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ABSTRACT 

 

Manipulation of the Uranyl (UO22+) Moiety: New Routes to Reduction and O-U-O Angle 

Perturbation 

 

by 

 

Elizabeth Anne Owens 

 

Treatment of UO2(dbm)2(THF) with 1 equiv of R3SiH (R = Ph, Et), in the 

presence of B(C6F5)3, results in the formation of U(OB{C6F5}3)(OSiR3)(dbm)2(THF) (R = 

Ph, Et) in good yields. Interestingly, the addition of 1 equiv of H(dbm) to 

U(OB{C6F5}3)(OSiEt3)(dbm)2(THF) results in substitution of the -OSiEt3 ligand to form 

U(OB{C6F5}3)(dbm)3 and HOSiEt3. Furthermore, addition of HOSiEt3 and 1 equiv of THF 

to U(OB{C6F5}3)(dbm)3, results in the formation U(OB{C6F5}3)(OSiEt3)(dbm)2(THF), 

revealing that this process is reversible. In addition, reaction of 

U(OB{C6F5}3)(OSiPh3)(dbm)2(THF) with excess HOSiPh3 also results in the formation 

of the substituted oxo product, U(OSiPh3)3(dbm)2. 

Reaction of [UO2(dppmo)2(OTf)][OTf] with 4 equiv of Ph3SiOTf and 2 equiv of 

Cp2Co, generates the U(IV) complex, U(OTf)4(dppmo)2, in excellent yield, along with 

Ph3SiOSiPh3 and [Cp2Co][OTf]. This reaction proceeds via two U(IV) silyloxide 

intermediates, [U(OSiPh3)2(dppmo)2(OTf)][OTf] and [U(OSiPh3)(dppmo)2(OTf)2][OTf]. 

Similarly, reaction of [UO2(TPPO)4][OTf]2 with 6 equiv of Me3SiOTf and 2 equiv Cp2Co, 



 

 ix 

generates the U(IV) complex, [Cp2Co][U(OTf)5(TPPO)2], in good yield, concomitant 

with formation of Me3SiOSiMe3, [Ph3POSiMe3][OTf], and [Cp2Co][OTf]. These 

transformations represent novel examples of one-pot reductions of uranyl to U(IV), at 

ambient temperatures and pressures. 

Addition of 2 equiv of Ph3SiOTf to UO2(dbm)2(THF) or UO2(Aracnac)2, results in 

the formation of U(OSiPh3)2(dbm)2(OTf) and [U(OSiPh3)2(Aracnac)2][OTf], respectively, 

in good yields. This suggests that Ph3SiOTf could be used as a general reagent for the 

reductive silylation of uranyl, as it does not require the addition of a Lewis acid 

activator. In addition, treatment of UO2(dbm)2(THF) with 2 equiv of Me3SiOTf results 

in the formation of [U(OSiMe3)2(dbm)2(THF)][OTf]. 

Reaction of UO2(N(SiMe3)2)2(THF)2 with 1 or 2 equiv of the 14-membered 

macrocycle, tmtaaH2, generates the protonolysis products 

UO2(tmtaaH)(N(SiMe3)2)(THF)  or  UO2(tmtaaH)2, respectively, in excellent yields. In 

addition, reaction of [UO2Cl2(THF)2]2 with 2 equiv of Li2(tmtaa), affords the complex, 

[Li]2[Li(THF)3Cl]2[UO2Cl2{tmtaa}2UO2Cl2], in good yield. The {tmtaa}22- dimer, 

contained within this complex, is a 1e- oxidation product of the [tmtaa]2- ligand. 

Similarly, addition of 2 equiv of K2tmtaa to [UO2Cl2(THF)2]2, results in the formation of 

the 2e- oxidized ligand product, a β-diketiminate pyrazolium macrocycle, in modest 

yield. The isolation of oxidized ligand products suggests cis-UO2(tmtaa) is a likely 

intermediate in these transformations, as it would be very unstable and readily 

undergo ligand oxidation.  

Addition of 2 equiv of the 12-membered macrocycles, HN4 or MeN4, to 

[UO2Cl2(THF)2]2 in MeCN, results in the formation of UO2Cl2(RN4) (R = H, Me), which 
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were isolated as yellow-orange solids in good yields.  Similarly, reaction of 

UO2(OTf)2(THF)3 with HN4 in MeCN results in the formation of UO2(OTf)2(HN4), in good 

yield. Finally, reaction of UO2(OTf)2(THF)3 with MeN4 in THF results in the formation of 

[UO2(OTf)(THF)(HN4)][OTf], in good yield. These complexes exhibit the smallest O-U-O 

bond angles measured to date, a consequence of the small binding pocket of the RN4 

ligands, along with its relative rigidity.      

      Reaction of UCl4 with 6 equiv of 2-Li-C6H4CH2NMe2 affords dark blue crystals of 

[Li]2[U(2-C6H3CH2NMe2)2(2-C6H4CH2NMe2)2] in good yield, which can be converted to 

[Li][Li(THF)2[U(2-C6H3CH2NMe2)2(2-C6H4CH2NMe2)2] by dissolving in THF. Using 2 

equiv of benzophenone with [Li]2[U(2-C6H3CH2NMe2)2(2-C6H4CH2NMe2)2] affords the 

double insertion product, [Li][U(2-C6H3CH2NMe2-3-COPh2)2(2-C6H4CH2NMe2)], in good 

yield, as well as 1 equiv of 2-C6H4CH2NMe2. Addition of 2 equiv of AdN3 to [Li]2[U(2-

C6H3CH2NMe2)2(2-C6H4CH2NMe2)2], in the presence of 2 equiv of 12-crown-4 ether, 

yields the double insertion product, [Li(12-crown-4)2][Li][U(5-C6H3CH2NMe2-2-

N3Ad)2(2-C6H4CH2NMe2)2], in good yield. Finally, reaction of [Li]2[U(2-

C6H3CH2NMe2)2(2-C6H4CH2NMe2)2] with 2 equiv of PhCN, affords the single insertion 

product, [Li][Li(Et2O)][U(2,3-C6H3CH2NMe2)(5-C6H3CH2NMe2-2-NCPh)(2-

C6H4CH2NMe2)2], in modest yield.  
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1.1 The Uranyl Moiety 
 

The uranyl moiety (UO22+) is the major form of uranium present in spent nuclear 

fuel and is a water-soluble environmental contaminant. The moiety has a strictly linear 

O=U=O geometry, which can be explained by a combination of uranium 6d and 5f 

atomic orbitals bonding with oxygen 2p atomic orbitals in the U=O bond (Figure 1.1).1,2 

This gives rise to very strong U=O interactions, which have a bond orders of 3,3 and 

short U-O bond lengths (ca. 1.78 Å). The U=O bond dissociation energy is 604 kJ/mol,1 

which is 72 kJ/mol larger than that observed for CO2 (532 kJ/mol).4  

 

Figure 1.1. a) General molecular structure of the uranyl ion. b) π and σ bonding in the 

uranyl ion. (Figure adapted from references 1 and 2). 

 

These oxo ligands tend to be unreactive and resistant towards functionalization.5 

For example, when UO3 is treated with neat triflic acid at 110 °C, only one of the oxo 
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ligands becomes protonated to form water and UO2(OTf)2.6 There is no further 

protonation observed and the uranyl moiety remains completely unscathed.  

Due to the solubility of the uranyl species in water, it is an established 

environmental danger, and therefore has been receiving increased attention.5,7-9 

Strategies to control its release into groundwater, usually involve reduction of the 

U(VI) moiety to a less soluble U(IV) species, UO2.10-16 Certain bacteria in nature, such as 

Geobacter sulferreducens, can facilitate the reduction of uranyl(VI) to an insoluble, 

tetravalent form, through U=O bond activation (Figure 1.2).9 The reaction pathway is 

proposed to happen stepwise, first through reduction to a U(V) intermediate, followed 

by reduction to the U(IV) species (Figure 1.2).9 The most important step involves the 

coordination of a Lewis acidic uranium center of one uranyl moiety to an oxo ligand of 

another uranyl moiety, which results in weakening of the activated U=O bond, and 

allows for reduction of the uranium center.  Additionally, the activation of a second 

“exo” oxo ligand, through protonation, is also an important step, and facilitates the 

disproportionation of two U(V) centers to one U(VI) and one U(IV) center.9 Clearly, 

functionalization of the uranyl oxo ligands plays an important role in the reduction of 

uranyl to U(IV). While this transformation may seem facile, a controlled one-pot 

reduction of uranyl to U(IV), where all the intermediates are fully characterized, has 

yet to be realized in a laboratory setting. 
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Figure 1.2. Proposed reaction for the bioreduction of uranyl to U(IV) by Geobacter 

sulferreducens. (Figure recreated from reference 9). 

 

1.2 Uranyl Oxo Functionalization 

 

Functionalization of the uranyl oxo ligands can be facilitated through use of 

strongly electron donating equatorial co-ligands,17,18 which weaken the U=O 

interaction, and increase the reactivity of the oxo ligands. Interestingly, the symmetric 

stretching frequency of the uranyl moiety can be used as a convenient measure for the 

extent of oxo ligand activation from the co-ligands.5 Coordination of a strongly electron 

donating co-ligand results in a red shifting of the U=O stretching frequency, which can 
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be observed by IR and Raman spectroscopy. This trend is easily visualized by plotting 

the uranyl(VI)/(V) reduction potential vs. the U=O symmetric stretching frequency (ν1) 

for a number of uranyl complexes (Figure 1.3). There appears to be a relatively linear 

relationship between the reduction potentials and the ν1 values. This indicates that ν1 

values can be used to identify the extent of U=O bond activation from the equatorial 

ligands. Notably, UO2(tBuacnac)(THF) does not fit this trend, for reasons we do not yet 

understand.5,17,19 In contrast to the trend exhibited by the ν1 values, there appears to 

be no correlation between the U=O asymmetric stretches (ν3) and reduction potential, 

likely due to difficulty in assigning this stretch.5   

 

Figure 1.3. A comparison of the uranyl(IV) reduction potential (vs. Fc/Fc+) and the 

U=O symmetric stretching frequency (ν1) for several uranyl complexes. Raman data 

and reduction potentials for [UO2Cl4]2-, [UO2(H2O)5]2+, [UO2(OAc)3]-, [UO2(CO3)3]4-, and 
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[UO2(OH)4]2- were taken from reference 5. Reduction potentials were converted to 

Fc/Fc+ by subtracting 0.49 V from the original Ag/AgCl values.20 Reduction potentials 

for UO2(Aracnac)2,21 UO2(tBuacnac)2(THF),19 and UO2(dbm)2(THF) (2.1) (Synthesis and 

full discussion in Chapter 2) were recorded in CH2Cl2 (). Raman data for 

UO2(Aracnac)2 and UO2(tBuacnac)2(THF) were taken from reference 19.   

 

A trend between the extent of electron donation from the equatorial ligands and 

ν1 values is nicely demonstrated in the complexes [UO2(N(SiMe3)2)n]2-n (n=2-4), where 

consecutive addition of the electron donating silylamide ligand, results in a decrease in 

the ν1 values (Scheme 1.1).22 The increased Lewis basicity of the oxo ligands upon 

coordination of a strongly electron donating co-ligand to the uranium center can be 

explained by either the increased Coulombic charge repulsion between the uranium 

and the oxo ligands, or the competition between the oxo ligands and the co-ligand for 

uranium 6d and 5f orbitals, resulting in a weakening of the U=O bond.5,17,23 

 

Scheme 1.1. Sequential addition of silylamide ligands to the uranyl ion. (scheme 

recreated from reference 22). 

 

Sarsfield and Helliwell have also demonstrated that the electron rich ligand, 

benzaminato, can disrupt the uranyl bonding framework.18 The uranyl complex, 

UO2(NCN)2(THF) [NCN = Me3Si(N)CPh(N)SiMe3] exhibits a ν1 of 803 cm-1, which is red 
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shifted from the starting material ([UO2Cl2(THF)2]2, ν1 840 cm-1), and indicates an 

increased nucleophilicity of the oxo ligands. The weakening of the U=O interaction 

facilitates the functionalization of one of the uranyl oxo ligands with B(C6F5)3, a strong 

electrophile (Scheme 1.2a).18 B(C6F5)3 coordination displaces electron density away 

from the U=O bond, and weakens the U=O bond even further. This is evidenced by the 

elongated U=O bond length (1.898(3) Å) and a red shifted Raman stretching frequency 

of 780 cm-1 for UO{OB(C6F5)3}(NCN)2. Utilization of strong electrophiles, such as 

B(C6F5)3, to functionalize uranyl has been seen in several examples.18,24,25 

 

Scheme 1.2. a) Functionalization of an oxo ligand in a uranyl bisbenzaminato complex 

with B(C6F5)3 (scheme reproduced from reference 18). b) Reductive silylation of uranyl 

utilizing the Arnold group ‘Pacman’ polypyrrolic macrocycle ligand (scheme 

reproduced from reference 26).  

  

Another method for the functionalization of uranyl is reductive silylation, which 

has been the most successful and features the widest scope.5,19,26-33 It was first 
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developed by Arnold and co-workers in 2008, when they showed their electron 

donating polypyrrolic macrocycle ligand allowed for the reductive silylation of 

UO2(THF)(H2L) (L = ‘Pacman’ polypyrrolic macrocycle), to produce the U(V) silyloxide, 

[UO(OSiMe3)(THF)Fe2I2L] (Scheme 1.2b).26,27,32,33 In this example, the uranium center 

is reduced from U(VI) to U(V), and one of the oxo ligands has been silylated. These two 

steps acting together have become known as ‘reductive silylation’. Since 2008, 

reductive silylation of uranyl has also been achieved in our group using β-ketoiminate 

co-ligands.29,30 For example, reaction of UO2(Aracnac)2 (Aracnac = ArNC(Ph)CHC(Ph)O, 

Ar = 3,5-tBu2C6H3),24 with a mixture of B(C6F5)3 and HSiR3 (R = Ph, Et), results in 

formation of the U(V) reductive silylation products, UV(OSiPh3)(OB{C6F5}3)(Aracnac)2 

and [UV(OSiEt3)2(Aracnac)2][HB(C6F5)3].29,30 Other methods of reductive 

functionalization of the uranyl ion have also been reported, including reductive 

lithiation,34 reduction and functionalization with lanthanide amides,35,36 and oxo ligand 

metalation.37-41 

 

1.3 Uranyl Oxo Substitution 

 

 While actinide chemists now have several procedures in place for 

functionalizing the uranyl oxo ligand (Section 1.2), there are only a few examples of 

complete uranyl oxo bond substitution, which could be a vital step for achieving 

controlled reduction of uranyl to U(IV). Uranyl oxo substitution usually requires harsh 

conditions, such as elevated temperatures and pressures, and the mechanism is still 

poorly understood.9,31,42,43 One example of U=O bond substitution, occurs during the 
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reaction of Ni(OAc)2 and UO2(OAc)2 in the presence of HF, resulting in the formation of 

[NiII(H2O)6UIV3F16·3H2O].42 In this reaction, there is no apparent correlation between 

the stoichiometry of the reactants and products, and it requires the highly corrosive 

HF, elevated temperatures (200 °C), and long reaction times (72 h).   

There are only a handful of instances of U=O bond substitution at room 

temperature.44 In one example, the metathesis of [UO2Cl2(THF)2]2 with 6 equiv of the 

potassium alkoxide, KOCH2C(CH3)3, results in the formation the homoleptic U(VI) 

species, U[OCH2C(CH3)3]6, along with a UO3 precipitate (Scheme 1.3a).17 It is speculated 

that the UO3 is the destination of the substituted oxo ligands, however, the mechanism 

is still unknown.  Additionally, Ephritikhine and co-workers demonstrated that 

addition of excess Me3SiX (X = Cl, Br, I) to UO2I2(THF)3 in MeCN resulted in formation 

of UX4(MeCN)4 in good yields (Scheme 1.3b).31 This reaction is not well understood, as 

all the original bonds to the uranium have been broken, and no intermediates have 

been isolated. In addition, the fate of the oxo ligands of the uranyl fragment are not 

certain, but the reaction was recently re-investigated by our group and thought to be 

converted into Me3SiOSiMe3.28 In another example, the reaction of [Ph4P]2[UO2Cl4] with 

thionyl chloride generated the U(VI) mono-oxo, [Ph4P][UOCl5] (Scheme 1.3c).25 While 

this synthesis results in U=O bond substitution at ambient conditions, the mechanism 

by which this reaction proceeds, and the fate of the missing oxo ligand, are not certain.  
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Scheme 1.3. Examples of uranyl oxo substitution at room temperature. a) reproduced 

from reference 17. b) reproduced from reference 31. c) reproduced from reference 25. 

 

1.4 Cis-Uranyl 

 

In contrast to the trans-uranyl fragment, the cis-uranyl ion is unknown, and all 

attempts to synthesize a cis-uranyl complex have been unsuccessful thus far.45-49 In 

fact, the O-U-O angle of uranyl rarely deviates past 170° (Figure 1.1), which is unusual 

considering that transition metal dioxo complexes typically feature cis-

stereochemistry.50-54 The linear geometry of the uranyl moiety has been rationalized 

by the mixing of the 5fz3 and 6pz uranium AOs in the O-U-O σ-bonding framework, 

which turns the U-O σu+ MO into a “superlative σ donor”,55 and consequently 

destabilizes the valence σu-antibonding MO (Figure 1.1), which is the highest occupied 

orbital.55 The overlap of the 6pz and 5fz3 AOs could not take place if the O-U-O angle 

was not linear (Figure 1.1). Subsequent calculations have also confirmed the uranium 
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6pz AO, stabilizes the linear geometry of uranyl, however, the order of the valence 

orbitals are still being debated.1,2 The isolation of a cis-uranyl complex could provide 

some more insight into the exact orbital combination responsible for the stabilization 

of a linear O-U-O geometry. 

Several attempts have been made to generate a cis-uranyl complex, however, 

most have been thwarted by unwanted ligand oxidation or ligand decomposition. For 

example, reaction of Cp*2UI(THF) with KC8 and pyridine-N-oxide, in an attempt to 

generate the cis-uranyl complex, cis-Cp*2UO2, resulted in formation of the 

pentamethylcyclopentadienyl dimer and unidentified “uranium oxides” (Scheme 

1.4a).56  Similarly, reaction of Cp’2UCl2 (Cp’ = 1,2,4-C5H2tBu3) with pyridine-N-oxide and 

KC8 afforded a mixed-valent uranium oxo cluster (Scheme 1.4b).57 In both instances, a 

cis-uranyl intermediate is likely formed, but it is unstable and decomposes via 

spontaneous ligand oxidation.  
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Scheme 1.4. Previous attempts to make the cis-uranyl complex, cis-Cp’2UO2 (Cp’ = η5-

C5Me5, 1,2,4-C5H2tBu3). a) reproduced from reference 56. b) reproduced from 

reference 57.  

 

Clark and co-workers approached generating a cis-uranyl complex differently, 

by trying to force a trans-uranyl moiety to exhibit cis-oxo stereochemistry through 

ligation of a tripodal ligand. However, reaction of [Li]3[N(CH2CH2NSitBuMe2)3] with 

[K(18-crown-6)]2[trans-UO2Cl4] only resulted in formation of a mixed-valent U(V/VI) 

oxo-imido dimer, [K(18-crown-6)(Et2O)][UO(μ2-NCH2CH2N(CH2CH2NSitBuMe2)2)]2 

(Scheme 1.5a).45 In this example, a cis-uranyl intermediate is also likely formed, 

however, it is probably unstable, and results in abstraction of a silyl group from the 

tripodal ligand and U=O cleavage.  The mechanism of this reaction is not well 
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understood, however, it is clear that this particular tripodal ligand is not robust enough 

to stabilize a cis-uranyl complex. 

