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ABSTRACT 

 

Understanding and Controlling Light Alkane Reactivity on Metal Oxides:  

Optimization Through Doping 

 

by 

 

Alan Richard Derk 

 

Metal oxide catalysts have numerous industrial applications and have garnered research 

attention. Although oxides catalyze many important reactions, their yields to products are 

too low to be of economic value due to low conversion and/or low selectivity. For example, 

some oxides can catalyze the conversion of methane to intermediates or products that are 

liquefiable at yields no higher than 30%. With improved yield, such a process could help 

reduce the trillions of cubic feet of natural gas flared every year, saving billions of dollars 

and millions of tonnes of greenhouse gases. To this end, one goal of this work is to 

understand and improve the catalytic activity of oxides by substituting a small fraction of the 

cations of a “host oxide” with a different cation, a “dopant.” This substitution disrupts 

chemical bonding at the surface of the host oxide, which can improve reactant and lattice 

oxygen activation where the reaction takes place. Another goal of this work is to combine 

catalysts with metal oxides reactants to improve thermodynamic limitations. Outstanding 

challenges for the study of doped metal oxide catalysts include (1) selection of dopants to 



 ix 

synthesize within a host oxide and (2) understanding the nature of the surface of the doped 

oxide during reaction. 

 

Herein, strongly coupled theoretical calculations and experimental techniques are 

employed to design, synthesize, characterize, and catalytically analyze doped oxide catalysts 

for the optimization of light alkane conversion processes. Density Functional Theory 

calculations are used to predict different energies believed to be involved in the reaction 

mechanism. These parameters offer valuable suggestions on which dopants may perform 

with highest yield and activity and why. Synthesis is accomplished using a combination of 

wet chemical techniques, suited specifically for the preparation of doped (rather than 

supported or mixed) metal oxide catalysts of high surface area and high reactivity. 

Characterization is paramount in any doped-oxide investigation to determine if the catalyst 

under reaction conditions is truly doped or merely small clusters of supported catalyst. With 

that goal, diffraction, X-ray, electron microscopies, infrared spectroscopy, and chemical 

probes are used to determine the nanoscopic nature of the catalysts. Additional novel 

measurement techniques, such as transient oxidation reaction spectroscopy, determined the 

nature of the active site’s oxidation state.  
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1. Introduction 

1.1. Organization of Dissertation 

This dissertation describes the investigation of light alkane reactivity on metal oxides 

optimized through doping. First, it provides a background into the immense opportunity 

provided by improving the currently exorbitantly wasteful natural gas production. Secondly, 

it covers a means to this end -- alkane activation over doped metal oxides -- providing 

motivation and reviewing the state of the art (Chapter 1). The subsequent section (Chapter 2) 

explains the methods and techniques employed to elucidate and optimize chemical reactivity 

of the doped-metal oxide, and the nature thereof. With this requisite information covered, 

three foci are explored: (1) understanding dry reforming and CO2 methanation on a doped 

catalyst (Chapters 3 and 4); (2) discovering a promising link between experimentally-

derived activation energies and theoretically-predicted vacancy formation energies for new 

catalyst design (Chapter 5); and (3) augmenting dehydrogenation yields from traditional 

catalysts using additional metal oxides as solid sources of oxygen for hydrogen combustion 

(Chapter 6).  

Chapter 1 presents an overview of alkane activation reactions (both industrial and 

academic), specifically with regard to doped metal oxide catalysis – its motivation, history 

and the state-of-the-art. Additionally, challenges unique to doped metal oxides are 

considered. The majority of the work discussed in this dissertation is on doped metal oxides 

and this chapter provides a basis to understand the subsequent chapters.  

Chapter 2 elaborates on the background provided by the previous chapter, explaining the 

methods used in this work to interrogate the relevant physical phenomena which doped 



 

 2 

metal oxides exhibit. These methods include adsorption-, diffraction-, and photoelectron- 

based instrumental techniques to characterize the catalysts. Theoretical techniques, including 

density functional theory, are discussed as they apply to predicting and understanding doped 

metal oxide catalysts. Another method explained is the reaction condition optimization 

capabilities of a reactor built in-house and the associated LabView-based software. Given a 

catalyst, the optimization routines can maximize an arbitrary fitness function based on 

reactant flows, effluent flows, and temperature. Appropriate fitness functions are discussed 

and optimized results compare favorably to results from literature. The question of, “Can 

reactor conditions be algorithmically optimized?” is answered. Also discussed are two of the 

governing phenomena during reaction testing: chemical kinetics and thermodynamics. 

Chapter 3 investigates two types of Ru–ceria catalysts: one prepared by combustion to 

create an atomically doped metal oxide, and the other, prepared by impregnation, as 

supported Ru oxide.  They have different physical properties (as measured by X-ray 

photoelectron spectroscopy, X-ray diffraction, and IR spectra of adsorbed CO), but identical 

catalytic activity for dry reforming of methane. Spectrographic results indicate that the 

catalyst for dry reforming is partially reduced using XPS and IR spectroscopy. Furthermore, 

transient oxidation reaction spectroscopy with oxygen pulses confirms partial reduction of 

the catalyst is necessary for dry reforming activity. Through understanding the role of 

surface reduction for C-H bond activation, this motivating question is answered: on 

ruthenium-doped ceria, why does CH4 react with carbon dioxide at a lower temperature than 

molecular oxygen? 

Chapter 4 shows Ru0.05Ce0.95Ox is an active catalyst for methanation of CO2 with H2 and 

answers the question, what is the role of oxidation state for methanation on ruthenium-doped 
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ceria? Under reaction conditions one expects that oxygen vacancies are present on the oxide 

catalyst surface and that their steady-state concentration depends upon the relative ratio of 

the oxidant (CO2) to the reductant (H2). Results show the activity of the catalyst is sensitive 

to the degree of surface reduction: a surface that is too reduced or too oxidized loses activity. 

Exposing the oxidized surface to CO2 and then to H2 produces no methane, while on a 

reduced surface methane is produced by exposure to CO2 followed by H2. If the reaction is 

carried out at the steady state, purged, and then exposed to only hydrogen, methane is 

produced. Methane is formed through the reaction of hydrogen with surface species, whose 

infrared spectrum is associated with a variety of surface carbonates, and not through CO or a 

formate intermediate.  

Chapter 5 answers the following critical question for combined DFT and experimental 

work: what DFT-calculated values can be used to guide dopant selection in lanthanum 

oxides for methane activating doped metal oxide catalysts? It explores the measurement of 

the effective activation energy of methane oxidation catalyzed by La2O3 doped with Cu, Zn, 

Mg, Fe, Nb, Ti, Zr, or Ta. The data shows that the measured activation energy is a linear 

function of the calculated energy of oxygen-vacancy formation.  One hopes that in spite of 

the associated uncertainties in the trend (obtained by performing the same reaction, 

catalyzed by the same host oxide, doped with a variety of dopants) is robust and can serve as 

a guide for designing new doped oxide catalysts.  

Chapter 6 discusses selective hydrogen combustion using metal oxides as reactants to 

compliment dehydrogenation catalysts and answers the following question: what makes a 

useful solid reactant for ODH and how can they augment alkane dehydrogenation 

processes? The results show an increase in alkene yield, which would be thermodynamically 
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unobtainable without the use of certain metal oxides.  Furthermore, the results of 

compatibility investigations of selective hydrogen combustion with chromia- or platinum-

tin-based catalysts are analyzed and discussed. 

1.2. Background 

1.2.1. Applications of alkane catalysis for energy and chemical production 

Catalysis has the transformative potential to convert much of our petroleum-based 

infrastructure to one based on abundant methane (and associated light alkanes). Currently, 

production of methane far outweighs the consumption, resulting in 5.3 trillion SCF being 

flared or vented across the globe in 2011 (valued at 30 billion USD or 30% of US 

consumption)1. Furthermore, bio-derived sources of methane exist at landfills, anaerobic 

waste digesters, and elsewhere. Conversion of methane to useful chemical products is 

commercially practiced at only a few facilities throughout the world. This is done by first 

reacting methane to synthesis gas (carbon monoxide and hydrogen) and subsequently 

reacting the synthesis gas to hydrocarbons or methanol. The latter of which is comparatively 

easy, with synthesis gas production accounting for ca. 60% of plant cost2 due to high 

temperatures and pressures. Although this process is energetically and capitally expensive, 

to date no other chemical technologies have been commercialized for gas-to-liquids (GTL). 

As oil reserves become more expensive and polluting to produce, new technologies 

exploiting the advantages of methane will become more economically competitive and 

widespread. Lower energy requirements would not only greatly improve these processes, but 

would also allow for the economical transportation of “stranded gas” from remote wells as a 

value-added, liquefied product. As a result, robust methane-activating catalysts working at 

moderate-conditions could have a profound effect on the society’s energy sources and 
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transportation fuels. The specific reactions to harness this potential, and promising catalysts 

to perform such reactions, are described below. 

1.2.2. Doped metal oxides as catalysts 

Metal oxide catalysts are used industrially for many reactions.3 There are many studies 

for different important reactions, although their conversion or selectivity is too low to be 

economically useful.4 Doped metal oxides are oxides whereby lattice ions are substituted, 

usually one metal cation for another metal cation. The undoped oxide is referred to as the 

“host oxide”. The catalytic activity is affected by the disruption of the chemical bonding at 

the surface of the catalyst, which can then activate an adsorbing molecule (e.g., methane). 

Although much is known about doped metal oxides for various applications (electronic 

materials, sensors, fuel cells, and magnetic materials), they have not been well-studied for 

catalytic applications. 

Most metal-oxide-catalyzed oxidation reactions are believed to proceed via the Mars and 

van Krevelen (MvK) mechanism5. (This mechanism is in contrast to more typically seen 

mechanisms on metals, such as Langmuir-Hinshelwood where essentially both reactants 

adsorb, react to products, and desorb.) In the MvK mechanism, at least two reactants are 

flowed into the reactor, one reducing (e.g., hydrocarbons, carbon monoxide, or hydrogen) 

and one oxidizing (e.g., oxygen, water, carbon dioxide). The reductant is oxidized by the 

catalyst surface’s lattice oxygen, which introduces an oxygen vacancy at the catalyst 

surface. Subsequently, another reactant reoxidizes the catalyst to fill the vacancy. The 

reoxidation is generally, although not always, very fast relative to the reduction; hence, the 

reduction of the catalyst step is rate-limiting (this is especially true when the reduction 

requires a carbon-hydrogen bond breaking step). Therefore, to improve catalytic activity, the 
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kinetic and thermodynamic propensity of a metal oxide catalyst to form oxygen vacancies is 

a key parameter. This has been thoroughly evaluated by Sauer, et al. in their review of metal 

oxide surface defects.5  

Since the 1950s, it has been known dopants affect metal oxide reactivity when Parravano 

reacted hydrogen with doped nickel oxides7. In 1966, Cimino first demonstrated a doped 

catalyst (nickel (II) oxide doped with magnesium) to be more active at performing a reaction 

(N2O decomposition)8. Although doping was desirable, it is difficult to tell if the material is 

truly doped or actually dopant oxide on the bulk oxide or metallic dopant on the bulk oxide 

surface.  Likely, many oxide catalysts have been doped due to adventitious impurities, 

although these unintentional impurities were not studied explicitly. In other cases, such as 

industrial catalysis, many additives, such as promoters, may have functioned as 

unintentional doped-oxide catalysts.  In 2002, Cimino and Stone reviewed doped metal 

oxide catalysis reporting only a few known examples9.  Since then, many more examples 

have appeared (especially from the group of Hegde10–14), although the number of examples 

is small when compared to other classes of heterogeneous catalysts.  

Doping is believed to promote the MvK mechanism by making the oxygen from the 

catalyst lattice more labile for reaction15. This comes from two effects. One, the 

environment around the oxygen is perturbed and the oxygen atom becomes more active for 

oxidation. Secondly, the Fermi level of the catalyst is changed by doping, which changes the 

thermodynamics of surface oxygen vacancy formation. Dopant effects can also be mitigated 

or even negated through changes in the surface functionality (in a process called the 

compensation effect). Such examples include surface hydroxylation of lanthanum-doped 

ceria and magnesium dopants in lanthanum oxide15. Hence through doping, metal-oxide 
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catalysts can have their high-temperature requirements lowered although surface processes 

can complicate the situation through the compensation effect.    

1.2.3. Oxidative Coupling of Methane  

 Many aspects of oxidative coupling of methane (OCM) make it an ideal reaction for 

producing higher hydrocarbons from methane, including being thermodynamically 

irreversible and producing products directly, avoiding synthesis gas as an expensive 

intermediate as in the Fischer-Tropsch process. OCM comprises (heterogeneous) catalytic 

reactions and homogenous reactions of radicals in the gas phase, owing to the high 

temperatures of 1000 to 1200K16. In OCM, methane and oxygen are combined to form 

ethane, ethylene, and water. The products of carbon oxides are undesirable. Once the 

formation of the radicals is initiated on a catalytic surface, gas-phase reactions are believed 

to dominate:  Methyl radicals recombine to form ethane (which can be further 

dehydrogenated). Methoxy species are thought to inexorably react to undesirable carbon 

oxides.16 As a consequence of the high temperature conditions causing radical, homogenous 

reactions, yield of hydrocarbons is limited irrespective of the heterogeneous catalyst sites. 

Detailed analysis by Labinger has shown that OCM above certain temperatures may be 

fundamentally limited to yields of ~30%, irrespective of catalyst17. Hence, a high-

performance OCM catalyst should initiate the formation of methyl radicals at low 

temperature (and not catalyze the formation of the carbon oxides), to avoid gas-phase 

reactions controlling and limiting the yield of higher hydrocarbon products. A wide variety 

of oxide catalysts have been studied, however achieving high yield has proved 

elusive.9,16,18,19  
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Magnesium oxide and lanthanum oxide based catalysts have been the most promising19. 

A commonly proposed mechanism for the reaction involves lattice oxygen, suggesting 

lattice-based dopants may be able to improve the reaction and lower the high temperatures 

normally required. In Chapter 5, a combination of experiment and theory work in tandem to 

elucidate a dopant in lanthanum that activates methane at as low of a temperature as possible 

in the hopes of enabling high-yield OCM. 

1.2.4. Dry Reforming of Methane    

Dry reforming of methane (CO2 + CH4 -> 2 CO + 2 H2) is an interesting reaction for 

synthesis gas production because methane is oxidized with what is usually either a waste 

product or found naturally in the methane feedstock: carbon dioxide. Methane is usually 

reformed to syngas by reaction with steam20, which requires water and methane purification. 

Furthermore, carbon dioxide and methane are the two strongest greenhouse gases, giving 

their conversion to other use products a large environmental advantage. The reaction has 

been studied over noble metals21, nickel22, and oxides23 – but not on intentional doped 

oxides. The main drawback of carbon dioxide over steam is the strong thermodynamic 

potential to form coke (carbonaceous deposits which deactivate the catalyst). Industrial 

catalysts must last several years on-stream to be cost-effective, and extensive time-on-

stream studies are necessary. 

The mechanism of dry reforming, even on relatively simple catalysts such as platinum 

group metals, is debated23–26. For hybrid systems composed of oxides and metal oxides, two-

site mechanisms have been proposed.22 

Rostrup-Nielsen et al. performed a comprehensive investigation on this reaction in 1993 

when they catalytically tested and characterized silica-supported nickel, ruthenium, 
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rhodium, palladium, iridium, and platinum catalysts27. Ruthenium catalyzed dry reforming 

well, as compared to the other metals, with the highest turnover number and no measurable 

coke formation. Ruthenium with ceria has been studied although questions still remain. 

Safariamin et al. studied ruthenium supported on alumina, ceria, and combinations thereof28. 

They found ceria increased the dry reforming activity. Dry reforming over ruthenium-ceria 

supported on mordenite was found to be very active with no coke formation by Hashimoto 

et al.29  

1.2.5. The Sabatier reaction: CO2 methanation 

The Sabatier reaction, discovered by Paul Sabatier in the 1910s, involves the reaction of 

hydrogen with carbon dioxide to form methane and water. The reactants can also perform 

reverse water gas shift to form carbon monoxide and water. Temperatures in the range of 

300 to 400 oC are generally used30: With a higher temperature, the thermodynamics become 

less favorable leading to less conversion and a stronger driving force for carbon monoxide 

production. This reaction is not used in a large scale, but has been proposed for the 

consumption of CO2 to reduce greenhouse gas emissions. Additionally, the reaction is of 

interest to NASA for the purposes of space exploration. CO2 produced by human metabolic 

processes needs to be removed from manned spacecraft. Most mission vent the carbon 

dioxide to space, but this requires the electrolysis of water to replenish oxygen in the cabin 

atmosphere. The conversion of carbon dioxide to water and methane closes the oxygen 

cycle; the methane can subsequently be used for propellant. Nickel-based catalysts are the 

most commonly used31, although ruthenium32, rhodium32, and doped oxides33 have been 

explored as well.  
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2. Methods for Doped Metal Oxide Synthesis and Characterization 

2.1. Synthesis Introduction 

There are many methods for metal oxide catalyst synthesis, some of which are 

applicable to forming doped metal oxide catalysts. These syntheses need to avoid forming 

impure phases such as the dopant oxide as a cluster. With all syntheses, it is difficult to 

prove a dopant has been incorporated into the lattice of the host oxide, especially at the 

surface or subsurface layers. These small clusters of dopant oxide are difficult to detect and 

can have reactivity different from the host oxide and the native dopant oxide1,2. As a result, 

determining between doped oxides and other catalyst systems is a challenge. To exacerbate 
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the difficulty, it is possible for an as-prepared catalyst to be doped, but reversibly change 

under reaction conditions, to a supported oxide catalyst.  

2.1.1. Incipient Wet Impregnation 

This technique is useful for producing both supported catalysts (usually metals or metal 

oxides supported on metal oxides) and some doped oxides. The host oxide is added to a 

minimal amount of aqueous solution of the added dopant or catalyst. The mixture is then 

dried and calcined. When the intent is to produce a supported oxide, the calcination 

temperature is kept low to prevent the dopant cations from diffusing into the host oxide. On 

the other hand, when the intent is to produce a doped oxide, calcination temperature is 

increased to encourage diffusion of the dopant into the surface layers of the host oxide. In 

this regard, incipient wet impregnation is a form of solid high-temperature synthesis, 

although the dopant precursors are so much smaller for incipient wet impregnation that in 

practice they are performed very differently (calcination temperatures and times are much 

longer, on the order of 1000 oC and days, for solid high-temperature synthesis).  

2.1.2. Solution Combustion Synthesis 

 Solution combustion synthesis (SCS) is a versatile, simple, and rapid process which 

can produce a multitude of nano-scale materials3, usually for applications in catalysis or 

photo-luminescent materials. To produce doped oxides, a homogenous aqueous solution of 

metal precursors (usually nitrates4) and a “fuel” (e.g., urea5, carbohydrates3, or glycine6) are 

heated at moderate temperature (ca. 300 oC) to start boiling of the solvent and then 

combustion of the oxidizing salts with the fuel. Metal oxide particles are produced in the 

reaction with by-products of water, nitrogen gas, carbon dioxide, and others, depending on 



 

 14 

precursor. For most syntheses, stoichiometric amounts of oxidizer (metal nitrates plus any 

additional oxidizer, such as ammonium nitrate) and fuel are used to produce the 

aforementioned products.  

2.2. Characterization 

2.2.1. N2 Adsorption Isotherms 

Surface area and pore diameters of synthesized catalysts were calculated using N2 

adsorption acquired on a Micrometrics Tristar 3000. To extract meaningful results from the 

isotherm data, Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) theories of 

adsorption were applied.  

2.2.2. X-Ray Diffraction (XRD) 

 X-Ray Diffraction was used to determine crystallographic phases present based on 

the X-Ray reflections present. This is accomplished via Bragg’s law. In this work, data was 

collected using two different X-Ray diffractometers. The more common of which was 

copper Kα radiation using a Philips XPERT MPD. Additional, high-resolution data was 

collected at Argonne National Lab’s 11-BM synchrotron-source X-ray diffractometer with 

30 keV X-rays. No evidence of sample degradation or damage was observed.  Reitveld 

refinement was performed in order to determine phase compositions and peak widths using 

GSAS and EXPGUI7,8. Reitveld refinement involves minimizing the sum-squared-error 

between model-derived, calculated spectra and the experimental data points. Upon 

refinement, the fully-understood model is used as a proxy for the sample. For example, the 

Scherrer broadening equation was used for crystallite-size determination. Instrumental 
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broadening was accounted for when using copper Kα radiation (of 0.1º FWHM), but not for 

synchrotron radiation.  

2.2.3. X-Ray Photoelectron Spectroscopy (XPS) 

This technique is widely used for catalyst analysis, including doped metal oxide 

catalysts. The instrument operates in vacuum and subjects samples to monochromatic X-

rays. These X-rays eject core electrons from the sample. By measuring these photo-emitted 

core electron’s kinetic energy, one can determine chemical and elemental information from 

the outermost 1-10 nm of the sample.  

X-ray photoelectron spectroscopy was used to determine surface concentrations of 

atomic species as well as to infer their oxidation state from the core-level binding energies. 

The measurements were performed on a Kratos Axis Ultra XPS using Al Kα radiation. To 

account for charging due to samples being electrical insulators, a charge neutralizer was 

employed and spectra were shifted to move the (adventitious) C (1s) peak to 285.0eV BE. 

Signal-to-noise ratios were poor for many dopants and the hemi-spherical analyzer required 

a large pass-energy of 80eV to achieve good statistics. As an unfortunate consequence, the 

peaks have been broadened slightly (likely instrumental broadening is 1.1eV FWHM). An 

additional source of error for calculating cerium and ruthenium oxidation states is their 

oxides partially reduce under XPS conditions9,10. 

2.2.4. Transmission/Scanning Electron Microscopy 

Transmission/Scanning Electron Microscopy (TEM/SEM) was used to characterize 

catalysts as-synthesized and after catalysis to evaluate particle size, dopant location, and the 

effects of possible coking reactions. TEM micrographs were recorded with a FEI-Technai 
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G2 Sphera Microscope operating at 200 kV. SEM Micrographs were recorded with a FEI 

XL30 Sirion FEG Digital Electron Scanning Microscope operating at 12 kV. 

2.3. Reaction Studies 

Catalytic testing was performed in a (6mm ID) quartz-tube micro-reactor. The reactor’s 

gas feed system is computer-controlled by Mass Flow Controllers (MFCs). The reactor is 

heated using electrical heaters and an externally-insulated stainless-steel block. Gas analysis 

is done by a differentially pumped mass spectrometer with a linear-algebra-based peak-

deconvolution algorithm (Carbon, oxygen, and hydrogen steady-state atom balances are 

usually accurate to 1%). Control of temperature, feed-gas composition, and effluent gas 

analysis is integrated and automated by LabView software (see Figure 1). The temperature 

was controlled by a temperature controller (Omega CSC32) using a steel reactor block with 

heating cartridges that surrounded the reactor tube and pre-heated the gases. A thermocouple 

in the heating block controlled the temperature and the difference between the steady state 

bed temperature and the block temperature was less than 5 °C at all relevant temperatures. 

This was determined by measurement in an inert bed. All experiments were carried out at 

atmospheric pressure. 
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Figure 1. Frontend display of LabView software built to integrate catalytic testing by 

synchronizing mass spectrometer, temperature control, valving, and data logging. 

 When performing analysis on any chemical reaction – especially for catalytic or 

heterogeneous reactions – there are three classes of phenomena which dominate: reaction 

thermodynamics, reaction kinetics, and mass/heat transport limitations. Due to non-linear 

inter-dependencies between the respective differential equations, highly coupled phenomena 

result, as follows. 

2.3.1.  Thermodynamic Considerations 

 Ultimately, chemical potential is the driving force for any reaction and controls all 

catalytic processes. The equilibrium constant for a reaction is defined as follows: 
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𝐾!" 𝑇 =    𝑃!
!!   =   exp   −∆𝐺/𝑅𝑇  

Where  𝑃! is the fugacity of reaction species i, 𝑣!the stoichiometric coefficient (negative 

for reactant) of reaction species i, ΔG is the Gibbs free energy of reaction, and RT is the 

product of the gas constant with temperature.  Chemical concentration equilibrium for 

multiple reactions can be calculated from individual reaction equilibrium constants using a 

method such as extent of reaction and performing a non-linear minimization to ensure each 

individual reaction’s equilibrium is satisfied.  

