference between a dynamic variable and one

that is detected to be constant, designers can leverage this language feature to

yield powerful design parameters, much in the same way they do with HDLs.

In the following example, rules A and B are effectively meta-rules that produce

a type parameter for rule C, via the w variable.
1 rule T:
2 var x, y: Bits (32)
3 rule A:
4 x = 1
5 create tA
6 rule B(tA):
7 y = x
8 create tB
9 rule C(tB):

10 var w: Bits(y)

4.6.1 Static Analysis for Constant Inference

At compile time, variable access is analyzed to determine if the value remains

locally constant. That is, for a given rule, the compiler tracks inherited and

63

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

A

x: 1
x = 1

B

x: 2x: 1
x=x+1

C

x: 3x: 2
x=x+1

Figure 4.3: Serial rules with local constant values

A

tA

w: 2
x: 1
y: 2

A0

w=2
x=1

w: 2
x: 1

A1

y=2 y:2

B

z
not

const

x: 1
y: 2

B0

z=x z: 1

B1

z=y z: 2

C

w: 2
y: 2

z: 2

C0

z=w z: 2

C1

z=y z: 2

F
O
R
K

Figure 4.4: Constant inference demonstrating rule-level parallel writes.

owned variables to determine if they hold a constant value for the local rule’s

scope (independent of any inputs to the system).

Figure 4.3 illustrates local constant values. Consider three serial rules – the

static analyzer is able to determine local constant values for x on a per-rule basis.

This is particularly useful if, for instance, a forward rule dependent on B uses x

as a type parameter.

64

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

x = x + 1

ASSIGN

ID
“x”

ID
“x”

INT
1

+

return Int(3) return Int(1)

return Int(3)

Figure 4.5: AST-level constant value inference – assume that the rule is provided

x with a constant value of Int(3). The AST walker visits each node hierarchically

and returns an evaluated result for the sub-tree. If the subtree is not constant

(dynamic), then it returns a null value.

Recall that the static analyzer traverses in topological order. There are two

parts to constant inference. The first happens at the AST level. The algorithm

visits assignment statements and conditionals.

4.6.1.1 Local vs. Global

Local constancy simply means a variable holds a constant value for its rule

and its child rules only. Global constancy applies to every use of that variable.

4.6.1.2 AST-level Constant Inference

Assignments An AST walker traverses a rule’s body and attempts to determine

the dynamic or constant nature on a per-node basis. Fig. 4.5 illustrates a simple

addition statement. In this case, the statement will take the value of x read in

from its parent, increment it, and commit the incremented value. At the top-

65

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

level, the walker visits the assign node. It recursively dives into the right value

(rvalue) node to visit the addition node. This recursively calls its children,

starting first with the identifier node for x. Assume that the parent tells this

child that x holds a constant value of 3. The walker will instantiate an Int object

with the value 3 and return that. Next, the constant literal value of 1 is visited

– again, it will instantiate an Int with value 1. Back at the addition node, the

walker assumes that the typechecker has already ensured that this is a type-valid

operation. It takes the Int(3) object and executes an addition with the Int(1)

object to yield a new Int(4) object. Back at the assign node, the walker now

sees that the rvalue has returned a constant value and stores this value into the

rule’s write table.

Conflicts If there are multiple assigns to the same value, then only the last

write is considered valid. The following will still treat x as a constant value of

2. The first assignment statement is obviated since these are deemed to execute

atomically. The simulator issues a warning to notify the developer when this

occurs.
1 x = 1
2 x = 2

if w > 1:
 a = x
else:
 a = y

Code Fragment: If w is not constant:

a is constant only if:
If x and y are both constant,
and have the same value.

If w’s static value > 1:
a is constant only if x is constant

If w’s static value ≤ 1:
a is constant only if y is constant

If w is constant:

Figure 4.6: Constant inference for “if” statement example

66

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

Conditionals At every “if” statement, the condition expression is evaluated to

determine if it has a constant value. If it does, then the appropriate branch is

isolated and visited, and the AST subtree associated with the branch is tagged

accordingly (that is, if the expression evaluates to True, then the False branch is

marked as “compile-time obviated”). If the condition cannot be evaluated, then

it visits all branches (including “else if” and “else” branches). Each recursive call

into the respective branches returns a mapping from variable to constant value.

The compiler cross-correlates all of the maps and if for every map, a given variable

holds a constant value, then that variable is determined to hold a constant value

for the entire rule.

Consider fig. 4.6. If w is not constant, then both branches must be analyzed.

The only situation in which a is constant is if both x and y are constant and have

the same value. If any of those conditions are violated, then a’s value cannot be

inferred and it will remain a dynamic variable. In the second scenario, if w is

constant, then the branch value can be determined at compile time. If w > 1,

then a will hold constant only if x does. Likewise if w ≤ 1, a will hold constant

only if y does.

4.6.1.3 Rule-level Constant Inference

Once the leaf rules’ internal AST nodes have been analyzed to collect the rule’s

constant value writes, a rule-tree traversal (again, in topological “forward” order)

combines the constant values for multiple rules.

67

Chapter 4. Hierarchical Guarded Atomic Rule-based Language

4.7 Simulator

The compiler includes a fast simulator amenable to print-based debugging,

along with explicitly verbose execution. It maintains a queue of transactions, and

dynamically allocates both the space and execution interpreter for each transac-

tion. Tokens are stored within their parent transactions and committed using an

event-driven dynamic scheduler.

Induced Delays Since the simulator essentially selects a single path of ex-

ecution through all possible executions, timing variation coverage is addressed

through manual injection of specific timing delays. Monte Carlo simulation through

random latency injection provides a method of stochastically exploring latency

variations. Paired with the conservative exact race condition detection in sec.

6.2.5, the two tools form a powerful method of extracting concurrency bugs.

68

Chapter 5

Iterators

The philosophy behind HTL is to constrain input specification rather than

limit the synthesis tool. An egregious source of synthesis constraints in high-level

synthesis tools stems from arbitrary access to large, indexed state (i.e. memory).

Compared to traditional specification formats, HTL guarantees high performance

array access only if designers describe indexed behavior through built-in iterators

(see Chapter 8). This puts the burden on the designer to clearly define their intent,

while opening opportunities for automatic realizations of dynamic hardware or

software to manage otherwise complex indexing. To demonstrate that such a

model is practicable, a Fast Fourier Transform (FFT) is implemented through

composition of built-in iterators.

5.1 Motivation

Practical, real-world applications require a method for representing large col-

lections of related information, e.g. an image, a matrix, etc. Vectored data and

matrices form the core of practically all signal processing applications, and provide

69

Chapter 5. Iterators

a familiar mechanism for representing common algorithms. The copying semantic,

however, complicates how large state overhead is mitigated during synthesis. If

the indexes accessed are known, then only those values are copied. If they are not

known, however, the compiler would have little choice but to institute copying (or

equivalent synchronization/caching architectures) for the entire array. For any

medium to large array, this is impractical.

In general, arbitrary array access hinders synthesis optimization opportunities.

It forces conservative worst-case behavior to ensure correct execution, since the

synthesis tool does not have enough information to ascertain which portions of

the array may be needed. This leads to unnecessary state copying and transfer.

5.2 The Array Primitive

HTL takes a unique approach: it provides an Array library primitive with the

proviso that arbitrary indexing is explicitly disallowed on this object. Instead,

elements of an array are selected by composing built-in, well-defined finite-state

iterators. Besides solving the copying problem, iterators alleviate data access un-

certainty, avoiding potentially cumbersome and difficult verification. They guar-

antee lifetime bounds on state, allow easy partitioning of array access, and avoid

common pitfalls in verification.

Iterators translate well to other approaches to cosynthesis when converted

into data-flow graphs. They guarantee well-formed graphs, allowing designers to

leverage any of the existing mature high level synthesis packages. The tools do

70

Chapter 5. Iterators

not need to apply loop unrolling or analysis heuristics, as the graphs are directed

and acyclic. They can thus be directly scheduled.

When indexing is absolutely necessary (and the designer is willing to sacrifice

potentially significant performance), indexing is allowed via an Addressable li-

brary primitive. This object is provided under the assumption that the designer

use it responsibly and with knowledge of the resultant performance consequences.

5.3 Communicating Designer Intent

In addition to their incompatibility with the copying behavior, variable array

indexes are antithetical to the philosophy of clear expression of designer intent.

Arbitrary arithmetic index expressions requires symbolic analysis that is very

difficult and scales poorly.

For instance, the question of selecting subsets of the array is nontrivial. If

access to the array occurs in spans, then the compiler must analyze how data is

accessed and attempt to partition or replicate subsets of the array accordingly.

Through an iterator, however, this information is directly conveyed to the tool –

there is no need for arithmetic or symbolic analysis of index variables.

5.4 Execution Semantics

In software contexts, an iteration implies a specific ordering on a data set. In

HTL, the definition is split into two parts. Iterators specify complete or partial

orders on the dependencies between array elements (either within a single array

71

Chapter 5. Iterators

or, more commonly, across two different arrays). The execution, however, is not

necessarily beholden to the order in which the iterator generated its dependencies;

it simply respects the dependencies induced. Sec. 5.5.4 clarifies this difference

with an example.

5.5 Syntax & Semantics

Syntactically, an iterator uses a for statement providing an iterating variable

identifier along with the iterator object. Semantically, these still define trans-

actional behavior. Each iteration is a new transaction; it contains copies of its

parent’s state, with the exception that it does not copy the source array. It only

receives its iteration value(s).

5.5.1 Token Scoping

Tokens may pass between rules within an iterator. However, every iterator

is treated as an independent token scope. External tokens are created in the

finally block.
1 for x in Y:
2 # ...
3 finally :
4 create tDone

Semantically, the finally block is a rule that executes after all of the iterations

have completed – it is the closure of the full iteration.

72

Chapter 5. Iterators

T
A I

...

x=a0 x=a1 x=a(n-1)

rule T:
 var A: Array(Bits(16), 128)
 var I: ISequence(A)
 for x in A:
 pass

(a) Sequential iterator execution.

T
A I

x=a0

x=a1

x=a(n-1)

rule T:
 var A: Array(Bits(16), 128)
 var I: IRange(A)
 for x in A:
 pass

(b) Concurrent iterator execution.

Figure 5.1: Illustration of execution semantics between sequential and concurrent

iterators.

5.5.2 Sequential vs. Concurrent Iterators

Iterator execution is either sequential (ordered) or concurrent (unordered). If

it is ordered, tokens are generated between iteration stages (which, again, are

simply transactions). Otherwise, the iteration bodies themselves may execute in

any order. Fig. 5.1a illustrates a sequential iterator – all but the first iteration

bodies are dependent on the previous iteration. Contrariwise, fig. 5.1b illustrates

concurrent iterators – there are no direct dependencies between iteration bodies.

73

Chapter 5. Iterators

5.5.3 Multiple Iterators through Co-iteration

Consider an application which needs to iterate an input array and generate an

output in a different sequence. HTL allows co-iteration of multiple iterations via

a special double pipe (||) composition operator. At every iteration, each of the

iterators will provide their iterating value. These values are collected and passed

onto the child transaction (the iterator body).

5.5.4 Ordering of Iterator versus Iterator Execution

Consider the following example.
1 var X: Array (4, Bits (8))
2 for x in IAlternate (X, 0) || y in IAlternate (X, 1):
3 x = y

Assume an iterator IAlternate selects every alternative element in the array,

offset by the second argument provided (0 for the iterator associated with x and 1

for the iterator associated with y). If the array X contained [0, 1, 2, 3], then

the above code would be equivalent to the following rules:
1 rule FirstIteration :
2 X[0] = X[1]
3 rule SecondIteration :
4 X[2] = X[3]

Assume that IAlternate executes unordered – that is, it does not induce con-

trol dependencies between iteration body transactions. The first iteration may

execute after the second. In its execution, the iterator is partially ordered. How-

ever, the actual index dependencies generated by the iterators are completely

ordered. It is not the case that, for instance, X[2] will get assigned to X[1].

Another way to interpret this distinction is between compile-time iteration

and run-time iteration. This view is useful for understanding the concept, but is

74

Chapter 5. Iterators

problematic insofar as it assumes that iterators are fully unrolled at compile-time.

This is not the case – iterators communicate state machines that can dynamically

produce indexes and thus can be synthesized accordingly.

5.6 Built-in Iterators

Fig. 5.2 illustrates three iterators used for the FFT example below. They are

concurrent (unordered) iterators. This does not mean the array is unordered; in

fact, these iterators yield each iteration value based on the original order of the

array itself. However, there are no control dependencies between iterations, and

thus they execute concurrently.

5.7 FFT through Iterators

The Fast Fourier Transform (FFT) is a widely used algorithm that exhibits

complex indexing and is a prime example of the power of iterators. This is demon-

strated through a decimation-in-frequency FFT implementation composed of iter-

ators, illustrating the robustness of the language’s iterator semantics. Recall that

each for statement follows transactional, hierarchical semantics. Every iteration

is a new transaction following the copying mechanism, but rather than copying the

entire array (in this case, of inputs and coefficients), the iterators isolate specific

elements.

Figure 5.3 lists the heart of the FFT application. Input parameters size and

type are provided. The preamble sets up initial stage count calculations, and

75

Chapter 5. Iterators

IRoundRobin(array, length, limit)

A B C D E F G H I J K L

A E I B F J

1 2 34 5 6 order of iteration

Skip every ‘length’ element, until ‘limit’ cycles have been iterated.
IRoundRobin(X, 4, 2):

Result:

X:

IClustered(array, cluster_length)

A B C D E F G H I J K L

Each iteration will yield 4 elements.

Provide ‘cluster_length’ elements in groups each iteration
IClustered(X, 4):

X:

IGroupedRoundRobin(array, rr_length, rr_limit)

A B C D E F G H I J K L M N O

A B C D EF G H I JK L M N O

Iteration #

Each iteration yields 3 elements:

1 2 3 4 5

Like IRoundRobin, but provides elements from each group at the same time.
IGroupedRoundRobin(X, 5):

X:

Figure 5.2: Built-in iterators provided to allow FFT indexing

76

Chapter 5. Iterators

Figure 5.3: Code listing of FFT with Iterators. Each iteration is a new transaction.

The double-pipe operator composes parallel iterations – elements are selected from

the iterators specified and passed to the iteration transaction at the same time.

defines the outermost stage iterator. Note the “@pipeline” modifier causes the

static elaborator to unroll the iterator and compile time, copying information from

one stage of iteration to the next. This iterator requires unrolling since interme-

diate data (in_clustered, coef_clustered, and out_clustered) is dependent on

the current iteration value (i.e. the cluster size).

Fig. 5.4 illustrates an 8-point decimation-in-frequency FFT, labeled with the

source indices for each stage. The iterators from lines 11-13 grab a sub-array of

elements via the IClustered iterators. The iterator values yielded (which are

themselves Array objects) are then iterated upon via round robin iterators (lines

14-16).

77

Chapter 5. Iterators

0,4 1,5 2,6 3,7 0,4 1,5 2,6 3,7

0,2 1,3 0,2 1,3 4,6 5,7 4,6 5,7

0,1 0,1 2,3 2,3 4,5 4,5 6,7 6,7

STAGE 0
IClustered(size=8)

IGroupedRoundRobin(length=4, limit=4)

STAGE 1
IClustered(size=4)

IGroupedRoundRobin(length=2, limit=2)

STAGE 2
IClustered(size=2)

IGroupedRoundRobin(length=1, limit=1)

[0 1 2 3 4 5 6 7]

[0 1 2 3 4 5 6 7]

[0 4][1 5][2 6][3 7]

[0 1 2 3 4 5 6 7]

[0 1 2 3][4 5 6 7]

[0 2][1 3] [4 6][5 7]

[0 1 2 3 4 5 6 7]

[0 1][2 3][4 5][6 7]

[0 1][2 3][4 5][6 7]

Figure 5.4: FFT indexing achieved through iterators

78

Chapter 6

Practical Analysis and Model
Translation

This chapter details practical design analysis of hierarchical transactions. The

first concern is a closure mechanism. In the semantic model, a transaction com-

pletes once all of its children that can run have completed (i.e. any child that

has had its guard satisfied). An open-ended implicit condition allows domain-

appropriate implementations. Realizing closure in software versus hardware lead

to rather different solutions.

The second concern is race condition detection. The combination of latency

tolerance and concurrency leads to potential operational ordering sensitivity which

can lead to deadlock. A scalable, conservative method for identifying possible race

conditions is presented and discussed.

Finally, in order to demonstrate that hierarchical transactions are in fact ca-

pable of efficiently translating to existing models, this chapter outlines methods

of translation to pure functions and control/data-flow graphs that can leverage

existing high-level synthesis solutions.

79

Chapter 6. Practical Analysis and Model Translation

Parent

A tA

B
tB

C

D
tD

E

Centralized
Parent Closure

Logic/Queue

Figure 6.1: Centralized control to determine parent transaction termination

6.1 Closure & Distributed Transaction Control

Transactions can be directly executed for simulation, verification, and (when

managed correctly) implementation. Improving performance of all three enables

rapid development – faster simulation translates to shorter development time.

During direct execution, the issue of when to terminate a parent transaction

needs to be addressed, referred to as its closure condition. The simplest approach

uses a central controller with full knowledge of every child transactions state,

along with a queue of outstanding transactions. Fig. 6.1 illustrates the inserted

logic required to determine when transaction Parent completes – namely, it must

observe the state of all transactions. If all transactions have completed, and there

are no outstanding transactions in the queue, then the parent transaction may

terminate.

While this approach is correct, it may not be suitable when executing trans-

actions in e.g. hardware where a queue is not feasible due to resource constraints.

Instead, a more efficient approach determines all possible conditional execution

80

Chapter 6. Practical Analysis and Model Translation

Parent

A tA

B
tB

C

D
tD

E

BTERMINATED & CTERMINATED

OR
NotCreated(tA)

Minimized
Parent Closure

Logic

Figure 6.2: Centralized control with synthesized logic to determine parent closure.

Parent

A tA

B
tB

C

D
tD

E
Anti-tA

E-Done

C-Done

FO
R

K

SE
LE

C
T

Closure Token

Figure 6.3: Distributed control using counter tokens to implement synthesized

closure logic.

paths and synthesizes logic accordingly. In the example, transaction A creates

a conditional token tA. Synthesized logic would check for one of the following

conditions: either token tA was never created, or token tA was created and both

transactions C and E have terminated. Fig. 6.2 illustrates the logic generated.

This direct translation couples transactions in the target implementation (with,

for example, logic wires), and thus may induce undesirable synthesis constraints.

In the case that the transactions exist within different domains, this can affect

performance and timing closure.

81

Chapter 6. Practical Analysis and Model Translation

Parent

A

B

GF

C

D
E

conditional token unconditional token

tA2

tB2

Closure Condition:
(E or NotCreated(tB2)) and (G or NotCreated(tA2))

Figure 6.4: Constructing the condition under which Parent can be closed, demon-

strating how conditional tokens may terminate paths and must be accounted for.

The third approach generates counter-tokens or anti-tokens to pass transaction

control state. Counter tokens are created at every conditional token creation – if

the designed token is not created, then the counter token is created. A latency-

tolerant, timing/locale decoupling signal now implements the same logic – that

is, it replaces And with Join and Or with Select nodes.

