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Abstract

Efficient Similarity Search
with Cache-Conscious Data Traversal

Xun Tang

Similarity search is important for many data-intensive applications to iden-

tify a set of similar objects. Examples of such applications include near-duplicate

detection and clustering, collaborative filtering for similarity-based recommenda-

tions, search query suggestion, and data cleaning. Conducting similarity search is

a time-consuming process, especially when a massive amount of data is involved,

and when all pairs are compared. Previous work has used comparison filtering,

inverted indexing, and parallel accumulation of partial intermediate results to ex-

pedite its execution. However, shuffling intermediate results can incur significant

communication overhead as data scales up.

We have developed a fast two-stage partition-based approach for all-pairs sim-

ilarity search which incorporates static partitioning, optimized load balancing,

and cache-conscious data traversal. Static partitioning places dissimilar docu-

ments into different groups to eliminate unnecessary comparison between their

content. To overcome the challenges introduced by skewed distribution of data

partition sizes and irregular dissimilarity relationship in large datasets, we con-

viii



duct computation load balancing for partitioned similarity search, with competi-

tiveness analysis. These techniques can improve performance by one to two orders

of magnitude with less unnecessary I/O and data communication and better load

balance. We also discuss how to further accelerate similarity search by incorporat-

ing incremental computing and approximation methods such as Locality Sensitive

Hashing.

Because of data sparsity and irregularity, accessing feature vectors in memory

for runtime comparison incurs significant overhead in modern memory hierar-

chy. We have designed and implemented cache-conscious algorithms to improve

runtime efficiency in similarity search. The idea of optimizing data layout and

traversal patterns is also applied to the search result ranking problem in runtime

with multi-tree ensemble models.
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Chapter 1

Introduction

All Pairs Similarity Search (APSS) [14], which identifies similar objects in a

dataset, is used in many applications including collaborative filtering based on

user interests or item similarity [3], search query suggestions [46], web mirrors

and plagiarism recognition [49], coalition detection for advertisement frauds [43],

spam detection [22, 37], clustering [12], and near duplicates detection [33].

The complexity of naïve APSS can be quadratic to the dataset size. In big

data computing applications such as web mining with hundreds of millions of

objects, improvement in efficiency can have a significant impact to speed up dis-

covery and offer more rich options under the same computing constraint. Previous

researches on expediting similarity computing developed filtering [14, 55, 6] and in-

verted indexing [41, 44] methods. However, parallelization of such methods is not
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straightforward given the extensive amount of I/O and communication overhead

involved. One popular approach is the use of MapReduce [23] to compute and

collect similarity results in parallel using an inverted index [41, 44, 13]. Unfortu-

nately, the cost of communicating the intermediate partial results is still excessive

and such solutions are not scalable for larger datasets.

We pursue a design [5] that conducts partition-based APSS in parallel with a

simplified parallelism management. We statically group data vectors into parti-

tions such that the dissimilarity of partitions is revealed in an early stage. This

static optimization allows an early removal of unwanted comparisons which elim-

inates a significant amount of unnecessary I/O, memory access and computation.

Under this framework, similarity comparisons can be performed through a number

of tasks where each of them compares a partition of vectors with other candidate

vectors. To expedite the computation when calculating the similarity of vectors

from two partitions, we further consider the impact of memory hierarchy on the

execution time. The main memory access latency can be 10 to 100 times slower

than the L1 cache latency. Thus, unorchestrated slow memory access can signifi-

cantly impact performance.

We investigate how data traversal and the use of memory layers affect the

performance of similarity comparison, and propose a cache-conscious data layout

and traversal scheme that reduces the execution time for exact APSS. We propose

2



two algorithms PSS1 and PSS2 to exploit the memory hierarchy explicitly. PSS1

splits the data hosted in the memory of each task to fit into the fast cache and

PSS2 coalesces data traversal based on a length-restricted inverted index. We

provide an analytic cost model and identify the parameter values for optimized

performance. Contrary to common sense in choosing a large split size, the op-

timum split size is rather small, such that core data can fully reside in the fast

cache. This approach outperforms other approaches [41, 13] by an order of mag-

nitude due to the simplified parallelism management and aggressive elimination

of unnecessary I/O or comparison.

All-pairs Similarity Comparisons can be performed through a number of in-

dependent tasks where each compares a partition of vectors with other candidate

vectors [5]. Given a large number of data partitions, we need to assign them to

parallel machines and decide the direction of similarity comparison due to the

symmetric property of comparison. It is challenging to balance the computation

load among parallel machines with a distributed architecture. Load imbalance

can hugely affect scalability and overall performance. This is mainly due to the

variation in partition sizes and irregular dissimilarity relationship in large datasets.

We developed a two-stage assignment algorithm that reduces the network load

and balances the similarity computation across the parallel tasks. The first stage

constructs a preliminary load assignment over tasks. The second stage refines the

3



assignment to be more balanced. Since comparison tasks typically spend much

more time in computation than in I/O and communication, our analysis shows

that the developed solution is competitive to the optimum with a constant ratio.

We further improve the dissimilarity detection ability in the static partitioning

step, while producing partitions with relatively even sizes to facilitate the load

balancing step. The evaluation results show that the proposed scheme outperforms

a previously developed solution by up to 41% in the tested cases.

Once a set of distinguished result pages have been selected after conducting

All-pairs Similarity Search on all the web pages that match the query, a ranking

among the result pages needs to be computed before the final search result page

could be presented to the users. To organize the search result page in a way that

maximizes the total reward, instead of relying on human judges, many companies

adopt a system that leverages implicit user feedback to build machine-learned

models to generate ranking score for each record. Tree-based learning ensembles

are trained offline and applied online to serve hundreds of millions of queries live

each day [36].

Learning ensembles based on multiple trees are effective for web search and

other complex data applications (e.g. [27, 20, 28]). It is not unusual that algorithm

designers use thousands of trees to reach better accuracy and the number of trees

becomes even larger with the integration of bagging. For example, winning teams

4



in the Yahoo! learning-to-rank challenge [20] have all used boosted regression trees

in one form or another and the total number of trees reported for scoring ranges

from 3,000 to 20,000 [30, 18, 32], or even reaches 300,000 or more combined with

bagging [45].

Generally speaking, application training data with less attributes may require

smaller trees or a smaller number of trees. But as complex applications evolve over

the time, more attributes are augmented and using more trees usually yields better

accuracy. Using a large number of trees can improve accuracy, but it takes time

to calculate ranking scores of matched documents. We investigate data traversal

methods for fast score calculation with a large ensemble when ranking a modest

number of matched documents.

We propose a 2D blocking scheme for better cache utilization with simpler code

structure compared to previous work. Our experiments show that 2D blocking can

be up to 620% faster than DOT, up to 245% faster than SOT, and up to 50% faster

than VPred. After applying 2D blocking on top of VPred which shows advantage

in reducing branch mis-prediction, the combined solution Block-VPred could be

up to 100% faster than VPred. The experiments with several benchmarks show

significant acceleration in score calculation without loss of ranking accuracy.

This thesis is organized as follows. This chapter and Chapter 2 serve as the

introduction and background of the three major components of this thesis. The

5



following three chapters contribute to each of them. In Chapter 3, we present the

design and implementation of cache-conscious algorithms for Partitioned All-pairs

Similarity Search. We also discuss in this chapter how to further accelerate simi-

larity search by incorporating incremental computing and approximation methods

such as Locality Sensitive Hashing. In Chapter 4, we discuss our technique to mit-

igate the load balance problem in similarity search, and how efficient our technique

is comparative to the optimum. In Chapter 5, we present a technique for efficient

search result ranking in the runtime system, with tree-based learning ensembles.

We conclude this thesis and discuss the future work in Chapter 6.
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Chapter 2

Background and Related Work

Our approach implements a fast two-stage partition-based algorithm for all-

pairs similarity search, and incorporates the techniques of static partitioning, op-

timized load balancing, and cache-conscious data traversal. In this chapter, we

first explore the related work in each sub-domain. After the similarity search and

de-duplication, the matched documents are ranked in relevance and preference

before presented to user. In this chapter, we also cover the background and re-

lated work of runtime search result ranking, and how our approach differs from

the others.

Following the work in [14], the APSS problem is defined as follows.

Given a set of vectors di = {wi,1, wi,2, · · · , wi,m}, where each vector contains

at most m features and may be normalized to a unit length, the cosine-based

7



similarity between two vectors is computed as:

Sim(di, dj) =
∑

t∈(di∩dj)

wi,t×wj,t.

Two vectors di, dj are considered similar if their similarity score exceeds a threshold

τ , namely Sim(di, dj) ≥ τ . The time complexity of APSS is high for a big

dataset. There are application-specific methods applied to reduce the complexity.

For example, text mining removes stop-words or features with extremely high

document vector frequency [12, 26, 41]. We adopt these methods in the pre-

processing step throughout our experiments.

There are several groups of optimization techniques developed in the previous

work to accelerate APSS.

Dynamic computation filtering. Partially accumulated similarity scores

can be monitored at runtime and dissimilar document pairs can be detected dy-

namically without complete derivation of final similarity scores [14, 55, 44].

Similarity-based grouping in data pre-processing. The search scope for

similarity can be reduced when potentially similar vectors are placed in one group.

One can use an inverted index [55, 41, 44] developed for information retrieval [12].

This approach identifies vectors that share at least one feature as potentially

similar, so certain data traversal is avoided. Similarly, the work in [52] maps

feature-sharing vectors to the same group for group-wise parallel computation.

This technique is more suitable for vectors with low sharing pattern, otherwise it
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suffers from excessive redundant computation among groups. Locality-sensitive

hashing (LSH) can be considered as grouping similar vectors into one bucket with

approximation [31, 51]. This approach has a trade-off between precision and re-

call, and may introduce redundant computation when multiple hash functions are

used. A study [6] shows that exact comparison algorithms can deliver perfor-

mance competitive to LSH when computation filtering is used. In partition-based

APSS [5], dissimilar vectors are identified in the static partitioning step. The

APSS problem is then converted to executing a set of independent tasks each

compares one partition with some of the other partitions. These tasks can be

executed in parallel with much simplified parallelism management.

Load balancing and scheduling. Exploiting parallel resources over thou-

sands of machines for scalable performance is important and challenging. Load

balancing is considered in the context of search systems for index serving [11, 39].

A recent study [54] introduces a division scheme to improve load balance for dense

APSS problems using multiple rounds of MapReduce computation. In order to

minimize the communication overhead while maintaining the computational load

balance, this thesis focuses on load balancing of APSS with record-based parti-

tioning. The general load balancing and scheduling techniques for clusters and

parallel systems have been extensively addressed in previous work. A simple

greedy policy [29] that maps a ready task to a computation unit once it becomes
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idle is widely adopted (e.g. [15]). Scheduling for MapReduce systems such as

Hadoop [23, 56] has followed the greedy policy to execute queued tasks on avail-

able cores and exploit data locality whenever feasible. Assuming that parallel

tasks are scheduled following such a greedy policy, we address how these tasks

should be formed considering scalability and efficiency.

Cache-conscious data traversal. Cache optimization for computationally

intensive applications is studied in the context of general database query process-

ing [47, 16]. In particular, the problem of hash join in a main memory DBMS

has attracted much attention. Radix-cluster [42] is a partitioning algorithm that

utilized an analytic model to incorporate memory access costs when executing

hash-join operations. These techniques are typically applied to the database join

using one attribute, while the computation studied in this thesis focuses on sim-

ilarity search involving many common features among vector pairs. Cache

optimization for computationally intensive applications is studied in the context

of matrix-based scientific computing [25, 24, 53, 48]. Motivated by these studies,

we investigate the opportunities of cache-conscious optimization targeting APSS

problem.

Search result ranking in the runtime system. Computing scores from a

large number of trees is time-consuming. Access of irregular document attributes

along with dynamic tree branching impairs the effectiveness of CPU cache and
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instruction branch prediction. Compiler optimization [10] cannot handle complex

code such as rank scoring very well. For example, processing a 8,051-tree ensemble

can take up to 3.04 milliseconds for a document with 519 features on an AMD 3.1

GHz core. Thus the scoring time per query exceeds 6 seconds to rank the top-

2,000 results. It takes more time proportionally to score more documents with

larger trees or more trees, and this is too slow for interactive query performance.

Multi-tree calculation can be parallelized; however, query processing throughput

is not increased because less queries are handled in parallel. Trade-off between

ranking accuracy and performance can be played by using earlier exit based on

document-ordered traversal (DOT) or scorer-ordered traversal (SOT) [19], and

by tree trimming [7]. The work in [8] proposes an architecture-conscious solution

called VPred that converts control dependence of code to data dependence and em-

ploys loop unrolling with vectorization to reduce instruction branch mis-prediction

and mask slow memory access latency. The weakness is that cache capacity is

not fully exploited and maintaining the lengthy unrolled code is not convenient.

Unorchestrated slow memory access incurs significant costs since memory access

latency can be up to 200 times slower than L1 cache latency. How can fast multi-

tree ensemble ranking with simple code structure be accomplished via memory

hierarchy optimization, without compromising ranking accuracy? We propose a

cache-conscious 2D blocking method to optimize data traversal for better temporal

11



cache locality. The proposed techniques are complementary to previous work and

can be integrated with the tree trimming and early-exit approximation methods.
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Chapter 3

Cache-Conscious Partition-based

Similarity Search

3.1 Partition-based Similarity Search Framework

The framework for Partition-based Similarity Search (PSS) consists of two

phases. The first phase divides the dataset into a set of partitions. During this

process, the dissimilarity among partitions is identified so that unnecessary data

I/O and comparisons among them are avoided. The second phase assigns a par-

tition to each task at runtime and each task compares this partition with other

potentially similar partitions. These tasks are independent when running on a set

of parallel machines. Figure 3.1 depicts the whole process.
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Figure 3.1: Illustration of partition-based similarity search.

Algorithm 1 Definition of each PSS task Tk.
Read all vectors from assigned partition Pk.

Build inverted index of these vectors.

Conduct self-comparison among vectors in Pk.

repeat

Fetch a potentially similar partition.

for dj ∈ fetched partition do

Compare (Pk, dj).

end for

until all non-dissimilar partitions are fetched.
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Dissimilarity-based partitioning identifies dissimilar vectors without explicitly

computing the product of their features. One approach [5] utilizes the following

inequality that calculates the 1-norm and ∞-norm of each vector:

Sim(di, dj) ≤ min(||di||∞||dj||1, ||dj||∞||di||1) < τ.

The partitioning algorithm sorts the vectors based on their 1-norm values first. It

then uses the sorted list to identify dissimilar pairs (di, dj) satisfying inequality

‖di‖1 < τ
||dj ||∞ . A different τ value would affect the outcome of the dissimilarity-

based partitioning.

Once the dataset is separated into v partitions, v independent tasks are sched-

uled. Each task is responsible for a partition and compares this partition with

all potentially similar partitions. We assume that the assigned partition for each

task fits the memory of one machine as the data partitioning can be adjusted to

satisfy such condition. Other partitions to be compared with may not fit the re-

maining memory and need to be fetched gradually from a local or remote storage.

In a computing cluster with a distributed file system such as Hadoop, tasks can

seamlessly fetch data without concerning about the physical locations of data.

Algorithm 1 describes the function of each task Tk in partition-based similarity

search. Task Tk loads the assigned partition Pk and produces an inverted index

to be used during the partition-wise comparison. Next, Tk fetches a number

of vectors from potentially similar partitions and compares them with the local
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partition Pk one by one. Fetch and comparison is repeated until all candidate

partitions are processed.

3.2 Runtime Data Layout

Figure 3.2: A PSS task compares the assigned partition A with other partitions

O.

Figure 3.2 depicts a task for partition-based similarity search interacting with

a CPU core with multiple levels of cache. Two or three cache levels are typical in

today’s Intel or AMD architecture [40, 38]. We assume that the assigned partition

A fits in the memory of one machine as the data partitioning can be adjusted to

satisfy such an assumption. But vectors in O can exceed memory and need to

be fetched gradually from a local or remote storage. In a computer cluster with
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distributed file system such as Hadoop, a task can seamlessly fetch data from the

file system without worrying about the machine location of data.

