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Abstract

A modular approach to analyzing biological networks

by

Hari Sivakumar

This monograph addresses the decomposition of biochemical networks into functional

modules that preserve their dynamic properties upon interconnection with other modules,

which permits the inference of network behavior from the properties of its constituent

modules. The modular decomposition method developed here also has the property that

any changes in the parameters of a chemical reaction only affect the dynamics of a single

module. To illustrate our results, we define and analyze a few key biological modules that

arise in gene regulation, enzymatic networks, and signaling pathways. We also provide

a collection of examples that demonstrate how the behavior of a biological network can

be deduced from the properties of its constituent modules, based on results from control

systems theory. We then use this modular decomposition method to analyze the p53 core

regulation network, which plays a key role in tumor suppression in many organisms. By

decomposing the network into modules, we study the evolution of the p53 core regula-

tion network and conduct a formal analysis of the different network configurations that

emerge in the evolutionary path to complexity from putative primordial organisms to

more evolved vertebrates. We develop an algorithm to solve the system of equations that

describe the network behavior by interconnecting the network modules systematically,

as these equations are typically difficult to solve using standard numerical solvers. In

the process, we qualitatively compare the distinct types of switching behaviors that each

network can exhibit. We demonstrate how our novel model for the core regulation net-

work matches experimentally observed phenomena, and contrast this with the plausible

ix



behaviors that primordial network configurations can admit. Specifically, we show that

the complexity of the p53 network in humans and evolved vertebrates permits a wide

range of behaviors that can bring about distinct cell fate decisions, but that this is not

the case for primordial organisms.
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Chapter 1

Introduction

Biological networks are inherently very complex, consisting of several entities react-

ing in a nonlinear fashion [22]. While there has been a lot of study into the behavior of

these discrete biological entities, rarely can biological function be attributed to a single

molecular species alone [53]. Therefore, it was argued that there was a need for the recog-

nition of functional components in biological network organization. These components

are discrete entities whose biological function is separable from that of other components.

Early efforts to uncover the basic modular structures from data in large biological

networks were made by identifying patterns of interconnections in these networks that

occurred with much higher frequency than in complex random networks [86, 2]. The

biological networks studied included gene regulatory networks in E. coli and S. cerevisiae

and neuronal networks in C. elegans [86]. The basic modular structures found, such as

feedforward loops, bi-fan and bi-parallel structures, were termed network motifs. The

conclusions from this study were that evolution had converged on these same motifs for

various systems and organization. It was even suggested that the behavior of biological

networks might be interpreted from the behaviors of individual motifs, although there

were no further studies on how this might be done in a general setting.
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Introduction Chapter 1

Another early study argued that the underlying modular organization in biological

networks is critical in reverse engineering the interaction parameters between individ-

ual biological entities given experimental data about the global network responses to

steady-state perturbations [21, 67, 5]. This technique is known as ”Modular Response

Analysis”, and permits the inference of the existence (or non-existence) of pathways in

large networks, using mathematical models of these networks. That said, the definition of

a biological component was simply ”units of the local type that do not share mass flow”,

and there were no specific ideas on how a given biological network should be decomposed

into components in this study.

When decomposing a biological module into components, it would be ideal if the

characteristics of each component remained the same before and after its interconnection

with other components [104]. This would permit properties like stability and robustness

to be predicted just from properties of each individual component in the network and

knowledge of the interconnection structure. From a computational perspective, comput-

ing network parameters such as its equilibrium point(s) can be greatly simplified, since

the computations can be done over a set of components as opposed to over the entire

network. From an evolutionary standpoint, grouping a network into components is useful

to analyze the evolvability of each component.

One approach to demarcate the network into components was said to be based on the

absence of retroactive effects in the junctions between the different components [103, 102],

i.e., when the inputs and outputs in a given junction are unidirectional. These retroactive

effects are akin to an electrical module whose output voltage changes upon the addition

of a load. An algorithm was also developed to decompose any given biological network

into components in such a way that the number of junctions between components which

have retroactive effects is minimized [101]. Further studies on retroactive effects between
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pre-determined gene regulatory components [34] and signal transduction components

[120, 94] revealed the exact mathematical expressions and conditions to minimize these

effects.

As it turns out, retroactivity is mostly a problem in synthetic biology, where bottom-

up construction techniques are used to engineer new biological networks, and modify or

optimize the behavior of existing networks [99, 42, 46, 43] using pre-determined biologi-

cal components [66], such as the transcriptional regulation component [35]. Retroactivity

causes the dynamics of a component to change upon its interconnection with other com-

ponents. To obviate this problem, synthetic biologists have designed biological insulators

to effectively isolate these components from each other [33, 34], and these have proven

to be useful [45].

The body of work on retroactivity led some researchers to believe that biological net-

works cannot be delimited into modules whose characteristics remain the same before

and after interconnection [104]. However, from an analytical perspective, this is not true.

In Mathematical biology, a biological network is generally represented by a system of

ordinary differential equations (ODEs). Every one of these equations can be assigned

to a component, with appropriate input-output relationships to ensure that the compo-

sition of all components will reconstruct the original system of ODEs. This method of

decomposing a biological network has proven useful in deriving results pertaining to the

existence of multiple equilibrium points in a network of interconnected monotone com-

ponents [9, 8, 10], and the stability of these equilibrium points [12, 11]. A potentially

undesirable feature of simply assigning ODEs to different components is that, while the

components considered can be dynamically isolated from each other, the parameters of

a particular chemical reaction in the network (such as the stoichiometric coefficients or

the rate constants) could appear in more than one component. This turns out to be a
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problem in many algorithms that automatically decompose biological networks into com-

ponents using this approach [4, 64]. Consequently, a change in a single chemical reaction

could result in several distinct components changing their internal dynamics.

Evolutionary biologists rely heavily on biological network parameters being associated

with a unique component. For example, parameters that are ”internal” to a functional

biological component, but that do not affect significantly the input-output behavior of

the component, are considered as neutral traits [96], meaning that their values can change

because of genetic drift. Components that are parametrically isolated from each other

also facilitate the study of evolutionary change, since this allows the core function of

a component to be robust to changes in parameters, while allowing for the alteration

of its role in bringing about distinct behaviors by changing its connections with other

components [53]. As such, each component is able to evolve independently from the

rest of the network in response to shock or stress, hence enhancing future evolvability.

[44, 29].

1.1 Dissertation Overview

We provide a brief summary of the contributions in this monograph.

Two notions of modularity We characterize the notion of modularity in the context

of biological networks, using an analytical approach. We say that a biological component

is a module if it admits both dynamic modularity and parametric modularity. The former

implies that the properties of each module do not change upon interconnection with

other modules, and the latter implies that the network parameters within a module

appear in no other module. In this sense, a synthetic component that undergoes loading

effects upon interconnection with other components does not exhibit dynamic modularity,
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and a component whose internal dynamics depend on parameters that also affect other

components does not exhibit parametric modularity.

Decomposing a biological network A key contribution in this monograph is the

development of a systematic method to decompose an arbitrary network of elementary

biochemical reactions into modules that exhibit both dynamic and parametric modu-

larity. This method is based on three rules that specify how to partition species and

reactions into modules and also how to define the signals that connect the modules. An

important novelty of our approach towards a modular decomposition is the use of reaction

rates as the communicating signals between modules (as opposed to species concentra-

tions). We show that aside from permitting parametric modularity, this allows for the

use of summation junctions to combine alternative pathways that are used to produce

or degrade particular species. To illustrate the use of our approach, we analyze some

key biological modules that arise in gene regulatory networks, enzymatic networks, and

signaling pathways, such as Transcriptional Regulator modules and Signal Transduction

modules. We then analyze these modules from a systems theory perspective. Specifically,

we derive their Input-output static characteristic function (IOSCF) and their Linearized

Transfer Function (LTF), and explain how these functions can help us characterize a

module in terms of properties such as monotonicity and stability.

Modularity as a tool to analyze two cyclic biological circuits We study a gen-

eralized repressilator which consists of a cyclic interconnection of an arbitrary number of

transcriptional repressors. For the symmetric case, where all parameters across all the

modules are the same (which is typical in an experimental setting [42]), we provide results

for when the network will converge to a stable steady-state, both in the local and global

sense. Our results show how the stable parameter region for the repressilator becomes

5



Introduction Chapter 1

smaller as more transcriptional regulators are added to the network. These results were

inspired by studies by Arcak and Sontag [12, 11]. We further study a generalized cova-

lent modification network, consisting of a cascade of an arbitrary number of enzymatic

reactions connected in feedback. We show that regardless of the parameters chosen for

each enzyme-substrate interaction, the substrates will necessarily degrade away, in spite

of being connected in positive feedback. These results were inspired by the work on

Monotone Systems Theory by Angeli and Sontag [9, 10, 8].

A new model for the p53 tumor suppression network in humans We develop

a new model for the p53 core regulation network in humans. The study of this model

combines ideas from the modeling and bifurcation analyses of the p53 network done

previously by researchers [118, 131, 28, 27, 98, 126, 132], more recent experimental results

[17, 121, 25] and our novel modular approach. This model is shown to explain many

experimental results in a way that previous models did not. In addition, this model

makes novel predictions about the role of different proteins in bringing about various

observed behaviors.

Modularity as a tool to study the evolution of the p53 tumor suppression

network We study the evolution of the p53 core regulation network by using Genbank

and Uniprot to uncover the phylogeny of four key core regulation genes include the gene

corresponding to p53. We argue that the alternative network structures that we uncover

provide a natural way to decompose the network into modules. Using this modular

decomposition, we analyze the role that each module plays in bringing about the p53

response in humans. This provides insight into how different organisms with alternative

network configurations could respond to the threat of tumors.

6
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Modularity as a tool to compute the steady-state bifurcation of the p53 net-

work model We study the distinct dynamic behaviors admitted by the alternative

network configurations obtained from evolution. To do this, we determine the p53 equi-

librium points, which reveals the bifurcations of p53 with respect to some network param-

eters. The computation of the equilibrium points cannot be obtained through standard

numerical solvers for a range of parameters. To overcome this problem, we develop an

algorithm to compute the equilibrium points of the network by systematically eliminating

the latent variables in the network. The modular decomposition of the p53 network is

an important tool in the operation of this algorithm.

1.2 Organization

In Chapter 2, we introduce the two notions of modularity which a biological com-

ponent needs to satisfy in order for the behavior of a network to be inferred from the

characteristics of individual modules, and explain the problems associated with not de-

limiting biological components carefully. We then provide a set of rules which if followed,

allows for the decomposition of a biological network consisting of elementary chemical

reactions into components or modules which satisfy both notions of modularity.

In Chapter 3, we introduce some modules that are commonly seen in biological net-

works, which satisfy both notions of modularity. We then characterize each module by

properties which have implications on the characteristics of a network of interconnected

modules such as stability and the number of equilibrium points. We finally demonstrate

how these network characteristics can be inferred from the interconnection of modules.

In Chapter 4, we study two cyclic biological networks that arise from the intercon-

nection of the biological modules introduced in Chapter 3. We then derive conditions

for the number of equilibrium points each network can admit, and the stability of these

7
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points.

In Chapter 5, we conclude Part I of this monograph by discussing future work that

can be done on the modular analysis of biological networks.

In Chapter 6, we first introduce the p53 protein, and its role in preventing the emer-

gence of tumors in organisms. We then introduce the relevant literature on experimen-

tally observed p53 behavior in response to DNA damage, experiments revealing the role

of the p53 dynamics in bringing about various cell fates, and quantitative models that

attempted to capture the p53 behavior.

In Chapter 7, we explore evolutionary data that provides insights into the p53 behav-

ior in the earlies organisms that had the gene that encoded for p53. Using this data, we

analyze how the p53 core regulation network could have evolved from early ancestors to

humans, and analyze the resulting intermediate network configurations that admit quali-

tatively distinct characteristics. We introduce a new model for the p53 tumor suppression

network in humans, and demonstrate how the evolutionary pathway to complexity pro-

vides a natural way to decompose the network model into modules.

In Chapter 8, we seek to compute the equilibrium point(s) of the different network con-

figurations that emerge from our evolutionary study in Chapter 7, to study the possible

steady-state bifurcations that these networks can admit. As it turns out, the equilibrium

points of some of these network configurations typically cannot be computed by standard

numerical software. We introduce an algorithm to compute the equilibrium point of the

network, and demonstrate how this algorithm is shaped by the modular decomposition

from Chapter 7.

In Chapter 9, we demonstrate how the different network configurations that emerge

from our evolutionary study in Chapter 7 admit qualitatively distinct bifurcations in

response to exogenous stress inputs. We then show how the bifurcations admitted by the

p53 network in humans can explain the experimentally observed behavior in humans, and
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explore how this behavior provides insight into how p53 chooses between different cell

fates in response to different levels of exogenous stress inputs. We then study how the

p53 response in the primordial organisms would have been different from that observed

in humans, and explain how this would affect the ability of p53 to bring about the range

of cell fates that is possible in humans.

In Chapter 10, we conclude Part II of this monograph by discussing future work that

can be done on analyzing the evolution of the p53 network.

9
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Modular decomposition and analysis
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Chapter 2

The decomposition of biological

networks into modules

We recall that a biological component is a module if it admits both dynamic modularity

and parametric modularity. The former implies that the properties of each module do

not change upon interconnection with other modules, and the latter implies that the

network parameters within a module appear in no other module. Dynamic modularity is

essential to infer the behavior of a biological network from the behavior of its constituent

parts, which can enable the analyses of large networks and also the design of novel

networks. Parametric modularity, which has not been explicitly mentioned as often in the

literature, is a useful property when identifying parameters in a biological network, like in

[21, 67, 5], and also for evolutionary analysis of network modules. In this chapter, we first

introduce the notation we use to represent a biological network, followed by motivational

examples to illustrate problems that could occur when these biological networks are not

decomposed into modules that admit dynamic and parametric modularity. We then

introduce some rules that permit the decomposition of any network of elementary bio-

chemical reactions into modules that admit these properties.

11



The decomposition of biological networks into modules Chapter 2

2.1 Notation and network representations

A biological network can be represented in multiple ways, including as a system of

ordinary differential equations (ODEs) associated with the law of mass action kinetics,

a directed bipartite species-reaction graph (DBSR), or a dynamic DBSR graph that we

introduce below.

Mass Action Kinetics (MAK) Ordinary Differential Equations (ODEs)

A set of species involved in chemical reactions can be expressed as a system of

ODEs using the law of mass action kinetics (MAK) when the species are well-mixed

and their copy numbers are sufficiently large. For a network involving the species Sj,

@j P t1, 2, . . . , Nspeciesu and the reactions Ri, @i P t1, 2, . . . , Nreactionsu, the MAK results

in a system of ODEs whose states are the concentrations rSjs, @j of the different chemical

species; the ODE representing the dynamics of a specific species Sj is given by

9rSjs �
Nreactions¸

i�1

ψjipk1, k2, . . . , rS1s , rS2s , . . . q (2.1)

where ψjipk1, k2, . . . , rS1s , rS2s , . . . q denotes the rate of production/destruction of Sj due

to the reactionRi, which typically depends on the parameters k1, k2, . . . that are intrinsic

to Ri (reaction rate constants and stoichiometric coefficients) and also on the concentra-

tions of the reactants rS1s , rS2s � � � of Ri. The value of ψji is either positive or negative

depending on whether Sj is produced or consumed (respectively) by Ri, or zero if Ri is

not involved in the production or consumption of Sj.

To facilitate the discussion, we use as a running example a simple biological network

consisting of species S1, S2, and S3, represented by the following set of chemical reactions:

12



The decomposition of biological networks into modules Chapter 2

R1 : S1
k1rS1s
ÝÝÝÑ S2

R2 : S1
γ1rS1s
ÝÝÝÑ ∅

R3 : S2
k2rS2s
ÝÝÝÑ S1

R4 : S2
γ2rS2s
ÝÝÝÑ ∅

R5 : S3
k3rS3s
ÝÝÝÑ S2, (2.2)

which correspond to the following set of ODEs derived from MAK:

9rS1s � k2 rS2s � pγ1 � k1q rS1s (2.3a)

9rS2s � k1 rS1s � k3 rS3s � pγ2 � k2q rS2s (2.3b)

9rS3s � �k3 rS3s . (2.3c)

With respect to the general model (2.1), the ψji for j P t1, 2, 3u and i P t1, 2, 3, 4, 5u are

given by

ψ11

�
k1, rS1s

�
� �k1 rS1s

ψ12

�
γ1, rS1s

�
� �γ1 rS1s

ψ13

�
k2, rS2s

�
� k2 rS2s

ψ21

�
k1, rS1s

�
� k1 rS1s

ψ23

�
k2, rS2s

�
� �k2 rS2s

ψ24

�
γ2, rS2s

�
� �γ2 rS2s

ψ25

�
k3, rS3s

�
� k3 rS3s

ψ35

�
k3, rS3s

�
� �k3 rS3s ,

and 0 otherwise.

Directed Bipartite Species-Reactions (DBSR) graph

When a biological network is large, writing down the system of MAK ODEs is cum-

bersome and therefore much work has been done on understanding the behavior of chem-

ical reaction networks from a graph-theoretic perspective [37]. The Directed Bipartite

Species-Reaction (DBSR) graph representation of chemical reaction networks was devel-

oped in [63], and is closely related to the Species-Reaction (SR) graph introduced in [32].

In the construction of the DBSR graph, every species in the network is assigned to an

13
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elliptical node, and every chemical reaction is assigned to a rectangular node. For every

reaction in the network Ri, there exist directed edges from the nodes corresponding to

the reactants of Ri to the node Ri, and from the node Ri to the nodes corresponding

to the products of Ri. It is worth noting that this formulation is similar to that in

[103], using storages and currents. The DBSR graph of the network (2.2) is shown in

Figure 2.1a. From this graph, we can infer, for example, that S2 is produced from S1 due

to the reaction R1, and that S1 is a reactant in R1. Therefore, the concentration of S1

is required in the computation of the rate of the reaction R1.

S1 S2 S3R1

R2 R4

R3

R5

(a)

S1 S2 S3R1

R2 R4

R3

R5

(b)

Figure 2.1: (a) DBSR graph and (b) Dynamic DBSR graph of the network represented
by (2.2)

Dynamic DBSR graph

While the DBSR graph is useful in understanding the overall structure of a network

of chemical reactions, it does not provide information about the flow of information in

the network. For instance, the graph does not directly show whether the reaction R1

affects the dynamics of S1. To obviate this problem, we define the dynamic DBSR graph,

which is a DBSR graph overlaid with arrows expressing the flow of information due to

the dynamics of the network. In this graph, a dashed arrow from a reaction node Ri

to a species node Sj indicates that rSjs is affected by Ri, usually by Sj being consumed

in the reaction. Just like in the DBSR graph, a solid arrow from node Ri to node Sj

indicates that Sj is produced by the reaction, while a solid arrow from node Sj to node

14
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Ri indicates that Sj is a reactant of Ri. The Dynamic DBSR graph of network (2.2) is

shown in Figure 2.1b.

2.2 Motivational examples

Consider the transcriptional regulation component described as is typically done in

synthetic biology [34, 68, 35]. A protein S1 acts as an activator for the production of

another protein S2. Here, rS1s is the input to the component. S1 binds to the promoter

region of G2, the gene encoding for S2, to activate the transcription of mRNA2. mRNA2

in turn is translated into S2. This process can be captured by the set of chemical reactions

∅ fprS1sq
ÝÝÝÝÑ mRNA2

mRNA2
βrmRNA2s
ÝÝÝÝÝÝÑ mRNA2 � S2

mRNA2
γ1rmRNA2s
ÝÝÝÝÝÝÝÑ ∅

S2
γ2rS2s
ÝÝÝÑ ∅.

This component is illustrated in Figure 2.2a. Suppose now, that this component is

connected to another downstream transcriptional regulation component, whose input is

rS2s. S2 binds to the promoter region of G3, which can be captured by the reaction

S2 � P3

konrS2srP3s
ÝÝÝÝÝÝáâÝÝÝÝÝÝ
koff rS2:P3s

S2:P3. (2.4)

As it turns out, (2.4) is a manifestation of the retroactivity phenomenon [102, 34], because

the output dynamics of the upstream transcriptional regulator component changes upon

the interconnection with the downstream component, as shown in Figure 2.2b. This

implies that the two components defined in this way do not exhibit dynamic modularity,

and therefore the properties of the interconnection of two or more components cannot be

inferred from the properties of each individual component alone.