Algorithm 6.1 lists pseudo-code for constructing the closure condition for a

parent transaction with child transactions. It traverses the local child transaction

network, starting with the “last” children (those without forward dependencies),

first traversing backwards. It then visits each child in forward topological order:

nodes’ predecessors are processed before the node itself is processed. As it visits

each transaction, it takes note of conditional tokens. If it is possible for the child

transaction to not create a token, then that is a potentially closing transaction

since it could terminate the path of execution. At a Join node, the algorithm

82

Chapter 6. Practical Analysis and Model Translation

Algorithm 6.1 Closure condition construction algorithm for a parent transaction

1 def constructClosure (transaction parent):

2 condition = True

3 independent - children = {all children without forward transaction

dependencies }

4 foreach child in independent - children :

5 condition = condition AND construct (parent , child)

6 return condition

7

8 def construct (transaction parent , child -node):

9 if child -node has already been visited :

10 return child -node. condition

11 if child -node is FORK:

12 condition = False

13 foreach predecessor P of child -node:

14 condition = condition OR construct (parent , P)

15 else if child -node is SELECT :

16 condition = True

17 foreach predecessor P of child -node:

18 condition = condition AND construct (parent , P)

19 else:

20 condition = False

21 foreach incoming token in child -node ’s guard :

22 condition = condition OR construct (parent , token - source)

23 if token .is - conditional :

24 condition = condition OR NotCreated (token)

25 foreach token created by child -node:

26 if token is conditional :

27 token .is - conditional = True

28 child -node. condition = condition

29 return condition

83

Chapter 6. Practical Analysis and Model Translation

determines the condition under which execution cannot continue; this will occur

if any of the incoming paths terminate. Its closure condition is the disjunction

of all of its incoming paths’ closure conditions. For Select nodes, on the other

hand, execution can only stop at the node if none of its tokens are created. The

conjunction of incoming conditions forms the node’s closure condition. Since this

algorithm visits each child transaction once, run-time is linear with the total

number of transactions in the design.

Fig. 6.4 illustrates an example of closure condition generation. Below is a

step-by-step runthrough of the algorithm. It starts from the transactions with no

forward dependencies, transactions E and G. Starting down the E path, it visits

predecessor C, which runs unconditionally.

Tracing the Closure Construction Algorithm Fig. 6.5 traces closure con-

struction for the transaction hierarchy listed in fig. 6.1. Each colored box repre-

sents a recursive dive. As it visits each transaction, it analyzes conditional tokens

and incrementally constructs the closure condition. The return values represent

the net closure condition for a given node’s predecessors. So, for instance, at node

B, the return value from its recursive call is the total closure condition for all of

B’s predecessors (in this case, just A).

6.2 Race Condition Detection

A new specification language brings with it the burden to provide verification

scaffolding to ensure correct, intended application behavior. Early in the seman-

84

Chapter 6. Practical Analysis and Model Translation

visit E

- Incoming token is unconditional.
- Set path condition to: NotCreated(tB2)

visit JOIN

- Incoming tokens tC and tD are unconditional.
- “Or” incoming conditions:
False or NotCreated(tB2), simplified to NotCreated(tB2)

visit C

- Incoming token tB1 is unconditional.
- Token tC is unconditional. Return False

visit B

- Incoming token tA1 is unconditional.
- Token tB1 is unconditional, tB2 is conditional. Return False

visit A

- tA1 is unconditional. Return False

visit D

- Incoming token tB2 is conditional. Amend NotCreated(tB2)
- Token tD is unconditional. Return NotCreated(tB2)

visit B. Already visited. Return False.

visit G

- Incoming token tF is unconditional.
- Set path condition to: NotCreated(tA2)

visit F

- Incoming token tA2 is conditional. Amend NotCreated(tA2)
- Token tF is unconditional.
Return NotCreated(tA2)

visit A. Already visited. Return False.

- “And” the two path conditions to yield Parent closure:
 NotCreated(tB2) and NotCreated(tA2)
- “And” the termination conditions of E & G
 NotCreated(tB2) and NotCreated(tA2) and
 RuleTerminated(E) and RuleTerminated(G)

Figure 6.5: A trace of the closure algorithm

tic/language design process, it became clear that latency tolerance coupled with

concurrency can quickly lead to correctness challenges. If any two transactions

share information, and that information is written in an unexpected order, it may

lead to starvation or deadlock. Consider transaction A and B, which both write a

variable x. They execute concurrently and may write x in either the orders (A.x,

B.x) or (B.x, A.x). A third transaction C is then executed, which conditionally

creates a token tC based on the value of x. While this scenario is obvious to the

designer, as a design gets increasingly complex, it may not be as clear cut. For

instance, A and B may be deep hierarchies or rule instances where the lower child

is committing a new value of x.

This scenario underpins the reasons why the model is transactional, and specif-

ically, why it is locally atomic in its write ordering (e.g. concurrent transactions

will choose an order to write – their writes will not overlap). The compiler pro-

85

Chapter 6. Practical Analysis and Model Translation

vides fast access to potential conflicts, alleviating the difficulties in finding, let

alone reproducing, concurrency bugs.

6.2.1 Mutually Concurrent Sets

Parent Minimal Sets
{B, D} {C, D}

{B, E, F}
{C, E, F}

Covered Sets
{B, E} {C,F}
{B, F} {E,F}

{C, E}

A

B C

D
E

F

MUTUALLY CONCURRENT SETS

Figure 6.6: Possible concurrent transactions captured in sets. Every covered set is

a strict subset of one of the minimal sets. Minimal sets are used for CCR analysis,

while the both set types are used in race condition detection (if they commit to

the same variables).

A prerequisite for detecting potential race conditions is to determine the sets

of potentially overlapping transactions. A straightforward bookkeeping method

using Mutually Concurrent Sets allows rapid detection in a scalable way. In

general, determining these sets on a flat graph would require exponential time;

for well-formed hierarchies, however, the runtime is pseudolinear, e.g. the linear

component of tree traversal eclipses the local exponential component since the

exponent of small numbers is insignificant. Each parent rule manages its overlap-

ping children then compares those sets against the variables they write. If there

86

Chapter 6. Practical Analysis and Model Translation

Algorithm 6.2 Calculate pairs of potentially mutually concurrent child transac-

tions.
1 Precondition : dep_matrix initialized to NoRelation

2 def determineMutualConcurrency (transaction , path):

3 dep_matrix [transaction][transaction] = NoDecision

4 if transaction in path: return

5 foreach t in path:

6 if dep_matrix [transaction][t] != DirectDep :

7 dep_matrix [transaction][t] = IndirectDep

8 if dep_matrix [t][transaction] != DirectDep :

9 dep_matrix [t][transaction] = IndirectDep

10 path.add(transaction)

11 foreach t in forward - dependencies (transaction):

12 dep_matrix [transaction][t] = IndirectDep

13 dep_matrix [t][transaction] = IndirectDep

14 determineMutualConcurrency (t, path)

15 path. remove (transaction)

are any transactions writing to the same variable in varying order, the compiler

reports the transactions, the variable, and traces the respective assign statements.

6.2.2 Dependency Classifier Matrix

The first step is to traverse the local child dependency graph and construct a

dependency classifier matrix. This will indicate, for every pair of children, whether

the children have no relationship, a direct dependency, or an indirect dependency.

The pseudo-code is listed in alg. 6.2. Once these relationships are identified, it

proceeds to set minimal set construction.

87

Chapter 6. Practical Analysis and Model Translation

Algorithm 6.3 Construct minimal mutually concurrent sets.

1 Precondition : dep_matrix is correctly populated

2 def constructConcurrentSets (transaction , dep_matrix):

3 concurrent -sets = {} # set of sets

4 foreach child in transaction .child - rules :

5 foreach other in { transaction .child - rules - child }:

6 if dep_matrix [child][other] == NoRelation :

7 foreach S in concurrent -sets:

8 if other is mutually concurrent with all members of S:

9 S.add(other)

10 if other was not added to any set:

11 concurrent -sets.add ({ child , other })

6.2.3 Mutual Concurrent Set Construction

The dependency classifier matrix identifies relationships between pairs of rules.

To minimize the amount of checks required in race conditions (and therefore keep

the runtime bounded), a heuristic collects minimal sets of potentially concurrent

transactions. The algorithm is listed in alg. 6.3. It maintains a collection of

sets that it has constructed so far. For a given transaction’s child dependency

network, it analyzes the dependency classifier matrix to identify all pairs of child

transactions that may run concurrently. For a given transaction, if there exists a

set that the transaction is completely mutually concurrent with, then this trans-

action becomes a member of that set. Otherwise, a new set is formed.

Runtime of this algorithm is N2M , for N number of child transactions and M

mutually concurrent sets. However, as discussed in the next section, the average

number of children is low, and thus cubic growth effectively appears as a constant

scale factor.

88

Chapter 6. Practical Analysis and Model Translation

6.2.4 Performance

Limited-child hierarchy is key to effectively linear runtime; Average Number

of Transactions per Parent (ANTP) is an approximate metric describing relative

system “flatness.”

Definition 6.1. Average Number of Transactions per Parent (ANTP) is the mean

of the number of child nodes for every transaction in the system.

ANTP (S) = 1
N

∑
T∈S
C(Ti)

where N is the total number of transactions in system S, and C(T) is the number

of children in transaction T .

Fig. 6.8 demonstrates effectively linear (pseudolinear) runtime for common

use of the model – i.e. hierarchies with reasonably low ANTP. In the worst case,

runtime is quadratic with the local number of transactions (the immediate child

transactions). However, the algorithm uses a path traversal mixed with a set-

membership test that scales with path length. Generally speaking, lower ANTP

correlates to shorter path lengths – the longest path is at most the number of

local nodes.

Random transaction hierarchies of different sizes were generated using a hier-

archy construction heuristic. Hierarchies with varying average number of child

per parent transaction (ANTP) are binned into ranges A(0, 50), A(100, 150),

A(150, 200), and A(200, 250). Note that A(50, 100) yielded similar results to

A(0, 50) and is omitted. Fig. 6.7 illustrates the overhead incurred from construct-

ing mutual concurrency graphs with large average child counts. The runtime grows

89

Chapter 6. Practical Analysis and Model Translation

Figure 6.7: Mutual concurrency scaling with different hierarchy depth. “A” in-

dicates the range for ANTP – the average number of transactions per parent.

“A(0,50)” means hierarchies with ANTP between 0 and 50.

dramatically as ANTP increases. This is expected – as ANTP increases, the hi-

erarchy disappears, and the algorithm experiences expected close-to-exponential

growth.

6.2.5 Isolating and Reporting Race Conditions

As discussed in 3.3.7, this model has a high potential for race conditions.

The responsibility of resolving race conditions is left to designers, as they have a

better sense of intended behavior. Using mutually concurrent sets, the tool simply

performs set intersection operations on the sets of variables written by concurrent

transactions.

Since set intersection runs in linear time, race condition detection itself is linear

with the total number of transactions (shown in fig. 6.9).

90

Chapter 6. Practical Analysis and Model Translation

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000 100000

R
u
n
ti
m
e
 (
s)

Total Number of Transactions

Mutual Concurrency Set Construction Runtime

Figure 6.8: Mutual concurrency set construction runtime.

 0.001

 0.01

 0.1

 1

 10

 100 1000 10000 100000

R
u
n
ti
m
e
 (
s)

Total Number of Transactions

Race Condition Detection Runtime

Figure 6.9: Race condition detection scaling.

91

Chapter 6. Practical Analysis and Model Translation

Algorithm 6.4 Use the dependency classifier matrix to report potential race

conditions.
1 for i = 0 to N - 1:

2 for j = 0 to N - 1:

3 if already checked (i,j): skip iteration

4 if dep_matrix [i][j] is not NoRelation :

5 A = variables - written (T[i])

6 B = variables - written (T[j])

7 for variable in set - intersect (A, B):

8 report - conflict (variable , T[i], T[j])

False Positives The reporting mechanism is conservative – it reports all possi-

ble concurrent data interactions. Designers may provide a list of “acknowledged”

conflicts, thus avoiding unnecessarily verbose reporting. To further cull the list,

the compiler leverages information it gathers from closure mechanism synthesis.

The closure logic classifies tokens based on their conditions. If the conditions are

mutually exclusive (tagged as such from conditional block structure), then the

dependency classifier matrix is updated accordingly.

In the following code, for instance, variable y is not reported as conflicting;

the compiler statically determines that tokens tA and tB are mutually exclusive

and thus their corresponding forward rules are removed from mutually concurrent

sets:
1 rule T:
2 if x > 5:
3 create tA
4 else:
5 create tB
6 rule A(tA):
7 y = 1
8 rule B(tB):
9 y = 2

92

Chapter 6. Practical Analysis and Model Translation

6.3 Conversion into Existing Semantic Models

The hierarchical transactional model is a unifying model in the sense that

it translates to existing data and execution models in a way that sensible and

appropriate for the target domain. In the hardware high-level synthesis field,

control/data-flow and pure data-flow graphs are ubiquitous. By translating hi-

erarchical transactions into these models, synthesis tools can leverage a diverse

spectrum of synthesis solutions. First, a method of mapping into pure functions is

presented (covering straight logic-level synthesis), followed by a control/data-flow

conversion technique. Finally, iterator to data-flow conversion is presented (with

a novel clustering and synthesis heuristic detailed in Chapter 8).

6.3.1 Transactions to Pure Functions

Data and control mobility means transactions are purely functional – they

do not make any changes to state outside of their local context. Therefore, any

transaction sub-tree can be converted into a strictly combinatorial and arithmetic

expression. In the special case of iterators, they are elaborated and unrolled to

form the respective functional nodes.

This process requires an algorithm to select one execution path from the fam-

ily of possible executions, essentially resolving any concurrent reads/writes by

assigning variables a unique name. The general flow is as follows, for rule R0:

93

Chapter 6. Practical Analysis and Model Translation

A

A_w = F_x + F_y

B
B0

B0_y = F_y + A_w

B1

B1_w = A_w + 1

C
C_x = F_x + 1

D
D_z=B1_w+C_x+B0_y

rule T:
 var x,y,z:Bits(16)
 rule F:
 rule A:
 w = x * y
 create tA
 rule B(tA):
 rule B0:
 y = y + w
 create tB0
 rule B1:
 w = w + 1
 create tB1
 rule C(tA):
 x = x + 1
 create tC
 rule D(tC and tB0 and tB1):
 z = x + y + w

Figure 6.10: Hierarchical transactions to pure function example.

• For all variables read in by R0, create source edges

• Visit each child rule in topological order

– For every input to the child, resolve the source of information by tracing

all of the writes thus far:

∗ If the variable has not been written by this rule, then its source is the

value that was read in by R0

– For every variable written by the child, create a new edge labeled with the

child rule identifier and variable name. Store this information for the next

sets of rules

The process is repeated hierarchically. At lower hierarchies, the algorithm

must climb up the local sub-tree to resolve a variable’s source, ultimately falling

back to the top-level rule’s input. For example, if rule R0 contained child C0

which itself contained D0, and D0 read a variable value that has not been written

by either R0 or C0, then it would fall back to the value read in by R0 (from its

parent).

94

Chapter 6. Practical Analysis and Model Translation

Fig. 6.10 illustrates one possible execution of the conversion algorithm. It

assumes that F_w, F_x, F_y, and F_z exist, and represent the values read-in by rule

F. At each rule it visits, the algorithm traces the source information represented

by a given variable. Once each rule has been visited, it performs a final look-up

for each variable. If the variable was written internally, the new value overrides

the input value. Otherwise, it falls back to the value read-in at the start. It then

iteratively substitutes internal values until the final equations are dependent only

on the initial inputs read in. The final equations for each of w, x, y, and z are

presented:
1 w: B1_w = A_w + 1
2 = (F_x + F_y) + 1
3 x: C_x = F_x + 1
4 y: B0_y = F_y + A_w
5 = F_y + F_x + F_y
6 z: D_z = B1_w + C_x + B0_y
7 = (A_w + 1) + (F_x + 1) + (F_y + A_w)
8 = ((F_x + F_y) + 1) + (F_x + 1) + (F_y + (F_x + F_y))

Note that each final equations are only dependent on the values read-in.

Once the pure function is constructed, it can be translated directly into RTL.

For more complicated pipelining support, sec. 6.4 outlines a method to convert

transactions into control/data-flow graphs. The same method addresses iterators,

as they are better suited to CDFGs than pure functions.

6.4 Transactions to Control/Data-Flow Graphs

The usefulness of the transaction model is enhanced by its ability to map into

many existing approaches. CDFGs and task graphs are the most common ap-

plication representation model for existing cosynthesis work, and thus reducing

95

Chapter 6. Practical Analysis and Model Translation

a transaction representation into a data-flow graph grants access to these tools.

Translation to control/data-flow graph is very similar to pure function conversion,

with the exception that arithmetic nodes are instantiated instead of functions. In

fact, pure functions and CDFGs are isomorphic representations of the same be-

havior. The primary benefit with direct CDFG representation is the availability

of scheduling tools and their ability to convert iterators efficiently. While it is

possible to create pure functions from iterators, it would lead to very large func-

tions.

One key point here is that transaction data copying allows this process to

occur without requiring arbitration or data coherence management. It simply

selects a subset of the valid executions and replaces copying by relabeling state.

This procedure removes the copying semantic; however, it should be noted that

the existence of encapsulated state fundamentally allows an easy and straightfor-

ward conversion. The same applies to hierarchy – at any scale, the heuristic can

flatten the hierarchy into a graph. This allows the synthesis tool to determine the

appropriate granularity for conversion.

Consider the following example:

96

Chapter 6. Practical Analysis and Model Translation

1 rule Top <-(w, x, y, z):
2 var m, n, p, q: Bits (16)
3 rule A:
4 m = x * y
5 p = w * z
6 create tA
7 rule B(tA):
8 rule B0:
9 n = p + x

10 create tB0
11 rule B1(tB0):
12 q = m + y
13 if m > n:
14 create tB1
15 rule C(tA):
16 p = m + x
17 rule D(tB1):
18 q = q + 1

As is the procedure with pure functions, the first step is to rename variables

according to their source. All of the inputs and outputs are collected, and edges

are generated for each.

1. First step is to rewrite all of the variable names and assign nodes – at this

stage, the tool will effectively select a subset of possible executions. By

naming variables, it selects the source rule, even if another rule may write

that value. For instance, rule C uses A’s copy of m.

2. Rewrite each rule’s ID. Create edges for every variable read-in and written

out.

97

Chapter 6. Practical Analysis and Model Translation

Top_x

Top_y

Top_w

Top_z

*

*

+

+

+
>

+1

C_p

B1_q

D_q

A_m

A_p
B0_n

Figure 6.11: Hierarchical Transactions to CDFG Example. Solid lines are data

edges. Dotted lines are control edges.

The resulting example becomes:
1 rule Top <-(Top_w , Top_x , Top_y , Top_z):
2 rule A:
3 A_m = Top_x * Top_y [node 0]
4 A_p = Top_w * Top_z [node 1]
5 create tA
6 rule B(tA):
7 rule B0:
8 B0_n = A_p + Top_x [node 2]
9 create tB0

10 rule B1(tB0):
11 B1_q = A_m + Top_y [node 3]
12 if A_m > B0_n: [control node 4]
13 create tB1
14 rule C(tA):
15 C_p = A_m + Top_x [node 5]
16 rule D(tB1):
17 D_q = B1_q + 1 [node 6]

Fig. 6.11 illustrates the result of creating a CDFG from the above example

– solid lines represent operands passing between operations while dotted edges

are purely control (and conditionally determine flow). The token tB1 is created

conditionally based on the difference between m and n – a conditional edge is

created between the comparison operator and the subsequent addition.