The memory used by each task has three areas, as illustrated in Figure 3.2.

1) Area S: hosts the assigned partition A. 2) Area B: stores a block of vectors

fetched from other candidate partitions O at each comparison step. 3) Area C:

stores intermediate results temporarily.

Algorithm 2 PssTask(A, O)
1: Input: Partition A assigned to the task, and other candidate partitions O.

2: Output: Similar pairs and their corresponding similarity score.

3: Read all vectors from assigned partition A into S.

4: Build inverted index of these vectors and store in S.

5: repeat

6: Fetch a set of vectors from O into B.

7: for dj ∈ B do

8: PssCompare(S, dj).

9: end for

10: until All vectors in O are fetched.

Algorithm 2 and Function 3 describe a PSS task. Each task loads the assigned

vectors, whose data structure is in forward index format, into area S. Namely, each

vector consists of an ID along with a list of feature IDs and their corresponding
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Algorithm 3 PssCompare(S, dj)

1: Initialize array score of size |S| with zeros.

2: rj = ||dj||1.

3: for t ∈ dj and posting(t) ∈ S do

4: for di ∈ posting(t) and di is a candidate do

5: score[i]=score[i]+wi,t×wj,t.

6: if (score[i]+||di||∞×rj<τ) then

7: Mark di as non-candidate.

8: end for

9: rj = rj − wj,t.

10: end for

11: for i = 1 to |S| do

12: if score[i] ≥ τ then

13: write (di, dj, score[i]).

14: end for
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weights, stored in a compact manner. After loading the assigned vectors, the task

inverts them locally and stored within area S. It then fetches a number of vectors

from O, in forward index format, and place them into area B.

Let dj be the vector fetched from O to be processed (Line 7 in Algorithm 2).

For each feature t in dj, PSS uses the inverted index in area S to find the localized

t’s posting (Line 3 in Function 3). Then weights of vector di from t’s posting and

dj contribute a partial score towards the final similarity score between dj and di.

After all the features of dj are processed, the similarity scores between dj and

the vectors in S are validated (Line 12 in Function 3) and only those that exceed

the threshold are written to disk. The dissimilarity of vector di in S with dj can

be marked (Line 7 in Function 3) by using a negative value for score[i]. Array

||d||∞[ ] contains the ∞-norm value of vector di. The score[ ] vector is also used

for dynamic elimination, where negative value of score[i] indicates di marked as

an non-candidate.

3.3 PSS1: Cache-Conscious Data Splitting

When dealing with a large dataset, the number of vectors in each partition is

high. Having a large number of vectors increase the benefits of inverted indexing.

But there is a potential problem that the accessed areas S or C may not fit in the

fast cache. In that case, temporal locality is not exploited, meaning the second
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access of the same element during any computation will be a cache miss. As shown

in the next section, this leads to frequent slow memory access and a significant

increase in execution time. Since fast access of each area S, B or C is equally

important in the core computation (Lines 5 and 6 in Function 3 ), one idea is to

let area C fit in fast cache by explicitly dividing vectors of the assigned partition

in S into a set of splits and have the task focus on one split at a time.

Figure 3.3: A partition in area S is further divided into multiple splits for each

PSS1 task.

Figure 3.3 and 3.4 illustrate this cache-conscious data splitting idea. The

corresponding algorithm called PSS1 is shown in Algorithm 4. First, it divides

the hosted vectors in S into q splits. Each split Si is of size s. PSS1 then executes

q comparison sub-tasks. Each sub-task compares vectors from Si with a vector bj

in B. The access in area C is localized such that array score[ ] and ||d||∞[ ] can

fully fit in L1 cache. This improves temporal locality of data elements for area
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Figure 3.4: Core computation in PSS1 and its interaction with data items. Four

data items are involved in the core computation. The striped area indicates cache

coverage.

Algorithm 4 Pss1Task(A, O)
1: Input: Partition A assigned to the task, and other candidate partitions O.

2: Output: Similar pairs and their corresponding similarity score.

3: Read and divide A into q splits.

4: Build an inverted index for each split and store in area Si.

5: repeat

6: Fetch a set of vectors from O into B.

7: for dj ∈ B do

8: for Si ∈ S do

9: PssCompare(Si, dj).

10: end for

11: end for

12: until All vectors in O are fetched.
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C and reduces the access time by an order of magnitude. The core computation

speeds up as a result.

The data splitting also introduces potential benefits from exploiting the multi-

core CPU architecture via threads. Every time a data block from O is fetched

into B, there can be multiple threads running in parallel to execute function

Compare(Si, dj) (Line 9 in Algorithm 4) where dj is a vector in B.

The question is, how to determine the s value of each split so that the caches

are best utilized? This is discussed next.

3.4 PSS1: Cache Performance and Cost Analysis

We model the total execution time of each PSS1 task and analyze how memory

hierarchy affects the running time. This analysis facilitates the identification of

optimized parameter setting. Table 3.1 describes the parameters used in our anal-

ysis. They represent the characteristics of the given dataset, algorithm variables,

and the system setting.

3.4.1 Task Execution Time

The total execution time for each task contains two parts: I/O and computa-

tion. I/O cost occurs for loading the assigned vectors A, fetching other potentially
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Table 3.1: Notations

Dataset
wd,t Weight of feature t in vector d
τ Similarity threshold
k Average number of nonzero features in d

Algorithm
S,B,C Memory usage for each task
n Number of vectors to compare per task (|O|)
s Avg. number of vectors for each split in S
b Number of vectors fetched and coalesced in B

ps, pb Average posting length in inverted index of each Si or B touched
Si A split in area S divided by PSS1
q Number of splits in S
h Cost for t-posting look-up in table

mj(X) Miss ratio in level j cache for area X
Dj(X) Number of misses in level j cache for area X
Dj Total number of access misses in level j cache
δtotal Cost of accessing the hierarchical memory

Infrastructure
l Cache line size
f Pre-fetch factor

es, eb, ec Element size in S, B, C respectively
δ1, δ2, δ3, δmem Latency when accessing L1, L2, L3 or memory

ψ Cost of addition and multiplication

similar vectors, and writing similarity pairs to disk storage. Notice that in fetching

other vectors for comparison, the algorithm always fetches a block of vectors to

amortize the start-up cost of I/O. For the datasets we have used, read I/O takes

about 2% of total cost while write I/O takes about 10-15%. Since I/O cost is the

same for the baseline PSS and our proposed schemes, we do not model it here.
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For each split, the computation time contains a small overhead for the index

inversion of its s vectors. Because the inverted index is built once and reused every

time a partition is loaded, this part of computation becomes negligible and the

comparison time with other vectors dominates. The core part is computationally

intensive. Following notations defined in Table 3.1, h is the cost of looking up

the posting of a feature appeared in a vector in B. ps denotes the average length

of postings visited in Si (only when a common feature exists), and ps estimates

the number of iterations for Line 3 in Function 3. Furthermore, there are four

memory accesses in Line 5 and 6, regarding data items score[i], wi,t, wj,t, and

||di||∞. Other items, such as rj, and τ , are constants within this loop and can

be pre-loaded into registers. The write back of score[i] is not counted due to the

asymmetric write back mechanism adopted. The dynamic checking of whether

di is a candidate or not (Line 7) is an access to score[ ] vector as well (negative

indicates non-candidate), and is not modeled separately. There are two pairs of

multiplication and addition involved (one in Line 5 and one in Line 6) bringing in

a cost of 2ψ. For simplicity of the formula, we model the worst case where none

of the computations are dynamically filtered.

For a large dataset, the cost of self-comparison within the same partition for

each task is negligible compared to the cost of comparisons with other vectors in

O. The execution time of PSS1 task (Algorithm 4) can be approximately modeled
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as follows.

Time = q
[
nk(

look−up︷︸︸︷
h +

multiply+add︷ ︸︸ ︷
ps × 2ψ ) +

traverse S,B,C︷︸︸︷
δtotal

]
. (3.1)

As s increases, q decreases and the cost of inverted index look-up may be

amortized. In the core computation, ps increases as s increases. More importantly,

the running time can be dominated by δtotal which is the data access cost due to

cache or memory latency. The data access cost is affected by s because of the

presence of memory hierarchy. We investigate how to determine the optimal s

value to minimize the overall cost in the following subsection.

3.4.2 Memory and Cache Accesses of PSS1

CPUMain Memory Cache
L2

L1

L3BS
C

D
D

D
D

0
1

2
3

Figure 3.5: Data access misses for three-layer cache hierarchy, where Dj−1 ≥ Dj,

j=1, 2, 3.
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Here we estimate the cost of accessing data in Si, B, and C. As illustrated

in Figure 3.5, D0 is defined as the total number of data accesses in performing

Compare(Si, dj) in Algorithm 4. Dj is defined as the total number of data access

misses in cache level j. δi is the access time at cache level i. δmem is the memory

access time.

δtotal = (D0 −D1)δ1 + (D1 −D2)δ2 + (D2 −D3)δ3 +D3δmem. (3.2)

To conduct the computation in Lines 5 and 6 of Function 3, the program needs

to access weights from Si, weights from B, and score[ ] and ||d||∞[ ] from C. We

model these accesses separately then add them together as follows:

D0 = D0(Si) +D0(B) +D0(C) =

Si︷︸︸︷
nkps+

B︷︸︸︷
nkps+

C︷ ︸︸ ︷
2nkps . (3.3)

Define Dj(X) as the total number of data accesses missed in cache level j for

accessing area X. mj(X) is the cache miss ratio to access data for area X in

cache level j.

Dj =Dj(Si) +Dj(B) +Dj(C)

=Dj−1(Si) ∗mj(Si) +Dj−1(B) ∗mj(B) +Dj−1(C) ∗mj(C).

(3.4)

Table 3.2 lists six cases of miss ratio values mj(Si) and mj(C) at different

cache levels j. The miss ratio for B is not listed and is considered close to 0

assuming it is small enough to fit in L1 cache after warm-up. That is true for our

tested datasets. For a dataset with long vectors and B cannot fit in L1, there is
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Table 3.2: Cases of cache miss ratios for split Si and area C in PSS1 at different

cache levels. Column 2, 4, and 6 are the cache miss ratio mj(Si) for accessing

data in Si. Column 3, 5, and 7 are the cache miss ratio mj(C) for accessing data

in C.

Case
m1 m2 m3

Description
Si C Si C Si C

(1) max( 1
ps
, es
fl
) 0 0 0 0 0 C fits L1; Si does not fit L1, but fits L2.

(2) max( 1
ps
, es
fl
) ec

fl
0 0 0 0 Si and C do not fit L1, but fit L2.

(3) max( 1
ps
, es
fl
) ec

fl
1 0 0 0 C does not fit L1, but fits L2; Si does not fit L2 but fits L3.

(4) max( 1
ps
, es
fl
) ec

fl
1 1 0 0 Si and C do not fit L2, but fit L3.

(5) max( 1
ps
, es
fl
) ec

fl
1 1 1 0 C does not fit L2 but fits L3; Si does not fit L3.

(6) max( 1
ps
, es
fl
) ec

fl
1 1 1 1 Si and C do not fit L3.
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a small overhead to fetch it partially from L2 to L1. Such overhead is negligible

due to the relative small size of B, compared to Si and C.

A cache miss triggers the loading of a cache line from the next level. We

assume the cost of a cold cache miss during initial cache warm-up is negligible

and the cache replacement policy is LRU-based. Thus the cache miss ratio for

consecutive access of a vector of elements is 1
l/e

where l is the cache line size and e

is the size of each element in bytes. We assume that cache lines are the same in all

cache levels for simplicity, which matches the current Intel and AMD architecture.

The CPU pre-fetches a few cache lines in advance, in anticipation of using

consecutive memory regions [40, 38]. Also, an element might be re-visited before

it is evicted, where the second cache miss is saved. As an example, a popular

feature in the inverted index of Si might be hit again before replacement. We

model both factors to the effective pre-fetch factor f . Let f be the effective pre-

fetch factor for Si, and es be the element size for Si. The cache miss ratio for

accessing Si is adjusted as es
fl
.

We further explain the cases listed in Table 3.2.

• In Case (1), s is small. C can fit in L1 cache. Thus after initial data

loading, its corresponding cache miss ratios m1(C1), m2(C1), and m3(C1)

are close to 0. Then m1(Si) =
es
fl
, and m2(Si) and m3(Si) are approximately

0 since each split can fit in L2 (but not L1). In this case, s is too small, the
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benefit of using the inverted index does not outweigh the overhead of the

inverted-index constructions and dynamic look-up.

• In Case (2), Si and C can fit in L2 cache (but not L1). m1(Si) =
es
fl
, and

m1(C) =
ec
fl
. m2(Si) and m3(Si) are approximately 0. Thus we have

δtotal = (D0 −D1)δ1 +D1δ2

=

[
nkps(1−max(

1

ps
,
es
fl

)) + nkps + 2nkps(1−
ec
fl

)

]
δ1

+

[
nkpsmax(

1

ps
,
es
fl

) + 2nkps
ec
fl

]
δ2.

(3.5)

Hence task time is

Time = q

[
nk(h+ ps2ψ) + nkps

(
4δ1 + (max(

1

ps
,
es
fl

) +
2ec
fl

)(δ2 − δ1)
)]

.

• As s becomes large in Case (3) to Case (6), Si and C cannot fit in L2 nor

L3, and they need to be fetched periodically from memory if not L3.

A comparison of data access time between PSS1 and PSS. For a large

dataset, Case (6) reflects the behavior of PSS as each partition tends to hold a

large number of vectors. PSS1 performs the best with the Case (2) setting and

thus we compare the reduction of total data cost from Case 6 to Case (2) in

Table 3.2. The D0 and D1 values of two cases are the same while D2 = D3 = 0 in

Case (2) and D3 = D2 = D1 in Case (6).

δtotal(PSS)

δtotal(PSS1)
=

(D0 −D1)δ1 +D1δmem
(D0 −D1)δ1 +D1δ2

= 1 +
δmem − δ2

(D0

D1
− 1)δ1 + δ2

.
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D1

D0
represents L1 miss ratio and in practice, it exceeds 10%. On the other hand,

δmem is two orders of magnitude slower than L1 access latency δ1. So ideally, data

access of PSS1 can be 10x faster than that of PSS.

Optimal choice of s. From the above analysis, a larger s value tends to

lead to the worst performance. We illustrate the s value for the optimal case

on an AMD architecture. For the AMD Bulldozer 8-core CPU architecture (FX-

8120) tested in our experiments, L1 cache is of size 16KB for each core. L2

cache is of size 2MB shared by 2 cores and L3 cache is of size 8MB shared by 8

cores. Thus 1MB on average for each core. Other parameters are: δm = 64.52ns,

δ3 = 24.19ns,δ2 = 3.23ns, δ1 = 0.65ns, l = 64 bytes. We estimate ψ = 0.16ns,

h = 10ns, ps = 10%s, f = 4 based on the results from our micro benchmark.

The minimum task time occurs in Case (2) when Si and C can fit in L2 cache,

but not L1. Thus the constraint based on the L2 cache size can be expressed as

s× k × es + 2s× ec ≤ 1MB.

While satisfying the above condition, split size s is chosen as large as possible

to reduce q value. For Twitter data, k is 18, es is 28 bytes, and ec is 4 bytes. Thus

the optimal s is around 2K.