2.3.2. Chemical Reaction Kinetics 

 The catalyst-testing reactor is assumed to be a packed-bed reactor (PBR). The PBR 

model is a reactor in which there are no gradients in concentration, temperature, or reaction 

rate in the radial direction. In the axial direction, on the other hand, diffusion is negligible 

and the reactor’s aforementioned key parameters change continuously leading to a 

differential material and energy balance on a circular slice through the reactor11: 

𝑑𝐹!
𝑑𝑊 =

− 𝑟′!"
𝐹!!

 

𝑑𝑇
𝑑𝑊 =

𝑄 + 𝑟′!"𝛥𝐻!"#!
𝐹!𝐶𝑝!

 

𝐹! is the molar flow-rate of species j,  𝐹!! is the molar flow-rate of species j at the 

entrance,  𝑊 is the catalyst weight (proportional to length in axial direction),  𝑟′!" is the 

reaction rate for species j and reaction i normalized to catalyst weight, Q is the differential 

heat flow-rate into the reactor, and 𝛥𝐻!"#$ is the enthalpy of reaction for reaction i. With 

mass balances specified, conversion (varying from 0 to 1) is defined for reactant j, 𝑋!. 



 

 19 

Similarly, the selectivity of product j with respect to product k, 𝑆!", is defined. The yield of j 

with respect to (usually limiting) reactant k,  𝑌!", is defined as the following. 

𝑋! = 1−   
𝐹!
𝐹!!
                                                               𝑆!" =

𝐹!
𝐹! + 𝐹!

                                                  𝑌!" =
𝐹!

𝐹!! − 𝐹!
 

The activity is defined as the moles of reactant consumed per second per catalyst active 

site (which in practice is difficult to measure): 

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐹!! − 𝐹!,!"#$
#  𝑠𝑖𝑡𝑒𝑠  

2.3.3. Mass Transfer Considerations 

 For measuring intrinsic catalytic kinetics in heterogeneous catalysis, mass transfer 

limitations must be addressed. There are different sources of mass transfer limitations, 

namely from the bulk fluid to the external surface of the catalyst pellet and from the surface 

of the pellet to the core of the pellet, call the external and internal mass-transfer, 

respectively. With small particles and a fast flow-rate (and hence a high Schmidt number), 

very rarely is the external surface of the catalyst mass-limiting. Oftentimes, the internal mass 

transfer limitation can be quantified using the Thiele modulus and effectiveness factor, as 

follows. 

 

𝜂 =
𝐴𝑐𝑡𝑢𝑎𝑙  𝑜𝑣𝑒𝑟𝑎𝑙𝑙  𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛  𝑟𝑎𝑡𝑒
𝑟𝑎𝑡𝑒  𝑜𝑓  𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛  𝑡ℎ𝑎𝑡  𝑤𝑜𝑢𝑙𝑑  
𝑟𝑒𝑠𝑢𝑙𝑡  𝑖𝑓  𝑒𝑛𝑡𝑖𝑟𝑒  𝑠𝑢𝑟𝑓𝑎𝑐𝑒  

𝑤𝑒𝑟𝑒  𝑒𝑥𝑝𝑜𝑠𝑒𝑑  𝑡𝑜  𝑡ℎ𝑒  𝑒𝑥𝑡𝑟𝑛𝑎𝑙  𝑝𝑒𝑙𝑙𝑒𝑡  
𝑠𝑢𝑟𝑓𝑎𝑐𝑒  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠  

 

The Thiele modulus is the ratio of the reaction rate to the diffusion rate in the particle, 

hence when diffusion is fast, the concentration is uniform throughout and the effectiveness 
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factor is one. Otherwise the overall reaction rate quickly decreases as reactant concentrations 

rapidly decline. To measure intrinsic kinetics, the reaction must be limiting, meaning a small 

Thiele modulus. Although the equations listed are for spherical pellets, the Thiele modulus 

changes very little with respect to geometry and the equations are still fairly accurate for 

other shapes. Internal mass transfer limitations can certainly obscure a catalyst’s properties, 

especially if measuring intrinsic rate constants. In 1971, Mears developed criteria for testing 

for mass transfer limitations which can elucidate if catalyst is diffusion or reaction limited12. 

2.3.4. Heat Transport Limitations 

 Applying the same formalism as mass-transport to heat-transport reiterates the 

highly-coupled nature between transport and kinetics, as follows by first defining two 

dimensionless groups.                       

𝛶! =
𝐸
𝑅𝑇!

                                        𝛽! =     
𝛥𝑇!"#
𝑇!

 

 

𝛶! is known as the Arrhenius number and is a dimensionless activation energy. 

Likewise, 𝛽! is a dimensionless group, which represents the maximum-possible temperature 

change within the particle. 𝑇! is the temperature at the catalyst particle’s surface. Once 

again, these results show the ability of heat transfer to strongly obscure intrinsic catalyst 

studies. Additionally, this methodology describes “hot spot” behavior quantitatively. 

Furthermore, this analysis did not include the effect of temperature on thermodynamical 

equilibrium, which, if included, would likely introduce further anomalous behavior. Mears, 

as with mass-transfer limitations, developed a criterion for testing for heat-transfer 

limitations13. Notably, Mears demonstrates adding catalyst-bed diluent does not reduce 
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hotspot formation due to the low amount of inter-particle heat transfer as compared to 

particle-fluid.  

2.4. General Algorithmic Optimization of Reaction Conditions to Maximize 

Reactor Performance 

 

Figure 2. Schematic of the reactor software (upper left) receiving gas analysis data and 

controlling reactor parameters (shown in dotted lines). Physical flows (gas and power) are 

show in solid lines. The software considers the performance metric and maximizes it by 

employing the optimization algorithm. 

 

2.4.1. What are ideal conditions? 

The optimum reactor conditions for a catalyst depend on the process. For example, 

propylene production from propane requires limited methyl-acetylene production. Another 

such example is ethylene oxide produced from ethane and oxygen needs to be highly 

selective, due to the small increase in price between the two compounds.  High-throughput 
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screening is a technique for screening many catalysts (with a constant set of reaction 

conditions) in a short amount of time14, but this same attention has not been applied to the 

reaction conditions, where small changes can change the rate by several orders of 

magnitude15. 

There is always a function of parameters (“performance function”) that can be defined so 

that its maximum corresponds to the best performance. Experiments in catalysis use packed-

bed reactors, which depend on catalyst, feed flowrates, spacetime, temperature, and 

pressure. One would like to find values for these parameters that give optimal performance. 

This is not simple because there isn’t a generally accepted definition of best performance. 

For example, naïvely optimizing for yield will result in arbitrarily large reactors for many 

reactions, including equilibrium limited reactions or reactions with a high reaction order.  

Nevertheless, we propose here a method that will vary automatically the input in a reactor to 

generate the optimal output according to a performance function, which is being maximized. 

2.4.2. On metrics of reactor performance 

There isn’t a unique definition of best performance unless one examines the whole 

chemical process. Even then one can vary parameters for various goals: highest profit, 

lowest environmental impact, etc. Oftentimes conversion, selectivity, and yield are chosen 

as the relevant criteria for a set of reaction conditions, but these normalized metrics fail to 

capture the rate at which products are being produced in an absolute basis and therefore lead 

optimum reactor sizes which are unrealistically large or small.  

Taking a step back at its most basic purpose, a reactor takes in a stream of low-value or 

unwanted reactants (e.g., feedstocks and pollutants) and converts them to more valuable 

products (e.g., marketable products or less harmful emissions). Therefore a reactor’s primary 
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performance is measureable by the rate at which it generates value. This approach may be 

overly simplistic for optimizing a chemical plant or overall process (because it ignores 

capital costs, utilities, and other intricacies), but it is a good general criterion for catalyst 

performance, as shown below in Equation 1. Note that the “value” of components flowing 

into or out of the reactor is highly subjective. For commodity chemicals, there exists a 

market and price for many compounds, but other effects, such as location, regulation, and 

goal, will affect these values. 

 
𝑉𝑎𝑙𝑢𝑒  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐹!   𝑉𝑎𝑙𝑢𝑒!

!""#$

!

− 𝐹!   (𝑉𝑎𝑙𝑢𝑒! + 𝑆𝑒𝑝!)
!""#$%&'(

!

 
 

(1) 

 

Above in Equation 1, 𝐹! is the flowrate (in mass or moles) of component 𝑖 and 𝑉𝑎𝑙𝑢𝑒! is 

similarly the value of the ith component (per mass or moles), such as the market price, Feeds 

is the number of reactor feed components and Effluents is the number of reactor effluent 

components. By optimizing this rate of reactor value generation, the catalyst creates the 

most value per time possible. For example, suppose one optimizes spacetime to maximize 

yield or conversion for a simple equilibrium-limited reaction A -> B, a slower spacetime 

will always produce asymptotically more B (thus raising the conversion or yield). On the 

contrary our proposed performance metric, the rate of value generation per catalyst, will be 

maximized at a finite spacetime given non-zero separation costs.  

2.4.3. Optimization algorithm 

Optimizing the discrete reaction conditions of a real reactor is provides unique 

challenges compared to the mathematical optimization of oftentimes well-defined, highly 

differentiable functions. These challenges include lack of derivative information on the 
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performance metric, experimental measurement error and drift, and different convergence 

criteria. Many optimization algorithms exist for optimizing numerical functions. Of those, 

relatively few (1) only evaluate function values (that is to say don’t require the Hessian or 

Jacobian), (2) are robust against noise, and (3) are resilient against slowly drifting values. 

Methods that only evaluate function values are predominantly comprised of simplex 

methods, interpolation methods, and pattern search methods. Despite its simplicity, the 

Hooke-Jeeves pattern search is robust and can quickly reach convergence for a variety of 

problems.16 

2.5. Computational Chemistry Methods 

Although computational methods can be very accurate (~1 kcal/mol) for small, well-

defined systems, heterogeneous catalytic systems are neither small nor well defined. Thus in 

general, accurately calculating and predicting heterogeneous catalyst properties is not 

feasible at this time (although there are some promising specific results17–19). Computational 

methods can be fruitful during investigations of heterogeneous catalysts for finding trends 

and for guiding experiments. 

To do useful computations on a catalytic system (with a large number of electrons and 

nuclei), Density Functional Theory (DFT) is one of the most accurate computational tools 

which is still tractable to solve for catalyst-sized systems.   
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3. Catalytic Dry Reforming of Methane on Ruthenium-doped Ceria 

and Ruthenium supported on Ceria 

3.1. Introduction 

Steam reforming of methane is the preferred commercial process [1, 2] for the 

preparation of syngas. There is, however, considerable interest in ‘‘dry reforming’’ [3–6], 

which uses CO2 rather than steam, because large quantities of methane are found mixed with 

carbon dioxide. The expense of separating methane from CO2, prior to syngas preparation, 

makes steam reforming of methane from such sources uneconomical. An efficient dry 

reforming catalyst would allow us to make use of low-cost CO2 -containing methane to 

produce syngas. Here we study dry reforming by two catalysts: one which is assumed to be 

Ru-doped ceria and another which is assumed to be metallic Ru supported on ceria.  

Rostrup-Nielsen and Bak Hansen [7] investigated dry reforming catalyzed by silica-

supported nickel, ruthenium, rhodium, palladium, iridium, and platinum catalysts and found 

that the ruthenium performed best, with the highest turnover and minimal coke formation. 

Safariamin et al. [8] studied ruthenium supported on alumina and ceria and combinations 

thereof. They found that the performance of Ru supported on alumina impregnated with 

ceria is better than that of Ru supported on alumina. Other studies have found that oxidic 

ruthenium compounds are also active catalysts. For example, Nakagawa et al. [9] suggested 

that the coexistence of metallic ruthenium and ruthenium oxide was important for dry 

reforming activity. These results indicate a dual-site mechanism could likely be important. 

In a similar catalytic system, Gallego and co-workers [10] found Ni/La2O3 and the 

perovskite, LaNiO3, catalyzed dry reforming via a dual-site mechanism.  



 

 28 

We studied Ru-doped ceria for two reasons. (1) Our temperature programmed reaction 

studies of dry reforming and of partial oxidation of methane, catalyzed by Ru-doped ceria, 

found that dry reforming (producing predominantly synthesis gas) starts at a lower 

temperature than partial oxidation (producing predominantly carbon dioxide and water). If 

interpreted naively this would indicate that CO2 is a better oxidant than O2, which is not an 

acceptable conclusion. We show here that the dry reforming catalyst is the reduced oxide 

and this reduction is possible because CO2 is a poorer oxidant than O2. (2) The combustion 

method used here is one of the most reliable ways of preparing doped oxides [11]. However, 

no matter what the preparation method is, one is never completely sure that a doped oxide 

was prepared. Because of this uncertainty, we also prepared a Ru ceria catalyst by 

impregnation and reduction, with the intent of preparing metallic supported on ceria. We 

hoped to show that this catalyst is different from the presumed doped-oxide catalyst. To our 

surprise we found that the two catalysts have identical catalytic activity even though their 

physical properties are different.  

3.2. Experimental 

3.2.1. Catalyst Synthesis 

Ruthenium-doped ceria was synthesized using the combustion method previously used 

by Hegde et al.[11]. To begin, 2.50 g of cerium(III) nitrate hexahydrate, 0.06 g of 

ruthenium(III) chloride, and 0.09 g of urea are dissolved in water (Millipore). A Pyrex dish 

with this mixture is placed into a furnace, which is heated to 450oC to induce spontaneous 

combustion and produce an oxide. The combustion is very rapid and it is assumed that in 

this short time the Ru atoms are not able to migrate and make a separate phase, and they get 

trapped where they were when the combustion started. This is one of the most reliable 
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methods for producing a substitutionally doped oxide (i.e. single Ru atoms replace Ce 

atoms). In what follows we use for this material the notation Ru0.05Ce0.95O2.  

Ruthenium metal supported on ceria was synthesized by wet-impregnation. Cerium 

oxide powder, prepared by combustion synthesis (as described above, but without RuCl3), 

was dried in air at 220oC after which it was added to an aqueous solution of RuCl3. The Ru 

concentration was such that the ruthenium:cerium mole ratio was 5 %, as in the sample 

prepared by combustion. The mixture was sonicated and dried in air at 80oC and then heated 

in H2 at 400oC for 6 h to reduce RuCl3. We used a relatively low calcination temperature to 

minimize Ru diffusion into CeO2. Temperature programmed reduction experiments [12–17] 

have shown that ceria is reduced by H2. The temperature at which hydrogen consumption by 

ceria begins depends on the grain size [17] and also on surface contaminants (some ceria 

surfaces have hydroxyls or polydentate carbonates [12]) or bulk contaminants (e.g. La is 

present in ceria used in Ref. [13]). Because of this, different experiments, on different ceria 

samples, find different temperatures at which ceria starts being reduced by hydrogen (e.g. 

200oC[12], 347oC[13], 327oC[14]); these values are below the temperature we used to 

reduce RuCl3. Therefore we expect that the as-prepared catalyst is metallic Ru on a partially 

reduced ceria support. However, the material was in contact with air for a long time before 

being used as a catalyst (the shortest time was 1 day, the longest 2 weeks). We assume that 

this exposure to air reoxidized ceria. Perrichon et al. [13] found that ceria reduced with H2 

reoxidizes rapidly at room temperature, if it is not reduced too far. In what follows we 

denote the material prepared by the second procedure by Ru/CeO2 and will call it metallic 

Ru supported on ceria.  
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We emphasize that there is no guarantee that the combustion method produces doped 

ceria or that all Ru in the sample prepared by impregnation is metallic.  

3.2.2. Catalyst Characterization 

X-ray diffraction (XRD) data were collected on a Philips X’PERT diffractometer. 

Synchrotron XRD patterns were collected in transmission mode at RT on beamline 11-BM 

at the Advanced Photon Source, Argonne National Laboratory, with a photon energy of 

approximately 30 keV. Rietveld refinements were performed using GSAS [18, 19].  

X-Ray photoelectron spectroscopy (XPS) spectra were obtained with Al Ka radiation 

using a Kratos Axis Ultra X-ray photoelectron spectrometer. In order to account for 

charging, the XPS spectra were shifted using the C(1s) peak of adventitious carbon to 285.0 

eV.  

Diffuse reflectance infrared fourier-transform spectroscopy (DRIFTS) of adsorbed CO 

was performed using a Thermo Electron Corporation Nicolet 4700 with DRIFTS accessories 

by Harrick Scientific. Samples catalyzed dry reforming at 400 oC for an hour, and then 

cooled to 25 oC in argon. After that, 10 % CO in argon was flowed over the sample for 10 

min. Subsequently, pure argon was flowed to remove CO from the gas phase while adsorbed 

CO remained bound to the surface. Spectra were collected at each of these steps. 

3.2.3. Reactivity Characterization 

The activity of the catalysts was determined in a packed bed reactor with a high flowrate 

to achieve a very short residence time (differential reactor). The reactor (a quartz tube with 4 

mm inner diameter sealed with quartz wool) was filled with 25 mg of catalyst mixed with 50 

mg of 200-mesh GC-grade alumina. Gases were delivered using mass-flow controllers 
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(MFCs, supplied by MKS). The CH4:CO2:Ar ratios were 1:1:3. The catalyst void-fraction 

was measured volumetrically with methanol and the gas flowrate was set such that the 

spacetime was 0.18 s (calculated at 20oC), unless otherwise noted. This spacetime 

corresponds to 110 mol of CH4/(g-catalyst * s). The reactor effluent was measured by a 

differentially pumped mass spectrometer (SRS). Frequent calibrations of the mass 

spectrometer, with mixtures of reactants, products, and argon with known composition, were 

made. All gases had a purity of at least 99.99 %. The temperature was controlled and varied 

by using a programmable controller (OMEGA CSC32).  

Temperature programmed reaction (TPR) was used to determine the activity of the 

catalyst as a function of temperature. With a constant volumetric feed rate, the reactor 

temperature is varied linearly while the composition of the effluent is monitored. Due to the 

temperature increase, the space time decreases from 0.18 s at room temperature to 0.06 s at 

600oC. In TPR experiments, the system might not reach steady state during the temperature 

ramp. Because of this, we also performed staircase temperature programmed reaction 

(STPR) experiments to study the activity of the catalyst at steady state. In STPR, the 

temperature is increased from 250 to 600 oC in 50 oC increments. After each increase the 

temperature is held constant for 30 min to allow the reaction to reach steady state. After 

reaching 600 oC the temperature is decreased with a reversed stepwise evolution until the 

temperature is 250oC.  

Transient oxidation reaction spectroscopy (TORS) was used to investigate the 

dependence of catalyst oxidation state on catalytic activity. In these experiments, the dry 

reforming reaction is run at steady state, at fixed temperature, and 2-s-wide pulses of O2 are 

injected into the reactor feed to observe the effect on reaction products. The pulse shape was 
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approximately square. The height of the pulse was set such that the oxygen and methane 

concentrations were equal for the duration of the pulse. This is the ratio used in the partial 

oxidation experiments. 

3.3. Results and Discussion 

3.3.1. Catalyst Characterization 

The XRD data obtained in our laboratory are shown in Fig. S1, for Ru/CeO2  (the figures 

labeled by S followed by a number are supplemental and to be found a the end of the 

chapter). One observes the diffraction peaks due to CeO2 and small peaks corresponding to 

the hcp-phase of metallic Ru. The Rietveld-refined, synchrotron XRD data obtained from 

both as-prepared and post-reaction ruthenium-doped ceria are shown in Fig. 1. The 

refinement included data for wavenumbers between 0.8 and 11.6 Å-1. No diffraction peaks 

corresponding to RuO2 or metallic Ru are present in the spectra of Ru0.05Ce0.95O2. The lattice 

constant for as- prepared Ru-doped CeO2 is 5.4214 Å; it is 5.4022 Å after the catalyst was 

used. Scherer broadening analysis of the ruthenium metal on ceria catalyst indicated that 

ruthenium crystallites were 19 nm in size (accounting for instrumental broadening). 

Crystallites in this size range are typical for ruthenium wet-impregnated catalysts.  
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Figure 1. Synchrotron XRD patterns of ruthenium-doped ceria (a) as synthesized and (b) 

after catalyzing dry reforming at 500oC for 5 h. Both samples are single-phase fluorite, 

exhibiting no hcp-Ru or RuO2. 
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Table 1 gives the binding energies of the 3p3/2 orbital in the XPS spectrum of ruthenium 

atom, published by Ernst and Sloof [20], for Ru metal and RuO2. Also included are the 

binding energies measured by us for Ru0.05Ce0.95O2   and Ru/CeO2, for the as-prepared 

catalysts, and for the catalysts after the reaction. According to the XPS results the Ru atoms 

in the two catalysts differ from each other: the Ru in Ru0.05Ce0.95O2   is more oxidized than in 

Ru/CeO2 or in RuO2. It is difficult to understand why the binding energy in Ru/CeO2 is 

closer to that of RuO2 than Ru metal, even though the XRD measurements detect Ru 

metallic in Ru/CeO2. This may be due to a size effect (Ru clusters are small) or to the 

oxidation of the Ru clusters by atmospheric oxygen prior to taking the XPS spectra. Finally, 

no chlorine was observed on the catalyst after reaction, indicating chlorine (from the 

ruthenium precursor) does not likely play a role in activity.  

Table 1.  XPS results for electron binding energy (BE) for Ru.  Values in the first two 

rows are from Ref. 19. 

   
compound BE Ru3p3/2  

eV 
Ru metal (lit.) 461.5 
RuO2 (lit.) 462.7 
RuO2 (this work) 462.6 
Ru0.05Ce0.95O2   
as prepared 464.1 
after the dry reforming reaction 464.4 
Ru/CeO2  
as prepared 462.3 
after the dry reforming reaction 462.0 

 

To further test whether Ru0.05Ce0.95O2 and Ru/CeO2 are different materials we used CO 

as a surface probe, performed in situ after reaction (without exposure to air). We expect 
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from literature [21] that the CO vibrational energy is different when CO adsorbs on metallic 

Ru than when it adsorbs on Ru-doped ceria (where Ru is ionic). The DRIFTS spectra (Fig. 

2) of CO adsorbed on Ru0.05Ce0.95O2   and on Ru/CeO2 show that the two materials interact 

differently with CO. The CO adsorbed on Ru0.05Ce0.95O2   has an infrared (IR) absorption 

peak (marked by A1 in Fig. 2) that is absent for CO adsorbed on Ru/CeO2. The frequency of 

this peak is very close to that of the gas-phase CO but it is not due to photon absorption by 

gaseous CO. To prove this we have also taken the IR absorption spectrum of the 

Ru0.05Ce0.95O2 catalyst after exposure to CO but prior to purging with Ar. This spectrum 

(dotted lines in Fig. 2) has the M-shape typical of the R- and P-branches of gaseous CO. 

Clearly the A1 peak is not due to the gas. We also found that the peak A1 disappears when 

the sample is heated from 20 to 100 oC. This weakly bound CO vibrates roughly at the same 

frequency as gas-phase CO but it does not have the R- and P- branches because it is not free 

to rotate. The three peaks observed for the CO adsorbed on Ru0.05Ce0.95O2 (namely A1, A2, 

and A3) suggest that on this surface CO has three distinct binding sites. In contrast, there is 

almost no CO adsorption (except perhaps for the two small peaks denoted B1 and B2 in Fig. 

2) on Ru/CeO2, which is surprising. We assume that this happens because the Ru clusters in 

Ru/CeO2 are oxidized on the surface.  
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Figure 2.  DRIFTS spectra of ruthenium-doped ceria (dashed line) and ruthenium 

supported on ceria (solid line), after exposure to CO followed by purging with Ar to remove 

gaseous CO from reactor.  The catalyst was exposed to CO after it was used for dry 

reforming (see text).  The dotted line shows the IR spectrum of Ru-doped ceria after 

exposure to CO and prior to purging with Ar. 

 

Chin et al. [21] assigned the CO IR-absorption peaks to different CO–Ru binding 

moieties for various Ru oxidation states. While we do not dispute the assignment we prefer 

not to make use of it here.  