98

Chapter 6. Practical Analysis and Model Translation

6.4.1 Flow-graphs from Iterators

While conversion from iterators to CDFGs makes the representation amenable

to existing technologies, it does so at the cost of lost symmetry information.

There is high potential for leveraging symmetry in code generation as a com-

paction method for reducing control overhead, particularly when synthesizing ad-

dressing/indexing logic. For example, a system with an accelerating arithmetic

pipeline would need input and output addresses for every operand, along with a

method to represent data dependencies. With symmetry information, this control

information can be codified into a state machine index generator optimized for a

particular architectural target.

That said, there are still benefits to sourcing CDFGs from iterators. First and

foremost, iterators make guarantees about the scope and access of information.

They will not result in random graphs, but rather, well-structured, well-defined

graphs.

The actual translation from transactions containing iterators into CDFGs is

precisely the algorithm above, with an added iterator unrolling step. The system

first converts the body of the iterator; it constructs a local CDFG and replicates

this set for each iteration. For every iterating variable, the compiler queries its

respective iterators (e.g. if they are composed or nested iterators) to yield the

requested data.

99

Chapter 6. Practical Analysis and Model Translation

6.4.2 Software Scheduling

Once a portion of the application is targeted at the software domain, the

synthesis tool can selectively flatten subsets of the design and apply traditional,

well-known software scheduling techniques. In a multiprocessing context, trans-

actional boundaries resolve the problem of managing shared state – all of the

interaction is well-defined, and potential race conditions are exposed at the ab-

stract model level. There are software-specific features that can guide efficient

realization: a large, cached memory is useful for storing dependency information

for dynamically dispatching transaction executions. The software synthesizer may

leverage reference locality to better use available caching. If the synthesis tool is

aware of cache sizing and structure, it can accordingly adjust software/hardware

partitioning to make (near-)optimal utility of the cache.

100

Chapter 7

Control-Dominant Application
Study

Real-world hardware/software systems exhibit a mix of control- and data-

dominated components. This chapter demonstrates the control end of the spec-

trum: a study into the specification of a microprocessor, complete with internal

concurrent tasks and complex control decisions. The emphasis is on exercising

the language and semantic model – in practice, a processor may be suitable as a

cosynthesis application for simulation speed-up. For instance, in the early stages

of a microprocessor instruction architecture design, a field-programmable gate ar-

ray (FPGA) can leverage hardware accelerator to rapidly simulate applications,

exposing potential pipeline bottlenecks and critical instructions.

More importantly, if the language can express a processor, then it is rich

enough to express any equally complex application (including the type of mixed

reactive/high performance applications commonly targeted towards embedded

systems). The primary goals of this study is to evaluate feasible execution of

101

Chapter 7. Control-Dominant Application Study

a complex design expressed as hierarchical transactions, and expose useful prop-

erties from an exercised model.

7.1 The MSP430 Microprocessor

Texas Instrument’s MSP430 [81] is a popular ultra low power microprocessor

commonly used for power-constrained embedded applications. Its instruction set

architecture (ISA) is minimal but complete. The HTL realization is based on

Greg Hoover’s PyTDL MSP430 implementation [48], extended with hierarchy

and covering the complete ISA.

7.2 Processor Specification

When approaching this problem, the primary focus is on expressing the interface-

level functionality, completely irrespective of timing details. The design is an

abstracted implementation of a pipelined architecture – functionally correct, but

latency tolerant. It runs valid MSP430 executables (generated from a GCC-based

cross compiler).

The instruction set contains standard addition and subtraction operators –

a multiplier is accessible through memory mapped I/O. Decoding and executing

instructions are expressed directly in rules. Both the register file (containing 16

registers), and memory are instances of the Addressable built-in library type,

allowing indexed behavior. The topmost rule is a testbench environment, con-

taining the entire application’s behavior within a single rule tree. Instructions

102

Chapter 7. Control-Dominant Application Study

and status registers are object instances of specialized classes – the Instruction

class contains functional rules for decoding the operation. The results in clean,

readable code.

The following sections demonstrate a small portion of the specification (the

decoding logic). The full specification is available in Appendix B.2.

7.2.1 Decoding

The following decodes an instruction, creating appropriate conditional tokens

depending on the type of operation.

1 var src_op , dest_op : Bits (16)
2 var src_pc_offset , dest_pc_offset : Bits (2)
3

4 var src , dest: Bits (4)
5 var smode , dmode: Bits (2)
6

7 rule Decode :
8 rule DetermineType :
9 print " Instruction value: ", hex(instr.v)

10 pc_offset = 1
11 if instr. is_jump ():
12 print " Jump operation "
13 create tExecuteJump
14 elif instr. is_single ():
15 print " Single operation "
16 create tDecodeSingle
17 elif instr. is_double ():
18 print " Double operation "
19 create tDecodeDouble
20 else:
21 create tDecodeError
22

23 rule DecodeSingle (tDecodeSingle):
24 src = instr. single_dsreg ()
25 smode = instr. single_ad ()
26

27 if not instr. opRETI ():
28 create tGetSourceOperand
29 else:
30 # For RETI instructions , we just execute them

directly . We just pretend

103

Chapter 7. Control-Dominant Application Study

31 # that the source operation was completed by
creating the token here.

32 src_op = 0
33 src_pc_offset = 1
34 create tSourceReady
35

36 rule DecodeDouble (tDecodeDouble):
37 src = instr. double_sreg ()
38 smode = instr. double_as ()
39 create tGetSourceOperand
40

41 if instr.opMOV ():
42 create tDecodeMOV
43 else:
44 dest = instr. double_dreg ()
45 dmode = instr. double_ad ()
46 create tGetDestOperand
47

48 rule DecodeMOV (tDecodeMOV):
49 # If it ’s a MOV instruction , we do not need to read

the destination
50 # so we just create the token here.
51 if smode == 1:
52 dest_pc_offset = 1
53 else:
54 dest_pc_offset = 0
55 dest_op = 0
56 create tDestReady
57

58 # end rule Decode

Note that the print statements are purely for simulation. Recall that all rules

are atomic – in the case that there are multiple statements in the rule, they run

concurrently.

The DecodeSingle and DecodeDouble paths are mutually exclusive, condi-

tional on the type of instruction. The token semantic lends itself to a flexible

method of communicating control that particularly simplifies error conditions.

On decode error, the tDecodeError token is created – the token climbs the hi-

erarchy (as the respective transactions commit) until it is consumed by logic to

manage the decode error.

104

Chapter 7. Control-Dominant Application Study

The processor dispatches concurrent paths to retrieve its source operands (in-

cluding the constant generator, memory, or register). It further sets up the des-

tination operand. Execution is distributed: jump instructions, arithmetic opera-

tions, and memory read/writes are all rule sub-trees. Finally, write-back occurs

after execution, ending the instruction stream.

7.3 Race Condition Detection

The race condition detection algorithm from sec. 6.2.5 was applied to the

processor. Since the heuristic is conservative, it reported over 40 situations where

variables may be overwritten concurrently. The list was culled based on designer

knowledge of exclusive execution paths down to eight potential issues. After ana-

lyzing the reads and writes, two serious race conditions were exposed, both related

to off-by-one counting in the calculation of the program counter. The entire pro-

cess of detecting and correcting race conditions took less than five minutes – there

was no additional overhead in specifying a separate formal model or requiring deep

execution analysis. The direct codification of shared state allowed the compiler

to quickly and efficiently report these bugs to the designer.

7.3.1 The Original Problem

In the first version of the processor specification a pc_offset variable indi-

cated how much to increment the program counter. Initially, no concurrency was

exploited, and the rules to retrieve source operands each incremented this off-

105

Chapter 7. Control-Dominant Application Study

set. Once the two paths were made concurrent, however, it exposed the following

conflict:
1 var pc_offset : Bits (2)
2

3 rule GetSourceOperand (tGetSourceOperand):
4 rule DetermineSourceAddressing :
5 pc_offset = 0
6 rule SourceAbsolute (tSourceIsAbsolute):
7 pc_offset = pc_offset + 1
8 rule SourceIndexed (tSourceIsIndexed):
9 pc_offset = pc_offset + 1

10 rule SourceIndirect (tSourceIsIndirect):
11 pc_offset = pc_offset + 1
12 rule SourceImmediate (tSourceIsImmediate):
13 pc_offset = pc_offset + 1
14 # Eventually creates tDestReady
15

16 rule GetDestOperand (tGetDestOperand):
17 rule DetermineDestAddressing :
18 pc_offset = 0
19 rule DestAbsolute (tDestIsAbsolute):
20 pc_offset = pc_offset + 1
21 rule DestIndexed (tDestIsIndexed):
22 pc_offset = pc_offset + 1
23 rule DestIndirect (tDestIsIndirect):
24 pc_offset = pc_offset + 1
25 rule DestImmediate (tDestIsImmediate):
26 pc_offset = pc_offset + 1
27 # Eventually creates tSourceReady
28

29 # an intermediate rule waits for tSourceReady and tDestReady
30 # and creates tInstructionDone
31

32 rule InstructionDone (tInstructionDone):
33 pc = pc + pc_offset # Here ’s where the two paths report the

wrong PC offset

Once the problem was identified, the solution was simple:

106

Chapter 7. Control-Dominant Application Study

1 rule GetSourceOperand (tGetSourceOperand):
2 rule DetermineSourceAddressing :
3 src_pc_offset = 0
4 rule SourceAbsolute (tSourceIsAbsolute):
5 src_pc_offset = src_pc_offset + 1
6 rule SourceIndexed (tSourceIsIndexed):
7 src_pc_offset = src_pc_offset + 1
8 rule SourceIndirect (tSourceIsIndirect):
9 src_pc_offset = src_pc_offset + 1

10 rule SourceImmediate (tSourceIsImmediate):
11 src_pc_offset = src_pc_offset + 1
12 # Eventually creates tSourceReady
13

14 rule GetDestOperand (tGetDestOperand):
15 rule DetermineDestAddressing :
16 dest_pc_offset = 0
17 rule DestAbsolute (tDestIsAbsolute):
18 dest_pc_offset = dest_pc_offset + 1
19 rule DestIndexed (tDestIsIndexed):
20 dest_pc_offset = dest_pc_offset + 1
21 rule DestIndirect (tDestIsIndirect):
22 dest_pc_offset = dest_pc_offset + 1
23 rule DestImmediate (tDestIsImmediate):
24 dest_pc_offset = dest_pc_offset + 1
25 # Eventually creates tDestReady
26

27 rule Execute (tSourceReady and tDestReady):
28

29 rule DetermineExecutionType :
30 # first combine pc offsets
31 pc_offset = pc_offset + dest_pc_offset + src_pc_offset

Generalized Model The primary limitation in race condition detection is in-

dexed data, particularly access to the register file and memory. These situations

encounter traditional exponential scaling, as there are few options except compre-

hensive state exploration. While the specific violating indexes cannot be ascer-

tained at compile time, it does report when transactions attempt to concurrent

write to the indexed object. In the worst case, it provides overly conservative

bounds.

107

Chapter 7. Control-Dominant Application Study

7.4 Transactional Simulator

The MSP430 executed in the behavioral simulator, validating that the archi-

tecture was correctly implemented. Simple software applications were written in

C and cross-compiled to the MSP430 ISA. These applications were then executed

in the transactional simulator (built into the compiler), preserving the token and

transactional abstraction. Development time was short, largely because the spec-

ification language is concise and clear.

In order to facilitate the register file and memory, an extension was built into

the simulator that prevented it from copying either indexable object transaction-

ally. This would have created tremendous memory and performance overheads,

hindering simulation speed. Instead, a logging mechanism maintained a trace of

reads/writes to the parent memory (trimming overwritten information to keep it

small). Any concurrently executing transactions were resolved at commit; if there

was a memory conflict between transactions, this information was dynamically

reported to the user.

The following example illustrates a situation that the simulator reports. For

rule A, the logging mechanism stores a mapping between memory[1] and its write

value 1. The same happens for rule B – the value 2 is stored for memory[1]. Once

both transactions commit, the simulator detects a conflict and warns the user.
1 rule Top:
2 var memory : Addressable (1024 , Bits (16))
3 rule A:
4 rule A0:
5 x = 1
6 rule A1(tA0):
7 memory [x] = 1
8 rule B:
9 memory [1] = 2

108

Chapter 7. Control-Dominant Application Study

7.5 Direct-to-RTL Realization

Designing new semantic models requires a mix of formal construction and prac-

tical realization. Early in the design process, a direct-to-RTL code generator was

used to discover any potential execution issues – in fact, this led to the discovery

of a closure requirement. The code generator directly implemented transactions in

the Verilog Hardware Description Language, including full copying semantic. For

the register file and memory, however, the code generator instantiated single in-

stances of both and scheduled around concurrent accesses (for simplicity). While

this approach obviates any race conditions related to either indexed storage, it

does allow full simulation of the control logic.

The primary insight in direct model realization is verification of closure correct-

ness. The MSP430 implementation contains a significant number of conditional

tokens, and therefore conditionally executing transactions. In the gate-level sim-

ulation, a compiled C program executed on the RTL MSP430 implementation,

covering a reasonable array of instructions. By virtue of complete execution, the

model proved to be closed and executable.

109

Chapter 8

High Performance Arithmetic
Applications

At the opposite end of the spectrum from control-dominated applications are

high-performance, arithmetic-heavy algorithms. This chapter demonstrates a fea-

sible synthesis path for high-performance realizations of arithmetic-heavy applica-

tion. It presents architectural exploration of matrix multiply, Fast Fourier Trans-

form (FFT), and image convolution examples. The assumption is that lower level

model conversion occurs after initial coarse-grained synthesis – i.e. after infor-

mation flow is grossly organized with a global view of the problem. It leverages

encapsulated control and state to reduce a larger problem into a format that has

well-known and field-tested solutions without the need to mitigate data coher-

ence at a large scale. The following sections expand upon data-flow methods to

include a unique memory capacity-based clustering technique ideal for hardware

arithmetic acceleration. This approach scales tremendously, managing graphs up

to the million-node scale.

110

Chapter 8. High Performance Arithmetic Applications

8.1 Memory Capacity and Data Motion

Transactional semantics accomplish dual goals of pseudo-linear scalable anal-

ysis without sacrificing performance. The latter arises from a decoupling of spec-

ification and hard memory constraints. As a result, synthesis has freedom to

allocate and bind to complex memory systems.

Capturing data motion costs is critical to efficient heterogeneous implemen-

tations – it motivates the design of the hierarchical copying semantic. When

approaching synthesis of a very large application, memory capacity constraints

will significantly dictate the resultant performance. If there is not enough in-

termediate, local storage to sufficiently provide operands to arithmetic pipelines,

then a scheduler has little choice but to insert bubbles, each of which is a missed

opportunity.

Hierarchical transactions allow synthesis tools to easily summarize and iso-

late subsections of a design without the need for complex and computationally

expensive clustering. In fact, clustering a directed graph (say, for data-flow rep-

resentations) for a very large problem can be difficult: the problem is naturally

tightly constrained, as the clusters need to remain acyclic to remain amenable to

scheduling.

8.2 Problem Setup

The primary target of the high-performance data-flow technique presented

is reconfigurable embedded systems containing a microprocessor (either in the

fabric or a hard IP block) interfacing with a large, off-chip double data rate

111

Chapter 8. High Performance Arithmetic Applications

CPU

DDR
DMA

Accel0

Accel1

CPU

DDR

DMA

DMA

Accel0

Accel1

Accel2

Accel3

CPU

DDRDMA

Accel0 Operand
BRAM

Program
BRAM

DSP
Pipeline

Controller

D
M

A
 I

nt
er

fa
ce

Operand
BRAM

Program
BRAM

Scratch
pad

DSP
Pipeline

Controller

D
M

A
 I

nt
er

fa
ce

SYSTEM ARCHITECTURES ACCELERATOR ARCHITECTURES

Figure 8.1: Left: System point-to-point architectures with 1, 2, and 4 accelerators.

Right: Accelerator without and with scratchpad memory (SPM)

(DDR) memory. The processor runs software that dispatches operand clusters

to accelerators through a direct memory access (DMA) controller – that is, the

software instructs the DMA to transfer DDR memory directly to and from the

accelerators. All of the buses are assumed to be point-to-point to reflect modern

ARM-based platforms. Fig. 8.1 illustrates three system architectures and two

accelerator architectures.

8.2.1 Commercial IP Options

There are a variety of off-the-shelf third party signal processing accelerators for

algorithms such as DCT, FFT, and matrix multiply, many of which contain bus

interfaces to allow simple software integration. These products are remarkably

efficient but are typically targeted as fixed sizes. Applications like FFT and DCT

can handle larger problems by composing smaller accelerators (e.g. a 16K-point

112

Chapter 8. High Performance Arithmetic Applications

C0

C1

0 1

3
2

4 5

C0

C1

Figure 8.2: Illustration of clustering that can induce cycles

FFT can be composed of 4 × 8K FFT blocks). However, as the problem grows

to very large scales, there are no obvious methods of managing the enormous

amount of information that must be exchanged between blocks. Algorithms such

as matrix multiply have no choice but to resort to DSPs and custom DSP software.

Again, managing the gross motion of data is not straightforward. The approach

presented in this chapter accepts designs of any shape. While random graphs may

prove less efficient, real-world arithmetic graphs can exploit hardware parallelism

due to their local operation scope.

8.2.2 Challenges in Digraph Clustering

Clustering a directed graph can lead to a minefield of induced cycles (fig.

8.2) when the cluster graph is generated based on its nodes dependencies. This

cannot be directly scheduled as there are coupled dependencies which are unre-

solvable without violating cluster boundaries. The Kernighan-Lin algorithm [54]

approaches this problem with a heuristic that evaluates the net cost of preserving

balanced partitions across multiples moves from one partition to another, captur-

ing both the cost of the node itself and the subsequent corrections that make the

original move sensible.

113

Chapter 8. High Performance Arithmetic Applications

Scheduler-driven partitioning proposes a different approach: clustering is per-

formed as part of list scheduling, thus guaranteeing that the clusters themselves

can be scheduled at a coarser grain.

8.3 Scheduler-Driven Partitioning

To reach high performance arithmetic designs, an implementation strategy is

presented based on well-formed data-flow designs generated by iterators. The

target platform is a heterogeneous reconfigurable architecture. The primary ap-

plication space is reconfigurable embedded systems, where there is an opportunity

to selectively hardware-accelerate an arithmetic-heavy portion of the application.

Its approach partitions a data-flow graph into small clusters that fit into microar-

chitectures consisting of a program memory, an operand memory, and a pipelined

micro-DSP (i.e. a DSP without any control logic), shown in fig. 8.3. The sys-

tem architecture contains a primary CPU attached to high-speed, high-capacity

double-data rate (DDR) memory, along with a selection of accelerators (fig. 8.1).

