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Abstract

Heat Flows and Entanglement Entropy: Insights From and Into AdS/CFT

by

Sebastian Fischetti

This dissertation will focus on exploring the AdS/CFT correspondence, both

as a tool to probe the behavior of strongly coupled conformal field theories (CFTs)

and as a fundamental duality to help us understand the holographic connection

between quantum gravity and gauge theories.

We will begin with an overview of this (two-part) dissertation, followed by an

introduction to gravity in asymptotically locally AdS spacetimes.

In the first part of the dissertation, we will then discuss the use of AdS/CFT

as a tool to probe the dynamics of heat transport in strongly coupled CFTs.

We will begin with a simple case in three bulk spacetime dimensions, and then

construct a four-dimensional black hole solution which is dual to heat flow in a

three-dimensional CFT. This black hole solution is stationary, but its horizon is

not a Killing horizon, making it an interesting gravitational solution in its own

right. We will then construct the gravitational dual to a CFT on a rotating black

hole, and find that the CFT does not carry heat away from the black hole, but

rather is confined to a halo around it. This is an artefact of strong coupling, and

we comment on possible connections to soft condensed matter phenomena.

In the second part of this dissertation, we probe the AdS/CFT dictionary

via entanglement entropy. Specifically, we show that the Hubeny-Rangamani-

viii



Takayanagi (HRT) prescription, which is a prescription for computing CFT entan-

glement entropy holographically, requires modification. We comment on possible

modifications, and explore in depth the possibility of using complexified surfaces

in the HRT prescription. Finally, we will approach the issue of bulk reconstruc-

tion via hole-ography, which attempts to reconstruct the bulk geometry from the

entanglement entropy of regions of the CFT. We put some constraints on when

this approach can succeed, and comment on why it might fail when it does.
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Chapter 1

Introduction

General relativity (GR) is one of the most remarkably successful modern theories

of physics. Shortly after its birth in 1915 [1], some of its predictions saw confir-

mation in the precession of the perihelion of Mercury, the deflection of starlight

by the sun, and the gravitational redshift of light. Today’s tests of GR range from

frame dragging and geodetic precession measured by Gravity Probe B [2] to en-

ergy loss through gravitational radiation in binary systems like the Hulse-Taylor

pulsar [3]. More excitingly, the Laser Interferometer Gravitational-wave Observa-

tory (LIGO) should soon start detecting these gravitational waves directly, which

will usher in a new era of astronomical observation [4].

Some modern experiments and observatories like LIGO are designed to probe

GR in a strong-field regime. While this regime includes compact astrophysical

objects like neutron stars, the more exciting strongly gravitating objects are much

simpler (and therefore in a sense more mysterious): black holes, objects whose

gravity is so strong that even light is not able to escape them. The “surface of
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Introduction Chapter 1

last return” is called the event horizon of the black hole, and (by definition) it can

emit no light1. While what we recognize today as the first black hole solution of

GR was derived by Schwarzschild in 1916 [5], it wasn’t recognized as such until

the 1960s. Moreover, the astrophysical evidence for black holes is abundant, but

somewhat circumstantial: accretion disks emitting energetic X-ray jets like that

of Cygnus X-1 [6] are believed to be powered by black holes; there is evidence of

a very massive dark object (Sagittarius A∗) at the center of our galaxy [7]; and

there have been explicit observations of a dark object believed to be a black hole

swallowing a red giant star [8]. This evidence has convinced the vast majority

of astrophysicists that black holes do in fact exist, but even if this were not the

case, direct imaging of a black hole should be provided in the coming years by the

Event Horizon Telescope [9].

Black holes are fascinating for a variety of reasons. From an astrophysical

standpoint, they are massive objects that play important roles in stellar life cycles

and even in galactic dynamics. From a theoretical point of view (and the one that

will be taken in this thesis), black holes are simple mathematical objects and thus

excellent testing grounds for new physics. Their strong gravity makes GR crucial

in their description, but the fact that GR breaks down at the singularity hidden

behind the event horizon implies that an observer falling into a black hole must

encounter some kind of quantum mechanical corrections to GR at some point. For

this reason, black holes have been at the heart of attempts to reconcile general

relativity and quantum mechanics into a theory of quantum gravity.

For example, consider the following four “laws of classical black hole mechan-

1In a purely classical regime; quantum effects will be discussed shortly.

2



Introduction Chapter 1

ics” [10]:

0. The surface gravity κ of any stationary (i.e. time-independent) black hole is

constant.

1. Any two vacuum black hole solutions that are infinitesimally related must

satisfy

dM =
1

8πG
κdA+ ΩH dJ, (1.1)

where dM , dA, and dJ are the differences between the black holes’ masses,

horizon areas, and angular momenta, and κ and ΩH are their surface gravity

and horizon angular velocity (and G is Newton’s constant).

2. It is impossible to decrease the area of a black hole’s horizon by any physical

process: δA ≥ 0.

3. It is impossible for a black hole’s surface gravity to reach zero by any physical

process.

The massM of a black hole is equivalent to its total energy (up to a factor of c2,

which we set to one), so if the surface gravity κ and horizon area A of a black hole

are interpreted as a temperature and entropy, respectively (up to constant factors),

then the laws of black hole mechanics bear a remarkable similarity to the four laws

of thermodynamics. Is this a mathematical coincidence, or is there something

deep in this statement? Quantum mechanics says the latter: as Hawking showed

in 1974 [11], if quantized fields are placed on a classical black hole spacetime, it

3



Introduction Chapter 1

turns out that the black hole will emit radiation with a temperature

kBTHawk =
~κ
2π
, (1.2)

where Boltzmann’s constant kB will from here on be set to one. This calculation,

along with arguments by Bekenstein [12, 13], lead us to conclude that black holes

really are bona fide thermodynamic objects with an entropy given by

SBH =
A

4G~
. (1.3)

Conveniently, the subscript “BH” stands for either “Bekenstein-Hawking” or “black

hole”.

This behavior is unusual: in most conventional thermodynamic systems (say,

an ideal gas), entropy scales like volume, not area2. But a concrete manifesta-

tion of this behavior and insight into its origins came in 1997 with Maldacena’s

suggestion of the anti-de Sitter/conformal field theory (AdS/CFT) correspon-

dence [19, 20] (often referred to more generally as gauge/gravity duality). The

AdS/CFT correspondence has seen remarkable success in the almost twenty years

since Maldacena’s first paper, and it will be the focus of this dissertation.

2This behavior led to some conjectured bounds on the maximum entropy of any thermody-
namic system, and consequently to the so-called holographic principle [14–16]. But in fact, the
reasoning that led to these bounds is not sound; see e.g. [17, 18].
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Introduction Chapter 1

1.1 AdS/CFT

In its original formulation, AdS/CFT is the conjecture that Type IIB string

theory living on an AdS5 × S5 background is dual to N = 4 super Yang-Mills

theory in four dimensions (here AdS5 is anti-de Sitter space, a particular negatively

curved spacetime, and S5 is the five-dimensional sphere). As we will see later,

there is a sense in which the CFT can be said to live “on the boundary” of the

space in which the string theory lives; hence we will sometimes refer to the string

theory side of the duality as the “bulk”, and the CFT side as the “boundary”.

In this sense, the theory is holographic: the CFT lives in fewer dimensions than

the string theory. Note, incidentally, that the precise manner in which these two

sides are “dual” is an active area of research, but it essentially means that the

two apparently different physical systems really describe the same physics.

Maldacena’s original conjecture [19] stems from stringy arguments (see also [21–

23] for reviews). However, there are certain limits in which the duality simpli-

fies considerably. For example, when the number of flavors (that is, the N of

the SU(N) gauge group) and the coupling of the super Yang-Mills are taken to

be very large, the string theory side of the duality becomes weakly coupled: it

reduces to classical Einstein gravity (i.e. GR) in anti-de Sitter space. Conversely,

when the bulk string theory is strongly coupled (and in particular should be ex-

hibiting quantum gravitational effects), the dual CFT is weakly coupled.

AdS/CFT is thus a weak/strong duality: when one side is strongly coupled,

the other side becomes weakly coupled. This is both a feature and a bug: it

makes it possible to study otherwise untractable strongly coupled systems by

simply studying their weakly coupled dual instead, but it also makes it difficult to

5



Introduction Chapter 1

give a proof of the conjecture. However, the abundance of evidence supporting it

is for many convincing enough to take AdS/CFT for granted, and we will adopt

this philosophy in this dissertation.

Because AdS/CFT relates two theories that look drastically different, it has

been very successful in yielding insights into systems that would otherwise be

very difficult to study directly. For instance, an obvious use of AdS/CFT is to

use the boundary CFT to probe the quantum gravity regime of the bulk string

theory, specifically in the contexts of cosmology [24–33] and black holes [34–40].

This is an example of the “boundary-to-bulk” direction, wherein the boundary

CFT can be used to probe the bulk physics. More common, however, is the

“bulk-to-boundary” direction, in which the bulk gravitational theory is used to

study strongly coupled CFTs. For instance: the AdS/condensed matter theory

(AdS/CMT) correspondence [41–43] has been used to draw insights about con-

densed matter systems (e.g. superconductors); AdS/CFT can be used to study

the thermalization of strongly coupled CFTs, with applications to both quantum

quenches [44–46] and even the hydrodynamics of the quark-gluon plasma produced

at the Relativistic Heavy Ion Collider [47–53]; turbulence and hydrodynamics has

been studied via AdS/CFT [54–56], as well as the related phenomenon of heat

transport in strongly coupled CFTs; and AdS/CFT has been used to study the

structure of entanglement in strongly coupled CFTs. This list is of course far from

exhaustive.

The approaches listed above – the boundary-to-bulk and bulk-to-boundary

directions – use AdS/CFT as a tool to probe systems that would otherwise be

difficult to study. But the duality itself is still not completely understood, and

6



Introduction Chapter 1

a complementary avenue of research is to try to understand precisely how the

mapping between the two sides works.

This dissertation is divided into two parts. Part I focuses on a bulk-to-

boundary direction: we will use AdS/CFT to study Hawking radiation and heat

flow in strongly coupled CFTs. A brief overview will be provided in Section 1.2

below. Part II will instead focus on understanding the AdS/CFT duality from

the point of view of entanglement, specifically entanglement entropy and recon-

structing the bulk geometry from CFT data. We will provide an overview of this

part in Section 1.3 below.

Note that in this dissertation we will work exclusively in the limit where the

AdS side of the duality is well approximated by classical Einstein gravity, and we

will most often be working on the gravity side. In such cases, it is common to

consider not just AdS spacetimes, but so-called asymptotically locally AdS space-

times, which according to AdS/CFT should be dual to some kind of large-N ,

strongly coupled CFT. For this reason, we give a comprehensive review of asymp-

totically locally AdS spacetimes in Chapter 2, and briefly conclude that chapter

with an explanation of how CFT quantities are extracted from AdS calculations.

1.2 Holographic Heat Flows

Hawking’s original derivation of his eponymous radiation considered free fields

on a black hole spacetime. While the results are of course of fundamental impor-

tance, the field theories that describe our universe are all interacting. An inter-

esting question is therefore how Hawking radiation is affected by the inclusion of

7
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interactions. Unfortunately, studying interacting field theories is notoriously diffi-

cult, except in a perturbative regime around weak coupling. As discussed above,

however, it is precisely for this reason that AdS/CFT shines: we can use it to

study Hawking radiation in strongly-coupled CFTs by performing calculations in

Einstein gravity. This will be the goal of Part I of this thesis.

This picture has a nice interpretation in terms of thermodynamics: recall

that black holes are thermodynamic objects with corresponding entropies and

temperatures. In dynamical gravity, they will lose energy via Hawking radiation

and eventually evaporate away. However, in AdS/CFT the boundary spacetime

(that is, the spacetime on which the CFT lives) can be imposed at will, and

in particular need not satisfy Einstein’s equations. This implies that AdS/CFT

allows us to consider strongly coupled CFTs on fixed black hole backgrounds.

Since the black holes may then emit radiation but never evaporate, they can be

thought of as objects of finite (Hawking) temperature, but infinite entropy. This

means that they act as perfect heat sources or heat sinks for heat flow in the

CFT. Thus the problem of studying Hawking radiation in the CFT amounts to

one of studying properties of heat flow between perfect heat sources and heat

sinks, which we will model as black holes or heat baths.

The question of understanding this heat flow from a holographic perspective

therefore amounts to finding asymptotically locally AdS spacetimes whose bound-

aries contain black holes. But note that a given boundary geometry (i.e. putting

the CFT on a given black hole spacetime) may admit multiple bulk geometries.

These different allowed geometries correspond to different phases of the CFT.

As will be reviewed in Chapters 3 and 4, there are roughly two allowed phases

8
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called black droplets and black funnels [57–62], which are characterized by the

geometry of the black hole horizons in the bulk AdS space. From the CFT side,

black droplets correspond to a phase in which the CFT is “stuck” around the

black hole and unable to radiate; this phase is an artefact of the CFT’s strong

coupling. The black funnel, on the other hand, corresponds to a CFT phase in

which the black hole is radiating, much like in conventional Hawking radiation in

free field theories.

Chapter 3 will begin to develop some of these ideas by studying the analytically

tractable setup of AdS3, which admits only black funnel solutions. Chapter 4 will

then numerically construct a so-called flowing black funnel, which corresponds to

a bulk solution whose horizon exhibits a steady-state “flow” of heat (in technical

terms, the bulk horizon is stationary but non-Killing). From this solution, we

will extract the thermal conductivity of the CFT, and geometric properties of the

bulk solution. Finally, in Chapter 5 we will numerically construct a black droplet

which is dual to a CFT living on a rotating black hole background.

Before moving on, we should pause to note that the flow of heat behaves much

like the flow of a fluid. It so happens that a specific version of gauge/gravity

duality, called the fluid/gravity correspondence [63–65], makes this notion precise:

it states that Einstein’s equations in a certain AdS black hole background can be

rewritten as the relativistic Navier-Stokes equations for a conformal fluid. Thus

in the limit in which the CFT is well-described by hydrodynamics, the behavior of

CFT solutions dual to black droplets and black funnels can be described with the

fluid/gravity correspondence. This notion will be briefly developed in Chapter 4,

and will be used in future work [66] to study instabilities of flowing black funnels.
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1.3 Holographic Entanglement

In Part I of this dissertation, AdS/CFT is used purely as a tool to probe the

behavior of the CFT. In Part II, we will instead try to probe the duality itself.

What does this mean? The two sides of the duality look drastically different:

one is a theory of (quantum) gravity, the other is a gauge theory. Understanding

the duality requires understanding how objects on one side map to the other. The

collection of these maps is the “AdS/CFT dictionary”, and if AdS/CFT is to give

us new insights into either side of the duality, understanding this dictionary is

crucial.

In the years since the correspondence was first proposed, the dictionary has

grown quite substantially. An early entry, for instance, was the requirement that

the Hilbert spaces of the bulk AdS space and boundary CFT be the same (it is

in this sense that we mean the two sides “describe the same physics”). One can

then match the partition functions of the two sides:

ZCFT = ZAdS, (1.4)

where the boundary conditions on the bulk fields are given by appropriate expec-

tation values and currents in the CFT [21]. This matching allows us to identify

thermodynamics quantities on the two sides: for example, a black hole with en-

tropy S and energy M in AdS is dual to a CFT state with the same entropy and

energy.

Some of the simplest entries in the dictionary are those that relate geometric

objects in the bulk to CFT observables. For instance, CFT two-point correlators
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are dual to boundary-anchored geodesics in the AdS bulk [67]; CFT Wilson loops

are dual to bulk string worldsheets [68]; and the entanglement entropy of a region

in the CFT is dual to a bulk extremal-area surface [69, 70]. Besides their simplicity,

much of the appeal of these geometric duals is the hope that they may be used to

reconstruct the entire bulk geometry (or at least some portion thereof).

We should pause to elaborate on the latter of these. Recall that given a state ρ

on some Hilbert space H which can be factorized as H = HA ⊗HB, we can trace

out the degrees of freedom in B to obtain a reduced density matrix on HA:

ρA = TrBρ. (1.5)

We can then compute the usual von Neumann entropy of ρA:

SA = TrA (ρA ln ρA) . (1.6)

This quantity is the entanglement entropy of A; in the case that ρ is a pure

state, SA characterizes the amount of entanglement between the degrees of freedom

contained inHA and those inHB. In a field theoretic context, we typically takeHA

to be the Hilbert space associated to some spatial region A of the field theory (that

is, HA contains those degrees of freedom localized within the region A).

In the holographic context, Ryu and Takayanagi (RT) [69] conjectured that

the entanglement entropy of some region of a static holographic CFT is given

by the area of a minimal-area bulk surface anchored to the boundary of the bulk

spacetime; this conjecture was proven (modulo some details) in [71], and extended

to dynamical contexts by Hubeny, Rangamani, and Takayanagi (HRT) [70].
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The details of these conjectures, particularly HRT, will be the focus of Part II

of this dissertation. In Chapter 6 we will begin with a study of the role of en-

tanglement in a particular class of bulk geometries. In that context, we will use

both two-point correlators and entanglement entropy as probes. In Chapter 7 we

will construct bulk geometries in which the HRT formula as stated is ill-defined,

implying that it will require some modification. We explore one possible modifi-

cation in Chapter 8, where we explore whether or not one may include complex

surfaces in the calculation. Chapter 9 will culminate with a discussion on limi-

tations to reconstructing the bulk geometry from entanglement entropy. Finally,

Chapter 10 is a slight detour in which we use entanglement entropy to study the

equilibration of a CFT in an expanding cosmology.

1.4 Permissions and Attributions

1. The content of Chapter 2 is the result of a collaboration with William Kelly

and Donald Marolf, and has been published as Chapter 19 of the “Springer

Handbook of Spacetime” [72]. It is reproduced here with the permission of

Springer Publishing.

2. The content of Chapter 3 and part of Appendix A is the result of a col-

laboration with Donald Marolf, and has previously appeared in the journal

Classical and Quantum Gravity [73]. It is reproduced here with the per-

mission of the Institute of Physics (IOP): http://authors.iop.org/atom/

help.nsf/LookupJournalSpecific/WebPermissionsFAQ~**.

3. The content of Chapter 4 and part of Appendix A is the result of a collabora-
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tion with Donald Marolf and Jorge E. Santos, and has previously appeared

in the journal Classical and Quantum Gravity [74]. It is reproduced here

with the permission of the Institute of Physics (IOP): http://authors.iop.

org/atom/help.nsf/LookupJournalSpecific/WebPermissionsFAQ~**.

4. The content of Chapter 5 and part of Appendix A is the result of a collabo-

ration with Jorge E. Santos, and has previously appeared in the Journal of

High Energy Physics [75]. It is reproduced here with the permission of the

International School of Advanced Studies (SISSA): http://jhep.sissa.

it/jhep/help/JHEP/CR_OA.pdf.

5. The content of Chapter 6 and part of Appendix B is the result of a collabora-

tion with Tomás Andrade, Donalf Marolf, Simon F. Ross, and Moshe Rozali,

and has previously appeared in the Journal of High Energy Physics [76]. It is

reproduced here with the permission of the International School of Advanced

Studies (SISSA): http://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf.

6. The content of Chapter 7 and part of Appendix B is the result of a collabora-

tion with Donald Marolf and Aron C. Wall, and has previously appeared in

the journal Classical and Quantum Gravity [77]. It is reproduced here with

the permission of the Institute of Physics (IOP): http://authors.iop.org/

atom/help.nsf/LookupJournalSpecific/WebPermissionsFAQ~**.

7. The content of Chapter 8 and part of Appendix B is the result of a col-

laboration with Donald Marolf, and has previously appeared in the journal

Classical and Quantum Gravity [78]. It is reproduced here with the per-

mission of the Institute of Physics (IOP): http://authors.iop.org/atom/
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help.nsf/LookupJournalSpecific/WebPermissionsFAQ~**.

8. The content of Chapter 9 and part of Appendix B is the result of a collab-

oration with Netta Engelhardt [79].

9. The content of Chapter 10 is the result of a collaboration with David Kastor

and Jennie Traschen, and has previously appeared in the journal Classical

and Quantum Gravity [80]. It is reproduced here with the permission of

the Institute of Physics (IOP): http://authors.iop.org/atom/help.nsf/

LookupJournalSpecific/WebPermissionsFAQ~**.
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Chapter 2

A Review of Asymptotically

(Locally) AdS Spacetimes

2.1 Introduction

When a physical system is complicated and non-linear, global symmetries and

the associated conserved quantities provide some of the most powerful analytic

tools to understand its behavior. This is as true in theories with a dynamical

spacetime metric as for systems defined on a fixed spacetime background. Chap-

ter 17 of [72] discusses the so-called Arnowitt-Deser-Misner (ADM) conserved

quantities for asymptotically flat dynamical spacetimes, exploring in detail cer-

tain subtleties related to diffeomorphism invariance. In particular, it shows that

the correct notion of global symmetry is given by the so-called asymptotic symme-

tries; equivalence classes of diffeomorphisms with the same asymptotic behavior at

infinity. It also notes that the notion of asymptotic symmetry depends critically
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on the choice of boundary conditions. Indeed, it is the imposition of boundary

conditions that cause the true gauge symmetries to be only a subset of the full

diffeomorphism group and thus allow the existence of non-trivial asymptotic sym-

metries at all.

This chapter will explore the asymptotic symmetries and corresponding con-

served charges of asymptotically anti-de Sitter (AdS) spacetimes (and of the more

general asymptotically locally AdS spacetimes). There are three excellent rea-

sons for doing so. The first is simply to gain further insight into asymptotic

charges in gravity by investigating a new example. Since empty AdS space is a

maximally symmetric solution, asymptotically AdS spacetimes are a natural and

simple choice. The second is that the structure one finds in the AdS context is

actually much richer than that in asymptotically flat space. At the physical level,

this point is deeply connected to the fact (see e.g. [81]) that all multipole mo-

ments of a given field in AdS space decay at the same rate at infinity. So while

in asymptotically flat space the far field is dominated mostly by monopole terms

(with only sub-leading corrections from dipoles and higher multipoles) all terms

contribute equally in AdS. It is therefore useful to describe not just global charges

(e.g., the total energy) but also the local densities of these charges along the AdS

boundary. In fact, it is natural to discuss an entire so-called boundary stress ten-

sor T ijbndy rather than just the conserved charges it defines. For this reason, we

take a somewhat different path to the construction of conserved AdS charges than

is followed in Chapter 17 of [72]. In particular, we will use covariant as opposed

to Hamiltonian methods below, though we will show in section 2.4 that the end

results for conserved charges are equivalent.
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The third reason to study conserved charges in AdS is their fundamental re-

lation to the anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence

[19, 20, 82], which may well be the most common application of general relativity

in 21st century physics. While this is not the place for a detailed treatment of

either string theory or AdS/CFT, no Handbook of Spacetime would be complete

without presenting at least a brief overview of the correspondence. It turns out

that this is easy to do once we have become familiar with T ijbndy and its cousins as-

sociated with other (non-metric) fields. So at the end of this chapter (section 2.5)

we take the opportunity to do so. We will introduce AdS/CFT from the gravity

side without using tools from either string theory or conformal field theory.

We will focus on such modern applications below, along with open questions.

We make no effort to be either comprehensive or historical. Nevertheless, the

reader should be aware that conserved charges for asymptotically AdS spacetimes

were first constructed in [83], where the associated energy was also argued to be

positive definite.

The plan for this chapter is as follows. After defining and discussing AdS

asymptotics in section 2.2, we construct variational principles for asymptotically

AdS spacetimes in section 2.3. This allows us to introduce the boundary stress

tensor T ijbndy and a similar so-called response function Φbndy for a bulk scalar field.

The conserved charges Q[ξ] constructed from T ijbndy are discussed in section 2.3.4

and we comment briefly on positivity of the energy in section 2.3.5.

Section 2.4 then provides a general proof that the Q[ξ] do indeed generate

canonical transformations corresponding to the desired asymptotic symmetries.

As a result, they agree (up to a possible choice of zero-point) with corresponding
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ADM-like charges H[ξ] that would be constructed via the AdS-analogues of the

Hamiltonian techniques used in Chapter 17 of [72]. The interested reader can

find such a Hamiltonian treatment in [84–86]. Below, we generally consider AdS

gravity coupled to a simple scalar matter field. More complete treatments allowing

more general matter fields can be found in e.g. [87–89]. Section 2.5 then defines

the algebra Abndy of boundary observables and provides the above-mentioned brief

introduction to AdS/CFT.

2.2 Asymptotically Locally AdS Spacetimes

This section discusses the notion of asymptotically locally AdS spacetimes.

We begin by introducing empty Anti-de Sitter space itself in section 2.2.1 as a

maximally-symmetric solution to the Einstein equations. We then explore the

asymptotic structure of AdS, and in particular its conformal boundary. This

structure is used to define the notions of asymptotically AdS (AAdS) and asymp-

totically locally AdS (AlAdS) spacetimes in section 2.2.3. Section 2.2.4 then dis-

cusses the associated Fefferman-Graham expansion which provides an even more

detailed description of the asymptotics and which will play a critical role in con-

structing variational principles, the boundary stress tensor, and so forth in the rest

of this chapter. Finally, section 2.2.5 describes how the above structures transform

under diffeomorphisms and introduces the notion of an asymptotic Killing vector

field.
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2.2.1 Anti-de Sitter Space

Let us begin with a simple geometric description of (d+1)-dimensional anti-de

Sitter space (AdSd+1) building on the reader’s natural intuition for flat geometries.

We will, however, need to begin with a flat spacetime M2,d of signature (2, d)

having two time-directions and d spatial directions, so that in natural coordinates

T 1, T 2, X1, . . . , Xd the line element takes the form

ds2 = −(dT 1)2 − (dT 2)2 + (dX1)2 + · · ·+ (dXd)2. (2.1)

Consider the (d+ 1)-dimensional hyperboloid H of events in M2,d satisfying

(T 1)2 + (T 2)2 −
d∑

i=1

(
X i
)2

= ℓ2, (2.2)

and thus which lie at a proper distance ℓ from the origin; see figure 2.1. This

hyperboloid is sometimes known as the d+1 anti-de Sitter space AdSd+1, though

we will follow a more modern tradition and save this name for a closely related

(but much improved!) spacetime that we have yet to introduce.

The isometries of H are given by symmetries of M2,d preserved by (2.2). Such

isometries form the group SO(d, 2), generated by the rotation in the T 1, T 2 plane

together with two copies of the Lorentz group SO(d, 1) that act separately on

T 1, X1, . . . , Xd and T 2, X1, . . . Xd. This gives (d+ 1)(d+ 2)/2 independent sym-

metries so that H is maximally symmetric.

A simple way to parametrize the hyperboloid is to write T 1 =
√
ℓ2 +R2 cos(τ/ℓ)

and T 2 =
√
ℓ2 +R2 sin(τ/ℓ), with R2 =

∑
(X i)2 so that the induced line element
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T 1

R

T 2

Figure 2.1: The hyperboloid (2.2) embedded in M2,d, defining anti-de Sitter space.

on H becomes

ds2AdSd+1
= −

(
R2/ℓ2 + 1

)
dτ 2 +

dR2

R2/ℓ2 + 1
+R2 dΩ2

d−1. (2.3)

On H, the coordinate τ is periodic with period 2π. But this makes manifest that

H contains closed timelike curves such as, for example, the worldline R = 0. It

is thus useful to unwrap this time direction by passing to the universal covering

space of H or, more concretely, by removing the periodic identification of τ (so

that τ now lives on R instead of S1). We will refer to this covering space as the

anti-de Sitter space AdSd+1 with scale ℓ. Of course, the line element remains that

of (2.3). Since any Killing field of H lifts readily to the covering space, AdSd+1

remains maximally symmetric with isometry group given by (a covering group of)

SO(d, 2).

The coordinates used in (2.3) are called global coordinates, since they cover all

of AdS. We can introduce another useful set of coordinates, called Poincaré coordi-

nates, by setting z = ℓ2/
(
T 1 +Xd

)
, t = ℓT 2/

(
T 1 +Xd

)
, and xi = ℓX i/

(
T 1 +Xd

)
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for i = 1, . . . , d− 1. The metric then becomes

ds2AdSd+1
=
ℓ2

z2

(
−dt2 +

d−1∑

i=1

(
dxi
)2

+ dz2

)
. (2.4)

Poincaré coordinates take their name from the fact that they make manifest a

(lower dimensional) Poincaré symmetry associated with the d coordinates t, xi.

As is clear from their definitions, these coordinates cover only the region of AdS

where T 1 + Xd > 0. This region is called the the Poincaré patch. While we

will not make significant use of (2.4) below, we mention these coordinates here

since they arise naturally in many discussions of AdS/CFT which the reader may

encounter in the future.

Since AdS is maximally symmetric, its Riemann tensor can be written as an

appropriately symmetrized combination of metric tensors:

Rµνσλ =
1

d(d+ 1)
R (gµσgνλ − gµλgνσ) . (2.5)

A computation shows that the scalar curvature of AdS is R = −d(d + 1)/ℓ2,

and thus that AdS solves the vacuum Einstein field equations with cosmological

constant Λ = −d(d− 1)/2ℓ2:

Rµν −
1

2
Rgµν + Λgµν = 0. (2.6)

In this sense, AdS is a generalization of flat space to Λ < 0.
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2.2.2 Conformal Structure and Asymptotic Symmetries of

AdS

We now turn to the asymptotic structure of AdS, which was seen in Chapter

17 of [72] to be a crucial ingredient in the construction of conserved charges. It

is useful to introduce a new radial coordinate r∗ = arctan(R/ℓ), so that the line

element becomes

ds2AdSd+1
=

ℓ2

cos2 (r∗)

[
−dτ 2/ℓ2 + dr2∗ + sin2 (r∗) dΩ

2
d−1

]
. (2.7)

We can immediately identify r∗ = π/2 as a conformal boundary, leading to the

conformal diagrams shown in Figure 2.2.2. (For readers not familiar with such

diagrams, Chapter 28 will give a brief introduction.)

It is evident from the conformal diagram that AdS is not globally hyperbolic.

In order to evolve initial data on some spacelike surface Σ arbitrarily far forward

(or backward) in time, one needs to supply additional information in the form

of boundary conditions at the conformal boundary. Such boundary conditions

will be discussed in detail in section 2.3, where they will play critical roles in our

discussion of conserved charged.

Although the line element (2.7) diverges at r∗ = π/2, the rescaled metric

ĝ =
cos2(r∗)

ℓ2
gAdSd+1

(2.8)

defines a smooth manifold with boundary. In particular, the metric induced by ĝ

at r∗ = π/2 is just that of the flat cylinder R× Sd−1, also known as the Einstein
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τ

r∗

(a)

I +

I +

I −

I −

i+

i−

i0

τ

(b)

Figure 2.2: Conformal diagrams of AdSd+1, showing both the global spacetime
and the region covered by the Poincaré patch. In both figures, the τ direction
extends infinitely to the future and to the past. In (a), a full Sd−1 of symmetry
has been suppressed, leaving only the τ , r∗ coordinates of (2.7). The dotted
line corresponds to r∗ = 0. In (b), one of the angular directions has been shown
explicitly to guide the reader’s intuition; the axis of the cylinder corresponds
to the dotted line in (a). The Poincaré patch covers a wedge-shaped region of
the interior of the cylinder which meets the boundary at the lines marked I ±

and the points marked i±, i0. These loci form the null, timelike, and spacelike
infinities of the associated region (conformal to Minkowski space) on the AdS
boundary.
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static universe (ESU). The manifold with boundary will be called M and the

boundary itself (at r∗ = π/2) will be called ∂M . Of course, we could equally well

have considered the more general rescaled metric

ĝ′ =
cos2(r∗)

ℓ2
e2σ gAdSd+1

, (2.9)

where σ is an arbitrary smooth function on M . This metric is also nonsingular

at r∗ = π/2, but the induced geometry on ∂M is now only conformal to R×Sd−1.

The choice of a particular rescaled metric (2.9) (or, equivalently, of a particular

rescaling factor cos2(r∗)
ℓ2

e2σ) determines a representative of the corresponding con-

formal class of boundary metrics. This choice (which still allows great freedom

to choose σ away from ∂M) is known as the choice of conformal frame. We shall

often call this representative “the boundary metric,” where it is understood that

the above choices must be made for this term to be well-defined.

Although it is not critical for our discussion below, the reader should be aware

of the asymptotic structure of the Poincaré patch and how it relates to that of

global AdS as discussed above. From (2.4) we see that the conformal boundary

lies at z = 0. The rescaled metric

ĝ =
z2

ℓ2
gAdSd+1

(2.10)

is regular at z = 0, where the induced metric is just d-dimensional Minkowski

space. Now, it is well known [90] that Minkowski space M1,d−1 is conformally

equivalent to a patch of the Einstein static universe R× Sd−1. We conclude that

z = 0 of the Poincaré patch is a diamond-shaped piece of ∂M , as shown at right
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in Figure 2.2.2.

In the interior of AdS the Poincaré patch covers a wedge-shaped region. This

can be thought of as follows: future-directed null geodesics fired from i− in Fig-

ure 2.2.2 are focused onto i0; these geodesics are generators of a null hypersurface

which we shall call the past Poincaré horizon H−
Poincaré. Likewise, future-directed

null geodesics fired from i0 are focused onto i+, generating the future Poincaré

horizon H+
Poincaré. The Poincaré patch of AdS is the wedge enclosed by these

horizons.

2.2.3 A definition of Asymptotically Locally AdS Space-

times

As was seen in Chapter 17 of [72], when the spacetime metric is dynamical

the choice of boundary conditions plays an especially key role in constructions of

conserved charges. In this chapter we consider boundary conditions which force

the spacetime to behave asymptotically in a manner at least locally similar to (2.3).

It turns out to be useful to proceed by using the notion of a conformally rescaled

metric ĝ which extends sufficiently smoothly to the boundary (see chapter 28 for

further discussion of this technique). After imposing the equations of motion,

this ĝ will allow us to very quickly define both asymptotically AdS (AAdS) and

asymptotically local AdS spacetimes (AlAdS). Below, we follow [87, 91–96].

To begin, recall that our discussion of pure AdS above made use of the fact

that the unphysical metrics defined in (2.8) and (2.10) could be extended to the

conformal boundary ∂M of AdS. We can generalize this notion by considering

any manifoldM (often called ‘the bulk’) with boundary ∂M and allowing metrics
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g which are singular on ∂M but for which but there exists a smooth function Ω

satisfying Ω|∂M = 0, (dΩ)|∂M 6= 0 (where |∂M denotes the pull-back to ∂M),

and Ω > 0 on all of M , such that

ĝ = Ω2g (2.11)

can be extended to all of M as a sufficiently smooth non-degenerate metric for

which the induced metric on ∂M has Lorentz signature. We will discuss what is

meant by sufficiently smooth in more detail in section 2.2.4, but for the purposes

of this section one may take ĝ to be C2 (so that its Riemann tensor is well-defined).

Note that ĝ is not unique; given any allowed Ω one is always free to choose

Ω′ = eσΩ, (2.12)

for arbitrary smooth σ onM . Thus, as before, the notion of a particular boundary

metric on ∂M is well-defined only after one has chosen some conformal frame.

However, the bulk metric g does induce a unique conformal structure on ∂M .

The function Ω is termed the defining function of the conformal frame. The

above structure is essentially that of Penrose’s conformal compactifications [97],

except that the Lorentz signature of ∂M forbids M from being fully compact. In

particular, future and past infinity are not part of ∂M .

In vacuum Einstein-Hilbert gravity with cosmological constant (2.6), we define

an asymptotically locally AdS spacetime to be a spacetime (g,M) as above that

solves the Einstein equations (2.6). A key feature of this definition is that it

makes no restriction on the conformal structure, or even the topology of the
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boundary, save that it be compatible with having a Lorentz signature metric. For

an asymptotically locally AdS spacetime to be what we will call asymptotically

AdS, the induced boundary metric must be conformal to R × Sd−1. The reader

should be aware that in the literature, the term “asymptotically AdS” (AAdS) is

sometimes used synonymously with “asymptotically locally AdS” (AlAdS). Here

we emphasize the distinction between the two for pedagogical purposes, as only

AAdS spacetimes can truly be said to approach global AdS near ∂M .

To show that AlAdS spacetimes do in fact approach (2.5) requires the use of

the Einstein equations. By writing gµν = Ω−2ĝµν , a straightforward calculation

then shows [95] that near ∂M we have

Rµνσλ = − |dΩ|2ĝ (gµσgνλ − gνσgµλ) +O
(
Ω−3

)
, (2.13)

where

|dΩ|2ĝ ≡ ĝµν∂µΩ ∂νΩ (2.14)

extends smoothly to ∂M . Note that since g has a second-order pole at ∂M , the

leading-order term in (2.13) is of order Ω−4. The Einstein field equations then

imply that

|dΩ|2ĝ =
1

ℓ2
on ∂M. (2.15)

It follows that Riemann tensor (2.13) of an AlAdS spacetime near ∂M looks like

that of pure AdS (2.5). Further details of the asymptotic structure (and of the

approach to (2.3) for the AAdS case) are elucidated by the Fefferman-Graham

expansion near ∂M to which we now turn.
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2.2.4 The Fefferman-Graham Expansion

The term asymptotically (locally) AdS suggests that the spacetime metric g

should (locally) approach (2.3), at least with a suitable choice of coordinates. This

is far from manifest in the definitions above. But it turns out to be a consequence

of the Einstein equations. In fact, these equations imply that the asymptotic

structure is described by a so-called Fefferman-Graham expansion [98].

The basic idea of this expansion is to first choose a convenient set of coordi-

nates and then to attempt a power-series solution to the Einstein equations. Since

the Einstein equations are second order, this leads to a second-order recursion re-

lation for the coefficients of the power series. For, say, simple ordinary differential

equations, one would expect the free data in the power series to be parametrized

by two of the coefficients. The structure that emerges from the Einstein equations

is similar, except for the presence of constraint equations similar to those described

in Chapter 17 of [72]. As we briefly describe below, the constraint equations lead

to corresponding constraints on the two otherwise free coefficients. We continue

to consider the vacuum case (2.6).

Let us begin by introducing the so-called Fefferman-Graham coordinates on

some finite neighborhood U of ∂M . To do so, note that since the defining func-

tion Ω is not unique it is possible to choose a σ in (2.12) such that the modified

defining function z := Ω′ obeys

|dz|2ĝ =
1

ℓ2
(2.16)

on U , where ĝ = z2g. In fact, we can do so with σ|∂M = 1 so that we need
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not change the conformal frame. We can then take the defining function z to

be a coordinate near the boundary; the notation z is standard for this so-called

“Fefferman-Graham radial coordinate.” We choose the other coordinates xi to be

orthogonal to z in U (according to the metric ĝ). The metric in these so-called

Fefferman-Graham coordinates will then take the form

ds2 =
ℓ2

z2
(
dz2 + γij(x, z) dx

i dxj
)
, (2.17)

where i = 0, . . . , d. By construction, γij can be extended to ∂M , so it should

admit an expansion (at least to some order) in non-negative powers of z:

γij(x, z) = γ
(0)
ij (x) + zγ

(1)
ij (x) + · · · . (2.18)

Note that γ
(0)
ij defines the metric γ(0) on ∂M in this conformal frame.

Since the Einstein equations are second order partial differential equations,

plugging in the ansatz (2.18) leads to a second order recursion relation for the

γ(n). For odd d this recursion relation admits solutions for all γ(n). After specifying

γ(0), one finds that all γ(n) with n < d are uniquely determined (and, in fact γ(n)

vanishes for all odd n < d). For example, for d > 2 one finds [96]

γ
(2)
ij =

1

d− 2

(
Rij −

1

2(d− 1)
Rγ(0)ij

)
, (2.19)

where R,Rij are respectively the Ricci tensor and Ricci scalar of γ(0).

However, new data enters in γ(d). This new data is subject to constraints

analogous to those discussed in the Hamiltonian formalism in Chapter 17 of [72].
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Indeed, these constraints may be derived by considering the analogues of the

Hamiltonian and momentum constraints on surfaces with z = constant. They

determine the trace and divergence of γ(d) (again for d odd) through

(
γ(0)
)ij
γ
(d)
ij = 0,

(
γ(0)
)ki

Dkγ
(d)
ij = 0, (2.20)

where Dk is the γ
(0)-compatible derivative operator on ∂M (where we think of all

γ(n) as being defined). We will give a short argument for (2.20) in section 2.3.4.

Once we have chosen any γ(d) satisfying (2.20), the recursion relation can then

be solved order-by-order to express all higher γ(n) in terms of γ(0) and γ(d). Of

course, the series (2.17) describes only the asymptotic form of the metric. There

is no guarantee that there is in fact a smooth solution in the interior matching

this asymptotic data, or that such a smooth interior solution is unique when it

exists.

The situation is slightly more complicated for even d, where the recursion

relations for the ansatz (2.18) break down at the order at which γ(d) would appear.

To proceed, one must allow logarithmic terms to arise at this order and use the

more general ansatz

γij(x, z) = γ
(0)
ij + z2γ

(2)
ij + · · ·+ zdγ

(d)
ij + zdγ̄

(d)
ij log z2 + · · · , (2.21)

where, since the structure is identical for all d up to order n = d, we have made

manifest that γ(n) = 0 for all odd n < d. The higher order terms represented by

· · · include both higher even powers of z and such terms multiplied by log z. One
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finds that γ̄(d) is fully determined by γ(0) and satisfies

(
γ(0)
)ij
γ̄
(d)
ij = 0,

(
γ(0)
)ki

Dkγ̄
(d)
ij = 0. (2.22)

For example, for d = 2, 4, one obtains [96]

γ̄
(2)
ij = 0, (2.23)

γ̄
(4)
ij =

1

8
RikjlRkl +

1

48
DiDjR− 1

16
D2Rij −

1

24
RRij

+

(
1

96
D2R+

1

96
R2 − 1

32
RklRkl

)
γ
(0)
ij , (2.24)

where Rijkl is the Riemann tensor of γ(0), and indices are raised and lowered

with γ(0). But γ(d) may again be chosen freely subject to dimension-dependent

conditions that fix its divergence and trace. As examples, one finds [96]

d = 2 :
(
γ(0)
)ij
γ
(d)
ij =

1

2
R, Diγ

(d)
ij =

1

2
DjR, (2.25)

d = 4 :
(
γ(0)
)ij
γ
(d)
ij =

1

16

(
RijRij − 2

9
R2

)
, (2.26)

Diγ
(d)
ij =

1

8
Ri

kDiRkj −
1

32
Dj

(
RikRik

)
+

1

288
RDjR. (2.27)

The higher terms in the series are again uniquely determined by γ(0), γ(d).

In general, the terms γ(n) become more and more complicated at each order.

But the expansion simplifies when γ
(0)
ij is conformally flat and γ

(d)
ij = 0. In this

case one finds [99] that the recursion relation can be solved exactly and terminates

at order z4. In particular, the bulk metric so obtained is also conformally flat,
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and is thus locally AdSd+1. For d = 2, the Fefferman-Graham expansion can be

integrated exactly for any γ(0), γ(d), and always terminates at order z4 to define a

metric that is locally AdS3.

2.2.5 Diffeomorphisms and symmetries in AlAdS

The reader of this Handbook is by now well aware of the important roles played

by diffeomorphisms in understanding gravitational physics. Let us therefore pause

briefly to understand how such transformations affect the structures defined thus

far. We are interested in diffeomorphisms of our manifold M with boundary ∂M .

By definition, any such diffeomorphism must map ∂M to itself; i.e., it also induces

a diffeomorphism of ∂M . As usual in physics, we consider diffeomorphisms (ofM)

generated by vector fields ξ; the corresponding diffeomorphism of ∂M is generated

by some ξ̂, which is just the restriction of ξ to ∂M (where by the above it must

be tangent to ∂M).

Of course, the metric g transforms as a tensor under this diffeomorphism. But

if we think of the diffeomorphism as acting only on dynamical variables of the

theory then the defining function z = Ω does not transform at all, and in particular

does not transform like a scalar field. This means that the rescaled metric ĝ =

z2g does not transform like a tensor, and neither does the boundary metric γ(0).

Instead, the diffeomorphism induces an additional conformal transformation on

∂M ; i.e., a change of conformal frame.

We can make this explicit by considering diffeomorphisms that preserve the
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Fefferman-Graham gauge conditions; i.e., which satisfy

δgzz = 0 = δgiz (2.28)

for

δgµν = £ξgµν = ∇µξν +∇νξµ, (2.29)

where we use £ξ to denote Lie derivatives along ξ and ∇µ is the covariant deriva-

tive compatible with the metric g on M . Let us decompose the components δgµν

into

£ξgzz =
2ℓ

z
∂z

(
ℓ

z
ξz
)
, (2.30)

£ξgiz =
ℓ2

z2
(
∂iξ

z + γij∂zξ
j
)
, (2.31)

£ξgij =
ℓ2

z2

(
£ξ̂γij + z2 ∂z

(
z−2γij

)
ξz
)
, (2.32)

where £ξ̂ is the Lie derivative with respect to ξ̂ on ∂M . These conditions can be

integrated using (2.28) to obtain

ξz = zξ̂z(x), (2.33)

ξi = ξ̂i(x)− ∂j ξ̂
z

∫ z

0

z′γji(z′) dz′, (2.34)

where ξ̂z and ξ̂i are an arbitrary function and vector field on ∂M (which we

may transport to any z = constant surface by using the given coordinates to
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temporarily identify that surface with ∂M). In particular, for ξ̂i = 0 we find

gij + δgij =
ℓ2

z2

(
1− 2ξ̂z

)
γ
(0)
ij +O(z0). (2.35)

Thus the boundary metric transforms as γ(0) → e−2ξ̂zγ
(0)
ij . Such transformations

are called conformal transformations by relativists and Weyl transformations by

particle physicists; we will use the former, but the reader will find both terms in

various treatments of AlAdS spacetimes. This is precisely the change of conformal

frame mentioned above.

Let us now turn to the notion of symmetry. As in Chapter 17 of [72], we might

be interested either in an exact symmetry of some metric g, generated by a Killing

vector field (KVF) satisfying ∇(νξµ) = 0, or in some notion of asymptotic sym-

metry. We will save the precise definition of an asymptotic symmetry for section

2.3.3 as, strictly speaking, this first requires the construction an appropriate vari-

ational principle and a corresponding choice of boundary conditions. However, we

will discuss the closely related (but entirely geometric) notion of an asymptotic

Killing field below.

Suppose first that ξ is indeed a KVF of g so that £ξg = 0. It is clear that

there are two cases to consider. Either £ξΩ = 0 (in which case we say that ξ is

compatible with Ω) or £ξΩ 6= 0 (in which case we say that ξ is not compatible with

Ω). In the former case we clearly have£ξĝ = £ξ(Ω
2g) = 0 so that ξ is also a Killing

field of ĝ. But more generally we have seen that the corresponding diffeomorphism

changes ĝ by a conformal factor. The generators of such diffeomorphisms are called
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conformal Killing fields of ĝ (see e.g. Appendix C.3 of [90]) and satisfy

£ξĝµν = (£ξ ln Ω
2)ĝµν ⇒ 2∇̂(µξν) =

2

d+ 1

(
∇̂σξ

σ
)
ĝµν , (2.36)

where ∇̂ is the covariant derivative compatible with ĝ, and indices on ξµ are

lowered with ĝµν . Note that the induced vector field ξ̂ on ∂M is again a conformal

Killing field of γ(0).

This suggests that we define an asymptotic Killing field to be any vector

field ξ that satisfies (2.36) to leading order in Ω at ∂M . If we ask that ξ also

preserve Fefferman-Graham gauge we may then expand (2.33) and (2.34) and

insert into (2.36) to obtain

ξz = zξ̂z(x), (2.37)

ξi = ξ̂i(x)− 1

2
z2
(
γ(0)
)ij
∂j ξ̂

z +O(z4), (2.38)

£ξ̂γ
(0)
ij − 2

d+ 1

(
Dkξ̂

k + ξ̂z
)
γ
(0)
ij = 0. (2.39)

Taking the trace of the condition (2.39) shows that ξ̂z = 1
d
Diξ̂

i, so (2.39) is the

conformal Killing equation for ξ̂ with respect to γ(0). In other words, conformal

Killing fields ξ̂ of γ(0) are in one-to-one correspondence with asymptotic Killing

fields of g which preserve Fefferman-Graham gauge, where the equivalence relation

is given by agreement to the order shown in (2.38).
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2.2.6 Gravity with Matter

Our treatment above has focused on vacuum gravity. It is useful to generalize

the discussion to include matter fields, both to see how this influences the above

result and also to better elucidate the general structure of asymptotically AdS field

theory. Indeed, readers new to dynamics in AdS space will gain further insight

from section 2.2.4 if they re-read it after studying the treatment of the free scalar

field below. We use a single scalar as an illustrative example of matter fields; see

[87, 88] for more general discussions.

For simplicity, we first consider a massive scalar field in a fixed AlAdSd+1

gravitational background, which we take to be in Fefferman-Graham form (2.17).

This set-up is often called the probe approximation as it neglects the back-reaction

of the matter on the spacetime. The action is as usual

SBulkφ = −1

2

∫
dd+1x

√
|g|
(
gµν∂µφ∂νφ+m2φ2

)
. (2.40)

We study the behavior of solutions near the boundary z = 0 by seeking solutions

which behave at leading order like z∆ for some power ∆. The equation of motion

(
−�+m2

)
φ = 0 (2.41)

then requires (mℓ)2 = ∆(∆−d), yielding two independent small-z behaviors z∆± .

Here we have defined ∆± = d/2 ± ν, with ν ≡
√
(d/2)2 + (mℓ)2. A priori,

it seems that we should consider only ν ≥ νmin for some νmin > 0, since one

might expect (mℓ)2 ≥ 0. However, it can be shown [100] that scalar fields with

small tachyonic masses in AdSd+1 are stable as long as the mass satisfies the so-
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called Breitenlohner-Freedman (BF) bound (mℓ)2 ≥ −d2/4 =: m2
BF ; we therefore

consider ν ≥ 0. The essential points here are: i) It is only for |(mℓ)2| ≫ 1 that

the flat-space approximation must hold, so for small |(mℓ)2| the behavior can

differ significantly from that of flat space; ii) as noted above, the fact that AdS

is not globally hyperbolic means that we must impose boundary conditions at

∂M . These boundary conditions generally require φ to vanish on ∂M . So even

for m2 = 0 we would exclude the ‘zero mode’ φ = constant. For a given boundary

condition, the spectrum of modes turns out to be discrete. As a result, we may

lower m2 a finite amount below zero before a true instability develops.

The asymptotic analysis above suggests that we seek a solution of the form

φ(x, z) = z∆−

(
φ(0) + z2φ(2) + · · ·

)
+ z∆+

(
φ(2ν) + z2φ(2ν+2) + · · ·

)
. (2.42)

For non-integer ν the equation of motion can be solved order-by-order in z to

uniquely express all coefficients in terms of φ(0) and φ(2ν). But for integer ν the

difference ∆+ −∆− is an even integer and the two sets of terms in (2.42) overlap.

This notational issue is connected to a physical one: keeping only even-integer

powers of z (times z∆−) does not allow enough freedom to solve the resulting

recursion relation; there is no solution at order d− 2∆−. To continue further we

must introduce a logarithmic term and write:

φ(x, z) = z∆−

(
φ(0) + z2φ(2) + · · ·

)
+ z∆+ log z2

(
ψ(2ν) + z2ψ(2ν+2) + · · ·

)
. (2.43)

The recursion relations then uniquely express all coefficients in terms of the free

coefficients φ(0) and φ(2ν). As an example, we note for later purposes that (for any
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value of ν)

φ(2) =
1

4(ν − 1)
�(0)φ(0), (2.44)

where�(0) is the scalar wave operator defined by γ(0) on ∂M . Dimensional analysis

shows that the higher coefficients φ(n) for integer n < 2∆+−d involve n derivatives

of φ(0).

We now couple our scalar to dynamical gravity using

S = Sgrav + SBulk
φ , (2.45)

where Sgrav is the action for gravity. We will postpone a discussion of boundary

terms to section 2.3; for now, we simply focus on solving the resulting equations

of motion

Rµν −
1

2
Rgµν + Λgµν = 8πGT (matter)

µν . (2.46)

As in the vacuum case we write the metric in the form (2.17), and as in the solution

for nondynamical gravity we write the scalar field as in (2.43). Note that we keep

the logarithmic term in (2.21) for all d as, depending on the matter content, it

may be necessary even for odd d. (When it is not needed, the equations of motion

force its coefficient γ̄d to vanish.) The stress tensor of the scalar field then behaves

like

T (matter)
µν dxµdxν = ∆−z

2(∆−−1)

[
d

2

(
φ(0)
)2
dz2 + zφ(0)∂iφ

(0) dz dxi

+ ν
(
φ(0)
)2
γ
(0)
ij dx

i dxj + · · ·
]
. (2.47)
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For ∆− < 0 and φ(0) 6= 0, the matter stress tensor turns out to diverge too rapidly

at z = 0 for the equations of motion to admit an AlAdS solution. So for ∆− < 0

the only scalar field boundary condition consistent with the desired physics is

φ(0) = 0. But for ∆− ≥ 0 the equations of motion do admit AlAdS solutions with

φ(0) 6= 0 and further input is required to determine the boundary conditions. We

will return to this issue in section 2.3.2.

Evidently, the equations of motion admit solutions of the forms (2.17) and (2.43)

only if the components of the matter stress tensor in Fefferman-Graham coordi-

nates diverge as 1/z2 or slower. This result allows us to generalize our definition

of asymptotically locally AdS spacetimes to include matter: an AlAdS spacetime

with matter is a manifoldM as above with fields satisfying the equations of motion

and the requirement that Ω2Tµν admits a continuous limit to ∂M .

2.3 Variational principles and charges

Noether’s theorem teaches us that variational principles provide a powerful

link between symmetries and conservation laws, allowing the latter to be derived

without detailed knowledge of the equations of motion. This procedure works as

well for gravitational theories as for systems defined on a fixed spacetime back-

ground, though there is one additional subtlety. In more familiar theories, it is

often sufficient to consider only variations of compact support so that all bound-

ary terms arising from variations of an action can be discarded. But as shown

in Chapter 17 of [72] in the asymptotically flat context, when the gravitational

constraints (which are just certain equations of motion!) are satisfied the gravita-
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tional charges become pure boundary terms with no contributions from the bulk.

Discarding all boundary terms in Noether’s theorem would thus lead to trivial

charges and we will instead need to treat boundary terms with care. It is in part

for this reason that we refer to variational principles as opposed to mere actions,

the distinction being that all variations of the former vanish when the equations

of motion and boundary conditions hold, even including any boundary terms that

may arise in computing the variations. Constructing a good variational principle

generally requires that we add boundary terms to the familiar bulk action, and

that we tailor the choice of such boundary terms to the boundary conditions we

wish to impose on ∂M .

2.3.1 A toy model of AdS: Gravity in a box

We have seen that AlAdS spacetimes are conformally equivalent to manifolds

with timelike boundaries. This means that (with appropriate boundary condi-

tions) light signals can bounce off of ∂M and return to the interior in finite time,

boundary conditions are needed for time evolution, and indeed much of physics

in AlAdS spacetimes is indeed like field theory in a finite-sized box. This analogy

also turns out to hold for the study of conservation laws in theories with dynamical

gravity. It will therefore prove useful to first study conservation laws for gravity

on a manifold M with a finite-distance timelike boundary ∂M , which will serve

as a toy model for AlAdS gravitational dynamics. This subject, which we call

“gravity in a box”, was historically studied for its own sake by Brown and York

[101]. We largely follow their approach below. For simplicity we will assume that

∂M is globally hyperbolic with compact Cauchy surfaces as shown in figure 2.3,
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∂M C

Figure 2.3: A sketch of the spacetime M. The codimension two surface C is a
Cauchy surface of the boundary ∂M .

though the more general case can typically be treated by imposing appropriate

boundary conditions in the asymptotic regions of ∂M .

Out first task is to construct a good variational principle. But as noted

above this will generally require us to add boundary-condition-dependent bound-

ary terms to the bulk action. It is thus useful to have some particular boundary

condition (or, at least, a class of such conditions) in mind before we begin. In

scalar field theory, familiar classes of boundary conditions include the Dirichlet

condition (φ|∂M fixed, so δφ|∂M = 0), the Neumann condition (which fixes the

normal derivative), or the more general class of Robin conditions (which fix a

linear combination of the two). All of these have analogues for our gravity in a

box system, but for simplicity we will begin with a Dirichlet-type condition. Re-

call from chapter 18 that, when discussing the initial value problem, the natural

initial data on a Cauchy surface consists of the induced metric and the extrin-

sic curvature (or, equivalently, the conjugate momentum as described in Chapter

17 of [72]). Since the equations of motion are covariant, the analysis of possible

boundary conditions on timelike boundaries turns out to be very similar so that
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the natural Dirichlet-type condition is to fix the induced metric hij on ∂M .

An important piece of our variational principle will of course be the Einstein-

Hilbert action SEH = 1
2κ

∫ √−g R (with κ = 8πG). But SEH is not sufficient by

itself as a standard calculation gives

δSEH = δ

(
1

2κ

∫

M

√−gR
)

=
1

2κ

∫

M

√−g
(
Rµν − 1

2
Rgµν

)
δgµν +

1

2κ

∫

∂M

√
|h|r̂λGµνρλ∇ρδgµν ,(2.48)

where r̂λ is the outward pointing unit normal to ∂M and

Gµνρλ = gµ(ρgλ)ν − gµνgρλ. (2.49)

In (2.48) we have discarded boundary terms not associated with ∂M (i.e., bound-

ary terms in any asymptotic regions of M) as they will play no role in our anal-

ysis. Nevertheless, the second term in (2.48) (the boundary term) generally fails

to vanish for useful boundary conditions, so that SEH is not fully stationary on

solutions.

However, when δhij = 0 this problem term turns out to be an exact variation

of another boundary term, known as the Gibbons-Hawking term, given by the

integral of the trace of the extrinsic curvature of ∂M . (For related reasons the

addition of this term is necessary when constructing a gravitational path integral,

see [102]). As a result, enforcing the boundary condition δhij = 0 guarantees that

42



A Review of Asymptotically (Locally) AdS Spacetimes Chapter 2

all variations of the action

SDirichlet in a box = SEH + SGH =
1

2κ

∫

M

√−gR− 1

κ

∫

∂M

√
|h|K, (2.50)

where K = hijK
ij is the trace of the extrinsic curvature on ∂M , vanish precisely

when the bulk equations of motion hold. Thus (2.50) gives a good variational

principle for our Dirichlet problem.

Now, Noether’s theorem teaches us that every continuous symmetry of our

system should lead to a conservation law (though the conservation laws associ-

ated with pure gauge transformations are trivial). Gravity in a box is defined

by the action (2.50) and by the choice of some Lorentz-signature metric hij on

∂M . The first ingredient, the action (2.50), is manifestly invariant under any

diffeomorphisms of M . Such diffeomorphisms are generated by vector fields ξ on

M that are tangent to ∂M at the boundary (so that the diffeomorphism maps

∂M to itself). As before, we use ξ̂ to denote the induced vector field on ∂M .

The associated diffeomorphism of M will preserve hij if ξ̂ is a Killing field on

the boundary. As discussed in Chapter 17 of [72], a diffeomorphism supported

away from the boundary should be pure gauge. So it is natural to expect that

the asymptotic symmetries of our system are classified by the choice of boundary

Killing field ξ̂, with the particular choice of a bulk extension ξ being pure gauge.

This set up should remind the reader of (non-gravitational) field theories on

fixed spacetime backgrounds. There one finds conservation laws associated with

each Killing field of the background metric. Here again the conservation laws are

associated with Killing fields of the background structure, though now the only
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such structure is the boundary metric hij.

Pursuing this analogy, let us recall the situation for field theory on a fixed (non-

dynamical) spacetime background. There, Noether’s theorem for global symme-

tries (e.g., translations along some Killing field ξKV F ) would instruct us to vary the

action under a space-time generalization of the symmetry (e.g., diffeomorphism

along f(x)ξKV F for general smooth functions f(x), or more generally under arbi-

trary diffeomorphisms). It is clear that the analogue for gravity in a box is just

to vary (2.50) under a general diffeomorphism of M .

It turns out to be useful to do so in two steps. Let us first compute an arbitrary

variation of (2.50). By construction, it must reduce to a boundary term when the

equations of motion hold, and it must vanish when δhij = 0. Thus it must be

linear in δhij. A direct calculation (see appendix E of [90]) gives

δSDirichlet in a box = −1

2

∫

∂M

√
|h|τ ijδhij, (2.51)

where τ ij = κ−1(Kij − Khij). This τ ij is sometimes referred to as the radial

conjugate momentum since it has the same form as the (undensitized) conjugate

momentum introduced on spacelike surfaces in Chapter 17 of [72]. This agreement

of course follows from general principles of Hamilton-Jacobi theory. The reader

should recall that for field theory in a fixed spacetime background the functional

derivative of the action with respect to the metric defines the field theory stress

tensor. By analogy, the object τ ij defined above is often called the boundary

stress tensor (or the Brown-York stress tensor) of the gravitational theory.

Let us now specialize to the case where our variation is a diffeomorphism
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of M . As we have seen, ξ also induces a diffeomorphism of the boundary ∂M

generated by some ξ̂. Then δhij = Diξ̂j+Dj ξ̂i, whereDi is the covariant derivative

compatible with hij. Using the symmetry of τ ij = τ ji we find

δSDirichlet in a box = −
∫

∂M

√
|h|τ ijDiξ̂j =

∫

∂M

√
|h|ξ̂jDiτ

ij, (2.52)

where in the last step we integrate by parts and take ξ̂ to have compact support on

∂M so that we may discard any boundary terms. Since ξ̂ is otherwise arbitrary,

we conclude that

Diτ
ij = 0; (2.53)

i.e., τ ij is covariantly conserved on ∂M when the equations of motion hold in the

bulk. In fact, since τ ij is the radial conjugate momentum, it should be clear from

Chapter 17 of [72] that (2.53) can also be derived directly from the equations of

motion by evaluating the radial-version of the diffeomorphism constraint on ∂M .

(The radial version of the Hamiltonian constraint imposes another condition on

τ ij that can be used to determine the trace τ = τ ijhij in terms of the traceless

part of τ ij.)

If we now take ξ̂ to be a boundary Killing field, we find Di(τ
ij ξ̂j) = 0, so that

the so-called Brown-York charge

QBY [ξ] := −
∫

C

√
q niτ

ij ξ̂j (2.54)

is independent of the choice of Cauchy surface C in ∂M . Here ni is a unit future-

pointing normal to C and
√
q is the volume element induced on C by hij. Although

these charges were defined by methods quite different from the Hamiltonian tech-
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niques of Chapter 17 of [72], we will argue in section 2.4 below that the end result

is identical up to a possible choice of zero-point. Once again, the argument will

turn out to be essentially the same as one would give for field theory in a fixed

non-dynamical background.

Before proceeding to the AdS case, let us take a moment to consider other

possible boundary conditions. We see from (2.51) that the action (2.50) also

defines a valid variational principle for the boundary condition τ ij = 0. Of course,

with this choice the charges (2.54) all vanish. But this should be no surprise.

Since the condition τ ij = 0 is invariant under all diffeomorphisms of M , there is

no preferred subset of non-trivial asymptotic symmetries; all diffeomorphisms turn

out to generate pure gauge transformations. One may also study more complicated

boundary conditions by adding additional boundary terms to the action (2.50),

though we will not pursue the details here.

2.3.2 Variational principles for scalar fields in AdS

As the reader might guess, our discussion of AlAdS gravity will follow in direct

analogy to the above treatment of gravity in a box. Indeed, the only real difference

is that we must work a bit harder to construct a good variational principle. We

will first illustrate the relevant techniques below by constructing a variational

principle for a scalar field on a fixed AdS background, after which we will apply

essentially identical techniques to AdS gravity itself in section 2.3.3.

We will construct our variational principle using the so-called counterterm

subtraction approach pioneered in [103, 104] and further developed in [95, 96].

Our discussion below largely follows [95], with minor additions from [89]. We
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begin with the bulk action SBulk
φ of (2.40) and compute

δSBulk
φ = −

∫

∂M

√
|h|r̂µ∂µφδφ, (2.55)

where r̂µ is the outward-pointing unit normal to ∂M so that r̂µ∂µ = − z
ℓ
∂z. The

form of (2.55) might appear to suggest that SBulk
φ defines a good variational princi-

ple for any boundary condition that fixes φ on ∂M . But the appearance of inverse

powers of z means that we must be more careful, and that SBulk
φ will suffice only

when δφ vanishes sufficiently rapidly.

It is therefore useful to write (2.55) in terms of the finite coefficients φ(2n), φ(2(ν+n))

of (2.42) (or the corresponding coefficients in (2.43)). The exact expression is not

particularly enlightening, and for large ν there are many singular terms to keep

track of. What is useful to note however is that all of the singular terms turn out

to be exact variations. In particular, using (2.44) one may show for non-integer

ν < 2 that the action

Sφ = SBulk
φ +

∫

∂M

√
|h|
(
−∆−

2ℓ
φ2 +

ℓ

4(ν − 1)
hij∂iφ∂jφ

)
(2.56)

satisfies

δSφ = 2νℓd−1

∫

∂M

√
|γ(0)|φ(2ν)δφ(0). (2.57)

Since the boundary terms in (2.56) are each divergent in and of themselves, they

are known as counterterms in analogy with the counterterms used to cancel ul-

traviolet divergences in quantum field theory. These divergences cancel against

divergences in SBulk
φ and the full action Sφ is finite for any field of the form (2.42)

with non-integer ν < 2. Similar results hold for non-integer ν > 2 if additional
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higher-derivative boundary terms are included in (2.56). We will comment on

differences for integer ν at the end of this section.

It is clear that Sφ provides a good variational principle so long as the boundary

conditions either fix φ(0) or set φ(2ν) = 0. We may now identify

Φbndy := 2νℓd−1φ(2ν) (2.58)

as an AdS scalar response function analogous to the boundary stress tensor τ ij in-

troduced in section 2.3.1. Note that adding an extra boundary term
∫ √

γ(0)W [φ(0)]

to Sφ allows one to instead use the Robin-like boundary condition

φ(2ν) = − ℓ

2ν
W ′[φ(0], (2.59)

where W ′ denotes the derivative of W with respect to its argument.

Recall from section 2.2.6 that requiring the energy to be bounded below re-

stricts ν to be real (in which case we take ν non-negative). That there are further

implications for large ν can also be seen from (2.56). Note that the final term

in (2.56) is a kinetic term on ∂M and that for ν > 1 it has a sign opposite to

that of the bulk kinetic term. Counting powers of z shows that this boundary

kinetic term vanishes at ∂M for ν < 1, but contributes for ν > 1. In this case,

for any perturbation that excites φ(0) and which is supported sufficiently close to

∂M , the boundary kinetic term in (2.56) turns out to be more important than the

bulk kinetic term. Thus the perturbation has negative kinetic energy. One says

that the theory contains ghosts, and any conserved energy is expected to be un-

bounded below [89]. For this reason, for ν > 1 one typically allows only boundary
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conditions that fix φ(0). Of course, as noted in section 2.3.2, for ν > d/2 coupling

the theory to dynamical gravity and requiring the spacetime to be AlAdS will

further require φ(0) = 0. On the other hand, for real 0 < ν < 1 all of the above

boundary conditions lead to ghost-free scalar theories.

The story of non-integer ν > 2 is much the same as that of ν ∈ (1, 2). Adding

additional higher-derivative boundary terms to (2.56) again leads to an action

that satisfies (2.57). While one can find actions compatible with general boundary

conditions (2.59), the only ghost-free theories fix φ(0) on ∂M . The story of integer

ν is more subtle; the factors of ln z arising in that case from (2.43) mean that

we can find a good variational principle only by including boundary terms that

depend explicitly on the defining function Ω of the chosen conformal frame. Doing

so again leads to ghosts unless φ(0) is fixed as a boundary condition [89].

2.3.3 A variational principle for AlAdS gravity

We are now ready to construct our variational principle for AlAdS gravity.

As for the scalar field above, we will start with a familiar bulk action and then

add boundary terms. One may note that in the scalar case our final action (2.56)

consists essentially of adding boundary terms to SBulk
φ which i) are written as

integrals of local scalars built from φ and its tangential derivatives along ∂M

and ii) precisely cancel divergent terms in SBulk
φ . This motivates us to follow

the strategy of [96] for the gravitational case in which we first identify divergent

terms in a familiar action and write these terms as local scalars on ∂M . We

may then construct a finite so-called renormalized action by adding boundary

counterterms on ∂M to cancel the above divergences. At the end of this process
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we may check that this renormalized action yields a good variational principle for

interesting boundary conditions. In analogy with section 2.3.1, for simplicity in

the remainder of this chapter we take the induced (conformal) metric on ∂M to

be globally hyperbolic with compact Cauchy surfaces.

Let us begin with an action containing the standard Einstein-Hilbert and cos-

mological constant terms in the bulk, along with the Gibbons-Hawking term. It

will facilitate our discussion of divergent terms to consider a regulated action in

which the boundary has effectively been moved in to z = ǫ. For the moment,

we choose some ǫ0 > ǫ and impose the Fefferman-Graham gauge (2.17) for all

z < ǫ0, so that this gauge holds in particular at the regulated boundary. This

gauge fixing at finite z is merely an intermediate step to simplify the analysis. We

will be able to loosen this condition once we have constructed the final action.

We let hij = (ℓ/z)2γij|z=ǫ be the induced metric on this regulated boundary and

study the action

Sreg =
1

2κ

∫

z≥ǫ

√
|g|(R + 2Λ)− 1

κ

∫

z=ǫ

√
|h|K (2.60)

=
ℓd−1

2κ

∫

z=ǫ

√
|γ(0)|

(
ǫ−da(0) + ǫ−d+2a(2) + · · ·+ ǫ−2a(d−2) − log(ǫ2)a(d)

)
+ (finite),

where K = hijK
ij is the trace of the extrinsic curvature of the regulated boundary

∂Mǫ at z = ǫ and the form of the divergences follows from (2.21). The coefficient

a(d) vanishes for odd d. For even d it is called the conformal anomaly for reasons

to be explained below.

In analogy with the scalar field results of section 2.3.2, one finds that the

coefficients a(n) which characterize the divergent terms are all local scalars built
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from γ
(0)
ij and its derivatives along ∂M . This follows directly from the fact that

all terms γ(n) with n ≤ d in the Fefferman-Graham expansion (2.21) are local

functions of γ
(0)
ij and its derivatives along ∂M . Dimensional analysis shows that

a(n) involves precisely 2n derivatives and the detailed coefficients a(n) can be found

to any desired order by direct calculation. For example, for n 6= d the a(n) are

given by (see e.g. [96])

a(0) = −2(d− 1), a(2) = −(d− 4)R
2(d− 2)

,

a(4) = −d
2 − 9d+ 16

4(d− 4)

(
dR2

4(d− 2)2(d− 1)
− RijRij

(d− 2)2

)
, . . . , (2.61)

where as in section 2.2.4, R and Rij are the Ricci scalar and Ricci tensor of γ(0)

on ∂M . For d = 2, 4, the log terms are given by

d = 2 : a(2) =
R
2
,

d = 4 : a(4) =

(R2

24
− RijRij

8

)
. (2.62)

As foreshadowed above, we now define the renormalized action

Sren = lim
ǫ→0

(Sreg + Sct) , (2.63)

where

Sct := −ℓ
d−1

2κ

∫

z=ǫ

√
−γ(0)

(
ǫ−da(0) + ǫ−d+2a(2) + · · ·+ ǫ−2a(d−2) − log(ǫ2)a(d)

)

(2.64)
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is constructed to precisely cancel the divergent terms in Sren. The representation

(2.64) makes the degree of divergence in each term manifest. But the use of ǫ

in defining Sct suggests a stronger dependence on the choice of defining function

Ω (and thus, on the choice of conformal frame) than is actually the case. To

understand the true dependence, we should use the Fefferman-Graham expansion

to instead express Sct directly in terms of the (divergent) metric h induced on ∂M

by the unrescaled bulk metric g as was done in [104]. Dimensional analysis and

the fact that each a(n) involves precisely 2n derivatives shows that this removes

all explicit dependence on ǫ save for the logarithmic term in even d. In particular,

formally taking ǫ to zero we may write

Sct = − ℓ

2κ

∫

∂M

√
|h|
[
−2(d− 1)

ℓ2
+

Rh

(d− 2)
+ · · · − ǫd log(ǫ2)a(d)

ℓ2

]
, (2.65)

where theRh (Ricci scalar of h) term only appears for d ≥ 3 and the dots represent

additional terms that appear only for d ≥ 5.

In general, the coefficients in (2.65) differ from those in (2.60) due to sub-

leading divergences in a given term in (2.65) contributing to the coefficients of

seemingly lower-order terms in (2.60). But the logarithmic term has precisely the

same coefficient a(d) in both (2.65) and (2.60). Since the logarithmic term in (2.21)

is multiplied by zd, only the leading −2(d−1)
ℓ2

√
|h| term in (2.65) could contribute

to any discrepancy. But the first variation of a determinant is a trace, and the

trace of the logarithmic coefficient γ̄
(d)
ij vanishes by (2.22).

Thus for d odd (where the log term vanishes) the renormalized action Sren can

be expressed in a fully covariant form in terms of the physical metric g; all depen-
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dence on the defining function Ω (and so on the choice of conformal frame) has

disappeared. We therefore now drop the requirement that any Fefferman-Graham

gauge be imposed for odd d. But for even d, the appearance of log(ǫ2) in (2.65)

indicates that Sren does in fact depend on the choice of defining function Ω (and

thus on the choice of conformal frame). In analogy with quantum field theory, this

dependence is known as the conformal anomaly. By replacing ǫ with Ω in (2.65),

we could again completely drop the requirement of Fefferman-Graham gauge in

favor of making explicit the above dependence on Ω. However, an equivalent pro-

cedure is to require that the expansion (2.21) hold up through order γ(d) and to

replace ǫ in (2.65) by the Fefferman-Graham coordinate z. We will follow this

latter approach (which is equivalent to imposing Fefferman-Graham gauge only

on the stated terms in the asymptotic expansion) as it is more common in the

literature.

We are finally ready to explore variations of Sren. Since Sren was constructed

by adding only boundary terms to the usual bulk action, we know that δSren must

be a pure boundary term on solutions. As before, we will discard boundary terms

in the far past and future of M and retain only the boundary term at ∂M . Since

∂M is globally hyperbolic with compact Cauchy surfaces, performing integrations

by parts on ∂M will yield boundary terms only in the far past and future of ∂M .

