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ABSTRACT

Molecular Assembly and Device Physics of High-Mobility Organic Field-Effect Transistor 

Fabricated from Donor-Acceptor Copolymers

by

Hung Phan

The Field Effect Transistor (FET) is inarguably the most important circuit element in 

modern electronics. Metal-Oxide FETs (MOSFETs), the most common type of FET, are

integrated in microprocessors in almost all electronic devices: mobile phones, computers,

digital cameras, and digital printers, to name a few. MOSFETs are normally fabricated on 

top of rigid single crystalline silicon, which requires high temperature processing (~1000 

oC). Recently, a need has emerged for flexible electronics in a variety of applications. 

Examples include form-fitting healthcare-monitoring devices, flexible displays, and flexible 

radio frequency identification tags (RFID). Organic FETs (OFETs) are viable candidates for 

flexible electronics because they are based on semiconducting π-conjugated materials, 

including small molecules and polymers, which can be solution-processed at low 

temperature on flexible substrates. Solution-processing may enable the use of high 

throughput methods such as roll-to-roll coating and inkjet printing for low-cost 

manufacturing. In the molecular perspective, the limitless ability to tune the properties of

these materials just by a small modification of the conjugated backbone or sidechains makes 

them attractive to both academic research and industrial manufacturing. Between the two 
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materials, semiconducting polymers offer better potential for the formation and mechanical 

properties of thin films, compared to their small molecule counterparts.

For OFETs to be industrially viable, however, they must first have high charge carrier 

mobility. Recent advances in molecular designs and device engineering have seen significant 

increases in the mobility of OFETs fabricated with conjugated polymer (or PFETs). In this 

dissertation, it is shown that obtaining polymer-chain alignment is critical to improve the 

mobility of PFETs. In addition, the charge transport mechanism is investigated to explain the 

high mobility in PFETs with aligned polymers. Most importantly, the mechanism of 

electrical instability and non-ideality (i.e. the double-slope) of high mobility PFETs with a 

certain degree of ambipolarity is unraveled.

Firstly, the alignment of polymer chains inside polymer fiber bundles is revealed by 

high-resolution atomic force microscopy (AFM). This alignment is enabled by nano-grooves 

of ca. 50 nm wide and 2-5 nm deep on SiO2 substrates used for fabricating the PFETs. 

Mobility of charge transport along the direction of the polymer fiber is an order of 

magnitude higher than that of charge transport perpendicular to the fiber direction. It 

indicates that aligned polymer chains facilitate fast intrachain charge transport.

Secondly, the charge transport mechanism is determined to be the thermally-activated 

hopping of charge carriers. This is an important finding because it has been speculated that 

band transport is possible in OFETs fabricated from well-aligned polymer fibers. With a 

normal range of molecular weight (30 kDa to 100 kDa), which is feasible for industrial 

scale-up, the stretched length of the corresponding polymer chain, ranging from 50 – 150 

nm, is not enough to cross the full channel length of the OFETs. In addition, polymer chains 

in a solution-processed thin film are likely to have kinks and twists that disrupt the perfect

electronic coupling necessary for band transport. It implies that polymers should be designed 
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to facilitate not only chain alignment but also the strong electronic coupling in the π-π 

stacking direction between chains for efficient hoppings between chains with low energetic 

barriers.

Finally, the electrical instability and its associated non-ideal device characteristics is

thoroughly investigated. Electrical stability is as important as high charge carrier mobility for

OFETs to be commercialized in large-scale production. The use of low bandgap donor-

acceptor (D-A) polymers for obtaining high mobility introduces undesirable electron current 

in p-type PFETs. The effect of electron transport and trapping on hole conduction in p-type 

OFETs has not been addressed. In this work, p-type PFETs fabricated with SiO2 dielectrics 

and with a certain degree of ambipolarity exhibit electrical instability (a change in current 

upon bias stressing) and non-ideality (double-slope in transfer curves) of hole current. It is 

determined that electron trapping and the subsequent formation of -SiO- charges on 

SiO2/polymer interface are the principle origins of the instability and the double-slope.

Suppressing these undesired properties is essential to make PFETs industrial viable. It 

should be noted that the double-slope has been a long debate without a solid explanation in 

the OFET research community.

In sum, this thesis shows a comprehensive understanding of the structure-processing-

property relationship of PFETs fabricated with well-aligned polymers. New findings in the 

thesis provide important guidelines for molecular design and device engineering of high-

mobility and practical PFETs. These guidelines have been successfully demonstrated by us 

and our collaborators at UCSB.
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1. Introduction

In this chapter, fundamental knowledge of the thesis work is presented. Firstly, the 

history of organic field-effect transistors (OFETs) is introduced. It is then followed by the 

operating principles and figures of merits of OFETs. Next, the basic understanding of 

electrical conduction in organic semiconductors and the rationale of using donor-acceptor 

(D-A) copolymers in high mobility OFETs is briefed. Finally, the motivation and structure 

of the thesis is presented.

1.1. Organic Field-Effect Transistors (OFETs)

A transistor is a three-terminal electronic device in which the electric current flow in a 

channel between two terminals (source and drain) can be turned ON/OFF or regulated by the 

third terminal (gate).1,2 In 1926, Lilienfeld filed a patent proposing the principle of a field-

effect transistor (FET) for the first time.3 The concept of a transistor and the practical 

amplifier tryouts were further investigated by Lilienfeld, Shockley, Brattain and Bardeen.4–8

In principle, an FET operates as a parallel-plate capacitor where one plate is a 

semiconducting channel between two contacts: source and drain. The density of charge 

carriers in the channel and hence the channel conductivity is modulated by an electric-field 

(field-effect) between the second plate of the capacitor, the gate electrode, and the channel.1,2

FETs can be constructed from various semiconductors, with silicon being by far the most 

common semiconductor used. Metal-Oxide-Semiconductor FETs (MOSFETs), which were

successfully fabricated for the first time in 1960 by Kahng and Atalla,9 is the most used FET

today. With the advantages of using the well-developed silicon wafer fabrication and having 

the ultra-high charge carrier mobility of single crystal silicon, MOSFETs are indispensable
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elements of high-accuracy and ultra-fast electronic devices such as microprocessors (chips) 

and memory devices.1 The disadvantages of MOSFETs are the high-temperature fabrication

and non-transparency of silicon wafer. Single crystal silicon wafers, atop which most 

MOSFETs are fabricated, require very high temperature (~1000 oC) for processing. Those 

prevent MOSFETs from being practical in applications that require special quality such as 

transparent substrates in display applications10,11 or degradable substrates for transient 

electronics.12 In these cases, thin-film transistors have been found to be more applicable.

Thin-film transistor (TFTs) are a type of FETs made by depositing a thin film of an 

active semiconductor layer as well as the dielectric layer and metallic contacts over a 

supporting substrate. Even though TFT was the first patented solid-state amplifier,4 it only 

emerged in the 1970s as a candidate for forming very large area integrated circuits for flat 

panel displays.13–15 A wide selection of supporting substrates made TFT attractive in a 

variety of applications. For instance, transparent substrates are used in TFTs that drive 

current in liquid-crystal display (LCD) and light-emitting diode (LED) display. Amorphous 

silicon and polycrystalline silicon are the two most common semiconductors used in 

commercialized TFTs.16,17 Other inorganic semiconductors have also been used in TFTs

such as ZnO,18–20 Indium Gallium Zinc Oxide (IGZO).21,21,22

Organic field-effect transistors (OFETs) are basically TFTs using organic 

semiconductors as active layers. In parallel with the emerging of TFT using silicon, OFET 

was first described in the 1970s using metal-free phthalocyanine single crystals.23,24 The 

major milestone came about when Koezuka and coworkers at Mitsubishi reported a working 

OFET using polythiophene, which belongs to a family of conducting polymers discovered in 

1970s.25–28 OFETs can be prepared either by vacuum evaporation of small molecules, by 
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solution-casting of polymers or small molecules, or by mechanical transfer of a peeled 

single-crystalline organic layer onto a substrate. 

Figure 1.1. Four geometrical structures of thin-film transistors: (a) bottom-gate 

bottom-contact (BGBC); (b) bottom-gate top-contact (BGTC); (c) top-gate top-contact 

(TGTC) and (d) top-gate bottom-contact (TGBC).

Similar to TFTs, OFETs can be fabricated in four configurations shown in Figure 1.1: 

bottom gate – bottom contact (BGBC), bottom gate – top contact (BGTC), top gate – top 

contact (TGTC) and top gate – bottom contact (TCBC). The distance between the source and 

the drain is called the channel length (L). This is the direction of the current flow. The larger 

the length is, the lower the current. The full extent of source and drain is called the channel 

width (W). The longer the width is, the higher current flowing from source to drain. The 

BGBC is most industrially viable because the whole substrate with gate, dielectrics and 

contacts can be mass-produced in one company before sending to another company for 
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processing the active layer. In academic research, BGBC is also preferred, using the 

commercially well-developed Si wafer as the substrate, in which the heavily doped Si 

functions as the gate and the thermally grown SiO2 on top of Si functions as the dielectrics

(Figure 2.3).29,30 Solution-processable materials for gate dielectrics are attractive for making 

OFETs on flexible substrates. Polymers with different chemical and physical properties have

been utilized as dielectric materials in OFETs.29,31–33

Figure 1.2. The evolution of charge carrier mobility of OFETs, in comparison to 

three most used materials in FETs: single crystal silicon, polycrystalline silicon and 

amorphous silicon

Significant progress has been made in solution-processed OFETs based on the use of 

conjugated small molecules and polymers as the semiconducting material in the FET 
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channel (Figure 1.2). Charge carrier mobilities () more than 10 cm2/Vs frequenly achieved 

make such devices practical for commercialization.34–36

1.2. Working Principles and Figures of Merits of OFETs

The working mechanism of OFETs is similar to that of TFTs. The channel conductance 

is controlled by gate voltages while drain voltages are used to drive current in the lateral 

direction from the source to the drain. Figure 1.3 describes the charge accumulation along 

the channel at different ranges of drain and gate voltages for an undoped organic 

semiconductors. In linear regime, drain voltage Vd is small and normally much smaller than 

gate voltage Vg (|Vd|<<|Vg|), charge carrier density gradually decreases from source to drain

contacts. For a certain Vg, the point at which charge carrier become depleted at the drain is 

called the pin-off voltage Vpin-off. At |Vd|>|Vpin-off| the transistor is in saturation regime where 

drain current Id no longer increases with increasing Vd.2,37–40

The current−voltage characteristics in the linear and saturation regime can be analytically 

derived assuming the gradual channel approximation. It requires that the electric field 

perpendicular to the current flow generated by Vg is much larger than the electric field 

parallel to the current flow generated by Vd. In order to fulfill this approximation, OFETs are 

normally made with channel length L>10t where t is the thickness of the dielectrics.2,37–40
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Figure 1.3. Charge accumulation in linear regime and accumulation regime of an 

OFET with an undoped organic semiconductor

In principal, charges start to accumulate in the channel when Vg is turned on. However, 

in OFETs, there are usually charge traps at the interface of the dielectric and the organic 

semiconductor. Therefore, charges induced from a certain Vg only fill the traps. This voltage 

is called threshold voltage Vth.41–44 At Vg>Vth, excess gate voltages, Vg-Vth, induce mobile 

charges in the channel. At point x in the channel, the induced charge is proportional to the 
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excess gate potential and the channel potential Vch(x) at point x. The source is always 

grounded in OFET operation. Therefore, the channel potential right at the source is 

presumably to be zero. Hence, the induced mobile charges Qm per unit area at the source are 

related to Vg and Vth via the parallel capacitor charge accumulation equation40

where Ci is the capacitance per unit area of the gate dielectric. From the source to the drain, 

the channel potential Vch(x) changes from zero to Vd, hence the induced charge at point x is: 

Neglecting diffusion current, the source−drain current Id is proportional to the mobile charge 

density and the electric field via:

then 

where W is the channel width, μ is the charge mobility, and Ex is the electric field at x. By 

integrating both sides of equation (4) with these boundary conditions: x = 0 to L, V(x=0) = 0

and V(x=L) = Vd, assuming that the mobility is independent of Vch(x) (i.e. independent of 

carrier density and hence the gate voltage), drain-source current Id can be obtained:

In the linear regime with |Vd|<<|Vg -Vth|, equation (5) can be simplified to 

From equation (6), the linear mobility (i.e. mobility in the linear regime, μlin) can thus be 

calculated via:
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In principal, the channel is pinched off when |Vd|= |Vg – Vth|=Vpin-off. As mentioned above, 

At |Vd|>|Vpin-off| the transistor is in saturation regime where drain current Id no longer 

increases with increasing Vd. In order to describe saturation current Id,sat, Vd in equation (5) 

can be replaced by Vpin-off, yielding:

In this case, the square root of the drain current is proportional to Vg. From equation (8), the 

saturation mobility (i.e. mobility in the linear regime, μsat) can be calculated via:

It should be noted that the linear and saturation mobility calculated in equation (7) and (9) 

are assumed to be independent of gate voltage. In the case of gate-dependent mobility, the 

derivative in the two equations should be calculated at a narrow range of Vg at each Vg (local 

derivative).

In general, an OFET is evaluated by measuring its current-voltage characteristics in 

two types of curves: transfer curves and output curves (Figure 1.4). In transfer curves, drain 

voltages (Vd) are fixed and gate voltages (Vg) are swept while current is measured. At low 

Vd, the transfer curve is in the linear regime; then the linear mobility and threshold voltage 

can be extracted by equation (7). The mobility is calculated from the slope of Id versus Vg; 

and the threshold voltage is calculated from the intercept of Id versus Vg. At high Vd, the 

transfer curve is in the saturation regime; then the saturation mobility and threshold voltage 

can be extracted by equation (9). The mobility is calculated from the slope of the square root 
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of Id versus Vg; and the threshold voltage is calculated from the intercept of the square root 

of Id versus Vg. Another figure of merit is ON/OFF ratio, which is the ratio of OFF current 

(flat Id at Vg in the far positive for p-type OFETs) and ON current at certain Vg and Vd. The 

output curves are evaluated in two aspects.  Firstly, the range of Vd and Vg at linear and 

saturation regime are determined. Secondly, the shape of output curves at Vd ~ 0 V can 

reflect the effect of contact resistance of the device. If the effect of the contact resistance is 

high, output curves exhibit the S-shape instead of being linear at Vd ~ 0 V.

Figure 1.4. Typical transfer curves in (a) linear regime and (b) saturation regime

(b); and (c) output curves of a p-type OFET. 

In the linear regime of the output curves, linear mobility can also be calculated. From 

equation (6), channel conductance ∂Id/∂Vd is calculated, then the linear mobility is calculated 

at given Vg and Vth:

All the figures of merit of OFETs are summarized in Table 1.1.
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Table 1.1. OFET basic figures of merit and calculated methods

Linear mobility
Saturation 

mobility
Threshold voltage ON/OFF ratio

Calculation 

Method

Slope of Id vs. Vg

Slope of Id vs. Vd

Slope of sqrt(Id) 

vs. Vg

Intercept of Id vs. 

Vg or sqrt(Id) vs. 

Vg

Ratio OFF Id and 

ON Id

1.3. Organic Semiconductors for OFETs

1.3.1. Semiconducting Conjugated Organic Materials

The discovery of semiconducting organic materials was reported by researchers in 1950s 

and 1960s, mostly based on the study of charge injection, transport and recombination in 

single crystal anthracene.45–50 A breakthrough happened in 1970s when Heeger, MacDiarmid 

and Shirakawa demonstrated that the conductivity of polyacetylene can be controlled over a 

range of more than seven orders of magnitude by chemical doping.51,52 Tang and Van Slyke 

made another major contribution when discovering electron and hole injection into a non-

crystalline organic semiconductor.53–55 These discoveries open up a completely new class of 

conducting and semiconducting materials which are based on alternating single and double 

bonds organic molecules, i.e. π-conjugated materials.