To support the above analysis, Figure 3.6 shows the actual data-access-to-

computation ratio collected from our experiment using Twitter dataset when s

varies from 100 to 25K. We measure the ratio of the data access time (including
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the inverted index look-up) over the computation time. This ratio captures the

data access overhead paid to perform comparison computation and the smaller

the value is, the better. For Twitter benchmark, the above ratio is 8 for optimum

case, while it increases to over 25 for Case (3) and Case (4) where more frequent

access to L3 cache is required. It shows that by selecting the optimal s value

based on our cost function, we are able to reduce the data-access-to-computation

ratio from 25 to 8.
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Figure 3.6: Y axis is the ratio of actual data access time to computation time for

Twitter data observed in our experiments.
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3.5 PSS2: Feature-based Vector Coalescing

In PSS1, every time a feature weight from area Si is loaded to L1 cache, its

value is multiplied by a weight from a vector in B. L1 cache usage for Si is mainly

for spatial locality. Namely fetching one or few cache lines for Si to avoid future L1

cache miss when consecutive data is accessed. Temporal locality is not exploited

much, because the same element is unlikely to be accessed again before being

evicted, especially for L1 cache due to its small size. Another way to understand

this weakness is that the number of times that an element in L1 loaded for Si

can be used to multiply a weight in B is low before this element of Si is evicted

out from L1 cache every time. PSS2 is proposed to exploit temporal locality and

adjust data layout and traversal in B in order to increase L1 cache reuse ratio for

Si.

w 4,3 w
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B
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Figure 3.7: Example of data traversal in PSS2. Five data items are involved in

the core computation. The striped area indicates coverage of a cacheline.
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Figure 3.7 illustrates the data traversal pattern of PSS2 with b = 3. There

is one common feature t3 that appears in both Si and B. The posting of t3 in

Si is {w1,3,w2,3} and each iteration of PPS2 uses one element from this list, and

multiplies it with elements in the corresponding posting of B which is {w4,3,w6,3}.

Thus every L1 cache loading for Si can benefit two multiplications with weights

in B in this example. In comparison, every L1 loading of weights for Si in PSS1

can only benefit one multiplication.

Algorithm 5 Pss2Task(A, O).
1: Input: Partition A assigned to the task, and other candidate partitions O.

2: Output: Similar pairs and their corresponding similarity score.

3: Read A and divide it into q splits of s vectors each.

4: Build an inverted index for each split Si.

5: repeat

6: Fetch b vectors from O and build inverted index in B.

7: for Si ∈ S do

8: Pss2Compare(Si, B).

9: end for

10: until All vectors in O are compared.

Algorithm 5 and Function 6 describe a PSS2 task. The key distinctions from

a PSS1 task are as follows.
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Algorithm 6 Pss2Compare(Si, B).
1: Initialize array score of size s× b with zeros.

2: for j = 1 to b do

3: r[j] = ||dj||1.

4: end for

5: for feature t appears in both B and S do

6: for di ∈ posting(t) in S do

7: for dj ∈ posting(t) in B and di is a candidate do

8: score[i][j]=score[i][j]+wi,t×wj,t.

9: if (score[i][j]+||di||∞×r[j]<τ) then

10: Mark pair di and dj as non-candidate.

11: end for

12: end for

13: for dj ∈ posting(t) in B do

14: r[j] = r[j]− wj,t.

15: end for

16: end for
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Algorithm 6 Pss2Compare(Si, B) (continued).
1: for i = 1 to s do

2: for j = 1 to b do

3: if score[i][j] ≥ τ then

4: Write (di, dj, score[i][j]).

5: end for

6: end for

• Once an element in Si is loaded to L1 cache, we compare it with b vectors

from B at a time. Namely group Si from S is compared with b vectors in B

(Line 8 in Algorithm 5).

• We coalesce b vectors in B and build an inverted index from these b vec-

tors. The comparison between Si and b vectors in B is done by intersecting

postings of common features in B and Si (Line 5 in Procedure 6).

• The above approach also benefits the amortization of inverted index look-up

cost. In PSS1, every term posting look-up for Si only benefit the multiplica-

tion with one element in B. In PSS2, every look up can potentially benefit

multiple elements because of vector coalescing. Thus PSS2 exploits temporal

locality of data in Si better than PSS1.
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Compared with PSS1, PSS2 compares Si with not one, but b vectors in B at a

time. The partial result accumulator is expanded as well, from a one-dimensional

array score[ ] (of length s) to a two-dimensional array score[ ][ ] of length s×b. This

expansion in space allocation, together with the coalescing effect aforementioned,

implies that the cache utilization of PSS2 is affected by the choice of s, as well as

the choice of b.

In the next subsection, we will explain in detail why the parameter choice

affects the cache utilization, how the parameter choice changes the cache miss

ratios by example cases, and generalize the cases in a cache analytic model. For

simplicity of presentation, the analysis is applied to PSS2 without considering

dynamic elimination (line 6 and line 7 in Function 3).

3.6 Parameter Choices for Optimal Cache Utiliza-

tion

From the analysis for PSS1, s cannot be too small in order to exploit the

spatial locality of data in Si. Now we examine the choice of b as the number of

vectors fetched and stored in B.

• We first discuss the benefits of having a large value of b. The primary gain

of PSS2 compared to PSS1 is to exploit the temporal locality of data from
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Si by coalescing b vectors in area B. Let pb be the average number of vectors

sharing a feature. The L1 cache miss ratio of Si is reduced by pb from PSS1

to PSS2. Choosing a large b is better as it increases pb value. Also since

we build the inverted index for vectors in B dynamically, the small b value

will not bring enough locality benefit to offset the overhead of building the

inverted index. Thus b cannot be too small. In general, B would not fit L1

cache.

• There is a disadvantage to increase b from the cache capacity point of view.

If increasing b values expands the size of variables in B and C too much, B

and C may not fit L2 cache anymore. Another consideration is that vectors

in B is sparse as shown in our experiment section (Figure 3.8) and as a

result, a large b value does not linearly increase pb value.

From cache analysis of PSS1, we expect that PSS2 performs best when Si, B and

C fit L2 cache but none of them fit L1 cache.

Since the space of 2D variable score[ ][ ] dominates the usage of area C, the

constraint based on the L2 cache size can be expressed as

s× k × es + b× k × eb + s× b× ec ≤ capacity of L2.

For the Twitter dataset and AMD architecture with 1MB L1 cache per core,

when b size is around 8 to 32, s value varies from 1,000 to 1,500, the above in-
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equality can hold. The analysis above does not consider the popularity of features

among vectors. Since some features are accessed more frequently than the others,

we expect that a smaller number of features are shared among vectors but many

others are not shared, thus not need to be cached. As a result, the above inequal-

ity does not need to include all features in the capacity planning. We expect the

optional choice to be slightly larger than the numbers discussed above.

The miss ratios for the above case are:

m1(Si) = max( 1
ps
, es
fl
) · 1

pb
, m1(B) = eb

fl
· 1
ps
, m1(C) =

ec
fl
· 1
pb
,

m2(Si) = m3(Si) = 0, m2(B) = m3(B) = 0, m2(C) = m3(C) = 0.

We could derive the total access cost of PSS2 in this case as follows

δtotal(PSS2) = D0δ1 +D1(PSS2)(δ2 − δ1)

where D1(PSS2) denotes the D1 value when PSS2 is applied and Si, B and C fit

L2 cache.

D1(PSS2) = max(
1

ps
,
es
fl

)
nkps
pb

+
ebnkps
flps

+
3ecnkps
flpb

.

We compare the above result with δtotal for PSS1 with Case (2) in Table 3.2.

D1(PSS1) = max(
1

ps
,
es
fl

)nkps +
2ecnkps
fl

.
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where D1(PSS1) denotes the D1 value when PSS1 is applied and Si and C do

not fit L1, but fit L2 cache.

With a relatively large s value, ps is relatively large. max( 1
ps
, es
fl
) = es

fl
. Hence,

δtotal(PSS1)

δtotal(PSS2)
=
D0δ1 +D1(PSS1)(δ2 − δ1)
D0δ1 +D1(PSS2)(δ2 − δ1)

/
D1(PSS1)

D1(PSS2)
=

es + 2ec
es
pb
+ eb

ps
+ 3ec

pb

.

(3.6)

Impact of s and b values on data-access-to-computation ratio. The

above analysis assumes that the smallest memory access time is achieve when all

three areas fit L2 cache. To validate this, we further analyze the cache miss ratio

and access time for other cases, and compare their performance in the form of of

the ratio of data access time (including the inverted index look-up time) over the

computation time Data-access
Computation.

Figure 3.8 plots the data-access-to-computation ratio ratio for the different

cases of parameters in PSS1 and PSS2 cases are from Table 3.3 when handling

the Twitter dataset. This figure confirms that PSS2 reaches the lowest ratio when

Si, B and C fit L2 cache, and its data access speed can be up-to 14x faster than

the others.

Figure 3.8 also shows the Data-access
Computation ratio for optimal case in PSS2 is about

50% lower than the optimal case in PSS1. Such performance gain proves the

positive effect of vector coalescing on cache optimization, when pb value is not too
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Table 3.3: Explanation of case abbreviations in Figure 3.8.

Algo. Case Description

PSS2

pss2-1 Optimal case for PSS2. Si, B, C all fit L2.

pss2-2s B and C fit L2; while Si does not.

pss2-2c Si and B fit L2; while C does not.

pss2-2sc B fits L2; while Si and C do not.

pss2-2bc Si fits L2; while B and C do not.

pss2-3sbc Worst case for PSS2. Si, B, C do not fit L3.

PSS1

pss1-1 Optimal case for PSS1. B fits L1, Si and C fit L2.

pss1-2s B fits L1, C fits L2; while Si does not.

pss1-2sc B fits L1; while Si and C do not fit L2.

pss1-3s A poor case for PSS1. B fits L2; C fits L3; while Si does not.
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small. It demonstrates the advantage of PSS2 over PSS1 (a significant reduction

of the task execution time) by exhibiting good reference locality.
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Figure 3.8: Y axis is the ratio of actual data access time to computation time for

Twitter benchmark observed in our experiments. X axis is the case abbreviation

further illustrated in Table 3.3.
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3.7 Incorporate with Locality Sensitive Hashing

(LSH)

Locality Sensitive Hashing (LSH) [35, 31] is an approximate similarity search

technique that scales to both large and high-dimensional data sets. Its basic idea

is to hash the records using several hash functions to ensure that similar records

have much higher probability of collision in buckets than dissimilar records.

An LSH scheme has the following defining property:

Definition 3.7.1. Let fsim(·, ·) be a given similarity function defined on the col-

lection of objects D. A distribution on a family H of hash functions operating on

D is a locality sensitive hashing scheme if for di, dj ∈ D,

Probh∈H [h(di) = h(dj)] = fsim(di, dj).

Using this scheme, hash functions h1, h2, · · ·, hm drawn from H are applied

to raw vectors to encode them into signatures of hash values.

Before introducing our LSH approach, we first explore two well-known methods

to generate signatures from document vectors: Min-hash [17] for Jaccard similarity

and random projection [21] for cosine similarity.

Min-hash [17] is the min-wise independent permutations method used in

Shingling. For each of the random orderings of features in a document vector, the
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feature with lowest order is picked as the minimum hash. The probability that

two documents di and dj have the same min-hash feature for a given ordering is

di∩dj
di∪dj (i.e., Jaccard similarity). This procedure is repeated for k different randomly

selected orderings to reduce the risk of false positives; thus, the min-hash signature

of a document vector consists of all k min-hash values.

Random projection [21] uses a series of random hyperplanes as hash func-

tions to encode document vectors as fixed-size bit vectors. Assume there are in

total m dimensions of features. To obtain a signature of k bits using this ap-

proach, k randomly generated real-valued vectors of length m are used to map

each document vector d onto a signature ∈ [0, 1]k. The ith bit is determined by

an inner product of d and the ith random vector ri. The signature is computed as

follows:

hri(d) =


1, if ri · d ≥ 0

0, otherwise

The cosine similarity between two documents can be computed via hamming

distance between their signatures, according to the following relation:

Sim(di, dj) = cos[(π · hamming(h(di), h(dj))
k

)].

Previous work have applied variants of LSH on cross-language information re-

trieval problem [51] and near duplicate detection [33]. The work included in Ivory

package [51] applies sliding window mechanism on sorted signatures of hamming
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distances in the hash table generated by one set of hash functions, and repeat

this step for hundreds of rounds. Due to errors introduced by bit signatures and

sliding window algorithm, the upper bound of recall for their method is 0.76 with

1, 000-bit signature. If precision is desired, candidates within each LSH bucket

could be post-processed by an additional pairwise clustering step by calculating

exact similarities to filter out false positives.

An adaptive approach [33] tunes LSH by concatenating k hash values from each

data object into a single signature for high precision, and by combining matches

over l such hashing rounds, each using independent hash functions, for good re-

call. An illustration is shown in Figure 3.9. They use k = 8 to 256 Min-hash

functions over l = 5 hashing rounds, and each Min-hash value takes roughly 20

bits to store. Within each bucket, the Jaccard similarity score of two documents is

determined by the number of identical hash values their corresponding signatures

share, divided by k.

We take a different angle in design, and opt for a relatively lower value of k and

relatively higher value of l. More hashing rounds (l) contributes to a higher level of

recall. The drop of number of hash functions (i.e. the number of hash values or bits

generated in each round) will speed up the LSH process. After the centralized LSH

step, we apply our efficient Partition-based algorithm in parallel upon all buckets

generated in all rounds of LSH. Such pipeline is illustrated in Figure 3.10. Notice
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Figure 3.9: Illustration of l rounds of LSH, each round generates k hash values.

the LSH step is common before the original input data is copied and processed in

parallel via PSS tasks. LSH computation is also parallelized over the distributed

servers in the form of MapReduce jobs, and consists of sub-steps of projection

generation, signature generation and bucket generation.

Our combined algorithm design achieves 100% precision with a guaranteed

recall ratio. The reason is explained as below. In terms of hashing functions,

we mainly apply the random projection algorithm for cosine similarity. Suppose

the probability that two signature bits (at the same position) from two records

collide equals to the cosine similarity of the two records. Given cosine similarity

threshold τ , the number of bits for a signature k, and the number of LSH rounds
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Figure 3.10: Our implementation of LSH and PSS pipeline.
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Table 3.4: Number of LSH rounds l needed to achieve targeted recall rate recall

for cosine similarity threshold τ , given k signature bits.

τ
recall = 95% recall = 99%

k = 3 k = 5 k = 7 k = 9 k = 11 k = 3 k = 5

0.99 1 1 2 2 2 2 2

0.95 2 3 3 4 4 3 4

0.90 3 4 5 7 8 4 6

0.85 4 6 8 12 17 5 8

0.80 5 8 13 21 34 7 12

l, the recall rate is as follows:

recall = 1− (1− τ k)l.

Based on this formula, we can compute the value of l, given cosine similarity

threshold τ , the number of bits for a signature k, and a targeted recall rate recall:

l =
⌈
log(1−τk)(1− recall)

⌉
.

Given various choices of signature bits k, targeted recall rate recall, and cosine

similarity threshold τ , the corresponding rounds of LSH needed (l) are listed in

Table 3.4.

47



Besides the high level of precision and recall rates, this combined approach

is, in general, more efficient than the Partition-based similarity search (PSS) due

to hashing. If we assume in each round, all records are evenly divided among

buckets. Without considering the additional cost of generating LSH signatures and

making copies of records to different buckets, we could reduce the total number

of similarity computation to a fraction of l
2k

of the original. This is because given

n records, the number of pair-wise similarity computation is reduced from n2

2
to

( n

2k
)2

2
in each bucket over a total of 2k ·l buckets. However, such ideal speedup ratio

could never be reached. The actual speedup ratios are reported in Section 3.9.6.

When applicable, we could even combine the LSH and PSS together and achieve

higher level of speedup. The trade-off is also discussed in Section 3.9.6.

3.8 Discussions

We discuss some additional issues for our partitioned similarity search algo-

rithms.
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3.8.1 Partition-based Similarity Search with Incremental

Updates

In various applications, content could be appended to the original set peri-

odically. For example, web search engine constantly crawls the web for updated

content, Twitter users continue creating new tweets, music website users some-

times update ratings or add new ratings to songs they listen to. How to handle

incremental content update in Partition-based similarity search without sacrifice

efficiency?