 

Scheme 1.5. Previous attempts to make a cis-uranyl complex, from a U(VI) starting 

material. a) reproduced from reference 45. b) reproduced from references 58 and 59.  

 

Although a true cis-uranyl complex as yet to be synthesized, Arnold and co-

workers have demonstrated that the thermolysis of a mixture of UO2(N{SiMe3}2)2(pyr)2 

and UO2(pyr)(H2L) leads to the binuclear U(V) oxo complex, [(Me3SiOUVO)2(L)] (L = 

polypyrrole macrocycle), where the pacman ligand enforces the binuclear U(V) 

complex to form cis-oxo ligands (O-U-O angle of 73.3(2)°) (Scheme 1.5b).58 Reduction 

of both the uranium ions to U(V) and silylation of the “exo” oxo ligands, weakens the U-

O σ- and π-bonds, which likely lowers the energy needed for cis/trans isomerization. 

More recently, Arnold and co-workers demonstrated that the one-pot reduction and 

oxidation of the binuclear U(V) oxo complex, [(Me3SiOUVO)2(L)] with KC8 or potassium 

metal and pyridine-N-oxide, results in the formation of the doubly desilylated 
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binuclear U(V) complex, [K]2[(OUO)2(L)] (L = polypyrrole macrocycle), which is 

formally generated by coupling of a trans-[UVO2]+ fragment with a cis-[UVO2]+ fragment 

within the binding pocket of the polypyrrole macrocycle (Scheme 1.5b).58,59 Similar to 

[(Me3SiOUVO)2(L)], the reduced U(V) ions in [K]2[(OUO)2(L)] likely lower the energy 

penalty required for cis/trans isomerization. This is nicely demonstrated, when 

oxidation of this complex with pyridine-N-oxide results in rearrangement of the cis-

di(oxo) fragment back to the original trans structure (Scheme 1.5b).58,59    

Furthermore, a cis-uranyl coordination polymer, cis-[UO2(fcdc)(THF)∙(Fc)]n 

(fcdc = 1,2-ferrocenedicarboxylate), was reported by Duval and co-workers in 2007,48 

but not even a year later Ephritikhine and co-workers showed this result was 

unreproducible,47 and is likely incorrect. A similar 2015 report of a cis-uranyl 

coordination polymer is also probably incorrect.49  

Interestingly, density functional theory (DFT) studies of [UO2(OH)4]2- reveal 

that the cis isomer is 18-20 kcal/mol higher in energy than the trans isomer, depending 

on the method used.60,61 Similar calculations by Schelter and co-workers reveal that the 

cis isomer of [UO2(N(SiH3)2)3]- is 31.4 kcal/mol higher in energy than the trans 

isomer.62 Even though these cis-uranyl isomers are higher in energy than the trans-

isomers, they still represent local minima on the energy landscape, indicating their 

isolation should be possible. These large destabilizations likely reflect the lack of an 

Inverse Trans Influence (ITI) in the cis-UO22+ fragment,63-67 and further highlight the 

challenges inherent in isolating a cis-uranyl complex.  

 

1.5 General Remarks 
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This dissertation if divided into 7 chapters and 2 appendices, and covers three 

primary areas of research: 1) the reductive silylation of uranyl to U(IV) and examples 

of uranyl oxo ligand substitution, 2) attempts to synthesize a cis-uranyl complex, and 3) 

the synthesis and reactivity of a U(IV) dibenzyne complex.  

Chapters 2, 3 and 4 explore the reductive silylation of uranyl using various co-

ligands, such as dbm, dppmo and TPPO.  Both chapters 2 and 3 contain rare examples 

of uranyl oxo ligand substitution under ambient conditions. Chapter 3 contains the first 

reported one-pot reduction under ambient conditions of uranyl to U(IV), where the 

fate of the substituted oxo ligands have been explicitly identified. This work is 

especially interesting because it displays a close resemblance to the proposed 

mechanism for the biological reduction of uranyl by Geobacter sulferreducens.9 The 

understanding of reduction and remediation of uranyl in the environment is a crucial 

consideration when planning for storage of spent nuclear fuel. Chapter 4 explores the 

effectiveness of various silylating reagents, R3SiOTf (R = Ph, Me).  

Chapters 5 and 6 discuss several attempts to generate a cis-uranyl complex, by 

reacting trans-uranyl with small macrocycle ligands that occupy only one hemisphere 

of the metal ion, in order to force cis-stereochemistry of the uranyl oxo ligands. 

Although true cis-uranyl complexes were not isolated, the results presented do give 

insight into new strategies for the generation of a cis-uranyl complex in the future.   

Chapter 7 describes the synthesis and the in-depth reactivity studies of the first 

isolable U(IV) dibenzyne complex, and its comparison to transition metal benzyne 

complexes. 
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Appendix A contains supplementary information for several chapters. Appendix 

B describes the synthesis of several molecules not mentioned in the main body of this 

dissertation. 
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2.1 Introduction 

 The reduction of uranyl(VI) to U(IV) has proven to be a viable strategy for the 

treatment of contaminated legacy sites,1-7 and can be achieved through 

functionalization or substitution of the uranyl oxo ligands.8 Oxo ligand 

functionalization and substitution of the uranyl ion can be rather challenging,9 

however, both can be facilitated through the use of strongly electron donating 

equatorial co-ligands,10,11 utilization of strong electrophiles,11-13 or reductive 

silylation.9,14-22  

Interestingly, B(C6F5)3-activated silanes have been shown to reduce a variety of 

organic substrates, including ketones, enols and imines.23-28 In this type of silylation 

process, studied extensively by Piers and co-workers, the Lewis acidic perfluoroaryl 

borane, B(C6F5)3, forms a proposed borane-silane adduct with an electron rich silane, 

Ph3SiH, which activates the silicon towards nucleophilic attack from the oxygen by 

abstracting a hydride (Scheme 2.1).24,29 In 2014, a similar borane-silane adduct 

between 1,2,3-tris(pentafluorophenyl)-4,5,6,7-tetrafluoro-1-bora-indene and Et3SiH 

was crystallographically characterized for the first time.29    
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Scheme 2.1. Borane-catalyzed silylation of a ketone (Scheme reproduced from 

reference 24). 

 

Drawing inspiration from the reductive silylation work done by Arnold and co-

workers (Scheme 1.2b), as well as the work done by Piers and co-workers (Scheme 

2.1), our group developed a proposed catalytic method for uranyl functionalization 

using B(C6F5)3 (Scheme 2.2). We hypothesize that reaction of a uranyl complex, UO2Lx 

(L = co-ligand), with a borane-silane adduct, would promote a double silylation to 

generate a U(V) bis-silyloxide complex, where the charge is balanced by the 

borohydride counterion, [HB(C6F5)3]-.18,19 Then, by optimizing the redox potential of 

the U(V) intermediate by modifying the co-ligands, it would be possible for 

[HB(C6F5)3]-, which is a competent reducing agent,30 to further reduce the U(V) center 

to U(IV), whilst regenerating the B(C6F5)3 catalyst (Scheme 2.2). However, we still need 

to find the ideal co-ligands (L) to facilitate the unprecedented catalytic ‘reductive 

silylation’ of uranyl. 
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Scheme 2.2. Proposed catalytic cycle for the reductive silylation of uranyl to U(IV). 

 

Our group has previously probed the utility of the electron rich, β-ketoiminate 

ligand, Aracnac (Aracnac = ArNC(Ph)CHC(Ph)O, Ar = 3,5-tBu2C6H3), for its use as a co-

ligand in the proposed cycle (Scheme 2.2).18 The uranyl complex, UO2(Aracnac)2, was 

shown to react with HSiR3 (R = Ph, Et), in combination with B(C6F5)3, to generate the 

U(V) silyloxide complexes, U(OSiPh3)(OB{C6F5}3)(Aracnac)218 and 

[U(OSiEt3)2(Aracnac)2][HB(C6F5)3]19 (Scheme 2.3).  In both cases, the strong electron 

donating ability of Aracnac ligand activated the uranyl oxo groups toward 

functionalization. Other researchers have also hypothesized that strongly donating 
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equatorial groups weaken the U=O bond and activate the oxo ligands toward 

functionalization and/or substitution.31-34 This hypothesis is supported by vibrational 

data, which shows a clear correlation between donor ability and the U=O νsym stretch 

(Figure 1.3).9  

It is important to note, however, in both examples, there was no evidence for 

reduction to U(IV), the desired product. In fact, Cp2Co, an external reductant, was 

needed to achieve complete reduction to U(IV), which is not practical for large-scale 

catalytic reductions.19 Since the borane reagent is also consumed in the reaction, either 

by coordination to an unfunctionalized uranyl oxo, U(OSiPh3)(OB{C6F5}3)(Aracnac)2,18 

or trapped as a borohydride anion, [U(OSiEt3)2(Aracnac)2][HB(C6F5)3],19  we 

hypothesize that the reduction process was stopped at U(V) due to the strong electron 

donating properties of the Aracnac ligand. While a strong electron donating co-ligand is 

ideal for activating the oxo ligands in uranyl towards functionalization, it appears to be 

simultaneously thwarting the complete reduction to U(IV). A slightly weaker donating 

equatorial ligand might be better suited for this process. Finding the right amount of 

electron donation from the co-ligands to balance both oxo ligand activation and metal 

center reduction is key for this process to work. 
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Scheme 2.3. Reductive Silylation of UO2(Aracnac)2 with B(C6F5)3 and Et3SiH. (Scheme 

reproduced from reference 19). 

 

 In this chapter, we report a new example of reductive silylation, using a 

B(C6F5)3-activated silane to functionalize the oxo ligands of a dibenzoylmethanate-

supported uranyl complex.  In addition, we demonstrate a two-step procedure for the 

controlled substitution of a uranyl oxo ligand under ambient conditions.  

 

2.2 Results and Discussion 

2.2.1. Synthesis, Characterization, and Electrochemical Studies of 

UO2(dbm)2(THF) (2.1) 

 

To expand the scope of borane-mediated silylation of uranyl, the utility of dbm 

(dbm = OC(Ph)CHC(Ph)O) as a uranyl supporting ligand was probed. Several 

UO2(dbm)2(L)-type complexes have been reported in the literature, however, they 

typically feature Lewis base co-ligands that could be incompatible with our reductive 

silylation protocol (e.g., H2O, dmso, dmf).35-37 Thus, we endeavored to synthesize a 

uranyl dibenzoylmethanate complex that contained THF as a co-ligand. Reaction of 2 
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equiv of Na(dbm), generated in situ, with UO2Cl2(THF)3 results in formation of a light 

orange solution, from which UO2(dbm)2(THF) (2.1) can be isolated as an orange 

powder in 71% yield (Scheme 2.4).  This complex features a singlet at 7.32 ppm in its 

1H NMR spectrum (CD2Cl2), which is assignable to the γ-CH of the dbm ligand.  In 

addition, broad singlets at 4.99 and 2.47 ppm, confirm the presence of THF in the 

uranyl coordination sphere.  Complex 2.1 had been reported previously,38 but had not 

been fully characterized.  It is closely related to several other uranyl bis(β-diketonate) 

complexes that have been reported in the literature,37,39 including UO2(acac)2(THF),40 

UO2(dbm)2(dmso),36 and UO2(dbm)2(H2O).35   

 

 

Scheme 2.4. Synthesis of UO2(dbm)2(THF) (2.1) 

 

We evaluated the strength of the U=O bonds in complex 2.1 relative to the 

previously characterized β-ketoiminate complex, UO2(Aracnac)2. The room 

temperature cyclic voltammogram of 2.1 in CH2Cl2 reveals an irreversible reduction 

feature at E1/2 = -1.19 V (vs. Fc/Fc+), measured at a scan rate of 0.1 V/s, which we 

attribute to the U(VI/V) redox couple (Figure 2.1a). This feature is irreversible at all 

scan rates. Additionally, reduction of 2.1 to U(IV) was not observed within the range of 

the solvent window. Importantly, this value is less negative than that observed for 

UO2(Aracnac)2 (Ar = 3,5-tBu2C6H3) (E1/2 = -1.35 V vs. Fc/Fc+),41 confirming that the dbm 
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equatorial ligand is less electron donating than the Aracnac ligand, and suggesting a 

lesser degree of oxo ligand activation in 2.1 (Table 2.1). For further comparison, 

UO2(dbm)2(dmso) features a reversible UO22+/UO2+ redox couple at E1/2 = -1.36 V (vs. 

Fc/Fc+, in dmso),36 while UO2(dbm)2(dmf) features a reversible UO22+/UO2+ redox 

couple at E1/2 = -1.46 V (vs. Fc/Fc+, in dmf).37 These lower redox potentials reflect the 

strong donating ability of dmso and dmf vs. THF.  In addition, 2.1 features a U=O νsym 

mode of 823 cm-1 in its Raman spectrum (Figure 2.1b).  For comparison, the U=O νsym 

mode for UO2(Aracnac)2 was determined to be 812 cm-1,17 which reveals that the U=O 

bonds in UO2(dbm)2(THF) are stronger than those in UO2(Aracnac)2, and further 

supports the claim that the dbm ligand is less electron donating. 

 

 

(a) 
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Figure 2.1. (a) Room temperature cyclic voltammogram of 2.1. Measured in CH2Cl2 

with 0.1 M [NBu4][PF6] as supporting electrolyte. Electrochemical parameters 

presented in Table A.1. (b) Solid-state Raman spectrum of 2.1. U=O νsym stretch is 

observed at 823 cm-1 (*).   

 

Table 2.1. Electrochemical Data for Selected Uranyl(VI) Complexes 

 E1/2 (V) (vs. Fc/Fc+) Ref. 
UO2(Ar2nacnac)2(acac) (Ar = 2,6-iPr2C6H3) -1.82* (CH2Cl2) 42 
UO2(salen)2(DMF) -1.67 (DMF) 37 
UO2(Ar2nacnac)2(dbm) (Ar = 2,6-iPr2C6H3) -1.65* (CH2Cl2) 42 
UO2(Aracnac)2 (Ar = 2,4,6-Me3C6H2) -1.52 (CH2Cl2) 41 
UO2(tBuacnac)2(THF) -1.46 (CH2Cl2) 17 
UO2(dbm)2(DMF) -1.461 (DMF) 43 
UO2(Ar2nacnac)2(hfac) (Ar = 2,6-iPr2C6H3) -1.39* (CH2Cl2) 42 
UO2(dbm)2(DMSO) -1.36 (DMSO) 36 
UO2(Aracnac)2 (Ar = 3,5-tBu2C6H3) -1.35 (CH2Cl2) 41  
UO2(dbm)2(THF) (2.1) -1.19* (CH2Cl2) this work 

* measured at a scan rate of 0.1 V/s. 

 

(b) 

 * 
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2.2.2. Synthesis and Characterization of U(OB{C6F5}3)(OSiPh3)(dbm)2(THF) (2.2) 

and U(OB{C6F5}3)(OSiEt3)(dbm)2(THF) (2.3) 

 

Scheme 2.5. Synthesis of U(OB{C6F5}3)(OSiPh3)(dbm)2(THF) (2.2) and 

U(OB{C6F5}3)(OSiEt3)(dbm)2(THF) (2.3). 

Upon establishing that dbm was a weaker donor than Aracnac, we subjected 

UO2(dbm)2(THF) to our reductive silylation protocol. Thus, addition of 1 equiv of 

HSiPh3 to UO2(dbm)2(THF), in the presence of 1 equiv of B(C6F5)3, results in the 

formation a deep red solution, from which U(OB{C6F5}3)(OSiPh3)(dbm)2(THF) (2.2) 

can be isolated as a dark red crystalline material in 62% yield (Scheme 2.5).  Similarly, 

addition of 1 equiv HSiEt3 to UO2(dbm)2(THF), in the presence of 1 equiv of B(C6F5)3, 

results in the formation of a deep red solution, from which 

U(OB{C6F5}3)(OSiEt3)(dbm)2(THF) (2.3) can be isolated as a red-orange crystalline 

material in 55% yield (Scheme 2.5). Isolation of 2.2 and 2.3 proceed with higher yield, 

if 0.25 equiv of THF is added to the mother liquor. Also important to note, in the case of 

2.3, a higher yield can be obtained, if excess silane is used.  

A similar activation of UO2(Aracnac)2, was observed previously in our group,18,19 
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where the formation of H2 gas was speculated. Even though the formation of gas 

bubbles were not observed, during the reactions to obtain 2.2 and 2.3, it is assumed 

that 2.2 and 2.3 are formed via a similar mechanism. Most importantly, the 

observation that the stronger U=O bonds of UO2(dbm)2(THF) are susceptible to 

reductive silylation, relative to UO2(Aracnac)2, shows that the scope of this 

transformation is broader than originally thought.   

Complexes 2.2 and 2.3 both crystallize in the triclinic space group P-1 as a 

hexane solvate, 2.2·C6H14, and a toluene and hexane solvate, 2.3·C7H8·0.5C6H14, 

respectively (Figure 2.2). Both 2.2 and 2.3 exhibit pentagonal bipyramidal geometries, 

as determined from the inter-ligand bond angles. For instance, complex 2.2 exhibits an 

OB-U-OSi bond angle of 175.06(8)°, while the Oeq-U-Oax bond angles range from 

84.06(8) to 95.42(8)°.44-46 In complexes 2.2 and 2.3, one uranyl oxo ligand has been 

converted to a silyloxide group, while the other oxo ligand is coordinated to a molecule 

of B(C6F5)3, as was observed for U(OB{C6F5}3)(OSiPh3)(Aracnac)2.18 For complex 2.2, the 

U–OSi and U–OB bond lengths are 2.024(2) and 1.952(2) Å, respectively, while for 2.3, 

they are 2.011(2) and 1.960(2) Å, respectively (Table 2.2). These values are 

comparable to those previously reported for U(V)-silyloxide and U(V)-OB(C6F5)3 

distances,14,16,18,19 and are indicative of a substantial reduction of the U=O bond order.  

Interestingly, the U-Odbm bond lengths in 2.2 (av. U-O = 2.281 Å) and 2.3 (av. U-O = 

2.282 Å) (Table 2.2) are shorter than those observed in other uranyl dbm complexes 

(ca. 2.35 Å).47 Finally, both 2.2 and 2.3 feature a THF molecule coordinated to the 

uranium center.  This contrasts with the reductive silylation product of UO2(Aracnac)2, 

for which no coordinated solvent is observed, a consequence of the reduced steric 



 

 32 

profile of the dbm ligand vs. the much bulkier Aracnac ligand. 

 

 

Figure 2.2.  A) Solid-state structure of U(OB{C6F5}3)(OSiPh3)(dbm)2THF (2.2) with 

50% probability ellipsoids. A hexane molecule and all hydrogens have been removed 

for clarity. B) Solid-state structure of U(OB{C6F5}3)-(OSiEt3)(dbm)2(THF)·C7H8·0.5C6H14 

(2.3·C7H8·0.5C6H14) with 50% probability ellipsoids. Solvate molecules and hydrogen 

atoms have been omitted for clarity. 
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Table 2.2. Selected Bond Lengths (Å) and Angles (deg) for Complexes 2.2 – 2.6  

 2.2 2.3 2.4 2.5a 2.6 

U-OSi-trans  2.024(2) 2.011(2) 1.981(3)  2.075(3) 
2.065(3) 

U-OSi-cis      2.105(3) 

U-OB 1.952(2) 1.960(2) 1.915(2) 1.96(2), 1.93(2)  

U-Odbm-cis 

2.246(2) 
2.280(2) 
2.280(2) 
2.317(2) 

2.250(2) 
2.258(2) 
2.301(2) 
2.320(2) 

2.235(3) 
2.252(3) 
2.257(3) 
2.277(3) 

2.23(2), 2.19(1) 
2.24(2), 2.27(2) 
2.26(2), 2.28(2) 
2.30(1), 2.28(1) 
2.37(2), 2.27(2) 

2.297(3) 
2.299(3) 
2.314(3) 
2.359(3) 

U-Odbm-trans     2.14(2), 2.25(2)  

U-F    2.654(2) 2.88(2), 2.93(2)  

O-Si  1.665(2) 1.681(2) 1.720(3) 
 

1.606(3) 
1.641(3) 
1.648(3) 

O-B  1.525(4) 1.503(4) 1.546(5) 1.52(4), 1.50(4)  
OSi-U-OB  175.06(8) 178.43(8) 169.3(1)   
OSi-U-OSi     167.2(1) 

U-O-Si 164.0(1) 153.5(1) 148.7(2)  
156.4(2) 
167.0(2) 
170.3(2) 

U-O-B  172.0(2) 165.8(2) 151.6(2) 160(2), 161(2)  
a two independent molecules in the asymmetric unit. 