The conducting and semiconducting properties of π-conjugated materials originate from 

the bonding and delocalization of the p-orbitals. In conjugated molecules, three out of four 

electrons in the outer shell of each carbon atom form three σ-bonds; in which the carbon-

carbon σ-bonds form the skeleton of the molecule. The fourth valence electron of each 

carbon, the 2p electron, contributes to the molecular delocalized π-orbitals perpendicular to 

the σ-skeleton (Figure 1.5).56 The nature of the electrical conductivity of π-conjugated 
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organic molecules stems from the orbital overlap of the π-orbitals along the conjugated 

backbone of the molecules (Figure 1.5b). The orbital overlap allows prompt reorganizations 

of the electron clouds in the molecule to accommodate the introduction of an external charge 

(hole/electron) (Figure 1.5c). This continuous electron cloud shifting is the foundation of the 

electrical conduction in one π-conjugated molecule.52,57

Figure 1.5. (a) Chemical structure of trans-polyacetylene; (b) the orientation and 

delocalization of 2p orbitals in the normal plane to the σ-skeleton of polyacetylene; and 

(c) schematic diagram of hole transport in an oligo-acetylene: hole is introduced to the 

molecule by removing an electron from the fifth carbon (via doping for example), then 

migrated along the backbone through the reorganization of 2p orbitals.
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As π-conjugated materials assemble in solid state films, their electrical conduction 

mechanism can be explained by the band theory of conduction.57 In molecular orbital theory, 

a material with N interacting atomic orbitals will have N molecular orbitals. In a continuous

solid-state material with perfect crystalline structure, N will be a very large number 

(typically 1022 /cm3). With so many molecular orbitals spaced together in a given range of 

energies, they form an apparently continuous band of energies (Figure 1.6). N electrons fill 

from low energy bands to high energy bands. The energy spacing between the highest 

occupied band (valence band) and the lowest unoccupied band (conduction band) is called 

the band gap. The bonding of p orbitals in conjugated materials contribute to the conduction

of charges. When the number of p orbitals increases, the band gap becomes smaller and 

approaches the band gap of traditional semiconducting materials like silicon.57,58

Figure 1.6. The use of molecular orbital theory in π-conjugated materials to explain 

the formation of HOMO, LUMO and reduced band gap compared to insulating 

materials 
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In crystalline silicon with all the atoms covalently bond to each other, N is a very large 

number therefore conduction band and valence band are formed. On the other hand, 

conjugated organic molecules hold together in solid state primarily by weak Van der Waals 

force. Different molecules can have different orientation and backbone geometry. These 

disorders make the number of p orbitals contributing in MO π-orbitals in a conjugated 

segment finite. As a result, instead of forming the energy bands and corresponding 

conduction and valence bands, organic semiconductors in solid state rather form discrete 

molecular orbitals. The band gap is formed between the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO) (Figure 1.6).

Figure 1.7. Chemical structures of some organic semiconductors used in p-type 

OFETs. Adapted from Ref.56,59

In the late 1980s, researchers at Mitsubishi Chemical Research Center used 

polythiophene to fabricate thin-film transistor for the first time.25,26,28 Since then, many 

classes of π-conjugated small molecules and polymers have been developed to improve 

OFET performances. Typical examples of organic semiconductors used in OFETs, shown in 
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Figure 1.7, are metal phthalocyanine, oligocene (pentacene, rubrene), oligothiophene, and 

polymers based on thiophene, phenylene vinylene, fluorene, and thienothiophene units.

1.3.2. Donor-Acceptor (D-A) Conjugated Polymers for OFETs

Donor-acceptor (D-A) copolymers are the most recent class of materials developed for 

high-mobility OFETs and high performance OPV.60–65 D-A copolymers are comprised of 

alternating electron rich (donor) and electron poor (acceptor) conjugated segments. Figure 

1.8 demonstrates one effect of D-A structure in enhancing charge transport in OFETs, via a 

reduced reorganization of hole propagation, in comparison to D-D polymers. The induced 

partial charge in the electron rich and electron poor units is beneficial to reduce the 

reorganization energy when charges move from one segment to another.36,66 When a charge 

is accepted by a conjugated segment, its existing partial charge helps to accommodate the 

charge with less change in charge distribution hence less reorganization energy.36,66

Figure 1.8. Schematic diagram of the reduced reorganization of hole propagation in 

D-A copolymers, in comparison to D-D polymers. The partial charge in each 

conjugated segment is subjected to less change in charge distribution hence less 

reorganization energy when it accommodates a charge (hole in this case). Adapted 

from Ref.36
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In addition, Yuning Li and coworkers hypothesized that the dipole-dipole interaction 

between donor and acceptor moieties of two polymer chain enhances the π-π interaction 

hence improve the mobility.36,66 Mullen and coworkers, on the contrary, used solid-state 2D 

NMR to show that the donor units pack in a closer proximity to the donor units of the 

adjacent polymer chain, and vice versa.67 They suggested that the rigid backbone of the D-A 

polymer mainly contributes to the tight packing of the polymer in solid state. D-A materials 

(small molecules and polymers) have also been used in organic solar cells due to their 

reduced bandgap and improved charge carrier mobility. Some examples of high-mobility D-

A copolymers can be found in Table 5.1.

1.4. Charge Transport and Charge Injection in OFETs

1.4.1. Charge Transport

Charge transport in organic semiconductors has been studied intensively in the last thirty 

years, in various types of organic electronic devices such as hole and electron-only 

diodes,68,69 OFETs,2,37,39 OLEDs,70–73 and organic solar cells (OSCs).74,75 In solution-

processed thin films of organic semiconductors, the morphological disorder greatly dictates 

the charge transport. The disorder results in the localized state with different energy level.76–

79 The density of states (DOS) as a function of energy can be described by either Gaussian or 

exponential distribution.78,80–82 Regardless of the shape of the DOS, the energetic disorder 

results in the hopping of charges between localized states (Figure 1.9). The hopping 

mechanism becomes the widely accepted charge transport mechanism in solution-processed 

organic electronic devices with a certain degree of energetic disorder. Different theoretical 

and experimental approaches have been investigated to characterize the DOS.77,78,81,83–85
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Figure 1.9. Gaussian density of states comprising of localized states with different 

energy level. Electrons spontaneously hop (or relax) from higher energy levels to lower 

energy levels. In order to hop to the higher energy level, external energy (thermal 

energy, electrical energy) is needed.

In the context of this thesis, the charge carrier hopping is considered as a basic thermally 

activated process, which is described by the Arrhenius equation:2,68,86–88

in which µ is the charge carrier mobility, µo is the mobility prefactor, Ea is the activation 

energy and k is the Boltzmann constant. One can measure the mobility of OFETs at different 

temperatures and fit the data to equation (11) to extract the activation energy Ea, which 

reflects the average energetic barrier for charge carrier hopping. The lower the Ea, the higher 



17

the mobility at a certain temperature. This analysis is used in chapter 4 to characterize the 

charge transport mechanism in high-mobility PFETs fabricated from D-A copolymers.

Numerous fundamental scientific questions regarding the charge-transport physics and 

structure–property relationships of organic semiconductors can be studied in FET devices 

thank to their ability to control the charge-carrier concentration by gate potentials.39

Significant efforts have been put to understand the fundamental electronic structure of the 

organic semiconductor, and how transport processes in molecular level determine the 

electrical characteristics of macroscopic devices.89–91 An important aspect of charge 

transport in OFETs, which differs from charge transport in vertical devices like organic 

diodes, is the crucial effect of the dielectric interface. As mentioned above, charge transport 

in TFT happens at a few nanometers above the dielectrics.1,42 Therefore, the quality of the 

dielectric interface and the molecular packing right at the interface greatly influence the 

device physics of OFETs. In chapter 3, it is shown that the polymer chain alignment in only 

a few nanometer polymer layer right at the dielectrics results in the improvement of the 

mobility. In chapter 5, it is shown that two different dielectric surfaces have dramatically 

different impact on the charge trapping and device stability of high-mobility PFETs 

fabricated from D-A copolymers.

1.4.2. Charge Trapping and Device Instability

Another important topic is the understanding of the electrical instability mechanisms, 

which are becoming an increasingly important topic as OFETs are approaching large-scale 

production with strict reliability and lifetime requirements.30,91,92 The OFET figure of merits 

(FOMs) (most importantly mobility, threshold voltage and ON/OFF ratio) are desirable to be 

constant upon prolonged operation (ON state). However, it is well established that those 
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FOMs change under bias-stress, caused by the gate and drain bias applied to OFETs for 

several hours to several days.30,92 For p-type OFETs, it has been reported by several groups 

that the threshold voltages negatively shift up to the gate bias.30,43,92–95 There are several 

hypotheses that explain the bias-stress effect in p-type OFETs including interfacial charge 

trapping, bipolaron trapping95, water effect.93,96,97 Among them, the effect of electrochemical 

reactions of a trace amount of water trapped at the interface of SiO2 dielectric and organic 

semiconductors is most plausible to explain the current-voltage changes upon bias-stress.97

In n-type OFET study, it was found that silanol groups (–SiOH) on SiO2 surface can trap 

electron and turn to –SiO-.30,98,99 The bias-stress of ambipolar OFETs has been 

reported;94,100,101 but the main cause is not well-understood.30 In chapter 5, a special case of 

OFET electrical instability is investigated where electron trapping causes the instability of 

the device performance of a p-type OFET.

1.4.3. Charge Injection

Another important aspect of the device physics is the injection of charges from the 

source contact into the organic semiconductor. The parameter that describes the energetic 

injection barrier and other effects that preventing charge injection is called contact 

resistance.92,102–105 In inorganic semiconductors, contact resistance can be minimized by 

controlling doping concentrations of the semiconductors at the contact.1 However, controlled 

doping of organic semiconductors is still difficult, since dopants incorporated in the form of 

small-molecule counterions can migrate and cause device instabilities.39,92 In addition, 

doping in solution-processed organic semiconductors is often accompanied with changes in 

morphology, hence complicates the device analysis.106–108 For the devices with short channel 
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length (L<5µm), the channel resistance becomes smaller and comparable to the contact 

resistance. Therefore, reducing contact resistance is crucial in short channel length OFETs.

Most of OFETs are made with undoped organic semiconductors. In this case, metals 

with work-function closest to corresponding HOMO for p-type and LUMO for n-type 

OFETs are chosen to minimize contact resistance. In p-type OFETs, Au is the most common 

contact because it has the work-function of around 5.0 eV that is very close to the HOMO of 

most organic semiconductors. In addition, Au is a stable metal. For organic semiconductors 

with very low-lying HOMO (>5.5 eV), modification of contacts with high work-function 

metal oxides, most commonly MoOx have been applied.109–113  For n-type OFETs, finding a 

stable metal with work-function close to LUMO of most organic semiconductors (3.0 – 4.0 

eV) is more challenging.66,114,115 Recent high-mobility n-type OFETs have been made with 

low-lying LUMO (>4.0 eV) and therefore Au or Ag are sufficient to make good contacts.

Recently, high-mobility p-type PFETs have been achieved with narrow band-gap 

polymers, with LUMO approaching 4.0 eV and HOMO around 5.2 eV. When Au is used for 

contacts in these devices, electron injection and transport can be enable. In chapter 5, a full 

analysis of how this electron injection and transport affect hole conduction.

1.5. Motivation and Structure of the Thesis

The thesis aims to investigate in depth the three fundamental aspects that dictate the 

performance and practicability of high mobility PFETs including (1) polymer assembly in 

thin film, (2) charge transport mechanism, and (3) electrical instability.  The ultimate goal is 

to provide guidelines for designing novel materials and engineering devices toward high-

mobility and stable PFETs.
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Chapter 2 describes the main experimental methods used in the thesis. In chapter 3, a 

study of molecular assembly a high-mobility PFET system fabricated from aligned polymer 

chains is presented. The effect of molecular weight is an important focus in chapter 3. In 

chapter 4, the charge transport aspect of the PFET in chapter 3 is clarified. In chapter 5, the 

electrical instability and non-ideality in high-mobility PFETs fabricated from D-A 

copolymers is thoroughly investigated, using the same model system as in chapter 3 and 4. 

The mechanistic study of chapter 5 proves different methods for suppressing the electrical 

instability and non-ideality by virtues of molecular design and device engineering. Chapter 6 

demonstrates the successful executions of three methods suggested in chapter 5 to improve 

device stability and ideality. Finally, conclusion and outlook is presented in chapter 7.

1.6. Characterizations of Organic and Hybrid Materials

In the course of PhD, the thesis author has done researches in characterizing different

organic and hybrid organic-inorganic electronic materials. In order to keep the coherent story 

of PFET in-depth study in the thesis, these works are either briefly mentioned here or 

presented in the Appendix.

One important work is designing and characterizing an improved hybrid bulk-

heterojunction materials based on nanostructured TiO2 and conjugated small molecules for 

solar cells and photodetectors. This achievement, which was published in Applied Physics 

Letters (volume 104, page 233305), is reorganized and presented in Appendix 9.2. The 

work was in a collaboration with Dr. Justin Jahnke and Professor Bradley Chmelka. The 

nanostructured TiO2 was synthesized by Dr. Justin Jahnke.

Another significant accomplishment of my PhD research is the comprehending and 

applying conducting and photo-conducting AFM (c-AFM and pc-AFM) to material and 
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device characterization. In one project, I utilized c-AFM to reveal that the more continuous 

conduction network of hybrid TiO2-graphene anodes that employ smaller TiO2 nanoparticles

is responsible for the higher power conversion efficiency of dye-sensitized solar cells 

(DSSCs). The study reveals a size-dependent electron transport property of the TiO2-

graphene composite photoanodes. As the TiO2 particle size decreases, a more continuous 

electron transport network is formed and results in a higher electron mobility in the smaller-

sized TiO2 based composite electrode, indicated by c-AFM dark current images and nano I-

V curves. The continuous conduction network reduces the internal resistance at TiO2/TiO2

and TiO2/FTO interfaces, ultimately resulting in a faster and more efficient electron transfer 

of the device using the smaller size of TiO2 particles. This is the first study that successfully 

applies c-AFM to characterize DSSC photoanodes and correlates DSSC nanoscale properties 

to bulk device performance. The results help our collaborators from Nanyang Technological

University (Singapore) rationalize the effect of TiO2 particle size on the current collection 

efficiency of hybrid TiO2-graphene anodes (see Ref. 120 for more information).

Another appealing application of c-AFM and pc-AFM that we have discovered is to 

directly observe the dopant distribution in molecular-doped organic semiconductor films. 

Molecular doping in organic electronics has been demonstrated to boost the performance of 

wide range of devices, for instance the enhanced mobility in FETs, or improved charge 

injection in light-emitting diodes (LEDs). Developing a tool to directly visualize doping sites 

is crucial for researchers to control the doping efficiency and design better dopants. We have 

managed to employ c-AFM for direct visualization of doping sites in p-type doping of 

semiconducting polymer poly(3-hexylthiophene) (P3HT) with a molecular acceptor 

(hereinafter called F4TCNQ). Our collaborators in Stanford University hypothesize that in 

the “weak doping” regime (low concentration of dopants), F4TCNQ dispersed among 
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amorphous domains of P3HT in thin films. On the other hand, in the “strong doping” 

regime, F4TCNQ molecules bind to the polymer backbone to form a new crystalline domain

in the solid state. However, those microstructures had been only proved indirectly by optical 

absorption and x-ray diffraction. I optimized c-AFM scanning at high resolution (scan size 

500 nm × 500 nm) and directly observed the high current spots in the order of 15 – 30 nm on 

the background of low current in the “weak doping” films. It means that F4TCNQ locally 

disperses in the film and dopes P3HT at those high current spots. On the other hand, in the 

“strong doping” films, we observed fairly uniform current distribution. This suggests that 

dopant molecules are not dispersed across amorphous regions but are instead incorporated 

into P3HT crystallites and improve the conductivity of the whole films. The results not only 

help to control dopant distribution, but also open up the opportunity to apply c-AFM and pc-

AFM to study other effects of dopants in organic electronics, such as charge injection and 

photo-current generation (see Ref. 107 for more information).
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2. Materials and Experimental Methods

2.1. Semiconducting Polymers

The model polymer that is mainly used in this thesis is the regioregular poly[4-(4,4-

dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-

c]pyridine] (PCDTPT, Figure 2.1).65,116,117 The copolymer comprises of the CDT donor unit 

and PT acceptor unit, as shown in Figure 2.1. The polymer has an energy gap of 1.2 eV, 

HOMO of ~5.2 eV and LUMO of ~4.0 eV, characterized by cyclic voltammetry and optical 

absoption.65 In chapter 5 and 6 a few other polymers are introduced to generalize the 

findings of the thesis. The copolymer in this thesis is firstly developed and synthesized by 

Dr. Lei Ying; then by Dr. Ming Wang at Professor Guillermo Bazan’s group.

Figure 2.1. Molecular structure and regioregularity pattern of PCDTPT.  The 

arrows are guides to the eye to highlight stereoregularity.