Instead of naïvely applies all-pairs similarity search over the whole universe

of records, we set aside a new partition. Every time new documents and / or

new versions of old documents are generated, we append them to the end of

the new partition. Once the new partition has grown to a threshold size or a

threshold amount of time is reached, we start a MapReduce job to compare the

new partition with all the original partitions, similar to what we usually do for

all the original partitions. After the comparison, this new partition is added to

the original set as a stand-alone partition with potential similarity relationship

to all the other partitions. And the following new or updated records could be

appended to another new partition and repeat such a process as illustrated in

Figure 3.3 (a).
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(a) Pipeline for processing incremental up-

dates.

P2 new

P4 new

P3 new

P1 new

P1

P3

P4

P2

(b) End result after updating static parti-

tions with the new partition.

Figure 3.3: Incremental update illustrations.

Another issue worth mention is the update of static partitions once the com-

parison of records in new partition is completed. We explain as follows. Each

updated document dx could be inserted into group Gi if i is the minimum inte-

ger that satisfies ‖dx‖1 ≤ maxdy∈Gi
‖dy‖1. This document dx inserted in group Gi

is further mapped to subgroup Gi,j where j is the maximum integer satisfying

maxdy∈Gj
‖dy‖1 < τ

‖dx‖∞ . Each chunk of updated documents is appended to the

end of its corresponding partition and the partition size grows. Figure 3.3 (b)

illustrates how these partitions look like after documents being appended based

on aforementioned schema.

50



3.8.2 Extension to Other Similarity Measures

Since PSS1 and PSS2 are based on the cosine similarity metric, we discuss an

extension to apply our techniques for other two similarity measures with binary

vectors.

• Jaccard similarity. For binary vectors, the Jaccard similarity is defined

as

Sim(di, dj) =
‖di · dj‖1

‖di‖1 + ‖dj‖1 − ‖di · dj‖1
.

Following the upper bound discussed in [50], it is easy to verify that if one

of the following inequalities is true:

‖di‖1 < τ‖dj‖1 or ‖dj‖1 < τ‖di‖1.

The static partitioning algorithm still sorts all vectors by norm ||d||1. After

this sorting and grouping, given the leader value in a group Gi, we can find

a vector dj with largest value j such that leader(Gi) < τ ||dj||1. Then dj is

dissimilar to any member in G1, G2, · · · , Gi. Thus subgroup Gi,j is defined

as containing these members dx in Gi satisfying the following inequality.

Leader(Gi) < τ‖dx‖.

For runtime partition comparison, Line 9 of Function 6 in PSS2 needs to be

modified as:

score[i][j] + r[j] <
τ

1 + τ
(‖di‖1 + ‖dj‖1).
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Notice that score[i][j] keeps track of the current maximum value ‖di · dj‖1.

Term score[i][j] in Lines 3 and 4 of Function 6(continued) is replaced with

the following Jaccard similarity formula

score[i][j]

‖di‖1 + ‖dj‖1 − score[i][j]
.

• Dice similarity. For binary vectors, the Dice similarity is defined as

Sim(di, dj) =
2‖di · dj‖1
‖di‖1 + ‖dj‖1

.

It is easy to verify that if one of the following inequalities is true:

‖di‖1 <
τ

1− τ
‖dj‖1 or ‖dj‖1 <

τ

1− τ
‖di‖1.

Then the static partitioning algorithm can be modified accordingly after

all vectors are sorted by norm ||d||1. Namely given the leader value in a

group Gi, a vector dj satisfying leader(Gi) <
τ

2−τ ||dj||1, is dissimilar to any

member in G1, G2, · · · , Gi. Thus subgroup Gi,j is defined as containing

these members dx in Gi satisfying the following inequality:

Leader(Gi) <
τ

2− τ
‖dx‖.

For runtime partition comparison, condition of Line 9 of Function 6 in PSS2

needs to be modified as:

score[i][j] + r[j] <
τ

2
(‖di‖1 + ‖dj‖1).
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Term score[i][j] in Lines 3 and 4 of Function 6(continued) is changed with

the following Dice similarity formula

2 · score[i][j]
‖di‖1 + ‖dj‖1

.

3.8.3 Compare with 2D Blocking Strategy

We can view Si and B as two matrices and PSS1 has used a row-wise block

data layout for Si while PSS2 adds a row-wise blocking in area B. There is an

extension option to further divide Si and B as a set of sub-matrices, which can

potentially further improve the use of cache temporal locality in both matrices.

We call this extension 2D Blocking, where 2D stands for two-dimensions: both

row-wise and column-wise. 2D Blocking follows the previous scientific computing

research that views a sparse matrix as a collection of dense small sub-matrices

and employs BLAS3 to perform sub-matrix multiplication [25, 48, 53]. However,

our experimental results in Section 3.9.9 show that vector-feature matrices in the

tested applications are extremely sparse and 2D Blocking does not contribute

enough benefits to counteract the introduced overhead.

3.9 Evaluations

We have implemented our algorithms in Java. The source code and test

datasets could be found at https://github.com/ucsb-similarity/pss.
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Our evaluations have the following objectives:

1. Explain the problem complexity and demonstrate the execution scalability

by reporting the speedup over the sequential time as we scale the number

of cores utilized.

2. Compare our partition-based method with two alternative MapReduce so-

lutions and assess the benefit of static partitioning.

3. Compare PSS1 and PSS2 with the baseline PSS using multiple application

datasets and illustrate the impact of parameters by examining the cache hit

ratios and execution time under different choices.

4. Report the efficiency and effectiveness of incorporating LSH with PSS, and

provide guideline for method choices that meet different requirement.

5. Evaluate the experimental results when a new partition is used during in-

cremental updates.

6. Evaluate 2D Blocking to understand the issues of subm-atrix multiplication

for APSS.

7. Compare the cache behavior and execution time for metrics other than Co-

sine: Jaccard and Dice. Discuss the results for both PSS1 and PSS2.

Datasets. The following five datasets are used.
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• Twitter dataset containing 100 million tweets with 18.32 features per tweet

on average after pre-processing. Dataset includes 20 million real user tweets

and additional 80 million synthetic data generated based on the distribution

pattern of the real Twitter data but with different dictionary words.

• ClueWeb dataset containing about 40 million web pages, randomly selected

from the ClueWeb collection [9]. The average number of features is 320

per web page. We choose 40M records because it is already big enough to

illustrate the scalability.

• Yahoo! music dataset (YMusic) used to investigate the song similarity for

music recommendation. It contains 1,000,990 users rating 624,961 songs

with an average feature vector size 404.5.

• Enron email dataset containing 619,446 messages from the Enron corpus,

belonging to 158 users with an average of 757 messages per user. The average

number of features is 107 per message.

• Google news (GNews) dataset with over 100K news articles crawled from

the web. The average number of features per article is 830.

The datasets are pre-processed to follow the TF-IDF weighting after cleaning and

stop-word filtering [41].
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Environment setup. We ran parallel speedup experiments on a cluster of

servers each with 4-core AMD Opteron 2218 2.6GHz processors and 8G memory

and a cluster with Intel X5650 6-core 2.66GHz dual processors and 24GB of mem-

ory per node. We mainly report performance on the AMD cluster because a larger

Intel cluster environment was less available for us to conduct experiments. The

cache-conscious experiments were also conducted on 8-core 3.1GHz AMD Bull-

dozer FX8120 machines. Each AMD FX8120 processor has 16KB of L1d cache

per core, 2MB of L2 cache shared by two cores, and 8MB of L3 cache among

all eight cores. Each Intel X5650 processor has 32KB of L1 data cache per core,

1.5MB of L2 cache per processor, and 12MB of L3 cache per processor.

Dataset Cores
Static Similarity Comparison

Partitioning Read Write CPU

Twitter 100 2.8% 0.9% 11.7% 84.6%

ClueWeb 300 2.1% 1.9% 7.8% 88.2%

YMusic 20 3.0% 2.3% 1.8% 92.9%

Table 3.5: Cost of static partitioning and runtime cost distribution of PSS in

parallel execution.

Table 3.5 shows that static partitioning which is also parallelized takes 2.1% to

3% of the total parallel execution time. This table also shows the time distribution
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in terms of data I/O and CPU usage for similarity comparison. Data I/O is to

fetch data and write similarity results in the Hadoop distributed file system. This

implies that the computation cost in APSS is dominating and hence load balance

of the computation among cores is critical for overall performance.

The static partitioning step takes less than 3% of the total parallel execution

time. The cost of self-comparison among vectors within a partition is included

when reporting the actual cost.

To support our arithmetic models, we also provide empirical evidence mea-

sured by the Linux profiling tool perf. Perf collects the performance counters that

count hardware events, and helps us understand how the program interacts with

a machine’s cache hierarchy. For modern machines with three levels of cache, perf

collects from the first-level and third-level cache measures. The L1 caches is the

most commonly accessed cache, and often have low associativity. The L3 cache

has the most influence on runtime, as it masks accesses to main memory.

3.9.1 Problem Complexity and Scalability of PSS

Rows 3 and 4 of Table 3.6 list the sequential execution time in hours for

Twitter, ClueWeb and YMusic datasets with different sizes when running PSS2.

The values marked in gray are estimated by sampling part of its computation

tasks, considering the fact that computation load grows quadratically as problem
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Dataset Twitter ClueWeb YMusic

Size 4M 100M 1M 40M 625K

AMD 45 45,157 50 79,845 31.95

Intel 26.7 25,438 29.3 46,946 17.8

AMD/df-limit 1.27 797 4.55 7,286 6.23

Table 3.6: Sequential time in hours on AMD Opteron 2218 2.6GHz and Intel

X5650 2.66GHz processors (τ=0.8). The values marked in gray are estimated

results based on sampling, due to time and resource constraint.

size grows. Such estimation is reasonably accurate since 4M Twitter data or 1M

ClueWeb data is large enough to represent the data skewness, increasing the size

by 10x merely enlarges the number of tasks and the workload of each tasks by the

corresponding ratio. From the results in Rows 3 and 4, APSS is a time consuming

process. Even for a Twitter dataset with 4M tweets, the entire dataset can fit in

the memory; but it still takes a couple days to produce the results. Parallelization

can shorten the job turnaround time and speedup iterative data analysis and

experimentation.

Stop words are removed in the Twitter and ClueWeb input datasets; additional

approximated preprocessing may be applied to reduce sequential time significantly

if the trade-off in accuracy is acceptable [26, 41]. For example, the bottom row
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of Table 3.6, marked as “df-limit”, lists the sequential time on an AMD core after

removing features with their vector frequency exceeding an upper limit proposed

in [41]. After sampling a the ClueWeb dataset, 49 words with document frequency

above 200,000 are excluded in web page comparison and the sequential time is

shortened by 11x. Using this df-limit strategy reduces the sequential time by

35.3x or more for Twitter and by 5.1x for YMusic. In the rest of this section,

we report performance of exact similarity search without using approximated pre-

processing such as df-limit.

It should be emphasized that the algorithms discussed in this dissertation con-

duct exact similarity comparison without approximation, unless otherwise speci-

fied.

With exact similarity comparison, Figure 3.4 shows the speedup and parallel

time for processing 40M ClueWeb dataset and 100M Twitter dataset when varying

the number of cores. Due to the time constraint in our shared cluster environment,

we report the average execution time of multiple runs after randomly selecting 10%

of ClueWeb parallel tasks and 20% of Twitter tasks. Such a sampling methodology

follows the one used in [41]. Speedup is defined as the sequential time of these tasks

divided by the parallel time. The performance of our scheme scales well as the

number of CPU cores increases. The efficiency is defined as the speedup divided by

the number of cores used. For the two larger datasets, the efficiency is about 83.7%
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for ClueWeb and 78% for Twitter when 100 cores are used. When running on 300

cores, the efficiency can still reach 75.6% for ClueWeb and 71.7% for Twitter. The

decline is most likely caused by the increased I/O and communication overhead

among machines in a larger cluster.

Efficiency for YMusic with 31.95 hour sequential time are 76.2% with 100

cores and 42.6% with 300 cores. There is no significant reduction of parallel time

from 200 cores to 300 cores, remaining about 15 minutes. The problem size of

this dataset is not large enough to use more cores for amortizing overhead. Still

parallelization shortens search time and that can be important for iterative search

experimentation and refinement. Enron email or GNews dataset is not used in

the scalability experiments due to similar reasons.

3.9.2 Comparative Studies

We also calculate the average time for comparing each pair of vectors nor-

malized by their average length in a dataset. Namely Parallel time×No of cores
No of pairs×Vector length.

The normalized pair-wise comparison time is about 1.24 nanoseconds for Twitter

and 0.74 nanoseconds for ClueWeb using 300 AMD cores given τ = 0.8. Varying

the number of cores affects due to the difference in parallel efficiency. Varying τ

also affects because it changes the results of dissimilarity-based partitioning and
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graph structure. This number can become smaller if approximated preprocessing

is adopted [26, 41].

To confirm the choice of partition-based search, we have also implemented an

alternative MapReduce solution to exploit parallel score accumulation following

the work of [41, 13] where each mapper computes partial scores and distributes

them to reducers for score merging. The performance comparison is presented in

Figure 3.5 The parallel score accumulation is much slower because of the commu-

nication overhead incurred in exploiting accumulation parallelism. For example,

to process 4M Twitter data using 120 cores, parallel score accumulation is 19.7x

slower than partition-based similarity search which has much simpler parallelism

management and has no shuffling between mappers and reducers. To process 7M

Twitter data, parallel score accumulation is 25x slower.

As sanity check, we also estimate the normalized pair-wise comparison time

reported in [41]. To compare 90K vectors with 4.59 million MEDLINE abstracts

using at most 60 terms per vector on about 120 cores each with 2.8GHz CPU, it

takes a MapReduce solution called PQ [41] 448 minutes with approximated pre-

processing, meaning about 130.1 nanoseconds to compare each normalized vector

pair, while PSS takes about 1.24 nanoseconds for Twitter and 0.74 nanoseconds

for ClueWeb per normalized vector pair.
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Figure 3.6 demonstrates the effectiveness of static partitioning by showing

the percentage of parallel execution time reduced after static partitioning is ap-

plied. The number of cores allocated is 120 for the Twitter and 10M of ClueWeb

datasets, and 20 cores for the Emails dataset. Static partitioning with dissimilar-

ity detection leads to about 74% reduction for Twitter, about 29% for ClueWeb,

and about 73% for Emails dataset. We also gained similar results when binary

feature weights are used.

3.9.3 Performance of PSS, PSS1 and PSS2
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running time includes I/O.

In the following subsections within this chapter, we mainly report and compare

the running time for different algorithms when the static partitions are given.
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In this subsection, we compare the performance of PSS1 and PSS2 with the

baseline PSS using multiple application benchmarks. We observe the same trend

that PSS1 outperforms the baseline, and PSS2 outperforms PSS1 in all cases

except for the YMusic benchmark. Figure 3.7 shows the improvement ratio on

the average task time after applying PSS1 or PSS2 over the baseline PSS. Namely

T imePSS

T imePSS1
and T imePSS

T imePSS2
. PSS is cache-oblivious and each task handles a very large

partition that fits into the main memory (but not fast cache). For example,

each partition for ClueWeb can have around 500,000 web pages. Result shows

PSS2 contributes significant improvement compared to PSS1. For example, under

ClueWeb dataset, PSS1 is 1.2x faster than the baseline PSS while PSS2 is 2.74x

faster than PSS. The split size s for PSS1 and s and b for PSS2 are optimally

chosen.

While PSS1 outperforms PSS in most datasets, there is an exception for Yahoo!

music benchmark. In this case, PSS1 is better than baseline, which is better than

PSS2. This is due to the low sharing pattern in Yahoo! music dataset. The

benefits of PSS2 over PSS1 depend on how many features are shared in area B.