Discarding these as well allows us to write

δSren =

∫

∂M

Sµνδgµν , (2.66)

for some Sµν . But let us now return to Fefferman-Graham gauge and use it to
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expand δgµν as in (2.21). Since Sren is finite, δSren must be finite as well. But the

leading term in δgµν is of order z−2. So the leading term in Sµν must be of order

z2. It follows that only these leading terms can contribute to (2.66). Since the

leading term in δgµν involves δγ
(0)
ij , we may write

δSren =
1

2

∫

∂M

√
|γ0| T ijbndyδγ

(0)
ij (2.67)

for some finite so-called boundary stress tensor T ijbndy on ∂M . For odd d, the

fact that Sren is invariant under arbitrary changes of conformal frame δγ
(0)
ij =

e−2σγ
(0)
ij immediately implies that the boundary stress tensor is traceless: Tbndy :=

γ
(0)
ij T

ij
bndy = 0. In even dimensions, the trace is determined by the conformal

anomaly of Sren (i.e., by the logarithmic term in either (2.60) or (2.65)) and

one finds Tbndy = −ℓd−1a(d)/κ. This result may also be derived by considering the

radial version of the Hamiltonian constraint from Chapter 17 of [72] and evaluating

this constraint at ∂M .

Comparing with section 2.3.1, it is clear that we may write

T ijbndy = lim
ǫ→0

(
ℓ

ǫ

)d+2 (
τ ij + τ ijct

)
, (2.68)

where again τij = κ−1(Kij −Khij) and the new term τ ijct comes from varying Sct.

In Fefferman-Graham gauge one finds by explicit calculation that for d odd

T ijbndy =
dℓd−1

2κ
γ(d)

ij
. (2.69)

For d even there are extra contributions associated with the conformal anomaly,
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which are thus all determined by γ(0); e.g. (see [96])

for d = 2 : T ijbndy =
ℓ

κ

(
γ(2)

ij −Rγ(0)ij
)

(2.70)

for d = 4 : T ijbndy =
2ℓ3

κ

[
γ(4)

ij − 1

8

(
(γ(2))2 − γ(2)

kl
γ
(2)
kl

)
γ(0)

ij

−1

2
γ(2)

ik
γ(2)k

j
+

1

4
γ(2)γ(2)

ij
+

3

2
γ̄(4)ij

]
, (2.71)

where γ(2), γ̄(4) are given by (2.19), (2.23), (2.24). In all cases, we see that we may

use γ
(0)
ij , T

ij
bndy to parametrize the free data in the Fefferman-Graham expansion.

The reader should note that the particular value of T ijbndy on a given solution

depends on the choice of a representative γ(0) and thus on the choice of conformal

frame. For d odd this dependence is a simple scaling, though it is more complicated

for d even.

But this does not diminish the utility of T ijbndy. For example, we see immedi-

ately from (2.67) that Sren defines a good variational principle whenever i) γ(0) is

fixed as a boundary condition or ii) d is odd, so that T ijbndy is traceless, and we fix

only the conformal class of γ(0).

We close this section with some brief comments on other possible boundary

conditions. We see from (2.67) that Sren is also a good variational principle if

we fix T ijbndy = 0. As in section 2.3.2, one may obtain variational principles for

more complicated boundary conditions by adding further finite boundary terms to

(2.65); see [105] for details. However, just as for scalar fields with ν > 1, boundary

conditions that allow γ(0) to vary generally lead to ghosts [89] (with the exception

that, for d odd no ghosts arise from allowing γ(0) to vary by a conformal factor).

For this reason we consider below only boundary conditions that fix γ(0), or at

55



A Review of Asymptotically (Locally) AdS Spacetimes Chapter 2

least its conformal class for d odd.

2.3.4 Conserved Charges for AlAdS gravity

We are now ready to apply the Brown-York-type procedure discussed in section

2.3.1 to construct conserved charges for AlAdS gravity. The key step is again an

argument analogous to (2.52) to show conservation of T ijbndy on ∂M . We give the

derivation here in full to highlight various subtleties of the AdS case. We also

generalize the result slightly by coupling the AlAdS gravity theory of section 2.3.3

to the scalar theory of section 2.3.2. For definiteness we assume that the boundary

conditions fix both γ(0) and φ(0) (up to conformal transformations (γ
(0)
ij , φ

(0)) →

(e−2σγ
(0)
ij , e

∆−σφ(0))) for odd d, where the transformation of φ(0) is dictated by

(2.42) and we take ν non-integer so that no log terms arise from the scalar field.

However, the more general case is quite similar [88, 105].

We thus consider the action Stotal = Sren + Sφ. The reader should be aware

that, because the counterterms in Sφ explicitly depend on the boundary metric

γ(0), this coupling to matter will change certain formulae in section 2.3.3. In

particular, if we now make the natural definition

T ijbndy =
2√
|γ(0)|

δStotal

δγ
(0)
ij

, (2.72)

varying the action under a boundary conformal transformation leads to the more

general condition

Tbndy −∆−Φbndyφ
(0) = −ℓ

d−1a(d)
κ

, (2.73)

which reduces to the trace constraint of section 2.3.3 only for Φbndy = 0, φ(0) = 0,
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or ∆− = 0. Recall that Φbndy is given by (2.58).

The coupling to Sφ similarly modifies the divergence condition (2.52) of section

2.3.1. Using the definition (2.72), we find

δStotal =

∫

∂M

√
|γ(0)|

(
1

2
T ijbndyδγ

(0)
ij + Φbndyδφ

(0)

)
. (2.74)

Let us consider the particular variation associated with a bulk diffeomorphism ξ.

It is sufficient here to consider bulk diffeomorphisms compatible with whatever

defining function Ω we have used to write (2.74); i.e., for which £ξΩ = 0. As

described in section 2.2.5, other diffeomorphisms differ only in that they also

induce a change of conformal frame. Since we already extracted the information

about T ijbndy (and in particular, about its trace) that can be obtained by changing

conformal frame in section 2.3.3, we lose nothing by restricting here to vector

fields with £ξΩ = 0.

As described in section 2.2.5, we then find δγ(0) = £ξ̂γ
(0), δφ(0) = £ξ̂φ

(0),

where ξ̂ is the vector field induced by ξ on ∂M . Thus (2.74) reads

δξSren = 0 =

∫

∂M

√
|γ(0)|

(
T ijDiξ̂j +

δSren

δφ(0)
£ξ̂φ

(0)

)

= −
∫

∂M

√
|γ(0)|ξ̂j

(
DiT

ij − ΦbndyD
jφ(0)

)
, (2.75)

where Di is again the covariant derivative on ∂M compatible with with γ(0), all

indices are raised and lowered with γ(0), and we have dropped the usual surface

terms in the far past and future of ∂M . Recalling that all ξ̂i can arise from bulk

vector fields ξ compatible with any given Ω, we see that (2.75) must hold for any

57



A Review of Asymptotically (Locally) AdS Spacetimes Chapter 2

ξ̂j. Thus,

DiT
ij
bndy = ΦbndyD

jφ(0); (2.76)

i.e., T ijbndy is conserved on ∂M up to terms that may be interpreted as scalar

sources. These sources are analogous to sources for the stress tensor of, say, a

scalar field on a fixed spacetime background when the scalar field is also coupled

to some background potential. Here the role of the background potential is played

by φ(0), which we have fixed as a boundary condition. As in section 2.3.1, the

divergence condition (2.76) may also be derived from the radial version of the

diffeomorphism constraint from Chapter 17 of [72] evaluated on ∂M . For φ(0) = 0

and d odd one immediately arrives at (2.20) using (2.76) and (2.69).

We wish to use (2.76) to derive conservation laws for asymptotic symmetries.

Here it is natural to say that a diffeomorphism ξ ofM is an asymptotic symmetry

if the there is some conformal frame in which the induced vector field ξ̂ on ∂M is i)

a Killing field of γ(0) and ii) a solution of £ξ̂φ
(0) = 0. Due to the transformations of

γ(0), φ(0) under boundary conformal transformations, this is completely equivalent

to first choosing an arbitrary conformal frame and then requiring

£ξ̂γ
(0)
ij = −2σγ

(0)
ij , £ξ̂φ

(0) = ∆−σφ
(0). (2.77)

The first requirement says that ξ̂ is a conformal Killing field of γ
(0)
ij with 1

d
Diξ̂

i =

−σ and the second says that it acts on φ(0) like the corresponding infinitesimal

conformal transformation.

For even d, we must also preserve the boundary condition that γ(0) be fixed
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(even including the conformal factor) and the requirement of section 2.3.3 that

Fefferman-Graham gauge hold to the first few orders in the asymptotic expansion.

An analysis similar to that of section 2.2.5 then shows that we must have ξz =

z
d
Diξ̂

i to leading order near ∂M . In particular, for Diξ̂
i 6= 0 an asymptotic

symmetry ξ must be non-compatible with Ω is just the right way to leave γ(0)

invariant.

As a side comment, we mention that the trivial asymptotic symmetries (the

pure gauge transformations) are just those with ξ̂ = 0. This means that they act

trivially on both T ijbndy and Φbndy of section 2.3.2, so that both both T ijbndy and

the Φbndy are gauge invariant. This conclusion is obvious in retrospect as these

response functions are functional derivatives of the action with respect to the

boundary conditions γ
(0)
ij and φ(0). Since both the action and any boundary con-

ditions are gauge invariant by definition, so too must be the functional derivatives

T ijbndy and Φbndy.

Returning to our construction of charges, note that for any asymptotic sym-

metries as above we may compute

Di(T
ij
bndyξ̂j) = −σ(Tbndy −∆−Φbndyφ

(0)) = σ
ℓd−1a(d)

κ
, (2.78)

where in the final step we have used (2.73).

In analogy with section 2.3.1, we now consider the charges

Q[ξ] = −
∫

C

√
q niT

ij
bndyξj, (2.79)

where C is a Cauchy surface of ∂M ,
√
q is the volume element induced on C by

59



A Review of Asymptotically (Locally) AdS Spacetimes Chapter 2

γ(0), and ni is the unit future pointing normal to C with respect to γ(0). It follows

from (2.78) that these charges can depend on C only through a term built from

the conformal anomaly a(d).

It is now straightforward to construct a modified charge Q̃[ξ] which is com-

pletely independent of C. The essential point here is to recall that a(d) depends

only on the boundary metric γ(0). Since we have fixed γ(0) as a boundary condi-

tion, the dependence on C is the same for any two allowed solutions. Thus on a

given solution s we need only define

Q̃[ξ](s) = Q[ξ](s)−Q[ξ](s0), (2.80)

where s0 is an arbitrary reference solution satisfying the same boundary condition

and which we use to set the zero-point. The construction (2.80) is sufficiently

trivial that one often refers to Q[ξ] itself as being conserved.

Our construction of the charges Q[ξ], Q̃[ξ] depended on the choice of some

conformal frame. But it is easy to see that the charges are in fact independent

of this choice for d odd. In that case, the factors
√
q, ni, and T ijbndy all simply

scale under a boundary conformal transformation and dimensional analysis shows

that the combination (2.79) is invariant. For even d there are additional terms in

the transformation of T ijbndy. But as usual these depend only on γ(0) so that they

cancel between the two terms in (2.80). Thus even in this case for fixed s0 the

charges (2.80) are independent of the conformal frame.

To make the above procedure seem more concrete, we now quickly state results
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for the AdS3 and AdS4 Schwarzschild solutions

ds2 = −
(
1− 2cdGM

ρd−2
+
ρ2

ℓ2

)
dτ 2 +

dρ2

1− 2cdGM
ρd−2 + ρ2

ℓ2

+ ρ2dΩ2
(d−2), (2.81)

where c3 = 1 and c4 = 4
3π
. The boundary stress tensor may be calculated by

converting to Fefferman-Graham coordinates, say for the conformal frame defined

by Ω = ρ−1. (Note that the Fefferman-Graham radial coordinate z will agree with

ρ only at leading order.) One then finds the energy

Q[−∂τ ] =





M, d = 3

M +
3πℓ2

32G
, d = 4,

(2.82)

where we remind the reader that energies E = −Q[∂τ ] = Q[−∂τ ] are convention-

ally defined in this way with an extra minus sign to make them positive. We see

that for d = 3 we recover the expected result for the energy of the spacetime. For

d = 4 we also recover the expected energy up to a perhaps unfamiliar choice of

zero-point which we will discuss further in section 2.4.4.

2.3.5 Positivity of the energy in AlAdS gravity

Thus far we have treated all charges Q[ξ] on an equal footing. But when ξ̂ is

everywhere timelike and future-directed on ∂M , it is natural to call E = Q[−ξ]

an energy and to wonder if E is bounded below. Such a result was established in

chapter 20 for the ADM energy of asymptotically flat spacetimes, and the Wit-

ten spinor methods [106, 107] discussed there generalize readily to asymptotically
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AdS (AAdS) spacetimes so long as the matter fields satisfy the dominant energy

condition and decay sufficiently quickly at ∂M [108]. In particular, this decay

condition is satisfied for the scalar field of section 2.3.2 with m2 ≥ m2
BF when φ(0)

is fixed as a boundary condition. Extensions to more general scalar boundary con-

ditions can be found in [109–113]. Here the details of the boundary conditions are

important, as boundary conditions for which the W of (2.59) diverges sufficiently

strongly in the negative direction tend to make any energy unbounded below (see

e.g. [114] for examples). This is to be expected from the fact that, as discussed

in section 2.3.2, this W represents an addition to the Lagrangian and thus to any

Hamiltonian, even if only as a boundary term. As for Λ = 0, the above AAdS

arguments were inspired by earlier arguments based on quantum supergravity (see

[115, 116] for the asymptotically flat case and [83] for the AAdS case).

The above paragraph discussed only AAdS spacetimes. While the techniques

described there can also be generalized to many AlAdS settings, it is not possible

to proceed in this way for truly general choices of M and ∂M . The issue is that

the methods of [106, 107] require one to find a spinor field satisfying a Dirac-

type equation subject to certain boundary conditions. But for some M,∂M one

can show that no solution exists. In particular, this obstruction arises when

∂M = S1 × Rd−1 and the S1 is contractible in M [117].

The same obstruction also arises with zero cosmological constant in the context

of Kaluza-Klein theories (where the boundary conditions may again involve an S1

that is contractible in the bulk). In that case, the existence of so-called bubbles

of nothing demonstrates that the energy is in fact unbounded below and that

the system is unstable even in vacuum [118, 119]. But what is interesting about
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the AlAdS context with ∂M = S1 × Rd−1 is that there are good reasons [117]

to believe that the energy is in fact bounded below – even if there are there

are some solutions with energy lower than what one might call empty AdS with

∂M = S1 × Rd−1 (by which we mean the quotient of the Poincaré patch under

some translation of the xi). Perhaps the strongest such argument (which we will

not explain here) comes from AdS/CFT. But another is that [120] identified a

candidate lowest-energy solution (called the AdS soliton) which was shown [117]

to at least locally minimize the energy. Proving that the AdS soliton is the true

minimum of the energy, or falsifying the conjecture, remains an interesting open

problem whose solution appears to require new techniques.

2.4 Relation to Hamiltonian Charges

We have shown that the charges (2.80) are conserved and motivated their

definition in analogy with familiar constructions for field theory in a fixed curved

spacetime. But it is natural to ask whether the charges (2.80) in fact agree

with more familiar Hamiltonian definitions of asymptotic charges constructed, say,

using the AdS generalization of the Hamiltonian approach described in Chapter 17

of [72]. Denoting these latter charges H[ξ], the short answer is that they agree so

long as we choose s0 in (2.80) to satisfy H[ξ](s0) = 0; i.e., they agree so long as we

choose the same (in principle arbitrary) zero-point for each notion of charge. We

may equivalently say that the difference Q[ξ]−H[ξ] is the same for all solutions

in our phase space, though for conformal charges it may depend on the choice of

Cauchy surface C for ∂M . As above, for simplicity we take ∂M to be globally
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hyperbolic with compact Cauchy surfaces.

This result may be found by direct computation (see [121] for simple cases).

But a more elegant, more general, and more enlightening argument can be given

[88] using a covariant version of the Poisson bracket known as the Peierls bracket

[122]. The essence of the argument is to show that Q[ξ] generates the canonical

transformations associated with the diffeomorphisms ξ. This specifies all Poisson

brackets of Q[ξ] to be those of H[ξ]. Thus Q[ξ]−H[ξ] must be a c-number in the

sense that all Poisson brackets vanish. But this means that it is constant over the

phase space.

After pausing to introduce the Peierls bracket, we sketch this argument below

following [88]. As in section 2.3.4, we suppose for simplicity that the only bulk

fields are the metric and a single scalar field with non-integer ν and we impose

boundary conditions that fix both γ
(0)
ij and φ(0). However, the argument for general

bulk fields is quite similar [88]. While this material represents a certain aside

from our main discussion, it will provide insight into the algebraic properties of

conserved charges, the stress tensor itself, and a more general notion of so-called

boundary observables that we will shortly discuss.

2.4.1 The Peierls bracket

The Peierls bracket is a Lie bracket operation that acts on gauge-invariant

functions on the space of solutions S of some theory. As shown in the original

work [122], this operation is equivalent to the Poisson bracket under the natural

identification of the phase space with the space of solutions. However, the Peierls

bracket is manifestly spacetime covariant. In particular, one may directly define
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the Peierls bracket between any two quantities A and B located anywhere in

spacetime, whether or not they may be thought of as lying on the same Cauchy

surface. In fact, both A and B can be highly non-local, extending over large

regions of space and time. These features make the Peierls bracket ideal for

studying the boundary stress-tensor, which is well-defined on the space of solutions

but is not a local function in the bulk spacetime.

To begin, consider two functions A and B on S, which are in fact defined as

functions on a larger space H, which we call the space of histories. This space

H is the one on which the action is defined; i.e., the solution space S consists of

those histories in H on which the action S is stationary. One may show that the

Peierls bracket on S depends only on A,B on S and not on their extensions to H.

The Peierls bracket is defined by considering the effect on one gauge invariant

function (say, B) when the action is deformed by a term proportional to another

such function (A). One defines the advanced (D+
AB) and retarded (D−

AB) effects

of A on B by comparing the original system with a new system given by the

action Sǫ = S + ǫA, but associated with the same space of histories H. Here ǫ is

a real parameter which will soon be taken to be infinitesimal, and the new action

is associated with a new space Sǫ of deformed solutions.

Under retarded (advanced) boundary conditions for which the solutions s ∈

S and sǫ ∈ Sǫ coincide in the past (future) of the support of A, the quantity

B0 = B(s) computed using the undeformed solution s will in general differ from

B±
ǫ = B(sǫ) computed using sǫ and retarded (−) or advanced (+) boundary

conditions (see Fig. 2.4). For small epsilon, the difference between these quantities
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B−

ε = B(sε)

J = εA

Figure 2.4: An illustration of the definition of B−
ǫ . A source term J = ǫA is

added to the action and the gauge invariant function B is calculated for the
deformed solution sǫ subject to the boundary conditions that s and sǫ coincide
in the far past. Dashed lines indicate the boundary of the causal future of J .
Only functions B which have support in this region can have B(sǫ) 6= B(s).
For visual clarity we have chosen our gauge invariant function A and B to have
compact support though this is not required.

defines the retarded (advanced) effect D−
AB (D+

AB) of A on B through:

D±
AB = lim

ǫ→0

1

ǫ
(B±

ǫ − B0), (2.83)

which is a function of the unperturbed solution s. Similarly, one defines D±
BA

by reversing the roles of A and B above. Since A,B are gauge invariant, D±
BA

is a well-defined (and again gauge-invariant) function on the space S of solutions

so long as both A and B are first-differentiable on H. This requirement may be

subtle if the spacetime supports of A and B extend into the far past and future,

but is straightforward for objects like T ijbndy(x), Φbndy(x) that are well-localized in

time.

The Peierls bracket [122] is then defined to be the difference of the advanced

and retarded effects:

{A,B} = D+
AB −D−

AB. (2.84)
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As shown in [122], this operation agrees with the Poisson bracket (suitably

generalized to allow A,B at unequal times). This generalizes the familiar result

that the commutator function for a free scalar field is given by the difference

between the advanced and retarded Green’s functions. In fact, it is enlightening

to write the Peierls bracket more generally in terms of such Green’s functions. To

do so, let us briefly introduce the notation φI for a complete set of bulk fields

(including the components of the bulk metric) and the associated advanced and

retarded Green’s functions G±
IJ(x, x

′). Note that we have

D+
AB =

∫
dx dx′

δB

δΦI(x)
G+
IJ(x, x

′)
δA

δΦJ(x′)
=

∫
dx dx′

δB

δφj(x′)
G−
JI(x

′, x)
δA

δφj(x)
= D−

BA, (2.85)

where we have used the identity G+
IJ(x, x

′) = G−
JI(x

′, x). Thus, the Peierls bracket

may also be written in the manifestly antisymmetric form

{A,B} = D−
BA−D−

AB = D+
AB −D+

BA. (2.86)

The expressions (2.85) in terms of G±
IJ(x, x

′) are also useful in order to verify that

the Peierls bracket defines a Lie-Poisson algebra. In particular, the derivation

property {A,BC} = {A,B}C + {A,C}B follows immediately from the Leibnitz

rule for functional derivatives. The Jacobi identity also follows by a straightfor-

ward calculation, making use of the fact that functional derivatives of the action

commute (see e.g., [123, 124]). If one desires, one may use related Green’s func-

tion techniques to extend the Peierls bracket to a Lie algebra of gauge dependent
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quantities [125].

2.4.2 Main Argument

We wish to show that the charges Q[ξ] generate the appropriate asymptotic

symmetry for any asymptotic Killing field ξ. Since this is true by definition for

any Hamiltonian charge H[ξ], it will then follow that Q[ξ]−H[ξ] is constant over

the space of solutions S. We first address the case where ξ is compatible with

Ω, and then proceed to the more general case where ξ̂ acts only as a conformal

Killing field on the boundary.

Showing that Q[ξ] generates diffeomorphisms along ξ amounts to proving a

certain version of Noether’s theorem. Recall that the proof of Noether’s theorem

involves examining the change in the action under a spacetime-dependent general-

ization of the desired symmetry. The structure of our argument below is similar,

where we consider both the action of a given asymptotic symmetry ξ and the

spacetime-dependent generalization fξ defined by choosing an appropriate scalar

function f on M . It turns out to be useful to choose f on M (with restriction f̂

to ∂M) such that

• f = 0 in the far past and f = 1 in the far future.

• f̂ = 0 to the past of some Cauchy surface C0 of ∂M , and f̂ = 1 to the future

of some Cauchy surface C1 of ∂M .

Suppose now that ξ is an asymptotic symmetry compatible with Ω. Then the
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bulk and boundary fields transform as

δφ = £ξφ, δgµν = £ξgµν , δγ
(0)
ij = £ξ̂γ

(0)
ij = 0, and δφ(0) = £ξ̂φ

(0) = 0.

(2.87)

The key step of the argument is to construct a new transformation ∆f,ξ on the

space of fields such that the associated first order change ∆f,ξS in the action

generates the asymptotic symmetry−ξ. We will first show that the above property

turns out to hold for

∆f,ξ := (£fξ − f£ξ), (2.88)

and then verify that ∆f,ξS = −Q[ξ]. The form of ∆f,ξS is essentially that sug-

gested in [126] using Hamilton-Jacobi methods, so our argument will also connect

Q[ξ] with [126].

An important property of (2.88) is that the changes ∆f,ξgµν and ∆f,ξφ are

algebraic in φ and gµν ; i.e., we need not take spacetime derivatives of gµν , φ to

compute the action of ∆f,ξ. Furthermore, ∆f,ξφ and ∆f,ξgµν are both proportional

to∇af , and so vanish in both the far future and the far past. This guarantees that

∆f,ξS is a differentiable function on H. In particular, solutions to the equations

of motion resulting from the deformed action S + ǫ∆f,ξS are indeed stationary

points of S+ ǫ∆f,ξS under all variations which preserve the conditions and vanish

in the far future and past.

It is important to note that the quantity ∆f,ξS is gauge-invariant when the

equations of motion hold. This is easy to see since by definition on S all variations

of S become pure boundary terms. Boundary terms in the far past and future

vanish due to the observations above, and since γ
(0)
ij , φ

(0) are fixed by boundary
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conditions the boundary terms on ∂M depend on the bulk fields only through the

gauge invariant quantities T ijbndy and Φbndy. Thus, we may take the Peierls bracket

of ∆f,ξS with any other observable A.

We proceed by considering the modified action

S̃[φ, gµν ] = S[φ, gµν ] + ǫ∆f,ξS[φ, gµν ] = S[φ+ ǫ∆f,ξφ, gµν + ǫ∆f,ξgµν ], (2.89)

where the last equality holds to first order in ǫ (and in fact defines ∆f,ξS[φ, gµν ]).

Since S̃ is just S with its argument shifted by ǫ∆f,ξ, the stationary points s1 of

S̃ are precisely the oppositely-shifted versions of the stationary points s of S; i.e.,

we may write s1 = (1− ǫ∆f,ξ)s for some s ∈ S.

We should of course ask if s1 satisfies the desired boundary conditions on

∂M . Since ξ is compatible with Ω, the boundary fields shift in the same way as

their bulk counterparts; i.e., those of s1 have been shifted by −ǫ∆f,ξ relative to

those of s. Since ξ is an asymptotic symmetry, its action preserves the boundary

fields. Now, the reader will note that there is a non-trivial effect from the £fξ

term in ∆f,ξ. But this term is a pure diffeomorphism, and since all boundary

terms are covariant on ∂M the action S̃ is invariant under all diffeomorphisms

compatible with Ω (i.e., which preserve the given conformal frame), even those

that act non-trivially on the boundary. So the history

s2 = (1 + ǫ£fξ)s1 = (1 + ǫf£ξ)s (2.90)

has

φ(0)|s2 = φ(0)|s, gµν |s2 = gµν |s, (2.91)
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and again solves the equations of motion that follow from S̃.

This observation allows a straightforward computation of the advanced and

retarded changes D±
∆f,ξS

A for any gauge invariant quantity A. We first consider

the retarded change evaluated on a solution s as above. We require a solution s−ǫ

of the perturbed equations of motion which agrees with s in the far past. Since

the infinitesimal transformation f£ξ vanishes in the far past, we may set s−ǫ = s2

as defined (2.90) above; i.e. s−ǫ = (1 + ǫf£ξ)s. Thus, the retarded effect on A is

just D−
∆f,ξS

A = f£ξA.

To compute the advanced effect, we must find a solution s+ǫ of the perturbed

equations of motion which agrees with s in the far future. Consider the history

s+ǫ = (1 − ǫ£ξ)s
−
ǫ = (1 + (f − 1)ǫ£ξ)s. Since this differs from s−ǫ by the action

of a symmetry compatible with Ω, it again solves the desired equations of motion

(to first order in ǫ) and induces the required boundary fields (2.91). In addition,

s+ǫ and s agree in the far future (where f = 1). Thus, we may use s+ǫ to compute

the advanced change in any gauge invariant A:

D+
∆f,ξS

A = (f − 1)£ξA. (2.92)

Finally, we arrive at the Peierls bracket

{∆f,ξS,A} = D+
∆f,ξS

A−D−
∆f,ξS

A = −£ξA. (2.93)

As desired −∆f,ξS generates a diffeomorphism along the asymptotic symmetry ξ

as desired.

All that remains is to relate ∆f,ξS to Q[ξ]. But this is straightforward. Since
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f vanishes in the far past and future we have

∆f,ξS =

∫

M

(
δS

δφ
∆f,ξφ+

δS

δgµν
∆f,ξgµν

)

+
1

2

∫

∂M

√
γ(0) T ijbndy∆f,ξγ

(0)
ij +

∫

∂M

√
γ(0) Φbndy∆f,ξφ

(0). (2.94)

But the bulk term vanishes on solutions s ∈ S, and from (2.87) we find ∆f,ξφ
(0) =

(£f̂ ξ̂ − f̂£ξ̂)φ
(0) = 0. So only the term containing T ijbndy contributes to (2.94).

To compute the remaining term note that

∆f,ξγ
(0)
ij = (£f̂ ξ̂ − f̂£ξ̂)γ

(0)
ij = ξ̂i∂j f̂ + ξ̂j∂if̂ . (2.95)

Since (2.95) vanishes when f is constant, we may restrict the integral over ∂M to

the region V between C0 and C1 and use the symmetry T ijbndy = T jibndy to obtain

∆f,ξS = =

∫

V

√
|γ(0)|T ijbndyξi∂jf

=

∫

C1

√
q njT

ij
bndyξi −

∫

V

√
|γ(0)|fDi

(
T ijbndyξj

)

= −QC1
[ξ]. (2.96)

Here we used the fact that f̂ = 0 on C0 to drop contributions from C0 and the

fact that that ξ̂ is a Killing field of the boundary metric along with (2.78) to show

that the
∫
V
term in the second line vanishes.

Thus, −∆f,ξS agrees (on solutions) with the charge Q[ξ] evaluated on the cut

C1. Since Q[ξ] is conserved, this equality also holds on any other cut of ∂M .

Having already shown by eq. (2.93) that the variation ∆f,ξS generates the action
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of the infinitesimal symmetry −ξ on observables, it follows that Q[ξ] generates

the action of ξ:

{Q[ξ], A} = £ξA, (2.97)

as desired.

2.4.3 Asymptotic Symmetries not compatible with Ω

We now generalize the argument to asymptotic symmetries ξ that are not

compatible with Ω, so that ξ̂ satisfies (2.77). The field content and boundary

conditions are the same as above. But the non-trivial action of ξ on Ω means that

there are now are additional terms when a diffeomorphism acts on the boundary

fields φ(0), γ
(0)
ij :

δ£fξ
φ(0) = £f̂ ξ̂φ

(0) −∆−f̂σφ
(0), δ£fξ

γ
(0)
ij = £f̂ ξ̂γ

(0)
ij + 2f̂σγ

(0)
ij . (2.98)

Combining (2.77) and (2.98) we see that δ£ξ
acts trivially on the boundary data

γ
(0)
ij , φ

(0), as it must since asymptotic symmetries were defined to leave the bound-

ary conditions invariant. Thus the histories s±ǫ identified above (see, e.g., (2.90))

again satisfy the same boundary conditions as s.

In contrast to section 2.4.2 the operation £fξ now acts non-trivially on Ω and

thus on S. But since this is only through the conformal anomaly term a(d) in

(2.65), £fξS depends only on the boundary metric γ(0) and is otherwise constant

on H. So the equations of motion are unchanged and the histories s±ǫ again solve

the equations of motion for S̃.

73



A Review of Asymptotically (Locally) AdS Spacetimes Chapter 2

It remains to repeat the analogue of the calculation (2.96). But here the only

change is that the
∫
V

term on the second line no longer vanishes. Instead, it

contributes a term proportional to a(d). Since this term is constant on the space

of solutions S, it has vanishing Peierls brackets and we again conclude that QC1
[ξ]

generates the asymptotic symmetry ξ. (This comment corrects a minor error in

[125].) And since QC [ξ] depends on the Cauchy surface C only through a term

that is constant on S, the same result holds for any C. Thus, even when ξ̂ is only

a conformal symmetry of the boundary, QC [ξ] − H[ξ] is constant over the space

S of solutions.

2.4.4 Charge algebras and central charges

We saw above that our charges Q[ξ] generate the desired asymptotic symme-

tries via the Peierls bracket. This immediately implies what is often called the

representation theorem, that the algebra of the charges themselves matches that

of the associated symmetries up to possible so-called central extensions. This

point is really quite simple. Consider three vector field ξ1, ξ2, ξ3 related via the

Lie bracket through {ξ1, ξ2} = ξ3. Now examine the Jacobi identity

{Q[ξ1], {Q[ξ2], A}}+ {Q[ξ2], {A,Q[ξ1]}}+ {A, {Q[ξ1], Q[ξ2]}} = 0 (2.99)
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which must hold for any A. Since {Q[ξi], B} = £ξiB for any B, we may use (2.99)

to write

£ξ3A = £ξ1 (£ξ2A)−£ξ2 (£ξ1A) = {{Q[ξ2], Q[ξ1]}, A}. (2.100)

But the left-hand-side is also {Q[ξ3], A}. So we conclude that {Q[ξ1], Q[ξ2]} gen-

erates the same transformation as Q[ξ3]. This means that they can differ only by

some K(ξ1, ξ2) which is constant across the space of solutions (i.e., it is a so-called

c-number):

{Q[ξ1], Q[ξ2]} = Q[{ξ1, ξ2}] +K(ξ1, ξ2). (2.101)

For some symmetry algebras one can show that any such K(ξi, ξj) can be

removed by shifting the zero-points of the charges Q[ξ]. In such cases the K(ξi, ξj)

are said to be trivial. Non-trivial K(ξi, ξj) are classified by a cohomology problem

and are said to represent central extensions of the symmetry algebra.

It is easy to show that K(ξi, ξj) may be set to zero in this way whenever there

is some solution (call it s0) which is invariant under all symmetries. The fact

that it is invariant means that {Q[ξi], A}(s0) = 0; i.e., the bracket vanishes when

evaluated on the particular solution s0 for any ξi and any A. So take A = Q[ξj],

and set the zero-points of the charges so that Q[ξ](s0) = 0. Evaluating (2.101) on

s0 then gives K(ξi, ξj)(s0) = 0 for all ξ. But since K(ξi, ξj)(s0) is constant over

the space of solutions this means that it vanishes identically.

For asymptotically flat spacetimes the asymptotic symmetries generate the

Poincaré group, which are just the exact symmetries of Minkowski space. Thus

one might expect the asymptotic symmetries of (d+1)-dimensional AlAdS space-
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times to be (perhaps a subgroup of) SO(d, 2) in agreement with the isometries of

AdSd+1 compatible with the boundary conditions on ∂M . Since (at least when

it is allowed by the boundary conditions) empty AdSd+1 is a solution invariant

under all symmetries one might expect that the corresponding central extensions

are trivial.

This turns out to be true for d > 2. Indeed, any Killing field of AdSd+1

automatically satisfies our definition of an asymptotic symmetry (at least for

boundary conditions φ(0) = 0 and γ
(0)
ij the metric on the Einstein static universe).

But for d = 2 there are additional asymptotic Killing fields that are not Killing

fields of empty AdS3. This is because all d = 2 boundary metrics γ
(0)
ij take the

form ds2 = guvdudv when written in terms of null coordinates, making manifest

that any vector field ξ̂u = f(u), ξ̂v = g(v) is a conformal Killing field of γ
(0)
ij . This

leads to an infinite-dimensional asymptotic symmetry group, which is clearly much

larger than the group SO(2, 2) of isometries of AdS3.

Thus as first noted in [86] there can be a non-trivial central extension for

d = 2. In this case, one can show that up to the above-mentioned zero-point shifts

all central extensions are parametrized by a single number c called the central

charge. (When parity symmetry is broken, there can be separate left and right

central charges cL, cR.) Ref [86] calculated this central charge using Hamiltonian

methods, but we will follow [104] and work directly with the boundary stress

tensor.

Since the charges Q[ξ] generate (bulk) diffeomorphisms along ξ, and since the

charges themselves are built from T ijbndy, the entire effect is captured by computing

the action of a bulk diffeomorphism ξ on T ijbndy. As noted in section 2.2.5, the
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action of ξ on boundary quantities generally involves both a diffeomorphism ξ̂

along the boundary and a change of conformal frame. And as we have seen, for

even d changes of conformal frame act non-trivially on T ijbndy. For guv = −1 a

direct calculation gives

Tbndy uu → Tbndy uu + (2Tbndy uu∂uξ
u + ξu∂uTbndy uu)−

c

24π
∂3uξ

u

Tbndy vv → Tbndy vv + (2Tbndy vv∂vξ
v + ξv∂vTbndy vv)−

c

24π
∂3vξ

v, (2.102)

where c = 3ℓ/2G. The term in parenthesis is the tensorial part of the transforma-

tion while the final (so called anomalous) term is associated with the conformal

anomaly a(2) = −(c/24π)R.

It is traditional to Fourier transform the above components of the stress tensor

to write the charge algebra as the (double) Virasoro algebra

i{Lm, Ln} = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0, (2.103)

i{L̄m, L̄n} = (m− n)L̄m+n +
c

12
m(m2 − 1)δm+n,0, (2.104)

where {Ln, L̄m} = 0 and

Ln = − 1

2π

∫

S1

eiunTbndy uudu, L̄n = − 1

2π

∫

S1

eivnTbndy vvdv. (2.105)

Here we have take ∂M = S1 ×R so that the dynamics requires both Tuu and Tvv

to be periodic functions of their arguments. We have taken this period to be 2π.

The anomalous transformation of T ijbndy leads to interesting zero-points for cer-

tain charges. Suppose for example we take T ijbndy to vanish for the Poincaré patch
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of empty AdS3 in the conformal frame where the boundary metric is (uncompact-

ified) Minkowski space. Then since S1 × R is (locally) conformal to Minkowski

space, we can use the conformal anomaly to calculate T ijbndy for empty AdS3 with

Einstein static universe boundary metric. One finds that the resulting energy does

not vanish. Instead, Eglobal AdS3 = −c/12ℓ = −1/8G so that E = 0 for the so-

called M = 0 Bañados-Teitelboim-Zanelli (BTZ) black hole [127, 128]. The offset

in (2.82) arises from similarly setting T ijbndy = 0 for empty AdS5 in the conformal

frame where the boundary metric is (uncompactified) Minkowski space.

2.5 The algebra of boundary observables and

the AdS/CFT correspondence

We have shown above how the boundary stress tensor can be used to construct

charges Q[ξ] associated with any asymptotic symmetry ξ of a theory of asymp-

totically locally anti-de Sitter spacetimes. The Q[ξ] are conserved (perhaps, up to

c-number anomaly terms) and generate the asymptotic symmetry ξ under the ac-

tion of the Peierls bracket (or equivalently, under the Poisson bracket). Therefore

the Q[ξ] are equivalent to the Hamiltonian charges that we could derive using tech-

niques analogous to those described in Chapter 17 of [72] for asymptotically flat

spacetimes. Conversely, boundary stress tensor methods can also be applied in the

asymptotically flat context [129–131]. Readers interested in direct Hamiltonian

approaches to AdS charges should consult [84–86]; see also [83, 91, 92, 132–135]

for other covariant approaches.

We chose to use boundary stress tensor methods for two closely related reasons.
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The first is that, in addition to its role in constructing conserved charges, the

local boundary field T ijbndy turns out to contain useful information on its own. For

example, it plays a key role in the hydrodynamic description of large AdS black

holes known as the fluid/gravity correspondence [64] (which may be considered

a modern incarnation of the so-called membrane paradigm [136]). The extra

information in T ijbndy appears at the AdS boundary ∂M due to the fact that all

multipole moments of a given field decay near ∂M with the same power law;

namely, the one given by the γ(d) term in the Fefferman-Graham expansion (2.21).

This is in striking contrast with the more familiar situation in asymptotically

flat spacetimes where the large r behavior is dominated by the monopole terms,

with sub-leading corrections from the dipole and higher order multipoles. Indeed,

while as noted above similar boundary stress tensor techniques can be employed

in asymptotically flat spacetimes, the asymptotically flat boundary stress tensor

contains far less information.

The second reason is that both T ijbndy and Φbndy play fundamental roles in the

AdS/CFT correspondence [19] (see especially [20]). Any treatment of asymptotic

AdS charges would be remiss without at least mentioning this connection, and

we take the opportunity below to give a brief introduction to AdS/CFT from the

gravity side. This turns out to be straightforward using the machinery described

thus far. Indeed, the general framework requires no further input from either

string theory or conformal field theory and should be readily accessible to all

readers of this volume. As usual, we consider bulk gravity coupled to a single

bulk scalar and fix both γ
(0)
ij and φ(0) as boundary conditions. We refer to γ

(0)
ij

and φ(0) as boundary sources below. More general boundary conditions may be
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thought of as being dual to CFTs with additional interactions [137] or coupled to

additional dynamical fields [105, 138, 139], though we will not go into the details

here.

The only new concept we require is that of the the algebra Abndy of boundary

observables, which is just the algebra generated by T ijbndy and Φbndy under the

Peierls bracket. Here we mean that we consider the smallest algebra containing

both T ijbndy and Φbndy which is closed under finite flows; i.e., under the classical

analogue of the quantum operation eiABe−iA. A key property of Abndy follows

from the fact that the bulk equations of motion are completely independent of

the choice of conformal frame Ω. Thus, up to the usual conformal anomalies,

under any change of conformal frame the boundary observables transform only

by rescaling with a particular power of e−σ known as the conformal dimension (d

for T ijbndy, and ∆+ for Φbndy), with the boundary sources transforming similarly

with conformal weights zero for γ
(0)
ij and ∆− for φ(0). (In defining the conformal

dimension it is conventional not to count the ±2 powers of e−σ associated with

the indices on T ijbndy and γ
(0)
ij .) In this sense the theory of Abndy is invariant

(or, perhaps better, covariant) under all changes of boundary conformal frame.

Of course we have already shown that when the boundary observables admit a

conformal Killing field ξ̂, the corresponding transformation is generated by the

associated Q[ξ] from (2.79). Now since the charges Q[ξ] are built from T ijbndy and

Φbndy they also lie in the algebra Abndy. When ξ̂ can be chosen to be everywhere

timelike, this immediately implies that Abndy is also closed under time evolution.

This last property can also be shown much more generally; see e.g. [140].

We now extract one final property of the algebra Abndy. From the expression
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(2.85) in terms of Green’s functions, it is clear that the Peierls bracket {A,B}

of two observables vanishes on any solution s for which A,B are outside each

other’s light cones; i.e., when the regions on which A,B are supported cannot be

connected by any causal curve. Furthermore, as shown in [141] the null energy

condition implies that two boundary points x, y can be connected by a causal

curve through the bulk only when they can also be connected by a causal curve

lying entirely in the boundary. It follows that the algebra Abndy satisfies the usual

definition of locality for a field theory on ∂M ; namely that Peierls brackets vanish

outside the light cones defined by the boundary metric γ
(0)
ij .

Though we have so far worked entirely at the classical level, let us now assume

that all of the above properties persist in the quantum theory. We then have a

conformally covariant algebra of operators Abndy with closed dynamics, local com-

mutation relations on ∂M , and a stress tensor T ijbndy that generates all conformal

symmetries. In other words, we have a local conformal field theory on ∂M .

This is the most basic statement of the AdS/CFT correspondence. Any bulk

AlAdS quantum gravity theory in which the above classical properties continue to

hold defines a conformal field theory (CFT) through its algebra Abndy of boundary

observables. Now, we should remark that the AdS/CFT correspondence as used in

string theory goes one step further. For certain specific bulk theories it identifies

the so-called dual CFT as a particular known theory defined by its own Lagrangian

with a definite field content. For example, when the bulk is type IIB string theory

asymptotic to a certain AdS5 × S5 solution, the corresponding CFT is just N = 4

super-Yang-Mills. We will not go into further details here, though the interested

reader may consult various reviews such as [21–23].
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On the other hand, even without having a separate definition of the CFT,

the above observations already have dramatic implications for the bulk quantum

gravity theory. In particular, the statement that Abndy is closed under time evolu-

tion runs completely counter to one’s usual intuition regarding field theory with a

boundary. We usually think that most of the dynamical degrees of freedom live in

the bulk spacetime, with perhaps only a small subset visible on the boundary at

any time. In particular, we expect any signal present on the boundary at time t0

to then propagate into the bulk and (at least for some time) to essentially disap-

pear from the algebra of boundary observables. Since Abndy is closed under time

evolution, it is clear that this is simply not the case in our quantum gravity theory.

The difference arises precisely from the fact that the gravitational Hamiltonian

(and more generally any Q[ξ]) is a pure boundary term. This property was called

boundary unitarity in [140]. See also [142] for further discussion of this point.

The reader should take care to separate boundary unitarity from the possible

claim that Abndy captures the complete set of bulk observables. The two ideas are

logically separate, as there can in principle be additional bulk observables Aother

so long as they do not mix dynamically with those in Abndy. One says that the

possible values of Aother define superselection sectors with respect to Abndy [143].

But any such additional observables are clearly very special. The requirement

that they not affect Abndy strongly suggests that at least semi-classically such

observables have to do only with properties of spacetime hidden from the boundary

behind both past and future horizons [144]. In particular, any degrees of freedom

that determine whether black holes are connected by (non-traversable) wormholes

seem likely to lie inAother. On the other hand, in perturbation theory about empty
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AdS (or even about solutions that are empty AdS in the far past) one may show

that Aother is indeed empty [140].
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Part I

Holographic Heat Flows
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Chapter 3

Flowing Funnels: the AdS3 Dual

of CFT2 Hawking Radiation

3.1 Introduction

The study of field theories far from equilibrium is a classic problem of long-

standing interest. While much can be learned from perturbation theory, more

complete results are difficult to obtain. As is by now well known, gauge/gravity

duality can be a useful tool to study non-perturbative effects. There has thus

been significant interest in using this framework to study plasmas with strong

time dependence and the approach to thermalization (see e.g. [145–147] for re-

cent examples and further references), though it has mostly been used to study

the equilibrium properties of field theories, or perhaps small perturbations away

from equilibrium. Below, we use this duality to study heat transport far from

equilibrium in a strongly coupled large N CFT.
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We are interested in particular in the response of the field theory when coupled

to heat sources or sinks at finite locations. For the purposes of this section, we

consider a field theory in d spacetime dimensions. A convenient way to introduce

such sources is to place the CFT on a background non-dynamical spacetime con-

taining black holes with surface gravity κ, which have temperatures TBH = κ/2π

due to the Hawking effect. The problem of heat transport then becomes one

of computing the expectation value of the stress tensor in the given background.

Note that, since gravity is not dynamical in this context, we can choose the metric

at will. In particular, we can include as many black holes as we like at locations

of our choosing, and we are free to assign their surface gravities as desired. One

then seeks states of the field theory which are smooth across all future horizons.

Stationary such states are analogues of the Unruh vacuum [148] for black holes in

asymptotically flat spacetimes.

Gauge/gravity duality for large N field theories [19] has been used to study

related settings in [57–60, 149–165]. Though this exploration involved certain

tensions and subtleties, the picture that emerged in [57] (building on [160]) is one

with two important phases for each black hole. In the so-called “funnel phase”

a given black hole exchanges heat with distant regions much as in a free theory

with a similar number of fields. One may say that grey body factors are O(1)

even at large N . But in the contrasting “droplet phase” there is no conduction of

heat between a given black hole and the region far away at leading order in large

N . In effect, all grey body factors associated with the black hole vanish at this

order.1 While we save a more complete review for section 3.2, we mention that the

1To be more precise, the grey body factors are non-zero only for a number of degrees of
freedom that scales like N0 = 1.

86



Flowing Funnels: the AdS3 Dual of CFT2 Hawking Radiation Chapter 3

terms “droplet” and “funnel” refer to the shape of the bulk horizon in the dual

gravitational theory; see especially figure 3.1. Additional phases are also possible

that conduct heat between subsets of nearby black holes but not to infinity; these

are of less concern below. We also mention that 1+1 CFTs (and their 2+1 AdS

duals) are a special case in which only the funnel phase is allowed.

The above works have focussed on cases without heat flow; i.e., either droplets

(in which heat does not flow at leading order) or on equilibrium funnels. But

heat transport is an interesting phenomenon and, moreover, at least for d ≥ 3

the corresponding solutions of the dual AdSd+1 gravitational theory are expected

to have novel properties. For example, time-independent such solutions should

be black holes which (in some sense) have a temperature that varies along the

horizon. But there is no generally accepted definition of horizon temperature

which allows the temperature to vary2. Indeed, the fact that any definition of

temperature should vary implies that the horizon is not a Killing horizon, which

is already a novel property for a stationary solution. There is also an interesting

question of whether such black holes should have a regular past horizon. On the

one hand, from the field theory point of view, the CFT stress tensor must diverge

on the past horizon of the (now fixed and non-dynamical) black hole metric in

any state with both heat flow and time-translation symmetry. Ref. [57] thus

expected the past horizon of the dual bulk solutions to be singular in the presence

of (stationary) heat flow. But cases are known where similarly singular stress

tensors are described by smooth bulk solutions [168–170]. Perhaps this could be

2Except of course within the domain of the gradient expansion, as in the fluid-gravity corre-
spondence [64]; see also [166]. For proposals in more general contexts see e.g. [167] for a recent
paper and references. If flowing funnels could be constructed, it might be interesting to apply
these proposals and study the results.
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the case here as well.

This paper provides a first step in this direction by constructing examples of

such ‘flowing funnel’ solutions in AdS3, which are then dual to heat transport in a

1 + 1 CFT; i.e., for the case d = 2. The behavior of the stress tensor (and thus of

heat transport) in 1+1 CFT’s is fully determined by conformal invariance, and of

course the same is true of the AdS3 description. This is therefore not an example

where one expects gauge/gravity duality to lead to significant new insights for the

field theory. In addition, a consequence of this conformal symmetry is that states

are characterized by two (left- and right-moving) temperatures TL, TR, both of

which are necessarily constant (independent of spatial position) in a stationary

solution. So this is also not a context where we will learn about bulk horizons

with non-constant temperature. Nevertheless, it gives a prime opportunity to see

how heat transport in the CFT is encoded in the dual bulk solutions. We may also

hope that the explicit solutions given below will provide a useful starting point

for studying the higher-dimensional case.

We begin with a brief review of black funnels, black droplets, and their dual

field theory description in section 3.2. Section 3.3 then constructs flowing funnels

from rotating BTZ black holes. We close with some further discussion in section

3.4 and relegate details of the Fefferman-Graham coordinates to Appendix A.1.

3.2 A brief review of droplets and funnels

Studies of the above framework using gauge/gravity duality have led to both

surprising phenomena and significant controversy. The first such study appears
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to have been [149], which used the AdS4 C-metric [171] to find a bulk solution

describing the dual CFT on an asymptotically flat black hole spacetime. The

surprise was that, at leading order in large N, the CFT stress tensor was completely

static and described no flow of heat from the (finite temperature) black hole

to infinity (where the state approached the vacuum). Indeed, the expectation

of finite heat flow was so strong that it motivated predictions [150, 151] (see

also [161, 163])) that black holes on Randall-Sundrum brane-worlds [172, 173]

could not be stationary even at the classical level3, in contradiction with the

natural intuition based on gravity in the bulk (see [174] for details). The difficulty

in finding such stationary solutions with black holes (see e.g. [152–159, 175])

made these arguments seem compelling for some time, though modern numerical

techniques have established that these solutions do in fact exist [164, 165]. As in

[149], although the field theory contributes a non-trivial stress tensor one finds no

transport of energy to infinity at leading order in N ; i.e., at O(N2) for [164, 165].4

Indeed, from the bulk viewpoint, heat transport can occur only due to a quantum

process (bulk Hawking radiation) which is an effect of order N0 = 1. See also

[162].

While intuition from weak coupling may make this tiny heat transport seem

surprising, Fitzpatrick, Randall and Wiseman [160] pointed out that similar phe-

3The brane in a Randall-Sundrum brane-world spacetime can be thought of as a boundary for
an asymptotically AdS spacetime which has been placed at finite distance and given a boundary
condition that makes the boundary metric dynamical. At least roughly speaking, this makes
the system dual to a field theory coupled to dynamical gravity. Hawking radiation in the dual
field theory would therefore cause the brane black hole to shrink. If this effect occurs at leading
order in large N, then it would be visible at the classical level from the bulk point of view.

4Here and below we will count powers of N as appropriate to a large N SU(N) Yang-Mills
theory. This in particular describes theories dual to bulk spacetimes asymptotic to AdS5 ×X
for compact 5-dimensional manifolds X.
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nomena are in fact well-known at strong coupling and large N . In particular, they

noted that confined phases of large N gauge theories have conductivities of order

1 and not of order N2. Though the above theories are not strictly confining, we

see that an effect of this magnitude would explain the results of [164, 165].

A somewhat more complete picture was constructed in [57] and explored fur-

ther in [58–60]. The basic approach of [57] was to i) explicitly add a thermal bath

at infinity, ii) follow the natural intuition for the bulk gravitating solutions, and

iii) translate the results into an explanation5 of the effect in the gauge theory. The

rest of this section briefly summarizes the arguments of [57] with minor additions

and clarifications.

Let us take the gauge theory to be conformal, and to be deconfined at all

temperatures T > 0. We take the theory to live on some asymptotically flat

spacetime and imagine coupling the system to a large heat bath (at some tem-

perature T∞) far from the black hole. It is clear that this heat bath should fill

the spacetime with a thermal plasma – at least far from the black hole where the

spacetime is nearly flat. In order to discuss the dual gravitational solution, it is

useful to introduce two coordinates: r, which parametrizes the distance from the

black hole in the gauge theory and z, chosen so that the gauge theory ‘lives’ on

the AdS boundary at z = 0 and which parametrizes the distance into the bulk.

To be concrete, at least near the boundary one might take these to be part of

a Fefferman-Graham type coordinate system6 in which the bulk metric takes the

5Here we mean a self-consistent scenario for the behavior of the strongly-coupled large N
gauge theory. A full explanation would of course require the scenario to be derived from first
principles, but this remains an open problem.

6Though there is no a priori guarrantee that such coordinates are regular across the full bulk
horizon. See e.g. the discussion of 2+1 funnels in [57].
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Figure 3.1: A sketch of the relevant solutions: (a): black funnel and (b): black
droplet above a deformed planar black hole. Both describe possible states of
dual field theories in contact with heat baths at temperature T∞ on spacetimes
containing black holes of horizon size R. The top line corresponds to the
boundary, with the dots denoting the horizon of the boundary black hole. The
shaded regions are those inside the bulk horizons.

form

ds2d+1 = z−2
(
dz2 + gijdx

idxj
)
, (3.1)

with r being one of the boundary coordinates xi and ds2d = gijdx
idxj being the

asymptotically-flat black hole spacetime (which we call the ‘boundary black hole’

or equivalently the ‘gauge theory black hole’) on which the gauge theory is to be

studied. One expects the thermal plasma to be described by a bulk horizon that

approximates that of the familiar planar Schwarzschild black hole at large r. On

the other hand, one also expects the horizon of the boundary black hole to extend

into the bulk. There are then two natural classes of possible bulk solutions. If the

above two horizons connect to form a single smooth horizon, the solution is said to

describe a “black funnel.” If they are instead disconnected, the solution describes

a “black droplet, suspended above a (deformed) planar black hole.” These two

situations are sketched in figure 1.
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Taking the gauge theory black hole to have radius R, the product RT∞ is scale

invariant. It is thus natural to expect the basic physics to depend crucially on

this product, with the precise details of the gauge theory black hole playing a

lesser role. In particular, since depth (z) is related to size (r) on the boundary, for

large RT∞ one expects funnels to exist and to be thermodynamically dominant,

while droplets (above planar black holes) should dominate for small RT∞. See

[57] for a more detailed discussion. It is natural to expect that the two phases

are connected by a cone transition as occurs in similar settings [176–178] in which

dialing a parameter causes two horizons to meet and perhaps merge.7

As in [57], let us focus for now on the equilibrium context (where TBH = T∞).

In the funnel case, disturbances of the bulk horizon near z = 0 (which describes

the region near that boundary black hole) can propagate along the bulk horizon

into the region near r = ∞ (which describes the thermal plasma). Although

any coherent oscillation is highly damped during this propagation, this merely

turns the energy of the oscillation into heat which will nevertheless flow along the

horizon. In contrast, disturbances of the droplet horizon in figure 3.1 (and the

heat they generate) cannot directly propagate to the planar black hole horizon.

Instead, they can only couple to the planar black hole horizon via bulk gravity.

Since in linear field theory we describe the coupling between asymptotic scattering

states and a black hole in terms of grey body factors, it is natural to say that for

the dual field theory the boundary black hole has tiny grey body factors (of order

7This scenario was proposed and explored in [176] for mergers of horizons with the same
temperature. It was shown in [178] that similar behavior can result even when the horizon
temperatures differ. We note that the AdS-Schwarzschild black string solution of [174] is such
a cone involving a planar black hole of zero temperature. Since there appears to be no nearby
stable solution, the full phase diagram is likely to be as complicated and interesting as that of
Kaluza-Klein black holes (see e.g. [179]).
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1/N2 or smaller).

Of course, the situation is more complicated than this statement might seem

to imply as the dual field theory contains many degrees of freedom that interact

strongly. A more complete story would note that the O(N0) degrees of freedom

dual to bulk gravitational waves have more familiar O(1) grey body factors while

the grey body factors for the N2 degrees of freedom that describe the rest of the

plasma near r = ∞ appear to vanish exactly to all orders in 1/N . It is natural

to suppose that these latter grey body factors are in fact exponentially small

due to tunneling through a potential barrier of height N or N2. Presumeably

this potential barrier is related to the need to change the ways in which flux

tubes connect in attempting to move a quasi-particle from a state in which it

is attached via flux tubes to the black hole into a plasma state. As noted in

[57], the plasma quasi-particles seem to have an effective size which is larger than

those of quasi-particles attached to the black hole. Thus one should be able to

describe the above potential barrier in terms of an effective potential for the size

of a quasi-particle. Again, this is merely a self-consistent interpretation of the

bulk gravitational physics. A complete microscopic understanding in terms of the

gauge theory remains to be found.

While it is useful to keep the above general context in mind, the discussion

degenerates somewhat in the case of 1+1 CFTs (dual to 2+1 AdS solutions). In

this context, there is no useful definition of the “size” of a horizon in the CFT.

Indeed, all horizons are analogous to planar horizons in higher dimensions and

may therefore be considered to have R = ∞. In particular, there cannot be any

effective potential associated with the size of a quasi-particle. As a result, only
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the black funnel phase is allowed.

As a final side comment, we mention that it should be possible to construct

an even more general set of droplet-phase solutions. First, note that even in a free

field theory, one may consider a thermal state on a black hole background with

T 6= TBH . Although the correlation functions are then singular at the horizon, a

logical possibility is that that our large N CFT in such a state may be described

by a smooth bulk gravitational dual which merely fails to be asymptotically AdS

in the usual sense at the horizon of the boundary black hole. This was the case

in [169, 170], which studied an analogous setting involving de Sitter horizons and

found that the field theory temperature T corresponded to the temperature of a

smooth bulk horizon that attached to the boundary black hole; i.e., T = Tbulk BH 6=

Tbndy BH . The results of [169, 170] thus suggest that general droplet solutions are

labeled by three temperatures: Tbndy BH , Tbulk droplet, and T∞. In particular, in

contrast to the identification in [164], even for TBH 6= 0 the Boulware (ground)

state should be described by a smooth bulk solution having only extreme horizons

(Tbulk droplet = T∞ = 0).

3.3 Flowing funnels from BTZ black holes

We now turn to the problem of constructing AdS3 spacetimes which exhibit

heat flow in a stationary state. Our particular interest concerns bulk solutions

dual to a 1+1 CFT on a black hole background. We refer to such AdS3 solutions

as 2+1 ‘flowing funnels.’

Note that in 1+1 dimensions a given static region of spacetime can be attached

94



Flowing Funnels: the AdS3 Dual of CFT2 Hawking Radiation Chapter 3

to no more than two black holes – one on the left, and one on the right. We

begin with spacetimes that contain only one black hole (say, on the left) and

which approach the Minkowski metric in inertial coordinates on the right; see

figure 3.2. Adding the second black hole will be straightforward once this case is

under control.
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Figure 3.2: Conformal diagrams showing the two types of 1 + 1 background
spacetimes for our CFTs. (a): A single black hole on the left with an asymp-
totically flat region on the right. (b): Two black holes.

In fact, let us first consider the case of no black holes at all. Recall that the

stress tensor of stationary CFT states on 1+1 Minkowski space is fully character-

ized by its right-moving and left-moving temperatures TR, TL:

ds2CFT = −dudv, TCFTab dxadxb = π
c

12

(
T 2
Rdu

2 + T 2
Ldv

2
)
, (3.2)

where we have introduced null coordinates u = t−x, v = t+x , and c is the central

charge of the CFT. The system may also be characterized by a temperature T =

2(T−1
L +T−1

R )−1 and a chemical potential for momentum µ = ℓ(TR−TL)/(TR+TL).

Although 1+1 CFTs are not well-described by perfect fluids, one may nevertheless

think of the system as being ‘at rest’ when TL = TR, as there is then no net
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transport of energy. Boosting to a more general frame, it is natural to define the

‘velocity’ of the system to be Ua∂a =
1√
TLTR

(TR∂v + TL∂u).

As is well-known, the bulk spacetimes dual to such flowing thermal states are

just AdS3 in BTZ coordinates [127, 128]; i.e., they are BTZ black holes with the

‘angle’ unwrapped so that it runs over (−∞,∞) instead of over S1. In the present

context, it is natural to give the would-be BTZ angle the name x and units of

length. The bulk metric then takes the form

ds2bulk = −(ρ2 − ρ2+)(ρ
2 − ρ2−)

ℓ2ρ2
dt2+

ρ2ℓ2

(ρ2 − ρ2+)(ρ
2 − ρ2−)

dρ2+
ρ2

ℓ2

(
dx− ρ+ρ−

ρ2
dt

)2

,

(3.3)

where ℓ is the usual AdS scale and the temperatures are TR = (ρ+ + ρ−)/2πℓ

and TL = (ρ+ − ρ−)/2πℓ. We take ρ+ > 0 so that the sign of ρ− determines

the sign of the BTZ angular momentum J . In (3.3), we have called the usual

BTZ radial coordinate ρ in order to reserve r for a radial coordinate along the

boundary. The boundary stress tensor [103, 104] of (3.3) is (3.2) with c = 3ℓ/2G,

where G is the bulk gravitational constant.

Now, a general static 1+1 spacetime may be written as ds2 = Ω2(x) (−dt2 + dx2),

and so may be generated from Minkowski space via an appropriate conformal

rescaling. In particular, we obtain a black hole of temperature Tbndy BH = κ/2π

by taking Ω → 1 as x → +∞ and Ω ∼ eκx as x → −∞. Under such a conformal

rescaling, the CFT stress tensor transforms as [180]

Tab → Tab +
c

12π

[
∇a∇bσ −∇aσ∇bσ +

1

2
gab (∇σ)2 − gab∇2σ

]
(3.4)
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where Ω = eσ. In particular, the stress tensor is unchanged at large positive x

(where ∇aσ vanishes) while at large negative x eqn. (3.2) becomes

TCFT = π
c

12

[
e2κu

(
T 2
R − 1

4π2
κ2
)
dU2 + e−2κv

(
T 2
L − 1

4π2
κ2
)
dV 2

]
+ . . . (3.5)

in terms of the new affinely-parametrized null coordinates U, V (which satisfy

U = −κ−1e−κu + . . . and V = κ−1eκv + . . . where + . . . represents terms that are

subleading as x→ −∞). Note that the new stress tensor is regular on the future

horizon (u = ∞) precisely when we choose TR = Tbndy BH .

For this choice, one may interpret the CFT state as describing heat exchange

between a boundary black hole of temperature Tbndy BH = TR and a heat bath at

infinity (x = +∞) with temperature TL. In particular, suppose that we instead

choose the background metric to be time dependent, and to evolve from 1+1

Minkowski space in the far past to the desired boundary black hole spacetime in

the far future. Then, by the usual arguments, when the CFT begins in an initial

thermal state of temperature TL the late-time behavior of the CFT is described

by our solution above.8

Returning to the stationary case, let us remark on several features of our bulk

solution:

• The choice TL = 0 is dual to the Unruh state of the CFT. In particular, the

Unruh state corresponds to an extreme horizon in the bulk whose proper-

ties are fixed by the temperature of the boundary black hole. In contrast,

note that the Boulware state is described by an ‘unwrapped’ M = 0 BTZ

8Recall that TL is the temperature of the left-moving part of the CFT. Unfortunately, this
is naturally thought of as being sourced by a heat bath on the right (at x = +∞).
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black hole with TL = TR = 0 6= Tbndy BH , which is just a Poincaré horizon

(independent of Tbndy BH). As noted in section 3.2, this is a smooth bulk

spacetime with a singular boundary stress tensor. In this case, the singular

boundary stress tensor is due to a singular choice of conformal frame.

• By construction, on the boundary of our spacetime the stationary Killing

field ∂t of BTZ agrees with the static Killing field of the boundary metric.

But BTZ has a second (commuting) Killing field ∂x. While this is not

a Killing field of the boundary black hole, the fact that all 1+1 metrics

are conformally flat means that ∂x acts as a conformal Killing field on the

boundary. This is a peculiar feature of our AdS3 problem that will not

be reflected in higher dimensions. Indeed, in higher dimensions it is easy

to show that any conformal isometries of boundary metrics describing non-

extreme stationary spherically symmetric boundary black holes are in fact

boundary Killing fields, so that there can be no such ‘accidental’ Killing

fields in the bulk.9

• The bulk solution has a Killing horizon generated by χ = ∂t+ℓ
−1µ∂x, where

µ = ℓ(TR − TL)/(TR + TL) as above is related to the angular velocity of the

horizon via µ = ΩHℓ. Thus we see that µ characterizes the rate at which null

generators of the horizon pass from one Killing orbit to another. For µ > 0

we may say that, in this sense, generators ‘move’ from the boundary down

into the bulk and toward positive x, while for µ < 0 the ‘motion’ is toward

negative x and up toward the boundary. As was the case for ∂x above, χ is

9Extreme black holes can have such conformal isometries but do not by themselves lead to
heat flow.
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an accidental symmetry from the viewpoint of the boundary theory and will

have no analogue in higher dimensions; i.e., the black holes that describe

flowing funnels dual to d > 1+1 CFTs will not have Killing horizons.

• For TL = TR our solution is precisely the static AdS3 black funnel con-

structed in [57].

In many implementations of the AdS/CFT correspondence one may gain in-

sight into the CFT state by displaying the bulk solution in Fefferman-Graham

coordinates. This seems to be less useful in the current context as these coordi-

nates are highly singular. We relegate the details of the coordinate transformations

and the resulting metrics to the appendix, though we briefly summarize the key

points below.

There are three natural sources of coordinate singularities in the Fefferman-

Graham coordinates associated with any boundary black hole: i) the past horizon

H− of the boundary black hole, ii) null infinity I ± of the boundary spacetime (see

figure 3.2), and iii) the singularity of the boundary black hole. The singularity on

H− is associated with the fact that, while we tuned parameters to make the CFT

stress tensor smooth across the future horizons, it generally remains singular on

H−. The problem at I ± is associated with the fact that these are finite locations

when AdS3 is described in global coordinates10. In addition, the singularity of

the boundary black hole is clearly a singularity of the transformation between any

global coordinates and our Fefferman-Graham coordinates. Since the boundary

10 The particular global coordinates used in figures 3.3, 3.4, and 3.5 below are the dimensionless
τ,R, θ for which

ds2 =
4ℓ2

(1−R2)2

[
−1

4
(1 +R2)2dτ2 + dR2 +R2dθ2

]
.
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metric can be chosen at will (and need not satisfy any equations of motion) we

are free to place this singularity anywhere we like inside the boundary horizon.

But it is important to note that, when written in conformally flat form, the

conformal factor Ω of any boundary black hole metric necessarily has some singular

feature associated with the fact that e.g. future-directed null geodesics along I +

encounter the horizon H+ only at infinite affine parameter while other left-moving

future-directed null geodesics encounter the horizon at finite affine parameter.
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Figure 3.3: The relevant portion of the AdS3 boundary in global coordinates.
The dotted line indicates the singularity of the boundary metric (3.6); i.e., a
singularity in the conformal frame associated with (3.6). The boundary past
horizonH− is another such singularity. Since θ has period 2π, the point marked
“Image i0” represents the same event on the boundary of global AdS3 as does i

0.
Due to singularities in the change of conformal frame it nevertheless represents
a distinct point of the black hole boundary spacetime (3.6).

It is no surprise that the full singularities of the Fefferman-Graham coordinate

system extend into the bulk, connecting to the boundary at the above three lo-

cations. One might hope that the singularities remain localized at the the bulk

BTZ singularity and at the natural bulk null surfaces associated with (i) and (ii)

above. But that turns out not to be the case, and Fefferman-Graham coordinate

singularities extend outside the horizons of the BTZ black hole. The situation is
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summarized in figures 3.3, 3.5, and 3.4 below for the AdS3 spacetime dual to the

Unruh state of the CFT on the metric

ds2CFT = − tanh2 κr dt2 + dr2 =
−1

1− κ2uv
dudv, (3.6)

where κ = 2πTR is again the surface gravity of the boundary black hole. The

general case TL 6= 0 is similar. We draw the reader’s attention to the branch cut

in figures 3.5 and 3.4, which limits the utility of Fefferman-Graham coordinates to

a region surprisingly close to the boundary. We also include plots of the Fefferman-

Graham z vs. r along the future horizons for various values of TL/TR (see figure

3.6).

Finally, let us consider the addition of a 2nd black hole to the 1+1 CFT

spacetime. This may be accomplished by performing another conformal rescaling,

this time with Ω ∼ e−κRx at large positive x. It is natural to choose Ω so that

|∂t|2 = −1 at e.g. x = 0. This provides a preferred location with respect to which

to normalize notions of temperature and surface gravity. We also rename the

above κ as κL to refer to the surface gravity of the left black hole. The resulting

family of solutions is labeled by four parameters (TL, TR, κL, κR), and the CFT

stress tensor is smooth across both horizons if TR = κL/2π and TL = κR/2π.

Such states describe the asymptotic future of any CFT state (with a smooth

stress tensor) on a spacetime which evolves from flat Minkowski space in the far

past to one containing our two black holes in the far future. The details are in

direct analogy to the case of a single black hole above.
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Figure 3.4: Left: Notable features of the bulk AdS3 spacetime in Fefferman–
Graham (FG) coordinates u, v, z, (compactified to show their full range) for
our Unruh state solution (TL = 0, κ = 2πTR) and boundary metric (3.6). Past
and future bulk horizons H±, boundary horizons H± and the various pieces
I ±, i0,± of infinity for the boundary spacetime (see fig. 3.3) are shown. The
surfaces H−

sing (at v = 0) and CS are FG coordinate singularities. The first

(H−
sing) acts like part of the bulk past horizon from the FG point of view,

though its image in global coordinates coincides with that of i−. The second
(CS) is a closed surface from the FG point of view which begins and ends at
z = 0, uv = 1 (the singularity of the boundary black hole; dotted line in figure
3.3). Parts of the surfaces CS, H± are obscured, as is a third FG coordinate
singularity at κ2uv = 1 (for all z). A line on the CS surface near its maximum
value of z is a set of branch points. The black grid on the left diagram marks
the image of an associated branch cut chosen so that the transformation to FG
coordinates is one-to-one in the region bounded by this cut, the CS surface,
and the plane z = 0. Right: The general structure and the relative locations
of CS, H± are made clear. These surfaces depend only on the product uv. CS
and H+ intersect along a single line. H+ and H− do not intersect in the bulk
but meet only at the singularity of the boundary black hole.
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Figure 3.5: Notable features of the bulk AdS3 spacetime in global coordinates
associated with the Unruh state (TL = 0, κ = 2πTR) and the boundary black
hole (3.6). The bulk past and future horizons H± are labeled, as are H±, I ±

and i0,± describing the horizons and infinity of the boundary metric (see figure
3.3). In global coordinates, the surface H−

sing of figure 3.4 coincides with i−.
The lines labeled CS are uv = const. contours of the FG coordinate singularity
described by the CS surface of figure 3.4. In Fefferman-Graham coordinates,
the CS surface is closed and pinches off as it reaches the boundary singularity
at κ2uv = 1. In global coordinates, this behavior gives rise to an open surface
with two edges: one edge is at the boundary singularity (seen above behind the
bulk horizon H+; this line is κ2uv = 1 for all values of the FG z coordinate)
and I −. The other edge travels from i+ to i− inside the bulk. The associated
branch cut shown as a black grid in figure 3.4 is not drawn, but would start
near this edge in the bulk and fold back to the right, passing above the CS
surface and terminating on I + and I −. One should be aware that the part
of the CS surface above the branch cut (near the interior edge) has multiple
images in figure 3.3 and is a coordinate singularity only after one has passed
through the branch cut.

103



Flowing Funnels: the AdS3 Dual of CFT2 Hawking Radiation Chapter 3

✶

✷

✸

✹

✺

✶ ✷ ✸ ✹ ✺�✶

❚▲ ❂ ✷❚❘

❚▲ ❂ ❚❘

❚▲ ❂ ❚❘✁✷

❚▲ ❂ ✵
✔③

s✐♥❤
✂
✔r

Figure 3.6: The future horizon in Fefferman-Graham coordinates for
TL/TR = 2, 1, 12 , 0 and κ = 2πTR (smooth future horizon). The case TL = TR
describes the Hartle-Hawking state studied in [57]. The case TL = 0 describes
the Unruh case studied in detail in this paper. The horizontal axis plots sinh2 κr
rather than just r in order to reach all the way to the boundary singularity
at sinh2 κr = −1. The curve diverges at large r for TL = 0 but otherwise
asymptotes to κz = 2

√
TR/TL.

3.4 Discussion

We showed above how AdS3 solutions dual to stationary CFT2 states with

heat transport between black holes (or between one black hole and a heat bath

at infinity) can be constructed by ‘unwrapping’ the angular coordinate of BTZ

black holes and changing conformal frame at infinity. Thus the solutions may

also be described as pure AdS3 in an appropriate conformal frame. An interesting

point was that Unruh states of the CFT (living on a spacetime with a single

black hole) are dual to extreme horizons in the bulk. But perhaps the notable

feature of our solutions is just that they are everywhere smooth, despite the fact

that the boundary stress tensor is generally singular on the past horizon of the

boundary black hole. This smoothness is similar to the phenomenon seen in

104



Flowing Funnels: the AdS3 Dual of CFT2 Hawking Radiation Chapter 3

[169, 170] for CFTs on black hole spacetimes in which the CFT was forced to have

a temperature different from the Hawking temperature of the boundary black hole

(TCFT 6= Tbndy BH). See also [168].

In fact, ref. [169, 170] considered AdSd+1 solutions for all d ≥ 1+1 and found

smooth bulk solutions in all dimensions. But as we now discuss it is difficult to

see how this could be possible for higher dimensional flowing funnels. In the AdS3

case, the ‘accidental’ Killing fields discussed in section 3.3 meant that our solutions

had Killing horizons. As a result, the points along a given null generator were

related by a symmetry and nothing interesting can happen as one follows a null

generator into the distant past. But section 3.3 noted that there are no accidental

symmetries in the higher-dimensional case. Furthermore, as in our AdS3 case,

the flow of heat should make the stationary Killing field ∂t fail to be null on the

horizon11. Thus the generators will again move with respect to the stationary

Killing orbits.

To understand the implications, let us consider a flowing AdSd+1 funnel with

SO(d − 1) rotational symmetry. Here it is useful to use the size r of the Sd−2

spheres of symmetry as a coordinate along the horizon. Now, the twist ωab of

the horizon-generating vector field ξa is an anti-symmetric tensor on the horizon

satisfying ξaωab = 0; i.e., it effectively has components only in the r-direction and

in the angular direction. So by the SO(d − 1) symmetry ωab = 0 and the null

generators necessarily focus at finite affine parameter if the expansion or shear is

non-zero.