In previous works of PCDTPT, high molecular weight (MW) (up to 300 kDa) and 

region-regularity were shown to be important to obtain higher carrier mobility in OFETs 

fabricated by either spin-coating or drop-casting the polymer.116 A method of combining 

nano-grooved substrates and slow drying in a tunnel-like configuration was demonstrated by 

Dr. Hsin-Rong Tseng to align the polymer into highly oriented fibers. The fiber was around 

50 nm wide and aligned in parallel with the charge flow direction from the source to the 
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drain. This alignment helped to achieve a hole mobility of 6.7 cm2/Vs for 300 kDa

PCDTPT.116 In the subsequent chapter 3 and 4, a collaboration work with Dr. Hsin-Rong 

Tseng aims to 1) understand how molecular weight affect charge carrier mobility in PFETs 

fabricated with aligned polymer fibers; 2) reveal polymer chain assembly in the 50-nm-wide 

fibers and 3) elucidate the charge transport mechanism of PFETs fabricated with aligned 

polymer fibers.

2.2. OFET Fabrication

Nano-grooved substrates: Nano-grooved substrates were introduced on the surface of  

SiO2 gate dielectric layer by scratching the surface with diamond lapping films (from Allied 

High Tech Products Inc.) with nanoparticle sizes of 100 nm. 

Figure 2.2. The home-made scratching machine (A) and the resulting surface of 

SiO2 after scratching (B) at scan size 2m × 2m.

A home-made scratching machine is made for this purpose, shown in Figure 2.2. Firstly 

the diamond lapping film is fixed on the stage and the silicon wafer is fixed on a moving 

holder facing the diamond film. The moving holder then goes down for the wafer to attach 

the diamond film and adjust the pressure to about 0.1 kg/cm2. The holder can move forward 
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and backward in one direction for total scratching distance ~1.5 m to induce the parallel 

grooves on the substrate. During the scratching process deionized water is required between 

the wafer and diamond lapping film to achieve uniform surface grooves with high density.

Device preparation: Bottom gate, bottom contact FETs with the architecture “Si (500 

μm) / SiO2 (300 nm) / Au (50 nm) / decyltricholosilane / PCDTPT” were fabricated by either 

spin-coating or sandwiched-casting the polymer on nano-grooved substrates.117 The pre-

patterned substrates (Si/SiO2/Au, L=80 µm, W=1000 µm) were first cleaned by 

acetone/isopropanol, then treated by UVO3 for 15 minutes, right before being passivated by 

decyltricholosilane (DTS) from 1 vol.% toluene solution at 80 C for 25 minutes. Passivated 

substrates were then transfer to nitrogen glovebox to deposit the polymer by spin-coating (8 

mg/ml in chloroform) or sandwich-casting (0.25 mg/ml in chlobenzene). In sandwich-

casting technique, two pre-patterned-contact substrates are held together in a tunnel-like 

configuration using two glass spacers (Figure 2.3). An amout of ca. 70 µl of a dilute 

solution of polymers is added into the tunnel. The whole tunnel is placed inside a petri-dish 

filled with organic solvent to slow-down the evaporation. It takes around 4-6 hrs to 

completely dry the solution. The samples were annealed at 200 C for 8 min before 

measurement. The capacitances are 10 and 11.5 nF/cm2 for normal and nano-grooved 

substrates.
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Figure 2.3. Schematic of sandwich-casting technique to fabricate PFETs in the 

thesis

In chapter 6, bottom gate, top contact FETs with the architecture “Si (500 μm) / SiO2

(300 nm) / BCB (170 nm) / PCDTPT/ Au” were fabricated by spin-coating the polymer on 

SiO2/BCB substrates prior to thermal evaporating Au source and drain contacts. BCB was 

prepared by spin-coating the customized dilution of the commercialized Cycotene 3022-46 

(Dow Chemicals) on cleaned SiO2 substrates, followed by thermal cure at 300 C in 1 

minutes.

2.3. Electrical measurements of OFET

All the electrical measurements are conducted by a Keithley semiconductor parametric 

analyzer (model 4200-SCS). The analyzer has ultra-low current noise level below 10 pA. 

Built-in programs are allowed to characterize basic transfer curves, output curves and current 

vs. time at fixed Vg and Vd. New programs are coded to perform more sophisticated 

measurement. At all temperatures (80K to 300K), the electrical measurements is performed 

inside a Lakeshore vacuum probe-station under a vacuum of <10−6 mbar. The devices were 

heated at 400 K in vacuum for 7 hours prior to the temperature-dependent measurements.
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2.4. Programming for current transient measurements

In the Model 4200-SCS, external equipment is controlled via the User Test Modules 

(UTMs), which are essentially C functions created and maintained with the Keithley User 

Library Tool (KULT). Using KULT interface, new program can be coded to perform 

transient current measurements where gate voltages and drain voltages can be changed at any 

specific time during the course of a measurement without stopping it. In addition, the time 

interval between to recorded current can be altered with either linear or exponential 

functions with measuring time. One new program is developed and coded to measure the

hole current dynamic under different bias stresses at different time intervals, which is used in 

section 5.5 to probe the mechanism of the double-slope.

2.5. Atomic Force Microscopy

Atomic force microscopy (AFM) is technique in the family of scanning probe 

microscopes (SPM).118,119 AFM operates by measuring and monitoring the local force 

between a probe and sample surface. Normally, the probe is a sharp tip, which is a 3-6 um 

tall pyramid with 15-40 nm end radius.107,120,121 To acquire an image, AFMs can generally 

measure the vertical and lateral deflections of the cantilever by using a system of laser beam

and photodiode. The laser beam shines to the upper part of the cantilever. Atomic forces 

induced by the surface to the tip deflect the cantilever and therefore change the deflection of 

the laser beam. The reflected laser beam strikes a position-sensitive photo-detector 

consisting of four-segment photo-detector. The differences between the segments of photo-

detector of signals indicate the position of the laser spot on the detector and thus the angular 

deflections of the cantilever. All AFM measurements are performed with a Bruker 

Multimode AFM system under nitrogen atmosphere. In the glovebox, the Multimode is 



28

placed on a hanging stage to reduce vibration from the building. Budget Sensor AFM tips 

with force constant of 2.0 nN/nm and resonance frequency of c.a. 300 kHz.
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3. Device Performance and Polymer Alignment of PCDTPT at 

Different Molecular Weights

3.1. Introduction

That charge carrier mobilities () of 10 cm2/Vs have been frequenly achieved make 

OFETs approach closer to industrial applications.34–36 In term of organic semiconductors 

used in OFET, conjugated polymers have better film forming and mechanical properties, 

compared with their small molecule counterparts.122–124 Several strategies including process 

optimization125–129 and molecular design67,65,124,130 have been proposed to achieve order 

within the polymer fibers and better polymer packing. One of the most important variables in 

using polymers for OFETs is controlling molecular weight (MW).67,131–133 Batch-to-batch 

variation in MW can greatly affect device performances. It has been shown that low MW 

materials tend to form crystalline domains, and the “grain boundaries” significantly reduce 

the carrier mobility.134,135 The general practice in the field is to obtain high-molecular-weight 

polymers to enable the formation of interconnected aggregates that is beneficial for obtaining

high carrier mobility.136 From the synthesis point of view, the production yield for high MW 

materials with low polydispersity remains a challenge. In addition, high MW materials also 

difficult to dissolve, and the high viscosity limits utility in high-resolution inkjet printing.

In section 1.4, it is mentioned that charge transport in organic semiconductor strongly 

depends on the molecular assembly in solid-state thin film. In PFETs, it has been reported 

that the alignment of the polymer is critical for obtaining high mobility. Tseng and 

coworkers showed the significant improvement of mobility in PCDTPT FETs after the 

polymer was aligned.116 In the FET with aligned polymers, the mobility in parallel devices 
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(charges move along the polymer fibers) was several times higher than that in perpendicular 

devices (charges move along the polymer fibers). It was hypothesized that the polymer 

chains pack along the fiber and hence facilitate the efficient intrachain charge transport along 

the fiber.116 A direct visualization of polymer chain packing is important to correlate the 

molecular assembly and charge transport.

Direct visualization of molecular packing has been always fascinated scientists. Scanning 

tunneling microscopy (STM) is one of the powerful tool to visualize the assembly of atoms 

and molecules at the resolution of a few nanometers.137 The utilization of STM, however, 

requires high vacuum and very smooth surface to obtain high resolution image. In addition, 

it can only work for conducting materials. AFM, however can be used for any kind of 

materials and does not require vacuum to obtain high resolution image.119 The resolution of 

AFM is generally lower than STM, yet proved to be sufficient in many applications.

In this chapter, a systematic study of OFETs fabricated with PCDTPT of several MWs 

(ranging from 30 to 300 kDa) is carried out to understand the relationship between MW, 

carrier mobility and polymer alignment. High-resolution AFM is used to visualize the 

polymer fiber in a few nanometers length scale, which can suggest the alignment of polymer 

backbone.
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Figure 3.1. The GPC data of different molecular weight polymers. The data was 

obtained by Dr. Ming Wang.117

Table 3.1. Summary of average molecular weight and polydispersity of different 

molecular weight materials. The data was obtained by Dr. Ming Wang.117

300k 160k 80k 50k 30k

Mn (kDa) 299 163 78 47 33

Mw (kDa) 1,203 561 131 93 56

PDI 4.0 3.4 1.7 2.0 1.7

Regioregular PCDTPT is synthesized by Dr. Ming Wang according to previous 

procedures65 and was then separated into different MW fractions (30, 50, 80, 160, and 300 

kDa) by gel permeation chromatography (GPC). The MW distributions and PDI are 

provided in Figure 3.1 and Table 3.1. BGBC FETs are fabricated with the architecture “Si 

(500 μm) / SiO2 (300 nm) / Au (50 nm) / decyltrichlorosilane / PCDTPT” by sandwich-
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casting.116 For comparison, FETs with the same architecture were made by drop-casting onto 

normal substrates (without surface grooves).

3.2. Device Performance and Mobility Anisotropy

Figure 3.2 summarizes the carrier mobilities obtained from the FETs in the saturation 

regime as a function of MW. In Figure 3.2A, the average mobilities obtained by drop-casting 

without polymer chain alignment are 1.9, 1.3, 1.2, 0.7, 0.7 cm2/Vs for 300, 160, 80, 50, and 

30 kDa, respectively. The mobility slightly increases with MW, which is in agreement with 

previous reports in the literature.67,132,133 The mobility of devices prepared by sandwich-

casting on nano-grooved substrates is significantly increased for all the MWs compared to 

that of drop-casting devices (Figure 3.2B). Most interestingly, those mobilities that are 

insensitive to MW. We find that polymer alignment induced by the nano-grooves is of 

principal importance to achieve high mobility. Figure 3.2C-D shows typical transfer and 

output curves of the PFETs fabricated from all the MWs. The transfer curve in Figure 3.2C

shows non-linear behavior, which has been observed in other high mobility system.34–36 It 

should be noted that the mobilities in Figure 3B were all obtained from the slope at lower Vg

in transfer curves (Figure 3.2C). The mobility variation as a function of gate bias is shown in 

Figure 3.3. This behavior is thorougly investigated in chapter 5.
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Figure 3.2. Mobility of PCDTPT OFETs after annealing at 200 °C. The mobility 

value and the value in parentheses represent mean and maximum values obtained from 

10 independent OFETs. (A) Devices fabricated by drop casting. (B) Devices fabricated 

by slow drying in the tunnel-like configuration. The horizontal lines in the box denote 

the 25th, 50th, and 75th percentile values. The error bars denote the 5th and 95th 

percentile values. The open square inside the box denotes the mean value. (C) and (D) 

FET characteristics of PCDTPT with mobility of 23.7 cm2/Vs. (L = 80 μm, W = 1 mm): 

(C) transfer curves taken at VDS = -80 V (D) output curves taken at various VG (0~-

40V).117
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Figure 3.3. Saturation mobility as a function of gate bias. The mobility is calculated 

from the local slope in the transfer curve at saturation regime Ids
1/2 versus Vg (equation 

9).117

The linear mobility is also calculated using equation (10) for the output curves around 

Vd=-5 V (-2 V to -8V) and at Vg=-40V. It is 2.9, 4.7, 3.5, 5.5 and 5.0 cm2/Vs for the MW of 

30, 50, 80, 160 and 300 kDa, respectively.117 The linear mobility is several times lower than 

saturation mobility, which has been widely observed in the literature.114,138

3.3. Polymer Chain Alignment of PCDTPT by High-Resolution AFM

Atomic force microscopy (AFM) is utilized to understand the mobility variation with 

MW for both drop-casting and sandwich-casting devices. Figure 3.4 shows the topography 

of the films made by drop casting on normal substrates. Nano-scale polymer fiber structures 

form for all MW fractions. The macroscopic morphology changes dramatically, however, 

from 300 kDa to low 30 kDa (Figure 3.4A-E). The polymer fiber structure is directionally 
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random for the high-MW PCDTPT (Figure 3.4A), whereas the fiber structures become 

discernible in crystalline domains for low MW polymers (Figure 3.4E,F). As seen in the 

AFM phase image of the 30 kDa polymer FET film, (Figure 3.4F), the polymer fibers within 

a domain are aligned over lengths approaching the micrometer scale. However, there are 

disordered grain boundary regions between domains. These create deep trapping sites for 

charge transport and thereby limit the carrier mobility.139 As a result, the carrier mobility 

decreases as the MW decreases in these non-aligned polymer FETs.

Figure 3.4. AFM images of the PCDTPT topography by drop cast with MW of (A) 

300, (B) 160, (C) 80, (D) 50, and (e) 30 kDa. (f) Phase image of the film with MW of 30 

kDa. Data was obtained by Dr. Hsin-Rong Tseng.

In a previous work, Dr. Hsin-Rong Tseng showed that polymer fibers was formed and 

aligned along the nano-grooves in devices prepared by sandwich-casting. Similar polymer 
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fiber alignments are observed for very thin films (<10nm), shown in Figure 3.5 for both 300 

kDa and 50 kDa polymers. These ca. 50 nm wide fibers look like fiber bundles and seems to 

have finer structure inside. However, these finer structure are difficult to obtain in regular 

1µm × 1µm AFM scan size.

Figure 3.5. AFM images (1 m × 1 m) of PCDTPT topside morphology by slow-

drying on nano-grooved substrates (with orientation): (A) MW=300 kDa and (B) 

MW=50 kDa. The height scale is 0 – 5 nm. Data was obtained by Dr. Hsin-Rong 

Tseng.117

PFETs with very thin films of polymers have mobilities of around 10 – 15 cm2/Vs, 

which is around 1.5 – 2 times lower that those mobilities presented in Figure 3.2B. Albeit 

giving slightly lower mobility, thin-film polymers are more feasible to perform high 

resolution AFM (HR-AFM) to reveal the fiber bundles in nanometer scale. Firstly, the 

regular scans are performed to find a good AFM tip with high contrast in both height and 

phase images. 
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6. AFM images of PCDTPT FET on nano-grooved substrates at scan size 

of (a, b) 5 m, (c, d) 1 m  and (e, f) 250 nm; a, c, e are topography images; b, d, f are 

phase image. The height scale is 0 – 5 nm and the phase scale is 0 – 20o.
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Polymers with MW of 50 kDa and 300 kDa are used for HR-AFM study and both of 

them show similar results. Figure 3.6 shows the height and phase images at different scan 

sizes of the film made from 300 kDa PCDTPT. It is clear that fibers are formed and well-

aligned along the nano-grooves. Because the films are think, the substrates are not fully 

covered by polymers. Bare substrates are clearly seen in the phase images. 

The HR-AFM image (250 nm × 250 nm) of the topside morphology of 300 kDa MW 

film on nano-grooved substrates is further analyzed in Figure 3.7. The individual fibers are 

clearly aligned within the fiber bundles in the phase image in Figure 3A. There is no 

evidence of any “grain boundaries” in the fiber bundles, which is consistent with the high 

mobility observed. The width of individual fiber is ~2-3 nm as shown by a cross-sectional 

AFM line cut surface profile in Figure 3B, and is comparable to the length of the repeat unit 

(~2.4 nm, Figure 3C). The only way for polymer chains to align is therefore along the fibers. 

In addition, the mobility is higher along the fiber and the optical absorption is anisotropic,116

consistent with our hypothesis that carriers transport along the conjugated polymer 

backbone. The predominant intrachain charge transport in high-mobility semiconducting 

polymer has also been recently proposed using optical characterization.140
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Figure 3.7. (A) High resolution AFM (250 nm×250 nm) topside morphology phase 

image of PCDTPT 300 kDa OFET. (B) The cross-section profile of the dashed line in 

(A). (C) Molecular structure and estimated size of PCDTPT. The length of one 

monomer is approximately 2.4 nm and the width (including the side chains) is 

approximately 1.5 nm.