The 1H NMR spectrum of 2.2 in CD2Cl2 consists of four broad resonances at 

10.76, 4.75, 4.54, and 3.60 ppm in a 4:4:2:1 ratio, respectively, which correspond to the 

four proton environments of the dbm ligand. Additionally, three sharper resonances 

are observed at 7.53, 7.41, and 6.22 ppm in a 2:1:2 ratio, which correspond to the m-, p-

, and o-proton atoms of the Ph3Si group. Similarly, the 1H NMR spectrum of 2.3 in 

CD2Cl2 consists of four broad resonances at 7.40, 6.66, 6.26 and 4.54 ppm in a 2:4:4:1 

ratio, respectively, as well as two broad resonances at 4.94 and 3.48 ppm, which 

correspond to the two Et3Si proton environments. The 19F{1H} NMR spectrum of 2.2 

consists of three resonances at -136.21, -160.49, and -165.75 ppm, in a 2:1:2 ratio, 
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corresponding to the o-, p-, and m-fluorine atoms of the C6F5 groups.  Similarly, the 

19F{1H} NMR spectrum of 2.3 consists of three resonances at -135.00, -160.69, and -

165.86 ppm, in a 2:1:2 ratio (Figure 2.3). Finally, the near-IR spectra for 2.2 and 2.3 are 

similar to those of other U(V) complexes,12,16,18,19 supporting the presence of a 5f1 ion.  

 

 

Figure 2.3. 19F{1H} NMR spectrum of 2.3 in CD2Cl2 at 25 °C. 

 

 In both 2.2 and 2.3, the o-fluorine resonances are slightly broadened in 

comparison to the m- and p-fluorine resonances (Figure 2.3). We attribute this to the 

proximity of the o-fluorines to the unpaired e- on the paramagnetic U(V) centers, which 

shortens the T2 relaxation time, and results in broadness in the 19F NMR resonances.   
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2.2.3. Synthesis and Characterization of U(κ2-O,F-OB{C6F5}3)(OSiEt3)(dbm)2 (2.4) 

 

Interestingly, crystallization of 2.3 without the addition of 0.25 equiv of THF to 

the supernatant led to the isolation of a second, minor product, U(κ2-O,F-

OB{C6F5}3)(OSiEt3)(dbm)2 (2.4), as red-orange crystals in low yield (eq 2.1).  Complex 

2.4 crystallizes in the triclinic space group P-1 and its solid-state molecular structure is 

shown in Figure 2.4.   The U–OSi and U–OB bond lengths of 2.4, 1.981(3) and 1.915(2) Å, 

respectively, are comparable to those observed in complexes 2.2 and 2.3. In contrast, 

the U-O-B bond angle (151.6(2)°) in 2.4 is considerably smaller than those observed in 

2.2 (172.0(2)°) and 2.3 (165.8(2)°), likely due to the presence of a F → U dative 

interaction between an o-fluorine atom of the B(C6F5)3 moiety and the uranium center, 

which occurs in place of ligation of the THF solvate molecule. Interestingly, F → U 

dative interactions are quite rare and to our knowledge have only been observed in 

four other complexes. [Cp*2Co][U{OB(C6F5)3}2(Aracnac)(OEt2)]12 exhibits two F → U 

dative interactions, while UIV(NPhF2)4 (PhF = C6F5), UIV(NPhPhF)4, and 

UIII(NPhF2)3(THF)2 exhibit three or more F → U interactions each.48 The U–F distance 

for complex 2.4 (2.654(2) Å) falls on the shorter end of U–F dative interactions, which 

range from ~2.60 – 2.93 Å.12,48  
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Figure 2.4. Solid-state structure of U(κ2-O,F-OB{C6F5}3)(OSiEt3)(dbm)2 (2.4) with 50% 

probability ellipsoids. Hydrogen atoms have been omitted for clarity.  

 

The 1H NMR spectrum of 2.4 in CD2Cl2 consists of four broad resonances 

corresponding to the equatorial dbm protons at 7.47, 6.59, 6.53 and 5.75 ppm in a 

2:1:4:4 ratio, and two broad resonances corresponding to the Et3Si- protons at 5.36 

and 2.72 ppm in a 2:3 ratio. The 19F{1H} NMR spectrum of 2.4 consists of two 

resonances at -160.20 and -165.53 ppm in a 1:2 ratio, which are assignable to the p- 

and m-fluorine atoms of the C6F5 groups.  In addition, a very broad resonance 

assignable to the o-fluorine atoms is observed at -149.25 ppm. Notably, this resonance 

is shifted significantly upfield in comparison to those observed for 2.2 and 2.3, 

suggestive of some interaction with the paramagnetic U(V) center.48 However, the 

observation of only a single peak for the o-fluorine atoms is indicative of free rotation 

about the B-C bond. Also present in the spectrum are resonances at 161.6 and 166.3 
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ppm, which are attributable to complex 2.3. Interestingly, complexes 2.3 and 2.4 are 

also both observed in the in situ 19F{1H} NMR spectrum of the reaction between 

UO2(dbm)2(THF), HSiEt3, and B(C6F5)3 (Figure A.1).  We suggest that complexes 2.3 

and 2.4 are in equilibrium, and addition of THF to the mother liquor during 

crystallization favors the formation 2.3, permitting its isolation in higher yields.  

 

2.2.4. Synthesis and Characterization of U(OB{C6F5}3)(dbm)3 (2.5) 

 

 

Since we did not see any evidence for reduction to U(IV) during the formation of 

2.2 and 2.3, as expected from our proposed catalytic cycle (Scheme 2.2), we explored 

the ligand exchange reactivity of this new family of functionalized uranyl complexes, 

given the rarity of well-defined oxo ligand substitution reactions for the uranyl 

moiety.10,13,16,20,49 We hypothesized that the small steric profile of the equatorial dbm 

ligands would allow for facile axial ligand exchange. Thus, addition of 1 equiv H(dbm) 

to 2.3 led to an equilibrium between 2.3 and the U(V) tris(dibenzoylmethanate) 

complex, U(OB{C6F5}3)(dbm)3 (2.5), from which complex 2.5 could be isolated as dark 

red crystals in 33% yield (eq 2.2). The isolation of complex 2.5 represents a rare 
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example of controlled uranyl oxo ligand substitution at ambient temperature and 

pressure.  

Complex 2.5 crystallizes in the triclinic space group P1, as a toluene and hexane 

solvate, 2.5·2C7H8·C6H14, with two separate molecules in the asymmetric unit. Its solid-

state molecular structure is shown in Figure 2.5. The uranium ion in complex 2.5 is 

coordinated by three dbm ligands and a B(C6F5)3-capped oxo ligand. Interestingly, 

there is also a F → U dative interaction between an o-fluorine atom of the B(C6F5)3 

moiety and the uranium center, given that the U–F distances for the two independent 

molecules of complex 2.5 are 2.88(2) and 2.93(2) Å (Table 2.2).  These are much longer 

in comparison to complex 2.4, however, they do fall in the range of U–F dative 

interactions, ~2.60 – 2.93 Å.12,48 Similar to the U-F distances, the U-O-B bond angles in 

2.5 (161(2) and 160(2)°) also fall between complexes 2.3 (165.8(2)°) and 2.4 

(151.6(2)°). While the geometry about the uranium center in complex 2.5 can be 

described as a distorted triangular dodecahedron (CSM = 2.25), according to the 

continuous shape measure developed by Alvarez and co-workers,50 it is probably 

better described as a biaugmented trigonal prism J50 (CSM = 1.86). The U–OB bond 

lengths of the two independent molecules (1.96(2) and 1.93(2) Å) are comparable to 

those observed for complexes 2.2, 2.3, and 2.4, but longer than that observed for the 

U(V) mono-oxo complex, U(O)(NR2)3 (R = SiMe3), which features a U-O bond length of 

1.817(1) Å.51 The elongated U-O bond in 2.5 is clearly the result of borane coordination 

to the oxo ligand. The U-O distances associated with the dbm oxygen atoms that are 

situated trans to the O(B{C6F5}3) ligand are 2.14(2) and 2.25(2) Å, while the average U-

Odbm-cis bond length is 2.27(4) Å. The average trans U–Odbm bond length is 0.071 Å 
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shorter than the average cis bond (averaged over the two independent molecules in the 

asymmetric unit), and could be indicative of the presence of the Inverse Trans 

Influence (ITI), which was first purposed by Denning in 199262 and typically occurs in 

high-valent U(V) and U(IV) systems with multiply bonded imido and oxo ligands.45,52-54 

However, it should be noted that the diffraction data for 2.5 are of modest quality, and 

leads to large uncertainties in the metrical parameters. We therefore turned to 

computational chemistry in the form of density functional theory to explore the 

possibility of an ITI in 2.5 (calculated bond lengths in Table 2.2). Geometry 

optimization using the hybrid PBE0 functional showed a trans shortening of 0.063 Å, 

suggesting the presence of ITI. The mean absolute deviation (MAD) between the 

calculated and experimental U–O bond lengths is only 0.012 Å, which implies good 

agreement between the theoretical and experiment values. 
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Figure 2.5. Solid-state structure of U(OB{C6F5}3)(dbm)3·2C7H8·C6H14 (2.5·2C7H8·C6H14) 

with 50% probability ellipsoids. Complex 2.5 crystallizes with two independent 

molecules in the asymmetric unit; only one is pictured here. Solvate molecules and 

hydrogen atoms have been omitted for clarity.  

 

The 1H NMR spectrum of 2.5 in CD2Cl2 consists of four broad resonances at 8.22, 

7.68, 6.70 and 6.24 ppm in a 1:2:4:4 ratio, which corresponds to the four dbm proton 

environments and indicates that there is only one dbm environment observed at room 

temperature. In addition, the 19F{1H} NMR spectrum of 2.5 consists of three 

resonances at -144.72, -160.57, and -165.98 ppm, in a 2:1:2 ratio, corresponding to the 

o-, p-, and m-fluorine atoms of the C6F5 groups. Notably, the o-fluorine resonance (-

144.72 ppm) is broad and shifted upfield in comparison to those observed for 2.2 and 

2.3, but not as upfield shifted as complex 2.4, suggestive of some interaction with the 

paramagnetic U(V) center.48 Similar to complex 2.4, the observation of only a single 

peak for the o-fluorine atoms is indicative of free rotation about the B-C bond.  Finally, 

the near-IR spectrum for 2.5 is similar to those of other U(V) complexes,12,16,18,19 

supporting the presence of a 5f1 ion. 

To determine the fate of the missing Et3SiO- group upon formation of 2.5, we 

monitored the reaction of 2.3 with 1 equiv of H(dbm) by NMR spectroscopy.  The in 

situ 19F{1H} NMR spectrum of the reaction mixture revealed the formation of complex 

2.5, as evidenced by a characteristic resonance at -144.8 ppm, along with the presence 

of complex 2.3.  Complexes 2.3 and 2.5 were observed in a 3:1 ratio, respectively, 

according to the integrations of their o-fluorine resonances.  Most importantly, the in 
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situ 13C{1H} NMR spectrum of the reaction mixture reveals the formation of HOSiEt3, as 

evidenced by resonances at 6.21 and 5.56 ppm.55 The proposed reaction stoichiometry 

was further confirmed by following the reaction of 2.5 with 1 equiv of HOSiEt3, and 1 

equiv of THF, in CD2Cl2 by 1H and 19F{1H} NMR spectroscopies, which reveals the 

formation of complex 2.3 and H(dbm), along with complete consumption of complex 

2.5. This transformation represents a rare example of a controlled, reversible uranyl 

U=O bond substitution, in which the fate of the substituted oxo ligand has been 

explicitly determined.10,13,20,56,57  

 

2.2.5. Synthesis of U(OSiPh3)3(dbm)2 (2.6) and U(OB{C6F5}3)(OSiEt3)(dbm)2-

(HOPh) (2.7). 

 

Reaction of 2.2 with 1 equiv of H(dbm) in CD2Cl2 also results in formation of 2.5, 

as determined by 1H and 19F{1H} NMR spectroscopies. This experiment reveals the 

presence of complexes 2.2 and 2.5 in a 3:2 ratio, respectively.  However, in one 

instance, crystallization of a similar reaction mixture led to the isolation of the U(V) tri-

silyloxide complex, U(OSiPh3)3(dbm)2 (2.6), as red plate crystals. Since complex 2.6 

was not readily identified in the in situ NMR spectra, we attempted to prepare 2.6 

purposefully. Thus, reaction of excess HOSiPh3 with complex 2.2 in dichloromethane, 

gratifyingly, led to the isolation of complex 2.6 was as red-orange crystals in 56% yield 

(eq 2.3). Although we were unable to observe the proposed by-product, “H2O-

B(C6F5)3”,58 in the in situ NMR spectra, the isolation of complex 2.6 represents another 

rare example of uranyl oxo ligand substitution at ambient temperature and pressure. 
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Complex 2.6 crystallizes in the triclinic space group P-1, as the dichloromethane 

solvate, 2.6·CH2Cl2 (Figure 2.6). Complex 2.6 features three triphenyl-silyloxide groups 

and two dbm ligands coordinated to the U5+ ion, leading to a pentagonal bipyramidal 

geometry around the uranium center, as determined from the inter-ligand bond angles. 

For example, complex 2.6 exhibits an OSi-U1-OSi bond angle of 167.2(1)°, while the Oeq-

U-Oax bond angles range from 82.0(1) to 104.3(1)°.44-46 The axial-OSiPh3 groups have 

U-OSi bond lengths of 2.075(3) and 2.065(3) Å, and are comparable to those observed 

in complexes 2.2 and 2.3, as well as those previously reported for other U(V)-

silyloxides.14,16,18,19 These axial U-OSi bond lengths in 2.6 are comparable to the U-OSi 

bond length exhibited by the equatorial cis-OSiPh3 group (2.105(3) Å). A larger 

difference in U-OSi bond lengths between the two silyloxide environments was 

expected, as a difference between axial and equatorial U(V) silyloxide U-OSi bond 

lengths has been seen before in the complexes, [K(18-crown-6)][U(NR)(OSi(OtBu)3)4] 

(R = Ad, SiMe3), which have average equatorial U-OSi bond lengths of 2.212 Å (R = Ad) 

and 2.173 Å (R = SiMe3), and shorter axial U-OSi bond lengths of 2.180(6) Å (R = Ad) 

and 2.130(7) Å (R = SiMe3).59  
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Figure 2.6. Solid-state structure of U(OSiPh3)3(dbm)2)·CH2Cl2 (2.6·CH2Cl2) with 50% 

probability ellipsoids. CH2Cl2 solvate and all hydrogen atoms have been omitted for 

clarity.  

 

We also endeavored to demonstrate another example of uranyl oxo ligand 

substitution, by exploring the reactivity of HOPh with 2.4. From an examination of the 

in situ 1H and 19F{1H} NMR spectra from the reaction of complex 2.4 with excess HOPh, 

it was clear that a new paramagnetic uranium containing product was formed. We 

hypothesized that its formula was U(OSiEt3)(OPh)(dbm)2(L), which could be formed by 

replacement of the  –OB(C6F5)3 ligand in 2.4 with an an –OPh ligand; however, we were 

unable to observe the proposed by-product, “H2O-B(C6F5)3”,58 in the in situ NMR 

spectra. Dark orange crystals were isolated from this NMR experiment, which were, 

surprisingly, revealed to be the U(V) complex, U(OB{C6F5}3)(OSiEt3)(dbm)2(HOPh) 
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(2.7). To our dismay, oxo ligand substitution did not occur; instead, the HOPh 

coordinated to the equatorial plane of the uranium center, displacing the coordinated 

o-fluorine atom (eq 2.4).  

 

Complex 2.7 crystallizes in the triclinic space group P-1 as the hexane solvate, 

U(OB{C6F5}3)(OSiEt3)(dbm)2(HOPh)·C6H14 (2.7·C6H14) (Figure 2.7), with pentagonal 

bipyramidal geometry about the uranium center. The U-OSi bond length of 2.003(3) Å 

and the U-OB bond length of 1.951(3) Å are almost identical to complex 2.3, along with 

most of the other bond lengths. The U-OPh bond length is 2.573(3) Å, which is 

comparable to other U-HOR bond lengths,60,61 indicating there is probably a proton 

attached to the OPh group.  
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Figure 2.7. Solid-state structure of U(OB{C6F5}3)(OSiEt3)(dbm)2(HOPh) ·C6H14 

(2.7·C6H14) with 50% probability ellipsoids. Hexane solvate and all hydrogen atoms 

have been omitted for clarity. Selected bond lengths (Å) and angles (°): U1-O1 = 

2.003(3), U1-O2 = 1.951(3), U1-O3 = 2.573(3), O1-Si1 = 1.684(3), O2-B1 = 1.517(5), 

O1-U1-O2 = 177.3(1). 

 



 

 46 

2.3  Summary 

Reaction of UO2(dbm)2(THF) (2.1) with 2 equiv HSiR3 (R = Ph, Et), in the 

presence of 1 equiv of B(C6F5)3, results in the formation of 

U(OB{C6F5}3)(OSiR3)(dbm)2(THF) (R = Ph, 2.2; Et, 2.3) via oxo ligand silylation. The 

isolation of complexes 2.2 and 2.3 demonstrates that the borane-activated silylation of 

the uranyl oxo ligand does not require the highly donating β-ketoiminate ligand, 

Aracnac, to proceed.  Instead, oxo ligand silylation can be achieved with weaker donors 

attached to the uranyl equatorial sites, revealing the generality of this borane-

mediated reductive silylation protocol. However, since we did not see any evidence for 

further reduction of 2.2 and 2.3 to U(IV), the utility of other co-ligands should to be 

explored. 

Interestingly, both complexes 2.2 and 2.3 exhibit uranyl oxo substitution 

chemistry. For example, complex 2.3 reacts with 1 equiv H(dbm) to form 

U(OB{C6F5}3)(dbm)3 (2.5) and HOSiEt3, in which the silylated oxo has been replaced by 

the dbm ligand via protonation. In addition, complex 2.2 reacts with 2 equiv HOSiPh3 

to afford U(OSiPh3)3(dbm)2 (2.6), where the -OB(C6F5)3 ligand has been replaced by a 

silyloxide group. We purpose this oxo ligand substitution chemistry is unique to the 

dbm equatorial ligand vs. the Aracnac ligand, because of the narrow steric profile of the 

dbm ligand. 
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2.4 Experimental Section 

2.4.1 General Procedures. All reactions and subsequent manipulations were 

performed under anaerobic and anhydrous conditions under an atmosphere of 

nitrogen. Hexanes, diethyl ether, and toluene were dried using a Vacuum Atmospheres 

DRI-SOLV solvent purification system, and stored over 3Å molecular sieves for 24 h 

prior to use.  CH2Cl2 and CD2Cl2 were dried over activated 3 Å molecular sieves for 24 h 

before use. THF was distilled twice, first from calcium hydride and then from sodium 

benzophenone ketyl, and stored over 3Å molecular sieves for 24 h prior to use. 