11At least near the boundary, one may think of this as due to the fact that non-zero tr
components of the boundary stress tensor force ∂t to be non-hypersurface-othogonal, and thus
to differ from the horizon-generating vector field.
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Note that the value of r will change as one moves along a null generator of the

horizon. This means that one of the eigenvalues of ∇(aξb) must be non-zero and

thus that the expansion and shear cannot both vanish. Since horizon generators

necessarily extend to infinite affine parameter toward their future, we conclude

that they focus at finite affine parameter in the past.

There are now two logical possibilities: 1) that this focusing represents a caus-

tic in a smooth spacetime, or 2) that it represents a spacetime singularity. While

we have not completely ruled out the first option, the 2nd seems much more natu-

ral. This is just the picture suggested originally in [57]. It remains an interesting

challenge to construct such higher-dimensional flowing funnel solutions.
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Chapter 4

Stationary AdS Black Holes with

non-Killing Horizons

4.1 Introduction

We focus here on the classic problem of heat transport far from equilibrium,

and away from the perturbative regime. If the system of interest is an appropriate

strongly coupled large N conformal field theory (CFT), we may use gauge/gravity

duality to exploit a perhaps-more-tractable description as a semi-classical bulk

gravitational system. We will consider the classical limit in cases where the bulk

description may be truncated to Λ < 0 Einstein-Hilbert gravity. Our work com-

plements perturbative computations of heat transport in this regime (e.g. [181]),

as well as non-perturbative studies of thermalization (see e.g. [145–147] for recent

examples and further references) and holographic shockwaves [182, 183].

Suppose in particular that we couple a CFT in d spacetime dimensions to
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heat sources or sinks of finite size and at finite locations. A convenient way

to introduce such sources is to place the CFT on a background non-dynamical

spacetime containing stationary black holes with surface gravity κ, which have

temperatures κ/2π due to the Hawking effect. As we review in section 4.2 below,

this problem may also be generalized so that the field theory temperature at the

black hole horizon differs from κ/2π. But since no information can flow outward

across the horizon, the choice of a black hole metric is nevertheless useful to

decouple our CFT from the details of the heat sources and sinks. The problem

of heat transport then becomes one of computing the expectation value of the

stress tensor in the given background with the stated boundary conditions. Since

the background spacetime is not dynamical, we can choose the metric at will.

In particular, we can include as many black holes as we like at locations of our

choosing, and we are free to assign their surface gravities as desired. Of course,

since we consider CFTs, we may also conformally rescale the background metric to

reinterpret our heat sources/sinks as being infinitely large and located at infinite

distance; more will be said about this alternate interpretation in section 4.2 below.

Gauge/gravity duality for large N field theories [19] has been used to study

related settings in [57–61, 73, 149–165, 184]. In this context, the d-dimensional

black hole spacetime on which the CFT lives becomes the conformal boundary of

a (D = d+1)-dimensional asymptotically locally anti-de Sitter (AlAdS) spacetime

and we henceforth refer to our heat sources and sinks as boundary black holes.

Though the above explorations in gauge/gravity duality involved certain tensions

and subtleties, the picture that emerged in [57] (building on [160]) is one with

two important phases for each boundary black hole, even when the CFT state
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is assumed to contain a deconfined plasma. See [73] for a condensed review. In

the so-called “funnel phase” a given boundary black hole is connected to distant

regions of the boundary by a bulk horizon along which heat may be said to flow

(say, if unequal temperatures are fixed at the two ends). But there is no such

connection in the contrasting “droplet phase.” Figure 4.1 depicts both phases for

a simple case in which the boundary spacetime is asymptotically flat. In the CFT

description, the funnel phase allows a given boundary black hole to exchange heat

with distant regions much as in a free theory with a similar number of degrees of

freedom. One may say that grey body factors are O(1) even at large N . But in

the droplet phase there is no conduction of heat between a given black hole and

the region far away at leading order in large N . In effect, all grey body factors

associated with the black hole vanish at this order1, so that the black hole does not

couple efficiently to the surrounding plasma. Additional phases are also possible

that conduct heat between subsets of nearby black holes but not to infinity.

Until recently, both funnel and droplet solutions were largely conjectural. Ex-

plicit examples were known only in rather contrived settings or in low enough

dimensions that all properties were determined by conformal invariance. But nu-

merical methods were used to construct more natural droplets in [164] and more

natural funnels in [61]. An interesting detail is that the droplet solutions of [164]

contain deformed planar black holes (see figure 4.1) with vanishing temperature.

Constructing black droplet solutions that include finite-temperature (deformed)

planar black holes remains an open technical challenge, though perturbative ar-

guments give strong indications that they exist.

1To be more precise, the grey body factors are non-zero only for a number of degrees of
freedom that scales like N0 = 1.
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Figure 4.1: A sketch of the relevant solutions: (a) a black funnel and (b)
a black droplet above a deformed planar black hole. For simplicity, we take
both solutions to asymptote in the horizontal direction to the so-called planar
AdS-Schwarzschild black hole. As a result, both describe possible states of a
CFT on an asymptotically flat black hole spacetime filled with a deconfined
plasma at constant temperature. In each figure, the top line corresponds to
the spacetime on which the CFT lives; i.e., to the conformal boundary of the
AlAdS bulk. The dots denote horizons of the boundary black holes. The
shading marks regions inside the bulk horizons.

The above funnel and droplet papers largely focussed on cases without heat

flow; i.e., either on droplets (in which heat does not flow in the approximation that

the bulk is classical) or on equilibrium funnels. The one exception was [73] which

showed that, by changing conformal frames, rotating BTZ black holes [127, 128]

in AdS3 can be re-interpreted as describing heat transport in 1+1 CFTs. Here the

standard left- and right-moving temperatures TL, TR of the BTZ black hole cor-

respond directly to the temperatures of the left- and right-moving components of

the CFT. Due to the strong constraints of conformal symmetry in low dimensions

these components do not interact and the temperatures TL, TR must be constants

if the heat flux is stationary. In addition, the flow of heat is necessarily isentropic

(having no local generation of entropy).

We refer to black funnels transporting heat as “flowing funnels.” Since none

of the above special properties should hold for d > 2 (D > 3), higher dimensional
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flowing funnels should be quite different than those found in [73]. For example,

a bulk horizon connecting two boundary black holes of different temperatures

should (at least in some rough sense) be describable as having a temperature that

varies along the horizon. But recall that there is no generally accepted definition of

horizon temperature which allows this temperature to vary2. Indeed, the fact that

any definition of temperature should vary implies that the horizon is not Killing,

which is already a novel property for a stationary black hole3. This suggests that

the horizon generators have positive expansion (though of course tending to zero

in the far future), so that they caustic at finite affine parameter in the past. It is

natural to expect this caustic to occur at a singular past horizon [57], and section

4.5 confirms this picture for our solutions.

We focus below on what we call D = 4 global flowing funnels, by which we

mean deformations of the global AdS4 black string (also known as the Bañados-

Teitelboim-Zanelli (BTZ) black string; see e.g. [188] where the solution was ob-

tained as a special case of the AdS C-metric). This reference solution may be

constructed by starting with global AdS4 written in coordinates for which slices

of constant radial coordinate z are just AdS3. One then replaces each such AdS3

slice with a BTZ metric [127, 128] having the correct z-dependence and which we

chose to be nonrotating. The result is an AlAdS Einstein metric which may be

2Except of course within the domain of the gradient expansion, as in the fluid-gravity cor-
respondence [64]; see also [166]. For proposals in more general contexts see e.g. [167] for a
recent paper and references. Our solutions may therefore provide interesting testbeds for such
proposals.

3For compactly generated horizons, this behavior is forbidden by the rigidity theorems [185–
187]. But our bulk horizon is non-compact since it extends to the conformal boundary.
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written

ds2 =
ℓ24

H2(z)

[
−f(r) dt2 + dr2

f(r)
+ r2dφ2 + dz2

]
, (4.1)

with H(z) = ℓ3 cos(z/ℓ3) and f(r) = (r2 − r20)/ℓ
2
3. The solution is sketched in

figure 4.2. Here the horizon of the BTZ string is at r = r0, the parameter ℓ4 is

the AdS4 length scale, and the AdS3 length scale ℓ3 of the BTZ foliations may be

set to any desired value by rescaling z, r, r0. The two boundary black holes (at

z/ℓ3 = ±π/2) have the same temperature, but we will seek deformations where

these temperatures differ and heat flows between the two boundary black holes.

The outline of the paper is as follows. Section 4.2 reviews how static black fun-

nels (i.e., without flow) may be generalized by adding a parameter α = Tbndy BH/Tbulk BH

which allows the temperature of bulk and boundary horizons to differ. In the small

α limit, the analogous flowing funnels can be described in a derivative expansion;

i.e., using the fluid/gravity correspondence of [64]. This correspondence is briefly

reviewed and then applied to flowing funnels in section 4.3. Section 4.4 then ex-

plains how to formulate the construction of flowing funnels with any α in a manner

where one can proceed numerically. The results of such numerics are presented

in section 4.5 where they are compared to the fluid approximation of section 4.3.

As expected, we find excellent agreement for small α, though for our cases the

agreement remains good even for α close to 1. We close with some final discussion

in section 4.6.

Note: In the final stages of this work we learned of [189], which also addresses

the construction of AdS black holes with non-Killing horizons and may have some

overlap with our work.
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Figure 4.2: A sketch of a t = const. slice of the BTZ string (4.1). The two
pieces of the boundary at z/ℓ3 = ±π/2 are conformal to two copies of the BTZ
black hole, sketched above as the two hemispheres of an S2. These boundary
black holes are joined at infinity (the dashed line around the equator of the
sphere), so that the boundary of the BTZ string can be thought of as a sphere
with a black hole at either pole. The bulk of the string is the interior of the
sphere, where the string stretches from one black hole to the other.

4.2 Detuning the bulk and boundary black hole

temperatures

As mentioned in the introduction, even without heat flow the black funnel

paradigm may be generalized by adding an extra parameter α =
Tbndy BH

Tbulk BH
which

allows us to detune to the temperatures of the bulk and boundary black holes. In

terms of the dual field theory, taking α 6= 1 means that one considers a thermal

ensemble at some temperature TField Theory which differs from the natural tem-

perature Tbndy BH of the (say, static) boundary black hole spacetime on which

the field theory lives. One may think of the resulting state as defined by a Eu-

clidean path integral with period 1/TField Theory 6= 1/Tbndy BH and thus having a

conical singularity at the horizon of the boundary black hole. What is interest-
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ing about this construction is that the gravitational dual can have a completely

smooth Euclidean AlAdS bulk, with the conical singularity of the boundary ge-

ometry resulting only from a failure of the standard AlAdS boundary conditions

at the singular boundary points [168–170]. Any smooth horizon then clearly has

temperature Tbulk BH = TField Theory 6= Tbndy BH as determined by the Euclidean

period.

The prototypical detuned solution studied in [168–170] is just the general

hyperbolic (sometimes referred to as ‘topological’) black hole of [190–192], whose

metric in D = d+ 1 bulk spacetime dimensions may be written

ds2d+1 = −F (r)dt2+ dr2

F (r)
+r2dΣ2

d−1, F (r) =
r2

ℓ2d+1

−1− rd−2
0

rd−2

(
r20
ℓ2d+1

− 1

)
. (4.2)

Here ℓd+1 is the AdS length scale associated with the (D = d+1)-dimensional cos-

mological constant, dΣ2
d−1 = dξ2+sinh2 ξdΩ2

d−2 is the metric on the unit Euclidean

hyperboloid, and r = r0 is a smooth horizon of temperature

Tbulk BH =
r20ℓ

−2
d+1d− (d− 2)

4πr0
. (4.3)

Note that F (r) approaches r2/ℓ2d+1 at large r. Making an obvious choice of

boundary conformal frame, the boundary metric is just the hyperbolic cylinder

H× R with ds2
H×R = −dt2 + ℓ2d+1dΣd−1. But note that we may write

ds2
H×R = −dt2 + dρ2

(1− ρ2/ℓ2d+1)
2
+

ρ2

1− ρ2/ℓ2d+1

dΩ2
d−2, (4.4)

where ρ/ℓd+1 = tanh ξ. Multiplying the right-hand side by (1 − ρ2/ℓ2d+1) gives a
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metric on the static patch of the d-dimensional de Sitter space dSd with Hubble

constant ℓ−1
d+1. So by changing conformal frames in this way we may regard the

boundary of (4.2) as having de Sitter horizons with temperature 1/2πℓd+1. From

the perspective of an observer in the static patch, the de Sitter horizon acts just

like a black hole horizon with

Tbndy BH =
1

2πℓd+1

. (4.5)

For general r0 this temperature clearly differs from that of the bulk horizon. For

the case where they agree, the hyperbolic black hole metric (4.2) is just pure

AdSd+1 in appropriate hyperbolic coordinates. We recall that even for the tuned

case α = 1 ref. [61] found the conformal frame (4.4) useful for constructing black

funnel solutions numerically.

Since the analysis of temperatures above involves only the horizons, it is clear

that detuned bulk and boundary horizons should exist much more generally. In-

deed, any static, spherically symmetric boundary metric with a pair of of smooth

horizons at ρ = ±ℓd+1 may be written in the form

ds2bndy BH =
(
1− ρ2/ℓ2d+1

)
(
−F̃ (ρ)dt2 + dρ2

G̃(ρ)
+ R̃2(ρ)dΩ2

d−2

)
, (4.6)

where F̃ , G̃, and 1/R̃2 are smooth on some interval including ρ ∈ [−ℓd+1, ℓd+1], G̃

has a second order zero at each of ρ = ±ℓd+1, and 1/R̃2 vanishes at ρ = ±ℓd+1.

So after a conformal transformation (4.6) agrees with (4.4) to leading order in ρ

for each term and in this sense may be said to approach H × R at large ρ. The
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ansatz (4.6) can equivalently be written

ds2bndy BH = e−2x/x0F (x)
(
−dt2 + dx2 +R2(x)dΩ2

d−2

)
, (4.7)

where x0 is some reference length scale and F and e∓2x/x0R2 are smooth functions

of e∓2x/x0 at e∓2x/x0 = 0. In particular, up to the conformal factor ds2
H×R takes this

form for x0 = ℓd+1 and R2 = ℓ2d+1 sinh
2(x/ℓd+1). In terms of (4.7) the boundary

black holes have temperatures

T bndy BH
± =

1

4π
lim

x→±∞

d

dx
ln
(
e−2x/x0F (x)

)
. (4.8)

It is therefore sensible to choose any r0 and seek a smooth bulk solution in

which each term approaches that of (4.2) to leading order in e−2|x|/x0 at large

|x|; see section 4.4 for a more complete analysis of these boundary conditions.

Any static such solution will have a bulk horizon with temperature (4.3) and

can again be interpreted as being dual to a field theory state of this temperature

on a black hole background of temperature (4.5). In the next sections we will

seek further generalizations with different values of r0 (which we then call r±) at

x = ±∞. That is to say that for x → +∞ the bulk solution will asymptote as

above to (4.2) with r0 = r+, while for x→ −∞ it will analogously approach (4.2)

with r0 = r−. The bulk horizon may then be said to approach the temperatures

T± given by (4.3) with r0 replaced r±. We will also allow distinct temperatures

T bndy BH
± for the x = ±∞ boundary black holes and introduce the parameters

α± = T bndy BH
± /T±. In fact, we will always take α+ = α−.

Of course, we may also consider so-called ultrastatic conformal frames analo-
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gous to (4.4). Starting with (4.7) and multiplying by a conformal factor e2x/x0/F (x),

one obtains the boundary metric

ds2 = −dt2 + dx2 +R2(x)dΩd−2 (4.9)

for which ∂t is a hypersurface-orthogonal Killing field of norm −1. In this frame,

the boundary spacetime has two asymptotic regions, each asymptotic to H × R

(say, with the same curvature scale ℓd+1). Furthermore, in the CFT description

each region contains an infinite reservoir of deconfined plasma. Such infinite reser-

voirs may act as heat baths, and indeed the boundary conditions imply that they

are in thermal equilibrium at temperature T± in the limits x→ ±∞.

4.3 The fluid limit

While a general treatment of black funnels remains challenging, it is by now

well known that the study of AdS black holes simplifies in the so-called hydrody-

namic limit of the fluid/gravity correspondence [64] in which all other parameters

vary slowly in comparison with the black hole temperature and the solution can

be described using a derivative expansion. For any fixed boundary metric, taking

the limit of large temperature (i.e., small α±) makes all metric derivatives small

in this sense. We may thus expect a good hydrodynamic description if in addition

we control temperature gradients by taking ∆T = T+ − T− small.

The key point in the analysis of [64] is that, having chosen a boundary confor-

mal frame with boundary metric g
(0)
ij , every AlAdSd+1 solution is associated with

a d-dimensional boundary stress tensor Tij which is traceless and conserved on
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the boundary:

g
(0)
ij T

ij = 0, DiT
ij = 0, (4.10)

where Di is the covariant derivative compatible with g
(0)
ij . Below, we use the

boundary metric g
(0)
ij and its inverse to raise and lower indices i, j, k, l, . . . .

As an example, consider the planar AdS-Schwarzschild black hole

ds2AdS−Schw = − r2

ℓ2d+1

(
1− rd0

rd

)
dt2 +

ℓ2d+1dr
2

r2
(
1− rd0/r

d
) + r2

ℓ2d+1

dx2
d−1, (4.11)

with r0 = 4πℓ2d+1T/d. Taking the boundary metric to be ds2bndy = −dt2 + dx2
d−1,

one finds

T ij = T ijideal = ρuiuj + P P ij, (4.12)

which takes the form of an ideal fluid with velocity field ui∂i = ∂t, transverse

projector P ij = gij + uiuj, and

ρ = (d− 1)
T d

16πℓd+1G(d+1)
, P =

ρ

d− 1
, (4.13)

which of course satisfies (4.10). In (4.13), we have defined for convenience T ≡

4πℓd+1T/d. By a simple Lorentz transformation we may obtain corresponding

solutions with any constant (normalized) timelike d-velocity ui.

The main result of [64] was to show that the temperature T and d-velocity

ui may be promoted to slowly-varying functions of the boundary coordinates x, t

(at which point we refer to them collectively as the hydrodynamic fields). Here

the term “slowly-varying” is defined with respect to the temperature as measured

in the local rest frame selected by ui. In particular, under these conditions [64]
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showed that a smooth bulk solution may be constructed via a gradient expansion

so long as ui is everywhere timelike and the associated boundary stress tensor does

indeed satisfy (4.10). They further showed that at each order in this expansion

the conditions (4.10) may be expressed as standard hydrodynamic equations for a

(conformal) fluid with velocity field ui, which we take to satisfy uiui = −1. This

last step essentially just repeats the standard derivation of hydrodynamics from

conservation laws.

In particular, ref. [64] showed that the boundary stress tensor takes the form

T ij = T ijideal +
∑

n=1

Πij
(n), (4.14)

where Π(n) are dissipative terms that are nth order in derivatives of the hydrody-

namic fields; for example,

Πij
(1) = −2ησij, (4.15)

where

η =
T d−1

16πG(d+1)
(4.16)

is the shear viscosity, and θ = Diu
i and

σij = P ikPjlD(kul) −
θ

d− 1
P ij (4.17)

are respectively the divergence and shear of the velocity field. In writing (4.15)

there is a freedom to make certain field redefinitions which, following [64], we have

removed by choosing the so-called Landau frame in which the Πij
(n) are taken to

be purely transverse.
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Since by assumption derivatives of the hydrodynamic fields are parametrically

small in some parameter ǫ, Π(n) is of order ǫ
n. Below, we solve the fluid equations

(4.10) at order n = 0 and n = 1 for the ultrastatic boundary metrics (4.9) and a

purely radial velocity field (so that the only non-vanishing components are ut, ux).

We also assume the flow to be stationary, so that ui, T are independent of time.

A new effect at first order is the appearance of dissipation, and thus the pro-

duction of entropy. At zeroth order, the entropy current J iS takes the simple

form (J iS)ideal = sui, where s(x) = T d−1/4G(d+1) is the entropy density. Using the

equations of motion and thermodynamic relations, one can show [65] that

Di

(
J iS
)
ideal

= 0. (4.18)

At first order, the entropy current still takes the form (J iS)1 = sui, but its diver-

gence now becomes [65]

Di

(
J iS
)
1
=

8πℓd+1η

dT σijσ
ij ≥ 0, (4.19)

showing that entropy is produced unless σij = 0.

4.3.1 Ideal Fluid

We begin at order n = 0. We denote the associated fluid quantities T0, u
i
0 and

work in d = 3. Following [193], we project the fluid equations into components

parallel and perpendicular to the velocity. These yield respectively

Di

(
T 2
0 u

i
0

)
= 0 and DkT0 + ui0Di

(
T0u

k
0

)
= 0, (4.20)

120



Stationary AdS Black Holes with non-Killing Horizons Chapter 4

or

∂x

(√
−g(0) T 2

0 u
x
0

)
= 0 and ∂x (T0 (u0)t) = 0. (4.21)

Thus

T 2
0 u

x
0 =

T 2
∞

2aR
, T0 (u0)t = T∞, (4.22)

in terms of integration constants that we have chosen to call T 2
∞/2a, T∞. Since

u2 = −1, it remains to solve a quadratic equation for T0, u
i
0. We of course obtain

two solutions labeled by a choice of sign. The solution with finite and nonzero

asymptotic temperatures T± has

T 2
0 =

T 2
∞
2

[
1 +

√
1− 1

a2R2

]
, (4.23a)

ux0 = aR

[
1−

√
1− 1

a2R2

]
. (4.23b)

Note that since R diverges at large x, at this order the asymptotic temperatures

T± at x → ±∞ agree; i.e., ∆T = T+ − T− = O(ǫ). We also find ux0 → 0 at

x = ±∞.

4.3.2 First Order Corrections

To compute corrections to (4.23a), (4.23b), we choose to solve the fluid equa-

tions (4.10) iteratively. Introducing a bookkeeping parameter ǫ to keep track of

derivatives, we may write T = Tm + O(ǫm+1), ui = uim + O(ǫm+1) for each m.

We compute Tm, uim by dropping terms with n > m in (4.14) and evaluating the

remaining Πij
(n) on Tm−n, u

i
m−n. Thus Tm, uim enter (4.10) only through T ijideal and

the equations to be solved are essentially just (4.20), (4.21) with additional source
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terms given by the Πij
(n). The integration constants (as well as the sign choices

that come from solving quadratic equations) may be fixed by requiring Tm, uim to

approximate Tm−1, u
i
m−1 to the desired order as ǫ→ 0.

To first order, one finds

T 2
1 =

1

2
(B(x) + T∞)2


1 +

√

1−
(
2(A(x) + T 2

∞/2a)

(B(x) + T∞)2R

)2

 , (4.24a)

ux1 =
(B(x) + T∞)2R

2(A(x) + T 2
∞/2a)


1−

√

1−
(
2(A(x) + T 2

∞/2a)

(B(x) + T∞)2R

)2

 , (4.24b)

where

A(x) =
2ℓ4
3

∫ x

0

R
[
T σijσij

](0)
dx′, (4.25a)

B(x) =
2ℓ4
3

∫ x

0

[T −2Di (T 2σit)− utσ
ijσij

ux

](0)
dx′, (4.25b)

and the square brackets [·](0) indicate that the enclosed quantities are evaluated

on the zeroth order solutions (4.23a), (4.23b). At this order, the asymptotic

temperatures differ and are given by the (finite) expression

T (±∞) = T∞ +B(±∞), (4.26)

so that

∆T := T (∞)− T (−∞) = B(∞)− B(−∞). (4.27)

It is useful to consider the further limit of small ∆T , which greatly simplifies
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the above results. This is equivalent to taking a large. Since

B(x) =
2ℓ4
3

∫ x

0

[
− R′′(x′)

2R2(x′)

1

a
+O

(
1

a

)2
]
dx′, (4.28)

we find

∆T =
2ℓ4
3

∫ ∞

−∞

[
− R′′(x′)

2R2(x′)

1

a
+O

(
1

a

)2
]
dx′ = − I

3a
+O

(
1

a

)2

, (4.29)

for

I := ℓ4

∫ ∞

−∞

R′′(x)

R2(x)
dx. (4.30)

Noting that A(x) = O(1/a)2 we then find

ut1 = 1 +O(∆T 2), (4.31a)

ux1 = − 3∆T
2IR(x)

+O(∆T 2), (4.31b)

T1 = T∞ +
ℓ4∆T
I

∫ x

0

R′′(x′)

R2(x′)
dx′ +O(∆T 2), (4.31c)
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so that the non-zero components of the stress tensor are

16πℓ4G
(4)T tt = −2T 3

∞ − 6ℓ4T 2
∞∆T
I

∫ x

0

R′′(x′)

R2(x′)
dx′ +O(∆T 2), (4.32a)

16πℓ4G
(4)T tx = −9T 3

∞∆T
2IR(x)

+O(∆T 2), (4.32b)

16πℓ4G
(4)T xx = T 3

∞ − 3ℓ4T 2
∞∆T
I

(
R′(x)

R2(x)
−
∫ x

0

R′′(x′)

R2(x′)
dx′
)
+O(∆T 2),

(4.32c)

16πℓ4G
(4)T φφ = T 3

∞ +
3ℓ4T 2

∞∆T
I

(
R′(x)

R2(x)
+

∫ x

0

R′′(x′)

R2(x′)
dx′
)
+O(∆T 2).

(4.32d)

Note that the lowest order term in the energy flux T tx is linear in ∆T ; this

naturally leads to a notion of thermal conductivity. We first calculate the heat

flux Φ as the energy flux integrated over a circle of constant x:

Φ = 2πR(x)T tx = − 9T 3
∞∆T

16ℓ4G(4)I
+O(∆T 2). (4.33)

We define the thermal conductivity as k := −dΦ/d∆T |∆T=0 so that

k =
3πT 3

∞
4G(4)I

. (4.34)

We have also explored the analogous results at second order n = 2 in the

hydrodynamic approximation. While the general expressions are unenlightening,

each quantity above agrees with the n = 1 expression up to linear order in ∆T

for all T∞. In particular, the conductivity k is unchanged.
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Finally, the entropy current (J iS)1 = sui for our solutions is

4G(4)
(
J tS
)
1
=

(B(x) + T∞)4R

2
√
2 (A(x) + T 2

∞/2a)


1−

√

1−
(
2(A(x) + T 2

∞/2a)

(B(x) + T∞)2R

)2


1/2

×


1 +

√

1−
(
2(A(x) + T 2

∞/2a)

(B(x) + T∞)2R

)2

 , (4.35a)

4G(4) (JxS)1 =
1

R

(
A(x) +

T 2
∞
2a

)
, (4.35b)

which has divergence

4G(4)Di

(
J iS
)
1
=

2ℓ4
3

[
T σijσij

](0)
=
ℓ4T∞

3
√
2

R′2

R2(a2R2 − 1)

[
1 +

√
1− 1

a2R2

]1/2
.

(4.36)

To lowest nonvanishing order in ∆T , these become

4G(4)
(
J tS
)
1
= T 2

∞ +
2ℓ4T∞∆T

I

∫ x

0

R′′(x′)

R2(x′)
dx′ +O(∆T 2), (4.37a)

4G(4) (JxS)1 = −3T 2
∞∆T

2IR(x)
+O(∆T 2), (4.37b)

4G(4)Di

(
J iS
)
1
=

3ℓ4T∞∆T 2

I2
(R′)2

R4
+O(∆T )3. (4.37c)

Note that the divergence of the current is of order ∆T 2 as expected from (4.19).

It turns out that (4.37c) is unchanged when one passes to second order in the

hydrodynamic expansion, though the entropy current J iS itself changes even at

zeroth order in ∆T .

These expressions may of course be transformed to any other conformal frame.
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The ultrastatic frame (4.9) used above had the convenient feature that, at least

at small velocity, the local fluid temperature (defined with respect to proper time

in the fluid rest frame) coincides with the temperature defined with respect to the

static Killing field ∂t. In a more general conformal frame, these two temperatures

do not coincide even at small velocity. Note that we will employ only time-

independent conformal transformations below, so that ∂t remains a Killing field

in all frames. We will continue to refer to temperatures normalized (up to a boost

to the fluid rest frame) with respect to ∂t by T , while we denote the local fluid

temperature (defined with respect to rest-frame proper time) as Tloc. Thus T is

unchanged by the conformal transformation while Tloc is rescaled.

For comparison with our later numerics, appendix A.2 presents the results in

the black hole frame for the explicit metric functions and in terms of the particular

coordinates used in section 4.5 below. The resulting more explicit expressions are

correspondingly more complicated than those above.

4.4 How to flow a more general funnel

Our family of flowing funnels will be labeled by four parameters: the temper-

atures T bndy BH
± of the left- and right- boundary black holes and the temperatures

T± associated with the left- and right- ends of the bulk black hole. As discussed

in section 4.2 these four temperatures are completely independent in principle,

though in our simulations we will always set α+ = α− which introduces one rela-

tion.

The most generic ansatz compatible with our symmetry requirements depends
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on seven unknown functions:

ds2 =
ℓ24

(1− w2)2(1− y2)2

{
−M(y)G(w)2(1− w2)2 y2A

[
ℓ−1
4 dt̃+Q(w)

χ2

y
dy

]2

+
4(1− w2)2B dy2

M(y)
+ y20

[
4S1

2− w2

(
dw + ℓ−1

4 χ1 dt̃+
F dy

y

)2

+ S2dφ
2

]}
, (4.38)

where A, B, F , S1, S2, χ1 and χ2 are all functions of y and w. In addition we

have defined

G(w) = 1 +
β

2
w3(5− 3w2), (4.39a)

M(y) = 2− y2 − (1− y2)2(1− y20)

y20
, (4.39b)

Q(w) = 1 +
2

M(0)G(w)
. (4.39c)

The insertion of these factors will be justified later, when we will also see that β

controls the temperature difference between the two boundary black holes, and y0

is a parameter that controls the validity of the fluid approximation. Here y ranges

over [0, 1] and w ranges over [−1, 1], with y = 0 being the bulk horizon and y = 1

the conformal boundary. At least for y 6= 0 regions with w ∼ ±1 are close (in

the sense of a conformal diagram) to where either bulk horizon meets either the

left or right boundary black hole (compare with figure 4.2). As we will explain

below, the symbol t̃ was used in (4.38) in order to save t for another coordinate

associated with Fefferman-Graham gauge. However, ∂t̃ = ∂t so we will refer to

the time-translation as simply ∂t.
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4.4.1 Boundary Conditions

At the conformal boundary (y = 1) we impose the boundary conditions

A(w, 1) = B(w, 1) = S1(w, 1) = S2(w, 1) = χ2(w, 1) = 1, (4.40a)

F (w, 1) = χ1(w, 1) = 0, (4.40b)

which ensures a boundary metric conformal to

ℓ−2
4 ds2∂ = − 1

ℓ24y
2
0

(1− ρ̂2)2G(ρ̂)2 dt2 +
4dρ̂2

2− ρ̂2
+ dφ2 , (4.41)

where ρ̂ = ρ/ℓ4. As in section 4.2, we refer to (4.41) as the boundary metric in

the black hole conformal frame. In presenting our results in section 4.5 we will

describe all boundary quantities, such as the stress energy tensor, with respect

to this frame. The boundary metric ds2∂ has horizons at ρ̂ = ±1 with Hawking

temperatures

T bndy BH
± =

G(±1)

2πℓ4y0
. (4.42)

We will extract the boundary stress tensor following the strategy of [61] and using

the results of [96]. The only technical difference with respect to [61] involves the

relation between the coordinates (t̃, w, y, φ) and Fefferman-Graham coordinates

(t, z, ρ, φ). Due to the cross term χ2 in Eq. (4.38) the map between t̃ and t is not

trivial, instead it is expressed as a powers series in z of the form:

t̃ = t+ z T1(ρ) +O(z2) (4.43)
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where for instance T1(ρ) = −Q(ρ)y0/(2(1− ρ̂2)).

The left and right boundaries lie at w = ±1. There we impose

A(±1, y) = B(±1, y) = S1(±1, y) = S2(±1, y) = χ2(±1, y) = 1, (4.44a)

F (±1, y) = χ1(±1, y) = 0, (4.44b)

which reduces Eq. (4.38) to

ds2|w→±1 =
ℓ24

(1− y2)2

{
−M(y)G(±1)2 y2

[
ℓ−1
4 dt̃+Q(±1)

dy

y

]2

+
4 dy2

M(y)
+

y20
(1∓ w)2

(
dw2 +

dφ2

4

)}
. (4.45)

Under the coordinate transformation:

y =

√
1− r0

r
, (4.46a)

r0
ℓ24
dτ = G(±1)

(
ℓ−1
4 dt̃+

Q(±1) dy

y

)
, (4.46b)

w = ±1∓ e−ξ, y0 ≡
r0
ℓ4
, (4.46c)

the line element (4.45) yields the large ξ limit of Eq. (4.2) with d = 3. The fact

that our ansatz (4.38) reduces to a hyperbolic black hole at w = ±1 displays

the physical meaning of y0 as an overall scale that controls the bulk horizon

temperatures (and thus α±). Note that the line element (4.45) also defines T± =

T bndy BH
± M(0)/2. If y0 = 1, then T± = T bndy BH

± , i.e. it represents the ‘tuned’ case

α± = 1. Thus the fluid approximation becomes more accurate as y0 increases, or

equivalently, as α± decrease.
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We have imposed Dirichlet data at each of the above three edges of our com-

putational domain. But it remains to specify boundary conditions at y = 0, the

flowing funnel horizon. Here we demand that the line element (4.38) be smooth

in ingoing Eddington-Finkelstein coordinates (which cover the future horizon).

To understand the explicit form of this condition, we introduce local ingoing

Eddington-Finkelstein coordinates (v, w̃, ỹ, φ) through

dv = dt̃+ ℓ4
dỹ

2ỹ
+O(ỹ0), dw̃ =

dw

χ1(w, 0)
+ ℓ−1

4 dv +O(ỹ0) , y = ỹ1/2. (4.47)

The terms omitted in the above ỹ expansion can be chosen such that a line of

constant (v, w̃, φ) is an ingoing null geodesic. Note that lines of constant v have

dỹ/dt̃ < 0, as required for ingoing coordinates. Furthermore, regularity of the line

element (4.38) in the above coordinates requires

F (w, 0) = χ1(w, 0), (4.48a)

B(w, 0) =
M(0)2G(w)2A(w, 0)

4
[1−Q(w)χ2(w, 0)]

2 , (4.48b)

∂yA(w, 0) = ∂yS1(w, 0) = ∂yS2(w, 0) = ∂yχ1(w, 0) = ∂yχ2(w, 0) = 0. (4.48c)

We will find χ1(w, 0) to be finite and non-zero (at w 6= ±1), so our original w is

already an ingoing coordinate. It will thus be straightforward to read off results

associated with the future horizon.

The past horizon is more subtle. It is located at v → −∞ and can be reached

along lines of constant w̃. Depending on the sign of χ1, this tends to drive w to

either ±1. Below, we consider T+ > T− so that the hotter black hole is on the
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right. One might therefore expect w to decrease along the horizon generators so

their coordinate velocity is toward the cooler black hole; i.e., one might expect

χ1(w, 0) > 0. But for the particular ansatz we have chosen our numerics turn out

to give χ1 < 0 (see section 4.5) so that the past horizon in fact lies at w = −1.

This appears to be a coordinate artifact, though a full understanding is beyond

the scope of this work.

Below, we will solve the Einstein equations (with cosmological constant) in

the form

Eab := Rab +
3

ℓ24
gab = 0, (4.49)

subject to the boundary conditions detailed above.

4.4.2 The DeTurck Method

The diffeomorphism invariance of (4.49) means that these equations do not

lead to a well-posed boundary value problem. While one could attempt to pro-

ceed by gauge-fixing, a clever trick known as the DeTurck method was introduced

in [184] and in [164, 194] was shown to succeed (under rather general assump-

tions) when one seeks appropriate stationary equilibrium solutions of the vacuum

Einstein equations, with or without a negative cosmological constant. Though

our situation turns out to fall outside the bounds of the proof given in [164], we

nevertheless employ this method successfully below.

We begin with a brief review. The DeTurck method is based on the so called

Einstein-DeTurck equation

EH
ab ≡ Eab −∇(aξ̂b) = 0, (4.50)
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which differs from from Eq. (4.49) by the addition of−∇(aξ̂b). Here ξ̂
a = gcd[Γacd(g)−

Γacd(ḡ)], Γ(g) is the Levi-Civita connection associated with the metric g, and ḡ is

some specified non-dynamical reference metric. Since ξ̂ is defined by a difference

between two connections, it transforms as a tensor. Hereafter ḡ will be chosen

to have the same asymptotics and horizon structure as g. In particular, it must

satisfy the same Dirichlet boundary conditions as g.

Clearly any solution to EH
ab = 0 with ξ̂ = 0 also solves Eab = 0. But one may

ask if (4.50) can have additional solutions that do not satisfy Eab = 0. Under

a variety of circumstances one can show that solutions with ξ̂ 6= 0, the so called

Ricci solitons, cannot exist [164]. However, the assumptions used in [164] seem

not to hold for our system of equations. In particular, after reduction along the

symmetry directions t, φ our system turns out to have a mixed-elliptic hyperbolic

nature. This is most easily seen from the fact that, while our system will be elliptic

near infinity where ∂t is timelike, we expect an ergoregion near the horizon where

all linear combinations of ∂t, ∂φ are spacelike. So in this region reduction along

(t, φ) gives a Lorentz-signature metric on the base space. This differs qualitatively

from the case of Kerr, where ∂t, ∂φ span a timelike plane everywhere outside the

horizon and reduction along (t, φ) gives a Euclidean-signature metric on the base

space. See [194] for a more detailed discussion. The difference arises from the

fact that the Kerr horizon ‘flows’ only along the Killing field ∂φ while our horizon

‘flows’ in the w direction, which is not associated with any symmetry. Thus Ricci

solitons may well exist in our case. But for any solution to (4.50) one may simply

calculate ξ̂ to see if it vanishes. For all of our flowing funnel solutions discussed

below we find ξ̂ = 0 to machine precision.
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Figure 4.3: ∆N as a function of the number of grid points N . The ver-
tical scale is logarithmic, and the data is well fit by an exponential decay:
log(∆N ) = −17.4− 0.23N .

It remains to specify our choice of reference metric ḡ. We choose ḡ to be given

by the line element (4.38) with A = B = S1 = S2 = χ2 = 1 and F = χ1 = 0. This

enforces all Dirichlet boundary conditions except those at the horizon, Eq. (4.48).

To satisfy these remaining conditions we need only choose Q(x) as in Eq. (4.39).

4.4.3 Numerical Method

We use a standard pseudospectral collocation approximation in w, y and solve

the resulting non-linear algebraic equations using a damped Newton method with

damping monitoring function |ξ̂t|. This ensures that Newton’s method takes a

path in the approximate solution space that decreases |ξ̂t| at each step. This

method may also prove useful in solving more general mixed elliptic-hyperbolic

systems. We represent the w and y dependence of all functions as a series in

Chebyshev polynomials. As explained above, our integration domain lives on a

rectangular grid, (w, y) ∈ [−1, 1]× [0, 1].

To monitor the convergence of our method we have computed the total heat
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Figure 4.4: (a): The curved surface shows the norm of ∂t over our integra-
tion domain. To guide the eye, we also draw a flat horizontal surface at zero
norm. (b): The ergosurface as a function of w. Both figures use α± = 1 and
∆T/T∞ = 0.2.

flux Φ (defined by the first equality in (4.33)) for several resolutions. We denote

the number of grid points in w and y by N and compute ∆N = |1 − ΦN/ΦN+1|

for several values of N . The results for this procedure are illustrated in Fig. 4.3

for β = 0.1 and y0 = 1. We find exponential convergence with N , as expected

for pseudospectral collocation methods. Furthermore, in order to ensure that we

are converging to an Einstein solution rather than a Ricci soliton we monitor all

components of ξ̂. For all plots shown in this manuscript, each component of ξ̂a

has absolute value smaller than 10−10.

4.5 Results and comparisons

We now present the results of our numerical analysis and compare them with

the first-order (n = 1) hydrodynamic approximation. The plots below are labeled

134



Stationary AdS Black Holes with non-Killing Horizons Chapter 4

by a parameter T∞ whose definition

T∞ =

[
256

(
144

√
2− 557

)
λ2 + 105π (293λ2 + 128)

]
(3y20 − 1)

28π [15π (293λ2 + 128)− 11008λ2] y20
(4.51)

was inspired by the first-order hydrodynamic result (4.24a). For small ∆T we

have T∞ = (T++T−)/2+O(∆T )2. We note that all the numerical results we will

present use units where ℓ4 = 1 (so that ρ = ρ̂) and 16πG(4) = 1. We also take

T+ > T− so that the hotter black hole lies on the right.

We begin with the norm |∂t|2 of the time translation. Figure 4.4(a) shows a

typical plot. To guide the eye we have also plotted a reference surface of constant

|∂t|2 = 0. The two surfaces intersect at the ergosurface, whose location we display

separately in Fig. 4.4(b). Inside the ergoregion |∂t|2 becomes positive, changing

the character of Eq. (4.50) from elliptic to hyperbolic. This region is at the core

of the difficulties in trying to prove that our numerical method ensures ξ̂ = 0

on solutions of Eq. (4.50) with appropriate boundary conditions. Fig. 4.5 shows

|∂t|2 and, for comparison and later use, |∂φ|2 as a function of w along the horizon.

We remind the reader that ∂t and ∂φ are precisely orthogonal everywhere in our

spacetime, so this describes the full induced metric hIJ (for I, J = t, φ) in the

2-plane spanned by ∂t, ∂φ. Both norms are clearly positive everywhere on the

horizon, though |∂t|2 never becomes very large even with ∆T/T∞ = 0.2. This

may help to explain why our numerical approach succeeded.

Let us now discuss the behavior of the boundary stress tensor. For small

α,∆T/T∞, this quantity may also be computed using the hydrodynamic approx-

imation of section 4.3 and provides another good check of our numerics. Fig. 4.6
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Figure 4.5: (a): The norm |∂t|2 on the future horizon. (b): The norm |∂φ|2 on
the future horizon. Both figures use α± = 1 and ∆T/T∞ = 0.2 and are plotted
as functions of w.

shows the components of the stress energy tensor as a function of the boundary

coordinate ρ for several values of α at fixed β. The lines represent the first or-

der hydrodynamic prediction and the symbols represent data extracted from our

numerics. Large stress tensors correspond to larger values of α. We see that at

least for small ∆T/T∞ the fluid gravity prediction works remarkably well even for

for α ∼ 0.8. The agreement of all of these curves when α is small is a reassuring

test of our numerics. However, at larger α qualitative differences from our hy-

drodynamic approximation begin to appear. For example, we note that while T tt

is always negative (and thus the energy density is positive) in the hydrodynamic

regime, for α & 1 our simulations show T tt becomes positive near the hotter black

hole.

From the standpoint of the dual CFT, the main physical result of our paper is

displayed in Fig. 4.7. This plot shows how the total heat flux Φ varies for different

values of ∆T/T∞ and α = α+ = α−. We see that it increases in magnitude as
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Figure 4.6: Components of the boundary stress energy tensor as a function of ρ
for fixed β = 0.04. Each panel shows the first-order (n = 1) hydrodynamic pre-
diction as lines and the exact numerical data as symbols. The disks and solid
line show α± = 1, the squares and dashed line show α± = 0.77 and the dia-
monds and dotted line show α± = 0.70. These corresponds to ∆T/T∞ = 0.080,
∆T/T∞ = 0.050 and ∆T/T∞ = 0.034, respectively. Since ∆T/T∞ is small, we
have used only the linear results from appendix A.2 to plot the hydrodynamics.

∆T/T∞ increases, and also as α decreases. This computation can be seen as a first

principle calculation for the thermal conductivity of a strongly coupled plasma at

large N beyond the hydrodynamic regime. Fig. 4.8 compares some α = const.

cross-sections of Fig. 4.7 to the the results of first-order (n = 1) hydrodynamics at

linear order in ∆T ; i.e., to (A.9b)-(A.9e). These show good agreement for small α
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Figure 4.7: Three-dimensional plot of the boundary flux extracted from our
numerics as a function of ∆T/T∞ and α = α+ = α−.
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Figure 4.8: The total heat flux Φ as a function of ∆T/T∞ for α = 0.9 (left)
and α = 0.7 (right). The solid curves are the first order hydrodynamic results.
Since ∆T/T∞ is small, we have used only the linear results from appendix A.2.
The dots show our numerical data.

and ∆T , but deviate as expected at larger α.

It remains to examine the horizon more closely. Our horizon is a three-

dimensional null surface and, since ∂t, ∂φ are both spacelike and tangent to the

horizon, any two null geodesics that generate the future horizon generators are
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Figure 4.9: (a): The determinant h = htthφφ. (b): The metric component χ1

along the horizon. Both quantities are plotted as functions of w for α± = 1
and ∆T/T∞ = 0.2.

related by some isometry. Thus all generators are equivalent, though it remains to

understand the evolution of the spacetime along each generator. We compute the

affine parameter, expansion, and shear along each generator using simple expres-

sions in terms of the induced metric hIJ (for I, J = t, φ) on the 2-plane spanned

by ∂t, ∂φ. These expressions are given in appendix A.3. We study each of these

quantities only on the surface y = 0.

We begin with hIJ itself. Recall that w = ±1 are the asymptotic regions

of static hyperbolic black holes where the Killing field ∂t becomes null at the

horizon and |∂φ|2 becomes large. These behaviors are clearly shown in figure

4.9(a). But these similarities between w = ±1 are misleading and the actual

behaviors at w = ±1 are quite different. This may be seen from the plot of

h = dethIJ = htthφφ = |∂t|2|∂φ|2 in Fig. 4.9(a). This determinant vanishes at

w = −1 but approaches a non-zero constant at w = +1. Note that h is monotonic

along y = 0, as it must be along a smooth horizon.
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What is perhaps surprising is that h is an increasing function of w. This

shows that w increases toward the future along the future horizon, so that the

past horizon must lie at w = −1. In contrast, in the coordinates of e.g. [63], the

coordinate velocity of the horizon generators would be in the direction of heat

transport, and thus (since we take the cooler black hole to lie at w = −1) toward

negative w. Standard coordinates for Kerr also behave like those of [63] and have

the equivalent of our χ1 being positive for positive angular velocity. In contrast,

we find χ1 to be negative at the horizon; see figure 4.9(b). Since χ1 samples

completely different metric components than h, we take this as a strong indication

that our solutions are consistent despite the surprising location of the past horizon.

Another strong indication of consistency is the above agreement between our

boundary stress tensors and those predicted by the hydrodynamic approximation.

Indeed, we have tested for various possible errors (such as inverting the sign of

∆T ) in our code by examining the effect of various sign changes on Fig. 4.6 and

found in each case that such changes would lead to notable discrepancies with

hydrodynamics. In particular, we stress that our simulations give the physically

correct sign for the heat flux T tρ.

The apparent proximity of the past horizon to the cooler black hole must

thus be a coordinate artifact. We have confirmed this expectation by repeating

our simulations in the coordinates defined by Eq. (4.47) and finding that the

equivalent of χ1 is positive for negative heat flux. For comparison, we mention

that also note that a similarly surprising sign can be found in the 2+1 flowing

funnels of [73]. In that case, writing the horizon generating Killing field in the

Fefferman-Graham coordinates of [73] leads to a negative t component on part
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Figure 4.10: (a): An affine parameter along the horizon as a function of w.
(b): The expansion of a future horizon generator as a function of λ. (c): The
positive eigenvalue σ of σ̂IJ as a function of λ. At small λ we find σ ∼ λ−5/6.
All figures use α± = 1 and ∆T/T∞ = 0.2.

of the horizon, even though this component is everywhere positive at the AlAdS

boundary. It would also be interesting to transform our current 3+1 solutions to

the coordinates of [63] (say, for a solution deep within the hydrodynamic regime),

though the additional numerics required places such an analysis is beyond the

scope of this work.

We may now proceed to investigate various quantities along the horizon. Per-

haps the most important quantity is the affine parameter λ, which we show in

Fig. 4.10(a) as function of w. Note that λ approaches a constant value at w = −1.

This is to be expected, as we have already noted that w = −1 is the past horizon.

Since the affine parameter is only defined up to affine transformations, this con-

stant is arbitrary and we have set λ(w = −1) = 0 for convenience. In contrast,

the affine parameter diverges as we approach w = 1.

Figure 4.10(b) shows the expansion θ as a function of λ. As expected on

general grounds, θ is everywhere positive with dθ/dλ < 0 and θ asymptotes to

zero at large λ. We see this as the most solid test of our numerics. Note that
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the sign of dθ/dλ < 0 is only guaranteed via Raychaudhuri’s equation once the

equations of motion are used. It is thus far from trivial that the sign comes out

right.

The expansion diverges at the past horizon (λ = 0), indicating the presence of

a caustic. In fact, it is easy to see that this caustic is a curvature singularity. To

do so, note from 4.5(b) that |∂φ| diverges on the past horizon. But since Killing

fields obey a second order differential equation governed by the Riemann tensor

(see e.g. (C.3.6) of [90]) they can diverge at finite affine parameter only if Rabcd

diverges in all orthonormal frames.

We now turn to the shear tensor σ̂IJ . From (A.14), (A.17) we see that since

hIJ is diagonal, the same is true of σ̂IJ . Since σ̂IJ is also symmetric and traceless,

it is completely characterized by the positive eigenvalue σ of σ̂IJ , where the index

was raised with the inverse hIJ of hIJ . Note that σ is a spacetime scalar.

This eigenvalue is plotted as a function of λ in figure 4.10(c). As one might

expect, it diverges at the caustic. What is interesting is that we find the same

divergence structure for all α,∆T that we have studied. We quantify this behavior

by fitting σ(λ) to a power law µλη near λ = 0. We have extracted η for about

400 flowing funnels spanning the domain (α,∆T/T∞) ∈ (1, 0.7) × (0, 0.4). In all

cases we find η = −0.82±0.03, where this error is in fact the maximum deviation.

We note that this number is remarkably close to −5/6. We can then use the

Raychaudhuri equation (A.18) and the standard evolution equation for the shear

(see (F.34) of [195]) to again show that Rabcd diverges on the past horizon. In

fact, for η = −5/6 one may show that some Weyl tensor component Cabcdk
bkd

(where ka is an affinely parametrized tangent to a null generator of the horizon)

142



Stationary AdS Black Holes with non-Killing Horizons Chapter 4

must diverge like λ−11/6. This fact merits an analytic explanation which we are

unable to offer at this time.

4.6 Discussion

The above work constructs ‘flowing funnel’ stationary black hole solutions.

Such solutions describe heat flow between reservoirs at unequal temperatures T±.

The particular solutions constructed are global AdS4 flowing funnels which may

be thought of as deformations of the BTZ black string (4.1). Thus each heat

reservoir lies just outside a boundary black hole of temperature α±T±. For the

case α± = 1, the CFT3 duals of our bulk solutions describe heat transfer between

two non-dynamical 3-dimensional black holes due to CFT3 Hawking radiation .

Our solutions display many properties expected on general grounds. There

is a connected ergoregion near the horizon where ∂t becomes spacelike. In fact,

all Killing fields are spacelike at the future horizon H, so that H is not a Killing

horizon. This is consistent with the rigidity theorems [185–187] since H is not

compact.

The expansion θ of the null generators is everywhere positive but decreases to-

ward the future along each null generator. The generators extend to infinite affine

parameter in the far future (where θ → 0) but reach a caustic (θ → ∞) at finite

affine parameter toward the past. This caustic occurs on the past horizon, which

is a curvature singularity characterized by a universal power law divergences for

the shear σ ∼ λ−5/6 and for certain components of the Weyl tensor which grow

like λ−11/6 in any orthonormal frame. These exponents were found numerically,
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but merit an analytic understanding. It remains an open question whether cur-

vature scalars (e.g. the Kretschmann scalar RabcdR
abcd) might remain finite4. It

would also be interesting to study the exponents governing the divergence of the

expansion θ, the norm |∂φ|2 and the inverse norm |∂t|−2, though these have proved

to be more difficult to extract from our numerics.

Note that |∂φ| decreases with λ along the early part of the future horizon. But

since θ > 0, the shrinkage of the φ circle with affine parameter λ is more than

compensated by the growth in |∂t|. This positive expansion is associated with the

expected generation of entropy due to the transport of heat from a hot source to

a cold sink. In particular, it is the analogue at large α±,∆T/T∞ of the entropy

generation term (4.19) seen in the hydrodynamic approximation.

In our coordinate system, the horizon generators appear to flow toward the

hotter black hole. While we have confirmed that this is a coordinate artifact, it

would nevertheless be desirable to understand the effect in more detail.

We studied the boundary stress tensor of such solutions both numerically and

to first order in the hydrodynamic (fluid/gravity) approximation. In particular,

we computed the total heat flux Φ for boundary metrics of the form (4.41) as a

function of α,∆T/T∞; see figure 4.7. It would clearly be of interest to study more

general boundary metrics to understand which parts of this function are universal

and which depend on detailed features of the boundary metric.

The hydrodynamic approximation is a derivative expansion which, since we fix

all other parameters in the boundary metric, is for us governed by the parameters

α± (which control the extent to which the bulk and boundary black hole tempera-

4Due to the large number of terms involved, we were not able to reliably calculate RabcdR
abcd

from our numerics.
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tures are detuned) and ∆T/(T+ + T−) (which controls the temperature difference

between the heat source and sink). As expected, we find excellent quantitative

agreement when these parameters are small. Interestingly, we also find good qual-

itative agreement when these parameters are close to 1. This gives yet another

confirmation of the robust nature of the fluid/gravity correspondence as seen pre-

viously in e.g. [146]. Of course, at large enough values of α±,∆T/(T+ + T−)

we find both quantitative and qualitative disagreement. It would be interesting

see to what extent agreement might be improved by incorporating higher order

hydrodynamic corrections. A particularly notable feature at large α (α+ & 1 in

our simulations) is that, while T tt is always negative in the hydrodynamic limit,

it becomes positive close to the hotter boundary black hole black hole. It would

be interesting to understand this feature analytically.
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Chapter 5

A Rotating Black Droplet

5.1 Introduction

Since the revolutionary discovery that black holes radiate with an almost ther-

mal spectrum, much effort has been devoted to gaining a deeper understanding

of this process. While considerable advances have been made since Hawking’s

seminal paper [196], there are still ample open issues that remain to be addressed.

In particular, most of the work regarding Hawking radiation has focused on free

fields; studying the behavior of interacting fields around a black hole is more

challenging. Though some progress has been made with weakly interacting fields

using perturbative methods [197], strongly interacting fields pose a much more

difficult problem.

Fortunately, the AdS/CFT correspondence [19] provides an invaluable tool for

tackling this problem. Early applications of holography to studying Hawking radi-

ation coupled the field theory to dynamical gravity, which is holographically dual
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to Randall-Sundrum braneworld models [150, 151, 173]. However, if one is not in-

terested in the backreaction of the Hawking radiation on the spacetime, the CFT

can be placed on a nondynamical background spacetime ∂M. Then AdS/CFT

claims that the CFT is dual to a spacetime M with conformal boundary ∂M,

with M a solution to classical Einstein gravity with negative cosmological con-

stant. While most applications of the duality place the field theory on ordinary

Minkowski space, one may in principle select any conformal boundary structure

one desires. In particular, in order to study Hawking radiation in the CFT, [57, 59]

considered a CFT living on fixed d-dimensional background containing a black

hole of size R and temperature TBH. Far away from the black hole, the CFT is in

a thermal state with a prescribed temperature T∞. From the perspective of the

CFT, the black hole and the plasma at infinity act as heat sources and sinks, and

one can study the exchange of heat between them.

In fact, a complete picture requires the introduction of another parameter T0,

representing the temperature of the CFT plasma near the black hole. Though

it might seem natural to take this temperature to be equal to that of the black

hole, it is possible to set T0 6= TBH at the expense of making the CFT stress

tensor singular at the black hole horizon. Details of this so-called “detuning”

can be found in [74], though in our solution we will only consider the “tuned”

case T0 = TBH and will therefore never introduce the parameter T0 explicitly.

Regarding the dual geometry, [57, 59] conjecture two possible families of solu-

tions: so-called “black droplets” and “black funnels,” illustrated in Figure 5.1. In

the black funnel solutions, the horizon of the boundary black hole is connected to

an asymptotically planar horizon in the bulk; this connectedness manifests itself
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in the CFT as strong coupling between the boundary black hole and the heat bath

at infinity, leading to an exchange of heat between them. In the black droplet so-

lutions, on the other hand, the horizon of the boundary black hole is disconnected

from the asymptotically planar horizon in the bulk, implying that the boundary

black hole is not coupled to the plasma at infinity (or rather, that the coupling is

suppressed by O(1/N2) is this large-N picture). From the perspective of the CFT,

the transition from funnels to droplets is reminiscent of many soft condensed mat-

ter systems which exhibit a transition from a fluid-like behavior to rigid behavior

with no flow (e.g. sand in an hourglass, cars on a highway). To borrow from the

soft condensed matter nomenclature, we will refer to the the CFT transition from

funnels to droplets as a “jamming” phase transition, and will denote the CFT

dual of the droplet as a “jammed” phase1.

The authors of [57, 59] postulate that this jamming transition might occur as

the size R of the boundary black hole (or alternatively, as the temperature T∞

of the heat bath at infinity) is varied. Thus the dimensionless parameter RT∞

should characterize which phase is thermodynamically preferred.

An analytic construction of black droplets and black funnels has only been

performed in select few cases. In [58, 60], black droplets and funnels were con-

structed from the AdS C-metric, while [73] constructed analytic funnels in d = 2

dual to the Unruh state of the CFT (black droplets cannot exist in d = 2). How-

ever, many of the most interesting cases (notably, asymptotically flat boundary

black holes in d > 2) do not lend themselves to analytic construction, and one

must resort to numerics. To that end, [61] numerically constructed black funnels

1We thank Jean Carlson for introducing us to this terminology.
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Figure 5.1: A sketch of the relevant solutions: (a): black funnel and (b): black
droplet above a deformed planar black hole. Both describe possible states of
dual field theories in contact with heat baths at temperature T∞ on spacetimes
containing black holes of horizon size R. The top line corresponds to the
boundary, with the dots denoting the horizon of the boundary black hole. The
shaded regions are those inside the bulk horizons.

dual to the Hartle-Hawking state of the CFT, while [74] constructed so-called

global funnels to study the exchange of heat between two boundary black holes

of different temperatures.

Slightly less effort has been made to construct black droplets, however. Besides

those obtained from the AdS C-metric, the only construction to date has been that

of [164], which constructed a droplet dual to the Unruh state of a CFT on a d = 4

Schwarzschild background (hereafter generally denoted Schwd). In our notation,

this solution sets T∞ = 0, so that the bulk geometry is that of a black droplet

suspended above an extremal Poincaré horizon deep in the bulk. The boundary

stress tensor contains no flux terms, and the nonzero components of the stress

tensor exhibit a 1/r5 power-law falloff at large distances from the black hole. This

relatively rapid falloff is characteristic of the jammed phase, as it indicates that

the CFT plasma is relatively well-localized near the black hole. Interestingly, the

stress tensor is regular on both the past and future horizons; the authors speculate

that the inclusion of one-loop graviton corrections in the bulk would render the
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stress tensor singular on the past horizon, as is typical of Unruh states.

Perhaps some clarifying remarks are in order regarding our nomenclature of

CFT states. In free field theory, the distinction between the Unruh, Hartle-

Hawking, and Boulware vacua is conventionally based on the behavior of the field

theory stress tensor at the horizon and at null infinity. In the Hartle-Hawking

state, the stress tensor is regular on both the future and past horizon; in the Un-

ruh state, the stress tensor is empty at past null infinity and regular on the future

horizon; and in the Boulware state, the stress tensor is empty at both future and

past null infinity. However, one can also understand these behaviors very physi-

cally from the point of view of the field theory. The Hartle-Hawking state is one

in which the field theory is in thermal equilibrium, with all temperatures equal;

in our language, TBH = T0 = T∞. The Unruh state is one in which the temper-

ature of the heat bath at infinity is taken to zero (so that for any nonzero T0,

the black hole acts as a source for heat to flow to infinity); T∞ = 0. Finally,

the Boulware state is the state of minimum energy, requiring the temperature of

the field theory to be zero everywhere; T0 = T∞ = 0. A crucial point to note

is the appearance of the field theory temperature T0 (rather than the black hole

temperature TBH) in the above definitions. Thus the regularity properties of the

field theory stress tensor in a given state can be thought of as a consequence of

how the temperatures T0 and TBH are tuned, and not as a defining feature of the

state itself. For instance, the ubiquitous singularity of the Boulware vacuum on

the horizon of a nonextremal black hole is due to the detuning T0 = 0 6= TBH,

whereas the Hartle-Hawking state is generally regular on the black hole horizon

because of the requirement that T0 = TBH. When labeling states in strongly
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coupled CFTs, we will therefore operate under these latter definitions in terms

of the temperatures T0 and T∞ of the CFT. For example, we would claim that

the CFT dual to the droplet constructed in [164] is in the Unruh state, but not

the Boulware state, because T∞ = 0 but T0 = TBH 6= 0. These definitions are

also independent of whether the CFT is in the jammed or unjammed phase, so

that the categorization of the state and phase of the CFT provide complementary

descriptions of its behavior.

Our purpose in this paper is to generalize the result of [164] by adding a

new ingredient: rotation. Though [59, 198] compute the stress tensor on a ro-

tating BTZ black hole background, the effect of rotation on a stress tensor in an

asympototically flat black hole spacetime has not been studied extensively. One

might naturally expect that the inclusion of rotation can be accomplished by gen-

eralizing the result of [164] to a Kerr spacetime, but because the Kerr metric

is cohomogeneity two, this would lead to a cohomogeneity three problem in the

bulk. Instead, we take the boundary spacetime to be the d = 5 equal-angular-

momentum Myers-Perry metric [199] (see also [200] for a review), which is known

to be cohomogeneity one and thus leads to a cohomogeneity two problem in the

bulk.

The generalization to a non-extremal rotating black droplet should not be ex-

pected to exhibit very different behavior from its non-rotating counterpart: the

boundary black hole still acts as a heat source at finite and nonzero tempera-

ture, and one studies the thermal coupling between the black hole and a zero-

temperature heat bath at infinity. However, the presence of rotation provides

us with a new parameter to tune, which we can use to take the black hole to
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extremality; this will allow us to take T0 to zero without the need to perform

any detuning. For this reason, from this point on we will only refer to TBH,

with T0 = TBH understood implicitly.

Taking TBH to zero with T∞ fixed at zero can be thought of as some limit of an

Unruh state. Similarly, the fact that both the extremal black hole and the heat

bath at infinity are at zero temperature places the CFT in the Boulware vacuum.

Finally, since in the extremal case TBH = T∞, the CFT can be thought of as being

in a Hartle-Hawking state (though perhaps it would be more correct to refer to

this as a zero-temperature limit of a Hartle-Hawking state). Thus the extremal

droplet is in some sense dual to a degenerate state which is a Boulware state and

a limit of the Hartle-Hawking and Unruh states.

This paper is organized as follows. In Section 5.2, we review the behavior

of stress tensors on black hole spacetimes, and calculate the form our stress ten-

sor must take on a Schw5 background (i.e. when the angular momentum of the

Myers-Perry black hole is taken to zero). In Section 5.3, we briefly review the

numerical method used and discuss the numerical construction of our solution. In

Section 5.4, we compare our numerically extracted stress tensor to the expecta-

tions in Section 5.2, and discuss future directions to pursue.

Note: In the final stages of this work we learned of [201], which also constructs

rotating black droplets and may have some overlap with our work. Their paper

will appear simultaneously with ours on the arXiv.
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5.2 A Review of Stress Tensors in Curved Space-

time

A common difficulty of field theories in curved spacetime is the lack of an

unambiguous notion of “particle.” This poses no problem, however, if one instead

limits oneself only to currents. As discussed in [202], when a physical system is

probed, the objects that couple to probe fields are currents. In other words, the

currents are the objects that appear in the interaction terms in the equations of

motion of an interacting field. In addition, a current is a genuinely local object

and should retain a well-defined meaning even in the presence of strong external

fields (such as spacetime curvature). Thus most of the work devoted to under-

standing the process of radiation from black holes has focused not on quantum

fields themselves, but on the renormalized vacuum expectation value (v.e.v.) of

their stress-energy tensor 〈T µν〉.

In particular, the stress tensor of quantum fields can exhibit properties that

are forbidden of classical stress tensors. For instance, though a classical energy

density must be non-negative, it is well-known that even in flat spacetime, the local

energy density of a quantum field need not obey this same restriction2. Perhaps

the most famous example of a negative energy density is the Casimir effect [203],

though the existence of negative energy densities in local quantum field theory is

in fact quite general [204].

2Here, we define the local energy density as measured by an observer with velocity uµ as

ρ = uµuν〈Tµν〉
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In the context of general relativity, [202] studied the behavior of the energy-

momentum tensor of a massless scalar field in a two-dimensional spacetime con-

taining an accelerating mirror. While the total energy radiated by the mirror was

positive, a negative energy density and energy flux were present in the region near

the mirror, whereas far from the mirror the stress tensor took the classical form

of an outward flux of positive energy. A similar result was found by [205], which

calculated the renormalized v.e.v. of the stress tensor of a massless scalar field in

a two-dimensional model of black hole collapse. As in the case of the radiating

mirror, the near-horizon region of the newly-formed black hole was character-

ized by a negative energy density and a flux of negative energy flowing into the

black hole, while far from the black hole the stress tensor again took the form of

an outward flux of positive energy. These results are consistent with Hawking’s

picture of particle-antiparticle creation near the horizon of a black hole, where

negative-energy particles flow into the black hole while their positive-energy part-

ners radiate to infinity: by conservation of energy, a positive-energy flux at infinity

should be accompanied by a negative-energy flux through the black hole horizon.

These exact results were obtained by exploiting the conformal flatness of two-

dimensional spacetimes. Nevertheless, good approximations to thermal stress ten-

sors have been obtained in higher dimensions. Notably, [206] used the Bekenstein-

Parker Gaussian path integral approximation [207] to find the approximate form

of the stress tensor of a conformally invariant scalar field in the Hartle-Hawking

state on the (four-dimensional) Schwarzschild background. The behavior of the

stress tensor was similar to the two-dimensional case: at infinity, the stress tensor

behaved like a classical thermal stress tensor, while sufficiently near the horizon
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(for r . 2.34M) the energy density became negative. These results were consis-

tent with earlier numerical calculations [208] of the stress tensor on the bifurcation

two-sphere of Schwarzschild. However, while one naturally expects a negative en-

ergy flux near the horizon in an Unruh state, it is not clear whether the ubiquity

of negative energy densities near the horizon should extend to Hartle-Hawking

states as well.

All of these results focused explicitly on conformally invariant noninteracting

massless scalar fields. One might therefore imagine that they have little bearing

on the stress tensor we will obtain for our strongly coupled CFT. In fact, the

jammed phase dual to the droplet we construct cannot exist in a free field theory,

so a priori none of the results listed above can even approximately predict the

behavior of the stress tensor we will extract. Nevertheless, it is possible (and

indeed, quite probable) that the stress tensor of quantum fields on black hole

backgrounds should exhibit some kind of universal qualitative behavior. This

universal structure was studied in detail by Christensen and Fulling [209], who

sought the general behavior of a static, spherically symmetric stress tensor on

Schw4 by solving the conservation equations

∇µT
µν = 0 (5.1)

directly, without restriction to any particular kind of field theory. Their results

are particularly useful to our case, because they are also valid in the case of a

strongly coupled CFT. In fact, Schw5 is just the zero-angular momentum limit of

the Myers-Perry black holes that we Schwarzschild in higher dimensions.
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5.2.1 The General Static Spherically Symmetric Stress Ten-

sor on Schwd

Consider the d-dimensional Schwarzschild metric Schwd (also called the Tangher-

lini metric, after its discoverer [210]):

ds2Schw = −f(r) dt2 + dr2

f(r)
+ r2 dΩ2

d−2, f(r) ≡ 1−
(r0
r

)d−3

. (5.2)

This spacetime is qualitatively identical to the familiar four-dimensional Schwarzschild,

with horizon located at r = r0 and a temperature T = f ′(r0)/4π = (d− 3)/4πr0.

Now, a static, spherically symmetric stress tensor must take the form

T µν =




T tt T tr 0

T rt T rr 0

0 0 TΩ
Ωδ

i
j



, (5.3)

where all components are functions of r only and the indices i, j run over the

angular coordinates. Inserting this form into the conservation equations (5.1) and

using the metric (5.2), we obtain the following differential equations:

0 = ∂rT
r
t +

d− 2

r
T rt, (5.4a)

0 = ∂rT
r
r +

(
d− 2

r
− d− 3

2r0

(r0/r)
d−2

f(r)

)
T rr −

d− 3

2r0

(r0/r)
d−2

f(r)
T tt −

d− 2

r
TΩ

Ω.

(5.4b)
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Equation (5.4a) can be immediately integrated to yield

T rt = K
(r0
r

)d−2

. (5.5)

To integrate equation (5.4b), we first substitute T tt = T µµ − T rr − (d − 2)TΩ
Ω,

and obtain

T rr =
(r0/r)

d−2

f(r)

[
Q−K +

1

2

∫ r

r0

(
(d− 3)T µµ(r

′) + (d− 2)
(
2(r′/r0)

d−3 − d+ 1
)
TΩ

Ω(r
′)
) dr′
r0

]
. (5.6)

Equations (5.5) and (5.6) express the most general static, spherically symmetric

stress tensor on Schwd in terms of two arbitrary constants Q and K and two

arbitrary functions T µµ and TΩ
Ω. In order to study the physical behavior of these

solutions, it will prove useful to define

Θ(r) ≡ TΩ
Ω(r)−

1

2(d− 2)
T µµ(r), (5.7a)

G(r) ≡ d− 2

2

∫ r

r0

(
2(r′/r0)

d−3 − d+ 1
)
Θ(r′)

dr′

r0
, (5.7b)

H(r) ≡ 1

2

∫ r

r0

(
d− 5

2
+ (r′/r0)

d−3

)
T µµ(r

′)
dr′

r0
. (5.7c)

Converting to the tortoise coordinate dr∗ = dr/f(r), the stress tensor can then

be expressed as the sum of four pieces:

T µν = (T(1))
µ
ν
+ (T(2))

µ
ν
+ (T(3))

µ
ν
+ (T(4))

µ
ν
, (5.8)
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where (in t, r∗ coordinates)

(T(1))
µ
ν
= diag

{
−(r0/r)

d−2

f(r)
H(r) +

1

2
T µµ(r),

(r0/r)
d−2

f(r)
H(r),

1

2(d− 2)
T µµ(r) δ

i
j

}
,

(5.9a)

(T(2))
µ
ν
= K

(r0/r)
d−2

f(r)




1 1 0

−1 −1 0

0 0 0



, (5.9b)

(T(3))
µ
ν
= diag

{
−(r0/r)

d−2

f(r)
G(r)− (d− 2)Θ(r),

(r0/r)
d−2

f(r)
G(r), Θ(r) δij

}
,

(5.9c)

(T(4))
µ
ν
= Q

(r0/r)
d−2

f(r)
diag {−1, 1, 0} . (5.9d)

By converting to ingoing Eddington-Finkelstein coordinates dv = dt + dr∗, it is

straightforward to show that the stress tensor is regular on the future horizon

only if Q vanishes3. Thus the above decomposition is convenient because each

of the T(i) isolates some interesting physical behavior of the stress tensor: T(1) is

the only of the T(i) with a nonzero trace (and in fact, it is only a function of

the trace T µµ); T(2) contains nonzero flux terms T r∗ t; T(3) is the only of the T(i)

which is both traceless and has nonzero tangential pressure components; and T(4)

is singular on the future horizon.

Christensen and Fulling proceed to make use of these results to study the

behavior of the stress tensor of fields in the Unruh, Hartle-Hawking, and Boulware

vacua on Schw4. Our goal, however, is less broad: we only wish to gain some

3Regularity on the past horizon requires Q = 2K.
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insight on the v.e.v. of the stress tensor of the jammed phase of the CFT. To that

end, we make the following observations regarding our droplet:

• The trace anomaly of any odd-dimensional CFT vanishes. Since we work

in d = 5, we expect T(1) to make no contribution to our stress tensor.

• According to the arguments reviewed briefly at the end of Section 5.1, we

expect black droplets to be dual to a jammed phase of the CFT. Such

phases are characterized by a suppressed exchange of heat between the black

hole and the thermal plasma at infinity, so we should expect our solution

to radiate no flux. From (5.5), it is clear that the total flux radiated to

infinity from the black hole is a constant proportional to K, so we conclude

that K = 0 and so T(2) makes no contribution to our stress tensor.

• Unlike the past horizon, which is present only in maximal analytic extensions

of black hole spacetimes, the future horizon is a genuine physical location

present in any realistic model of gravitational collapse. We thus expect

physical quantities to be regular there. In particular, we require the stress

tensor of the jammed CFT to be regular there; this implies that Q = 0, so

that T(4) does not contribute to the stress tensor either (incidentally, since

we also have K = 0, this means that the stress tensor will be regular at the

past horizon as well).

We therefore conclude that only contribution to the stress tensor of the CFT state

dual to the Schw5 droplet should come from (5.9c), and so should only depend on

the one function Θ(r).
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In fact, we can go further and make claims about the behavior of Θ(r). The

free field results summarized earlier in this section should not all apply to our

stress tensor, but we might draw certain universal behavior from them to make a

guess at the behavior of Θ(r) (which we will then verify with our numerics). First,

note that the negative energy density near the horizon present in free field theories

is an indication of the highly non-classical nature of the field there; only far from

the black hole does the stress tensor of the free fields become classical. But the

jammed phase of the CFT is a highly non-classical state, as it consists of a plasma

“halo” surrounding the black hole. In analogy with the free field theory results, we

might therefore conjecture that the energy density of the strongly coupled CFT

becomes negative near the horizon as well. In that case, we expand (T(3))
t
t
=

−3Θ(r0)/2 + O(r − r0) to see that a negative energy density near the horizon

implies that Θ is negative there.

Far from the black hole, one can argue that due to the weak coupling between

the black hole and the heat bath at infinity, the components of the stress ten-

sor should fall off “rapidly”. This statement can be quantified by following the

logic of [164]: there, the authors find that the v.e.v. of a CFT dual to a d = 4

Schwarzschild droplet exhibits a 1/r5 falloff. In order to explain this falloff, the

authors invoke the results of [211], in which the linearized gravitational field cre-

ated by a point-like source is calculated in the context of the Randall-Sundrum

single braneworld model. By using the behavior of the gravitational field far from

the source, Einstein’s equations

Rµν −
1

2
Rgµν = 8πGN〈Tµν〉 (5.10)
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can be used to obtain the expected large-r behavior of the stress tensor. For

the case of a d = 4 dimensional spacetime, the predicted falloff of the compo-

nents 〈T µν〉 goes like 1/r5, consistent with the results of [164]. One can generalize

this argument to show that in d = 5 dimensions, we expect a 1/r7 falloff4. This

implies that for our solution, we should have Θ(r) ∼ 1/r7 and G(r) ∼ 1/r4 at

large r.