In summary: XPS, XRD, and the IR spectrum of CO adsorbed on these catalysts indicate 

that Ru0.05Ce0.95O2 and Ru/CeO2 are different materials, as prepared and after they catalyzed 
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the dry reforming reaction. Nevertheless, they have practically identical catalytic activity, as 

we show below. 

3.3.2. Catalyst Reactivity 

Figure 3 shows methane conversion in two temperature programmed reaction (TPR) 

experiments: partial oxidation and dry reforming of methane. These results are surprising for 

two reasons. First, the oxidation of methane by dry reforming starts at lower temperature 

than partial oxidation with O2, as if CO2 is a better oxidant than O2. Second, dry reforming 

and methane oxidation with O2 are supposed to have the same rate-limiting step: the 

breaking of the C–H bond. If this is true, one would expect, perhaps naively, that the two 

reactions should take off at the same temperature.  
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Figure 3. Methane partial oxidation using oxygen or carbon dioxide on a ruthenium-

doped CeO2 catalyst.  The catalyst bed contained 25 mg of Ru0.05Ce0.95O2 , diluted with 50 

mg of alumina.  The temperature ramp was 10 °C/min.  Feed composition was 1:1:3 (molar) 

for CH4:CO2:Ar (for dry reforming) and 2:1:3 for CH4:O2:Ar (for partial oxidation).  

Spacetime was 0.18 second at 20 °C. Dry reforming produced predominately synthesis gas 

and the methane partial oxidation produced predominately carbon dioxide and water. 

 
 
 

Figure 4a.  The steady state composition of the reactor effluent for methane reacting 

with carbon dioxide on Ru0.05Ce0.95O2, at various temperatures.  The plug reactor contained 

25 mg of Ru0.05Ce0.95O2 diluted with 50 mg of alumina.  Temperature was varied from 250 

°C to 600 °C and back to 250 °C in steps of 50 °C.  After each step the temperature was held 

constant for 30 minutes.  Mass balances were approximately 100%.  The feed molar 
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composition was 1:1:3 for CH4:CO2:Ar.  Total volumetric flowrate corresponded to a 

spacetime of 0.18 seconds at 20 °C. 

 

 

A possible resolution of these two puzzles is that Ru0.05Ce0.95O2 evolves into two distinct 

catalysts when exposed to two different feeds (CH4:O2 or CH4:CO2). We show in Sect. 3.3 

that this is the case.  

 
 

Figure 4b.  The steady state composition of the reactor effluent for methane reacting 

with carbon dioxide on Ru/CeO2, at various temperatures.  The plug reactor contained 25 

mg of Ru0.05Ce0.95O2 diluted with 50 mg of alumina.  Temperature was varied from 250 °C 

to 600 °C and back to 250 °C in steps of 50 °C.  After each step the temperature was held 

constant for 30 minutes.  Mass balances were approximately 100%.  The feed molar 
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composition was 1:1:3 for CH4:CO2:Ar.  Total volumetric flowrate corresponded to a 

spacetime of 0.18 seconds at 20 °C. 

 

Figure 4a, b show the STPR data for dry reforming using Ru0.05Ce0.95O2  and Ru/CeO2, 

respectively. The mass balance for carbon, hydrogen, or oxygen is 100 ± 2%. The dark-blue 

curve in Fig. 4a shows how the temperature of the reactor was changed with time (the 

temperatures scale is on the right hand side of the graph). The measurements start at 250oC 

and the temperature is held constant at that temperature for 30 min. As the purple and the 

yellow–orange curves show, the concentration of CO2 and CH4 in the effluent is the same as 

in the mixture entering the reactor. A small consumption of CH4 and CO2 is observed at 

400oC. The conversion of both CO2 and CH4 are largest at 600oC. If dry reforming were the 

only reaction in the system then the conversion of CO2 and CH4 should be equal, and the 

amount of H2 should equal the amount of CO. This is not what we observe: more CO2 is 

consumed than methane and more CO is present than H2. This indicates that the water–gas 

shift reaction CO2  + H2 -> CO + H2O also takes place in the system.  

It is interesting that the data in Fig. 4b, which shows the STPR results for dry reforming 

on the Ru/CeO2 catalyst, is practically identical to the data in Fig. 4a, for the same reaction 

catalyzed by Ru0.05Ce0.95O2. For example at 600 oC, methane conversion respectively is 48 

and 46 % for Ru0.05Ce0.95O2   and Ru/CeO2. We have two materials that have identical 

catalytic activity but give different XRD, XPS, and CO-DRIFTS signals. We are therefore 

tempted to conclude that the two catalysts contain identical catalytic sites and that the 

features that make the spectra different are unrelated to catalysis. 
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3.3.3. Why Does Methane React with CO2 at Lower Temperature than with 

Oxygen? 

As we have already mentioned we were puzzled by the results shown in Fig. 3 which 

show the onset of methane conversion, for dry reforming and for partial oxidation, both 

carried out on Ru0.05Ce0.95O2. The reaction of CH4 with CO2 takes place at a temperature at 

which CH4 does not react with O2. This appears to run counter to two strongly held beliefs. 

One is that the rate-limiting step is the breaking of the C–H bond by the catalyst, which sug- 

gests that CH4 should react at the same temperature regardless of whether O2 or CO2 is 

present. The other is that methane should react at lower temperature with O2 than with CO2, 

because O2 is a much stronger oxidant. There is however a third possibility. If we assume a 

Mars-van Krevelen mechanism, then CH4 reduces the oxide surface and the reduced surface 

is reoxidized by O2  (for partial oxidation) or CO2  (for dry reforming). Since O2 is a better 

oxidant than CO2, the surface is more reduced when the feed contains CO2  than when it 

contains O2 . The results presented in Fig. 3 can therefore be understood if we assume that 

the more-reduced oxide, present when the feed contains CO2, is a better methane activation 

catalyst than the oxidized surface that is present when the feed contains O2 . This hypothesis 

can be tested by pulsing O2 through the reactor while we are running the dry reforming 

reaction at steady state. If the hypothesis is true then the injection of oxygen should lower 

methane conversion. The results of these experiments (Fig. 5) show that this is what 

happens. 
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Figure 5. Transient oxidation reaction spectroscopy of methane dry reforming on 

ruthenium-doped ceria and ceria-supported ruthenium metal.  Temperature was maintained 

at 500 °C.  Feed molar composition was 1:1:3 for CH4:CO2:Ar.  Spacetime was set to 0.07 

second, calculated at the reactor temperature of 500 °C.  The square O2 pulse had a width of 

2 seconds.  The oxygen flowrate equaled that of the methane (overall composition of 1:1:1:3 

of O2:CH4:CO2:Ar).  Further details are given in the text. 

 

We flowed through the reactor CH4:CO2:Ar = 1:1:3 at 500 oC with a flowrate of 0.07 s, 

until the system reached steady state. The catalyst was either Ru0.05Ce0.95O2 (first panel) or 

Ru/CeO2 (second panel). We chose the flowrate so that the reactor is differential, to 

minimize the complications caused by changes in the catalyst and gas composition along the 

reactor, which are significant at low flowrates.  
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The vertical, green, dotted line indicates the moment when the oxygen pulse was sent 

through the reactor. Prior to that moment the reactor was running the dry reforming reaction 

at steady state. The dashed horizontal line indicates the concentration of methane and CO2 at 

the entrance of the reactor. The yellow and purple lines indicate the concentration of CH4 

and CO2, respectively, in the effluent. These two lines are below the dashed line because 

CH4 and CO2 were consumed during the passage through the reactor. In the lower part of the 

graph we show the amount of CO (reddish-brown), H2O (dark blue), H2 (cyan), and O2  

(green) in the effluent. The oxygen pulse prior to its entrance in the reactor is not plotted 

because it is too narrow (2 s) to show on the time scale of the plot. The oxygen pulse seen in 

the lower part of the graph is oxygen that survived passage through the reactor. The pulse is 

broadened because of different arrival times at the exit.  

The injection of oxygen suppresses the dry reforming reaction: the amount of  

methane coming out of the reactor is nearly equal to the amount supplied at the entrance 

(i.e. the orange line is close to the dashed horizontal line) and is higher than the amount 

exiting the reactor when no oxygen is introduced. Also, CO and H2 production is suppressed 

immediately after O2 is injected. It takes approximately 30 s for the reactor to reach the 

steady state it had before the oxygen was introduced. We do not understand why the 

response of the methane has slight dips, immediately after oxygen introduction and right 

before the steady state is reached. The slow restoration of the steady state indicates the 

slowness of the rate of catalyst reduction by methane.  

The right-hand panel shows the results of the same experiments on Ru/CeO2 catalyst. 

The slight differences between the results on the two catalysts are within the error of our 
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measurements. We conclude that transient response of the two catalysts following oxygen 

injection is essentially the same.  

3.4. Conclusions 

We performed experiments meant to answer two questions. Why does CH4 react with 

CO2 at a lower temperature than with O2, on a catalyst prepared by the combustion method, 

which is assumed to produce Ru-doped ceria? And if this behavior is typical of Ru-doped 

ceria, does one observe different chemistry on a catalyst prepared by impregnation (which is 

assumed to be metallic Ru supported on ceria)?  

We find that the two catalysts, prepared by different methods, have different physical 

properties (XRD, Ru- XPS, and the IR spectrum of CO adsorbed on them) but have 

essentially the same catalytic chemistry and catalytic activity. Obviously catalytic chemistry 

on these materials does not take place on surface sites that affect the physical measurements 

we made. We do not have a reliable explanation for this. It is possible that when the 

Ru/CeO2 catalyst was prepared, some Ru atoms ended up as substitutional dopants and they 

are the active sites. We tried to avoid this from happening, by using a low reduction 

temperature, but we cannot rule out this possibility. Another possible explanation is that the 

reaction on Ru/CeO2 takes place at the border of the metallic Ru with the CeO2 surface and 

that the reactivity of the oxygen atoms at this border is similar to that of the oxygen atoms 

surrounding the Ru dopants. A similar dual-site model could explain some of the observed 

behavior. In such a model, the cerium oxide site could be rate-limiting and the ruthenium 

site differs between the catalysts. Hence in such a model, the catalysts show stark 

differences in characterization (due to different ruthenium [oxide] sites), but the cerium 

oxide site dominates the control of reactivity. The transient oxygen reaction spectroscopy 
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shows that reduction is crucial to the activity. Whatever the active site may be—whether it is 

on ruthenium, cerium, or both—it is strongly activated by incomplete reduction.  

The transient reaction experiments using oxygen pulses suggest strongly that methane is 

more readily activated by the partially reduced catalyst (for both catalyst preparations). In 

these two reactions (CH4 + CO2 and CH4 + O2 ), methane reduces the oxide surface while 

CO2  or O2  reoxidizes it. Because O2 is a more effective oxidant than CO2 , the surface 

exposed to CO2  + CH4 has more oxygen vacancies (is more reduced) than the surface 

exposed to O2  + CH4. While we start with the same catalyst (e.g. Ru- doped ceria), by the 

time the steady state is reached the catalyst performing dry reforming has evolved to a 

different, more active state than the catalyst performing partial oxidation: one is more 

reduced than the other.  

 
Figure S1. Lab XRD patterns of ruthenium-ceria catalysts as synthesized. Prominent 

peaks correspond to cubic-phase CeO2  and asterisks denote hcp-phase metallic ruthenium. 
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Figure S2. XPS binding energies from Ru 3p3/2 emission. Commercial RuO2  (Sigma 

Aldrich) was analyzed. Ru 3p3/2 has a BE of 462.6eV, agreeable with the BE of 462.7, as 

reported by Ernst. 
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Figure S3. XPS binding energy from Ru 3p3/2 emission. XPS of as-synthesized Ru-

doped CeO2 shows a Ru 3p3/2 BE of 464.1eV. 



 

 48 

500 490 480 470 460 450

3300

3600

3900

In
te
ns

ity
	
  (
C
ou

nt
s	
  
/	
  s

ec
on

d)

B inding 	
  E nergy	
  (eV )

R u	
  3p
3/2

R u	
  3p
1/2

X P S 	
  of	
  R u-­‐doped	
  ceria 	
  after	
  reaction

 
Figure S4. XPS binding energy from Ru 3p3/2 emission. XPS Dry reforming was 

catalyzed by Ru-doped ceria at 500oC for 3 hours (so steady-state was reached). Feed molar 

composition was 1:1:3 for CH4:CO2:Ar. Space time was set to 0.07 seconds flowrate 

(calculated at the reactor temperature of 500oC). The catalyst was cooled in argon and 

analyzed immediately. The BE of Ru 3p3/2 is 464.4eV. 
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Figure S5.XPS binding energy from Ru 3p3/2 emission. XPS of Ru/CeO2 as synthesized 

shows a Ru 3p3/2 BE of 462.3eV 
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Figure S6. XPS binding energy from Ru 3p3/2 emission. Dry reforming was catalyzed by 

Ru/CeO2  at 500oC for 3 hours (so steady-state was reached). Feed molar composition was 

1:1:3 for CH4:CO2 :Ar. Space time was set to 0.07 seconds flowrate (calculated at the reactor 

temperature of 500oC). The catalyst was cooled in argon and analyzed immediately. The BE 

of Ru 3p3/2 is 462.0eV. 
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4. CO2 Methanation by Ru-doped Ceria:  The Role of the Oxidation 

State on the Surface 

4.1. Introduction 

The methanation reaction of CO2   

CO2  + 4H2 → CH4 + 2H2O(gas)  ΔG298K = −55.8 kJ mol−1 

has been a subject of much interest in recent years.1–29 Older work has been examined in 

several reviews.30,31 Previously32,33 we examined and discussed ceria doped with several 

cations and reported that Ru-doped ceria Ru0.05Ce0.95O2−δ, where δ depends on the degree of 

reduction) is active and selective for CO2 methanation. Doped oxides, such as 

Ru0.05Ce0.95O2−δ, are single-phase catalysts34,35 in which some of the cations have been 

replaced by other cations (e.g. Ru replaces some of the Ce atoms in the lattice of CeO2). 

When the methanation reaction is performed, the oxide catalyst is exposed to a reductant 

(H2) and an oxidant (CO2). When the reaction is run at the steady state the surface will have 

a steady state concentration of oxygen vacancies. Here we show that the concentration of 

these vacancies is an important factor in the activity of the catalyst.  

In addition, DFT calculations have shown that in many oxides there is a strong 

interaction between Lewis bases and Lewis acids.36 When an oxygen vacancy is created, two 

unpaired electrons are left behind, which makes the reduced oxide a very strong Lewis base. 

The more vacancies are created, the stronger the Lewis basicity of the surface. Conceptually, 

it is possible that an increase in basicity (which is an increase in the ability of the surface to 

donate electrons – in this case to CO2) will increase the reactivity of this compound. It is 

also possible for the surface to be too basic to allow the formation of a hydrogenated product 

from a carbonate.  
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Two mechanisms have been proposed for the methanation reaction catalyzed by metals. 

One assumes that CO2 is converted to CO which is then converted to methane.37–41 The other 

mechanism suggests that CO2 is methanated directly without the formation of a CO 

intermediate.42–45 The direct hydrogenation of CO2 on Ni(110) has been supported by 

density functional theory calculations and by experiments.46,47 In this mechanism CO2  is 

converted by reacting with adsorbed H. Previously, we proposed that the direct 

hydrogenation of a carbonate made from an oxide and CO2 using a metal that dissociated 

hydrogen provides an alternate pathway that minimizes the CO by-product.32 In this case the 

mechanism is dependent on both the metal and the support used. There is no reason why the 

mechanism of this reaction catalyzed by an oxide should be the same as one of the 

mechanisms mentioned above. We propose here that CO2 forms carbonates and these react 

with hydrogen to produce methane on a single-phase reducible bi-metallic oxide. The rate-

limiting step is carbonate formation. A mechanism that proceeds through the reduction of 

CO2 to CO, followed by subsequent CO reduction is unlikely in the case of the 

Ru0.05Ce0.95O2−δ catalyst, because exposure of the catalyst to CO + H2 reduces the catalyst 

and renders it inactive. 

4.2. Experimental 

4.2.1. Catalyst Preparation 

Ruthenium-doped ceria was prepared by a combustion method described in previous 

work.33 The XRD measurements were consistent with Ru atoms substituting the cations in 

the host oxide but do not prove that the dopants are in the surface layer. However, the fact 

that a signal from Ru is observed in XPS indicates that Ru is present on the surface or 
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subsurface. This conclusion is supported by the fact that the chemistry of ceria doped with 

Ru is very different from that of ceria.  

We preconditioned the Ru0.05Ce0.95O2−δ in three different ways: a “steady-state catalyst” 

(SSC), a strongly reduced catalyst (SRC), and an oxidized catalyst (OC).  

The oxidized catalyst (OC) is preconditioned by exposing the as-prepared catalyst to a 

flow of 5:1 argon:oxygen for 60 minutes at 450°C, then rapidly cooled to the reaction 

temperature while purging. The as-prepared catalyst is described in our previous work.  

The steady-state catalyst (SSC) is preconditioned by exposing the OC to a mixture of 

CO2, H2, and Ar, at 350°C for one hour at a total flow rate of 10 SCCM, the feed 

composition Ar:H2:CO2  = 6.5:4:1. The methanation reaction reaches the steady state under 

these conditions.  

The strongly reduced catalyst (SRC) is preconditioned by exposing the OC to a flow of 

30% CH4 in argon for 2.5 hours at 550°C. The SSC is less reduced than the SRC. 

 

4.2.2. Reactors 

Two reactors were used: a packed bed and a commercial reaction cell (the Praying 

Mantis with a high temperature reaction chamber (HVC), Harrick Scientific Corporation) 

with windows for Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). 

Reactivity data were collected using the packed-bed reactor, and DRIFTS data were 

collected using a separate DRIFTS reactor (unless otherwise noted).  

The packed bed was supported with inert quartz wool in a 0.4 cm diameter quartz tube. 

25 mg of the catalyst was used with a total flow rate of 10 standard cubic centimeters per 

minute (SCCM). The feed composition was 6.5:4:1 Ar:H2:CO2 , unless otherwise noted. The 
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temperature was controlled by a temperature controller (Omega CSC32) using a steel reactor 

block with heating cartridges that surrounded the reactor tube and pre-heated the gases. A 

thermocouple in the heating block controlled the temperature and the difference between the 

steady state bed temperature and the block temperature was less than 5°C at all relevant 

temperatures. This was determined by measurement in an inert bed. All experiments were 

carried out at atmospheric pressure.  

DRIFTS was performed using an FTIR spectrometer (Thermo Electron Corporation 

Nicolet 4700) coupled to the reaction cell. The reactor unit incorporates two 6X, 90° off-axis 

ellipsoid mirrors that are arranged to discriminate against specularly reflected radiation. The 

total flow rate and feed composition in the DRIFTS reactor were the same as those in the 

packed-bed reactor. 256 scans of resolution 4 were taken for all sample and background 

measurements.  

Both reactors used mass flow controllers (MKS) for the reactant and carrier gas (argon) 

flow, and a mass spectrometer (SRS RGA 200) to analyze the product gases. A small stream 

of product gas was sent to the mass spectrometer, and mass numbers 44, 40, 28, 18, 15, 4, 3, 

and 2 were assigned to carbon dioxide, argon, carbon monoxide, water, methane, deuterium, 

HD, and hydrogen, respectively, with appropriate subtractions for overlapping mass 

numbers. Argon was used as an inert gas and all pressures are normalized to the known 

argon flow. 

4.2.3. Experimental Techniques 

We use, unless otherwise stated, a total flow rate of 10 SCCM, the feed composition 

Ar:H2:CO2  = 6.5:4:1, and a temperature of 350°C.  
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To calculate the rate as a function of reactant partial pressures, a given ratio was run for 

one hour with a flow rate of 10 SCCM and 0.5 mg of the catalyst so that the CO2 conversion 

was below 5%. Five replicates were performed, varying the ratios randomly. The 

dependence of the methanation rate on the partial pressure of hydrogen was determined by 

changing the partial pressure of hydrogen, keeping the partial pressure of CO2 constant and 

adjusting the Ar pressure to keep the total pressure and flow rate constant.  

For the isotope experiments, deuterium (and no hydrogen) was used as a feed gas for the 

entire reaction. The gases were all from Praxair, purity 5.0, with the exception of deuterium, 

which was 99.7% pure.  

When pulses of hydrogen or carbon dioxide were introduced into the system, a 

Swagelok fitting with a Thermogreen septum was fitted immediately upstream of one of the 

reactors. One milliliter of gas was injected into the stream using a syringe. The procedure 

was standardized using an inert bed so that each pulse was reproducible.  

When pulses of formic acid were used, a vessel with argon and liquid formic acid was 

prepared and heated to 50 °C for a suitable vapor pressure. This vapor with formic acid and 

argon was then injected, using a warm syringe, directly upstream of the catalyst bed in a 

stream of argon flowing at 10 SCCM. 

4.3. Results and Discussion 

4.3.1. Three states of the Ru0.05Ce0.95O2 Catalyst 

In the methanation reaction, the catalyst is exposed to H2, which is a reductant, and to 

CO2, which is a mild oxidant. As the gases pass through the reactor, the amount of H2  and 

CO2 in the gas is diminished and CH4 and H2O are formed. CH4 is a reductant and water is 

able to oxidize the reduced oxide. Therefore, all sections of the reactor are exposed 
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simultaneously to a reducing agent and an oxidizing agent. The reductant creates oxygen 

vacancies and the oxygen annihilates them. At the steady state the surface of the catalyst 

will have some oxygen vacancies; we know this because a mass balance shows more oxygen 

leaving the reactor than entering. The oxygen-vacancy concentration depends on the 

competition between reduction and oxidation.  

Previous work33 suggested that the Ru0.05Ce0.95O2−δ catalyst surface is reduced (i.e. it has 

oxygen vacancies) when the methanation reaction is run under steady-state conditions at 

350°C and a 4:1 H2/CO2 feed composition. Here we investigate further how the presence of 

oxygen vacancies on the surface of the catalysts affects their activity for CO2 methanation. 

To do this we preconditioned the Ru0.05Ce0.95O2−δ catalyst to obtain a “steady-state catalyst” 

(SSC), a strongly reduced catalyst (SRC), and an oxidized catalyst (OC) as described earlier 

in the experimental section. 

 

4.3.2. The Mechanism of Steady-state Methanation Reaction on the SSC 

At the steady state, under the conditions specified above, CO2 conversion is 40% and the 

selectivity to methane is 99%.33 This subsection describes transient chemical experiments 

and in situ IR spectroscopy used to study the SSC Ru0.05Ce0.95O2−δ catalyst.  

The transient response of the catalyst was determined by using pulse experiments. The 

surface of the catalyst, when the methanation reaction reached the steady state, has carbon-

containing compounds that stay on the surface after the reactants are purged. Their reactivity 

is observed by first preparing the SSC as described in the experimental section. After that, 

we turned off the flow of the CO2 and H2 mixture, and then purged the reactor with Ar until 

there was no CO2, CH4, or H2 in the effluent. Throughout these procedures, the temperature 
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was maintained at 350 °C. After purging was completed, we sent seven H2 pulses through 

the reactor. Fig. 1 shows that the SSC catalyst produces methane, when exposed to the 

hydrogen pulses, even in the absence of CO2 in the gas. Evidently, when H2 and CO2 react at 

the steady state, they generate carbon-containing compounds on the surface of the SSC, and 

these react with hydrogen. There is no methane production when the eighth H2 pulse goes 

through the reactor.  

After the catalyst is exposed to seven H2 pulses, we pass through the reactor CO2 pulses 

and find that they produce CO and no methane. The same is true if the reaction is run at the 

steady state, purged, and then only CO2 is added. This indicates two things. (1) Exposure to 

the H2 pulses did not create surface hydrogen species that react with CO2 to form methane. 

(2) After exposure to the hydrogen pulses, the surface is reduced and CO2 oxidizes it and 

produces CO.  

Finally, after exposure to the CO2 pulses, we sent H2 pulses through the reactor and 

found that methane is produced again. This indicates that the exposure to CO2 has reoxidized 

the surface (since CO was formed) and created carbonaceous species that react with H2 to 

produce methane.  
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Figure 1. Composition of the effluent produced by the exposure of SSC to seven H2 

pulses, followed by exposure to three CO2 pulses, followed in turn by exposure to five H2  

pulses, all at 350 °C. Prior to exposure to the pulses, the catalyst was exposed to CO2  + H2  

at 350 °C until the methanation reaction reached the steady state and then it was purged with 

Ar until no other gases were detected in the effluent. The arrows indicate whether the 

ordinate scale for a graph is at the left or at the right. 