The incomplete polymer coverage results in a slighly lower mobiity in PFETs of 

PCDTPT. In order to increase the film thickness and surface coverage, the whole tunnel in 

sandwich-casting technique is tilted with an angle of around 13o. The gravitation makes the 

film at the bottom half of the substrate thicker. The highest mobilities are obtained with 

thick-film OFETs. Interestingly, the polymer fibers are not aligned on the top surface of the 

thick film (~ 50 nm), shown in Figure 3.8a. We hypothesize that the alignment only 

happens at the first few nanometers of the polymer right on top of the nano-grooves. This is 

enough to enhance the charge carrier mobility because charge transport in TFTs occurs at a 

few nanometers above the dielectric surface. In order to prove that, we use HF to etch the 

SiO2 dielectric to flip the bottom surface on another substrate to perform AFM. It turns out 
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the hypothesis is true: polymer fibers of PCDTPT aligned at the bottom surface, revealed in

Figure 3.8b. Obtaining high-quality images of the bottom surface is challenging due to the 

surface distortion during the etching process.

Figure 3.8. AFM images of (a) top surface and (b) bottom surface of 50 nm 

PCDTPT films in PFETs with high mobilities shown in Figure 3.2. 

Finally, we manage to obtain HR-AFM of the bottom surface to show the alignment of

single small fiber formation (Figure 3.9). It clearly shows that the fiber is aligned in one 

direction. The single fiber width is around 2.5 nm (Figure 3.9c), which is consistent with the 

one we observed on the top surface of the thin films.
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(a) 250 nm × 250 nm (b) 100 nm × 100 nm

Figure 3.9. (a-b) High resolution AFM image of bottom surface of a PCDTPT 

device with mobility ~12 cm2/Vs (MW 50 kDa, 0.25 mg/ml, sandwiched devices of 

nano-grooved substrate, anneal at 200 C in 8 minutes). (c) Section analysis of a line-cut 

of 100 nm × 100 nm showing full-width half-max (FWHM) of a peak (representing a

single fiber) of ~2.5 nm.
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3.4. Polymer Chain Alignment of PCDTPT by Transmission Electron Microscopy

The orientation of the films cast on the nano-grooved substrates was further investigated 

by transmission electron microscopy (TEM) using electron diffraction (ED); and presented 

in Figure 3.10.  With the electron beam orthogonal to the film (0o tilt angle, Figure S4A), 

the ED pattern consist of very sharp reflections corresponding to the (010) π-π stacking of 

the crystalline lattice.  The angular spread of the (010) reflection in the plane of the film 

indicates that all the polymer backbone  axes of the polymer crystallites are oriented within ± 

12° of the alignment axis. With the sample tilted 70o (Figure S4B), the ED pattern shows 

exceptional alignment as indicated by the very sharp reflections corresponding to the alkyl 

side-chain packing (100) of the crystalline lattice. The ED results indicate the aligned 

polymer chains have an “edge-on” orientation relative the scratched substrates. Overall, 

these results provide further evidence that the alignment of the polymer chains plays a 

crucial role in enhancing the mobility.

(A) (B) (C)

Figure 3.10. Electron diffraction patterns (A) at 0° tilt and (B) at 70° tilt. (C) Bright 

field transmission electron micrograph showing elongated structures along the 

alignment direction. Data was obtained by Dr. Shrayesh Patel.117
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3.5. Conclusion

To summarize, hole mobility higher than 10.0 cm2/Vs, for transport predominantly along 

the conjugated chain is demonstrated with aligned PCDTPT. The mobility of PFETs with 

long-range-order aligned polymer fibers is about an order of magnitude higher than that of 

non-aligned-polymer PFETs. More importantly, the mobility PFETs with long-range-order 

aligned polymer fibers is insensitive to MW and therefore very high MW is not necessary for 

achieving high mobility. With optimization, AFM can be a powerful tool to visualize 

polymer fiber at the length scale of a few nanometers. Polymer chain fiber alignment, shown 

by HR-AFM, facilitates carrier transport along the conjugated polymer backbone with 

occasional hopping to neighboring chains through π-π stacking. The hopping mechanism is 

further investigated in the following chapter, chapter 4.
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4. Thermally Activated Charge Transport in High-mobility OFETs 

Fabricated from D-A Polymers

4.1. Introduction

Understanding charge transport mechanism in electronic devices is essential to control 

the device operation and improve the device performance. The correct physical description 

of the charge carriers and the mechanism of charge transport in organic semiconductors, 

particularly in high-mobility conjugated polymer system are still under controversial.39,76,80,64

Charge transport in low-mobility, disorder OSCs, which has been widely investigated from 

studies on xerographic amorphous OSCs, is limited by the disorder in thin films. The 

conduction is therefore driven by the thermally assisted hopping of localized charge carriers 

from one site to another in an energetically disorder landscape. On the other hand, the 

classical band-like, Bloch electron conduction well describes the charge transport in 

crystalline inorganic semiconductors, which usually has mobility higher than 100 cm2/Vs.1

High-mobility conjugated polymers has the mobility between these two regimes (> 10 

cm2/Vs).141,142 Therefore, a thorough understanding of charge transport mechanism and 

factors that limit carrier mobilities in the high-mobility regime of conjugated polymer is 

crucial for not only designing better performance molecules but also the controlling of 

manufacturing process in industrial scale.

In this chapter, the charge transport mechanism of PCDTPT FETs is analyzed and 

correlate with the morphology in Chapter 3 to build a model for charge transport in the high-

mobility PFETs with aligned polymers.
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4.2. Water effect in the analysis of temperature-dependent measurements

In order to study the charge transport mechanism of PFETs, mobility is measured as a 

function of temperatures from 300 K to 80 K. Ideally, for thermally activated hopping 

process, the mobility-temperature relationship for the whole range of temperatures should be 

able to described by Arrhenius equation. However, it has been reported in the literature that a 

trace amount of confined water can cause an anomaly at around 200 K. For OFETs, Stalinga 

and coworker observed the anomaly in the temperature dependent current and mobility of 

oligothiophene and polythiophene devices.83,143,144 The anomaly can be reduced by 

processing the device in water-free environment but cannot be removed. They also 

hypothesized that the confined water trapped in the organic layer does not crystallize at 273 

K but forms a metastable liquid causing the anomaly. In chapter 5, the metastable water is 

shown to act as traps and cause the shift in threshold voltage after multiple scans. At around 

200 K to 220 K metastable water solidifies. Therefore, at temperature below 200 K, this 

water effect disappears. The effect of water in charge transport and charge trapping of

OLEDs, hole-only diodes and electron-only diodes has also been reported. Blom and 

coworkers observed a common electron trap with similar trap density in devices made from 

different conjugated polymers.145,146,71 It happens for devices that are completely processed 

in the N2 glovebox and measured under high vacuum. This common electron traps is 

hypothesized to be a complex of a trace amount of water and oxygen in the organic 

semiconductor films. 
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Figure 4.1. Temperature-dependent mobility of PCDTPT FETs with and without 

heating (at 400 K in 7 hours) in high vacuum (<10-6 torr)

Figure 4.1 shows temperature-dependent mobility of two devices prepared by same 

conditions (nano-grooved substrates, PCDTPT MW 300 kDa, 0.25 mg/ml, sandwich-

casting, anneal at 200 C in 8 minutes). Device 1 was conducted temperature-dependent 

measurements right after preparing while device 2 was heated at 400 K in 7 hrs in high 

vacuum (<10-6 torr) in the probe station before being conducted the measurement. It clearly 

shows that, after heating the device in UHV, the plateu around 220 – 180 K of device 2 

becomes insignificant. We hypothesize that the removing of residual water in the device 

upon heating is attributed for the phenomenon.
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Figure 4.2. Threshold voltage shift as a function of temperature of PCDTPT FETs

with and without heating (at 400 K in 7 hours) in high vacuum (<10-6 torr)

Another interesting observation after removing water is the change in threshold voltage 

as temperature decreases. For the device without heating, the threshold voltage negatively 

shifted dramatically from 300 K to 240 K, while in the device with heating, it remained 

relatively constant. It suggests that the dynamic interaction of residual water with the OFET 

polmer layer changes as the system is cooling down before the transformation of water. 

Below 200 K, the shift in threshold voltage is similar in both devices. With these 

observations, all the following temperature-dependent measurements are performed after the 

devices are heated at 400 K in vacuum for at least 7 hours.

4.3. Investigating Activation Energy by Temperature-dependent Measurements

The effect of molecular weight of PCDTPT on activation energy was evaluated by using 

three GPC fractionated molecular weight Mn 50 kDa, 180 kDa and 300 kDa. Devices from 

three MWs are prepared and tested in the same conditions (nano-grooved substrate, 0.25 
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mg/ml concentration, sandwich-casting, anneal at 200 C in 8 minutes, heat 7hrs in UHV 

before measuring). Transfer and output curves of all the devices at all temperature were 

normal and showed similar trend as temperature decreases. The transfer curves in saturation 

regime (at Vd=-50V) of the 50 kDa PCDTPT device at different temperatures are shown in 

Figure 4.3. Mobilities are calculated from transfer curves in both linear and saturation 

regimes and plotted with inverse temperature, according to the Arrhenius law, to investigate 

the charge transport mechanism.

Figure 4.3. Transfer (at Vd=-50V) curves of the 50 kDa PCDTPT PFET at different

temperatures.
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Figure 4.4. Temperature-dependent mobility for the PCDPTP PFETs with MW of 

50, 160, and 300 kDa.

Temperature-dependent mobility in both linear (at Vd=-10V) and saturation regime 

(at Vd=-50V) of OFETs with MW of 50, 160, and 300 kDa materials aligned on nano-

grooved substrates is presented in Figure 4.4. In all the cases, the mobility decreases as 

temperatures decreases, which indicates the thermally activated hopping transport 

mechanism. Considering the dimension of the PFETs, that charge transport in PCDTPT 

FETs is limited by thermally activated hopping is reasonable. In fact, perfect chain alignment 

in an PFET with channel width of 1000 µm and channel length of 10 – 160 µm is very 
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unlikely. Even though X-ray diffraction, AFM and TEM show perfect alignment and tight π-

π stacking of polymer chains in the films, diffraction techniques only probe the crystalline 

portions of the films with periodic stacking.  

Figure 4.5. Activation energy of three MW fractions of PCDTPT

It is clear that the temperature-dependent mobility at both linear and saturation regime (at 

both Vd=-50V and -90V) of all MW is not significant (Figure 4.5). In all the cases, the

activation energy varies in a narrow range of 22-30 meV, as extracted in the temperature 

range from 85K to 180 K. This variation in activation energy is very small considering the 

fact that thermal energy at 300 K is 26 meV. The nonlinear behavior of the mobility near and 

above 200 K could result from the bias stress85 or residual moisture in the film.144,147,148 The 

activation energy is low, compared to most other high-mobility polymers,149,88,150,151

implying that the inter-chain carrier hopping is efficient. The low activation energy is 

consistent with the observation that there are no grain boundaries from chain-to-chain or 

fiber-to-fiber.134 The MW-independent Ea indicates the similar energetic barrier of hopping
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in three MWs. This barrier probably correlates to the - stacking distance of the polymer 

assembly in thin films. In order to characterize the - stacking distance as well as other 

order parameters of PCDTPT thin films, grazing incidence wide-angle X-ray diffraction 

(GIWAXS) is characterized and presented in section 4.4.

Next, activation energy of PDCTPT PFETs on normal substrates and nano-grooved 

substrates (for both parallel and perpendicular devices) is tested. Table 4.1 summarizes the 

activation energy of the three devices (nano-grooved substrates, PCDTPT MW 300 kDa, 

0.25 mg/ml, sandwich-casting, anneal at 200 C in 8 minutes) at both linear regime and 

saturation regime. Interestingly, the activation energies of different devices (normal 

substrate, nano-grooved substrate parallel and perpendicular) are similar, even though the 

mobility can vary by an order of magnitude (0.2 – 6.1 cm2/Vs). This implies that the 

conduction pathway is similar in all devices. As mentioned in section 3.5, this conduction 

pathway is primarily along the conjugated polymer backbone with occasional hopping to 

neighboring chains through π-π stacking.117 It should be noted that in our device processing 

condition, PCDTPT polymer assemble in fibers in all devices. In the devices on normal 

substrate, the fibers align in random direction while in the devices on nano-grooved 

substrates the fibers are either more parallel (parallel devices) or perpendicular 

(perpendicular devices) to the electrical field from source to drain. In addition, the fibers are 

not perfectly aligned in one direction; there are some cross-talks fibers in the other 

directions. Carriers overcome a similar energetic barrier, correlates to the similar -

stacking distance of the polymer assembly in thin films for the three devices.65,117,152

However, carriers transport in different route distance depending on the alignment of the 

fibers, resulting in different calculated mobility.
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Table 4.1. Summary of activation energy PDCTPT PFETs on normal substrates 

and nano-grooved substrates (for both parallel and perpendicular devices)

Device characterization
Normal

substrate

Nano-grooved

substrate -

parallel

Nano-grooved 

substgrate -

perpendicular

Saturation mobility at 300K (cm2/Vs) 0.2 – 0.4 1.5 – 6.1 0.6 – 1.0

Activation energy - Linear regime (meV) 33 ± 5 27 ± 5 28 ± 6

Activation energy - Saturation regime (meV) 32 ± 5 30 ± 5 29 ± 6

4.4. Characterizing Molecular Stacking by GIWAXS

A summary of GIWAXS results for PCDTPT with MW of 30, 50, 80, 160, and 300 kDa 

is summarized in Figure 4.6. Firstly, scattering intensities are plotted as a function of the 

scattering vector (q (nm-1)) in Figure 4.6A. The two length scale regimes commonly 

investigated in conjugated polymer thin films are from q ~ 1-10 nm-1, which corresponds to 

the lamellar side chain packing and backbone, and the q range of ~ 12-20 nm-1 describing the 

π- π stacking between ordered polymer segments.153 The positions of the peaks are the same 

for all the MWs, which means that the MW does not affect the final structure that is formed; 

however the full width at half-maximum (FWHM) of the alkyl stacking peaks shows a MW 

dependence. 
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Figure 4.6. (A) Grazing wide-angle X-ray scattering line profiles of PCDTPT films 

formed by drop casting. (B) Estimated crystallite correlation length of alkyl and π-π 

stacking.

The crystalline correlation length (CCL) of alkyl and π-π stacking were estimated by 

the Scherrer equation and the data are shown in Figure 4.6B.117,152 The CCL of alkyl 

stacking changes from 20 nm for 30 kDa to 11 nm for 300 kDa polymer fraction. On the 

other hand, the CCL of π-π stacking is ~4 nm for all MWs. The independence on the MW of 

the CCL of π-π stacking, in combination with the MW-independent activation energy shown 

in Figure 4.5, supports the result that carrier transport is predominately along the backbone 

of the chain with occasional hoping through π-π stacking to a neighboring chain, followed 

again by transport along the backbone. In this way the mobility is insensitive to MW and 

high mobility can be achieved after long-range polymer alignment.
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4.5. Conclusion

The temperature-dependence of the mobility are investigated for PCDPT PFETs with 

different MWs and on different substrates. In all the cases, the mobility is thermally 

activated with an activation energy ~30 meV, as extracted in the temperature range from 

85K to 180 K. The nonlinear behavior of the mobility near and above 200 K could result 

from the bias stress or residual moisture in the film. The activation energy is low, compared 

to most other high-mobility polymers, implying that the inter-chain carrier hopping is 

efficient. The low activation energy is consistent with the observation that there are no grain 

boundaries from chain-to-chain or fiber-to-fiber, observed from AFM in chapter 3. The 

MW-independent activation energy is in agreement with the MW-independent mobility and 

fiber alignment presented in chapter 3.
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5. Electrical Instability and Non-ideality of OFETs Fabricated from 

Low Band-gap Polymers

5.1. Introduction

Electrical stability and charge mobility are two important parameters of organic field-

effect transistors (OFETs) that needed to be improved in order to be commercialized in 

large-scale production.30,91,92 Recently, the carrier mobility of solution-processed polymer 

FETs (PFETs) has been impressively improved by virtues of molecular designs and device 

engineering.67,117,124,154,155 One common route of achieving high mobility PFETs is utilizing 

donor-acceptor (D-A) alternating structure. The D-A structure has been reported to enhance 

molecular interactions and shorten π-π stacking distance, which consequently reduce 

energetic barriers for hopping and increase charge mobilities.67,124,156 The stabilization of the 

resonance structure by adapting D-A motif results in the reduction of the energy gap between 

the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular 

orbital (LUMO) of the polymer. On one hand, this reduction is beneficial to obtain 

ambipolar and n-type PFETs. On the other hand, it introduces undesirable ambipolarity in 

unipolar p-type PFETs, which results in the increase of OFF current and the dependence of 

turn on voltage on drain bias.157 More importantly, p-type OFETs are usually biased in 

electron accumulation regime in order to switch off. The electron injection and trapping 

occurred in p-type OFETs under OFF state could alter the device characteristics when it is 

switched back to ON state.44 Another puzzling observation in several high-performing D-A 

copolymers in bottom gate FETs with SiO2 gate dielectric is the double-slope in saturated 

transfer curves (Id
1/2 vs. Vg) – high slope at small gate voltage but decreases with increasing 
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magnitude of the gate voltage.117,124,64,155,158 To further develop materials and device 

engineering for high performance PFETs for practical applications, the effects of 

ambipolarity on the charge transport, charge trapping and especially the double-slope of p-

type PFETs should be addressed.