UO2Cl2(THF)3 was synthesized by the published procedure.65 UO2(dbm)2(THF) was 

synthesized by modifying the previously reported procedure for the preparation of 

UO2(hfac)2(THF) (see below).40,66,67 All other reagents were purchased from 

commercial suppliers and used as received.  

NMR spectra were recorded on a Varian UNITY INOVA 400 MHz spectrometer 

or a Varian UNITY INOVA 500 MHz spectrometer. 1H and 13C{1H} NMR spectra are 

referenced to external SiMe4 using the residual protio solvent peaks as internal 

standards (1H NMR experiments) or the characteristic resonances of the solvent nuclei 

(13C NMR experiments). 19F{1H} NMR spectra were referenced to external CFCl3 in C6D6. 

Raman and IR spectra were recorded on a Mattson Genesis FTIR/Raman spectrometer 

with a NXR FT Raman Module.  IR samples were recorded as KBr pellets, while Raman 

samples were recorded in an NMR tube as neat solids. UV-vis/NIR experiments were 

performed on a UV-3600 Shimadzu spectrophotometer. Elemental analyses were 

performed by the Microanalytical Laboratory at UC Berkeley.  
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2.4.2 Cyclic Voltammetry Measurements. CV experiments were performed with a CH 

Instruments 600c Potentiostat, and the data were processed using CHI software 

(version 6.29). All experiments were performed in a glove box using a 20 mL glass vial 

as the cell. The working electrode consisted of a platinum disk embedded in glass (2 

mm diameter), the counter electrode was a platinum wire, and the reference electrode 

consisted of AgCl plated on Ag wire. Solutions employed during CV studies were 

typically 1 mM in the metal complex and 0.1 M in [Bu4N][PF6]. All potentials are 

reported versus the [Cp2Fe]0/+ couple. For all trials, ip,a/ip,c = 1 for the [Cp2Fe]0/+ couple, 

while ip,c increased linearly with the square root of the scan rate (i.e., √v).  

 

2.4.3 Synthesis of UO2(dbm)2(THF) (2.1). To a stirring THF (3 mL) solution of 

[UO2Cl2(THF)2]2 (435.2 mg, 0.448 mmol) was added dropwise a solution of H(dbm) 

(343.4 mg, 1.545 mmol) and NaN(SiMe3)2 (291.4 mg, 1.587 mmol) in THF (3 mL).  This 

resulted in formation of a light orange solution. This solution was stirred for 24 h, 

whereupon the solution was filtered through a Celite column supported on glass wool 

(0.5 cm × 2 cm) to remove NaCl. The solution was then concentrated in vacuo, layered 

with hexanes (3 mL), and stored at – 25 °C for 24 h, which resulted in the deposition of 

an orange powder. The solid was then extracted into dichloromethane (6 mL), and 

filtered through a Celite column supported on glass wool (0.5 cm × 2 cm). The filtrate 

was then concentrated in vacuo, layered with hexanes (3 mL), and stored at -25 °C for 

24 h, which resulted in the deposition of an orange powder (440.2 mg, 71% yield). 

Anal. Calcd UO7C34H30: C, 51.78; H, 3.83; N, 0.00. Found: C, 51.55; H, 3.45; N, <0.2.  1H 

NMR (CD2Cl2, 25 °C, 400 MHz): δ 8.50 (br s, 8H, ortho CH), 7.66 (br s, 8H, meta CH), 



 

 49 

7.64 (br s, 4H, para CH), 7.32 (br s, 2H, γ-CH), 4.99 (br s, 4H, THF), 2.47 (br s, 4H, THF). 

13C{1H} NMR (CD2Cl2, 25 °C, 126 MHz): δ 189.03 (s, C=O), 140.37 (s, ipso C), 132.88 (s, 

para CH), 129.46 (s, ortho CH), 128.98 (s, meta CH), 98.59 (s, γ-CH), 74.76 (s, THF), 

27.43 (s, THF).  IR (KBr pellet, cm-1): 1597(sh w), 1591(m), 1549(sh m), 1535(vs), 

1520(vs), 1477(m), 1452(m), 1440(w), 1360(s), 1348(m), 1313(m), 1298(m), 1224(sh 

w), 1221(w), 1180(w), 1159(w), 1122(w), 1067(w), 1022(sh w), 1024(w), 939(w), 

906(s), 873(w), 840(w), 785(w), 750(m), 717(m), 684(m), 617(w), 604(w), 519(m). 

Raman (cm-1): 3061(w), 1595(s), 1522(w), 1514(w), 1491(m), 1444(w), 1333(sh w), 

1317(s), 1290(s), 1225(w), 1182(w), 1155(w), 1063(w), 1001(m), 939(w), 823(m, 

U=O νsym), 685(w), 561(w). 

2.4.4 Synthesis of U(OB{C6F5}3)(OSiPh3)(dbm)2(THF) (2.2). To a stirring orange 

dichloromethane (3 mL) solution of UO2(dbm)2(THF) (143.3 mg, 0.181 mmol) was 

added dropwise a solution of Ph3SiH (47.3 mg, 0.182 mmol) and B(C6F5)3 (91.9 mg, 

0.179 mmol) in dichloromethane (2 mL). This resulted in the immediate formation of a 

dark red solution.  This solution was stirred for 15 h, whereupon the deep red solution 

was filtered through a Celite column supported on glass wool (0.5 cm × 2 cm). The 

solution was then concentrated in vacuo, THF (4 μL, 0.049 mmol) was added, and the 

solution was layered with hexanes (2 mL) and stored at -25 °C for 24 h, which resulted 

in the deposition of brown-red crystals (184.8 mg, 62% yield). Anal. Calcd 

UO7SiBF15C70H45: C, 53.89; H, 2.91. Found: C, 53.62; H, 3.02. 1H NMR (CD2Cl2, 25 °C, 400 

MHz): δ 10.76 (br s, 8H, dbm CH), 7.53 (s, 6H, Ph3Si meta CH), 7.41, (t, JHH = 5.6 Hz, 3H, 

Ph3Si para CH), 6.22 (s, 6H, Ph3Si ortho CH), 4.75 (br s, 8H, dbm CH), 4.54 (br s, 4H, 

dbm para CH), 3.60 (br s, 2H, γ-CH), -1.21(br s, 4H, THF), -1.96 (br s, 4H, THF). 19F{1H} 
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NMR: (CD2Cl2, 25 °C, 376 MHz): δ -136.24 (br s, 6F, ortho CF), -160.50 (s, 3F, para CF), -

165.76 (s, 6F, meta CF). UV-vis/NIR (CH2Cl2, 3.85 × 10-3 M, L·mol-1·cm-1): 894 (ε = 12), 

1114 (ε = 17), 1146 (sh, ε = 12), 1300 (sh, ε = 9), 1362 (ε = 19), 1438 (sh, ε = 12), 1462 

(sh, ε = 11), 1606 (ε = 75). IR (KBr pellet, cm-1): 1643(w), 1595(sh w), 1589(m), 

1518(vs), 1486(sh m), 1479(m), 1466(s), 1441(m), 1429(w), 1381(vw), 1373(vw), 

1340(m), 1317(m), 1296(m), 1280(m), 1225(w), 1180(vw), 1157(vw), 1117(m), 

1093(m), 1068(w), 1022(w), 993(sh vw), 978(m), 941(w), 875(sh w), 847(m), 820(s), 

814(sh m), 787(w), 768(sh w), 764(w), 742(w), 714(w), 698(w), 683(w), 671(sh w), 

617(w), 601(w), 574(vw), 528(m), 511(m), 461(sh m), 445(sh m), 418(sh vs), 414(vs), 

407(vs). 

2.4.5 Synthesis of U(OB{C6F5}3)(OSiEt3)(dbm)2(THF) (2.3). To a stirring orange 

dichloromethane (3 mL) solution of UO2(dbm)2THF (127.0 mg, 0.160 mmol) was added 

dropwise a solution of Et3SiH (26 μL, 0.162 mmol) and B(C6F5)3 (81.9 mg, 0.160 mmol) 

in dichloromethane (2 mL), which resulted in the immediate formation of a dark red 

solution. The solution was stirred for 24 h, whereupon the deep red solution was 

filtered through a Celite column supported on glass wool (0.5 cm × 2 cm). The solution 

was then concentrated in vacuo. THF (4 μL, 0.049 mmol) was added, and the solution 

was layered with hexanes (2 mL) and stored at -25 °C for 24 h, which resulted in the 

deposition of red-orange crystals (126.1 mg, 55% yield). Anal. Calcd UO7SiBF15C58H45: 

C, 49.20; H, 3.20. Found: C, 49.24; H, 3.36. 1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 7.40 (t, 

JHH = 6.0 Hz, 4H, para CH), 6.66 (br s, 8H, ortho CH), 6.26 (s, 8H, meta CH), 4.94 (br s, 

6H, CH2CH3), 4.54 (br s, 2H, γ-CH), 3.48 (br s, 9H, CH2CH3), -1.10 (br s, 4H, THF), -2.03 

(br s, 4H, THF). 19F{1H} NMR (CD2Cl2, 25 °C, 376 MHz): δ -135.00 (br s, 6F, ortho CF), -
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160.69 (t, JFF = 13.9 Hz, 3F, para CF), -165.86 (d, JFF = 16.2 Hz, 6F, meta CF). UV-vis/NIR 

(CH2Cl2, 4.15 × 10-3 M, L·mol-1·cm-1): 878 (ε = 11), 1118 (ε = 17), 1334 (ε = 18), 1438 

(sh, ε = 12), 1420 (sh, ε = 7), 1608 (ε = 103). IR (KBr pellet, cm-1): 1643(w), 1595(sh w), 

1589(w), 1525(vs), 1518(sh vs), 1489(m), 1481(m), 1466(s), 1441(m), 1342(m), 

1317(m), 1296(w), 1281(w), 1227(w), 115(sh w), 1094(m), 1068(w), 1022(w), 

978(m), 941(w), 820(m), 810(m), 766(sh w), 760(w), 746(w), 717(w), 685(w), 669(sh 

w), 601(w), 527(w). 

2.4.6 Synthesis of U(OB{C6F5}3)(OSiEt3)(dbm)2 (2.4). To a stirring orange 

dichloromethane (3 mL) solution of UO2(dbm)2THF (264.6 mg, 0.335 mmol) was added 

dropwise a solution of Et3SiH (100 μL, 0.626 mmol) and B(C6F5)3 (171.6 mg, 0.335 

mmol) in dichloromethane (2mL), which resulted in formation of a dark red solution.  

The solution was stirred for 24 h, whereupon the deep red solution was filtered 

through a Celite column supported on glass wool (0.5 cm × 2 cm).  The solvent was 

removed in vacuo, which resulted in formation of a dark red oil. The oil was triturated 

with Et2O (2 × 4 mL), and then extracted into dichloromethane (4 mL). The solution 

was then concentrated in vacuo and layered with hexanes (2 mL). Storage at -25 °C for 

24 h produced a dark red oil, which was discarded. The supernatant was further 

concentrated and layered with more hexanes (2 mL). Storage at -25 °C for another 24 h 

resulted in the deposition of a red-orange crystalline solid (106.5 mg, 24% yield). 1H 

NMR (CD2Cl2, 25 °C, 400 MHz): δ 7.47 (br t, JHH = 6.6 Hz, 4H, para CH), 6.59 (br s, 2H, γ-

CH), 6.53 (br s, 8H, meta CH), 5.75 (br s, 8H, ortho CH), 5.36 (br s, 6H, CH2CH3), 2.72 (br 

s, 9H, CH2CH3). 19F{1H} NMR (CD2Cl2, 25 °C, 376 MHz): δ -151.05 (br s, 6F, ortho CF), -

160.01 (t, JFF = 17.7 Hz, 3F, para CF), -165.38 (d, JFF = 19.2 Hz, 6F, meta CF). 
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2.4.7 Synthesis of U(OB{C6F5}3)(dbm)3 (2.5).  To a stirring dark red-orange 

dichloromethane solution (3 mL) of 2.3 (92.6 mg, 0.065 mmol) was added dropwise a 

dichloromethane (1 mL) solution of H(dbm) (16.5 mg, 0.073 mmol). The solution was 

stirred for 1 h, whereupon the solution was filtered through a Celite column supported 

on glass wool (0.5 cm × 2 cm). The solution was then concentrated in vacuo, layered 

with hexanes (2 mL), and stored at -25 °C for 24 h, which resulted in the deposition of a 

dark red solid (18.5 mg, 33% yield).  X-ray quality crystals were grown out of toluene 

solution layered with hexanes. Anal. Calcd UO7BF15C63H33: C, 52.70; H, 2.32. Found: C, 

52.65; H, 1.97. 1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 8.24 (br s, 3H, γ-CH), 7.68 (t, 6H, 

para CH), 6.71 (d, 12H, ortho CH), 6.22 (br s, 12H, meta CH). 19F{1H} NMR (CD2Cl2, 25 

°C, 376 MHz): δ -144.79 (br s, 6F, ortho CF), -160.54 (t, JFF = 19.7 Hz, 3F, para CF), -

166.01 (d, JFF = 19.9 Hz, 6F, meta CF). UV-vis/NIR (CH2Cl2, 2.75 × 10-3 M, L·mol-1·cm-1):  

714 (sh, ε = 30), 950 (ε = 27), 1128 (sh, ε = 12), 1164 (sh, ε = 27), 1202 (ε = 36), 1482 (ε 

= 108), 1904 (ε = 34). IR (KBr pellet, cm-1): 1643(w), 1591(sh m), 1587(m), 1522(sh 

vs), 1514(vs), 1487(sh m), 1470(s), 1466(s), 1437(m), 1371(w), 1340(sh w), 1317(m), 

1294(m), 1280(m), 1225(w), 1184(w), 1109(sh w), 1095(m), 1067(m), 1024(w), 

974(m), 939(w), 870(w), 831(w), 768(sh w), 758(w), 721(sh w), 717(w), 685(m), 

602(w), 532(w), 523(sh w).  

2.4.8 Synthesis of U(OSiPh3)3(dbm)2 (2.6). To a stirring red-orange solution of 2.2 

(70.3 mg, 0.042 mmol) in dichloromethane (2 mL), was added a white slurry of 

HOSiPh3 (24.1 mg, 0.087 mmol) in dichloromethane (1 mL), dropwise, which resulted 

in no visible change. The mixture was allowed to stir at room temperature for 1 h, 

whereupon all the solid appeared to have dissolved. The red-orange solution was 
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filtered through a Celite column supported on glass wool (0.5 cm × 2 cm), and the 

filtrate was concentrated in vacuo, and layered with ether (2 mL). Storage at -25 °C for 

24 h resulted in the deposition of red-orange crystals (4.2 mg). The supernatant was 

concentrated in vacuo and stored at -25 °C for 24 h, which resulted in the deposition of 

more red-orange crystals (16.4 mg). A third crop was also isolated in a similar fashion 

(15.2 mg), for a combined 56% yield. IR (KBr pellet, cm-1): 1589(w), 1518(s), 1489(sh 

w), 1479(m), 1439(w), 1427(m), 1327(m), 1313(sh w), 1294(w), 1227(w), 1186(w), 

1115(s), 1105(sh m), 1066(w), 1028(w), 1001(w), 987(m), 935(w), 860(vs), 741(w), 

710(s), 698(s), 684(sh w), 536(sh w), 524(sh w), 511(s).  

2.4.9 Synthesis of U(OB{C6F5}3)(OSiEt3)(dbm)2(HOPh) (2.7). A red orange CD2Cl2 

solution (1 mL) containing 2.4 (17.4 mg, 0.013 mmol) was sealed in a J. Young NMR 

tube, and the 1H and 19F{1H} NMR spectra were recorded. Then a colorless CD2Cl2 

solution (0.5 mL) of HOPh (2.1 mg, 0.022 mmol) was added drop-wise, resulting in a 

color change to dark orange. The tube was sealed, and the 1H and 19F{1H} NMR spectra 

were re-recorded after 1 h at 25 °C.  These spectra revealed the presence of a new 

paramagnetic uranium-containing product. This reaction mixture was filtered through 

a Celite column supported on glass wool (0.5 cm × 2 cm), and dried in vacuo, which 

resulted in a dark orange solid. The solid was extracted into toluene (~1 mL) and 

layered with hexanes (< 1 mL). Storage of the mixture for 1 month at -25 °C, resulted in 

the formation of dark orange crystals of 2.7. 19F{1H} NMR (CD2Cl2, 25 °C, 376 MHz): δ -

134.95 (br s, 6F, ortho CF), -160.71 (s, 3F, para CF), -166.91 (s, 6F, meta CF).  
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2.4.10  X-ray Crystallography. The solid-state molecular structures of complexes 2.2 

– 2.7 were determined similarly with exceptions noted in the following paragraph. 

Crystals were mounted on a cryoloop under Paratone-N oil. Data collection was carried 

out on a Bruker KAPPA APEX II diffractometer equipped with an APEX II CCD detector 

using a TRIUMPH monochromater with a Mo Kα X-ray source (α = 0.71073 Å). Data for 

2.2, 2.3, 2.5, 2.6, and 2.7 were collected at 100(2) K, while data for 2.4 were collected 

at 150(2) K, using an Oxford nitrogen gas cryostream system. A hemisphere of data 

was collected using ω scans with 0.3° frame widths. Frame exposures of 5, 10, 10, 10, 

10 and 10 seconds were used for complexes 2.2, 2.3, 2.4, 2.5, 2.6 and 2.7 respectively. 

Data collection and cell parameter determination were conducted using the SMART 

program.68 Integration of the data frames and final cell parameter refinement were 

performed using SAINT software.69 Absorption correction of the data was carried out 

empirically based on reflection ψ-scans using the multi-scan method SADABS.70 

Subsequent calculations were carried out using SHELXTL.71 
 
Structure determination 

was done using direct or Patterson methods and difference Fourier techniques. All 

hydrogen atom positions were idealized, and rode on the atom of attachment. 