 

In the hope of gaining some insight into the mechanism of the hydrogenation reaction, 

we performed CO2 methanation with D2  instead of H2 . A clear isotope effect was observed 

(Fig. 2). The rate of methane production was measured in a differential reactor as described 

in the experimental section. Methanation with deuterium is faster than methanation with 

hydrogen, at all temperatures between 200 °C and 350 °C (Fig. 2 inset). Such a “negative 



 

 61 

isotope effect” has been observed before on metallic catalysts for carbon oxide 

hydrogenation.48 Since at least ten elementary reaction steps are needed for methane and 

water formation and eight of them involve hydrogen, we did not attempt a detailed analysis 

of these observations.  

 

Figure 2. Deuterium isotope effect during CO2 methanation on SSC. The rate of CH4 

and CD4 formation for two experiments, one with 4:1 moles CO2:H2, and the other with 4 : 1 

moles CO2  : D2. The rates were determined after waiting one hour to make sure that the 

steady state was established. The error bars represent 95% confidence interval using four 

replicates. The inset shows the CH4/CD4 ratio at different temperatures. 
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Figure 3. Methanation rate as a function of reactant partial pressures. The rates were 

determined after the reaction ran for one hour to reach the steady state. The conversion of 

CO2 was below 5%. Error bars represent one standard deviation of five replicates. The 

reactant ratio was varied randomly. 

 

To find whether the rate determining step involved hydrogen and/or carbon dioxide, the 

dependence of the methanation rate on the partial pressure of hydrogen was determined. A 

similar experiment was performed to find the rate dependence on the partial pressure of CO2  

(at constant H2 partial pressure and constant total pressure). The results are shown in Fig. 3. 

For the conditions used here, the methanation rate changes with the partial pressure of CO2, 

but not with the partial pressure of H2 . Of course the methanation rate would go to zero if 
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the partial pressure of hydrogen goes to zero, but over the pressure range we report, the rate 

was independent of hydrogen pressure. The independence of the rate on the pressure of 

hydrogen, seen under the conditions used here, indicates that hydrogen adsorption is very 

rapid and changing it (by changing the hydrogen pressure) has no effect on the rate of 

methane formation. This is not the case for CO2 adsorption. These observations suggest that 

the methanation rate is controlled by the formation of the carbon containing intermediates 

that are subsequently hydrogenated.  

 

Figure 4. Temperature programmed H2 -D2 exchange reaction on the SRC. 

To further understand the chemistry of H2, we studied how the SSC catalyst performs the 

exchange reaction H2  + D2 → 2HD. Fig. 4 shows the results of temperature-programmed 

isotope exchange reaction (TPR) performed on the SRC catalyst. The TPR results for the 

other versions of the Ru0.05Ce0.95O2−δ catalyst (i.e. strongly reduced or oxidized) look 

similar; however, there are differences in the light-off temperature and the temperature at 

which the TPR curves level off. The magnitudes of these temperatures are given in Table 1. 

We see that the SSC catalyzes the exchange reaction at low temperature. The exchange 
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starts below 25 °C (which is the lowest temperature to which the reactor can be cooled), 

while the oxidized, undoped ceria (made by the same combustion method as was 

Ru0.05Ce0.95O2−δ and exposed to oxygen for one hour at 450 °C) starts to perform the 

exchange reaction at 325 °C. There is a substantial difference between oxidized CeO2 

(which we take to be CeO2 with very few oxygen vacancies) and Ru-doped ceria. Doping 

with Ru changes substantially how ceria affects the exchange reaction. It is customary to 

assume that the rate of H–D exchange is limited by the dissociation of H2. This implies that 

the SSC dissociates H2 readily. Note, however, that oxidized Ru0.05Ce0.95O2−δ behaves, for 

the exchange reaction, like the steady-state Ru0.05Ce0.95O2−δ and also like metallic Ru. 

However, these three catalysts have different performance for methanation. This indicates 

that these differences do not come from the ability to adsorb and dissociate hydrogen. 

Table 1. Results from temperature programmed H2 –D2 exchange reaction for various 

Ru0.05Ce0.95O2−δ catalysts 

Catalyst H2/D2 exchange 

lightoff temperature 

(oC) 

Temperature at which 

HD reaches gas-phase 

equilibrium (oC) 

Oxidized Ru0.05Ce0.95O2-δ <25 45 

Reduced Ru0.05Ce0.95O2-δ 

(with CH4) 

75 125 

Steady State 

Ru0.05Ce0.95O2-δ 

<25 45 

Oxidized CeO2 325 N/A 

Ru Metal <25 43 



 

 65 

 

4.3.3. IR Detection of Surface Carbonates 

The IR spectrum in the wavenumber range 1700–1200 cm−1 has a wide band, and many 

attempts have been made to deconstruct the spectrum into a sum of various peaks, which 

were assigned to a variety of carbonate-like species.49–51 These assignments were made for 

undoped ceria and it is not clear whether they are applicable to ruthenium-doped ceria. 

Because of this they are not used here. Instead, we generally ascribe the carbon containing 

surface species that absorb between 1700 and 1200 cm−1 as carbonates with multiple 

structures.  

 

Figure 5. DRIFTS of carbonate-like species taken while flowing H2 and CO2 or D2  and 

CO2  through the reactor at 350oC 

We used DRIFTS measurements to identify the species present on the surface during 

steady-state methanation of CO2. In Fig. 5 we show the IR absorption spectra of the system 
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after it reached the steady state for the methanation reaction with H2 or with D2. There is a 

shift observed in some of the features in the spectrum when D2 is used as a methanation 

reactant instead of H2. This indicates that there must be hydrogen containing species 

absorbing in the region, possibly bicarbonates.  

 

 

Figure 6. DRIFTS of CO2 methanation at 350 °C taken at different times after the 

introduction of H2 /CO2 gas into the reactor. The solid line is the spectrum taken at 1 minute, 

and the spectra above the solid line were taken at 5, 20, and 50 minutes after H2 /CO2 

introduction. The amount of carbonate increases with time on stream. Background for all 

spectra was taken after 30 seconds of feed introduction. 

 

The evolution of the IR absorption spectra after stoichiometric carbon dioxide and 

methane are added is shown in Fig. 6. These data were taken as follows: the OC was 

prepared and the reactor was completely purged at 350 °C in argon, and IR spectra were 

taken at 1, 5, 10, 20, and 50 minutes after a mixture of CO2 and H2 was introduced in the 

reactor. When the feed is switched to CO2  + H2, it takes 2 minutes for CH4 production to 
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reach the steady state. The carbonate build up is very rapid initially and the spectrum is 

almost complete after 1 minute. However, additional carbonates are slowly formed (as seen 

by the increased IR absorption) and it takes 50 minutes, after the reaction has reached the 

steady state, for the IR spectrum to stop changing. We conclude that the additional 

carbonates, produced after the first minute, do not affect the methanation reaction: they are 

spectators rather than reaction intermediates.  

 

Figure 7. Successive DRIFT spectra taken after each hydrogen pulse passed through the 

reactor containing SSC. Prior to H2 introduction, the catalyst performed CO2  methanation at 

the steady state for 1 hour at 350 °C. 

Fig. 7 shows the IR spectra taken as follows: we ran the reaction of CO2 and H2  at 350 

°C for one hour and then we shut off the supply of CO2  and H2, injected eight H2  pulses, 

followed by a steady stream of hydrogen gas in argon. The system produces methane when 

the first seven pulses pass through the reactor, after which methane production stops. The 

further introduction of a steady stream of hydrogen does not produce any more methane; 

however, the intensity of the carbonate spectrum continues to decrease during this time as 
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indicated by the dotted lines in Fig. 7. If all carbonates on the surface reacted with H2 to 

produce methane there should be no IR absorption at the frequencies assigned to carbonates. 

However, the IR spectrum shows that at the time when pulsing H2 through the system yields 

no methane, there is a substantial amount of carbonate left on the surface. This experiment 

shows that most surface carbonates are spectators and that the methane is formed by the 

reaction of H2 with a minority carbonate species.  

 

Figure 8. DRIFT spectrum of oxidized Ru0.05Ce0.95O2−δ in Ar at 110 °C after injection of 

formic acid in the reactor, compared to the DRIFT spectrum of the carbonaceous 

compounds on the SSC performing CO2 methanation at 350 °C. 

 

It is also interesting to note that upon introduction of H2 to the SSC, the intensity of the 

carbonate peaks between 1600 cm−1 and 1300 cm−1 decreases uniformly. The peaks below 

1300 cm−1 behave in an opposite manner: they absorb more light as the hydrogen reacts with 
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the surface. We do not have a reliable explanation for this; a possibility is that some 

carbonates are converted to bicarbonates.  

 

Figure 9. DRIFT spectra during CO2 methanation at 350 °C of Ru0.05Ce0.95O2−δ catalysts 

having different degrees of reduction. Initially, the catalyst was reduced in CH4 at 550 °C for 

2.5 hours (to prepare SRC) and cooled to 350 °C before H2  + CO2 was introduced and the 

spectrum was taken (c). In the second experiment SRC was exposed to CO2 , at 350 °C for 

30 minutes and then the catalyst was exposed to H2  + CO2  and the spectrum was taken (b). 

In the third experiment SRC was exposed to CO2 at 550 °C for 60 minutes and then H2  + 

CO2 was introduced at 350 °C and the IR spectrum was taken (a). We subtracted the 

absorbance spectrum of SRC from all three spectra. 

 

When the reaction is run at the steady state and then the reactor is purged, the 

concentration of carbonaceous surface intermediates must be equal to or greater than the 

amount of methane subsequently produced by hydrogen pulses. Using the data from the 
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experiment in Fig. 1, the amount of methane produced from seven hydrogen pulses is 1.9 × 

10−6 mol. This corresponds to 5.7 × 10−6 moles of carbonaceous surface intermediates per 

square meter of catalyst if the intermediates are not stacked. This would be equivalent to a 

cross section of 0.29 nm2 per molecule. This high carbonate surface density may be due to 

more than one adsorption layer and suggests that the late-forming “spectator” carbonates 

(above) can be mobilized into the reaction pathway.  

 

Table 2. Methane yield for the CO2  + H2 reaction over the SSC and SRC as well as the 

yield over the SRC exposed to CO2 prior to running the methanation reaction.  

* 30% CH4 in argon at 550oC for 2.5 hours. 

 

 

 

 

 

 

 

Discussion of CO2 methanation on other catalytic systems often invokes a mechanism 

that has a formate intermediate. To test whether such an intermediate is present on our 

catalyst, we exposed the oxidized catalyst (OC) to formic acid at 25 °C. When the surface is 

heated, the compound formed by formic acid adsorption decomposes, at 150 °C, into CO2 

Conditions Methane 

yield  

Steady state CO2  methanation  40% 

SRC (i.e. after reduction treatment*) 3% 

SRC (i.e. after reduction treatment*) + 60 minutes 

in 10% CO2  at 350 C 

10% 

SRC (i.e. after reduction treatment*) + 60 minutes 

in 10% CO2  at 550 C 

35% 
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and water (observed downstream in the mass spectrometer). This suggests that a formate 

would not be stable at the methanation temperature. If we pass formic acid through the 

reactor at 350 °C, the formic acid decomposes into CO2 and water, and the IR spectrum 

shows the presence of carbonates but not of a formate. We assume that the carbonate is 

formed by the CO2 produced by the decomposition of the formic acid. Running formic acid 

and hydrogen through the SSC bed at 350 °C produces methane. We assume, given the fact 

that the formic acid decomposes at 150 °C, that the methane is formed by the reaction of H2 

with the CO2  produced by formic acid decomposition.  

The IR spectrum of the compound formed by exposing the oxidized catalyst (OC) to 

formic acid at 115 °C (before decomposition) is shown in Fig. 8 together with the IR 

spectrum of the catalyst during steady-state methanation reaction. The compound formed by 

exposing the oxidized catalyst to formic acid has peaks at 1544, 1369, 1355, and 1292 cm−1. 

When heated to desorb the carbonates, no formate peaks were observed, and the initial 

surface species – formed with very small doses of reactants – were not characteristic of 

formate. When the spectra before and after addition of hydrogen to the surface species to 

produce methane are subtracted, the result did contain absorbance peaks at the values we 

observed for formate. While the IR spectra do not rule out the presence of the formate, the 

fact that the formate decomposes at temperatures much lower than the steady state 

methanation temperature suggests to us that the compounds formed by exposing the surface 

to formic acid are not likely to be methanation intermediates. 

4.3.4. The Chemistry of the Oxidized Catalyst (OC) 

The oxidized catalyst exposed to a mixture of H2 and CO2 produces very little methane 

initially at 350 °C. However, in time the hydrogen reduces the surface and the performance 
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of the system drifts towards that of the steady-state catalyst. This is of course expected. The 

OC surface does not adsorb CO2 at 350 °C and no carbonates are formed by exposure to 

CO2. Pulsing carbon dioxide over the OC while measuring the IR spectrum showed no 

carbonates.  

However, if the OC is exposed to CO (to reduce it), carbonates appear. We think that 

this takes place in two stages. Initially CO reduces the surface to form CO2 and oxygen 

vacancies. Once oxygen vacancies are present, the CO2 produced by the oxidation of CO is 

able to form carbonates. The IR spectrum of these carbonates is very similar to that observed 

when the methanation is carried out at the steady state. The main conclusion drawn from 

these experiments is that the fully oxidized Ru0.05Ce0.95O2−δ surface does not act as a 

methanation catalyst unless the surface is sufficiently reduced. 

4.3.5. The Chemistry of the SRC Surface 

We have shown that the surface of Ru0.05Ce0.95O2−δ is reduced when the methanation 

reaction is performed at the steady state and that if it is not reduced it is not active – i.e. the 

OC is not active. Next we show that the degree of reduction matters: if the catalyst is too 

reduced (i.e. it has too many oxygen vacancies), its performance is poor.  

Table 2 shows the performance of the Ru0.05Ce0.95O2−δ catalyst having different degrees 

of reduction. When a mixture of H2 and CO2 is run through the reactor with a SRC catalyst, 

CO2 is converted to CO, hydrogen is converted to water, and the methane yield is 3% (Table 

2). If the SRC is exposed to a flow of 10% CO2 in argon at 350 °C for one hour, CO is 

produced and the surface is partially reoxidized. The catalyst obtained in this way was used 

for methanation, and the methane yield was 10% (Table 2). The SRC exposed to 10% CO2 

in argon at 550 °C for one hour (Table 2) has a methane yield of 35%; this is better than the 
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SRC but not as good as the SSC. These experiments show that over-reducing the Ru-doped 

oxide diminishes its catalytic activity severely, but the reduced catalyst can be reactivated by 

oxidation with CO2. However, if we run through the SRC bed a mixture of CO2 : H2  = 1 : 4 

at 350 °C for one hour, only very small amounts of methane are produced. This indicates 

that in the presence of H2, carbon dioxide is very slow to reoxidize the surface. This is not 

surprising since H2 acts as a reductant.  

The variation of methane yield with the degree of reduction might be related to a change 

in the structure of surface intermediates. To investigate this we have taken a DRIFTS 

spectrum of the SRC exposed to CO2  + H2. This is shown as a red dotted line in Fig. 9. The 

double peak at ~2100 cm−1 is typical of gas-phase CO and consistent with the fact that the 

reduced catalyst converts CO2 to CO. If the reactor is purged, this double peak decreases 

with the same rate as the other gas-phase peaks due to methane. As discussed above, this 

double peak is not present on the SSC. For these reasons, we conclude that these peaks are 

mainly gas-phase CO. The carbonate band is visible and the spectrum has peaks at 1523 

cm−1, 1373 cm−1, and 1267 cm−1. In all spectra shown in Fig. 9, we have subtracted the 

spectrum of the SRC that has not been exposed to CO2.  

Next we oxidized partially the SRC by exposing it to CO2 for 30 minutes at 350 °C. This 

limited exposure to CO2 does not oxidize the catalyst to completely recover its activity 

towards CO2 methanation (see Table 2). After having exposed the SRC to CO2  (as described 

above), we ran CO2 + H2 through the reactor at 350 °C, and took the spectrum shown in the 

middle of Fig. 9. The intensity of the carbonate band is increased and its peaks shift to 1485 

cm−1, 1373 cm−1, and 1018 cm−1. Therefore this partially reoxidized catalyst, which is more 
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active for methanation than the SRC (see Table 2), produces different carbonates on its 

surface.  

In the third experiment we exposed the SRC to CO2  (10% CO2 and 90% Ar) at 350 °C 

for one hour. After that we introduced CO2 and H2 into the reactor at 350 °C, and took the IR 

spectrum shown in the top of Fig. 9. The catalyst oxidized with CO2 for one hour is 

practically as active as the SSC. The absorption band of the carbonates on this surface is the 

most intense and its peaks shift again (as compared to the other two spectra). The peaks are 

at 1454 cm−1, 1467 cm−1, 1126 cm−1, and 1009 cm−1.  

Although it is difficult to assign these peaks to specific structures on the surface, it is 

clear that different carbonates are present on the surface depending on the degree of 

reduction of the surface. This suggests that the carbonates present in the bottom spectrum 

cannot be hydrogenated to methane, those in the middle spectrum are hydrogenated slowly, 

and those in the top spectrum are more readily hydrogenated (see Table 2 and Fig. 9).  

The hydroxyl peaks in the 3600–3700 cm−1 region indicate that running the methanation 

reaction on the SRC produces fewer hydroxyls than on the more oxidized surfaces. In 

particular, in the top spectrum in Fig. 9, the hydroxyl band is much larger and it extends to a 

lower wavenumber than in the other two spectra. This is natural since there is less oxygen on 

the reduced surface and the oxygen that is present is likely to make strong bonds with the 

reduced oxide and be less reactive towards hydrogen. Although the hydroxyls are present, 

they do not react with CO2  (according to the experiments described above, in which turning 

off the H2 flow during methanation reaction stops the production of methane).  

In summary, too much reduction of the Ru0.05Ce0.95O2−δ catalyst diminishes its activity. It 

is likely that this happens because on this system CO2 forms different, less reactive 
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carbonates. The reduced catalyst is also less active for H2/D2 exchange but this is not likely 

to limit its methanation activity because the exchange does occur at 75 °C (see Table 1). 

 

4.4. Conclusion 

We have investigated methanation on the same combustion synthesized Ru-doped ceria 

catalyst preconditioned in three distinct ways. One (OC) was exposed to oxygen for a long 

time before being used as a catalyst. Another (SSC) was exposed to H2 and CO2 until the 

methanation reaction reached the steady state. A third (SRC) was prepared by exposure to 

methane at 550 °C for 2.5 hours. We performed serial pulse experiments using H2, CO2, and 

CO and found that the OC is inactive when exposed to H2  and CO2  until it is reduced (by 

H2 or CO); the surface is continually reduced until the surface reaches the suitable state of 

reduction, at which point the methanation reaction reaches a steady state where only 

methane and water are produced. This means that OC exposed to H2 and CO2 evolves to 

become the SSC. The OC surface reacts readily with H2 and CO and catalyzes the H2 /D2 

exchange reaction at temperatures below 25 °C. This is a reactive surface but it is not a good 

methanation catalyst until the surface is properly reduced.  

The SRC catalyst does not methanate a mixture of CO2 and H2. It is also less active in 

catalyzing the H2 /D2 exchange. Prolonged exposure of the SRC to CO2 will oxidize the 

surface until it is as good as a methanation catalyst as the SSC. However, exposure to H2 and 

CO2 does not oxidize the surface to an active methanation state; CO2  alone can reoxidize the 

SRC but not when H2 is present. When the SRC is exposed to CO2 and H2 , carbonates are 

formed on the surface but they are not active towards methanation. The IR spectra of these 
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carbonates differ from that of the carbonates formed when the reaction is run under steady-

state conditions (reached when starting from the oxidized catalyst).  

The SSC catalyst is a partially reduced Ru0.05Ce0.95O2−δ surface and the degree of 

reduction is important for determining its performance. We observed a similar situation for 

the dry reforming of methane over the same catalyst.52 If the reaction is carried out at the 

steady state, then purged, and then exposed to only hydrogen, methane is produced. Methane 

is not produced if the surface is first exposed to only H2, and then to only CO2. We conclude 

that methane is formed by the reaction of hydrogen with a carbon-containing intermediate 

formed by the adsorption of CO2. IR spectroscopy, when the reaction is run at the steady 

state, shows a band in a wave-vector region previously attributed to carbonates. We found 

that most of these carbonates are not intermediates in the methanation reaction. Spectra 

taken at various times after the methanation reaction was initiated show that methane 

production reaches the steady state in less than a minute and most (but not all) carbonate 

spectrum is established in the first minute. However, a slight build-up of carbonates 

continues long after methane production reaches the steady state. If the reaction is run at the 

steady state and then the CO2 supply is turned off and IR spectra are taken, we find that the 

hydrogen continues to produce methane for a while, and the intensity of the carbonate band 

changes: for most wavelengths the absorption decreases but for some wavelengths 

(corresponding perhaps to bicarbonates) it increases. A strong absorption in the carbonate 

region is present even after prolong exposure to hydrogen no longer produces methane. 

These combined experiments suggest that a carbonate is a reaction intermediate, but most 

surface carbonates are not involved in methane production. The methanation rate depends on 

CO2 partial pressure and is independent of the partial pressure of H2. The lack of H2 -
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pressure dependence, together with the low temperature at which the D2 –H2 exchange takes 

place, indicates that the rate of supplying hydrogen is not a limiting step.  

The mechanism of the methanation reaction is very complicated because one must add 

eight hydrogen atoms to the CO2 and remove two water molecules from the surface. 

Experiments using formic acid or CO instead of CO2 suggest that the formate created by 

formic acid adsorption is not an intermediate. During the hydrogenation process it is very 

likely that a species containing carbon and one oxygen atom and some hydrogen is an 

intermediate. However this intermediate is not what one forms by exposing the surface to 

hydrogen and CO. Such a feed contains two strong reductants and reduces the oxide without 

producing any methane.  

It is possible that an increase in basicity (which is an increase in the ability of the surface 

to donate electrons) may have something to do with the fact that the catalyst is a reduced 

(but not too reduced) surface. In particular, it is possible that electron donation to CO2 to 

produce a negatively charged CO2 will increase the reactivity of this compound. 
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5. Methane Oxidation by Lanthanum Oxide Doped with Cu, Zn, Mg, 

Fe, Nb, Ti, Zr, or Ta:  The Connection Between the Activation Energy and 

the Energy of Oxygen-vacancy Formation 

5.1. Introduction 

Oxides catalyze many interesting alkane-activation reactions, but often their 

performance is poor. One of the strategies for improving an oxide’s catalytic activity is to 

replace a fraction of the cations in its surface layer with other cations. For example, to 

improve a La2O3 catalyst we might replace some of the La ions with Mg. In this case we call 

Mg a substitutional dopant (or dopant) and La2O3 the host oxide. 

It has been frequently assumed that the energy of oxygen-vacancy formation, ∆Ev, is an 

indicator of the reactivity of surface oxygen atoms: smaller ∆Ev means a more reactive 

surface oxygen. This is relevant to oxidation reactions, catalyzed by oxides, which take 

place through a Mars–van Krevelen mechanism. In this mechanism the reductant (e.g., an 

alkane) reacts with one or more oxygen atoms in the surface layer, is converted to the 

oxidation product, and causes the formation of one or more oxygen vacancies in the surface. 

The reduced oxide made in this way is reoxidized by gas-phase O2. In most cases the 

reoxidation step is fast (at least at the oxygen concentrations used in most experiments) and 

therefore the overall oxidation rate is controlled by the reaction of the reductant with the 

oxygen atoms in the surface layer. In the case of alkane oxidation the rate-limiting reaction 

is the dissociative adsorption that converts the gas-phase R-H into an alkoxide (R–Os, where 

Os is an oxygen atom in the surface layer) and a hydroxyl (H–Os). If the surface oxygen 

atoms are made more reactive (by some chemical modification such as doping), the R–Os 
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and the H–Os bonds are stronger, and the energy of the dissociative adsorption reaction, 

∆Edis, is higher (more exothermic). According to the Brønsted-Evans-Polanyi rule there is a 

linear relationship between the activation energy Ea,dis for the dissociative adsorption and the 

reaction energy ∆Edis: the more exothermic the reaction, the lower the activation energy. 