Consider also the biological network (2.2), corresponding to the MAK ODEs given
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S1 S2

P2

G2

mRNA2

(a) Isolated transcriptional regulation component

S1 S2 S3

P3P2

G3G2

mRNA3mRNA2

(b) Transcriptional regulation component connected with another component downstream.
The dashed line flowing in reverse signifies the change in the concentration of S2 upon the
addition of the downstream component, due to the consumption of S2 when reacting with P3

by (2.3), and suppose that we want to associate each of the three species S1, S2 and S3

with a different component. One way this can be achieved is by partitioning the states

into three components as shown in Figure 2.2, with the protein concentrations as the

communicating signals between the components. Specifically, the outputs y1, y2, and

y3 are the concentrations of the species S1, S2, and S3, which in turn are the inputs

u2, u1, and u3 respectively. Each of these components satisfies the dynamic modularity

property. That is, the concentration of each species appears in the state of one and

only one component, and when the three components are combined, we obtain precisely

the MAK ODEs in (2.3). However the components violate the parametric modularity

property, because the rate parameters of the reactions R1, R3, and R5 (Equation (2.2))

appear in multiple components. Consequently, a change in the rate constant k3 for

reaction R5, for example, would change the internal dynamics of two components.
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u1

u2

u3

y1

y2

y3

9rS1s “ k2u1

´ pγ1 ` k1q rS1s
y1 “ rS1s

9rS2s “ k1u2 ` k3u3

´ pγ2 ` k2q rS2s
y2 “ rS2s

9rS3s “ ´k3 rS3s

y3 “ rS3s

Figure 2.2: A decomposition of network (2.2) shows how parametric modularity is
violated, since the parameters k1, k2 and k3 appear in multiple blocks.

The examples above illustrate that the decomposition of biological networks into

modules needs to be handled carefully. To ensure that every component admits both

dynamic and parametric modularity, we come up with a set of rules to decompose a

biological network.

2.3 Rules for modular decomposition

The modular decomposition of a biological network represented by the MAK ODE

(2.1) entails the assignment of each chemical species and each chemical reaction in the

network to modules. These modules then need to be interconnected appropriately such

that the ODE (2.1) can be reconstructed from the module dynamics. In our framework,

the assignment of a chemical species Sj to a module means that the species concentration

rSjs is part of the state of that module alone. The assignment of a chemical reaction to
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a module means that all the reaction parameters (such as stoichiometric coefficients and

rate constants) appear only in that module. These observations lead to the formulation

of two rules for a modular decomposition:

Rule 1 (Partition of species) Each chemical species Sj must be associated with one

and only one module M, and the state of M is a vector containing the concentrations of

all chemical species associated with M. l

Rule 2 (Partition of reactions) Each chemical reaction R must be associated with

one and only one module M, and the stoichiometric parameters and rate constants as-

sociated with R must only appear within the dynamics of module M. l

In terms of the DDBSR graphs, Rules 1 and 2 express that each node in the graph

(corresponding to either a species or a reaction) must be associated with a single module.

Therefore, our modular decomposition can be viewed as a partition of the nodes of the

DDBSR graphs. We recall that a partition of a graph is an assignment of the nodes of

the graph to disjoint sets.

The choice of signals used to communicate between modules has a direct impact on

whether or not Rule 2 is violated, as is illustrated in Figure 2.2. In Figure 2.3, we

illustrate a partition of the same network that satisfies Rules 1 and 2, by selecting a

different set of communicating signals.
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u1

u2

u3

y1

y2

y3

9rS1s “ u1 ´ pγ1 ` k1q rS1s

y1 “ k1 rS1s

9rS2s “ u2 ` u3

´ pγ2 ` k2q rS2s

y2 “ k2 rS2s

9rS3s “ ´k3 rS3s

y3 “ k3 rS3s

(a) Decomposition of network (2.2) using

production rates as inputs and outputs,

which satisfies Rules 1 and 2.

S1

S2

S3

R1 R2

R3R4

R5

(b) Dynamic DBSR graph par-

tition corresponding to the de-

composition in Figure 2.3a

In this case, the communicating signals are the rates of production of the species.

With this decomposition, we can now partition both the species and the reaction nodes

among the different components so that the parameters of each reaction are confined to

a single module, as illustrated in Figure 2.3b. We thus have a modular decomposition

that simultaneously satisfies Rules 1 and 2.

2.3.1 Rates as communicating signals

In the context of a simple example, we have seen that using rates as the communicat-

ing signals between modules (as opposed to protein concentrations) enables a modular

decomposition that simultaneously satisfies Rules 1 and 2. We now generalize these ideas

to arbitrary biological networks.
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When partitioning a dynamic DBSR graph into modules, each arrow of the graph

“severed” by the partition corresponds to an interconnecting signal flowing between the

resulting modules, in the direction of the arrow. For example, one can see two arrows

being severed in Figure 2.3b by the partition between modules M1 and M2 and then

two signals (y2 and y1) connecting the corresponding modules in Figure 2.3a. In the

remainder of this section, we present two basic scenarios that can arise in partitioning a

network into two modules and discuss the signals that must flow between these modules.

These two cases can be applied iteratively to partition a general network into an arbitrary

number of modules.

Partition at the output of a reaction node.

S1 S2

S3

R1

M1

M2

(c) Dynamic DBSR graph
partition

M1

M2

u1

y1

9rS1s “ ´k rS1s rS2s ` . . .

9rS2s “ ´k rS1s rS2s ` . . .

y1 “ k rS1s rS2s

9rS3s “ u1 ` . . .

(d) Block diagram decomposition.

Figure 2.3: Modular decomposition corresponding to the partition of a biochemical
network at the output of a reaction node of the dynamic DBSR graph.

Suppose first that we partition a biological network into two modules M1 and M2

at the output of a reaction node of the dynamic DBSR graph, corresponding to a generic
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elementary reaction of the form

R1 : S1 � S2
krS1srS2s
ÝÝÝÝÝÑ S3, (2.5)

as shown in Figure 2.3c. This can be accomplished by connecting an output y1 from

module M1 to an input u2 of module M2 that is equal to the rate of production of

S3 due to R1, which is given by k rS1s rS2s. The block diagram representation of this

partition is shown in Figure 2.3d. In this configuration, the reaction rate parameter k

only appears inside the module M1 and we thus have parametric modularity. As far as

M2 is concerned, the rate of production of S3 in molecules per unit time is given by the

abstract chemical reaction

∅ u1ÝÑ S3,

where the rate u1 is an input to the module. In this decomposition, we also have dynamic

modularity, since when we combine the dynamics of the two modules in Figure 2.3d, we

recover the MAK ODEs. This partition therefore ensures that both Rules 1 and 2 are

satisfied. We emphasize that the single arrow from node R1 to node S3 that is “severed”

by the partition in Figure 2.3c, gives rise to one signal flowing from M1 to M2 in

Figure 2.3d.

Partition at the input of a reaction node.

Now consider the case where we partition the network at an input of a reaction node

of the dynamic DBSR graph, corresponding to a generic elementary reaction of the form

in (2.5), as shown in Figure 2.4a. This can be accomplished by a bidirectional connection

between the two modules: The output y1 from M2 is connected to the input u1 of M1

and is equal to k rS2s, which is the degradation rate of a single molecule of S1 due to the

reaction R1, in molecules per molecule of S1 per unit time. The output y2 from M1 is
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S1

S2S3 R1

M1

M2

(a) Dynamic DBSR graph partition

M1

M2

u1

y1

u2

y2

9rS1s “ ´u1 rS1s ` . . .

y2 “ u1 rS1s

9rS2s “ ´u2 ` . . .

9rS3s “ u2 ` . . .

y1 “ k rS2s

(b) Block diagram decomposi-
tion.

Figure 2.4: Modular decomposition corresponding to the partition of a biochemical
network at the output of a species node of the dynamic DBSR graph.

connected to the input u2 of M2 and is equal to u1 rS1s, which is the rate of production

of S3 and the net consumption rate of S2 due to R1, both in molecules per unit time. The

block diagram representation of this modular decomposition is shown in Figure 2.4b. In

isolation, the block M1 corresponds to a chemical reaction of the form

S1
u1rS1s
ÝÝÝÑ ∅,

where the input u1 determines the degradation rate of the species S1, and the blockM2

corresponds to an abstract chemical reaction of the form

S2
u2ÝÑ S3,

where the input u2 determines the production rate of the species S3, which is also the net

consumption rate of S2. This decomposition is parametrically modular since the reaction

rate parameter k is only part of the module S2, which contains the reaction R1. We

emphasize that the two arrows between R1 to S1 that are “severed” by the partition in
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the dynamic DBSR in Figure 2.4a give rise to the two signals flowing between M1 and

M2 in Figure 2.4b.

The discussion above gives rise to the following general rule that governs the commu-

nicating signals between modules.

Rule 3 (Signals between modules) Each arrow of the dynamic DBSR graph that is

“severed” by the partition that defines the modular decomposition gives rise to one signal

that must flow between the corresponding modules. Specifically,

1. When the modular decomposition cuts the dynamic DBSR graph between a reaction

node Ri and a product species node Sj at the output of node Ri, one signal must

flow between the modules: the module with the reaction must have an output equal

to the rate [in molecules per unit time] at which the product Sj is produced by the

reaction.

2. When the modular decomposition cuts the dynamic DBSR graph between a reaction

node Ri and a reactant species node Sj at the output of node Sj, two signals must

flow between the corresponding modules: the module with the reaction must have an

output equal to the rate at which each molecule of Sj is degraded [in molecules per

molecule of Sj per unit time], and the module with Sj must have an output equal

to the total rate at which the molecules of Sj are consumed [in molecules per unit

time]. l

When Rules 1–3 are followed, the decomposition of the network into modules will

exhibit both parametric and dynamic modularity. Furthermore, the network can be

decomposed into any number of modules less than or equal to the total number of reacting

species in the network.
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Remark 1 In exploring the different possible cases, we restricted our discussion to ele-

mentary reactions (at most two reactants) and assumed that at least one of the reactants

remains in the same module as the reaction. We made these assumptions mostly for

simplicity, as otherwise one would have to consider a large number of cases. l

2.3.2 Summation Junctions

In biological networks, it is not uncommon for a particular species to be produced or

degraded by two or more distinct pathways. In fact, we have already encountered this

in the biochemical network (2.2) corresponding to the dynamic DBSR graph depicted in

Figure 2.1b, where the species S2 is produced both by reactions R1 and R5. The use of

rates as communicating signals between modules allows for the use of summation junc-

tions outside modules to combine different mechanisms to produce/degrade a chemical

species.

M1

M2

M3

u1

v

y1

y2

y3

9rS1s “ u1 ´ pγ1 ` k1q rS1s

y1 “ k1 rS1s

9rS2s “ v ´ pγ2 ` k2q rS2s

y2 “ k2 rS2s

9rS3s “ ´k3 rS3s

y3 “ k3 rS3s

Figure 2.5: Modular decomposition from Figure 2.3a, simplified using summation junctions.
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This is illustrated in Figure 2.5, where we provide a modular decomposition alter-

native to that shown in Figure 2.3a. This decomposition still preserves the properties

of dynamic and parametric modularity, but permits simpler blocks than those in Fig-

ure 2.3a, since each module now only has a single input and a single output (SISO).

It is worth noting that when species concentrations are used as the communicating

signals between modules [as in Figure 2.2], it is generally not possible to use summation

junctions to combine two or more distinct mechanisms to produce or degrade a chemical

species. Even if parametric modularity were not an issue, this limitation would typically

lead to more complicated modules with a larger number of inputs and outputs.

2.4 Conclusion

We used examples to show that decomposition of a biological network into components

would need to be done carefully to ensure that the resulting components don’t violate

dynamic and parametric modularity, as this violation would not permit the inference of

properties of the network from properties of each individual component. We discovered a

set of rules that when followed, guarantees that any modular decomposition would satisfy

both dynamic and parametric modularity. The fact that communicating signals between

modules are rates as opposed to protein concentrations permits the use of summation

junctions between modules, which could reduce the complexity of each module in a

network.
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Chapter 3

Biological modules

In Chapter 2, we derived a set of rules to decompose any biological network consisting of

elementary biochemical reactions into modules that satisfy dynamic and parametric mod-

ularity. In this chapter, we first recall some system theoretic properties that can be used

to establish properties of complex interconnections involving these modules. We then

introduce modules that correspond to important biological functions and characterize

them using these properties.

3.1 Module properties

Consider a generic input-output module, expressed by an ODE of the form

9x � Apx, uq, y � Bpx, uq, x P Rn, u P Rk, y P Rm, (3.1)

where xptq denotes the n-vector state of the module, uptq the k-vector input to the

module, and yptq the m-vector output from the module.

We say that the module described by (3.1) is positive if the entries of its state vector
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xptq and output vector yptq never take negative values, as long as all the entries of the

initial condition xp0q and of the input vector uptq, @t ¥ 0 never take negative values. All

the modules described in this section are positive.

We say that the module described by (3.1) is cooperative (also known as monotone

with respect to the positive orthant) if for all initial conditions x0, x̄0 P Rn and inputs

uptq, ūptq P Rk, @t ¥ 0, we have that

x0 " x̄0 & uptq © ūptq, @t ¥ 0 ñ xpt;x0, uq " xpt; x̄0, ūq, @t ¡ 0

where xpt;x0, uq denotes the solution to (3.1) at time t, starting from the initial condition

xp0q � x0 and with the input u. Given two vectors v, v̄, we write v " v̄ if every entry of

v is strictly larger than the corresponding entry of v̄ and we write v © v̄ if every entry

of v is larger than or equal to the corresponding entry of v̄. The reader is referred to

[9, 8, 10] for a more comprehensive treatment of monotone dynamical systems, including

simple conditions to test for monotonicity and results that allow one to infer monotonicity

of a complex network from the monotonicity of its constituent parts. Several modules

described in this section are cooperative.

The Input-to-State Static Characteristic Function (ISSCF) gpu�q of (3.1) specifies

how a constant input uptq � u�, @t ¥ 0 to the module maps to the corresponding

equilibrium value of the state xptq � x�, @t ¥ 0. In terms of (3.1), the value of gpu�q is

the (unique) solution x� to the steady-state equation Apx�, u�q = 0. When this equation

has multiple solutions x�, the ISSCF is not well defined.

For modules with a well-defined ISSCF, the Input-to-Output Static Characteristic

Function (IOSCF) fpu�q of (3.1) specifies how a constant input uptq � u�, @t ¥ 0

to the module maps to the corresponding equilibrium value of the output yptq � y�,

@t ¥ 0. In terms of (3.1), the value of fpu�q is given by Bpgpu�q, u�q. We shall see in
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Section 3.3 that one can determine the equilibrium point of a network obtained from

the interconnection of several input-output modules like (3.1), from the IOSCFs and the

ISSCFs of the constituent modules.

For systems with a well-defined ISSCF, the Linearized Transfer Function (LTF) Hpsq

of (3.1) around an equilibrium defined by the input u� determines how a small perturba-

tion δuptq� uptq�u� of the input uptq around the constant input uptq � u�, @t ¥ 0 leads

to a perturbation δyptq � yptq � y� of the output yptq around the constant equilibrium

output yptq � y� � fpu�q, @t ¥ 0. In particular, δyptq � L�1rHpsqs � δuptq, where

L�1rHpsqs denotes the inverse Laplace transform of Hpsq and � the convolution opera-

tor [55]. We shall also see in Section 3.3 that one can determine the LTF of a network

obtained from the interconnection of several input-output modules like (3.1), from the

LTFs of the constituent modules.

The LTF of a module like (3.1) is given by a rational function and generally, the

(local) stability of the equilibrium defined by the input u� can be inferred from the roots

of the denominator of the LTF. Specifically, if all the roots have strictly negative real

parts, in which case the LTF is bounded-input/bounded-output (BIBO) stable, then the

equilibrium point is locally asymptotically stable, which means solutions starting close

to the equilibrium will converge to it as t Ñ 8; this assumes that the McMillan degree

of the LTF equals the size n of the state x of (3.1) [55], which is generically true, but

should be tested.
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3.2 Functional modules in common biological net-

works

In this section, we consider a few key biological units that arise in gene regulatory net-

works, enzymatic networks, and signaling pathways. We then derive the corresponding

modules that admit dynamic and parametric modularity, while preserving the function-

ality of the unit.

3.2.1 Transcriptional regulation module

A gene regulatory network consists of a collection of transcription factor proteins, each

involved in the regulation of other proteins in the network. Such a network can be decom-

posed into transcriptional regulation (TR) modules, each containing a transcription factor

S0, the promoter regions of a set of genes G1,G2, . . . ,GF that S0 up-regulates or down-

regulates, and the corresponding mRNA molecules mRNA1,mRNA2, . . . ,mRNAF tran-

scribed. The case F ¡ 1 is referred to in the literature as fan-out [69].

The input u to a TR module is the rate of production of S0 due to exogenous processes

such as regulation from other TR modules, and can be associated with a generic reaction

of the form

∅ u
ÝÑ S0.

A number qj ¥ 1 of molecules of the transcription factor S0 can bind to the promoter

region Pj of the gene Gj, which is represented by the reaction

qjS0 � Pj
kon
j rS0s

qj rPjs
ÝÝÝÝÝÝÝÝáâÝÝÝÝÝÝÝÝ
koff
j rS0:Pjs

S0:Pj, @j P t1, 2, . . . ,mu.
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The total concentration of promoter regions P tot
j � rPjs � rS0:Pjs for the gene Gj

(bound and unbound to the transcription factor) is assumed to remain constant. When

S0 activates the gene Gj, the bound complex S0:Pj gives rise to transcription, which is

expressed by a reaction of the form

S0:Pj
αjrS0:Pjs
ÝÝÝÝÝÑ S0:Pj �mRNAj.

Alternatively, when S0 represses the gene Gj, it is the unbounded promoter Pj that gives

rise to transcription, which is expressed by a reaction of the form

Pj
αjrPjs
ÝÝÝÝÑ Pj �mRNAj.

Additional reactions in the module include the translation of mRNAj to Sj

mRNAj
βjrmRNAjs
ÝÝÝÝÝÝÝÑ mRNAj � Sj,

and the protein and mRNA degradation reactions

S0
β̄rS0s
ÝÝÝÑ ∅,

mRNAj
γjrmRNAjs
ÝÝÝÝÝÝÝÑ ∅

The TR module has F outputs y1, y2, . . . , yF that are equal to the rates of translations

of the proteins S1,S2, . . . ,SF , respectively. In particular,

yj � βj rmRNAjs

When F � 1, we refer to each module simply as a TR activator or TR repressor module,
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and the subscript j’s can be omitted.

We derive the system of ODEs that correspond to the TR module, as well as its

IOSCF and LTF, under the following assumptions:

Assumption 1 (Homogeneity in TR module) For simplicity of presentation, it is

assumed that the association and dissociation constants, the total promoter concentration,

and the stoichiometric coefficients are the same for every gene, i.e., that koff
j � koff ,

kon
j � kon, P tot

j � P tot and qj � q, @j P t1, 2, . . . , F u.

Assumption 2 (Parameters in TR module) The following assumptions on the pa-

rameter values are considered:

1. The binding-unbinding reactions are on timescales much faster than those of the

transcription, translation, and decay reactions, i.e., koff, kon " γ, βj, β̄ and uptq

@t ¥ 0 [33]. This assumption simplifies the LTF of the module.

2. The dissociation constant K � koff

kon is much higher than the total promoter con-

centration i.e K " P tot, implying that the affinity of each binding site is small.

l

An interesting consequence of Assumption 2 is that the LTFs from a perturbation in the

input to a perturbation in each of the outputs do not depend on the fan-out, which is not

true for the original dynamics without this assumption. For completeness, we include in

Appendix A.1 the LTF of the TR module computed without Assumption 2.

The dynamics of this module under Assumption 1 are given by

9rS0s � u� β̄ rS0s �
m̧

j�1

q
�
koff rS0:Pjs � kon rS0s

q pP tot � rS0:Pjsq
�

9rS0:Pjs � �koff rS0:Pjs � kon rS0s
q pP tot � rS0:Pjsq,
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where

9rmRNAjs � αj rS0:Pjs � γj rmRNAjs

when S0 activates Gj and

9rmRNAjs � αjpP
tot � rS0:Pjsq � γj rmRNAjs

when S0 represses Gj.

The dynamics of this module under Assumptions 1–2 are given by

9rS0s � u� β̄ rS0s ,

with

9rmRNAjs �
αjP

tot
j

1� K
rS0s

q

� γj rmRNAjs

when S0 activates Gj and

9rmRNAjs �
αjP

tot
j

1� rS0s
q

K

� γj rmRNAjs

when S0 represses Gj.

The IOSCF of the module under Assumption 1 is given by

y�j �
αjβjP

tot

γj

�
1� K

pθu�qq

	

when S0 activates Gj and

y�j �
αjβjP

tot

γj

�
1� pθu�qq

K
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when S0 represses Gj, where

K �
koff

kon

θ �
1

β̄
.

The LTF of the module under Assumptions 1–2 is given by

Hjpsq �
qKP totαjβjpθu

�qq�1

pK � pθu�qqq2ps� γjqps� β̄q

when S0 activates Gj and

Hjpsq � �
qKP totαjβjpθu

�qq�1

pK � pθu�qqq2ps� γjqps� β̄q

when S0 represses Gj.