5.2.2 A Little Spin

Finally, let us consider the effect of giving the boundary black hole a nonzero

angular momentum, thus “spinning” the droplet. Unfortunately, an analysis sim-

ilar to that performed for the nonspinning case is not illuminating, because even

with the conservation equations (5.1), there are too many independent functions

in the stress tensor for a general solution to be tractable. Nevertheless, we can

make some qualitative claims based on physical arguments.

First, we clearly expect there to be angular flux terms as the CFT plasma is

dragged around the spinning black hole. This flux density should be maximal near

the horizon, and decrease monotonically away from the black hole. Similarly, the

fact that the CFT plasma is being forced to rotate around the black hole leads

us to expect that a centrifugal barrier forms around the black hole. Indeed, by

considering timelike geodesics in the equatorial plane of the five-dimensional equal-

angular-momentum Myers-Perry black hole, we can check that the centrifugal

barrier of the effective radial potential grows and moves away from the horizon as

the spin of the black hole is increased. This barrier may act to confine the plasma

4We greatly thank the authors of [201] for finding a mistake in an earlier version of this paper,
where we incorrectly claimed a falloff of 1/r6 in five dimensions.
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near the black hole horizon, effectively acting as a box around the black hole. We

might expect that this effect would present itself as an increase in the radial and

tangential pressures near the horizon. We should similarly expect an increase in

the magnitude of the (negative) energy density near the black hole, as a buildup

of negative-energy modes forms in the centrifugal box. This physical reasoning

leads us to conjecture that all components of the stress tensor should increase in

magnitude as the angular momentum of the black hole is increased.

5.2.3 Extremal Horizons

Our family of solution black holes can be taken all the way to extremality. This

limit is particularly interesting, as the causal structure of an extremal black hole

is qualitatively very different from its non-extremal relatives. One might therefore

imagine that the stress tensor of matter fields on extremal black hole spacetimes

exhibits qualitatively different behavior as well. In particular, the fact that the

horizon of an extremal black hole is a Cauchy horizon would näıvely lead one to

believe that stress tensors should generically be singular on the future horizon of

extremal black holes. This question has been addressed by [212–215], who studied

the regularity of the v.e.v. of the stress tensor outside an extremal dimensionally

reduced two-dimensional Reissner-Nordström (RN) black hole. In short, a static

stress tensor (i.e. one sharing the same isometries as the background spacetime)

exhibits a mild singularity on the future horizon, whereas the stress tensor of a

massive scalar field propagating on an extremal two-dimensional RN geometry

forming via gravitational collapse is regular thanks to the presence of decaying

(but nonzero) flux terms. As shown in [216], this subtle issue disappears in four
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dimensions, as the stress tensor of a scalar field in the zero-temperature vacuum

state on the full four-dimensional RN spacetime is regular everywhere without the

need for flux terms.

To our knowledge, the stress tensor of a field theory on a rotating extremal

black hole background has not yet been studied even in free field theory. The

four-dimensional RN results might lead us to expect that the stress tensor on

extremal rotating black hole spacetimes should similarly be regular on the future

horizon, though a key difference between the RN and rotating case is the inherent

presence of matter in the RN spacetime. In any case, the fundamental similarity

between the causal structures of extremal charged and rotating black holes makes

it quite plausible to expect that the CFT stress tensor dual to our rotating droplet

will be regular on the future horizon even in the extremal limit.

5.3 Constructing a Spinning Droplet

5.3.1 The DeTurck Method

The standard approach in AdS/CFT is to solve the vacuum Einstein field

equations with negative cosmological constant5

Eab ≡ Rab −
1

2
Rgab + Λgab = 0 (5.11)

subject to certain boundary conditions. The subleading behavior of the metric gab

near the conformal boundary then contains information about the stress tensor of

5Here and below, we will use lower-case Latin letters to denote bulk indices, and lower-case
Greek letters to denote boundary indices.
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the dual CFT. As is well known, Einstein’s equations do not have a well defined

character unless a gauge choice is made. Because the solutions we are searching for

are stationary, one can hope to choose a clever gauge where the equations (5.11),

or a deformation thereof, are manifestly elliptic. This is exactly what the DeTurck

trick does for us [164, 184, 217]. In short, one modifies the equations (5.11) by

introducing a new vector ξa (called the DeTurck vector):

EH
ab ≡ Eab −∇(aξb) = 0, ξa = gbc

(
Γabc − Γ̄abc

)
, (5.12)

where Γ̄abc is the Levi-Civita connection of some reference metric ḡ. Equation (5.12)

is called the Einstein-DeTurck or harmonic Einstein equation. One can show that

for stationary solutions with Killing horizons, the above choice of the DeTurck vec-

tor renders the Einstein-DeTurck equation elliptic. Solving the Einstein-deTurck

equations then reduces to solving a boundary-value problem. Note, however, that

solutions to the Einstein-DeTurck equation are not solutions to the ordinary Ein-

stein equations unless ξa = 0. To get around this problem, one can show that the

quantity Φ ≡ ξaξ
a must take its maximum value on the boundaries of the domain

of integration; thus if the reference metric ḡ is chosen with the same boundary

conditions as the metric g, Φ is zero on all boundaries of the integration domain,

and must therefore be zero everywhere within as well [164]. Then ξa is zero as well,

and a solution to the Einstein-DeTurck equation is also a solution to the Einstein

equations. Indeed, the claim that the Einstein-DeTurck equation automatically

takes care of gauge-fixing is justified by thinking of the condition ξa = 0 as just a

choice of gauge, which is a generalized harmonic gauge of the form ∆xa = Γ̄abcg
bc.
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5.3.2 Droplet Ansatz

As mentioned at the end of Section 5.1, the boundary metric we want to impose

is the equal-angular-momentum d = 5 Myers-Perry solution [199]:

ds2MP = −g(r)
h(r)

dt2 +
dr2

g(r)
+ r2

[
h(r)

(
dψ + A(1) + Ω(r)dt

)2
+ dΣ2

2

]
, (5.13a)

g(r) ≡ (r2 − r20)(r
2 − β2(r2 + r20))

(1− β2)r4
, (5.13b)

h(r) ≡ r4 − β2(r4 − r40)

(1− β2)r4
, (5.13c)

Ω(r) ≡ βr30
r4 − β2(r4 − r40)

, (5.13d)

where dΣ2
2 is the Fubini-Study metric on CP 1, A(1) is the Kähler potential of CP 1,

and β = r0ΩH , with ΩH the angular velocity of the horizon. Explicit forms for A(1)

and dΣ2
2 are given by the expressions

A(1) =
1

2
cos θ dφ, dΣ2

2 =
1

4

(
dθ2 + sin2 θ dφ2

)
. (5.14)

For β = 0, the metric (5.13) reduces to d = 5 Schwarzschild (5.2) with the S3

written as a Hopf fibration of S1 over CP 1; setting β2 = β2
ext ≡ 1/2 yields the

extremal solution. The metric is cohomogeneity one owing to its U(2) symmetry,

which implies that our bulk solution will be cohomogeneity two.

Let us compactify the range of the radial coordinate r to yield a metric more

amenable to our numerical approach. We also rescale t → r0 t and exploit the

coordinate freedom ψ → ψ + λt to shift Ω so that Ω(r0) = 0, Ω(∞) = −ΩH (this

165



A Rotating Black Droplet Chapter 5

will simplify the boundary conditions at the horizon later on). Defining a new

radial coordinate y = 1− (r0/r)
2, we find

ds2MP = r20

{
−y h1(y)

h2(y)
dt2 +

(1− β2)dy2

4y h1(y)(1− y)3

+
1

1− y

[
h2(y)

1− β2

(
dψ + A(1) − β(1− β2)

y(2− y)

h2(y)
dt

)2

+ dΣ2
2

]}
, (5.15a)

h1(y) ≡ 1− β2(2− y), (5.15b)

h2(y) ≡ 1− β2y(2− y). (5.15c)

Our ansatz will need to have (5.15) as its conformal boundary.

Next, recall that we are considering black droplet solutions with T∞ = 0; this

implies that far into the bulk, the solution should approach the near-horizon geom-

etry of pure AdS6 in Poincaré coordinates. Poincaré AdS6 in standard coordinates

can be written as

ds2Poin =
ℓ2

z2
[
−dt2 + dz2 + dr2 + r2dΩ2

3

]
, (5.16)

where ℓ is the AdS6 length scale, related to the cosmological constant by ℓ2 =

−10/Λ6. Changing variables to (x, y) defined by

z =
1− x2√
1− y

, r = x

√
2− x2

1− y
, (5.17)
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the Poincaré metric becomes

ds2Poin =
ℓ2

(1− x2)2

[
−(1− y) dt2 +

dy2

4(1− y)2
+

4 dx2

2− x2
+ x2(2− x2)dΩ2

3

]
.

(5.18)

The near-horizon region corresponds to taking y close to 1.

We are now ready to write down an ansatz. Consider

ds2 =
ℓ2(1− y)

(1− x2)2

{
−y T h1(y)

h2(y)
dt2 +

Ady2

4yh1(y)(1− y)3

+
4B

(1− y)(2− x2)

(
dx+ F

x(1− x2)

2(1− y)
dy

)2

+
x2(2− x2)

1− y

[
h̃2(x, y)C

(
dψ + A(1) −G

y(2− y)

h2(y)
dt

)2

+ S dΣ2
2

]}
, (5.19)

where

h̃2(x, y) ≡ 1 + x2
(
h2(y)

1− β2
− 1

)
, (5.20)

T , A, B, C, S, F , and G are all functions of x and y, and the coordinate range

is the rectangle (x, y) ∈ (0, 1)× (0, 1). For the non-extremal case β 6= 1/
√
2, our

boundary conditions are as follows:

• At the conformal boundary x → 1, we take T = A/(1 − β2) = C = S =

r20/ℓ
2, B = 1, G = β(1− β2), and F = 0. Then the metric approaches

ds2 → ℓ2

(1− x)2

(
dx2 +

1− y

4ℓ2
ds2MP

)
(5.21)

as desired.

• Near the extremal Poincaré horizon y → 1, we take T = A/(1− β2) = B =
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C = S = 1, G = const. = β(1−β2), and F = 0 (note that the constant value

of G is fixed by requiring consistency with the boundary condition at x = 1).

Changing to a new coordinate ψ → ψ + βt removes the dt cross-terms, and

we recover the y → 1 limit of (5.18).

• At the horizon y → 0, we require regularity of the metric, which imposes a

relationship between T and A. In particular, we must have T/A = (r0κ/(1−

2β2))2, where κ = (1−2β2)/(r0
√
1− β2) is the surface gravity of the bound-

ary black hole. Thus we find T/A = 1/(1− β2). In addition, expanding the

equations of motion and the condition ξa = 0 order-by-order near y = 0

gives Robin conditions on ∂yMi|y=0 for Mi = {T,A,B,C, S, F,G}.

• At the fixed point of the U(2) isometry x = 0, we require regularity as well.

Again, this implies that all metric functions must be smooth functions of x2,

giving the Neumann conditions ∂xMi|x=0 = 0. In addition, note that while

the forms x2(dψ +A(1)) and xdx are regular at x = 0, in general the metric

components

2B dx2 + 2 x2
[
h̃2(x, y)C

(
dψ + A(1)

)2
+ S dΣ2

2

]
(5.22)

are not. In order to make the above expression regular, we must impose

that B = C = S at x = 0, so that

2B dx2+2 x2
[
h̃2(x, y)C

(
dψ + A(1)

)2
+ S dΣ2

2

]
→ 2S(dx2+x2dΩ2

3), (5.23)

which is manifestly regular there.
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Having understood the boundary conditions on each side of the computational

rectangle, we choose the reference metric. Noting from (5.15) that the boundary

black hole size r0 enters only as a conformal factor, we can choose without loss of

generality to set r0 = ℓ. Then the boundary conditions become consistent, and

we take the reference metric to be the ansatz (5.19) with T = A/(1− β2) = B =

C = S = 1, G = β(1− β2), and F = 0.

The extremal case (β = βext ≡ 1/
√
2) takes a little more care. Though our

ansatz (5.19) still applies, one finds that as extremality is approached the metric

function F attains a very large value along y = 0 near x = 0, leading to large nu-

merical errors. To alleviate the problem, we rewrite (5.19) in terms of a new metric

function F̃ = yF ; we then find that the numerics are much more well-behaved

when written in terms of the new F̃ rather than the old F . Then the boundary

conditions at the conformal boundary, fixed point of the U(2) isometry, and ex-

tremal Poincaré horizon remain the same as those discussed above, while at the

extremal droplet horizon we require F̃ = 0. In addition, converting to Eddington-

Finkelstein coordinates and requiring regularity at the extremal droplet horizon

imposes the usual regularity condition A(x, 0) = (1 − β2
ext)T (x, 0) = T (x, 0)/2,

as well as the condition G(x, 0) = const. = βext(1 − β2
ext) = 1/

√
8. Boundary

conditions on the other metric functions are obtained by expanding the equations

of motion order-by-order near y = 0 and requiring that they vanish to leading

order.
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Figure 5.2: The maximum value of the square of the DeTurck vector Φ as a
function of N for β = 0 (circles), 0.6 (diamonds), and βext ≈ 0.707 (asterisks).

5.3.3 Numerics

We approximate the Einstein-DeTurck equation (5.12) with the ansatz (5.19)

using pseudospectral collocation methods on a Chebyshev grid. The resulting non-

linear algebraic equations are solved using a damped Newton-Raphson method.

We monitor the damping with |EH
ab|; that is, we ensure that each iteration of the

Newton’s method decrease the magnitude of EH
ab. Due to the maximum principle

that Φ ≡ ξaξ
a obeys, we can monitor the error in our solutions by monitoring

the maximum value of Φ. In Figure 5.2, we plot the maximum value of Φ as a

function of the number N of grid points for three different values of the rotation

parameter β, showing the expected exponential decrease. Note that we will find

later that the accuracy of the extracted of the stress tensor depends strongly on

the number of grid points used along the x-direction, so for all results shown in

this paper, we use an Nx ×Ny = 81× 41 grid.
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5.3.4 Extraction of the Stress Tensor

In order to extract the boundary stress tensor from our solutions, we follow

the approach used in [61]. In short, we first expand the metric functions Mi as a

power series in x off of the boundary at x = 1:

Mi(x, y) =
∑

n=0

M
(n)
i (y)(1− x)n + ln(1− x)

∑

n=0

M̃
(n)
i (y)(1− x)n, (5.24)

where the logarithmic terms only appear for β 6= 0 and at no lower order than n =

5. Inserting these expansions into (5.12) and in addition imposing ξa = 0 allows

us to solve for the coefficients of the power series order-by-order in (1 − x). The

expansion is unique up to n = 4 for the functions {T,A,C, S, F,G} and up to n = 5

for the function B. We then change to Fefferman-Graham coordinates (z̃, ỹ) using

an expansion of the form

1− x2 =
√

1− ỹ z̃ +
∑

n=2

X(n)(ỹ)z̃n, (5.25a)

y = ỹ +
∑

n=1

Y (n)(ỹ)z̃n, (5.25b)

where the O(z̃) term in the expansion for x fixes the conformal frame, and we

have neglected potential logarithms as they do not appear up to the order we

need. Requiring that gz̃z̃ = ℓ2/z̃2 and gz̃ỹ = 0 order-by-order in z̃ yields a set of

algebraic equations that can be solved for the coefficients X(n)(ỹ), Y (n)(ỹ). Then

we find that the metric takes the form

ds2 =
ℓ2

z̃2
[
dz̃2 + ℓ−2ds2MP + z̃5hµν dx

µ dxν +O(z̃)6
]
, (5.26)
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where hµν is only a function of the boundary coordinates xµ. According to the

prescription of [96], the renormalized v.e.v. of the boundary stress tensor is then

〈Tµν〉 =
5ℓ4

16πG
(6)
N

hµν . (5.27)

The general expressions for the coefficients M
(n)
i , M̃

(n)
i , X(n), Y (n) and for the

stress tensor are too cumbersome to reproduce in this paper, but they become

tractable in the nonrotating case β = 0. In Appendix A.4, we give the β = 0

expressions for M
(n)
i , X(n), and Y (n) up to the order we need in order to ex-

tract the stress tensor and check its tracelessness and transversality. As expected

from our arguments in Section 5.2.1, the stress tensor is given precisely by the

expression (5.9c), with6

Θ(y) = − 5ℓ4

16πG
(6)
N

(1− y)5/2

672(1− 2y)
[14(1− 2y)a5(y)

+(1− y)(176− 1712y + 2368y2 + 14ya′5(y))
]
, (5.28a)

G(y) =
5ℓ4

16πG
(6)
N

y(1− y) (88− 384y + 296y2 + 7a5(y))

224
, (5.28b)

where in an obvious abuse of notation we have written the functions Θ and G in

terms of the compactified radial coordinate y rather than the original coordinate r.

We will postpone a discussion of this result to Section 5.4.

Now let us return to the general β 6= 0 case and discuss how to extract the

stress tensor from our numerical data. The boundary stress tensor will take the

6Note that we drop the tilde on ỹ, since y and ỹ agree on the boundary.
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form

〈Tµν〉dxµdν = Ttt dt
2 + Trr dr

2 + Tψψ
(
dψ + A(1)

)2

+ 2Ttψ
(
dψ + A(1)

)
dt+ TΣΣdΣ

2
2. (5.29)

There are thus five functions to solve for, which can be expressed in terms of five

of the functions M
(5)
i which we will label as m

(5)
i ≡ {t5, a5, c5, g5, s5}. In principle,

one could extract these functions by taking five x-derivatives of (5.24) at x = 1.

However, in practice taking such high derivatives numerically gives very poorly

behaved results. Instead, we follow a slightly different approach: since we know

the coefficients M
(n)
i for n ≤ 4 analytically, we can write

Mi(x, y)−
∑4

n=0M
(n)
i (y)(1− x)n

(1− x)4
= m

(5)
i (y)(1− x) +O(1− x)2. (5.30)

With the numerically computed values for Mi(x, y), the left-hand side of (5.30)

is known numerically, so we perform a fit for the right-hand side to obtain the

coefficients m
(5)
i .

In order to quantify the accuracy of our extracted stress tensor, we proceed as

follows. Although the equations of motion don’t give unique expressions for the

coefficients m
(5)
i , they do provide two algebraic relations between these coefficients

and a′5
7. Using one of these relations, we can express t5 in terms of a5, c5, and g5

in an algebraic expression of the form

t5(y) = T exact
5 (y, a5(y), c5(y), s5(y)) . (5.31)

7These relations enforce tracelessness and transversality of the stress tensor, i.e. conservation.
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Figure 5.3: The relative error ∆ introduced in extracting the coefficients m
(5)
i

for different values of β. Circles, squares, diamonds, triangles, inverted trian-
gles, and asterisks correspond to β = 0, 0.5, 0.6, 0.65, 0.69, and βext respectively.
Note that the error remains . 0.4% for almost all β and y.

Using the fitted values for the m5
i , we can therefore use the quantity

∆(y) ≡ 1− t5(y)

T exact
5 (y, a5(y), c5(y), s5(y))

, (5.32)

as a measure of the error introduced in extracting the m
(5)
i (physically, one can

think of ∆ as a measure of how much the numerically extracted stress tensor fails

to be traceless). In Figure 5.3, we plot ∆ for the full range of β. We note that

the relative error in our extraction is . 0.4% for almost all β and y; only for y

near 1 does ∆ become appreciable. We emphasize that this error is solely due to

the difficulty in extracting the m
(5)
i from the numerical data, and is not a measure

of the accuracy of our numerical solutions themselves.

In Figure 5.4, we plot the components of the stress tensor for various values

of β. Recall that to obtain the metric (5.15), we shifted the angular coordinate ψ

to make gψt = 0 at the horizon. As a result, the near-horizon behavior shown

in Figure 5.4 physically represents the stress tensor as measured by an observer
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co-rotating with the horizon. In addition, in Figure 5.5 we plot the scalar invari-

ant 〈Tµν〉 〈T µν〉.
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Figure 5.4: The components hµν = 16πG
(6)
N 〈Tµν〉 /5ℓ2 for the same values

of β as Figure 5.3. Note that htψ = 0 for β = 0. Note that the range of the
coordinate y shown corresponds to the range r0 ≤ r . 1.2 r0 in the original
radial coordinate.
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Figure 5.5: The scalar invariant hµνh
µν for the same values of β as Figure 5.3.

Regularity at Horizon

From the discussion in Section 5.2.1 and the regularity of the functions (5.28),

it is clear that in the nonrotating case, the stress tensor of the CFT is regular on

the future horizon (and in fact, it is regular on the past horizon as well since K =

Q = 0). One can similarly examine the behavior of the stress tensor in the

rotating case by passing to local ingoing Eddington-Finkelstein coordinates. In

the non-extremal case, we change coordinates to

dt = dv −
√

1− β2

1− 2β2

dy

2y
; (5.33)

then from (5.29), one finds that the stress tensor is regular on the future horizon

only if all the components 〈T µν〉 are finite and satisfy 〈T tt〉 = 〈T yy〉 on the horizon.

We can immediately see from Figure 5.4 that these conditions are satisfied, so the

stress tensor is regular on the non-extremal horizon.

Again, the extremal case requires more care. In this case, local ingoing
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Eddington-Finkelstein coordinates are given by

dt = dv − 1√
2

(
1

y2
+

1

y

)
dy, (5.34a)

dψ = dψ′ − dy

2y
. (5.34b)

Then one again finds that the stress tensor is regular on the future horizon if it

obeys the same conditions as in the non-extremal case, and in addition obeys

√
2
〈
T tψ
〉
+ 2∂y

(〈
T tt
〉
− 〈T yy〉

)
= 0 (5.35)

on the horizon. It is easy to check that this condition is satisfied to within the

expected ∼ 1% accuracy.

5.4 Results and Discussion

Our numerical results exhibit the behavior expected based on our quantita-

tive and heuristic reasoning in Section 5.2. Let us begin with the nonrotating

case β = 0. The expansion of the equations of motion off of the boundary gave

us a stress tensor of the form (5.9c) with the functions Θ and G given in (5.28),

which is precisely the form expected from the discussion in Section 5.2.1. In par-

ticular, we find that the stress tensor is traceless, contains no flux terms, and is

regular at the future horizon. Once the numerically extracted functions m5
i (y) are

inserted, we find that the energy density is negative everywhere. The magnitude

of the components of the stress tensor increases as the rotation parameter is in-

creased, but otherwise the qualitative behavior of the stress tensor doesn’t change

177



A Rotating Black Droplet Chapter 5

when β 6= 0 except for the introduction of an angular flux term Ttψ.

As shown in Figure 5.3, the error in our extracted stress tensor becomes rel-

atively large near y = 1, making it difficult to reliably extract the falloff of the

stress tensor components at large r. In fact, these components appear to exhibit

a falloff closer to (1 − y)3 = (r0/r)
6 than to the (1 − y)7/2 = (r0/r)

7 expected

from the braneworld arguments of [164]. However, by performing an expansion

of the equations of motion about y = 1, one can show analytically that the stress

tensor components must indeed decay like (r0/r)
7; presumably, the use of higher

precision would allow us to extract this behavior numerically. In any case, our

results are much more well-behaved in the near-horizon region, where most of the

interesting physics lies.

The following physical pictures emerges. As expected, a strongly coupled

large-N CFT in a jammed phase forms a halo of negative-energy plasma around

a black hole. The stress tensor of the plasma falls off rapidly far from the black

hole, indicating that the plasma is well-localized around the black hole. The total

energy of the plasma is negative, indicating its highly non-classical nature. When

the black hole is made to rotate, the plasma is dragged along with the black hole.

The plasma is trapped by the centrifugal barrier created by this rotation, causing

the energy density and pressures to increase in magnitude.

The jammed phase is particularly interesting from the point of view of the

CFT because it has no analog in a free field theory: a similar static plasma

localized around the black hole could not exist in a noninteracting theory, as it

would quickly fall into the black hole. The jammed phase is thus an effect of the

strongly coupled nature of the CFT.
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One might therefore wonder how our droplet phase compares to the corre-

sponding black funnel phases (which do admit analogs in free field theory). Black

funnels with T∞ = 0 must have a horizon that asymptotes to the extremal Poincaré

AdS deep into the bulk; if we require that the bulk horizon also join smoothly

to the (non-extremal) boundary horizon, the bulk horizon must have both a non-

constant surface gravity and a non-constant angular velocity, and will therefore

not be a Killing horizon. We say that such funnel solutions will “flow” in the

sense that there exists some notion of a horizon velocity which moves either from

the boundary black hole to infinity or vice versa. For non-extremal horizons,

these flowing funnels were constructed in [74], but construction of solutions with

asymptotically extremal horizons (as is necessary to have the boundary CFT be

at zero temperature at infinity) is more difficult.

In fact, it would seem that such funnel solutions might not even be relevant:

according to the discussion in Section 5.1, the conjectured jamming transition in

the CFT should be parametrized by the parameter RT∞, with small RT∞ favoring

the jammed phase. If T∞ = 0, we might expect based on this argument that the

jammed phase of the CFT will dominate the thermodynamic ensemble for any

size of the boundary black hole.

However, recall that one basis for this conjectured phase transition was the

potential for Gregory-Laflamme-type instabilies of the bulk horizon [218]: if one

starts with a black funnel and lowers the temperature T∞, the asymptotically

planar bulk horizon will sink deeper into the bulk (cf. Figure 5.1). The näıve

expectation is that this will narrow the neck of the black funnel and leave it

unstable to Gregory-Laflamme instabilities, causing it to collapse into a black
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b b

Figure 5.6: A sketch of a black funnel solution with T∞ = 0.

droplet. Taking T∞ → 0, this argument would lead one to expect that the droplet

solution would be the only thermodynamically preferred one.

This potential instability was studied to some extent in [61], which considered

funnels dual to a CFT on an asymptoticaly flat black hole spacetime. The size of

the boundary black hole was decreased (while keeping the temperature T∞ fixed)

to explore whether such Greogory-Laflamme instabilities would occur. Surpris-

ingly, as the size of the boundary black hole decreased, the neck of the funnel

remained wide enough to prevent the formation of such instabilities. Though far

from exhaustive, this result implies that it is possible for there to be stable fun-

nels with T∞ = 0 which could compete with the droplet solutions. A sketch of

what such a solution might look like is shown in Figure 5.6 (in fact, in [73] such

funnels were explicitly constructed in d = 2, though the question of their stability

is less interesting in that case, since the droplet solutions cannot exist in three

bulk dimensions). Clearly, the construction of such solutions would be of much

interest. We leave this exploration to future work.

Some words on the extremal limit are also in order. Though this limit is

discontinuous from the point of view of the global causal structure of the back-
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ground geometry, the line element (5.19) and consequently the stress tensor change

smoothly as β approaches βext. In particular, the stress tensor remains regular

on the future horizon, consistent with the result of [216] for the four-dimensional

RN spacetime. A natural question is then whether there is some other mechanism

that prevents the spacetime from continuing past the Cauchy horizon, analogous

to the mass-inflation singularity of black holes with inner horizons [219]; perhaps

the inclusion of perturbative corrections at higher order in 1/N would resolve the

issue.

Indeed, our results may also have implications for the mass-inflation singular-

ity. Ref. [198] computed the stress tensor on a rotating BTZ black hole background

and found that it diverged at the inner horizon. This result should be expected in

any black hole spacetime with an inner (Cauchy) horizon to preserve the causal

structure of the spacetime. Since the spacetime between the inner and outer

horizons is dynamical, the numerical approach used in this paper would not be

applicable to studying the event horizon in that region. However, obtaining the

stress tensor of a field theory on a black hole background all the way to the inner

horizon would certainly give some insight into the behavior of the mass inflation

singularity there.
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Holographic Entanglement
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Chapter 6

Entanglement and Correlations

Near Extremality

6.1 Introduction

The entanglement properties of both ground states and thermal states are

interesting topics of study in quantum field theory; see e.g. [220, 221]. Here

we consider the corresponding structure of so-called thermofield double (TFD)

states, which are the natural pure states defined on an (essentially) identical pair

of field theories that reduce to thermal density matrices on either theory alone.

This entanglement is of particular interest in the holographic context [19, 20, 82]

due the existence in the dual bulk solution [222] of a wormhole, or Einstein-

Rosen-like bridge, between two asymptotic regions – see figure 6.1 – and the

conjectured generalizations of [223–225]. Holography also provides useful tools for

such studies, ranging from the minimal area entanglement prescription of Ryu-
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Takayangi [69] (recently justified in [71]) to the particle-worldline approximation

(a.k.a. the geodesic approximation) of bulk correlators. TFDs also provides a

simple laboratory in which to explore more general issues of entanglement in

quantum field theory and holography.

We therefore focus on the holographic setting below. TFD entanglement along

these lines was explored in great detail for d = 2 holographic CFTs in [226] by

investigating the dual BTZ black hole, and also earlier in more general contexts

through studies of local two-point functions with one operator near each boundary

of various two-sided black holes [34, 67, 222, 227–229]. Our interest lies in adding

charge via an appropriate chemical potential µ and exploring the behavior at very

small temperatures T ; see [230–232] for other studies of the small T limit.

Without the chemical potential, taking T → 0 simply drives each theory

into its ground state and removes all correlations. But nonzero µ provides an

opportunity to maintain finite entanglement even at very small T . The classic

gravitational example of such behavior is of course the Reissner-Nordström black

hole near extremality. For simplicity we therefore focus on TFD states which are

holographically dual to planar Reissner-Nordström AdS (RNAdS). To be concrete,

we work with d = 4 CFTs dual to 5-dimensional bulks.

The interesting feature of such models is that as T → 0 the bulk geometry

develops a throat of finite cross-section but infinite depth. The infinite depth leads

many natural probes of entanglement to vanish at T = 0. For example, this is the

case for two-point functions (with one argument in each CFT) of large-dimension

neutral single-trace operators; such correlators decay exponentially with spacelike

separation in the bulk. It is also the case for the mutual information between
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finite-sized regions of our two CFTs as computed via [69], as the diverging distance

through the extreme throat means that at low T the dominant contribution to

the von Neumann entropy of any finite region is given by surfaces lying entirely

on one side of the black hole.

Nevertheless, the total density of entanglement remains finite. We take some

first steps toward probing its structure below, showing in particular that i) the

mutual information between one entire CFT and a finite-size strip in the other

CFT need not vanish at small T and ii) as suggested in [40], there can be what

one may call extremally-charged operators whose two-point functions (with one

argument in each CFT) remain finite in the T → 0 limit. The existence of the

above extremally-charged operators indicates that the system lies at the threshold

of an instability of the extreme RNAdS spacetime associated with Schwinger pair

creation1 [242, 243].

After a brief review of TFDs and the RNAdS geometry in section 6.2, we

proceed to study the above mutual information in section 6.3. Section 6.4 then

examines the two-point functions of charged operators with one argument in each

CFT. Some final discussion is given in section 6.5, which in particular connects

phenomena described here at small T with similar infrared (IR) effects seen in

[45, 46, 229] at large times.

Before beginning, we mention the well-known fact that RNAdS has many po-

tential instabilities that can switch on at low temperature (see e.g. [233, 235, 236,

238–241, 244]), and one certainly does not expect the extreme limit of RNAdS2 to

1 Since we consider bosons, this may also be called either a super-radiant instability or an
instability to forming a super-conducting phase as in [233–237]. The fermionic analogue would
be unstable to forming a Fermi surface as in [238–241].

2Or, in fact, any black hole whether extreme or otherwise; see e.g. [228] for a modern
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Figure 6.1: A conformal diagram of the maximally extended planar Ad-
S-Schwarzschild black hole. This geometry is the bulk dual to the TFD state
of two disconnected CFTs living on the two boundaries of the spacetime.

give an exact description of any microscopic theory with a finite density of states

[245–247]. But at any given T/µ, even very close to extremality, models may well

exist in which RNAdS remains an accurate description. Furthermore, we expect

our results to be typical of those obtained near extreme limits. In particular, at

least at first pass one would expect rotating extreme global AdS black holes to

behave similarly. In this context one can find black holes that saturate a BPS

bound (extreme BTZ [127, 128] for AdS3 and the solutions of [248] and [249] for

AdS4 and AdS5), so they are free of the above supergravity instabilities.

6.2 Thermofield Doubles in Bulk and CFT

We begin with a brief review of charged thermofield double states, both in

the CFT and in the bulk. In the latter context they become two-sided planar

Reissner-Nordström AdS black holes.

statement of this issue.
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6.2.1 The Charged Thermofield Double in the CFT

Consider two quantum systems with isomorphic Hilbert spaces H1 = H2 = H

and identical Hamiltonians H1 = H2 = H, which for simplicity we take to be

invariant under a time-reversal operation3 T . We will be interested in considering

this theory in the TFD state

|ψ〉 = 1√
Z

∑

i

e−βEi/2 |Ei〉1 ⊗ |Ei〉2 . (6.1)

Up to the insertion of possible phases, when the spectrum is non-degenerate this is

the unique state on the tensor productH1⊗H2 which restricts to the thermal state

ρ = 1
Z
e−βH on each factor, where Z = TrHe

−βH is the usual partition function.

The state (6.1) may be constructed by cutting open the thermal path integral

with inverse temperature β, where the cut is made along a surface invariant under

time-reversal. Equivalently, it may be evaluated by performing the Euclidean path

integral in which Euclidean time tE runs over an interval I of length β/2. Even in

the presence of degeneracies, this Euclidean recipe continues to be well-defined,

and implies that the terms in (6.1) take the form |E〉 ⊗ T |E〉. Writing the TFD

in this form makes clear that constructing (6.1) involves choosing a special time

t = 0 invariant under T and furthermore that, once this time has been chosen, the

anti-linear nature of T makes the properly defined (6.1) independent of changes

of phase in the basis states |E〉. We also see that in relativistic theories CPT-

invariance implies that the two factors in (6.1) should be taken to have opposite

charge .

3 This will be the case for our system. More generally, when time-reversal is not a symmetry,
one takes H1 and H2 to be related by time-reversal with corresponding changes in (6.1).
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The generalization to the grand canonical ensemble is straightforward: we

simply introduce a chemical potential into the Boltzmann weights and define the

TFD state to be

|ψ〉 = 1√
Z
∑

i

e−β(Ei+µQi)/2 |Ei, Qi〉1 ⊗ |Ei,−Qi〉2 , (6.2)

where the Qi are eigenvalues of the conserved U(1) charge conjugate to µ and Z is

now the grand partition function. Again, any ambiguities due to degeneracies are

resolved by taking the two states in each term to be CPT conjugates. The state

(6.2) arises from a Euclidean path integral as above if we couple the charge Q to

a background U(1) gauge field A = −iµ dtE with the sign in (6.2) requiring us to

take system 1 to be associated with the minimum value of tE in I and system 2

to be associated with the maximum value. Note that the gauge field is imaginary,

and that the result is just the TFD state defined by the non-time-reversal invariant

deformed Hamiltonians H̃1 = H + µQ, H̃2 = H − µQ; see footnote 3.

The TFD state (6.2) has a well-behaved zero-temperature limit β → ∞ only if

Ẽ1 = E+µQ is bounded below, or equivalently (by applying T ) if Ẽ2 = E−µQ is

bounded below. In the zero-temperature limit, the sum in (6.2) restricts to those

terms that minimize Ẽ1, Ẽ2. For a general theory one may expect a unique state

of minimal Ẽ1, Ẽ2. But symmetry can force an exact degeneracy or, alternatively,

we may consider a theory with many degrees of freedom (e.g., large N) and an

associated approximate degeneracy when β is large but finite. It is this latter

option that one expects to apply to the RN-AdS black holes studied below (see

e.g. comments in [247]). In either case, up to an irrelevant overall phase the state
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becomes effectively independent of time evolutions generated by H̃1, H̃2.

Since any remaining entanglement is associated with excitations of vanishingly

small energy above the ground state (in the sense of H̃1, H̃2), one might expect

any spatial scale characterizing our TFD entanglement to diverge as T → 0. But

this will not quite be the case. Indeed, since we consider RNAdS5, our bulk dual

will have an AdS2 × R3 infrared fixed point describing the near-horizon region.

Such spacetimes exhibit local criticality, characterized by the limit z → ∞ of

dynamical scaling symmetry (t, x) → (λzt, λx) which for finite z would give a

power law L ∼ T−1/z. As a result, it is natural to find either that spatial scales L

remain constant at small T or that they diverge logarithmically. We will see that

both behaviors occur below.

Let us close with a comment on two-point functions. At µ = 0, the uniqueness

of the ground states and the resulting lack of TFD entanglement at small T

implies that (connected) correlators vanish at T = 0. The non-trivial ground-

state entropy makes the situation different in principle for µ > 0, though two-

point functions with one argument in each CFT can be non-zero at T = 0 only

if each operator actually has some non-zero matrix element between two ground

states of the requisite H̃1, H̃2. The set of operators (if any) for which this occurs

will depend on the detailed dynamics of the CFT. The interesting result we will

find in section 6.4 is that, at least in the limit of large operator dimensions, this

occurs precisely for operators with a certain “extremal” ratio between their U(1)

charge and conformal dimension.
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6.2.2 Planar Reissner-Nordström AdS

In a holographic field theory the bulk dual of (6.2) is straightforward to con-

struct following [222]. The conserved charge in the field theory will be associated

with some U(1) gauge field in the bulk. We thus simply perform the bulk Eu-

clidean path integral with boundary conditions given by the above interval I and

gauge field A. Note that the non-trivial gauge field A = −iµdtE on the boundary

means that the generator H̃ of bulk time-translations toward the future may be

written H̃ = H±µQ, where the +/− signs are respectively appropriate for systems

1 and 2 above. Here H is the generator for µ = 0 given by the standard expression

(see e.g. e.g. [95]) for the boundary stress tensor in terms of Fefferman-Graham

coefficients of the bulk metric. See [88] for a general discussion of computing time-

translation generators by holographic methods for boundary conditions involving

vector fields.

In the bulk semi-classical limit our path integral should be dominated by

a saddle point. We will consider cases where this saddle point is the planar

Reissner-Nordström AdSd+1 geometry4. We expect this to be the case for d ≥ 3

holographic field theories on Minkowski space so long as the bulk solution exhibits

no instabilities associated with Schwinger pair creation [242, 243] (see also footnote

1). For definiteness we consider only d = 4 below. Note that our path integral

automatically places quantum fluctuations of bulk fields into a Hartle-Hawking-

like state. Below, we use the same symbol |ψ〉 to denote the CFT state, the state

of full bulk quantum gravity, and the Hartle-Hawking-like state of linearized or

4While the semi-classical approximation may break down in surprising ways in generic con-
texts involving black holes (see e.g. [35, 36, 40, 245, 250]), the TFD case is sufficiently special
that it is plausibly free of such issues [144].
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perturbative bulk quantum fields on the RN-AdS background.

The RN-AdS geometry solves the equations of Einstein-Maxwell gravity with

negative cosmological constant. Taking the action to be

S =

∫
d5x

√−g
[

1

2κ2

(
R +

12

ℓ2

)
− 1

4g2
F 2

]
, (6.3)

and introducing the dimensionless measure γ2 ≡ 3g2ℓ2/2κ2 of the relative strengths

of the gravitational and Maxwell couplings, the solutions for fixed µ may be writ-

ten in terms of a scale z0 that will shortly be related to the temperature T . Such

solutions take the form

ds2 =
ℓ2

z2

[
−f(z) dt2 + dz2

f(z)
+ dx23

]
, (6.4a)

Aµdx
µ = µ(1− z̃2) dt, (6.4b)

with

f(z) = (1− z̃2)(1 + z̃2 − α2z̃4), z̃ =
z

z0
, and α2 ≡ z20µ

2

γ2
. (6.5)

The rescaling z0 → z0/λ is equivalent to the transformation (t, z, x) → (λt, λz, λx),

µ → µ/λ, so the physics depends only on the scale-invariant parameter α, or

equivalently on µ/T .

The AdS boundary lies at z = 0, while z = z0 is a horizon with temperature

T =
2− α2

2πz0
. (6.6)

This expression can be inverted to obtain z0(T, µ); we will later need the small
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temperature behavior z0 =
√
2 γ/µ+O(T/µ). Note that At vanishes at the horizon

as required by regularity in a static gauge. For nonzero α2 < 2 there is also an

inner horizon at z = z+, with

z2+ = z20
1 +

√
1 + 4α2

2α2
. (6.7)

The singularity lies at z = ∞. The conformal diagram of maximally extended

RN-AdS is shown in Figure 6.2.

The above coordinates will be convenient despite the fact that they become

singular on horizons. The Schwarzschild-like time coordinate t should be consid-

ered to be periodic with period iβ, with β the inverse temperature. Within the

real Lorentz-signature solution above, we also take it to change by ±iβ/4 when-

ever an outer horizon is crossed5. Thus the imaginary part of t determines whether

a point lies in region I,II, III, or IV of the conformal diagram (Figure 6.2). In

particular, the two asymptotic regions correspond to Im(t) = 0 and Im(t) = β/2.

Below, it will often be useful to switch to a new radial coordinate w = z̃2, in terms

of which (6.4) becomes

ds2 =
ℓ2

z20w

[
−f dt2 + z20dw

2

4wf
+ dx23

]
, (6.8a)

Aµdx
µ = µ(1− w) dt. (6.8b)

We will be most interested in the extreme limit α2 → 2, where z+ → z0 so

that f(z) develops a double pole at z = z0. The metric with α2 = 2 has an infinite

5Crossing the bifurcation surface counts as crossing two horizons and gives a change of ±iβ/2.
Upon crossing an inner horizon t changes by iβ+/4 with β+ the inverse temperature of the inner
horizon; see e.g. [227]. We will have no need of this in the following discussion.
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Figure 6.2: The relevant portion of the conformal diagram of RN-AdS. The
exterior regions are I and III, with their boundaries at z = 0. The singularity is
at z = ∞, and the spacetime has inner and outer horizons at z = z0 and z = z+,
respectively. We take the imaginary part of t in regions I-IV to be 0, β/4, β/2,
and −β/4, respectively.

throat, as the horizon at z = z0 is an infinite proper distance away in the slices of

constant t, and a Cauchy slice in the maximally extended extremal geometry has

only a single boundary. We are interested in following the entanglement between

the two boundaries of the non-extremal black hole in this limit, as the length of

the Einstein-Rosen bridge connecting the two asymptotic regions diverges. To

this end we define ǫ ≡ 2− α2 and write f(z) = (1− z̃2)2(1 + 2z̃2)− ǫz̃4(1− z̃2).

6.3 Mutual Information

A useful probe of the entanglement between our two Hilbert spaces is the

mutual information associated with two spacetime regions, with one region in

each CFT. In the TFD context it is natural to call this thermo-mutual information

(TMI) following [226], which studied the corresponding quantity for holographic
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theories with µ = 0 and d = 2. After a brief review, we compute TMI for general

µ and d = 4 for two strips of width L located on a common bulk Killing slice,

and also for regions defined by an entire CFT and a single strip of width L in the

other CFT. Our main result is that in the former case L must grow as lnT near

extremality in order to have non-zero TMI while it may remain finite in the latter

case.

6.3.1 Thermo-Mutual Information

Recall [251, 252] that the mutual information between two non-overlapping

regions A and B is

MI(A : B) = SA + SB − SA∪B, (6.9)

where SX = −tr(ρX log ρX) is the von Neumann entropy of the reduced density

matrix ρX describing the region X. In particular, the mutual information is finite

in quantum field theory as all divergences in SX are local terms at boundaries

which explicitly cancel in the combination (6.9). The mutual information is non-

negative by virtue of subadditivity SA + SB ≥ SA∪B for non-overlapping regions;

see [253, 254] and also [255] for a holographic derivation.

The term thermo-mutual information (TMI) refers to the case where we con-

sider a thermofield double state and the two regions are associated with different

copies of the CFT. We will take A, B to lie on a single Killing slice of the bulk and

compute TMI holographically using the Ryu-Takayanagi prescription [69], which

instructs us to identify

SX =
A(γX)

4GN

, (6.10)
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where GN is Newton’s constant and A(γX) is the area of the minimal static surface

γX , which extends into the bulk while being i) homologous to X within the surface

of constant Killing time and ii) anchored on the boundary ∂X of X. Since we will

apply such recipes to bulk black holes that dominate a Euclidean path integral, this

recipe can be justified using the arguments of [71]. The fact that the two regions

lie at different Euclidean times tE = 0 and tE = iβ/2 provides no additional

complications.

It is often the case that holographic TMI will vanish identically, saturating the

subadditivity condition. This occurs because the disjoint union of two minimal

surfaces γA1
and γA2

is an extremal surface anchored on the boundary of A1∪A2.

Holographic TMI vanishes when this is the minimal-area such extremal surface.

In the CFT this should be considered an artifact of the large N limit, though one

that is unmitigated by 1/N corrections. An alternative candidate for γA1∪A2
is a

surface γA1A2
that passes through the horizon connecting the boundary of A1 to

the boundary of A2. Varying the sizes of A1,2 will typically result in a transition

where the area of the latter surface becomes smaller than the area of the former

and the TMI becomes non-zero. The scale at which this transition occurs provides

information about the degrees of freedom entangled between the two CFTs.

6.3.2 Strips

Consider first the case where A1 and A2 are strips defined by 0 < x1 < L and

extending infinitely far along x2 and x3. In this case the extremization problem

becomes effectively one dimensional.

It is instructive to first review the case of finite T = β−1 and µ = 0 [229]. Here
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the physics depends only on the dimensionless combination LT . For our strips

the connected surface γA1A2
extends straight through the bifurcation surface, con-

necting ∂A1 with ∂A2; see Figure 6.3. Translational invariance implies that its

area is independent of LT , while the area of the disconnected surface γA1
∪ γA2

vanishes as LT → 0. Thus the disconnected surface dominates SA1∪A2
for small

LT and the TMI vanishes. As we increase LT , the surfaces γA1
and γA2

reach

further into the bulk but do not cross the horizon. At large LT they lie mostly

along the horizon so that their areas grow linearly in L. Thus there exists some

critical Lstrips of order T
−1 such that for L > Lstrips, the connected surface dom-

inates in the computation of SA1∪A2
and the TMI becomes nonzero. This phase

transition at L = Lstrips is sharp. The TMI grows linearly in L above the phase

transition, with the leading behavior at large L given by twice the thermal entropy

density times the volume of either region.

We wish to investigate how this picture changes at finite chemical potential.

In particular, this allows us to study a meaningful T → 0 limit with finite entan-

glement density between the two CFTs. For small µ the critical Lstrips will remain

of order T−1, but near extremality we will find that Lstrips grows as ln(1/T ).

The minimal surfaces may be found by extremizing the area functional

A = V2

∫
ℓ3

z3

√
dz2

f(z)
+ dx2 , (6.11)

with boundaries at z = 0 and x1 = 0, L. Here V2 =
∫
dx2dx3 is the (infinite)

volume in the directions along the strip.

For the connected surface, the extremum of (6.11) is clearly attained when
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Figure 6.3: Assorted entangling surfaces at t = 0. The boundary CFTs live
on the solid lines, which show the transverse x1 direction on which we define
the strips A1 and A2, which have width L. The dashed line is the bifurcation
surface. Here we show five surfaces: γA1

and γA2
correspond to the entangling

surface of each strip; γA1A2
runs through the bulk from one strip to the other,

and can contribute to the entanglement entropy of the two strips; H is a surface
that runs along the horizon and corresponds to the entangling surface of the
entire left CFT; and γ∞ connects ∂A1 to infinity, and can contribute to the
mutual information between A1 and the left CFT.

dx = 0 in (6.11). Thus

A(γA1A2
)

4GN

= 4z0V2s

∫ 1

z̃UV

dz̃

z̃3
√
f(z)

, (6.12)

where s = (1/4GN) (ℓ/z0)
3 is the thermal entropy density and z̃UV is a dimen-

sionless ultraviolet (UV) cutoff which we may take to zero after computing the

TMI. At extremality f will acquire a double pole at z̃ = 1 so the integral (6.12)

diverges logarithmically. In order to extract this divergence we make the change

of integration variable u = 1− z̃ + ǫ, where ǫ = 2− α2. Expanding the integrand
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of (6.12) near ǫ = 0 then gives

A(γA1A2
)

4GN

= 4z0V2s

∫ uUV

ǫ

du

u

[
1

(u− 1)3(2− u)
√
2u2 − 4u+ 3

+O(ǫ/u)

]
, (6.13)

where uUV ≡ 1 − z̃UV + ǫ. For small ǫ and fixed uUV , the integral (6.13) is

dominated by the contribution of the first term, which reduces to

A(γA1A2
)

4GN

∼ 4γV2s√
6µ

ln(µ/T ), (6.14)

where we used (6.6) to express z0 in terms of µ. One may also derive (6.14) by

writing (6.12) in terms of standard elliptic integrals; see appendix B.2 for details.

For the surface γA1
, (6.11) yields

A(γA1
)

4GN

= z0V2s

∫ L/z0

0

dx̃

z̃3

√
z̃′2

f(z)
+ 1, (6.15)

where x̃ ≡ x/z0 and z̃′ = dz̃/dx̃. The expression for γA2
is of course identical.

The translational symmetry in x implies a conserved quantity

1

z̃3
√
f−1z̃′2 + 1

≡ 1

z̃3t
, (6.16)

where z̃t is the turning point of γA1
. Since extremal surfaces in static geometries

do not penetrate horizons [256], we must have z̃t ≤ 1. The case z̃t = 1 corresponds

to the surface γ∞ shown in Figure 6.3, which asymptotes to the horizon and never

returns to the boundary. For z̃t < 1 the corresponding boundary length L is given
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by

L

2
= z0

∫ L/2z0

0

dx̃ = z0

∫ z̃t

z̃UV

dz̃

z̃′
= z0

∫ z̃t

z̃UV

dz̃√
f(z)

(
z̃6t
z̃6

− 1

)−1/2

(6.17)

and the associated area is

A(γA1
)

4GN

= 2z0V2s

∫ z̃t

z̃UV

dz̃

z̃′

√
f−1z̃′2 + 1

z̃3
= 2z0V2s

∫ z̃t

z̃UV

dz̃√
f(z)

(
z̃6t
z̃6

− 1

)−1/2
z̃3t
z̃6
.

(6.18)

Since (6.13) grows as T → 0, one can obtain nonzero TMI at small T only

when (6.18) is similarly large. This occurs when L is large and z̃t ≈ 1. From

(6.17) and (6.18) we find in this regime that A(γA1
) = LV2s + O(1), describing

the extensive thermal entanglement expected for large L. Comparison with (6.14)

implies that for small T , the transition to TMI > 0 occurs at

Lstrips =
γ√
6µ

ln(µ/T ) +O(1). (6.19)

As advertised, an infinite growth of the entangling regions is required to obtain a

non-vanishing TMI near extremality.

6.3.3 A strip and an entire CFT

In contrast to the above, let us now consider the mutual information between

a finite strip A1 in one CFT and the entire second CFT. The calculations are

similar to those just performed. Defining a surface γ∞ that ends on ∂A1 and
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Figure 6.4: Surfaces relevant to the IR regularization used to com-
pute TMI(A1 : CFT2).

extends to infinity on the other boundary (as shown in Figure 6.3), we have

TMI(A1 : CFT2) = max

{
0, sV3 +

A(γA1
)− A(γ∞)

4GN

}
, (6.20)

where V3 is the spatial volume of the CFT. While sV3 and A(γ∞) are both IR

divergent, one can easily show that these divergences cancel. To do so, first

consider the mutual information between the strip A1 of width L in one CFT and

a strip of width W in the other, with W large relative to any other scale; the

relevant entangling surfaces H(reg) and γ
(reg)
∞ are shown in Figure 6.4. The desired

result is obtained in the limit W → ∞, so that W serves as an IR regulator. The

length LIR of one of the regulated surfaces γ
(reg)
∞ (see Figure 6.4) is given by (6.17)

with z̃t = z̃IR ≡ 1 + δ, with δ small and positive6. At large W the entropy of

the strip of width W will approach sW + 2S0 = s(L + 2LIR) + 2S0, where the

W -independent correction S0 is associated with the part of H(reg) that stretches

6In fact, because z̃IR > 1, the upper bound of the integral in (6.17) should be set to 1.
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Figure 6.5: The critical lengths Lstrips (upper curve, red) and Ls+CFT (lower
curve, blue) as functions of temperature. Lstrips diverges logarithmically at
small T , whereas Ls+CFT approaches a constant value ≈ 1.05γ/µ.

from the horizon to the left boundary. Since this same correction appears in the

area of γ
(reg)
∞ we find

sV3 −
A(γ∞)

4GN

=
V2ℓ

3

GNz20

[
L

4z0
−
∫ 1

0

1

z̃3

√
1− z̃6

f(z)
dz̃

]
+O(δ). (6.21)

The divergences have canceled as promised.

Since the UV-regularized value of A(γA1
) is finite and monotonically increasing

with L, we see that the regulator-independent quantity

sV3 +
A(γA1

)− A(γ∞)

4GN

(6.22)

relevant to (6.20) grows linearly at large L and diverges to −∞ as L → 0. Thus

there is a critical length Ls+CFT(T/µ) at which (6.20) becomes non-zero, given

by requiring (6.22) to vanish. The results are shown in Figure 6.5, and we find

numerically that Ls+CFT|T/µ=0 ≈ 1.05 γ/µ.

The contrast between Lstrips and Ls+CFT is striking. A further interesting result
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is obtained by considering again two strips A1 and A2 of width L, but this time

considering the TMI between A1 and Ac
2, the complement of A2 in CFT2. The

possible bulk surfaces for computing SA1∪Ac
2
look much like those studied above

(see Figure 6.6).7 If we take the limit of small T at fixed L, µ, the surface that

connects the two boundaries in Figure 6.6(c) will have divergent area, so it cannot

dominate the others. But the two remaining surfaces allowed by homology (point

(i) below (6.10)) are related by reflection through the horizon and so have equal

areas. Since one surface is just γA1
∪ γAc

2
, we find TMI(A1 : Ac

2) = 0. Thus we

have the remarkable result that for finite L the TMI between A1 and either A2 or

its complement vanish in the limit of small T , but the TMI between A1 and the

entire other copy of the CFT can remain non-zero.

This result is not readily accommodated by the localized-quasiparticle pic-

ture of TFD entanglement (see [229], following [257] in the time-dependent case;

see also [45, 46] for other features that indicate shortcomings of this model). A

quasiparticle picture might suggest that any entanglement between A1 and CFT2

should be visible even if we separate CFT2 into A2 and Ac
2. That is, a localized-

quasiparticle picture would lead us to expect that at least approximately

TMI(A1 : CFT2) = TMI(A1 : A2) + TMI(A1 : Ac
2). (6.23)

This expectation is badly violated in our case at small T , as the former TMI is

non-zero, but both of the terms on the other side vanish. This just a particularly

striking example of a general failure of (6.23). In the holographic context this

7They are also similar to those that might be used to compute MI(A1 : Ac
1), with both

regions in the same CFT. But this is strictly infinite. The UV divergences do not cancel in (6.9)
when the regions overlap.
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Figure 6.6: Surfaces relevant to the entanglement entropy SA1∪Ac
2
. Note that

the surfaces shown in (a) and (b) are reflections of one another across the
horizon. Another surface (not shown) is related to (c) by a reflection in the
vertical direction; i.e., across x1 = 0.

is because the mutual information between some regions A and B on the one

hand, and mutual information between A and subregions B1, B2 on the other,

will involve different surfaces, and there is no reason to expect their areas to be

related in such a way as to make (6.23) valid even approximately. While we offer

no better model, it would be interesting to reflect further on what such a model

might require, and perhaps to connect it with information-theoretic phenomena

such as information locking [258, 259].
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6.4 Charged Correlators

We now turn to demonstrating that our TFD entanglement can be seen near

extremality in the correlation functions of charged operators, and to extracting

features of this entanglement. We work in the approximation of large operator

dimension, where the computation of dual bulk two-point correlators amounts

to finding appropriate spacelike world lines extending from one boundary to the

other. Though this approximation breaks down in certain interesting regimes, it

nevertheless provides many useful results. We begin with a detailed discussion of

general charged correlators in non-extreme black hole backgrounds and specialize

to the near-extreme case only in section 6.4.4.

6.4.1 Holographic Two-Point Functions in the worldline

approximation

Let us briefly review the connection between CFT two-point functions and

bulk worldlines. In order to probe the entanglement inherent in our charged

TFD state, we will be particularly interested in two-point correlation functions

involving an operator O1 acting on one CFT in our TFD and an operator O2

acting on the other. The construction of (6.2) suggests that we take O2 to be the

time-reverse of O1. For typical complex scalar fields, this amounts to taking the

adjoint: O2 = O†
1.

Recall now that CFT scalar operators O with conformal dimension ∆ are
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holographically related to bulk scalar fields φ with mass m via

∆ =
d

2
+

√
d2

4
+m2ℓ2, (6.24)

with ℓ the AdS radius and d the boundary dimension8. At leading order in the

bulk semi-classical limit, the CFT two-point function G12 = 〈ψ|O2(x2)O1(x1)|ψ〉

is dual to a certain rescaled limit of the bulk two-point function G(x1, z1, x2, z2) =

〈ψ|φ†(x2, z2)φ(x1, z1)|ψ〉 as z1, z2 → 0. In the former expression |ψ〉 represents the

CFT charged TFD (6.2), while in the latter expression φ is an otherwise-free (i.e.,

linearized) charged field on RN-AdS and |ψ〉 is the associated Hartle-Hawking

state defined by our Euclidean path integral. Here we consider Wightman two-

point functions for definiteness, though in both the CFT and bulk our primary

interest will be in two-point functions of commuting operators so that the Wight-

mann and time-ordered two-point functions coincide.

In the limit of large m the bulk two-point function can be studied using the

WKB approximation. Since our bulk quantum state was constructed from a

Euclidean path integral, for neutral scalars this reduces to the familiar result

G ∼ eim∆τ , where ∆τ is the proper time that elapses along the geodesic connecting

(x1, z2) to (x2, z2); see e.g. [228, 261]. When the geodesic is spacelike it is more

natural to write G(x1, x2) ∼ e−mL, where L is the proper length. Taking z1, z2 → 0

and performing the above-mentioned rescaling gives G12 ∼ e−mLreg , where Lreg is

an appropriately regulated version of the geodesic length L.

It is straightforward to generalize this result to charged operators. If the op-

8For m2 near the Breitenlohner-Freedman bound [100], the bulk field may satisfy alternate
boundary conditions in which case we have ∆ = d/2 −

√
d2/4 +m2ℓ2 [260]. But this is not

relevant for us since we take m2 large and positive.
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erator O is charged under our global U(1) symmetry, then the dual bulk operator

φ is charged under the associated bulk Maxwell field. So before integrating over

paths, the proper time ∆τ above should be replaced with the action S of a charged

particle. The relevant saddle points are then extrema of S, which are generally

not geodesics, and the Wightman function becomes G ∼ eimS. Due to our in-

terest in spacelike separated points at opposite boundaries of the bulk, we write

G12 ∼ e−mI with

I = −iSreg =

∫ (√
gµνuµuν −

iq

m
Aµu

µ

)
dλ+ Ict, Ict = −ℓ ln

(
4

wUV

)
,

(6.25)

where q and m are the charge and mass of φ, Aµ is the Maxwell field in the bulk

solution. In (6.25), the Ict is the appropriate counter-term which that makes the

result finite for z1 = z2 = 0 and thus enacts the above-mentioned rescaling of bulk

correlators near the boundaries. This Ict is independent of q and thus identical

to the standard counter-term for neutral particles; i.e., it is associated with the

divergent length of geodesics near the boundaries. As usual, we understand (6.25)

to be defined by first evaluating both Ict and the bulk term with UV cutoffs and

then taking the limit where the cutoffs are removed. The detailed justification

of the bulk Euclidean action (6.25) is provided in Appendix B.1, in part because

this expression corrects certain errors in the literature.

We emphasize that, in our background, the expression (6.25) computes G(x1, x2)

with time dependence generated by H̃1 = H + µQ, H̃2 = H − µQ. Recalling that

the limit T → 0 with fixed µ restricts (6.2) to terms with a unique value of

Ẽ1 = E1 + µQ1, one sees that either time-translation of (6.2) changes the T = 0

206



Entanglement and Correlations Near Extremality Chapter 6

wavefunction only by an overall phase. So in this limit G12 should become time-

independent in either argument.

6.4.2 Equations of Motion

The spacelike world lines we seek extremize the action (6.25). We take both

end points to have the same spatial coordinates ~x in the directions along the

planar black hole. Parity symmetry and momentum conservation then guarantee

that ~x is constant along our world line. Without loss of generality we henceforth

set ~x = 0.

Thus our curves will have tangent vectors uµ = (ṫ, ẇ, 0, 0, 0). We may use the

Killing field ∂t to introduce a conserved (Euclidean) energy EE

(∂t)
µ uµ = iEE + i

q

m
(∂t)

µAµ. (6.26)

Together with the normalization condition uµuµ = 1, the world lines must satisfy

the equations of motion

ṫ = −z0
ℓ
iw

E +Q(1− w)

f(w)
, (6.27a)

ẇ2 =

(
2

ℓ

)2

w2g(w), (6.27b)

where Q = z0qµ/mℓ, E = z0EE/ℓ, and

g(w) = f(w)− w (E +Q(1− w))2 . (6.28)
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We also define q̃ = qg/mκ as a dimensionless measure of the charge-to-mass ratio

of φ.

Recall that we consider theories for which RNAdS5 remains stable close to

extremality. This in turn restricts the possible scalar fields that can exist in

the bulk. In particular, we wish to avoid any Schwinger pair creation instability

(see again footnote 1) [242, 243]. In the worldline approximation, this instability

arises when electrostatic repulsion of the associated particles from the black hole

overwhelms the gravitational attraction. This issue is readily analyzed by studying

the potential V (w) which controls motion of quasi-static (i.e., non-relativistic)

timelike worldlines. For each black hole (with, say, positive charge), there is some

critical positive q̃crit and which V (w) develops a minimum outside the horizon.

One finds q̃crit > 1 for all nonextreme black holes and q̃crit = 1 for extreme black

holes. For simplicity, we therefore restrict discussion below to the case q̃ ≤ 1

unless otherwise noted.

We are interested in world lines running from (t, w) = (tb, 0) to (t, w) =

(−tb + iβ/2, 0). For fixed tb there will generally be a finite set of solutions to

(6.27a), (6.27b) distinguished by their values of E . These values are generally

complex, though (6.27a) implies that one may find solutions with imaginary tb

having real E . Since there are multiple solutions, the full set of solutions for

all complex tb may be associated with a Riemann surface E(tb). While we will

focus on the curves defined by taking tb real, the i that accompanies the Maxwell

term in (6.25) makes it particularly natural to analytically continue to complex

parameters.

It will also be useful to characterize solutions by their turning points wt in
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the complex w-plane. Such turning points are defined by noting that (6.27b) is

invariant under changing the sign of the affine parameter λ along the worldline

while holding E ,Q, µ fixed. Thus one obtains the same curve w(λ) whether one

integrates (6.27b) starting from w = 0 at the right boundary or from the left,

and each solution of interest has a Z2 symmetry mapping w(λ) → w(−λ) with a

corresponding action on t(λ). The turning point is just the value of w at the fixed

point, wt ≡ w(λ = 0).

Note that ẇ must vanish at this fixed point, so that wt and E satisfy a relation

given by setting g(wt) = 0. Since g is a cubic polynomial in w, one may take this

to define a three-sheeted Riemann surface wt(E) (see e.g. Figure 6.7) with branch

points corresponding in general to double roots of g. This structure will play an

important role below. For real α our g has a triple root only for the special case

E = 0, q̃ = 1 at extremality (α =
√
2), where the root lies at the horizon (w = 1).

In general, the term on the right-hand side of (6.27b) acts as an effective

(possibly complex) Newtonian potential for w. This understanding allows one to

write the total elapsed time ∆t = −2tb+ iβ/2 and the action I along any solution

in the form

∆t = − iz0
2

∮ E +Q(1− w)

f(w)
√
g(w)

dw, (6.29a)

I =
ℓ

2

∮
f(w)−Qw(1− w) (E +Q(1− w))

wf(w)
√
g(w)

dw + Ict, (6.29b)

where the integral is over the contour in the complex w-plane defined by our

worldline. Expressions (6.29a), (6.29b) use the prescription of [229] for integrating

through zeros of f so that crossing any horizon adds ±iβ/4 to ∆t as desired. As
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Figure 6.7: Typical Riemann surfaces wt(E) defined by setting g(wt) = 0 over
the complex E plane. The top left figure displays the Schwarzschild case α = 0;
the next three show α = 0.5, with q̃ = 0.2,

√
2/3, and 0.9, from left to right

and top to bottom. The height of the sheets corresponds to |wt|, while the hue
represents the phase of wt (with red and turquoise corresponding to positive
and negative real wt, respectively). Along the real axis (parallel to the common
plane of symmetry in each figure), the turning point wt corresponds to the
smallest positive real root, which is then analytically continued to the rest of
the complex plane. Thus the principal branch of wt becomes the the lowermost
sheet in each figure at large real E .
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a technical note we mention that by writing

g(w) =
(
α2 −Q2

)
(w1 − w)(w2 − w)(w − w3) (6.30)

with wt = w1, the expressions (6.29) can be evaluated explicitly in terms of

standard elliptic integrals. These expressions are functions of w1, w2, w3, α, Q,

and E given in Appendix B.2 and are useful for various asymptotic expansions.

In order to obtain a unique value from (6.29) we must specify
√
g along this

worldline which, as noted above, will necessarily run through a root wt of g.

The correct prescription is determined by taking
√
g to be continuous along the

worldline and requiring the above reflection symmetry λ→ −λ to change the sign

of
√
g; roughly speaking, the sign of

√
g changes when one passes through the

turning point. The remaining sign ambiguity in ∆t is fixed by the sign of dw/dt

at any point along our worldline, while the sign of the ambiguity in I is fixed

by the condition that the divergence at w = 0 is canceled by Ict. In particular,

although there are two solutions for given E , wt, the action I takes identical values

on both.

One would like to think of (6.29a) and (6.29b) as defining I as a function

of tb. But again the multiple geodesics for each tb mean that I(tb) is actually a

multi-sheeted Riemann surface. A useful way to deal with this complication is to

parametrize both I and tb by the energy E . While the resulting I(E) and ∆t(E)

are again multi-sheeted Riemann surfaces, their structure is closely related to the

physics of quasi-normal modes. We review this connection in section 6.4.3 below

and use it to extract the most relevant features.
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An additional simplifying feature of this perspective is that all branch points in

I(E) coincide with those of wt(E), and thus with wt being a double root of g. This

follows from the above observation that I is uniquely determined once both E , wt
are specified. Specializing for the moment to non-extreme black holes, we see from

(6.28) that f cannot vanish where g has a double root9. As a result, the relation

(6.28) ensures that no further factors vanish at wt in either the numerator or

denominator of (6.29b) and that double zeros of g give logarithmic branch points.

We see that ∆t also diverges logarithmically at branch points of wt and that the

only additional branch points in ∆t(E) are those associated with the overall choice

of sign. These play only a very minor role and are not associated with divergences

unless they coincide with those above. Thus the branch points of wt are directly

associated with the late time limit ∆t→ ∞.

As a final note, we mention that equations (6.29) and the associated bound-

ary conditions are invariant under the transformation (tb,Q, E) → (−tb,−Q,−E)

and also under (tb,Q, E) → (−tb,Q, Ē) where the overbar denotes complex con-

jugation. Without loss of generality we may thus restrict our analysis to tb ≥ 0

and Q ≥ 0. We may also restrict ourselves to µ ≥ 0 (and thus q̃ ≥ 0), since the

equations are also invariant under (µ, q) → (−µ,−q).

6.4.3 The Late-Time Limit and quasinormal modes

We noted above that our problem is associated with multi-sheeted Riemann

surfaces I(E), tb(E), wt(E) for which the interesting branch points occur when wt

9Note that g(w = 0) = 1 6= 0. Thus from (6.28) f and g can vanish simultaneously at w0

only when E +Q(1− w0) = 0. But this forces the second term in (6.28) to have a double root.
So if w0 is a double root of g, would also be a double root of f . And when α is real f can have
a double root only at extremality.
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is a double zero of g(w). Furthermore, these are precisely the points associated

with late-time limits. We now take a moment to understand the structure of

these branch points in detail and to more carefully review the connection with

late times. In particular, we relate the associated branch cuts with families of

quasi-normal modes drawing heavily from [228] and [229].

Note that double roots of g can arise only at special values Ec of E at which the

discriminant of g vanishes. This discriminant is a sixth order polynomial in E and,

while its explicit form is unilluminating, we plot the associated six roots Ec in the

complex E plane for representative choices of the parameters α, q̃ in Figure 6.8.

Any curve E(tb) must approach one of these points as tb → ±∞. There is a special

µ-independent value q̃ =
√

2/3 at which two of the Ec merge on the real axis and

disappear. This corresponds to a degenerate case where g(w) becomes quadratic

in w, so at this value there are only four Ec. For q̃ <
√

2/3 no Ec lie on the real

axis, while for q̃ >
√
2/3 two of the Ec always lie on the real axis.

As described in [228], there is a very physical relationship between the critical

energies Ec and the quasi-normal modes (QNMs) of the scalar field probe. In

general, the long-time behavior of two-point functions of fields on a black hole

background is dominated by the lowest QNM ωc. This is usually used as an

approximation for the two-point function in one static region outside the black

hole, but continuing one of the points to the other asymptotic region via t →

−t + iβ/2 one sees that it also provides an approximation to our Wightman

function:

G12(tb) ∼ e−2iωctb ⇒ Ilate =
2iωc
m

tb + · · · , (6.31)

where · · · stand for contributions that are subleading in 1/m and 1/tb. Working

213



Entanglement and Correlations Near Extremality Chapter 6

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

Figure 6.8: Roots of the discriminant of g(w) in the complex E plane are shown
as dots for representative choices of the parameters α, q̃. From left to right, we
take q̃ = 0, q̃ <

√
2/3, and q̃ >

√
2/3. These indicate possible branch points

for wt(E), I(E),∆t(E), with the actual branch structure of I(E),∆t(E) being
determined by that of wt(E). On sheets where Ec is indeed a branch point,
both I and ∆t diverge logarithmically. As these are the only locations where
∆t can diverge, they serve as endpoints for all curves E(tb). The jagged lines are
rough guesses for the locations of the branch cuts that define the principal sheet
of wt(E), I(E) and ∆t(E), and should correspond to lines of poles in frequency
space correlators for operators of large-but-finite conformal dimension.

in the worldline approximation, this linear behavior at late time can be thought of

as corresponding to a world line at fixed (generally complex) w but extended in

the t direction [229]. To identify these special values of w (which we denote wc),

we extremize the action obtained from (6.25) by setting ẇ to zero. The resulting

action is

Ilate =
iℓ

z0

∫
V (w) dt, (6.32)
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where

V (w) =

√
f(w)

w
−Q(1− w), (6.33)

and its extremization requires solving V ′(w) = 0. Finding the roots wc of V
′(w) for

general α, q̃ amounts to solving the same sextic polynomial. But since from (6.27b)

they satisfy g(wc) = 0, the corresponding energies are just the six Ec defined above:

Ec = V (wc). (6.34)

Thus in the late time limit we may write

Ilate = −2iℓEc
z0

tb + · · · ⇒ ωc = −m (EE)c , (6.35)

where (EE)c = ℓEc/z0 is again the Euclidean energy from (6.26). Since the large

time behavior of a physical probe field is controlled by its lowest QNM, we iden-

tify the frequency of this mode as ωc. Thus, up to a factor of m, the critical

energies (EE)c are directly related to such frequencies. In particular, for stable

situations families of worldlines relevant at late times can have tb → +∞ only for

Ec in the upper half-plane.

Not only does the physics of QNMs determine the branch points Ec, it also se-

lects a physically meaningful location at which to place associated branch cuts [228].

This point may be seen by writing the Fourier transform of the worldline-approximation
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correlator in the form

G12(ω) ∼
∫
d (∆t) e−iω∆te−mI(∆t), (6.36)

∼
∫
dEE e

−m(I(EE)+i(ω/m)∆t(EE)). (6.37)

For large m, the dominant contribution to this integral comes from those EE

which satisfy the saddle point condition

dI

dEE
+
iω

m

d(∆t)

dEE
= 0. (6.38)

Since I is an action, we have the Hamilton-Jacobi relation

dI = iEE d(∆t), (6.39)

which can also be checked directly from (6.29). Thus (6.38) becomes simply EE =

−ω/m at all times and the frequency space correlator is

G12(ω) ∼ emZ(ω), with Z(ω) = (iEE∆t(EE)− I(EE))
∣∣
EE=−ω/m. (6.40)

Since Z(ω) and I(∆t) are related by a Legendre transformation, the analytic

structure of the functions I and ∆t in the complex energy plane is directly related

to the analytic structure of the frequency space correlator G12(ω).

In particular, the only singularities of the exact Green’s functions G12(ω) at

finite m computed using field theory should be poles corresponding to quasi-

normal modes. In the large m limit these poles organize themselves into closely
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spaced families that define curves in the complex ω plane. The endpoints of such

curves are (some of) our Ec’s and the associated lines of poles become branch

cuts. The most relevant observation is that the actual finite m correlators are

free of branch points, so that the parts of our Riemann surfaces I(E) and ∆t(E)

beyond the lines of poles are related much less directly to the physics of finite m.

In particular, even at general complex tb or ω, finite m correlators will never be

well-approximated by e−mI for worldlines described by points behind such lines.

We henceforth restrict discussion to what we may call the principal sheets of

wt(E), I(E), and ∆t(E) defined by introducing branch cuts along the large-m lines

of poles in G12(ω). We also take our principal sheets to include worldlines on which

E , wt, are real and ∆t is purely imaginary. While determining the precise location

of these cuts would require one to compute the full set of QNMs at large m, it will

be enough for our purposes to note that QNMs typically become highly damped

away from the lowest QNM. Thus the branch cuts that determine our principal

sheet must point away from the real E axis. A rough guess as to the appearance

of these branch cuts is sketched in Figure 6.8. In particular, comparison with

Figure 6.10 indicates that while all six values of Ec define branch points of the

principal sheet for small q̃ <
√

2/3, at some point before q̃ =
√
2/3 two of the Ec

move onto a secondary sheet so that only the remaining four define branch points

of the principal sheet and correspond to physical low-lying QNMs. As one might

expect, for q̃ >
√

2/3 these are the four Ec with non-vanishing imaginary part.
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Figure 6.9: Sketches of the E(tb) contours corresponding to real values of tb
for a representative sample of α with q̃ = 0; arrows on the contours indicate
the direction of increasing tb. Figure (a) is Schwarzschild, with α increasing
to the right. Taking α > 0 introduces two additional Ec along the imaginary
axis and resolves the bifurcation point at E = 0. Note the presence of new
contours that come in from infinity; following these contours to large tb takes
us cross branch cuts (for which our rough guesses are shown as jagged lines)
and off the principal sheet. At α = αcrit ≈ 0.406 the bifurcation points merge
and the contour topology changes to that of figure (c). We see that at least
parts of some (black) contours move off the principal sheet. Red contours are
associated with correlations that decay away from tb = 0 as in comment (ii).