The peripheral has an optional scratchpad memory (SPM) with parameterizable

size. A scratchpad memory essentially provides a local operand buffer to exploit

reference locality without the overhead of a traditional cache. In essence, it pro-

vides a second pair of memory ports to allow maximal use of every computation

cycle available.[74]

The first step selects the arithmetic-heavy portion of the application, and con-

structs a data-flow graph via its iterators. A list scheduler then selects nodes

to insert into the DSP pipeline until memory capacity constraints are met, thus

114

Chapter 8. High Performance Arithmetic Applications

Operand
BRAM

Program
BRAM

DSP
Pipeline

Controller

D
M

A
 I

nt
er

fa
ce

Operand
BRAM

Program
BRAM

Scratch
pad

DSP
Pipeline

Controller
D

M
A

 I
nt

er
fa

ce

Figure 8.3: Internal architecture for peripheral. The bus provides initial operands

and the program. A controller executes this program and uses the local operand

block RAM (BRAM) to store intermediate operations. After the program has

completed, the controller initiates a transfer to the DMA controller while simul-

taneously asserting an interrupt for the main CPU. When the DMA is configured

in scatter-gather mode, the next set of operations arrives automatically, based on

an internal linked list of data copying blocks. The peripheral on the right adds a

local scratchpad memory to provide local, higher utility access to operand data.

115

Chapter 8. High Performance Arithmetic Applications

Algorithm 8.1 List-scheduler based cluster building heuristic
1: function BuildCluster(graph, ready-list, bram-size)
2: populate ready-list with initial nodes from graph
3: alloc-mgr ← AllocationManager()
4: while graphnot−scheduled do
5: alloc-space ← alloc-mgr.space()
6: if alloc-space at capacity and ready-list is locked then
7: exit loop
8: end if
9: new-node ← ready-list.dequeue(alloc-space)
10: if new-node is valid then
11: schedule(new-node)
12: add fwd deps to ready-list
13: allocate addresses for new-node
14: else
15: wait for pipeline to clear
16: end if
17: end while
18: return schedule, nodes-scheduled
19: end function

delineating that particular cluster. The global clustering heuristic creates a cor-

responding cluster node, then continues generating further clusters until all of the

nodes have been scheduled and clustered. The ready list for the scheduler must

be persistent across different cluster calls, as it maintains the overall scheduler

state. A specialized allocation manager assigns memory addresses to the input

and output operands as they are available. If there is no operand space remaining,

the scheduler first determines if it can wait until the pipeline has cleared. If there

are no more operations that can fit within the constraint, it terminates the local

run. Pseudocode for the clustering-scale heuristic is shown in alg. 8.1.

116

Chapter 8. High Performance Arithmetic Applications

Algorithm 8.2 Design partitioner using the cluster building heuristic
1: function ClusterGraph(graph, bram-size, bram-count)
2: compute node priorities
3: ready-list ← ReadyList()
4: populate ready-list with initial nodes
5: while ready-list has nodes do
6: cluster-schedule, nodes-scheduled ← BuildCluster(graph, ready-list, bram-size)
7: clusters.add(new Cluster(nodes-scheduled))
8: end while
9: cluster-graph ← BuildClusterGraph(clusters)
10: cluster-schedule ← ResourceSchedule(cluster-graph, bram-count)
11: end function

Once the initial clusters are constructed, the clusters themselves are scheduled

to determine total system cost. It factors in bus timing to transfer information

to and from the accelerators and accepts a parameter specifying the number of

available peripherals. A simple resource-constrained list scheduler is used (since

the total number of clusters tends to be relatively small).

8.3.1 8-point FFT Clustering Illustration

Consider the scheduler-driven clustering of a small 8-point FFT. Fig. 8.4 il-

lustrates the first phase of the heuristic that gathers individual clusters based on

capacity. The image highlights five clusters, and shows the order in which they

may be scheduled on the right (one of many valid orderings). In practice, the

heuristic will select much larger and deeper clusters; for illustrative purposes, as-

sume a very small capacity constraint. Once the clusters are generated, the cluster

dependencies are constructed and the graph is scheduled onto the system. Fig.

8.4 illustrates the resultant cluster graph (based on the FFT’s dependencies) and

117

Chapter 8. High Performance Arithmetic Applications

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

C0 C1

C2 C4

C3

1
3
5
7
13
15
23

capacity hit
 C0

2
4
6
8
9
10
11
12
14
20

capacity hit
C1

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16
17

18
19
20
21

22
23
24
25
26
27
28

29
30
31
32

16
24
31
32

capacity hit
 C3

17
18
19
25
26
27
28

capacity hit
C2

21
22
29
30

capacity hit
C4

TIMESTEP NODE TIMESTEP NODE

SCHEDULER CLUSTERS:

C3

C1

C4

C0

C2

CORRESPONDING CLUSTERS:

Accel0

Accel1

C0 C1 C3 C2

C4

Final Schedule

time

Figure 8.4: Scheduler-driven clustering of FFT with corresponding cluster graph

and system-level schedule for FFT

a potential schedule onto an architecture with two accelerators. In this particular

example, the second accelerator can only be used 25% of the time; this valuable

insight can guide the designer to select the appropriate number of accelerators

based on their constraints.

8.3.2 Target Algorithms

Fast Fourier Transform The Fast Fourier Transform (FFT)[20] is a com-

mon signal processing algorithm that transforms a time-varying signal into its

frequency components (along the power spectrum). It is a prime candidate for

hardware acceleration, as it exhibits a high ratio between computations and data

motion. This shape also models similar algorithms such as the Discrete Cosine

Transform (DCT) commonly used in multimedia applications.

118

Chapter 8. High Performance Arithmetic Applications

Matrix Multiplication Matrix multiply is a foundational operation underpin-

ning signal processing and control system applications, not to mention graphics,

learning, and physical simulation tools. Matrix multiplication has been imple-

mented for any valid matrix shapes, allowing a large variety of linear operations

(incidentally including a variant of FFT[32]). The iterator produces a tree reduc-

tion for the final sums when computing the linear product of rows and columns.

Image Convolution Finally, an image convolution was chained together with

both a matrix multiply and FFT to emulate a complex DSP algorithm. This

configuration illustrates that the heuristic is agnostic of problem shape, allowing

a wide variety of composed iterators.

Software Pipelining Software pipelining is the dispatch of independent threads

of execution. Issuing multiple independent computational threads (for instance,

on different video frames) allows maximal use of hardware parallelism. Com-

putations can overlap with bus transactions, and independent operations fill in

otherwise wasted computation cycles. Implementing this in the scheduler involves

replicating the cluster graph, then scheduling all of the separate cluster graph

copies onto the same system architecture.

119

Chapter 8. High Performance Arithmetic Applications

8.4 Results

This heuristic was applied to a series of FFTs, matrix multiplications, image

convolution, and combinations of these to emulate DSP pipelines. The parameters

dictating algorithm size (for instance, FFT width, matrix dimensions) were varied

to evaluate scaling. The clustering and scheduling heuristics were implemented in

Python. Verilog models were written for the accelerating peripheral, including the

bus interface logic. The bus cost models reflected a Xilinx Vivado system using

DMA Scatter-Gather targeting a Zedboard[90]. All results were generated on a

dual-Xeon E5630 server. A tremendous number of valuable architectural configu-

rations were generated automatically – within a single day, over 500 architecture

configurations were evaluated, varying BRAM size, SPM size, algorithms, number

of accelerators, and software pipeline depth.

8.4.1 FFT

The first demonstration is the Fast Fourier Transform (FFT). The scheduler-

driven clustering heuristic was applied to FFTs of varying sizes across different

local memories. The FFT results are listed in appendix D, listing for given

BRAM/accelerator configurations, how long the resultant schedule is, the num-

ber of clusters generated, and the heuristic runtime. All results were run on a

second-generation 16-thread Intel Core i7 server.

Fig. 8.5 illustrates, for different FFT sizes, the length of the generated schedule

versus the size of the accelerator’s BRAM for two accelerators. It is clear that in

all cases, there was improvement with added memory capacity; that improvement,

120

Chapter 8. High Performance Arithmetic Applications

however, is limited (on the order of 6-8%). This is due in large part due to limited

memory port access.

Unexpected BRAM-size Invariance One of the key insights discovered by

this heuristic is the ineffectiveness of larger operand BRAMs. Fig. 8.8 illustrates,

for varying BRAM sizes, the effect of scratchpad memory size. For reasonably

sized elements (enough to cover a saturated DSP pipeline), the system executes

with relatively high utility of the arithmetic units. This is enforced by the dense

arithmetic shape of FFT and matrix multiplication which always provide ready

operands.

Without understanding how the system actually executes, this result is rather

unintuitive. Larger local memories are assumed to correlate with higher perfor-

mance. Clearly, the specific architectural choices in these accelerators exhibit

unexpected cost trade-offs. By rapidly exposing the key architectural effects, the

designer can tailor systems with much lower area (due to smaller BRAMs), allow-

ing better use of the remaining programmable fabric.

Importance of Scratchpad Size On the other hand, the scratchpad size has

a significant effect on performance. Despite a relatively small size, the additional

memory ports prove invaluable to ensuring there are new operands at almost

every clock cycle. It is safe to conclude that efficient performance for this style

of accelerator requires a balance between memory capacity and, perhaps more

importantly, memory port resources.

121

Chapter 8. High Performance Arithmetic Applications

950

960

970

980

990

1000

1010

1020

1030

1040

0 50 100 150

S
c
h

e
d

u
le

 L
e

n
g

th
 (

c
y

c
le

s
)

BRAM Size

FFT128 Schedule Length with BRAM Size

2140

2160

2180

2200

2220

2240

2260

2280

2300

2320

2340

0 50 100 150

S
c
h

e
d

u
le

 L
e

n
g

th
 (

c
y

c
le

s
)

BRAM Size

FFT256 Schedule Length with BRAM Size

4750

4800

4850

4900

4950

5000

5050

0 50 100 150

S
c
h

e
d

u
le

 L
e

n
g

th
 (

c
y

c
le

s
)

BRAM Size

FFT512 Schedule Length with BRAM Size

10600

10800

11000

11200

11400

11600

11800

0 50 100 150

S
c
h

e
d

u
le

 L
e

n
g

th
 (

c
y

c
le

s
)

BRAM Size

FFT1024 Schedule Length with BRAM Size

22500

23000

23500

24000

24500

25000

25500

0 100 200 300 400 500 600

S
c
h

e
d

u
le

 L
e

n
g

th
 (

c
y

c
le

s
)

BRAM Size

FFT2048 Schedule Length with BRAM Size

49000

50000

51000

52000

53000

54000

55000

56000

57000

0 200 400 600 800 1000 1200

S
c
h

e
d

u
le

 L
e

n
g

th
 (

c
y

c
le

s
)

BRAM Size

FFT4096 Schedule Length with BRAM Size

Figure 8.5: FFT total schedule length (including bus transfers) versus size of

BRAM for a 2-accelerator architecture.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5000 10000 15000 20000 25000

R
u

n
ti

m
e

 (
s
e

c
o

n
d

s
)

Number of Nodes

Runtime Scaling with # Nodes (FFT)

128

256

512

1024

BRAM Size

Figure 8.6: Heuristic runtime scaling with increasing node counts on FFT in-

stances.

122

Chapter 8. High Performance Arithmetic Applications

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 1 2 3 4 5 6 7

S
c
h

e
d

u
le

 L
e

n
g

th
 (

c
y

c
le

s
)

Accelerators

FFT1024 x 4 Schedule Length vs. # Accelerators

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1 2 3 4 5 6 7

S
c
h

e
d

u
le

 L
e

n
g

th
 (

c
y

c
le

s
)

Accelerators

FFT256 x 4 Schedule Length vs. # Accelerators

Figure 8.7: For fixed BRAM size, both FFTs of size 1K and 256 exhibited the

same shape across different peripheral accelerator configurations.

Fig. 8.6 demonstrates the heuristics scaling with the number of nodes, across

different BRAM constraint sizes. As is evident, scaling is linear as the number of

nodes increases, irrespective of BRAM size.

8.4.2 Matrix Multiplication

The same experiments were run on matrix multiplication – square matrices

were multiplied together, across varying matrix sizes and BRAM constraints. Fig.

8.9 demonstrates nearly identical behavior as the FFT – as the BRAM size con-

straint increases, there is diminishing parallelism due to increased program length.

Software-pipelined Matrix Multiplication Amatrix multiplication was soft-

ware pipelined against multiple accelerators. The intuition is that the number of

accelerators should correlate to the depth of the software pipelining. Indeed, fig.

8.10 shows this precise behavior. Interestingly enough, for pipeline depths of 7

123

Chapter 8. High Performance Arithmetic Applications

180000

185000

190000

195000

200000

205000

210000

215000

0 10 20 30 40 50 60 70

S
c
h

e
d

u
le

 L
e

n
g

th
 (

c
y

c
le

s
)

Scratchpad Size

FFT8192 BRAM Size vs SPM Size
(# nodes: 114688)

256

512

1024

BRAM Size

Figure 8.8: Across different BRAM sizes, the SPM size was varied. Clearly, there

is little to no improvement with larger BRAM. This correlates to utility limits

stemming from a single port constraint.

124

Chapter 8. High Performance Arithmetic Applications

cc

1040

1050

1060

1070

1080

1090

1100

1110

0 100 200 300 400 500 600

S
c
h

e
d

u
le

 L
e

n
g

th
 (

c
y

c
le

s
)

BRAM Size

8x8x8 Schedule Length with BRAM Size

1900

1920

1940

1960

1980

2000

2020

2040

0 200 400 600 800 1000 1200

S
c
h

e
d

u
le

 L
e

n
g

th
 (

c
y

c
le

s
)

BRAM Size

10x10x10 Schedule Length with BRAM Size

3300

3350

3400

3450

3500

3550

0 500 1000 1500 2000 2500

S
c
h

e
d

u
le

 L
e

n
g

th
 (

c
y

c
le

s
)

BRAM Size

12x12x12 Schedule Length with BRAM Size

5100

5110

5120

5130

5140

5150

5160

5170

5180

5190

0 1000 2000 3000 4000 5000

S
c
h

e
d

u
le

 L
e

n
g

th
 (

c
y

c
le

s
)

BRAM Size

14x14x14 Schedule Length with BRAM Size

Figure 8.9: Matrix multiply total schedule length versus BRAM size constraint

for 2-accelerator architecture.

125

Chapter 8. High Performance Arithmetic Applications

0

5000

10000

15000

20000

25000

30000

2 3 4 5 6 7 8

S
c
h

e
d

u
le

 L
e

n
g

th
 (

c
y

c
le

s
)

Accelerators

14x16x12 Software-Pipelined Matrix Multiply

Schedule Length vs. # Accelerators

3 4

5 6

8 7

Software-Pipeline

Depth

Figure 8.10: Matrix multiplication (of a 14x16 matrix with a 16x12 matrix) per-

formance versus software pipeline depth & number of accelerators. It is interesting

to note the trade-off between performance and device area. The jump for high-

depth software pipelined designs shows a Pareto point that trades throughput for

area.

126

Chapter 8. High Performance Arithmetic Applications

0

50000

100000

150000

200000

250000

0 20000 40000 60000 80000 100000 120000

S
c
h

e
d

u
le

 L
e
n

g
th

 (
c
y

c
le

s
)

Number of Nodes

Complex DSP, Schedule Length vs # Nodes for Varying

SPM Size

0 8 16

SPM Size

Figure 8.11: Scaling for complex DSP application illustrates the heuristics ability

to preserves near-linear scalability for a variety of design shapes.

and 8, the gap between 3 and 4 accelerators is significant. This configuration may

prove to be a better area/performance trade-off.

8.4.2.1 Complex DSP Algorithm

The final demonstration chains image convolution with matrix multiply and

FFT, shown in fig. 8.12. All three algorithms form a single graph. Fig. 8.11 shows

a comparison of schedule length versus problem size for different scratchpad sizes.

Interestingly, as the problem size scales up, the schedule length scales linearly,

reflecting the tightly knit nature of the input data-flow graph.

127

Chapter 8. High Performance Arithmetic Applications

Image
Convolution

Matrix
Multiplication FFT

Figure 8.12: Algorithms chained together to form a complex DSP demonstration.

8.4.3 Utility and BRAM vs SPM Effectiveness

The primary performance differentiator is the scratchpad memory size. To

evaluate why it eclipses BRAM size, fig. 8.13 demonstrates, for each application,

the ratio of the cycles in which the DSP was occupied versus unoccupied/idle (the

utility). For varying size of BRAM, there is little difference in utility. However,

when the scratchpad memory is introduced, the additional memory ports allow

better utility of computational cycles, and therefore yield faster schedules.

Fig. 8.14 shows the scratchpad utility over time (fig. 8.14a) and correspond-

ingly the arithmetic utility over time (fig. 8.14b) for selected clusters of an FFT

schedule. The values are cumulative – where it increases, it has made use of the

resource. When it flattens out, it is waiting for the pipeline to clear or for memory

ports to free. The majority of clusters exhibit this shape, as the algorithms are

relatively dense and always have available operation.

8.5 Scaling to Very Large Problems

The final demonstration chains increasingly larger FFTs to matrix multiplica-

tion outputs. These were then chained together in long, concurrent pipes, forming

a single graph into the millions of nodes. Fig. 8.15 shows the heuristic using a

2-deep software pipeline, 2 accelerators, and a BRAM size of 2048. Scaling is effec-

128

Chapter 8. High Performance Arithmetic Applications

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Complex DSP FFT Matrix Multiply

R
a

ti
o

 o
f

C
y

c
le

s
 O

c
c
u

p
ie

d
 :

 C
y

c
le

s
 U

n
u

s
e

d

Arithmetic Pipeline Utility for BRAM Size and SPM Size

Bram:256, SPM:0

Bram:512, SPM:0

Bram:1024, SPM:0

Bram:256, SPM:16

Bram:256, SPM:32

Bram:256, SPM:64

Figure 8.13: For each application, the utility represents the ratio of the used

versus idle cycles in the arithmetic pipeline. As the BRAM size is varied, the

utility remains relatively constant. Introducing a small scratchpad immediately

increases utility; scratchpad size has a much greater impact on performance than

BRAM size does.

129

Chapter 8. High Performance Arithmetic Applications

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

C
u
m

u
la

ti
v
e

C
y
cl

es
 o

f
S
P

M
 A

cc
es

s

Tick (cycles elapsed)

Scratchpad Use Over Cluster Schedule

1

2

3

4

(a) SPM utility over time

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

C
u
m
u
la
ti
v
e
U
ti
li
ty
 o
f
D
S
P
 P
ip
el
in
e

Tick (cycles elapsed)

FFT Arithmetic Utility For Selected Clusters

1

2

3

4

(b) Arithmetic utility over time

Figure 8.14: Visualization of scratchpad memory (SPM) and arithmetic pipeline

utility for the same selected clusters of an FFT1024. The two are highly correlated:

SPM size correlates strongly with higher performance, since fast access to operands

allows the pipeline to remain busy.

130

Chapter 8. High Performance Arithmetic Applications

0

50

100

150

200

250

0 500000 1000000 1500000 2000000

R
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

Number of Nodes

Near-linear Heuristic Scaling
(Chained FFT-Matrix Multiplies)

Figure 8.15: Heuristic runtime up to millions of nodes

tively linear, allowing this methodology to reach unprecedented design scales. A

~1.7 million node graph was clustered and scheduled with full memory constraints

under 5 minutes.