This chain of assumptions leads us to state the following rule: the smaller the energy ∆Ev  of 

oxygen vacancy formation, the smaller the activation energy Ea,dis for the dissociative 

adsorption of an alkane. Since dissociation is the rate limiting step in alkane activation, Ea,dis 

dominates the measured effective activation energy, Ea, of the alkane oxidation reaction. In 

summary, we expect that the effective activation energy Ea for methane oxidation by 

various doped-lanthana catalysts should be an increasing function of the energy of oxygen 

vacancy formation ∆Ev  in the surface of the doped oxide. 

 In this article we test this qualitative rule suggested by the calculations, by preparing 

La2O3   doped with Cu, Zn, Mg, Fe, Nb, Ti, Zr, or Ta. We use density functional theory 

(DFT) to calculate ∆Ev for these systems and experiments to measure the effective activation 

energy Ea for catalytic oxidation of methane. Our results confirm the rule. Moreover, we 

find that the measured Ea is linearly related to the calculated ∆Ev. The graph of Ea versus 

∆Ev consists of two straight lines: one valid for La2O3 doped with lower-valence dopants and 

the other for La2O3 doped with higher-valence dopants. 

 We emphasize that it is practically impossible to prepare a doped oxide surface that 

is guaranteed to have the same morphology and composition as the models used in 

calculations. Because of this, we expect the correlations suggested (and tested) here to be 

qualitative only. If deviations occur, we do not know whether they are due to errors in DFT 

or to our inability to prepare the intended material. 
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5.2. DFT Calculation Methodology 

The details of the calculations were explained in previous work [1]. Briefly, spin-

polarized DFT calculations were performed using the VASP [2] program, with the rPBE 

functional [3] and PAW basis [4]. We used a La2O3  (001) slab 15 atomic layers thick, with 

a 2 x 2 supercell. The size of the vacuum layer was 15 Å and we tested that the results did 

not change when the size was increased. All ionic positions were optimized until the forces 

acted on them were < 0.02 eV/Å. Applying Hubbard’s correction does not qualitatively 

affect the results [1] and therefore we did not use DFT+U. One should keep in mind that 

DFT calculations are not accurate and that our goal is to verify a qualitative rule. 

5.3. Experimental Methodology 

It is difficult to determine for certain whether a catalyst is substitutionally doped. The 

possibility that the dopant forms very small oxide clusters on the surface of the host oxide is 

very difficult to rule out because such clusters will not be detectable by XRD and will have 

an XPS signature different from the bulk oxide of the dopant. Nevertheless, we considered 

our La2O3 catalyst to be doped when (1) lanthanum oxide (or oxy-carbonate) is the only 

phase present in XRD and (2) the dopant is detectable by XPS. The latter condition indicates 

that the dopant is present at or near the surface. For each synthesis of the doped oxides, the 

dopant concentration was varied so that the material met the conditions (1) and (2). These 

precautions do not guarantee that we have prepared a doped oxide since the dopants might 

make oxide clusters that are not crystalline or large enough to be detected by XRD. 

All catalysts were prepared by combustion synthesis, a method employed extensively by 

Hegde [5]. The precursors were lanthanum(III) nitrate, titanium(IV) oxyacetylacetonate, 

niobium(V) ammonium oxalate, tantalum(V) chloride, zirconyl nitrate, zinc(II) nitrate, 
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magnesium nitrate, copper(II) nitrate, iron(III) nitrate. Oxalic dihydrazide (ODH) was used 

as fuel. Typically, 2.50 g of lanthanum(III) nitrate hexahydrate, and the appropriate amount 

of dopant precursor (e.g., 80 mg of titanium oxyacetylacetate to make 5% titanium-doped 

La2O3) and of ODH (0.85 g for previous example) are dissolved in a minimal amount of 

water (Millipore). This mixture is put in a PyrexTM dish and placed into a furnace, which is 

heated to 450 oC to induce spontaneous combustion. The combustion takes place very 

rapidly and produces an oxide powder. The combustion method for doped-oxide synthesis 

starts with a solution in which the cations of the dopant and those of the host oxide are 

uniformly mixed and the formation of the oxide is very rapid, which minimizes the 

opportunity for phase separation into segregated oxides. 

X-ray Diffraction (XRD, Philips X’PERT diffractometer) and X-ray photoelectron 

spectroscopy (XPS, Kratos Axis Ultra X-ray Photoelectron Spectrometer) measurements 

were performed on all catalysts to confirm that the material has the structure of lanthanum 

oxide and that the dopant is present near the surface. 

Catalytic characterization was performed with a packed bed reactor with a very short 

residence time (differential reactor). 25 mg of catalyst was mixed with 50 mg of 200 mesh 

GC-grade alumina and supported in the center of a quartz tube (4 mm inner diameter) with 

quartz wool. Gases were delivered using mass-flow controllers (MFCs, supplied by MKS). 

The mole ratio of methane:oxygen:argon was maintained at 1:1:3. Catalyst void fraction was 

measured volumetrically with methanol and the gas flowrate was set such that the space 

time was 0.18 s calculated at 20 oC, unless otherwise noted. The reactor effluent was 

measured by differentially pumped mass spectrometry (SRS). All gases had a purity of at 

least 99.99 %. The temperature was controlled and varied using a programmable controller 
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(OMEGA CSC32). Software for the control and logging of the reactor studies was written 

using LabViewTM. Effective activation energies were calculated by performing linear 

regressions on Arrhenius plots. The data chosen to be regressed had small, but non-zero, 

methane conversion in order to determine an accurate conversion rate. 

5.4. Results and Discussion 

To avoid the formation of separate dopant oxide-phases, we kept the molar concentration 

of tantalum and niobium at 1 %. Titanium, magnesium, and zinc allowed a doping level of 

2.5 % without showing separate dopant-oxide phases in XRD. Finally, the concentration of 

zirconium, copper, and iron dopants had to be 5 % to be observable in XPS. Even at this 

high concentration no phase separation was observed in XRD.  
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Figure 1. XPS of the Fe 2p orbital of iron in Fe0.1La1.9O3. XPS shows Fe is present on 

the surface of the Fe0.1La1.9O3 particles. Furthermore, iron is likely to be in the +3 state 

based on a 2p3/2 binding energy of 710.7 eV. 

 

As an example, we show in Fig. 1 the XPS spectrum of 5 % iron-doped lanthanum 

oxide. XPS shows the presence of iron on the catalyst surface and suggests that the iron is in 

the +3 oxidation state. XRD of 5 % iron-doped lanthanum oxide is shown in Fig. 2 and is 

representative of all the catalysts discussed herein. La2O3 is the predominant phase with 

some lanthanum oxy-carbonate present. The presence of an oxy-carbonate at the surface of 

La2O3 has been reported previously [6].  
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Figure 2. X-ray diffraction of 5 % iron-doped lanthanum oxide, Fe0.1La1.9O3. XRD 

shows predominantly La2O3 with one peak corresponding to lanthanum oxy-carbonate 

(which forms when the sample is exposed to the atmosphere). No iron-containing phase is 

observed 

 

Temperature-programmed reaction measurements for doped lanthanum oxide catalysts 

show that methane is oxidized to synthesis gas, carbon dioxide, and water, with (1 %) 

conversion usually starting at 450 oC. The exceptions were zirconium-doped and tantalum-

doped La2O3 , which showed no activity below 500 oC. A typical conversion-temperature 

graph is shown in Fig. 3, for 2.5 % titanium-doped lanthanum oxide catalyst. The TPR data 

were used to determine activation energies (Fig. 4). We used low-conversion data for rate 

measurements to ensure that we have a differential reactor.  

 

Figure 3. Temperature-programmed reaction of methane with oxygen catalyzed by 2.5 

% titanium-doped lanthanum oxide. Methane conversion was calculated from carbon 
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monoxide and dioxide concentrations measured by mass spectrometry. Temperature was 

ramped linearly while the feed composition was held constant at a ratio of CH4:O2:Ar 1:1:3, 

with a space time of ~0.2 s 

 

Figure 5 and Table 1 compare the effective activation energy (derived from the slope of 

a Arrhenius plot of ln(r) vs 1/T (see Fig. 4) where r is the rate of methane consumption) to 

the oxygen-vacancy formation energy calculated by DFT. The dependence of Ea on ∆Ev  can 

be fitted by two straight lines: one for Cu-, Zn-, Mg- and Fe-doped La2O3  and the other for 

Nb-, Zr-, Ti-, and Ta-doped La2O3  and the undoped La2O3 . 

 

Figure 4. Arrhenius plots for methane oxidation catalyzed by La2O3  and doped La2O3  

We suggest that the reason for the existence of two curves can be understood based on 

the difference between the valence of the dopant and that of La. The valence of a dopant is, 
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by definition, the valence the dopant has in its own oxide. For example, an Mg dopant is 

divalent because its only oxide is MgO. This definition cannot be used a priori for atoms that 

form multiple stable oxides. For example, NbO, NbO2, and Nb2O5 are all stable so it is 

difficult to decide a priori what valence Nb has when it is a substitutional dopant in La2O3. 

We use the term ‘lower valence’ (or ‘higher-valence’) dopant when the valence of the 

dopant is lower (respectively, higher) than the valence of the cation of the host oxide. For 

example, Mg is a lower-valence dopant in La2O3, and Zr is a higher-valence dopant in 

La2O3. 

 

Figure 5. The dependence of the measured effective activation energy for methane 

oxidation on the energy of oxygen-vacancy formation calculated by DFT. Diamonds 

indicate lower-valence dopants. Circles indicate higher-valence dopants 

 

The DFT calculations have shown that the presence of a lower-valence dopant (e.g., Fe, 

Cu, Mg, Zn) in the surface of La2O3 lowers the energy of oxygen-vacancy formation (Table 

1) very substantially. Previous calculations [7] have shown that lower-valence dopants, such 

as Cu, Mg, Zn, lower the activation energy for methane dissociation. The higher-valence 
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dopants have a very small effect on ∆Ev. In previous work [8], we suggested that a higher 

valence dopant in the surface layer of an oxide adsorbs O2 from gas-phase and activates it. 

This adsorbed O2 can react with methane and oxidize it. In this mechanism the oxygen in the 

oxidation product originates from the gas, not from the oxide surface. Another possibility [9] 

is that, because the gas-phase O2 adsorbs on the higher-valence dopant, one should consider 

that the dopant is the MeO2 group, where Me is the doping cation. Since the O2 ties down 

(by making bonds) some of the electrons of M, the MO2 dopant is a lower-valence dopant 

that activates the surface oxygen atoms near it. Thus a higher-valence dopant has a double 

role: it activates the oxygen adsorbed from the gas and also the oxygen next to it (when it 

adsorbs O2 to form MeO2). 

Table 1. The measured effective activation energy and the calculated energy of oxygen-

vacancy formation 

Dopant Ea(kJ/mol) Evac (kJ/mol) 

Undoped 76 621.1 

Zr 89 605.7 

Ti 68 582.6 

Ta 109 634.6 

Nb 74 563.3 

Fe 78 310.6 

Cu 56 50.2 

Mg 68 249.8 

Zn 56 193.9 
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This possible difference in oxidation mechanism may explain why we obtain two 

straight lines for the dependence of Ea on ∆Ev: one for lanthana doped with LVDs and 

another for lanthana doped with HVDs. 

We conclude by summarizing for the reader some of the uncertainties in this work. First, 

one is never sure that a doped oxide has been prepared with the dopant atoms isolated and 

contained in the surface layer. Second, the calculations of ∆Ev contain errors inherent to 

DFT and the flat-slab model we use is not a faithful model of the surface of a laboratory 

catalyst. Finally, the effect of the lower valence dopants in the experiments may be 

chemically compensated [9] by co-adsorption of Lewis bases such as H or CH3. One hopes 

that in spite of these uncertainties the trend (obtained by performing the same reaction, 

catalyzed by the same host oxide, doped with a variety of dopants) is robust and can serve as 

a guide for designing new doped oxide catalysts. 
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6. Catalyst and Oxygen Carrier Compatibility Oxidative 

Dehydrogenation of Alkanes 

6.1. Introduction: Benefits and goals of a SHC Solid Reactant 

The use of selective hydrogen combustion materials in catalytic dehydrogenation may 

provide a more effective production process for alkenes by shifting the equilibrium to the 

product side. Ethylene, propylene, butadiene, and styrene are the building blocks for 

numerous polymers and are used in various commercial processes. As a result, commercial 

supply and demand for these alkenes is large, making high production efficiency of large 

economic interest. At present, there are two main routes to produce propylene at scale: 

cracking of alkanes and naphthas and the catalytic dehydrogenation of alkanes, usually 

employing a platinum-tin or chromium oxide catalyst on alumina. The dehydrogenation 

equilibrium favors propylene only at high temperature or low pressure, adding costly 

utilities and compression overhead. Furthermore, cryogenic separation of the hydrogen from 

the unconverted propane increases capital costs. Improvements of the dehydrogenation 

process usually focus on increasing the yield by shifting the equilibrium through removal of 

one of the reaction products. This can be done either physically with the use of a membrane2 

or by chemically reacting the hydrogen to form water, while avoiding the reaction of 

propane or propylene. The latter approach can be accomplished using any suitable oxidant, 

typically gaseous oxygen3 or metal oxides.1,4 Depending on the oxidant, the thermodynamics 

of hydrogen combustion can greatly offset the endothermicity of the reaction of propane 

dehydrogenation. This is a great advantage because the two most common industrial 

processes (OLEFLEX and CATOFIN) are heat transfer limited5.  
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To our knowledge, only one report exists of a selective hydrogen combustion oxygen 

carrier successfully combined with a propane dehydrogenation catalyst for ODH.1 Grasselli 

and co-workers used PtSn/ZSM-5 as a dehydrogenation catalyst and bismuth oxide on silica 

(prepared using Ludox AS-40) as an oxygen carrier4. When the Bi2O3/SiO2 oxygen carrier 

was initially cycled at 550oC with air and a simulated propane dehydrogenation stream 

(propane, propylene, and hydrogen), it cycled very well: there was no decrease in selectivity 

and the carrier maintained 80% of its activity after 120 cycles (losing less than 0.2% of 

activity per cycle).4 When the same oxygen carrier was added to a dehydrogenation catalyst 

based on platinum, tin, and ZSM-5, it had excellent initial yields of 48 % (whereas, non-

oxidative dehydrogenation has a yield of 20 % and an equilibrium limitation of 28 %). 

When the catalyst and oxygen carrier composite system were cycled, the yield dropped by 

about 5% per cycle compared to its original performance.1 In other words, the hydrogen-

combusting oxygen carrier lost 0.2% of its performance per cycle, whereas the ODH system 

(catalyst and oxygen carrier) lost 5% of its performance per cycle. Thus, the loss of 

hydrogen combustion activity can not explain all, or even a majority, of the ODH system’s 

degredation. Nevertheless, Grasselli and coworkers conclude, “The decline, ascribed to the 

loss of Bi2O3 dispersion on the SiO2 support caused by the deep reduction cycling, is too 

large for the process to be practical as it stands, using the catalysts employed. Therefore, a 

more rugged SHC catalyst composition must be identified to make the process practical.”1 

This analysis, finding a more cyclable oxygen carrier, has guided research in the area since.  

Numerous oxygen carriers for selective hydrogen combustion for use in propane 

dehydrogenation have been proposed that try to address the design criteria of activity, 

selectivity, and cyclability, but omit compatibility criteria between the catalyst and oxygen 
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carrier. These oxygen carriers include metal oxide doped ceria,6,7,8, 9, 10, 11, 12 PbCrO4,13 

perovskites,14 and mixed oxides with ceria.8 Many (11 of 14) of the oxygen carriers propose 

their combination with chromia-based catalysts or the CATOFIN process (which uses a 

chromia-based catalyst). Despite the commonality of this proposed scheme, no reports exist 

of investigating the combination of selective hydrogen combustion with a chromium-based 

dehydrogenation catalyst. Besides the aforementioned report by Grasselli and coworkers, 

none of the proposed oxygen carriers were combined with a dehydrogenation catalyst; 

rather, their performance was measured in a simulated dehydrogenation stream of hydrogen 

and hydrocarbons.  

In this work, we employ a new bismuth oxide oxygen carrier, showing it is active for 

hydrogen combustion and selective against hydrocarbon combustion. Previous work has 

focused on silica-supported bismuth(III) oxide, but ascribed deactivation to sintering. In an 

attempt to keep the bismuth oxide well-dispersed, we employ a high surface area, 

mesoporous silica support (SBA-15)15. Moreover, we assess it is stable with respect to 

oxidizing and reducing cycles of hydrogen and oxygen. We then combine this oxygen 

carrier with a typical platinum-based dehydrogenation catalyst (5 wt% Pt and 5 wt% Sn on 

silica) and show propylene yields above those achievable without hydrogen combustion. We 

confirm cycle degradation results in the literature, but ascribed the deactivation method to 

Bi2O3/SBA-15 deactivating the catalyst, likely due to poisoning (as determined by reaction 

data and XPS), in contrast to prevailing assumptions in the literature. In hopes of finding a 

more robust catalyst to pair with Bi2O3/SBA-15, we subsequently combine the oxygen 

carrier with a commonly proposed and studied catalyst based on chromium (13 wt% Cr2O3, 

3 wt% K2O supported on alumina). Surprisingly, we show that this catalyst is fundamentally 
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incompatible with any water, either produced by hydrogen combustion or being directly fed 

into the reactor. With this new insight, we propose that future work on ODH via selective 

hydrogen combustion must include compatibility studies between catalyst and oxygen 

carrier, as both can be individually promising, but fail when coupled. Furthermore, 

chromium-based catalysts may be fundamentally incompatible with selective hydrogen 

combustion regimes, unless promoters or other protective means can be found to prevent 

deactivation by water. 

6.2. Experimental 

6.2.1. Synthesis 

The platinum-tin on silica catalyst was prepared using the following procedure adapted 

from previous work16.  Davidson Davicat SI 1254 silica granules were used as a support for 

the platinum-tin catalyst.  First, 5 wt% platinum was added by impregnating the support 

with aqueous solution of H2PtCl6 (Sigma Aldrich, ACS reagent grade).  The solution was 

then dried in vacuum at room temperature, heated at 100 °C for 0.5 hours, then heated to 

350 °C for 2 hours in air.  After cooling, 5 wt% tin was added by impregnating the resulting 

solid with SnCl2 (Sigma Aldrich, ACS reagent grade).  After drying at room temperature in 

vacuum, the catalyst was calcined at 100 °C for 0.5 hours, followed by heating to 700 °C in 

air for 1.5 hours. Finally, the catalyst was pre-treated with hydrogen (10% hydrogen for 1 

hour at 550oC) and used for reaction studies. 

The chromium based catalyst was prepared using procedures common in the review 

literature.17 Briefly, incipient wetness impregnation of Cr(NO3)3 and KNO3 (Sigma Aldrich, 

ACS reagent grade) on gamma-Al2O3 (Alpha Aesar) was employed to impregnate 

precursors for a final composition of 13 wt% Cr2O3 and 3 wt% K2O on gamma-Al2O3. This 
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slurry was calcined at 10 oC/min to 600oC for 6 hours and allowed to cool slowly. Finally, 

the catalyst was pre-treated with hydrogen (10% hydrogen for 1 hour at 550oC) and used for 

reaction studies. 

We prepared 50 wt% Bi2O3 on SBA-15 as an oxygen carrier using wet impregnation. A 

solution of Bi(NO3)3 (Sigma Aldrich, ACS reagent grade) was added to SBA-15 (Sigma 

Aldrich). This mixture was then calcined at 10 oC/min to 600oC for 6 hours and allowed to 

cool slowly.  

6.2.2. Reactor studies 

To chemically asses the interactions between reactants, catalysts, and oxygen carriers, all 

reaction studies took place in a packed-bed reactor. The packed bed was supported with inert 

quartz wool in a 0.4 cm diameter quartz tube. The temperature was controlled by a 

temperature controller (Omega CSC32) using a steel reactor block with heating cartridges 

that surrounded the reactor tube and pre-heated the gases. All reactions were performed 

isothermally at 550oC and at atmospheric pressure. A thermocouple in the heating block 

controlled the temperature. The gas flowrates were controlled by mass flow controllers 

(MKS) and two-position valves (VICI). The reactor effluent was measured by an online 

mass spectrometer (Stanford Research Systems RGA) operating at a pressure of 1 x 10-5 

Torr. Argon was used as an inert carrier. All reported effluent concentrations are normalized 

to argon. The carbon and hydrogen balances were generally within 2%.   

For selective hydrogen combustion studies, 200mg of Bi2O3/SBA-15 was loaded into a 

quartz tube and heated to 500oC in flowing argon. At temperature, reactant gases were 

simultaneously turned on using VICI valves in addition to the 10 standard cubic centimeters 

per minute (SCCM) argon: 0.5 SCCM propane, 0.5 SCCM propylene, and 0.5 SCCM 
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hydrogen. For Bi2O3/SBA-15 cycling studies, alternatingly oxidative and reducing cycles of 

600 seconds were employed with 10 SCCM purges of argon for 60 seconds. Both cycles 

were performed at 550oC. The oxidizing cycle was 3 SCCM of oxygen and 10 SCCM of 

argon. The reducing cycle was 2.8 SCCM of hydrogen and 10 SCCM of argon.  

During measurements of oxidative dehydrogenation of propane, the reactor bed was 

composed of a mixture of 100mg of Bi2O3/SBA-15 and either 100mg of the platinum-based 

catalyst or 300mg of the chromium-based catalyst. For experiments in which the effect of 

the addition of steam was investigated, the same conditions were used with an addition of 

0.4 SCCM of water to the feed (40% of argon). For oxidative regeneration cycles to 

replenish oxygen in the oxygen carrier and/or decoke the dehydrogenation catalyst, 8 % 

oxygen in argon was used, by slowly stepping up the oxygen concentration by 1 %/minute 

from 0 to 8 % to avoid any exotherm.  

6.2.3. X-Ray Photoelectron Spectroscopy 

X-ray photoelectron spectra were obtained on a Kratos Axis Ultra Spectrometer with a 

monochromatic Al−Kα source. Powder samples were mounted on a stainless steel sample 

holder using double-sided tape. The residual pressure inside the analysis chamber was below 

7 x 10-9 torr. Spectra of Pt and Bi 5f levels were acquired at a pass energy of 40 eV with a 

dwell time of 1.2 seconds per point. Spectra were calibrated to the C 1s peak from 

adventitious hydrocarbons, expected at a binding energy of 285.0 eV. For peak fitting of the 

spin−orbit doublets, the f7/2 to f5/2 peak area was constrained to a ratio of 4/3. 
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6.3. Results and discussion 

6.3.1. Selective Hydrogen Combustion by Bi2O3/SBA-15 

These experiments serve to determine how much hydrogen, relative to propane and 

propylene, are combusted by the solid oxygen carrier, Bi2O3/SBA-15. A gaseous 

composition composed of 5% propane, 5% propylene, and 5% hydrogen in argon was 

chosen to simulate the composition within a propane dehydrogenation reactor. Ideally, the 

Bi2O3/SBA-15 would combust all (or nearly all) of the hydrogen to water and not combust 

or coke any of the propane or propylene. In addition to selectively combusting hydrogen 

over propane and propylene, the oxygen carrier needs to be regenerable with oxygen.  

The results are shown in Figure 1. Propane is unreacted, while 98 % of the propylene is 

unreacted. On the contrary, 52% of the total hydrogen is converted to water with peak 

conversion of ca. 80%. When presented in an equal molar ratio (as in this case), Bi2O3/SBA-

15 combusts 50 times the hydrogen as propane and propylene. By integrating the water peak 

and comparing it to the amount of oxygen present in Bi2O3/SBA-15, we calculate 80% of 

solid oxygen is converted to water. These results compare well to other Bi2O3-based 

selective hydrogen combustion oxygen carriers in the literature, such as Bi2O3/SiO2,1 with 

high hydrogen conversion and low reactivity towards propylene and propane.  
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Figure 1. (A) Selective hydrogen combustion performed by Bi2O3/SBA-15 in the 

presence of propane and propylene at 500oC. Hydrogen, propane, and propylene were fed at 

5%. Bi2O3/SBA-15 combusts >50 fold more moles of hydrogen than propane and propylene. 