Figure 3.1 shows a biological representation and the corresponding DBSR graph of a

TR module. The reader may verify that the module satisfies Rules 1–3 in that (i) its state

contains the concentrations of all the chemical species associated with the module, (ii)

the parameters of all the chemical reactions associated with the module are not needed

outside this module, and (iii) the inputs and outputs of the module are rates of protein

production/degradation. Furthermore, this module is positive and the equilibrium de-

fined by any constant input u� is locally asymptotically stable, under Assumptions 1–2.

The module is also cooperative under these assumptions when all outputs are activating.

3.2.2 Covalent modification module

The covalent modification (CM) module represents the process by which a substrate

protein S0 is covalently modified by an enzyme E into an alternative form S1. The
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Figure 3.1: (a) Biological representation and (b) DBSR graph of a TR module. For
simplicity, protein degradation reactions are shown neither in Figure 3.1b nor in all
subsequent DBSR graphs presented in this monograph.

chemical species associated with this module are the substrate protein S0, the enzyme

E, and the complex S0:E formed by the enzyme-substrate binding. The input u to the

CM module is the rate of production of the substrate S0 due to an exogenous process

(e.g., a TR or another CM module) and can be associated with the generic reaction

∅ u
ÝÑ S0.

The additional reactions associated with the CM module include the S0 degradation

reaction

S0
γrS0s
ÝÝÝÑ ∅,

and the reactions involved in the Michaeles-Menten model for the enzyme-substrate in-

teraction:

S0 � E
kf rS0srEs
ÝÝÝÝÝáâÝÝÝÝÝ
krrS0:Es

S0:E
kcatrS0:Es
ÝÝÝÝÝÝÑ S1 � E,
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where the total concentration of enzyme Etot � rEs � rS0:Es is assumed to remain

constant. The output y of the CM module is the rate of production of the modified

substrate S1, given by

y � kcat rS0:Es .

For simplicity, instead of presenting the exact dynamics of the module (which are straight-

forward to derive using MAK), we present two common approximations to the Michaeles-

Menten model:

Assumption 3 (Equilibrium Approximation [112]) The reversible reaction is in ther-

modynamic equilibrium (i.e., kf rS0s rEs � kr rS0:Es), which is valid when kr " kcat. l

Assumption 4 (Quasi Steady-State Approximation [20]) The concentration of the

complex S0:E does not change on the timescale of product formation (i.e., kf rS0s rEs �

kr rS0:Es�kcat rS0:Es), which is valid either when kr�kcat " kf or when rS0s " Etot. l

Under Assumption 3, the dynamics of the CM module are given by

9rS0s �
u� γ rS0s �

kcatEtotrS0s
Kd�rS0s

1� KdEtot

pKd�rS0s
2q

y �
kcatEtot rS0s

Kd � rS0s
,

where

Kd
�

kr

kf
.

Under Assumption 4, the dynamics of the CM module are given by

9rS0s � u� γ rS0s �
kcatEtot rS0s

Km � rS0s
y �

kcatEtot rS0s

Km � rS0s
,
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where

Km
�

kr � kcat

kf
.

The IOSCF under Assumption 3 and Assumption 4 is given by

y� �
1

2
p2u� �Ke �

a
pKeq2 � 4Kdu�γq

and

y� �
1

2
p2u� �K f �

a
pK fq2 � 4Kmu�γq

respectively, where

Ke
� �u� � kcatEtot �Kdγ

and

K f
� �u� � kcatEtot �Kmγ.

The LTF under Assumption 3 and Assumption 4 is given by

Hpsq �
Kppu�q

s�Kqpu�q

and

Hpsq �
Kh

s�Kh � γ

respectively, where

Kh
�

kcatEtotKm

pKm � 1
2γ
pK f �

a
pK fq2 � 4Kmu�γqq2

.

The constants Kppu�q and Kqpu�q that appear in the module LTF under Assumption 3

are included in Appendix A.2.
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Figure 3.2 shows a biological representation and the corresponding DBSR graph of

an CM module. This module is positive, cooperative, and the equilibrium defined by any

constant input u� is globally asymptotically stable under both assumptions.

S0

S0

EE

u1
y1

(a)

S0 R1 R2S0:E

E

u1 y1

(b)

Figure 3.2: (a) Biological representation and (b) DBSR graph of an CM module.

3.2.3 Phosphorylation-dephosphorylation (PD) cascade mod-

ule

Signaling pathways are common networks used by cells to transmit and receive in-

formation. A well-known signal transduction pathway, known as a signaling cascade,

consists of the series of phosphorylation and dephosphorylation (PD) cycles shown in

Figure 3.3.

Figure 3.3: Representation of an n-stage signaling cascade, adapted from [94].

Each of these cycles, typically referred to as a stage in the cascade, consists of a

signaling protein that can exist in either an inactive (Si) or an active form (S:i ). The

protein is activated by the addition of a phosphoryl group and is inactivated by its removal
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[120]. The activated protein S:i then goes on to act as a kinase for the phosphorylation or

activation of the protein Si�1 at the next stage in the cascade. At each stage, there is also

a phosphatase that removes the phosphoryl group to deactivate the activated protein.

The signaling cascade depicted in Figure 3.3 can be decomposed into n PD-cycle

modules, each including the active protein S:i , the inactive protein Si�1, the complex

S:i :Si�1 involved in the activation of the protein in the next module, and the associated

chemical reactions:

S:i � Si�1

kf
irS

:
i srSi�1s

ÝÝÝÝÝÝÝáâÝÝÝÝÝÝÝ
kr
i rS

:
i :Si�1s

S:i :Si�1
αirS:i :Si�1s
ÝÝÝÝÝÝÝÑ S:i � S

:
i�1.

In addition, the module also includes the phosphatase enzyme Ei, the complex S:i :Ei

involved in the deactivation of S:i , and the associated chemical reactions:

S:i � Ei
k̄f
irS

:
i srEisÝÝÝÝÝÝáâÝÝÝÝÝÝ

k̄r
i rS

:
i :Eis

S:i :Ei
ᾱirS:i :Eis
ÝÝÝÝÝÑ Si � Ei,

where the total concentration of the enzyme Etot
i � rS:i :Eis � rEis is assumed to remain

constant. The two inputs to this PD-cycle module are the rate of production ui of the

active protein S:i due to the activation of Si in the preceding module of the cascade, and

the rate of production vi of the inactive protein Si�1 due to dephosphorylation of S:i�1

in the subsequent module of the cascade. Consistently, the two outputs of this PD-cycle

are the rate yi of production of S:i�1 due to the activation of Si�1, to be used as an input

to a subsequent module; and the rate zi of production of Si due to the deactivation of

S:i to be used as an input to a preceding module.
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The dynamics of the PD-cycle module are given by

9rSi�1s � vi � kf
i rSi�1s rS:i s � kr

i rS
:
i :Si�1s

9rS:i :Si�1s � kf
i rSi�1s rS:i s � pkr

i � αiqrS:i :Si�1s

9rS:i s � ui � kf
i rSi�1s rS:i s � pkr

i � αiqrS:i :Si�1s � k̄f
i rS

:
i s rEis

� k̄r
ipE

tot
i � rEisq

9rEis � �k̄f
i rS

:
i s rEis � pk̄r

i � ᾱiqpE
tot
i � rEisq,

with output equations

yi � αirS:i :Si�1s

zi � ᾱipE
tot
i � rEisq,

and IOSCF

y�i � v�i , z�i � u�i

The LTFs of this module are straightforward to compute and can be found in Ap-

pendix A.3. While our decomposition of the signaling cascade network satisfies Rules 1–3

and hence enjoys both types of modularity, this is not the case for the decompositions

of the same biochemical system found in [120, 93, 94]. Figure 3.4 shows a biological

representation and the corresponding DBSR graph of a PD cycle module.
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Figure 3.4: (a) Biological representation and (b) DBSR graph of a PD cycle module.

3.3 Interconnection between biological modules

A key motivation to decompose a biological network into dynamically and parametri-

cally isolated modules is to predict properties of the overall network from the properties

its constituent modules. In this section, we review three basic mechanisms for the inter-

connection of modules: cascade, parallel, and feedback interconnections. While simple,

these three mechanisms can be combined to obtain arbitrarily complex networks. As we

introduce the three interconnection mechanisms, we present a few theoretical tools that

can be used to establish properties of the resulting interconnected networks.

3.3.1 Cascade interconnections

In a cascade interconnection between two modulesM1 andM2, the output of the of

the up-stream module M1 is connected to the input of the downstream module M2, as

shown in Figure 3.5.

For the cascade to be well defined, the number of outputs of M1 must match the

number of inputs of M2. Standard results in systems theory allow us to compute the

IOSCF and LTF of the cascade from the IOSCFs and LTFs of the constituent modules:

Lemma 1 (Cascade) Consider the cascade interconnection between an up-stream mod-

ule M1 and a down-stream module M2 depicted in Figure 3.5a.
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S1:P2 S2:P3

u1 u2y1 y2

(c)

Figure 3.5: (a) Cascade interconnection between a module M1 and another module
M2. (b) Example of a cascade interconnection between a TR activator module and a
TR repressor module and (c) corresponding DBSR graph partition.

1. Denoting by f1pu
�
1q and f2pu

�
2q the IOSCFs of the modulesM1 andM2, respectively,

the IOSCF of the cascade is well defined and given by fpu�1q � f2

�
f1pu

�
1q
�
, @u�1 .

2. Denoting by H1psq and H2psq the LTFs of the modules M1 and M2 around the

equilibria defined by the inputs u�1 and f1pu
�
1q, respectively, the LTF of the cascade

around the equilibrium defined by the input u�1 is given by Hpsq � H2psqH1psq.

Consequently, Hpsq will be BIBO stable if both H1psq and H2psq are BIBO stable.

l
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3.3.2 Parallel interconnections

In a parallel interconnection between the modules M1 and M2, the outputs of the

modules are added, as shown in Figure 3.6.

+
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u1

u2

y1

y2

y

(a)

+

mRNA3S1

S2
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y1

y2

y

(b)
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R3

R4 R5

P3
S1:P3

S2:E2

E2

u1

u2

y1

y2

y

(c)

Figure 3.6: (a) Parallel interconnection of two modules M1 and M2. (b) Example
of a parallel interconnection between an activator TR module and an CM module
and (c) corresponding DBSR graph partition.

For the parallel interconnection to be well defined, both blocks must have the same

number of outputs. Standard results in systems theory allow us to compute the IOSCF

and LTF of the cascade from the IOSCFs and LTFs of the constituent modules:

Lemma 2 (Parallel) Consider the parallel interconnection between two modules M1

and a M2 depicted in Figure 3.6a.

1. Denoting by f1pu
�
1q and f2pu

�
2q the IOSCFs of modules M1 and M2, respectively,
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the (multi-input) IOSCF of the parallel interconnection is well defined and given by

fpu�1 , u
�
2q � f1pu

�
1q � f2pu

�
2q, @u

�
1 , u

�
2 .

2. Denoting by H1psq and H2psq the LTFs of the modules M1 and M2 around the

equilibria defined by the inputs u�1 and u�2 , respectively, the (multi-input) LTF of

the parallel interconnection around the equilibrium defined by the input pair pu�1 , u
�
2q

is obtained by stacking H1psq, H2psq side by side, as in Hpsq � rH1psq H2psqs. Con-

sequently, Hpsq will be BIBO stable if both H1psq and H2psq are BIBO stable. l

3.3.3 Feedback interconnection structures

In a feedback interconnection, the output of a module M1 is connected back to its

input through a summation block, as shown in Figure 3.7. In the control theory literature,

feedback interconnections are typically defined by subtracting the output from the input

(instead of adding, as in Figure 3.7). However, since a summation is more natural in

the context of biological networks, here we deviate from that standard approach. For

the feedback interconnection to be well defined, the module M1 must have the same

number of inputs and outputs. Standard results in systems theory allow us to compute

the IOSCF and LTF of the feedback from the IOSCF and LTF of the constituent module:

Lemma 3 (Feedback) Consider the feedback interconnection of a module M1 depicted

in Figure 3.7a.

1. Denoting by f1pu
�
1q the IOSCF of the module M1, the IOSCF of the feedback in-

terconnection is given by fpu�q � y�, where y� is the solution to the equation

y� � f1pu
� � y�q. When this equation has multiple solutions, the IOSCF of the

feedback is not well defined.

2. Denoting by H1psq the LTFs of the module M1 around the equilibria defined by
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Figure 3.7: (a) Feedback interconnection of module M1. (b) Example of a feed-
back interconnection of a TR repressor module and (c) corresponding DBSR graph
partition.

the input u�1 � u� � fpu�q, the LTF of the feedback interconnection around the

equilibrium defined by the input u� is given by Hpsq �
�
I � H1psq

��1
H1psq �

H1psq
�
I �H1psq

��1
. l

For the cascade and parallel interconnections, when the IOSCFs of the constituent mod-

ules were well defined, the IOSCFs of the interconnections were also well defined. More-

over, if the constituent modules had BIBO stable LTFs, the LTF of the interconnection

was also BIBO stable. This is no longer the true for feedback connections, where the

blockM1 may have a well-defined IOSCF and a BIBO stable LTF, but the interconnec-

tion may have multiple equilibria and the LTFs around these equilibria may or may not

be BIBO stable. This will become more evident in the examples we study in Chapter 4.
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3.3.4 Nested interconnection structures

In general, arbitrarily complex biological networks can be decomposed into combina-

tions of cascade, parallel and feedback interconnection structures, also known as nested

interconnection structures. One such example, involving TR and CM modules, is de-

picted in Figure 3.8. In this case, a protein S1, which is produced by some exogenous

process at a rate u, activates a gene G2 while simultaneously repressing G3. The protein

S2 is then covalently modified to S4, while S3 activates G4. S4 then goes on to repress

G1.

3.4 Conclusion

We introduced biological units that commonly appear in biological networks, namely

transcriptional regulation, covalent modification and phosphorylation-dephosphorylation.

We also introduced modules that represent these functions while preserving the dynamic

and parametric modularity properties. We characterized these modules by their IOSCFs

and LTFs, and demonstrated how these properties are useful in determining the equi-

librium points and their stability for a range of interconnection structures. We further

characterized these modules by their cooperativity and positivity, which are important

in deriving the results that will be seen in Chapter 4.
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Figure 3.8: (a) Biological representation of the nested interconnection structure and
(b) corresponding DBSR graph partition. (c) Block diagram representation of network
decomposition, which shows M1 in cascade with the parallel interconnection of M2

and M3, connected in cascade with M4 and in turn, connected in a feedback loop.

46



Chapter 4

A modular study of two cyclic

biological circuits

Some interesting classes of biological networks that are commonly studied are gene reg-

ulatory networks and enzymatic networks, both of which play important roles in many

vital life processes [90] and are also well-characterized mathematically [65, 112]. A class

of gene regulatory networks that has been the subject of many theoretical studies is

known as the repressilator [42], which was the first known synthetic oscillator to be

built [40]. Repressilators are topologically equivalent to a class of cyclic negative gain

networks [40], and numerical analysis of the model revealed the parameter regions for

which the network would oscillate and when it would converge to a stable steady-state

[42]. Since then, there has been a plethora of work on theoretically establishing oscilla-

tory regions of the network, for varying degrees of generalizations of the network model

[40, 57, 88, 115]. While the results of these studies provide deep insights about when

the repressilator oscillates, these results are often complex and require the satisfaction of

multiple assumptions.

The Goldbeter-Koshland model for covalent modification of proteins [49] is another
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enzymatic network that has been the subject of many studies [129, 78]. In this network,

there exists a protein X1 that is modified to another form X2 through an interaction with

an enzyme E1. X2 is also modified back to X1 through an interaction with an enzyme

E2. The dynamical model describing this behavior is simple, and yet reveals interesting

results about sensitivity of the protein concentrations to changes in enzyme concentration.

Typically, these covalent modification reactions happen in signaling cascades [94], and

the enzymes and substrates are subject to degradation.

In this chapter, we study a generalized repressilator which consists of a cyclic intercon-

nection of an arbitrary number of transcriptional repressor modules. For the symmetric

case, where all parameters across all the modules have the same value (which is typical

in an experimental setting [42]), we provide results for when the network will converge to

a stable steady-state, both in the local and global sense. Our results show how the stable

parameter region for the repressilator becomes smaller as more transcriptional repressor

modules are added to the network. These results were inspired by studies by Arcak and

Sontag [12, 11].

We further study a generalized covalent modification network, consisting of a cascade

of an arbitrary number of covalent modification modules connected in feedback. We

show that regardless of the parameters chosen for each enzyme-substrate interaction, the

substrates will necessarily degrade away, in spite of being connected in positive feedback.

These results were inspired by the work on Monotone Systems Theory by Angeli and

Sontag [9, 10, 8].

4.1 Generalized Repressilator Network

The Repressilator is a synthetic network designed to gain insight into the behavior of

biological oscillators [42]. In its generalized form, this network consists of an odd number
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Figure 4.1: (a) Biological realization of a three gene Repressilator network. In experi-
ment, this was done with three naturally-occurring repressor proteins LacI, tetR and
cI, each corresponding to a TR repressor module. (b) Cascade of N TR repressor
modules connected in feedback, where each module is denoted byMi, i P t1, � � � , Nu.

N of repressor proteins S1, � � � ,SN , where Si represses the gene Gi�1, for i P t1, � � � , N�1u

and SN represses the gene G1. These networks can be decomposed into a cascade of

N single-gene TR repressor modules connected in a (negative) feedback loop with no

exogenous input. The biological realization of this decomposition with N � 3 (as in [42])

is shown in Figure 4.1a, with the corresponding block diagram representation depicted

in Figure 4.1b.

The equilibrium point of the network must satisfy the equation

fN
�
� � � f2

�
f1pu

�
1q
�
� � �

�
� u�1 , (4.1)

where fip�q denotes the IOSCF of the ith TR module (see Section 3.2.1). Since each

fip�q is monotone decreasing, the composition of the N (odd) functions is also monotone

decreasing and we have a feedback interconnection with a unique solution u�1 to (4.1) for

all values of the parameters. For simplicity, in the remainder of this section we assume

that the parameters of the chemical reactions within each TR repressor module are

exactly the same, implying that each module is identical and the network is symmetric.
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However, it is straightforward to modify the results below for networks consisting of

non-identical modules.

For this example, we follow two alternative approaches to determine whether or not

the concentrations of the species converge to the unique equilibrium. The first approach

is based on the Nyquist Stability Criterion [38] and will allow us to determine whether

trajectories that start close to the equilibrium eventually converge to it.

4.1.1 Nyquist-criterion based approach to determine necessary

and sufficient conditions for LAS

M1 M2 M3 MN

H1psq H1psq H1psqH1psq
u1 u2 u3 uN

y1 y2 y3

yNu y

Figure 4.2: Cascade of N modules, each with an equal LTF H1psq, connected in feed-
back. Lemma 4 provides conditions for the BIBO stability of the linearized network,
from a small perturbation in u to a small perturbation in y.

Lemma 4 Consider the feedback interconnection of a cascade of N modules depicted in

Figure 4.2, all with the same LTF H1psq around a given equilibrium point of the feedback

interconnection. Then the LTF of the feedback connection is BIBO stable if and only if

#OUP � �
1

N

Ņ

`�1

#ENDrej
2π`
N s,

where #OUP represents the number of (open-loop) unstable poles of H1psq and

#ENDrej
2π`
N s denotes the number of clockwise encirclements of the Nyquist contour of

H1pjωq, ω P R around the point ej
2π`
N on the complex plane.1 l

1We assume here that H1psq has no poles on the imaginary axis. If this were the case, the standard
“trick” of considering an infinitesimally perturbed system with the poles moved off the axis can be
applied [38].

50



A modular study of two cyclic biological circuits Chapter 4

Proof of Lemma 4. To investigate the BIBO stability of the LTF of the network, we

consider the characteristic equation of the feedback loop: 1 �H1psq
N � 0. The number

of unstable poles is thus given by the unstable solutions to the equation:

1�H1psq
N � 0 ô Di P t1, 2, � � � , nu, H1psq � zi,

where z` � ej
2π`
N are the N roots to the equation zN � 1.

To count the number of unstable poles of the network, we must then add the number of

unstable poles of each of the N equations

H1psq � z`, ` P t1, 2, � � � , Nu,

which can be done using Cauchy’s argument principle by counting the number of clock-

wise encirclements of the point z` P C for the Nyquist contour of H1pjωq, ω P R.