8.6 Designer Insight

Automation exposes real system costs early in the design process through

rapid design evaluation. The selected accelerator architecture suffered from mem-

ory port bottlenecks, illustrated by performance invariance to BRAM size. An

alternative strategy using a scratchpad memory (even a relatively small one) is a

significantly more effective use of available hardware resources. Instead of devoting

more area to the BRAM, it can be routed towards much smaller scratchpad mem-

ory. Automation at these scales clearly grants designers insight into the problems

they solve, and can handle capacity constraints and enormous problem sizes.

131

Chapter 9

Conclusions

Heterogeneous cosynthesis is a growing field, and this research has opened

new potential to fluidly explore the architectural optimization space. Increased

system heterogeneity brings with it unprecedented performance potential; the pre-

sented robust methodology provides a way to adapt to changing platforms with-

out compromising performance. The hierarchical transactional framework lays

groundwork for allowing rich specification of cosynthesis-targeted applications,

leveraging a high degree of abstraction that keeps design expression concise. Its

unique approach balances solutions for managing complex concurrent, latency tol-

erant tasks, with the ability to realize high performance implementations. This

dissertation has demonstrated analysis of a control-dominated application, and

full realization of a data-dominated high-performance signal processing suite.

Algorithms for mapping onto different semantic models underscore its ability

to unify differing semantics in heterogeneous systems. A full suite of compiler

tools enable practical design. At the same time, the semantics guide the designer

towards specifications that do not hinder synthesis tools. Otherwise cumbersome

132

Chapter 9. Conclusions

verification is made tenable through automated race condition identification, ame-

liorating common hurdles in ensuring concurrent tasks execute correctly.

Intrinsic flexibility brought about by state & control mobility creates opportu-

nities to evaluate design configurations which were previously difficult to achieve

automatically. By looking at the problem from an automation point of view, and

structuring its semantics from the ground up, this research was able to identify

and distill the core components required to allow truly automated cosynthesis.

9.1 Hierarchical Transaction Solutions

The hierarchical transactional semantic model is built on a set of core philoso-

phies that bring state management to the forefront, encapsulating data with its

associated control in a way that opens a vast array of opportunities in language

design, verification, and synthesis. This novel, ground-up semantic model was

exercised with a rich set of tools to specify, compile, analyze, simulate, and syn-

thesize designs. It meets the four cosynthesis goals laid out at the start.

The Hierarchical Transactional Language (HTL) supports clear, concise appli-

cation specification that communicates designer intent. A rich expression syntax

keeps the code readable yet compact, removing cumbersome implementation of

low level architectural details. Careful language design allows a compiler to lever-

age an intelligent type inference system for powerful compile-time parameteriza-

tion. It efficiently captures semantics underpinning its data and execution models,

reflecting the model’s unique properties while retaining syntactic familiarity to ex-

133

Chapter 9. Conclusions

isting languages. Specifications of both a processor and FFT are understandable,

reinforcing the value of a novel language-based approach.

Practical applicability of a language depends on the usefulness of its associ-

ated tools. The compiler directly addresses correctness via behavioral simulation

and fast analysis tools. Through conventional means, race conditions are diffi-

cult to identify, with a tapestry of solutions stemming from decades of research.

The presented race condition detection mechanism rapidly isolates concurrency

bugs in the face of latency tolerant behavior. By leveraging the unique encapsula-

tion properties of hierarchical transactions, this otherwise complex and untenable

problem is reduced to an elegant, pseudo-linear solution. Additionally, the issue of

closure opens the opportunity for automated closure logic synthesis: tools can in-

telligently avoid synchronization mechanisms that may affect performance. They

no longer need to synthesize against worst-case behavior. Through a single graph

traversal, the compiler learns every possible closure condition.

Heterogeneous applications span the gamut from control- to data-dominated

designs. Processor and signal processing algorithm implementations bookend this

spectrum to exercise the benefits of the semantic model. A full ISA-compatible im-

plementation of an Texas Instruments MSP430 proves that rich control semantics

are both expressible and executable. The race condition tool quickly discovered an

unexpected concurrent write ordering situation that was resolved in minutes. In

a more qualitative sense, specification of the processor was straightforward – the

flow of control is generally understandable, in large part due to code compactness

and a single control semantic (tokens).

134

Chapter 9. Conclusions

At the computational end of application styles, the language and model were

capable of concisely specifying and synthesizing high-arithmetic applications com-

monly found in signal processing. Iterators lay the scaffolding for well-behaved

data-flow graphs by codifying repetitive behavior. The compact, concise FFT

specification proves that composing iterators sufficiently expresses complex in-

dexing.

A data-flow graph-based solution automatically realizes efficient high-performance

designs. Iterators are cast into well-defined data-flow graphs. They are then sched-

uled to reach unprecedented scales (scaling to millions of nodes). The methodology

exposes system costs early in the design process, allowing focused improvements

on resource constraints contributing most to performance bottlenecks.

9.2 Open Problems

Cosynthesis is an enormous problem space, and while hierarchical transac-

tions have laid a solid foundation, there are outstanding opportunities to exercise

the myriad aspects of this methodology. The largest area for research is in ef-

ficient control synthesis – arguably one of the most difficult elements to correct

heterogeneous system design lies in orchestrating multiple components. Since the

hierarchical transactional model codifies and encapsulates all state, there is poten-

tial to apply architectural synthesis in the form of automatic cache construction

and distributed component synchronization.

Discussion of software scheduling has largely been omitted due to focus on

optimization techniques and hardware targets. In the simplest implementation,

135

Chapter 9. Conclusions

scheduling software transactions is similar to existing task scheduling solutions.

When dealing with multiple software threads or processors, however, transac-

tional encapsulation is invaluable in managing shared memory. The traditional

locking/synchronization mechanisms (e.g. mutex and semaphore-based solutions)

can be created only where necessary.

136

Bibliography

[1] K. Agrawal, J.T. Fineman, and J. Sukha. Nested parallelism in transactional

memory. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles

and practice of parallel programming, pages 163–174. ACM, 2008.

[2] K. Agrawal, C. E. Leiserson, and J. Sukha. Memory models for open-nested

transactions. In Proceedings of the 2006 workshop on Memory system perfor-

mance and correctness, MSPC ’06, pages 70–81, New York, NY, USA, 2006.

ACM.

[3] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Soft-

ware Architecture Optimization Methods: A Systematic Literature Review.

Software Engineering, IEEE Transactions on, 39(5):658–683, May 2013.

[4] A. Allahverdi, C.T. Ng, T.C.E. Cheng, and M. Y. Kovalyov. A survey of

scheduling problems with setup times or costs. European Journal of Opera-

tional Research, 187(3):985 – 1032, 2008.

[5] K. R. Apt, N. Francez, and W. P. De Roever. A proof system for communi-

cating sequential processes. ACM Transactions on Programming Languages

and Systems (TOPLAS), 2(3):359–385, 1980.

137

Bibliography

[6] P. Arato, S. Juhasz, Z.A Mann, A Orban, and D. Papp. Hardware-software

partitioning in embedded system design. In Intelligent Signal Processing,

2003 IEEE International Symposium on, pages 197–202, Sept 2003.

[7] K. Asanovic. Transactors for parallel hardware and software co-design. In

High Level Design Validation and Test Workshop, 2007. HLVDT 2007. IEEE

International, pages 140 –142, nov. 2007.

[8] J. Axelsson. Architecture synthesis and partitioning of real-time systems:

A comparison of three heuristic search strategies. In Hardware/Software

Codesign, 1997.(CODES/CASHE’97), Proceedings of the Fifth International

Workshop on, pages 161–165. IEEE, 1997.

[9] F. Balarin and R. Passerone. Specification, Synthesis, and Simulation of

Transactor Processes. Computer-Aided Design of Integrated Circuits and Sys-

tems, IEEE Transactions on, 26(10):1749 –1762, oct. 2007.

[10] F. Balarin, Y. Watanabe, H. Hsieh, et al. Metropolis: An integrated electronic

system design environment. Computer, 36(4):45–52, 2003.

[11] G. Bracha and S. Toueg. Distributed deadlock detection. Distributed Com-

puting, 2(3):127–138, 1987.

[12] L. Cai and D. Gajski. Transaction level modeling: an overview. In Proceedings

of the 1st IEEE/ACM/IFIP international conference on Hardware/software

codesign and system synthesis, CODES+ISSS ’03, pages 19–24, New York,

NY, USA, 2003. ACM.

138

Bibliography

[13] L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli. Theory of

latency-insensitive design. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 20(9):1059–1076, 2001.

[14] J. Castrillon, W. Sheng, and R. Leupers. Trends in embedded software syn-

thesis. In Embedded Computer Systems (SAMOS), 2011 International Con-

ference on, pages 347–354. IEEE, 2011.

[15] K. S. Chatha and R. Vemuri. MAGELLAN: multiway hardware-software

partitioning and scheduling for latency minimization of hierarchical control-

dataflow task graphs. In Proceedings of the ninth international symposium

on Hardware/software codesign, CODES ’01, pages 42–47, New York, NY,

USA, 2001. ACM.

[16] S. Cheng, J. A. Stankovic, and K. Ramamritham. Scheduling Algorithms for

Hard Real-Time Systems–A Brief Survey. Technical report, Amherst, MA,

USA, 1987.

[17] P.H. Chou, R.B. Ortega, and G. Borriello. The Chinook hardware/software

co-synthesis system. In Proceedings of the 8th international symposium on

System synthesis, pages 22–27. ACM, 1995.

[18] E.G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM Com-

puting Surveys (CSUR), 3(2):78, 1971.

[19] J. Cong, B. Liu, S. Neuendorffer, et al. High-level synthesis for FPGAs: From

prototyping to deployment. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, 30(4):473–491, 2011.

139

Bibliography

[20] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of

complex Fourier series. Mathematics of computation, 19(90):297–301, 1965.

[21] J. Cortadella, M. Kishinevsky, and B. Grundmann. SELF: Specification

and design of synchronous elastic circuits. In TAU’06: Proceedings of the

ACM/IEEE International Workshop on Timing Issues 2006. Citeseer, 2006.

[22] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of synchronous

elastic architectures. In DAC ’06: Proceedings of the 43rd annual Design

Automation Conference, pages 657–662, New York, NY, USA, 2006. ACM.

[23] L.A. Cortés, P. Eles, and Z. Peng. A Survey on Hardware/Software Code-

sign Representation Models. Technical report, Department of Computer and

Information Science Linköping University, S-581 83 Linköping, Sweden, June

1999.

[24] W.J. Dally and C.L. Seitz. Deadlock-free message routing in multiprocessor

interconnection networks. IEEE Transactions on computers, 36(5):547–553,

1987.

[25] B. P. Dave, G. Lakshminarayana, and N. K. Jha. COSYN: hardware-software

co-synthesis of embedded systems. In Proceedings of the 34th annual Design

Automation Conference, DAC ’97, pages 703–708, New York, NY, USA, 1997.

ACM.

[26] B.P. Dave and N.K. Jha. COHRA: hardware-software cosynthesis of hierar-

chical heterogeneous distributed embedded systems. Computer-Aided Design

140

Bibliography

of Integrated Circuits and Systems, IEEE Transactions on, 17(10):900 –919,

oct 1998.

[27] G. De Micheli. Hardware synthesis from C/C++ models. In Proceedings of

the conference on Design, automation and test in Europe, page 80. ACM,

1999.

[28] R.P. Dick and N.K. Jha. CORDS: hardware-software co-synthesis of recon-

figurable real-time distributed embedded systems. In Proceedings of the 1998

IEEE/ACM international conference on Computer-aided design, pages 62–67.

ACM, 1998.

[29] S.A. Edwards. The challenges of hardware synthesis from C-like languages.

In Design, Automation and Test in Europe, 2005. Proceedings, pages 66–67.

IEEE, 2005.

[30] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. System Level Hardware/Soft-

ware Partitioning Based on Simulated Annealing and Tabu Search. Design

Automation for Embedded Systems, 2(1):5–32, 1997.

[31] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao. SPECC: Spec-

ification Language and Methodology. 2000.

[32] W.M. Gentleman and G. Sande. Fast Fourier Transforms: for fun and profit.

In Proceedings of the November 7-10, 1966, fall joint computer conference,

pages 563–578. ACM, 1966.

141

Bibliography

[33] A. Gerstlauer, C. Haubelt, A.D. Pimentel, et al. Electronic System-Level

Synthesis Methodologies. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 28(10):1517 –1530, Oct. 2009.

[34] R.K. Gupta, Jr. Claudionor, N.C., and G. De Micheli. Program implemen-

tation schemes for hardware-software systems. Computer, 27(1):48–55, Jan

1994.

[35] R.K. Gupta and G. De Micheli. Co-synthesis of hardware and software for

digital embedded systems, volume 4. Kluwer academic publishers Boston, MA,

1995.

[36] S. Ha, S. Kim, C. Lee, et al. PeaCE: A hardware-software codesign envi-

ronment for multimedia embedded systems. ACM Transactions on Design

Automation of Electronic Systems (TODAES), 12(3):24, 2007.

[37] L. Hammond, V. Wong, M. Chen, et al. Transactional memory coherence

and consistency. In ACM SIGARCH Computer Architecture News, volume 32,

page 102. IEEE Computer Society, 2004.

[38] C. Haubelt, J. Falk, J. Keinert, et al. A SystemC-based design method-

ology for digital signal processing systems. EURASIP J. Embedded Syst.,

2007(1):15–15, January 2007.

[39] C. Haubelt, J. Teich, K. Richter, and R. Ernst. System design for flexibility.

In Proceedings of the conference on Design, automation and test in Europe,

page 854. IEEE Computer Society, 2002.

142

Bibliography

[40] J. Henkel. A Low Power Hardware/Software Partitioning Approach for Core-

based Embedded Systems. In Proceedings of the 36th Annual ACM/IEEE

Design Automation Conference, DAC ’99, pages 122–127, New York, NY,

USA, 1999. ACM.

[41] J. Henkel and R. Ernst. An approach to automated hardware/software par-

titioning using a flexible granularity that is driven by high-level estimation

techniques. Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, 9(2):273–289, April 2001.

[42] J. Henkel, R. Ernst, U. Holtmann, and T. Benner. Adaptation of partitioning

and high-level synthesis in hardware/software co-synthesis. In Proceedings

of the 1994 IEEE/ACM international conference on Computer-aided design,

pages 96–100. IEEE Computer Society Press, 1994.

[43] M. Herlihy and J.E.B. Moss. Transactional memory: Architectural support

for lock-free data structures. ACM SIGARCH Computer Architecture News,

21(2):289–300, 1993.

[44] W. Herroelen, B. De Reyck, and E. Demeulemeester. Resource-constrained

project scheduling: A survey of recent developments. Computers & Opera-

tions Research, 25(4):279 – 302, 1998.

[45] J.I Hidalgo and J. Lanchares. Functional partitioning for hardware-software

codesign using genetic algorithms. In EUROMICRO 97. New Frontiers of

Information Technology., Proceedings of the 23rd EUROMICRO Conference,

pages 631–638, Sept 1997.

143

Bibliography

[46] C.A.R. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8):666–677, 1978.

[47] B. Holland, M. Vacas, V. Aggarwal, et al. Survey of C-based application

mapping tools for reconfigurable computing. In Proceedings of the 8th Inter-

national Conference on Military and Aerospace Programmable Logic Devices

(MAPLD’05), 2005.

[48] G. Hoover. Distributed Control For Embedded System Design. PhD thesis,

University of California, Santa Barbara, Santa Barbara, California, 2008.

[49] G. Hoover and F. Brewer. Synthesizing synchronous elastic flow networks.

In DATE ’08: Proceedings of the conference on Design, automation and test

in Europe, pages 306–311, New York, NY, USA, 2008. ACM.

[50] T. Horder and K. Rothermel. Concurrency control issues in nested trans-

actions. The VLDB Journal–The International Journal on Very Large Data

Bases, 2(1):39–74, 1993.

[51] A. Jantsch, P. Ellervee, A. Hemani, J. Öberg, and H. Tenhunen. Hard-

ware/Software Partitioning and Minimizing Memory Interface Traffic. In

Proceedings of the Conference on European Design Automation, EURO-DAC

’94, pages 226–231, Los Alamitos, CA, USA, 1994. IEEE Computer Society

Press.

[52] A. Kalavade and E. A. Lee. A Global Criticality/Local Phase Driven Algo-

rithm for the Constrained Hardware/Software Partitioning Problem. In Pro-

ceedings of the 3rd International Workshop on Hardware/Software Co-design,

144

Bibliography

CODES ’94, pages 42–48, Los Alamitos, CA, USA, 1994. IEEE Computer

Society Press.

[53] J. Keinert, M. Streubühorbar, T. Schlichter, et al. SystemCoDesigner–an au-

tomatic ESL synthesis approach by design space exploration and behavioral

synthesis for streaming applications. ACM Transactions on Design Automa-

tion of Electronic Systems (TODAES), 14(1):1:1–1:23, January 2009.

[54] B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning

graphs. Bell system technical journal, 49(2):291–307, 1970.

[55] V. Kianzad and S.S. Bhattacharyya. CHARMED: a multi-objective co-

synthesis framework for multi-mode embedded systems. In Application-

Specific Systems, Architectures and Processors, 2004. Proceedings. 15th IEEE

International Conference on, pages 28–40, Sept 2004.

[56] D. Kim and S. Ha. Static analysis and automatic code synthesis of flexi-

ble FSM model. In Proceedings of the 2005 Asia and South Pacific Design

Automation Conference, pages 161–165. ACM, 2005.

[57] M. Kim, S. Banerjee, N. Dutt, and N. Venkatasubramanian. Energy-aware

cosynthesis of real-time multimedia applications on MPSoCs using hetero-

geneous scheduling policies. ACM Trans. Embed. Comput. Syst., 7:9:1–9:19,

January 2008.

[58] M. King, N. Dave, et al. Automatic generation of hardware/software inter-

faces. In ACM SIGARCH Computer Architecture News, volume 40, pages

325–336. ACM, 2012.

145

Bibliography

[59] S. Klaus, S. Huss, and T. Trautmann. Automatic Generation of Scheduled

SystemC Models of Embedded Systems from Extended Task Graphs. In

Eugenio Villar and Jean Mermet, editors, System Specification and Design

Languages, pages 207–217. Springer US, 2003.

[60] P.V. Knudsen and J. Madsen. PACE: A Dynamic Programming Algorithm

for Hardware/Software Partitioning. In Proceedings of the 4th International

Workshop on Hardware/Software Co-Design, CODES ’96, pages 85–, Wash-

ington, DC, USA, 1996. IEEE Computer Society.

[61] N. Krivokapić, A. Kemper, and E. Gudes. Deadlock detection in distributed

database systems: a new algorithm and a comparative performance analysis.

The VLDB journal, 8(2):79–100, 1999.

[62] M. Kudlugi, S. Hassoun, C. Selvidge, and D. Pryor. A transaction-based uni-

fied simulation/emulation architecture for functional verification. In Design

Automation Conference, 2001. Proceedings, pages 623 – 628, 2001.

[63] E.A. Lee and II John. Overview of the ptolemy project, 1999.

[64] M. López-Vallejo and J. C. López. On the Hardware-software Partitioning

Problem: System Modeling and Partitioning Techniques. ACM Trans. Des.

Autom. Electron. Syst., 8(3):269–297, July 2003.