In this chapter, the mechanism of the electrical instability of p-type PFETs with a certain 

degree of ambipolarity is investigated. The work helps to unravel the effect of electron 

conduction on the stability of hole current and the double-slope behavior. The model 

polymer still the low bandgap D-A polymer PCDTPT (Figure 2.1).65,116,117,155 The polymer 

has an energy gap of 1.2 eV, HOMO of ~5.2 eV and LUMO of ~4.0 eV, characterized by 

cyclic voltammetry and optical absoption.65 This PFET system was chosen because it has 

been shown to have high field effect hole mobility and double-slope in saturated transfer 

curves, presented in chapter 3.117,155 While performing current-voltage (I-V) measurement, 

we found that consecutive sweeping of gate voltage changed the shape of the transfer curves. 

We conducted a thorough study of bias-stress of the system and found that electron trapping 

at the gate dielectric/polymer interface greatly alters the device characteristics including the 

occurrence of the double-slope. We indirectly proved that a trace amount of water trapped in 

OFETs and silanol groups on SiO2 surfaces may be attributed to this electrical instability of 

the devices.



57

5.2. Electrical Instability and Double-Slope of PCDTPT FETs

Figure 5.1. (a) Transfer characteristics of the PCDTPT PFET at Vd=-80V before 

and after bias-sweeping gate voltages from 20 V to -60 V in approximately 5 minutes 

(also called aging); (b) Gate-dependence saturation mobility extracted from I-V curves 

in (a); (c) and (d) Output curves before and after bias-sweeping effect. Device 

structure: Si/SiO2/Au/DTS/PCDTPT
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Figure 5.1 demonstrates the effects of the continuous bias-sweeping on the device 

performance of the bottom-gate bottom-contact PCDTPT FETs using SiO2 as dielectrics. In 

this study, SiO2 surface were treated with self-assemble monolayer (SAM) of 

decyltrichlorosilane (DTS) (Figure 2.3), unless otherwise stated.116,117 Silane SAM has been 

proved to significantly reduce electron traps on the surface of SiO2, but not completely.98

The devices were fabricated by sandwiched- casting the polymer solution onto nano-grooved 

substrates.117 The first transfer (Figure 5.1a, blue) and output curves (Figure 5.1c) of the 

devices show strong ambipolarity.157,159 N-type scan of the devices at positive Vd and Vg

shown in Figure 5.2 proved the unarguable electron injection in this device structure. More 

importantly, no non-ideality is observed in the transfer characteristics of hole current vs. gate 

voltages. A perfect linear relationship of the square root of drain current and gate voltages is 

ideal for the saturation regime, described in equation (8).

Figure 5.2. N-type transfer curve at Vd=+80V (left) and output curves (right) of 

spin-coated PCDTPT on normal SiO2 dielectrics.
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As the devices were bias-swept successively in approximately 5 minutes (also called 

aging) (Vg from +20V to -60V) to get repeatable transfer curves (Figure 5.1a), we noticed 

the substantial changes in the device characteristics (commonly named “aging effect” or 

“device instability” by industry). Hole current increased; electron decreased; OFF current 

decreased and turn on voltage (Von) shifted to more positive gate bias (Figure 5.1a). 

Simultaneously, the double-slope behavior became discernible upon aging.  As a 

consequence, the peak mobility as a function of gate voltage increased almost three times 

after aging, as shown in Figure 5.1b. Similar changes were observed in the output curves 

upon aging (Figure 5.1c-d) including the clear disappearance of ambipolarity157,159 due to 

the diminution of electron current. 

The transfer curve after “aging” is not in steady state, but rather gradually recover back 

to the first transfer curve when the PFET is not operated, shown in Figure 5.3. As the PFET 

is in presumably OFF state (Vd=Vg=0V), the transfer curve quickly recovers in the first 20 

minutes, then gradually recover to the first scan in the course of around four days. The 

recover can be explained by the neutralization of electron-trapped sites by injected holes, 

which is discernible from hole current at Vg=0V after “aging”. This effect on holes in the 

recovery and the mechanism of the double-slope is investigated further in section 5.5.
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Figure 5.3. Transfer characteristics of the PCDTPT PFET at Vd=-80V before, after 

bias-sweeping gate voltages from 30 V to -40 V in approximately 10 minutes (also 

called aging); and recovery in 95 hours when the device is set at Vd=Vg=0V. After each 

recovery interval, the transfer curve was quickly obtained in 5 seconds and the device 

is set back to Vd=Vg=0V until the subsequent scan. Device structure: 

Si/SiO2/Au/DTS/PCDTPT.
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The bias-sweeping effects were also observed for the spin-coating devices on normal 

SiO2/DTS substrates (Figure 5.4), which indicates that the cause is not the nano-grooves on 

SiO2 surface.

Figure 5.4. The effect of continuous bias-sweeping on transfer curves (a) and 

mobility (b) of spin-coated PCDTPT on normal SiO2 dielectrics (at Vd=-80V).

5.3. Electron-Trapping-Induced Electrical Instability and Double-Slope

In order to investigate the mechanism of the electrical instability and the double slope, it 

is crucial to de-couple the effects of positive and negative gate voltages in bias-sweeping in 

Figure 5.1. We first scanned the devices at negative gate voltages then positive gate voltages 

(Figure 5.5). The bias-sweeping at very negative bias (hole transport regime) did not change 

the transfer curves whereas the bias-sweeping at positive bias (ambipolar and electron 

transport regime)157,159 significantly changed the transfer curves in the similar manner with 

“aging effect” presented in Figure 5.1.



62

Figure 5.5. (a) Effect of bias-sweeping at negative and positive Vg on transfer curves 

of PCDTPT FETs  (Vd=-80V); (b) Two transfer curves in (a) plotted in linear scale; (c) 

mobility extracted from two curves in (b). Device structure: Si/SiO2/Au/DTS/PCDTPT.
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Next, we bias-stressed the device at fixed gate voltages of -40 V for 5 minutes at Vd=-

80V; and the I-V curves were recorded; then we bias-stressed at Vg = +30V and Vd=-80V for 

5 minutes. Figure 5.6a presents the effect of bias-stress on the transfer characteristics at 

opposite gate polarities. Bias-stressing at +30 V caused the most change in the transfer 

curve, whereas negative gate bias only slightly lowered the OFF current. The current decay 

as functions of bias-stress time in PCDTPT FETs is shown in Figure 5.6b. 

Figure 5.6. (a) The transfer characteristics of the PCDTPT PFET at Vd=-80V 

before stressing and after stressing at fixed Vd=-80V and Vg=-40V or +30V; and (b) 

Drain current decay during bias-stress in hole accumulation (Vg=-40V) and electron 

accumulation (Vg=+30V) regime. The arrow indicate the forward current and 

backward current of bias-sweeping. Device structure: Si/SiO2/Au/DTS/PCDTPT.

As the device was bias-stressed in hole accumulation regime (Vg=-40V, Vd=-80V), hole 

current negligibly decreased (from 0.26 mA to 0.23 mA) in the course of 5 minutes, which is 

commonly observed in p-type OFETs.43 Remarkably, as the device was bias-stressed in 



64

electron accumulation regime (Vg=+30V, Vd=-80V), electron current promptly plummeted 

several orders of magnitude after ~100 s. This is a remarkable observation to prove that the 

trapping of electrons and its consequences may be the main causes of the device instability 

due to bias-sweeping or bias-stressing in electron accumulation regimes.

Electron trapping that leads to the formation of the negatively charge –SiO- in OFETs 

employing SiO2 as dielectrics has been reported in the past ten years.30,98,99 In n-type OFET 

study, it was found that silanol groups (–SiOH) on SiO2 surface can trap electron and turn to 

–SiO-, which was proved by Attenuated total reflection Fourier Transform Infrared (ATR-

FTIR) spectroscopy.98 Electrochemical reactions of water, oxygen, silanol and injected 

electrons leading to the increase density of –SiO- charge were demonstrated in carbon-

nanotube FETs.160 This mechanism has also been hypothesized as the trapping mechanism 

for n-type OFETs.30,99 The fact that the substrates of n-type OFETs become more negatively-

charged after stressing at positive gate bias has been proved by Scanning Kelvin Probe 

Microscopy.44,161 The electrochemical reactions involve in the electron trapping and the 

formation of –SiO- can be found in Phan et al.162

In PCDTPT FETs, the formation of –SiO- upon electron trapping can be applied to explain 

the rapid decay of electron current (Figure 5.6b) and substantial changes in device 

characteristics. Firstly, the presence of –SiO- at the contacts results in the increase of 

electron injection barrier resulting in the prompt reduction of electron current. Secondly, –

SiO- increases the effective gate voltage for hole accumulation while reduces the effective 

gate voltage for electron accumulation.37,44 As a result, both threshold voltages of hole and 

electron positively shift, which causes the positive shift of turn-on voltage in the transfer 

curves. The suppression of electron current and enhancement of hole current then 
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concomitantly happen for the same reasons. Apart from the anomalous increase of the peak 

mobility (Figure 5.1b), the overall hole mobility slightly increases after electron trapping 

and –SiO- formation, which may be due to the attractive force of hole and -SiO- charges. 

This is opposite to the observation in p-type bias-stress in which hole mobility decreases due 

to repulsive force of hole and proton.30,43 The positive shift of threshold voltage can also be 

responsible for the negative shift of the drain saturation voltage (Vd
sat). Therefore, saturation 

become less obvious for the FET after aging, especially at high Vg (Figure 5.1d).

5.4. Reduction of Electron Trapping at Low Temperature

The source of electron traps is thought to be the interplay of silanol groups of SiO2

dielectrics and a trace amount of water and oxygen trapped on SiO2 surface. Due to the 

extreme complexity of electrochemical reactions of electrons, silanol, water and oxygen in a 

solid-state device, it may not be possible to directly prove this hypothesis. Alternatively, we 

can indirectly prove by intentionally mitigating the effect of water and SiO2 dielectrics. To 

prove the role of water in trapping electrons in PCDTPT FETs, we performed bias-stress in 

electron conduction regime at low temperatures at which water is frozen. As mentioned in 

chapter 4, in OFETs, a trace amount of confined water, so-called supercooled water are 

unable to form crystalline structure; thus remaining fluid well below 273 K. Below 200 K, 

water solidifies and insignificantly affects the charge transport and charge trapping of 

OFETs.144,163 The trace amount of water can be trapped in the film, especially at the 

interface of the SiO2 and the polymer and cannot be pumped out completely under vacuum. 

In a report by Blom and coworkers,145 the authors found a common electron trap caused by a 

water and oxygen complex in organic single-carrier diodes and light-emitting diodes even 

when these devices were fabricated in the N2 glovebox and tested in vacuum. 
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Figure 5.7a demonstrates the decay of electron current as a function of bias-stress 

time at temperatures ranging from 300 K to 100 K. At all temperatures, the devices were 

stressed at constant Vd=-80V and Vg=+30V in 300 s. At 300 K and 240 K, the current 

significantly dropped after 300 s.  The current decay was less pronounced at 220 K and 

became insignificant at all temperature below 180 K. Figure 5.7b shows the transfer curves 

before and after bias-stress at different selected temperatures. At 160 K, as electron trapping 

is eliminated due to the freezing of supercooled water, transfer curves before and after bias-

stressing are indiscernible. Figure 5.7c demonstrates the difference in the variation of the 

current decay ratio after 300 s (defined as (Id, initial - Id, at 300s)/Id,initial) and the variation of 

mobility, as temperature increases from 100 K to 300 K. At around 200 K, current decay 

sharply increases from 0.25 at 180 K to 0.99 at 240 K while mobility slightly increases from 

0.55 cm2/Vs to 0.59 cm2/Vs, respectively. The slow change of mobilities around 200 K is 

consistent with a previous paper of PCDTPT FETs.117 Those phenomena happen at around 

200 K because it is the condensation temperature of supercooled water trapped in the 

devices. Below 180 K, the mobility continues to decrease (hopping transport) while the 

current decay ratio remains relatively constant. Those indicate that the significant reduction 

of bias-stress effect below 200 K is due to the freezing of supercooled water but not the 

reduction in mobility.
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Figure 5.7. (a) Electron current decay from bias-stressing of PCDTPT FETs in 

electron accumulation regime (Vd=-80V, Vg=+30V) at different temperatures. Inset: 

current decay ratio ((Id, initial - Id, at 300s)/Id,initial) as a function of temperatures. (b) 

Transfer curves before and after bias-stress (in (a)) at different selected temperatures.

Device structure: Si/SiO2/Au/DTS/PCDTPT, spin-coating on nano-grooved substrates.

5.5. Mechanism of the Double Slope

The mechanism for the occurrence of the double-slope in the transfer curve after 

bias-sweeping or bias-stressing in electron accumulation regime is also investigated. The 

double-slope has also not been interpreted in the literature even though some suggestions 

have been made, such as the effect of contact resistance, the disorder at the interface, the 

influence of the subthreshold regime and the non-saturated at high Vg.64 In our case, Figures 

5.1 and 5.6 clearly show that the double-slope happens upon bias-stressing PCDTPT FETs 

in the electron conduction regime. However, it is unclear how the electron trapping and 

followed by the formation of –SiO- result in the double-slope. 
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Figure 5.8. (a) The transfer characteristics of the PCDTPT PFET at Vd=-80V 

before and after stressing at Vd=-80V and Vg=30V. The blue curve (before stressing) 

was scanned from Vg=30V to Vg=-60V. The red curve (after stressing) was scanned 

from Vg=-60V to Vg=30V. (b) the gate-dependence saturation mobility extracted from 

I-V curves in (a). Device structure: Si/SiO2/Au/DTS/PCDTPT.

We hypothesize that the change of –SiO- density during the course of one scan 

deviates the transfer curve from an ideal transfer curve and results in the double-slope. After 

bias-stressing the device in the electron conduction regime, the transfer curves in Figure 5.1

were obtained by sweeping Vg from positive to negative. During this bias-sweeping, –SiO-

density reduces due to the neutralization with protons which are produced by 

electrochemical reactions of trapped water and holes.30,96 These reactions have been 

postulated to explain the bias-stress of hole conduction in p-type OFETs using SiO2 as 

dielectrics. 30,96,99  To strengthen this hypothesis, the device was scanned from negative to 

positive gate voltages right after being bias-stressed in electron accumulation regime (Figure 
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5.8). The hole current at the initial gate bias, Vg=-60V, was anomalously higher than the 

general trend of the transfer curve; possibly because the –SiO- density was at its maximum. 

This observation supports our hypothesis that the formation of–SiO- upon electron trapping 

and the change in –SiO- density during one scan results in the double-slope in the transfer 

curve.

In order to further investigate this hypothesis, hole current dynamics after aging (stress at 

electron transport regime) under either hole or electron bias stress is measured. These 

measurements are only possible with the home-built coding program presented in section 

2.4. The results are presented in Figure 5.9. In the first 200s, constant Vg=-40V and Vd=-

80V were applied and hole current were measured. Then gate bias was switched to +30V to 

stress the device in 300s. Electron current dramatically dropped during the stressing time, 

consistent with previous report. After stressing the device in 300s at Vg=+30V, hole current 

was measured with a 0.5 second pulse bias in every 10 seconds. In between the pulse bias for 

hole current measurements, the device was stressed at either Vg=+30V or Vg=-40V. Firstly, 

hole current increased more than five times immediately after bias stress, due to the 

formation of SiO- as we explained before. Then, hole current increased when the device was 

stressed in electron transport regime (Vg=+30V), due to the further increase of SiO- that 

induced more holes. On the other hand, as the device was stressed at hole transport regime, 

hole current decreased to the initial value at t=0s. It implies that injected holes neutralize 

SiO- and therefore diminish the effect of SiO- in increasing hole current.