(B) Alternating cycles of hydrogen and oxygen over Bi2O3/SBA-15 at 550oC. The 

alternatingly reducing and oxidizing environments show Bi2O3/SBA-15 is capable of 

reversibly releasing lattice oxygen (to produce water from hydrogen) and absorbing oxygen 

(to regenerate the bismuth oxide) over several cycles.  

To test the cyclability of Bi2O3/SBA-15, we subjected the sample to alternatingly 

oxidizing and reducing conditions (10 minutes each) to investigate if activity was 

maintained. These results are shown in Figure 1(B). Initially, 2.8% hydrogen in argon is 

flowed over the oxidized bed producing water. During the first hydrogen cycle, there is 

some hydrogen breakthrough near the end of the cycle. Due to water adsorbing more 

strongly than other analytes in the mass spec, the water trace behaves with a lag-time and 

appreciable response time. As a consequence, one can see water exiting the reactor during 

argon purges and oxidative cycles as well. After the reduction cycle, oxygen is fed into the 
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reactor to regenerate the bismuth metal to bismuth sesquioxide. Oxygen conversion is ca. 20 

% for all the oxidizing cycles. As the number of cycles increases, hydrogen conversion 

decreases a marginal amount from ca. 95% to 90%, showing that Bi2O3/SBA-15 is a 

selective and cyclable oxygen carrier for hydrogen combustion. These results agree well 

with the work of Grasselli and co-workers1 on Bi2O3/SiO2. In their work, hydrogen 

conversion was 90 % during the first cycle and 70% by the 120th cycle. Hydrogen 

conversion of 70 % is more than sufficient to perform ODH with thermodynamic 

equilibrium yields above 90 % at the temperature and pressures of interest (550oC and 0.5 to 

1.0 bar). Despite this excellent cyclability, many ascribe rapid degradation over ten or less 

cycles to lack of stability of oxygen carriers, Bi2O3-based carriers especially.1,10,11,13,18 

6.3.2. Oxidative dehydrogenation of propane using a platinum-based 

dehydrogenation catalyst and Bi2O3/SBA-15 for selective hydrogen combustion 

The platinum-based catalyst’s performance is significantly improved with the addition of 

the oxygen carrier (see Figure 2). Without Bi2O3/SBA-15, the catalyst performed near 

equilibrium and with high selectivity with a conversion of 36 %, selectivity of 95 %, 

propylene yield of 34 %, which corresponds to 89% of equilibrium propylene yield. These 

performance metrics are similar to those in literature19 for this type of catalyst. With the 

addition of Bi2O3/SBA-15 to the platinum-based propane dehydrogenation catalyst to form a 

physical mixture, both propane dehydrogenation and selective hydrogen combustion 

occurred within the reactor (see Figure 2 and Table 1). For the first 10 minutes, the propane 

conversion is very high (even above 50%), although a relatively large fraction of that 

conversion is converted to byproducts of carbon oxides and cracking products (methane). At 

the ten-minute mark, the conversion is 47 %, with 93 % selectivity, and 44 % yield, which 
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corresponds to 115 % of the equilibrium yield of propylene from dehydrogenation (without 

the oxygen carrier). Some carbon dioxide is produced initially, but overall, side reactions are 

minimal. After c. 30 minutes, Bi2O3/SBA-15 is depleted of lattice oxygen and hydrogen 

combustion activity stops (shown in supplementary information, Figure S1). This is 

indicated by falling water concentration and increasing hydrogen concentration, as less and 

less hydrogen is combusted to water. Once the oxygen is finally depleted, the propylene 

yield approaches the thermodynamic equilibrium values (in other words, the bismuth metal 

is inert towards the reaction stream).  

 

Figure 2. Oxidative dehydrogenation of propane to propylene using Bi2O3/SBA-15 as an 

oxygen source physically mixed with a platinum-based dehydrogenation catalyst. The 

dashed line indicates the equilibrium propylene yield of non-oxidative dehydrogenation of 

propane at the same temperature (550oC) and pressure (0.5 bar). Yields of propylene are 

increased over non-oxidative dehydrogenation by the addition of selective hydrogen 

combustion by Bi2O3/SBA-15. 
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After 60 minutes, the reactor was purged with only argon and the reactor bed 

regenerated. It was regenerated in oxygen to combust any coke that may have been present 

on the platinum-based catalyst and to reoxidize the oxygen carrier. Subsequent propane 

oxidative dehydrogenation cycles did not show nearly the performance of the first cycle. In 

fact, the conversion was lower than the (non-oxidative) dehydrogenation catalyst by itself 

(shown in Figure 3). This drastic reduction in performance per cycle is similar to the 

previous report on this type of platinum and bismuth based ODH system. Grasselli reported 

a 5 % decrease in performance (propylene yield) per cycle.4 We measure very similar 

numbers: normalized yield falling from 115 % to 70 % over 11 cycles, which corresponds to 

about a 4 % decrease in performance per cycle. These decreases are not explainable by 

decreasing hydrogen combustion activity, but is likely due to the oxygen carrier deactivating 

the catalyst for two reasons. Firstly, having lower propane conversion means the 

dehydrogenation catalyst was of lower activity than without the oxygen carrier. Had the 

platinum-based catalyst been unaffected and the oxygen carrier completely inert, the system 

would still achieve (non-oxidative) equilibrium yields. Consequently, the catalyst itself has 

less activity than without the oxygen carrier present. Secondly, the subsequent cycles had 

excellent hydrogen combustion activity (qualitatively similar to the first cycle, high 

hydrogen combustion for the first thirty minutes and negligible after 30 minutes). As a 

result, the hydrogen combustion activity cannot be the culprit of decreased performance 

because hydrogen combustion activity is still similar to the first cycle. To explain these 

findings, we ascribe the degradation of performance not to loss of hydrogen combustion 

activity as in previous reports, but rather to the bismuth-based oxygen carrier deactivating 

the catalyst during the reoxidation step. Furthermore, it is suggested that this deactivation is 
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poisoning of the dehydrogenation catalyst by bismuth, which volatilizes during oxidative 

regeneration (not during the dehydrogenation cycle because the system performs well at 

first). The quartz tube that holds the reactor bed had deposits of bismuth where the tube 

cooled (shown in the supplemental information, Figure S3). This effect is well know for low 

boiling point (typical of p-block metals) oxygen carriers in literature reports1,8,13, although 

its has never been implicated in dehydrogenation catalyst deactivation.  

 

Figure 3. Propylene yield (and as a percentage of non-oxidative equilibrium yield) 

during repeated cycles of oxidative dehydrogenation of propane using Bi2O3/SBA-15 for 

selective hydrogen combustion and a platinum-based catalyst. The reactor bed was 

regenerated with oxygen to replenish the lattice oxygen in Bi2O3/SBA-15 consumed during 

hydrogen combustion. After the first cycle, the yields of propylene fall below the non-

oxidative yields, indicating catalyst deactivation.  
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To further support the suggestion that bismuth is poisoning the dehydrogenation catalyst, 

XPS was performed on the dehydrogenation catalyst after the aforementioned reaction-

regeneration cycling. The oxygen carrier and catalyst particles were physically mixed, but 

large enough (~80mesh) to differentiate from each other. Once the sample was loaded into 

the XPS, point of analysis (ca. 100µm x 100µm) was chosen to maximize the platinum 

signal. XPS of the platinum 4f and bismuth 4f regions are shown in Figure 4. These peaks 

correspond with platinum in various metal and oxidic moieties as would be expected after 

repeated oxidations and reductions (ending with an oxidation). In the Bi 4f region, the 

bismuth 4f peaks are not only present, but prominent. They correspond to bismuth(III) 

oxide, as expected from an oxidative cycle. Using atomic sensitivity factors of 2.55 for 

platinum and 4.25 for bismuth, the peak areas indicate there is 80% more bismuth present 

than platinum on the dehydrogenation catalyst particles. With such an abundance of bismuth 

deposited on the platinum catalyst, it is well within the realm of likelihood that some 

bismuth is on the platinum surface.  

 

Figure 4. XPS of the platinum-based propane dehydrogenation catalyst after it was 

mixed with Bi2O3/SBA-15 and cycled between dehydrogenation of propane and 

regeneration with oxygen. Stars are experimentally measured data points and the line is the 
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summation of the synthetic peaks. Panel (A) focuses on the platinum 4f orbitals, showing 

binding energies characteristic of platinum metal and platinum oxides. Panel (B) focuses on 

the bismuth 4f peaks which are present from migration of bismuth from Bi2O3/SBA-15 

migrating to the dehydrogenation catalyst. The binding energy of the 4f7/2 orbital 

corresponds to that of Bi3+ in Bi2O3. The Si 2s peak is present from the SBA-15 support. 

For the reasons elaborated above, we conclude that Bi2O3 supported on silica is not a 

suitable oxygen carrier in conjunction with platinium-based dehydrogenation catalysts due 

to deactivation of the latter by the former. Bismuth is a known catalyst poison and was 

shown to be present in large amounts on the dehydrogenation catalyst; therefore, it is likely 

that bismuth is poisoning the active sites on the platinum, although the present work is not 

conclusive in this regard. In an attempt to find a more stable system, we replaced the 

platinum-based dehydrogenation catalyst with one based on chromium to see if the new 

catalyst was resistant to deactivation from bismuth and therefore more stable. 

6.3.3. Oxidative dehydrogenation of propane using a chromium-based 

dehydrogenation catalyst and Bi2O3/SBA-15 for selective hydrogen combustion 

Towards a stable oxidative dehydrogenation of propane system, a chromium-based 

catalyst was tested as a possible alternative to the quickly-deactivating platinum-based 

catalyst. A chromium-based catalyst was selected for its (1) propane dehydrogenation 

selectivity and activity, (2) occasional robustness relative to some platinum-based catalysts5, 

and (3) it is well-understood for non-oxidative dehydrogenation of propane5. As a baseline, 

non-oxidative dehydrogenation was performed using this chromium-based catalyst. It 

achieved a conversion of 33 %, selectivity of 91 %, and a propylene yield of 30 %, which 

corresponds to 79 % of the maximum equilibrium propylene yield. These performance 
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metrics compare favorably to literature19 for this type of catalyst. Subsequently, fresh 

catalyst was mixed with Bi2O3/SBA-15 to perform oxidative dehydrogenation of propane. 

Surprisingly, the chromium-based catalyst’s performance (as measured by propylene yield) 

is not appreciably affected by the addition of the oxygen carrier and the hydrogen 

combustion it provides. The oxidative dehydrogenation system converts 38 % of propane at 

89 % selectivity to produce propylene at 34 % yield, which corresponds to 89% of the yield 

determined by non-oxidative dehydrogenation equilibrium (see Figure 5 and Table 1). By-

products include methane (~4 % of propane), carbon dioxide (2 %), carbon monoxide (2 %) 

and coke (2 %). These metrics are all within 5 % of without the oxygen carrier. Peculiarly, 

the hydrogen has been combusted (with normalized pressures of hydrogen less than 10%), 

but the propylene production has not been improved (shown for a longer time span in the 

supplementary information, Figure S2). One explanation for this phenomenon is that the 

water produced by selective hydrogen combustion is deactivating the dehydrogenation 

catalyst. If this were the case, the front of the reaction bed would be filled with active 

catalyst, which would produce propylene and hydrogen, but the later stages of the bed would 

be catalytically inactive from the presence of water produced via combustion. Indeed, 

propylene and water are the majority products, indicating the oxygen carrier is active. To 

further confirm his hypothesis, the effects of steam-diluted dehydrogenation over the 

chromium-based catalyst were investigated.  



 

 109 

 

Figure 5. Oxidative dehydrogenation of propane to propylene using Bi2O3/SBA-15 as an 

oxygen source physically mixed with a chromium-based catalyst. The dashed line indicates 

the equilibrium propylene yield of non-oxidative dehydrogenation of propane at the same 

temperature (550oC) and pressure (0.5 bar). Yields of propylene are increased by the 

addition of Bi2O3/SBA-15, although hydrogen combustion is active and selective. 

 

To understand the effects of steam (usually produced in situ during hydrogen 

combustion) on the chromium-based dehydrogenation catalyst, a simulated mixture of ODH 

products, steam and propane with an argon carrier, were flowed over the catalyst in the 

absence of any hydrogen combusting oxygen carrier. Although the catalyst initially 

produces up to 6 % propylene, the catalyst activity quickly dies (after ca. 2 minutes) and 

propane flows through the reactor bed unreacted (see Figure 6 and Table 1). This is likely 
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due to strong hydroxylation of the surface and bulk of the chromium oxide. By integrating 

the missing water peak, we calculate the catalyst absorbs a significant amount of water: 60 

mol% of the chromium. This is quite consistent with well-studied bulk hydroxide phases. 

Because of the deactivation caused by steam, the chromium-based catalyst is fundamentally 

incompatible with selective hydrogen combustion. To our knowledge, this measurement has 

not been previously reported, despite being suggested over eleven times. Operando 

measurements, such as in situ XRD or DRIFTS, could provide valuable insight in to the 

deactivation mechanism and the role played by water, surface hydroxyls, and bulk phase 

change. 

  

Figure 6. Non-oxidative dehydrogenation of propane to propylene in the presence of 

steam using a chromium-based catalyst at 500oC. Steam (fed at 40% of argon) quickly 

deactivates the catalyst resulting in negligible propylene production.  
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Table 1. Reaction metrics of non-oxidative (without Bi2O3/SBA-15) and oxidative (with 

Bi2O3/SBA-15) dehydrogenation of propane using either a platinum- or chromium- based 

catalyst. Additionally, steam-diluted dehydrogenation of propane was conducted by the 

introduction of 40% water to the feed. All metrics were recorded after 10 minutes on stream 

with fresh catalyst and Bi2O3/SBA-15.  

Reaction	
  
Catalyst	
  
type	
  

Propane	
  
Conversion	
  

Propylene	
  
Selectivity	
  

Propylene	
  
Yield	
  

Percent	
  of	
  
equilibrium	
  

dehydrogenation	
  
yield	
  

Dehydrogenation	
   Chromium	
   33%	
   91%	
   30%	
   79%	
  
Platinum	
   36%	
   95%	
   34%	
   89%	
  

Oxidative	
  
dehydrogenation	
  	
  

Chromium	
   38%	
   89%	
   34%	
   89%	
  
Platinum	
   47%	
   93%	
   44%	
   115%	
  

Steam-­‐diluted	
  
dehydrogenation	
   Chromium	
   0%	
   N/A	
   0%	
   0%	
  

 

6.4. Conclusions 

Combining a selective hydrogen combustion oxygen carrier with a traditional 

dehydrogenation catalyst has been proposed as a promising scheme for oxidative 

dehydrogenation of propane. In this work, we synthesized bismuth(III) oxide on mesoporous 

silica (Bi2O3/SBA-15)  and showed that it is active and selective for hydrogen combustion. 

Furthermore, it can be regenerated with oxygen with little degradation in activity. We then 

combined this solid reactant with two common dehydrogenation catalysts, one based on 

platinum and another based on chromium. Combining Bi2O3/SBA-15 with the platinum-

based catalyst increased propylene yields from 89% to 119% of the non-oxidative 

dehydrogenation equilibrium. The platinum-based catalyst combined with the bismuth-based 

oxygen carrier quickly degrades in performance after alternating cycles of dehydrogenation 
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and regeneration. Combining Bi2O3/SBA-15 with the chromium-based catalyst did not 

appreciably improve performance. Further studies with steam-diluted propane 

dehydrogenation showed water (either directly fed or produced from selective hydrogen 

combustion) deactivated the chromium-based catalyst. Bi2O3 supported on silica is not a 

suitable oxygen carrier in conjunction with platinium-based dehydrogenation catalysts due 

to deactivation of the latter by the former. With this understanding in mind, future work on 

implementing ODH with selective hydrogen combustion must include studies on 

compatibility between the hydrogen combusting oxygen carrier and the dehydrogenation 

catalyst, as each can be cyclically stable on their own, but not in conjunction with one 

another. Water (and consequently, selective hydrogen combustion), is incompatible with 

chromium-based dehydrogenation catalysts because of water-induced deactivation. Future 

studies on chromium-based ODH should include studies of deactivation by water, which 

can, perhaps, be avoided through a novel use of promoters or another protective means.  
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6.6. Supplemental information 

 
Figure S1. Oxidative dehydrogenation of propane to propylene using Bi2O3/SBA-15 as 

an oxygen source physically mixed with a platinum-based dehydrogenation catalyst. The 

dashed line indicates the equilibrium propylene yield of non-oxidative dehydrogenation of 

propane at the same temperature (550oC) and pressure (0.5 bar). Yields of propylene are 

increased over non-oxidative dehydrogenation by the addition of selective hydrogen 

combustion using Bi2O3/SBA-15 until the 25-minute mark when the lattice oxygen is 

depleted from Bi2O3/SBA-15, after which only the dehydrogenation catalyst is active.  
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Figure S2. Oxidative dehydrogenation of propane to propylene using Bi2O3/SBA-15 as 

an oxygen source physically mixed with a chromium-based dehydrogenation catalyst. The 

dashed line indicates the equilibrium propylene yield of non-oxidative dehydrogenation of 

propane at the same temperature (550oC) and pressure (0.5 bar). For the first 15 minutes 

while lattice oxygen in Bi2O3/SBA-15 is available, hydrogen produced by dehydrogenation 

is converted to water, although yields of propylene remain similar to without the addition of 

Bi2O3/SBA-15. 
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Figure S3. Bismuth metal deposited downstream of the reactor bed after repeated 

oxidative dehydrogenation cycles over platinum-based catalyst physically mixed with 

Bi2O3/SBA-15 at 550oC.  
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Appendix A: Hydrodebromination and Oligomerization of 

Dibromomethane 

Methane is an abundant and potentially renewable hydrocarbon resource. Unlike 

petroleum, which is a liquid and relatively easy to collect remotely and transport, methane is 

challenging to cost-effectively collect and transport over long distances, and is frequently 

flared. Conversion of methane gas into a more readily transportable liquid, Gas-To-Liquid 

(GTL), at the site of collection has long been thought to be the ideal solution.1−4 Several 

methods have been developed for the direct conversion of methane,5 including oxidative 

coupling,6,7 aromatization,8 and selective oxidation into methanol,9,10 but the yields have not 

been adequate for commercial deployment. Commercial GTL technology relies on breaking 

all the C−H bonds in methane in the presence of an oxygen source to produce synthesis gas, 

CO + H2, as a transformable intermediate. The synthesis gas can then be used for the 

Fischer−Tropsch (F-T) synthesis to produce liquid fuels and chemicals. Another route is 

using synthesis gas for the synthesis of CH3OH, which is used as a reactant in the Methanol-

To- Gasoline process for the synthesis of liquid fuels and chemicals.2,3 To produce 

economically competitive products, large commercial facilities are required for GTL 

conversion processes because of the cost of production (with conversion temperatures 

usually over 800 °C) of the synthesis-gas intermediate from methane.  

A low-temperature, high-yield process with a smaller facility that could be located close 

to the natural gas sources is highly desirable. From this point of view, the methane 

halogenation process is promising. The halogen-mediated routes for con- version of methane 

to higher hydrocarbons are illustrated in Figure 1A. Instead of the high energy-consuming 

synthesis gas process, methane can be nonselectively converted to halomethanes (CH4−nXn) 
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at relatively low temperatures (below 550 °C).11−13 Methyl halides such as CH3Br have been 

shown to be directly transformed into olefins or higher hydrocarbons by a coupling process 

analogous to the Methanol-To-Olefins and Methanol- To-Gasoline processes over either 

zeolites14−17 or bifunctional acid−base metal oxides.18 Of the halogens, bromine has the 

advantage that selectivity for the formation of methyl bromide from the direct reaction of 

bromine with methane is relatively high; and, the C−Br bond is weak enough to allow for 

facile bromine removal and recovery for reuse.11,17 However, the bromination of methane at 

high conversion also produces significant quantities of dibromomethane (DBM), with small 

amounts of tribromomethane. In general, the halogenation reaction rate increases in the 

order: CH4 <CH3X<CH2X2< CHX3,11,12 with polyhalogenation being especially kinetically 

favored for Cl and F. Because of the reactivity of the poly- halogenated species, catalytic 

processes for converting these methane halogenation products to end-products have 

typically resulted in coke formation.19 Separation of these polyhalomethanes prior to their 

use in the coupling reactor makes the entire halogen- based GTL process substantially more 

expensive and less practical.  

Several strategies can be applied to solve the polyhalomethane issue. The first is 

selective halogenations. Olah et al.11 proposed that since incorporation of halogen atoms into 

me- thane makes the carbon progressively more electropositive, the electrophilic reaction 

with Xδ+, which is produced by super- electrophiles, becomes kinetically less favorable. 

Thereby high methyl halide selectivities could, in principle, be achieved. 

Following a similar philosophy, Lercher et al.13 studied methane oxychlorination on 

LaOCl. Although the underlying rationale is sound, there are no reports of high-yield 

catalytic selective monohalogenation on the catalysts with long-term stability. Another 
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Approach is converting the polyhalomethanes into other chemicals with lower coking 

tendencies, which can be fed into the coupling reactor. Using the polybromomethanes as the 

halogenating agent for methane has been studied.12 Although thermodynamically favored, 

the production of two molecules of methyl bromide from the reaction of DBM and methane 

requires a relatively long space time. Furthermore, the selectivity of the methyl bromide is 

limited by thermodynamics. Another approach is to separate the poly halomethanes from the 

stream and make use of these compounds to produce value-added chemicals.  

Hydrodehalogenation is regarded as the most universal and effective method for the 

treatment and chemical destruction of organohalide compounds.20,21 We have been 

motivated by the catalytic processes used commercially for this important reaction. Group 

VIII metals are the best known catalysts for hydro-dehalogenation because of the ability to 

dissociate C−X and H−H bonds as well as the high stability.20−25 In this paper we report 

our results on the catalytic hydrodebromination and oligomerization of DBM, which is the 

major byproduct from the reaction of methane and bromine. Among the catalysts studied 

(Ru/SiO2, Rh/SiO2, Pd/SiO2, Pt/SiO2, Ag/SiO2, and Au/SiO2 ), palladium carbide formed 

during the reaction on Pd/SiO2 showed the highest activity and highest selectivity for 

coupling products. C2+ formation can be regarded as the F-T synthesis analogue. Ru/ SiO2 

showed the highest selectivity for methyl bromide, and can be regarded as a methanol 

synthesis catalyst analogue. Detailed reaction mechanisms are discussed. The analogous 

nature of halogen and oxygen mediated pathways for the conversion of methane to higher 

hydrocarbons is illustrated in Figure 1B.  
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Figure 1. (A) Illustration of halogen mediated methane conversion to higher 

hydrocarbons; (B) The analogous nature of halogen routes to oxygen routes for methane 

upgrading. Dashed arrows denote the processes developed in this work. 

Since propane is a major byproduct in the Methyl Bromide To-Gasoline process, we 

intend to make use of propane to provide H2 for the hydrodebromination process. One 

possibility is integrating a propane steam reforming unit. Another alternative is adding a 

propane dehydrogenation unit to provide H2; meanwhile, more olefin (propylene) will be 

produced, which is helpful for the Methyl Bromide-To-Gasoline process. Our findings in 

this paper are directed at solving the DBM issue that hinders the potential industrial 

application of bromine mediated GTL technology, and at the same time offering a new route 

for the synthesis of light olefins. 

Results and Discussion 

All the catalysts were prepared into 1 wt % (metal basis) by incipient impregnation, 

followed by a calcination and activation process before the hydrodebromination reaction. 

The hydrodebromination reactions were conducted in an atmospheric pressure fixed bed 

flow reactor system; the configuration of the reaction system was shown in Figure 2. 
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Figure 2. Experimental setup for hydrodebromination reaction: CH2Br2 + H2 → 

products. 