Figure 3.8 shows the average and maximum number of features shared among b

vectors in area B, respectively. Sharing pattern is highly skewed and the maximum

sharing is fairly high. On the other hand, the average sharing value captures better

on the benefits of coalescing. The average number shared exceeds 2 or more for
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all data when b is above 32 (the optimal b value for PSS2) except Yahoo! music.

In the Yahoo! music data, each vector represents a song and features are the users

rating this song. PSS2 slows down the execution due to the relatively low level of

interest intersection among users in YMusic dataset.

3.9.4 Cache Behavior and Cost Modeling for PSS1
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Figure 3.9: The average running time in log scale per PSS1 task under different

values for split size s. The partition size S for each task is fixed, S = s× q.

The gain from PSS to PSS1 is achieved by the splitting of the hosted partition

data. Figure 3.9 shows the average running time of a PSS1 task including I/O

in log-scale with different values of s. Notice that the partition size (S = s × q)
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handled by each task is fixed. The choice of split size s makes an impact on data

access cost. Increasing s does not change the total number of basic multiplications

and additions needed for comparison, but it does change the traversal pattern of

memory hierarchy and thus affects data access cost. For all the datasets shown,

the lowest value of running time is achieved when s value is ranged between 0.5K

and 2K, consistent with our analytic results.

We demonstrate the cache behavior of PSS1 modeled in Section 3.4.2 with the

Twitter dataset.

Figure 3.10(a) depicts the real cache miss ratios for L1 and L3 reported by

perf, as well as the estimated L1 miss ratio which is D1/D0, and the estimated

L3 miss ratio which is D3/D2. L1 cache miss ratio grows from 3.5%, peaks when

s = 8K, and gradually drops to around 9% afterwards when s value increases.

L3 cache miss ratio starts from 3.65% when s=100, reaches the bottom at 1.04%

when s= 5K, and rises to almost 25% when s= 500K. The figure shows that the

estimated cache miss ratio approximates the trend of the actual cache miss ratio

well.

To validate our cost model, we compare the estimated cost with experimental

results in Figure 3.10(b). Our estimation of cache miss ratios fits the real ratios

quite well, and predicts the trend of ratio change as split size changes. When

s is very small, the overhead of building and searching the inverted indexes are
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too high and thus the actual performance is poor. When s ranges from 50K to

80K, the actual running time drops slightly. This is because as s increases, there is

some benefit for amortizing the cost of inverted index look-up. Both the estimated

and real time results suggest that the optimum s value is around 2K. Given the

optimum s, PSS1 is at least twice faster than when s is 10K.

3.9.5 Impact of Parameters and Cache Behavior for PSS2
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Figure 3.11: Each square is an s × b PSS2 implementation (where
∑
s = S)

shaded by its average task time for Twitter dataset. The lowest time has the

lightest shade.
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Table 3.7: Optimal parameters for PSS1 and PSS2 on AMD or Intel architecture.

Architecture

Estimated Actual

PSS1 PSS2 PSS1 PSS2

s s b s s b

AMD 3,472 2,315 32 4,000 2,000 32

Intel 2,604 1,736 32 4,000 4,000 32

The gain of PSS2 over PSS1 is made by coalescing visits of vectors in B with

a control. Figure 3.11 depicts the average time of the Twitter tasks with different

s and b, including I/O. The darker each square is, the longer the execution time

is. The shortest running time is achieved when b = 32 and s is between 5K to

10K. When b is too small, the number of features shared among b vectors is too

small to amortize the cost of coalescing. When b is too big, the footprint of area

C and B becomes too big to fit into L2 cache.

Figure 3.12 compares the estimated and real L3 cache ratios, as well as average

task running time. When s is fixed as 2K records, optimal b is shown as 32 for

both cache miss ratio and running time. When b is fixed as 32 records, s = 2K

provides the lowest point in cache miss ratio and running time. When s or b are

chosen larger than the optimal, running time increases due to higher cache miss

ratio. Our analytic model correctly captured the trend and optimal values.
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Table 3.7 lists the optimal parameters for PSS1 and PSS2 on AMD and Intel

machines we have tested. As an example, we illustrate how to calculate the

optimal parameters for PSS2 on AMD machines. As explained in Section 3.6, the

optimal case is achieved when Si, B, C all fit in L2 cache, i.e. Si + B + C ≤ L2

capacity.

Similar to the results reported for AMD architecture in the other subsections,

we observe 3.7x speedup for PSS1 over cache-oblivious PSS, and 3.6x speedup for

PSS2 over PSS1.

Notice such parallel computation could be affected by the workload. For ex-

ample, when the L2 cache is shared among two cores, and both cores are running

cache-intensive computations, L2 cache size in effect is reduced to 1MB. With

other parameters fixed, the optimal case is reduced by half when twice as many

share-cache processes are running. Reduced range means the same amount of

vectors originally fit in faster cache, now needs to be swapped out and introduces

an additional cache miss.

3.9.6 Incorporate with Locality Sensitive Hashing (LSH)

In order to reduce the computation complexity, we implement the LSH algo-

rithm with random projection and apply it before PSS. In our implementation

using Hadoop, first the LSH-related jobs run sequentially, including generating l
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random projections each with k bits, generating signatures for all n records for l

projections, generating buckets based on signature values, and prepare records for

l rounds by copying records to bucket files for all l rounds. After the LSH map-

ping, every round starts a MapReduce job where each task in the job is responsible

of conducting APSS for all records in this bucket (bucket-wise self-comparison).

The LSH phase is conducted sequentially, while the l rounds of APSS are running

in parallel.

Table 3.8 reports the runtime breakdown of conducting APSS for 20M Tweets

with 95% target recall for all pairs with cosine similarity over 0.95 using 50 cores.

Notice that when a higher value of k is used, the more time is spent on sequential

LSH computation, including computing random projection and data copy. When

a relatively lower value of k is used, the majority time is spent on the actual

similarity comparison conducted in parallel within each bucket. This is because

when signature bits k is used in LSH step, each round of input data is split to

2k buckets after applying k hash functions. When a relatively high value of k is

chosen, each data split becomes too small and the cost of data split and data copy

contribute to a higher overhead. For the case that applies 4 rounds LSH with

9-bit signature random projection, incorporating LSH method takes 276 minutes

in total and computes all pairs similarity with 100% precision and 98.1% recall.
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k l
Time (minute)

LSH PSS Total

5 3 118 445 563

7 3 135 145 280

9 4 202 74 276

11 4 220 93 313

Table 3.8: Runtime breakdown of conducting APSS for 20M Tweets with 95%

target recall for all pairs with cosine similarity τ over 0.95 using 50 cores.

Also worth mention is that only applying LSH is not good enough, because it

generates a very high number of false positives. This is due to the relatively small

number of bits (k) we used in signature and the fact that the LSH rounds are

treated with OR relation and the union of results are used. Table 3.9 compares

our adopted method with two other approaches: running only LSH (Pure LSH)

and running only PSS (Pure PSS). Pure LSH method with relatively high number

of signature bits (k) could provide higher than 95% recall with more rounds (l) of

LSH, but precision is hard to improve over 94%, and more rounds means longer

process time. On the other hand, Pure PSS method guarantees 100% precision

and recall rate, but 8.8x as much time as our adopted method which applies LSH

before PSS. Such comparison shows the efficiency of conducting LSH before PSS
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to speedup the process with bounded recall rate; and the necessity of conducting

PSS after the LSH step as validation to ensure 100% precision.

Method k l Time (minute) Precision Recall

Pure LSH

10 4 219 0.0014% 97.4%

15 5 351 1.2% 95.5%

20 7 590 93.6% 95.5%

25 10 991 93.7% 96.1%

Pure PSS − − 2, 435 100% 100%

LSH + PSS 9 4 276 100% 98.1%

Table 3.9: Comparison of three methods for similarity among 20M Tweets. Ex-

periments are conducted using 50 cores. Precision and recall reported are for all

pairs with cosine similarity τ over 0.95.

Table 3.10 reports the runtime breakdown of conducting APSS for 40M ClueWeb

data with 95% target recall for all pairs with cosine similarity over 0.95 using 300

cores. Same trend as Twitter data is observed with a trade-off between the num-

ber of signature bits k and the number of records in each data bucket. Due to

the higher feature count per record and longer posting length in ClueWeb dataset,

such a balance is achieved with a higher rounds of LSH k. For the case that applies

4 rounds LSH with 11-bit signature, the speedup of using LSH method against the
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parallel time (79, 845 hours as extrapolated from Table 3.6) is 16, 138x speedup

over 300 cores, which means incorporating LSH method is at least 71x faster over

parallel time with Partition-based method, assuming 75.6% parallel efficiency as

shown in Figure 3.4. Such speedup demonstrates that incorporating LSH with

our partition-based similarity search method makes it more accessible to solve the

problem of a much larger size. Table 3.11 compares Pure LSH, Pure PSS, and

LSH+SSH method for 40M ClueWeb dataset using 300 cores. Pure LSH method

with relatively high number of signature bits (k) could provide higher than > 5%

recall with more rounds (l) of LSH, but precision is hard to improve over 94%, and

more rounds means longer process time. On the other hand, Pure PSS method

guarantees 100% precision and recall rate, but takes 71x as much time as our

adopted method which applies LSH before PSS.

k l
Time (minute)

LSH PSS Total

9 4 108 365 473

11 4 114 182 297

13 5 156 171 327

Table 3.10: Runtime breakdown of conducting APSS for 40M ClueWeb data with

95% target recall for all pairs with cosine similarity τ over 0.95 using 300 cores.
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Method k l Time (minute) Precision Recall

Pure LSH

15 5 173 0.13% 95.5%

20 7 269 92.1% 95.5%

25 10 446 93.1% 96.1%

Pure PSS − − 21, 123 100% 100%

LSH + PSS 11 4 297 100% 96.5%

Table 3.11: Comparison of three methods for similarity among 40M ClueWeb

dataset. Experiments are conducted using 300 cores. Precision and recall reported

are for all pairs with cosine similarity τ over 0.95. Due to resource limitation,

estimated running time is marked in gray.
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The algorithm implemented in Ivory [51] package applies sliding window mech-

anism on sorted signatures in order to reduce search space, but introduces errors

and can at most achieve 0.59 precision and 0.76 recall with 1, 000-bit signatures,

0.74 precision and 0.81 recall with 2, 000-bit signatures, 0.86 precision and 0.78

recall with 3, 000-bit signatures for Jaccard similarity τ = 0.3 [51]. With con-

sideration of target precision rate, target recall rate, and the similarity level, we

provide a guideline for method choices that meet different requirement and runs

relatively fast. We summarize the cases in Table 3.12. When pairs with very little

similarity need to be compared (for example, cosine similarity τ < 40%), LSH

method is not very helpful especially when target recall is high, because the hash-

ing to buckets separates pairs that have low similarity. Depending on the target

precision level, one picks Ivory for lower precision but higher speed, or PSS for

higher precision but lower speed. On the other hand, if target recall rate is low,

LSH+PSS method is still faster than Ivory or PSS, making it a good choice. For

the cases where a modest to high level of similarity level is required, LSH+SSH

method is the top choice due to the fast speed, 100% precision, and much higher

recall rate it guarantees.
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τ targeted recall target precision method choice

low low - LSH + PSS

low high low to modest Ivory

low high high PSS

modest to high - - LSH + PSS

Table 3.12: A guideline for method choices that meet different requirement of

target recall rate, target precision rate for a certain similarity threshold τ .

3.9.7 Incremental Updates

This subsection reports the efficiency of our algorithm when there is incremen-

tal content update. A naïve solution triggers a all-partition pairs comparison once

a threshold is reached. Our method takes a more efficient approach. We set the

threshold size as the median size of partitions. Once the new partition grows over

the threshold size, a MapReduce job is started to compare only the new partition

with all the original partitions. We compare our method of appending to a new

partition (explained in Section 3.8.1) with the naïve solution. Table 3.13 shows

that our approach is 50x faster than the naïve approach for similarity comparison

of 100K Tweets update to an original set of 20M Tweets using 300 cores.
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Initial size Update ratio Naïve method Our approach

20M records 0.5% 510 minutes 10 minutes

20M records 5% 558 minutes 57 minutes

Table 3.13: Runtime comparison between naïve method and our approach for

similarity comparison of 100K Tweets or 1M Tweets update to an original set of

20M Tweets using 300 cores.

3.9.8 Similarity Measures

We assess the modified PSS1 and PSS2 in handling Jaccard and Dice metrics.

Figure 3.13 shows how the average running time and L3 cache miss ratios change

when different similarity measures are applied using PSS1. The trend and the

extreme values (optimum s) are close despite the variety of similarity coefficients

applied. The average task time for Jaccard and Dice coefficient are shorter than

that of cosine, due to binary weights used. With binary similarity measures, the

float multiplication is not needed and the value of ψ is smaller. Notice the L3 cache

miss ratios are not affected here since ψ is the cost of addition and multiplication.

Figure 3.14 displays the contour graphs for L3 Cache Ratio m3 and average

task time of PSS2 with Jaccard coefficient measure. Similar to cosine coefficient,

Jaccard coefficient algorithm reaches the shortest running time when s is around
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Figure 3.13: L3 cache miss ratio m3 and average task time of PSS1 with different

similarity measures. Experiments run on Twitter benchmark with 200K vectors

in each partition (s× q = 200K).
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Figure 3.14: L3 cache miss Ratio m3 (a) and average task time (b) of PSS2 with
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different values. Experiments run on Twitter benchmark with 200K vectors in

each partition.
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4000 and b is around 32. The running time lasts as much as 3x longer when either

s or b are chosen as values either too large or too small. We also observe a similar

trend in the change of L3 cache miss ratio. Both mathematical analysis and

experimental results show that our theory on the cache-guided parameter choices

of PSS1 and PSS2 algorithms could not only be applied to cosine similarity metric,

but to other similarity measures as well.

3.9.9 A comparison with 2D Blocking

We assess the individual task performance in utilizing the CPU resource by

collecting its mega-flops rate and compare it with the peak mega-flops rate when

vectors are dense. Similarity computation can be viewed approximately as a sparse

matrix multiplication together with dynamic computation filtering. We assess

the gap between how fast each CPU core can do in terms of peak application

performance with a dense matrix and what our scheme has accomplished. First

we compare the mega-flops performance of our Java code with MTJ [34] from

Netlib, which is highly optimized for dense matrix multiplication. The mega-

flops achieved by a dense matrix multiplication routine (called dgemm) in MTJ

achieves 1500 mega-flops for matrix dimension 1000 on a single core and achieves

500 mega-flops for a small dense matrix. Our scheme achieves 280 mega-flops for
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Twitter benchmark. That is fairly high considering we are dealing with extremely

sparse matrices.

In 2D Blocking design, we represent feature vectors in S and B as a set of small

dense sub-matrices and employ a built-in MTJ BLAS3 dense matrix routine to

multiply these sub-matrices. The advantage of 2D Blocking is that we leverage

MTJ, a highly optimized library for cache performance. The disadvantage is that

these small dense matrices still contain many zeros and a BLAS3 routine does not

remove the unnecessary computation operations as well as an inverted index does.

Figure 3.15 lists the comparison between 2D Blocking and PSS2 performance, with

the ratio T ime2DBlocking

TimePSS2
for different block settings. 2D Blocking is unfortunately

much slower than PSS2. The reason is that vector-feature matrices in the tested

similarity applications are extremely sparse and the 2D Blocking strategy with

BLAS3 does not contribute enough benefit to counteract the introduced overhead.

Table 3.14 provides another angle to explain why 2D Blocking slows down the

task. We list the average fill-in ratio of those nonzero sub-matrices handled by

2D Blocking. Fill-in ratio is the number of stored values which are in fact zero

divided by the number of true non-zeros. The fill-in ratio is very high in our tested

benchmarks, and the number of true non-zeros for each block is too low to gain

enough benefit with such blocked approach.
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Figure 3.15: Y axis is ratio T ime2DBlocking

T imePSS2
. X axis is different block sizes used in 2D

Blocking algorithm when compared with PSS2. 2D Blocking is slower than PSS2

in general under different blocking sizes.