6.4.4 Correlators in the extreme limit

As discussed for the Schwarzschild case in [34], it is generally quite subtle

to determine which of the possible complex worldlines connecting our endpoints

actually provides a good approximations to finite m correlators via G12 ∼ e−mI .
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Figure 6.10: Sketches of the E(tb) contours corresponding to real values of tb for
a representative sample of α and q̃; arrows on the contours indicate the direction
of increasing tb. Red contours are again associated with correlations that decay
away from tb = 0 as in comment (ii). The three columns take α = α1, α2, α3,
respectively, with α1 < αcrit < α2 < α3 ≈ αext; the rows from top to bottom
take q̃ = q̃1 q̃2, q̃3, q̃4, respectively, with 1 ≫ q̃1 < q̃2 < q̃3 <

√
2/3 < q̃4. As q̃ is

increased, two of the Ec in the right-hand plane cross branch cuts (rough guesses
for which are again shown as jagged lines), taking their associated contours
and branch cuts off the principal branch; this is shown in the third row with
such branch cuts indicated by dashed lines (suppressed in the 4th column).
At q̃ =

√
2/3, these two Ec annihilate on the real axis; for q̃ >

√
2/3, these Ec

remain on the real axis and no contours on the principal sheet terminate on
them.
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The possible Schwarzschild contours E(tb) for real tb are shown in Figure 6.9(a).

While the correlator at tb = 0 corresponds to the unique E = 0 geodesic, this splits

into three possible branches for nonzero tb. By writing down a toy model for the

path integral, [34] argued that the contours contributing to the path integral

are the complex ones terminating at Ec =
√
2 eiπ/4+kπ/2 for k = 0, 1, 2, 3, while

the contour along the imaginary E axis (which only reaches a finite value of tb

as E → i∞) does not contribute. This is the case even though the imaginary

E contour represents a smaller action for tb > 0, and so would dominate if it

contributed at all. Adding charge (α > 0) to the black hole and also to the probe

(q̃ > 0) leads to even more interesting structure for these contours which may

further complicate the analysis. See Figure 6.9 for black holes with neutral probes

and Figure 6.10 for charged probes. The captions contain rough explanations of

the evolution in α, q̃, though due to our focus on the non-extreme case, we save

further commentary for section 6.4.5.

Luckily, an indirect argument suffices to determine the correct contour in the

extreme limit. To see this, recall from section 6.2.1 that this limit must make our

correlators independent of tb. Since ∆t = −2tb+ iβ/2, applying equation (6.39) to

any contributing saddles requires E(tb) to vanish at extremality for all tb. Taking

the ǫ→ 0 limit of (6.34) shows that that for q̃ < 1, precisely two critical energies

Ec vanish at extremality; these are

Ec =
q̃ ± i

√
1− q̃2

2
√
3

ǫ+O(ǫ)2 (q̃ < 1). (6.41)

One lies in the lower half plane, and the other lies in the upper half plane. So for
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the stable case q̃ < 1 there should be a unique contour connecting the two, and

which should flow from the former to the latter. This is precisely what one finds

numerically; see Figure 6.10. In the extreme limit, consistency thus requires that

correlators receive contributions only from this contour.

Before analyzing this contour in detail, we remark that it displays several

additional pleasing features:

i) At least for 0 ≤ q̃ ≤ 1, for all nonextreme black holes with sufficient charge

(α2 close enough to 2) the Ec values corresponding to endpoints of the chosen

contour continue to be the closest Ec to the real axis; see Figures 6.9 and 6.10.

Thus, if they contribute at all, they give the lowest quasi-normal modes.

ii) It is natural to expect |q̃| ≤ 1 correlators to be largest at tb = 0 and to

decay toward both future and past. From (6.39), this requires any dominant

worldline at tb = 0 to have E real10, and also requires the contour in its

vicinity to flow toward the upper half plane.

This expectation is trivially satisfied for our chosen contour at α2 = 2, q̃ = 1

for which E = 0 identically. But the tb = 0 worldline on this chosen contour

admits a unique continuous deformation to general allowed α, q̃. In each case

one finds the corresponding E(tb = 0) to be real and the contour to flow in

the desired direction. This seen from Figures 6.9 and 6.10, recalling that

time-reversal symmetry relates the upper and lower half-planes. Thus if any

contour crosses the real axis at a single point, this point must be tb = 0. The

10Unless it somehow fails to contribute at all to any correlator with tb > 0 (which would allow
Im(E) > 0), or to any correlator with tb < 0 (which would allow Im(E) > 0). This seems unlikely
even at special values of α, q̃, and completely implausible on open sets of these parameters. The
real E requirement applies also to cases where multiple worldlines share dominance at tb = 0.
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relevant contour is shown in red for all α, q̃.

iii) The observation that following a branch cut from any Ec at fixed α, q̃ should

take one away from the real axis suggests near extremality that at least a large

part of the other contours (for which Ec does not become small) do indeed

move off the principal sheet. See Figures 6.9 and 6.10. It is plausible that at

extremality such contours move off the principal sheet for all tb, though this

would require further analysis to determine.

We also mention a further good property of our chosen contour for q̃ < 1.

Here the behavior near extremality is clear from general considerations even at the

quantitative level. The RNAdS5 black hole develops a deep AdS2×R3 throat and,

since this near-horizon region is associated with low energies, the emergent AdS2

isometries define an infrared conformal fixed point that associates each operator

with a new effective infrared conformal dimension ∆IR [233, 234]. As discussed in

[235, 236], at finite but very low temperature to good approximation this is just

a finite-temperature version of the same AdS2. As a result, if we start with two

points at the bifurcation surface and move them radially outward into opposite

asymptotic regions then it is clear that ∆IR also controls the rate of decay of

the associated two-point function. Since this decay must continue up to a cutoff

controlled by the temperature we arrive at

G12 ∼ T 2∆IR . (6.42)

In particular, the precise condition for a non-vanishing two-point function as T →

0 is ∆IR = 0, which indeed implies that the system sits on the threshold of an
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instability as discussed in [241].

Returning to our contour, one can readily see that it provides results consistent

with (6.42). Since E ∼ 0 and wt ∼ 1, the leading-order behavior of I at fixed tb is

I = ℓ

∫ 1−ǫ
√

1− q̃2

3

1

1− w
dw +O(1) = ℓ

√
1− q̃2

3
ln (µ/T ) +O(1). (6.43)

Exponentiating this result gives (6.42) with ∆IR = mℓ
√

(1− q̃2)/12, which as one

may easily check is the correct result at large m in 5 bulk dimensions.

We now consider q̃ = 1. Since ∆IR = 0 to the approximation with which we

work, the correlator will be finite at extremality. But our worldline approximation

provides interesting information about time-dependence. To extract this informa-

tion, we take the extreme limit ǫ → 0 of (6.34) in which three of the Ec move to

the origin. Two of these correspond to the endpoints of our chosen E → 0 contour.

They are

Ec =
(

1

2
√
3
− e±iπ/3

8 · 31/3 ǫ
1/3

)
ǫ+O

(
ǫ5/3
)
, (6.44)

suggesting that the entire E(tb) contour obeys the scaling relation

E =

(
1

2
√
3
− a ǫ1/3

)
ǫ (6.45)

with a a complex number ranging between e±iπ/3. Inserting this ansatz into the

elliptic integral expressions of appendix B.2 leads to simplified expressions ((B.11)
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and (B.12)) which satisfy the relation for all tb
11

I = ℓ

[
− π

2
√
3
− 2

√
2

3
arctanh

√
2

3
− 2πi√

3
T tb +O (T/µ)4/3

]
, (6.46)

where the O(T/µ)4/3 term has unspecified time dependence. While this expansion

can be continued to higher orders, it is simpler to focus on the late-time behavior

and use (6.35) and (6.44). For example, we find

ωc = m

[
− π√

3
ℓ T +

e−iπ/3

23/2 · 31/6
ℓµ

γ
(γπT/µ)4/3 +O(T/µ)5/3

]
. (6.47)

The interesting property of both (6.46) and (6.47) is that, beyond linear order

in T , the expansion comes in powers of (T/µ)1/3. This differs markedly from the

q̃ < 1 expansion which involves only integer powers of T/µ.

6.4.5 Comments on non-extreme contours

We now make some brief remarks on contours for general non-extreme α, q̃

which, while tangential to our analysis of the extreme limit, may nevertheless be

of interest.

i) The red contours in Figures 6.9 and 6.10 are associated with correlations that

decay away from tb = 0 as in comment (ii). We expect these to dominate

for all α near tb = 0, though not necessarily for large tb. Indeed, there is a

regime between Figures 6.9(b) and 6.9(c) where the red contour would reach

the imaginary Ec, while the complex Ec (off the imaginary axis) have smaller

11To this order, the time dependent part of this result can also be obtained by using the
leading (a-independent) term in (6.45) to integrate (6.39).
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imaginary part, potentially corresponding to lower QNMs, and may well still

contribute.

ii) The exchange of relevance/dominance of the above Ec near αcrit in Figure 6.9

appears to be related to the massless uncharged scalar results of [262] which

found two families of QNMs: purely damped modes, and oscillating damped

modes. The latter give the lowest QNM for small α, while the former do

so beyond some threshold value. Furthermore, the damping time diverges in

the extreme limit. Though [262] studied global RNAdS4, their results persist

in the planar (large radius) limit. Note that we find similar behavior for

sufficiently small q̃ > 0, though this transition disappears at larger q̃.

iii) The location of the bifurcation points in Figure 6.9 corresponds to the location

of the maxima and minima of tb along the imaginary E axis found by [227],

though they did not follow the complex branches.

6.5 Discussion

We have studied the behavior of thermofield double states with chemical po-

tential µ in holographic contexts dual to the two-sided planar Reissner-Nordström

AdS5 black hole. One copy of the CFT is associated with each boundary, and we

have focused on correlations and entanglement between the two. The deep throat

that arises in the extreme limit of RNAdS immediately implies that correspond-

ing two-point functions of neutral operators vanish as T → 0 at fixed µ. For the

same reasons, the thermo-mutual information between strips (or other finite-sized

regions) of size L in the two CFTs vanishes at small T unless L diverges; see
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section 6.3. Such results might at first seem to suggest that all localized measures

of entanglement vanish in this limit.

However, we have shown that other localized measures behave differently. One

example is the thermo-mutual information (6.20) between a width L strip in one

CFT and the full second CFT. As discussed in section 6.3.2, this remains non-

zero as T → 0 so long as L > Ls+CFT|T/µ=0 ≈ 1.05 γ/µ. Another example is the

two-point function of appropriately-tuned charged scalar operators. In the limit

of large conformal dimensions, the required tuning in bulk language is mκ = qg,

which in field theory terms at large ∆ becomes ∆ = 2|q| for e.g. N = 4 SYM

when the U(1) charge corresponds to a subgroup of the SO(6) R-symmetry. But

as explained in section 6.4.4, a more complete characterization of the requirement

is that the effective IR conformal dimension of the operator should vanish, so that

the system sits just on the threshold of an instability.

In particular, we saw explicitly in the wordline approximation that CFT two-

point functions G12(x1, x2) with ∆IR = 0 remain non-zero at finite arguments and

that the correlations they measure do not all shift off to infinitely large scales

as T → 0. Since ∆IR controls the scaling of G12 at any fixed spatial separation

~x1 − ~x2, we expect this behavior to continue even for finite-dimension operators;

i.e., it is not an artifact of the worldline approximation.

We find the mixture of divergent and finite length scales as T → 0 quite

interesting. The AdS2 × R3 IR fixed point exhibits local criticality, with infinite

dynamical scaling exponent z. Since dynamical scaling symmetry at finite z would

require length scales L ∝ T−1/z, both constant (T 0) and logarithmic behaviors

(lnT ) are natural at z = ∞. We see that AdS2 × R3 fixed points involve a
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particular combination of the two – a result one would like to understand from

the CFT perspective. Motivated by our results for charged correlators, one would

also like to study what one might call the “charged thermo-mutual information”

of two finite strips (one in each CFT) defined using the von Neumann version of

the charged Rényi entropies of [263]. At least with additional fine-tuning of the

new charge parameter, this may well lead to further entanglement measures that

remain localized as T → 0.

Understanding the entanglement structure of physically interesting states at

various scales is an intriguing and complex problem. Indeed, this is the goal of

many studies of tensor network representations of ground states, the multi-scale

entanglement renormalization ansatz (MERA), and the like; see e.g. [264–268].

Our parameter T/µ is a dial that one can turn to explore this scale-dependence for

TFD states at t = 0, just as one may explore the time-dependence of entanglement

using the proposal of [70] (see e.g. [45, 46, 70, 229, 257, 269–278]). The two limits

are closely related, as both explore the deep infrared. Indeed, our results for TMI

at low T have much in common with those of [229] at late times: There again the

thermo-mutual information vanished between strips of fixed finite size in opposing

CFTs, while – although not actually discussed in [229] – TMI(A1:CFT2) need not

vanish since it is in fact independent of time.

As noted earlier, such observations are difficult to reconcile with the quasipar-

ticle picture of TMI entanglement (see [229], following the time-dependent picture

of [257]). In particular, as described in section 6.3.3, we find that the TMI be-

tween a strip in one CFT and its complement in the other again vanishes at small

T , so that one cannot even say that the CFT2 degrees of freedom entangled with
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a given strip in CFT1 have moved off to infinite scales – they remain tied in some

essential way to the mirror-strip in CFT2. The situation is even more dramatic

if we compactify space, in which case the analogues of A1, A2, Ac
1, A2

2, all have

pairwise vanishing TMI at sufficiently small T . And it is clear that this same

behavior will be found at late times using [70]. Assuming this prescription to

be correct thus leads to a similarly dramatic late-time failure of the quasiparticle

picture for any initial state12.

A final general feature on which we remark is the sharpness of transitions

associated with TMI at large N , in that it strictly vanishes below some threshold.

Such sharpness is of course a general feature of transitions involving holographic

entanglement [69]. The fact that this behavior is by now well-known should not

reduce our desire to understand it at the microscopic level. Indeed, it seems deeply

related to the general observation that plasmas in holographic CFTs can strongly

decouple from short-distance probes. A particularly striking example of such

behavior is the funnel/droplet transition described in [57] – see [279] for a review

– in which such plasmas suddenly become unable to couple to heat sources smaller

than some characteristic size. The funnel/droplet transition was recently linked

to color confinement [279], and the resulting circle of ideas may have implications

for the present discussion.

Let us now briefly return to two-point functions. In addition to the results

summarized above, we also found new phenomena associated with “extremally

12Other features of the proposal [70] that are diffcult to reconcile with a free-streaming quasi-
particle picture of time-dependence were mentioned in [45, 46]. We comment that CFTs on
spaces with compact directions provide yet another. For example, in a d = 2 CFT on a circle
of radius R, all quantities associated with free-streaming quasiparticles of speed v are periodic
with period 2πR/v. But aside from trivial conserved currents at the boundary, holographic
duals certainly do not display this periodicity, and neither should more general CFTs.
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charged” operators (q̃ = 1) at small T . In particular, since all time-dependence

of the T = 0 TFD is through an overall phase, physical quantities become time-

independent. But at least for operators tuned to satisfy ∆IR = 0, the precise way

in which they do so seems to be via an unexpected expansion in powers of T 1/3

that governs corrections beyond the leading linear behavior (see equation (6.47)).

While section 6.3 reported TMI results only for t = 0, using the proposal of [70]

the analysis extends readily to more general times and produces late-time results

that agree with [45, 46] and which give only smooth functions of T .

As a final comment, we recall that [34] described how two-point TFD correla-

tors similar to those studied here might be used to probe the classical singularity

of the planar Schwarzschild solution (µ = 0), and thus perhaps to study how this

singularity is resolved by quantum and/or stringy effects. While already nontrivial

at µ = 0, we note that any generalization to µ 6= 0 will involve further subtleties.

In particular, for µ = 0 the idea was to study operators of large but finite dimen-

sion and to analytically continue tb until the associated geodesic passes close to

the singularity – in our notation, until w becomes very large. As is clear from the

upper left diagram in Figure 6.7, for µ = 0 this happens as E → ±i∞ along the

principal sheet of the wt Riemann surface. But as shown in the other diagrams in

Figure 6.7, for µ 6= 0 one finds that wt remains bounded on the principal sheet.

Thus finite m correlators are no longer approximated by geodesics passing close

to the singularity anywhere in the complex tb plane. The construction analogous

to [34] would thus require first taking the m→ ∞ limit of finite-dimension corre-

lators and then analytically continuing to another sheet of the Riemann surface

wt(E). Indeed, from our preliminary numerics it is unclear whether one can even
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reach the inner horizon on the principal sheet, so this same complication may well

apply to analogous investigations of inner horizon instabilities along the lines of

[227].
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Chapter 7

AdS Wormholes with de Sitter

Interiors

7.1 Introduction

The AdS/CFT correspondence [19, 20] offers a remarkable insight into proper-

ties of large-N , strongly coupled conformal field theories (CFTs): Many quantities

of interest in the CFT are related to simple geometrical objects in the gravitational

bulk. Familiar examples include correlators of scalar fields with large conformal

dimension that may be computed from the length of bulk geodesics [67] and Wil-

son loops given by the areas of bulk string worldsheets [68].

Our interest here concerns the bulk dual of CFT entanglement entropy. Gener-

alizing the Ryu-Takayangi (RT) prescription [69, 280] to time-dependent contexts,

the Hubeny-Rangamani-Takayanagi (HRT) proposal [70] states that at leading or-
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der in N the entropy of a region A of a holographic CFT is given by

S(A) =
Area(Ξ)

4GN

, (7.1)

where GN is the bulk Newton constant and Ξ is the minimal-area (spacelike)

extremal surface anchored on the set ∂A. Here we think of both A and ∂A as ap-

propriate subsets of the timelike conformal boundary of an asymptotically locally

AdS bulk spacetime. Because Ξ reaches the AdS boundary, the two sides of (7.1)

are both infinite; a more meaningful equality of finite quantities follows when the

two sides are properly renormalized. As emphasized by Headrick and Takayanagi

[255], one should restrict attention to bulk surfaces appropriately homologous to

A (viewed as part of the conformal boundary). We therefore use the term HHRT

to refer both to the entire framework and to codimension-2 spacelike extremal

surfaces homologous to some given A (whether or not the surface has minimal

area within this class).

The purpose of this work is to discuss HHRT for a new class of geometries,

termed planar AdS-dS-wormholes. These spacetimes describe plane-symmetric

black holes with two asymptotically AdS regions connected by a wormhole that

in turn contains an inflating region – and in particular a de Sitter-like (spacelike

and smooth) region IdS of the conformal boundary; see figure 7.1 for an example

and section 7.2 for details. We show below that codimension-2 extremal surfaces

cannot span any such wormholes, by which we mean that they cannot connect

one side to the other. It follows that HHRT predicts the leading-order large-N

mutual information I(A,B) to vanish between two finite-sized regions A and B
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Figure 7.1: A sample conformal diagram for an AdS-dS-wormhole. The surface
labeled Ξ (blue in color version) is a putative wormhole-spanning surface (which
we will show cannot exist if the spacetime obeys the null energy condition).
The surface Σ (red in color version) is an achronal surface that approaches
close to IdS and thus has large volume element. The dashed lines indicate
the boundary of the past of the dS-like part IdS of the conformal boundary.
The wormhole shown has a right/left Z2 reflection symmetry. The explicit
wormholes of section 7.2 will share this symmetry, though it is not needed for
our general arguments. The edges of IdS are marked E .

lying on opposite conformal boundaries1. This is in sharp contrast to the behavior

of thermofield double states studied by Hartman and Maldacena [229].

However, the leading order I(A,B) is non-zero when A and B are the entirety

of their respective boundaries since, for that case, the empty set is also homologous

to A ∪ B. Despite the time-dependent nature of our interior geometries, the

predicted entanglement is thus similar to that of both generic entangled states

(see e.g. [40, 229, 281, 282] for holographic discussions) and a naive interpretation

of extreme Reissner-Nordström black holes [76, 282].

At least when interpreted as a suitable large-torus limit of wormholes with

toroidal cross sections (see section 7.4.3), we see no inherent inconsistency in this

1We remind the reader that this mutual information can be defined in terms of the von
Neumann entropies S(A), S(B), and S(A ∪B) as

I(A,B) = S(A) + S(B)− S(A ∪B). (7.2)
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prediction. Indeed, further investigation of this feature may provide insights into

the holographic description of inflation (see also [283–286]2). But the lack of

wormhole-spanning codimension-2 surfaces makes our AdS-dS-wormholes a nat-

ural context in which to investigate possible corrections to HHRT. In particular,

while the two AdS boundaries cannot be connected by any HHRT surface lying in

the real Lorentz-signature spacetime, there is no obstacle to finding complex such

surfaces in a complexified AdS-dS-wormhole. Indeed, we argue below that such

complex extremal surfaces exist, though we leave their detailed analysis for future

work. We remind the reader that complex saddle points often dominate the eval-

uation of integrals along the real axis, so that derivations of RT via saddle-point

approximations to Euclidean bulk path integrals [71, 288–291] naturally suggest

that complex extremal surfaces be incorporated into HHRT, which would in any

case require analytic continuation to make contact with the Euclidean calcula-

tion in time-dependent contexts. See [78] for a discussion of these points, some

confusions they raise, and a study of complex codimension-2 extremal surfaces in

bulk duals of thermofield double states. To leave open the question of whether

(7.1) is really the CFT entropy, in what follows we will use the term “HHRT

entanglement” to refer to the bulk quantity calculated by (7.2) using real sur-

faces, without implying any particular interpretation in the dual CFT. The term

“HHRT surface” will similarly imply the surface to be real unless explicitly stated

otherwise.

2 These references study time-symmetric spacetimes. Our wormholes cannot be time-
symmetric, as a moment of time-symmetry is a totally-geodesic surface. Any wormhole-spanning
minimal subsurface would thus be a wormhole-spanning extremal surface of the full spacetime.
Indeed, with planar symmetry a Raychaudhuri-equation argument like that of [287] shows that
no piece of IdS on the future boundary can lie to the future of any piece of IdS on the past
boundary.
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We begin by constructing examples of planar AdSd+1 dS-wormholes in sec-

tion 7.2. We use a cut-and-paste procedure based on simpler and more familiar

geometries. The junctions where the cut-out pieces are sewn together contain

distributional sources (null shells) whose stress tensors we compute. For all d ≥ 2

we identify cases where the result satisfies the null energy condition (NEC), both

in the original spacetime from which the pieces were cut and on these null shells.

Section 7.3 then shows that d ≥ 2 planar AdSd+1 dS-wormholes obeying the

NEC admit no real wormhole-spanning HHRT surfaces. In fact, the main result

is slightly more general: in any asymptotically AdS spacetime respecting the

null energy condition, the light cone (boundary of the past or future) from any

real codimension-2 spacelike extremal surface Ξ anchored at the AdS boundary

can intersect a de Sitter-like region of the conformal boundary only on a set of

measure zero. This turns out to forbid wormhole-spanning HHRT surfaces for our

planar wormholes. Regulating the geometries by allowing inflation to proceed only

to a finite extent can restore theses surfaces, but their area must diverge as the

regulator is removed. Either argument leads to the HHRT entanglement properties

described above when A, B are finite-sized subsets of opposite boundaries.

The case where A and B are entire boundaries is discussed in section 4, where

the associated HHRT surfaces are termed total entropy surfaces. Interestingly, it

appears that total entropy surfaces also fail to exist in many AdS-dS-wormholes.

We show that there are no plane-symmetric total entropy surfaces in a large class

of examples from section 7.2, and we conjecture that less symmetric total entropy

surfaces also fail to exist. If so, the HHRT proposal becomes ill-defined and

requires improvement. The conceptually-simplest change would replace the HHRT
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surfaces with limits of families of surfaces that exist in a regulated geometry. These

limiting surfaces can be thought of as living on the conformal completion of the

unregulated spacetime, so we refer to this proposal as HHRT.

An alternative and tempting modification, discussed in section 7.5, is the inclu-

sion of complex codimension-2 extremal surfaces living in complexified wormhole

geometries. Unfortunately, our cut-and-paste spacetimes are not analytic, so their

complexification is far from unique. We thus save analysis of complex surfaces in

actual AdS-dS-wormholes for future work. Instead, we analyze complex surfaces

in pure de Sitter space where real surfaces again fail to exist with widely sep-

arated anchors and where we may expect a similar structure. With help from

appendix B we also note that a sum over complex geodesics accurately repro-

duces two-point functions of quantum fields in the de Sitter vacuum state. Since

the geodesic approximation to two-point functions shares many superficial simi-

larities with HHRT, this provides some partial support for the idea that complex

surfaces contribute to holographic entanglement for AdS-dS-wormholes. We close

with some final discussion in section 7.6.

7.2 Cut and Paste AdS-dS-wormholes

We define an AdS wormhole to be a connected solution M of the Einstein

equations (with a matter source respecting the null energy condition) which has

two causally disconnected asymptotically (locally) AdS boundaries3. AdS-dS-

wormholes are those particular examples which admit a conformal extension M

3With enough assumptions about the nature of these two boundaries their causal disconnec-
tion in fact follows from the null energy condition [292, 293].
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in which some piece IdS of the conformal boundary is, smooth, spacelike, and has

diverging conformal factor. We require IdS to contain an open set of the conformal

boundary, and smoothness of some part the conformal boundary is taken to mean

smoothness there of M as defined by an additional conformal factor that vanishes

linearly. In the usual way these conditions imply that M is asymptotically de

Sitter in the region near IdS. Reasoning as in section 4.1 of [294], one may

show that IdS must be causally inaccessible from (i.e., outside both the past and

future of) any region of the AdS boundary IAdS. With enough symmetry – and in

particular for planar symmetry as defined below – this follows particularly quickly

from the Raychaudhuri equation in parallel with the spherical case studied in [287];

see also [295]. Since such spacetimes cannot be time-symmetric (see footnote 2),

we will generally assume that IdS lies on the future conformal boundary as in

figure 7.1.

The goal of this section is to construct simple examples of plane-symmetric

AdS-dS-wormholes. This shows that such solutions exist and helps to make the

discussion in the remaining sections more concrete; they are of particular use in

section 7.4.

We will build planar AdS-dS-wormholes by pasting together regions cut from

more familiar spacetimes satisfying the vacuum Einstein equations with cosmolog-

ical constant, though the value of this cosmological constant will vary from region

to region. We will think of each local cosmological constant as set by a distinct

extremum in the potential V (φ) of some scalar field φ which is constant in each

patch. Each junction will be a null surface, which by the Einstein equations is

associated with some thin shell of matter. For appropriate choices of parameters
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these null shells satisfy the null energy condition and may be interpreted as shock

waves in the scalar field φ.

We take each region to admit an additional Killing field ξ beyond those in-

volved in the planar symmetry, though the vector field ξ will generally fail to be

continuous across the junctions and, as a result, will not define an isometry of the

full wormhole spacetime. Our examples will be built from three such patches, but

we impose a Z2 reflection symmetry exchanging the ends of the wormhole so that

these regions are of only two distinct types (called I and II, see figure 7.2).

Region I will be the part of the familiar planar AdSd+1-Schwarzschild black

hole (or BTZ for d = 2) lying to the past of one AdS boundary, while region II is

(part of) an analytic continuation of the planar AdSd+1-Schwarzschild black hole

to positive effective cosmological constant (studied in [296]; see (7.3) and (7.4)

below). The conformal diagrams of these spacetimes and the indicated regions

are shown in figure 7.3. Each patch extends to the relevant part of the future

and/or past Killing horizon.

The junctions are two copies of a single null shell (drawn as dotted lines and

both labeled A in the figure) which lie on parts of the would-be Killing horizons

of ξ. Note that our wormhole has Cauchy horizons HCauchy along other pieces of

the would-be Killing horizons. In analogy with the Reissner-Nordström case [297–

299], we expect our Cauchy horizons to be unstable to forming null singularities.

They should thus be considered an artefact of our cut-and-paste construction.

We also introduce a coordinate r defined at each point by the scale factor of

the corresponding plane of symmetry, and which must be continuous across each

shell. This requires the black hole horizon in patch I to have the same “radius”
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Figure 7.2: Our cut-and-paste AdS-dS-wormholes. The two types of regions
are pasted together along null shells, indicated by the dotted lines labeled A,
which are taken to lie along (parts of the) Killing horizons of the patches I
and II. The dashed lines labeled HCauchy are Killing horizons of patch I and
are Cauchy horizons of the full spacetime; the dashed lines labeled H− are the
past event horizons. The two patches labeled I are isometric under a left/right
reflection. (a): A case where the edges E of IdS lie on the past event horizons
of IAdS. (b): A less extreme case where IdS lies below the past event horizon.

r+ as the de Sitter horizon in patch II, though the effective cosmological constant

(parametrized by the associated length scales ℓI , ℓII) and black hole mass-density

may differ. As noted above, one may think of the associated jumps as modeling

gravity coupled to a scalar field whose potential has both AdS and dS extrema.
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Figure 7.3: Conformal diagrams for the spacetimes from which we cut our
(shaded) regions I and II. The dashed lines on both diagrams correspond to
the Killing horizons at r = r+. For simplicity we do not show the relative
bending between the singularity and boundary.

In both patches the metric thus takes the form

ds2n = −fn(r)dt2n +
dr2

fn(r)
+ r2 d~x2d−1, (7.3)

where n = I, II, each of the fn have a zero at the same value r = r+, and the

coordinates tn will generally differ from patch to patch. In particular, we take

fI(r) =
r2

ℓ2I

(
1−

(r+
r

)d)
, (7.4a)

fII(r) = − r2

ℓ2II

(
1−

(r+
r

)d)
. (7.4b)

In regions I and II, we have 0 < r <∞ and r+ < r <∞ respectively, as shown in

figure 7.3.

Assembling these patches as in figure 7.2 yields a planar AdSd+1 dS-wormhole.

But the result is far from unique, as we must specify the manner in which each

pair of regions is sewn together at the relevant junction. In our context, it is
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convenient to do so using Eddington-Finkelstein coordinates

dun = dtn −
dr

fn(r)
, dvn = dtn +

dr

fn(r)
. (7.5)

Recall that the past event horizon in region I is vI = −∞, with vI running from

∞ to −∞ below this horizon and then again from −∞ to ∞ above. We sew patch

II to the part of patch I below the past horizon using

vII =
1

κII
gA (κIvI) , (7.6)

where gA(x) is an arbitrary continuous monotonic function. The fact that we

placed the boundaries of our regions at Killing horizons means that the induced

metric is continuous across the junction for any gA. To construct figure 7.2(a), we

choose gA to map (−∞,∞) 7→ (−∞,∞), and in particular take gA(−∞) = −∞.

This takes the two edges E of IdS to lie precisely on the past event horizons H−

of IAdS, as shown in figure 7.2(a). Recall from earlier that, as in [287], the null

energy condition prevents IdS from being to the future of any point of IAdS, so

this current case is a threshold case. We may move IdS lower (as in figure 7.2(b)),

but no higher.

That the spacetimes of figure 7.2 obey the NEC is easily verified by calculating

the stress tensor of our shells. The key quantities are their energy density µ

and pressure p. We wish to find examples satisfying µ + p ≥ 0; this condition

is equivalent to the NEC in our context. The computations are described in

appendix B.3. For the spacetime of figure 7.2(a), we take gA(x) = βx; then
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using (B.26) the condition µA + pA ≥ 0 becomes equivalent to

κII ≥ βκI

[
1− 1 + β

d− 1
κIr+

]
. (7.7)

Choosing, for instance,

κIr+ =
1

4
, κIIr+ =

1

4

(
1− 1

2(d− 1)

)
, β = 1 (7.8)

yields µA+pA = 0 for all d ≥ 2, giving a patched AdS-dS-wormhole that saturates

the NEC everywhere.

To construct figure 7.2(b), we instead set gA(x) = ln(edx−edκIv0) and take the

domain of vI to be (v0,∞); this places the edges E of IdS at a finite advanced

time vI = v0 and yields

µA + pA =
1

8πGNr+

[
2d

edκI(vI−v0) − 1
+ 2 +

(
1− e−dκI(vI−v0)

)(
1− 1

d

)]
, (7.9)

which is positive4 for all vI > v0 and d ≥ 2.

As noted above, our cut-and-paste construction led to a Cauchy horizonHCauchy.

While not a problem for our later discussion and likely unstable, we nevertheless

mention that it is easy to shrink this horizon or even remove it entirely by includ-

ing further simple matter sources. For example, one can fire null dust (obeying

the null energy condition) from the AdS boundary, as shown in figure 7.4(a). This

4One may ask if in analogy with the threshold case there exists some choice of parameters
that saturates the NEC; that is, for arbitrary finite v0, is there a choice of κI > 0, κII > 0,
and smooth monotonic gA(x) with domain (v0,∞) that sets µA + pA = 0? The answer is no:
using (B.26) the condition µA + pA = 0 becomes a differential equation for gA, whose only
solutions do not obey the monotonicity requirement.
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replaces the pure AdS-Schwarzschild metric in the part of patch I above H− with

an ingoing planar AdS-Vaidya metric (i.e., the ingoing planar AdS analogue of

[300, 301]) of the form

ds2I = −fI(r, vI)dv2I + 2 dvI dr + r2 d~x2d−1, where fI(r, vI) =
r2

ℓ2I

(
1− r̃d(vI)

rd

)
,

(7.10)

where r̃(vI) is an arbitrary function satisfying r̃′(vI) ≥ 0 and r̃(−∞) = r+.

In principle, the Cauchy horizon can be made to disappear entirely by firing

in a thin null shell along H− itself. The spacetime then becomes the one shown

in figure 7.4(b). Furthermore, as the new null shell runs along a would-be Killing

horizon, each of the (now five) patches Ia, Ib, and II still admits a timelike Killing

field ξ. In appendix B.3 we show by explicit construction that the resulting

spacetime does indeed obey the null energy condition, though since the new null

shell is not pressureless, it is not in any simple sense a limiting case of the Vaidya

spacetime5.

7.3 No localized HHRT entanglement

We turn now to HHRT surfaces and entanglement. The goal of this section is to

show for all d ≥ 2 that, according to HHRT, planar AdSd+1-dS-wormholes describe

states defined on two CFTs in which the CFTs are jointly pure at leading order in

largeN but which have vanishing leading-order mutual information between finite-

5 That the shell cannot be pressureless follows from the fact that the pressure of the shell
is a measure of the discontinuity in the acceleration of its generators across it [302]. Since its
generators are future inextendible (extendible) with respect to patch Ia (Ib), this discontinuity
must be nonzero and the shell pressure cannot vanish everywhere.
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Figure 7.4: Firing in matter from the AdS boundaries modifies the cut-and–
paste wormholes of figure 7.2. The spacetimes shown are based on figure 7.2(a),
though corresponding results also hold for figure 7.2(b). (a): Patch I is replaced
by an AdS-Vaidya metric representing pressureless null dust (shaded) falling
in from IAdS. This adds a future singularity that cuts off part of the Cauchy
horizon HCauchy. (b): One can remove the Cauchy horizon completely by firing
in a thin null shell B (light gray lines beneath dashed lines) along H−. The
shell further divides region I into subregions Ia and Ib on either side. This shell
cannot be pressureless (see footnote 5) and is not a simple limit of the Vaidya
case shown at top.

sized subregions of opposing boundaries. The leading-order purity of the total

state is straightforward: the pair of AdS boundaries taken together is homologous

to the empty set so that the total leading-order entropy vanishes. And the mutual

information (7.2) will vanish between finite-sized subregions A, B if S(A ∪ B) =

S(A) + S(B).

We show below that AdS-dS-wormholes have no wormhole-spanning codimension-

2 extremal surfaces. So when A, B are finite-sized subregions of opposite bound-

aries, every extremal surface anchored on ∂(A ∪ B) is in fact the union of two
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disconnected surfaces – one anchored on ∂A and the other on ∂B. A naive appli-

cation of HHRT thus yields S(A∪B) = S(A)+S(B) and I(A,B) = 0. In order to

take a bit more care, we also consider regulated versions of our spacetimes where

wormhole-spanning surfaces do exist and show that this behavior is reproduced

in the limit where the regulator is removed.

The arguments of this section do not in fact require the full planar symmetry; it

is enough to have the translation subgroup. We refer to this as planar-translation

symmetry in order to distinguish it from full planar symmetry.

7.3.1 No wormhole-spanning extremal surfaces

We first show that the intersection of de Sitter-like regions of the conformal

boundary with the light cone (boundary of the past or future) from any real

codimension-2 extremal surface Ξ must have measure zero when the only bound-

aries of Ξ lie at the AdS boundaries. We will refer to this latter property saying

that Ξ is anchored at the AdS boundary. As for IdS above, we define de Sitter-

like regions of the conformal boundary to be those that are smooth and spacelike

with divergent conformal factor. We assume the spacetime to satisfy the null con-

vergence condition Rabk
aka ≥ 0, which holds for solutions of the Einstein-Hilbert

equations of motion for gravity coupled to matter that respects the null energy

condition. The argument is closely related to the methods of [303]. Where not

specified, we will use the conventions and definitions of [90].

To begin, consider a real codimension-2 extremal surface Ξ anchored at the

AdS boundary whose light cone intersects a de Sitter-like region of the conformal

boundary. Since the only boundary of Ξ lies at the AdS boundary, and since any
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extremal surface intersects the AdS boundary orthogonally, the light cone of Ξ is

generated by a congruence of null geodesics fired orthogonally from Ξ. Further-

more, since Ξ is extremal and codimension-2, the expansion of this congruence

vanishes at Ξ. No new generators can join the light cone as one moves away

from Ξ, and the null convergence condition implies that the expansion can only

decrease. Thus, just as in the proof of the Hawking area theorem [304], the area

of the light cone can only decrease as one moves away from Ξ.

On the other hand, any piece of this light cone which intersects a de Sitter-

like region of the conformal boundary on a set of non-zero measure has infinite

area. If Ξ has finite area this immediately implies that the intersection must have

measure zero. If Ξ has infinite area (as in the case of interest), the same conclusion

is reached by considering a compact set of null geodesics in our congruence that

reach the de Sitter-like infinity; they must have been fired from a compact subset

of Ξ with finite area. And if all compact subsets have zero measure then the total

measure of the intersection must vanish as well. This argument assumes the light

cone to be piecewise C2 in parallel with Hawking’s original derivation [304] of

the area theorem, but we expect that this assumption can be dropped using the

methods of [305].

One may use the above result to exclude wormhole-spanning HHRT surfaces

in an AdS-dS-wormhole with an an everywhere-spacelike freely-acting Rd−1 trans-

lation symmetry (which we call planar-translation symmetry), or in any quotient

of such a spacetime by any subgroup of these translations. For such a translation-

planar AdS-dS-wormhole M , it is natural to consider conformal extensions M

containing IdS for which the relevant conformal factor and thus M are also in-
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variant under this planar-translation symmetry. This means that M cannot be

compact, but we will choose conformal extensions that become so under any quo-

tient by a discrete translation subgroup group that takes Rd−1 to the torus T d−1.

The planar-translation symmetry implies that any wormhole-spanning ex-

tremal surface Ξ must pass through the region to the past of IdS, see figure 7.1.

But the light cone of Ξ can expand only with finite speed in the conformally ex-

tended spacetime M , while M remains infinite in the planar directions. Thus the

part of IdS to the future of Ξ can be of only finite extent in the planar directions.

Since IdS is invariant under the full infinite planar-translation symmetry, the fu-

ture light cone of Ξ (i.e., the boundary of its future) must intersect IdS along some

surface that spans IdS from one end to the other. And since IdS is non-trivial,

the measure of this intersection is non-zero. This contradicts the result above and

shows that Ξ cannot exist. It also follows that wormhole-spanning extremal sur-

faces cannot exist in any quotient as they would then lift to a wormhole-spanning

extremal surface in the covering spacetime M .

We note that this same result can be derived directly using the maximin pre-

scription of [303] (which was shown to be equivalent to HHRT in certain contexts).

The maximin construction considers all achronal surfaces Σ satisfying appropri-

ate boundary conditions, such as the one shown in figure 7.1. One then finds the

minimal surface on each Σ and then maximizes the area of this surface over all Σ.

So the area of the maximin surface is bounded below by the area of the minimal

surface on any given Σ. Since IdS is outside the light cone of any point on any

AdS boundary, we may choose Σ to lie arbitrarily close to IdS over a finite por-

tion of its length as shown in figure 7.1. In the limit where Σ approaches IdS in
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this way the area of the minimal wormhole-spanning surface on Σ grows without

bound. We see that the area of any maximin surface must be infinite, and that

no actual maximin surface can exist in M . This argument works directly in both

translation-planar spacetimes and their quotients.

On the other hand, there is no obstruction to having extremal codimension-2

surfaces outside the horizon. Indeed, we may take the exterior regions of our

wormhole to be just planar AdS-Schwarzschild in which extremal surfaces have

been extensively studied (e.g. in [69, 280]). Considering finite-sized subregions A

and B of opposite boundaries, the lack of wormhole-spanning extremal surfaces

means that, when the translation-symmetry is non-compact, a naive application

of HHRT finds the minimal area surface computing S(A∪B) to be disconnected,

with each connected component giving just S(A) or S(B) separately6. In other

words, our result implies S(A ∪B) ≈ S(A) + S(B) so that I(A,B) ≈ 0, where ≈

denotes equality at leading order in large N .

We now pause to evaluate this conclusion more carefully. In particular, we

consider regulated versions of our AdS-dS-wormholes in which inflation proceeds

only for a finite time before the wormhole recollapses to a singularity. Simplified

models of such spacetimes are constructed and studied in detail in appendix B.4.

Removing IdS in this way allows wormhole-spanning HHRT surfaces to exist.

Indeed, the arguments of [303] tell us that they do, and that they coincide with

6The reader may note that A∪B is homologous to Ā∪ B̄ where Ā, B̄ are the complements of
A,B within their respective boundaries. As a result, there are also disconnected surfaces with
each piece separately homologous to Ā, B̄. But when the translation symmetry is non-compact
and A,B are finite-sized, these latter surfaces will have infinite area and do not contribute. For
toroidal wormholes, they will again fail to contribute when A,B are sufficiently small but make
the leading-order I(A,B) non-zero for large enough A,B.
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maximin surfaces7.

The maximization step in the maximin procedure suggests that wormhole-

spanning extremal surfaces lie near the surface of maximal inflation in the reg-

ulated wormhole. More precisely, we argue in appendix B.4 that at late times

they approach a surface of maximal effective scale factor in behavior analogous

to that found by Hartman and Maldacena in AdS-Schwarzschild [229]. This sur-

face recedes to IdS and becomes of infinite size in any limit where our regulator

is removed. In contrast, the area of disconnected surfaces that lie outside the

horizon will remain finite as the regulator is removed. So, as above, when the

translation symmetry group is appropriately non-compact, HHRT again predicts

S(A ∪B) ≈ S(A) + S(B) for AdS-dS-wormholes and I(A,B) ≈ 0.

7.4 No total entropy surfaces in M , but finite

total entropy

We have seen that planar AdS-dS-wormholes have vanishing HHRT entropy

between finite-sized subregions of opposite boundaries. This raises the question

of taking A and B to be (opposite) boundaries in their entirety. Since A ∪ B is

then homologous to the empty set, HHRT finds S(A ∪ B) = 0 and I(A,B) =

S(A)+S(B) = 2S(A). But it remains to compute S(A) by finding the associated

HHRT surfaces. Such (putative) surfaces are called total entropy surfaces below.

7 The theorems in [303] address Kasner-like singularities. The singularities of our regulated
wormholes are naturally either of Kasner-like or of the ‘big crunch’ form where all directions
shrink to zero size. Since all surfaces near the big crunch are small, it is manifest that the
maximization step of the maximin procedure keeps one well away from such singularities. It is
thus even easier to apply the arguments of [303] in this case than for Kasner-like singularities.
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For a broad class of planar AdS-dS-wormholes from section 7.2, section 7.4.1

will demonstrate that plane-symmetric total entropy surfaces do not exist in the

physical spacetime M . This argument uses the full planar symmetry and not

just the translation subgroup, though corresponding results follow immediately

for toroidal quotients. We conjecture that less-symmetric total entropy surfaces

also fail to exist and that the HHRT entropy is ill-defined. More complicated

examples similarly suggest that a strict application of HHRT gives physically

incorrect results even when a total entropy surface exists in M .

Consideration of regulated spacetimes in section 7.4.2 nevertheless argues that

HHRT be extended to assign a finite entropy to each boundary of our AdS-dS-

wormholes. The non-zero entropy implies a positive mutual information between

the two boundaries. We also locate an effective HHRT surface lying in the con-

formal boundary at the edge of IdS. The implications for entanglement are sum-

marized in section 7.4.3.

7.4.1 Planar wormholes without planar total entropy sur-

faces

The example wormholes of section 7.2 have full planar symmetry, including

reflections as well as translations in each (spacelike) planar direction. This implies

that our wormholes admit unique (future-directed) left- and right-moving null

congruences orthogonal to every orbit of the planar symmetry group; i.e., whose

velocity field has only r, t components. Since a codimension-2 surface is extremal

if and only if the expansion vanishes at the surface for each of the two orthogonal

null congruences, plane-symmetric total entropy surfaces arise only when the left-
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and right-moving congruences define zero-expansion surfaces (θL = 0, θR = 0)

that intersect.

One can certainly find AdS-dS-wormholes where this intersection exists. For

example, this occurs when the wormhole exterior is precisely AdS-Schwarzschild

up to and including the bifurcation surface. The left- and right-moving AdS-

Schwarzschild Killing horizons have respectively θL = 0, θR = 0 and intersect at

a total entropy surface (i.e. the bifurcation surface). But there are other choices

where the zero-expansion surfaces do not intersect.

For planar congruences in planar spacetimes the sign of the expansion is pos-

itive when r increases along the congruence and negative when it decreases. So

it is straightforward to draw θL = 0, θR = 0 contours for the simple cases shown

in figures 7.2(a) and 7.4(b) in which the matter consists only of thin shells. The

results are shown in figure 7.5. Since the expansions are generally not continuous

at the junctions, in most cases what we have actually drawn is the boundary be-

tween the region of positive expansion (below the indicated lines) and the region

of negative expansion (above the indicated lines)8.

When the matter shells enter along the past event horizons of IAdS (as in

figure 7.5(a)) we find that θL = 0, θR = 0 surfaces coincide over a finite piece

of these horizons near IdS. But this is an artefact of the associated fine tuning.

Taking the shell to enter later (as in figure 7.5(b)) displaces the outgoing zero-

expansion surface toward the future so that the two surfaces no longer intersect

in the physical spacetime M . For appropriate choices, this remains true when we

smooth out the thin shell by passing to the Vaiya wormhole shown in figure 7.4(a);

8The exception occurs at shell A, where on either side the congruence along this shell has
positive expansion that vanishes as the shell is approached.
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Figure 7.5: Surfaces of θR = 0 (dashed lines; red in color version) and θL = 0
(dotted lines; blue in color version) for the AdS-dS-wormholes shown in fig-
ure 7.4. Note that since affine parameters diverge at IdS and IAdS, the Ray-
chaudhuri equation guarantees that θR, θL both vanish on these surfaces. We
take the ingoing matter to consist of null shells (solid gray lines). (a): The
spacetime of figure 7.4(b). Null shells with non-zero pressure are fired in along
the past horizons of IAdS; this fine-tuning leads the θR = 0, θL = 0 surfaces to
overlap along portions of these past horizons. (b): When the incoming shells
are displaced to the future the surfaces θR = 0, θL = 0 no longer intersect in M
and total entropy surfaces do not exist in M . Here the shell may be chosen
pressureless so that this case is a simple limit of figure 7.4(a). A version in
which this new null shell is smoothed out is shown in figure 7.6.

see figure 7.6 for an explicit example which takes d = 2 and

r̃(vI) = r+
√
5 + 4 tanh(vI/ℓI), (7.11)

with r̃(v) defined as in (7.10). The Cauchy horizons in these examples should be

unstable and non-generic as described in section 7.2, though we see no reason that

such instabilities should restore the missing total entropy surfaces.

In such cases there can be no planar total entropy surface. The same is clearly
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Figure 7.6: Surfaces of zero expansion in the d = 2 AdS-Vaidya dS-wormhole
with the mass function (7.11). Conventions are the same as in figure 7.5, except
that singularities are now drawn as solid lines (green in color version). Note
that we only show the left half of the spacetime, and that only surfaces to
the future of the past horizon H− have been calculated and plotted explicitly;
the past singularity and IdS have been drawn as straight lines by hand. The
Cauchy horizon intersects the singularity at advanced time v0 = −ℓI ln

√
3. As

in figure 7.5, this Cauchy horizon can also be removed by adding a null shell
along H−.

true of toroidal quotients. We expect that less-symmetric total entropy surfaces

fail to exist as well9.

7.4.2 Regulated wormholes

The lack of total entropy surfaces in these cases renders the HHRT entropy

of either boundary ill-defined. So this prescription clearly requires modification.

When wormhole-spanning extremal surfaces did not exist in section 7.3, we ar-

gued that they could equivalently be assigned infinite entropy. But taking the xi

coordinates periodic turns each boundary into a finite torus (at each time). So

since the bulk clearly has finite energy, it would be physically incorrect to assign

infinite entropy to either CFT. Some other resolution is needed.

9In the past domain of dependence of IdS, extremal surfaces that extend in the planar
directions will tend to bend toward the singularities. But closed surfaces in M will have points
(locally) “closest” to the singularity. So one need only exclude extremal surfaces from other
regions of the conformal diagram.
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Useful insight can again be obtained by considering the regulated and smoothed-

out wormholes of section 7.3; the key point is again that they inflate only to a

finite extent before recollapsing to a singularity. Thus all desired extremal surfaces

will exist (see footnote 7). Furthermore, in these regulated spacetimes, theorem

16 of [303] guarantees total entropy surfaces to have smaller area Areg
TE than the

area Abif of the smallest bifurcation surface of either the right or left event horizon.

So holding Abif fixed as the regulator is removed gives a regulator-independent

upper bound on Areg
TE. In particular, since the Hawking area theorem guarantees

the late-time area of the event horizon to be even larger, the bound on Areg
TE is

consistent with the expected CFT density of states at the given energy.

This suggests that Areg
TE may approach some limit Alim

TE as the regulator is

removed. Using Alim
TE to calculate entropy for AdS-dS-wormholes would be a simple

extension of HHRT that we christen HHRT, though we will not study convergence

of this limit in any detail. However, we mention that more complicated variations

on the above examples suggest that the original HHRT prescription can assign

the wrong entropy even when a total entropy surface does exist. For example, we

could modify the spacetimes of figure 7.4 by adding a further AdS-Schwarzschild

region with unmolested bifurcation surfaces that introduce new extremal surfaces.

If the area Anew of this new surfaces exceeds the above Alim
TE, then HHRT will use

a smaller surface to compute our entropy in any regulated spacetime. Strict use

of HHRT would then predict the entropy to be discontinuous as the regulator is

removed while by construction HHRT gives a continuous result. And, as above, in

many cases the strict HHRT result will give Anew > Abif which will often conflict

with the CFT density of states as set by the total energy (while consistency of
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HHRT is guaranteed).

It also is useful to discuss the above limit in terms of the maximin prescription

of [303], which is equivalent to HHRT in our regulated context (see again footnote

7). We once more recall that a maximin surface is constructed by first studying

all achronal surfaces Σ, identifying the minimal surface on each, and maximizing

the associated area over all Σ. Now, the proposal that AdS-dS-wormholes have

no maximin total entropy surface in the physical spacetime M would mean that

this final maximum does not exist. But since [303] guarantees that the minimal

surface on any Σ has area smaller than Abif , we may still discuss the least upper

bound Alub
TE of the areas over all achronal surfaces. And for the above toroidal

wormholes this Alub
TE must be finite, as it is also bounded above by the area of the

horizon bifurcation surface.

For simplicity, let us suppose that IdS lies in the future conformal boundary.

Then our regulator deforms the AdS-dS-wormhole only in the far future. In par-

ticular, any achronal surface in the AdS-dS-wormhole is also an achronal surface

in regulated wormholes with sufficient amounts of inflation. It thus persists as the

regulator is removed and gives a lower bound on the limit Alim
TE. It follows that

Alim
TE is at least Alub

TE.

On the other hand, suppose that some regulated spacetime had Areg
TE greater

than Alub
TE. Then the achronal surface containing this maximin surface can have

no counterpart in the unregulated wormhole. One thus expects to be able to use

regulators where Areg
TE converges precisely to Alub

TE as the regulator is removed; i.e.,

for which Alim
TE = Alub

TE. It is therefore natural to extend the maximin prescription

to our AdS-dS-wormholes by assigning entropy Alub
TE/4GN to each CFT and to
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term the associated scheme maximin regardless of the conditions under which

this coincides with a limit of Areg
TE. We remark that for the spacetimes of figure

7.4 this Alub
TE is precisely the area AH− = rd−1

+ Vd−1 of the past horizon H
− of IAdS.

Here Vd−1 is the coordinate volume of the xi directions and we have already argued

Alub
TE ≤ AH− . Since achronal surfaces close to the future boundary have r > r+− ǫ

everywhere for any ǫ > 0 we also have Alub
TE ≥ AH− and thus Alub

TE = AH− .

A useful feature of the original HHRT framework was that it associated the

entropy calculation with a specific surface in the bulk. In particular, we recall

that this observation has led to proposals [303, 306] for the bulk region dual to

subregions of a CFT; see also [307, 308]. It would thus be nice to locate a surface

to which we can assign area Alub
TE.

There is of course no natural candidate in the physical unregulated spacetime

M . But we can ask if the total entropy surfaces of the regulated spacetimes

converge in any sense to a surface in the conformal extension M . Note that, since

our regulator deforms the AdS-dS-wormhole only in the far future, removing the

regulator must send the total entropy surfaces to the future conformal boundary.

And since their area remains bounded, they cannot approach the interior of IdS.

But there is no need to regulate the spacetime far from IdS, so any limiting surface

can have no finite separation from IdS. The limiting total entropy surface must

thus lie at one of the edges E in figure 7.1 that mark the boundary between IdS

and the singular part of the future conformal boundary. For similar reasons we

expect that studying minimal surfaces on achronal surfaces Σ converging to the

future conformal boundary in the unregulated AdS-dS-wormhole will also lead to

effective maximin surfaces located at one of the edges E ; i.e., that the maximin
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procedure naturally defines a surface in the conformal extension M . In examples

with right/left symmetry we should assign two surfaces, one at each edge. In

other cases the choice of left edge vs. right10 will depend on details of the AdS-

dS-wormhole, though we expect that it will not depend on the choice of regulator.

7.4.3 Implications for entanglement

Let us now return to the discussion of entanglement. We begin with toroidal

AdS-dS-wormholes in which the translation symmetry is compact. We argued

above that the corresponding dual CFTs have non-zero leading-order mutual in-

formation. We also showed in section 7.3 that I(A,B) ≈ 0 for regions A, B on

opposite boundaries having sizes much smaller than the size of the torus. How-

ever, the mutual information can be non-zero at this order for A,B sufficiently

large.

To discuss the uncompactified case we take the large-torus limit while holding

fixed the size of our regions A, B. The part of the opposite CFT strongly entangled

with A then recedes to infinity, while the total mutual information per unit area

between the two CFTs remains constant. This suggests that one think of each

infinite plane in the non-compact case as the limit of entire tori so that, although

finite-sized subregions in opposite CFTs have no leading-order entanglement, the

resulting planar CFTs retain finite leading-order mutual information per unit area;

i.e., although correlations recede to infinity we do not allow any information to

be lost in taking the limit11. Repeating this discussion for effective total entropy

10Here we assume that IdS is connected.
11A theorem of [309] (Lemma 3, Remark 1) shows that one may successfully approximate

any relative entropy defined on a von Neumann algebra by describing this algebra as a limit
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surfaces lying in the future conformal boundary of the toroidal wormholes leads us

to consider similar effective total entropy surfaces for the planar wormholes, and

of course the limit of empty sets remains empty. For the finite tori, the former

compute the entropy of each boundary separately while the latter (empty set)

surfaces compute the total entropy of both boundaries together. So it is in the

above sense that, in the case of non-compact cross-section, our effective HRRT

surface and the empty set respectively compute the leading order total entropy of

each CFT separately and for the joint state on the pair of CFTs.

While the above notion of limit is essentially unique for finite-sized regions

A and B, it should be mentioned that there is an alternate way of interpreting

what is meant by the limiting planar CFTs taken as wholes. In this second

interpretation, each entire plane is the limit of a family of additional (larger)

subregions of the growing tori. These larger regions are taken to grow in size

without bound, but at a rate much slower than the size of the torus itself. In

other words, one “zooms in” on a smaller and smaller fraction of the torus as the

torus grows. Since each resulting plane is built from the limit of “small” regions of

the large-but-finite tori, the total leading-order mutual information between the

two CFTs must vanish. For a finite torus, the corresponding HHRT surfaces are

then anchored to “small” regions of the boundary IAdS and cannot enter the past

of IdS. Moreover, two such regions on opposite boundaries are not homologous

and require distinct HHRT surfaces. Taking the large torus limit then implies

that we continue to assign the total entropy of each planar CFT a distinct HHRT

of smaller algebras. The same thus holds for mutual information. The above interpretation is
consistent with this theorem, as the algebra it assigns to the plane effectively contains many
operators “at infinity” which are not limits of operators in finite regions. This “algebra at
infinity” corresponds to the distant parts of the finite tori used to take the limit.
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surface12 lying entirely on its side of the wormhole, and that the union of these

surfaces describes the total entropy of the two CFTs together. The total leading-

order mutual information between the two CFTs then vanishes as desired under

the alternate interpretation just described for the limiting planar CFTs.

The highly delocalized entanglement characteristic of toroidal AdS-dS-wormholes

thus leads to two physically-distinct notions of the planar limit, both described by

the same limiting (planar AdS-dS-wormhole) spacetime. The preceding analysis

suggests that non-compact wormholes generally admit at least two correspond-

ingly distinct interpretations of the homology constraint, associated with different

possible roles being played by the region “at infinity” in directions transverse to

the dimensions displayed in our figures. But we leave further development of this

proposal for future work and content ourselves here with the discussions above.

7.5 Complex wormhole-spanning Surfaces?

While we see no inherent inconsistencies in the CFT entropies predicted by

HHRT, the infinite area of real wormhole-spanning HHRT surfaces makes our

AdS-dS-wormholes a natural context in which to investigate further possible im-

provements. In particular, one might ask if complex extremal surfaces could play

a role. This is suggested by the superficial analogy with the geodesic approxi-

mation to two-point functions where a lack of real geodesics does indeed indicate

the importance of complex ones [34]; see also [67, 228, 310] for more general dis-

cussions. It would be very interesting to investigate complex extremal surfaces

12This may be only an effective surface in a sense similar to that of the HHRT proposal.
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in particular example AdS-dS-wormholes (as done for static planar black holes

in [78]) and to see if the results inform any of the conceptual puzzles associated

with the use of complex surfaces (see again [78] for discussion). However, since

the cut-and-paste spacetimes of section 7.2 are not analytic, it is unclear in what

complexification such complex extremal surfaces might live. Indeed, analogy with

the geodesic approximation to two-point functions raises the question of whether

any HHRT-like prescription can apply to geometries that are not analytic; see e.g.

[261].

We thus save analysis of complex surfaces in actual AdS-dS-wormholes for

future work and make no attempt to study them here. Instead, we briefly dis-

cuss complex codimension-2 surfaces in pure de Sitter space. This section thus

represents a slight aside from the main theme of this work and may be skipped

without loss of continuity. In pure de Sitter settings analogous to spanning our

wormholes, real such surfaces again do not exist. But we shall see that complex

surfaces are readily found.

Of course, the existence of complex such surfaces does not immediately imply

their relevance to the computations at hand. For example, if they describe com-

plex saddles approximating some path integral, complex surfaces will contribute

only if one can appropriately deform the contour of integration to include them.

While it is unclear how to analyze this in detail for the entropy problem, it is

interesting to consider the superficially-related problem of computing free-field

two-point functions in the Bunch-Davies vacuum using the geodesic approxima-

tion. Using an expansion of this two-point function from appendix B.5, we show

explicitly below how it is given by an infinite set of complex geodesics in dS3 and
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that these geodesics lie on an infinite number of sheets of the associated Riemann

surface in the sense of [78].

7.5.1 Complex Extremal Surfaces in dS

It is well known that pure de Sitter space contains pairs of points that cannot

be connected by geodesics (see e.g. [186]). Indeed, geodesics tend to bend down

and away from future infinity, as shown in figure 7.7. So if the ends of the extremal

surface are taken far enough apart, the geodesic becomes null and “bounces” off

future infinity in a manner pictorially similar to the bouncing geodesics of AdS-

Schwarzschild [34, 78] – though the null limit of bouncing geodesics retains finite

length in dSd+1 while it vanishes in AdS-Schwarzschild as measured from any

finite points in the spacetime. Real geodesics cease to exist when the separation

is increased beyond this critical point, leaving only complex ones. This occurs

in particular for d = 2, where geodesics are codimension-2 extremal surfaces.

Extremal surfaces of any codimension turn out to behave similarly for all d, though

the area diverges in the null limit for extremal surfaces whose dimension exceeds

1 (i.e., for any case except geodesics).

We now study this phenomenon in detail for a class of codimension-2 extremal

surfaces analogous to the would-be wormhole-spanning surfaces of section 7.3.

Below we anchor our surfaces at the de Sitter horizon as opposed to at a spacetime

boundary. This allows us to work entirely in the dS patch. We study pure de

Sitter for simplicity, but analogous results should also hold for patch II as defined

in section 7.2.

Consider the inflating spatially-flat patch of pure de Sitter in the familiar
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Figure 7.7: The cosmological patch of de Sitter spacetime. The solid black
curves are sketches of extremal surfaces ending on a t = t0 = const slice, shown
as a solid red curve. As the endpoints of the surfaces are taken farther apart,
the surfaces approach the dotted null curve. At even larger separations real
extremal surfaces cease to exist.

coordinates where the metric takes the form

ds2 = −dt2 + e2Htd~x2d ≡ −dt2 + e2Ht
(
dr2 + (dx1)2 + (d~x

‖
d−2)

2
)
. (7.12)

We take our surfaces to be anchored on infinite strips defined by t = t0, r =

±L/2, x1 = const. Conservation of x1 momentum implies that x1 remains con-

stant across the entire extremal surface. The surface can thus be parametrized

by the coordinates x‖ and a yet-to-be-specified parameter λ; i.e., (t, r, x1, x‖) =

(t(λ), r(λ), const., x‖). The resulting area functional is

A = Vd−2

∫
dλ e(d−2)Ht

√
e2Htṙ2 − ṫ2 ≡ Vd−2

∫
dλL

(
t, r, ṫ, ṙ

)
, (7.13)

where Vd−2 ≡
∫
dd−2x‖ is the volume of the space spanned by the x‖ coordinates.

Since the effective Lagrangian L = e(d−2)Ht
√
e2Htṙ2 − ṫ2 contains no explicit
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dependence on r(λ), there is a conserved conjugate momentum

p =
∂L
∂r

=
edHtṙ√

e2Htṙ2 − ṫ2
. (7.14)

Choosing the parameter λ so that e2Htṙ2 − ṫ2 = 1, we obtain

ṙ = e−Ht∗e−dH(t−t∗), (7.15a)

ṫ2 + Veff(t) = 0, (7.15b)

in terms of an effective Newtonian potential

Veff(t) = 1− e−2(d−1)H(t−t∗). (7.16)

Here t∗ ≡ ln p/((d−1)H) is the real root of Veff(t) and describes the turning point

of real extremal surfaces. Relating t∗ to the coordinate displacement L between

the anchor points through

2L = 2

∫ t∗

t0

ṙ

ṫ
dt (7.17)

yields

eHt0L =
i

dH
e−H∆t

[
edH∆t

2F1

(
1

2
,

d

2(d− 1)
;
3d− 2

2(d− 1)
; e2(d−1)H∆t

)

− 2F1

(
1

2
,

d

2(d− 1)
;
3d− 2

2(d− 1)
; 1

)]
, (7.18)

where ∆t ≡ t∗− t0 and 2F1 is the ordinary hypergeometric function written using
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standard conventions (e.g. [311]). Likewise, the area (7.13) becomes

e−(d−2)Ht0A =
2iVd−2

(d− 2)H

[
e(d−2)H∆t

2F1

(
1

2
,− d− 2

2(d− 1)
;

d

2(d− 1)
; 1

)

− 2F1

(
1

2
,− d− 2

2(d− 1)
;

d

2(d− 1)
; e2(d−1)H∆t

)]
. (7.19)

These L and A are plotted in figure 7.8 as functions of ∆t. It is clear that L

approaches a finite value as ∆t → ∞. Indeed, expanding (7.18) at large ∆t, we

obtain

eHt0L =
1

H
+O

(
e−H∆t

)
. (7.20)

As advertised, the surface becomes null in the limit t∗ → ∞ (L→ H−1e−Ht0).

As shown in figure 7.7, for L < H−1e−Ht0 the entire extremal surface lies within

the past light cone of a set on IdS of vanishing length in the r-direction. This is

in fact required by the same reasoning as in section 7.3. Such arguments imply

that a null surface fired orthogonally from an extremal surface can intersect IdS

only in some zero-measure set. But continuity requires that the image of our null

geodesics on IdS must span some interval in r. Thus the length of this interval

must vanish.

In contrast, for L > H−1e−Ht0 causality would require this interval have non-

vanishing length. So real codimension-2 surfaces can no longer exist. But it is

straightforward to find complex extremal surfaces in this regime (and indeed for

arbitrary L when d > 2). One simply analytically continues expressions (7.18)

and (7.19) to the entire complex ∆t-plane. From (7.18) we see that L is periodic

in ∆t with period 2πi/H, so it suffices to study L in a finite strip around the real

axis. Figure 7.9 shows the complex-valued function L(∆t) in this strip for d =
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Figure 7.8: The coordinate displacement L (a, at left) and the area A of codi-
mension-2 extremal surfaces (b, at right) in pure dS as functions of ∆t. The
plots show results for d = 3, though the qualitative behavior is unchanged
for d ≥ 3 (for d = 2, the area remains finite at large H∆t). Note that L ap-
proaches a constant e−Ht0/H at large H∆t, consistent with the fact that real
extremal surfaces do not exist for larger L.

2, 3, 4, 5, 6, 7; in particular, we indicate contours along which L is real. One of

these runs along the real positive ∆t-axis, looping tightly around the branch cut,

but the others lie at complex ∆t. We see that one may obtain large positive

L-values by taking Re ∆t large and negative along one of the real L contours in

the lower half plane. For d > 2 this contour clearly also reaches L = 0 (and in

fact passes to negative L), providing a complex extremal surface for all physically

relevant L.

In parallel with the results of [78] for black holes, we expect additional contours

of real L to exist on other sheets of the Riemann surface for L(∆t). This function

and its Riemann surface is defined by analytic continuation through the branch

cuts in figure 7.9. The branch points are of logarithmic type for d > 2 where they

lead to an infinite number of sheets. The d = 2 case is special in that the branch

points of L(∆t) are only two-sheeted square-root type branches; though in that

case there are additional infinite-sheeted logarithmic branchings of the physically-
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interesting function A(L) that make the overall structure much the same.

Of course, the mere existence of complex extremal surfaces need not imply that

they are relevant to our study of entropy. For bulk spacetimes constructed via

some Euclidean path integral, one could plausibly use analytic continuation and

the argument of [71] to write the desired entropy in terms of extremal surfaces.

But for a given complex extremal surface to appear in this calculation it must

be possible to appropriately deform the original contour of integration. A priori,

this is far from guaranteed – though since there are no real extremal surfaces for

L > H−1e−Ht0 , any contours that are allowed must be complex.

For d = 2 our codimension-2 surfaces are geodesics and the area becomes a

length. As noted earlier, the length of bulk geodesics can also be used to ap-

proximate two-point functions of CFT operators with large dimension (so long as

it is still small enough to ignore gravitational back-reaction). This is of course

closely related to our entropy problem, since entropy can be calculated from the

two-point function of twist operators [220]. These twist operators do indeed have

large dimension – though, since acting with appropriate twist operators is equiv-

alent to replicating the entire large N CFT in the sense of the replica trick, their

dimension is in fact large enough the gravitational back-reaction is generally non-

trivial. So while the two calculations are not precisely the same, it is interesting

to write the well-known exact two-point functions in dS3 as a sum over complex

geodesics. This result is presented in appendix B.5, which finds this sum to use an

infinite number of terms from an infinite number of sheets of the Riemann surface

for A(L). The analogue for d > 2 would be to use an infinite number of complex

geodesics on an infinite number of sheets of the Riemann surface for L(∆t). So
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at least in this context there is no problem deforming the relevant path integral

to take advantage of complex saddles. It is tempting to suggest that related con-

tours will be relevant for studying the entropy of AdS-dS-wormholes, leading to

non-zero leading-order mutual information between localized regions on opposite

boundaries.

7.6 Discussion

This work considered two-sided AdS-dS-wormholes, which are spacetimes that

contain a region of unbounded inflation. In particular, the future conformal

boundary of the wormhole interior contains a smooth spacelike piece IdS as shown

in figure 7.1. Explicit examples satisfying the null energy condition were con-

structed in section 7.2. While our smooth examples contain Cauchy horizons,

we expect such solutions to be unstable to decay into a more generic class of

AdS-dS-wormholes which otherwise retain all of the properties discussed below.

Our main result is that these geometries fail to admit HHRT surfaces (i.e.,

possibly non-minimal Hubeny-Rangamani-Takayanagi surfaces with the homology

constraint emphasized by Headrick) that would exist in more familiar black hole

spacetimes. In particular, section 7.3 showed that no HHRT surface can span

the wormhole, connecting one side to the other. Instead, HHRT surfaces for the

associated entropy problems must be disconnected, with one piece on each side

of the wormhole. Section 7.4 showed that certain of our wormholes have plane-

symmetric HHRT surface homologous to an entire boundary – which we termed

total entropy surfaces – there is also a large class that do not. We suggested
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Figure 7.9: L as a function of complex ∆t in dSd. From left to right and top to
bottom, the plots show d = 2, 3, 4, 5, 6, 7. Hue indicates arg(L) (with real posi-
tive [negative] L in red [turquoise]), while shade indicates the magnitude of |L|
(with |L| = 0 in black and increasing |L| in lighter shades). The white horizon-
tal strips mark the locations of branch cuts, and the black lines are contours
along which L is real. |L| is bounded in the right half-plane, but grows without
bound in the left half-plane; thus the only contours that can reach arbitrarily
large real L are the two complex ones that run to large negative Re(∆t).
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that less-symmetric such surfaces also fail to exist, so that there are no extremal

codimension-2 surfaces in the entire homology class. If so, the HHRT proposal

becomes ill-defined and requires improvement. We also gave related examples

where HHRT surfaces would exist but give physically incorrect results.

The conceptually-simplest possible changes to HHRT were discussed in sec-

tion 7.4. These involve first regulating the dS-wormhole by allowing only a finite

amount of inflation. After the inflating phase, the wormhole is required to col-

lapse to a future singularity; see appendix B.4 for details. We argued that, at

least in our examples, the limit in which the regulator is removed gives natural

wormhole-spanning and total entropy HRRT surfaces lying in the future confor-

mal boundary; i.e., they lie in the conformally extended spacetime M instead of

the physical spacetimeM . In the wormhole-spanning case this surface has infinite

area and so is never the minimal-area surface. But in the total entropy context

any limiting surface must have finite entropy density consistent with the CFT

density of states. This regulate-and-take-limits approach was called HHRT. But

we did not investigate the convergence of these limits in detail, so it remains to

determine the extent to which they are well-defined.

We also suggested an extended maximim prescription maximin that takes lim-

its directly in the unregulated wormhole spacetime and may give results identical

to HHRT. The maximin procedure clearly assigns well-defined (though perhaps

infinite) area to each entropy problem, and in appropriate cases may also yield a

well-defined maximin surface in M . But we did not analyze precisely when this

surface construction succeeds, and it again remains to study when this area will

agree with regulate-and-take-limits procedures.
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Under either HHRT or maximin one finds that toroidal AdS-dS-wormholes

are dual to highly entangled pure states on a pair of CFTs, and that this remains

true for planar CFTs obtained through an appropriate large-torus limit13. But

the associated mutual information is as delocalized as possible. In particular,

for CFTs on infinite spacetimes, the leading-order mutual information vanishes

between any finite-sized regions A,B of opposite CFTs.

A strictly vanishing mutual information between finite-sized subregions would

contradict the non-vanishing correlators 〈OCFT1(x1, t1)OCFT2(x2, t2)〉 associated

with taking appropriate boundary limits of bulk two-point functions14; see e.g.

[252]. But the claim is only that the mutual information vanishes at leading order

in large N , so some finite mutual information may remain. Indeed, according

to [312] (see also [313]) it is precisely the O(1) correction that is encoded in the

state of bulk quantum fields to which the supergravity approximation applies.

Such fields are dual to CFT operators whose dimensions are not too large. The

implication is thus only that generic operators of large dimension (e.g., of order

N2 in 3+1 N = 4 super Yang-Mills) have vanishing correlators between the two

CFTs.

We see no inherent contradiction with this interpretation. Indeed, the physics

is quite similar to that naively obtained from the extreme limit of Reissner-

13Though there is another large-torus limit where it does not. Both limits are described by
the same planar AdS-dS-wormhole but with different notions of the homology constraint. See
section 7.4.3.

14If our wormhole can be found as the Wick rotation of a saddle that dominates the Euclidean
path integral, this integral defines a state in which the correlator can be computed using the
geodesic approximation (and where it will be non-zero). But in any case the linearized bulk
equation of motion would allow the above CFT correlator to vanish identically only if the
corresponding bulk correlator 〈φ(x1, r1, t1)φ(x2, r2, t2)〉 vanishes for all (x1, r1, t1) in the left
region I and all (x2, r2, t2) in the right region I. This is a very fine-tuned property and we are
free to consider bulk quantum states on our wormhole background for which it does not hold.
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Nordström black holes. There the large area of wormhole-spanning surfaces is

associated with the infinite throat that develops at zero temperature (T = 0).

The most apparent difference is that for Reissner-Nordström the two-boundary

spacetime becomes disconnected at T = 0, making it somewhat more natural to

consider quantum states of the linearized bulk fields having vanishing correlators

between the two sides. But there are also states with non-vanishing correlators,

and for fields with fine-tuned values of the bulk charge and mass such states are in

fact naturally constructed by the bulk path integral dual to charged thermofield-

double states in the CFT [76]. A more critical difference may be that small T

Reissner-Nördstrom black holes tend to be unstable in top-down models, while

causality forbids any instability of our exterior (the left and right copies of region

I) being activated by starting inflation in the interior of our wormhole.