70

Figure 5.9. Hole/electron current dynamics of PCDTPT PFET: hole current at Vd=-

80V and Vg=-40V for t=0-200s, followed by electron current at Vd=-80V and Vg=+30V 

for t=200-500s; and finally hole current measured with a 0.5 second pulse bias Vd=-80V 

and Vg=-40V every 10 seconds. In between hole current measurements (10s), the device 

was stressed at either in electron accumulation regime (Vd=-80V and Vg=+30V) or hole 

accumulation regime (Vd=-80V and Vg=-40V). Device structure: 

Si/SiO2/Au/DTS/PCDTPT.

5.6. Generalization of Electrical Instability and Double-slope

In addition to PCDTPT, the electrical instability and double-slope occurrence in other 

low band-gap polymers have been observed. Our collaborators, Michael Ford, showed that 

the electrical instability and double-slope can be found in the copolymers of CDT and three 

different acceptor units.164–166 He also showed these behavior for another class of low band 
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gap D-A polymer based on DPP acceptor unit.164–166 In Figure 5.10, the electrical instability 

and double-slope are demonstrated for the recently new class of polymer developed by Wudl 

and coworkers.167

Figure 5.10. The transfer characteristics of the PtBTPDPP PFET at Vd=-80V before 

and after stressing at Vd=-80V and Vg=30V. The blue curve (before stressing) was 

scanned from Vg=30V to Vg=-60V. 

The double slope can also be found in a number of papers in the literatures. Table 5.1

summarize some of the low band gap D-A polymers that showed double-slope in PFET 

transfer curves. In a total agreement with the finding in this thesis that electron trapping at 

SiO2 interface is the cause of the double-slope, all the PFETs that show double-slope are 

based on SiO2 dielectrics. In addition, the use of non-SiO2 dielectric shows no double-slope 

but lower mobility in compared to SiO2 dielectric, for a few polymer system.168,169
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Table 5.1. Double-slope of recent high-mobility OFETs fabricated from low band 

gap D-A polymers

Polymer Structure
Mobility 

(cm2 V-1 s-1)

Device 

Structurea/

Dielectricb

Bandgap/

Double 

Slope?

18.5

BGBC
DTS-

treated 
SiO2

1.3 eV
Yes155

2.6

BGBC

HMDS-

treated 

SiO2
25

1.3 eV
No67

10.5

BGBC

DTS-

treated 

SiO2

1.30 eV
Yes36

1.4
TGBC

PMMA
1.30 eV
No168

9.8

BGTC

OTS-

treated 

SiO2

1.18 eV
Yes169

6.9
BGTC

Cytop
1.18 eV
No169

8.5

BGTC

OTS-

treated 

SiO2

1.18 eV
Yes169

4.8
BGTC

Cytop
1.18 eV
No169
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12

BGTC

P(VDF-

TrFE)

1.36 eV
No154

9.1

TGBC

P(VDF-

TrFE)

1.38 eV
No170

8.8

BGTC
OTS-

treated 
SiO2

1.24 eV
Yes171

8.3

BGTC
OTS-

treated 
SiO2

1.28 eV
Yes172
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7.1

BGTC
OTS-

treated 
SiO2

1.20 eV
Yes173

BT: 0.02
DPP: 1.8

BGTC
ODMS-
treated 
SiO2

BT: 1.7 eV
DPP: 1.3 

eV

BT: No
DPP: 
Yes174

a: BGBC = bottom gate, bottom contact; BGTC = bottom gate, top contact; TGTC = top gate, 

top contact; TGBC = top gate, bottom contact. b: DTS = decyltrichlorosilane; OTS = 

octadecyltrichlorosilane or octamethoxytrichlorosilane; HMDS = hexamethyldisilazane; ODMS=n-

octadecyltrimethoxysilane; P(VDF-TrFE) = poly[(vinylidenefluoride-co-trifluoroethylene]; PMMA 

= poly(methyl methacrylate); Cytop=proprietary fluorinated polymers

5.7. Conclusion

In conclusion, the causes of electrical instability (aging) and double-slope of p-type 

PFETs fabricated from low band-gap D-A copolymers are elucidated. Electron trapping and 

subsequently the formation of -SiO- charges are the principle origins for considerable 

changes in the device characteristics upon bias-sweeping, including the occurrence of the 

double-slope behavior. The findings provide important guidelines for molecular design and 
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device engineering of toward high performance and practical OFETs. For the former one, the 

strategy of using D-A copolymer motif to increase FET hole mobility should be manipulated 

to minimize ambipolarity. For instance, the molecular structure should not stabilize electrons 

too well; or should have a shallower LUMO which leads to insufficient electron injection in 

OFETs using Au contacts. For device engineers, the replacement of SiO2 dielectric by 

electron-trap-free polymer dielectrics must be genuinely considered. Simply using self-

assemble monolayers such as DTS is not sufficient to protect the SiO2 surface to prevent the 

device instability. In addition, work-functions of source/drain contacts can be modified to 

suppress electron injection. In the following chapter, it is demonstrated that those guidelines 

have been successfully applied at UCSB.
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6. Suppressing Electrical Instability and Double-Slope by Molecular 

Design and Device Engineering

6.1. Introduction

From the comprehensive study in chapter 5, two methods can be readily realized to 

suppress the electrical instability and double-slope. First, a hydroxyl-free, hydrophobic

dielectric, and free of electron traps can be used. As shown in Table 5.1, no double-slope 

was observed when P(VDF-TrFE)154 and CYTOP169 were used as dielectrics in the 

literature. In section 6.2, a polymer dielectric is used to suppress the electrical instability and 

double-slope of PCDPTP FETs. The second method is to design a polymer with LUMO 

further away from the work function of Au contacts. In section 6.3, a CDT-based material 

with low-lying LUMO is designed and investigated. Another method, discovered by our 

collaborator, Michael Ford at Professor Bazan’s group,164 involves the use of electron 

acceptors to accept electrons from the polymers so that the injected electrons are not trapped 

at SiO2 interface. Working mechanism of this method is presented in section 6.4.

6.2. Utilizing non SiO2 dielectric materials

6.2.1. Suppressing Electron Trapping with BCB dielectric

In order to suppress the instability and double-slope of PCDTPT FETs, a bilayer 

dielectric, Si/SiO2/BCB is used in BGBC FETs. In this configuration, the polymer is 

deposited on top of BCB. BCB (a polymer of divinyl-tetramethylsiloxane-

bis(benzocyclobutene) derivative) is a crosslinked hydroxyl-free polymer dielectric that 

repels water absorption and hence reduce electron traps in OFETs.98 The device was 
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prepared by spin-coating PCDTPT polymer solution on SiO2/BCB substrates, followed by 

Au evaporation for top contacts. For comparison, a controlled device was also fabricated and 

tested using Si/SiO2 substrates with same DTS treatment as bottom-contact devices. This 

measurement also helps to confirm the role of SiO2 surface in trapping electrons.

Figure 6.1. (a) Drain current decay from bias-stressing of top-contact PCDTPT 

FETs in electron accumulation regime at different dielectrics (Vd=-80V, Vg=+30V for 

SiO2-DTS SAM and Vg=60V for SiO2-BCB to obtain comparable initial current); and 

(b) The transfer characteristics of the PCDTPT PFET at Vd=-80V before stressing and 

after bias-stressing. Device structure: Si/SiO2/DTS SAM or BCB/PCDTPT/Au.

Figure 6.1a shows the current decay of the FETs prepared on the two substrates. As 

expected, top-contact devices using SiO2 substrates exhibited almost four orders of 

magnitude decrease of electron current under bias-stress, similar to bottom-contacts ones 

(Figure 5.1). On the other hand, the use of BCB dielectrics immensely lowered the electron 

current decay under bias-stress. The transfer curves of BCB device before and after being 
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stressed were presented in Figure 6.1b. In complete contrast with the devices prepared on 

SiO2 substrates (Figure 6.2), insignificant changes in hole current upon bias-stressing were 

observed. Most importantly, the double-slope behavior did not occur. Recently, a high-

performance D-A copolymer was also reported with another hydroxyl-free dielectric, 

poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)), without exhibiting double-slope 

behavior.154 The slight decrease of electron current in BCB devices might be attributed to the 

inevitable electron trapping by a trace amount of water and oxygen either at the interface or 

in the polymer itself.
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Figure 6.2. The effect of continuous bias-sweeping on transfer curves (a) and 

mobility (b) of spin-coated top-contact PCDTPT on normal SiO2 dielectrics with DTS 

treatment (at Vd=-80V).

6.2.2. Conclusion & Future Work

As we learn from the intensive bias-stress study in chapter 5, SiO2 dielectrics is one of 

the major sources of electron traps. It results in the instability of the PFETs that possess
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ambipolarity. In unipolar p-type OFETs, SiO2 has been shown to trap holes, resulting in the 

continuous threshold voltage shift under prolonged operation.93,96,175 Therefore, it is very 

important to test polymer substrates or polymer dielectrics as alternative platforms to 

evaluate and optimize OFETs. It is also helpful for OFET commercialization because 

practical OFETs are desired to be deposited on flexible polymer substrates eventually. BCB 

has been demonstrated to work well for bottom-gate top-contact spin-coating PCDTPT 

FETs. The stability of the device is significantly improved with BCB dielectrics. However,

the high electron current (Figure 6.1b) reduces ON/OFF ratios; and electrons may get 

trapped for prolonged operations. In addition, the mobility is low because the polymer chains 

are not aligned. In future work, the mechanical rubbing method can be used in two ways to 

improve the mobility of PFETs using polymer dielectrics.131,176–178 In the first method, top 

surfaces of semiconducting polymers can be rubbed to align the polymer chains for high-

mobility top gate PFETs. In the second one, polymer dielectrics can by rubbed to make 

nano-grooves, similar to the nano-grooves on SiO2, to induce polymer alignment when the 

polymer semiconductors are deposited on top of nano-grooved polymer dielectrics. 

Mechanical rubbing has been used in manufacturing liquid crystal display (LCD) for 

decades.179

6.3. New Material Design and Characterization for Suppressing the Electrical 

instability and Non-ideality while Maintaining High Mobility

6.3.1. Design Principles for Inhibiting Electron Injection

Chapter 5 demonstrates that the enabling of electron injection, transport and trapping in 

the PCDTPT PFETs is the root cause of the electrical instability and double-slope. Naturally, 

the first design principle to improve this is to block the electron injection by widen the 
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electron injection barrier between the Au source/drain contacts and the semiconductors. One 

way to achieve it is to use a material with much shallower LUMO. PCDTBTA (Figure 6.3)

is a new CDT-based polymer using a weaker acceptor unit, BTA, to raise the LUMO further 

away from Au work-function to eliminate the electron injection, while keeping D-A motif 

for high mobility. 

Figure 6.3. Design principle of PCDTBTA for inhibiting electron injection in 

OFETs. PCDTBTA was synthesized by Dr. Ming Wang.

6.3.2. Improved Device Stability and Ideality in PCDTBTA FETs

The transfer and output curves of PCDTBTA (molecular weight ~24 KDa, PDI ~2.9)

FETs fabricated by blade-coating on nano-grooved substrates are presented in Figure 6.4. 

As we expected, all the devices are unipolar p-type OFETs. Other characteristics are close to 

ideal for an FET: 1) low hysteresis; 2) low turn-on voltage; and 3) well-defined saturation 

regime in output curves. The mobilities are shown in Figure 6.5b. For both as-prepared and 

annealed devices, mobility of parallel devices (to the direction of the grooves and the blade 

movement) is about ten times higher than that of perpendicular devices. This is an indirect 
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indication of the polymer chain alignment along the grooves. Interestingly, thermal 

annealing degrades the mobility of PCDTBTA FETs. This is opposite to PCDTPT FETs and

other PFET systems reported in the literature.

Figure 6.4. (a) Transfer characteristics of PCDTBTA FETs in saturation regime 

(Vd=-80V) for the polymer alignment parallel (PARA) and perpendicular (Perp) to the 

grooves at three different conditions: as-prepared (as), annealed at 100 C in 8 minutes 

(Ann100) and annealing at 200 C in 8 minutes (Ann200); (b) output curves of an as-

prepared parallel device. 
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Figure 6.5. (a) Transfer characteristics of PCDTBTA FETs in saturation regime 

(Vd=-80V) at different conditions (same data as Figure 6.4a but in linear scale to get 

mobility); (b) Saturation mobilities of PCDTBTA FETs.

Since the PCDTBTA FETs are unipolar, an “aging” effect study is conducted to compare 

with PCDTPT. The devices were bias-swept 10 times before being bias-stressed in electron 

accumulation regime (Vg=+30V, Vd=-80V) in 5 minutes (same conditions that induce “aging 

effect” in PCDTPT in chapter 5). The first 10 transfer curves and the transfer curve after 

being bias-stressed are presented in Figure 6.6. As clearly shown, all the transfer curves are 

almost identical and there is no double-slope after bias-stressing. It indicates that the “aging 

effect” is negligible in PCDTBTA FETs. This is consistent with our hypothesis that 

negligible electron injection and trapping in these devices is important to eliminate the 

electrical instability of and double slope.
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Figure 6.6. Consecutive transfer curves before and after bias-stressing in (a) log-

linear plots and (b) linear-linear plots of PCDTBTA FETs in saturation regime (Vd=-

80V).

6.3.3. Conclusion & Future Work

The use of a weak acceptor with CDT donor to widen the band gap is successfully 

demonstrated for suppressing the electrical instability and double slope. However, the 

mobility is two orders of magnitude lowers than PCDTPT FETs, even with polymer 

alignment on nano-grooved substrates. Perhaps the π-π interaction is not strong enough for 

efficient charge hopping. In the future, the π-π stacking will be characterized by GIWAXS, 

and the temperature-dependent mobility measurements will be conducted to calculate the 

activation energy. The cause of mobility degradation upon thermal annealing of the PFETs 

will also be further investigated to establish the structure-processing-property relationship of 

D-A copolymers for FETs.
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6.4. Suppressing Electron Transport in Ambipolar PFETs by an Electron Acceptor

6.4.1. Suppressing Electron Transport by and Electron Acceptor and Working 

Hypothesis

In addition to changing polymer structures and using non-SiO2 dielectrics to suppress the 

electrical instability and double-slope, a simple addition of an additive in PCDTPT solutions 

that can suppress electron transport while maintaining high hole mobility of PCDTPT is 

strongly desired. Michael Ford, in Professor Bazan’s group, found that fullerene derivatives 

can be used to suppress the electrical instability and double-slope while retaining the hole 

mobility of the PFETs. The phenomena were successfully demonstrated for three electron 

acceptors (PC61BM, bis- PC61BM and PC84BM) and four low band gap D-A polymers 

whose FETs exhibit the electrical instability and double-slope.164 This section presents the 

mechanistic study of how PC61BM and C60 can suppress electron transport while 

maintaining high hole mobility in PCDTPT FETs. Figure 6.7 show all the device structures 

used in this section.

Figure 6.7. Device structures used in PCDTPT:PCBM and PCDTPT/C60 study
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Two mechanisms are hypothesized to explain the device characteristics of 

PCDTPT:PCBM (PCBM is used for PC61BM from this point) blend FETs (Figure 6.8). 

Firstly, PCBM readily accepts electrons from the polymers to prevent the electron trapping 

at SiO2 and the formation of SiO- that cause electrical instability and double-slope. This can 

be explained by two reasons: 1) PCBM have higher electron affinity than PCDTPT and 2)

the interaction of the polymers and fullerenes (both carbon-based materials) is stronger than 

in that of the polymers and SiO2 surface. Secondly, PCDTPT preferably resides at SiO2

interface while PCBM stays on top surface. Therefore, hole transport in PCDTPT:PCBM 

FETs are very similar to that in neat PCDTPT FETs. As mentioned in section 1.4.1, charge 

transport in OFETs only occurs at the first few nanometers above the dielectric surface.

Figure 6.8. Working hypothesis of the improvement of PCDTPT FETs by the 

addition of PCBM 

6.4.2. Uninterrupted Hole Transport of PCDTPT in PCDTPT:PCBM and PCDTPT/C60 

devices

In order to prove that PCBM preferably stays on the top surface of PCDTPT:PCBM

films but still accepts electron from PCDTPT to prevent the electron trapping at SiO2

surface, the bilayer PCDTPT/C60 is fabricated and tested. In this device, C60 is slowly 

evaporated on top of a 30nm thick film of PCDTPT therefore it is very likely that there is no 
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C60 at the SiO2 interface. As shown in Figure 6.9, the addition of C60 on the top surface 

also suppresses the electron current. The higher OFF current in PCDTPT/C60 devices 

compared to PCDTPT:PCBM devices is elucidated in section 6.4.3.