Block size 4×4 4×8 4×16 16×16 32×8 32×16

Twitter 2.5 3.7 3.9 6.2 5.3 7.7

ClueWeb 2.6 8.2 4.8 5.6 4.4 6.2

Table 3.14: Average fill-in ratio with different block sizes.
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Chapter 4

Load Balance for Partition-based

Similarity Search

4.1 Load Balance Problem

We formalize the load assignment problem as follows. The data partitioning

phase defines a set of v partitions and their potentially similar relationship. This

can be represented as a graph, called a similarity graph defined next.

Definition 4.1.1. Similarity graph (G): Let G be an undirected graph where

each node represents a data partition and each edge indicates potential similarity

relationship between the two partitions it connects.
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Since the similarity result of two vectors is symmetric, comparison between

two partitions Pi and Pj should be only conducted by one of the corresponding

tasks Ti or Tj. A load assignment algorithm determines which task performs

this comparison. The load assignment process converts the undirected similarity

graph into a directed graph in which the direction of each edge indicates which

task conducts the corresponding comparison. We call this a comparison graph

and it is defined as follows.

Definition 4.1.2. Comparison graph (D): Let D be a directed graph where

each node represents a data partition. An edge ei,j from partition Pi to Pj indicates

that task Tj compares Pj with Pi.
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Figure 4.1: (a) An undirected similarity graph; node weights are partition sizes.

(b) A directed comparison graph for (a); node weights are the corresponding task

cost. (c) Another comparison graph for (a).
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Comparison graph D contains the same set of nodes and edges as the cor-

responding similarity graph G, except that the edges in D are directed. The

directed edges reveal the data flow direction when comparing two potentially sim-

ilar partitions. Figure 4.1(a) illustrates a similarity graph with seven nodes. P1 is

potentially similar to P2, P4 and P5, for instance. The comparison between P1 and

P2 can be performed by either T1 or T2. The numbers marked inside the graph

nodes are partition sizes, proportional to the number of vectors in the partition.

Figures 4.1(b) and 4.1(c) show two comparison graphs with different load assign-

ments. The number marked inside a comparison graph node is the corresponding

task cost and we explain the cost model below.

The cost function of each task consists of computation cost and data I/O cost.

For each task defined in Algorithm 1, the computation cost includes the cost

of an inverted index look-up, multiplication and addition, and memory/cache

accesses. While a thorough cost model involves memory hierarchy analysis [4],

the overall computation cost can be approximated as proportional to the size of

the corresponding partition Pi multiplied by the size of the potentially similar

partitions to be compared with. The data I/O cost occurs when fetching Pi

and other partitions from local or remote machines, and also when storing the

detected similarity results on disk. Since the start-up I/O cost and transmission

bandwidth difference to the local or remote storage are relatively small, the I/O
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cost is approximately proportional to the size of the partitions involved. Note that

the runtime scheduling that maps tasks to machines is affected by data locality.

As we discuss later, the computation cost is dominating in APSS and thus the

I/O cost difference caused by data locality is not sufficient enough to alter our

optimization results in terms of competitiveness to the optimum.

Define the cost of task Ti corresponding to partition Pi in comparison graph

D as:

Cost(Ti) = f(Pi, Pi) + fc(Pi) +
∑
ej,i∈D

(f(Pi, Pj) + fc(Pj))

where f(Pi, Pi) is the self comparison cost for partition i and is quadratically

proportional to the size of Pi. f(Pi, Pj) is the comparison cost between partition

i and j. It satisfies that f(Pi, Pj) = f(Pj, Pi) and this cost is proportional to the

size of Pi multiplied by size of Pj. fc(Pi) is the I/O and communication cost to

fetch partition Pi from local and/or remote storage and output the results of self-

comparison. fc(Pj) is the cost to fetch partition Pj and output the similar pairs

between Pi and Pj. For Figures 4.1(b) and 4.1(c), f(Pi, Pj) is a multiplication

of the sizes of Pi and Pj, and fc(Pi) is estimated as 10% of the size of Pi. In

Figure 4.1(c), Cost(T5)=67.1 because f(P5, P5)=36, f(P5, P4)=30, fc(P5)=0.6 and

fc(P4)=0.5.

Different edge direction assignments can lead to a large variation in task

weights. Let Cost(D) = maxPi∈D Cost(Ti). For example, in Figure 4.1(b) Cost(D)
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= 86.7 based on Cost(T4). In Figure 4.1(c) Cost(D)=67.1. Deriving a comparison

graph that minimizes the maximum cost among all tasks is a key strategy in our

design. As the load is shifted from the heaviest task to the other tasks, better

load balancing is achieved.

A circular mapping solution in [5] compares a partition with half of other

partitions, if they are potentially similar. When the number of partitions is odd,

task Ti compares Pi with partitions Pj where j belongs to the set: i%v + 1, (i+

1)%v+1, · · · , (i+ v−3
2
)%v+1. Figure 4.1(b) shows the circular solution for the

similarity graph in Figure 4.1(a). T1 is assigned to compare with partitions from P2

to P4, hence the edge is directed from P2 and P4 to P1. Similarly, the comparison

between P1 and P5 is assigned to P5. The circular approach is reasonable when the

distribution of node connectivity and partition sizes is not skewed. In practice,

that is often not true.

Table 4.1 shows the variance of partition sizes and task costs in three datasets.

The largest partition size could be many times larger than the average partition

size and the standard deviation compared to the average size is also high. Ad-

ditionally, the similarity relationship among partitions is highly irregular. Some

partitions have lots of edges in similarity graph while others have sparse connec-

tions. Circular load assignment treats all partitions equally regardless of such

variations and as a result, a task could be assigned all the comparison loads while
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Dataset
Partition size (# of records per partition) Task cost

Avg Std. Dev/Avg Max/Avg Max/Avg

Twitter 143,042 1.75 6.85 2.14

ClueWeb 337,720 0.67 2.37 4.25

YMusic 21,550 0.82 4.35 8.97

Table 4.1: Distribution statistics for partition size and parallel execution time

with circular load assignment.

its counterpart tasks are very light. Column 5 of Table 4.1 shows the maximum

divided by average task cost using circular assignment.

The ultimate goal of load assignment is to schedule computation to parallel

machines with minimum job completion time. Since undirected edges in a simi-

larity graph creates uncertainty in task workload, the key question here is what to

optimize. Will balancing the task costs computed from the comparison graph help

speedup the runtime execution without knowing the allocated computing resource

in advance? In the next section, we discuss our optimization strategy and present

a two-stage assignment algorithm.
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4.2 Two Stage Load Balance Algorithm

Our algorithm for load assignment consists of two stages to derive a comparison

graph with balanced load among tasks. The design considers uneven partition

sizes and irregular dissimilarity relationship. The derived tasks are scheduled at

runtime to q cores and the tasks with reduced variation in sizes contribute to better

performance after scheduling. We will show that such a strategy can produce a

solution competitive to the optimal solution for scheduling a similarity graph on

a given number of cores. We discuss the two-stage algorithm in the following two

subsections.

4.2.1 Stage 1: Initial Load Assignment

The purpose of Stage 1 of this algorithm is to produce an initial load assign-

ment such that tasks with small partitions conduct more comparisons. This stage

performs v steps where v is the total number of partitions in the given similarity

graph. Each step identifies a partition, determines the direction of its similar-

ity edges, and adds this partition along with these directed edges to comparison

graph.

More specifically, each step works on a sub-graph of the original undirected

graph G, called Gk at step k. G1 is the original graph G. At step k, the algorithm

identifies partition Px with the lowest potential computation weight (PW ). The
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potential computation weight for task Tx based on sub-graph Gk is defined as:

PW (Gk, Px) = f(Px, Px) +
∑

ex,y ∈ Gk

f(Px, Py).

It represents the largest possible computation weight for task Tx given the undi-

rected edges in Gk. Gk+1 is derived from Gk by removing the selected partition

Px and its edges in Gk. These edges connecting Px in Gk are chosen to point to

Px in the generated directed graph.

Node
Init Step 1 Step 2

G1 G2 G3

P1 85 80 80

P2 8 - -

P3 37 37 37

P4 110 110 110

P5 108 108 96

P6 18 16 -

P7 84 84 84

P1

P2

P3

P4

P6

P7

P5

 G3

   
G1

 G2

Figure 4.2: The first two steps in Stage 1 in the right figure, along with the PW

values in the left table.

Figure 4.2 illustrates the first two steps in Stage 1. The left part of the figure

lists the initial PW values of each node, as well as the corresponding values after

the first step and second step. Partition P2 has the lowest PW value initially and

95



8.8

27.9

81.6

16.8

P1

P2

P3

P4

P5P6

67.1

56.1

P7 36.6

(a)

56.1

8.8

27.9

51

16.8
67.1

P1

67.1

P2

P3

P4

P5P6

P7

(b)

Figure 4.3: (a) The assignment produced in Stage 1. (b) The first refinement step

in Stage 2: reversing edge e5,4 to e4,5.

is selected at Step 1. Edges connecting P2 are all directed to P2 in the formed

directed graph. The PW values of the partitions adjacent to P2 are changed from

G1 to G2. Step 2 identifies P6 as the the lowest PW in G2, removing it and its

edges from G2. Finally the outcome of Stage 1 produces a comparison graph

shown in Figure 4.3(a).

The cost of a task at Step k is considered to be determined if its correspond-

ing partition has been selected before Step k. Otherwise, a task has a potential

cost that equals to PW value plus possible I/O cost. Figure 4.4 shows the stan-

dard deviation of task costs at the first 200 steps using Cost(Ti) if this task is

determined, or its potential computation weight PW if it is undetermined. The
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Figure 4.4: Monotonic decrease of the cost standard deviation in the first 200

steps in Stage 1 for Twitter dataset. The values are normalized by the average

task computation cost.

step-wise trend illustrates that Stage 1 gradually reduces the variation of task

costs.

Stage 1 pushes the computation load to the tasks with potentially low weight.

This technique works better when partitions have highly skewed sizes since the

lightest partitions absorb as much workload as possible. However, this greedy

heuristic may cause some tasks to carry an excessive amount of computation.

Another issue is that Stage 1 does not consider data I/O and communication cost,

so the effect of optimization might be weakened. Hence, we introduce Stage 2 to
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further refine the assignment produced by Stage 1 and mitigate the aforementioned

weakness.

4.2.2 Stage 2: Assignment Refinement

Stage 2 conducts a number of refinement steps to reduce the load of the heavy

tasks by gradually shifting part of their computation to their lightest neighbors.

It performs the following procedure:

1. Find the task with the highest assigned cost Cost(Tx). Identify one of Px’s

incoming neighbors, say Py, with the lowest cost among these neighbors,

and reverse the direction of this edge from ey,x to ex,y. Such a reversion

causes a cost increase for Ty and a cost decrease for Tx. However, if the new

cost of Ty becomes the same or larger than the original cost of Tx, this edge

reversion is rejected. When an edge reversion is rejected, we continue with

the incoming neighbor that has the second lowest cost. Repeat this process

until a suitable neighbor is found so that the edge reversion successfully

reduces Cost(Tx). If all incoming neighbors of Px are probed but no flip

reduces Cost(Tx) successfully, mark Cost(Tx) as non-reducible.

2. Repeat the above step for the task with the highest weight after the update.

If such a task is non-reducible, try the reducible task with the next highest
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weight. If all nodes are marked non-reducible or the number of iterations

tried reaches a predefined limit, the algorithm stops.

Figure 4.3(b) depicts the first refinement upon the output of Stage 1. The

first edge probed in Figure 4.3(a) is e5,4 because T4 has the highest cost and T5

has the lowest cost among all incoming neighbors of P4 (i.e. P1 and P5). The

reversion of edge e5,4 to e4,5 reduces Cost(T4) from 81.6 to 51 and boosts T5 to

be the task with the highest assigned weight, ready for the next probe. Since

the flip of any incoming edge to P5 does not further reduce Cost(T5), we do not

flip. Finally, Stage 2 produces a comparison graph as shown in Figure 4.1(c) with

Cost(D)=67.1.

4.3 Competitiveness Analysis

We do not know how the optimum scheduling solution dynamically maps tasks

to machines at runtime as shown in Figure 4.6. However, we can use a bound

analysis to show that our heuristic approach performs competitively in a con-

stant factor compared to the optimum. We first address the load balancing issue

without awareness of the machine location. Network distances impact the I/O

and communication cost, but this cost is relatively less significant compared to
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computation load imbalance in PSS. Define

δ = max
Pi∈G

(
fc(Pi)

f(Pi, Pi)
, max
ej,i∈G

fc(Pj)

f(Pi, Pj)
).

This ratio represents the overhead ratio of I/O and communication involved in

each task compared to its computation. In our experiments as shown in Table 3.5,

I/O overhead is relatively small. Given this computation-dominating setting, for

a cluster of machines with multiple CPU cores, we will simply view that the whole

cluster has q cores without differentiating their machine location. The overhead

in accessing data locally or remotely is captured in ratio δ.

Theorem 1 shows the result of two-stage load assignment algorithm is compet-

itive to the smallest possible cost without knowing the number of cores available.

Theorems 2 and 3 characterize the competitiveness of the algorithm to the opti-

mum when the similarity graph is scheduled to q cores. The theorem proofs are

listed in the appendix.

Theorem 4.3.1. Define Costmin(G) as the smallest cost of a comparison graph

derived from a given similarity graph G. The two-stage load assignment algorithm

produces a comparison graph D with Cost(D) competitive to Costmin(G). Their

relative ratio satisfies

Cost(D) ≤ 2(1 + δ)Costmin(G).
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Proof. Let Cost1(D) be the value of Cost(D) after Stage 1. Refinements in Stage

2 do not increase Cost(D) and thus Cost(D) ≤ Cost1(D). We just need to show

that Stage 1 can reach a solution competitive to Costmin(G). Namely Cost1(D) ≤

2(1 + δ)Costmin(G).

Let Di be a directed graph with all nodes ∈ Gi and all edge orientations

determined through the steps from Gi to Gv−1 in stage 1, given a total of v

partitions and D1=D, G1=G.

We use an induction to prove this theorem. The induction goes from Dv−1

to D1, reversing to the creation process in Stage 1. Towards the end of Stage 1,

sub-graph Gv−1 has two nodes left, and at most one edge between them. Choosing

the partition with the smaller computation weight to perform the inter-partition

comparison will add some communication and I/O cost, but leads to the balanced

solution in this special case. Thus Cost1(Dv−1) = Costmin(Gv−1).

Dk Dk+1

   Pk

Gk+1

Gk

Figure 4.5: Illustration of Dk and Dk+1 for induction proof.
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Our induction assumption is that the solution for sub-graph Dk+1 is com-

petitive. Namely Cost1(Dk+1) ≤ 2(1 + δ) Costmin(Gk+1). We want to show the

solution for Dk is also competitive. Figure 4.5 illustrates sub-graphs Dk and Dk+1.

Note that sub-graph Dk and Gk both have v − k + 1 nodes and without loss of

generality, these partition nodes are called Pk, Pk+1, · · · , Pv. Costmin(Gk) satisfies

Costmin(Gk) ≥
∑v

j=k f(Pj, Pj) +
∑

k≤i<j≤v,ei,j∈Gk
f(Pi, Pj)

v − k + 1

=

∑v
j=k f(Pj, Pj) +

∑v
j=k PW (Gk, Pj)

2(v − k + 1)

>

∑v
j=k PW (Gk, Pj)

2(v − k + 1)

≥ (v − k + 1)PW (Gk, Pk)

2(v − k + 1)

=
1

2
PW (Gk, Pk).

Also notice that graph Gk+1 is a sub-graph of Gk, then

Costmin(Gk) ≥ Costmin(Gk+1).