After the DBM hydrodebromination reaction was run for 30 min at 350 °C, no 

significant change was observed in the Ru/SiO2, Rh/SiO2, Pt/SiO2, and Au/SiO2 structures 

by X-ray diffraction (XRD); however, for the Ag/SiO2 catalyst, a transformation of the Ag 

metallic phase into an AgBr phase was observed. For Pd/SiO2, all the diffraction peaks 

shifted to lower angles. This behavior can be attributed to the formation of Pd6C phase, 

which is very common for Pd catalysts in contact with many hydrocarbons.26 The Pd-to-

Pd6C phase transformation during hydrodechlorination has been identified by other 
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researchers.27 After a detailed study of this phase transformation process, we found that the 

Pd-to-Pd6C transformation was complete in less than 90 s, while recovery of the metallic Pd 

in hydrogen, after the DBM was removed, required approximately 30 min, Figure 3A. This 

indicates that palladium was mainly in the form of Pd6C during the DBM 

hydrodebromination reaction instead of metallic Pd.  

The conversions of DBM from the reaction with hydrogen at 350 °C on Ru/SiO2 , 

Rh/SiO2, Pd6C /SiO2, Pt/SiO2, Ag/SiO2, and Au/SiO2 are shown in Figure 3B. The 

conversions followed approximately the following order: Au/SiO2, Ag/SiO2 ≪ Ru/ SiO2 < 

Rh/SiO2 ≈ Pt/SiO2 < Pd6C /SiO2 .  
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Figure 3. (A) X-ray diffraction patterns of Pd/SiO2 catalyst after different treatment. The 

two peaks centered at 2θ = 39° and 40.1° can be assigned to Pd6C(111) and Pd(111) 
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reflection, respectively; “rxn” denotes DBM hydrodebromination reaction under following 

condition: 350 °C, τ =2s (residence time), DBM:H2 :N2 mole ratio of 7:14:40; After reaction, 

the catalysts were treated with H2 :N2 (14 sccm:40 sccm) at 350 °C for a different period of 

time. (B) The conversion and (C to F) product distribution of dibromomethane when reacted 

with hydrogen over different metal catalysts supported on silica: (C) Ru/SiO2 ; (D) Rh/SiO2 ; 

(E) Pd6C /SiO2 , and (F) Pt/SiO2 (Reaction conditions: 350 °C, τ = 2s, DBM:H2 :N2 mole 

ratio of 7:14:40, DBM total input of 8.32 mmol, product distributions are calculated based 

on carbon moles.). 
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Figure 4. Residence-time-dependent (A and B) and temperature-dependent (C and D) 

dibromomethane reaction with hydrogen over Pd6C /SiO2 catalyst. (A and C) product 

distribution; (B and D) conversion, CH4 selectivity, CH3Br selectivity, C2+ /(CH4 +C2+ ) 

ratio andC2H4 /(C2H4 +C2H6) ratio. All these species were calculated in carbon mole, C2+ 

=2nC2 +3nC3 +4nC4 +5nC5, nCn = nCnH2n+2 + nCnH2n + nCnBr (Reaction conditions: (A and 

B) 300 °C, DBM:H2:N2 mole ratio of 7:14:40, DBM total input of 8.32 mmol; (C and D) τ 

=2s, DBM:H2:N2 mole ratio of 7:14:40, DBM total input of 8.32 mmol.). 

Since the DBM conversions are determined by many factors, here we are not trying to 

quantitatively correlate the conversions to the catalytic activities. Ag/SiO2 and Au/SiO2 were 

observed to be relatively inactive for DBM hydrodebromination. These findings are 

consistent with results reported by other researchers who showed that Ag and Au were 

inactive for hydrodechlorination reactions.28,29 The low activity observed for Ag/SiO2 is 

explained by the rapid oxidation of Ag to AgBr, which cannot dissociate H2.28 Au/SiO2 was 

also observed to be relatively inactive and although AuBrx may not form, dissociation of 

molecular hydrogen on Au is not facilitated.29  

Scheme 1. (A) Potential Pathway for Dibromomethane Reaction with Hydrogen, and (B) 

Evolution of Surface Carbene over Pd6C catalysta 
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We show later in this article that the product distributions from hydrodebromination of 

DBM over Pd6C catalyst are independent of the DBM conversions. Similar behavior also 

exists for the Ru catalyst. This allows us to compare the product distributions from Pd6C and 

Ru with those from Rh and Pt, which possess similar DBM conversions (DBM conversion 

of 32% and 35% for Rh and Pt). The product distributions from hydrodebromination of 

DBM over Ru, Rh, Pd6C, and Pt are shown in Figure 3, C to F. Extremely high methyl 

bromide selectivity was obtained over Ru, and only trace amounts of methane were 

observed. For Rh, methyl bromide was still the dominant product (more than 80%); 
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however, methane selectivity increased to approximately 6%. Interestingly, we observed 

coupling products (C2+) containing up to four carbon atoms. 47% methyl bromide selectivity 

and 48% methane selectivity were obtained over Pt, while only trace amounts of C2+ were 

observed. DBM hydrodebromination on Pd6C resulted in production of both methane and 

coupling products as the major products, while methyl bromide production was greatly 

suppressed.  
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Figure 5. (A) Anderson−Schulz−Flory plotting of the product distribution of 

dibromomethane reaction with hydrogen over Pd6C catalyst (300 °C, τ = 2s, DBM:H2:N2 

mole ratio of 7:14:40, DBM total input of 8.32 mmol). (B to E) Plotting of α values against 
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different reaction parameters (B) residence time (300 °C, DBM:H2:N2 mole ratio of 7:14:40, 

DBM total input of 8.32 mmol); (C) temperature (τ = 2s, DBM:H2:N2 mole ratio of 7:14:40, 

DBM total input of 8.32 mmol); (D) H2:DBM ratio (300 °C, τ = 2s, DBM total input of 8.32 

mmol); (E) DBM partial pressure (300 °C, τ = 2s, DBM:H2 mole ratio of 1:2, DBM total 

input of 8.32 mmol).  

Experiments24 and DFT calculations30,31 have shown that the halogen and hydrogen 

adsorption energy on different metal surfaces decreased in the order Ru > Rh > Pt. Stronger 

adsorption of Br and H on catalyst surfaces makes the HBr desorption process harder and 

thus leads to higher Br surface coverage. Consequently, the probability for the adsorbed 

CH2Br species to desorb without losing another Br, in other words the selectivity toward 

CH3Br, will be increased because of the blockage of surface adsorption sites. When we co-

fed HBr with DBM-H2 over Ru and Pt catalysts and kept all the other conditions identical 

with those shown in Figure 3, B to F, CH3Br selectivity on Ru increased to 96%, while CH4, 

coke, and C2+ formation were all suppressed. On Pt, HBr co-feeding led to similar results: 

CH3Br selectivity increased to 56%, CH4 selectivity decreased to 43%, coke and C2+ 

formation were suppressed. A discussion of C2+ formation over these catalysts is given later 

in this paper.  

Balancing the price and performance of the Group VIII noble metals, Pd6C and Ru are 

promising catalyst candidates for DBM hydrodebromination. Pd6C showed the highest 

hydrodebromination activity and C2+ products selectivity, while Ru showed the highest 

CH3Br selectivity. Preliminary and incomplete optimization led to 60% conversion of DBM 

on Ru catalyst with a CH3Br selectivity of above 96%. A time-onstream reaction was carried 
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out to test the durability of the Pd6C/SiO2 catalyst. Both conversion and selectivity were 

unchanged after 5 h on stream.  

Detailed studies of DBM hydrodebromination were carried out over Pd6C/SiO2 catalyst. 

The following reaction parameters were studied: residence time, temperature, H2/DBM ratio, 

and partial pressure. As shown in Figure 4, A and B, the DBM conversion increased with 

increasing residence time, while the product distribution stayed the same except that the 

C2H4 /(C2H4 + C2H6) ratio dropped. Compared to C3 and C4 olefins, the addition of HBr to 

ethylene is much slower,32 which explained the following trend in Figure 4: C2Br/C2 ≪ 

C3Br/C3 < C4Br/C4. In a control experiment, we used “NaOH aqueous solution + organic 

solution” biphase traps instead of the organic traps to collect the products, and the formation 

of alkyl bromides was greatly suppressed. This clearly indicates that most of the alkyl 

bromides are formed by the addition of HBr to olefins in organic traps. Since C2Br does not 

make a significant contribution to the C2 products distribution, the ratio of C2H4/(C2H4 + 

C2H6) most likely represent the olefin selectivity of DBM hydrodebromination. Figure 4, C 

and D show the catalysis results at different temperature. Higher temperature led to higher 

DBM conversion, higher CH3Br/CH4 ratio, higher C2+/(CH4 + C2+) ratio, and also higher 

olefin selectivity.  

Although C2+ formation has been reported on dichloromethane (DCM) 

hydrodechlorination over Pd catalyst,33,34 the high C2+ selectivity (∼60%) and olefin 

selectivity (∼90%) achieved in our work has not been reported for DCM. One possible 

reason is that most DCM hydrodechlorination studies were carried out at relative low 

temperature (typically below 250 °C) with a high H2/DBM ratio (typically above 10), which 

does not favor olefin production. Another contributing factor is the relatively weaker bonds 
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of C−Br and Pd−Br, compared to the C−Cl and Pd−Cl bonds, which may cause higher 

coverage of carbon species on the palladium surface. In our proposed DBM 

hydrodebromination mechanism, which is illustrated in Scheme 1A, the first step would be 

DBM and H2 adsorption and dissociation into CH2Brs, Brs and Hs (“s” denotes surface). The 

reverse process, CH2Brs and Brs association, is negligible because it is thermodynamically 

unfavorable. Therefore, the only way for Brs to leave the surface is to combine with Hs and 

desorb as HBr. This reaction is reversible. The CH2Brs species can go through two parallel 

processes: combine with Hs and desorb as CH3Br; lose the second Br and generate surface 

carbene species, CH2s. The readsorption of CH3Br might undergo hydrodebromination to 

generate CH4, but this process is slow because the C−Br bond in CH3Br is stronger than that 

in CH2Br2. Similar conclusions were reached in the hydrodechlorination study of CH3Cl and 

CH2Cl2.33,35 

 The following trend could be found in the distribution of the DBM hydrodebromination 

products via a carbene intermediate: nC1 > nC2 > nC3 > nC4, which implies that the 

formation of higher hydrocarbons might follow a F-T mechanism. This is also suggested by 

the olefin/paraffin ratio at different residence times. The domination of olefins at the short 

residence time is always regarded as one of the characteristics of F-T synthesis. Ponec et 

al.36 first pointed out the analogous nature of the mechanism of hydrodechlorination of 

polychloromethane to F-T chemistry. This is consistent with Brady and Pettit’s work using 

diazomethane to confirm the carbene mechanism of F-T synthesis.37 It is generally assumed 

that there is not just a single reaction pathway on the catalyst surface during the F-T 

synthesis, but that a number of parallel operating pathways exist. Numerous reaction 

pathways have been proposed to explain the observed product distribution in the F-T 
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synthesis.4 However, the carbene mechanism is still the most widely accepted mechanism 

describing the formation of hydrocarbons. Recent work on the F-T mechanism study using 

density functional theory (DFT) calculations shows that the carbene mechanism is more 

favorable than CO-insertion and the hydroxyl-carbene mechanism in many circumstances.38  

According to Scheme 1B, the surface carbon species evolve to form longer chains via 

the addition of more and more CH2s. There are two routes for chain termination: combining 

Hs and desorbing as paraffins (+H termination), or losing Hs by β−H elimination and 

desorbing as olefins (-H termination). Olefins could either readsorb on the catalyst surface 

and be hydrogenated into paraffins, or react with HBr to generate C2+ Br products. 

According to the Anderson−Schulz−Flory (ASF) theory,39 the distribution of the F-T 

products obeys following equation: 

 

𝐹 𝑛 =   𝐴  𝑥  𝛼!!! 

 

Here, f(n) is the number of moles of Cn product, and 𝛼is the chain propagation probability. 

Mechanistically, 𝛼 is the ratio of the rate of propagation to the combined rate of propagation 

and termination.  

For the products of Pd6C-catalyzed DBM hydrodebromination, we denote by C2 the 

number of moles of the molecules containing two C atoms, that is, C2H4 + C2H6 + C2H5Br; 

C3 and C4 are defined in the same way. We do not include CH3Br in C1, because CH3Br is 

not formed by a carbene route. Except in the case of high temperature (400 °C), all others 

give linear ASF plots. A representative example is shown in Figure 5A. The α values 

calculated from these curves are plotted against different reaction parameters (Figure 5, B to 

E). The α values change little with residence time, increase with temperature, decrease with 
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the H2/DBM ratio, and decrease with the DBM (H2) partial pressure (keeping H2/DBM at a 

constant ratio).  

The change of α with the H2/DBM ratio is similar to that seen in F-T synthesis, since 

increasing the ratio of H2/DBM leads to increased chain termination probability. In DBM 

hydrodebromination, the change of α value against temperature and partial pressure is 

opposite to that observed in F-T synthesis. It is well-known that CO chemisorption is much 

stronger than H2 chemisorption, and consequently the catalyst surface was believed to be 

dominated by carbon species rather than hydrogen under F-T operating conditions.4 The 

situation should be reversed in DBM hydrodebromination, because DBM adsorption is a 

dissociative adsorption, which involves C−Br bond breakage and is much weaker than CO 

chemisorption. Higher temperatures would favor the dissociative adsorption of DBM, and 

therefore the surface coverage ratio of carbon species to hydrogen species would be 

increased and the chain propagation probability (i.e., α) would be increased.  

In F-T microkinetics, the reason for α values increasing with system pressure is that the 

surface concentration of carbon species increase with CO partial pressure, thus increasing 

the chain propagation probability. For DBM hydrodebromination, the DBM conversion is 

constant with changing DBM (H2) partial pressure (keeping H2/DBM at a constant ratio), 

which implies that the number of available DBM dissociative adsorption site does not 

change; so that the carbon species coverage does not change. On the other hand, olefin 

selectivity decreased with DBM (H2) partial pressure, which implies that the surface 

hydrogen coverage is increased. Consequently, increasing DBM (H2) partial pressure causes 

+H chain termination instead of the chain growth probability to be increased, and thereby, 

the α value is decreased.  
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To further support the DBM hydrodebromination mechanism, CH2Br2 and D2 were co-

fed through Pd/SiO2 at 300 °C. The outlet gas contained 27% DBM and nearly 100% of it 

was CH2Br2: no deuterium-substituted DBM was detected. This is evidence that the C−Br 

bond scission is irreversible on Pd6C surface. For the hydrodebromination products, only 

2% of methyl bromide contained more than one deuterium atom, while 11% of methane 

contained more than two deuterium atoms. In a control experiment, a CH4 + D2 mixture was 

passed over the same catalyst under the similar reaction conditions and less than 1% of 

methane was deuterated. This suggests that most of the H/D exchange process took place 

after DBM molecules were dissociatively adsorbed. The higher degree of H/D exchange for 

methane compared to methyl bromide indicates that it takes longer for CH2Brs to evolve into 

CH2D2 than into CH2DBr. This is reasonable since CH2Brs needs to break one C−Br bond 

and pick up two Ds to generate CH2D2, while it only needs to pick up one Ds to form 

CH2DBr.  

The degree of H/D exchange was very high in the longer chain halocarbons, such as 

ethyl bromide and propyl bromide. There are three possible explanations for this. First, the 

longer the carbon chain, the longer it stays on the surface, and the more chance for the H to 

be exchanged by D. Second, olefins traveling through the catalyst bed are adsorbed and 

desorbed repeatedly and have a chance to be deuterium-exchanged. The third reason is the 

“addition-elimination” equilibrium between olefins + HBr/DBr and alkyl bromides.  

We compare next the four Group VIII metals studied in this work. It is well-known that 

the carbon chain growth probability in CO + H2 system under identical conditions satisfies 

Ru > Rh > Pd > Pt,40 because the CO bond dissociation ability on the metal surface varies in 

that order. Brady and Pettit37 showed that diazomethane + H2 could reacts on a series of 
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metals, including Ru and Pd, to produce CH4 and C2+. C2+ selectivity is much higher on Ru 

than on Pd. The most important difference between CH2N2 and CH2Br2 is that Br is harder 

to remove from the surface than N2. Moreover a high Br coverage on Ru and Rh inhibits the 

dissociation of the second C−Br bond in DBM to generate surface carbenes and blocks the 

chain growth process. The former effect leads to high CH3Br selectivity, while the blockage 

of the chain growth process leads to high selectivity toward CH4 as opposed to C2+.  

For Pt, the surface coverage of Br is low. A considerable amount of surface carbenes are 

generated, as suggested by the high CH4 selectivity. However, C2+ selectivity is still very 

low, which indicates that the chain growth probability on Pt surface is quite low. This might 

be caused by the much higher diffusion rate for H versus CHx on the Pt surface than on the 

Pd surface. This idea is supported by the diffusion energy barriers calculated by DFT.41−44  

Although none of these noble metals has a stable carbide phase under our reaction 

temperature, a metastable PdCx phase can be formed under a carbon rich atmosphere,26 such 

as C2H2, C2H4 , and CO, as well as DBM, as shown in this work. The formation of a 

metastable palladium carbide phase will greatly suppress the amount of bulk-dissolved 

hydrogen, which is believed to be responsible for the nonselective/total hydrogenation of 

alkynes into alkanes.45,46 Here the inhibition on hydrogenation behavior by a carbide phase 

will have a positive effect on C2+ formation. 

Conclusions 

We provide here two potential routes to solve the DBM issue that hinders the industrial 

application of bromine-mediated GTL technology. In particular, these findings offer a new 

route for the synthesis of light olefins from methane. The reaction of DBM and hydrogen 

was studied on several silica supported transition metals. Pd6C supported on SiO2 showed 
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the highest selectivity for the conversion of DBM to higher hydrocarbons, mainly light 

olefins, analogous to the F-T catalysts. Silica supported ruthenium shows the highest 

selectivity for the conversion of DBM to methyl bromide, analogous to the methanol 

synthesis catalysts. 
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Appendix B: C-H Bond Activation by Pd-substituted CeO2 : Substituted 

Ions versus Reduced Species 

Introduction 

Heterogeneous catalysis on the surfaces of platinum group metals (PGMs) has long been 

studied, and the fundamental processes are now understood in extraordinary detail from both 

experimental and theoretical bases. Much less is known about the surface chemistry of PGM 

species when they exist as ions in solid-state materials such as simple and complex oxides.1 

In a recent review, Thomas2 promotes the idea of catalysis on single active sites, well-

separated from one another, in a manner that mimics homogeneous catalysis. This important 

design principle for novel approaches to element-efficient heterogeneous catalysis has been 
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demonstrated through the use of ionic species substituted on cation sites in metal oxides, 

including the use of Pd2+ -substituted metal oxides. Hegde and co-workers3 have shown 

conclusively that substituted PGM ions are active for CO removal from gas streams,4 and as 

automotive three- way catalysts.5 Pfefferle and co-workers6 have found that in CH4 

combustion, the role of PdO and related species is crucial. It has been further suggested that 

the oxidized state of Pd2+ (as opposed to metallic Pd2+) may be the most active species when 

using substituted complex oxides for catalysis.7−9 Perhaps the most compelling evidence for 

using Pd-substituted oxides for heterogeneous catalysis comes from the successful 

application of “intelligent catalysts” for automotive emissions control.10 

In this contribution, we use ultrasonic spray pyrolysis (USP) as a simple and clean 

method to prepare Pd-substituted CeO2  catalysts with particle sizes in the sub-10 nm range. 

We have characterized these materials using electron microscopy, X-ray photoelectron 

spectroscopy, and synchrotron X-ray diffraction (XRD) and observe that Pd substitutes in 

the lattice at least up to x = 0.10 in Ce1−xPdxO2−δ. In this work, Ce1−xPdxO2−δ was tested for 

C−H bond activation reactions. While there are reports of complete and partial CH4 

oxidation over Pd,11−15 a wealth of literature has been published on Pd and CeO2 containing 

catalysts for CH4 combustion,16−23 CO oxidation,24−27 and NOx abatement.28 The oxygen 

storage capacity of CeO2 is enhanced when substituted with Pd,29−33 and doping promotes 

the formation of oxygen vacancies in catalysis.5,34,35 It has also been demonstrated that CeO2 

supported catalysts and Pd supported on CeO2 are active for the water-gas shift reaction.36−38 

Additionally, it was also shown that a Pd-containing catalyst effectively converted CH4 to a 

methanol derivative in solution.39 The study of CH4 activation reactions has important 

energy applications. While large reserves of CH4 exist and considerable portions of these 
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reserves are currently used to heat homes and generate hydrogen for other synthetic 

processes, it is widely accepted that the conversion of CH4 to liquid hydrocarbon fuels 

efficiently with an inexpensive and robust catalyst would be a substantial contribution to 

alternative energy research.40 The usual Fischer−Tropsch strategy requires oxidation to 

mixtures of CO and H2, which are then converted to higher hydrocarbons. Alternate partial 

oxidation strategies could be a more direct route to valuable products. For example, dry 

reforming of CH4 is of value because recovered CH4 is often found in the presence of CO2. 

As large-scale separations are expensive, it would be convenient to identify a catalyst that 

efficiently converts CH4 to useful products in the presence of CO2.41 We address the 

following questions in this work: (i) Does USP provide a useful route to single-phase Pd-

substituted CeO2 with high surface area? (ii) Can Pd-substituted CeO2 be used as a catalyst 

for CH4 activation in the presence of O2 (partial oxidation) or CO2 (dry reforming)? (iii) Can 

it be concluded that a substituted PGM ion is active for C−H bond activation? We found that 

Pd-substituted CeO2 behaves in a manner that is nearly indistinguishable from supported Pd 

on CeO2 as a result of the reduction of Pd2+ ions to Pd nanoparticles on CeO2 . This study 

complements prior work on the use of Pt substituted CeO2 as a catalyst for CH4 activation.42 

Experimental Section 

Pd-substituted CeO2 was prepared using USP. The USP setup is based on the apparatus 

described by Skrabalak et al.,43 which they used for the preparation of nanoporous carbon. 

The precursor solution, containing Ce(NO3)3·6H2O (99%, Aldrich) and Pd(NO3)2·2 H2O 

(99.999%, Aldrich) dissolved in the appropriate molar ratios in Millipore water, was 

nebulized in the custom reaction vessel over a Sunpenton humidifier. The precursor mist 

was carried by compressed air through a vitreous silica tube in a Lindberg Blue/M tube 
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furnace at 500 °C. Product powders were collected in bubblers containing 4:1 H2O/EtOH. 

The suspensions were evaporated in crystallization dishes at 80 °C overnight, and the dry 

powder was collected. 

Room temperature XRD data was collected on a Philips X′PERT diffractometer, and in 

situ variable temperature diffraction experiments were performed with a Bruker D8 

diffractometer equipped with an Anton Parr hot-stage. Synchrotron X-ray powder diffraction 

patterns were collected in transmission mode at room temperature on beamline 11-BM at the 

Advanced Photon Source, Argonne National Laboratory, with an X-ray energy of near 30 

keV. No evidence for sample degradation or damage was observed. Rietveld refinements 

were performed using the XND code.44 X-ray photoelectron spectra were obtained on a 

Kratos Axis Ultra Spectrometer with a monochromatic Al−Kα source (E = 1486.7 eV). 

Samples were mounted on a stainless steel sample holder using double-sided carbon tabs. 

The residual pressure inside the analysis chamber was below 7 × 10−9 Torr. Survey spectra 

over wide ranges of binding energy were acquired using an analyzer pass energy of 160 eV, 

and spectra of Pd 3d levels were acquired at a pass energy of 80 eV. Spectra were calibrated 

to the C 1s peak from adventitious hydrocarbons, expected at a binding energy of 285.0 eV. 

For peak fitting of the spin−orbit doublets in high resolution scans, the d3/2 to d5/2 peak 

area was constrained to a ratio of 2/3. Scanning electron micrographs (SEMs) were acquired 

on an FEI XL40 Sirion FEG digital scanning microscope. SEM sample stages were 

sputtered with Au plasma prior to imaging to reduce sample charging. Transmission electron 

micrographs (TEMs) were taken on an FEI Tecnai G2 Sphera Microscope. TEM copper-

coated Cu grids were prepared by dropcasting a dilute suspension of product in ethanol onto 
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grids. Brunauer−Emmett−Teller (BET) surface area measurements were made on a 

MicroMetrics TriStar 3000 porosimeter using N2 as probe gas. 