Structure solution, refinement, graphics, and creation of publication materials were 

performed using SHELXTL.71  

Complex 2.3 exhibits positional disorder of the toluene solvent molecule. The 

positional disorder was addressed by modeling the molecule in two orientations, in a 

50:50 ratio. The EADP, DFIX, and FLAT commands were used to constrain both 

orientations of the toluene molecule. For complex 2.5, every non-hydrogen atom in one 

of the uranium molecule was constrained using the EADP command to its symmetry 



 

 55 

equivalent atom on the other uranium molecule. Two toluene solvent molecules were 

not refined anisotropically. In addition, the C-C bonds of the toluene rings were 

constrained with the DFIX command, while the rings were constrained with the FLAT 

command.  Hydrogen atoms were not assigned to disordered carbon atoms.  Complex 

2.7 exhibits a disordered hexanes solvate. The disordered carbon atoms were not 

refined anisotropically, and hydrogen atoms were not assigned to disordered carbon 

atoms. A hydrogen atom was also not assigned to the OPh group, as this resulted in an 

error message during refinement. A summary of relevant crystallographic data for 2.2 

– 2.7 is presented in Tables 2.3-2.4. Complexes 2.2 – 2.5 have been deposited in the 

Cambridge Structural Database (2.2: CCDC 994968; 2.3: CCDC 994969; 2.4: CCDC 

994970; 2.5: CCDC 994971). 
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Table 2.3. X-ray Crystallographic Data for Complexes 2.2 – 2.4 

 2.2·C6H14  2.3·C7H8·0.5C6H14 2.4  
empirical formula  UO7BF15SiC76H59 UO7BF15SiC68H60 UO6BF15SiC54H37 

Crystal habit, color  plate, red-orange  plate, red plate, red-orange 
crystal size (mm)  0.35 × 0.30 × 0.30 0.40 × 0.30 × 0.10 0.10 × 0.08 × 0.05 
crystal system  triclinic triclinic triclinic 
space group  P-1 P-1 P-1 
vol (Å3)  3411.96(16) 3202.79(11) 2555.2(2) 
a (Å)  13.6767(4) 12.8552(3) 12.0721(6) 
b (Å)  15.7946(4) 15.7463(3) 12.2867(7) 
c (Å)  16.3191(4) 16.5535(3) 17.8840(11) 
α (deg)  102.448(2) 100.009(1) 89.672(4) 
β (deg)  93.042(2) 103.592(1) 80.120(4) 
γ (deg)  96.154(2) 90.593(1) 78.024(4) 
Z  2 2 2 
fw (g/mol)  1646.16 1551.09 1343.77 
density (calcd) (Mg/m3)  1.602 1.608 1.747 
abs coeff (mm-1)  2.493 2.650 3.305 
F000  1634 1540 1310 
Total no. reflections  35645 31034 30650 
Unique reflections  13946 15762 12728 
final R indices [I > 2σ(I)]  R1 = 0.0266 

wR2 = 0.0647 
R1 = 0.0281 
wR2 = 0.0783 

R1 = 0.0388 
wR2 = 0.1047 

largest diff peak and hole 
(e-Å-3)  

1.960 and -1.180 2.493 and -0.716 6.198 and -1.785 

GOF  1.032 1.097 1.047 
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Table 2.4. X-ray Crystallographic Data for Complexes 2.5 – 2.7 

 2.5·2C7H8·C6H14  2.6·CH2Cl2 2.7·C6H14 

empirical formula  UO7BF15C73H48 UO7Cl2Si3C85H69 UO7BF15SiC66H57 

Crystal habit, color  plate, red plate, red plate, dark orange 
crystal size (mm)  0.20 × 0.15 × 0.10 0.25 × 0.05 × 0.05 0.3 × 0.2 × 0.05 
crystal system  triclinic triclinic triclinic 
space group  P1 P-1 P-1 
vol (Å3)  3157.04(16) 3538.7(8) 3005.3(7) 
a (Å)  15.1204(4) 13.922(2) 12.307(2) 
b (Å)  16.1764(5) 14.726(2)  13.357(2) 
c (Å)  16.4479(5) 18.173(2) 19.531(3) 
α (deg)  112.966(2) 77.965(3) 104.550(2) 
β (deg)  96.391(2) 85.649(3) 91.364(2) 
γ (deg)  115.286(2) 76.288(3) 103.834(2) 
Z  2 2 2 
fw (g/mol)  1570.95 1595.60  1524.05 
density (calcd) (Mg/m3)  1.653 1.497 1.684 
abs coeff (mm-1)  2.672 2.477 2.822 
F000  1548 1606 1510 
Total no. reflections  32024 16083 18817 
Unique reflections  24983 13131 16048 
final R indices [I > 2σ(I)]  R1 = 0.0468 

wR2 = 0.1062 
R1 = 0.0425 
wR2 = 0.1074 

R1 = 0.0460 
wR2 = 0.1124 

largest diff peak and hole 
(e-Å-3)  

1.486 and -2.212 3.833 and -3.301 5.537 and -3.006 

GOF  0.975 0.812 1.053 
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3.1 Introduction 

 

Reductive silylation of the uranyl ion was first reported in 2008,1 and has since 

been described for a variety of co-ligand types and silylating reagents.2-7 For example, 

Arnold and co-workers demonstrated that sequential reaction of UVIO2(THF)(H2L) (L = 

polypyrrolic macrocycle) with KN(SiMe3)2 and FeI2 resulted in formation of the U(V) 

silyloxide, [UVO(OSiMe3)(THF)Fe2I2L] (Scheme 1.2b).7 Similarly, our research group 

has demonstrated that reaction of UO2(Aracnac)2 (Aracnac = ArNC(Ph)CHC(Ph)O, Ar = 

3,5-tBu2C6H3),8  or UO2(dbm)2(THF) (2.1) (dbm = OC(Ph)CHC(Ph)O), with a mixture of 

B(C6F5)3 and HSiR3 (R = Ph, Et), results in formation of the reductive silylation 

products, UV(OSiPh3)(OB{C6F5}3)(Aracnac)2,9,10 and UV(OSiR3)(OB{C6F5}3)(dbm)2(THF) 

(R = Ph (2.2), Et (2.3)).11 In contrast to these oxo functionalization reactions, examples 

of complete oxo substitution remain rare (Section 1.3).  For instance, Ephritikhine and 

co-workers reported that reaction of UO2I2 with Me3SiX (X = Cl, Br, I) in MeCN resulted 

in formation of UIVX4(MeCN)4 (Scheme 3.1a).12,13 In addition, we demonstrated a two-

step procedure for the controlled removal of a uranyl oxo ligand in chapter 2, wherein 

a uranyl oxo in 2.1 was converted into a silyloxide that was subsequently protonated 

with a weak acid, H(dbm), to generate UV(OB{C6F5}3)(dbm)3 (2.5).11 
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Scheme 3.1. Rare examples of reductive silylation of uranyl to U(IV). a) (Scheme 

reproduced from reference 12). b) (Scheme reproduced from reference 15). 

 

It is notable that many reductive silylation reactions can only achieve a 1e- 

reduction of the metal center.1,2,9,10 Achieving a 2e- reduction, which would allow for 

isolation of a U(IV) product, appears to be more difficult, and only a few examples are 

known, including the Ephritikhine example discussed in the preceding paragraph 

(Scheme 3.1a).12 Other examples include the reaction of UO2(tBuacnac)2 (tBuacnac = 

tBuNC(Ph)CHC(Ph)O) with Me3SiI/Ph3P, followed by addition of bipy (Scheme 3.1b),15 

and the stepwise reaction of UO2(Aracnac)2 with B(C6F5)3/HSiR3 (R = Ph, Et) and Cp2Co 

(Scheme 2.3).9,10 These three transformations result in the formation of U(IV) 

bis(silyloxide) complexes as the final products; however, the transformations are two 

step processes that require the isolation of an intermediate.  This paucity of examples 

can be rationalized on the basis of the strongly electron donating ligands, such as 

Aracnac or the pacman macrocycle,1 which are often used in this chemistry, as these 

tend to stabilize higher oxidation states.  As a result, the products of these reactions 

often have U(V)/U(IV) redox potentials that are a challenge to access chemically. For 
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example, the U(V) reductive silylation product, UV(OSiPh3)(OB{C6F5}3)(Aracnac)2, 

features a rather low U(V)/U(IV) redox potential of -0.72 V ( vs. Fc/Fc+).9 These 

strongly-donating ligands are nonetheless beneficial because they weaken the axial 

ligand field, thereby rendering the oxo ligands more nucleophilic and making the initial 

silylation step easier. 

Herein, we describe our attempts to perform reductive silylation on 

[UO2(dppmo)2(OTf)][OTf] (dppmo = Ph2P(O)CH2P(O)Ph2) and [UO2(TPPO)4][OTf]2 

(TPPO = Ph3PO).  These complexes were chosen, in part, because their cationic charges 

should make reduction to U(IV) more facile, potentially enabling a 2e- reductive 

silylation reaction. These favorable redox properties are evidenced indirectly by their 

U=O(sym) vibrational modes, as it has been previously demonstrated that less negative 

uranyl 1e- reduction potentials correlate with higher energy U=O(sym) stretches.16 In 

particular, [UO2(dppmo)2(OTf)][OTf] and [UO2(TPPO)4][OTf]2 feature U=O(sym) 

stretches of 849 cm-1,17 and 839 cm-1, respectively (Table 3.1), which are notably 

higher in energy than those exhibited by UO2(Aracnac)2 (812 cm-1 ),15 or 

UO2(dbm)2(THF) (823 cm-1).11 However, their higher energy uranyl U=O(sym) 

stretches also suggests that their oxo ligands will be less nucleophilic, which will 

disfavor oxo ligand silylation. It is clearly important to find the right balance of electron 

donation from the co-ligands, to facilitate U=O bond activation, while still allowing for 

reduction to U(IV).  
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Table 3.1. U=O νsym Stretch Comparison in Several Uranyl Complexes 

Ligand Uranyl Complex U=O νsym 
stretch (cm-1) Ref. 

 

 

 

      
 

812 15 

 

 

 

   
 

823 Ch. 2 

 

 

 

 
 

839 This 
chapter 

 

 

 

 
 

849 17 

 

 

3.2 Results and Discussion 

3.2.1. Borane-Mediated Reductive Silylation of [UO2(dppmo)2(OTf)][OTf] 

3.2.1.1. Synthesis and Characterization of [UIV(OSiPh3)(dppmo)2(OTf)2][OTf]  

(3.1). 

Once it was established that dppmo was a weaker donor than both Aracnac and 

dbm, we exposed [UO2(dppmo)2(OTf)][OTf] to our typical reductive silylation protocol. 

Unexpectedly, addition of 2 equiv of HSiPh3 and 2 equiv of B(C6F5)3 to 
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[UO2(dppmo)2(OTf)][OTf] (Scheme 3.2), at room temperature, did not generate any 

reduced uranium-containing products, as determined by the in situ 1H NMR spectra. 

However, heating these reaction mixtures at 105 °C for 72 h, results in a conversion to 

the U(IV) mono-silyloxide, [UIV(OSiPh3)(dppmo)2(OTf)2][OTf] (3.1), which can be 

isolated as sea-foam green crystals in very modest yields (Scheme 3.2). The isolation of 

complex 3.1 represents a rare example of uranyl oxo ligand substitution as well as a 

one-pot reduction of uranyl to U(IV).  

 

Scheme 3.2. Borane-mediated reductive silylation of [UO2(dppmo)2(OTf)][OTf]. 

 

Complex 3.1 crystallizes in the monoclinic space group P21/n as a 

dichloromethane and Et2O solvate, 3.1·3CH2Cl2∙C4H10O (Figure 3.1).  Selected bond 

lengths and angles can be found in Table 3.2.  In the solid state, complex 3.1 features 

two dppmo ligands, a [OSiPh3]- ligand, an η1-OTf ligand, and an η2-OTf ligand, in a bi-

capped trigonal prismatic geometry, according to the continuous shape measure 

developed by Alvarez and co-workers (CSM = 1.91).18 The U-OSi distance is 2.073(6) Å, 
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which is comparable to other U(IV) silyloxide distances,9 including those of 

UIV(OSiMe3)2I2(bipy)2 (2.084(4) Å),15 UIV(OSiEt3)2(Aracnac)2 (2.129(2) Å),10 and 

Cp3UIV(OSiPh3) (2.135(8) Å).19  The U-O distance of the η1-bound OTf moiety (2.391(7) 

Å) is similar to that of the uranyl starting material, [UO2(dppmo)2(OTf)][OTf] (2.408(3) 

Å),17 while the U-O distances of the η2-bound OTf ligand (2.614(9) and 2.622(8) Å) are 

substantially longer.  Finally, the average U-Odppmo bond length (av. U-O = 2.35 Å) is 

similar to that of the uranyl starting material (av. U-O = 2.38 Å).17  

 

Figure 3.1. Solid-state structure of [UIV(OSiPh3)(dppmo)2(OTf)2][OTf]∙3CH2Cl2∙C4H10O 

(3.1∙3CH2Cl2∙C4H10O) with 50% probability ellipsoids. Solvates, hydrogen atoms, and 

the triflate counter ion have been removed for clarity. In addition, only the ipso 

carbons of the dppmo phenyl rings are shown for clarity. 
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Table 3.2. Selected Bond Lengths (Å) and Angles (deg) for Complexes 3.1 – 3.4  

 3.1 3.3 3.4-pyr 3.5 

U-OSi 2.073(6)  2.125(3) 
2.135(3)  

U-OOTf (η2) 2.614(9) 
2.622(8)    

U-OOTf (η1) 2.391(7) 

2.36(1) 
2.36(1) 
2.40(1) 
2.44(1) 

 

2.308(5) 
2.312(4) 
2.337(4) 
2.340(4) 
2.341(4) 

U-Odppmo/TPPO 

2.341(6) 
2.346(6) 
2.354(6) 
2.359(6) 

2.27(2) 
2.28(1) 
2.30(2) 
2.38(1) 

2.352(3) 
2.393(2) 
2.394(3) 
2.397(2) 

2.186(4) 
2.197(4) 

O-Si 1.647(7)  1.634(3) 
1.649(3)  

OSi-U-OOTf 163.2(3)    
OSi-U-OSi   159.0(1)  

U-O-Si 166.6(4)  168.0(2) 
165.4(2)  

 

The 1H NMR spectrum of 3.1 in CD2Cl2 consists of three sharp paramagnetically 

shifted resonances at 38.48, 12.69, and 11.82 ppm, which correspond to the o-, m-, and 

p-proton atoms of the Ph3Si- group, respectively. Additionally, there are four 

resonances at 6.36, 5.90, -1.61, and -12.79 in a 2:4:4:1 ratio, corresponding to the 

various dppmo proton environments. The 19F{1H} and 31P{1H} resonances were 

presumably too broad to be observed.  

 

3.2.1.2. Identification of [UO2(dppmo)2(OTf)][HB(C6F5)3] and Ph3SiOTf 

According the the in situ 1H and 19F NMR spectra there is complete conversion 

of the uranium-containing material from [UO2(dppmo)2(OTf)][OTf] to complex 3.1. 

However, we found that 3.1 is extremely difficult to isolate cleanly in high yields, due 

to the formation of numerous non-uranium containing side products. Therefore, we 
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wanted to investigate the mechanism of the transformation and identify as many of the 

side products as possible. In this regard, the synthesis of complex 3.1 was followed by 

NMR spectroscopy in TCE-d2 (TCE = 1,1,2,2-tetrachloroethane). Immediately, at room 

temperature an anion exchange reaction is observed, as evidenced by the in situ 

19F{1H} NMR spectrum (Figure A.2), which exhibits three new fluorine resonances at -

133.73, -163.66, and -166.65 ppm, corresponding to the presence of [HB(C6F5)3]-.20-25 

Additionally, there are two resonances at -77.36 ppm, corresponding to the OTf species 

in the newly proposed uranyl complex, [UO2(dppmo)2(OTf)][HB(C6F5)3], and -76.71 

ppm, corresponding to Ph3SiOTf.26 [HB(C6F5)3]- formation was further confirmed by 

studying the in situ 11B NMR spectrum at room temperature, which features a broad 

singlet at -25.71 ppm, consistent with reported chemical shifts of [HB(C6F5)3]-.20-25 To 

corroborate this assignment, we independently prepared the complex, [Na(12-crown-

4)2][HB(C6F5)3] (3.2). Reaction of NaBH4 and B(C6F5)3 in the presence of 2 equiv of 12-

crown-4, results in the formation of 3.2 as a white powder in 25% yield (eq 3.1). 

Complex 3.2 exhibits a boron resonance at -25.48 ppm (MeCN-d3) in its 11B NMR 

spectrum. These observations confirm that at room temperature, reaction of 

[UO2(dppmo)2(OTf)][OTf] with 2 equiv HSiPh3 and 2 equiv B(C6F5)3 results in the 

formation of [UO2(dppmo)2(OTf)][HB(C6F5)3] and Ph3SiOTf (Scheme 3.2). All attempts 

to crystallize [UO2(dppmo)2(OTf)][HB(C6F5)3] were unsuccessful.  
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Once the reaction mixture to form 3.1 was heated for 72 h at 105 °C, another set 

of NMR spectra were collected. A number of B(C6F5)3 decomposition products have 

been identified in the in situ 19F{1H} NMR spectrum (Figure A.3). For instance, the 

resonance at -169.50 ppm, corresponds to Ph3SiF (literature values: -170.4 ppm in 

DME and -169.2 ppm in C6D6).27,28 In addition, the resonances at -138.37, -153.53, and -

161.82 ppm have been assigned to pentafluorobenzene (literature values: -140.3, -

155.3, -163.8 ppm in C6D12).29 Lastly, we have also been able to assign the chemical 

shifts at -134.10, -163.98, and -166.98 ppm to [B(C6F5)4]-.30,31 The formation of 

[B(C6F5)4]- was further confirmed by studying the in situ 11B NMR spectrum after 

heating, which features a sharp singlet at -17.46 ppm.31 Clearly, B(C6F5)3 is unstable 

under these reaction conditions. Moreover, we suggest that these decomposition 

products make the isolation of complex 3.1 particularly difficult. 

Given these reaction intermediates, we hypothesized that Ph3SiOTf was acting 

as the silylating reagent and [HB(C6F5)3]- was acting as the reducing reagent in the 

reaction to form 3.1. Since Ph3SiOTf is required to form complex 3.1, we decided to 

perform the same reaction to form 3.1 with 1 equiv of independently prepared 

Ph3SiOTf.  Thus, addition of 2 equiv of HSiPh3, 2 equiv of B(C6F5)3 and 1 equiv Ph3SiOTf 

to [UO2(dppmo)2(OTf)][OTf], results in the formation of a small amount of complex 3.1 

at room temperature, however, the reaction still required heating to go to completion, 

and there appeared to be just as many by-products according to the in situ 1H and 19F 

NMR spectra. Also, it is important to note that addition of 2 equiv Ph3SiOTf to 

[UO2(dppmo)2(OTf)][OTf], resulted in no reaction, demonstrating that Ph3SiOTf alone 

cannot reductively silylate [UO2(dppmo)2(OTf)][OTf]. 
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Scheme 3.3. Proposed catalytic cycle for reductive silylation of uranyl to U(IV).  

 

 Since B(C6F5)3 is not stable at elevated temperatures (105 °C), it cannot be 

regenerated in the reaction to make 3.1, and therefore cannot be used as a catalyst 

(Scheme 3.3). This work, and previous reports of uranyl reductive silylation using 

B(C6F5)3,9,10 lead us to the conclusion that the activation barrier for the reduction of the 

U(V) disilyloxide by [HB(C6F5)3]- is so high that overcoming it ultimately destroys the 

B(C6F5)3 in the process. Accordingly, the next step was to find a reducing agent with a 

smaller activation barrier. We turned our attention to Cp2Co, due to its previous 

success with reducing U(V) complexes to U(IV) complexes.9,10   
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3.2.2. Reductive Silylation of [UO2(dppmo)2(OTf)][OTf] and [UO2(TPPO)4][OTf]2 

with Cp2Co 

3.2.2.1. Synthesis and Characterization of UIV(OTf)4(dppmo)2 (3.3) 

Gratifyingly, reaction of [UO2(dppmo)2(OTf)][OTf] with 4 equiv of Ph3SiOTf, in 

the presence of 2 equiv of Cp2Co, results in a rapid reaction at room temperature, as 

evidenced by a color change from pale yellow to dark yellow-green.  Work-up of the 

reaction mixture after 24 h results in the isolation of the U(IV) triflate complex, 

UIV(OTf)4(dppmo)2 (3.3), as a lime green powder in an 83% yield (Scheme 3.4).  

Complex 3.3 is the result of complete oxo ligand removal from the uranyl ion, 

concomitant with a 2e- reduction. 