Theorem 1 Consider a Repressilator network, that consists of an odd number N of equal

single-gene TR repressor modules (F � 1) connected in feedback as in Figure 4.1b. The

network has a unique equilibrium point that is locally asymptotically stable if and only if

Ņ

`�1

#ENDrej
2π`
N s � 0, (4.2)

where #ENDrej
2π`
N s denotes the number of clockwise encirclements of the Nyquist plot

of the LTF of a single TR repressor module around the point ej
2π`
N . l

Proof of Theorem 1. We assume that Assumption 2 is satisfied for simplicity, although

it is straightforward to extend the proof for the case when it is not. Theorem 1 follows

from Lemma 4 by recognizing that a single-gene repressor TR module can be represented
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by the LTF

H1psq � �
qKP totα1β1p

u�

β̄
qq�1

pK � pu
�

β̄
qqq2ps� γ1qps� β̄q

(4.3)

under Assumption 2, as was shown in Section 3.2.1. Moreover, since the network input

uptq � 0 @t ¥ 0 and all modules have identical parameters, the values of the inputs and

outputs of each module at equilibrium will be the same, each given by the unique solution

u� to (4.5). Therefore all modules have equal LTFs, and this enables us to use Lemma 4

to analyze when the LTF of the Repressilator is BIBO stable.

To complete the proof, we need to show that if the LTF of the Repressilator network is

BIBO stable, then the equilibrium point is locally asymptotically stable. To do this, we

need to show that the realization of the linearized network is minimal [55]. Defining the

state of the network to be

x �

�
���������������������

rS1s

rmRNA1s

rS2s

rmRNA2s

...

...

rSN s

rmRNAN s

�
���������������������

,

the state-space realization of the linearized closed-loop Repressilator network is given by

9δx � Aδx�Bδu δy � Cδx
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where

A2N�2N �

�
����������������������������

�β̄ 0 0 0 0 � � � 0 0 0 0 β1

P �γ1 0 0 0 � � � 0 0 0 0 0

0 β1 �β̄ 0 0 � � � 0 0 0 0 0

0 0 P �γ1 0 � � � 0 0 0 0 0

...
...

...
...

...
. . .

...
...

...
...

...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 � � � β1 �β̄ 0 0 0

0 0 0 0 0 � � � 0 P �γ1 0 0

0 0 0 0 0 � � � 0 0 β1 �β̄ 0

0 0 0 0 0 � � � 0 0 0 P �γ

�
����������������������������

B2N�1 �

�
�����������

1

0

...

0

0

�
�����������

C1�2N �
�
0 0 � � � 0 β̄

�
P � �

qα1P
totKprSis�qq�1

pK � prSis�qqq2
@i.

Both the controllability and observability matrices of this system have full rank and

therefore the realization is minimal [55]. In this case, BIBO stability of the LTF im-

plies that the realization is exponentially stable and therefore the equilibrium is locally

asymptotically stable. l

The symmetric repressilator we analyze has a convenient property that the equilibrium

point of the network, and hence the Nyquist plot of the LTF of a TR repressor module,

remains the same regardless of the number of modules added to the network. Because

of this, the greater the number of TR repressor modules in the network, the larger the

parameter range over which the repressilator will be unstable. This is demonstrated in

Figure 4.3, which shows the Nyquist plot for β � 10�1.5 to be stable when there are

only three TR repressor modules, but becomes unstable when there are five TR repressor
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Figure 4.3: Nyquist plots of the LTF of a TR repressor module which satisfies As-
sumption 2 for two different sets of parameters: β � β̄ � 10�1.5 (solid) and β � β̄ � 1
(dashed). The remaining parameters are the same for both plots: Ptot � 1, K � 100,

γ � 1, q � 2, α � 100. The points ej
2π`
3 , j P t1, 2, 3u that appear in the criterion (4.2)

are marked with “X”, and the points ej
2π`
5 , j P t1, � � � , 5u are marked with ”*”. For

the network with N � 3, the solid plot does not encircle any of the three points so we
have BIBO stability for the feedback LTF, whereas for the dashed Nyquist plot this
is not the case. When N becomes 5, the repressilator represented by the solid plot
becomes unstable

modules in the network. As more TR repressor modules are added to a network, there

will be a wider parameter region for which the Nyquist plot which encircles the points

ej
2πl
N @l P t1, 2, � � � , Nu.

4.1.2 Secant-criterion based approach to determine sufficient

conditions for LAS and GAS

An alternative approach that can be used to determine global convergence to the

equilibrium of a negative feedback interconnection is based on the Secant Criterion [119,

117] and some of its more recent variations [12].
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Theorem 2 Consider a Repressilator network, that consists of an odd number N of

equal single-gene TR repressor modules (F � 1) connected in feedback as in Figure 4.1b,

with q � 2. Under Assumption 2 for the TR repressor modules, the network has a unique

equilibrium point that is LAS if

2P totαβ u
�

β̄

β̄Kγ
�

1� 1
K
pu

�

β̄
q2
	2   sec

� π

2N

	2

, (4.4)

where u� is the unique solution to

αβP tot

γ
�

1�
pu
�

β̄
q2

K

	 � u�, (4.5)

and is GAS if

3P totαβ

8β̄γ

c
3

K
  sec

� π

2N

	2

. (4.6)

Both of these conditions are sufficient but not necessary. (4.6) in particular provides

a condition which guarantees global convergence of the repressilator to its steady-state.

This result again shows for a symmetric repressilator that the stability regions of the net-

work shrink as N grows. Figure 4.4 shows the stability regions for a 3-gene Repressilator

as we vary two of the TR module parameters.

To prove Theorem 2, we first prove the following result based on the Secant Crite-

rion [119, 117] and some of its more recent variations [12], by choosing an appropriate

coordinate transformation.

Lemma 5 Consider the feedback interconnection depicted in Figure 4.1b, with each of

the N modules Mi of the form

9rSis � ui � ciprSisq, yi � diprSisq, i P t1, 2, . . . , Nu, (4.7)
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where

1. the cip�q are continuous and monotone strictly increasing;

2. an odd number M ¤ N of the dip�q are continuous and monotone strictly decreas-

ing, while the remaining N �M of the dip�q are continuous and monotone strictly

increasing.

Then the IOSCF of the cascade is monotone strictly decreasing and the feedback inter-

connection has a unique equilibrium. This equilibrium is locally asymptotically stable

provided that

N¹
i�1

����
Bdipsiq
Bsi

��
si�rSis�

Bcipsiq
Bsi

��
si�rSis�

����   sec
� π
N

	N
, (4.8)

where rSis� denotes the value of rSis at the equilibrium; and it is globally asymptotically

stable if there exist constants φi ¡ 0, i P t1, 2, . . . , Nu for which

N¹
i�1

φi   sec
� π
N

	N
,

where φi satisfies either one of the following two conditions:

1. ���dipziq � diprSis�q
cipziq � ciprSis�q

��� ¤ φi @zi � rSis� (4.9)

2. ���Bdipziq
Bzi

��� ¤ φi
Bcipziq

Bzi
, @zi � rSis� . (4.10)

l
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Proof of Lemma 5. The proof of this result relies on making a coordinate transformation

to our original system to take it into a form that allows us to use the secant criterion

[119, 117, 12] and results in [12].

The dynamics of the feedback interconnection under consideration can be written as

9rS1s � �c1prS1sq � dNprSN sq, (4.11a)

9rS2s � �c2prS2sq � d1prS1sq (4.11b)

... (4.11c)

9rSN s � �cNprSN sq � dN�1prSN�1sq. (4.11d)

with an equilibrium state defined by concentrations rSis� for which

c1prS1s
�q � dNprSN s�q, (4.12a)

c2prS2s
�q � d1prS1s

�q, (4.12b)

... (4.12c)

cNprSN s�q � dN�1prSN�1s
�q. (4.12d)

To verify that such an equilibrium exists and is unique, note that we have a feedback

interconnection of a cascade of N systems, each with an IOSCF given by

fipu
�
i q � di

�
c�1
i pu�i q

�
, @u�1 P R,

where c�1
i denotes the inverse function of ci, which is invertible and monotone strictly

increasing since ci is monotone strictly increasing. Therefore, fipu
�
i q has the same (strict)

monotonicity as di. Since an odd number M of the di are monotone strictly decreasing, an

odd number of the fi are also monotone strictly decreasing and therefore the composition
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of all the fi is monotone strictly decreasing. This shows that we have a negative feedback

interconnection and thus a unique equilibrium.

Using (4.12), we can re-write (4.11) as

9rS1s � �c1prS1sq � c1prS1s
�q � dNprSN sq � dNprSN s�q,

9rS2s � �c2prS2sq � c2prS2s
�q � d1prS1sq � d1prS1s

�q,

...

9rSN s � �cNprSN sq � cNprSN s�q � dN�1prSN�1sq � dN�1prSN�1s
�q.

Since we have an odd number M ¥ 1 of functions di that are monotone strictly decreas-

ing and there is perfect symmetry in the cycle (4.11), we shall assume without loss of

generality that dN is monotone strictly decreasing; if that were not the case we could

simply shift the numbering of the modules appropriately.

We consider a coordinate transformation with

x1 � rS1s � rS1s
� , xN � rSN s � rSN s� , (4.13)

and the remaining xi, i P t2, 3, . . . , N � 1u either given by

xi � rSis � rSis� (4.14)

or given by

xi � � rSis � rSis� ; (4.15)
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each to be determined shortly. The coordinate transformation (4.13) leads to

9x1 � �c1prS1sq � c1prS1s
�q � dNprSN sq � dNprSN s�q

� �c1prS1s
� � x1q � c1prS1s

�q � dNprSN s� � xNq � dNprSN s�q

� �a1px1q � bNpxNq

with

a1px1q� c1prS1s
� � x1q � c1prS1s

�q, bNpxNq� �dNprSN s� � xNq � dNprSN s�q.

Note that because c1 is monotone strictly increasing and dN is monotone strictly decreas-

ing, we have that

a1px1q

$''''''&
''''''%

¡ 0 x1 ¡ 0

� 0 x1 � 0

  0 x1   0.

, bNpxNq

$''''''&
''''''%

¡ 0 xN ¡ 0

� 0 xN � 0

  0 xN   0.

(4.16)
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For the remaining variables xi, i P t2, 3, . . . , Nu, the coordinate transformation leads to

9xi �$''''''''''''''''''&
''''''''''''''''''%

ciprSis�q � ciprSisq � di�1prSi�1sq � di�1prSi�1s
�q

if xi � rSis � rSis� , xi�1 � rSi�1s � rSi�1s
�

or xi � rSis � rSis� , xi�1 � rSi�1s
� � rSi�1s

ciprSisq � ciprSis�q � di�1prSi�1sq � di�1prSi�1s
�q

if xi � rSis� � rSis , xi�1 � rSi�1s � rSi�1s
�

or xi � rSis� � rSis , xi�1 � rSi�1s
� � rSi�1s

� �aipxiq � bi�1pxi�1q
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where, for every i P t2, 3, . . . , Nu,

aipxiq�

$''&
''%
ciprSis� � xiq � ciprSis�q xi � rSis � rSis�

�ciprSis� � xiq � ciprSis�q xi � rSis� � rSis

bi�1pxi�1q�$''''''''''''''''''''''''''&
''''''''''''''''''''''''''%

di�1prSi�1s
� � xi�1q � di�1prSi�1s

�q

if xi � rSis � rSis� , xi�1 � rSi�1s � rSi�1s
�

di�1prSi�1s
� � xi�1q � di�1prSi�1s

�q

if xi � rSis � rSis� , xi�1 � rSi�1s
� � rSi�1s

�di�1prSi�1s
� � xi�1q � di�1prSi�1s

�q

if xi � rSis� � rSis , xi�1 � rSi�1s � rSi�1s
�

�di�1prSi�1s
� � xi�1q � di�1prSi�1s

�q

if xi � rSis� � rSis , xi�1 � rSi�1s
� � rSi�1s .

Since all the ci are monotone strictly increasing, we have that

aipxiq

$''''''&
''''''%

¡ 0 xi ¡ 0

� 0 xi � 0

  0 xi   0.

, @i P t2, 3, . . . , Nu.

We have already selected x1 and xN according to (4.13) to obtain (4.16). Our goal is

now to select the remaining xi, i P t2, 3, . . . , N � 1u according to (4.14) or (4.15) so that
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we also have

bi�1pxi�1q

$''''''&
''''''%

¡ 0 xi�1 ¡ 0

� 0 xi�1 � 0

  0 xi�1   0,

@i P t2, 3, . . . , Nu.

which would require us to have di�1 monotone strictly increasing if either

xi � rSis � rSis� , xi�1 � rSi�1s � rSi�1s
�

or

xi � rSis� � rSis , xi�1 � rSi�1s
� � rSi�1s

and di�1 monotone strictly decreasing if either

xi � rSis � rSis� , xi�1 � rSi�1s
� � rSi�1s

or

xi � rSis� � rSis , xi�1 � rSi�1s � rSi�1s
� ,

@i P t2, 3, . . . , Nu. It turns out that this is always possible because there is an even

number of the di�1 with i P t2, 3, . . . , Nu that are monotone strictly decreasing (recall

that dN is monotone strictly decreasing and there are in total an odd number of di that

are monotone strictly decreasing). All we need to do is to start with x1 as in (4.13) and

alternate between (4.14) and (4.15) each time di�1 is monotone strictly decreasing. Since

there is an even number of the di�1 with i P t2, 3, . . . , Nu, we will end up with xN as in

(4.13).

The coordinate transformation constructed above, leads us to a system of the following
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form

9x1 � �a1px1q � bNpxNq (4.17a)

9x2 � �a2px2q � b1px1q (4.17b)

... (4.17c)

9xN � �aNpxNq � bN�1pxN�1q (4.17d)

To prove the local stability result, we apply the secant criterion [119, 117, 12] to the

local linearization of this system around the equilibrium xi � 0, @i, which has a Jacobian

matrix of the form

�
�������������

�Ba1px1q
Bx1

���
x1�0

0 � � � 0 �BbN pxN q
BxN

���
xN�0

Bb1px1q
Bx1

���
x1�0

�Ba2px2q
Bx2

���
x2�0

. . . 0

0 Bb2px2q
Bx2

���
x2�0

�Ba3px3q
Bx3

���
x3�0

. . .
...

...
. . . . . . . . . 0

0 � � � 0 BbN�1pxN�1q
BxN�1

���
xN�1�0

�BaN pxN q
BxN

���
xN�0

�
�������������
,

(4.18)

where

Baipxiq

Bxi

���
xi�0

�
Bcipsiq

Bsi

��
si�rSis�

¡ 0

Bbipxiq

Bxi

���
xi�0

�

$''&
''%

Bdipsiq
Bsi

��
si�rSis�

¡ 0 if di monotone increasing

�Bdipsiq
Bsi

��
si�rSis�

¡ 0 if di monotone decreasing,

@i P t1, 2, . . . , Nu. This matrix matches precisely the one considered in the secant criteria,

which states that the Jacobian matrix (4.18) is Hurwitz if (4.8) holds.
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For the global asymptotic stability result we use [12, Corollary 3], which applies precisely

to systems of the form (4.17) with

xiaipxiq ¡ 0, xibipxiq ¡ 0, @xi � 0, i P t1, 2, . . . , Nu.

Two additional conditions are needed by [12, Corollary 3]:

lim
|xi|Ñ8

» xi

0

bipσqdσ � 8. (4.19)

and there must exist φi ¡ 0, @i P t1, 2, . . . , Nu for which

bipxiq

aipxiq
¤ φi, @i, xi � 0, (4.20a)

N¹
i�1

φi   sec
� π
N

	N
. (4.20b)

The first condition (4.19) holds because our functions bi are all zero at zero and monotone

strictly increasing.

We then prove two conditions to be sufficient for (4.20a) to be satisfied. Before proceed-

ing, we make the following observations:

bipxiq

aipxiq
�

$''''''&
''''''%

diprSis��xiq�diprSis�q
ciprSis��xiq�ciprSis�q

or �diprSis��xiq�diprSis�q
ciprSis��xiq�ciprSis�q

if xi � rSis � rSis�

diprSis��xiq�diprSis�q
�ciprSis��xiq�ciprSis�q

or �diprSis��xiq�diprSis�q
�ciprSis��xiq�ciprSis�q

if xi � rSis� � rSis .

(4.21)
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Baipxiq

Bxi
�

$''&
''%

B
Bxi
ciprSis� � xiq if xi � rSis � rSis�

� B
Bxi
ciprSis� � xiq if xi � rSis� � rSis .

(4.22)

Bbipxiq

Bxi
�

$''&
''%

B
Bxi
diprSis� � xiq or � B

Bxi
diprSis� � xiq if xi � rSis � rSis�

B
Bxi
diprSis� � xiq or � B

Bxi
diprSis� � xiq if xi � rSis� � rSis .

(4.23)

First, we prove that condition (4.9) implies (4.20a). We see that (4.9) implies that

dipziq � diprSis�q
cipziq � ciprSis�q

¤ φi and �
dipziq � diprSis�q
cipziq � ciprSis�q

¤ φi @zi � rSis� . (4.24)

With the change of co-ordinates xi � � rSis� � zi and xi � rSis� � zi, we see that (4.24)

implies that

diprSis� � xiq � diprSis�q
ciprSis� � xiq � ciprSis�q

¤ φi ,
�diprSis� � xiq � diprSis�q
ciprSis� � xiq � ciprSis�q

¤ φi

diprSis� � xiq � diprSis�q
�ciprSis� � xiq � ciprSis�q

¤ φi ,
�diprSis� � xiq � diprSis�q
�ciprSis� � xiq � ciprSis�q

¤ φi @xi � 0.

(4.25)

From (4.21), we conclude that (4.25) implies (4.20a).

We then prove that the condition (4.10) implies (4.20a). We see that (4.10) implies that

Bdipziq

Bzi
¤ φi

Bcipziq

Bzi
and �

Bdipziq

Bzi
¤ φi

Bcipziq

Bzi
@zi � rSis� (4.26)

With the change of co-ordinates xi � � rSis� � zi and xi � rSis� � zi, (4.26) can be seen
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to imply that

B

Bxi
diprSis� � xiq ¤ φi

B

Bxi
ciprSis� � xiq

�
B

Bxi
diprSis� � xiq ¤ φi

B

Bxi
ciprSis� � xiq

B

Bxi
diprSis� � xiq ¤ �φi

B

Bxi
ciprSis� � xiq

�
B

Bxi
diprSis� � xiq ¤ �φi

B

Bxi
ciprSis� � xiq @xi � 0

(4.27)

From (4.22)–(4.23), we can observe that (4.27) implies that

Bbipxiq

Bxi
  φi

Baipxiq

Bxi
@xi � 0 (4.28)

Let hipxiq� bipxiq � φiaipxiq. Then, (4.28) implies that

Bhipxiq

Bxi
¤ 0 @xi � 0. (4.29)

Since aip0q � 0 and bip0q � 0, we know that hip0q � 0. Therefore (4.29) implies that

hipxiq

$''&
''%
¤ 0 @xi ¡ 0

¥ 0 @xi   0,

which further implies that

bipxiq

$''&
''%
¤ φiaipxiq @xi ¡ 0

¥ φiaipxiq @xi   0

(4.30)
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Since

aipxiq

$''&
''%
¡ 0 xi ¡ 0

  0 xi   0

(4.30) implies (4.20a), hence completing our proof.

We can then apply Lemma 5 to prove Theorem 2.

Proof of Theorem 2. Each SISO repressor module can be further decomposed into two

modules that can be described by the equations

9rS0s � u1 � β̄ rS0s

y1 � hprS0sq �

$''&
''%

αP tot

1� 1
K
rS0s

2 if rS0s ¥ 0

αP tot 1� 2
K
rS0s

2

1� 1
K
rS0s

2 if rS0s   0.

and

9rmRNA1s � u2 � γ rmRNA1s

y2 � β rmRNA1s

respectively. It can be seen that a small modification has been made to y1, the repressing

output from the TR repressor module. Since our network is positive, this modification has

no effect on the network behavior. However, this change makes it more straightforward to

apply Lemma 5 to analyze this network, since the theorem relied on each output function

being monotone strictly increasing or monotone strictly decreasing @ rS0s.

From the (4.8) in Lemma 5, (4.4)–(4.5) guarantee that the equilibrium point of the

Repressilator network will be LAS.
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For GAS, we first need to pick φ1 and φ2 to satisfy

���Bhpzq
Bz

��� ¤ φ1β̄ z � rS0s
�

β ¤ φ2γ.

It is straightforward to show that

max
z�rS0s

�

���Bhpzq
Bz

��� � 3αP tot

8

c
3

K
,

so we can pick

φ1 �
3αP tot

8β̄

c
3

K
, φ2 �

β

γ
.

From the proof of Lemma 5, we can infer that (4.6) guarantees that the equilibrium point

of the Repressilator network will be GAS. l

4.2 Generalized Covalent Modification Network

We derive a result for the covalent modification network shown in Figure 4.5. From

a biological perspective, this result implies that regardless of the parameters chosen,

substrates that are covalently modified in this cyclic manner will completely degrade.