[65] M. Lukasiewycz, M. Streubuhr, M. Glass, C. Haubelt, and J. Teich. Com-

bined system synthesis and communication architecture exploration for MP-

SoCs. In Design, Automation Test in Europe Conference Exhibition, 2009.

DATE ’09., pages 472–477, april 2009.

146

Bibliography

[66] R. Lysecky and F. Vahid. A study of the speedups and competitiveness of

FPGA soft processor cores using dynamic hardware/software partitioning. In

Design, Automation and Test in Europe, 2005. Proceedings, pages 18–23 Vol.

1, March 2005.

[67] B. Meals. Hierarchical Decomposition Algorithm for Hardware/Software Par-

titioning. In Proceedings of the 44th Annual Southeast Regional Conference,

ACM-SE 44, pages 18–23, New York, NY, USA, 2006. ACM.

[68] R. Niemann and P. Marwedel. An Algorithm for Hardware/Software Par-

titioning Using Mixed Integer Linear Programming. Design Automation for

Embedded Systems, 2(2):165–193, 1997.

[69] H. Nikolov, M. Thompson, T. Stefanov, et al. Daedalus: Toward Composable

Multimedia MP-SoC Design. In Proceedings of the 45th Annual Design Au-

tomation Conference, DAC ’08, pages 574–579, New York, NY, USA, 2008.

ACM.

[70] H. Oh and S. Ha. Hardware-software cosynthesis of multi-mode multi-task

embedded systems with real-time constraints. In Proceedings of the tenth in-

ternational symposium on Hardware/software codesign, pages 133–138. ACM,

2002.

[71] C.S. Păsăreanu and W. Visser. A survey of new trends in symbolic execution

for software testing and analysis. International journal on software tools for

technology transfer, 11(4):339–353, 2009.

147

Bibliography

[72] S. Pasricha, N. Dutt, E. Bozorgzadeh, and M. Ben-Romdhane. Floorplan-

aware automated synthesis of bus-based communication architectures. In

Proceedings of the 42nd annual Design Automation Conference, DAC ’05,

pages 565–570, New York, NY, USA, 2005. ACM.

[73] H.D. Patel, S.K. Shukla, E. Mednick, and R.S. Nikhil. A rule-based model of

computation for SystemC: integrating SystemC and Bluespec for co-design.

In Formal Methods and Models for Co-Design, 2006. MEMOCODE ’06. Pro-

ceedings. Fourth ACM and IEEE International Conference on, pages 39 –48,

july 2006.

[74] I. Puaut and C. Pais. Scratchpad memories vs locked caches in hard real-

time systems: a quantitative comparison. In Design, Automation & Test in

Europe Conference & Exhibition, 2007. DATE’07, pages 1–6. IEEE, 2007.

[75] G. Quan, X.S. Hu, and G. Greenwood. Preference-driven hierarchical hard-

ware/software partitioning. In Computer Design, 1999. (ICCD ’99) Interna-

tional Conference on, pages 652–657, 1999.

[76] D. Saha, R.S. Mitra, and A Basu. Hardware software partitioning using

genetic algorithm. In VLSI Design, 1997. Proceedings., Tenth International

Conference on, pages 155–160, Jan 1997.

[77] A. Sangiovanni-Vincentelli. Quo vadis, SLD? reasoning about the trends and

challenges of system level design. Proceedings of the IEEE, 95(3):467–506,

2007.

148

Bibliography

[78] L. Séméria and G. De Micheli. SpC: synthesis of pointers in C application

of pointer analysis to the behavioral synthesis from C. In Computer-Aided

Design, 1998. ICCAD 98. Digest of Technical Papers. 1998 IEEE/ACM In-

ternational Conference on, pages 340–346. IEEE, 1998.

[79] M. B. Srivastava and R. W Brodersen. Rapid-prototyping of hardware and

software in a unified framework. In Computer-Aided Design, 1991. ICCAD-

91. Digest of Technical Papers., 1991 IEEE International Conference on,

pages 152–155. IEEE, 1991.

[80] J. Teich. Hardware/Software Codesign: The Past, the Present, and Predict-

ing the Future. Proceedings of the IEEE, 100(Special Centennial Issue):1411–

1430, May 2012.

[81] Texas Instruments. MSP430i2xx Family User’s Guide, August 2014.

[82] M. Thompson, H. Nikolov, T. Stefanov, et al. A Framework for Rapid System-

level Exploration, Synthesis, and Programming of Multimedia MP-SoCs. In

Proceedings of the 5th IEEE/ACM International Conference on Hardware/-

Software Codesign and System Synthesis, CODES+ISSS ’07, pages 9–14, New

York, NY, USA, 2007. ACM.

[83] F. Vahid, D. D. Gajski, and J. Gong. A Binary-constraint Search Algorithm

for Minimizing Hardware During Hardware/Software Partitioning. In Pro-

ceedings of the Conference on European Design Automation, EURO-DAC ’94,

pages 214–219, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

149

Bibliography

[84] T. Wiangtong, P.Y.K. Cheung, and W. Luk. Comparing Three Heuristic

Search Methods for Functional Partitioning in Hardware/Software Codesign.

Design Automation for Embedded Systems, 6(4):425–449, 2002.

[85] F. Winterstein, S. Bayliss, and G.A Constantinides. High-level synthesis

of dynamic data structures: A case study using Vivado HLS. In Field-

Programmable Technology (FPT), 2013 International Conference on, pages

362–365, Dec 2013.

[86] W. Wolf. A decade of hardware/software codesign. Computer, 36(4):38 – 43,

april 2003.

[87] W. Wolf. Design Challenges in Multiprocessor Systems-on-Chip. In Bernd

Kleinjohann, Lisa Kleinjohann, Ricardo Machado, Carlos Pereira, and P. Thi-

agarajan, editors, From Model-Driven Design to Resource Management for

Distributed Embedded Systems, volume 225 of IFIP International Federation

for Information Processing, pages 1–8. Springer Boston, 2006.

[88] W. Wolf, AA Jerraya, and G. Martin. Multiprocessor System-on-Chip (MP-

SoC) Technology. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 27(10):1701–1713, Oct 2008.

[89] N.S. Woo, A.E. Dunlop, and W. Wolf. Codesign from cospecification. Com-

puter, 27(1):42 –47, jan 1994.

[90] Xilinx. Vivado Design Suite User Guide: Designing With IP, October 2013.

150

Bibliography

[91] Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and voltage selection for

energy minimization. In Proceedings of the 39th annual Design Automation

Conference, DAC ’02, pages 183–188, New York, NY, USA, 2002. ACM.

151

Appendix A

HTL Grammar

〈spec〉 ::= 〈stmt〉*

〈rule-def 〉 ::= ‘rule’ 〈ident〉 〈token-guard-list〉 〈rule-input〉? ‘:’ suite

〈rule-input〉 ::= 〈rule-input-list〉

|

〈rule-input-list〉 ::= ‘<-’ ‘(’ (〈ident〉 ‘,’)* ‘)’

|

〈token-guard-list〉 ::= 〈empty〉

| ‘(’ 〈token-guard〉? ‘)’

〈token-guard〉 ::= 〈token-guard-or〉

〈token-guard-or〉 ::= 〈token-guard-and〉 (‘or’ 〈token-guard-and〉)*

〈token-guard-and〉 ::= 〈token-atom〉 (‘and’ 〈token-atom〉)*

〈token-atom〉 ::= 〈ident〉

| ‘(’ 〈token-guard-or〉 ‘)’

152

Appendix A. HTL Grammar

〈stmt〉 ::= 〈simple-stmt〉

| 〈compound-stmt〉

〈simple-stmt〉 ::= 〈small-stmt〉 (‘;’ 〈small-stmt〉)* 〈newline〉

〈small-stmt〉 ::= 〈vardecl-stmt〉

| 〈assign-stmt〉

| 〈print-stmt〉

| 〈create-stmt〉

| 〈pass-stmt〉

| 〈return-stmt〉

| 〈import-stmt〉

| 〈modifier-stmt〉

〈compound-stmt〉 ::= 〈if-stmt〉

| 〈for-stmt〉

| 〈rule-def 〉

| 〈class-def 〉

| 〈call-stmt〉

〈vardecl-stmt〉 ::= ‘var’ 〈ident〉 (‘,’ 〈ident〉)* ‘:’ 〈ident〉 (‘(’ 〈arglist〉? ‘)’)?

〈assign-stmt〉 ::= 〈lvalue-list〉 ‘=’ 〈test-list〉

〈aug-assign〉 ::= ‘+=’ | ‘-=’ | ‘*=’ | ‘/=’ | ‘%=’ | ‘&=’ | ‘|=’ | ‘^=’ | ‘<<=’ | ‘>>=’

〈print-stmt〉 ::= ‘print’ 〈test-list〉 〈create-stmt〉 ::= ‘create’ 〈ident〉 〈pass-stmt〉

::= ‘pass’

153

Appendix A. HTL Grammar

〈flow-stmt〉 ::= 〈break-stmt〉

| 〈continue-stmt〉

| 〈return-stmt〉

〈return-stmt〉 ::= ‘return’ 〈test-list〉 〈continue-stmt〉 ::= ‘continue’ 〈break-stmt〉

::= ‘break’

〈import-stmt〉 ::= ‘import’ 〈import-item〉 (‘,’ 〈import-item〉)* 〈import-item〉 ::=

〈ident〉 (‘as’ 〈ident〉)?

〈modifier-stmt〉 ::= ‘@’ 〈ident〉 (‘(’ 〈arglist〉? ‘)’)?

〈compoint-stmt〉 ::= 〈if-stmt〉

| 〈for-stmt〉

| 〈rule-def 〉

| 〈class-def 〉

| 〈call-stmt〉

〈if-stmt〉 ::= ‘if’ 〈test〉 ‘:’ 〈suite〉 〈elif-clause〉* (‘else’ ‘:’ 〈suite〉)?

〈elif-clause〉 ::= ‘elif’ test ‘:’ 〈suite〉

〈for-stmt〉 ::= ‘for’ 〈for-iterators〉 ‘:’ 〈suite〉 〈for-finally〉?

〈for-finally〉 ::= ‘finally’ ‘:’ 〈suite〉

〈for-iterators〉 ::= 〈iterator-spec〉 (‘||’ 〈iterator-spec〉)*

〈iterator-spec〉 ::= 〈lvalue-list〉 ‘in’ 〈test-list〉

〈call-stmt〉 ::= ‘call’ (〈lvalue-list〉 ‘=’)? 〈test-list〉 〈call-optional-suite〉

〈call-optional-suite〉 ::= ‘:’ 〈call-suite〉

| NEWLINE

154

Appendix A. HTL Grammar

〈creates-token-rename〉 ::= 〈ident〉 (‘->’ 〈ident〉)

〈creates-stmt〉 ::= ‘creates’ 〈creates-token-name〉+

〈call-param-small-stmt〉 ::= 〈creates-stmt〉

| 〈pass-stmt〉

〈call-param-stmt〉 ::= 〈call-param-small-stmt〉 (‘;’ 〈call-param-small-stmt〉)*

〈call-suite〉 ::= 〈call-param-stmt〉

| NEWLINE INDENT 〈call-param-stmt〉+ DEDENT

〈suite〉 ::= 〈simple-stmt〉

| NEWLINE INDENT 〈stmt〉+ DEDENT

〈test〉 ::= 〈or-test〉

〈or-test〉 ::= 〈and-test〉 (‘or’ 〈and-test〉)*

〈and-test〉 ::= 〈not-test〉 (‘and’ 〈not-test〉)*

〈not-test〉 ::= ‘not’ 〈not-test〉

| 〈comparison〉

〈comparison〉 ::= 〈expr〉 (〈comp-op〉 〈expr〉)*

〈comp-op〉 ::= ‘<’

| ‘>’

| ‘==’

| ‘>=’

| ‘<=’

| ‘=<’

155

Appendix A. HTL Grammar

| ‘!=’

| ‘~=’

〈expr〉 ::= 〈tuple-expr〉

〈tuple-expr〉 ::= 〈expr-t〉

| ‘(’ 〈expr-t〉 (‘,’ 〈expr-t〉)+ ‘)’

〈expr-t〉 ::= 〈xor-expr〉 (‘|’ 〈xor-expr〉)*

〈xor-expr〉 ::= 〈and-expr〉 (‘^’ 〈and-expr〉)*

〈and-expr〉 ::= 〈shift-expr〉 (‘&’ 〈shift-expr〉)*

〈shift-expr〉 ::= 〈arith-expr〉 ((‘<<’ | ‘>>’) 〈arith-expr〉)*

〈arith-expr〉 ::= 〈term〉 ((‘+’ | ‘-’) 〈term〉)*

〈term〉 ::= 〈factor〉 ((‘*’ | ‘/’ | ‘%’ | ‘//’) 〈factor〉)*

〈factor〉 ::= ‘+’ 〈factor〉

| ‘-’ 〈factor〉

| ‘~’ 〈factor〉

| 〈trailer〉

〈trailer〉 ::= 〈atom〉 (‘[’ 〈subscript〉 ‘]’ | ‘.’ 〈ident〉 | ‘(’ 〈arg-list〉 ‘)’)

〈atom〉 ::= ‘(’ 〈test〉? ‘)’

| 〈ident〉

| 〈int〉

| 〈float〉

| 〈string〉+

| ‘true’ | ‘false’

156

Appendix A. HTL Grammar

〈subscript〉 ::= 〈test〉 (‘:’ test)*

〈expr-list〉 ::= (〈expr〉 ‘,’)+

〈test-list〉 ::= (〈test〉 ‘,’)+

〈lvalue-list〉 ::= 〈lvalue-item〉 (‘,’ 〈lvalue-item〉)*

〈lvalue-item〉 ::= 〈trailer〉

〈class-def 〉 ::= ‘class’ 〈ident〉 (‘(’ 〈arg-list〉 ‘)’)? 〈rule-input〉? ‘:’ 〈suite〉

〈arg-list〉 ::= (〈argument〉 ‘,’)*

〈argument〉 ::= 〈ident〉 ‘=’ 〈test〉

| 〈test〉

157

Appendix B

FFT and MSP430 Code Listing

B.1 FFT HTL Code Listing

1 import math
2

3 class FFT <-(size , type):
4 rule fft <-(self , Input , Coefficients):
5 var stages : Int(math.log2(self.size))
6 var i_stages : IIntSequence (stages)
7 var intermediates : Array(self.size , self.type) #

intermediate results
8 @unroll
9 @pipeline (Input , intermediates)

10 for stage in i_stages :
11

12 print "stage = ", stage
13

14 # Calculate the "skip" size for this stage
15 var cluster_size : Int(math.pow (2, stages -stage))
16 var rr_size : Int(math.pow (2, stages -stage -1) ,

verbose =’ rr_size : ’)
17

18 # Instantiate iterators
19 var in_clustered : IClustered (Input , cluster_size

)
20 var coef_clustered : IClustered (Coefficients ,

cluster_size)
21 var out_clustered : IClustered (intermediates ,

cluster_size)
22

23 # Iterate over the sub cluster
24 for in_cluster in in_clustered || \
25 c_cluster in coef_clustered || \

158

Appendix B. FFT and MSP430 Code Listing

26 out_cluster in out_clustered :
27

28 # Now iterate within the group
29 var i_in: IGroupedRoundRobin (in_cluster ,

rr_size , rr_size)
30 var i_coef : IGroupedRoundRobin (c_cluster ,

rr_size , rr_size)
31 var i_out: IGroupedRoundRobin (out_cluster ,

rr_size , rr_size)
32 var tmp: Bits (16)
33 for out0 , out1 in i_out || x, y in i_in || coef

, nul in i_coef :
34 out0 = x + coef*y
35 out1 = x - coef*y
36 finally :
37 create tDone
38

39 rule Top:
40 var fft_size : Int (2048) # Parameterizable
41 var f: FFT(fft_size , Bits (16))
42 rule testbench1 :
43 var k: Array(fft_size , Bits (16) , preload =’ fft_inputs .

txt ’)
44 call f.fft(Input=k, Coefficients =k)

B.2 MSP430 Code Listing

1 # This is only the control core
2 # There is no actual memory or register file implementation
3 # since I removed array indices completely .
4

5 class Instruction :
6 var v: Bits (48)
7 rule single_opcode <-(self):
8 return self.v[9:7]
9 rule single_bw <-(self):

10 return self.v[6]
11 rule single_ad <-(self):
12 return self.v[5:4]
13 rule single_dsreg <-(self):
14 return self.v[3:0]
15 rule is_single <-(self):
16 return self.v [15:10] == 4
17

18 rule opRRC <-(self):
19 return self. single_opcode () == 0
20 rule opSWPB <-(self):
21 return self. single_opcode () == 1

159

Appendix B. FFT and MSP430 Code Listing

22 rule opRRA <-(self):
23 return self. single_opcode () == 2
24 rule opSXT <-(self):
25 return self. single_opcode () == 3
26 rule opPUSH <-(self):
27 return self. single_opcode () == 4
28 rule opCALL <-(self):
29 return self. single_opcode () == 5
30 rule opRETI <-(self):
31 return self. single_opcode () == 6
32

33 rule double_opcode <-(self):
34 return self.v [15:12]
35 rule double_sreg <-(self):
36 return self.v [11:8]
37 rule double_ad <-(self):
38 return self.v[7]
39 rule double_bw <-(self):
40 return self.v[6]
41 rule double_as <-(self):
42 return self.v[5:4]
43 rule double_dreg <-(self):
44 return self.v[3:0]
45 rule is_double <-(self):
46 return self.v[14] or self.v[15]
47

48 rule opMOV <-(self):
49 return self. double_opcode () == 4
50 rule opADD <-(self):
51 return self. double_opcode () == 5
52 rule opADDC <-(self):
53 return self. double_opcode () == 6
54 rule opSUBC <-(self):
55 return self. double_opcode () == 7
56 rule opSUB <-(self):
57 return self. double_opcode () == 8
58 rule opCMP <-(self):
59 return self. double_opcode () == 9
60 rule opDADD <-(self):
61 return self. double_opcode () == 10
62 rule opBIT <-(self):
63 return self. double_opcode () == 11
64 rule opBIC <-(self):
65 return self. double_opcode () == 12
66 rule opBIS <-(self):
67 return self. double_opcode () == 13
68 rule opXOR <-(self):
69 return self. double_opcode () == 14
70 rule opAND <-(self):
71 return self. double_opcode () == 15
72

73 rule opJNE <-(self): # JNE/JNZ
74 return self. jump_condition () == 0

160

Appendix B. FFT and MSP430 Code Listing

75 rule opJEQ <-(self): # JEQ/JZ
76 return self. jump_condition () == 1
77 rule opJNC <-(self): # JNC/JLO
78 return self. jump_condition () == 2
79 rule opJC <-(self): # JC/JHS
80 return self. jump_condition () == 3
81 rule opJN <-(self):
82 return self. jump_condition () == 4
83 rule opJGE <-(self):
84 return self. jump_condition () == 5
85 rule opJL <-(self):
86 return self. jump_condition () == 6
87 rule opJMP <-(self):
88 return self. jump_condition () == 7
89

90 rule jump_opcode <-(self):
91 return self.v [15:13]
92 rule jump_condition <-(self):
93 return self.v [12:10]
94 rule jump_offset <-(self):
95 return (self.v [9:0]) | \
96 (self.v[9] << 10) | \
97 (self.v[9] << 11) | \
98 (self.v[9] << 12) | \
99 (self.v[9] << 13) | \