 

Scheme 3.4. Synthesis of complex 3.3 and the proposed mechanism for the formation 

of 3.3.  
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Complex 3.3 co-crystallizes with 1 equiv of cobaltocenium triflate in the lattice 

as a toluene and hexane solvate, [3.3][Cp2Co][OTf]·1.5C7H8·C6H14. Its solid-state 

molecular structure is shown in Figure 3.2 and selected bond lengths and angles are 

collected in Table 3.2.  The uranium center is coordinated by two dppmo ligands and 

four OTf ligands, and features a square antiprism geometry (CSM = 0.32),18 wherein the 

two square faces are defined by O1, O4 ,O7, and O8, and O2, O3, O5, and O6, 

respectively. The average U-OOTf distance (av. U-O = 2.39 Å) in complex 3.3 is similar to 

other U(IV)-OOTf distances,32-34 but is slightly longer than those observed in the 

structurally related complex, UIV(OTf)4(DME)2 (av. U-O =  2.28 Å),35 which is probably a 

result of the steric bulk of the dppmo ligands.  In addition, the average U-Odppmo bond 

length (av. U-O = 2.31 Å) is slightly shorter than the average U-Odppmo distance in the 

uranyl starting material, [UO2(dppmo)2(OTf)][OTf] (av. U-O = 2.38 Å),17 but is similar 

to other U(IV) phosphine oxide complexes.36-38 Notably, there are only a few metal 

complexes in the literature with four coordinated OTf ligands,39-43 such as the neutral 

complexes, UIV(OTf)4(DME)2, UIV(OTf)4(TPPO)3,44 and the chromium complex, 

[Cr(OTf)4(C6H4{NH2}2)],45 as well as the anionic species [Fe(OTf)4]2-,46 [Na(OTf)4]3-,47 

and [CpTi(OTf)4]-.48  
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Figure 3.2. Solid-state structure of [UIV(OTf)4(dppmo)2]∙[Cp2Co][OTf]∙1.5C7H8·C6H14 

([3.3][Cp2Co][OTf]·1.5C7H8·C6H14) with 50% probability ellipsoids. All hydrogens, the 

co-crystallized cobaltocenium triflate, and the toluene and hexane solvates have been 

removed for clarity. In addition, only the ipso carbons of the dppmo phenyl rings are 

shown for clarity. 

 

The 1H NMR spectrum of complex 3.3 in CD2Cl2 exhibits a broad resonance at 

32.75 ppm, corresponding to the γ-proton environment on the dppmo ligands. In 

addition, this spectrum features singlets at 15.25, 8.89, and 8.67 ppm, which 

correspond to the o-, p-, and m- resonances of the phenyl rings on the dppmo 

backbone, respectively. Finally, a singlet at 5.70 ppm is assignable to the co-crystallized 

[Cp2Co]+ moiety.  The 19F{1H} NMR spectrum of 3.3 exhibits two extremely broad 
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resonances at -97.26 and -77.18 ppm, which can be attributed to the OTf environment 

in complex 3.3 and the OTf anion in [Cp2Co][OTf],49 respectively.  The broadness of 

these resonances is suggestive of exchange of the inner- and outer-sphere triflate 

moieties at a rate that is comparable to the NMR time scale. The 31P{1H} NMR spectrum 

of 3.3 does not feature any resonances, possibly because they are too broad to be 

observed. In addition, the near-IR spectrum for 3.3 is similar to those of other U(IV) 

complexes,9,10,50,51 supporting the presence of a 5f2 ion. 

To better understand the mechanism of formation of complex 3.3, and 

determine the fate of the “yl” oxygen atoms, we followed the reaction of 

[UO2(dppmo)2(OTf)][OTf] with 4 equiv of Ph3SiOTf and 2 equiv of Cp2Co, in CD2Cl2, by 

1H and 19F{1H} NMR spectroscopies.  The 1H NMR spectrum after 20 min reveals the 

formation of [Cp2Co]+, as evidenced by a resonance at 5.35 ppm,49 as well as complex 

3.1, with the ortho-CH resonances of the [OSiPh3]- ligand at 36.91 ppm (Figure A.4). In 

addition, two new uranium-containing intermediates are also present in the reaction 

mixture, as evidenced by the appearance of downfield resonances at 47.85 and 41.70 

ppm, which we have assigned to the ortho-CH resonances of the [OSiPh3]- ligand.  We 

have tentatively assigned the resonance at 47.85 ppm to the U(IV) bis-silyloxide 

complex, [UIV(OSiPh3)2(dppmo)2(OTf)][OTf] (3.4) (see below). Complexes 3.1 and 3.4 

are likely intermediates formed along the reaction pathway to 3.3, which is not present 

in the reaction mixture at these short reaction times. Consistent with this hypothesis, 

the 1H NMR spectrum of the reaction mixture after 2 h reveals the complete 

disappearance 3.4, the continued presence of 3.1, and the appearance of complex 3.3, 

as evidenced by the observation of a broad resonance at 33.41 ppm, which is 
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assignable to the γ-CH2 environment of the dppmo ligand (Figure A.4).  After 24 h, the 

1H NMR spectrum of the reaction mixture reveals the complete disappearance of 

complex 3.1, along with the expected presence of complex 3.3 (Figure A.4).  

Interestingly, complex 3.3 is not very soluble under these conditions and it partially 

precipitates from solution.  The in situ 19F{1H} NMR spectra are consistent with this 

reaction sequence.  For example, the in situ 19F{1H} NMR spectrum after 20 min reveals 

the presence of outer sphere [OTf]-, along with a resonance at -114.19 ppm, which we 

have tentatively assigned to the OTf environment of complex 3.4. After 2 h, this 

resonance disappears, concomitant with the appearance of a new resonance 97.24 

ppm, which is assignable to complex 3.3. Finally, a 29Si{1H} NMR spectrum of the 

reaction mixture, in TCE-d2 (TCE = 1,1,2,2-tetrachloroethane), consists of a singlet at -

17.83 ppm, which is assignable to Ph3SiOSiPh3,52 confirming the final fate of the uranyl 

oxo ligands. 

Interestingly, addition of 2 equiv of Cp2Co to a solution of 

[UO2(dppmo)2(OTf)][OTf] results in the consumption of the uranyl starting material 

and the formation of free dppmo and [Cp2Co][OTf]; however, we have been unable to 

identify the uranium-containing products of this reaction.  Moreover, addition of 1 

equiv of Cp2Co to Ph3SiOTf in CD2Cl2 results in no reaction over the course of 30 min.  

When combined with the knowledge that [UO2(dppmo)2(OTf)][OTf] does not react 

with Ph3SiOTf, these experiments reveal the synergistic relationship between Cp2Co 

and Ph3SiOTf that is required to form 3.3.   To explain these observations, and 

rationalize the observed in situ NMR spectra, we postulate that 3.3 is formed via a 

series of intermediate steps (Scheme 3.4).  First, Cp2Co reduces 
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[UO2(dppmo)2(OTf)][OTf], transiently forming UVO2(dppmo)2(OTf), which is then 

captured by 2 equiv of Ph3SiOTf to form a U(V) bis(silyloxide) intermediate. In the 

absence of Ph3SiOTf, UVO2(dppmo)2(OTf) likely decomposes, as evidenced by the 

formation of free dppmo in the reaction of [UO2(dppmo)2(OTf)][OTf] with 2 equiv of 

Cp2Co. The U(V) bis(silyloxide) intermediate subsequently reacts with a further 

equivalent of Cp2Co to generate the complex 3.4 and [Cp2Co][OTf].  Complex 3.4 then 

reacts with a third equiv of Ph3SiOTf, to generate complex 3.1 and 1 equiv of 

Ph3SiOSiPh3, whereupon complex 3.1 reacts with the final equiv of Ph3SiOTf, to afford 

complex 3.3 and the second equiv of Ph3SiOSiPh3.  Most importantly, the reduction of 

[UO2(dppmo)2(OTf)][OTf] to a neutral U(V) complex should render the uranyl oxo 

ligands more nucleophilic, which nicely rationalizes why Ph3SiOTf is an ineffective 

silylating reagent in the absence of Cp2Co.   

 

3.2.2.2. Synthesis and Characterization of [UIV(OSiPh3)2(dppmo)2(OTf)][OTf] 

(3.4) 

In an attempt to isolate the hypothesized U(IV) silyloxide intermediates, and 

buttress the proposed mechanism, the reaction of [UO2(dppmo)2(OTf)][OTf] with 2 

equiv of Ph3SiOTf and 2 equiv of Cp2Co was stirred at room temperature for 2 h.  Work-

up of this reaction mixture results in isolation of a light green solid that contained the 

U(IV) bis-silyloxide complex, [UIV(OSiPh3)2(dppmo)2(OTf)][OTf] (3.4), complex 3.1 and 

[Cp2Co][OTf], in a 2:1:3 ratio, respectively, as determined by 1H and 19F NMR 

spectroscopies. Notably, complex 3.3 was not formed in this reaction, according to a 1H 

NMR spectrum of the reaction mixture, which may be a function of the insufficient 



 

 79 

amount of Ph3SiOTf and shorter reaction time. Recrystallization of this mixture from 

pyridine layered with Et2O, afforded yellow crystals of 

[UIV(OSiPh3)2(dppmo)2(pyr)][OTf]2 (3.4-pyr). Exposure of 3.4 to pyridine likely 

displaces the inner-sphere triflate moiety in favor of the coordinated pyridine solvate 

(eq 3.2). 

 

 

 

Complex 3.4-pyr crystallizes in the monoclinic space group P21/c, as the 

pyridine and Et2O solvate, 3.4-pyr∙2C5H5N·C4H10O (Figure 3.3). Selected bond lengths 

and angles can be found in Table 3.2. Complex 3.4-pyr features a capped trigonal prism 

geometry (CSM = 1.49),18 wherein the two dppmo ligands and the two [OSiPh3]- ligands 

define the trigonal prism and the coordinated pyridine solvate forms the capping 

group. The two U-OSi distances are 2.125(3) and 2.135(3) Å, which are comparable to 

complex 3.1 (2.073(6) Å), and other U(IV) silyloxide distances.9,10,15,19 The average U-

Odppmo bond length (av. U-O = 2.384 Å) is similar to complex 3.1 and the uranyl starting 

material (av. U-O = 2.38 Å).17    
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Figure 3.3. Solid-state structure of [UIV(OSiPh3)2(dppmo)2(pyr)][OTf]2∙2C5H5N·C4H10O 

([3.4-pyr]∙2C5H5N·C4H10O) with 50% probability ellipsoids. Solvates, all hydrogens, 

and the triflate counterions have been removed for clarity. In addition, only the ipso 

carbons of the dppmo phenyl rings are shown for clarity. 

 

 The 1H NMR spectrum of 3.4-pyr in CD2Cl2 consists of three broad 

paramagnetically shifted resonances at 48.01, 14.90, and 13.61 ppm, which correspond 

to the o-, m-, and p-proton atoms of the Ph3Si- groups, respectively. Additionally, there 

are four resonances at 4.00, 3.17, -11.81, and -17.31 ppm in a 1:4:2:4 ratio, 

corresponding to the various dppmo proton environments. The coordinated pyridine 

resonances were not observed, possibly due to overlap with the uncoordinated 
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pyridine solvent resonances. Surprisingly, the 19F{1H} NMR spectrum features two 

broad resonances at -81.21 and -113.72 ppm in a 3:1 ratio, respectively. We 

tentatively, assign the former resonance the outer sphere OTf anions, while the latter 

resonance is likely due to a uranium-coordinated OTf ligand. To explain this result, we 

suggest that complex 3.4-pyr undergoes partial [OTf]- association in solution, to form a 

mixture of 3.4 and 3.4-pyr. 

 

3.2.2.3. Synthesis and Characterization of [Cp2Co][UIV(OTf)5(TPPO)2] (3.5) 

 

 

Scheme 3.5. Synthesis of complex 3.5.  

 

To further our insight into the reductive silylation of cationic uranyl complexes, 

we attempted the reductive silylation of [UO2(TPPO)4][OTf]2.  This complex features a 

U=O νsym value of 839 cm-1 in its Raman spectrum (Figure 3.4), which is comparable to 

that of [UO2(dppmo)2(OTf)][OTf] (849 cm-1), suggesting that it is a similarly difficult 

substrate for the reductive silylation reaction. Thus, addition of 6 equiv of Me3SiOTf 

and 2 equiv of Cp2Co to a cold CH2Cl2 solution of [UO2(TPPO)4][OTf]2 results in 
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formation of [Cp2Co][UIV(OTf)5(TPPO)2] (3.5), which can be isolated as a yellow-green 

crystalline material in a 76% yield (Scheme 3.5).   Also formed in this reaction are 

Me3SiOSiMe353 and [Ph3POSiMe3][OTf],54-56 according to the 29Si{1H} and 31P{1H} NMR 

spectra of the reaction mixture. Interestingly, the reagents must be cooled to -25 °C 

before the reaction, otherwise significant amounts of intractable black precipitate 

(possibly UO2) are formed instead. Complex 3.5 can also be formed by addition of 6 

equiv of Ph3SiOTf, and 2 equiv of Cp2Co, to [UO2(TPPO)4][OTf]2; however, the  by-

products formed in this case proved difficult to separate from complex 3.5.  

Importantly, reaction of [UO2(TPPO)4][OTf]2 with only Me3SiOTf results in formation of 

[Ph3POSiMe3][OTf] and UO2(OTf)2(TPPO)2, but does not result in any oxo ligand 

silylation. (Yellow block crystals of UO2(OTf)2(TPPO)2 were isolated once from the 

reaction mixture and characterized by X-ray crystallography; however, they were very 

disordered and only connectivity was determined.) In addition, reaction of 

[UO2(TPPO)4][OTf]2 with only Cp2Co results in a slow transformation, similar to that 

observed between [UO2(dppmo)2(OTf)][OTf] and Cp2Co, while no reaction is observed 

between Me3SiOTf and Cp2Co.  Overall, these data point to a synergistic relationship 

between Me3SiOTf and Cp2Co during the conversion of uranyl to U(IV), similar to that 

observed during formation of 3.3.   
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Figure 3.4. Solid state Raman spectrum of [UO2(TPPO)4][OTf]2. U=O νsym stretch is 

observed at 839 cm-1 (*).  

 

 Complex 3.5 crystallizes in the monoclinic space group P21/c as a discrete 

cation/anion pair.  Its solid-state molecular structure is shown in Figure 3.5 and 

selected bond lengths and angles are collected in Table 3.2. The U(IV) center in 3.5 

features a pentagonal bipyramidal (CSM = 1.74) geometry,18 wherein two TPPO ligands 

occupy the axial positions and the five η1-OTf ligands occupy the equatorial plane. To 

our knowledge, complex 3.5 is the only crystallographically characterized metal 

complex with five coordinated OTf ligands; however, three crystal structures of metal 

complexes with six coordinated OTf ligands have been determined, including: the 

anionic Th(IV) complex, [ThIV(H2O)3(OTf)6]2-,57 and the two examples of the Y(III) 

hexatriflate anion, [C4mpyr]3[YbIII(OTf)6] and [C4mpyr]4[YbIII(OTf)6][Tf2N].58 The 

average U-OOTf distance (av. U-O = 2.33 Å) in complex 3.5 is typical of those in other 

* 
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U(IV)-triflate complexes,32-34 but is slightly shorter than those seen in complex 3.3, 

which we attribute to the reduced steric bulk of TPPO vs. dppmo. In addition, the two 

U-OTPPO bond lengths (2.186(4) and 2.197(4) Å) are both shorter than the U-Odppmo 

distance observed for 3.3, which is also consistent with the reduced steric profile of 

TPPO vs. dppmo.  

 

Figure 3.5. Solid-state structure of [Cp2Co][UIV(OTf)5(TPPO)2] (3.5) with 50% 

probability ellipsoids of the heteroatoms. All hydrogen atoms and the cobaltocenium 

cation have been removed for clarity. 

 

 The 1H NMR spectrum of 3.5 at room temperature consists of three broad 

resonances at 31.66, 12.04, and 11.16 ppm, assignable to the o-, m-, and p-phenyl 
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protons of the TPPO ligand, respectively. In addition, this spectrum also features a 

sharp resonance at 5.70 ppm, which is assignable to the [Cp2Co]+ counterion.49 

Surprisingly, the room temperature 19F{1H} NMR spectrum of 3.5 features two very 

broad resonances at -79.06 and -101.02 ppm.  We tentatively, assign the former 

resonance to an outer sphere OTf anion, while the latter resonance is likely due to a 

uranium-coordinated OTf ligand. To explain this result, we suggest that complex 3.5 

undergoes partial [OTf]- dissociation in solution, to form a mixture of 3.5, 

UIV(OTf)4(TPPO)2 and [Cp2Co][OTf] (eq 3.3).  Finally, the near-IR spectrum for 3.5 is 

similar to those of other U(IV) complexes,9,10,50,51 supporting the presence of an 5f2 ion. 

 

 

 

3.2.3 Synthesis of U(IV) Triflate Complexes from U(IV)Cl4 

3.2.3.1  Synthesis and Characterization of [UIV(OTf)2(dppmo)3][OTf]2 (3.6) 

As part of these investigations, we endeavored to synthesize complex 3.3 from 

an alternative route. Thus, the addition of 2 equiv of dppmo to UCl4 in CH2Cl2, followed 

by addition of 4 equiv of AgOTf (as a solid), results in formation of a green solution 

after 24 h, from which a pale green solid can be isolated. Analysis of the solid by 1H and 

19F{1H} NMR spectroscopies, revealed a mixture of complex 3.3 and a new 

paramagnetic uranium containing product in about a 1:2.7 ratio. Pale green plate 

crystals of just the new uranium-containing product, [UIV(OTf)2(dppmo)3][OTf]2 (3.6), 
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were isolated from the mother liquor in 27% yield (Scheme 3.6). We hypothesized that 

formation of complex 3.6 was favored over complex 3.3, due to the order of reagent 

addition (i.e. dppmo is added first). However, attempts to reverse the order of 

operations by first isolating the U(IV) complex, UIV(OTf)4(solv)x, before dppmo 

addition, were unsuccessful.  

 

 

Scheme 3.6. Synthesis of complex 3.6. 

 

 Complex 3.6 crystallizes in the triclinic space group P-1, as the dichloromethane 

solvate, 3.6∙4CH2Cl2, with two independent molecules in the asymmetric unit (Figure 

3.6). The uranium ion in complex 3.6 is coordinated by three dppmo ligands and two 

η1-OTf ligands. Complex 3.6 features a square antiprism geometry (CSM = 0.28),18 

wherein the two square faces are defined by O1, O3 ,O4, and O7, and O2, O5, O6, and 

O8, respectively. The average U-OOTf bond length (av. U-O = 2.41 Å) is comparable to 

complexes 3.1, 3.3, and 3.5. The average U-Odppmo bond length (av. U-O = 2.35 Å) is 

comparable to complex 3.3 (av. U-O = 2.31 Å).  
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Figure 3.6. Solid-state structure of [UIV(OTf)2(dppmo)3][OTf]2∙4CH2Cl2 (3.6∙4CH2Cl2) 

with 50% probability ellipsoids. Complex 3.6 crystallizes with two independent 

molecules in the asymmetric unit; only one is pictured here. Solvate molecules, 

hydrogen atoms, and the triflate counterions, have been removed for clarity. In 

addition, only the ipso carbons of the dppmo phenyl rings are shown for clarity. 

Selected bond lengths (Å) and angles (°): U1-O1 = 2.42(1), U1-O2 = 2.40(1), U1-O3 = 

2.37(1), U1-O4 = 2.364(9), U1-O5 = 2.36(1), U1-O6 = 2.332(9), U1-O7 = 2.36(1), U1-O8 

= 2.31(1), O1-U1-O2 = 145.9(3). 

 

 The 1H NMR spectrum of complex 3.6 in CD2Cl2 features three broad singlet 

resonances at 11.07, 8.15, and 7.85 correspond to the to the o-, p-, and m-phenyl 
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protons of the dppmo ligands. Interestingly, the CH2 resonance on the backbone of the 

dppmo ligands is presumably too broad to be observed. The 19F{1H} NMR spectrum of 

3.6 in CD2Cl2 features two resonances at -77.93 and -96.59 ppm, corresponding to the 

outer sphere triflates and inner sphere triflates, respectively.  