Intriguingly, the physics is also quite similar to that expected for generic en-

tangled states (see e.g [40, 229, 281, 282] for holographic discussions). This is even

more so when one chooses quantum states for the bulk fields where

〈OCFT1(x1, t1)OCFT2(x2, t2)〉 = 0 (7.21)

(see again footnote 14). The one point of tension is that [281] predicted wormholes

associated with such generic states to have time-independent interiors – though

there is no actual contradiction so long as all implications for the CFTs remain

time-independent.

It is possible that such physical predictions are correct and will provide insights

into the holographic description of inflation. But the paucity of real codimension-
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2 surfaces makes our AdS-dS-wormholes a natural context in which to investigate

further possible modifications of HHRT. For example, one might ask if our worm-

holes might have no dual interpretation at all, or more conservatively if dual

descriptions might require more than just a pair of CFTs; e.g., despite the HHRT

claim that the state on both CFTs is pure at leading order in large N , one might

suppose that the natural two CFTs are both highly entangled with some third sys-

tem. This latter option would be analogous to the mixed-state proposal of [283],

and the third system might correspond to the superselection sectors of [143, 144].

The present understanding of gauge/gravity duality is sufficiently coarse that we

cannot exclude such suggestions, though as in [283], it is natural to take the

constructions of [314] and related work as suggesting that a dual interpretation

does in fact exist. And if one can construct our wormholes from (due to the lack

of time-symmetry, complex) saddle points for Euclidean path integrals then one

should be able to argue as in the thermofield-double discussion of [222] that it is

given by a pure state on two CFTs. Indeed, one should then also be able to argue

as in [71] that something like HRRT does in fact hold.

The discussion of complex saddles naturally motivates a milder possible modi-

fication of HHRT that, at least in analytic spacetimes, would make use of complex

extremal surfaces in addition to real ones. For bulk black holes dual to thermofield

double states this option was studied in [78], and for AdS-dS-wormholes it was

briefly addressed in section 7.5. In particular, noting that HHRT is superficially

similar to the the geodesic approximation for two-point functions motivated a

study of this latter context. We considered the case of dS3 – where geodesics

are also codimension-2 extremal surfaces – and found complex geodesics to be
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critical in constructing a stationary-phase approximation to the exact result. In

particular, in the two-point function calculation it appears that one can deform

the contour of integration to take advantage of complex geodesics living on an

infinite number of sheets of the associated Riemann surface.

It would be very useful to study complex HHRT surfaces in full AdS-dS-

wormholes. One would specifically like to understand whether the results might

shed light on the confusions surrounding the use of complex surfaces that were

discussed in [78]. Unfortunately, since the cut-and-paste examples of section 7.2

are not analytic, the complexification of these particular spacetimes is far from

unique and any notion of complex surfaces may be ill-defined. This places a

detailed analysis of complex extremal surfaces in any AdS-dS-wormhole beyond

the scope of this work, making it an interesting challenge for future investigation.
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Complex Entangling Surfaces for

AdS and Lifshitz Black Holes?

8.1 Introduction

The Ryu-Takayanagi proposal [69, 280] for holographic entropy and the covari-

ant generalization [70] by Hubeny, Rangamani, and Takayangi (HRT) relate the

area of certain codimension-2 bulk extremal surfaces Σ to corresponding von Neu-

mann entropies S(ρD) for the dual CFT. Each entropy involves a reduced density

matrix ρD defined by restricting the CFT to a globally hyperbolic domain D. The

main requirement is that, interpreting D as a region of the conformal boundary

of the asymptotically-AdSd+1 bulk, the intersection Σ∩D must coincide with the

boundary ∂C of a Cauchy surface C in D. In addition, Σ must be homologous to

C and there should be no other such surface Σ′ of smaller area. In such contexts,
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these proposals state

Sren(ρD) =
Arearen(Σ)

4GN

. (8.1)

On both sides, the subscript “ren” indicates that divergent quantities have been

renormalized in corresponding ways.

While there is now an impressive amount of data supporting these conjectures

(see e.g. [69, 71, 229, 255, 280, 289, 290, 303] and further references in [315]),

much of the evidence remains rather qualitative. This is especially true in the

time-dependent context. As a result, it leaves open the question of what condi-

tions might be required for (8.1) to hold quantitatively. We focus below on the

possibility that analyticity of the bulk spacetime may be important, and on re-

lated questions involving complex extremal surfaces. Understanding such issues

may be important for properly interpreting recent work using Ryu-Takayanagi and

HRT to study the relationship between bulk and boundary notions of localization

[306–308] and to derive bulk dynamics from that of the CFT [316–319].

Our study is motivated by two observations. The first is that all attempts

[71, 288–291] to provide general derivations of (8.1) make use of both Euclidean

path integrals and the bulk saddle-point approximation. This structure inherently

relies on some measure of analytic continuation, and suggests that one may find

cases where intrinsically complex saddles dominate the path integral. While the

arguments in these works (and in particular [71]) are phrased in the static context

of the original Ryu-Takayangi proposal [69, 280], the only crucial ingredient ap-

pears to be the existence of a well-defined – not necessarily real – asymptotically-

Euclidean section. As noted in e.g. [320], for any spacetime with this property

analytic continuation to the real Lorenzian section will imply the HRT conjecture
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so long as the real Lorentzian extremal surface provides the most relevant sad-

dle point. This suggests that (8.1) might apply only to analytic spacetimes and,

furthermore, that even in this case it may generally require the use of complex

extremal surfaces.

The second observation is an explicit example of the concerns raised by the

first. Recall (see e.g. [67, 321]) that two-point functions of heavy quantum fields

may be approximated by e−mL, where L is the proper length of a geodesic connect-

ing the points and m is the relevant mass. Since geodesics are extremal surfaces

of codimension d in a (d+1)-dimensional spacetime, this geodesic approximation

shares formal similarities with the holographic entanglement proposal. Further-

more, it can be derived from the stationary phase approximation to the Euclidean

path integral, and the fact [220] that CFT von Neumann entropies may be com-

puted from twist operator correlation functions may provide a tight connection

to holographic entanglement for d = 2 (with corresponding generalizations from

geodesics to other minimal surfaces when d > 2). But for the geodesic approxi-

mation one can show that analyticity is indeed generally required [261] and that

complex geodesics play critical roles in certain contexts [34].

Though this concern has been understood for some time, there is a surpris-

ing lack of discussion in the literature. This may be due in part to the lack of

known examples. Indeed, to our knowledge no complex codimension-2 surfaces

have been previously identified that satisfy appropriate boundary conditions in

any spacetime. We overcome this obstacle below by exhibiting families of com-

plex codimension-2 surfaces in standard (d + 1)-dimensional planar black holes

corresponding as in [222] to thermofield double states in dual CFTs on Rd. We
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investigate the Bañados-Teitelboim-Zanelli (BTZ) solution, Schwarzschild-AdSd+1

black holes for 3 ≤ d ≤ 7, and Schwarzschild-Lifshitz black holes [322]. We work

in the maximally analytically extended spacetimes, where the real Lorentzian sec-

tion has two asymptotic regions. The dual CFT thus lives on two copies of Rd.

The surfaces we consider are anchored on both boundaries at some spatial loca-

tion x⊥ and some time tb, much as in [229]. They would thus be appropriate for

computing the entropy of the CFT on a pair of half (d − 1)-planes ending at x⊥

at the time tb, with one half-plane in each copy of Rd. For this case, the globally

hyperbolic domain D mentioned in the introduction is just the corresponding pair

of Rindler-like wedges with each origin of Rindler coordinates located at tb, x
⊥.

In all cases we identify complex extremal surfaces satisfying boundary conditions

relevant to the holographic entanglement conjectures. For Schwarzschild-AdS and

Schwarzshild-Lifshitz we find families where the real part of the area is smaller

than for corresponding real extremal surfaces.

We begin by discussing the status of (8.1) for complex surfaces in section 8.2.

The area of a complex surface is generally complex, while entropies must be real.

We must therefore modify (8.1) if complex surfaces turn out to be relevant. This

issue remains confusing, but for the present work we choose to study a straw-man

model that replaces Aren in (8.1) by its real part.

Section 8.3 then explains our general approach to finding the desired com-

plex surfaces and studying their properties. This is largely a transcription of

the method used for complex geodesics in [76], which in turn builds on many

other works. However, we take the opportunity to make certain improvements

and corrections. The technique applies to surfaces of any codimension n, and we

277



Complex Entangling Surfaces for AdS and Lifshitz Black Holes? Chapter 8

study complex geodesics in Schwarzschild-AdSd+1 as an illustration of the gen-

eral method. The results for d 6= 4 appear to be new, and for d > 4 indicate

that real geodesics in the Lorentz-signature spacetime can fail to dominate even

on surfaces invariant under time-reflection symmetry (where analytic continua-

tion between Euclidean and Lorentzian signatures is in some sense trivial). This

emphasizes that complex surfaces could be important even in the original Ryu-

Takayanagi context of static bulk spacetimes and not just in the more general

time-dependent HRT context.

Complex codimension-2 surfaces for planar BTZ, Schwarzschild AdSd+1 (with

3 ≤ d ≤ 7), and Schwarzschild-Lifshitz are studied in section 8.4. The BTZ

case yields a complete analytic solution showing that all complex extremal sur-

faces are in some sense higher copies of the real HRT surfaces. It follows that

the same is true for global AdS3, of which BTZ is just a subset, and also for

Poincaré AdS3. Schwarzschild-AdSd+1 is more interesting, and exhibits several

qualitatively-different families of complex extremal surfaces. We identify two fam-

ilies where the qualitative behavior of Re Aren matches expectations for the dual

CFT entropy on our half-planes. For the family called contour C below, Re Aren

is notably less than for the corresponding real extremal surfaces. It is thus plau-

sible that the dual CFT entropy is indeed controlled by these complex surfaces.

Our brief study of Schwarzschild-Lifshitz indicates results analogous to those for

Schwarzschild-AdS.

We close with a summary and some final discussion in section 8.5. In particu-

lar, we note that all complex extremal surfaces in our spacetimes lie on what are

naturally called secondary sheets of an associated Riemann surfaces. This feature
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may make it difficult for the associated saddles to contribute to the stationary

phase approximation of the relevant path integrals.

8.2 Entropy from complex areas?

As noted above, if complex surfaces are indeed relevant to the Ryu-Takayanagi

or HRT conjectures, the formula (8.1) will require modification. The issue is that

the imaginary part of Aren is generally non-zero while the von Neumann entropy

is real by definition. Now, since complex numbers enter only by analytic con-

tinuation from a real spacetime, complex extremal surfaces must appear in what

one might call complex-conjugate pairs satisfying identical boundary conditions

with complex-conjugate renormalized areas Aren and A∗
ren. The two members of

each pair are obtained by analytically continuing along corresponding paths but

in opposite directions. One might thus hope to combine Aren and A∗
ren in some

way to give a real entropy S.

The question is just how this should be done. In parallel with the geodesic

approximation to two-point functions, it is natural to interpret Aren/4GN as a

saddle-point approximation to the logarithm of a partition function. One might

then expect a pair of relevant saddles s1, s2 to give

Sren = − ln
(
C(s1)e

−Aren(s1)/4GN + C(s2)e
−Aren(s2)/4GN

)
, (8.2)

where the factors C(s1), C(s2) represent finite GN corrections that in particular

include fluctuation determinants from quantum fields propagating on the classical

spacetimes s1, s2.
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For Aren(s1) = Aren(s2)
∗ (and presumably C(s1) = C(s2)

∗) the entropy be-

comes

Sren =
ReAren

4GN

− ln 2|C(s1)| − ln cos

(
−ImAren

4GN

+ φ

)
, (8.3)

where the phase φ is defined by C(s1) = |C(s1)|eiφ. But for small GN , where

the formula (8.1) holds, the cosine oscillates rapidly. This will often give Sren an

unphysical imaginary part. It is not a priori clear whether one should think of

this imaginary part as being of order 1/GN or instead being bounded but rapidly

changing as GN → 0. In the latter case it would be problematic only at the level

of subleading corrections, and we might content ourselves with using

Sren ≈ ReAren

4GN

(8.4)

at leading order in 1/GN .

Interestingly, the actual form of the Lewkowycz-Maldacena argument [71] for

(8.1) – or indeed any replica argument with a saddle-point approximation – ap-

pears to lead to result somewhat different from (8.2)1. This occurs because it is

the Renyi entropies Sn = − 1
n−1

ln Tr ρn (for integer n) that are directly given by

partition functions, and for which the saddle-point approximation is then used.

The von Neumann entropy is finally computed by analytically continuing to all

real n and using

Sren = lim
n→1

Sn = − lim
n→1

1

n− 1
lnTrρn, (8.5)

renormalizing each expression as needed. In the saddle point approximation we

1This point was brought to our attention through a conference presentation by Matt Headrick
[323], who in turn learned it from private discussion with Rob Myers [324].
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have Tr ρn ≈ e−In/4GN for some In. If the von Neumann entropy is to be finite, In

must vanish at n = 1. So, for fixed GN , as n→ 1 we may write

e−In/4GN = 1− (n− 1)
1

4GN

dIn(s)

dn

∣∣∣∣
n=1

+ · · · , (8.6)

where s now denotes a family of saddles with one for each n. If two such families

are relevant, we have

Sn =− 1

n− 1
ln
(
Cn(s1)e

−In(s1)/4GN + Cn(s2)e
−In(s2)/4GN

)
(8.7a)

=− 1

n− 1
ln

(
Cn(s1)

[
1− (n− 1)

1

4GN

dIn(s1)

dn

∣∣∣∣
n=1

+ · · ·
]

(8.7b)

+ Cn(s2)

[
1− (n− 1)

1

4GN

dIn(s2)

dn

∣∣∣∣
n=1

+ · · ·
])

. (8.7c)

A finite von Neumann entropy requires the normalization C(s1) + C(s2) = 1.

Taking n→ 1 thus yields

Sren =
1

4GN

(
C1(s1)

dIn(s1)

dn
+ C1(s2)

dIn(s2)

dn

)∣∣∣∣
n=1

, (8.8)

where we have neglected a term involving dCn/dn which is subleading at small

GN .

Furthermore, in any such argument, the saddle at n = 1 is taken to be known

and fixed; indeed, it should give the bulk dual of the original mixed state ρ. Thus

s1 and s2 both approach this fixed saddle as n→ 1. As a result, if the saddle-point

approximation continues to hold as n → 1, the fluctuation contributions C1(s1),

C1(s2) must agree at n = 1. The constraint C1(s1)+C1(s2) = 1 then requires both
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to be 1/2. Since obtaining (8.1) in the case of a single extremal surface requires

Aren = dIn(s1)/dn|n=1, with two extremal surfaces the argument gives

Sren =
Aren(s1) + Aren(s2)

8GN

(8.9)

so long as each surface leads to a corresponding family of saddles for Tr ρn for all

n. Thus the area in (8.1) has been replaced with the average of the two areas.

For Aren(s1) = Aren(s2)
∗ this is equivalent to taking the real part; i.e., the final

conclusion is essentially identical to (8.4).

The result (8.9) appears to be physically incorrect. As a concrete example,

consider the black hole quotients of AdS3 described in [325–328] that have a single

asymptotically-AdS region (which asymptotes to global AdS3). Such spacetimes

were called AdS geons in [329], which suggested that they are dual to pure CFT

states. This was later argued in detail by [222, 330]. This is consistent with the

fact that any Cauchy surface for the conformal boundary is homologous in the

bulk to the empty set. So minimizing over real extremal surfaces leads to S = 0 as

desired. But the bifurcation surface of the black hole horizon is another extremal

surface, this time of positive area. Averaging the two as in (8.9) would give S > 0

and contradict the description as a pure state.

It remains possible that (8.9) might nevertheless be salvaged by including

in the average further extremal surfaces not yet identified. Complex extremal

surfaces could contribute negatively and cancel the positive contribution from

the extremal surface at the horizon. But this seems unlikely and, even if true,

would make the entanglement conjectures extremely difficult to use in practice.
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One instead expects that the saddle-point phase approximation simply fails near

n = 1, as this is typically the case when one varies parameters so as to make two

saddles coincide.

The above discussion mostly serves to illustrate our ignorance of how (8.1)

should be modified to accommodate complex extremal surfaces. While we have

discussed the problem at the level of the von Neumann entropy, the replica dis-

cussion above makes it clear that the issue is already present at the level of the

Renyi entropies. The point is that Trρn must be positive definite for any quantum

system. But writing

Trρn = e−In/4GN + e−I
∗
n/4GN (8.10)

for a complex conjugate pair of saddles one finds that the sign of the right-hand

side oscillates quickly as GN → 0 when the action In is not real. One could choose

to take this as an indication that only saddles with real action can contribute to

Renyi entropies in the semiclassical limit, and thus that only extremal surfaces

with real areas could contribute to von Neumann entropies. But other possibilities

may exist. For example, we recall that in some contexts [331] carefully studying

contours of integration can show that the correct semi-classical approximation is

e−|S|. It would be very interesting if a similar conclusion might somehow apply

here.

Since we found two arguments above leading us to replace Aren in (8.1) with its

real part, we adopt this hypothesis for discussion purposes below. To emphasize

the uncertainty in this conclusion, we refer to this suggestion as the straw-man

proposal2. We will consider each complex conjugate pair separately and not at-

2 It would be very interesting to understand whether our straw man proposal – or indeed any
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tempt to further combine the results from various pairs. We also comment on

the relative size of ReAren for various such complex pairs, though we refrain from

stating whether this means that any such pair necessarily dominates the result.

Indeed, given a set of saddles it is typically difficult to determine whether the

contour of integration can be deformed to pass through them in such a way that

they can actually contribute to the desired saddle-point approximation. We defer

further discussion of this issue to section 8.5.

8.3 Method and Analytic Structures

We now outline our general procedure for finding complex extremal surfaces.

After a brief introduction to the spacetimes of interest, the basic techniques are

presented in section 8.3.1 generalizing methods used to study complex geodesics

in [76] (based on e.g. [228, 229, 332]). Relevant analytic structures are dis-

cussed in section 8.3.2. We consider extremal surfaces Σ of general codimension

n, and we illustrate the method in section 8.3.3 by studying complex geodesics in

Schwarzschild AdSd+1.

As noted above, for simplicity we study (d + 1)-dimensional spacetimes de-

scribing planar black holes with AdS-like asymptotics in each of two asymptotic

regions. We therefore restrict to spacetimes of the form

ds2 = −f(r)dt2 + dr2

g(r)
+ r2dx2d−1, (8.11)

other proposal involving complex extremal surfaces – satisfies well known properties of entropies
like strong subadditivity. This property has been shown to hold in [255] and [303] for the original
Ryu-Takayanagi and HRT proposals based solely on real extremal surfaces, but it is far from
clear that they continue to hold for complex generalizations.
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Figure 8.1: A conformal diagram of our spacetimes. The asymptotic regions are
located in the left and right regions. The imaginary part of the time coordinate
t is constant in each wedge, and t has period t ∼ t+ iβ. We consider extremal
surfaces anchored at the points indicated on each boundary.

where f(r) and g(r) each have a simple zero at some r = rh > 0 corresponding to

a horizon with inverse temperature

β =
4π√

f ′(rh)g′(rh)
. (8.12)

We assume our spacetimes to have timelike conformal boundaries at r = ∞,

though we make no further assumption about the large r behavior of f and g.

In particular, we allow both asymptotically AdSd+1 and asymptotically Lifshitz

spacetimes [333] restricted to z ≥ 1 (so that the null energy condition is satis-

fied [334]). We assume that f , g, and f/g are analytic functions of r everywhere on

the complex plane except perhaps at r = 0 and ∞. In the Lifshitz case, r = 0,∞

will be branch points so that it is better to say that f , g, and f/g are analytic on

appropriate Riemann surfaces.
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8.3.1 Extremal Surfaces

To study surfaces Σ of codimension n, it is useful to divide the (d − 1) coor-

dinates x into two families

{
x⊥
}
=
{
x1, . . . , xn−1

}
, (8.13a)

{
x‖
}
=
{
xn, . . . , xd−1

}
. (8.13b)

We will require x⊥ to be constant on the boundary ∂Σ of Σ, and by translation

invariance we may take (x⊥)|∂Σ = 0. This fixes n − 1 boundary conditions, so it

remains only to specify a time coordinate on ∂Σ.

The horizon at r = rh divides the spacetime into four wedges, and we can

use the Schwarzschild-like coordinates t, r of (8.11) in all four wedges by analytic

continuation. This prescription causes the imaginary part of t to shift by iβ/4

every time a horizon is crossed, as shown in figure 8.1, and imposes a periodic-

ity t ∼ t + iβ. We thus require Σ to stretch between the two boundaries, with

t|∂Σ = tb on the right and t|∂Σ = −tb + iβ/2 on the left. We take take tb to be

a real parameter specifying the desired boundary conditions and more generally

use ∆t to denote the time difference between the two ends of any extremal surface

with (x⊥)|∂Σ = 0. It will sometimes be useful to break ∆t into its real and imag-

inary parts by writing ∆t = −2tR + itI so that surfaces satisfying our boundary

conditions have tR = tb and tI = β/2.

Since our boundary conditions are invariant under translations in x‖ we as-

sume Σ to share this symmetry. Thus the problem reduces to finding (t, r, x⊥) as

functions of a single parameter λ which we specify below. In fact, since momen-
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tum conservation requires x⊥ to be monotonic in λ, the fact that x⊥ vanishes on

both boundaries implies x⊥ = 0 on all of Σ so that we need only solve for the two

embedding functions (t, r) = (T (λ), R(λ)). The area functional then becomes

A = Vd−n

∫
dλRd−n

√

−f(R)Ṫ 2 +
Ṙ2

g(R)
≡ Vd−n

∫
dλL, (8.14)

where Vd−n is the volume of the x‖ space and dots denote derivatives with respect

to λ.

Since T is cyclic in (8.14), its conjugate momentum (hereafter referred to as

energy) is a constant of motion:

E = −∂L
∂Ṫ

=
R2(d−n)f(R)

L Ṫ . (8.15)

Note that E may be complex for complex surfaces Σ. Finally, we invoke the

reparametrization freedom of (8.14) to choose λ to satisfy L = Rd−n. This con-

straint serves as the remaining equation of motion, which using (8.15) can be

written as the Newtonian particle-in-a-potential problem

Ṙ2 + Veff(R) = 0, where Veff(R) = −g(R)− E2g(R)

R2(d−n)f(R)
. (8.16)

We have thus reduced the system to quadratures. In particular, since we allow

complex R and T , given any contour γ in the complex R plane we can solve (8.16)

and (8.15) for dT/dR and integrate to find a T (R) that solves the equations of

motion3. The only question is whether the associated complex extremal surface

3 This point was not correctly discussed in [76], which instead claimed that each complex
geodesic had a preferred turning point. This is not generally true, but does not affect the final
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satisfies our boundary condition. I.e., we must require both ends of the contour γ

to approach R = ∞ along the real axis and then compare the total elapsed time

∆t ≡ −2tR + itI =

∫

γ

E

Rd−nf(R)
√

−Veff(R)
dR (8.17)

with −2tb + iβ/2.

A similar calculation gives the renormalized area of the surface as

Aren = lim
ǫ→0

(
Vd−n

∫

γǫ

Rd−n
√

−Veff(R)
dR + Act(ǫ)

)
, (8.18)

where ǫ is a UV regulator, Act(ǫ) is a counterterm that cancels the ǫ-divergent

terms in A, and γǫ is a regulated contour that runs to R = rh/ǫ rather than R →

∞. Since the renormalized area is an on-shell action, (8.17) and (8.18) satisfy the

Hamilton-Jacobi relation

dAren = −Vd−nE d(∆t), (8.19)

which can also be checked directly. This structure precisely parallels that of

complex geodesics; see e.g. [228] and the recent review in [76].

Since Veff(R) generally vanishes at several values of R, the function
√

−Veff(R)

defines a non-trivial Riemann surface over the complex R plane. There may also

be additional branch points at R = 0 and at R = ∞ (for the Lifshitz case).

The branch points of
√

−Veff(R) will be denoted Rbranch(E). So long as f and g

have no branch points themselves (i.e., except for the Lifshitz case), the Riemann

results of [76].
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surface for
√
−Veff(R) has precisely two sheets.

Because the sign of
√

−Veff(R) in (8.17) determines the sign of Ṙ, our boundary

conditions require it to take opposite values at the two ends of γ. In particular,

in the non-Lifshitz case allowed contours γ thus run between endpoints R = ∞

on opposite sheets of the Riemann surface for
√

−Veff(R), and without loss of

generality we may take them to run from the negative branch to the positive

branch. Examples of such contours are shown in figure 8.2. In the limit where the

contour is deformed to tightly circle some branch point, it is natural to think of

the branch point as a turning point of the trajectory. This is the case for contours

along the real R-axis – such as the one shown in figure 8.2(b)– that describe real

extremal surfaces in either Euclidean or Lorentzian signature.

Of course, smooth deformations of the contour γ that preserve the endpoints

will not change (8.17) or (8.18). Two contours related in this way will be said

to describe equivalent extremal surfaces, with inequivalent surfaces at given E

corresponding to homotopically distinct contours on the Riemann surface for
√
−Veff(R).

8.3.2 Analytic Structure of ∆t(E) and Aren(E)

One would like to use (8.17) and (8.18) to define Aren as a function of tb. But

in general there will be multiple inequivalent extremal surfaces for a given tb. As

a result, Aren(tb) is in fact properly defined on a multi-sheeted Riemann surface.

A useful way to deal with this complication is to work directly with ∆t(E) and

Aren(E) as described by (8.17) and (8.18). While ∆t(E) and Aren(E) are again

defined on non-trivial Riemann surfaces, their structure is closely related to that
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Figure 8.2: The branching structure of the integrands of (8.17) and (8.18) in
the complex R-plane, and sample contours of integration γ. The number of
branch points depends on the precise form of Veff ; here we draw four, as for
geodesics in d = 3 AdS-Schwarzschild. The branch points correspond to zeros
of Veff and often an additional branch point at R = 0. We introduce branch cuts
in order to draw figures; the solid and dashed portions of γ indicate segments
that run on different sheets of the associated Riemann surface. For convenience
we choose the branch cuts to run radially inward, connecting all other branch
points Rbranch directly to R = 0. We adopt this convention even when R = 0
is not a branch point – in effect momentarily introducing an artificial branch
point whose effects must disappear from the final results. Figure (a) shows
the generic (complex E) case in which all the branch points lie at complex R.
Figure (b) shows the special case in which E is real, in which case at least
one of the branch points lies on the positive R-axis. The extremal surface
corresponding to the indicated contour γ is then equivalent to a real extremal
surface which may be described as having a turning point at the encircled
branch point. The integrand for ∆t may also have poles at other values of R,
but these are not shown.

of the branch points Rbranch(E) for
√

−Veff(R). This structure is again like that

of the geodesic case presented in [76], though our discussion below corrects some

minor errors in [76] related to footnote 3.

Indeed, the functions (8.17) and (8.18) are analytic in E so long as the con-

tour γ can be deformed to avoid branch points Rbranch(E) or poles. But at certain

critical energies two branch points will merge. Contours γ that run between these
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branch points will be said to be pinched as E becomes critical, and can no longer

be deformed to avoid them. Mergers of three or more branch points do not occur

for the examples considered below.

When the integration contour is pinched we divide the critical energies into

two classes, which we denote Ec and E ′
c. The former (Ec) are energies where

the merging branch points are both simple roots of Veff (with no other coincident

singularities4), so that Veff develops a double root at Ec. Thus as E → Ec, each

integrand becomes structurally similar to |R − Rbranch|−1 so that the integrals

∆t(E) and Aren(E) diverge. Careful examination shows that when the contour γ is

pinched at such Ec, the functions ∆t(E) and Aren(E) both behave like C ln(E−Ec)

near Ec for some complex coefficient C. So both have logarithmic branch points

at Ec. In contrast, the E ′
c are energies where roots of Veff moves to R = 0 or (for

Lifshitz) to R = ∞. In general, ∆t(E) and Aren(E) do not diverge at such E ′
c,

though they do have branch points there.

When the integration contour is not pinched, ∆t(E) and Aren(E) remain an-

alytic even when roots merge; such situations are neither Ec’s nor E ′
c’s and will

not be called critical. Since we will see below that different sheets of our Riemann

surface are associated with different contours γ, this means that the identification

of a given energy E as being critical (or not) will vary as one moves from one

sheet to another.

Since ∆t(E) diverges at the Ec, we expect the large time behavior of at least

some families of extremal surfaces to be determined by the Ec. As for the geodesic

case [228], for a family of extremal surfaces with ∆t → ∞ as E → Ec, the

4Section 8.4.2 will describe a case where two simple roots of Veff merge with a non-branching
singularity (a pole) at R = 0.
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Hamilton-Jacobi relation (8.19) immediately yields a linear relationship between

∆t(E) and Aren(E). This can also be seen from the fact that both behave like

ln(E − Ec). In particular, for codimension-2 extremal surfaces (i.e. n = 2), one

has

Aren

4GN

= Sren = −Vd−2Ec
4GN

∆t+ · · · ≡ −1

2
svVd−2∆t+ · · · , (8.20)

where s = rd−1
h /4GN is the thermal entropy density, v is a constant, and · · · de-

note subleading terms in ∆t. For surfaces of this type that dominate the HRT

prescription, the constant v is a speed characterizing the rate of growth of the

entanglement entropy; see e.g. [45, 46, 229]. It is interesting that the relation

(8.20) is linear for asymptotically Lifshitz spacetimes (and, indeed, for more gen-

eral asymptotics) as well as for the asymptotically AdS case. This speed was

recently computed in [335] along with other properties of Schwarzschild-Lifshitz

black holes.

Tracing a closed contour in the complex E-plane around one of the branch

points of ∆t(E) results in movement from one sheet of ∆t(E) to another. Traveling

around such a contour corresponds to swapping two of the roots of Veff , so one can

think of constructing a secondary sheet of ∆t(E) by simply changing the contour

of integration in (8.17) to a new contour γ′, where the new contour is obtained

from the original contour γ by exchanging two of the branch points in figure 8.2

without allowing the contour to cross any branch points or poles. Examples of

resulting contours are shown in figure 8.3.

In order to draw diagrams, we find it useful to cut the resulting Riemann

surfaces into sheets. It is convenient to do so by introducing branch cuts that

run radially outward from branch points at any Ec, E
′
c to E = ∞; see figure 8.4.
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Figure 8.3: Sample integration contours γ′1, γ
′
2 for (8.17) and (8.18) that define

secondary Riemann sheets of ∆t(E). Both contours are obtained from γ in
figure 8.2 by exchanging the branch points in quadrants 1 and 3. For γ′1 the
originally-encircled branch point passes below the other during the exchange,
while for γ′2 it passes above. At each step, the contour must be deformed to
keep it smooth on the associated Riemann surface; it must avoid both branch
points and poles, though for simplicity we show only the former.

b

b

b

b

b
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Figure 8.4: A sample choice of branch cut structure used to define a single sheet
of ∆t and Aren in the complex E-plane; the particular structure shown here is
that of e.g. geodesics in Reissner-Nordström AdS5 or codimension-2 extremal
surfaces in Schwarzschild-AdS7. The branch points shown here correspond
to the critical energies Ec at which the contour of integration γ for (8.17)
and (8.18) becomes pinched between two roots of Veff that coincide, and are
therefore energies at which |∆t| and |A| diverge.

It is also convenient to introduce a notion of principal vs. secondary sheets. We

take the principal sheet to be the one containing those extremal surfaces that
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lie entirely within either the real Lorentzian or real Euclidean sections of the

complexified spacetime. For all examples below, it is consistent to take both

such families of surfaces to lie on a single sheet. It is natural to ask whether

the principal sheet is preferred in any physical sense over the secondary Riemann

sheets, but we defer discussion of this question to section 8.5.

The above structure makes the identification of extremal surfaces straight-

forward. The boundary conditions require that ∆t = −2tb + iβ/2, so extremal

surfaces satisfying the boundary conditions correspond to the contours tI = β/2

(mod β) in the complex E-plane. Since ∆t(E) is analytic (except at branch

points and poles), so long as the derivative does not vanish the inverse function

E(∆t) is also analytic and defines a good conformal map. Thus tR must change

monotonically along these contours when the derivative is non-zero; vanishing

derivative is generally signalled by the intersection of multiple contours. The con-

tours tI = β/2 may be found by numerically integrating (8.17), for example by

using Mathematica’s built-in NIntegrate command which is capable of perform-

ing contour integrals in the complex plane. Below, we use the structure of such

contours to probe the associated complex extremal surfaces.

8.3.3 A Cautionary Tale: Geodesics in Schwarzschild-AdS

To illustrate the above techniques, we pause to discuss complex geodesics (the

case n = d) in Schwarzschild-AdSd+1. We have studied only cases with d ≤ 7,

though we expect the results for d ≥ 8 to resemble those found for d = 5, 6, 7. We

find interesting distinctions between the cases d = 3, d = 4, and d ≥ 5. The case

d = 4 was discussed in [34], though to our knowledge the results for d 6= 4 are
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new. In particular, one might have hoped that since the t = 0 surface is common

to both the Euclidean and Lorentzian sections, geodesics in this surface would

always provide good saddle points for path integral with tb = 0. But we will see

that Schwarzschild-AdSd+1 for d ≥ 5 provides a counter-example5.

For definiteness, we first consider d = 4 as in [34] so that we have

f(r) = g(r) =
r2

ℓ2

(
1− r4h

r4

)
. (8.21)

The function Veff is as in (8.24a), and one finds [34]

∆t(E) =
β

2π

[
ln

(
E2/2− E + 1√

1 + E4/4

)
− i ln

(
−E2/2 + iE + 1√

1 + E4/4

)]
, (8.22)

where E ≡ Eℓ/rh and β = πℓ2/rh. Note that ∆t has branch points at E4 = −4.

Sketching the contours of tI = β/2 in the center panel of figure 8.5, one finds a

contour along the real E-axis corresponding to real geodesics, and two complex

contours that start and end on the branch points6. Taking again (8.25) for the area

regulator, one finds that the regulated length diverges as the contours approach

the branch points.

The presence of complex contours is generic and independent of dimension. In

figure 8.5 we sketch the contours on the principal sheet for the three cases d =

3, d = 4, and d ≥ 5. Note that there are always two sets of contours: a contour

along the real E-axis corresponding to real geodesics, and a set of complex contours

5This might be expected from the analysis of [34], which argued that perturbing the d = 4
case would produce this result. Changing d = 4 to d = 5 is such a perturbation, though so is
changing d = 4 to d = 3 (which yields very different results as shown in figure 8.5).

6In fact, these contours spiral infinitely many times around the branch points, so they actually
move off of the principal sheet of ∆t(E).
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that end at the branch points.

For d ≥ 5 the real geodesics have properties very similar to those found in

[34] for d = 4. In particular, the renormalized action diverges to −∞ at finite

tb. If these were the relevant saddle points for the path integral, this would

imply a boundary to boundary two-point function e−mLren that diverges at finite

tb. This cannot happen in a good field theory, and even the small tb behavior is

suspicious. The fact that the arrow on the real contour runs to the left in the

right panel of figure 8.5 means that tb increases in that direction and thus by

the Hamilton-Jacobi relation (8.19) that tb = 0 would be a local minimum of

the resulting two-point function. But on physical grounds it should be a local

maximum; see e.g. [40, 228, 229, 332]. We conclude that there must be some

obstacle to deforming the path integral contour of integration to make use of the

real Lorentz-signature geodesics. Instead, it is the complex geodesics shown in the

right-most panel of figure 8.5 that give physically reasonable behavior, and which

in particular end at branch points for which Lren diverges to positive infinity as

tb → ±∞. The story is similar to that in [34] for d = 4 except that the complex

tI = β/2 contours do not pass through E = 0, and the correct complex geodesics

now differ in action from the real Lorentzian geodesic even at tb = 0. Indeed, we

find that the complex geodesics with tb = 0 have smaller action7.

7 We stress, however, that the real tb = 0 geodesic appears not to provide even a subdominant
contribution. If the path integral contour could be deformed to use this geodesic in the saddle
point approximation, then by continuity the same should be true of real geodesics with tb 6= 0.
But the action of the real geodesics clearly has smaller real part in the limit where it approaches
−∞, so in that limit the real geodesics would become the dominant saddles.
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Figure 8.5: The structure of the tI = β/2 contours for geodesics in
Schwarzschild-AdSd+1; arrows denote the direction of increasing tb. From left
to right, the figures show d = 3, d = 4, and d ≥ 5. Note that there is always
a contour along the real E-axis, which for d ≥ 5 is disconnected from the two
complex ones. The complex contours spiral into the branch points.

8.4 HRT Surfaces in Planar Black Holes

We now turn to codimension-2 extremal surfaces (n = 2), which are our pri-

mary interest. In particular, we apply the above methods to identify and study

such surfaces in the maximally-extended planar BTZ, Schwarzschild-AdSd+1, and

Schwarzschild-Lifshitz spacetimes, each of which is dual to a thermofield double

state on Rd in parallel with the discussion in [222]. In all cases, we consider

the class of surfaces described in section 8.3 which satisfy boundary conditions

appropriate to computing the entropy of a pair of half (d − 1)-planes in oppo-

site components of the thermofield double state. These are bulk surfaces that

stretch from one of the two conformal boundaries to the other as shown in figure

8.1. We are mostly interested in the Schwarzschild-AdSd+1 case (section 8.4.2),

but study BTZ as an analytically-solvable warm-up in section 8.4.1. We also

use Schwarzschild-Lifshitz to probe possible dependence on boundary conditions

in section 8.4.3. Of course, since d = 2 for BTZ, geodesics and codimension-2
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surfaces coincide in that context.

8.4.1 HRT in BTZ

A planar version of the BTZ spacetime [127] may be defined by taking d =

n = 2 and

f(r) = g(r) =
r2

ℓ2

(
1− r2h

r2

)
. (8.23)

The metric (8.11) then describes a region of global AdS3 and contains no singu-

larities. One might thus argue that a better name for this region is AdS3-Rindler,

but we use the term planar BTZ to emphasize that it is the unique 3-dimensional

analogue of planar Schwarzschild-AdSd+1 for d ≥ 3.

For this case one finds

Veff(R) = −f(R)− E2, (8.24a)

∆t = β

[
− 1

π
arctanh E +

i

2

]
, (8.24b)

where again E ≡ Eℓ/rh and now β = 2πℓ2/rh. Taking the area regulator to be

Act = −2ℓ ln

(
1

ǫ

)
, (8.25)

we obtain

Aren = ℓ ln

(
4

1− E2

)
. (8.26)

The simple form of the expressions (8.24b) and (8.26) allows one to write Aren

as an explicit function of ∆t. But in order to illustrate the general procedure,
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we continue to treat Aren and ∆t as separate functions parametrized by E . In

order to find geodesics connecting the two boundaries of the BTZ black hole, we

require tI = β/2 (mod β). This condition will clearly be satisfied for real E ∈

(−1, 1). These energies correspond to the usual real geodesics, so we will call this

the principal tI = β/2 contour. At the endpoints E → ±1 we find tb → ±∞.

Moreover, Aren is real and diverges to +∞ at the endpoints. Indeed, on the

principal tI = β/2 contour Aren has a global minimum at tb = 0. It then increases

monotonically as one moves away from this value. This agrees with the expected

behavior of the entanglement entropy at large times. One can also check that

certain results are quantitatively correct [229]. Since these surfaces are geodesics

it is also natural to compare e−mLren with two-point functions, and one finds

corresponding agreement [228].

However, we may also consider the full Riemann surfaces defined by ∆t andAren.

These are obtained by a simple analytic continuation of the arctanh and logarithm,

so that each of the resulting sheets can be labeled by an integer m:

∆tm = β

[
− 1

π
arctanh E +

(2m+ 1)i

2

]
, (8.27a)

Aren,m′ = ℓ ln

(
4

1− E2

)
+ 2m′πiℓ. (8.27b)

The union of all such sheets yields the full Riemann surface. There are now many

contours for which tI = β/2 (mod β). These contours are labeled by m and all

project to the interval E ∈ (−1, 1) along the real line in the complex E plane.

We see that tb(E) is independent of m, while Aren(E) (and thus Aren(tb)) differs

from its values on the principal (m′ = 0) contour only by a tb-independent purely-
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imaginary constant. So all choices of m′ would lead to the same entropies under

the straw-man proposal of section 8.2.

As noted above, the spacetime we called planar BTZ is really just a subset

of global AdS3 (described in Rindler-like coordinates). Thus our surfaces imme-

diately define complex extremal surfaces in AdS3. If (t, r, θ) are the usual global

coordinates, these surfaces intersect the boundary at (t, θ = 0) and (t, θ = π).

For given m above, they are all related by global time translations; the nontrivial

time-dependence of the area in (8.27b) is entirely due to the transformation be-

tween the global AdS3 and BTZ conformal frames. One may also describe these

surfaces in the Poincaré patch.

8.4.2 HRT in Schwarzschild-AdS

We now turn to the more interesting case of Schwarzschild-AdSd+1. We again

set n = 2 and take

f(r) = g(r) =
r2

ℓ2

(
1− rdh

rd

)
. (8.28)

We identify the critical Ec and the corresponding coincident branch points Rbranch

by requiring Veff(Rbranch) = 0 = V ′
eff(Rbranch), which gives

Ec = ±e2πim/d
√

d

d− 2

(
d− 2

2(d− 1)

)(d−1)/d
rd−1
h

ℓ
(8.29)

for m = 1, . . . , d. By numerically integrating (8.17), we find for all 3 ≤ d ≤ 7

that the only Ec on the principal sheet of ∆t(E) are the two real ones, which

form a pair of points on the real axis with opposite signs. We also find that the

only tI = β/2 contour on this sheet connects these Ec by running along the real
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axis, as shown in figure 8.6(a) for d = 4. This contour corresponds to the real

surfaces studied in [229]. As in that work, taking

Act = −2ℓrd−2
h Vd−2

d− 2

1

ǫd−2
(8.30)

shows that Aren increases as one moves along this contour away from tb = 0 and

diverges to positive infinity as the branch points are approached (where tb → ±∞).

Though we have studied only d ≤ 7, we expect similar behavior for larger values

of d.

The secondary sheets turn out to contain much more structure. For simplicity,

we will focus in detail on the case d = 4, though we will briefly comment on the

cases d = 3 and d = 6 as well8. In Appendix B.6, we express the integrals (8.17)

and (8.18) for d = 4 in terms of standard elliptic integrals, which we will use to

obtain various approximations.

For d = 4, we see from (8.29) that there are only four critical energies Ec.

These Ec lie on the real and imaginary axes, and are related to one another by

multiples of the phase eiπ/2. In addition, there is another critical energy E ′
c = 0

at which two roots of Veff(R) coincide at R = 0. Though R = 0 is not a branch

point of the integrands of (8.17) and (8.18) for d = 4, it remains a singularity; in

this case a pole for E 6= 0. Thus the functions ∆t(E) and Aren(E) will generally

have branch points at E = 0 though they will not diverge there.

Let us now analytically continue off the principal sheet through one of the

branch cuts shown in figure 8.6(a) onto what we now call sheet #2. As shown in

8For even d the analysis is simplified by working in terms of a new variable w = (rh/r)
2; thus

is d = 6 more tractable than d = 5, 7.
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figure 8.6(b), we find a sheet with branch points at all four of the Ec as well as

at E ′
c = 0. The choice of direction is arbitrary for the branch cut ending at E ′

c = 0;

we find the choice shown in the figure convenient.

The new purely imaginary Ec lead to interesting behavior. This is perhaps

best studied by using expression (B.53) to show that near Ec = −i
√
2/33/4 r3h/ℓ,

∆t = − iβ

23/2 · 31/4 π ln (E − Ec) + C +O (E − Ec) , (8.31)

where β ≡ πℓ2/rh, E ≡ ℓE/r3h, and C is a (complex) constant. In particular, we

see that taking |E −Ec| arbitrarily small makes tI arbitrarily large and that and

tR increases uniformly as one travels around this Ec. Thus there are an infinite

number of contours satisfying tI = β/2 (mod β) circling near these Ec, crossing

to higher and higher sheets with each cycle; these contours thus form an infinite

family of “helical contours”. Some examples are shown in figure 8.6.

Returning to sheet #2, we also find the additional contours shown in fig-

ure 8.6(b). Two contours start at the branch point on the negative real axis and

leave through branch cuts, while the contour in the first quadrant enters and exits

through branch cuts. Tracking this contour through a branch cut onto a third

sheet (#3), we find that it continues and crosses yet another branch cut. On this

third sheet, we also find a variety of new contours. We will focus on the contour

labeled B in figure 8.6, which starts at the branch point E ′
c and ends at the branch

point on the positive real axis. This contour resembles a deformed version of the

original real contour, and we expect additonal such deformed contours to appear

as one probes more of the Riemann surface.

302



Complex Entangling Surfaces for AdS and Lifshitz Black Holes? Chapter 8

b b

(a)

bb

b

b

b

❆

(b)

bb

b

b

b

�

❇

❈

(c)

Figure 8.6: Schematic drawings where solid lines with arrows (red in color
version) show contours with tI = β/2 (mod β) for codimension-2 extremal
surfaces on various sheets of ∆t(E) for Schwarzschild-AdS5. Arrows on the
contours show directions of increasing tb and dashed lines indicate loci where
tb = 0. Panel (a) shows the principal sheet. Here the only contour lies along the
real E-axis, so on this sheet only the familiar real extremal surfaces satisfy our
boundary conditions. Analytically continuing through the right-hand branch
cut in the direction indicated by the vertical arrow takes us to sheet #2, shown
in (b). Note the infinite family of helical contours that circle the branch points
on the imaginary axis, as well as new contours and branch points. Analytically
continuing through the right-hand branch cut takes us to sheet #3, shown
in (c). The contour labeled A on sheet #2 continues through this cut onto
sheet #3. Aside from the real contour on the principal sheet, only the two
contours marked B and C on sheet #3 are physically acceptable near tb = 0
under the straw-man proposal of section 8.2. All other segments of complex
contours shown above cross tb = 0 when Re E 6= 0. In addition, on helical
contours Re Aren remains unphysically bounded at large tb.

For the d = 3 case, the only contour on the principal sheet is again the real

one. In this case there are no contours on sheet #2 with tI = β/2 (mod β), and

in particular no analogue of the helical contours in figure 8.6(b). However, we

expect that new contours could be found on higher sheets. For d = 6, we once

more find that the only contour on the principal sheet is the real one. On sheet

#2 there are analogues of the helical contours for d = 4 that now spiral into the

the complex Ec of (8.29). We also find an analogue of the contour in the upper
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left quadrant of figure 8.6(b), again terminating at an Ec on the negative real axis.

We have not examined higher sheets.

It is clearly of interest to investigate the areas of the extremal surfaces along

our contours. For simplicity we limit this discussion to d = 4. Following the straw-

man hypothesis of section 8.2, we focus on the real part Re Aren(E). Were this real

part to describe the CFT entropy on our pair of half-planes, the time-reflection

symmetry of the dual CFT thermofield-double state would require a corresponding

symmetry of the relevant Re Aren’s. In particular, if a single smooth contour is

to provide the relevant surfaces near tb = 0, then the derivative with respect to tb

must vanish there. The Hamilton-Jacobi relation (8.19) then requires that Re E

vanish as well; i.e., tb could vanish only on the imaginary E axis. Of the complex

contours shown in figure 8.6, only the two marked B and C have vanishing Re E

at tb = 0.

Of course, the symmetry of the spacetime under time-reversal implies that any

contour must have a time-reversed image somewhere on the Riemann surface –

though this will generically lie on some yet-unexplored Riemann sheet. One can

clearly combine the tb > 0 part of one contour with the tb < 0 part of its image to

define time-symmetric Re Aren. But with non-vanishing Re E at tb = 0, the time-

derivative is discontinuous at tb = 0; one would then need to rely on surprising

sub-leading corrections in 1/GN to match the physically expected vanishing of

dSren/dtb in the CFT. Furthermore, choosing to keep the surfaces with smallest

Re Aren would necessarily force Re Aren to have a local maximum at tb = 0; see

figure 8.7.

In contrast, as discussed in e.g. [229] the thermofield-double nature of the CFT
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t❜

Figure 8.7: The small tb part of a generic smooth real function (solid) with
non-vanishing slope at tb = 0 and its time-reversed image (dashed). Taking the
minimum of the two (red parts in color version) defines a function with a local
maximum at tb = 0 where the derivative is discontinuous.

state strongly suggests that the entropy should be a mininum at tb = 0 followed by

monotonic increase with |tb| to diverge as tb → ±∞. From the Hamilton-Jacobi

relation (8.19) and the arrows in figure 8.6, we see that this correctly describes

the behavior of Re Aren along contours B and C. But it fails at various points

along other contours. In particular, for helical contours (8.31) and (8.19) imply

that Re Aren(E) oscillates with each cycle and remains bounded as tb → ±∞. The

large tb regimes of these contours are particularly problematic, as there Re Aren(E)

is clearly smaller than for any physically acceptable contour. Under suitable

extensions of the straw man proposal, the comments in footnote 7 about the

implications of such behavior for the geodesic approximation would thus apply

here as well and indicate that even finite tb pieces of these contours cannot be

relevant to the dual CFT entropy.

For the above reasons we discuss only contours B and C in detail. These

contours are defined only for tb > 0 and tb < 0 respectively, and since at tb = 0

they reach the E = 0 branch point there is no simple notion of an extension

through tb = 0. But each must have a time-reversed copy as discussed above, and

this copy will also reach the E = 0 branch point at tb = 0. So it is natural to
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glue B and C at tb = 0 to their respective time-reversed copies. Since E(tb) = 0,

extending B and C in this way defines contours where Aren is at least C1, which

continue to meet the above physical expectations.

We begin with B. As shown in figure 8.8 (left), to good accuracy the func-

tion Re Aren(tb) along B agrees with that along the real contour on the principal

sheet. It would be interesting to understand whether the tiny discrepancy near

tb/β ∼ 0.1 is a numerical artifact. While this is beyond the scope of the present

work, it is straightforward to study the small- and late-time regimes perturba-

tively at leading order. In particular, the Hamilton-Jacobi relation (or alterna-

tively, (8.20)) guarantees that the late-time growth of Aren(tb) will be identical

along the two contours since both approach the same Ec. At small E we can

expand the elliptic integrals (B.53) and (B.57) to find

tb =
β

2π
E +O(E)3, (8.32)

ReAren =
ℓr2hV2
2

E2 +O(E)4, (8.33)

so that

ReAren =
2r4hV2
ℓ3

t2b +O(tb)
4 (8.34)

along both contours. Thus B agrees with the real contour to this order.

Contour C is even more interesting. The Hamilton-Jacobi relation again guar-

antees the late-time growth to be identical to those above, and (B.53) and (B.57)

again yield (8.32), (8.4.2), and (8.34). But for tb 6= 0 figure 8.8 clearly shows

the associated Re Aren(tb) to be smaller than for real extremal surfaces. It is thus

plausible that the associated entropy of the dual CFT is controlled by the complex
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Figure 8.8: The plots show Re Aren(tb) for contour B (lower curve in left panel,
blue in color version) and contour C (lower curve in right panel, blue in color
version) in comparison with that on the real contour (upper curve in both
panels, red in color version). Contour C clearly has smallest Re Aren. Near
tb/β = 0.1 contour B also appears to have Re Aren slightly smaller than for the
real contour, though a more careful analysis would be required to show that
this is not an artifact of our numerics.

Figure 8.9: The imaginary parts ImAren(tb) along contours B (left) and C
(right). The noise at larger values of tb is a numerical artifact, likely due the
failure of ImAren(E) to be continuous at Ec. The function ImAren(E) does
admit direction-dependent limits at Ec that make ImAren(tb) continuous there
for real tb, but a small error in the location of our contour near Ec can translate
into a large error in ImAren. We have also excised portions near tb = 0 which
exhibit numerical noise.

surfaces contour C, and not by the original real extremal surfaces.

For completeness we also include plots of the imaginary part of Aren along B

and C in figure 8.9. Expansions analogous to those above show that ImAren =
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2+O(t4b) near tb = 0 for both contours, and since they end at real Ec the imaginary

parts are again much smaller than ReAren at large |tb|. As a result, for large tb we

have |Aren| ∼ ReAren and using |Aren| ∼ ReAren gives the same result as taking

the absolute value.

8.4.3 Lifshitz

In order to investigate possible dependence on boundary conditions, we now

briefly consider the Schwarzschild-Lifhshitz black holes of [322]. The spacetimes

are characterized by the spacetime dimension d+1, a choice of dynamical scaling

exponent z, and a horizon radius rh. Since z = 1 is just the Schwarzschild-AdS

case already studied in section 8.4.2, we assume z 6= 1 below. In order to respect

the null energy condition we consider only z > 1 [334]. We also restrict to rational

z.

We will find that these spacetimes follow the same pattern seen above. The

only tI = β/2 contour on the principal sheet describes real extremal surfaces, but

complex contours appear on secondary sheets. We refer to the contour on the

principal sheet as the real contour below. For an infinite class of special cases, an

analytic argument allows us to identify contours on certain secondary sheets that

are simply related to the real contour: the associated extremal surfaces satisfy the

same boundary conditions (i.e., they have same ∆t) while Aren differs from that

on the real contour by a phase. For appropriate choices, such families satisfy our

qualitative physical expectations (minimum at tb = 0 and monotonic increase to

infinity with |tb|) for use as an HRT surface. However, in such cases ReAren(tb) is

always smaller than for the corresponding real extremal surface.
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We now begin the calculations. From [322] one sees that the desired spacetimes

satisfy

f(r) =
(r
ℓ

)2z (
1−

(rh
r

)d+z−1
)
, g(r) =

(r
ℓ

)2(
1−

(rh
r

)d+z−1
)
. (8.35)

We therefore find

∆t =
αβ

4π

∫

γ

E
ρz−1 (ρα − 1)

√
−Ṽeff(ρ)

dρ, (8.36a)

A = Vd−2ℓ r
d−2
h

∫

γ

ρd−2

√
−Ṽeff(ρ)

dρ, (8.36b)

where α ≡ d+ z − 1, β = 4πℓz+1/αrzh, ρ ≡ R/rh, E ≡ ℓzE/rα−1
h , and

Ṽeff(ρ) = − 1

ρ2(α−2)

(
ρ2(α−1) − ρα−2 + E2

)
. (8.37)

We regulate the area with

Act = − 2Vd−2ℓr
d−2
h

(d− 2)ǫd−2
. (8.38)

The critical energies are

Ec = ±(1)1/αn

√
α

α− 2

(
α− 2

2(α− 1)

)(α−1)/α

, (8.39)

where (1)
1/α
n is the nth root of xα = 1. If α is irrational, there are an infinite number

of such roots and the critical energies are dense in a circle in the complex E-plane.

We therefore restrict our analysis to rational α or, equivalently, rational z.
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Figure 8.10: Sample integration contours γ, γ′ in the complex ρ plane for
Schwarzschild-Lifshitz with d = 3, z = 2. The left panels shows the contour γ
which defines a real extremal surface for real E. There are 4 real and two
imaginary branch points, with γ encircling only the largest real branch point.
The right panel is obtained from the left by (8.40). The new contour contour γ′

defines a complex extremal surface that lies on a secondary sheet of ∆t and Aren.

We have examined the principal sheet numerically for (d, z) = (3, 2), (3, 3), (4, 2),

and (4, 3). In each of these cases we find only the real contour. Turning now to

secondary sheets, we will show that certain z exhibit a special symmetry relating

the principal sheet to a class of secondary sheets. This may be seen by choosing

an integer m and noting that the phase rotations

ρ→ e2πim/αρ, E → e−2πim/αE , (8.40)

act on the effective potential as Ṽeff → e4πim/αṼeff . Thus if ρ∗ is a root of Ṽeff at

energy E , then e2πim/αρ∗ is also a root of Ṽeff at energy e−2πim/αE .

Consider then any contour γ in the complex ρ plane that defines a real extremal

surface. The contour γ then runs along the real ρ axis, coming in from ρ = ∞

before turning around the largest real branch point ρturn and returning to ρ = ∞.
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The expressions for ∆t and Aren can be written as

∆t =
αβ

2π

∫ ∞

ρturn

E
ρz−1 (ρα − 1)

√
−Ṽeff(ρ)

dρ, (8.41a)

Aren = 2Vd−2ℓ r
d−2
h lim

ǫ→0



∫ 1/ǫ

ρturn

ρd−2

√
−Ṽeff(ρ)

dρ− 1

(d− 2)ǫd−2


 , (8.41b)

= 2Vd−2ℓ r
d−2
h



∫ ∞

ρturn


 ρd−2

√
−Ṽeff(ρ)

− ρd−3


 dρ− ρd−2

turn

(d− 2)


 , (8.41c)

where we have conveniently reabsorbed the counterterm Act into the integral ex-

pression for Aren in order to extend the integration out to ρ = ∞.

Acting with (8.40) takes the (real) turning point ρturn to ρ′turn = e2πim/αρturn.

Consequently, the original contour γ is taken to a new contour γ′ that runs from

infinity to ρ′turn along a line of constant arg(ρ) = 2πim/α. In particular, the

contour γ′ does not approach ρ = ∞ along the positive real axis, as we require

of our allowed contours. But because both of the integrands in (8.41) die off

sufficiently fast at infinity, γ′ can be deformed to approach ρ = ∞ along the

positive real axis without changing ∆t and Aren. As a result, the new contour γ′

defines a secondary sheet of the Riemann surfaces for ∆t and Aren which is related

to the principal sheet by the transformations (8.40). Examples of γ′ for the special

case d = 3, z = 2 are shown in figure 8.10.

If (8.40) preserve the condition tI = β/2 (mod β), then they will map the real

tI = β/2 (mod β) contour to another on the secondary sheet defined by γ′; exam-

ples of these contours for the special case d = 4, z = 3 are shown in figure 8.11.
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b b
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Figure 8.11: Three sheets of the Riemann surface for ∆t in d = 4, z = 3 Lifshitz.
The left panel shows the principal sheet (generated by the contour γ in figure
8.10) and the contour tI = β/2 corresponding to real extremal surfaces. The
middle and right panels show the secondary sheets that are obtained from the
principal sheet by acting with the transformations (8.40); each of these contains
an image of the real contour.

Setting ρ = eπim/αρ′, E = e−πim/αE ′, we find

∆tγ(E) = eπi(d−1)m/ααβ

2π

∫ ∞

ρ′turn

E ′

(ρ′)z−1 ((ρ′)α − 1)

√
−Ṽeff(ρ′)

dρ′ (8.42a)

= eπim(d−1)/α∆tγ′(E ′). (8.42b)

So tI = β/2 (mod β) is preserved when (d− 1)m/α is an integer.

Examining the area, we find

Aren,γ(E) = eπim(d−2)/α2Vd−2ℓ r
d−2
h



∫ ∞

ρ′turn


 (ρ′)d−2

√
−Ṽeff(ρ′)

− (ρ′)d−3


 dρ′ − (ρ′turn)

d−2

(d− 2)


 ,

(8.43a)

= eπim(d−1)/αe−πim/αAren,γ′(E ′). (8.43b)

Thus if eπim(d−1)/α = ±1 the behavior of Aren on the secondary sheet will be related

to its behavior on the principal branch by a rotation eπim/α in the complex E-plane,
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and by a change of phase e−πim/α. So since Aren is real along the real contour, it

acquires an imaginary part along these secondary contours. And since cos θ ≤ 1,

the real part Re Aren is clearly smaller for the surfaces defined by γ′ than for the

original real extremal surfaces. However, if Re eπim(d−1)/αe−πim/α < 0, the real part

of A along these secondary contours becomes large and negative at large times, in

contrast with the physical behavior expected of the entanglement entropy. Thus

the straw-man hypothesis of section 8.2 is inconsistent with the use of extremal

surfaces on certain secondary contours though it is consistent with others.

We can be a bit more explicit as to when this occurs. Let us write α = p/q

with (p, q) = 1, where (p, q) denotes the greatest common divisor of two integers

p, q. We must satisfy the constraint m(d− 1)q/p ∈ Z for the above symmetry to

preserve tI = β/2 (mod β). But the map becomes trivial when mq/p is an even

integer. If p is a divisor of m, one can show that non-trivial solutions occur for

any odd q and that Re Aren behaves as desired for even d, while for odd d it has a

global maximum at t = 0 and is unbounded below at large |tb|. When p is not a

divisor of m, non-trivial solutions occur when (p, d−1) > 1 and one can choose m

so that Aren behaves as desired for (p, d− 1) > 2; for (p, d− 1) = 2 one can choose

m so that Aren is purely imaginary. We thus find many cases where the dual CFT

entropy may plausibly be controlled by complex surfaces instead of real extremal

surfaces.
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8.5 Discussion

The above work considered the possible significance of complex extremal sur-

faces for the Ryu-Takayanagi and Hubeny-Rangamani-Takayanagi (HRT) holo-

graphic entanglement conjectures. As emphasized by the study of complex geodesics

in d > 4 Schwarzschild-AdSd+1 (section 8.3.3), this issue could in principle be as

important for the static setting as for the time-dependent context. We began by

discussing how the formula (8.1) might be modified if complex surfaces are indeed

relevant. We reached no firm conclusions, but noted that a straw-man model

replacing the renormalized area Aren by its real part is not without motivation.

Given the confusion surrounding how holographic entanglement conjectures

might be extended to include codimension-2 surfaces with complex areas, one

might have hoped that no such surfaces would meet the real conformal boundary

in the manner that these conjectures require. But we showed that they do. Such

complex surfaces exist in complexified spacetimes defined by analytic continuation

of simple real solutions. For planar BTZ, or equivalently global AdS3, they are

somewhat trivial copies of the real surfaces in which Aren differs from the real case

only by a quantized purely imaginary offset. One might expect similar behavior

for global AdSd+1 for d ≥ 3. But for Schwarzschild-AdS5 we find many distinct

families of surfaces with a rich structure; we suspect that this is the case in other

dimensions as well. We also found interesting families for Schwarzschild-Lifshitz.

Given the existence of complex extremal surfaces, one might next have hoped

that they would exhibit clearly pathological behavior so as to be excluded on

physical grounds. But in all cases studied in depth we identified families of com-

plex extremal surfaces consistent under the above straw-man proposal with basic
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physical expectations for the time-dependence of the entropy. Furthermore, these

complex surfaces have Re Aren smaller than (or sometimes equal to) that of cor-

responding real extremal surfaces. It is thus plausible at this level that the dual

CFT entropy is indeed determined by such complex extremal surfaces and not by

the real ones.

Nevertheless, one may contrast the situation here with that concerning the

geodesic approximation for 2-point functions in Schwarzschild-AdSd+1 for d ≥ 3.

As shown in [34] for d = 4 (and more generally in section 8.3.3 for other 3 ≤ d ≤ 7),

use of the real geodesics in such cases would imply unphysical behavior for the

two-point function. It is then clear that, if a geodesic approximation is to be main-

tained at all, the geodesics involved must be complex. On the other hand, at least

in cases studied here the real codimension-2 extremal surfaces lead to no obvious

unphysical behavior. Furthermore, one knows that entropies based on the real

surfaces will satisfy strong subadditivity [255, 303] – a property we are unable to

test using the complex surfaces found above since we considered only the entropy

of a single boundary region at each time; see also related comments in footnote 2.

On a similar note, recall that for Schwarzschild-AdS and Schwarzschild-Lifshitz

we also find families where the behavior of Re Aren does not match expectations

for entropy in the dual CFT; this may indicate that the relevant path integral

cannot generally be deformed to take advantage of such complex surfaces. So

while the relevance of complex extremal surfaces is plausible, it is by no means

assured.

Our work studied planar black hole spacetimes and looked for surfaces as

shown in figure 8.1, running from the left boundary to the right and intersecting
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each boundary on a plane (also of codimension-2 with respect to the boundary) at

some given time tb in analogy with those studied in [229]9. For extremal surfaces of

this form the time difference ∆t between the left and right ends defines an infinite-

sheeted Riemann surface when expressed in terms of the conserved energy E. The

same is true of the renormalized area Aren. By definition, extremal surfaces in the

real Lorentzian spacetime live on the principal sheet of this Riemann surface.

In all cases studied, numerical investigation indicated that there are no further

extremal surfaces on this sheet; all complex extremal surfaces mentioned above

lie on secondary sheets. In addition to the spacetimes addressed in the main

text, we have also checked that the hyperbolic AdS black hole10 [190–192] and

planar Reissner-Nordström-AdS5 are free of complex extremal surfaces on their

primary sheets. In the latter case, the particular cases checked were T/γµ ≈ 0.56

and 0.16, where T and µ are the temperature and chemical potential of the black

hole, and γ ≡
√
3/2 gℓ/κ is a dimensionless ratio of the Maxwell and gravitational

couplings as in [76].

The above discussion brings to the fore the issue of which extremal surfaces

should actually contribute to (8.1) and the associated entanglement conjectures.

Thinking of our surfaces as representing saddle points of a path integral sug-

gests that the general answer may be difficult to determine. We refer the reader

to the classic discussion of [34] in the perhaps-related context of geodesics in

Schwarzschild-AdS5. But in typical cases one might expect saddles on the the

9If complex surfaces in the bulk do determine the dual CFT entropy, this would affect the
detailed results of [229]. But the most plausible families of complex surfaces found above behave
sufficiently similar to the real surfaces that this change would not alter their main conclusions.

10In the hyperbolic black hole, the planar line element dx2
d−1 in (8.11) is replaced by a metric

of constant negative curvature, but otherwise the procedure is identical.
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principal sheet of our Riemann surface to be more accessible than those on sec-

ondary sheets. We therefore again remind the reader that, for codimension-2, the

principal sheets studied here admit only real extremal surfaces. This may suggest

that only such real surfaces are relevant to the entropies we consider.

For the geodesic approximation to the two-point function one can give a

stronger argument [76] to exclude secondary sheets. The point is that, in that

context, branch cuts are a clear artifact of taking what from the dual CFT per-

spective is the large-dimension limit of the operators involved. For any finite

operator dimension, the actual two-point function resolves the branch cut into a

discrete series of poles associated with bulk quasi-normal modes [228, 332]. It

follows that the geodesic approximation to two-point functions must break down

whenever it involves geodesics on secondary sheets.

This last argument might perhaps be adapted to the present context using the

fact that the Renyi entropies Sn are given by correlators of twist operators [220].

In particular, one might argue that such correlators must again involve only poles

(say, in the energy plane) and that branch cuts must be absent. But it is unclear

what this would imply for the analytic structure of the von Neumann entropy

whose construction requires the analytic continuation to general n and taking the

limit (8.5) as n→ 1.

It would be interesting to determine whether the principal sheet remains free

of complex extremal surfaces when one studies the entropy of other regions on the

boundaries of these spacetimes (i.e., not just for the pair of half (d − 1)-planes

considered here). One might hope that the appearance of complex contours on

the principal sheet is in fact forbidden by the null energy condition (NEC) so
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that this argument could be extended to truly general settings. However, in a

forthcoming work [77] we describe spacetimes satisfying the NEC where complex

extreme surfaces do indeed arise on the principal sheet.

Our discussion of complex codimension-2 surfaces was in part motivated by

analogy with the case of larger codimension n > 2. But comparison of figures 8.5

and 8.6 shows that, at least in practice, the n = 2 setting behaves very differently.

This is perhaps most clear on the principal sheet. While this may at first come as a

surprise, one sees from e.g. [303] that codimension-2 surfaces are subject to much

tighter constraints than for n > 2. This occurs because n = 2 surfaces define a pair

of orthogonal null congruences (see e.g. [90, 195]) and the extremality condition

requires both to have vanishing expansions. The result is that properties of such

extremal surfaces are dictated much more directly by the null energy condition

than for n > 2. Some of the associated implications for real n = 2 extremal

surfaces were discussed in [303, 336]. It could be very useful to understand any

ramifications for complex n = 2 surfaces as well.

We conclude that there remain many open questions, and that the possible

relevance of complex extremal surfaces to CFT entanglement remains mysteri-

ous. But the existence of physically-plausible contours for Schwarzschild-AdS and

analogous results for Schwarzschild-Lifshitz makes it critical to understand this

issue in detail. One would in particular like to find an independent calculation

of the corresponding CFT entropy allowing quantitative comparison with figure

8.8. At least for this case such an analysis would definitively answer whether the

CFT entropy is determined by real extremal surfaces, or instead by the complex

surfaces found in this work.
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Chapter 9

Constraints on Hole-ography

9.1 Introduction

The deep connection between entanglement and geometry has the potential

to provide profound insights into the inner workings of a nonperturbative theory

of quantum gravity. This connection has been made especially manifest in the

AdS/CFT duality, which states that certain conformal field theories (CFT) with-

out gravitational dynamics are dual to string theory on asymptotically (locally)

anti-de Sitter (AdS) backgrounds [19, 20]. In this correspondence, the CFT lives

on a representative of the conformal class of boundary metrics of the AdS space;

we colloquially say that the CFT “lives on the boundary of AdS”. In the limit

where the string theory is well approximated by classical gravity, the dual CFT

is strongly coupled (large λ) with a large number of colors (large N). Numerous

observables in the CFT are dual in this limit to geometric objects in the (now

classical) AdS space.
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In this context, an issue of considerable interest is that of bulk reconstruction.

That is, given some CFT data, how much of the bulk data can be reconstructed,

and how is this reconstruction performed? Understanding how this reconstruc-

tion works in the limit where the AdS bulk is classical may offer insights into

how to reconstruct the bulk gravitational theory perturbatively in 1/N , and even

potentially in a nonperturbative regime (i.e. finite N).

Because many CFT quantities are dual to geometric bulk objects in the largeN

limit, a fundamental bulk quantity to reconstruct is the geometry itself. A promis-

ing approach has focused on reconstructing the bulk using extremal codimension-

two surfaces anchored to the boundary: according to the Ryu-Takayanagi (RT)

and Hubeny-Rangamani-Takayanagi (HRT) conjectures [69, 70], such extremal

surfaces are dual to the entanglement entropy of regions of the CFT. In fact, the

general arguments of [306] suggest that the density matrix of a subregion of the

CFT should be sufficient to reconstruct a portion of the bulk geometry: the so-

called “entanglement wedge”1. Indeed, [337, 338] explicitly offer such a construc-

tion for the spatial slices of AdS3 by using the hole-ographic approach [339, 340]

of reconstructing bulk surfaces from boundary-anchored extremal surfaces (see

also [341–343] for related constructions).

The appeal of this approach stems from its simplicity: it relates (a priori) any

bulk surface to computable CFT quantities. Specifically, the area of an arbitrary

bulk surface γ is dual to the so-called differential entropy of a family of boundary

intervals. The full range of validity of hole-ography remains unclear, though sub-

stantial headway in this direction was made in [342]. In this paper, we continue

1Although [306] made use of the bulk equations of motion, which are unknown when the bulk
theory is no longer classical.
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this exploration: specifically, in any 2+1-dimensional spacetime (or in any higher

dimensional spacetime with a sufficient degree of symmetry), we will state and

prove general theorems that constrain how well surfaces in the bulk spacetime can

be reconstructed from extremal surfaces anchored to the AdS boundary, and we

interpret these constraints in terms of bulk surfaces that play a special role: the

so-called holographic screens introduced in [344]. We emphasize that while our

strongest theorems only apply to systems that are “effectively” 2+1-dimensional,

they are otherwise covariant. In particular, while our results are constrained in

more than two spatial dimensions to these symmetric setups, in 2+1-dimensional

bulks, we impose no restrictions except a generic condition ad a condition on the

Ricci tensor (the null curvature condition), which amounts to positivity of the

stress tensor for a bulk obeying the Einstein Equations.

To give these statements some context, recall that the Hubeny-Rangamani-

Takayangi (HRT) conjecture [70] states that in the large-N limit, the entanglement

entropy of a region R in the CFT can be constructed as follows. Consider all bulk

codimension-two extremal surfaces Ξ homologous to the region R on the AdS

boundary2. Then the entanglement entropy of R is

S(R) = min
Ξ∼R

Area(Ξ)

4GN~
, (9.1)

where GN is the bulk Newton’s constant and ∼ means “homologous to”. Both

the left- and right-hand sides of the above equation are näıvely divergent, and are

understood to be regulated appropriately. A generalization of this prescription

2Note that the homology constraint (see e.g. [255]) implies that Ξ must be anchored to the
AdS boundary on ∂R.
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exists for perturbatively quantum bulks [312, 313].

The key insight of hole-ography is that the HRT formula (9.1) can be utilized

to compute the area of arbitrary bulk surfaces. In the pure AdS3 context, consider

an arbitrary curve γ lying on a static time slice, as shown in Figure 9.1. At each

point p on γ, there is a unique geodesic tangent to γ at p anchored at the ends

of some boundary interval Iθ = (θ − α(θ), θ + α(θ)). By the RT (and HRT)

conjectures, the length of this geodesic computes the entanglement entropy S(α)

of the interval Iθ. The result of [340] is that the length of γ can be computed from

the boundary entanglement entropies as

length(γ)

4GN~
=

1

2

∫ 2π

0

dθ
dS(α)

dα

∣∣∣∣
α=α(θ)

. (9.2)

This construction has been generalized to non-static contexts and higher dimen-

sions (admitting a sufficient degree of symmetry) in [341, 342].

In order to use the hole-ographic approach for bulk reconstruction, [337] noted

that points in the bulk spacetime can be identified by effectively shrinking γ to

arbitrarily small size around a point p, so that the geodesics tangent to it all

intersect at p; see 9.2(a). The resulting region function αp(θ) is an extremum of

a boundary action constructed only from S(α), and thus yields a construction

of bulk points from boundary data. Similarly, to compute the geodesic distance

between two points p and q, the curve γ is shrunk to a thin convex3 curve that

encircles p and q, as shown in 9.2(b). The region function for such a curve can

be constructed from those that define the points p and q, αp(θ) and αq(θ), and is

3In this context, a closed curve γ is convex if any geodesic connecting two points on γ lies
entirely inside γ.
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Figure 9.1: An arbitrary closed curve γ on a static time slice of global AdS3.
The set of all geodesics tangent to γ define a family of regions on the bound-
ary parametrized by a (possibly multi-valued) function α(θ). The differential
entropy of these regions gives the length of γ.

therefore also constructed purely from boundary data.

This approach is clean and elegant, and has close ties to integral geometry [338]

and to tensor networks and MERA [345, 346]. It is therefore quite natural to ask

how much it can be generalized, and how much of the bulk it can reconstruct.

One obvious impediment to this reconstruction is the presence of extremal

surface barriers (or relatedly, bulk regions that cannot be reached by any HRT

surfaces – “entanglement shadows” [347]). These are surfaces that split the bulk

spacetime in two such that no codimension-two extremal surface (such as those

used in the hole-ographic reconstruction of bulk surfaces) can cross them [336].