Also following the definition of δ and the setting of Cost(Tk) in Stage 1 of two-stage

load assignment,

Cost(Tk) ≤ PW (Gk, Pk)(1 + δ).
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With the induction assumption and the above three inequalities, the outcome of

Stage 1 with respect to Dk satisfies

Cost1(Dk) = max{Cost1(Dk+1), Cost(Tk)}

≤ max{2(1 + δ)Costmin(Gk+1), PW (Gk, Pk)(1 + δ)}

≤ (1 + δ)max{2Costmin(Gk), 2Costmin(Gk)}

= 2(1 + δ)Costmin(Gk).

Therefore

Cost(D) ≤ Cost1(D) = Cost1(D1) ≤ 2(1 + δ)Costmin(G).

The above result shows that the tasks produced by the two-stage algorithm

have a fairly balanced cost distribution. As illustrated in Figure 4.6, a simple

runtime scheduling heuristic is to assign tasks to idle computing units whenever

they become available [29]. For example, the Hadoop MapReduce [23] scheduler

works by assigning ready tasks in a greedy fashion with the best effort of preserving

data locality. Once the central job tracker detects the availability of a task tracker,

it assigns a ready task to the task tracker as long as there exists an unassigned

task. When deciding which task to assign, it favors the tasks processing data local

to or close to the machine of the task tracker. What is the performance behavior

of our comparison tasks scheduled under such a greedy policy?
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     Tasks in ready queue

T1 T2 T3 Tv...T4

... ... ...
Machine

Cores

...1 2
q

Figure 4.6: Greedy execution of v tasks at runtime on a cluster of machines with

q cores.

The next theorem shows that under a greedy scheduler, the tasks produced by

the two-stage algorithm perform competitively compared to an optimum solution.

Theorem 4.3.2. The two-stage load assignment with a greedy scheduler produces

a solution with job completion time PTq competitive to the optimal solution with

completion time PTopt. Their relative ratio for dedicated q cores satisfies

PTq
PTopt

≤ (3− 2

q
)(1 + δ).

Proof. First we examine the Gantt chart of the schedule from time 0 to PTq,

identifying the total computation and I/O cost, and the idle time. Define the

total computation cost as π =
∑

Pi∈D f(Pi, Pi) +
∑

ej,i∈D f(Pi, Pj), where D is

the comparison graph generated by two-stage load assignment. Then the total

computation and I/O cost is bounded by π(1+ δ). Since the scheduling algorithm
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assigns a task whenever there is an idle core available, the total idle time in all q

cores from time 0 to time PTq is at most (q − 1)Cost(D). Then

max(Cost(D),
π

q
) ≤ PTq ≤

(q − 1)Cost(D) + π(1 + δ)

q
.

Given an optimal schedule for similarity graph G on q cores, a comparison

graph can be derived. Let Costopt(G) be the largest task cost in this comparison

graph. Notice

Costmin(G) ≤ Costopt(G).

The optimal solution satisfies

max(Costopt(G),
π

q
) ≤ PTopt.

Following Theorem 4.3.1,

PTq ≤
q − 1

q
2(1 + δ)Costmin(G) + (1 + δ)PTopt.

Thus

PTq
PTopt

≤ q − 1

q
2(1 + δ) + (1 + δ) = (3− 2

q
)(1 + δ).

Our analysis in the appendix shows that with computation-dominating tasks

and a greedy scheduling policy, the upper bound of execution time is affected by

the weight of the heaviest task. This supports our load balancing optimization

that targets the minimization of the maximum task weight during load assignment.
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Stage 1 may produce an unbalanced initial assignment in which some nodes

absorb too much computation, especially in dense graphs. Stage 2 mitigates this

issue with a sequence of refinements. The following theorem illustrates that for a

fully connected graph, our approach delivers a near-optimal solution, and it can

be inferred from the proof that the refinement process carried out in Stage 2 is

the main reason that this goal is accomplished.

Theorem 4.3.3. The two-stage load assignment with a greedy scheduler is com-

petitive to the optimum for a fully connected similarity graph with equal partition

sizes and equal computation costs in self-comparison and inter-partition compari-

son. Their relative ratio satisfies

PTq
PTopt

≤ 1 + δ.

Proof. Assume that the number of partitions v is an odd number and we show

that all tasks formed have equal weights. The optimality for an even number v

can be proved similarly.

Since all nodes have the same self-comparison cost, the same cost to compare

with others, and the same cost for communication and data I/O, the cost of each

task is proportional to the number of incoming edges for the corresponding node

in D. We claim that every node at the end of load assignment has v−1
2

incoming

edges in comparison graph D, namely it compares with v−1
2

neighbors.
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We prove by contradiction. If some nodes have the number of incoming edges

different from v−1
2
, then some nodes must have more than v−1

2
incoming edges

while some other nodes must have less than v−1
2

edges since the total number of

edges is v(v−1)
2

for a fully connected graph. Assume the heaviest nodes Px has

more than v−1
2

incoming edges, and there exists an incoming edge from node Py

with the number of incoming edges less than or equals to v−1
2
− 1. Figure 4.7

illustrates an example with contradiction.

Py

Px

Figure 4.7: An example for proof by contradiction.

Given all partitions have the equal size, Stage 2 of load assignment should

not have stopped since it could reverse the edge between Tx and Ty, causing the

decrease of Cost(Tx) while Cost(Ty) does not exceed the new value of Cost(Tx).

That is a contradiction.

Thus each task Ti formed fetches from its v−1
2

neighbors. Tasks have the same

weight, leading to a perfect task distribution among q cores. Without loss of
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generality, we use f(Pi, Pi), f(Pi, Pj), and fc(Pi) to represent the cost of self-

comparison, inter-partition comparison, and data I/O respectively for all tasks.

Then

PTq =
v

q
(f(Pi, Pi) + fc(Pi) +

v − 1

2
(f(Pi, Pj) + fc(Pj)))

≤ v

q
(f(Pi, Pi) +

v − 1

2
f(Pi, Pj))(1 + δ).

The above upper bound without factor 1 + δ is the lower bound for any schedule

including the optimum. Thus the solution derived is within 1+ δ of the optimum.

4.4 Data Partitioning Optimization

This section presents an improved partitioning method for Phase 1 of partition-

based similarity search presented in [5]. The goal of this improvement is twofold:

1) to detect more dissimilarity among partitions to avoid unnecessary data I/O

and comparison, and 2) to reduce the size gap among partitions and facilitate the

load balancing process.
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4.4.1 Dissimilarity Detection with Hölder’s Inequality

To identify more dissimilar vectors without explicitly computing the product

of their features, we use Hölder’s inequality to bound the similarity of two vectors:

Sim(di, dj) ≤ ‖di‖r‖dj‖s

where 1
r
+ 1

s
= 1. ‖ · ‖r and ‖ · ‖s are r-norm and s-norm values. r-norm is defined

as

‖di‖r = (
∑
t

|wi,t|r)1/r.

With r = 1, s = ∞, the inequality becomes Sim(di, dj) ≤ ‖di‖1‖dj‖∞, which

is a special case introduced in [5].

If the similarity upper-bound is less than τ , such vectors are not similar and

comparison between them can be avoided. The algorithm that produces partitions

following Hölder’s inequality is described as follows.

1. Divide all vectors evenly to produce l consecutive layers L1, L2, · · · , Ll such

that all vectors in Lk have lower r-norm values than the ones in Lk+1.

2. Subdivide each layer further as follows. For the i-th layer Li, divide its

vectors into i disjoint sub-layers Li,1, Li,2, · · · , Li,j. With j < i, members

in sub-layer Li,j are extracted from Li by comparing with the maximum

r-norm value in layer Lj:

Li,j = {dx|dx ∈ Li and max
dy∈Lj

‖dy‖r <
τ

‖dx‖s
}.
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This partitioning algorithm has a complexity of O(n log n) for n vectors and

can be easily parallelized. Each sub-layer is considered as a data partition and

these partitions have dissimilarity relationship with the following property.

Proposition 4.4.1. Given i > j, vectors in sub-layer Li,j are not similar to the

ones in any sub-layer Lk,h where k ≤ j and k ≥ h.

L i,i

.....
...
...

L 1,1

L 2,1

L 3,1

L i,1

L 2,2

L 3,2

L i,2

L 3,3

L i,3

.
..
.

Figure 4.8: Dissimilarity relationship among data partitions.

Figure 4.8 illustrates the dissimilarity relationship among these sub-layers as

partitions and each pointing edge represents a dissimilarity relationship. For ex-

ample, Li,2 is not similar to L1,1, L2,1, or L2,2 in the top two layers.

4.4.2 Even Partition Sizes

To facilitate load balancing in the later phase, we aim at creating more evenly-

sized partitions at the dissimilarity detection phase. One way is to divide the large
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sub-layers into smaller partitions. Its weakness is that it introduces more poten-

tial similarity edges among these partitions, hence the similarity graph produced

becomes denser, more communication and I/O overhead are incurred during run-

time. Another method targets at approximately the same Li,j size for any i ≤ j

using a non-uniform layer size. For example, let the size of layer Lk be propor-

tional to the index value k, following the fact that the number of sub-layers in Lk

is k in our algorithm. The main weakness of this approach is that less dissimilarity

relationships are detected as the top layers become much smaller.

We adopt a hierarchical partitioning that identifies large sub-layers, detects

dissimilar vectors inside these sub-layers, and recursively divides them using the

procedure discussed in Section 4.4.1. The recursion stops for a sub-layer when

reaching a partition size threshold. Each partition inherits the dissimilar relation-

ship from its original sub-layer. The new partitions together with the undivided

sub-layers form the undirected similarity graph G ready for load assignment.

4.5 Evaluations

4.5.1 Implementation Details

We have implemented our algorithms in Java using Hadoop MapReduce. Prior

to the comparison computation, records are grouped into dissimilar partitions
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and this partitioning step including norm value sorting is parallelized. The cost

of parallel partitioning is relatively small and is roughly 3% of the total parallel

execution time in our experiments. During the load balancing step, the two-stage

algorithm defines the comparison direction among potentially similar partitions,

generates a comparison graph stored in a distributed cache provided by Hadoop,

and derives a set of parallel tasks defined in Algorithm 1.

Hadoop runtime scheduler monitors the load of live nodes in the cluster and

assigns a PSS task to the first idle core. Such a dynamic and greedy scheme can

absorb potential skewness in data that fluctuates the actual computational cost.

Theorem 4.3.2 reflects the competitiveness of PSS tasks scheduled under Hadoop

greedy policy. During execution, each task loads the assigned partition with a

user-defined reader, obtains a list of partitions to be compared with from the

comparison graph file, and loops through the partition list to conduct partition-

wise comparison.

In this section, we assess the algorithms using 100 AMD cores for 20M Twitter,

300 cores for 8M ClueWeb, and 20 cores for YMusic. We choose these sizes for

faster experimentation while the performance impact of optimization for larger

sizes is similar.
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Figure 4.9: (a) Parallel time reduction contributed by Stages 1 and 2 compared

to the circular assignment. (b) Maximum task cost and standard deviation over

the average task cost with circular assignment or with two-stage assignment.
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4.5.2 Effectiveness of Two-Stage Load Balance

Figure 4.9(a) shows the improvement percentage in parallel time using two-

stage load assignment compared to the baseline circular assignment. Parallel time

with two-stage assignment is about 23.2 hours for Twitter, 14 hours for ClueWeb,

and 1.7 hours for YMusic respectively. The figure also marks the improvement

percentage contributed by Stage 1 and Stage 2 respectively. The overall improve-

ment from the two-stage load assignment is 41% for Twitter, 32% for ClueWeb,

and 27% for YMusic. Stage 1 contributes a large portion of the total improvement.

Stage 2 contributes about 4% for Twitter, 12% in ClueWeb, and 10% for YMusic.

Similarity graphs of ClueWeb and YMusic are denser and Stage 1 can be too ag-

gressive in making the light partitions absorb too much comparison computation.

Hence, the refinements in Stage 2 become more effective in such cases.

To examine the weight difference across all tasks, Figure 4.9(b) shows the max-

imal task weight with circular mapping or with the two-stage balancing method

divided by the average task cost. It also lists the cost standard deviation divided

by the average task cost. The larger these two ratios are, the more severe load im-

balance is. Compared to circular mapping, the two-stage assignment reduces the

Max./Avg. ratio by 32.2%, 23.5%, and 25.5% for Twitter, ClueWeb, and YMusic

datasets respectively. For Std. Dev./Avg. ratio, the reduction is 42.4%, 34.0%,

and 28.2% respectively.
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4.5.3 Improved Data Partitioning

Evaluate the performance of the generalized static partitioning algorithm in

detecting dissimilarity and narrowing the size gaps among partitions. Figure 4.10

provides a comparison of the improved data partitioning with different r-norms.

Y axis is the percentage of pairs detected as dissimilar. r=1 reflects the results

in [5]. For ClueWeb, 19% of the total pairs under comparison are detected as

dissimilar with r=3 while only 10% for r=1. For Twitter, the percentage of pairs

detected as dissimilar is 34% for r=4 compared to 17% for r=1. The results show

that choosing r as 3 or 4 is most effective. We have used the best r value for

partitioning each dataset.
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Figure 4.10: Improved partitioning with different r-norms.
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Figure 4.11: Uniform v.s. non-uniform layer size.

As discussed in Section 4.4.2, the initial layer size selection affects the size

variation of the final partitions. Figure 4.11 gives a comparison of using uniform

layer size and using non-uniform size with the marked r-norm settings. The

uniform-sized layers yields better results. For ClueWeb, the uniform layers detect

2.6x as many dissimilar pairs compared to the non-uniform layers. Thus we opt

for the uniform layers and recursively apply hierarchical partitioning to even out

the sizes of sub-layers.

Table 4.2 shows the effectiveness of recursive hierarchical data partitioning.

The ratio of standard deviation of partition sizes over the average size drops by

9.7% for Twitter, 22.3% for ClueWeb, and 3.7% for YMusic. The relatively even
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workload benefits the task load balancing process and reduces parallel execution

time by 5% to 18% additionally.

Dataset Std. Dev/Avg Std. Dev/Avg Parallel time

(Without) (With) reduction

Twitter 1.75 1.58 8.23%

ClueWeb 0.67 0.52 18.23%

YMusic 0.82 0.79 5.29%

Table 4.2: Change of partition sizes and parallel time with or without the recursive

hierarchical partitioning.
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Chapter 5

Efficient Search Result Ranking in

Runtime

5.1 Runtime Search Result Ranking Problem

Given a query, there are n documents matching this query and the ensemble

model contains m trees. Each tree is called a scorer and contributes a sub-score to

the overall score for a document. Following the notation in [19], Algorithm 7 shows

the program of DOT. At each loop iteration i, all tress are calculated to gather sub-

scores for a document before moving to another document. In implementation,

each document is represented as a feature vector and each tree can be stored

in a compact array-based format [8]. The time and space cost of updating the
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overall score with a sub-score is relatively insignificant. The dominating cost is

slow memory accesses during tree traversal based on document feature values. By

exchanging loops i and j in Algorithm 7, DOT becomes SOT. Their key difference

is the traversal order.

Algorithm 7 Ranking score calculation with DOT.
1: for i = 1 to n do

2: for j = 1 to m do

3: Compute a sub-score for document i with tree j.

4: Update document score with the above sub-score.

5: end for

6: end for

Figure 5.1(a) shows the data access sequence in DOT, marked on edges be-

tween documents and tree-based scorers. These edges represent data interaction

during ranking score calculation. DOT first accesses a document and the first tree

(marked as Step 1); it then visits the same document and the second tree. All

m trees are traversed before accessing the next document. As m becomes large,

the capacity constraint of CPU cache such as L1, L2, or even L3 does not allow

all m trees to be kept in the cache before the next document is accessed. The

temporal locality of a document is exploited in DOT since the cached copy can

be re-accessed many times before being flushed; however, there is no or minimal
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(a) (b)

Figure 5.1: Data access order in DOT (a) and SOT (b).

temporal locality exploited for trees. Similarly, Figure 5.1(b) marks data interac-

tion edges and their access order in SOT. SOT traverses all documents for a tree

before accessing the next tree. Temporal locality of a tree is exploited in SOT;

however, there is no or minimal temporal locality exploited for documents when

n is large.