100 (self.v[9] << 14) | \
101 (self.v[9] << 15)
102

103 rule is_jump <-(self):
104 return self.v [15:13] == 1
105

106 rule next_word <-(self):
107 return self.v [31:15]
108 rule third_word <-(self):
109 return self.v [47:32]
110

111 class Status :
112

113 var carry: Bits (1)
114 var zero: Bits (1)
115 var negative : Bits (1)
116 var gie: Bits (1)
117 var overflow : Bits (1)
118

119 rule FullRegister <-(self):
120 return self.carry | (self.zero << 1) | (self. negative

<< 2) | (self.gie << 3) | (self. overflow << 8)
121

122 class Memory :
123 var data: Addressable (size =65535 , type=Bits (16))
124

125 rule TestbenchEnvironment :
126

161

Appendix B. FFT and MSP430 Code Listing

127 var memory : Memory ()
128 var instruction_limit : Bits (16)
129 var pc: Bits (16)
130

131 rule setupInstructionStream :
132 pc = 0
133 create tInitialize
134

135 var registers : Addressable (size =16, type=Bits (16))
136 var sp: Bits (16)
137 var sr: Bits (16)
138 var status : Status ()
139 var pc_offset : Bits (16)
140

141 rule initialize (tInitialize):
142 sp = 0
143 sr = 0
144 status .carry = 0
145 status .zero = 0
146 status . negative = 0
147 status .gie = 0
148 status . overflow = 0
149 create tGetNextInstruction
150

151 rule getNextInstruction (tGetNextInstruction):
152 print " current pc=", pc
153 var i: Instruction ()
154 if pc <= instruction_limit :
155 create tInstruction
156

157 rule MSP430 (tInstruction):
158 var instr: Instruction ()
159 rule GetFirstWord :
160 instr.v = memory .data[pc]
161 create tStartInstruction
162

163 rule InstructionStream (tStartInstruction):
164 var src_op , dest_op : Bits (16)
165 var src_pc_offset , dest_pc_offset : Bits (2)
166

167 var src , dest: Bits (4)
168 var smode , dmode: Bits (2)
169

170 rule Decode :
171 rule DetermineType :
172 print " Instruction value: ", hex(instr.v)
173 pc_offset = 1
174 if instr. is_jump ():
175 print " Jump operation "
176 create tExecuteJump
177 elif instr. is_single ():
178 print " Single operation "
179 create tDecodeSingle

162

Appendix B. FFT and MSP430 Code Listing

180 elif instr. is_double ():
181 print " Double operation "
182 create tDecodeDouble
183 else:
184 create tDecodeError
185

186 rule DecodeSingle (tDecodeSingle):
187 src = instr. single_dsreg ()
188 smode = instr. single_ad ()
189

190 if not instr. opRETI ():
191 create tGetSourceOperand
192 else:
193 # For RETI instructions , we just execute

them directly . We just pretend
194 # that the source operation was completed

by creating the token here.
195 src_op = 0
196 src_pc_offset = 1
197 create tSourceReady
198

199 rule DecodeDouble (tDecodeDouble):
200 src = instr. double_sreg ()
201 smode = instr. double_as ()
202 create tGetSourceOperand
203

204 if instr.opMOV ():
205 create tDecodeMOV
206 else:
207 dest = instr. double_dreg ()
208 dmode = instr. double_ad ()
209 create tGetDestOperand
210

211 rule DecodeMOV (tDecodeMOV):
212 # If it ’s a MOV instruction , we do not need

to read the destination
213 # so we just create the token here.
214 if smode == 1:
215 dest_pc_offset = 1
216 else:
217 dest_pc_offset = 0
218 dest_op = 0
219 create tDestReady
220

221 # end rule Decode
222

223 rule GetSourceOperand (tGetSourceOperand):
224 var srcaddr : Bits (16)
225

226 rule DetermineSourceAddressing :
227 # smode == 0: direct register smode

163

Appendix B. FFT and MSP430 Code Listing

228 # smode == 1: indirect , register + offset ,
where the offset is in the next
instruction word

229 # unless the register is SR (
status reg): then it ’s an absolute
address

230 # smode == 2: indirect register , but without
an offset

231 # smode == 3: used with regular registers is
the same as smode ==2, but it

autoincrements
232 # by 1 for byte instructions and

by 2 for word instructions
233 # When used with PC , the next

instruction word will be used as an
immediate constant

234 src_pc_offset = 0
235

236 # first deal with constant generation
237 if (src == 2 and smode > 1) or src == 3:
238 # note: if src ==2 (status reg) and smode

(AS) == 01, then it ’s absolute smode
239 # if src ==2 (SR) and smode (AS) ==

0, then it ’s a regular status reg read
240 # otherwise : it ’s the constant

generator
241 create tConstantGenerator
242 else:
243 if smode == 0:
244 print " Source is register , r:",

src
245 create tSourceIsRegister
246 elif smode == 1:
247 if src == 2: # status register
248 print " Source is absolute "
249 create tSourceIsAbsolute
250 else:
251 print " Source is indexed "
252 create tSourceIsIndexed
253 elif smode == 2:
254 print " Source is indirect "
255 create tSourceIsIndirect
256 elif smode == 3:
257 if src == 0: # PC -> immediate
258 print " Source is immediate "
259 create tSourceIsImmediate
260 else:
261 print " Source is indirect

autoincrement "
262 create tSourceIsIndirect
263

264 rule SourceRegister (tSourceIsRegister):
265 if src == 0: # PC

164

Appendix B. FFT and MSP430 Code Listing

266 src_op = pc
267 create tSourceDone
268 elif src == 1: # Stack Pointer
269 src_op = sp
270 create tSourceDone
271 elif src == 2: # Status Pointer
272 src_op = status . FullRegister ()
273 create tSourceDone
274 else:
275 # regular register lookup
276 src_op = registers [src]
277 create tSourceDone
278

279 rule SourceAbsolute (tSourceIsAbsolute):
280 # address is stored in the next word
281 srcaddr = memory .data[pc + 1]
282 src_pc_offset = src_pc_offset + 1
283 create tMemoryLookupSource
284

285 rule SourceIndexed (tSourceIsIndexed):
286 var index_offset : Bits (16)
287 var reg_offset : Bits (16)
288 rule SourceIdxReadIndex :
289 index_offset = memory .data[pc + 1]
290 create tSourceIdxIndexReady
291 rule SourceIdxReg :
292 reg_offset = registers [src]
293 create tSourceIdxRegReady
294 rule SourceIdxMemRead (tSourceIdxIndexReady

and tSourceIdxRegReady):
295 src_op = memory .data[reg_offset +

index_offset]
296 src_pc_offset = src_pc_offset + 1
297 create tSourceDone
298

299 rule SourceIndirect (tSourceIsIndirect):
300 var addr: Bits (16)
301 rule SourceIndReadAddr :
302 addr = memory .data[pc + 1]
303 create tSourceIndMemRead
304 rule SourceIndMemRead (tSourceIndMemRead):
305 src_op = memory .data[addr]
306 src_pc_offset = src_pc_offset + 1
307 create tSourceDone
308

309 rule SourceImmediate (tSourceIsImmediate):
310 src_op = memory .data[pc + 1]
311 src_pc_offset = src_pc_offset + 1
312 create tSourceDone
313

314 rule ConstantGenerator (tConstantGenerator):
315 if src == 2:
316 # status register

165

Appendix B. FFT and MSP430 Code Listing

317 if smode == 0:
318 src_op = status . FullRegister ()
319 print "Error: This should not have

been reached ."
320 create tDecodeError
321 # actual constants (result is determined

by addressing smode)
322 elif smode == 1:
323 src_op = 0
324 elif smode == 2:
325 src_op = 4
326 elif smode == 3:
327 src_op = 8
328 elif src == 3:
329 # more constants , again determined by

addressing smode
330 if smode == 0:
331 src_op = 0
332 elif smode == 1:
333 src_op = 1
334 elif smode == 2:
335 src_op = 2
336 elif smode == 3:
337 src_op = 0xFFFF
338 create tSourceDone
339

340 rule SourceMemory (tMemoryLookupSource):
341 src_op = memory .data[srcaddr]
342 create tSourceDone
343

344 rule printSourceOperand (tSourceDone):
345 print " Source operand : ", src_op
346 create tSourceReady
347

348 # end rule GetSourceOperand
349 rule GetDestOperand (tGetDestOperand):
350 var destaddr : Bits (16)
351

352 rule DetermineDestAddressing :
353 dest_pc_offset = 0
354

355 if dmode == 0:
356 print " Dest is register , r:", dest
357 create tDestIsRegister
358 elif dmode == 1:
359 if dest == 2: # status register
360 print " Dest is absolute "
361 create tDestIsAbsolute
362 else:
363 print " Dest is indexed "
364 create tDestIsIndexed
365 else:
366 print "Dest is UNKNOWN "

166

Appendix B. FFT and MSP430 Code Listing

367 create tDecodeError
368

369 rule DestRegister (tDestIsRegister):
370 if dest == 0: # PC
371 dest_op = pc
372 create tDestReadDone
373 elif dest == 1: # Stack Pointer
374 dest_op = sp
375 create tDestReadDone
376 elif dest == 2: # Status Pointer
377 dest_op = status . FullRegister ()
378 create tDestReadDone
379 else:
380 # regular register lookup
381 dest_op = registers [dest]
382 create tDestReadDone
383

384 rule DestAbsolute (tDestIsAbsolute):
385 # address is stored in the next word
386 destaddr = memory .data[pc + 1]
387 dest_pc_offset = 1
388 create tMemoryLookupDest
389

390 rule DestIndexed (tDestIsIndexed):
391 var index_offset : Bits (16)
392 var reg_offset : Bits (16)
393 rule DestIdxReadIndex :
394 index_offset = memory .data[pc + 1]
395 create tDestIdxIndexReady
396 rule DestIdxReg :
397 reg_offset = registers [dest]
398 create tDestIdxRegReady
399 rule DestIdxMemRead (tDestIdxIndexReady and

tDestIdxRegReady):
400 dest_op = memory .data[reg_offset +

index_offset]
401 dest_pc_offset = 1
402 create tDestReadDone
403

404 rule DestMemory (tMemoryLookupDest):
405 dest_op = memory .data[destaddr]
406 create tDestReadDone
407

408 rule printDestOperand (tDestReadDone):
409 print "Dest operand : ", dest_op
410 create tDestReady
411 # end GetDestOperand
412

413 rule ExecuteJump (tExecuteJump):
414 # ====================
415 # Jump Operations
416 # ====================
417 print "JMP Operation "

167

Appendix B. FFT and MSP430 Code Listing

418 if instr.opJNE () and status .zero == 0:
419 pc_offset = instr. jump_offset () + 1
420 elif instr.opJEQ () and status .zero == 1:
421 pc_offset = instr. jump_offset () + 1
422 elif instr.opJNC () and status .carry == 0:
423 pc_offset = instr. jump_offset () + 1
424 elif instr.opJC () and status .carry == 1:
425 pc_offset = instr. jump_offset () + 1
426 elif instr.opJN () and status . negative == 1:
427 pc_offset = instr. jump_offset () + 1
428 elif instr.opJGE () and status . negative ==

status . overflow :
429 pc_offset = instr. jump_offset () + 1
430 elif instr.opJL () and status . negative != status

. overflow :
431 pc_offset = instr. jump_offset () + 1
432 elif instr.opJMP ():
433 pc_offset = instr. jump_offset () + 1
434 else:
435 pc_offset = 1
436 create tExecutionDone
437

438 var write_src : Bits (4)
439 var write_mode : Bits (2)
440 var write_bw : Bits (1)
441 var write_pc_offset : Bits (2)
442 var result : Bits (17)
443

444 rule Execute (tSourceReady and tDestReady):
445

446 rule DetermineExecutionType :
447 # first combine pc offsets
448 pc_offset = pc_offset + dest_pc_offset +

src_pc_offset
449 print " pc_offset =", pc_offset , "

dest_pc_offset =", dest_pc_offset , "
src_pc_offset =", src_pc_offset

450 if instr. is_single ():
451 create tExecuteSingle
452 elif instr. is_double ():
453 create tExecuteDouble
454 else:
455 create tDecodeError
456

457 # ====================
458 # Single Operations
459 # ====================
460 rule ExecuteSingle (tExecuteSingle):
461 rule DetermineSingleOperation :
462 if instr.opRRC ():
463 create tRRC
464 elif instr. opSWPB ():
465 create tSWPB

168

Appendix B. FFT and MSP430 Code Listing

466 elif instr.opRRA ():
467 create tRRA
468 elif instr.opSXT ():
469 create tSXT
470 elif instr. opPUSH ():
471 create tPUSH
472 elif instr. opCALL ():
473 create tCALL
474 elif instr. opRETI ():
475 create tRETI
476 else:
477 create tDecodeError
478

479 # Single ops
480 rule SXT(tSXT):
481 rule SignExtend :
482 result = (src_op [7] << 15) | \
483 (src_op [7] << 14) | \
484 (src_op [7] << 13) | \
485 (src_op [7] << 12) | \
486 (src_op [7] << 11) | \
487 (src_op [7] << 10) | \
488 (src_op [7] << 9) | \
489 (src_op [7] << 8) | \
490 src_op [7:0]
491 create tSXTStatus
492 rule SXTStatus (tSXTStatus):
493 status .carry = (result != 0)
494 status .zero = (result == 0)
495 status . negative = result [15]
496 status . overflow = 0
497 create tDestinationIsSource
498

499 rule RRC(tRRC):
500 rule ShiftAndRotate :
501 if instr. single_bw (): # byte
502 result = (status .carry << 7) | (

src_op >> 1) & 0x7F
503 else: # word
504 result = (status .carry << 15) | (

src_op >> 1)
505 create tRRCStatus
506 rule RRCStatus (tRRCStatus):
507 status .carry = src_op [0] # carry
508 status .zero = (result == 0)
509 status . negative = result [15]
510 status . overflow = 0
511 create tDestinationIsSource
512

513 rule RRA(tRRA):
514 rule RotateRightArith :
515 if instr. single_bw ():

169

Appendix B. FFT and MSP430 Code Listing

516 result = (src_op & 0x80) | (src_op
[7:0] >> 1)

517 else:
518 result = (src_op & 0x8000) | (

src_op [15:0] >> 1)
519 create tRRAStatus
520 rule RRAStatus (tRRAStatus):
521 status .carry = src_op [0]
522 status .zero = (result == 0)
523 if instr. single_bw ():
524 status . negative = result [7]
525 else:
526 status . negative = result [15]
527 status . overflow = 0
528 create tDestinationIsSource
529

530 rule SWPB(tSWPB):
531 result = (src_op [7:0] << 8) | (src_op

[15:8] >> 8)
532 create tDestinationIsSource
533

534 rule PUSH(tPUSH):
535 sp = sp - 2
536 memory .data[sp] = src_op
537 create tExecutionDone
538

539 rule CALL(tCALL):
540 sp = sp - 2
541 memory .data[sp] = pc
542 pc = src_op
543 create tExecutionDone
544

545 rule RETI(tRETI):
546 # restore status register
547 var status_reg : Bits (16)
548 rule RETILoad :
549 status_reg = memory .data[sp]
550 create tRETILoad
551 rule RETIExc (tRETILoad):
552 status .carry = status_reg [0]
553 status .zero = status_reg [1]
554 status . negative = status_reg [2]
555 status . overflow = status_reg [8]
556

557 pc = memory .data[sp + 2]
558 sp = sp + 4
559 create tExecutionDone
560

561 # ====================
562 # Double Operations
563 # ====================
564 rule ExecuteDouble (tExecuteDouble):
565 rule DetermineDoubleOperation :

170

Appendix B. FFT and MSP430 Code Listing

566 if instr.opMOV ():
567 create tMOV
568 elif instr.opADD ():
569 create tADD
570 elif instr. opADDC ():
571 create tADDC
572 elif instr.opSUB ():
573 create tSUB
574 elif instr. opSUBC ():
575 create tSUBC
576 elif instr. opDADD ():
577 create tDADD
578 elif instr.opBIT ():
579 create tBIT
580 elif instr.opCMP ():
581 create tCMP
582 else:
583 create tDecodeError
584

585 # Double ops
586 rule MOV(tMOV):
587 print "MOV operation ."
588 result = src_op
589 create tWriteDestination
590

591 rule ADD(tADD):
592 print "ADD operation . ", src_op , " + ",

dest_op
593 result = src_op + dest_op
594 create tUpdateStatusWriteDest
595

596 rule ADDC(tADDC):
597 print "ADDC operation ."
598 result = src_op + dest_op + status .carry
599 create tUpdateStatusWriteDest
600

601 rule SUB(tSUB):
602 print "SUB operation ."
603 result = src_op - dest_op
604 create tUpdateStatusWriteDest
605

606 rule CMP(tCMP):
607 print "CMP operation => ", src_op , "-",

dest_op , " = ", (src_op - dest_op)
608 result = src_op - dest_op
609 create tUpdateStatusWriteDest
610

611 rule SUBC(tSUBC):
612 print "SUBC operation ."
613 result = src_op - dest_op + status .carry
614 create tUpdateStatusWriteDest
615

616 rule DADD(tDADD):

171

Appendix B. FFT and MSP430 Code Listing

617 print "DADD operation ."
618 # Treat the number as a signed BCD
619 var c0 , c1 , c2 , c3: Bits (1)
620 rule DADD_digit1 :
621 var m: Bits (4)
622 rule DADD_d1_offset :
623 m = src_op [3:0] + dest_op [3:0]
624 create tDADD_d1_offset
625 rule DADD_d1 (tDADD_d1_offset):
626 print "DEBUG m = ",m, "m <= 9:", m

<= 9
627 if m <= 9:
628 result [3:0] = m
629 c0 = 0
630 else:
631 result [3:0] = m - 10
632 c0 = 1
633 create tDADD_digit2
634 rule DADD_digit2 (tDADD_digit2):
635 var m: Bits (4)
636 rule DADD_d2_offset :
637 m = src_op [7:4] + dest_op [7:4] + c0
638 create tDADD_d2_offset
639 rule DADD_d2 (tDADD_d2_offset):
640 if m <= 9:
641 result [7:4] = m
642 c1 = 0
643 else:
644 result [7:4] = m - 10
645 c1 = 1
646 if instr. double_bw (): # if it ’s a

word ...
647 create tDADD_digit3
648 else:
649 create tWriteDestination
650 rule DADD_digit3 (tDADD_digit3):
651 var m: Bits (4)
652 rule DADD_d3_offset :
653 m = src_op [11:8] + dest_op [11:8] +

c1
654 create tDADD_d3_offset
655 rule DADD_d3 (tDADD_d3_offset):
656 if m <= 9:
657 result [11:8] = m
658 c2 = 0
659 else:
660 result [11:8] = m - 10
661 c2 = 1
662 create tDADD_digit4
663 rule DADD_digit4 (tDADD_digit4):
664 var m: Bits (4)
665 rule DADD_d4_offset :

172

Appendix B. FFT and MSP430 Code Listing

666 m = src_op [15:12] + dest_op [15:12]
+ c2

667 create tDADD_d4_offset
668 rule DADD_d4 (tDADD_d4_offset):
669 if m <= 9:
670 result [15:12] = m
671 else:
672 result [15:12] = m - 10
673 create tUpdateStatusWriteDest
674