Then anything behind the barrier cannot be probed via boundary entanglement

entropy. Interestingly, it was found in [256] that event horizons of static black holes

cannot be probed by extremal surfaces anchored to one asymptotic boundary,

as long as we consider only families of extremal surfaces that can be deformed
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(b)

Figure 9.2: (a): reconstruction of bulk points via hole-ography. The curve γ
is shrunk to be arbitrarily small and centered at p, so that p is identified by
the common intersection of all the geodesics generated by α(θ). (b): recon-
struction of geodesic distances via hole-ography. The curve γ is shrunk to be
an arbitrarily thin convex curve (thick red line) encircling two points p and q.
The geodesic distance between p and q is then given by the differential entropy
of the resulting boundary intervals.

back to that boundary. This barrier phenomenon was characterized for arbitrary

spacetimes in [336]; in particular, such barriers do not include the event horizons

of dynamical black holes. Thus generically, an event horizon is a barrier only in

stationary setting.

This is not so surprising: in a dynamical context, an event horizon is a global

object, but from a local perspective, its only special property is the fact that

its area is non-decreasing. Since extremal surfaces are not sensitive to the global

structure of the spacetime, there is no reason to expect the event horizon to gener-

ically play a special role in constraining their behavior. A much more promising

alternative is that of local analogues of the event horizon: it is common to consider

dynamical horizons [348] or trapping horizons [349], but we will instead consider
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more general objects called holographic screens. These will be defined precisely

in Section 9.2 below, but they should roughly be thought of as objects that can

be foliated by marginally trapped (or anti-trapped) surfaces. Holographic screens

can be constructed from an arbitrary foliation of a spacetime4; we will illustrate

such a construction in Section 9.2 (see Figure 9.5).

Our motivation for focusing on these screens is fourfold. First, there is a sense

in which they are analogues of event horizons that are local in time and defined

independenly of an asymptotic boundary. Second, it was shown in [350, 351]

that under certain (fairly generic) assumptions, they obey an area law much like

that obeyed by event horizons. These first two points make it quite appealing

to think of holographic screens as local versions of event horizons. Third, they

have a holographic interpretation by the Bousso bound [352]: their area places

an upper bound on the total entropy lying on one of the null surfaces orthogonal

to them. The fourth and last point is a technical one: holographic screens can

be constructed from a null foliation of spacetime, and null congruences are very

useful in constraining the behavior of codimension-two extremal surfaces. Thus it

should be relatively straightforward to derive constraints on such surfaces in the

presence of holographic screens.

Interestingly, our results show that while there are indeed such constraints,

they are subtle. Holographic screens need not be barriers: codimension-two ex-

tremal surfaces may enter them. However, we prove that when they do, the ex-

tremal surfaces must move through achronal5 subregions of a holographic screen

4This means a given spacetime may generally admit infinitely many holographic screens: one
per null foliation.

5In the special case where the extremal surfaces are anchored on a connected boundary region,
we can drop the achronality requirement.
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monotonically. That is, they may never become tangent to one of the leaves of

the null foliation that was used to construct the screen. This puts a limit on

hole-ographic approaches to reconstructing surfaces and geometry in the interior

of a holographic screen, for any (sufficiently smooth) codimension-two spacelike

surface γ lying inside the screen must be tangent to at least two of the null foli-

ation surfaces. This implies that there are points on γ that cannot be tangent to

any boundary-anchored codimension-two extremal surface.

Thus hole-ography (or at least, those hole-ographic approaches of which we are

aware) cannot be used to reconstruct arbitrary surfaces contained in the interiors

of holographic screens. At best, it can reconstruct only portions of them, yielding

some “coarse-grained” form of reconstruction.

The outline of this paper is as follows. We develop and state our main theorems

in Section 9.2. In the interest of readability, we will defer the lengthier of our proofs

to Appendix B.7. In Section 9.3 we present some examples illustrating the ideas

used in our construction, and highlighting previous instances in the literature

where hints of our results first appeared. Finally, in Section 9.4 we discuss the

potential relevance of our results to bulk reconstruction, as well as some possible

generalizations, and conclude.

9.2 Constraints on the Behavior of Extremal Sur-

faces

In this section, we will prove the theorems discussed in Section 9.1. To

make for a more streamlined presentation, our theorems will be stated for (2+1)-
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dimensional spacetimes. However, we emphasize here that in higher dimensions,

all of our results remain true as stated with the same proofs as long as the space-

time has a sufficient degree of symmetry; this will be made precise in Section 9.2.4,

where we will also make some comments about what can be shown for less sym-

metric setups in higher dimensions. For this reason, we will continue to discuss

“codimension-two surfaces” rather than “curves”, so the generalization to higher

dimensions is natural.

Furthermore, while we will narrate the development of the theorems for pur-

poses of pedagogy and clarity, we will leave a discussion and interpretation of their

consequences to Sections 9.3 and 9.4. Terms in quotation marks are intended to

provide intuition, and will be made precise in due course.

Preliminaries We will always consider a spacetime M that obeys the null

curvature condition: Rabk
akb ≥ 0 everywhere for any null vector ka. Unless oth-

erwise specified, we take all null vectors to be future-directed. The term extremal

surface will always be used to refer to spacelike, C2, codimension-two extremal

surfaces. A null hypersurface and the null geodesic congruence that generates it

will be given the same name (e.g. N). The expansion of a congruence N will be de-

noted θ(N), while the expansion of a spacetime-filling family of congruences {Ns}

will be denoted θ({Ns}). All unspecified conventions and definitions are as in [90].
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❅▼❳

Figure 9.3: The two null congruences of an extremal surface X of codimension
two anchored to a timelike boundary ∂M .

9.2.1 General Behavior of Null Hypersurfaces and Ex-

tremal Surfaces

First, we introduce a null foliation {Ns} of M into null hypersurfaces Ns

which we shall call leaves6. The leaves are permitted to have cusps, but only

at intersections of their generators; a generator leaves a leaf if and only if it

encounters an intersection with another generator of the same congruence. Next,

recall that any extremal surface X has two null normals, each of which generates a

null congruence (as shown in Figure 9.3), and the extremality condition is simply

the requirement that the expansions of the null geodesic congruences tangent to

these normals vanish onX. The sign of the expansion on leaves of the null foliation

{Ns} yields a constraint on the behavior of extremal surfaces in the neighborhood

of a null hypersurface:

Lemma 1. Let N be a null hypersurface in M and let X be a codimension-two

6Recall that the leaves {Ns} form a foliation of M if for every p ∈ M , p lies on precisely one
leaf Ns. Also, note that this foliation is arbitrary; any spacetime admits infinitely many such
foliations.
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❳

❳
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Figure 9.4: An illustration for Lemma 1. In Minkowski space, an extremal
surface X is just a plane (drawn here as a straight line). If X is tangent to
an expanding light cone, it lies nowhere to the cone’s future, and the cone has
positive expansion. If X is tangent to a shrinking light cone, it lies nowhere to
the cone’s past, and thus the shrinking light cone has negative expansion.

spacelike extremal surface which is tangent to N at a point p; let Op be an open

neighborhood of p. Then:

• If X ∩ Op is nowhere to the past of N , then θ(N)|p ≤ 0;

• If X ∩ Op is nowhere to the future of N , then θ(N)|p ≥ 0.

Proof. As explained in [351], this follows directly from Theorem 4 of [303] or

Theorem 1 of [294].

As a useful illustration of this lemma, consider extremal surfaces and null

hypersurfaces N in flat space, as shown in Figure 9.4.

The converse of Lemma 1 is in general not true7. However, in the restricted

case of a (2+1)-dimensional spacetime, we can indeed prove its converse (see

Section 9.2.4 for a generalization to higher dimensions):

Lemma 2. Let N be a null hypersurface in a (2+1)-dimensional spacetimeM and

let X be a codimension-two spacelike extremal surface which is tangent to N at

a point p. Then there exists a small neighborhood Op of p such that

7We thank Aron Wall for pointing this out to us.
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• If θ(N)|p > 0, then X ∩ Op is nowhere to the future of N ;

• If θ(N)|p < 0, then X ∩ Op is nowhere to the past of N .

Proof. Consider the first case, where the expansion of N is positive. At p, the

null generator of N agrees with a null normal of X; call this vector ka. Also let va

be the unit vector tangent to X at p (which will also be tangent to N , since X

is), and let ℓa be the other null normal to X at p normalized so k · ℓ = −1. Then

the metric at p can be decomposed as

gab|p = −2k(aℓb) + vavb. (9.3)

The expansion of N at p can then be written as

0 < θ(N)|p = ∇ak
a|p = NKabv

avb
∣∣
p
, (9.4)

where NKab is the extrinsic curvature of N8. Next, consider a spacelike surface Σ

containing X. Recall that NKabv
avb|p is a measure of how much N ∩Σ bends away

from its tangent plane (i.e. the plane spanned by ka and va) with motion away

from p in the va direction. By extremality, the trace of the extrinsic curvature of

X vanishes: XKc
abv

avb|p = 0, so X must curve away from its tangent plane less

than N ∩ Σ on a small open neighborhood of p. But this immediately implies

8Recall that the extrinsic curvature of a null codimension-one hypersurface with normal ka

is given (up to scaling) by

Kab =
1

2
£kgab. (9.5)

For a codimension-two surface with null normals ka and ℓa, the extrinsic curvature gets an extra
index:

Ka
bc =

1

2
(ℓa£kgbc + ka£ℓgbc) . (9.6)
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that X ∩Op cannot lie in the future of N . The proof proceeds identically for the

second case.

Lemmata 1 and 2 give conditions on how extremal surfaces are allowed to

be tangent to null hypersurfaces. Crucially, these conditions do not impose any

restrictions on the global structure of the null hypersurface – it may be a hyper-

surface of non-constant expansion on a global scale, but as long as it has definite

expansion on an open set that contains p, both lemmata are applicable. This

means that in any region of the spacetime with constant sign of θ({Ns}) – a

scalar function on the spacetime – an extremal surface can “turn around” at most

once with respect to the foliation {Ns} (this notion will be made precise below).

In order to understand the general behavior of extremal surfaces, it is therefore

useful to divide the spacetime into those regions where θ({Ns}) is positive, and

those where θ({Ns}) is negative. Note that we will assume a generic condition,

to be made precise in Definition 2, which will not allow θ({Ns}) to vanish on an

open set.

9.2.2 Holographic Screens

The division between regions of positive and negative θ({Ns}) is provided quite

naturally by so-called preferred holographic screens, first defined in [344]. The idea

is the following: given a spacetime foliation {Ns}, move along each leaf Ns until its

expansion changes sign. By the focusing theorems (see e.g. [90]), this sign change

can happen at most once (since the expansion of Ns is non-increasing). Thus to

each leaf Ns, this procedure associates at most one codimension-two surface σs
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Figure 9.5: Constructing a preferred holographic screen from a null foliation of
a spacetime. The dashed diagonal lines are the leaves of the foliation; the dot
on each leaf marks the leaflets σs where the expansion of the leaf changes sign.
The union of all the leaflets is a preferred holographic screen.

called a leaflet9; see Figure 9.5 for an example of this construction. The union

of all such leaflets is a preferred holographic screen, and provides the division we

were looking for. The term holographic screen is derived from the Bousso bound,

which postulates that the leaflet is holographic: its area provides a bound on the

entropy of Ns [344, 352].

Note that each leaflet σs has two null normal directions, each tangent to an

associated null congruence. By construction, one of these congruences has zero

expansion. We can use the sign of the expansion of the other congruence to label

the “type” of holographic screen: in analogy with event and dynamical horizons, a

screen will be called “future” (“past”) if it is foliated by marginally (anti-)trapped

surfaces [350, 351]. This notion is made precise by the following definition:

9Note that this terminology goes against convention: typically the σs are referred to as
“leaves”. Here we reserve the term “leaves” for the null hypersurfaces of the spacetime foliation.
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Definition 1. Preferred future holographic screen. A preferred future holographic

screen H associated to a null spacetime foliation {Ns} is a smooth hypersurface

such that for each leafNs, the intersectionH∩Ns is either empty or a codimension-

two achronal surface σs such that the two orthogonal null directions kas and ℓ
a
s to σs

obey:

θks = 0, (9.7)

θℓs < 0, (9.8)

where θks,ℓs are the expansions of the null geodesic congruences fired off of σs in

the kas and ℓ
a
s directions. The intersections σs are called leaflets of H, and the null

normals kas and ℓas to all the leaflets define null vector fields ka and ℓa everywhere

on H.

Past holographic screens are defined analogously, except that θℓ > 0, i.e. the

leaflets are marginally anti -trapped. All discussions and proofs for past holo-

graphic screens proceed identically to future holographic screens via time reversal

(all future constructs become past-directed), so for the rest of this section we will

refer only to future holographic screens.

The above definition of holographic screens is too weak to guarantee that they

be sufficiently well-behaved for our purposes. But by further imposing some mild

conditions, it is possible to ensure that the screens obey certain “nice” properties.

For this reason, we include the requisite technical assumptions in the definition of

a regular holographic screen:

Definition 2. Regular future holographic screen. A preferred future holographic
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screen is regular if the following are true [351]:

• The null expansion of leaflets in the ka direction immediately decreases away

from H: kas∇aθks |σs < 0;

• The boundary of all spacelike subsets of H within H is the boundary of all

timelike subsets of H within H (i.e. the only null portions of H are junctions

between spacelike and timelike pieces);

• Every inextendible portion of H with indefinite sign is either timelike or

contains a complete leaflet; and

• Every leaflet is compact and splits a Cauchy surface containing it into two

disjoint subsets.

The first two assumptions can be viewed as types of generic conditions10. We

will not have occasion to explicitly use the last two assumptions in this section,

but they are required for certain properties of regular holographic screens to hold.

Also note that we will occasionally use the word “screen” to refer to a regular

holographic screen when it will cause no ambiguity.

The screens on which we will focus must divide the spacetime into two dis-

joint regions so that we can sensibly refer to their “interior” and “exterior”. Such

screens will be referred to as splitting screens ; the holographic screen shown in

Figure 9.5 is an example. Moreover, if the screen is regular, we can unambigu-

ously define its interior and exterior: [350, 351] showed that a regular holographic

screen is never tangent to ka, implying that ka must always point to the same

10However, these do not reduce to the usual generic condition used in the singularity theorems,
see e.g. [90].
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side of the screen. Thus we will call the interior Int(H) of a splitting future holo-

graphic screen H the region towards which the null vector field ka points11. The

exterior Ext(H) will be the complement in M .

We are now equipped to make statements about the behavior of extremal

surfaces in general spacetimes in the presence of holographic screens. We need

one more definition to make precise what we mean by an extremal surface “turning

around”:

Definition 3. Turning and inflection points. We say that an extremal surface X

has a pivot point at a point p if it is tangent to a leaf Ns at p. X is said to have a

turning point at p if in a small neighborhood of p, X lies nowhere to the past or

nowhere to the future of Ns. Otherwise, X is said to have an inflection point at p.

Moreover, if an extremal surface X has a turning point in some region R ⊂ M ,

then we say X turns around in R.

See Figure 9.6 for an illustration. Note that turning points and the notion of

turning around are dependent on the foliation {Ns}. Also note that by definition,

if N is any null splitting hypersurface, then any surface Q which has a turning

point on N is (in some small neighborhood) in its past or future. In the former

case, we will say Q is tangent to N from the past, and in the latter we will say Q

is tangent to N from the future.

11This definition may seem backwards, since we typically think of the “interior” of a surface
as the direction in which the expansion of its null normals is more negative. However, note
that since marginally trapped surfaces must always lie behind (or possibly on) the future event
horizon of the spacetime M , Int(H) can never have any intersection with the asymptotic region
of M . It is in this sense that this definition agrees with intuition.
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❳
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Figure 9.6: An extremal surface tangent to a foliation leaf has a pivot point
which can either be a turning point (left) or an inflection point (right).

9.2.3 Theorems

We can now state our first theorem, which is simply a precise rephrasing of

the heuristic discussion above:

Theorem 1. Let R be a region such that θ({Ns}) has a definite sign everywhere

in R, and let X be an extremal surface. Then any connected portion of X in R can

turn around at most once, and has no inflection points ifM is (2+1)-dimensional.

In particular, if H is a regular splitting future holographic screen, any connected

portion of X in Int(H) can turn around at most once.

For a detailed proof, see Appendix B.7. For a pictoral proof, see Figure 9.7:

if a connected portion of X in R has more than one turning point, at least one

such turning point must violate Lemmata 1 and 2.

Theorem 1 and the lemmata make local statements: they make no use of the

global structure of the spacetime M . We now focus on the asymptotically locally

AdS case12, where M has a timelike boundary ∂M to which the extremal surfaces

12See [353] for the definition of asymptotically locally AdS spacetimes.
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Figure 9.7: XR is any connected portion of X in R. It cannot have multiple
turning points without violating Lemma 1 or 2.

are anchored. We will find that Theorem 1 can be strengthened significantly:

under the appropriate conditions, boundary-anchored extremal surfaces can never

turn around in the interior of a holographic screen.

Before we state and prove the theorem, we will need to develop some notions

that take into account the global structure of the extremal surface and of the

holographic screen. First, we will restrict our analysis to so-called H-deformable

extremal surfaces [336]: these are surfaces that can be deformed to lie entirely in

the exterior of a screen H while still being kept extremal (for a precise definition,

see Appendix B.7). Next, we will need to impose some constraints on the global

causal structure of a splitting screen:

Definition 4. Future achronal screen. Let H be a regular splitting future holo-

graphic screen. Consider the null congruences {Ls} generated from each leaflet

by firing null geodesics in the ℓa direction13. If the {Ls} foliate Int(H) (as they

13As with the Ns, we will take the generators of Ls to leave Ls at local and non-local inter-
sections.
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Figure 9.8: A future achronal screen in a collapsing star geometry. The future
holographic screen H (solid dark green) has indefinite signature. The future
achronal screen H̃ (solid light green) is generated by intersections of the Ns

(dashed black) with the LS (dotted orange) in the interior of H.

generally will, since they form the boundaries of the futures of the leaflets σs),

then we may construct a modified holographic screen as follows: consider deform-

ing each leaflet σs of H into Int(H) along the associated Ns leaf, to define a new

leaflet σ̃s which is a complete intersection with a member of the {Ls} foliation.

For each leaf Ns, choose the new leaflet σ̃s such that the hypersurface H̃ =
⋃
s

σ̃s

is smooth. If H̃ is achronal, we will call it a future achronal screen of H. Note

that by construction, the leaflets σ̃s of an achronal screen are trapped surfaces.

See Figure 9.8 for an illustration.

We now state our main theorem:

Theorem 2. Let H be a regular splitting future holographic screen in a (2+1)-

dimensional asymptotically locally AdS spacetime M . Then no H-deformable

boundary-anchored extremal surface can have a pivot point in the interior of any
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Figure 9.9: If an extremal surface Xm (solid blue) is tangent to a leaflet σ̃m of
an achronal screen H̃, it must lie entirely in the future of σ̃m (bounded by Lm,
dotted orange, and Nm, dashed black) and therefore cannot be boundary-an-
chored. Note that we have suppressed a spatial direction in this figure, which
is why Xm appears timelike and ends at σ̃m. It is actually spacelike everywhere
and tangent to σ̃m in the suppressed direction.

future achronal screen of H. Moreover, if H is itself achronal, no such extremal

surfaces can have a pivot point in Int(H).

For a detailed proof, see Appendix B.7. For a sketch of part of the proof,

consider an extremal surface X1 with a turning point in the interior of an achronal

screen H̃. We should be able to deform X1 to an extremal surface Xm with a

turning point on H̃ itself. If this turning point is tangent to a leaflet σ̃m, then

Lemma 2 implies that Xm must lie to the future of the null congruences normal

to σ̃m, and therefore in the future of σ̃m; see Figure 9.9. But since H̃ is achronal,

this implies that Xm must live entirely in the interior of H̃ and therefore cannot

be boundary-anchored. The case when Xm is not tangent to a leaflet is more

complicated, but similar in spirit.

One of the remarkable properties of regular future holographic screens found

in [350] was that they obey an area law even when they have indefinite signature.

It may therefore seem somewhat odd that our theorem applies only to achronal

screens, and not to those of indefinite signature. It well may be the case that it

also holds for such screens (we have checked some easy cases and have not found
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any violations of it), but the approach used in the proof above cannot also be

used for non-achronal screens. To see a potential pitfall, consider Figure 9.10. As

an H-deformable surface X0 in the exterior of H is deformed into a surface X3

in its interior, the midway surface Xm may develop an inflection point on H,

allowing X3 to develop a turning point in Int(H). This is not ruled out by the

proof above: Xm can in this case exit the future of σm through the timelike portion

of the screen.

Theorem 2 may still be true for regular future holographic screens of indefinite

signature, but it is not clear to us how a proof of such a statement would proceed.

However, some progress can be made in higher dimensions, as we will now discuss.

9.2.4 Higher Dimensions

Theorem 2 relies heavily on Lemma 2, which is only valid in (2+1)-dimensional

spacetimes. If we were to attempt a näıve extension of it to higher dimensions, we

would encounter a problem: equation (9.4) and the extremality condition would

become

0 < NKab

(
vavb +

∑

i

ξa(i)ξ
b
(i)

)∣∣∣∣∣
p

, (9.9a)

0 = XKa
bc

(
vbvc +

∑

i

ξb(i)ξ
c
(i)

)∣∣∣∣∣
p

, (9.9b)

where the sum runs over an additional (d−2) orthonormal spatial vectors ξa(i) that

are orthogonal to va and tangent to X and N at p (so that the term in parentheses

is the induced metric on X and N at p). These summed expressions do not allow
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Figure 9.10: Here we show a potential H-deformable family that would allow
an H-deformable extremal surface X3 (solid blue) to have a turning point in the
interior of a regular future holographic screen of indefinite signature. From top
left to bottom right: a surface X0 starts out entirely outside the screen H (solid
green). It is then deformed into a surface X1 which passes through Int(H),
though with no turning points. It then deforms into a surface Xm with an
inflection point on some leaflet σm, but which is able to leave the future of σm
(the wedge bounded by Lm, dotted orange, and Nm, dashed black) because it
can exit the interior of H. Finally, X3 is obtained by deforming the inflection
point into two turning points, one inside and the other outside H. Note that
the Xα are everywhere spacelike; the apparent mixed signature here is only due
to the suppression of the extra spatial dimension in these diagrams.

us to separately compare the bending of X and N in different directions, so the

proof does not go through as it did before.

Tt is clear from the above considerations, however, that a version of Lemma 2

will remain true in higher dimensions if we require that all of the ξa(i) have triv-

ial contraction with the extrinsic curvatures of X and N . In such a case, only
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the va terms in equations (9.9) remain, and the proof of the lemma proceeds as

in the (2+1)-dimensional case. We therefore define:

Definition 5. Reducibility to (2+1) dimensions. Let S be a surface of codimension

at most two in a spacetimeM . We will say that S is reducible to (2+1) dimensions

(or reducible for short) if there exist (d−2) vector fields ξa(i), i = 1, . . . , d−2 in M

that are everywhere spacelike14 such that S is tangent to the ξa(i) everywhere, and

for each i

SKa
bc ξ

b
(i) ξ

c
(i) = 0, (9.10)

where SKa
bc is the extrinsic curvature of S.

For an arbitrary surface S, the reducibility condition is simply a constraint on

its allowed behavior. However, we will specifically require that our H-deformable

extremal surfaces X be reducible: this will in general only be the case when the

spacetime exhibits a sufficient amount of symmetry. In particular, note that in

spacetimes obeying the generalized planar symmetry of [342] (see their Section 3.3

for a full definition), extremal surfaces that have this symmetry are reducible15.

For example, spacetimes with planar or spherical symmetry provide a simple setup

admitting reducible extremal surfaces. Most significantly, Lemma 2 still holds for

reducible extremal surfaces and foliations, and therefore so does Theorem 2.

We have therefore shown that the results outlined in the previous section will

still hold in any (d+1)-dimensional spacetime if the foliations {Ns} and all ex-

tremal surfaces X under consideration are reducible to (2+1) dimensions.

As mentioned at the end of the previous section, we can actually do more in

14The ξa(i) may be singular on a set of measure zero.
15To our knowledge, this is the most general system in which hole-ography has been shown

to hold.
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higher dimensions: in more than two spatial dimension, it is possible for extremal

surfaces to “cap off” (for example, where the size of spheres spanned by the ξa(i)

shrinks to zero). We therefore have the following theorem, which holds for holo-

graphic screens of arbitrary signature (i.e. it does not require the screen to be

achronal):

Theorem 3. Let M be an asymptotically locally AdS spacetime, and let H be

a regular splitting future holographic screen constructed from a reducible folia-

tion {Ns}. Assume further that that there exists a foliation of the future of H

with Ls congruences. Let X be a boundary-anchored, codimension-two spacelike

extremal surface such that:

1. X is reducible to (2+1) dimensions;

2. ∂X is connected; and

3. X intersects Ext(H) only on regions with θ({Ns}) > 0.

Assume further that there exists an H-deformation of X that obeys the above

conditions as well. Then X cannot have a pivot point in Int(H).

Note that condition (2) rules out geodesics, so this theorem is only nontrivial

in greater than three bulk spacetime dimensions. Also, condition (3) requires that

there exist at least one family of deformations from X to the boundary that does

not intersect another holographic screen somewhere else in the spacetime.

For a detailed proof of this theorem, see Appendix B.7. For a rough picture,

consider Figure 9.10: the only way for an extremal surface X3 to have a turning

point inside the screen is to be anchored on the boundary at two places, i.e. to have
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disconnected ∂X. If it did not, it would have an illegal turning point somewhere,

either with respect to the foliation {Ns} or {Ls}.

It is worth making some remarks about potential pitfalls in higher dimensional

spacetimes in which the extremal surfaces and/or null foliations are not reducible.

As noted above, Lemma 2 will then generally be false, and cannot be used to rule

out inflection points. We suspect it should be possible to use only Lemma 1 to

prove weaker versions of Theorems 2 and 3 that do not exclude inflection points.

However, such constraints have minimal relevance for hole-ography.

We should also note that while our proofs do not hold in non-reducible settings,

we can think of no counterexamples to the statements of the theorems. It is

possible that they hold in more generality, but if that is the case, they would need

to be proven using a different approach than that taken here.

9.3 Examples

Here we present examples illustrating the application and consequences of the

theorems discussed in the previous section.

9.3.1 dS and AdS Spacetimes

As an example of Theorem 1 (which states that connected components of

extremal surfaces can have no more than one turning point in a region of con-

stant θ({Ns})), consider the simplest cases of pure de Sitter (dS) or anti-de Sitter

(AdS) spacetimes, whose conformal diagrams are shown in Figure 9.11 (the anal-

ysis of Minkowski space is similar to that of AdS, so we will not discuss it sepa-
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Figure 9.11: The conformal diagrams of de Sitter (a) and anti-de Sitter (b)
space. Each point on these diagrams corresponds to a suppressed sphere Sd−1

whose area is parametrized by a radial coordinate r. The null foliations shown
are generated by light rays fired from r = 0, i.e. the north and south poles of
dS and the origin of AdS. The black arrows indicate the directions in which
extremal surface are allowed to turn around (e.g. an arrow pointing down and
to the right indicates that extremal surfaces may only be tangent to the dashed
foliation from the past). They imply that extremal surfaces must bend away
from IdS, but towards IAdS.

rately). Both dS and AdS have a spherical isometry to which we have adapted the

conformal diagrams; we introduce a coordinate r which parametrizes the areas of

the spheres of symmetry16.

In each spacetime we introduce two null foliations which we take to be adapted

to its spherical isometry: these foliations are generated by light cones fired from r =

0 towards the boundary r = ∞. It is then easy to use Theorem 1 to understand

16Specifically, r is the usual radial coordinate that appears in the slicing

ds2 = −
(
1± r2/ℓ2

)
dt2 +

dr2

1± r2/ℓ2
+ r2dΩ2

d−1, (9.11)

with the positive (negative) sign for the global (static) slicing of AdS (dS).

345



Constraints on Hole-ography Chapter 9

how extremal surfaces must behave. The cross-sectional area of the null foliations

increases with r, so the expansion along each foliation is positive in the direction

of increasing r. It then follows that the expansion along each sheet of the folia-

tions never changes sign. This allows us to draw on Figure 9.11 the directions in

which extremal surfaces are allowed to turn with respect to these foliations. In

particular, note that extremal surfaces in AdS must bend towards the conformal

boundary IAdS, while extremal surfaces in dS sufficiently near the boundary IdS

must bend away from it.

In principle, these claims only constrain the behavior of extremal surfaces with

respect to the two null foliations introduced here. However, the high degree of

symmetry of both dS and AdS allows us to conclude that all extremal surfaces in

AdS must bend towards IAdS, while all extremal surfaces in dS that lie entirely

in the future and past wedges marked on Figure 9.11 must bend away from IdS.

The former point is, of course, well-known: extremal surfaces anchored to the

boundary of AdS come up frequently in holographic contexts, and necessarily

bend towards the boundary. The latter point was made generally in [77] using

similar considerations to the ones used here. In particular, it follows that no

boundary-anchored extremal surfaces exist in dS, since they would necessarily

need to bend towards the boundary.

9.3.2 AdS Spherical Collapse

The above simple examples of dS and AdS illustrate how Theorem 1 puts

constraints on the general behavior of extremal surfaces in arbitrary spacetimes,

even those not containing splitting holographic screens. Our focus, however, is
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on applications to AdS/CFT and bulk reconstruction. To that end, let us now

discuss how Theorem 2 (which states that bounday-anchored extremal surfaces

in the interior of achronal screens cannot have pivot points) explains some of the

observations of [45, 46, 354] in the context of null collapse in AdS.

To briefly review, consider the formation of a black hole in Poincaré AdS

by infalling null dust. In the holographic context, this process is dual to the

thermalization of the boundary field theory following a perturbation (typically a

form of a quantum quench). The bulk solution consists of two pieces: to the past

of the null dust, the solution is a vacuum solution and therefore just (the Poincaré

patch of) pure AdS. The portion of the bulk containing the dust and to the future

of it is AdS-Vaidya:

ds2 = −f(r, v)dv2 + 2 dv dr +
r2

ℓ2
d~x2d−1, (9.12)

where

f(r, v) =
r2

ℓ2

(
1− µ(v)

rd

)
, (9.13)

where d is the boundary spacetime dimension, and we can think of compactify-

ing the planar directions ~x into a torus to make them compact (it is the planar

symmetry of these directions that allows us to apply Theorem 2 here). Here the

mass function µ(v) characterizes the profile of the dust; the null energy condition

is satisfied when µ′(v) ≥ 0. The full solution is shown in Figure 9.12(a).

Let us now consider the plane symmetric foliation of this spacetime generated

by light cones fired from r = 0. The cross-sectional areas of these sheets go

like A ∝ rd−1, so the expansion is positive in the direction of increasing r. In
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Figure 9.12: The formation of a black hole in pure AdS by infalling null dust
(the shaded gray regions). To the past of the dust, the solution is pure AdS; the
portion of the spacetime containing the dust is AdS-Vaidya. (a): for continu-
ously infalling null dust, the spacetime contains an achronal future holographic
screen (solid green curve). (b): if the dust is taken to be a thin shell, the screen
approaches two null pieces, with one lying on the event horizon and the other on
the shell. However, if the shell has an arbitrarily small but nonzero thickness,
and if an arbitrarily small but nonzero amount of matter continues to fall in
after the shell, the screen will be achronal (and arbitrarily close to being null).
Note that here, the null boundaries are really the Poincaré horizons H±

Poin.

particular, this means that the expansion of the right-moving null sheets to the

future of the event horizon changes sign, giving rise to a future holographic screen.

This screen coincides with the dynamical horizon at f(r, v) = 0.

In the context of holographic quantum quenches, [45, 46] considered such a

collapse scenario where the infalling null matter was taken to be a thin shell. The

resulting holographic screen technically violates the assumptions of our theorems,

since it is null and therefore not regular. However, it is easy to consider a regulated

solution in which the null shell is smeared out slightly and given a rapidly decaying

tail all the way into the far future. The screen will then be slightly deformed into
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Figure 9.13: A family of extremal surfaces (solid blue lines) anchored to the
boundary of AdS in thin shell Vaidya-AdS, as found in [45, 46]. The dot at
the end of each surface indicates the location of its turning point; the dotted
black line follows the path of this turning point as time at which the surface is
anchored to ∂M is varied. Note that some surfaces in this family do enter the
holographic screen H, but the turning points never do.

a regular achronal screen, as illustrated in Figure 9.12(b). Then our theorems

can be applied to the regulated collapse geometry. By taking the limit where the

regulator goes to zero, we may expect our theorems to apply to the thin shell

solution as well.

Theorem 2 asserts that any reducible boundary-anchored extremal surface can-

not turn around inside the screen. This is precisely what [45, 46] found, as shown

in Figure 9.13. Extremal surfaces anchored to strips on the boundary sometimes

penetrate the screen, but the turning point never does. In particular, as the

boundary strips are taken to later times, the turning point of the corresponding

extremal surfaces tracks out a curve which never enters the screen. Thus the inter-

esting behavior of the turning point shown in Figure 9.13 is simply a consequence

of our theorem.
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Ref. [354] considered a similar problem, but in global AdS. In that case, the

generalized planar symmetry is (a subset of) the full spherical symmetry. They too

found extremal surfaces anchored to spherical boundary regions that penetrated

the holographic screen, but never any that turned around in it.

9.4 Discussion

The key questions of hole-ography are: does there exist an object in the CFT

which is dual to the area of an arbitrary spacelike codimension-two bulk surface?

If so, what are the limitations of this duality? The former question has been

partially answered in [339–343]; in this paper, we have proven theorems that give

a partial answer to the latter.

9.4.1 Incomplete Reconstruction Inside Screens

Recall that [342] showed that under an appropriate set of assumptions (in-

cluding generalized planar symmetry), if a given bulk spacelike codimension-two

surface γ can be reconstructed from boundary-anchored extremal surfaces tan-

gent to it, then the area of γ is given by the differential entropy of the boundary

regions selected by the extremal surfaces. This direction was referred to as the

“bulk-to-boundary” direction. Conversely, given a set of intervals on the bound-

ary, the extremal surfaces anchored to them can be used to define at least one

bulk surface γ whose area is equal to the differential entropy of the intervals; this

is the “boundary-to-bulk” direction.

We pause here to note an important subtlety: to get a good correspondence
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between the area of γ and the CFT differential entropy, the extremal surfaces must

be the minimal ones that are picked out by the HRT formula. More generally,

if the extremal surfaces used to reconstruct γ are not minimal, they may be

related to other CFT quantities such as entwinement [355] (for example, minimal

surfaces alone cannot be used to reconstruct the AdS3 conical defect geometry or

BTZ [337]). Here we will show that surfaces inside holographic screens cannot

be fully reconstructed from any boundary-anchored extremal surfaces, be they

minimal or not.

For example, consider the consequences of our results for a bulk-to-boundary

construction: let γ be a sufficiently smooth spacelike closed curve17 that lies en-

tirely in the interior of some regular holographic screen H. Since γ is smooth,

there must be some points at which γ is tangent to leaves of the null foliation

used to construct H. We have illustrated this in Figure 9.14(a), where we have

shown a spatial slice containing γ and its intersection with H and some leaves of

the null foliation. Theorem 2 implies that there cannot exist boundary-anchored

geodesics tangent to γ at the marked points. Moreover, if we slightly deform the

null foliation, these points will shift slightly along γ, so we find that there are

open regions of γ to which no boundary-anchored geodesics are tangent.

This is our main result: γ cannot be entirely reconstructed from any set of

boundary-anchored geodesics, minimal or not. Generically, however, there will

be regions of γ that can be. Thus in this bulk-to-boundary approach, γ can

only be partially reconstructed from boundary-anchored geodesics (and therefore

from CFT entanglement entropy, if these geodesics are the minimal-length ones

17Here we will restrict the discussion to three bulk dimensions (so γ is just a curve), though
our statements also hold in reducible setups.
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Figure 9.14: The plane of the page is a time slice containing a spacelike curve γ
(solid black line) in the interior of a holographic screen H; the green oval shows
the intersection of H with this particular time slice. (a): the curve γ will always
be tangent to at least two leaves of the foliation (dotted black lines); in this
particular case, it is tangent to four of them at the marked points. (b): by our
theorem, boundary-anchored extremal surfaces cannot be tangent to γ at the
marked points, so portions of γ in a neighborhood of these points cannot be
reconstructed from them.

that are picked up in the HRT formula). This is a form of coarse-graining: the

boundary data simply does not know how to reconstruct some pieces of γ. This

coarse-grained reconstruction is illustrated in Figure 9.14(b).

Recall, however, that the boundary-to-bulk approach of [342] is slightly differ-

ent: in order to reconstruct (the area of) a bulk curve γ from a set of boundary

intervals, we do not need the corresponding geodesics to be tangent to γ. Rather,

we only require what [342] call the “null alignment condition”: where a geodesics

meets γ, their tangent vectors need not agree, but may simply span a null plane.

This is a weaker constraint, and it is therefore natural to wonder if the boundary-

to-bulk construction fares any better in this case.

The answer is no. Suppose a smooth bulk curve γ constructed via the boundary-

to-bulk approach is contained entirely inside H. Consider the two null planes gen-
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erated by congruences fired off of γ in its two orthogonal null directions18. The

null alignment condition says that γ may be constructed from boundary-anchored

geodesics that intersect γ and are tangent to one of these planes when they do.

But since γ is smooth, by the same argument given above there must exist some

points at which this null plane is tangent to a leaf of the foliation. Then pro-

ceeding as we did in the bulk-to-boundary construction, we conclude that γ must

contain segments that cannot be constructed from boundary-anchored geodesics.

The conclusion is that whether one takes the bulk-to-boundary or boundary-

to-bulk approach, it is not possible to reconstruct an entire smooth19 curve γ

contained inside a holographic screen from boundary-anchored geodesics. In fact,

it is very plausible that there are curves of which only an arbitrarily small portion

can be reconstructed.

Of course, there is nothing preventing either approach from reconstructing a

bulk curve that is only partly contained inside the holographic screen. However,

a promising approach of hole-ography was to be able to reconstruct the bulk

geometry itself via the integral geometry approach of [337, 338]. In order to use

this approach to reconstruct the spacetime inside a holographic screen, one would

need to reconstruct arbitrary curves entirely contained within it. It would thus

appear that a näıve hole-ographic approach to reconstructing the interior of a

holographic screen will not succeed.

18We fire the congruences in both future and past directions so that these two null planes
contain γ.

19There may still be reconstruction issues even if γ has cusps, but we will not consider this
case here.
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Figure 9.15: Attempting to reconstruct the interior of a holographic screen by
evolving forward from an initial time slice Σ. The shaded yellow region shows
the domain of dependence D(Σ) of Σ; in principle, if we knew the equations
of motion everywhere, we could reconstruct this entire domain just from data
on Σ. In particular, this can include the interior of a holographic screen H
(green).

9.4.2 Quantum Effects

A possible objection to our conclusion is the following: why not use boundary-

anchored extremal surfaces to reconstruct the geometry of a portion of a Cauchy

slice Σ to the past of the screen, and then use the bulk equations of motion to

evolve forward from Σ to reconstruct its entire causal development? In particular,

this may include the interior of a holographic screen; such an example is shown

in Figure 9.15.

In principle this is possible, but only if we know the equations of motion a

priori. Specifically, there is a sense in which a “full” bulk reconstruction should

reconstruct the equations of motion as well as the geometry. The interiors of

holographic screens, however, tend to contain singularities, that is, regions where
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quantum gravitational effects become important. As soon as quantum fluctuations

are introduced into the metric, even perturbatively, the possibility of reconstruct-

ing the bulk from its equations of motion is lost, particularly in near-singularity

regions. For this reason, we find it more natural to seek a way of reconstructing

the bulk directly from CFT data, without recourse to any equations of motion.

While our work has hithero been entirely classical, the appearance of quantum

effects motivates the following observations:

• Recall that the interior of a holographic screen has a holographic interpreta-

tion in terms of bulk entropy via the Bousso bound [344, 352]. The area of

a leaflet of a future or past holographic screen gives a bound on the entropy

of the leaf generating it:

S(Ns) ≤
Area(σs)

2GN~
. (9.14)

This raises an interesting question: can the holographic screen itself be re-

constructed from boundary observables? More precisely, what is the CFT

dual of a holographic screen, and how is it linked to bulk entropy? As dis-

cussed in the previous subsection, the holographic screen is an obstacle to

complete hole-ographic reconstruction of its interior; perhaps the informa-

tion that is lost in the “coarse-graining” discussed above is stored in extra

degrees of freedom associated with the screen (similar to e.g. the superse-

lection sectors of [144]).

• Even in the presence of quantum effects, the option of direct reconstruction

from boundary observables remains: for a semiclassical bulk (i.e. working
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to first order in GN~/Λd−1 where Λ is a characteristic length scale of the

quantum fields in the theory), [312] found that the generalized entropy of

extremal surfaces yields the dual CFT entanglement entropy. More precisely,

the generalized entropy of a spacelike codimension-two surface X is given

by [13]:

Sgen(X) =
Area(X)

4GN~
+ Sent + counterterms, (9.15)

where Sent is the von Neumann entropy of the exterior of X on some Cauchy

surface. It was later conjectured by [313] that, at any finite order in per-

turbation theory in GN~/Λd−1 in the bulk, there exists a quantum analogue

of a classical extremal surface, obtained by replacing the area by the gen-

eralized entropy in the extremization procedure. The quantum extremal

surface is obtained by extremizing Sgen with respect to variations along a

null surface fired from X. The entanglement entropy of the boundary re-

gion enclosed by ∂X is conjectured to be dual to the generalized entropy

of X [313]. The extension of the hole-ographic construction to semiclassical

and perturbatively quantum gravity has not been discussed, as it is yet to

be well-understood even at the classical level. However, it is very tempting

to hope that a similar construction can be made using quantum extremal

surfaces.

Since quantum fields may violate the null energy condition (which was as-

sumed for all of the proofs in this paper), it may prima facie appear that our

results are applicable exclusively to the classical case, where reconstruction

may be undertaken via the bulk equations of motion. However, by replacing
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all surfaces with their quantum analogues, relinquishing the null energy con-

dition in favor of the recent quantum focussing conjecture of [356], which

asserts that the variation of the generalized entropy (rather than the area) is

nonpositive, and an analogous generic condition, to be introduced in [357],

we may hope to prove similar statements about bulk reconstruction from

“quantum hole-ography”. In other words, quantum extremal surfaces can-

not be used to reconstruct holes in spacetime regions foliated by leaves with

decreasing generalized entropy.
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Chapter 10

Non-Vacuum AdS Cosmologies

10.1 Introduction

A large class of interesting and useful asymptotically locally anti-de Sitter

(AlAdS) spacetimes have been constructed by starting with AdS in Poincaré co-

ordinates, in which the spacetime is foliated by slices on which the metric is con-

formal to the Minkowski metric ηab, and replacing ηab with any Ricci-flat metric

γab. Thus (D− 1)-dimensional vacuum solutions to Einstein’s equations straight-

forwardly give rise to new D-dimensional solutions to Einstein’s equation with a

negative cosmological constant. For example, taking γab to be the Schwarzchild

black hole yields a black cigar [174], and γab was taken to be a vacuum pp-wave

in [358] to construct a wave in the far field of an AdS-brane spacetime. Further-

more, the AlAdS solutions so generated are of particular interest in light of the

AdS/CFT correspondence [19, 20, 82], since they are dual to a large-N , strongly

coupled conformal field theory (CFT) that lives on the spacetime γab (or a confor-
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mally rescaled version thereof). For instance, [32, 359] took γab to be a vacuum

Kasner metric in order to study a cosmological singularity by computing the en-

tanglement entropy and Wightman functions of the CFT1.

In this paper we generalize this construction and show how non-vacuum (D−

1)-dimensional spacetimes can be used to give AlAdS spacetimes with nonzero

stress-energy. Specifically, if γab is a solution to the Einstein equations in (D −

1)-dimensions with stress-energy tensor T̂ab, we show that replacing ηab on the

Poincaré slices with γab gives a D-dimensional AdS solution with stress-energy

Tab that satisfies

Tµν = T̂µν , (10.1)

where µ, ν = 0, . . . , D − 1. By appropriate choice of T̂ab, we use this construc-

tion to find new AlAdS spacetimes that have a physically sensible stress-energy.

We also show that these spacetimes can be “solitonized” [360] by adding a com-

pact dimension that shrinks smoothly to zero in the AdS bulk. A variation of

this non-vacuum construction was performed in [361–363], which studied getting

supergravity gauge fields “on the brane” by doing a Kaluza-Klein reduction of

a supergravity theory in the higher dimensional AdS spacetime. A related con-

struction starting with supergravity fields in ten dimensions was used to explore

properties of time dependent boundaries in references [30, 31, 364, 365]. The rela-

tion between their higher and lower dimensional matter theories differs from what

we find here, as will be clarified in Section 10.2.

As a special example, we will take γab to be a Friedman-Robertson-Walker

1In fact, in [32] the CFT lived on a singularity-free conformally rescaled version of Kasner.
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(FRW) cosmology2. The cosmological stress-energy is an isotropic perfect fluid

with energy density ρ̃(t) and pressure p̃(t), which are related by an equation of

state p̃(t) = wρ̃(t). We will show that in the AdS spacetime, the fluid is still

isotropic on the cosmological slices with the same equation of state p = wρ and

that the pressure in the AdS radial direction is given by py = (3w − 1)ρ/2. The

pressures and density decay towards the AdS boundary as well as in time as the

universe expands. A case of special interest is a free, massless scalar field which

in a (D− 1)-dimensional FRW spacetime has the equation of state p̃ = ρ̃, that is,

w = 1. Hence the scalar field generates a D-dimensional AdS cosmology which is

isotropic in all spatial directions and has corresponding equation of state p = ρ.

According to the AdS/CFT prescription, such a scalar field in the bulk AdS is

dual to to a scalar operator in the CFT with vanishing expectation value but

nonzero source.

We will focus on FRW metrics with negatively curved spatial slices, in which

case γab approaches the future Milne wedge of Minkowski space at late time, so

long as w > −1/3. The resulting AlAdS solution therefore approaches either the

Poincaré patch of AdS or the AdS soliton at late times, which we interpret as an

approach to equilibrium. We use these solutions to perturbatively study the ap-

proach to equilibrium of the boundary stress tensor and the ADM charges. Inter-

estingly, we find that the latter decrease to their equilibrium values at late times,

with the time dependent correction proportional to the dimensionless density pa-

rameter of the universe Ω. For example, the mass of the solitonized cosmology

2From the CFT side, such solutions can be thought of as a generalization of those in [366],
which took the boundary metric to be a conformally flat FRW geometry.
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decays as

M =

(
1− 1

2
Ω

)
M(0) + · · · , (10.2)

where M(0) is the mass of the static soliton and · · · stands for subleading terms at

late times. In the context of spacetimes approaching the AdS soliton, this result

is consistent with the energy conjecture of [117] that the AdS soliton is the lowest

energy spacetime with the prescribed asymptotic structure.

A second application of our cosmological AdS solutions will be to compute

the behavior of the entanglement entropy S of a spherical region in the CFT as

the spacetime evolves to equilibrium. We use the covariant prescription of [70],

which is a generalization of the static prescription [280]. This states that the

entanglement entropy SR of a region R of a holographic CFT is related to the

area of a special bulk surface Σ. In general, SR is UV-divergent, but it can be

regulated and the behavior of this regulated entropy Sreg is studied. We find that

at late times, the correction δSreg to this quantity decays as a power law in the

proper time of an asymptotically static observer.

Our results add to and complement the substantial body of work in the lit-

erature on vacuum AlAdS spacetimes in which the metric on the AdS boundary

is time dependent. For instance, [367] constructed an elegant solution in which

the metric on each Poincaré slice is a de Sitter cosmology. Several studies in the

general category of holographic cosmology apply coordinate transformations to

AdS black holes to produce cosmological boundaries [105, 368–374], and resulting

metrics have been analyzed as describing an expanding boost-invariant plasma

[47, 375–378]. Significant analytical work has also been done on out of equilib-

rium thermal properties of field theories using various AdS black hole spacetimes,
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including [73, 74, 146, 379–383]. Discussion and further references can be found

in [279]. Our work adds a set of new non-vacuum AlAdS spacetimes which allow

a wide range of boundary metrics.

This paper is organized as follows. Section 10.2 contains the derivation of the

new AlAdS solutions, as well as an analysis of the scalar field and perfect fluid

cases. In section 10.3, the leading time dependent corrections to the boundary

stress tensor and the ADM charges for a solitonic cosmology in an open uni-

verse are found. In section 10.4 the perturbation to the entanglement entropy is

calculated, and section 10.5 contains discussion and concluding remarks. Unless

otherwise specified, we take Newton’s constant GN = 1.

10.2 AdS and AdS Soliton Cosmologies

We start by considering AlAdS spacetimes of the general form

ds2D = dy2 + e2y/lγµν(x
α)dxµdxν , (10.3)

where l is the AdS length and as before µ, ν = 0, 1, . . . , D− 1. For γµν = ηµν this

is AdS in Poincaré coordinates with cosmological constant given by

Λ = −(D − 1)(D − 2)

2l2
, (10.4)

so we will refer to hypersurfaces y = const. as “Poincaré slices”. As mentioned

above, it is well known that the Einstein equations with cosmological constant Λ

are still satisfied for any Ricci-flat γµν(x
ρ). In the particular case where γµν is a
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cosmological metric, we refer to (10.3) as an AdS cosmology.

In general, spacetimes of the form (10.3) with γµν 6= ηµν suffer from a sin-

gularity at the Poincaré horizon y → −∞. This singularity can be resolved by

introducing an additional compact direction v:

ds2D =
dy2

F (y)
+ e2y/l

(
F (y)dv2 + γµν(x

ρ)dxµdxν
)
, (10.5)

where F (y) = 1−e−(D−1)(y−y+)/l, and now µ, ν = 0, 1, . . . , D−2. The metric (10.5)

is capped off at y = y+, so that the Poincaré horizon (and its possibly singular

behavior) is removed. Regularity at this cap fixes the period of v to be

v ∼ v +
4πle−y+/l

D − 1
. (10.6)

Now, if γµν = ηµν , then (10.5) is the usual AdS soliton metric [117]3. However, it

was noted in [360] that the Einstein equations with negative cosmological constant

Λ will still be satisfied for any Ricci-flat γµν . In analogy with (10.3), if γµν is a

cosmological metric, we will refer to (10.5) as an AdS soliton cosmology.

The solutions (10.3) and (10.5) provide a simple construction of AlAdS space-

times with any desired Ricci-flat boundary metric γµν
4. Our goal is to generalize

the above results to isotropic FRW cosmological metrics γµν ; as such cosmologies

are not (in general) Ricci-flat, we will require the introduction of matter fields.

3Although this is no longer Poincaré AdS, we will continue to call surfaces of y = const., v =
const. Poincaré slices.

4Technically, the boundary of (10.5) is γµν cross the circle direction v.
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10.2.1 Massless Scalar Field

We obtain a direct analogue of the results for vacuum metrics by considering

a free massless scalar field φ in the AdS and AdS soliton spacetimes above. The

full D-dimensional Einstein-massless scalar equations are

Gab = −Λgab + 8πTab, ∇2φ = 0, (10.7)

where Gab is the Einstein tensor and

Tab =
1

8π
[(∇aφ) (∇bφ)−

1

2
gabg

cd(∇cφ) (∇dφ)] (10.8)

is the stress-energy of a free massless scalar field in any dimension. Consider a

lower-dimensional metric γµν(x
ρ) and scalar field configuration φ(xµ) that solve

the Einstein-scalar equations

Ĝµν = 8πT̂µν , ∇̂2φ = 0, (10.9)

where hatted objects are computed with respect to the metric γµν . Furthermore,

let

sµν = e2y/lγµν (10.10)

be the induced metric on a Poincaré slice. Finally, we pause to note that the

scalar field stress energy satisfies the important property that from the full D-

dimensional point of view, the induced stress tensor on each Poincaré slice is
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equal to the lower-dimensional stress tensor of the scalar field on γµν :

Tµν = T̂µν . (10.11)

Now, consider first the metric (10.3). The D-dimensional Ricci tensor for gab

is related to the Ricci tensor of sµν by

Rµν [g] = Rµν [s]−
D − 1

l2
sµν , Ryy =

D − 1

l2
. (10.12)

When these components are assembled into the D-dimensional Einstein tensor

and substituted into the left hand side of the Einstein field equation (10.7), one

sees that the terms which do not involve the curvature of sµν are equal to the

cosmological constant term on the right hand side. If γµν is Ricci flat, then the

metric (10.3) is a solution with Tab = 0. If instead γµν is a solution to (10.9) with

nonzero T̂µν , then it is then straightforward to show that the metric (10.3) con-

structed from γµν will satisfy the full equations of motion (10.7), with the full bulk

scalar field taken to be φ(xµ) (which, in particular, is independent of y). The ad-

ditional nonzero component of the stress-energy tensor is 8πTyy = −1
2
sµν∇µφ∇νφ.

The construction with the solitonized metric (10.5) proceeds in a similar way, and

one finds that Tyy is the same and Tvv = gvvTyy.

One may naturally ask if such a straightforward foliation can be extended to

other types of matter as well. For instance, one might hope to replace the scalar

field with a Maxwell field and obtain multi-black hole solutions analogous to those

of [384]. This is not the case: a key ingredient in the proof was the property (10.11)

of the scalar field stress-energy. This property holds for the massless scalar field
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stress tensor but not e.g. for Maxwell fields, or even for a scalar field with nonzero

potential V (φ).

A massless scalar field that depends only on time can serve as the source for

an FRW cosmology on the Poincaré slices of either (10.3) or the soliton metric

(10.5). For instance, setting dŝ2 = γµνdx
µdxν and specializing to 4-dimensional

cosmologies with flat spatial sections we have

dŝ2 = −dt2 +
(
t

t0

)2/3

(dx2 + dy2 + dz2), φ = −
√

2

3
ln

(
t

t0

)
, (10.13)

with corresponding stress tensor equal to that of a perfect fluid obeying the stiff

matter equation of state p̃ = ρ̃. From the holographic perspective, the AdS/CFT

dictionary tells us that the bulk scalar field is dual to a scalar operator in the

CFT. To be specific, the near-boundary behavior of a massless scalar field in AdS

takes the form

φ(y) = (φ0 + · · · ) + e−(D−1)y/l
(
φ(D−1) + · · ·

)
, (10.14)

where φ0 and φ(D−1) are independent parameters that are fixed by the bound-

ary conditions, and · · · represent subleading terms in e−y/l. The coefficient φ0

should be interpreted as the source of a scalar operator O of dimension D − 1,

whose expectation value is 〈O〉 = φ(D−1). Our solutions correspond to the spe-

cial case φ(D−1) = 0. Note that this is unconventional: the operator O is being

sourced, but nevertheless has a zero expectation value.
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10.2.2 Perfect Fluid Matter

Noting that property (10.11) of the scalar field stress tensor was the key ele-

ment in the above construction, we may extend the range of AdS and AdS soliton

cosmologies by considering more general types of stress-energy that satisfy this

condition. We will shortly focus on perfect fluids, but we begin by assuming just

that the metric γµν satisfies Einstein’s equation on a Poincaré slice with some

stress-energy T̂µν . We can then analyze the content of the full D dimensional

Einstein equations, beginning with the AdS type metrics (10.3), in the following

way.

Using the relations between the components of the Ricci tensor (10.12) as

in the previous subsection, we find that the AdS-type metric (10.3) solves the

Einstein equation (10.7) with stress-energy given by

Tµν = T̂µν , Tyy =
1

D − 3
T, (10.15)

where T = sµν Tµν . A similar analysis for the AdS soliton-type metric (10.5) shows

that the Einstein equation (10.7) is solved with stress-energy given by

Tµν = T̂µν , Tyy =
1

D − 4
gyyT, Tvv =

1

D − 4
gvvT. (10.16)

For example, one could embed a textbook example of a four-dimensional spher-

ical static star into AdS. According to (10.16) the pressures in the radial AdS

and compact soliton directions of this cigar-star will be equal to each other, but

different from the radial pressure in the Poincaré plane.
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We now specialize to the case of AdS and AdS soliton cosmologies, taking the

metric γµν to have the FRW form

dŝ2 = −dt2 + a2(t) dΣ2
k, (10.17)

where dΣ2
k is a metric on a space with constant curvature k = 0,±1. We also

restrict our attention to 4-dimensional Poincaré slices, so that the AdS cosmologies

(10.3) have overall dimension D = 5 and the AdS soliton cosmologies (10.5) have

dimension D = 6. Finally, we assume that the stress-energy T̂µν on the slice has

the perfect fluid form

T̂µν = (ρ̂+ p̂)ûµûν + p̂γµν , (10.18)

with γµν ûµûν = −1 and equation of state p̂ = wρ̂. Note that the strong energy

condition requires w ≥ −1/3. Important special cases are w = 0 for dust, w = 1/3

for radiation, and w = 1 for the massless free scalar field; indeed, note that such

a stress tensor obeys the condition (10.11)5.

The cosmological scale factor on the Poincaré slices evolves according to the

Friedmann equations

d(ρ̂ a3) = −p̂ d(a3),
(
ȧ

a

)2

=
8πρ̂

3
− k

a2
. (10.19)

The full stress energy tensor Tab for AdS cosmologies, given by (10.15), now has

the form of an anisotropic fluid, with a distinct equation of state parameter for the

5Values of w different from 1 could be obtained from an interacting scalar field, but as such
interactions would require the introduction of a scalar potential, they are not compatible with
our ansatz. We will keep w general, with the understanding that this is a bulk, hydrodynamic
description.
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pressure in the y-direction. Moreover, the energy density and pressures depend

on the radial coordinate y, as well as on time. One finds that the energy density

is given by ρ = e−2y/lρ̂, while the pressures tangent to the Poincaré slices satisfy

an equation of state in the D-dimensions of the same form as in (D− 1), namely

p = wρ. In the y-direction one finds that py = wyρ with

wy =
(3w − 1)

2
. (10.20)

With a soliton, equation (10.16) implies that the pressure in the compact v-

direction is equal to py, so also pv = wyρ. To summarize, the stress-energy for the

AdS soliton cosmology is

ρ = e−2y/lρ̂(t), p = wρ, py = pv =
(3w − 1)

2
ρ. (10.21)

Some observations are as follows. For w = 1, which corresponds to the massless

scalar field discussed above, wy = 1 as well so the pressure in the full spacetime

is isotropic. For radiation (w = 1/3), the stress-energy on the Poincaré slices is

traceless and the pressure orthogonal to the slices vanishes, so the stress tensor

remains traceless. For w < 1/3, the orthogonal pressure is negative.

10.2.3 Open AdS and AdS Soliton Cosmologies

We will be particularly interested in AdS and AdS soliton cosmologies with

open (k = −1) FRW universes on the Poincaré slices. In this case, provided that

the equation of state parameter is in the range w > −1/3 (that is, that the strong

energy condition holds), the energy density ρ̂ will fall off faster than 1/a2 and at
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late times the scale factor will grow linearly in time. At sufficiently late times,

the metric γµν on the Poincare slices then approaches

dŝ2late = −dt2 + t2 dΣ2
−1, (10.22)

which is flat spacetime in Milne coordinates. The full AdS and AdS soliton cosmo-

logical metrics (10.3) and (10.5) then respectively approach the AdS or AdS soliton

metrics at late times. The late-time behavior of these cosmologies can therefore

be thought of as an approach to equilibrium; in particular, the CFT dual can be

thought of as an expanding isotropic plasma equilibrating at late time. The solu-

tions (10.3) and (10.5) correspond to the plasma being in a deconfined or confined

phase, respectively.

10.3 ADM Mass and Boundary Stress Tensor

for AdS Soliton Cosmologies

As a first examination of the properties of these AdS cosmologies, we look at

how the cosmological expansion impacts the boundary stress tensor and the ADM

mass and tensions of the AdS soliton (which corresponds to the confined phase of

the dual field theory; see e.g. [385]). In general we lack a definition of the ADM

charges that will apply at the boundary y = ∞ with a time dependent bound-

ary metric. However, as we will see the special case of an open cosmology with

matter obeying the strong energy condition w > −1/3 allows for a perturbative

computation of how the ADM charges of the soliton approach their static values
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at late times.

The static AdS soliton has negative ADMmass, reflecting the negative Casimir

energy of the boundary field theory with a compact direction, and is conjectured

to be the lowest energy solution among spacetimes with these asymptotics [117].

In addition to its mass, the AdS soliton has nonzero ADM tensions [386, 387]. The

tension along the compact v-direction in (10.5) is found to be large and positive,

while the other three spatial tensions have negative values, such that the trace of

the ADM charges (sum of the mass and the tensions) vanishes. One can think of

the static soliton solution as an equilibrium configuration. In this section we will

compute the approach to equilibrium of the boundary stress tensor, as well as the

mass and tensions for an open AdS soliton cosmology. We will see that the mass

decreases to the static soliton value, a result that is consistent with the minimum

mass conjecture with matter obeying the strong energy condition.

As noted above, the FRW boundary metric does not have a time-translation

symmetry and therefore the ADM mass is not defined in the usual sense. However,

at late times the FRW cosmologies with negatively curved spatial slices approach

Minkowski spacetime. We can then define a time dependent ADMmass in this late

time limit by writing the metric as static AdS plus time dependent perturbations

that decay to zero. These perturbations to the metric determine the late time

corrections to the asymptotic constant value of the mass of the soliton.

Consider an AdS soliton cosmology (10.5) with an open FRW metric

dŝ2 = −dt2 + a2(t)
(
dχ2 + sinh2 χdΩ2

(2)

)
(10.23)
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on the Poincaré slices. We assume that w > −1/3, so that in the late time limit

a(t) ≃ t. Define new coordinates on the slices according to

T = a(t) coshχ, R = a(t) sinhχ. (10.24)

Note that since R/T = tanhχ it follows that R/T ≤ 1 with equality when χ→ ∞.

In terms of these new coordinates the AdS soliton cosmology has the form

ds2 =
dy2

F (y)
+ e2y/l

[
F (y) dv2 − (1− δg̃TT )dT

2 + (1 + δg̃RR)dR
2

+2 δg̃TR dR dT +R2dΩ2
(2)

]
(10.25)

where F (y) is given in (10.5) and the functions δg̃TT , δg̃RR and δg̃TR, which give

the deviance of the metric on the Poincaré slices from flat, may be written as

δg̃TT = Ω
1

1− (R/T )2
, δg̃RR = Ω

(R/T )2

1− (R/T )2
, δg̃TR = Ω

R/T

1− (R/T )2
.

(10.26)

Here Ω is the dimensionless density parameter of the open FRW metric,

Ω =
8πρ̂

3H2
=

(
1− 1

ȧ2

)
, (10.27)

andH = ȧ/a is the Hubble parameter. For an open universe Ω < 1 and approaches

zero in the far future. Hence, the metric (10.25) approaches the AdS soliton at

late times. We emphasize that the expressions in (10.26) are exact up to this

point.

To proceed further, the density parameter Ω must be expressed in terms of
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the asymptotically Minkowski coordinates (T,R), which requires the expression

for the scale factor a(t) at late times. To obtain this expression, first we substitute

the equation of state p = wρ into the Friedman equations (10.19), which allows

the energy density to be solved for in terms of the scale factor, giving

ρ̂(t) =
3Ω̄∗H

2
∗

8π(H∗a(t))3(1+w)
, where Ω̄∗ ≡

Ω∗
(1− Ω∗)3(w+1)/2

(10.28)

and H∗ and Ω∗ are the Hubble and density parameters evaluated at a fiducial time

t = t∗. The density and scale factor evaluated at t∗ are given by ρ̂∗ = 3Ω∗H
2
∗/8π

and a∗ = 1/(H∗
√
1− Ω∗) respectively. The equation for the scale factor then

reduces to

ȧ2 = 1 +
Ω̄∗H

2
∗a

3(1+w)
∗

a1+3w
. (10.29)

For w > −1/3, this reduces in the limit of large scale factor to ȧ2 ≃ 1, giving

a(t) ≃ t in the late time limit. Including a subleading correction of the form a(t) ≃

t+ αtβ yields

a(t) ≃ t− Ω̄∗
6wH∗(H∗t)3w

, w 6= 0, (10.30a)

a(t) ≃ t+
Ω̄∗
2H∗

ln

(
t

H∗

)
, w = 0, (10.30b)

which by (10.27) yield

Ω(t) ≃ Ω̄∗
(H∗t)(1+3w)

. (10.31)

The expressions (10.30) can be inverted and combined with the transformation

to (R, T ) coordinates to yield the coordinate transformation from t to (R, T ), valid
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at late times, including terms up to order R2/T 2,

t ≃ T +
Ω̄∗

6wH∗(H∗T )3w
− R2

2T
, w 6= 0, (10.32a)

t ≃ T − Ω̄∗
2H∗

ln

(
T

H∗

)
− R2

2T
, w = 0, (10.32b)

which then give Ω as a function of T and R:

Ω ≃ Ω̄∗
(H∗T )3w+1

(
1− (1 + 3w)Ω̄∗

6w(H∗T )3w+1
+

(1 + 3w)R2

2T 2

)
, w 6= 0, (10.33a)

Ω ≃ Ω̄∗
H∗T

(
1 +

Ω̂∗
2H∗T

ln

(
T

H∗

)
+

R2

2T 2

)
, w = 0. (10.33b)

This is our desired result.

We are now prepared to compute the leading late time corrections to the

boundary stress tensor density, which we will denote by τµν . Let Kµν be the ex-

trinsic curvature of the AdS boundary. In the boundary stress tensor formalism

a boundary action is defined that includes an integral over K plus geometrical

counterterms that are constructed from the metric on the boundary sµν , defined

in equation (10.10). These terms include a cosmological constant, the scalar cur-

vature of sµν , and potentially higher derivative counter terms as needed. The

stress tensor density results from varying the boundary action with respect to

sµν . The coefficients of the counter terms are chosen to cancel divergences that

occur in τµν and are dimension dependent. One finds the result [96, 104, 388]

8πτµν =
√
−s
(
Kµν −Ksµν +

D − 2

l
sµν +

1

D − 3
Gµν [s] + · · ·

)
, (10.34)
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where the · · · indicate higher derivative terms in the Riemann tensor of sµν , which

we will show are subdominant at late times. We work with the boundary stress

tensor density because the volume element of the late time metric changes at

leading order, and also because this is the appropriate quantity to integrate to get

the ADM charges.

In the case of the static AdS soliton, the metric on the boundary is flat and the

terms in (10.34) depending on the curvature of sµν all vanish. This is no longer

true for the cosmological AdS spacetimes. The Einstein tensor term in (10.34)

contributes a time-dependent piece to τµν which goes to zero at late times like the

energy density ρ̂ in (10.28). Additional time dependence in τµν comes from the

volume element in (10.34) which goes like

√
−s =

(
1− 1

2
Ω

)√
−s(0), (10.35)

where
√−s(0) denotes the volume element in the static AdS soliton, and the late

time behavior of the density parameter Ω is given in (10.31). Comparing the

decay rates of ρ̂ and Ω, one finds that the contribution of Gµν to the boundary

stress tensor density is subdominant at late times compared to that of the volume

element. The contributions of higher derivative terms in (10.34) will decay even

more rapidly. The leading contributions to the boundary stress tensor density are

then readily found by combining the results for the static AdS soliton in [386]

with equation (10.35) giving

τµν =
e5y+/l

16πl

(
1− 1

2
Ω

)
diag(−1, 1, 1, 1,−4), (10.36)
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where the coordinates are ordered according to (t, x1, x2, x3, v). Hence the decay-

ing time dependent corrections to the static values of τµν are simply proportional

to Ω, the density parameter of the cosmology.

We now use the results above to determine the ADM mass and tensions for

the AdS soliton cosmologies. Comparison with [386] shows that the integrands

of the ADM charges in AdS coincide with the first three terms in the boundary

stress tensor in equation (10.34), and the components of τµν above then just need

to be integrated to obtain the ADM charges. In the static coordinates, the density

parameter Ω depends on R as well as T , so the integrand is not a constant. This

does not mean that R = 0 is a special point, since any location in the homogeneous

open cosmology could equally well be chosen as the origin. For the static AdS

soliton, the ADM charges are made finite by taking the planar geometry to be

periodically identified, with −Lj/2 ≤ xj ≤ Lj/2. For notational brevity let the

asymptotic volume be V = L1L2L3Lv where Lv is the range of compact coordinate

v given in (10.6). In the limit that the plane is infinite, the relevant energy is the

mass per unit volume obtained by dividing the total mass by V , and similarly for

the spatial tensions.

Finally, it is important to note that the static radial coordinate R has the

range 0 ≤ R ≤ T , with the upper limit corresponding to χ→ ∞ in the coordinate

transformation (10.24). The integrals for the ADM charges are then over a box

of length L < T , and at the end we divide out the volume of the box. Define the

spatial average of the density parameter Ω at time T by

〈Ω〉 = Ω̄∗
V (H∗T )3w+1

∫
dx1dx2dx3dvΩ(R, T ). (10.37)
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In the late time limit, we substitute the approximate expression for Ω given in

(10.33). For the general case w 6= 0, this yields

〈Ω〉 = Ω̄∗
V (H∗T )3w+1

(
1− c1

T 3w+1
+
c2L

2

T 2

)
, (10.38)

where the coefficients c1, c2 can be read off of the expansion of Ω in equation

(10.33). One sees that the terms proportional to c1 and c2 make increasingly

small contributions and so will be dropped in subsequent formulae. This also

allows us to treat the cases w = 0, w 6= 0 simultaneously, since the leading-order

term in (10.38) is identical to that obtained in the special case w = 0.

Following the conventions of past work (e.g. [386]), we give the ADM tension

rather than a pressure, where tension is simply minus the pressure6. Assembling

the pieces, at late times the mass and tensions of the soliton in the metric (10.25)

are

M = Tj = − V

16πl
e5y+/l

(
1− 1

2
〈Ω〉
)
, j = 1, 2, 3, (10.39a)

Tv =
4V

16πl
e5y+/l

(
1− 1

2
〈Ω〉
)
. (10.39b)

The expressions for the ADM charges have the same structure as the compo-

nents of the boundary stress tensor, relaxing to the equilibrium values like 〈Ω〉.

Since 〈Ω〉 > 0, the mass of the AdS soliton cosmology decreases as 〈Ω〉 goes to

zero, approaching its negative static value at late times, consistent with the en-

ergy bound conjectured in [117]. The tension Tv around the compact dimension

6This convention is natural in asymptotically flat static spacetimes where the gravitational
tension can be shown to be positive [389].
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increases to its static positive value, while the trace M + Tv + ΣjTj vanishes

throughout the relaxation process.

10.4 Entanglement Entropy

The new AdS cosmological solutions allow us to compute how the entanglement

entropy of a region in the dual CFT approaches equilibrium. To perform the

computation, we use the holographic prescription [70, 280], which proposes that

the entanglement entropy of a region R (called the entangling region) in the

boundary CFT is equal to

SR =
Area [Σ]

4GN

, (10.40)

where Σ (referred to as the entangling surface) is the minimal-area extremal sur-

face in the bulk spacetime anchored to ∂R and homologous to R. Note that in

this section we have restored Newton’s constant GN . We will also keep w general,

though we emphasize that only the case w = 1 (wherein the bulk matter is a

scalar field) has a well-understood CFT dual.

Parametrizing Σ as Xa(σi), with σi coordinates on Σ, i = 1, ..., D−2, the area

functional is

A =

∫ √
h dD−2σ, (10.41)

where h is the determinant of the induced metric on the surface

hij = gab∂iX
a∂jX

b. (10.42)

In general, extremizing (10.41) to obtain the entangling surface is difficult
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to accomplish analytically, and the AdS soliton cosmologies are no exception.

However, we can make progress by working in the non-solitonized AdS cosmol-

ogy (10.3) and noting that the calculations performed there should approximate

those in the AdS soliton cosmology, as long as the relevant surfaces do not extend

too deeply into the spacetime. The boundary metric is then

ds2∂ = −(1− δg̃TT )dT
2 + (1 + δg̃RR)dR

2 − 2δg̃TR dR dT +R2dΩ2
(2), (10.43)

and the full metric is given in (10.3) with γµν equal to ds2∂ . Working in pure

AdS has the significant advantage that the extremal surface is known for a spher-

ical entangling region on the boundary [280]. This allows us to use perturbative

techniques to compute the time dependent correction to the area as the metric

approaches the static AdS spacetime in the future.

In order to compute the late-time behavior of the entanglement entropy we

work to first order in powers of R/T in δg̃TT , δg̃RR, and δg̃TR, given in equations

(10.26) and (10.33). We take the boundary of the entangling region to be a sphere

of radius R0 at some time T0; the corresponding entangling surface Σ in pure AdS

was found in [280]. We may then perturb off of this solution to compute the leading

correction to the area. There are two natural options for how this sphere should

evolve in time: (i) the sphere can be of fixed proper size in the asymptotically

static coordinates so that R0 is held constant as T0 advances; or (ii) the sphere

can be comoving, so that fluid elements on the boundary of the sphere follow

geodesics, and R0 grows like a(t). We will discuss both choices below.
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10.4.1 Zeroth Order Solutions

At zeroth order, the boundary metric (10.43) is just Minkowski space. Parametriz-

ing the surface by z ≡ le−y/l and the coordinates on the sphere, the area func-

tional (10.41) is

A = 4πl3
∫ 1

ǫ

dx
(1− x2)1/2

x3
, (10.44)

where ǫ = zcut/R0 and zcut is a UV cutoff to regulate the integral. The corre-

sponding entangling surfaces were calculated in [280] and are given by

Σ0 : z2 +R2 = R2
0 , T = T0, (10.45)

with area

A(0) = l3
[
Astatic

2z2cut
− π ln

(
Astatic

πz2cut

)
− π

]
, (10.46)

where Astatic = 4πR2
0 is the area of ∂Σ0. The first term in the above expression

denotes the usual area law growth of the entanglement entropy, while the coeffi-

cient of the logarithmically divergent term provides a UV-independent measure

of the entanglement entropy.

10.4.2 First Order Corrections: Approach to Equilibrium

Now, consider corrections to (10.46) which arise both from perturbations to

the metric and to the surface Xa. Write each as a zeroth order piece plus a

perturbation,

gab = g
(0)
ab + δgab , Xa(σi) = Xa

(0) + δXa. (10.47)
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To first order the volume element on the surface becomes

h = h(0)
(
1 + Tr

[
δgab∂iX

a
(0)∂jX

b
(0) + 2g

(0)
ab ∂iδX

a∂jX
b
(0)

])
. (10.48)

However, the second term in the trace is a variation of the surface in the back-

ground metric, and so this integrates to zero since the background surface is

extremal. Thus the first-order change in the area is governed by the perturbation

to the metric:

δA =
1

2

∫ √
h(0) Tr

[
δgab∂iX

a
(0)∂jX

b
(0)

]
dd−1σ. (10.49)

The final step is to substitute the expressions for the metric perturbations (10.26)

into the metric equations (10.3), (10.43). Using R′(z) = −z/R on the zeroth order

surface (10.45), the induced metric in the perturbed spacetime is given by

(g
(0)
ab + δgab)∂iX

a
(0)∂jX

b
(0)dσ

idσj|Σ0
=
l2

z2

{(
R2

0

R2
+
z2Ω

T 2
0

)
dz2 +R2dΩ2

(2)

}
, (10.50)

where R =
√
R2

0 − z2. Using this expression in (10.49) and substituting Ω from

(10.33) gives the first-order correction to the area of the entangling surface

δA =
4πl3Ω̄∗

(H∗T0)3w+1

(
R2

0

2T 2
0

)∫ 1

ǫ

dx
(1− x2)3/2

x
(10.51)

=
l3Ω̄∗

4(H∗T0)3w+3
H2

∗Astatic

(
ln

(
Astatic

πz2cut

)
− 4

3

)
. (10.52)

This result is valid at sufficiently late times such that H∗T0 ≫ 1 and T0 ≫ R0.