VPred [8] converts if-then-else branches to dynamic data accesses by unrolling

the tree depth loop. The execution still follows DOT order, but it overlaps the

score computation of several documents to mask memory latency. Such vector-

ization technique also increases the chance of these documents staying in a cache

when processing the next tree. However, it has not fully exploited cache capacity

for better temporal locality. Another weakness is that the length of the unrolled
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code is quadratic to the maximum tree depth in a ensemble, and linear to the

vectorization degree v. For example, the header file with maximum tree depth

51 and vectorization degree 16 requires 22,651 lines of code. Long code causes

inconvenience in debugging and code extension. In comparison, our 2D blocking

code has a header file of 159 lines.

5.2 2D Block Algorithm

Algorithm 8 is a 2D blocking approach that partitions the program in Algo-

rithm 7 into four nested loops. The loop structure is named SDSD because the

first (outer-most) and third levels iterate on tree-based Scorers while the second

and fourth levels iterate on Documents. The inner two loops process d documents

with s trees to compute sub-scores of these documents. We choose d and s values

so that these d documents and s trees can be placed in the fast cache under its ca-

pacity constraint. To simplify the presentation, we assume m
s
and n

d
are integers.

The hierarchical data access pattern is illustrated in Figure 5.2. The edges in the

left portion of this figure represent the interaction among blocks of documents

and blocks of trees with access sequence marked on edges. For each block-level

edge, we demonstrate the data interaction inside blocks in the right portion of

this figure. Note that there are other variations of 2D blocking structures: SDDS,
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DSDS and DSSD. Our evaluation finds that SDSD is the fastest for the tested

benchmarks.
Algorithm 8 2D blocking with SDSD structure.
1: Instantiate score[] to be zero.

2: for j = 0 to m
s
− 1 do

3: for i = 0 to n
d
− 1 do

4: for jj = 1 to s do

5: for ii = 1 to d do

6: Compute sub-score for document i× d+ ii with tree.

7: j × s+ jj.

8: Update the score of this document.

9: end for

10: end for

11: end for

12: end for

There are two to three levels of cache in modern AMD or Intel CPUs. For the

tested datasets, L1 cache is typically too small to fit multiple trees and multiple

document vectors for exploiting temporal locality. Thus L1 is used naturally for

spatial locality and more attention is on L2 and L3 cache. 2D blocking design
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Figure 5.2: Data access order in the SDSD blocking scheme.
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allows the selection of s and d values so that s trees and d documents fit in L2

cache.

Detailed cache performance analysis requires a study of cache miss ratio esti-

mation in multiple levels of cache. Here we use a simplified cache-memory model

to illustrate the benefits of the 2D blocking scheme. This model assumes there

is one level of cache which can hold d document vectors and s tree-based scorers,

i.e. space usage for s and d do not exceed cache capacity. Here we estimate the

total slow memory accesses during score calculation using the big O notation. The

inner-most loop ii in Algorithm 8 loads 1 tree and d document vectors. Then loop

jj loads another tree and still accesses the same d document vectors. Thus there

are a total of O(s) +O(d) slow memory accesses for loops jj and ii. In loop level

i, the s trees stay in the cache and every document block causes slow memory

accesses, so memory access overhead is O(s) +O(d)× n
d
. Now looking at the the

outer-most loop j, total memory access overhead per query is m
s
(O(s) + O(n))

= O(m+ m×n
s

).

From Figure 5.1, memory access overhead per query in DOT can be estimated

as O(m × n + n) while it is O(m × n +m) for SOT. Since term m × n typically

dominates, our 2D blocking algorithm incurs s times less overhead in loading data

from slow memory to cache when compared with DOT or SOT.

124



Vectorization in VPred can be viewed as blocking a number of documents and

the authors have reported [8] that a larger vectorization degree does not improve

latency masking and for Yahoo! dataset, 16 or more degree performs about the

same. The objective of 2D blocking scheme is to fully exploit cache locality.

We can apply 2D blocking on top of VPred to exploit more cache locality while

inheriting the advantages of VPred. We call this approach Block-VPred. The

code length of Block-VPred is about the same as VPred.

5.3 Evaluations

2D block and Block-VPred methods are implemented in C and VPred code is

from [8]. Code is compiled with GCC using optimization flag -O3. Experiments

are conducted on a Linux server with 8 cores of 3.1GHz AMD Bulldozer FX8120

and 16GB memory. FX8120 has 16KB of L1 data cache per core, 2MB of L2

cache shared by two cores, 8MB of L3 cache shared by eight cores. The cache

line is of size 64 bytes. Experiments are also conducted in Intel X5650 2.66GHz

six-core dual processors and the conclusions are similar. The following we report

results from AMD processors.

We use the following learning-to-rank datasets as the core test benchmarks.

(1) Yahoo! dataset [20] with 709,877 documents and 519 features per document

from its learning-to-rank challenge. (2) MSLR-30K dataset [2] with 3,771,125
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documents and 136 features per document. (3) MQ2007 dataset [1] with 69,623

documents and 46 features per document. The tree ensembles are derived by the

open-source jforests [28] package using LambdaMART [18]. To assess score com-

putation in presence of a large number of trees, we have also used bagging methods

to combine multiple ensembles and each ensemble contains additive boosting trees.

There are 23 to 120 documents per query labeled in these datasets. In practice,

a search system with a large dataset ranks thousands or tens of thousands of top

results after the preliminary selection. We synthetically generate more matched

document vectors for each query. Among these synthetic vectors, we generate

more vectors bear similarity to those with low labeled relevance scores, because

typically the majority of matched results are less relevant.

Metrics. We mainly report the average time of computing a sub-score for

each matched document under one tree. This scoring time multiplied by n and m

is the scoring latency per query for n matched documents ranked with an m-tree

model. Each query is executed by a single core.

5.3.1 Scoring Time

Table 5.1 lists scoring time under different settings. Column 2 is the maximum

number of leaves per tree. Tuple [s,d,v] includes the parameters of 2D blocking and

the vectorization degree of VPred that leads to the fastest scoring time. Choices of
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Dataset Leaves m n DOT SOT VPred [v] 2D blocking [s, d] Block-VPred [s, d, v] Latency

Yahoo!

50 7,870 5,000 186.0 113.8 47.4 [8] 36.4 [300, 300] 36.7 [300, 320, 8] 1.43

150 8,051 2,000 377.8 150.2 123.0 [8] 81.9 [100, 400] 76.1 [100, 480, 8] 1.23

400 2,898 5,000 312.3 223.8 136.2 [8] 90.9 [100, 400] 86.0 [100, 400, 8] 1.25

MSLR-30K 50 1,647 5,000 88.3 41.4 32.6 [8] 26.6 [500, 1,000] 31.1 [500, 1,600, 8] 0.22

MQ2007
50 9,870 10,000 1.79 1.66 2.02 [8] 1.51 [300, 5,000] 1.94 [300, 5,000, 8] 0.15

200 10,103 10,000 204.1 30.3 43.1 [32] 28.3 [100, 10,000] 26.2 [100, 5,000, 32] 2.65

Table 5.1: Scoring time per document per tree in nanoseconds for five algorithms.

Last column shows the average scoring latency per query in seconds under the

fastest algorithm marked in gray.

v for VPred are the best in the tested AMD architecture and are slightly different

from the values reported in [8] with Intel processors. Last column is the average

scoring latency per query in seconds after visiting all trees. For example, 2D

blocking is 361% faster than DOT and is 50% faster than VPred for Row 3 with

Yahoo! 150-leaf 8,051-tree benchmark. In this case, Block-VPred is 62% faster

than VPred and each query takes 1.23 seconds to complete scoring with Block-

VPred. For a smaller tree in Row 5 (MSLR-30K), Block-VPred is 17% slower than

regular 2D blocking. In such cases, the benefit of converting control dependence

as data dependence does not outweigh the overhead introduced.

Figure 5.3 shows the scoring time for Yahoo! dataset under different settings.

In Figure 5.3(a), n is fixed as 2,000; DOT time rises dramatically when m in-
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creases because these trees do not fit in cache; SOT time keeps relatively flat as m

increases. In Figure 5.3(b), m is fixed as 8,051 while n varies from 10 to 100,000.

SOT time rises as n grows and 2D blocking is up to 245% faster. DOT time is

relatively stable. 2D blocking time and its gap to VPred are barely affected by

the change of m or n. Block-VPred is 90% faster than VPred when n=5,000, and

100% faster when n=100,000. Figure 5.3(c) shows the 2D blocking time when

varying s and d. The lowest value is achieved with s=1,000 and d=100 when

these trees and documents fit in L2 cache.

5.3.2 Cache Behavior

Linux perf tool reports L1 and L3 cache miss ratios during execution. We

observed no strong correlation between L1 miss ratio and scoring time. L1 cache

allows program to exploit limited spatial locality, but is too small to exploit tem-

poral locality in our problem context. L3 miss ratio does show a strong correlation

with scoring time. In our design, 2D blocking sizes (s and d) are determined based

on L2 cache size. Since L2 cache is about the same size as L3 per core in the tested

AMD machine, reported L3 miss ratio reflects the characteristics of L2 miss ratio.

Figure 5.4 plots the L3 miss ratio under the same settings as Figure 5.3 for

Yahoo! data. This ratio denotes among all the references to L3 cache, how many

are missed and need to be fetched from memory. The ratios of Block-VPred,
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which are not listed, are very close to that of 2D blocking. In Figure 5.4(a) with

n=2,000, SOT has a visibly higher miss ratio because it needs to bring back most

of the documents from memory to L3 cache every time it evaluates them against

a scorer; n is too big to fit all documents in cache. The miss ratio of DOT is low

when all trees can be kept in L2 and L3 cache; this ratio grows dramatically after

m=500. Figure 5.4(b) shows miss ratios when m=8,051 and n varies. The miss

ratio of SOT is close to VPred and 2D blocking when n<100, but deteriorates

significantly when n increases and these documents cannot fit in cache any more.

The miss ratios of VPred in both Figure 5.4(a) and 5.4(b) are below 6% because

vectorization improves cache hit ratio. Performance of 2D blocking is the best,

maintaining miss ratio around 1% even when m or n is large.

Figure 5.4(c) plots L3 miss ratio of 2D blocking when varying s and d block

sizes. The trends are strongly correlated with the scoring time curve in Fig-

ure 5.3(c). The optimal point is reached with s=1,000 and d=100 when these

trees and documents fit in L2 cache. When s=1,000, miss ratio varies from 1.64%

(d=100) to 78.1% (d=100,000). As a result, scoring time increases from 86.2ns to

281.5ns.
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5.3.3 Branch Mis-prediction Rate

We have also collected instruction branch mis-prediction ratios during compu-

tation. For MQ2007 and 50-leaf trees, mis-prediction ratios of DOT, SOT, VPred,

2D blocking and Block-VPred are 1.9%, 3.0%, 1.1%, 2.9%, and 0.9% respectively.

For 200-leaf trees, these ratios increase to 6.5%, 4.2%, 1.2%, 9.0%, and 1.1%.

VPred’s mis-prediction ratio is lower than 2D blocking while its scoring time is

still longer, indicating the impact of cache locality on scoring time is bigger than

branch mis-prediction. For smaller trees, mis-prediction ratios of 2D blocking and

Block-VPred are close and this explains why Block-VPred does not outperform

2D blocking in Table 5.1 for 50-leaf trees. Adopting VPred’s strategy of converting

if-then-else instructions pays off for large trees. For such cases when n increases,

Block-VPred outperforms 2D blocking with lower branch mis-prediction ratios.

This is reflected in the Yahoo! 150-leaf 8,051-tree benchmark: mis-prediction ra-

tios are 1.9%, 2.7%, 4.3%, and 6.1% for 2D blocking, 1.1%, 0.9%, 0.84%, and

0.44% for Block-VPred, corresponding to the cases of n=1,000, 5,000, 10,000 and

100,000 respectively.

5.3.4 Parallelism & Combined Processing

Multi-tree score calculation of each query can be conducted in parallel on mul-

tiple cores to further reduce latency. Our experiments show that 2D blocking still
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maintains its advantage using multiple threads. In some applications, the number

of top results (n) for each query is inherently small and can be much smaller than

the optimal block size (d). In such cases, multiple queries could be combined and

processed together to fully exploit cache capacity. Our experiments with Yahoo!

dataset and 150-leaf 8,051-tree ensemble shows that combined processing could

reduce scoring time per query by 12.0% when n=100, and by 48.7% when n=10.
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Figure 5.3: Scoring time per document per tree in nanoseconds when varying

m (a) and n (b) for five algorithms, and varying s and d for 2D blocking (c).

Benchmark used is Yahoo! dataset with a 150-leaf multi-tree ensemble.
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Figure 5.4: L3 miss ratio when varying n (a), varying m (b) for four algorithms,

and when varying s and d for 2D blocking (c).
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Chapter 6

Conclusions and Future Work

The contribution of this dissertation work could be summarized as three parts.

• Cache-conscious partition-based similarity search. We propose and

develop a partitioned similarity search algorithm with cache-conscious data

layout and traversal. The partition-based approach simplifies the runtime

computation and allows us to focus on the speedup of inter-partition com-

parison by exploiting memory hierarchy with a cache-conscious data layout

and traversal pattern design. Specifically, we were able to predict the op-

timum data-split size by identifying the data access pattern, modeling the

cost function, and estimating the task execution time. The key techniques

are to 1) split data traversal in the hosted partition such that the size of

temporary vectors accessed can be controlled and fit in the fast cache; 2)
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coalesce vectors with size-controlled inverted indexing such that the tempo-

ral locality of data elements visited can be exploited. Our analysis provides

a guidance for optimal parameter setting. The evaluation result shows that

the optimized code can be upto 2.74x as fast as the original cache-oblivious

design. Vector coalescing is more effective if there is a decent number of

features shared among the coalesced vectors. We also discuss how to further

accelerate similarity search by incorporating incremental computing and ap-

proximation methods such as Locality Sensitive Hashing. Introducing LSH

step makes PSS one to two orders of magnitude faster with only 3% recall

drop.

• Two-stage load balance. We propose and implement a two-stage load bal-

ancing algorithm for efficiently executing partition-based similarity search

in parallel. The first stage constructs a preliminary load assignment over

tasks. The second stage refines the assignment for denser graphs. The analy-

sis provided shows its competitiveness to the optimal solution with constant

ratios, for both task load balancing and parallel runtime. We also present

an improved and hierarchical static data partitioning method to detect dis-

similarity and even out the partitions sizes. Our experiments demonstrate

that the two-stage load assignment improves the circular assignment by up

to 41% in the tested datasets. The improved static partitioning avoids more
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unnecessary I/O and communication and reduces the size gaps among par-

titions with up to 18% end-performance gain in the tested cases.

• Search result ranking in runtime. We propose a cache-conscious design

for computing ranking scores with a large number of trees and/or documents

by exploiting memory hierarchy capacity for better temporal locality. While

ranking accuracy is maintained to be the same, our experiments show that

2D blocking can be up to 620% faster than DOT, up to 214% faster than

SOT, and 54% faster than VPred. Apply 2D blocking on the top of VPred

which has advantages in reducing branch mis-prediction, the blocked code

is up to 76% faster than VPred.

There are various aspects in APSS that are worthy of further study. The im-

pact of a multi-user computing cluster environment on parallel similarity search

algorithms is an interesting topic to explore. We can also study how the runtime

computing resource per thread changes when more threads are running concur-

rently and how the number of CPU cores per machine affects the algorithm de-

sign. Our 2D blocking technique is studied in the context of tree-based ranking

ensembles and one of future work is to extend it for other types of ensembles by

iteratively selecting a fixed number of the base rank models that fit the fast cache.
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