Despite the fact that each of the substrates is essentially ”activating” the next substrate

in the cascade, the degradation reactions dominate in this case.

Theorem 3 Consider the covalent modification network shown in Figure 4.5, which con-

sists of a cascade of N CM modules connected in (positive) feedback. The substrate con-

centrations in each module converges to 0 as tÑ 8. l
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Figure 4.4: Stability regions for the 3-gene Repressilator, as a function of the param-
eters α and β � β̄, under Assumption 2. The (sufficient) condition (4.6) allows us to
conclude that the equilibrium is GAS in region “A;” the (sufficient) condition (4.4)
allows us to conclude that the equilibrium is LAS in regions “A” and “B;” and the
(necessary and sufficient) condition (4.2) allows us to conclude that the equilibrium
is LAS in regions “A,” “B” and “C;” and also that it is unstable in region “D.”.
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Figure 4.5: Biological representation of a Covalent Modification network decomposition.
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To prove Theorem 3, we use the following result which is adapted from [10, Theorems

2-3], and provides conditions that can be used to establish the stability of the equilibrium

points for positive feedback networks. To express the result, we need the following

definitions which are closely related to that of cooperativity: We say that the system

9x � Apx, uq, y � Bpxq, x P Rn, u P Rk, y P Rm, (4.31)

is excitable (with respect to the positive orthant) if for every initial condition x0 P Rn and

all inputs uptq, ūptq P Rk, @t ¥ 0, we have that

uptq ¡ ūptq, @t ¥ 0 ñ xpt;x0, uq " xpt;x0, ūq, @t ¡ 0,

and it is transparent (with respect to the positive orthant) if for all initial conditions

x0, x̄0 P Rn and every input uptq P Rk, @t ¥ 0, we have that

x0 ¡ x̄0 ñ xpt;x0, uq " xpt; x̄0, uq, @t ¡ 0.

Given two vectors v, v̄, we write v ¡ v̄ if every entry of v is larger than or equal to the

corresponding entry of v̄ and v � v̄.

Lemma 6 Consider the feedback interconnection of a SISO module M of the form

(4.31), whose output y is fed back to its input u. Assume that

1. M is excitable, transparent, and cooperative with a well-defined ISSCF and IOSCF;

2. for every constant input uptq � u�, @t ¥ 0 to M, the Jacobian matrix BApx,uq
Bx

is nonsingular at the corresponding equilibrium, which is globally asymptotically

stable;
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3. the IOSCF fpu�q of M has fixed points ū� for which f1pū
�q � ū�, and the partial

derivative Bf1pu�q
Bu�

���
u��ū�

� 1;

4. all trajectories of the feedback interconnection are bounded.

Then, for almost all initial conditions, the solutions converge to the set of points for

which fpu�q � u� and Bfpu�q
Bu�

  1. l

We now use Lemma 6 to prove Theorem 3.

Proof of Theorem 3. Every CM module Mi for i P t1, � � � , Nu is given by

Mi : 9rSis � AiprSis , uiq, yi � BiprSisq

where

AiprSis , uiq �
ui � γi rSis � kcat

i Etot
i rSis

Kd
i �rSis

1�
Kd
i E

tot
i

pKd
i �rSis

2q

BiprSisq �
kcatEtot

i rSis
Kd
i � rSis

(4.32)

under Assumption 3, and

AiprSis , uiq � ui � γi rSis �
kcat
i Etot

i rSis
Km
i � rSis

BiprSisq �
kcat
i Etot

i rSis
Km
i � rSis

(4.33)

under Assumption 4. The covalent modification system consists of the modulesM1 and

M2 interconnected with y1 � u2 and y2 � u1.

We first show that the cascade of two CM modules satisfies the properties in item 1 from

Lemma 6. For the cascade network with y1 � u2, we have

BA1prS1s , u1q

Bu1

� 1
BA2prS2s , u2q

B rS1s
¡ 0

By2

B rS2s
¡ 0

BA1prS1s , u1q

B rS2s
� 0

BA2prS2s , u2q

Bu1

� 0
By2

B rS1s
� 0,
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from which we can infer several properties: From [8, Propositon 1], we conclude that the

cascade is cooperative, from [10, Theorem 4] that it is excitable, and from [10, Theorem 5]

that it is transparent. The IOSCF of the cascade is well-defined and given by f2pf1pu
�
1qq,

where u�1 denotes a constant input to the cascade and

fipu
�
i q� y�i �

1

2
pu�i � kcat

i Etot
i �Kd

i γi �
b
p�u�i � kcat

i Etot
i �Kd

i γiq
2 � 4Kd

i u
�
i γiq,

i � t1, 2u.

The ISSCF of the cascade is also well-defined, and therefore, the cascade of two CM

modules satisfies the properties in item 1 of Lemma 6.

We now show that the cascade of two CM modules satisfies the properties in item 2 from

Lemma 6. For some constant input u�1 ¥ 0, the Jacobian matrix of the interconnection

is given by the 2� 2 lower triangular matrix

J �

�
��J11 0

J21 J22,

�
��

which is non-singular because J11 ¡ 0 and J22 ¡ 0, under the implicit assumption that

all parameters within each module are positive.

Each of the modulesM1 andM2 has an equilibrium point that is globally asymptotically

stable for some constant input u�i into each module. This can be verified by doing the

coordinate transformation xi � rSis � rSis� and observing that the Lyapunov function

V pxiq � x2
i is zero-at-zero, locally positive definite and 9V pxiq   0, @xi, i P t1, 2u. The

cascade of both the modules also has a globally asymptotically stable equilibrium point,

as can be seen from the argument in [116].

To verify that the cascade of the CM modules satisfies the property in item 3 from Lemma
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6, we will show that f2pf1pu
�
1qq � u�1 has a unique solution at u�1 � 0, and also that

Bf2pf1pu
�
1qq

Bu�1

�����
u�1�0

  1.

To show that f2pf1pu
�
1qq � u�1 has a unique solution at u�1 � 0, we first observe that

the IOSCFs of M1 and M2 are each monotone increasing and strictly concave, since

f 1ipu
�
i q ¡ 0 and f2i pu

�
i q   0, @i P t1, 2u. Then from

Bf2 pf1 pu
�
1qq

Bu�1
� f 11pu

�
1qf

1
2 pf1 pu

�
1qq (4.34)

B2f2 pf1 pu
�
1qq

Bpu�1q
2

� f21 pu
�
1qf

1
2 pf1 pu

�
1qq � pf 11 pu

�
1qq

2
f22 pf1 pu

�
1qq , (4.35)

it can be seen that the cascade of M1 and M2 is also monotone increasing and strictly

concave because

1. f 11pu
�
1q ¡ 0 and f 12pu

�
2q ¡ 0 @u�1 , u

�
2 ¡ 0 ùñ

Bf2pf1pu�1 qq
Bu�1

¡ 0 from (4.34).

2. f21 pu
�
1q   0 and f22 pu

�
2q   0 @u�1 , u

�
2 ¡ 0 ùñ

B2f2pf1pu�1 qq
Bpu�1 q

2   0 from (4.35).

Therefore, there can be no other solution to f2pf1pu
�
1qq � u�1 other than u�1 � 0. In

addition, the derivative of the IOSCF of the cascade at this equilibrium is given by

Bf2pf1pu
�
1qq

Bu�1

���
u�1�0

�
Etot

1 Etot
2 kcat

1 kcat
2

pEtot
1 kcat

1 �Kd
1γ1qpEtot

2 kcat
2 �Kd

2γ2q
,

which is always less than 1 since all parameters are positive by definition.

The boundedness property in item 4 of Lemma 6 follows from techniques used to analyze

MAK ODEs from [6, Main Technical Lemma], which can be applied to the covalent

modification network.

This argument can be extended over each of the N modules to complete the proof. l
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4.3 Conclusion

In this chapter, we used the biological modules described in Chapter 3 as the building

blocks to analyze larger biological networks inspired from the literature. We developed

insights into how adding more repressors to the repressilator tends to shrink the region

of parameters over which the repressilator is stable. Furthermore, we discovered that

despite being connected in positive feedback, the substrates in a generalized covalent

modification network will always degrade.
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Future Work

In Part I of this monograph, we introduced a method to decompose any biochemical net-

work consisting of elementary chemical reactions into modules that admit dynamic and

parametric modularity. Further work can be done to extend these results to biological

networks for which the elementary reactions are unknown. Concretely, it is often the case

that the existence of an interaction between two species is known through experimenta-

tion, but the exact form of the reaction is unknown. In this case, it would be interesting

to partition biological networks into modules that admit dynamic and parametric mod-

ularity purely by analyzing experimental data. For this, it would be essential to design

experiments smartly to obtain essential parameters of the network and analyze response

dynamics of individual species to determine how the network partitions can be done.

Biological modules that admit dynamic and parametric modularity could be very

useful in synthetic biology, where circuits are designed from bottom-up. The absence of

retroactivity between modules, and the parametric independence between each module,

would permit network behavior to be predicted from the characteristics of individual

modules. This would aid synthetic circuit design to bring about novel behaviors.

In Chapter 3, we analyzed biological modules that occur frequently in biological
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networks. One interesting but as yet unresolved problem is on the best way to partition

a given biological network into modules. These networks could be modeled by ODEs,

stochastic equations, boolean maps or even characterized by their interaction pathways

determined by experimentation. Further work can be done on developing a metric that

determines if a biological network partition would be useful in simplifying its analysis.

Minimizing the number of junctions between the resulting modules that have bidirectional

signals was one metric chosen in previous work [103], but it is unclear if this necessarily

helps to reduce the complexity of analyzing a network. For example, we will see in Part

II of this monograph biological modules that have bidirectional signals flowing between

them that still provide useful insights into the network behavior. Similarly, ensuring

monotonicity of the resulting modules was another metric chosen [64], but it is unclear

if this is always possible to do in a meaningful way.

Finally, there is a large body of work that has also shown that biological processes are

inherently noisy. In some cases, a stochastic approach may be more appropriate to model

the dynamics of chemical reactions. Further work can be done to generalize the results

presented in Part I of this monograph, taking into account stochasticity and noise.
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Modular analysis of the p53 network
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The p53 tumor suppressor protein

A tumor is an abnormal growth of cells, which can become cancerous if the proliferation

of these cells occurs in an uncontrolled fashion [30]. A major cause for the emergence

of tumors is genetic mutations that occur when the cellular DNA is damaged and not

repaired to its original state. When the mutations interfere with the normal regulation

of cell division, then cell proliferation could cause the tumor to become cancerous [19].

While there is abundant evidence that exposure to chemical carcinogens and radiation has

had an impact on cancer rates [50], there is also evidence that cancer is a general feature

of multi-cellular organisms that has presented a long-standing evolutionary challenge [36].

A key component of the DNA damage response mechanism is the TP53 gene which

expresses the p53 tumor suppressor protein, the so-called ”guardian of the genome” [71].

p53 and its ancestors have been protecting metazoans from mutations arising from DNA

damage for over one billion years [18]. Recent research has shown that p53 plays this

role by first sensing DNA damage, and then mediating various downstream processes in

response. p53 can promote cell survival by up-regulating genes that bring about cell-

cycle arrest or DNA repair. However, p53 can also promote pro-elimination processes

that bring about permanent cell-cycle arrest or cell death [122, 123, 39, 54].
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One of the oldest known mechanisms cells employ in response to DNA damage is

programmed cell death, also known as apoptosis [3]. Cells with DNA that is damaged

above some ”apoptotic” threshold level [91, 25, 70] could display sustained high levels of

p53, inducing the expression of pro-elimination genes [91, 97, 70, 130] that would bring

about apoptosis, thus limiting the risk that a cell lineage will become cancerous. This

behavior is analogous with some basic concepts from Statistical Decision theory. One

possible paradigm for capturing this behavior is by imagining that many cells employ the

statistical hypothesis ”When DNA damage crosses the apoptotic threshold, it is beyond

repair and the cell must be killed to prevent the formation of a tumor”.

It is clear that setting a low apoptotic threshold minimizes the risk of cancer since

a cell that experiences potentially cancer-causing DNA damage would go to apoptosis.

A feature of such networks is that they abet Type 1 errors. Such errors happen when

the corresponding Statistical Null Hypothesis (”Cells can recover and operate normally

even after DNA damage crosses the apoptotic threshold”) is true, but the cell is killed

anyway. While not ideal, Type 1 errors would still be preferable to Type 2 errors. In the

latter, a cell carrying a cancer-causing mutation would be allowed to live. A single Type

2 error would lead to lethal cancer, and this is in fact known to be one of the ”hallmarks”

of cancerous clones [51, 50]. That said, overly responsive networks with a low apoptotic

threshold may result in developmental defects, reduced tissue growth, or high metabolic

costs to replace the dead cells. A major task for p53 and the DNA damage response

mechanism is therefore to effectively suppress the onset of tumors by selecting different

cell fates that would increase whole organism fitness. This is achieved by trading-off

between minimizing the number of Type 1 errors that take place, while also trying to

suppress all Type 2 errors.
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6.1 Literature Review

Among the vast literature available on p53, we present results that are key to our

work.

6.1.1 Experimental results on p53 response to DNA damage

The first time oscillations in p53 were reported in response to DNA damage was

in a paper by Bar-Or et al in 2000 [14]. The authors claimed that p53 levels in cell

populations displayed damped oscillations in response to damage beyond a threshold

level. A few years later, a landmark experimental study in individual human breast cancer

cells revealed that in fact, p53 pulses in response to DNA damage had the same mean

period across different cells, with the number of oscillations increasing with increasing

amounts of damage [72]. It was then revealed that the amplitude of these pulses varied

between the different cells, and therefore in the earlier study, the oscillations appeared to

be damped due to the averaging of p53 responses over the cell population [72]. Further

studies revealed that p53 could oscillate for many days in response to large amounts of

DNA damage [48]. At the time, it was well accepted that the primary reason for the

oscillations was delayed negative feedback between p53 and another protein MDM2.

A subsequent study presented evidence that a simple delayed negative feedback be-

tween p53 and MDM2 would in fact not be sufficient to explain the experimentally

observed behavior [17]. In this study, the upstream transduction kinases that relay DNA

damage information to p53, such as ATM and ChK2, were also shown to undergo puls-

ing in response to damage, and these pulses were coupled with pulses of p53. It was also

shown that a pulse of p53 could be initiated by inducing the kinases for one hour, with

subsequent pulsing of p53 depending on continued kinase activity. The kinase activity is

shut down by due to negative feedback with p53, for which the protein Wip1 was found
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to be a crucial protein. However, kinase activity was found to be repeatedly activated in

the presence of DNA damage. This is known as the recurrent initiation model for p53

pulsing, and suggests that the observed behavior is a result of excitable pulses in p53 due

to kinase activity as opposed to autonomous oscillations.

A more recent study in human U2-OS cells reveals bimodal behavior in response to

DNA damage [25]. In response to moderate amounts of damage, p53 admits pulsatile

behavior. Large amounts of damage trigger a strong monotonic elevation of the p53 level,

which is not seen to return to a low level subsequently.

6.1.2 The role of p53 dynamics in bringing about varied cell

fates

The role of p53 in determining when to promote cell survival and when to induce

programmed cell death (apoptosis) to DNA damage has been studied for many years.

An early study revealed that moderate levels of p53 in cells were likely to bring about

cell cycle arrest, while higher levels of p53 were more likely to bring about apoptosis [26].

In fact, it was even postulated that p53 was a necessary intermediate to bring about

apoptosis in response to radiation [80]. While it was thought that p53 bringing about

cell cycle arrest simply provided time for DNA repair to take place, studies revealed that

p53 actually plays a more active role in DNA repair, and the loss of p53 function resulted

in decreased DNA repair in response to damage [111]. A later study also suggested that

DNA repair is activated much faster than p53-induced apoptosis [47, 41]. A study on

p53’s role in inducing permanent cell cycle arrest (senescence) was also conducted around

that time [62].

Many recent studies focused on the mechanisms through which p53 could be involved

in the apparently antagonistic functions of promoting cell survival and cell death or
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senescence. Studies such as [122, 60, 106, 58, 123, 39, 54] provide comprehensive reviews

on the different mechanisms and intermediate proteins through which p53 can carry

out these functions. While this knowledge is helpful in understanding the underlying

molecular mechanisms, there are fewer studies relating the experimentally observed p53

response to DNA damage to the role of p53 in bringing about various cell fates. In

one such study, cells that underwent p53 pulsing after damage were altered to produce

a sustained high p53 response [97]. It was shown that cells in which p53 pulsed were

able to recover from DNA damage, whereas cells exposed to sustained p53 signaling

frequently underwent a terminal cell fate. Although the authors were only able to study

senescence due to the limitations of their experimental method [97], numerous studies

also reveal that sustained high p53 signaling can lead to apoptosis [56, 77, 26]. One of

the accepted paradigms for the onset of apoptosis is sustained high levels of p53 signaling

[91, 97, 70, 130], which in turn is triggered when the amount of DNA damage detected

crosses some ”apoptotic” threshold [91, 25, 70].

The recent study by [25] in which they show that moderate amounts of damage leads

to p53 pulsing, and large amounts of damage leads to a strong monotonic elevation in

p53 therefore provides a crucial link between the role of p53 in determining cell fate and

experimental observations. The pulsing behavior in p53 allows cell cycle arrest to be

initiated and promotes the induction of DNA repair genes. As long as damage is present,

p53 will pulse, allowing for DNA to be repaired. However when the amount of damage

crosses a threshold, p53 levels switch monotonically to a high value. This allows for the

induction of irreversible cell fates such as senescence and apoptosis.
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6.1.3 Earlier models of the p53 response to DNA damage

There have been many dynamical models proposed to explain p53 behavior in response

to DNA damage. Most of the early models focused on explaining oscillatory behavior,

since the plausible monotonic switching of p53 to a high level in response to high levels

of damage had yet to be discovered.

Some of the early modeling work assumed that the p53�MDM2 negative feedback

loop was the basis behind the pulsatile behavior observed in p53 [81, 124]. It was noted

that while negative feedback can generate sustained oscillations, these oscillations are

typically not very robust [131]. Moreover as noted earlier, more recent experimental

observations suggest that p53 pulses in an excitable fashion due to recurrent initiation of

p53 by upstream kinases, and not due to the negative feedback between p53 and MDM2

[17].

More recent modeling work on the p53 core regulation network incorporates both the

p53�MDM2 negative feedback loop along with positive feedback around p53, although

the species involved in the positive feedback loop are not explicitly modeled [28, 131, 27,

98]. These models assumed that the upstream kinase concentrations were proportional

to damage and caused autonomous pulsing in p53 when the kinase levels were sufficiently

high, again violating recent results from [17, 16].

In addition, all of the above models did not consider the possibility of p53 displaying

both pulsing behavior and sustained high levels of signaling. There are other models of

the p53 core regulation network in humans that display both the pulsing and sustained

high levels of p53 [98, 126, 132]. However, these models imply that p53 would need to

pulse before switching to a high value [98, 126, 132], contrasting more recent experimental

results [25].

83



Chapter 7

Modeling the evolution of the p53

core regulation network

While p53 is a vital component of the damage response network, it acts as part of

a network of interacting genes that determine cell fate. Extensive genetic studies have

uncovered a complex network of hundreds of genes [75] that cooperate to carry out tumor

suppression as soon as damage is registered in the genome [60]. There are a multitude of

upstream sensors that detect DNA damage, the transducers that relay the information

to p53 and the downstream actuators that are regulated by p53 to bring about different

cell fates [58]. In addition, the dynamics of p53 is known to be governed by its interaction

with a set of core regulation network proteins including MDM2, PTEN , AKT , ARF

and E2F1 through multiple feedback pathways [52]. Mutations in some of the respective

genes have even been implicated in human cancers, although not to the extent of p53

[106].

Im this chapter, we first uncover the phylogeny of organisms with varying evolutionary

complexity with respect to TP53, MDM2, PTEN and ARF , all of which play a crucial

role in the core regulation of p53 [52, 75]. Based on these results, we map the paths by
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which the p53 core regulation network could have evolved from the structures seen in early

ancestors to those seen in more evolved vertebrates. This study unveils the intermediate

core regulation network configurations that might have evolved, each of which could admit

qualitatively distinct characteristics. We then introduce the reader to the dynamic models

associated with these different network configurations. The evolutionary paths derived

from the phylogenic data provide a natural way to decompose the different p53 networks

into modules, which allows us to study the effect of removing different combinations of

modules on the overall network behavior.

7.1 Taxonomic representation of regulatory genes and

network configurations

Among clinical cancers, mutations in p53 are among the most commonly detected [71],

and p53 is widely recognized as having a key role in tumor suppression in multicellular

organisms [52, 123]. The p53 family of genes is at least one billion years old [18], appearing

in organisms as diverse as choanoflagellates, sea anemones and mammals. The tumor

supression role of the p53 ancestral gene appears to have been preserved over a large

time span; its function in the sea anemone is to protect the germline gametes from DNA

damage, and this function persists in insects, worms, clams, and vertebrates [18].