The entanglement entropy, including the leading late time contribution, fol-
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lows from substituting (10.51) and (10.46) into the entropy-area relation in equa-

tion (10.40). The conversion from area to entropy contains the prefactor l3/G
(5)
N ,

which can be translated into the parameters of the dual CFT. According to the

AdS/CFT correspondence, the solutions (10.3) in D = 5 are dual to an N = 4

supersymmetric Yang-Mills theory on the FRW spacetime (10.17). Following the

discussion in [280], we consider N = 4 SU(N) SYM theory on AdS5×S5, in which

case the AdS radius, the ten dimensional Newton’s constant, and the five dimen-

sional Newton’s constant are identified with the string coupling, string tension,

and N according to l4 = 4πgs(α
′)2N , G

(10)
N = 8π6g2s(α

′)4, and G
(5)
N = G

(10)
N /l5.

This gives l3/G
(5)
N = 2N2/π, and the entanglement entropy is then

S =
N2

2π

[
Astatic

2z2cut
− π ln

(
Astatic

πz2cut

)
− π +

Ω̄∗H
2
∗Astatic

4(H∗T )3w+3

(
ln

(
2Astatic

πz2cut

)
− 4

3

)
+ · · ·

]
,

(10.53)

where · · · denotes terms that are subleading at late time, and the subscript on T

has been dropped for simplicity. The coefficient of the logarithmic term is invariant

under rescalings of the cutoff, so this term serves as a regularized measure Sreg of

the entanglement entropy. We see that the correction to this term is given by

δSreg ≃
N2

8π

Ω̄∗H
2
∗Astatic

(H∗T )3w+3
ln

(
2Astatic

πz2cut

)
. (10.54)

Note that this is positive, which means that S decreases to its equilibrium value.

This behavior differs markedly from that of quenches in CFTs [221, 269–271, 335,

390, 391], wherein the entanglement entropy grows until is saturates. There is

a temptingly simple and compelling physical reason for the decrease of S found

in this calculation: in the Cartesian coordinates T,R there is a nonzero radial
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flux proportional to gTR, so the decrease of the entropy in the ball R ≤ R0 can

be interpreted as due to an energy flow out of the ball. In particular, in the

quasi-particle picture of entanglement entropy propagation [221], entanglement

is carried by entangled particle pairs; a new flow of such particles out of the

entangling ball R ≤ R0 leading to a decrease in entanglement entropy is consistent

with this picture. Alternatively, note that at late time, our bulk solution approach

the Minkowski vacuum, and therefore the CFT evolves from an excited state to

the zero-temperature vacuum state. We would therefore naturally expect probes

of correlation (such as entanglement entropy) to decay in the late time limit7.

The time dependent contribution decays as a power law, and the time scale for

the decay is set by the Hubble parameter H∗. The power depends on the equation

of state. For example, for dust the correction goes to zero like T−3, and for a

free massless scalar field like T−6. The time dependence in δS is analogous to the

result of [359], in which the entropy of a strip in a vacuum-Kasner AdS spacetime

was found to have a power law behavior, in both cases a reflection of the time

evolution of the cosmology.

Turning to the amplitude of δSren, we see that this is set by an interesting

combination of factors. At sufficiently late times t∗Ω∗ ≪ 1, so that H2
∗ Ω̄∗ ≃

8πG
(5)
N ρ̂∗/3. Hence the dimensionless combination H2

∗ Ω̄∗Astatic has the interpreta-

tion of the non-vacuum energy, measured in Planck units, that is contained in a

shell of width the Planck length that surrounds the sphere. That is, the entangling

modes of the perturbation act like they are concentrated on the boundary of the

sphere. This is a reflection of the fact that the change in the area of the extremal

7We thank Juan Pedraza for this observation.
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surface comes from the metric perturbations near the surface.

10.4.3 The Cosmological View

An alternative way to interpret the time evolution of the entanglement entropy

is to take the boundary sphere to be comoving, so that points on the boundary

sphere follow geodesics. In the cosmological coordinates (10.23) this means that

the sphere is at a fixed coordinate χ = χ0. The extremal surface Σ0 does not lie

within a slice of constant cosmological time, but it does intersect the boundary at

a constant time, as can be seen by evaluating (10.24) at z = 0. Transforming the

zeroth order surface (10.45) to the cosmological coordinates gives

Σ0 : a(t) coshχ = a(tb) coshχ0 , z2 + cosh2 χ0 tanh
2 χ = a(tb)

2 sinh2 χ0.

(10.55)

Let

Ageod(tb) = 4πa(tb)
2 sinh2 χ0 (10.56)

be the proper area of the comoving sphere on the boundary at tb. Then in terms

of the cosmological coordinates the zeroth order area (10.46) becomes

A(0)(tb) = l3
[
Ageod

2z2cut
− π ln

(
Ageod

πz2cut

)
− π

]
(10.57)

and the time dependent correction (10.51) is

δA = l3Ω̄∗H
2
∗ (4πa

2
∗ sinh

2 χ0)

(
a∗
a(tb)

)3w+1(
ln

(
Ageod

2πz2cut

)
− 2

3

)
. (10.58)
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Hence the time dependent piece redshifts to zero as (1+ zb)
−(3w+1) where 1+ zb =

a(tb)/a∗ is the cosmological redshift. The power in the decaying term is different

than for the static sphere (10.51) because Ageod increases as a2.

So far the expressions for the area (10.57) and (10.58) are just translations

from the asymptotically static coordinates to the cosmological coordinates. The

difference from the previous section, in which the area of the boundary sphere is

held constant, comes when one follows the time evolution by considering increasing

values of the boundary time tb. The area of the boundary co-moving sphere

increases like a2(tb), so although (the UV-independent part of) δA is positive

and decreasing to zero, the total entropy increases with tb. This brings up the

important issue of the range of validity of the expressions in cosmological time.

As discussed in section 10.4, if the results are to be good approximations to the

results in a solitonized spacetime, one needs to restrict to surfaces that do not

penetrate too deeply into the bulk, which precludes taking R ∼ tb sinhχ0 too

large. This means that the validity of (10.51) is restricted to times that are not so

large that the proper radius of the boundary sphere approaches the length scale

set by the soliton, that is, we need tb sinhχ0 ≪ le−y+/l. The situation here is

similar to that in [32].

10.5 Discussion

In this paper, we have shown how to construct AdS cosmologies that satisfy

the Einstein equations with a nonzero stress tensor and negative cosmological

constant. Our solutions were built as foliations of lower-dimensional solutions;
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the induced metric on each of these hypersurfaces itself satisfies Einstein’s equa-

tions with a nonzero stress tensor. This construction has the advantage that the

boundary metric of the AlAdS solution is just (conformal to) the induced metric

on each hypersurface. Therefore, this construction offers us significant freedom in

constructing AlAdS spacetimes with a boundary metric of our choosing.

The particular AdS cosmologies that we have constructed take the stress tensor

to be that of a perfect fluid obeying the strong energy condition; for the equation

of state w = 1, the fluid is sourced by a massless noninteracting scalar field.

Moreover, we have focused on the specific case in which the spatial slices of the

FRW cosmologies are negatively curved, as such FRW cosmologies then approach

the Milne patch of Minkowski space at late times. The AdS cosmology constructed

from these slices therefore approaches the Poincaré patch of AdS at late times,

while the AdS soliton cosmology approaches the static AdS soliton.

Such solutions are especially interesting because they allow us to perturba-

tively calculate the behavior of physically relevant quantities at late times. For

instance, we have calculated the late-time perturbation to the ADM mass of the

AdS soliton cosmology, and have found this perturbation to be

δM = −ΩM
2

, (10.59)

where M is the unperturbed mass and Ω is the dimensionless density parameter

of the FRW cosmology, which goes to zero at late times in the solutions we are

interested in. Since M is negative for the soliton this implies that the mass

decreases to the mass of the static AdS soliton. Hence this result is consistent
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with the energy conjecture of [117] that the AdS soliton is the lowest energy

spacetime with the prescribed asymptotic structure. We found the ADM tensions

to be modified in a similar manner to M.

Moreover, our solutions also have immediate applicability to large-N , strongly

coupled CFTs via the AdS/CFT correspondence. Indeed, our AdS cosmologies

are dual to CFTs living on an FRW cosmology, while the massless, noninteracting

scalar field in the bulk is dual to a scalar operator in the CFT with zero expectation

value but nonzero source. This atypical behavior can be tied to the fact that our

AdS cosmologies are singular at the Poincaré horizon. This singularity is removed

by “solitonizing”: introducing a compactified direction in the bulk that caps off

the geometry. This cap amounts to putting the CFT in a confined phase.

As a probe of the behavior of the CFT on these FRW spacetimes, we study

the entanglement entropy S of a sphere of constant radius. Using perturbative

techniques to find the leading time dependent correction to the entropy, we find

that the regulated entanglement entropy Sren decays as a power law to its equilib-

rium value. The power depends on the equation of state of the fluid. Note that

this decay to equilibrium is starkly different from the behavior of entanglement

entropy after a quench, when the entanglement entropy grows to its equilibrium

(thermal) value. However, note that our solutions at late time approach Poincaré

AdS, which has zero temperature; this is drastically different from the end state of

a quench, which in the bulk is usually modelled by the injection of energy, forming

a black hole of finite temperature.

Several issues and questions are raised by these examples. First, can these

solutions be generalized to include planar black holes in the bulk spacetimes?
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Such solutions could conceivably be used to model the approach of a CFT on an

FRW cosmology to thermal equilibrium with a nonzero temperature T , much as

here we have modeled the approach to equilibrium at T = 0. Second, for reasons

of tractability our entropy calculations have been perturbative analyses in the

AdS cosmology. It would also be interesting to study the entanglement entropy

of the CFT at all times, in both the AdS cosmologies and especially in the AdS

soliton cosmologies, to see if there is any behavior that was not captured by our

perturbative methods. Such calculations would most likely be numerical, so we

leave them for the future.
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Conclusions and Future

Directions

The AdS/CFT correspondence is the most precisely formulated manifestation of

holography we have to date. In its strongest form, it states that string theory on

an asymptotically (locally) AdS spacetime is equivalent to a conformal field theory

that lives on (a representative of) the conformal boundary of the AdS spacetime.

In the first part of this dissertation, we used AdS/CFT as a tool to probe the

behavior of heat flow in strongly coupled conformal field theories. We considered

a CFT living on a background containing two black holes, which serve as heat

sources and sinks. By numerically constructing the AdS bulk duals to this CFT

state, we were able to compute the thermal conductivity of the CFT. We taking

the CFT into a hydrodynamic regime, we found excellent agreement with the

hydrodynamics approximation obtained from the fluid/gravity correspondence.

Incidentally, the bulk dual geometry consists of a black hole whose horizon is
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stationary but non-Killing; such black holes are unusual objects and worthy of

further study. In particular, the fluid/gravity correspondence implies that there

is a regime in which these horizons are described by hydrodynamics. But it is well

known that stationary fluid flows can be unstable to instabilities, which can either

lead to new stationary-state flows, quasi-stationary flows, or fully developed tur-

bulence. Thus studying the instabilities of these stationary non-Killing horizons

may offer new insights into novel gravitational solutions or instabilities. We leave

these results to future work.

We have also numerically constructed black droplets dual to CFTs on rotating

black hole backgrounds. The CFT state exhibits no Hawking radiation to infinity;

rather, the CFT is “stuck” around the black hole. This is an artefact of the

strong coupling, and we have tentatively interpreted this behavior in terms of

the jamming transition studied in soft condensed matter physics. It would be

interesting to study this phenomenon further; with the success that AdS/CFT

has had in making connections to (hard) condensed matter, it would be quite

remarkable to be able to draw ties to soft condensed matter phenomena as well.

In the second part of this dissertation, we have instead probed the structure

of the duality itself. Our focus was entanglement, particularly the RT and HRT

formulas for entanglement entropy. We showed that there exist bulk geometries in

which the HRT formula as it currently stands is ill-defined, and therefore requires

modifications. We suggested some possible modifications, and explored whether

or not the solutions might be to include complex extremal surfaces. We concluded

that all of our suggested modifications are plausible, but in order to understand

which (if any) is correct, we would need to better understand the origins of HRT.
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We then turned to the question of bulk reconstruction from entanglement en-

tropy: how much of the bulk can be reconstructed from the extremal surfaces that

contribute to the HRT formula? A promising approach to bulk reconstruction is

that of hole-ography, which allows us to reconstruct bulk surfaces from CFT en-

tanglement entropy. However, we proved some general results showing that in 2+1

dimensions (or in higher dimensions with enough symmetry), the regions inside

holographic screens can only be partly reconstructed via a hole-ographic approach.

We interpreted the result in terms of some kind of coarse-graining, which may be

related to additional degrees of freedom living on the holographic screen. It would

be interesting to understand whether this interpretation is correct, and if so, pre-

cisely how the missing information is encoded on the screen. We leave this to

future work.
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Appendix A

Funnels and Droplets

A.1 Flowing Funnels in Fefferman-Graham co-

ordinates

The goal of this appendix is to describe the solutions of section 3.3 in Fefferman-

Graham coordinates associated with the boundary metric (3.6). This boils down

to computing the relevant coordinate transformation between these new coordi-

nates and e.g. the BTZ coordinates t, ρ, x of (3.3). We will in fact use null

Fefferman-Graham coordinates u, v, z with u = −κ−1e−κt sinhκr, v = κ−1eκt sinhκr

so that (using the Fefferman-Graham gauge conditions) the bulk metric takes the

form

ds2 =
ℓ2

z2

[
−
(

1

1− κ2uv
+O(κ2z2)

)
du dv +O(κ2z2) du2 +O(κ2z2) dv2 + dz2

]
.

(A.1)

While it is in principle possible to compute this transformation directly, we
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find it simpler to use Poincaré coordinates UP , VP , ZP on AdS3, for which the AdS3

metric is ds2 = ℓ2(−dUP dVP + dZ2
P )/Z

2
P , as an intermediate step. The point here

is that the transformation from (ρ, t, x) to (UP , VP , ZP ) is known explicitly. We

may then change conformal frame and solve for (u, v, z) in terms of (UP , VP , ZP ) as

a power series in z and, due to the relative simplicity of the Poincaré patch metric,

the result is a geometric series that is easily summed and written in closed form.

Combining the two transformations then gives the desired result. In contrast,

summing the series solution to go directly from (ρ, t, x) to (u, v, z) is more difficult.

Let us look for Fefferman-Graham coordinates in which the boundary metric

takes the form (A.1) by making the ansatz that UP , VP , ZP have a series expansion

in (integer) powers of z and that the leadingO(z0) terms in UP , VP are respectively

ℓ(κu)γR , ℓ(κv)γL , while the leading term in ZP is ℓ
√
γRγL(κu)γL−1(κv)γR−1(1− κ2uv)κz.

Then as stated above one finds that the result is a geometric series. Summing the

series yields

UP (u, v, z) = ℓ(κu)γR
[
1−

2γR
(1− κ2uv)[1− γL(1− κ2uv)](κz)2

4κ2uv(1− κ2uv)− [1− γL(1− κ2uv)][1− γR(1− κ2uv)](κz)2

]
, (A.2a)

VP (u, v, z) = ℓ(κv)γL
[
1−

2γL
(1− κ2uv)[1− γR(1− κ2uv)](κz)2

4κ2uv(1− κ2uv)− [1− γL(1− κ2uv)][1− γR(1− κ2uv)](κz)2

]
, (A.2b)
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ZP (u, v, z) = ℓ
√
γLγR×

4(κu)(γL+1)/2(κv)(γR+1)/2(1− κ2uv)3/2κz

4κ2uv(1− κ2uv)− [1− γL(1− κ2uv)][1− γR(1− κ2uv)](κz)2
. (A.2c)

It is then straightforward to read off the boundary stress tensor [103, 104] to

obtain

Tuu =
c

12π
κ2
[

κ2v2

4(1− κ2uv)2
+
γ2R − 1

4κ2u2

]
, (A.3a)

Tvv =
c

12π
κ2
[

κ2u2

4(1− κ2uv)2
+
γ2L − 1

4κ2v2

]
, (A.3b)

Tuv = − c

12π

κ2

2(1− κ2uv)2
, (A.3c)

where as usual c = 3ℓ/2G. Note that regularity of Tab on the future horizon (u = 0)

would require γR = 1, while a vanishing incoming flux at I − (u = −∞) would

require γL = 0. Thus the transformations (A.2) degenerate in the Unruh state, as

they suggest that VP is independent of (u, v, z).

This subtlety disappears when one instead transforms to BTZ coordinates.

The transformation from (Up, Vp, Zp) to (t, ρ, x) is given for ρ > ρ+ by equa-

tions (2.9) of [392] and takes a simple form in terms of the null Fefferman-Graham

coordinates U = −ℓe−κ(t−x), V = ℓeκ(t+x), and Z given by the implicit relation

ρ =
ℓ2

Z

√
1 + (∆2 + Σ2) (Z/ℓ)2 +∆2Σ2(Z/ℓ)4, (A.4)

for ∆ = (ρ+ − ρ−)/2ℓ and Σ = (ρ+ − ρ−)/2ℓ. We mention that the metric in
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(U, V, Z) coordinates is

ds2 =
ℓ2

Z2

[
ℓ2

UV

(
1 + ∆2Σ2(Z/ℓ)4

)
dU dV

+Z2

(
Σ2

U2
dU2 +

∆2

V 2
dV 2

)
+ dZ2

]
. (A.5)

The transformation from (UP , VP , ZP ) to (U, V, Z) is then

UP = −ℓ1− Σ∆(Z/ℓ)2

1 + Σ∆(Z/ℓ)2
(−U/ℓ)2Σ , (A.6a)

VP = ℓ
1− Σ∆(Z/ℓ)2

1 + Σ∆(Z/ℓ)2
(V/ℓ)2∆ , (A.6b)

ZP =
2
√
Σ∆Z

1 + Σ∆(Z/ℓ)2
(−U/ℓ)Σ (V/ℓ)∆ . (A.6c)

Combining (A.6) with (A.2) and using the identifications ∆ = 2γL and Σ = 2γR

yields the transformation between the BTZ coordinates U, V, Z and (u, v, z). In

particular, the result is well-behaved in the extremal limit ∆ = 0, Σ = 1/2, where

it becomes

U(u, v, z) = ℓκu

[
1− 2(1− κ2uv)(κz)2

4κ2uv(1− κ2uv)− κ2uv(κz)2

]
, (A.7a)

V (u, v, z) = ℓκv exp

[
−(κz)2 ×

8(1− κ2uv)2 − 2(2− κ2uv)(1− κ2uv)(κz)2

(4(1− κ2uv)− (κz)2)(4κ2uv(1− κ2uv)− (2− κ2uv)(κz)2)

]
, (A.7b)
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Z(u, v, z) = ℓ

√
−16(1− κ2uv)3(κz)2

(4(1− κ2uv)− (κz)2)(4κ2uv(1− κ2uv)− (2− κ2uv)(κz)2)
.

(A.7c)

A non-degenerate (but rather implicit) transformation from Fefferman-Graham

coordinates u, v, z to the global coordinates τ, R, θ of footnote 10 may then be

obtained by combining eqns (A.7) with the transformation

U(τ, R, θ) = −ℓ 2R cos θ + (1 +R2) cos τ

2R(cos θ − sin θ) + (1 +R2)(cos τ + sin τ)
, (A.8a)

V (τ, R, θ) = ℓ exp

[
1

2
+

2R sin θ + (1 +R2) sin τ

4R cos θ + 2(1 +R2) cos τ

+
2R sin θ − (1 +R2) cos τ

2R(cos θ − sin θ) + (1 +R2)(cos τ + sin τ)

]
, (A.8b)

Z(τ, R, θ) = ℓ
1−R2

√
[2R cos θ + (1 +R2) cos τ ][2R(cos θ − sin θ) + (1 +R2)(cos τ + sin τ)]

.

(A.8c)

which relates the BTZ coordinates U, V, Z to global coordinates τ, R, θ. We have

used this procedure to generate figures 3.5 and 3.4. In particular, we were able to

identify the bulk horizons H± in Fefferman-Graham coordinates from (A.7) and

the known horizons in BTZ coordinates. We also identified singular surfaces of

the transformation by examining the Jacobian; these are the plane v = 0 and the

dark surface labeled CS in figure 3.4. The CS surface was numerically mapped to
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the global coordinates by using equations (A.8) and is shown in figure 3.5 as a set

of lines, each of which is a contour of constant uv. Note that the surface defined

by these lines ends abruptly in the middle of the spacetime. This edge corresponds

to the boundary singularity at κ2uv = 1. Further examination reveals that the

CS surface contains a set of branch points in the transformation to Fefferman-

Graham coordinates. To make the coordinate transformation one-to-one, we must

introduce an appropriate branch cut. Our choice is indicated in figure 3.4. The

transformation is one-to-one in the region between the cut, the boundary, and the

CS surface. In terms of our global coordinates (figure 3.5), the cut is a surface

that starts near the internal edge of the CS surface, runs to the right above the

CS surface, and terminates at I ±.

A.2 Fluid results in the black hole frame

We may transform the hydrodynamic results of section 4.3.2 to the black hole

frame associated with the metric (4.41) by implementing a boundary conformal

transformation and an appropriate change of coordinates. Setting ℓ4 = 1 the
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result is

Tloc =
y0

(1− ρ2)G(ρ)

[
T∞ +

∆T
I
f(ρ) +O(∆T 2)

]
, (A.9a)

16πG(4)T tt =
y30

(1− ρ2)3G3(ρ)

[
−2T 3

∞ − 6T 2
∞∆T
I

f(ρ) +O(∆T 2)

]
, (A.9b)

16πG(4)T tρ = −9T 3
∞∆T
I

y30√
2− ρ2 (1− ρ2)3G3(ρ)

+O(∆T 2), (A.9c)

16πG(4)T ρρ =
y30

(1− ρ2)3G3(ρ)

[
T 3
∞ +

3T 2
∞∆T
I

(h(ρ) + f(ρ)) +O(∆T 2)

]
,

(A.9d)

16πG(4)T φφ =
y30

(1− ρ2)3G3(ρ)

[
T 3
∞ +

3T 2
∞∆T
I

(−h(ρ) + f(ρ)) +O(∆T 2)

]
,

(A.9e)

where ∆T is again defined with respect to ∂t, Tloc is the local temperature with

respect to proper time in the fluid rest frame, and setting H(ρ) := (1−ρ2)G(ρ)/y0
we have defined

h(ρ) =
1

2

√
2− ρ2H(ρ)H ′(ρ), (A.10a)

f(ρ) =

∫ ρ

0

1

2
√
2− ρ2

[
ρH(ρ)H ′(ρ) + (2− ρ2)

(
(H ′(ρ))

2 −H(ρ)H ′′(ρ)
)]

dρ,

(A.10b)

I = f(1)− f(−1). (A.10c)

A.3 The horizon-generating null congruence

We wish to study the expansion and the shear tensor associated with the null

geodesic congruence that generates the future bulk horizon. Instead of solving
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the geodesic equation and taking derivatives of deviation vectors, we take advan-

tage of the fact that our system is co-homogeneity 2 to compute these quantities

directly (up to a position-dependent scale factor) from the induced metric hIJ

on 2-dimensional surfaces tangent to the Killing fields ∂t, ∂φ. We then compute

the affine parameter λ along these geodesics from the Raychaudhuri equation as

explained below.

Recall that we consider a future event horizon H of an AlAdS4 spacetime

with two commuting KVFs ∂t and ∂φ. The horizon is 3-dimensional, with a two-

dimensional space of generators. So long as the horizon is not itself Killing, we

see that any two generators are related by the actions of ∂t and ∂φ.

Choose one horizon generator with affine parameter λ. We can extend λ to a

scalar function on H by requiring it to be invariant under ∂t, ∂φ. In our case we

can take λ = λ(w) since w is indeed invariant under both KVFs and is a good

coordinate on H.

Let ka be the tangent to our generator associated with affine parameter λ.

Note that since ∂t, ∂φ are also tangent to the horizon we have k ⊥ ∂t, ∂φ. We

also choose any ℓa satisfying ℓaka = −1 and ℓ ⊥ ∂t, ∂φ. We then extend k, ℓ to

vector fields defined across all of H by requiring them to be invariant under ∂t, ∂φ.

We then define a ‘deformation tensor’ B̂ab associated with flow along the horizon

generators by projecting Bab = ∇bka onto the space orthogonal to k, ℓ. See e.g.

appendix F of [195].

Let us note that since ∂t, ∂φ commute they are surface-forming, and k is or-

thogonal to this surface. So k is hypersurface orthogonal and the twist ω̂ab = B̂[ab]

vanishes. Thus B̂ab = B̂ba. We will use this symmetry below.
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Deviation vector fields for the horizon-generating null congruence are defined

by the property that, when evaluated on a given horizon generator γ, they point

to the same horizon generator γ′ for all λ. Let us consider a deviation vector field

η orthogonal to both k and ℓ. Then (see e.g. appendix F of [195]) η satisfies

ηcB̂a
c = kc∇cη

a. (A.11)

Since translations along ∂t, ∂φ map one geodesic to another, both ∂t and ∂φ

are deviation vectors. And both are orthogonal to k, ℓ. So we may choose ηI = ∂I

for I = t, φ. Here the ηI are two spacetime vectors, not the components of a single

vector.

Let us now consider the set of associated inner products

hIJ = ηI · ηJ := ηaI gabη
b
J . (A.12)

In any coordinate system, ηat = ∂tx
a and ηaφ = ∂φx

a. So in particular in the

coordinate system y, w, t̃, φ we have (since ∂t̃ = ∂t)

hIJ = gIJ ; (A.13)

i.e., this is just the induced metric on the 2-plane generated by ∂t, ∂φ in coordinates

(t̃, φ) or, equivalently for this purpose, coordinates (t, φ). So it is easy to read off

from our numerics. But note that hIJ was defined to be a set of scalars, so

covariant derivatives of hIJ are just coordinate derivatives.

The evolution of hIJ (with respect to λ, or equivalently with respect to w) is
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governed by (A.11). Using (A.11) we compute

d

dλ
hIJ = kc∇chIJ = kc∇c (ηI · ηJ)

= B̂a
c η

c
IηJa + ηaI B̂

c
aηJc

= 2B̂acη
a
I η

c
J = 2B̂IJ , (A.14)

where in the last step as for (A.13) above we have used B̂IJ to denote the t̃, φ

components of B̂ac in the particular coordinate system y, w, t̃, φ (or equivalently

the t, φ components).

The deformation tensor B̂ab is by construction orthogonal to k, ℓ. Thus we

may write B̂ab∂a∂b = B̂IJ∂I∂J . Furthermore, from (A.13) we have

B̂IJ = gIaB̂
abgJb = gIKB̂

KLgLJ = hIKB̂
KLhLJ , (A.15)

where K,L also range over φ, t. Thus we may safely use hIJ and its inverse hIJ

to raise and lower indices I, J on B̂IJ .

Now, the components B̂IJ are essentially exponentials of integrated versions

of the expansion and shear. In particular, introducing the projector Qa
b onto the

subspace orthogonal to k, ℓ (i.e., onto the space spanned by ∂t, ∂φ) we have

θ = QabB̂
ab = hIJB̂

IJ = hIJB̂IJ , (A.16)

and

σ̂IJ = B̂IJ −
1

D − 2
θhIJ , (A.17)

where D = 4 for AdS4.
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Of course, it remains to actually find the affine parameter λ used in the above

definitions. We choose to calculate λ from Raychaudhuri’s equation which, in the

present context, may be written

dθ

dλ
= −B̂abB̂

ab −QabRacbdk
ckd. (A.18)

As usual, the symmetries of the Riemann tensor imply that QabRacbdk
ckd =

gabRacbdk
ckd, which is proportional to Rcdk

ckd. But Rab ∝ gab by the equations of

motion, so the final term in (A.18) vanishes. Since B̂ab is orthogonal to both k

and ℓ we may then write

dθ

dλ
= −B̂IJB̂

IJ . (A.19)

In terms of a general coordinate w along the generators, (A.19) may be rearranged

to yield

λ′′ = λ′
(
hIJh′IJ

)−1
[
1

2
hI1I2hJ1J2h′I1J1h

′
I2J2 +

d

dw

(
hIJh′IJ

)]
:= λ′Z(w), (A.20)

where ′ denotes the coordinate derivative d/dw and the last equality defines Z(w).

This equation is then easily solved for λ in terms Z(w), which is relatively straight-

forward to extract from the numerics.
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A.4 Near-Boundary Expansion for the Nonro-

tating Droplet

In this appendix, we list the expansions of the metric functions near the con-

formal boundary x = 1 for the nonrotating (β = 0) droplet, as well as the form

of the Fefferman-Graham expansion (5.26). For the metric functions, we have

T (x, y) = 1 + (1− y)

(
−6(1− x)2 + 6(1− x)3 +

67− 408y2

14
(1− x)4

)

+ t5(y)(1− x)5 +O(1− x)6, (A.21a)

A(x, y) = 1 + (1− y)

(
−6(1− x)2 + 6(1− x)3 +

67− 296y2

14
(1− x)4

)

+ a5(y)(1− x)5 +O(1− x)6, (A.21b)

S(x, y) = C(x, y) = 1

+ (1− y)

(
2(1− x)2 − 2(1− x)3 +

5(19 + 8y2)

14
(1− x)4

)

+ s5(y)(1− x)5 +O(1− x)6, (A.21c)
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B(x, y) = 1 +
4

7
(1− y)(5 + y)

(
(1− x)4 − 2(1− x)5

)
+O(1− x)6, (A.21d)

F (x, y) = −(1− y)(1− x)2
[
1 + (1− x) +

211− 192y

28
(1− x)2 +O(1− x)3

]
,

(A.21e)

G(x, y) = 0. (A.21f)

The coefficients t5(y), a5(y), and s5(y) cannot be determined uniquely, but must

satisfy the relationships

t5(y) =
7(1− 2y)a5(y)− (1− y)(656y − 960y2 − 14ya′5(y))

7(1− 2y)
, (A.22a)

s5(y) = −14(1− 2y)a5(y) + (1− y)(8(55− 265y + 266y2) + 14ya′5(y))

21(1− 2y)
. (A.22b)

For the transformation to Fefferman-Graham coordinates, we have

1− x2 = z̃
√
1− ỹ

[
1− 1− ỹ2

4
z̃2

+
3(1− ỹ)2(3 + 6ỹ + 19ỹ2)

224
z̃4 +O(z̃)6

]
, (A.23a)

y = ỹ

[
1 + (1− ỹ)2 z̃2 +

(1− ỹ)3(1− 3ỹ)

2
z̃4

−(1− ỹ)4(4 + 19ỹ − 44ỹ2)

21
z̃6 +O(z̃)7

]
. (A.23b)
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Appendix B

Holographic Entanglement

B.1 Geodesic Approximation for Charged Op-

erators

Here we derive the form of the action (6.25) in the limit of large m, follow-

ing [261]. The Green’s function for the field φ with mass and chargem and q should

be a Green’s function of the Klein-Gordon operator H = (−i∂ − qA)2 + m2 =

(p− qA)2 +m2; we can represent this Green’s function as

−i
H

=

∫ ∞

0

e−iNH dN, (B.1)

so that using the standard path integral construction, we get

〈
x

∣∣∣∣
−i
H

∣∣∣∣y
〉

=

∫ ∞

0

dN

∫
DxDp exp

{
i

∫ 1

0

[
ẋp−N((p− qA)2 +m2)

]
dλ

}
.

(B.2)
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We can interpret N as a field in some appropriate gauge-fixing; we can make

this explicit by introducing the gauge-fixing condition and determinant. Then we

obtain

〈
x

∣∣∣∣
−i
H

∣∣∣∣y
〉

=

∫
DN DxDp∆(x) exp

{
i

∫ 1

0

[
ẋp−N((p− qA)2 +m2)

]
dλ

}
,

(B.3)

where now N is a field to be integrated over. Now, in the WKB approximation,

we can integrate out the fields N and p by replacing them in the action with their

on-shell values. Their equations of motion are

(p− qA)2 +m2 = 0, (B.4a)

ẋ− 2N(p− qA) = 0, (B.4b)

so their on-shell values are

p =
mẋ√
−ẋ2

+ qA, (B.5a)

N =

√
−ẋ2
2m

. (B.5b)

The correlator then becomes

〈
x

∣∣∣∣
−i
H

∣∣∣∣y
〉

=

∫
Dx (· · · ) exp

{
−
∫ 1

0

[
m
√
ẋ2 − iqAẋ

]
dλ

}
, (B.6)

where (· · · ) represents functional determinants that we can neglect at leading

order in the WKB approximation. Approximating the path integral over x using
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the saddle point method, we get

〈
x

∣∣∣∣
−i
H

∣∣∣∣y
〉

∼ e−mI[xcl], (B.7)

where xcl is a solution to the equations of motion that come from the action

I[x] =

∫ [√
ẋ2 − iq

m
Aẋ

]
dλ. (B.8)

This last expression is precisely (6.25) used in the text. Note that it differs from

the action used in [227] by a crucial factor of i in the second term.

B.2 Evaluation of the Elliptic Integrals

Our notation in this appendix follows [393]. The expressions for ∆t and I in

terms of elliptic integrals are

∆t =
2z0Q

α2
√
α2 −Q2

1√
∆21

{
∆20

(w2 − 1)∆2−∆2+

[F (ψ|m)−K(m)]

+
1− w0

(1− w−)(w+ − 1)(w2 − 1)

[
Π

(
w2 − 1

∆21

;ψ

∣∣∣∣m
)
− Π

(
w2 − 1

∆21

∣∣∣∣m
)]

+
∆0−

(1− w−)∆+−∆2−

[
Π

(
∆2−
∆21

;ψ

∣∣∣∣m
)
− Π

(
∆2−
∆21

∣∣∣∣m
)]

+
∆0+

(w+ − 1)∆+−∆2+

[
Π

(
∆2+

∆21

;ψ

∣∣∣∣m
)
− Π

(
∆2+

∆21

∣∣∣∣m
)]}

, (B.9a)
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I =
2i√
∆21

{
− h(w2)

w2∆2−∆2+

[K(m)− F (ψ|m)]

− h(w−)

w−∆2−∆+−

[
Π

(
∆2−
∆21

∣∣∣∣m
)
− Π

(
∆2−
∆21

;ψ

∣∣∣∣m
)]

+
h(w+)

w+∆2+∆+−

[
Π

(
∆2+

∆21

∣∣∣∣m
)
− Π

(
∆2+

∆21

;ψ

∣∣∣∣m
)]

+
h(0)

w2w+w−
Π

(
w2

∆21

∣∣∣∣m
)}

+
2ih(0)√

∆21w2w+w−
Π

(
w2

∆21

; arctan

√
∆21

w1 − wUV

∣∣∣∣∣m
)

+ Ict, (B.9b)

where

tanψ ≡
√

∆21

w1

, (B.10a)

m ≡ ∆23

∆21

, (B.10b)

∆ij ≡ wi − wj, (B.10c)

w0 ≡ 1 +
E
Q , (B.10d)

h(w) ≡ ℓ

α2
√
α2 −Q2

[
1 + w − α2w2 −Qw(E +Q(1− w))

]
. (B.10e)

These expressions have branch points wherever m = 1 or ∞, corresponding to

points where w1 = w2 or w1 = w3.

In the scaling limit (6.45) with q̃ = 1, the above expressions reduce to

2∆t

β
= − 8 · 31/4 i b2/3 [K(m̃)− Π(n|m̃)]

π
(
8 · 32/3eiπ/3a−

√
3 e−iπ/3b2/3

)√
16 · 31/6e−5iπ/6 a b1/3 + 2e−iπ/6b

,

(B.11)
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I = ℓ

{
4 b2/3 [K(m̃)− Π(n|m̃)]

31/4
(
8 · 32/3eiπ/3a−

√
3 e−iπ/3b2/3

)√
16 · 31/6e−5iπ/6 a b1/3 + 2e−iπ/6b

−2

√
2

3
arctanh

√
2

3

}
, (B.12)

where

b = 1 +

√
1 + 512

√
3 a3, (B.13a)

m̃ =

√
3(8 · 31/6a+ b2/3)

8 · 32/3e−iπ/3a+
√
3 eiπ/3b2/3

, (B.13b)

n =
8 · 31/6e−iπ/6a+ eiπ/6b2/3

8 · 32/3e−iπ/3a+
√
3 eiπ/3b2/3

. (B.13c)

Next, consider the indefinite version of the integral (6.12),

Iα(w) =
i

2α

∫
dw

w2[(1− w)(w − w+)(w − w−)]1/2
. (B.14)

We are interested in the logarithmic divergence that comes from w = 1 for small

ǫ = 2 − α2. We can extract it by noting that (B.14) can be written in terms of

Elliptic integrals as

2α

i
Iα(w) = − 1

ww−

(
(1− w)(w − w−)

w − w+

)1/2

− (w+ − 1)1/2

w+w−
E(ψ̂|m̂)

+
(w+ + 1)

w2
+(w+ − 1)1/2

F (ψ̂|m̂) +
[w− + w+(w− + 1)]

w−w2
+(w+ − 1)1/2

Π(n̂; ψ̂|m̂), (B.15)

where

tan ψ̂ =

(
w+ − 1

1− w

)1/2

, m̂ =
w+ − w−
w+ − 1

, n̂ =
w+

w+ − 1
. (B.16)
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For small ǫ, the dominant contribution to the integral comes from w = 1, so

we can drop the first term in (B.15) and let ψ̂ = π/2 for all w+ > 1. Then

the incomplete Elliptic integrals reduce to complete ones, i.e. F (π/2|x) = K(x),

E(π/2|x) = E(x), Π(x; π/2|y) = Π(x|y). Using the asymptotics for small z

E
(a
z

)
= i

a1/2

z1/2
+O(z1/2), (B.17)

K
(a
z

)
= −i z

1/2

2a1/2
log

(
−16a

z

)
+O(z3/2), (B.18)

Π

(
b

z

∣∣∣∣
1

z

)
=

z1/2

2(b− 1)1/2

[
log

(√
b− 1 + i√
b− 1− i

)
− iπ

]
, (B.19)

we arrive at (6.14).

B.3 Shell Stress Tensors

We now compute the stress tensors on the null shells of section 7.2. Fol-

lowing [302], we embed each shell in each associated patch of the spacetime via

parametric relation xα = Xα(ya), where the ya are a set of d coordinates on the

shell and the xα are the spacetime coordinates of the patch in which the shell is to

be embedded. We take d− 1 of the ya to be the transverse coordinates xi associ-

ated with the Rd−1 translation symmetry and the remaining coordinate to be some

parameter η along the null direction. The parameter η is arbitrary and need not

be affine; indeed, for a non-trivial null shell the affine parameter is discontinuous

across the shell and one cannot take η to be affine on both sides.
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We also introduce tangent vectors

eαi ≡ ∂Xα

∂xi
, kα ≡ eαη ≡ ∂Xα

∂η
, (B.20)

and an auxiliary null vector Nα which satisfies Nαk
α = −1. Note that both kα

and Nα are orthogonal to the transverse tangent vectors eαi .

The relevant results from [302] are as follows. The induced metric on a shell

is

σij = gαβ (X
α) eαi e

β
j , (B.21)

which for regularity is required to be the same when calculated from either side

of a given shell. The transverse extrinsic curvature of a shell is

Cab ≡ −Nαe
β
a∇βe

α
b , (B.22)

which need not be the same on the two sides. The difference in transverse curva-

ture across the shell gives the shell stress tensor. It is convenient to decompose

this tensor into a surface energy density µ, energy current ji, and pressure p:

µ = − 1

8πGN

σij
(
C+
ij − C−

ij

)
, (B.23a)

ji =
1

8πGN

σij
(
C+
jη − C−

jη

)
, (B.23b)

p = − 1

8πGN

(
C+
ηη − C−

ηη

)
, (B.23c)

where the +(−) superscripts imply that the quantity is calculated on the side of

the shell into (away from) which kα points, and G is the full (d+ 1)-dimensional
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Newton’s constant.

Since our shells lie on horizons r = r+, the induced metric on each shell is just

ds2shell = r2+ d~x
2
d−1. (B.24)

To construct the single-shell spacetime of figure 7.2 with the edges E of IdS at

advanced time vI = v0, we use the embeddings

r = r+, vI = ηA, vII =
1

κII
gA (κIηA) , (B.25)

where κn ≡ |f ′
n(r+)|/2 are the surface gravities of each horizon, ηA is a parameter

along the generators of the shell, and as stated in the main text gA(x) is an

arbitrary continuous and monotonically increasing function with range (−∞,∞)

and domain (v0,∞). The density, current, and pressure of shell A are then

µA =
d− 1

8πGNr+

[
κII

κIg′A(κI ηA)
− 1

]
, (B.26a)

jiA = 0, (B.26b)

pA =
κI

8πGN

[
1 + g′A(κIηA)−

g′′A(κIηA)

g′A(κIηA)

]
. (B.26c)

To instead construct the doubly-patched spacetime shown in the lower panel

of figure 7.4, we leave patches Ib and II and shell A untouched (that is, patch Ib

is just the corresponding piece of the original patch I with ℓIb = ℓI), and we take

patch Ia to be the exterior of a Schwarzschild-AdS black hole with horizon size r+

and AdS radius ℓIa. The three patches we stitch together are shown in figure B.1,
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Figure B.1: Conformal diagrams from which we cut our (shaded) regions Ia, Ib,
and II.

and their metrics are as in (7.3) with

fIa(r) =
r2

ℓ2Ia

(
1−

(r+
r

)d)
, (B.27a)

fIb(r) = − r2

ℓ2Ib

((r+
r

)d
− 1

)
, (B.27b)

fII(r) = − r2

ℓ2II

(
1−

(r+
r

)d)
. (B.27c)

In terms of the Eddington-Finkelstein coordinates (7.5), the embeddings of

shell B in patches Ia and Ib are

r = r+, uIa = − 1

κIa
ln (−κIaηB) , uIb =

1

κIb
gB (κIaηB) , (B.28)

where as for shell A, gB(x) is an arbitrary continuous and monotonically increasing

function that maps (−∞,∞) 7→ (−∞,∞). Note that with this embedding, ηB is

an affine parameter along the shell with respect to the metric of patch Ia. The
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density, current, and pressure of shell B are then

µB =
d− 1

8πGNr+

[
κIaηB +

κIb
κIa g′B(κIaηB)

]
, (B.29a)

jiB = 0, (B.29b)

pB =
κIa

8πGN

[
g′′B(κIaηB)

g′B(κIaηB)
− g′B(κIaηB)

]
. (B.29c)

Note that pB vanishes only if gB(x) = const. or gB(x) = − ln(x + c), neither of

which is compatible with the continuity and monotonicity of gB. So as claimed

in footnote 5, shell B cannot be pressureless, and this spacetime is not a limiting

case of AdS-Vaidya.

Nevertheless, the null energy condition can be satisfied for an appropriate

choice of parameters. Indeed, for any d ≥ 2, let

κIar+ = 1, κIbr+ = 1, gB(x) = arcsinh(x). (B.30)

Then we find that

µB + pB =
d

8πGNr+
P (κIaηB)

(
1− ∆(κIaηB)

d

)
, (B.31)

where

P (x) = x+
√
1 + x2 and ∆(x) = 1 +

1

1 + x2
(B.32)

satisfy P (x) > 0 and ∆(x) ≤ 2 everywhere. It then follows that µB + pB ≥ 0 for

all d ≥ 2.
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B.4 Regulated Wormholes

This appendix considers simple models of the regulated wormholes mentioned

in sections 7.3 and 7.4 in which inflation ends on a finite surface, after which the

wormhole collapses to a singularity. The simplification made here is that sections

7.3 and 7.4 required this singularity to be everywhere of Kasner or of big crunch

type (see footnote 7), but the examples below will violate this condition at the

regulated analogues of the edges E of IdS. The point is that it is convenient to

retain symmetry of patch II under the Killing field ξ of section 7.2. But since

the orbits of ξ approach E , this means that surfaces of constant scale factor will

also approach E in the regulated spacetimes. The singularity of our regulated

spacetimes thus fails to be either Kasner-like or of big crunch type at E .

Retaining symmetry along ξ takes the above singularity to lie at a proper

time τ along the worldline of any freely falling observer chosen to start at τ = 0

from the point labeled C on the past boundary of figure B.2. In the limit τ → ∞,

we recover the original AdS-dS-wormhole.

Such regulated wormholes can be constructed as in Section 7.2 above by re-

placing the metric in patch II with

ds2 = −dρ2 +R2(ρ)dt2 +X2(ρ)d~x2d−1, (B.33)

where ρ ∈ [0, τ) is the proper time along worldlines of freely falling observers with

constant t, xi. Near ρ = 0, we impose that X = r+ + · · · and R = κIIρ + · · ·

where · · · represent terms that vanish as ρ→ 0. Then to good approximation ρ =

0 remains a horizon with surface gravity κII , and in particular the regulated
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Figure B.2: A regulated AdS-dS-wormhole with a finite amount of inflation
followed by collapse to a singularity. The dotted line labeled amax indicates
the surface on which the effective scale factor (B.35) in patch II reaches a
maximum; this slice serves as an accumulation surface for wormhole-spanning
extremal surfaces. In the cut-and-paste geometry, the proper distance between
any point in patch II and either of the boundary points E is infinite; this
is an artefact of the cut-and-paste construction, and will no longer be true
for appropriately smoothed out null shells. Such smoothed cases lead to the
existence of finite-area HHRT surfaces such as the one labeled Ξ (solid line,
blue in color version).

spacetime (B.33) can be patched into the wormhole using the same null shells

(with precisely the same stress tensor) as in section 7.2. In these coordinates, the

patch II metric (7.3) of the original unregulated spacetime corresponds to

R(ρ) =
r+
ℓ
tanh

(
dρ

2ℓ

)
cosh2/d

(
dρ

2ℓ

)
, X(ρ) = r+ cosh2/d

(
dρ

2ℓ

)
. (B.34)

It is straightforward to identify extremal surfaces for which t and d − 2 of

the ~xd−1 are constant. These are the analogue in region II of surfaces found by

Hartman and Maldacena [229] to be attractors for more generic extremal surfaces

in the two-sided planar AdS-Schwarzschild black hole in the limit where both

boundaries of the extremal surface are anchored to very late times on the two

AdS boundaries. The area of our highly symmetric surfaces is governed in region
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II by the effective scale factor

aeff(ρ) = R(ρ)Xd−2(ρ), (B.35)

and extremal such surfaces lie at extrema of aeff(ρ). In parallel with [229], in the

fully-regulated case we expect one of these extrema to be a late-time attractor

with the actual wormhole-spanning extremal surface staying very close to one of

these surfaces across most of region II, as shown in figure B.2. The maximin argu-

ment of section 7.3 suggests that the desired extremal surfaces in fact accumulate

along the global maximum of aeff(ρ) = amax. In fact, note that our cut-and-paste

construction renders the area of the attractor surface amax infinite, since any point

in patch II is an infinite distance from either of the boundary points marked E .

As a result, the wormhole-spanning extremal surfaces in this geometry still have

infinite area. However, it is clear that this is simply an artefact of our patching

procedure, which causes E to violate the conditions of footnote 7. By smoothing

out the null shells, the distance to any E from patch II becomes finite, and thus so

does the area of the amax. These smoothed-out regulated AdS-dS-wormholes thus

have HHRT surfaces with finite areas that grow without bound as we increase

amax.

We now construct explicit examples of the above (unsmoothed) regulated

wormholes and verify the above conjecture concerning wormhole-spanning ex-

tremal surfaces. To do so we couple gravity to a scalar field φ, so that the action
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is

S =
1

16πGN

∫
ddx

√−g R−
∫
ddx

√−g
(
1

2
gµν∇µφ∇νφ+ V (φ)

)
. (B.36)

We set φ = φ(ρ) and take the metric to be (B.33), in which the coordinate ρ plays

the role of a proper time. The equations of motion obtained from the action (B.36)

can be rearranged into

2X ′R′

XR
+ (d− 2)

(
X ′

X

)2

− 8πGN

d− 1

(
(φ′)

2
+ 2V (φ)

)
= 0, (B.37a)

X ′′

X
− X ′R′

XR
+

8πGN

d− 1
(φ′)

2
= 0, (B.37b)

R′′

R
+ (d− 3)

X ′R′

XR
− (d− 2)

(
X ′

X

)2

+
8πGN

d− 1
(φ′)

2
= 0, (B.37c)

φ′′ +

(
R′

R
+ (d− 1)

X ′

X

)
φ′ + V ′(φ) = 0. (B.37d)

Note that (B.37a) is a constraint equation, while the other three are dynamical.

As usual, the constraint is conserved by the dynamical equations, so that there

are only three independent equations that must be solved.

Solutions to (B.37) will be characterized by some ρ at which X, R, and φ

become singular; without loss of generality we take this time to be ρ = 0. Then

one can show that for polynomial V (φ), the solutions near such singular points
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behave like

X(ρ) = ρr

[
X00 +

∞∑

n=1

nN∑

m=0

Xn,mρ
2n (ln ρ/ρ0)

m

]
, (B.38a)

R(ρ) = ρ1−3r

[
R00 +

∞∑

n=1

nN∑

m=0

Rn,mρ
2n (ln ρ/ρ0)

m

]
, (B.38b)

φ(ρ) = φ00 + φ01 ln ρ/ρ0 +
∞∑

n=1

nN∑

m=0

φn,mρ
2n (ln ρ/ρ0)

m , (B.38c)

where ρ0 is some arbitrary scale, the integer N is the highest power of φ appear-

ing in V (φ), and r, X00, R00, φ00, and φ01 are free parameters subject to the

constraint 8πGNφ
2
01 = 6r(1− 2r).

The near-horizon behavior requires r = 0 (and therefore φ01 = 0) as well

as X00 = r+ and R00 = κII . The condition φ01 = 0 can be interpreted as the

statement that the energy density of the scalar field must be finite at the horizon,

or else backreaction would destroy the near-horizon geometry. Furthermore, r = 0

implies that φ′(0) = 0, so that the scalar field starts at rest at the horizon and

evolves according to the form of V (φ).

By choosing V (φ) = const. > 0 and φ′(0) = 0, we obtain the unregulated solu-

tion (B.34). In order to obtain a regulated solution that crunches in finite proper

time, we require a potential V (φ) with extrema at both V (φ) > 0 and V (φ) < 0.

We therefore consider a potential of the form shown in figure B.3; explicitly, we

take

V (φ) = h2

[
1

20
− 3

16

(
φ

φ∗

)2

+
7

5

(
φ

φ∗

)4

− 4

(
φ

φ∗

)6

+ 3

(
φ

φ∗

)8
]
, (B.39)
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where h is an overall scale that sets the height of the potential and φ∗ is a reference

scale. This potential has local maxima at the origin and some φ2, and local minima

at some φ1 and φ3. In particular, it satisfies V (0) > 0, V (φ1) > 0, V (φ2) > 0,

but V (φ3) < 0.

To construct a solution, the scalar field is released at some initial value φ0 at

which V (φ0) > 0. If φ0 is smaller than some critical value φcrit, the scalar field

rolls past the extrema φ1 and φ2 and into the AdS extremum φ3, where V (φ3) < 0.

This produces a negative effective cosmological constant, causing the solution to

become singular in finite ρ. As φ0 is increased closer to φcrit, the scalar field spends

more and more time near the maximum φ2, yielding a spacetime with a longer and

longer expanding region before the singularity. Eventually, when φ0 = φcrit, the

initial conditions are tuned such that the scalar field remains at φ2 indefinitely,

yielding a version of the unregulated AdS-dS-wormhole1. Thus the regulator τ

can be made arbitrarily large by taking φ0 arbitrarily close to φcrit.

Finally we consider wormhole-spanning extremal surfaces in smoothed, regu-

lated wormholes that satisfy the conditions of footnote 7 everywhere. Note that

any wormhole-spanning surface Ξ must pass through patch II, entering and leaving

this patch through the de Sitter horizon ρ = 0. For our unsmoothed cut-and-paste

geometries, Ξ will cross the de Sitter horizon in the far future in order to run along

the entire (infinite) length of the accumulation surface amax. Smoothing out the

null shells to obtain a finite-area Ξ will keep these anchors at a finite place. The

exact point of crossing is determined by balancing the tendency to maximize the

area in patch I (which tends to flatten Ξ in this region) with the tendency to run

1For φcrit < φ0 < φ2, the scalar field comes to rest at φ1, again producing an unregulated
AdS-dS-wormhole.
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✣❝�✐t ✣✶ ✣✷

✣✸

❱ ✭✣✮

✣

Figure B.3: A sketch of the potential we consider. At the horizon, the scalar
field is at rest at some φ0 and is then allowed to roll down the potential.
If φ0 < φcrit, the scalar field falls into the minimum at φ3; if φ0 = φcrit, the
scalar field stops at φ2, and if φcrit < φ0 < φ2, the scalar field falls into the
minimum at φ1.

along the amax surface in patch II. So as the anchors on IAdS move to the far

future, so does the intersection of Ξ with the dS horizon. It is thus sufficient to

study codimension-2 extremal surfaces anchored at ρ = 0 in the limit where these

anchors are taken to the far future. Sample such surfaces are plotted numeri-

cally2 in figure B.4 for d = 4 in comparison with surfaces on which aeff(ρ) (defined

in (B.35)) attains its maximum. We find φcrit ≈ 0.21φ∗.

B.5 Correlators in dS3

We now show how the geodesic approximation in dS3 reproduces the large-mass

behavior of the Wightman function of a free massive scalar field in the Hadamard

de Sitter-invariant (Bunch-Davies) vacuum. As is well known (see e.g. [394, 395]

2These solutions were found by integrating the equations of motion (B.37) us-
ing Mathematica’s built-in NDSolve command, which is more than sufficient for generating
the desired figures.
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Figure B.4: The regulated asymptotically dS patch for d = 4 and
various values of φ0; from left to right, top to bottom, the fig-
ures have (φcrit − φ0)/φ∗ = 10−1, 10−2, 10−3, 10−5, corresponding
to

√
8πGN hτ ≈ 2.5, 3.2, 3.9, 5.5. The dotted lines mark the maxima amax

of aeff , while the solid curves (blue in color version) show extremal surfaces that
enter through the horizon. The solid horizontal lines are singularities, which
the extremal surfaces are prevented from reaching. For φ0 = φcrit, τ = ∞
and amax merges with the singularity to create future dS infinity IdS. The
extremal surfaces then cease to exist in the Lorentzian section.

for d = 1, 3), for dSd+1 this two-point function is

G(x, x′) =
Hd−1

(4π)(d+1)/2

Γ(−c)Γ(c+ d)

Γ((d+ 1)/2)
2F1

(
−c, c+ d;

d+ 1

2
;
1 + Z

2

)
, (B.40)

where

c = −d
2
+

√
d2

4
− m2

H2
, (B.41)

H is the Hubble constant, m is the mass of φ, and Z is the de Sitter invariant

given by the inner product of unit vectors associated with the standard embedding
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of dSd+1 into d+ 2 Minkowski space. In the coordinates of (7.12) we have

Z(x, x′) = 1 +
(e−Ht − e−Ht

′

)2 −H2(~x− ~x′)2

2e−Hte−Ht′
. (B.42)

We wish to study (B.40) for d = 2 and m/H ≫ 1. Using the identities [311]

Γ(1 + z)Γ(1− z) =
πz

sin(πz)
, (B.43a)

2F1

(
a, 2− a;

3

2
;−z2

)
=

1

4(a− 1)z
√
1 + z2

[(√
1 + z2 + z

)2(a−1)

−
(√

1 + z2 − z
)2(a−1)

]
, (B.43b)

for d = 2 we find

G(t0, ~x; t0, ~x
′) =

H

4π

1

L̃ sin(πν)





1√
1−L̃2/4

sin(2ν arccos(L̃/2)), L̃ < 2,

1√
L̃2/4−1

sinh(2ν arccosh(L̃/2)), L̃ > 2,

(B.44)

where ν ≡
√

1−m2/H2 and L̃ ≡ HeHt0 |~x − ~x′|. For large m/H we have ν ≈

im/H and thus

G(t0, ~x; t0, ~x
′) ∼ e−πm/H

1− e−2πm/H





e(2m/H) arccos(L̃/2) − e−(2m/H) arccos(L̃/2), L̃ < 2,

e(2im/H)arccosh(L̃/2) − e−(2im/H)arccosh(L̃/2), L̃ > 2,

(B.45)

where the ∼ indicates that we have dropped polynomial corrections to exponen-

tials in m; i.e., we have kept terms that in a saddle point approximation can come
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from a sum over saddles. The remaining terms may well come from fluctuations

around these saddles, though we will not consider this in detail. Note that since

the factor 1 − e2πm/H lies in the denominator of (B.45), it in fact leads to an

infinite number of terms exponential in m.

We now make explicit that spacelike geodesics can reproduce the exponential

terms in (B.45). For d = 2, expressions (7.18) and (7.19) simplify to

L̃ = 2e−H∆t
√
e2H∆t − 1, (B.46a)

A±
n =

2

H

[
± arctan

√
e2H∆t − 1 + nπ

]
, (B.46b)

where now L̃ = 2HeHt0L. The ± sign and the integer n that appear in A±
n

represent the analytic continuation to all sheets of the square root and inverse

tangent, respectively. Writing A±
n in the form

A±
n =

1

H





(2n± 1)π ∓ 2 arccos
(
L̃/2

)
, L̃ < 2,

(2n± 1)π ∓ 2i arccosh
(
L̃/2

)
, L̃ > 2,

(B.47)

one may interpret each term as the length of a distinct (possibly complex) geodesic.

Comparing with the exact expression (B.45) shows that

G(t0, ~x; t0, ~x
′) ∼

∑

2n±1≥−1

c±n e
−mA±

n (B.48)

for appropriate order-1 phases c±n (which in the saddle-point approximation are

higher order effects determined by fluctuations around each saddle). Since the sum

is over precisely those n and signs ± with 2n ± 1 ≥ −1, we conclude that these
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are the saddles that contribute to the desired path integral. It is interesting that

this represents a sum over both all sheets in the Riemann surface for L̃(∆t) and

an infinite number of sheets in the Riemann surface for A(L̃), though sufficiently

“negative” sheets are not included. We note that d = 2 is a special case where

A(L̃) (understood as a map from the Riemann surface for L̃(∆t) to the Riemann

surface for A(∆t)) is multi-valued; in higher dimensions we expect that as in [78]

one can take A(L̃) to be single valued, since the Riemann surface for L̃(∆t) has

an infinite number of sheets for d > 2.

B.6 Integration in Terms of Elliptic Integrals

In this appendix, we give the expressions for ∆t and Aren for codimension-2

extremal surfaces in Schwarzschild-AdS5 (d = 4). First, note that the integrals

for ∆t and Aren take the form

∆t =
β

π

∫

γ

ρ2E
(ρ4 − 1)

√
ρ6 − ρ2 + E2

dρ, (B.49a)

Aren = ℓr2hV2 lim
ǫ→0

(∫

γǫ

ρ2√
ρ6 − ρ2 + E2

dρ− 1

ǫ2

)
, (B.49b)

where ρ ≡ R/rh, E ≡ Eℓ/r3h, and β = πℓ2/rh. It will be convenient to convert to

a new variable w = 1/ρ2 in terms of which these become

∆t =
β

2π

∫

γ

wE
(1− w2)

√
1− w2 + E2w3

dw, (B.50a)

Aren = ℓr2hV2 lim
ǫ→0

(
1

2

∫

γǫ

dw

w2
√
1− w2 + E2w3

− 1

ǫ2

)
, (B.50b)
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with the contours γ and γǫ modified accordingly.

We now use w1(E), w2(E), w3(E) to label the three roots of the cubic h(w) =

1−w2+E2w3 as follows. For real extremal surfaces, we take w1 to be the turning

point. We then extend this this definition by continuity to the region near the

principal contour in the complex E plane. We similarly specify w2(E) by requiring

that it diverge at E = 0 (as some root must since h(w) becomes a quadratic

at E = 0) and that it be continuous in the same region. The remaining root is w3.

Defined in this way, w1(E), w2(E), w3(E) are single-valued functions which can be

used directly in all expressions below whether evaluated on the principal contour,

contour B, or contour C.

We also define a function

I(z1, z2) =

∫ z2

z1

wE
(1− w2)

√
1− w2 + E2w3

dw. (B.51)

By tracking the behavior of the contour γ as one moves in the complex E-

plane, it is possible to show that ∆t near the principal (real) contour and near

contours B and C can be written3

∆tprincipal =
β

π
I(0, w1), (B.52a)

∆tB =
β

π
(I(0, w2) + I(w1, w2)) , (B.52b)

∆tC =
β

π
(I(0, w1)− 2I(w1, w3)− 2I(w2, w3)) . (B.52c)

The integral I(z1, z2) can be expressed in terms of standard elliptic integrals; one

3One does need to be careful in order to avoid having the contour γ cross the poles at w = ±1;
luckily, these add a constant contribution of ±iβ or ±β, so we find it convenient to allow γ to
cross the poles, and then compensate by subtracting off the corresponding residue.
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obtains

I(0, w1) =
1

(1− w2
2)
√
w1 − w2

{
2w2 (F (ψ|m)−K(m))

−(w2 − 1)

[
Π

(
w2 + 1

w2 − w1

;ψ

∣∣∣∣m
)
− Π

(
w2 + 1

w2 − w1

∣∣∣∣m
)]

−(w2 + 1)

[
Π

(
w2 − 1

w2 − w1

;ψ

∣∣∣∣m
)
− Π

(
w2 − 1

w2 − w1

∣∣∣∣m
)]}

, (B.53)

where

ψ = arctan

√
w2 − w1

w1

, m =
w2 − w3

w2 − w1

. (B.54)

I(0, w2) and I(0, w3) are obtained from I(0, w1) by the exchanges w1 ↔ w2

and w1 ↔ w2, and I(wi, wj) = I(0, wj)− I(0, wi).

For the area, we proceed similarly. We define

J(z1, z2) =

∫ z2

z1

1

w2
√
1− w2 + E2w3

dw. (B.55)

The renormalized area on the above sheets is then

Aren,principal = ℓr2hV2 lim
ǫ→0

(
J(ǫ2, w1)−

1

ǫ2

)
, (B.56a)

Aren,B = ℓr2hV2 lim
ǫ→0

(
J(ǫ2, w2)−

1

ǫ2
+ J(w1, w2)

)
, (B.56b)

Aren,C = ℓr2hV2 lim
ǫ→0

(
J(ǫ2, w1)−

1

ǫ2
− 2J(w1, w3)− 2J(w2, w3)

)
. (B.56c)
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Again evaluating J in terms of elliptic integrals, we obtain

J(ǫ2, w1) =
1

ǫ2
+

1

w2

− E√
w1 − w2

[(w2 − w1) (E(m)− E(ψ|m))

+w1 (K(m)− F (ψ|m))] +O(ǫ2), (B.57)

where ψ andm are as before. Then J(ǫ2, w2) and J(ǫ
2, w3) are obtained from J(ǫ2, w1)

by the exchanges w1 ↔ w2 and w1 ↔ w3, and J(wi, wj) = limǫ→0(J(ǫ
2, wj) −

J(ǫ2, wi)).

B.7 Proofs

In this Appendix, we prove the theorems stated in the main text and provide

some more technical details.

B.7.1 Theorem 1

Theorem 1. Let R be a region such that θ({Ns}) has a definite sign everywhere

in R, and let X be an extremal surface. Then any connected portion of X in R can

turn around at most once, and has no inflection points ifM is (2+1)-dimensional.

In particular, if H is a regular splitting future holographic screen, any connected

portion of X in Int(H) can turn around at most once.

Proof. First, let us index the leaves of the foliation {Ns} by a parameter s which

runs to the future along the foliation, i.e. Ns is nowhere to the past of Ns′ if and

only if s > s′, which we will also denote by Ns > Ns′ .
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Now, we prove the theorem by contradiction. Let θ({Ns}) < 0 everywhere in

R; the opposite case proceeds analogously. LetXR be a connected component ofX

in R, and suppose XR has a pivot point at p ∈ R. Let Ns(p) be the leaf containing

p. By Lemma 2, p cannot be an inflection point if M is (2+1)-dimensional.

Now suppose p is a turning point. Suppose also that XR has another turning

point q ∈ R; i.e. XR is tangent to another leaf Ns(q), and it must be tangent to

it either from the past or from the future. By Lemma 1, XR must be tangent

to Ns(q) from the future. This immediately requires XR to have another turning

point r such that Ns(r) > Nmax(s(p),s(q)), and XR must be tangent to Ns(r) from the

past at r, as shown in Figure 9.7. But if r ∈ R, then by construction θ(Ns(r)) < 0,

and XR cannot be tangent to Ns(r) from the past. Therefore r /∈ R, and XR * R,

in contradiction with the definition of XR.

To prove the last statement of the theorem, we simply note that by construc-

tion, θ({Ns}) has the same sign everywhere in Int(H).

B.7.2 H-deformability

Definition 6. H-deformability. Let {Xα} be a family of boundary-anchored ex-

tremal surfaces such that every surface in {Xα} can be continuously deformed via

other surfaces in {Xα} to some initial surfaceX0 that lies entirely in Ext(H). Then

every surface in {Xα} is said to be H-deformable, and {Xα} is an H-deformable

family.
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B.7.3 Theorem 2

Theorem 2. Let H be a regular splitting future holographic screen in a (2+1)-

dimensional asymptotically locally AdS spacetime M . Then no H-deformable

boundary-anchored extremal surface can have a pivot point in the interior of any

future achronal screen of H. Moreover, if H is itself achronal, no such extremal

surfaces can have a pivot point in Int(H).

Proof. By contradiction. Let H̃ be an achronal screen of H, and let X1 be an H-

deformable extremal surface. SupposeX1 has at least one pivot point p1 in Int(H̃),

and let N1 be the leaf containing p1. Consider a deformation parametrized by α

along an H-deformable family {Xα} to a surface X0 ∈ Ext(H). Note that X0

exists by definition of H-deformability.

Next, let Xm be the last surface in the deformation which is tangent to a leaf

Nm at some point pm ∈ Int(H̃) ∪ H̃ (it may be the case that Xm = X0). Because

the expansion is negative on all leaves in H̃, by Lemma 2, in a sufficiently small

neighborhood Opm of pm, Xm ∩ Opm ⊂ J+(Nm); thus pm is a turning point. If

pm ∈ Int(H̃), then evolving backward along the deformation from X1 to X0, there

exists some ǫ > 0 such that the surface Xm−ǫ must also be tangent to a leaf

in Int(H̃) (since Int(H̃) is open). But this contradicts the definition of Xm. So

pm /∈ Int(H̃), and thus pm ∈ H̃. Then there are two cases: (1) Xm is tangent to H̃

at pm, or (2) Xm is not tangent to H̃ at pm. We consider the two cases separately.

Case 1: If Xm is tangent to H̃ at pm, then Xm is also tangent to the intersec-

tion H̃ ∩Nm, which is a leaflet σ̃m. This immediately implies that Xm is also tan-

gent to Lm, the member of the {Ls} foliation whose intersection with Nm defines
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σ̃m. By Lemma 2, Opm ∩Xm ⊂ J+(Lm). We also have that Opm ∩Xm ⊂ J+(Nm),

and thus since Lm andNm are boundaries of the future of σ̃m, Opm∩Xm ⊂ J+(σ̃m).

Because H̃ is by assumption achronal, J+(σ̃m) has no intersection with Ext(H),

implying that it is foliated by Ns leaves with negative expansion. Therefore

I+(σ̃m) ∩Xm can never be tangent to Ns or Ls, since if it were, it would be tan-

gent to them from the past (see the proof of Theorem 1), in violation of Lemma 1.

Thus Xm ⊂ J+(σ̃m). But because trapped and marginally-trapped surfaces al-

ways lie to the future of the future event horizon ∂I−(∂M), J+(σ̃m) ∩ ∂M = ∅.

This would imply that Xm cannot be boundary-anchored, in contradiction with

its definition.

Case 2: Suppose Xm is not tangent to H̃ at the pivot point pm. Then Xm is

not tangent to Lm at pm. Since Xm intersects Lm at pm and is not tangent to it at

pm, there exists a small neighborhood of pm on which Xm intersects both I+(Lm)

and I−(Lm). This immediately implies that there is a small open subset of Xm

which lies in J+(σ̃m). By assumption, ∂X ⊂ ∂M , and so ∂X ∩ J+(σ̃m) = ∅.

Therefore, there must exist some point q ∈ Int(H̃) at which X is tangent from the

past to either a null hypersurface L ∈ {Ls} or a leaf N (for if there were not, X

would need to have a boundary in J+(σ̃m)). But in Int(H), the expansion of all of

the Ls and the Ns leaves are negative, so an extremal surface can only be tangent

to them from the future. We have therefore arrived at a contradiction.

This proves the first portion of the theorem. To prove the last statement,

consider an achronal regular future holographic screen H. Each of its leaflets may

be deformed an arbitrarily small amount forward along the leaves Ns to produce

an achronal screen H̃ ⊂ Int(H) arbitrarily close to H. Then the proof above
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implies that no H-deformable extremal surface can have a pivot point in Int(H̃).

But in the limit that H̃ is taken to be arbitrarily close to H, Int(H̃) coincides

with Int(H), and thus we conclude that no H-deformable extremal surface can

have a pivot point in Int(H) as well.

B.7.4 Theorem 3

Theorem 3. Let M be an asymptotically locally AdS spacetime, and let H

be a regular splitting future holographic screen constructed from a reducible foli-

ation {Ns}. Assume further that that there exists a foliation of the future of H

with Ls congruences. Let X be a boundary-anchored, codimension-two spacelike

extremal surface such that:

1. X is reducible to (2+1) dimensions;

2. ∂X is connected; and

3. X intersects Ext(H) only on regions with θ({Ns}) > 0.

Assume further that there exists an H-deformation of X that obeys the above

conditions as well. Then X cannot have a pivot point in Int(H).

Proof. The first part of the proof is identical to that of Theorem 2: we consider

an H-deformable family of extremal surfaces, except that the members of this

family are required to have connected ∂X. We then consider the last deformation

surface Xm tangent to a leaf Nm at a point pm, and by the same reasoning as above

we conclude that pm ∈ H. Again, we are faced with two cases: either (1) Xm is

tangent to H at pm, or (2) it is not.
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Figure B.5: (a): the behavior of the midway surface Xm (solid blue) when it
is tangent to Nm and H (solid green) at a point pm on H. Note here that
the surface caps off smoothly in the suppressed spatial directions at p; in this
sketch, this is shown as the surface ending there. (b): after a small perturbation
through the H-deformable family, the turning point pm moves out to pm−ǫ.
This requires the surface to develop a new turning point q, as shown. But q is
not allowed to exist. (Note that here we show H as timelike in a neighborhood
of pm, but this behavior remains unchanged for other signatures).

Case 1: As before, if Xm is tangent to H at pm, then Xm is also tangent

to a leaflet σm, and therefore to Lm. By Lemma 2, Opm ∩ Xm ⊂ J+(Lm). But

the expansion of the portion of Nm to the future of Lm is negative: θ(Nm ∩

J+(Lm)) < 0, even if θ(Nm)|pm = 0. Thus although Xm is tangent to Nm at a

point where θ(Nm) = 0, with motion away from p along Xm is into the region of

θ({Ns}); see Figure B.5(a). Then by the same reasoning that led to Lemma 2, it

must also bend into J+(Nm), and therefore Opm ∩Xm ⊂ J+(σm).

If Xm ∩ J+(σm) has no intersection with H, then we obtain a contradiction

as we did for Theorem 2. If Xm ∩ J+(σm) does have an intersection with H, Xm

must exit Int(H) through that intersection. But now consider a slight deformation

to Xm−ǫ along the H-deformable family. Then the pivot point pm must deform

to a new pivot point pm−ǫ ∈ Opm of Xm−ǫ which lies in Ext(H) (since by assump-
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tion Xm was the last extremal surface in this family with a turning point in or

onH). Because Int(H) is open, we can always find a sufficiently small deformation

from Xm to Xm−ǫ such that Xm−ǫ must still enter Int(H) before exiting, as shown

in Figure B.5(b). This implies that there must exist another pivot point q ∈ Opm

where Xm−ǫ is tangent to a leaf Nq from the future. Now, this pivot point cannot

lie in Ext(H), since there θ(Nq) > 0. But this point also cannot lie in Int(H)∪H,

since by assumption Xm was the last surface with a pivot point in Int(H) ∪ H.

We therefore have a contradiction.

Case 2: Next, suppose Xm is not tangent to H at pm. Then as in the

proof of Theorem 2, there is a small open subset Opm ∩ X+
m of Xm which lies

in I+(Lm). Likewise, there is a small open subset Opm ∩ X−
m of Xm which lies

in I−(Lm). By the arguments made in Case 1, we have that Opm ∩X+
m ⊂ J+(σm),

and Opm ∩X−
m ⊂ J−(σm). Thus Opm ∩X+

m and Opm ∩X−
m can meet only on σm ⊂

Nm. In particular, σm divides Xm into two pieces X+
m and X−

m.

Near pm, X
−
m lies to the past of Nm. Therefore, if it were to be tangent to any

other leaf Ns, it would have to be tangent from the future. This is not allowed

in Ext(H), since there only turning points from the past are allowed, nor is it

allowed in Int(H) (by assumption). Therefore X−
m must reach the boundary.

Similarly, near pm, X
+
m lies to the future of Lm. By assumption, the {Ls}

foliate J+(H), so X+
m can only have a turning point with respect to {Ls} outside

of J+(H). But the fact that near pm X+
m also lies to the future of Nm implies

that X+ can only leave J+(H) if it turns around with respect to {Ns} on some

leaf Ns > Nm (and if it does, it will be tangent to Ns from the past). But then it

can have no further turning points with respect to {Ns}: if it did, these would be
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from the future. Such turning points cannot occur in Ext(H) by Lemma 2 and

are not allowed in Int(H) by the assumption that Xm is the last surface to have

a turning point in Int(H) ∪H. Thus X+
m must also reach the boundary.

But if each of X+
m and X−

m reach the boundary, and they join only at σm,

then ∂X must consist of (at least) two disconnected pieces, in contradiction with

the assumption that it be connected.
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