 

3.2.3.2 Synthesis, Characterization and Reactivity of [UIV(OTf)2(TPPO)4][OTf]2 

(3.7) 

We also made an effort to synthesize a U(IV) triflate complex from the U(IV) 

starting material, UCl4, using the TPPO ligand. The reaction of UCl4 with 4 equiv of 

TPPO and 4 equiv of AgOTf in dichloromethane results in formation of a teal solution, 

from which the U(IV) complex, [UIV(OTf)2(TPPO)4][OTf]2 (3.7), can be isolated as pale 

green block crystals in a 72% yield (Scheme 3.7). There is also a small amount of the 

U(IV) complex, UIV(OTf)4(TPPO)3, formed during this reaction. The impurity, 

UIV(OTf)4(TPPO)3, has been previously synthesized by Ephritikhine and co-workers,44 

and was identified by its 1H resonances (see below). It is important to note that 

recrystallization of the mixture of 3.7 and UIV(OTf)4(TPPO)3 with excess TPPO results 

in the formation of 3.7 without the UIV(OTf)4(TPPO)3 impurity, however, the excess 

TPPO cannot be removed.  

 

Scheme 3.7. Synthesis of complex 3.7. 



 

 89 

 Complex 3.7 crystallizes in the monoclinic space group P21/n, as the 

dichloromethane solvate, 3.7∙CH2Cl2 (Figure 3.7). Complex 3.7 features two inner-

sphere OTf ligands, where one is bound in an η2-fashion. The geometry about the 

seven-coordinate uranium center could be described as a pentagonal bipyramid (CSM 

= 2.30),18 or a capped trigonal prism (CSM = 2.39). The U-OOTf bond distance of the η1-

OTf ligand is 2.298(2) Å, which is comparable to complex 3.5, and other U(IV)-OOTf 

bond distances,32-34 but slightly shorter than the U-OOTf bond lengths in the complex, 

UIV(OTf)4(TPPO)3 (av. U-O = 2.40 Å).44 The U-OOTf bond distances of the η2-OTf ligand 

(2.553(2) and 2.527(2) Å) are significantly longer, and closer to the U-OOTf distances of 

the η2-OTf ligand in complex, UIV(OTf)4(TPPO)3 (2.563(3) and 2.593(3) Å),44 and 

complex 3.1 (2.614(9) and 2.622(8) Å). In addition, the average U-OTPPO bond length 

(av. U-O = 2.23 Å) is comparable to the U-OTPPO distances in complex 3.5. 
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Figure 3.7. Solid-state structure of [UIV(OTf)2(TPPO)4][OTf]2∙CH2Cl2 (3.7∙CH2Cl2) with 

50% probability ellipsoids of the heteroatoms. All hydrogen atoms, and the triflate 

counterions have been removed for clarity. In addition, only the ipso carbons of the 

TPPO phenyl rings are shown for clarity. Selected bond lengths (Å) and angles (°): U1-

O1 = 2.553(2), U1-O2 = 2.527(2), U1-O3 = 2.298(2), U1-O4 = 2.219(2), U1-O5 = 

2.240(2), U1-O6 = 2.215(2), U1-O7 = 2.244(2), O1-U1-O3 = 152.58(6), O2-U1-O3 = 

151.69(6). 

 

The 1H NMR spectrum of complex 3.7 in CD2Cl2 reveals three paramagnetically 

shifted resonances at 11.29, 8.41, and 8.15 ppm, which correspond to the o-, p-, and m-

phenyl protons of the TPPO ligands. There are also some small resonances at 26.55, 

11.00, 10.47, 6.28, and -2.25, which are assignable to the complex, UIV(OTf)4(TPPO)3.44 
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The 19F{1H} NMR spectrum of 3.7 in CD2Cl2 features two resonances at -78.37 and -

95.82 ppm, corresponding to the outer sphere triflates and inner sphere triflates, 

respectively. Only one inner sphere triflate resonance, at room temperature, indicates 

that the η1- and η2-OTf ligands exhibit the same chemical environment in solution. The 

31P{1H} NMR spectrum in CD2Cl2 only exhibits one resonance at 33.88 ppm. 

 

 

 

We also explored the reactivity of 3.7 with Cp2Co (eq 3.4). Thus, the reaction of 

3.7 and 1 equiv of Cp2Co in CD2Cl2 was followed by 1H and 19F{1H} NMR spectroscopies.  

After 10 min, the solution is an intense cherry red color, and the 1H NMR spectrum 

reveals the formation of the expected U(III) complex, [UIII(OTf)2(TPPO)4][OTf], as 

evidenced by three resonances at 12.58, 8.46, and 8.05 ppm,59 as well as [Cp2Co][OTf], 

with a broad singlet resonance at -13.88 ppm. The U(III) complex, 

[UIII(OTf)2(TPPO)4][OTf], has been previously synthesized by Ephritikhine and co-

workers.59 

 

3.3  Summary 

In summary, reaction of [UO2(dppmo)2(OTf)][OTf] with 2 equiv of Ph3SiH and 2 

equiv of B(C6F5)3 at 105 °C for 72 h, results in the formation of [UIV(OSiPh3)-

(dppmo)2(OTf)2][OTf] (3.1) and B(C6F5)3 decomposition products. Since B(C6F5)3 is not 
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stable under these reaction conditions, we decided that B(C6F5)3 will not be a useful 

catalyst for uranyl reductive silylation (Scheme 3.3). Thus, we focused our efforts on a 

different reducing agent, Cp2Co. 

The reaction of [UO2(dppmo)2(OTf)][OTf] with 4 equiv of Ph3SiOTf and 2 equiv 

of Cp2Co, generates the U(IV) complex, UIV(OTf)4(dppmo)2 (3.3).  Also formed in this 

reaction is Ph3SiOSiPh3, which is the product of oxo ligand silylation. We were able to 

isolate two U(IV) silyloxide intermediates from the reaction mixture, complex 3.1 and 

[UIV(OSiPh3)2(dppmo)2(OTf)][OTf] (3.4), which gives insight into the reaction 

mechanism for the formation of 3.3, i.e. the reaction is proceeding step-wise through 

silyloxide intermediates. Similarly, reaction of [UO2(TPPO)4][OTf]2 with 6 equiv of 

Me3SiOTf and 2 equiv Cp2Co, generates the U(IV) complex, [Cp2Co][UIV(OTf)5(TPPO)2] 

(3.5), along with Me3SiOSiMe3.  The formation of complexes 3.3 and 3.5 represent rare 

examples of uranyl oxo ligand substitution, as well as novel examples of one-pot 

reductions of uranyl to U(IV), at ambient temperatures and pressures. Interestingly, 

neither Ph3SiOTf nor Me3SiOTf alone are capable of reductively silylating 

[UO2(dppmo)2(OTf)][OTf] or [UO2(TPPO)4][OTf]2. Instead, these reagents required the 

aid of an external reductant, namely, Cp2Co.  This synergistic relationship between 

Cp2Co and R3SiOTf makes it possible to perform reductive silylation on more 

challenging uranyl substrates, such as cationic uranyl complexes, further expanding the 

scope of the reductive silylation reaction. 
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3.4 Experimental Section 

3.4.1 General Procedures. All reactions and subsequent manipulations were 

performed under anaerobic and anhydrous conditions under an atmosphere of 

nitrogen. Hexanes, toluene, THF and Et2O were dried using a Vacuum Atmospheres 

DRI-SOLV solvent purification system. CH2Cl2, CD2Cl2, pyr, and TCE-d2 were dried over 

activated 3 Å molecular sieves for 24 h before use. UO2Cl2(THF)2,60 dppmo,61 and 

Ph3SiOTf,26 were synthesized according to previously reported procedures. Cp2Co was 

purchased from Acros Organics and recrystallized from concentrated Et2O before use. 

All other reagents were purchased from commercial suppliers and used as received.  

NMR spectra were recorded on a Varian UNITY INOVA 400 spectrometer or an 

Agilent Technologies 400-MR DD2 spectrometer. 1H NMR spectra were referenced to 

external SiMe4 using the residual protio solvent peaks as internal standards. The 

chemical shifts of the 19F{1H} and 31P{1H} spectra were referenced indirectly with the 

1H resonance of SiMe4 at 0 ppm, according to IUPAC standard.62,63 29Si{1H} NMR 

spectra were referenced to external SiMe4 in C6D6.  Raman and IR spectra were 

recorded on a Mattson Genesis FTIR/Raman spectrometer. IR samples were recorded 

as KBr pellets, while Raman samples were recorded in an NMR tube as neat solids. UV-

vis/NIR experiments were performed on a UV-3600 Shimadzu spectrophotometer. 

Elemental analyses were performed by the Microanalytical Laboratory at UC Berkeley.  

 

3.4.2 Synthesis of [UO2(dppmo)2(OTf)][OTf]. The preparation described below was 

modified from the published procedure for [UO2(dppmo)2(TPPO)][OTf]2.64 To a 

stirring, yellow dichloromethane (3 mL) slurry of UO2Cl2(THF)2 (102.8 mg, 0.212 
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mmol), was added dropwise a colorless dichloromethane (3 mL) solution of dppmo 

(175.7 mg, 0.422 mmol).  Solid AgOTf (110.2 mg, 0.429 mmol) was then quickly added 

to the reaction mixture. The reaction mixture was allowed to stir for 24 h at 25 °C, 

which resulted in formation of a yellow solution concomitant with the deposition of a 

white precipitate. This solution was filtered through a Celite column supported on 

glass wool (0.5 cm × 2 cm), which afforded a clear yellow filtrate and a large white plug. 

The filtrate was concentrated in vacuo and layered with diethyl ether (2 mL). Storage 

of this solution at -25 °C for 24 h resulted in deposition of a pale yellow powder (218.2 

mg, 74% yield). Spectral data collected for this material matched those previously 

reported for this complex, [UO2(dppmo)2(OTf)[OTf].17 

3.4.3 Synthesis of [UO2(TPPO)4][OTf]2. This complex was prepared according to a 

modified literature procedure.64  To a stirring, yellow dichloromethane (3 mL) slurry of 

UO2Cl2(THF)2 (224.0 mg, 0.462 mmol), was added dropwise a colorless 

dichloromethane (4 mL) solution of TPPO (512.8 mg, 1.843 mmol). Solid AgOTf (275.6 

mg, 1.073 mmol) was then quickly added to the reaction mixture. After 3 h, the 

resulting cloudy yellow solution was filtered through a Celite column supported on 

glass wool (0.5 cm × 2 cm), which afforded a clear yellow filtrate and a large tan plug. 

All the volatiles were removed in vacuo, which produced a yellow foam. This material 

was extracted into dichloromethane (8 mL), and filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm), which afforded a clear yellow filtrate and a 

small pale orange plug. The filtrate was then concentrated in vacuo and layered with 

diethyl ether (5 mL). Storage of this solution at -25 °C for 24 h resulted in deposition of 

a yellow crystalline solid (570.3 mg, 73% yield). Spectral data of this material matched 
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those previously reported for this complex.64 Raman (cm-1): 3064(s), 1587(m), 

1572(sh w), 1186(w), 1147(w), 1005(m), 1001(s), 839(m, U=O νsym), 750(w), 685(w), 

615(w), 310(w), 253(m).  

3.4.4 Synthesis of [UIV(OSiPh3)(dppmo)2(OTf)2][OTf] (3.1).  A reaction flask was 

charged with a yellow toluene (10 mL) solution containing [UO2(dppmo)2(OTf)][OTf] 

(117.9 mg, 0.085 mmol), Ph3SiH (44.7 mg, 0.172 mmol), and B(C6F5)3 (86.9 mg, 0.170 

mmol). The flask was sealed and heated at 105 °C for 3.5 d, which resulted in the 

formation of a slightly cloudy sea foam green solution. All the volatiles were removed 

in vacuo, and the sea foam green oil was washed with hexanes (3 × 8 mL). Extraction 

into dichloromethane (4 mL) begets a cloudy sea foam green solution, which was 

filtered through a Celite column supported on glass wool (0.5 cm × 2 cm), concentrated 

in vacuo (2 mL), and layered with hexanes (3 mL). Storage at -25 °C for 24 h, resulted in 

formation of a sea foam green crystalline solid (24.1 mg, 16% yield). Anal. Calcd for 

UO14P4S3SiF9C71H59: C, 47.55; H, 3.32. Found: C, 50.83; H, 3.42; N, <0.2. 1H NMR (CD2Cl2, 

25 °C, 400 MHz): δ 38.48 (s, 6H, Ph3Si ortho CH), 12.69 (s, 6H, Ph3Si meta CH), 11.82 (t, 

3H, Ph3Si para CH), 6.36 (s, 8H, dppmo para CH), 5.90 (s, 16H, dppmo CH), -1.61 (br s, 

16H, dppmo CH), -12.79 (br s, 4H, dppmo γ-CH2).  Analysis of this sample by 19F{1H} 

NMR spectroscopy revealed the solid contained a fluorinated-phenyl containing side 

product, indicated by three resonances at -133.62, -163.73, and -166.67 ppm. 

3.4.5 Synthesis of 3.1 using Cp2Co. A 20 mL scintillation vial was charged with a pale 

yellow solution of [UO2(dppmo)2(OTf)][OTf] (125.1 mg, 0.090 mmol) in 

dichloromethane (2 mL). A light brown dichloromethane (2 mL) solution of Ph3SiOTf 

(148.1 mg, 0.363 mmol) and Cp2Co (31.9 mg, 0.175 mmol) was then added dropwise, 
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which resulted in a color change to dark yellow-green. The reaction mixture was 

allowed to stand at room temperature for 15 h, whereupon the solution became 

slightly cloudy. The reaction mixture was filtered through a Celite column supported 

on glass wool (0.5 cm × 2 cm), concentrated in vacuo, and layered with diethyl ether (3 

mL). Storage of this solution for 24 h at -25 °C resulted in the deposition of a yellow-

green solid (123 mg). The solid was dissolved in dichloromethane (3 mL), and filtered 

through a Celite column supported on glass wool (0.5 cm × 2 cm). The filtrate was then 

concentrated in vacuo, and layered with diethyl ether (2 mL). Storage of this solution 

for 24 h at -25 °C resulted in the deposition of a crystalline mixture, which consisted of 

sea foam green blocks and yellow needles (total mass of 33 mg).  The sea foam green 

blocks were characterized by X-ray crystallography, revealing the presence of 

[UIV(OSiPh3)(dppmo)2(OTf)2][OTf] (2).  The presence of [Cp2Co][OTf] was confirmed 

by a unit cell determination of a yellow needle: a = 16.35 Å, b = 13.13 Å, c = 17.62 Å; α = 

90°, β = 105.94°,  γ = 90°, which matches the unit cell reported for [Cp2Co][OTf].65  The 

1H NMR spectrum revealed the presence of both 2 and [Cp2Co][OTf] in a 2:1 ratio, 

respectively. 1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 37.86 (s, 6H, Ph3Si ortho CH), 12.57 

(s, 6H, Ph3Si meta CH), 11.72 (s, 3H, Ph3Si para CH), 6.36 (br s, 8H, dppmo para CH), 

5.90 (br s, 16H, dppmo meta CH), 5.73 (s, [Cp2Co]+), -1.80 (br s, 16H, dppmo ortho CH), 

-12.53 (br s, 4H, dppmo γ-CH2). 19F{1H} NMR (CD2Cl2, 25 °C, 376 MHz): δ -80.36 (br s, 

[OTf]-). 

3.4.6 Synthesis of [Na(12-crown-4)2][HB(C6F5)3] (3.2). To a stirring white 

suspension of NaBH4 (9.1 mg, 0.240 mmol) in THF (1 mL), was added a THF (2 mL) 

solution of B(C6F5)3 (107.7 mg, 0.210 mmol) dropwise. Then, 12-crown-4 (68 μL, 0.421 
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mmol) was added, resulting in noticeable bubbles forming at the solid’s surface. The 

suspension was stirred for 24 h, whereupon the slightly cloudy solution was filtered 

through a Celite column supported on glass wool (0.5 cm × 2 cm).  All volatiles were 

removed in vacuo, which resulted in the formation of a white powder. The powder was 

then extracted into diethyl ether (8 mL), and filtered again through a Celite column 

supported on glass wool (0.5 cm × 2 cm). All volatiles were removed in vacuo, which 

produced a white crystalline solid (46.0 mg, 25% yield). 1H NMR (MeCN-d3, 25 °C, 400 

MHz): δ 3.62 (s, 12-crown-4). The [HB(C6F5)3]- proton resonance was not observed. 

11B{1H} NMR (MeCN-d3, 25 °C, 320 MHz): δ -25.48 (d, JHB = 229 Hz, [HB(C6F5)3]-). 

19F{1H} NMR: (MeCN-d3, 25 °C, 376 MHz): δ -134.69 (s, 6F, ortho CF), -164.91 (t, JFF = 20 

Hz, 3F, para CF), -165.76 (t, JFF = 19 Hz, 6F, meta CF).  

3.4.7 Synthesis of UIV(OTf)4(dppmo)2 (3.3). To a stirring, pale yellow 

dichloromethane (2 mL) solution of [UO2(dppmo)2(OTf)][OTf] (40.4 mg, 0.029 mmol), 

was added dropwise a dichloromethane (1.5 mL) solution of Ph3SiOTf (47.2 mg, 0.116 

mmol) and Cp2Co (10.6 mg, 0.058 mmol). This resulted in an immediate color change 

to green. This solution was allowed to stir for 24 h at 25 °C, which resulted in the 

deposition of a green precipitate. The mixture was concentrated in vacuo and stored at 

-25 °C for 24 h, which resulted in the further deposition of solid. Isolation of the green 

powder, followed by dissolution in dichloromethane (4 mL), resulted in formation of a 

cloudy green solution.  This solution was filtered through a Celite column supported on 

glass wool (0.5 cm × 2 cm), concentrated in vacuo, and layered with hexanes (2 mL). 

Storage of this solution at -25 °C for 24 h, resulted in the deposition of a green 

crystalline solid, which was isolated by decanting off the supernatant (48.3 mg, 83% 
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yield). X-ray quality crystals of 3.3, as a 1:1 co-crystal with [Cp2Co][OTf], were grown 

out of a toluene solution layered with hexanes. Anal. Calcd for UO19P4S5F15CoC65H52: C, 

38.97; H, 2.62. Found: C, 39.36; H, 2.58. 1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 32.75 (br s, 

4H, γ-CH2), 15.25 (br s, 16H, ortho CH), 8.89 (s, 8H, para CH), 8.67 (s, 16H, meta CH), 

5.70 (s, 10H, [Cp2Co]+). 19F{1H} NMR (CD2Cl2, 25 °C, 376 MHz): δ -77.90 (br s, outer 

sphere [OTf]-), -97.14 (br s, inner sphere [OTf]-). UV-vis/NIR (CH2Cl2, 4.44 × 10-3 M, 

L∙mol-1∙cm-1): 398 (ε = 332), 542 (ε = 20), 620 (ε = 30), 636 (ε = 31), 658 (ε = 43), 774 (ε 

= 9), 828 (ε = 11), 1008 (sh, ε = 14), 1062 (sh, ε = 25), 1112 (ε = 53), 1408 (ε = 16), 

1522 (ε = 14), 1636 (ε = 9), 2024 (ε = 3). IR (KBr pellet, cm-1): 1591(w), 1487(w), 

1441(m), 1417(w), 1331(m), 1277(s), 1255(s), 1234(s), 1221(s sh), 1203(vs), 1163(s 

sh), 1126(vs), 1074(s sh), 1068(s), 1028(s), 1011(s), 997(s), 864(w), 793(m), 741(m), 

690(m), 636(s), 577(w), 569(w), 507(m), 461(w).  