In humans, p53 is part of a sophisticated network of hundreds of genes [75] that

cooperate to mediate cell fate decisions such as the initiation of cell-cycle arrest, DNA

repair, senescence or apoptosis, as soon as damage is registered in the genome [60].

This network includes a core regulation network [52] consisting of the proteins MDM2

[15, 128, 114], PTEN , [59, 113], and ARF [95, 82, 121] among a host of other upstream,

downstream and intermediate species involved in sensing, transduction and regulation
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[52, 58, 60].

Recent studies have uncovered much about how these core regulation proteins inter-

act. It is well known that p53 transcriptionally activates the MDM2 gene. MDM2 in

turn antagonizes p53 forming a negative feedback loop around p53 [84, 15, 128]. p53 also

activates the PTEN gene, and PTEN proceeds to down-regulate MDM2 through a se-

ries of interactions [113, 83, 126], which forms a positive feedback loop around p53. ARF

is known to cause the translocation and eventual degradation of MDM2 [109, 82, 95],

while it has been recently discovered that ARF can also mediate the degradation of

MDM2 [121], leading to a positive feedback loop around MDM2. The network configu-

ration of these four genes is shown in Figure 7.1, and will henceforth be referred to as the

full network Nv. Much of our understanding of the core regulation network interaction

and dynamics in response to DNA damage comes from studies of human and mouse cell

lines [76], and this network is most likely common to at least mammals. As we will see in

this paper, this network configuration brings about various cell fate decisions in humans,

and is crucial in explaining the experimental observations about p53 behavior in response

to DNA damage.

A simple search for the presence of these four genes showed that homologs of p53,

PTEN and ARF are present in a large taxonomic group of animals, including non-

vertebrates, while MDM2 does not appear in invertebrate species such as C. Elegans, D.

Melanogaster and E. Histolytica. This is consistent with a recent study which found that

MDM2 and its paralog MDM4 arose from a gene duplication event over 440 million

years ago and became the primary negative regulators of the p53 family of genes [87]. A

brief glance at Network Nv in Figure 7.1 reveals that the absence of this MDM2 would

prevent PTEN and ARF from affecting the dynamics of p53, because both PTEN and

ARF only regulate p53 through feedback connections involving MDM2. Thus, in the

absence of MDM2, p53 regulates PTEN , but neither PTEN nor ARF can directly
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affect p53. This means that the response of p53 to DNA damage would only depend on

the dynamics of p53. The fact that the loss of a single gene could potentially affect the

functioning of the entire network motivated us to study the ”paths to complexity” from

the ancestral p53 network to the network inferred to exist mammals. In the remainder of

this section, we explore the possible intermediate network configurations that might have

emerged in the evolution from early species to humans, where each intermediate network

configuration behaves in a qualitatively different manner from the other networks.

p53

MDM2

PTEN

ARF

Nv

Figure 7.1: The p53 core regulation network configuration in humans, which we label Nv.

The evolution of the p53 network

As was mentioned earlier, invertebrates were known not to possess the MDM2 gene,

which would lead to the p53 response to DNA damage being governed by p53 alone.

The network in Figure 7.2a corresponds to a primordial species without MDM2 and is

labeled Ni.

The study by Momand et al suggests that a gene duplication event 440 million years

ago led to the emergence of MDM2, which became one of the primary negative regulators

of p53 [89]. Figure 7.1 shows that in the Network Nv present in humans, MDM2 is

involved in interactions with PTEN (via AKT ), ARF and p53.

Since it is statistically improbable that all the MDM2 interactions that appear in the

human network Nv in Figure 7.1 appeared simultaneously, we consider here two possible
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evolutionary paths from the ancestral network Ni to the mammalian network Nv. In

both evolutionary paths, the p53 �MDM2 negative feedback interaction evolves first

(Figure 7.2b) since this interaction is central to the regulation of p53 by either PTEN

or ARF . In the first path, the interactions through which p53 inhibits MDM2 through

PTEN (Figure 7.2c) evolves first (leading to a positive feedback loop on p53), followed

by the mutually inhibitive feedback loop between MDM2 and ARF (Figure 7.1). In

the other path, the mutually inhibitive feedback loop between MDM2 and ARF evolves

first (Figure 7.2d), followed by the interactions through which p53 inhibits MDM2 via

PTEN .

This study will highlight the role of each of the regulatory interactions in bringing

about the p53 response to DNA damage in human cells. It is worth noting that our

emphasis is on providing insight into the behaviors permitted by these different network

configurations from a dynamical systems standpoint. As such, we do not make any claims

about the relative fitness of organisms that might express such structures. Moreover, we

also do not make claims that the paths to complexity studied in this paper are the only

possible paths that might have evolved. Rather, we choose to focus on exploring the

different qualitative behaviors permitted by the intermediate network configurations.
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Figure 7.2: (a) p53 network configuration in invertebrates in the absence of MDM2.
(b)–(d) Possible intermediate network configurations in the evolution to increased
complexity.
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7.2 Modular models of the p53 pathways

The diagrams shown in Figures 7.1–7.2 are conceptual in that while each block is la-

beled with the name of a single protein, it typically represents several interacting chemical

species. For example, the block labeled MDM2 includes the dynamics of the MDM2

protein in its active an inactive forms, as well as its corresponding mRNA. We should

thus think of each block as a ”module” rather than an individual protein.

To predict how the network behavior changes as modules are added, the different

modules in Figures 7.1–7.2 must be associated with precise mathematical models, so

as to exhibit dynamic modularity and parametric modularity. Figures 7.3–7.7 show

a mathematically precise ”block-diagram” representation of the network configurations

from Figures 7.1–7.2. Each module, labeled fromM1 toM4, is characterized by a system

of ordinary differential equations (ODEs) depicted in Figures 7.8–7.11 that describe the

behavior of the species in that module. The solid arrows between the modules represent

the signals that flow between them. For example, the arrow originating atM2 and ending

at M1 represents the mechanism by which active MDM2 represses p53. The dashed

arrows represent signals that originate upstream from the network or flow downstream,

such as the transduction of DNA damage signals to activate p53 or the acceleration of

DNA repair by p53. These signals are labeled rD1s and rD2s, and their behavior is further

discussed in Section 9.2.

The species associated with each module are as follows. Module M1 is associated

only with the dynamics of the p53 protein. Module M2 consists of the dynamics of

MDM2 in both its active (MDM2a) and inactive (MDM2) forms, along with its mRNA

(mRNAm). Module M3 consists of the dynamics of PTEN and its mRNA (mRNAp),

along with the intermediate species PIP2 and its phosphorylated form PIP3, and AKT

and its active phosphorylated form AKTa. Finally, Module M4 contains the dynamics
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of the ARF protein.

The specific ODE dynamics of each module is illustrated in Figures 7.8–7.11, where

the specific parameters and functions used in our work can be found in Appendix B.

In M1, p53 is activated at some basal rate p1 and also in an input-dependent manner

as a function of u11 � rD1s, which represents kinases that activate p53 in response to

DNA damage. p53 has a basal degradation rate constant of d1. The degradation of p53

is also mediated by the input u12, which typically describes the antagonism of p53 by

active MDM2 [15, 128]. This results in the interconnection between Modules M1 and

M2 given by

y21 � u12, (7.1)

where y21 is an output from Module M2 given by the expression

y21 � b1 � rMDM2as . (7.2)

In ModuleM2, mRNAm has a basal transcription rate p2 and a degradation rate constant

d2. In addition, mRNAm transcription is activated by p53 through the input u21, which

can be described through the interconnection

y11 � u21, (7.3)

where y11 is an output from Module M1 given by the expression

y11 � b4 � f4prp53sq. (7.4)

MDM2 is translated at a rate of p3 � rmRNAms and degraded with rate constant d3. The

phosphorylation of MDM2 into its active form MDM2a is mediated by an input u22,
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which is typically mediated by AKTa that is associated with M3 [84, 83]. This results

in the interconnection

y31 � u22 (7.5)

where y31 is the only output from Module M3 given by the expression

y31 � b2 � rAKTas . (7.6)

The rate of dephosphorylation back to MDM2 is given by b3 � f3prMDM2asq. MDM2a

has a basal degradation rate constant p4. The degradation of MDM2a is also medi-

ated by two inputs u23 and u24. u23 � rD1s represents the concentration of upstream

transduction kinases like ATM , which mediate the down-regulation of active MDM2

[114, 126, 125]. u24 represents the ARF -mediated translocation and eventual degrada-

tion of active MDM2 by ARF [109, 82, 95], which results in the interconnection

y41 � u24, (7.7)

where y41 is the only output from Module M4 given by the expression

y41 � b11 � rARF s . (7.8)

In Module M3, the mRNA of PTEN , represented by mRNAp, is transcribed at some

basal rate p5, with a degradation rate constant d4. The transcription of mRNAp is also

governed by the input u31, which describes the transcriptional activation of PTEN by

p53 [113, 83, 126] resulting in the interconnection

y12 � u31, (7.9)
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where y12 is an output from Module M1 given by the expression

y12 � b5 � f5prp53sq. (7.10)

mRNAp is translated to PTEN with rate constant p6, and degraded with rate constant

d5. PTEN mediates the de-phosphorylation of PIP3 into PIP2. The total concentra-

tion of PIP2 and PIP3 is assumed to be the constant tot1. The rate of phosphorylation

of PIP2 is given by the term b6 � f6ptot1 � rPIP3sq, while the rate of dephosphorylation

of PIP3 is given by b7 � rPTEN s � f7prPIP3sq. PIP3 then mediates the phosphorylation

of AKT to AKTa (active AKT ). The total concentration of AKT and AKTa is as-

sumed to be the constant tot2. The rate of phosphorylation of AKT is given by the term

b9 � rPIP3s f9ptot2 � rAKTasq, while the rate of dephosphorylation of AKTa is given by

b8 � f87prAKTasq [98, 126]. The equations describing this module are shown in Figure

7.10.

In Module M4, p7 is the basal rate of production of ARF , with u41 � rD2s the

extrinsic rate of production that represents the activation of ARF in response to DNA

damage through transducers like PARP1 [92] and E2F1 [107] . d6 is the rate constant

for the degradation of ARF . ARF is also degraded by an extrinsic process mediated by

u42, which represents a novel recently-discovered mechanism through which MDM2 can

mediate the degradation of ARF [121]. This results in the interconnection

y22 � u42, (7.11)

where y22 is an output of Module M2 given by the expression

y22 � b10 � rMDM2as . (7.12)
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To preserve simplicity of the model, we assume that both MDM2-ARF interactions

from (7.7) and (7.11) involve active MDM2, since active MDM2 directly influences the

temporal behavior of p53. This is a similar assumption to the one made in [126], where

the upstream kinases were assumed to accelerate the degradation of active MDM2.

Moreover, since there are multiple known MDM2�ARF binding sites [121], we assume

that these two interactions occur at separate binding sites.

9rp53s “ ¨ ¨ ¨
M1

u11 “ rD1s rp53s

Figure 7.3: Modular block-diagram representations of Network Ni. The specific ODEs
describing each module are shown in Figures 7.8–7.11.

9rp53s “ ¨ ¨ ¨

9rmRNAms “ ¨ ¨ ¨

9rMDM2s “ ¨ ¨ ¨

9rMDM2as “ ¨ ¨ ¨

M1

M2

u11 “ rD1s

u23 “ rD1s

u12

y11

y12

u21

u22

y21

y22u24

rp53s

Figure 7.4: Modular block-diagram representations of Network N 1
int. The specific

ODEs describing each module are shown in Figures 7.8–7.11.
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9rp53s “ ¨ ¨ ¨

9rmRNAms “ ¨ ¨ ¨

9rMDM2s “ ¨ ¨ ¨

9rMDM2as “ ¨ ¨ ¨

9rmRNAps “ ¨ ¨ ¨
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Figure 7.5: Modular block-diagram representations of Network N 2
int. The specific

ODEs describing each module are shown in Figures 7.8–7.11.
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Figure 7.6: Modular block-diagram representations of Network N 3
int. The specific

ODEs describing each module are shown in Figures 7.8–7.11.
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9rp53s “ ¨ ¨ ¨

9rmRNAms “ ¨ ¨ ¨

9rMDM2s “ ¨ ¨ ¨
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Figure 7.7: Modular block-diagram representations of NetworkNv. The specific ODEs
describing each module are shown in Figures 7.8–7.11.

9rp53s “ p1`h1pu11q´d1¨rp53s´u12¨f1 rp53s

M1

u11 “ rD1s

u12 y11

y12

p53

Figure 7.8: ODE associated with Module M1

9rmRNAms “ p2 ´ d2 ¨ rmRNAms ` u21

9rMDM2s “ p3 rmRNAms ` b3 ¨ f3prMDM2asq´

d3 ¨ rMDM2s ´ u22 ¨ f2prMDM2sq

9rMDM2as “ u22 ¨ f2prMDM2sq ´ b3 ¨ f3prMDM2asq´

pp4 ` h2pu23qq rMDM2as ´ u24 ¨ f11prMDM2asqM2

u21

u22u23 “ rD1s

u24

y21

y22

Figure 7.9: ODE associated with Module M2
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9rmRNAps “ p5 ` u31 ´ d4 ¨ rmRNAps

9rPTEN s “ p6 ¨ rmRNAps ´ d5 ¨ rPTEN s

9rPIP3s “ b6 ¨ f6ptot1 ´ rPIP3sq ´ b7 ¨ rPTEN s ¨ f7pPIP3q

9rAKTas “ b9 ¨ rPIP3s ¨ f9ptot2 ´ rAKTasq ´ b8 ¨ f8pAKTaq
M3

u31

y31

Figure 7.10: ODE associated with Module M3

u41 “ rD2s

u42y41

M4

9rARF s “ p7`u41´d6¨rARF s´u42¨f10 rARF s

Figure 7.11: ODE associated with Module M4

7.3 Conclusion

While homologs of TP53, PTEN and ARF are inferred to have been present in the

earliest metazoan ancestors, the same cannot necessarily be said about MDM2. Using

our evolutionary data, we mapped the pathways to complexity of the network from early

ancestors to the network configuration in vertebrates, and introduced a dynamical model

to capture the interactions between the corresponding proteins, that can be partitioned

into modules that admit dynamic and parametric modularity. To our knowledge, this

is the first evolutionary study of the p53 pathway that considers the PTEN and ARF

genes. A key novelty is that we incorporate in our model the recent discovery of a

mechanism through which MDM2 mediates the degradation of ARF [121].
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Chapter 8

Computation of the p53 network

equilibrium points

In our study of p53 network evolution, our focus is on whether the alternative network

structures introduced in Chapter 7, which we infer as ancestral to the mammalian net-

work, would allow for qualitatively distinct forms of p53 regulation, which in turn would

lead to qualitatively different strategies for dealing with the risk of cancer. Specifically,

we seek to study the different forms of switching behavior each of these networks could

admit, for which we would need to study the steady-state bifurcations of each network

with respect to the DNA damage input parameters introduced in Chapter 7. As it turns

out, standard numerical solvers are unable provide equilibrium solutions for the some

of these network configurations for some parameters. In this chapter, we introduce an

algorithm that allows us to compute the equilibrium points of the network.
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8.1 Switching behavior and computation of equilib-

rium points

Biological networks commonly use switch-like behavior to turn a continuous input

signal (usually an extrinsic stimuli) into an ”all-or-nothing” output signal response (usu-

ally species or compound concentrations). A common mechanism employed by these

networks to bring about this behavior is bistability. A bistable network has two sets of

stable steady-states, in which the state of the network transitions from a neighborhood

of one set of steady-states (which we call A) to the other (which we call B) when an

input signal grows above a certain threshold (which we call T1). A unique property of

these networks is that even if the input later falls below T1, the state may still remain in

a neighborhood of B. Reversion to a neighborhood of A is generally observed only when

the input signal falls below another threshold T0, where T0   T1. This property is known

as hysteresis, and refers to the ability of a bistable system to ”remember” the input

stimulus that was above T1 long after that stimulus is removed, until it falls below T0

[74]. The lac operon network in E. Coli, the Wee1-Cdc2 network, the NFκβ response in

an apoptosis network and the cell cycle oscillator in Xenopus laevis are among the many

naturally occurring biological networks whose responses have been modeled as bistable

switches [74, 7, 24]. In some cases, the lower threshold T0 does not exist, which makes

the transition from A to B irreversible. It is also plausible to have more than two sets of

stable steady-states, which is known as multi-stability.

Monostable networks on the other hand have states that slide along a continuum of

steady states [7] in response to input signaling. Such networks can only exhibit switch-

like behavior if the system is ultrasenstive; that is, if the input-output relationship in

the network is described by a sharp sigmoidal curve [74]. When the input signal crosses

the exponential phase of the sigmoid, the output response of the network transitions
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from a low to a high state. In fact, the dynamics of transcription factor target genes

as a function of transcription factor concentration is typically modeled as a sigmoidal

”Hill function”, which can be viewed as an ultrasensitive switch. However, such switches

are memoryless ; once the input signal is removed or is reduced, the system immediately

returns to its original state [74]. For example, when the concentration of transcription

factor crosses a certain threshold, the target gene turns on. As soon as the transcription

factor concentration goes below that same threshold, the target gene immediately turns

off.

As it turns out, the two damage sensing inputs rD1s and rD2s are bifurcation pa-

rameters for the p53 core regulation network. As was seen in Section 7.2, the rate of

production of p53 is directly proportional to rD1s, and in networks with Module M2,

rD1s is also directly proportional to the rate of degradation of active (phosphorylated)

MDM2. Moreover, in networks with Module M4, an increase in DNA damage causes

an increase in rD2s, which in turn leads to an increase in the rate of production of the

ARF protein.

8.2 An algorithm to determine p53 network bifurca-

tion diagrams

The fact that p53 can exhibit bifurcations with respect to rD1s and rD2s implies that

the different p53 network configurations can exhibit qualitatively distinct switching be-

havior in response to damage. The computation of these bifurcation diagrams requires

the computation of equilibrium points for the system of ODEs described in Chapter 7.

In practice, this reduces to the problem of computing the solutions to multivariate poly-

nomial equations, which is known to be an NP-complete problem [31]. While simple
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equations can often be solved using commercially available numerical solvers, more com-

plicated systems such as the ones that arise in our analysis, exhibit multiple equations

with many possible solutions that are close to each other. In this case, solvers or continu-

ation software often miss solutions that might exist, which was the case when attempting

to evaluate the equilibrium points of multi-stable networks.

To overcome this problem, we developed an algorithm to solve for the equilibrium

points of a network as a function of the inputs to the network. In our case, the algorithm

would solve for the p53 equilibrium points as a function of the concentrations of the

transducer inputs rD1s and rD2s, to produce the plots in Figures 9.2 and 9.6, that will

be seen in Chapter 9.

8.2.1 The Steady-State Behavior of a module

The procedure that the algorithm employs involves gridding the equilibrium values

of the input and output signals for each module to form a table known as the Steady-

State Behavior (SSB) of a module [127]. Typically, this table is obtained by gridding the

equilibrium values of the outputs for a range of constant inputs, and this special case of

the SSB when there is only one unique output for every input was called the IOSCF of

the module in Chapter 3. It is worth noting that these tables could be multi-valued, as

there could be multiple output equilibria for a given input as is evidenced in the bistable

and tri-stable networks.

The number of degrees of freedom of each module is the total number of inputs to

that module. Given a module with p inputs and q outputs, it is often more convenient

to perform the grid the equilibrium values of an input and q � 1 outputs for a range of

constant values of the remaining output and p � 1 inputs. We illustrate this using M1,

where the equilibrium equation is given by
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0 � p1 � rD1s � d1 rp53s � u12f1prp53sq

y11 � b4 � f4prp53sq

y12 � b5 � f5prp53sq.

(8.1)

Given that f1 is a Hill function of rp53s (see Appendix B), it is more straightforward

to solve for u12 as a function of rp53s and rD1s. We can then obtain a table of equilibrium

values of the signals, that can be formally represented by the SSB of the module as

B1 �
 
prD1s , u12, y11, y12, rp53sq P R5

¥0 | (8.1) is satisfied
(
. (8.2)

A tabular representation of (8.2) is illustrated in Table 8.1.

rD1s rp53s u12 y11 y12

...
...

...
...

...

rD1s
i rp53si ui12 yi11 yi12

...
...

...
...

...

Table 8.1: Table of equilibrium values for M1. The superscript i denotes the ith row
of the table.

We can obtain the SSBs of the other modules as well, given by B2 �B4 for modules

M2 �M4 respectively, with corresponding tabular representations shown in Tables 8.2–
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8.4.