675 rule BIT(tBIT):
676 print "SUBC operation ."
677 result = src_op - dest_op + status .carry
678 status .carry = result [16]
679 create tUpdateStatusWriteDest
680

681 rule UpdateStatusAndWriteDestination (
tUpdateStatusWriteDest):

682 if instr. double_bw ():
683 status .zero = (result [15:0] == 0)
684 status .carry = result [16]
685 status . overflow = ((src_op [15] &

dest_op [15]) & ~ result [15]) | ((~
src_op [15] & ~ dest_op [15]) & result
[15])

686 status . negative = result [15]
687 else:
688 status .zero = (result [7:0] == 0)
689 status .carry = result [8]
690 status . overflow = ((src_op [7] &

dest_op [7]) & ~ result [7]) | ((~
src_op [7] & ~ dest_op [7]) & result
[7])

691 status . negative = result [7]
692 result = result & 0xFF
693 if not instr.opCMP ():
694 print "*** result = ", result
695 create tWriteDestination
696 else:
697 create tExecutionDone
698

699 # ====================
700 # Write Destination
701 # ====================
702 rule DestinationIsSource (tDestinationIsSource):
703 write_src = instr. single_dsreg ()
704 write_mode = instr. single_ad ()
705 write_bw = instr. single_bw ()
706 write_pc_offset = 0
707 create tWriteback
708

709 rule WriteDoubleResult (tWriteDestination):
710 write_src = instr. double_dreg ()

173

Appendix B. FFT and MSP430 Code Listing

711 write_mode = instr. double_ad ()
712 write_bw = instr. double_bw ()
713 write_pc_offset = 0
714 create tWriteback
715

716 # end Execute
717

718 # write back
719 rule Writeback (tWriteback):
720 rule DetermineWritebackMode :
721 if (write_src == 2 and write_mode > 1) or

write_src == 3:
722 create tCGError # attempt to write to the

CG
723 else:
724 if write_mode == 0:
725 print " Writeback is register , r:",

write_src
726 create tWritebackIsRegister
727 elif write_mode == 1:
728 if write_src == 2: # status register
729 print " Writeback is absolute "
730 create tWritebackIsAbsolute
731 elif write_src == 0: # pc
732 print " Writeback is symbolic "
733 create tWritebackIsSymbolic
734 else:
735 print " Writeback is indexed "
736 create tWritebackIsIndexed
737

738 rule WritebackIsRegister (tWritebackIsRegister):
739 if write_src == 0: # PC
740 pc = result
741 create tWritebackDone
742 elif write_src == 1: # Stack Pointer
743 sp = result
744 create tWritebackDone
745 elif write_src == 2: # Status Pointer
746 status .carry = result [0]
747 status .zero = result [1]
748 status . negative = result [2]
749 status .gie = result [3]
750 status . overflow = result [8]
751 create tWritebackDone
752 else:
753 # regular register write
754 registers [write_src] = result
755 print " Writing ", result , " to registers

[", write_src , "]"
756 create tWritebackDone
757

758 rule WritebackIsAbsolute (tWritebackIsAbsolute):
759 var addr: Bits (16)

174

Appendix B. FFT and MSP430 Code Listing

760 rule WritebackAbsReadAddr :
761 addr = memory .data[pc + write_pc_offset]
762 create tWritebackAbsReadMem
763 rule WritebackAbsReadMem (

tWritebackAbsReadMem):
764 memory .data[addr] = result
765 print " Memory write", result , "to address

", hex(addr)
766 create tWritebackDone
767

768 rule WritebackIsSymbolic (tWritebackIsSymbolic):
769 var index_offset : Bits (16)
770 var addr: Bits (16)
771 rule WritebackSymReadIndex :
772 index_offset = memory .data[pc +

write_pc_offset]
773 create tWritebackSymReadAddr
774 rule WritebackSymReadAddr (

tWritebackSymReadAddr):
775 addr = memory .data[pc + index_offset]
776 create tWritebackSymReadMem
777 rule WritebackSymReadMem (

tWritebackSymReadMem):
778 memory .data[addr] = result
779 print " Memory write", result , "to

symbolic address ", hex(addr)
780 create tWritebackDone
781

782 rule WritebackIsIndexed (tWritebackIsIndexed):
783 var index_offset : Bits (16)
784 var addr: Bits (16)
785 rule WritebackIdxReadIndex :
786 index_offset = memory .data[pc +

write_pc_offset]
787 create tWritebackIdxReadAddr
788 rule WritebackIdxReadAddr (

tWritebackIdxReadAddr):
789 addr = registers [write_src] +

index_offset
790 create tWritebackIdxReadMem
791 rule WritebackIdxReadMem (

tWritebackIdxReadMem):
792 memory .data[addr] = result
793 print " Indexed memory .data write", result

, "to address ", hex(addr)
794 create tWritebackDone
795

796 rule WritebackCleanup (tWritebackDone):
797 create tExecutionDone
798

799 # end rule InstructionStream
800

801 rule DecodeError (tDecodeError):

175

Appendix B. FFT and MSP430 Code Listing

802 print " Decode error for instruction : ", instr.v,
hex(instr.v)

803

804 rule CGError (tCGError):
805 print " Decode error [write to CG] for instruction :

", instr.v, hex(instr.v)
806

807 rule Cleanup (tExecutionDone):
808 create tInstructionDone
809

810 rule InstructionDone (tInstructionDone):
811 pc = pc + pc_offset
812 print " Instruction done. pc=", pc , "pc - offset =",

hex(pc_offset)

176

Appendix C

Tables of Matrix Multiplication
Clustering

C.1 Matrix Multiplication Size Sweep Data

Software

Pipeline

Depth

Ac-

celera-

tors

BRAM

Size

SPM

Size

N M P #

Nodes

Schedule

Length

Clusters Runtime

(s)

2 2 128 8 8 8 12 1696 2321 2 0.28

2 2 128 16 8 8 12 1696 2321 2 0.27

2 2 128 32 8 8 12 1696 2321 2 0.28

2 2 128 64 8 8 12 1696 2321 2 0.27

2 2 256 8 8 8 12 1696 2317 1 0.27

2 2 256 16 8 8 12 1696 2317 1 0.26

2 2 256 32 8 8 12 1696 2317 1 0.26

2 2 256 64 8 8 12 1696 2317 1 0.26

2 2 512 8 8 8 12 1696 2317 1 0.26

2 2 512 16 8 8 12 1696 2317 1 0.27

2 2 512 32 8 8 12 1696 2317 1 0.27

2 2 512 64 8 8 12 1696 2317 1 0.26

2 2 128 8 10 2 16 692 972 2 0.11

2 2 128 16 10 2 16 692 972 2 0.10

2 2 128 32 10 2 16 692 972 2 0.11

177

Appendix C. Tables of Matrix Multiplication Clustering

Software

Pipeline

Depth

Ac-

celera-

tors

BRAM

Size

SPM

Size

N M P #

Nodes

Schedule

Length

Clusters Runtime

(s)

2 2 128 64 10 2 16 692 972 2 0.11

2 2 256 8 10 2 16 692 968 1 0.10

2 2 256 16 10 2 16 692 968 1 0.10

2 2 256 32 10 2 16 692 968 1 0.10

2 2 256 64 10 2 16 692 968 1 0.11

2 2 512 8 10 2 16 692 968 1 0.11

2 2 512 16 10 2 16 692 968 1 0.11

2 2 512 32 10 2 16 692 968 1 0.10

2 2 512 64 10 2 16 692 968 1 0.10

2 2 128 8 16 8 16 4352 6170 4 0.83

2 2 128 16 16 8 16 4352 6169 4 0.76

2 2 128 32 16 8 16 4352 6170 4 0.77

2 2 128 64 16 8 16 4352 6169 4 0.76

2 2 256 8 16 8 16 4352 6163 2 0.75

2 2 256 16 16 8 16 4352 6161 2 0.75

2 2 256 32 16 8 16 4352 6161 2 0.76

2 2 256 64 16 8 16 4352 6161 2 0.76

2 2 512 8 16 8 16 4352 6157 1 0.70

2 2 512 16 16 8 16 4352 6157 1 0.70

2 2 512 32 16 8 16 4352 6157 1 0.70

2 2 512 64 16 8 16 4352 6157 1 0.71

2 2 128 8 32 16 16 17152 25642 7 3.21

2 2 128 16 32 16 16 17152 25124 7 3.19

2 2 128 32 32 16 16 17152 24620 8 3.24

2 2 128 64 32 16 16 17152 24619 8 3.27

2 2 256 8 32 16 16 17152 25628 4 3.15

2 2 256 16 32 16 16 17152 25114 4 3.16

2 2 256 32 32 16 16 17152 24603 4 3.22

2 2 256 64 32 16 16 17152 24603 4 3.22

2 2 512 8 32 16 16 17152 25618 2 3.15

2 2 512 16 32 16 16 17152 25106 2 3.16

2 2 512 32 32 16 16 17152 24595 2 3.18

2 2 512 64 32 16 16 17152 24595 2 3.13

178

Appendix C. Tables of Matrix Multiplication Clustering

C.2 Software-Pipelining Data

Software

Pipeline

Depth

#

Accel

BRAM

Size

SPM

Size

N M P #

Nodes

Schedule

Length

Clusters Runtime

(s)

Average

Utility

3 3 128 32 14 16 12 5792 8092 4 1.09 0.66

4 3 128 32 14 16 12 5792 16181 4 1.15 0.66

5 3 128 32 14 16 12 5792 16181 4 1.15 0.66

6 3 128 32 14 16 12 5792 16181 4 1.15 0.66

7 3 128 32 14 16 12 5792 24271 4 1.20 0.66

8 3 128 32 14 16 12 5792 24271 4 1.20 0.66

3 4 128 32 14 16 12 5792 8092 4 1.10 0.66

4 4 128 32 14 16 12 5792 8091 4 1.10 0.66

5 4 128 32 14 16 12 5792 16181 4 1.17 0.66

6 4 128 32 14 16 12 5792 16181 4 1.17 0.66

7 4 128 32 14 16 12 5792 16181 4 1.17 0.66

8 4 128 32 14 16 12 5792 16181 4 1.18 0.66

3 5 128 32 14 16 12 5792 8091 4 1.11 0.66

4 5 128 32 14 16 12 5792 8091 4 1.11 0.66

5 5 128 32 14 16 12 5792 8091 4 1.12 0.66

6 5 128 32 14 16 12 5792 16181 4 1.19 0.66

7 5 128 32 14 16 12 5792 16181 4 1.18 0.66

8 5 128 32 14 16 12 5792 16181 4 1.19 0.66

3 6 128 32 14 16 12 5792 8095 5 1.13 0.66

4 6 128 32 14 16 12 5792 8092 4 1.13 0.66

5 6 128 32 14 16 12 5792 8091 4 1.12 0.66

6 6 128 32 14 16 12 5792 8091 4 1.13 0.66

7 6 128 32 14 16 12 5792 16181 4 1.21 0.66

8 6 128 32 14 16 12 5792 16181 4 1.21 0.66

3 7 128 32 14 16 12 5792 8091 4 1.14 0.66

4 7 128 32 14 16 12 5792 8091 4 1.13 0.66

5 7 128 32 14 16 12 5792 8091 4 1.13 0.66

6 7 128 32 14 16 12 5792 8092 4 1.15 0.66

7 7 128 32 14 16 12 5792 8091 4 1.15 0.66

8 7 128 32 14 16 12 5792 16181 4 1.23 0.66

3 8 128 32 14 16 12 5792 8091 4 1.13 0.66

179

Appendix C. Tables of Matrix Multiplication Clustering

Software

Pipeline

Depth

#

Accel

BRAM

Size

SPM

Size

N M P #

Nodes

Schedule

Length

Clusters Runtime

(s)

Average

Utility

4 8 128 32 14 16 12 5792 8091 4 1.15 0.66

5 8 128 32 14 16 12 5792 8091 4 1.14 0.66

6 8 128 32 14 16 12 5792 8091 4 1.16 0.66

7 8 128 32 14 16 12 5792 8091 4 1.14 0.66

8 8 128 32 14 16 12 5792 8092 4 1.15 0.66

3 3 128 32 14 16 12 5792 8092 4 1.09 0.66

4 3 128 32 14 16 12 5792 16181 4 1.15 0.66

5 3 128 32 14 16 12 5792 16181 4 1.15 0.66

6 3 128 32 14 16 12 5792 16181 4 1.15 0.66

7 3 128 32 14 16 12 5792 24271 4 1.20 0.66

8 3 128 32 14 16 12 5792 24271 4 1.20 0.66

3 4 128 32 14 16 12 5792 8092 4 1.10 0.66

4 4 128 32 14 16 12 5792 8091 4 1.10 0.66

5 4 128 32 14 16 12 5792 16181 4 1.17 0.66

6 4 128 32 14 16 12 5792 16181 4 1.17 0.66

7 4 128 32 14 16 12 5792 16181 4 1.17 0.66

8 4 128 32 14 16 12 5792 16181 4 1.18 0.66

180

Appendix D

Tables of FFT Clustering

D.1 FFT Size Sweep Data

Software

Pipeline

Depth

Ac-

celera-

tors

BRAM

Size

SPM

Size

FFT

Size

Nodes Schedule

Length

Clusters Runtime

(s)

1 2 256 0 8192 114688 213195 49 23.87

1 2 256 8 8192 114688 205436 49 24.82

1 2 256 16 8192 114688 196926 49 24.13

1 2 256 32 8192 114688 191435 49 24.00

1 2 256 64 8192 114688 183804 49 23.59

1 2 512 0 8192 114688 213099 25 23.58

1 2 512 8 8192 114688 205107 25 24.29

1 2 512 16 8192 114688 196115 25 24.35

1 2 512 32 8192 114688 191371 25 24.21

1 2 512 64 8192 114688 183594 25 24.15

1 2 1024 0 8192 114688 213049 13 24.24

1 2 1024 8 8192 114688 204494 13 24.05

1 2 1024 16 8192 114688 196324 13 23.92

1 2 1024 32 8192 114688 191263 13 23.71

1 2 1024 64 8192 114688 183775 13 24.34

181

Appendix E

Tables of Large Pipelined DSP
Example

The following tables list near-linear scalability up to million-node sizes for a

multi-level pipelined complex DSP.

Software

Pipeline

Depth

Ac-

celera-

tors

BRAM

Size

SPM

Size

P Depth # Nodes Schedule

Length

Clusters Runtime

(s)

2 2 2048 32 16 10 110080 166744 2 20.68

2 2 2048 32 16 12 132096 200092 2 24.92

2 2 2048 32 16 14 154112 233438 2 29.47

2 2 2048 32 32 10 788480 1199721 6 161.68

2 2 2048 32 32 12 946176 1439664 7 193.55

2 2 2048 32 32 14 1103872 1679600 8 226.32

2 2 2048 64 16 10 110080 164060 2 20.73

2 2 2048 64 16 12 132096 196868 2 25.80

2 2 2048 64 16 14 154112 229676 2 29.20

2 2 2048 64 32 10 788480 1198919 6 162.86

2 2 2048 64 32 12 946176 1438697 7 197.29

2 2 2048 64 32 14 1103872 1678478 8 227.69

2 2 2048 128 16 10 110080 161443 2 20.71

2 2 2048 128 16 12 132096 193727 2 25.28

2 2 2048 128 16 14 154112 226011 2 29.02

182

Appendix E. Tables of Large Pipelined DSP Example

Software

Pipeline

Depth

Ac-

celera-

tors

BRAM

Size

SPM

Size

P Depth # Nodes Schedule

Length

Clusters Runtime

(s)

2 2 2048 128 32 10 788480 1188278 6 159.17

2 2 2048 128 32 12 946176 1425916 7 193.36

2 2 2048 128 32 14 1103872 1663582 8 226.88

183

	List of Figures
	List of Acronyms
	Introduction
	From Codesign to Cosynthesis
	The Case for Cosynthesis
	The State of the Art
	Exposing and Modeling Dominant System Costs
	A Symbiotic Development Relationship

	Contributions
	Computational and State Mobility

	Overview

	State of the Field
	Behavior and State Representation Models
	Early Computing Models
	Moving Towards Novel Models
	Data-flow and Task Graph
	Latency Tolerance
	Transactions, TLM, and Transactors
	Transaction Level Modeling
	Synthesizable TLM
	Nested Transactions and Software Transactional Memories
	Transactors

	Hardware/software Partitioning
	An Overview of Cosynthesis Models
	Magellan
	Metropolis

	Bluespec

	Software-to-RTL
	Model Representation

	Moving Towards Hierarchical Transactions

	Hierarchical Transactions
	Abstraction
	Challenges in Cosynthesis
	Semantic Model
	Hierarchical Transactions
	Overview
	Computational and State Mobility
	Token-based Control
	Combining and Forking Tokens

	Latency Tolerance
	Upholding Abstraction
	Concurrency

	Hierarchical Guarded Atomic Rule-based Language
	Introduction
	Existing Languages
	Aesthetics

	Core Language Philosophy
	Concision, Meaning, and Abstraction

	Rule-based Language
	Meta-language vs Language

	Syntax
	Rules
	Atomicity
	Conditional Statements
	Rule Instances
	Rule Instance Syntax

	Functional Rule Instances
	Classes
	Instantiation
	Parameters

	Parametric Class Examples
	Complex Class
	Matrix Class

	Modifiers

	Compiler
	Parsing

	Static Analysis
	Static Analysis for Constant Inference
	Local vs. Global
	AST-level Constant Inference
	Rule-level Constant Inference

	Simulator

	Iterators
	Motivation
	The Array Primitive
	Communicating Designer Intent
	Execution Semantics
	Syntax & Semantics
	Token Scoping
	Sequential vs. Concurrent Iterators
	Multiple Iterators through Co-iteration
	Ordering of Iterator versus Iterator Execution

	Built-in Iterators
	FFT through Iterators

	Practical Analysis and Model Translation
	Closure & Distributed Transaction Control
	Race Condition Detection
	Mutually Concurrent Sets
	Dependency Classifier Matrix
	Mutual Concurrent Set Construction
	Performance
	Isolating and Reporting Race Conditions

	Conversion into Existing Semantic Models
	Transactions to Pure Functions

	Transactions to Control/Data-Flow Graphs
	Flow-graphs from Iterators
	Software Scheduling

	Control-Dominant Application Study
	The MSP430 Microprocessor
	Processor Specification
	Decoding

	Race Condition Detection
	The Original Problem

	Transactional Simulator
	Direct-to-RTL Realization

	High Performance Arithmetic Applications
	Memory Capacity and Data Motion
	Problem Setup
	Commercial IP Options
	Challenges in Digraph Clustering

	Scheduler-Driven Partitioning
	8-point FFT Clustering Illustration
	Target Algorithms

	Results
	FFT
	Matrix Multiplication
	Complex DSP Algorithm

	Utility and BRAM vs SPM Effectiveness

	Scaling to Very Large Problems
	Designer Insight

	Conclusions
	Hierarchical Transaction Solutions
	Open Problems

	Bibliography
	HTL Grammar
	FFT and MSP430 Code Listing
	FFT HTL Code Listing
	MSP430 Code Listing

	Tables of Matrix Multiplication Clustering
	Matrix Multiplication Size Sweep Data
	Software-Pipelining Data

	Tables of FFT Clustering
	FFT Size Sweep Data

	Tables of Large Pipelined DSP Example