Catalytic testing was carried out in a home-built packed bed reactor, equipped with MKS 

mass flow controllers and mass spectrometer (SRS) for data acquisition. Quartz tubes (inner-

diameter = 4 mm) were packed with 25 mg of catalyst and 50 mg of HPLC grade aluminum 

oxide (Aldrich) to prevent hotspots, with quartz wool plugs on both ends of the powder. The 

loosely packed powder occupies a length of 1 cm to maintain a space-time of 0.18 s with a 

total flow rate of 30 sccm. Reactions were ramped from room temperature to 600 °C at a 

rate of 10 °C/min. Catalysts were pretreated with Ar, 20% H2/Ar balance, or 20% O2/Ar 

balance. During partial oxidation of CH4 a 2:1 ratio of CH4 /O2 was set to flow over the 

catalyst. This ratio is the stiochiometric amount to produce synthesis gas: CH4 + 1/2 

O2→CO + 2H2. All gases had a stated purity of better than 99.99%.  

Anticipated products for partial oxidation reactions (2:1 CH4/O2) include combustion 

productions (CO2 and H2O), synthesis gas (various ratios of H2 and CO), oxidative coupling 

products (C2H6, C2H4, C2H2), and methanol. The mass spectrometer was set to record the 

activity of the m/z ratios corresponding to these products. While heating any hydrocarbon in 

the presence of oxygen to high temperatures, combustion products are expected. It is 

possible for unreacted CH4 to react with any CO2 produced from combustion and proceed to 

do dry reforming of CH4 to produce synthesis gas (CO + H2). If CO and H2 were produced 

during partial oxidation of CH4, catalysts were tested for dry reforming of CH4 , in which 

CH4 reacts with CO2 produced from combustion. If CH4 reacts with CO2 to produce 

synthesis gas, then this is a possible mechanistic route for syngas production during partial 

oxidation reactions. 
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The anticipated products for dry reforming of CH4 (1:1 CH4 / CO2) are synthesis gas (H2 

and CO). The mass spectrometer was set to record the m/z ratios corresponding to all of the 

products listed for partial oxidation reactions. All subsequent reactions were chosen based 

on the material’s behavior during partial oxidation conditions. Other reactions studied in this 

work include ethylene hydrogenation (1:1 C2H4/H2) to 300 °C heated at 10 °C/min. 

Anticipated products of this reaction include ethane and water. The results of 

characterization of Ce1−xPdxO2−δ and catalytic testing follow. 

Results and Discussion 

Characterization of Ce1−xPdxO2−δ 

Pd-substituted CeO2 (Ce1−xPdxO2−δ) was prepared with x = 0.025, 0.05, 0.075, 0.1 via 

USP. Representative scanning electron micrographs for a sample with x = 0.05 of the as-

prepared powders are shown in Figure 1a. The hollow sphere morphology of the powders is 

evident in the higher magnification image presented in the inset. The morphology 

presumably results from evaporation of liquid as the mist traveled through the furnace, 

leaving behind polydispersed hollow spheres. Despite the relatively large size of the 

agglomerates, the crystallites of which the spheres are composed are rather fine, with grain 

sizes on the order of 5 nm, as seen in the transmission electron micrographs of Figure 1b. 

The Ce0.95Pd0.05O2−δ powder prepared by USP has BET surface area of about 32 m2/g. 
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Figure 1. (a) Scanning electron micrograph of Ce0.95Pd0.05O2−δ particles prepared by 

nebulized USP showing a hollow sphere morphology. (b) Transmission electron micrograph 

of the Ce0.95Pd0.05O2−δ particles showing that hollow spheres are composed of approximately 

5 nm crystallites, confirming the correlation length obtained from line broadening from 

synchrotron XRD.  

High-resolution synchrotron X-ray powder diffraction patterns and corresponding 

Rietveld refinements are shown in Figure 2 for the as-prepared samples and after calcination 

at 700 °C for 16 h. Pure fluorite CeO2 is the only phase observed, and no phase segregation 

occurs in any of the compositions. We did not attempt to prepare materials with Pd 

concentrations higher than 10 mol %. The diffraction profiles are broader in the substituted 

materials, relative to pure CeO2 , and this is especially pronounced in the calcined samples. 

Refinements were performed with models fixed at the nominal stoichiometry of each sample 

(δ = x) with Pd residing on the Ce site, and the atomic displacement parameters (ADP) of Pd 

and Ce were constrained to the same value. Because the Pd and O occupancies, ADPs, and 

global scale factor are strongly correlated, the occupancies cannot be refined. For this 

reason, it is not possible to directly demonstrate the solid solubility of Pd in CeO2 from 

average structure (Rietveld) refinement techniques using XRD data. 
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Figure 2. (a) Synchrotron XRD data for as-prepared Ce1−xPdxO2−δ with x = 0, 0.05, and 

0.1. All samples are single-phase fluorite. Vertical bars in the topmost panel indicate 

expected fluorite CeO2 reflection positions. (b) Diffraction from samples after calcining in 

air for 16 h at 700 °C, with significant peak narrowing because of sintering. The inset shows 

the strongest reflection, with height normalized, for samples with increasing Pd2+ 

substitution, x. Samples with higher x values are seen to possess significantly broader peaks. 

Thermodiffraction shows the evolution of the 111 and 200 reflections of CeO2 between 

room temperature and 700 °C for unsubstituted CeO2 (x = 0) and 5% Pd-substituted CeO2 (x 
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= 0.05). Diffraction profiles of pure CeO2 narrow with increasing temperatures, while the 

peak widths of the substituted material remain significantly broader. The distinct behaviors 

are indirect evidence that Pd is substituted into the CeO2 lattice, and suggests that sintering 

may be suppressed in the substituted material. These points are discussed in greater detail 

with respect to analysis of synchrotron X-ray powder diffraction studies of the Ce1−xPdxO2−δ 

series. 

There are considerable challenges associated with structure determination and 

refinement of nanoscale materials from Bragg scattering-based diffraction analysis. While it 

is known that systematic errors arise in the determination of lattice parameters for 

nanocrystalline materials,45 this is infrequently acknowledged. Using the Debye function, 

Palosz and co- workers simulated diffraction patterns for perfect SiC nano- crystallites with 

sizes ranging from 3 to 8 nm and refined the simulated data by the Rietveld method.45 

Interestingly, they found that in the approximation of a perfect experiment, that is, no 

sample-offset error, the refined lattice constant was systematically overestimated, 

increasingly as the crystallite size decreased. In refinements approximating an imperfect 

experiment in which the sample-offset error was allowed to float, the refined lattice constant 

was increasingly underestimated as the crystallite size decreased. Thus, even within the 

approximation that a nanomaterial is a small single-crystalline piece of the bulk material, 

Rietveld refinement fails to accurately extract the lattice parameters. In this light, it is clear 

that great care must be taken when establishing trends in the variation of lattice parameters 

determined by Rietveld analysis. 

The situation is further complicated by the fact that nanocrystallites are not simply small 

portions of a bulk material. Conventional crystallographic analysis operates on the 
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assumption that the environment of each lattice point is identical. While this may be well 

approximated by atoms within the core of a nanoparticle, it certainly does not apply to the 

under-coordinated atoms at or near the surface. For this reason, a single group of lattice 

constants does not capture the complexity inherent to real nanocrystals. Palosz et al. have 

extensively discussed limitations of Rietveld analysis for structure determination in 

nanocrystalline materials.45−47 

 

Figure 3. (a) Variation of the cubic cell parameter of Ce1−xPdxO2−δ as a function of 

nominal Pd substitution x. Data are displayed for as- prepared and calcined samples 

separately, as described in the text. The cubic cell parameter was determined for the whole 

Q range of data, and separately for data with Q > 8 Å−1, shown with shaded symbols. (b) 



 

 151 

Cell parameters displayed as a function of the reciprocal crystalline correlation length as 

obtained from Williamson−Hall analysis of synchrotron XRD data. 

 
With these limitations in mind, we address the observed variation of the lattice constant 

as a function of substitution level with caution. It is clear from the thermodiffraction and 

synchrotron studies that Pd-substitution in CeO2 reduces the XRD-coherent correlation 

length. In Figure 3a, the refined  lattice parameters of the as-prepared and calcined samples 

are plotted against the nominal Pd content x. One method for reducing the error associated 

with lattice parameter determi- nation in nanoparticles is to refine only the high Q portion of 

a diffraction pattern, although this is only effective in the approximation of a perfect 

crystallite. Despite this known limitation, the lattice parameters from refining over the entire 

Q range (open symbols) and only the high Q portion of the patterns (shaded symbols, Q > 8 

Å−1) are compared in Figure 3a. It is immediately clear that the as-prepared samples appear 

to have larger lattice constants than the calcined materials. The lattice constants of the as-

prepared materials are reduced when only the high Q portions of the patterns are refined; the 

effect is less pronounced in the calcined materials. Ce1−xPdxO2−δ seems to exhibit Végard 

style behavior with a lengthening of a as the Pd concentration is increased. This would be 

consistent with increased cation−cation repulsion arising from the removal of oxygen 

because of the aliovalent substitution of Pd2+ for Ce4+. However, the Shannon−Prewitt ionic 

radius of 4-coordinate Pd2+ (0.64 Å) is significantly smaller than the radius of 8- coordinate 

Ce4+ (0.97 Å), so it is difficult to know whether the observed expansion is an artifact of 

differences in crystalline correlation lengths, or accurately representative of differences in 

the lattice constants. 
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Table 1. Volume Weighted Particle Sizes (Dv) and Strain (ε) Obtained from a 

Williamson−Hall Analysis of Synchrotron X-ray Powder Diffraction for Ce1−xPdxO2−δ 

Where x = 0, 0.025, 0.05, 0.075, 0.1 

 

To address whether the variation in the lattice parameter across the series is due to 

systematic differences in the crystallite sizes, we performed a Williamson−Hall analysis48 on  

each of the patterns. It is important to point out that neither Scherrer nor Williamson−Hall 

analyses are quantitatively accurate methods for extracting correlation lengths, though they 

do provide reasonable first-order estimates.45 Additionally, in the case of nanocrystallites of 

relatively small sizes, < 10 nm, the strain parameter extracted by the WH method carries 

little physical meaning.47 We elected to do a Williamson−Hall analysis because it involves 

fitting over the entire observed Q range, but we note that similar estimates of the correlation 

lengths were obtained by Scherrer analysis of a single reflection. The refined lattice 

constants are plotted in Figure 3b as a function of the inverse correlation length estimated 

from the WH analysis; the volume weighted particle sizes and strains are given in Table 1. 

As a function of the inverse correlation length, the lattice parameters follow an 

approximately linear trend. It is not possible to conclude whether the observed differences 

result from systematic errors inherent to the Rietveld method, or whether they genuinely 
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reflect differences between the samples. Within the associated error, the estimated strain is 

almost constant across the series of as-prepared samples. In the calcined materials, the 

estimated strain increases significantly in going from the x = 0 unsubstituted material to x = 

0.025, and then gradually increases with the Pd concentration.  

 

Figure 4. Synchrotron XRD data for Ce0.95Pd0.05O2−δ reduced in 5% H2 in Ar at 700 °C 

for 8 h. The Rietveld refinement shows fcc-Pd metal to be quantitatively present with a mole 

ratio of 0.05. 

It is clear that Rietveld analysis cannot provide direct evidence that Pd substitution 

occurs in CeO2, complicated by the many factors we have discussed. Nonetheless, the fact 

that these are single-phase materials displaying significantly different behavior upon 

calcination compared to pure CeO2 , coupled with the observation that the XRD-coherent 

correlation length changes as a function of Pd concentration, are highly suggestive that Pd is 
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dispersed in the CeO2 lattice. Verification that the nominal Pd concentrations are indeed 

reflective of the actual compositions is obtained by fully reducing the samples to two- phase 

mixtures of CeO2 and fcc-Pd metal. A synchrotron XRD pattern and corresponding Rietveld 

refinement for one such sample (x = 0.05) are shown in Figure 4. The fcc-Pd contribution is 

estimated to be 4.7 mol % by quantitative phase analysis, in excellent agreement with the 

presumed Pd content. 

 

Figure 5. X-ray photoelectron spectrum of the Pd 3d region of as- prepared 

Ce0.95Pd0.05O2−δ acquired with a pass energy of 80 eV. The Pd 3d5/2 peak is shifted to higher 

binding energy than found in PdO (dashed line indicates position) suggesting a more ionic 

charge state than that of PdO. No evidence for metallic Pd is seen. 
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Scanlon et al. recently described an ab initio study of Pd and Pt substitution in CeO2 and 

demonstrated that because of crystal field stabilization effects, the PGM substituents prefer 

to displace off the ideal Ce lattice position by about 1.2 Å to adopt square planar 

coordination, the most common coordination geometry for d8 cations.33 This result 

emphasizes the importance of applying structural probes that are sensitive to local 

environments. While EXAFS studies have been reported on the Ce1−xPdxO2−δ system,49,50 we 

are not aware of any attempts to fit models similar to the one proposed by Scanlon et al. 

 

Figure 6. Partial oxidation of methane (2:1 CH4 /O2) in Ar heated at 10 °C/min to 600 

°C over (a) CeO2 , (b) preoxidized (20% O2 in Ar to 500 °C 1 h) Ce0.95Pd0.05O2−δ, (c) 

prereduced (20% H2 in Ar to 500 °C 1 h) Ce0.95Pd0.05O2−δ, and (d) prereduced (20% H2 in Ar 
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to 500 °C 1 h) PdO/CeO2 . Almost no reaction is observed over pure CeO2 . The substituted 

Pd catalyst produces combustion products and non- stoichiometric synthesis gas during 

partial oxidation and behaves similarly to the supported Pd catalyst under reaction 

conditions. 

X-ray photoelectron spectroscopy (XPS) of the Pd 3d region was investigated to 

determine the charge state of substituted Pd in Ce0.95Pd0.05O2−δ. Indicated in Figure 5 are the 

binding  energies for the Pd 3d5/2 signal in PdO (336.8 eV) and Pd metal (335.4 eV).51 In 

Figure 5, the Pd 3d5/2 signal for Ce0.95Pd0.05O2−δ is seen at 337.4 eV, a slightly higher binding 

energy than that of PdO or Pd metal. The increased ionic character suggests Pd lattice 

substitution. This shift to higher binding energy is in agreement with the XPS of the Pd 3d 

region taken by Singh et al. for Ce0.95Pd0.05O2−δ prepared via solution combustion synthesis 

in which the 3d5/2 signal is seen at 337.4 eV.52 Though this does not entirely rule out the 

possibility of PdO clusters on the surface, both bulk probes like diffraction and surface 

probes like XPS suggest ionic Pd is incorporated into the CeO2 lattice. The purpose of this 

study of was also to determine if amorphous PdO, undetectably by XRD, was present on the 

sample. Because of the low resolution of the XPS data, it would not be possible to 

deconvolute the two Pd2+ signals. However, if amorphous PdO were present, it would 

crystallize upon calcination.  

Reactivity Studies 

The Ce1−xPdxO2−δ series was tested for C−H bond activation in partial oxidation of CH4 

and dry reforming of CH4 . Partial oxidation was tested over pure CeO2 as a control (Figure 

6a). Even at 600 °C there is no conversion of CH4 to products of interest. Whereas the USP 
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prepared CeO2 was inactive, Figure 6 shows the Pd-substituted CeO2 catalyst is active for 

CH4 combustion. 

 

Figure 7. Steady state partial oxidation of methane (2:1 CH4 /O2) in Ar heated in 50 °C 

increments from 450 to 600 °C with a dwell time of 1 h at each temperature step over 

Ce0.95Pd0.05O2−δ. At 450 °C sufficient Pd metal is present to produce nonstoichiometric 

synthesis gas, H2 in excess. After combustion, several secondary reactions occur including 

steam reforming and water gas shift. 

It was of interest to use a minimum amount of PGM while still achieving C−H bond 

activation. The quantitative work was performed primarily on Ce0.95Pd0.05O2−δ which was 

found by us to be slightly more active than Ce0.95Pd0.05O2−δ and approximately the same as 
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Ce0.925Pd0.075O2−δ. For partial oxidation of CH4, Ce0.95Pd0.05O2−δ was subjected to either 

prereduction or preoxidation. In both pretreatment cases, the same reaction character is 

observed. The only difference the pretreatment yields is a slightly lower activation 

temperature for the prereduced sample. In partial oxidation over Ce0.95Pd0.05O2−δ (Figures 

6b,c), combustion products (CO2 and H2O) were observed along with nonstoichiometric 

synthesis gas. Excess H2 is produced from the partial oxidation of CH4 over Ce0.95Pd0.05O2−δ. 

 

Figure 8. Synchrotron XRD data for Ce0.95Pd0.05O2−δ mixed with γ-Al2O3 after use as 

catalyst under partial oxidation conditions to 600 °C. The Rietveld refinement shows fcc-Pd 

metal present along with diluent Al2O3. The asterisks indicate an unidentified impurity. 

To consider if CH4 is reacting with CO2 produced from combustion, dry reforming of 

CH4 was tested separately. The same two pretreatments were performed individually. The 
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pretreatment makes very little difference in the reaction character and the activation 

temperature of the catalyst. Very minimal synthesis gas was producing during dry reforming 

of CH4 over Ce0.95Pd0.05O2−δ. Dry reforming is not the sole mechanism by which excess H2 is 

produced. 

 

Figure 9. Ethylene hydrogenation (1:1 C2H4/ H2) in Ar heated at 10 °C/min to 300 °C 

over (a) CeO2 , (b) prereduced (20% H2 in Ar to 300 °C 1 h) Ce0.95Pd0.05O2−δ, (c) prereduced 

(20% H2 in Ar to 300 °C 1 h) PdO/CeO2 . The reduced Pd substituted catalyst is active for a 

reaction known to take place on Pd metal and performs similarly to the supported Pd 

catalyst.  

To further probe the mechanism by which partial oxidation of CH4 over Ce0.95Pd0.05O2−δ 

produces excess H2 a steady state reaction was performed. While the gas ratios for partial 
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oxidation remained the same, the temperature ramp was changed to allow the catalyst to 

come to steady state at each temperature stage before continuing. The temperature ramping 

for the steady state reaction was 1 h dwells in 50 °C increments starting at 400 °C, 

increasing to 600 °C, and back down again. As shown in Figure 7, the steady state reaction 

clearly shows consumption of water during partial oxidation of CH4, suggesting steam 

reforming. Along with the consumption of water, more CO2 is produced than expected. This 

is likely a result of the water-gas shift reaction. The excess H2 observed during partial 

oxidation of CH4 over Ce0.95Pd0.05O2−δ also likely results from a combination of some dry 

reforming, steam reforming, and water gas shift reactions. The long time steady state 

reaction for partial oxidation of methane over Ce0.95Pd0.05O2−δ was carried out for 24 h at 

600 °C. 
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Figure 10. Ethylene hydrogenation (1:1 C2H4/ H2) over as-prepared Ce0.95Pd0.05O2−δ 

heated at 10 °C/min to 300 °C. The material becomes active and produces C2H6 only once 

the material become sufficiently reduced around 120 °C, further confirming that the 

catalytically active form of this material is Pd supported on CeO2 . 

To explain why prereduction causes this catalyst to become active at a slightly lower 

temperature than the preoxidized sample, we chose to further investigate how reducing 

conditions affected this material. Synchrotron powder XRD of the prereduced catalyst in 

Figure 4 distinctly shows fcc-Pd in addition to cubic CeO2. It appears that Pd-substituted 

CeO2 becomes Pd supported on CeO2 under reducing conditions, and this is the catalytically 

active phase for C−H bond activation. Pd-substituted CeO2 is not active for C−H bond 

activation. To confirm that the substituted material behaves like Pd metal under reaction 

conditions, partial oxidation was recorded for a prereduced sample of PdO supported on 

CeO2 (Figure 6d). Partial oxidation of CH4 over Pd metal supported on CeO2 shows identical 

reaction character to partial oxidation over the Pd-substituted CeO2 , but with activity for 

excess hydrogen production igniting at about 400 °C as opposed to about 450 °C in Pd-

substituted CeO2 . 

The reaction character observed for partial oxidation and dry reforming of methane over 

Pd-substituted CeO2 is in contrast to that Pt-substituted CeO2 . Partial oxidation of methane 

over Pt-substituted CeO2 does produce stoichiometric synthesis gas between 450 and 500 

°C, while Pd-substituted CeO2 produces nonstoichiometric synthesis gas in the form of 

excess H2. Pt- substituted CeO2 is also active for dry reforming of methane to synthesis gas 

with relatively high conversion, while Pd-sub ceria produces nonstoichiometric synthesis 

gas with a very low yield. Pd-substituted CeO2 likely undergoes several secondary reactions 
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during partial oxidation of methane, including dry reforming of methane, water-gas shift, 

and steam reforming of methane. 

The synchrotron powder diffraction pattern was collected for postreaction 

Ce0.95Pd0.05O2−δ mixed with Al2O3. Just as fcc-Pd was seen in the reduced material (Figure 

4), so too is this phase observed in the diffraction pattern shown in Figure 8 along with the 

γ-Al2O3 diluent. We took special care to cool the material in an inert atmosphere after 

becoming active under reaction conditions. The material was also handled carefully, quickly 

contained, and promptly sent for characterization. We recognize that some reoxidation may 

take place but the fcc- Pd phase is very clearly seen in the postreaction material. Certainly 

no PdO phase is observed in the postreaction material. Moreover, the fact that the catalytic 

behavior matches that of Pd/CeO2 further supports that the postreaction material does 

contain Pd metal. The correlation length of fcc-Pd determined from synchrotron XRD and 

the Scherrer line broadening equation is near 7 nm for postreaction Ce0.95Pd0.05O2−δ and near 

100 nm for the as-prepared Pd/ CeO2 used for comparison. However, it should be noted that 

the Scherrer line broadening equation does not provide the most accurate measure of 

coorelation length at these length scales. It seems that the catalytically active phase of 

Ce0.95Pd0.05O2−δ for partial oxidation of CH4 is actually the reduced Pd supported on CeO2 . 

Other reactions and chemical probes were considered to determine the presence of metallic 

Pd in this catalyst. 

It would appear that Pd-substituted CeO2 becomes Pd supported on CeO2 under reaction 

conditions. Since Pd supported on oxides is capable of catalyzing ethylene hydrogenation, 

we performed ethylene hydrogenation over Ce0.95Pd0.05O2−δ.53 As seen in Figure 9a, no 

ethane was produced over unsubstituted CeO2 . However, ethane was produced over 
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prereduced Ce0.95Pd0.05O2−δ at room temper- ature (Figure 9b). Increasing the temperature 

did not increase the ethylene conversion in this reaction. The same behavior was observed 

for reduced PdO/CeO2 (Figure 9c). It is interesting to note that there appears to be a slightly 

higher selectivity toward ethane production for reduced Ce0.95Pd0.05O2−δ δ than the reduced 

PdO/CeO2 used for comparison. To confirm that this reaction proceeds over Pd metal 

supported on CeO2 , and not the as-prepared Ce0.95Pd0.05O2−δ, we attempted ethylene 

hydrogenation without a prereduction. The catalyst does not become active until it becomes 

sufficiently reduced by the ethylene and hydrogen flowing over the catalyst. Figure 10 

shows that at around 110 °C the catalyst was reduced to Pd metal supported on CeO2 at 

which point ethylene was converted to ethane. The catalyst continued to actively produce 

ethane while it was cooled back to room temperature. 

Pd-substituted CeO2 catalysts have been successfully prepared via USP with a surface 

area of 32 m2/g and hollow sphere morphology. These materials are phase pure up to 10 mol 

% Pd substitution. This material becomes catalytically active for C−H bond activation only 

after the Pt2+ ions have been reduced to Pd metal supported on CeO2. Partial oxidation of 

CH4 over Ce0.95Pd0.05O2−δ yields the expected combustion products along with 

nonstiochiometric synthesis gas in the form of excess hydrogen gas. The excess hydrogen is 

a result of several secondary reactions occurring after combustion, including dry reforming 

of CH4, steam reforming of CH4, and water gas shift. The catalytically active phase for this 

material is Pd supported on CeO2, confirmed by the ethylene hydrogenation reaction. 

Additionally, we have identified USP as an adequate method for the preparation of 

substituted metal oxides and potentially for the preparation of well-dispersed metal 

nanoparticles on oxide supports upon reduction.  
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