B2 �
 
prD1s , u22, u24, y21, y22, u21q P R6

¥0 | DprmRNAms , rMDM2s , rMDM2asq P R3
¥0

s.t. 9rmRNAms � 0, 9rMDM2s � 0, 9rMDM2as � 0,

y21 � b1 rMDM2as , y22 � b11 rMDM2as
(

B3 �
 
py31, u31q P R2

¥0 | DprmRNAps , rPTEN s , rPIP3s , rAKTasq P R4
¥0 s.t.

9rmRNAps � 0, 9rPTEN s � 0, 9rPIP3s � 0, 9rAKTas � 0, y31 � b2 rAKTas
(

B4 �
 
prD2s , y41, u42q P R3

¥0 | D rARF s P R¥0 s.t. 9rARF s � 0, y41 � b11 rARF s
(

rD1s u22 u24 y21 y22 u21

...
...

...
...

...

rD1s
j uj22 uj24 yj21 yj22 uj21

...
...

...
...

...

Table 8.2: Table of equilibrium values forM2. The superscript j denotes the jth row
of the table.

y31 u31

...
...

yk31 uk31

...
...

Table 8.3: Table of equilibrium values forM3. The superscript k denotes the kth row
of the table.
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rD2s y41 u42

...
...

...

rD2s
l yl41 ul42

...
...

...

Table 8.4: Table of equilibrium values for M4. The superscript l denotes the kth row
of the table.

8.2.2 A behavioral approach to computing the equilibrium point

of a network

To solve for the equilibrium value of rp53s of the network Nv as a function of rD1s and rD2s,

we need to systematically eliminate the input and output signals flowing between the modules,

also known as the latent variables in the network [127]. We demonstrate this by first focusing

on the interconnection between Modules M1 and M2 as is shown in Figure 7.7, where we see

the associations y11 � u21 and y21 � u12. To eliminate these latent variables, we identify the

rows i and j in Tables 8.1 and 8.2 respectively such that

rD1s
i � rD1s

j

yi11 � uj21

yj21 � ui12,

leading to the Table 8.5. Mathematically, the construction of Table 8.5 corresponds to comput-

ing the SSB set B12, where

B12 �
 
prD1s , y12, rp53s , u22, u24, y22q P R6

¥0 | Dpu21, u12q P R2
¥0 s.t.

prD1s , u12, u21, y12, rp53sq P B1, prD1s , u22, u24, u12, y22, u21q P B2

(
.
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Computationally, the construction of Table 8.5 is achieved by finding the intersection points

between each of the lines mapping from u12 to y11 from Table 8.1, and each of the lines mapping

from u21 to y21 from Table 8.2, for all combination of other variables, as outlined in Figure 8.1.

rD1s rp53s u22 u24 y22 y12

...
...

...
...

...
...

rD1s
i rp53si uj22 uj24 yj22 yi12

...
...

...
...

...
...

Table 8.5: Table of equilibrium values when modules M1 and M2 are combined.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
u

21
 = y

11

0

0.005

0.01

0.015

0.02

0.025

0.03

u
12

 =
 y

21

u
24

 = 0.0015, u
22

 = 0.38

u
24

 = 0.0015, u
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 = 0.38

u
24

 = 0.013, u
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 = 0.45

Figure 8.1: Projections of Table 8.1 and Table 8.2 into the u12 vs y11 (Green plot)
and y21 vs u21 (All other plots) planes respectively, for different values of u24 and u22

with rD1s � 0.4. The gray intersection points correspond to the equilibrium values of
u12 and u21 for the given u24, u22 and rD1s.

The next step is to identify the rows m and k from Tables 8.5 and 8.3 respectively such

that

ym12 � uk31

yk31 � um22.
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The elimination of these latent variables results in Table 8.6, whose construction can be math-

ematically represented by the SSB

B123 �
 
prD1s , rp53s , u24, y22q P R4

¥0 | Dpu22, u31q P R2
¥0 s.t.

prD1s , u31, rp53s , u22, u24, y22q P B12, pu22, u31q P B3

(
.

Computationally, the construction of Table 8.6 is achieved by finding the intersection points

between each of the lines mapping from y12 to u22 from Table 8.5, and each of the lines mapping

from u31 to y31 from Table 8.3, for all combination of other variables, as outlined in Figure 8.2.
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Figure 8.2: Projections of Table 8.5 and Table 8.3 into the u22 vs y12 (Black plot)
and y31 vs u31 (All other plots) planes respectively, for different values of rD1s with
u24 � 0.0015. The gray intersection points correspond to the equilibrium values of
u31 and u22 for the given u24 and rD1s. The bifurcation can clearly be seen as rD1s
increases, with rD1s � 0.1 and rD1s � 0.5 corresponding to a single equilibrium point,
while rD1s � 0.3 corresponds to three equilibrium points.
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rD1s rp53s u24 y22

...
...

...
...

rD1s
m rp53sm um24 ym12

...
...

...
...

Table 8.6: Table of equilibrium values when modules M1, M2 and M3 are combined.

Finally, we identify the rows n and l from Tables 8.6 and 8.4 respectively such that

yn22 � ul42

yl41 � un24,

The elimination of these latent variables results in Table 8.7, which is the combined steady-state

behavior of the entire network Nv. Mathematically, Table 8.7 corresponds to the set

B1234 �
 
prD1s , rD2s , rp53sq P R3

¥0 |

Dpu24, u42q P R2
¥0 s.t. prD1s , rp53s , u24, u42q P B123, prD2s , u24, u42q P B4

(
,

which was precisely what we wanted to compute. Computationally, the construction of Table

8.7 is achieved by finding the intersection points between each of the lines mapping from u24

to y22 from Table 8.6, and each of the lines mapping from y41 to u41 from Table 8.3, for all

combination of rD1s and rD2s, as outlined in Figure 8.3.
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Figure 8.3: Projections of Table 8.6 and Table 8.4 into the y22 vs u24 (Red plot) and
u42 vs y41 (Blue plot) planes respectively, for rD1s � 0.3 with rD2s � 0.002. The gray
intersection points correspond to the equilibrium values of u42 and u24 for the given
rD1s and rD2s. The equilibrium values can be found for a range of rD1s and rD2s,
and then used to compute the corresponding p53 equilibrium values.

rD1s rD2s rp53s

...
...

...

rD1s
n rD2s

l rp53sn

...
...

...

Table 8.7: Table of equilibrium values for the entire network Nv.

A key part of this algorithm was automating the process of computing intersection points

between lines, which was done using a MATLAB program available on-line [105]. The stability

of each equilibrium point can then be determined through an eigenvalue analysis of the network

linearized about each equilibrium point.
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8.3 Conclusion

In this chapter, we provided an introduction to biological switching behavior. To analyze the

qualitatively distinct switching behaviors admitted by each of the p53 core regulation network

configurations required the computation of the equilibrium points of the networks, as this

would reveal the bifurcations in p53 with respect to the DNA damage sensing parameters.

Since standard numerical solvers were unable to compute the equilibrium points for some of the

network configurations, we developed an algorithm to perform this task. A key aspect of the

working of this algorithm was that it relied on the network being partitioned into modules that

admitted dynamic and parametric modularity, so that the equilibrium point of the network

could be computed from the SSBs of each individual module alone. Further work is required to

find an optimal partition of an arbitrary network that minimizes the computational complexity

of this algorithm.
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Chapter 9

The evolution of p53 network

behavior

In this chapter, we study how the topology of alternative p53 core regulation networks integrate

DNA damage information and determine the range of dynamic responses to DNA damage, and

explore how this could affect an individual organism’s fitness when dealing with DNA damage.

We then demonstrate how the p53 responses exhibited by different networks relate to the

potential costs and fitness benefits of the different core regulation network structures. Clearly,

an individual’s fitness will be low if it is at a high risk of developing fatal cancer. However, a

tumor suppression policy whereby p53 and its core regulation proteins bring about apoptosis

of too many cells at the slightest sign of DNA damage could also incur high metabolic costs.

A core question in the evolution of tumor suppression mechanisms is how the relevant genetic

networks can optimally control the response in order to balance the risk of cancer with the risk

of false responses to signals of DNA damage.
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9.1 The role of each p53 network configuration in de-

termining switching behavior

In this section, we discuss the different switching behaviors that are possible for each p53

network configuration we identified in Chapter 7, as determined by our algorithm.

9.1.1 The network configurations in the early phases of evolu-

tion behave as monostable switches

Our modular study revealed that as rD1s is varied, the network configurations Ni and N 1
int

in Figures 7.3 and 7.4 operate as monostable switches, in the sense that when an increase in

rD1s makes the p53 level rise, a subsequent decrease in rD1s to its original value causes the

concentration of p53 to revert to its initial level. The steady-state concentration of p53 as a

function of rD1s is shown in Figure 9.1. The main difference between the two networks Ni and

N 1
int is that negative feedback of p53 with MDM2 typically makes the p53 steady-state in N 1

int

to be lower than that of Ni.
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Figure 9.1: Steady-state concentration of p53 as a function of rD1s shows a continuum
of steady-states in bothNi andN 1

int. Due to the negative feedback on p53, N 1
int admits

lower p53 steady-state values than Ni. The p53 levels are normalized by their value
when rD1s � 0.

9.1.2 Networks N 2
int and N 3

int can operate as bistable switches

With model parameters similar to those from [126], the network N 2
int operates as a bistable

switch with respect to the input rD1s. From this study, we can plot the bifurcation diagram of

N 2
int with respect to the parameter rD1s in Figure 9.2. The solid blue line signifies a continuum

of stable steady-state concentrations of p53 as a function of rD1s, while the red dashed lines

represent unstable equilibrium points. It can be seen that when rD1s is between the two

thresholds T0 and T1, there are two stable steady-states the p53 level can converge to. To

illustrate the behavior of the bistable network, we run a simulation as shown in the red curve

of Figure 9.3b. We observe the manifestation of the ”memory” property of bistable networks,

where after rising to a point in set ”B”, the p53 level returns to a point in set ”A” after rD1s

crosses the threshold T0 from above. Figure 9.3b further contrasts this to the behavior of the

monostable networks Ni (blue curve), where the switch has no memory.
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Figure 9.2: Bifurcation diagram of N 2
int.
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Figure 9.3: (a) The level of D1 in our simulation. (b) The corresponding p53 response
contrasting the behaviors of the monostable network Ni to the bistable network N 2

int

as rD1s is varied. While the bistable switch has memory, the monostable switch does
not.

A change in the parameters corresponding to the rate of initiation of p53 and ubiquitination

of MDM2 causes T0 to become less than 0. In this case, the network exhibits an irreversible

switch from the set of points in Region ”A” to those in Region ”B”. This is illustrated in

Figures 9.4–9.5.

Network N 3
int can also behave as a bistable switch with respect to rD1s provided that rD2s
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also increases along with rD1s. This is a reasonable assumption, since both rD1s and rD2s will

increase with DNA damage. Qualitatively, this network admits the same behavior as N 2
int. The

bifurcation diagram for this network is provided in the Appendix B.1.2.
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Figure 9.4: Bifurcation diagram of N 2
int, illustrating its ability to behave as an irre-

versible bistable switch.
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Figure 9.5: (a) The level of D1 in our simulation.(b) The corresponding response of
p53 demonstrating the irreversible switch.

Unlike the monostable networks, the bistable networks allow for the p53 levels to remain

high for a sustained period of time once the damage sensor level has crossed threshold T1,

even if the damage sensor level subsequently falls below this level. This provides enough time

for p53 to induce pathways that bring about cell-cycle arrest and DNA repair. p53 can also
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induce pathways that bring about apoptosis or senescence, which are typically slower than

repair pathways [47]. As such, it is more likely that these pro-elimination pathways will be

induced either if the damage sensor level remains high for sufficiently long, or if the network

operates as an irreversible bistable switch, since a sustained high levels of p53 expression is

known to bring about apoptosis [91, 97, 130].

9.1.3 Nv admits tri-stable behavior

The addition of M4 to N 2
int, or M3 to N 3

int, can bring about tri-stability in the p53 levels

with respect to rD1s. That is, there are three sets of stable steady-states between which the

p53 level can toggle, which we label ”A”, ”B” and ”C”.

The bifurcation diagram illustrating the steady-states of p53 in this network Nv is shown

in Figure 9.6. From this diagram, we observe that the original switching behavior which was a

property of the bistable networks is retained; when rD1s crosses T1 the p53 level switches to a

high value, and this switch is ”turned-off” only when rD1s falls below T0. In addition to this

behavior, the tri-stable network admits a third threshold T2, that can be seen in Figure 9.6.

Once rD1s crosses T1, p53 transitions irreversibly to a high value; no matter how rD1s changes

following this transition, p53 will not return to its nominal level. This behavior is illustrated in

Figure 9.7.

It is known that when the p53 concentration remains high for a sufficiently long time, the

cell goes into senescence or apoptosis [97, 77, 111]. From the perspective of our network, the

level of damage-sensor rD1s crossing T2 is likely associated with a scenario in which too much

damage has been sustained, causing an irreversible switch in the p53 level to a high value and

eventually bringing about either of these two cell fates. From this perspective, the role of

rD2s is important. As rD2s increases, the middle branch of stable equilibrium points (labeled

’B’) ”shrinks”, as illustrated in Figure 9.6. For high damage when rD2s is high, the rate of

production of ARF is high. In turn, the threshold T2 decreases, meaning that the cell has a

higher chance of going to senescence or apoptosis as compared to when damage is lower. This
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is consistent with the known role of ARF in triggering apoptosis [107].
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Figure 9.6: Bifurcation diagram of the network Nv, illustrating the tristable switch.
The switching behavior of the bistable network is retained. However, there is an
additional threshold T2 which when rD1s crosses, results in an irreversible switch of
the p53 level to the set of points ”C”.
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Figure 9.7: (a) Simulated D1 levels, with rD2s kept fixed. (b) The resulting p53
behavior shows that the tri-stable network can behave both as a reversible and an
irreversible switch.
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9.2 Simple models of DNA damage transduction and

repair explain experimentally observed results

In this section, we show how our tri-stable model for the p53 core regulation network in

vertebrates Nv, coupled with simple models of DNA damage transduction and repair, explains

many experimentally observed results. We model the activity of the transduction kinases such

as ATM and CHK1 using a single variable D1, similar to what was done in [17]. We model

the dynamics of D1 as

9rD1s � g1p#DSBq � g2prp53sq rD1s � γ rD1s . (9.1)

In this equation, the variable #DSB represents the number of DNA double-strand breaks

(DSBs), which activate D1 through the function g1p#DSBq. D1 then goes on to activate p53

and cause the accelerated degradation of MDM2 [114, 126], per the model in Figure 7.7. The

feedback term g2prp53sq represents negative feedback between p53 and the transduction kinases

[17, 16], and the rate constant γ represents the p53-independent degradation of the kinases. We

assume that the dynamics of (9.1) is slow compared to the dynamics of the p53 core regulation

network, which is a key element in explaining the experimentally observed behavior.

We model the dynamics of #DSB as a simple deterministic death process,

9#DSB � �µ#DSB rp53s , (9.2)

where µ#DSB rp53s is the rate of repair, that is known to be regulated by p53 [111, 85, 23].

Since damage is induced in the cell on the order of minutes [28], while the response can last for

many hours or even days [48, 72], the number of DSBs induced by damaging agents is assumed

to be the initial condition of (9.2). The specific parameters and functions from Equations

(9.1)–(9.2) are given in Appendix B.

The parameter D2 represents the activity of proteins such as PARP1 [92] and E2F1 [107],
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which are known to play a role in activating ARF in response to DNA damage. We model D2

as a simple monotonically increasing function of the number of DNA DSBs

rD2s � g3p#DSBq, (9.3)

with the rate of production of ARF governed by D2. The specific parameters and functions

from Equations (9.1)–(9.3) are given in the Supplemental text. We then couple these models

with Nv and run simulations.

In Figure 9.8, we show that the p53 levels remain low for damage resulting 5 DNA DSBs,

which is a low level of DNA damage. In this case, the DNA damage is repaired before a p53 pulse

is initiated. For damage resulting in 10 DSBs, a single p53 pulse is observed as shown in Figure

9.9. This corresponds to experimental results from [72], which show that 0.3Gγ of damage is

sufficient to initiate a pulse, where 1Gγ of damage results in between 30-35 DSBs [100, 13, 48].

In Figure 9.10, our simulation shows that DNA damage that brings about 150 DSBs causes

the initiation of multiple p53 pulses for over 60 hours until the damage is repaired, matching

experimental results that suggest that the number of pulses increases as the number of DSBs

increases [72, 48, 71], and that these pulses could last for days after damage is induced [48].

All pulses in our simulation have a period of between 4-7 hours, matching these experimental

results in human breast cancer cells.

Early modeling work suggested that these pulses were primarily a result of the negative

feedback interaction between p53 and MDM2, along with some positive feedback or delays

[81, 124, 28, 131, 27]. However, more recent experimental results, in which pulses in p53 are

observed to be highly coupled with pulses in the upstream transduction kinases, suggest that

p53 pulses are brought about by the interaction of p53 with these kinases [17, 16]. Another

important observation from [17] is that transient activation of the kinases results in a pulse of

p53, suggesting that there is an excitable mechanism controlling p53 pulses [17, 16]. It was

noted that while a single negative feedback loop between p53 and these kinases (with delays)

would be sufficient to generate sustained oscillations, other p53 interactions would be necessary
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to explain the observed excitability.

In our model, the interaction between D1 and Nv can be described as an excitable mech-

anism known as a relaxation oscillator [61]. The slow negative feedback between D1 and p53

described in Equation 9.1 operates over the faster dynamics of the p53 core regulation network.

The pulses in p53 are observed because of the resulting cyclic transfers between the p53 equi-

librium points in Regions ’A’ and ’B’ (Figure 9.6). The pulses in D1 levels are also seen to

be highly coupled with the pulses in p53 levels. In this way, our simulation results strongly

matches both experimental observations, and hypotheses about the underlying mechanism that

brings about the observed behavior without recourse to additional mechanisms or interactions.

In Figure 9.11, our simulation shows the p53 levels monotonically elevating to a high level

for a large number of DNA DSBs, and remain high without pulsing. Even with the progression

of the DNA repair process, the p53 levels remain high, due to the irreversible switch permitted

by the tri-stable model. This behavior matches recent experimental observations in human

U2-OS cells, in which the p53 pulsing is observed for moderate levels of DNA damage, but very

high levels of DNA damage trigger a strong monotonic elevation of p53 level which doesn’t

return to a low level after rising [25].

It is worth noting that the experimental results are from different cells. As such, our goal

is to show that the experimentally observed behavior is possible, and not to identify specific

parameter values for the different cell types.

9.3 Discussion

In this section, we first discuss some of the features of our model of the full network that are

novel as compared to previous models, and how these features allow us to predict the various

experimentally observed behaviors. We then discuss the features of this network that could not

have been present in putative primordial organisms, and discuss how the tumor suppression

strategy might have been different in these organisms. Finally, we conclude the chapter with
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Figure 9.8: p53 and D1 responses, along with DSB repair process for initial #DSB � 5
in Nv.

some possible future directions.

9.3.1 A novel model to explain experimentally observed behav-

ior

Some of the earlier p53 modeling work was carried out under the assumption that the

transduction kinase levels were proportional to the amount of damage, and that pulses were

primarily observed due to the negative feedback between p53 and MDM2 [81, 124]. Other

modeling work, while considering the positive feedback loop, assumed that the upstream kinase

concentrations were proportional to damage and caused autonomous pulsing in p53 when the

kinase levels were sufficiently high [28, 131, 27, 98]. In contrast, our model takes into account

recent experimental results which suggest that upstream transduction kinases are responsible

for initiating p53 pulses, and that the pulses of these kinases are highly coupled with pulses of
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Figure 9.9: p53 and D1 responses, along with DSB repair process for initial
#DSB � 10 in Nv.

p53 [17, 16]. Moreover, these previous models primarily explain plausible mechanisms for the

observation of oscillations in p53, and do not explore the irreversible switch to a high level.

There are other models of the p53 core regulation network in humans that display both the

pulsing and sustained high levels of p53 [98, 126, 132] as described in Section 9.2. However,

our model matches recent experimental observations that demonstrate pulsing in p53 for a

moderate amount of damage, and a strong monotonic elevation in p53 for high levels of damage

[25], contrasting previous models which imply that p53 would need to pulse before switching to

a high value [98, 126, 132].

To our knowledge, our model of p53 core regulation in humans is the first where the irre-

versible switch of p53 to a high level is an inherent property of the tri-stable network structure,

as opposed to a consequence of temporal behavior. It is also worth noting that all the observed

behavior can be explained precisely using the dynamical properties of the ODEs, and do not
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Figure 9.10: p53 and D1 responses, along with DSB repair process for initial
#DSB � 150 in Nv.

necessitate the artificial introduction of external signals, switches or clamps.