Figure 6.9. Transfer curves of PCDTPT (P2), PCDTPT:PCBM blend and 

PCDTPT/C60 bilayer FETs.

Figure 6.9 shows that hole transport (at negative Vg) of FETs fabricated from the 

polymer, the polymer:PCBM blend and polymer/C60 bilayer is almost identical. It indicates 

that hole transport is not interrupted in the presence of either PCBM or C60 in the devices. 

In order to gain further inside into the uninterrupted hole transport, the activation energy of 

hole transport in those devices is characterized.
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Figure 6.10. Temperature-dependent mobility of PCDTPT (P2), PCDTPT:PCBM 

blend and PCDTPT/C60 bilayer FETs.

Figure 6.10 presents the temperature-dependent mobility of PCDTPT, PCDTPT:PCBM

and PCDTPT/C60 FETs. As expected for thermally activated transport, hole mobility

decreases as temperatures decrease for the three devices. The activation energy is extracted 

using Arrhenius equation. Figure 6.11 reveals the activation energy of all the devices. The 

activation energy of FETs fabricated from PCDTPT:PCBM blend at different weight 

percentages of PCBM and PCDTPT/C60 bilayer with different thicknesses of PCDTPT is 

very similar, in an agreement with the similar hole current characteristics of the three devices 

at room temperature. It confirms the hypothesis that hole transport of PCDTPT at the 

interface of SiO2 is not interfered by the addition of fullerene derivatives. 
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Figure 6.11. Activation energy of FETs fabricated from PCDTPT:PCBM blend at 

different weight percentages of PCBM and PCDTPT/C60 bilayer with different 

thickness of PCDTPT (or P2)

6.4.3. Electron Transfer from PCDTPT to PCBM and C60

In this section, the electron transfer from the polymers to PCBM or C60 is proved. We 

use the organic solar cell concept of charge separation at the interface of an electron donor 

(P2 in this case) and an electron acceptor (C60 or PCBM) upon illumination of visible 

light.180–184 The LUMO-LUMO offset of the donor and the acceptor drive charge separation 
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at the interface of the donor and the acceptor. It leads to an increase in carrier density and 

hence the device current.

Figure 6.12. Schematic of charge separation at the interface of an electron donor 

(P2 in this case) and an electron acceptor (C60 or PCBM) upon illumination of visible 

light

In order to prove the electron transfer from PCDTPT to PCBM and C60, the hole and 

electron current are measured as the function of time with or without illumination by white 

light. Due to the low intensity of the camera light used in this study, the photogenerated 

current in the order of 100 nA. Therefore, it is important to control a low level of hole and 

electron current in the dark so that the increase of photogenerated current can be clearly 

observed. A transfer curve at low Vd is presented in Figure 6.13 to show the well-defined 

and low OFF current (~ 10 pA) as well as low ON current (~ 100 nA). For time-dependent 

current measurements with light ON/OFF, electron current is measured at Vd=-2 V and 

Vg=+10 V; and hole current is measured at Vd=-2V and Vg=-20V. 
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Figure 6.13. Transfer curves of the device to determine the drain and gate voltage 

for monitoring electron and hole current as a function of time while turning the light 

ON/OFF

Figure 6.14, 6.15 and 6.16 shows the current with and without illumination of PFETs 

fabricated from PCDTPT, PCDTPT:PCBM blend and PCDTPT/C60 bilayer, respectively. 

For PCDTPT devices, both hole and electron current remain relatively unchanged under 

illumination. On the contrary, the hole and electron current of PCDTPT:PCBM blend and 

PCDTPT/C60 bilayer devices increase under illumination. The change is more significant in 

PCDTPT/C60 bilayer devices, probably due to the higher electron affinity of C60 compared 

to PCBM. Remarkably, in PCDTPT/C60 bilayer devices, electron current increases more 

than two orders of magnitudes under white light. This might hint to an efficient organic 

photodetector with low and controllable dark current.
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Figure 6.14. Electron and hole current of PCDTPT FETs as a function of time while 

turning the light ON/OFF

Figure 6.15. Electron and hole current of PCDTPT:PCBM blend FETs as a 

function of time while turning the light ON/OFF
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Figure 6.16. Electron and hole current of PCDTPT/C60 bilayer FETs as a function 

of time while turning the light ON/OFF

6.4.4. Lateral Electron Transport in C60 Layer in PCDTPT/C60 Devices

In this section, the higher OFF current of PCDTPT/C60 devices (Figure 6.9) is 

elucidated. We hypothesize that the continuous conduction pathway in the evaporated C60 

can facilitate electron transport between source and drain contacts, resulting in the higher 

electron current at positive gate biases. Since the C60 domain is more than 30 nm far away

from the dielectric interface, its electron current is significantly less dependent on gate 

voltages. In order to prove this, the electron current at positive biases as a function of 

temperature (Figure 6.17) is further examined. Because of the independence of electron 

current on gate biases, electron mobility cannot be extracted by common equations for 

OFETs. Therefore, activation energy of the electron transport is extracted by using the 

dependency of electron current on temperature (Figure 6.17b). The activation energy of 

electron current is c.a. 130 meV, which is similar to that of electron transport in n-type C60 
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OFET (Figure 6.18). It implies that the hypothesis of lateral electron transport in C60 layer 

is correct.

Figure 6.17. Electron current at positive biases (highlighted by the red line in (a)) 

plotting as a function of temperature (b) to estimate the activation energy of electron 

transport in C60 layer in PCDTPT/C60 bilayer FETs
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Figure 6.18. Activation energy of electron transport in C60 layer in PCDTPT/C60 

bilayer FETs and in C60 FETs.

6.4.5. Conclusion

The suppression of electron transport and hence device instability strongly supports the 

mechanism of the instability and double slope presented in chapter 5. The electrical 

instability and double slope happens when electrons get trapped at SiO2 interface and SiO- is 

formed. As stronger electron acceptors (PCBM, C60) present in the device, electrons transfer 

to the acceptors rather than getting trapped at the SiO2 interface. Most importantly, the 

polymer preferably resides at the interface of SiO2 hence hole transport in the polymer is not 

disrupted by the acceptors. Negligible electron current observed in PCDTPT:PCBM blend 

FETs is due to the discontinuous PCBM domain from the source to the drain for electron 

transport. This is important to achieve low OFF current and high ON/OFF ratios.
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7. Conclusion & Outlook

7.1. Conclusion

This thesis provides a comprehensive study of the structure-processing-property 

relationship of PFETs fabricated with low band gap D-A copolymers. The polymer chain 

alignment revealed by high-resolution AFM facilitates the fast charge transport along the 

polymer chains in PCDTPT FETs. This predominant intrachain charge transport explains the 

mobility anisotropy between parallel and perpendicular transport with respect to the 

alignment direction. The tight packing of the polymer chains in solid states, induced by the 

D-A motif and the rigid backbone, results in small π-π stacking distance and hence the low 

activation energy. The polymer chain alignment and low activation energy explain the 

superior mobility of PCDTPT FETs.

The most important contribution of this thesis is the elucidation of the instability and 

double-slope of high mobility p-type FETs made from low band gaps polymers. It is 

unraveled that the electron trapping at the SiO2 interface and the consequent formation of -

SiO- result in the instability of hole current and the appearance of the double-slope. The

double-slope has triggered a long debate without a solid explanation in the OFET research 

community. The double-slope makes it ambiguous to determine which slope should be used 

to calculate the mobility. As shown in chapter 3 of this thesis and in the literature, mobility 

of a double-slope device can be 10 times different depending on the range of gate voltage. 

Consequently, the intrinsic mobility of a material and/or a device cannot be properly 

determined. This thesis reveals that, for p-type OFETs made from low band gap polymers, 

the higher slope leading to the higher hole mobility at low gate voltage is an artifact caused 
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by electron trapping. In order to evaluate the intrinsic mobility of an OFET, the electrical 

instability and the double-slope should be eliminated, by either adding an appropriate 

electron acceptor or using a hydrophobic, electron-trap-free polymer dielectric material.

New findings in this thesis provide important guidelines for molecular design and device 

engineering of high-mobility and practical OFETs. These guidelines have been successfully 

demonstrated, as presented in chapter 6.

7.2. Outlook

Recently, a few studies suggested that the origin of the double slopes in OFETs is the 

high contact resistance at low gate voltage.185,186 In our studies, we know that the double 

slopes happen only for ambipolar materials with SiO2 dielectrics, and only occur after bias-

stressing in electron conduction regime (or aging). Therefore, studying the contact resistance 

before and after aging will help to understand whether contact resistance is one of the causes 

of the double-slope. If the contact resistance remains the same after the bias stress and 

electron trapping, then one can rule out contact resistance as a cause. Proper measures of

contact resistance before and after bias stresses using four-point probe or transfer line 

method are not reliable because the device is no longer in steady state after bias stresses. 

Scanning Kelvin Probe Microscopy (SKPM) can be used to probe in-situ the contact 

resistance in OFET devices right before and after bias stresses. In Nguyen’s lab, we develop 

a set-up where potential drops from a source to a drain of an OFET can be measured by 

SKPM while drain current can be measured by an external semiconductor analyzer (an 

Keithley).187 The resistance along the channel, including contact resistance, from the source 

to the drain can be calculated from the potential drop and the drain current. The resistance 

changes at the source/drain contact and along the channel before and after bias stresses will 
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allow us to investigate the effect of the contact resistance on the device instability and the 

double-slope. Fundamental understanding the causes of the double slope will help eliminate 

it and allow one to measure mobility that is intrinsic to the materials.

An emerging class of high-mobility polymers is realized from the fundamental work of 

this thesis: the high-mobility, wide band-gap non D-A polymers (Figure 7.1). The wide 

band-gap with much shallower LUMO inhibits the electron injection from untreated gold 

contact. This class of polymers is developed and synthesized by our collaborators, Dr. Ming 

Wang and Professor Guillermo Bazan, after we understand the origin of the high mobility 

and the cause of the instability and non-ideality.162 FET mobility of ca. 3 cm2/Vs has been 

achieved for this class of polymers. Most importantly, those FETs are stable and have high 

ON-OFF ratio (>106) (unpublished data). 

Figure 7.1. Chemical structures of wide band gap CDT-Ph based polymers.

Another important research topic originated from this thesis is the studying intrachain 

charge transport as a function of polymer molecular weight. For FETs fabricated from 

aligned polymers, this thesis shows that the charge carrier primarily transport along the 

polymer chains and occasionally hopping to another polymer chain. The length in which the 

charge moves continuously in a chain before hopping to another chain is not well 
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understood. Here, we define that length as effective conjugation length (ECL). For 

conjugated polymers, the ECL is determined by the chemical structure, the planarity of the 

backbone, and the rigidity of the backbone. For OFETs with aligned polymers, ECL also 

depends on how well the polymer chains are aligned in the devices. 

An aligned conjugated polymer chain is not a perfect molecular-wire because of twists 

and kinks along the chain. Thus, intrachain charge transport can be disrupted by a certain 

degree of the imperfection of the alignment and the torsion or twists of the backbone. In such 

case, charge carrier will hop either to another segment of the same polymer chain or to 

another polymer chain when the polymer chains are longer than ECL (Figure 7.2).

Figure 7.2. Schematic drawings showing the correlation between polymer 

molecular weight or polymer chain length and hopping frequency.

If polymer chains are well aligned, the activation energy, which reflects the interchain 

hopping, will not depend on MW. In that case, it is legitimate to hypothesize that mobility 

will depend mainly on the intrachain charge transport along the polymer chains, which is 

determined by the ECL as discussed above. Therefore, for FETs fabricated from aligned 

polymer chains, we expect to see an increase of mobility as a function of MWs when the 

chain length is shorter than the ECL (Figure 7.2). This is due to an increase in the distance 
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at which the charge moves along the chain before hopping. On the other hand, as MWs with 

chain length longer than ECL, the mobility remains constant because the intrachain charge 

transport is no longer improved. Ones can estimate the ECL by using the mobility and 

activation energy as a function of MW for FETs fabricated from aligned polymer chains. In 

addition, optical methods such as absorption and photoluminescence can be used to 

independently estimate the ECL and correlate with the electrically-measured ECL.188,189 In

optical methods, the shift in absorption and/or emission peaks as increasing MW is used to 

estimate the ECL.190–192

In chapter 3, it is shown that the performance of PCDTPT FETs fabricated with aligned 

polymer chains on nano-groove substrates do not depend on MW ranging from 30 kDa to 

300 kDa. This observation may indicate that, for this MW range, the physical chain length 

does not matter because they are all longer than the ECL (Figure 7.2, top).
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9. Appendix

9.1. New program to measure the hole current dynamic under different bias stresses at 

different time intervals

int i,k,t;

clock_t tStart;

double ExpTime;

//initiate output parameters

for (i=0; i<NumSam+NumRe; i++){

   Idt_arr[i]=0;

   Igt_arr[i]=0;

   Time[i]=0;

}

// applying initial biases from input Vst, Vdt, Vgt

forcev(SMU4,Vst);

forcev(SMU2,Vdt);

forcev(SMU3,Vgt);

//measuring inital current

tStart=clock();

TimeClock[0]=(clock()-tStart)*1.0/CLOCKS_PER_SEC;

Time[0]=0*(interval_ms+500)/1000;   
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intgi(SMU2,&Idt_arr[0]);

intgi(SMU3,&Igt_arr[0]);

//measuring current as stressing

for (k=1;k<NumSam;k++){

     delay(interval_ms);

     TimeClock[k]=(clock()-tStart)*1.0/CLOCKS_PER_SEC;

     Time[k]=k*(interval_ms+500)/1000;   

     intgi(SMU2,&Idt_arr[k]);

     intgi(SMU3,&Igt_arr[k]);

}

//measure current as the device is recovered

forcev(SMU2,Vdr);//Apply recovery bias to the drain

forcev(SMU3,Vgr);//Apply recovery bias to the gate

//this part is for using an exponentially increase time interval with measuring time

t=0;//set the counting for exponential time interval

for (k=NumSam;k<NumSam+NumRe;k++){

    t=t+1;

    ExpTime=ExpConst*1000+exp(ExpCoeff*sqrt(t));

    delay((long)ExpTime);//ground the electrode in ExpTime (ms)

//for a constant time interval, a constant interval can be set as an input parameter instead 

of ExpTime above
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    forcev(SMU2,Vdt);//set back the drain

    forcev(SMU3,Vgt);//set back the gate

    delay(TransTime);//Pulse bias to measure current

    TimeClock[k]=(clock()-tStart)*1.0/CLOCKS_PER_SEC;

    Time[k]=Time[k-1]+(ExpTime+TransTime+500.0)/1000.0;   

    intgi(SMU2,&Idt_arr[k]);

    intgi(SMU3,&Igt_arr[k]);

         forcev(SMU2,Vdr);//Apply recovery bias to the drain

         forcev(SMU3,Vgr);//Apply recovery bias to the gate

}     

return;

9.2. Structural and optoelectronic properties of hybrid bulk-heterojunction materials 

based on conjugated small molecules and mesostructured TiO2

9.2.1. Introduction

Hybrid systems comprising of organic semiconductors (OSc) and wide band-gap 

inorganic nanocrystals (i.e ZnO, TiO2) have great potentials for both scientific studies and 

the creation of practical optoelectronic materials. Among different inorganic materials, TiO2

has been intensively studied in hybrid devices since early 1990’s.1–5 TiO2 is an attractive 

material, due to its environmental stability, low-cost, and non-toxic properties. For most -

conjugated OSc, the electron affinity (~3.0 – 4.0 eV) is less than that of TiO2 (~4.2 eV). 

Therefore, photoexcited electrons through - transition of OSc are thermodynamically 

allowed to transfer to the conduction band of TiO2, leaving holes in the OSc. The 
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photoinduced charge transfer at the interface of TiO2-organic hybrid materials enables it to 

be applicable in photo-sensing devices, such as photoconductors and photovoltaics. Upon 

charge transfer, electrons and holes transport in TiO2 and organic material, respectively, then 

being collected at electrodes. There are three critical factors affecting the performance of 

such hybrid TiO2-OSc devices: photon absorption, charge separation and charge transport. 

Mesoporous TiO2 has been utilized efficiently in different devices, especially in dye-

sensitized solar cells (DSSC)6, due to its high interfacial area for efficient charge separation. 

It should be noted that DSSC employs a third material as the hole transporter while dyes are 

used for light absorbing only. In another type of mesoporous TiO2 hybrid devices, a single 

organic component is loaded into mesopores for both functions: absorbing light and 

conducting holes.5,7 In that case, high loading of OSc is desired to absorb more light and 

result in more photogenerated carriers. In addition, the organic domain, which is presumably 

the mesopore domain, should be continuous for hole transport and small enough (~5-20 

nm)5,8 for excitons created in OSc to diffuse to the interface and undergo charge separation.