A novel behavior that our model predicts is the role played by ARF in bringing about an

irreversible cell fate. It has long been postulated that ARF enhances apoptosis by sequestering

away MDM2, thereby causing an increase in p53 levels. Although models to capture this

behavior have been proposed [95, 68], the details of the underlying dynamics are still largely

unknown [108]. A recent study has further pointed to a novel mechanism through which MDM2

can inhibit ARF [121]. In our model, this mutually inhibitory feedback between active MDM2

and ARF is crucial in bringing about tri-stability. Our model predicts that an increased rate

of production of ARF is an important factor in bringing about the irreversible switch of p53 to

a high level. In this way, our model proposes a novel but mathematically sound reasoning for

how ARF might behave as an apoptosis enhancer.
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Figure 9.11: p53 and D1 responses, along with DSB repair process for initial
#DSB � 450 in Nv.

9.3.2 Tumor suppression strategy in humans

We recall that from an evolutionary standpoint, a cell has to achieve a balance between

minimizing the number of Type 1 errors, while eradicating Type 2 errors. Type 1 errors occur

when the Statistical Null Hypothesis, ”Cells can recover and operate normally even after DNA

damage crosses the apoptotic threshold” is true but the cells are killed anyway, while Type 2

errors occur when the Null Hypothesis is false, but the cells are not killed. While Type 1 errors

could have metabolic costs in that too many cells are killed, Type 2 errors are potentially fatal.

From this perspective, the functional role of the p53 core regulation network in humans

is clear. For low amounts of damage, the p53 level remains low. This is associated with the

fact that the damage is deemed too low for a tumor to develop, and hence a significant p53

response is not initiated. For moderate amounts of damage, p53 exhibits pulsatile behavior,

with the number of pulses proportional to the amount of damage. At this point, the damage
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Figure 9.12: p53 and D1 responses, along with DSB repair process for initial
#DSB � 450 in N 2

int.

is deemed large enough to be repaired, triggering pulses in p53 until all the damage has been

repaired. This is consistent with experimental results which show that majority of cells that

exhibit pulsed p53 are able to grow and divide after recovery from DNA damage [97]. For a

sufficiently large amount of damage, the p53 level switches monotonically to a high level and

remains high. In cells that exhibit sustained high levels of p53 signaling, most cells go into

senescence or apoptosis [97, 25, 130]. In this way, the cell is able to minimize the number of

Type 1 errors by repairing DNA damage for a range of moderate levels of damage, but also has

a clear threshold to bring about an irreversible switch to apoptosis when the amount of damage

sustained is too high.
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9.3.3 Tumor suppression strategy in other organisms

The networks N 2
int and N 3

int were found to admit both reversible and irreversible bistable

switching behavior. It is worth noting that these networks are not capable of exhibiting trista-

bility regardless of the values of the model parameters.

For the reversible switch, the p53 dynamics of these networks would be qualitatively similar

to that of Nv in the presence of low and moderate amounts of DNA damage when coupled with

the transducer and repair dynamics from Section 9.2. When the DNA damage is very high,

the p53 level monotonically elevates to a high level. However, this switch is reversible if the

DNA damage is repaired before the cell goes into senescence or apoptosis. This is illustrated

for N 2
int in Figure 9.12. At this point, however, the integrity of the repair can be brought

into question since the cell has likely experienced a large amount of damage. Hence, while the

reversible bistable switches can minimize Type 1 errors by repairing moderate levels of damage,

the elimination of Type 2 errors in the bistable networks requires the fast initiation of apoptotic

pathways once the p53 level becomes high.

In the case of the irreversible switch, p53 switches irreversibly to a high level once rD1s

crosses threshold T1. However, in this case p53 is not able to display a phase of pulsatile

behavior, increasing the chance of the cell going to senescence or apoptosis. Hence, this policy

would be very effective in eliminating Type 2 errors, but could also increase the frequency

of Type 1 errors. In essence, the bistable network is either able to admit p53 pulses or an

irreversible switch of p53 to a high level triggering apoptosis, but not both phases of behavior

as the tristable network is able to. These networks would probably have been more likely to

behave as irreversible switches, since the elimination of Type 2 errors is crucial in the cell’s

ability to avoid tumors.

The network configurations Ni and N 1
int will only admit a single continuum of stable equi-

librium points [79], and hence can only exhibit ultrasensitive switching behavior. In the absence

of more complex mechanisms, the p53 levels are incapable of pulsing. Moreover, when the p53

level is high, it is more sensitive to changes in D1 levels than the bistable switch. In these
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organisms, it is therefore likely that the exponential phase of switching happens for reasonably

low amounts of damage, and that the pro-apoptotic pathways were very sensitive to rising levels

of p53, to ensure that Type 2 errors do not occur. This hypothesis is consistent with an earlier

proposal on the operation of the p53 family of genes in early organisms [18].

9.4 Conclusion

In this chapter, we discovered how the different network configurations play a role in deter-

mining the p53 switching behaviors admitted, and therefore the p53 response to DNA damage.

This study further revealed a novel method by which ARF could play the role of an apoptosis

enhancer [107]. By incorporating our p53 network models into a simple model for DNA damage

induction, transduction and repair, our new model for p53 response to DNA damage predicted

many recent experimental results in a way that previous models were unable to do. Specifically,

our model predicts that for a moderate amount of damage, p53 will pulse, with the number of

pulses proportional to the amount of damage. When the damage becomes too high, the p53

level elevates monotonically to a high level and remains there. This matches early experiments

on p53 in human breast cancer cells [72, 48, 17], and also more recent experiments on human

U2-OS cells [25]. Our model also predicts that the upstream transduction kinases are responsi-

ble for activating p53 pulses when damage is present and that pulses in kinase levels are highly

coupled with p53, matching recent experimental observations [17, 16].

We then discussed the relationship between the dynamical behaviors admitted by the dif-

ferent network configurations, and the potential implications of our findings with respect to the

fitness and behavior of different organisms. In conclusion, we believe that one adaptive value

of the p53 core regulation network in vertebrates is its ability to achieve a balance between

eradicating Type 2 errors and minimizing Type 1 errors, and this behavior is clearly observed

in experiments on human cells. On the other hand, the alternative network configurations in

putative primordial organisms would not be able to exhibit this range of behaviors that are
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possible in vertebrates and hence, would not be able to achieve this trade-off.
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Future Work

In Part II, we studied the evolution of the p53 core regulation network by postulating a path to

complexity from primordial organisms to evolved vertebrates using evolutionary data from some

invertebrate organisms. Recent studies have shown that some invertebrates might have carried a

homolog MDM gene, prior to its duplication to form MDM2 440 million years ago. Studies on

invertebrates such as the M. Trossulus [89], Enteropneusta [87], Strongylocentrotus purpuratus

and Nematostella vectensis [73] suggest that these invertebrates, this MDM homolog might

have developed the ability to negatively regulate p53. While the interactions between this

MDM homolog and p53 were analyzed deeply, further studies will be required to see if MDM

would be up-regulated by p53, and if it could interact with PTEN and ARF . This would then

provide a higher resolution and further insight into the evolution of the core regulation network.

Further studies can also be carried out on the evolution of the binding sites of all the core-

regulation network proteins. This would involve using bioinformatics approaches such as the

BLAST algorithm to identify the presence or absence of different binding sites between the

core regulation species in primordial organisms, and their rates of evolution. A key challenge

in doing this would be that many of the reaction mechanisms are only partially known. For

example, it is known that there are many binding sites between MDM2 and ARF , and further

studies are needed to precisely model how important each of these binding sites are for their
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interaction.

It was recently discovered that cells in elephants tend to go to apoptosis at a much higher

rate than human cells, for the same amounts of DNA damage [1]. The fact that the cells in

elephants have 20 copies of the TP53 gene, as compared to a single copy in humans, means

that the p53 levels in elephant cells would probably be more sensitive to DNA damage; this in

turn means that the irreversible switch of p53 to a high level (Figure 9.7) happens for much

lower levels of damage as observed. Further study is required to understand how this adds

adaptive value to the fitness of elephants. This can also pave the ways for studying how the

same vertebrate core regulation network can operate in distinct ways in different vertebrates.

Finally, further work is required to generalize the algorithm introduced in Chapter 8. In

particular, work is ongoing to determine the computational complexity of the algorithm when

networks are partitioned in different ways. In our case, the modules were chosen by determining

the evolutionary paths to complexity. Further work is needed on how to choose the modules

over which the algorithm computes the network equilibrium points. From this study, we seek

to find the optimal partition that minimizes the computational complexity of the algorithm.
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Calabrò, Girolama La Mantia, and Alessandra Pollice. Mdm2-mediated degrada-
tion of p14arf: A novel mechanism to control arf levels in cancer cells. PloS one,
10(2):e0117252, 2015.

[122] Bert Vogelstein, David Lane, and Arnold J Levine. Surfing the p53 network. Nature,
408(6810):307–310, 2000.

[123] Karen H Vousden and David P Lane. p53 in health and disease. Nature Reviews
Molecular Cell Biology, 8(4):275–283, 2007.

[124] J Wagner, L Ma, JJ Rice, W Hu, AJ Levine, and GA Stolovitzky. p53–mdm2 loop
controlled by a balance of its feedback strength and effective dampening using atm
and delayed feedback. IEE Proceedings-Systems Biology, 152(3):109–118, 2005.

[125] Zhiwei Wang, Hiroyuki Inuzuka, Jiateng Zhong, Hidefumi Fukushima, Lixin Wan,
Pengda Liu, and Wenyi Wei. Dna damage-induced activation of atm promotes β-
trcp-mediated mdm2 ubiquitination and destruction. Oncotarget, 3(9):1026, 2012.

[126] Keng Boon Wee, Uttam Surana, and Baltazar D Aguda. Oscillations of the p53-akt
network: implications on cell survival and death. PLoS One, 4(2):e4407, 2009.

[127] Jan C Willems. The behavioral approach to open and interconnected systems.
Control Systems, IEEE, 27(6):46–99, 2007.

[128] Xiangwei Wu, J Henri Bayle, David Olson, and Arnold J Levine. The p53-mdm-2
autoregulatory feedback loop. Genes & development, 7(7a):1126–1132, 1993.

[129] Jianhua Xing and Jing Chen. The goldbeter-koshland switch in the first-order
region and its response to dynamic disorder. PLoS One, 3(5):e2140, 2008.

141



BIBLIOGRAPHY

[130] Kyoung Wan Yoon, Sanguine Byun, Eunjeong Kwon, So-Young Hwang, Kiki Chu,
Masatsugu Hiraki, Seung-Hee Jo, Astrid Weins, Samy Hakroush, Angelika Cebulla,
et al. Control of signaling-mediated clearance of apoptotic cells by the tumor
suppressor p53. Science, 349(6247):1261669, 2015.

[131] Tongli Zhang, Paul Brazhnik, and John J Tyson. Exploring mechanisms of the
dna-damage response: p53 pulses and their possible relevance to apoptosis. Cell
cycle, 6(1):85–94, 2007.

[132] Xiao-Peng Zhang, Feng Liu, and Wei Wang. Two-phase dynamics of p53 in the dna
damage response. Proceedings of the National Academy of Sciences, 108(22):8990–
8995, 2011.

142



Appendix A

Module Characteristics

In this section, we present some properties of the modules introduced in Chapter 3.

A.1 Transcriptional regulation (TR) module

In Section 3.2.1, we presented the LTF of a TR module when Assumptions 1–2 were
satisfied. A comprehensive explanation of how the dynamics of a TR module are simpli-
fied with Assumption 2 is provided in [33].

It is reasonably straightforward to compute the LTF of a TR module when only
Assumption 1 is satisfied, and it is given by

Hjpsq � Dj

qkonKP
totpθu�qq

K�pθu�qq
αjβj�

θu�ps� koffqps� β̄q � konpθu�qq
�
pq2F KP totpθu�qq

K�pθu�qq
� θu�qs� u�

�	
ps� γjq

with

Dj �

#
�1 if S0 activates Gj
�1 if S0 represses Gj,

θ �
1

β̄
.

This LTF now depends on the fan-out F . It is worth noting that the LTFs to each
activating and to each repressing output are exactly the same because of Assumption 1.
If this were not the case, the same method could be utilized to compute the LTF, but
the expression would look different for each output. [110] contains more information on
how to compute the LTF of the module given the ODEs.

A.2 Covalent modification (CM) module

The properties of CM modules are summarized in Section 3.2.2. The characteristics
of these modules have been presented using two classical approximations to simplify the
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Module Characteristics Chapter A

reaction dynamics.

The form of the LTF obtained when using the quasi steady-state approximation
(Assumption 4) was presented in Chapter 3, but not the LTF when using the equilibrium
approximation (Assumption 3). Under Assumption 3, the LTF of a CM module is given
by

Kppu�q

s�Kqpu�q

where

Kppu�q �
EtotkcatKd

pKd � rS0s
�q2

Kqpu�q �
N�

EtotKd � pKd � rS0s
�q2

�2

with

N � EtotKd
�
pKd � rS0s

�q
�
kcatpKd � rS0s

�q�

γpKd � 3 rS0s
�q � 2u�

�
� kcatEtotpKd � 2 rS0s

�q
	
� γpKd � rS0s

�q4

and

rS0s
� �

�Etotkcat � u� � γKd �
a
p�Etotkcat � u� � γKdq2 � 4u�γKd

2γ
.

A.3 PD-cycle module

The PD-cycle module was discussed in detail in Section 3.2.3. The equilibrium point
of the module as a function of the constant inputs v�i , u�i are given by

rSi�1s
� �

k̄f
ipk

r
i � αiqv

�
i pE

tot
i ᾱi � u�i q

kf
iαipk̄

r
i � ᾱiqu�i

, rS:i :Si�1s
� �

v�i
αi

rS:i s� �
u�i pk̄

r
i � ᾱiq

k̄f
ipE

tot
i ᾱi � u�i q

, rEis
� � Etot

i �
u�i
ᾱi

and the LTF around this equilibrium is given by

Hpsq�
1

Dpsq

�
N11psq N12psq
N21psq N22psq

�
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where

N11psq � kf
irS

:
i s
�prEis

�k̄f
ips� ᾱiq � spk̄r

i � s� k̄f
i rS

:
i s
� � ᾱiqqαi

N12psq � kf
isrSi�1s

�pk̄r
i � s� k̄f

i rS
:
i s
� � ᾱiqαi

N21psq � �rEis
�k̄f

ik
f
isrS

:
i s
�ᾱi

N22psq � rEis
�k̄f

i ᾱipk
r
is� ps� kf

irS
:
i s
�qps� αiqq,

Dpsq � rEis
� k̄f

ips� ᾱiq
�
kr
is� ps� kf

i rSis
�qps� αiq

�
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s
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s� k̄r
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i rSis

� � ᾱi
��
s2 � pkr

i � kf
iprS

:
i :Si�1s

� � rSis�q � αiqs� αik
f
i rSis

� �.
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Appendix B

p53 network model parameters

The parameters and functions for the p53 network are provided in this chapter.

B.1 Core regulation network models

The functions fipxq, i P t1, 2, � � � , 10, 11u from the model, represented in the are given
by

fipxq �

#
x4

x4�j4i
i P t4, 5u

x
x�ji

otherwise.

The functions hipxq, i P t1, 2u, which represent the kinase activities, are given by

hipxq � ci
xni

xni � knii
.

B.1.1 Tristable network Nh

The parameters for this network are given in Table B.1. Most parameters are consis-
tent with the parameters and ranges from [126], except for the parameters relating to the
ARF -MDM2 interactions and ARF reactions, that did not appear in [126]. Moreover
the parameters relating to the entry of damage into the core regulation network through
the kinases (p1, p4,c1,c2,k1 and k2) are chosen arbitrarily as was done in [126]. More-
over, while [126] chose to use µM as their unit of measurement, we used arbitrary unites
(A.U.) in line with what is done in experimental studies [48, 17]. Since the amplitude of
responses are known to vary significantly between different cells [72], the ratios between
the parameters play a far more crucial role in bringing about the dynamical behavior as
opposed to the parameters themselves. The steady-state solution to the network with
these parameters results in the bifurcation diagram 9.6, which has been normalized with
respect to the p53 level at T0.
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Parameter Value Units
b1 0.0625 \h
b2 22 /h
b3 0.5 A.U./h
b4 0.0375 A.U./h
b5 0.006 A.U./h
b6 0.15 A.U./h
b7 73 /h
b8 0.2 A.U./h
b9 20 /h
b10 1 /h
b11 0.01 /h
j1 0.01 A.U.
j2 0.6 A.U.
j3 0.1 A.U.
j4 0.84 A.U.
j5 1.19 A.U.
j6 0.1 A.U.
j7 0.5 A.U.
j8 0.1 A.U.
j9 0.1 A.U.
j10 0.01 A.U.
j11 0.01 A.U.

Parameter Value Units
d1 0.02 /h
d2 0.01 /h
d3 0.005 /h
d4 0.01 /h
d5 0.0054 /h
d6 0.001 /h
p1 0.017 A.U./h
p2 0.0009 A.U./h
p3 0.02 /h
p4 0.0039 /h
p5 0.0009 A.U./h
p6 0.02 /h
p7 0.021 A.U./h
tot1 1 A.U.
tot2 1 A.U.
c1 0.066 A.U./h
c2 0.183 A.U./h
k1 2 A.U.
k2 3 A.U.
n1 1 -
n2 1 -

Table B.1: Parameters for core regulation network model in Network Nh

B.1.2 Bistable networks N 2
int and N 3

int

The study of N 2
int was performed with the same parameters as shown in Table B.1,

with the external input u24 set to 0 (although the results could be generalized to any u24).
This results in the bifurcation diagram given by Figure 9.2, which has been normalized
by the p53 level at T0. To obtain the irreversible bistable switch, only five parameters
corresponding to the entry of damage into the network were altered, and these are shown
in Table B.2.

The study of N 3
int was performed by slightly altering some parameters with respect

to Table B.1. These parameters are shown in Table B.3.
Most of the parameters altered are those which affect the entry of damage into the

core regulation network through the kinases (p1, p4,c1 and c2), which were chosen arbi-
trarily. The strength of the negative feedback between MDM2 and p53 is strengthened
by increasing the parameter b1. With respect to this model, this does not qualitatively
change the behavior other than to clearly demarcate the higher and lower branches of
p53 equilibrium points by increasing the distance between these branches. The external
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Parameter Value Units
p1 0.0229 A.U./h
p4 0.0147 /h
c1 0.0559 A.U./h
c2 0.1191 A.U./h
k2 2 A.U.

Table B.2: Parameters altered to obtain irreversible bistable switch in Network N 2
int.

Parameter Value Units
b1 1.25 \h
p1 0.017 A.U./h
p4 0.0039 /h
c1 0.066 A.U./h
c2 0.183 A.U./h

Table B.3: Parameters altered for core regulation network model in Network N 3
int

input to this network u22 is set to 0.1.
The bifurcation diagram of this network is shown in Figure B.1.1. It is also assumed

that D1 and D2 are coupled, which is not unreasonable since they are both triggered by
DNA double-strand breaks.
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Figure B.1.1: Bifurcation diagram of N 3
int.

B.1.3 Monostable networks N 1
int and Ni

The study of N 1
int and Ni were performed with the same parameters as shown in Table

B.1, except for those that affect the entry of damage into the core regulation network
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through the kinases (p1, p4,c1 and c2). The parameters were chosen to demonstrate how
these networks could operate as ultrasensitive switches, and are given in Table B.4. The
resulting p53 responses to changes in rD1s are seen in Figure 9.1, where these figures have
been normalized by the initial level of p53.

Parameter Value Units
p1 0.0206 A.U./h
p4 0.1 /h
c1 0.0226 A.U./h
c2 0.0531 A.U./h
k1 2.79 � 10�7 A.U.
k2 2.79 � 10�7 A.U.
n1 17 -
n2 17 -

Table B.4: Parameters altered for core regulation network models Network N 1
int and Ni.

B.2 Damage sensing and repair model

The functions for (9.1)–(9.3) are given as follows:

gipxq � qi � αi
xmi

βmii � xmi
(B.2.1)

with parameters given in Table B.5.
As was noted in Section 9.2, the dynamics of D1 are assumed to be very slow compared

to that of the core regulation network, leading to the observed behavior. It is worth noting
that we simplified our analysis by linearizing g2 in the following way:

g2pxq � maxp0,�k0 � k1 � xq,

where

k0 � 6 � 10�4

k1 � 9.84 � 10�4.
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Parameter Value Units
q1 1.14 � 10�5 #DSB/h
q2 0 A.U./h
q3 0.025 #DSB/h
α1 5.25 � 10�5 #DSB/h
α2 4.5 � 10�8 A.U./h
α3 0.014 #DSB/h
β1 14.298 #DSB
β2 1.3167 A.U
β3 300 #DSB
m1 1 -
m2 4 -
m3 6 -
µ 2 � 10�5 /(h A.U.)
γ 6 � 10�5 /h

Table B.5: Parameters altered for core regulation network models Network N 1
int and Ni.
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