Conjugated polymers (CPs) are the most widely studied materials to combine with 

mesoporous TiO2 due to their high absorption coefficients and hole mobilities.4 In the TiO2-

conjugated polymer (TiO2-CP) hybrid system, difficulty arises in gaining efficient 

infiltration into the pores using viscous polymer solutions that contain long polymer 

chains.9,10 Additionally, the hydrophilic nature of TiO2 repels the hydrophobic CPs, leading 

to reduced polymer loadings and inefficient charge transfer from photo-excited conjugated 

polymers to TiO2.11 For example, it has been shown that the low loading of CPs in TiO2-CP 

hybrid solar cells results in low short circuit current.12,13 Numerous efforts have been made 

to improve the loading and charge transfer of polymers to mesoporous TiO2. One approach 

involves treating the surface of TiO2 with interfacial modifiers, such as common dyes9,11,14,15
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used in DSSCs or carboxylated oligothiophene derivatives7,15, thus making it more 

energetically compatible with conjugated polymers. Using this method, charge transfer to the 

TiO2 can be enhanced drastically.7,11,15 Even still, the infiltration of conjugated polymers 

into mesoporous TiO2 is still challenging since the majority of loadings reported in literature 

without further surface treatment of TiO2 is less than 10%.9,10

We proposed an improved hybrid system comprises of mesostructured TiO2 and small 

conjugated molecules. Firstly, mesostructured TiO2 has high surface area and continuous 

mesopores for efficient charge separation and charge transport. In addition, its well-defined 

structure provides an appealing platform for both theoretical predictions and then 

experimental validation of the performance of HSCs and OSCs.16 Secondly, SMs may be 

able to achieve higher loadings into mesoporous TiO2, compared to conjugated polymers, 

due to their smaller size, resulting in less viscous solutions and facile diffusion into the 

mesopores. In addition, incorporation of heteroatoms like oxygen and nitrogen in the 

backbone of SMs makes them more hydrophilic than most conjugated polymers. This is 

expected to yield improved loadings and more efficient charge transfer to the hydrophilic 

TiO2 network.17 To test our hypothesis, we used a benzofuran substituted 

diketopyrrolopyrrole, DPP(TBFu)2,18 as a model small molecule; owing to its relatively low 

molecular weight and the presence of oxygen atoms in the benzofuran units, which makes it 

relatively more hydrophilic. DPP(TBFu)2 has already achieved PCEs of around 5% using 

conventional bulk-heterojuction (BHJ) device architectures that use a fullerene derivative as 

the acceptor.18 In addition, it has been extensively characterized to understand the nanoscale 

morphology and optoelectronic properties of BHJ OSCs.18,19 In this study, we show that the 

hybrid TiO2-small molecule system is a promising candidate for optoelectronic devices. 
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9.2.2. Material Fabrication and Small Molecule Loading Calculations

Mesostructured TiO2 films were prepared following a method developed by Frey and 

coworkers and applied in polymer HSCs.20–22 The mesostructured TiO2 films were prepared 

from a solution of THF in concentrated HCl (12.1 M) containing the TiO2 precursor, 

tetraethylorthotitanate, and the triblock copolymer PluronicTM F127.20 The films were spin-

cast from solution onto glass or patterned indium-tin-oxide (ITO) substrates. Subsequently 

the films were dried for several days and then calcined in air at 350 oC for 12 hrs to 

introduce porosity. Small-angle X-ray scattering (SAXS) was used to confirm the presence 

of mesostructural order before and after calcination and the resulting patterns are shown in 

Figure 9.1. In both cases, a single reflection was observed at a 2θ angle of 0.7o, 

corresponding to a d-spacing of 12.5 nm, a value consistent with the cubic phase reported in 

the literature.20 The lack of framework contraction upon calcination is likely due to the low 

temperature of the calcination. Porosimetry data of mesostructured TiO2 film were also 

collected, and the films were found to have a surface area of 170 m2/g with a void fraction of 

0.43 (Figure 9.2).23 The calcined, spin-coated films were found to have thickness of ca. 400 

nm, as measured by profilometry and SIMS. After calcination, a 10 mg/mL solution of 

DPP(TBFu)2 dissolved in chloroform was then spin-coated onto the TiO2 film. The hybrid 

film was then annealed at 130 oC before characterizations.



124

Figure 9.1. SAXS patterns of mesostructured TiO2 film (a) before and (b) after 

calcinations.

Figure 9.2. Nitrogen absorption (circles) and desorption (triangles) isotherms of 

mesostructured TiO2 film, measured using a TriStar 3000 Micrometritics Gas 

Absorption Analyzer.
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Loading calculation of absorption method

A series of neat DPP(TBFu)2 films at different thicknesses were prepared by spin-

coating DPP(TBFu)2 solutions at different concentration on glass substrate. The absorbance 

of these films at 600 nm (maximum absorption wavelength) was plotted against their 

thicknesses to get a calibration curve, presented in Figure 9.3. The relative thickness of 

DPP(TBFu)2 in hybrid TiO2-DPP(BTFu)2 films was extrapolated by fitting its absorbance at 

600 nm to the calibration curve. The average relative thickness of DPP(TBFu)2 was 43.9 nm. 

The average thickness of hybrid film was 400 nm, with its void volume having an equivalent

thickness of 400 nm × 0.43 (void fraction) = 172 nm. The loading is (43.9/172) × 100=25% 

of the pore volume.

Figure 9.3. Calibration curve of absorbance at 600 nm at different thicknesses of 

neat DPP(TBFu)2 films.
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Loading calculation by SIMS method

Figure 9.4. SIMS traces of hybrid TiO2-DPP(TBFu)2 drop-cast film.

In this method, we drop-casted the small molecule solution on mesostructured TiO2

films and characterized it by SIMS. Drop-casting results in a neat small molecule layer 

formed on top of hybrid layer. The 12C intensity is much higher than 64TiO for the top 

surface which comprises of mostly DPP(TBFu)2 (Figure 9.4). As it reaches to the interface 

of the hybrid layer, 12C intensity drops and 64TiO intensity enhances significantly. The 12C 

signal from the hybrid layer is 12% of its signal from neat top layer. By assuming the etching 

rate among different elements is similar, we conclude that DPP(TBFu)2 comprised of 12 vol. 

% of the hybrid film, corresponding to an overall loading of approximately 29% of the total 

TiO2 pore volume (=12/0.43, the void fraction of the mesostructured TiO2 film).
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9.2.3. Results and Discussions

Dynamic secondary ion mass spectrometry (SIMS) was used to characterize the 

infiltration depth and uniformity of DPP(TBFu)2 within the mesostructured TiO2 films.

Elemental fragments of the film are ejected from the sputtering of the sample by primary ion 

beam; and detected by a mass spectrometer as a function of time. The depth-profiling traces

of different m/z fragments are shown in Figure 9.5. 

Figure 9.5. SIMS traces of a hybrid TiO2-DPP(TBFu)2 spin-coat film. The arrow 

indicates the approximate film thickness up to the interface determined by 

profilometry after the SIMS measurements.

The m/z at 12, 26, 29 and 64 represent C, CN+C2H2, Si and TiO, respectively (hereafter 

12C, 26CN, 29Si and 64TiO). The 12C and 26CN signals are attributed to DPP(TBFu)2 in the 

hybrid film while 64TiO arises from the mesostructured TiO2, and 29Si is from glass 

substrate. It is clear that the relative counts from 12C, 26CN, and 64TiO remain constant until

the interface with glass substrate is reached, at which point the 29Si count significantly 
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increases. This demonstrates that DPP(TBFu)2 was infiltrated uniformly (within the 

sensitivity of the measurement) throughout the mesostructured TiO2 film. This is a 

significant improvement compared to polymers, which usually efficiently infiltrate only after 

surface-modification of TiO2.9,10 As a result, all of the surface area of the mesostructured 

TiO2 is expected to be available to form heterojunctions with DPP(TBFu)2, which is vital for 

charge separation.

A high loading of DPP(TBFu)2 is as important as achieving uniform and deep infiltration 

because DPP(TBFu)2 is the only visible-light absorber in this hybrid structure. We quantify 

the loading of DPP(TBFu)2 in mesoporous TiO2 by means of film absorption and SIMS. In 

the absorption method, the loading of DPP(TBFu)2 was estimated to be around 25% of total 

TiO2 pore volume, by comparing the optical density at maximum absorption wavelength of 

hybrid TiO2-DPP(TBFu)2 film to that of a series of known-thickness neat DPP(TBFu)2 films

(section 9.2.2).23 In the other method, we drop-casted the small molecule solution on 

mesostructured TiO2 film and characterized it by SIMS. Drop-casting results in a neat small 

molecule layer formed on top of hybrid layer. By comparing the 12C intensity from the top 

neat DPP(TBFu)2 layer and the hybrid layer, we estimated the loading of DPP(TBFu)2 to be 

around 29% of the total TiO2 pore volume (section 9.2.2).23 The higher loading of 

DPP(TBFu)2 in the drop-cast film relative to the spin-cast film is likely, because drop-

casting allows the molecules to infiltrate into the mesopores for a longer time compared to 

the spin-cast film. This is a notable result, given that the loading of polymer reported in 

literature without further surface treatment of TiO2 is less than 10%.9,10 This validates our 

hypothesis that less hydrophobic small molecules in low viscosity solutions can be more 

easily introduced into hydrophilic mesoporous TiO2 films and with significantly higher 

loadings than polymeric molecules.
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Having established the excellent infiltration and loading of DPP(TBFu)2 into 

mesostructured TiO2, we now consider optical and electrical characterization of the hybrid 

TiO2-DPP(TBFu)2 film. Firstly, the absorption spectra of neat DPP(TBFu)2 and hybrid films 

are comparable (Figure 9.6),23 suggesting that there is no chemical change of DPP(TBFu)2 

in the hybrid film. 

Figure 9.6. Absorption spectra of neat DPP(TBFu)2 and hybrid TiO2-DPP(TBFu)2.

Steady-state and transient photoluminescence (PL) quenching were then used to probe 

the efficiency of charge transfer from DPP(TBFu)2 to TiO2 in the hybrid system, as these 

techniques have been widely used to establish the electron transfer from photo-excited 

conjugated polymer moieties to TiO2.24,25 The steady-state PL of neat DPP(TBFu)2 film and 

hybrid DPP(TBFu)2 film of comparable optical density are shown in Figure 9.7. The PL 

quenching efficiency of DPP(TBFu)2 by TiO2 was estimated, from both the steady-state and 

transient PL, to be around 70%, reflecting efficient electron transfer from excited state 

DPP(TBFu)2 to TiO2. Transient PL of neat DPP(TBFu)2 (inset of Figure 9.7) exhibited 
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monoexponentially decaying intensity with a lifetime of 1.0 ns. By comparison, analogous 

measurements of transient PL intensity for a hybrid TiO2-DPP(TBFu)2 film decayed 

biexponentially with two lifetimes of 230 ps and 1.0 ns. The former lifetime may reflect the 

excitons formed within their diffusion lengths near TiO2 interface that are quenched 

immediately by electron transfer to TiO2. The latter lifetime corresponds to the excitons 

formed further away from TiO2, which decayed in local environments that are similar to 

those in neat DPP(TBFu)2. The PL quenching can likely be improved by adsorption of 

interfacial modifiers onto the TiO2 surface, as has been demonstrated for other hybrid TiO2-

conjugated polymer materials.7,9,11,14,15,26

Figure 9.7. Steady-state photoluminescence and transient photoluminescence (the 

inset) of neat DPP(TBFu)2 and hybrid TiO2-DPP(TBFu)2.
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Conducting and photoconducting atomic force microscopy (c-AFM and pc-AFM, 

respectively) were employed to simultaneously probe morphology, charge extraction and 

photosensitivity of the hybrid TiO2-DPP(TBFu)2 system. These are powerful techniques to 

characterize and correlate the nanoscale morphologies and electrical properties the film 

materials.19,27–29 Hybrid TiO2-DPP(TBFu)2 and TiO2-P3HT films were prepared by spin-

coating the donor materials into mesostructured TiO2 for c-AFM and pc-AFM 

characterization. Though the hybrid TiO2-P3HT system has been intensively studied, 

nanoscale electrical properties have not been investigated using c-AFM and pc-AFM. In our 

c-AFM experiments, the gold-coated silicon AFM tip is scanning the sample in contact 

mode, to map out topography and current images. The structure of the devices ITO/TiO2:

DPP(TBFu)2 or P3HT/Au-tip resembles the structure of hole-only diode devices, since the 

work function of Au (~5.1 eV) and ITO (~4.8 eV) is much closer to the HOMO of P3HT 

(~5.0 eV) and DPP(TBFu)2 (~5.2 eV). As negative bias is applied to the ITO substrate, holes 

are injected from the Au tip and collected at the substrate. The pc-AFM experiment set-up is 

similar to c-AFM, except the fact that the sample is illuminated by a Xe-lamp light source 

with a light spot approximately 160 μm in diameter.19,30
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Figure 9.8. (a-f) Surface morphology, dark-current and photo-current images from 

conducting and photoconducting atomic force microscopy of (a, b, c) TiO2-P3HT film 

and (d, e, f) TiO2-DPP(TBFu)2 film, respectively. (g-i) The morphology of neat P3HT 

(g), DPP(TBFu)2 (h) and mesostructured TiO2 (i).

Figure 9.8 shows the morphology, dark conductivity and photoconductivity collected at 

the ITO bias of -3 V for TiO2-DPP(TBFu)2 (a, b, c) and TiO2-P3HT (d, e, f). The surface 

morphology of TiO2-P3HT shows coarser features compared to that of TiO2-DPP(TBFu)2. 

While the TiO2-P3HT surface more closely resembles that of neat P3HT morphology (g), the 

TiO2-DPP(TBFu)2 surface is more similar to that of TiO2 (i). This suggests that more P3HT 

remains on top of TiO2 surface as a neat P3HT layer. Compared to TiO2-P3HT, the dark and 
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photo-currents of the TiO2-DPP(TBFu)2 hybrid are quite homogeneous throughout the 

surface, which can lead to more continuous conduction pathways for carrier transport in 

solar cells. Most interestingly, the increase from dark to photocurrent of TiO2-DPP(TBFu)2 

(e to f) is around 200 times while that of TiO2-P3HT (b to c) is only around six times. It 

implies that the carrier density of TiO2-DPP(TBFu)2 is much higher than that of TiO2-P3HT 

under illumination. This can be attributed to the higher loading of DPP(TBFu)2 in the 

mesostructured TiO2 film and more efficient charge transfer between the two, resulting in 

more photo-generated carriers and hence higher photoconductivity. The intense 

photoresponse of TiO2-DPP(TBFu)2 system suggests that this structure may be utilized in a 

hybrid photoconductor device. The further modification of TiO2 surface and/or using higher 

compatible small molecules can be utilized to improve the photocurrent at zero bias which is 

more relevant for solar cells operation.

9.2.4. Conclusion

In summary, we have demonstrated an important step toward using hybrid TiO2-SM in 

optoelectronic devices. Improved hybrid bulk-heterojunction materials was fabricated by 

spin-casting a benchmark conjugated small molecule, DPP(TBFu)2 into mesostructured 

TiO2. Due to both a reduced molecular size and less hydrophobic nature of the conjugated 

molecules (relative to conjugated polymers), homogeneous and improved infiltration into the 

mesoporous TiO2 is achieved without the need for pre-treatment of the TiO2. Remarkably, 

this small molecule can realize loadings of up to 25% of the total pore volume – 2.5× the 

typical loadings achieved for conjugated polymers. Charge transfer from photo-excited 

DPP(TBFu)2 to TiO2 is efficient and promising for solar cell and photoconductor 

applications. Both the loading and charge transfer efficiency could be further improved by 
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modifying TiO2 surface and functionalizing small molecules so that they would interact with 

TiO2 more favorably. Interestingly, the intense photoresponse of TiO2-DPP(TBFu)2 hints to 

a high performance hybrid TiO2-SM photoconductors. In a broader context, with high 

loading, efficient charge transfer and intense photo-response, hybrid TiO2-SM system are 

useful for assessing the effects of interfacial interactions between TiO2 and non-metal 

organic dyes on their optoelectronic properties. For instance, these properties and the 

relatively simple small molecular structure of SMs facilitate the use high resolution 

characterization technique, such as solid-state 2D NMR, to gain molecular-level 

understanding of the chemical composition and structure of inorganic-organic interface.20
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