3.4.8 Synthesis of [UIV(OSiPh3)2(dppmo)2(pyr)][OTf]2 (3.4-pyr). To a stirring light 

yellow solution of [UO2(dppmo)2(OTf)][OTf] (83.9 mg, 0.061 mmol) in 

dichloromethane (2 mL), was added a light brown solution of Ph3SiOTf (49.6 mg, 0.121 

mmol) and Cp2Co (21.4 mg, 0.118 mmol) in dichloromethane (2 mL) dropwise. This 

resulted in an immediate darkening of the yellow color, and the reaction was allowed 

to stir at room temperature for 2h.  The dark yellow solution was filtered through a 

Celite column supported on glass wool (0.5 cm × 2 cm). The dark yellow filtrate was 

concentrated in vacuo, and layered with diethyl ether (2 mL). Storage at -25 °C for 24 h, 

afforded a light green solid, which appeared to be a mixture of complex 3.1, 

[UIV(OSiPh3)2(dppmo)2(OTf)][OTf] (3.4), and [Cp2Co][OTf] in a 2:1:3 ratio, by 1H NMR 

spectroscopy. 1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 48.03 (br s, 24H, 3.4, Ph3Si ortho 
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CH), 31.71 (s, 6H, 3.1, Ph3Si ortho CH), 14.85 (br s, 24H, 3.4, Ph3Si meta CH), 13.61 (br 

s, 12H, 3.4, Ph3Si para CH), 12.53 (s, 6H, 3.1, Ph3Si meta CH), 11.69 (s, 3H, 3.1, Ph3Si 

para CH), 6.33 (br s, 4H, 3.1, dppmo para CH), 5.88 (br s, 8H, 3.1, dppmo meta CH), 

5.63 (s, 60H, [Cp2Co]+ CH), 3.20 (br s, 32H, 3.4, dppmo meta CH), -2.13 (br s, 8H, 3.1, 

dppmo ortho CH), -11.81 (br s, 16H, 3.4, dppmo para CH), -12.61 (br s, 2H, 3.1, dppmo 

γ-CH), -17.28 (br s, 32H, 3.4, dppmo ortho CH). The γ-CH resonance of complex 3.4 

could not be identified, probably due to paramagnetic broadening. From this mixture, a 

few X-ray quality pale green, plate crystals of [UIV(OSiPh3)2(dppmo)2(pyr)][OTf]2 (3.4-

pyr) were grown from a pyridine (2 mL) solution layered with diethyl ether (1 mL) 

and stored at -25 °C for 24 h. Unfortunately, we were unable to completely separate 

3.4-pyr from complex 3.1 and [Cp2Co][OTf], in order to complete its characterization. 

1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 48.01 (br s, 12H, Ph3Si ortho CH), 14.90 (br s, 12H, 

Ph3Si meta CH), 13.61 (br s, 6H, Ph3Si para CH), 4.00 (br s, 4H, dppmo γ-CH2), 3.17 (br 

s, 16H, dppmo meta CH), -11.81 (br s, 8H, dppmo para CH), -17.31 (br s, 16H, dppmo 

ortho CH). The coordinated pyridine resonances were not observed, possibly due to 

overlap with the uncoordinated pyridine solvent resonances. 19F{1H} NMR (CD2Cl2, 25 

°C, 376 MHz): δ -81.21 (br s, 9F, [OTf]- CF), -113.72 (br s, 3F, OTF CF). 

3.4.9 Synthesis of [Cp2Co][UIV(OTf)5(TPPO)2]  (3.5). To a cold (-25 °C) stirring 

yellow solution of [UO2(TPPO)4][OTf]2 (83.3 mg, 0.050 mmol) in dichloromethane (3 

mL), was added cold (-25 °C) Me3SiOTf (54 μL, 0.299 mmol) via syringe, followed by a 

light brown solution (-25 °C) of Cp2Co (20.2 mg, 0.111 mmol) in dichloromethane (1 

mL).  This resulted in a rapid color change to yellow-green, concomitant with the 

deposition of a small amount of dark grey solid. The reaction mixture was allowed to 



 

 100 

stir at room temperature for 19h, whereupon it was filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm), which afforded a yellow-green filtrate and a 

small dark grey plug. The filtrate was concentrated in vacuo, and layered with diethyl 

ether (2 mL).  Storage of this solution at -25 °C for 24 h resulted in the deposition of 

green blocks, which were isolated by decanting off the supernatant (65.6 mg, 76% 

yield).  Anal. Calcd for UO17P2S5F15CoC51H40: C, 35.43; H, 2.33. Found: C, 35.38; H, 2.13.  

1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 31.66 (br s, 12H, ortho CH), 12.04 (br s, 12H, meta 

CH), 11.16 (br s, 6H, para CH), 5.70 (s, 10H, [Cp2Co]+).  19F{1H} NMR (CD2Cl2, 25 °C, 376 

MHz): δ -79.06 (br s, outer sphere [OTf]-), -101.02 (br s, inner sphere [OTf]-).   UV-

vis/NIR (CH2Cl2, 3.57 × 10-3 M, L∙mol-1∙cm-1): 400 (ε = 299), 634 (ε = 22), 906 (sh, ε = 7), 

1054 (ε = 26), 1272 (ε = 10), 1378 (ε = 6), 1476 (ε = 7), 1994 (ε = 9).  IR (KBr pellet, cm-

1): 1591(w), 1487(w), 1439(m), 1417(w), 1344(br m), 1319(sh m), 1259(m), 1236(s), 

1203(vs), 1182(sh s), 1163(sh m), 1122(s), 1065(w), 1034(s), 1014(s), 991(vs), 

865(w), 800(br w), 756(w), 750(w), 729(m), 690(m), 630(s), 584(w), 569(w), 540(s), 

511(w), 507(w), 459(w). 

3.4.10 Synthesis of 3.5 using Ph3SiOTf. To a stirring yellow solution of 

[UO2(TPPO)4][OTf]2 (42.0 mg, 0.025 mmol) in dichloromethane (2 mL), was added a 

light brown dichloromethane (2 mL) solution of Ph3SiOTf (47.2 mg, 0.116 mmol) and 

Cp2Co (10.6 mg, 0.058 mmol) dropwise, which immediately resulted in the formation 

of a dark yellow solution.  The reaction was allowed to stir at room temperature for 

16.5 h, before the solution was filtered through a Celite column supported on glass 

wool (0.5 cm x 2 cm), which afforded a yellow-green filtrate and a small dark grey plug. 

The filtrate was concentrated in vacuo, and layered with diethyl ether (2 mL).  Storage 
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at -25 °C for 3 h, resulted in the deposition of green block crystals, which were isolated 

by decanting off the supernatant (24.6 mg, 57% yield). The identity of the crystals were 

confirmed by a unit cell comparison: a = 16.54 Å, b = 20.79 Å, c = 18.00 Å; α = 90°, β = 

90.10°, γ = 90°, which matches the unit cell for 3.5. 1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 

31.95 (br s, 12H, TPPO ortho CH), 12.06 (br s, 12H, TPPO meta CH), 11.17 (br s, 6H, 

TPPO para CH), 5.63 (s, 10H, [Cp2Co]+ CH). 19F{1H} NMR (CD2Cl2, 25 °C, 376 MHz): δ -

79.01 (br s, 3F, [OTf]- CF), -100.73 (br s, 12F, OTf CF).  

3.4.11 Synthesis of [UIV(OTf)2(dppmo)3][OTf]2 (3.6). To a stirred green slurry of 

UCl4 (80.9 mg, 0.213 mmol) in dichloromethane (3 mL), was added a colorless solution 

of dppmo (181.9 mg, 0.437 mmol) in dichloromethane (4 mL), dropwise, followed by 

the addition of AgOTf (233.4 mg, 0.908 mmol), as a solid. This resulted in no visible 

change. The reaction mixture was allowed to stir at room temperature for 17h, 

whereupon the solution changed to a sea-foam green color, concomitant with the 

deposition of a white precipitate. The mixture was filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm), which afforded a sea-foam green filtrate and a 

white plug. The filtrate was concentrated in vacuo, and layered with diethyl ether (~2 

mL).  Storage of this solution at -25 °C for 24 h resulted in the deposition of a green oil, 

which was dried in vacuo to afford a green solid. The 1H NMR spectrum of this green 

solid in CD2Cl2 revealed the mixture to contain 3.3 and 3.6 in a 1:2.7 ratio. 1H NMR 

(CD2Cl2, 25 °C, 400 MHz): δ 38.56 (br s, 4H, 3.3, γ-CH2), 15.30 (br s, 8H, 3.3, dppmo 

ortho CH), 12.05 (br s, 8H, 3.6, γ-CH2), 11.05 (br s, 32H, 3.6, dppmo ortho CH), 8.86 (s, 

4H, 3.3, dppmo para CH), 8.67 (s, 8H, 3.3, dppmo meta CH), 8.17 (s, 16H, 3.6, dppmo 

para CH), 7.93 (s, 32H, 3.6, dppmo meta CH). The pale green mother liquor was 
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concentrated in vacuo and stored at -25 °C for 24 h, which resulted in the deposition of 

a pale green plate crystals of 3.6 (101.3 mg, 27% yield). 1H NMR (CD2Cl2, 25 °C, 400 

MHz): δ 11.07 (br s, 24H, dppmo ortho CH), 8.15 (s, 12H, dppmo para CH), 7.85 (s, 24H, 

dppmo meta CH). The γ-CH2 resonance is likely overlapping with the dppmo ortho CH 

resonance. 19F{1H} NMR (CD2Cl2, 25 °C, 376 MHz): δ -77.93 (br s, 6F, outer sphere 

[OTf]-), -96.59 (br s, 6F, inner sphere [OTf]-).    

3.4.12 Synthesis of [UIV(OTf)2(TPPO)4][OTf]2 (3.7). To a stirred green slurry of UCl4 

(161.2 mg, 0.424 mmol) in dichloromethane (3 mL), was added dropwise a colorless 

solution of TPPO (473.1 mg, 1.700 mmol) in dichloromethane (3 mL), which resulted in 

no visible change. The mixture was allowed to stir for 3 minutes at room temperature, 

before AgOTf (436.0 mg, 1.697 mmol) was added as a solid. Within a few minutes, the 

reaction mixture appeared teal in color. The reaction mixture was stirred at room 

temperature for 1.5 h, whereupon the solution is an intense teal color, and a fluffy 

white precipitate formed. The mixture was filtered through a Celite column supported 

on glass wool (0.5 cm × 2 cm). The resulting teal filtrate was concentrated in vacuo, and 

layered with Et2O (1 mL). Storage of this solution at -25 °C for 72 h only resulted in a 

floating light-colored cloudy solid. The mixture was filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm). All the volatiles were removed in vacuo, and 

the teal oil was washed with Et2O (~1 mL), followed by toluene (~1 mL). The teal solid 

was extracted into dichloromethane (3 mL), and filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm). The resulting teal filtrate was concentrated in 

vacuo, and layered with Et2O (1 mL). Storage of this solution at -25 °C for 24 h resulted 

in the deposition of pale green blocks, which were isolated by decanting off the 
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supernatant (339.4 mg, 72% yield). 1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 11.29 (t, JHH = 9 

Hz, 24H, ortho-CH), 8.41 (t, JHH = 8 Hz, 12H, para-CH), 8.15 (br t, JHH = 7 Hz, 24H, meta-

CH). 19F{1H} NMR (CD2Cl2, 25 °C, 376 MHz): δ -78.44 (br s, outer sphere [OTf]-), -95.80 

(br s, inner sphere [OTf]-). 31P{1H} NMR (CD2Cl2, 25 °C, 376 MHz): δ 33.88 (br s, OPPh3). 

3.4.13 NMR-Scale Reaction of Ph3SiOTf with Cp2Co.  A colorless CD2Cl2 solution (1 

mL) containing Ph3SiOTf (12.6 mg, 0.031 mmol) was sealed in a J. Young NMR tube, 

and the 1H and 19F{1H} NMR spectra were recorded. Then a light brown CD2Cl2 solution 

(0.5 mL) of Cp2Co (6.1 mg, 0.032 mmol) was added dropwise, resulting in a light brown 

solution. The tube was sealed, and the 1H and 19F{1H} NMR spectra were recorded after 

standing at room temperature for 30 min. These spectra revealed mostly unreacted 

Ph3SiOTf and Cp2Co, however, a few new small resonances are also observed at 7.68, 

7.54, and 4.80 ppm, suggesting that a slow reaction may be occurring.   

3.4.14 NMR-Scale Reaction of [UO2(dppmo)2(OTf)][OTf] with Cp2Co.  A light brown 

CD2Cl2 solution (1 mL) containing Cp2Co (9.4 mg, 0.052 mmol) was sealed in a J. Young 

NMR tube, and the 1H, 19F{1H}, and 31P{1H} NMR spectra were recorded. Then, a pale 

yellow CD2Cl2 solution (0.5 mL) of [UO2(dppmo)2(OTf)][OTf] (36.3 mg, 0.026 mmol)  

was added dropwise, which resulted in a yellow brown solution. The tube was sealed, 

and the 1H, 19F{1H} and 31P{1H} NMR spectra were recorded after standing at room 

temperature for 10 min. Spectra were also recorded after 1h, 2h, 4h, and 22h. These 

spectra revealed the formation of [Cp2Co][OTf], free dppmo, and an unidentified 

paramagnetic uranium-containing product. 

3.4.15 NMR-Scale Reaction of [UO2(dppmo)2(OTf)][OTf] with Ph3SiOTf.  A pale 

yellow CD2Cl2 solution (1 mL) containing [UO2(dppmo)2(OTf)][OTf] (21.4 mg, 0.015 



 

 104 

mmol) was sealed in a J. Young NMR tube, and the 1H, 19F{1H}, and 31P{1H} NMR spectra 

were recorded. Then, a colorless CD2Cl2 solution (0.5 mL) of Ph3SiOTf (13.1 mg, 0.032 

mmol) was added dropwise.  This resulted in no visible change to the solution. The 

tube was sealed, and the 1H, 19F{1H} and 31P{1H} NMR spectra were recorded after 20 

min. These spectra only revealed the presence of unreacted [UO2(dppmo)2(OTf)][OTf] 

and Ph3SiOTf. 

3.4.16 NMR-Scale Reaction of [UO2(TPPO)4][OTf]2 with Cp2Co. A light brown CD2Cl2 

solution (1 mL) containing Cp2Co (4.1 mg, 0.022 mmol) was sealed in a J. Young NMR 

tube, and the 1H NMR spectrum was recorded. Then, a pale yellow CD2Cl2 solution (0.5 

mL) of [UO2(TPPO)4][OTf]2 (18.8 mg, 0.011 mmol) was added dropwise, which resulted 

in the formation of a dark yellow-brown solution. The tube was sealed, and the 1H, 

19F{1H} and 31P{1H} NMR spectra were recorded after standing at room temperature 

for 10 min. These spectra revealed the formation of [Cp2Co][OTf], and several minor 

unidentified paramagnetic uranium-containing products. 

3.4.17 NMR-Scale Reaction of [UO2(TPPO)4][OTf]2 with Me3SiOTf.  A pale yellow 

CD2Cl2 solution (1 mL) containing [UO2(TPPO)4][OTf]2 (37.1 mg, 0.022 mmol) was 

sealed in a J. Young NMR tube, and the 1H, 19F{1H}, and 31P{1H} NMR spectra were 

recorded. Then, cold (-25 °C) Me3SiOTf (16 μL, 0.088 mmol) in CD2Cl2 (0.5 mL) was 

added dropwise via syringe. This resulted in no visible change to the solution. The tube 

was sealed, and the 1H, 19F{1H}, and 31P{1H} NMR spectra were recorded after 10 min.  

These spectra revealed the presence of [Ph3POSiMe3][OTf],54,55 and UO2(OTf)2(TPPO)2. 

3.4.18 NMR-Scale Reaction of Me3SiOTf with Cp2Co. A light brown CD2Cl2 solution (1 

mL) containing Cp2Co (10.6 mg, 0.058 mmol) was sealed in a J. Young NMR tube, and 
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the 1H spectrum was recorded. Then cold (-25 °C) Me3SiOTf (11 μL, 0.061 mmol) was 

added via syringe, which resulted in no visible change. The tube was sealed, and the 1H 

and 19F{1H} NMR spectra were recorded after standing at room temperature for 20 

min. These spectra revealed only unreacted Me3SiOTf and Cp2Co. 

 

3.4.19 X-ray Crystallography. Data for 3.1, 3.3, 3.4-pyr, 3.5, 3.6, and 3.7 were 

collected on a Bruker 3-axis platform diffractometer equipped with a SMART-1000 

CCD detector using a graphite monochromater with a Mo Kα X-ray source (α = 0.71073 

Å). The crystals were mounted on a glass fiber under Paratone-N oil and all data were 

collected at 100(2) K using an Oxford nitrogen gas cryostream system. A hemisphere of 

data was collected using ω scans with 0.3° frame widths. Frame exposures of 10, 30, 

10, 10, and 5 seconds were used for complexes 3.1, 3.3, 3.4-pyr, 3.5 and 3.6, 

respectively, while frame exposures of 5 and 10 seconds were used for complex 3.7. 

Data collection and cell parameter determinations were conducted using the SMART 

program.66 Integration of the data frames and final cell parameter refinement were 

performed using SAINT software.67 Absorption correction of the data was carried out 

using the multi-scan method SADABS.68 Subsequent calculations were carried out 

using SHELXTL.69 
 

Structure determinations were done using direct or Patterson 

methods and difference Fourier techniques. All hydrogen atom positions were 

idealized, and rode on the atom of attachment.  Hydrogen atoms were not assigned to 

the disordered carbon atoms. Structure solution, refinement, graphics, and creation of 

publication materials were performed using SHELXTL.69  



 

 106 

For complex 3.1, the diethyl ether solvate molecule exhibited mild positional 

disorder. The EADP, DFIX and FLAT commands were used to constrain its orientation.  

Disordered atoms were not refined anisotropically. In addition, a few carbon atoms 

and one oxygen atom of a dppmo ligand were constrained with the EADP command. 

Complex 3.2 exhibits positional disorder of one hexane solvate molecule. This 

positional disorder was addressed by modeling the molecule in two positions, in a 

50:50 ratio.  The EADP, DFIX, and FLAT commands were used to constrain both 

positions of the hexane molecule. Complex 3.2 also features a disordered toluene 

solvate molecule with half occupancy, which overlaps with one position of the hexane 

solvate.  The EADP, DFIX, and FLAT commands were used to constrain the orientation 

of the toluene molecule.  Disordered carbon atoms were not refined anisotropically.   In 

addition, one of the dppmo phenyl rings exhibited mild positional disorder and was 

constrained using the EADP, DFIX, and FLAT commands. The OTf carbon atoms, two 

carbon atoms on the [Cp2Co]+, and a few other dppmo carbon atoms were also 

constrained with the EADP command. Finally, one dppmo C-C bond distance was 

restrained by the DFIX command in complex 3.5. A summary of relevant 

crystallographic data for 3.1, 3.3, 3.4-pyr, 3.5, 3.6, and 3.7 is presented in Tables 3.3-

3.4. 
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Table 3.3. X-ray Crystallographic Information for 3.1, 3.3 and 3.4-pyr 

 3.1∙3CH2Cl2∙C4H10O  [3.3][Cp2Co][OTf] 
·1.5C7H8·C6H14 

3.4-pyr 
∙2C5H5N·C4H10O 

empirical formula  UCl6O15P4S3SiF9C78H65 UO19P4S5F15CoC82H60 UO13P4S2Si2F6N3C107H
99 

Crystal habit, color  block, sea-green  block, yellow-green plate, pale green  
crystal size (mm)  0.40 × 0.20 × 0.20 0.35 × 0.25 × 0.25 0.10 × 0.30 ×0.50 
crystal system  monoclinic  triclinic monoclinic 
space group  P21/n P-1 P21/c 
vol (Å3)  8559(3) 4658(2) 10095(2) 
a (Å)  17.810(3) 15.665(5) 25.230(4) 
b (Å)  18.573(3) 15.876(5) 16.169(2) 
c (Å)  25.953(4) 19.073(6) 27.244(3) 
α (deg)  90 90.641(7) 90 
β (deg)  94.423(4) 91.942(6) 114.731(3) 
γ (deg)  90 100.661(6) 90 
Z  4 2 4 
fw (g/mol)  2112.18 2215.44 2231.10 
density (calcd) 
(Mg/m3)  

1.639 1.580 1.468 

abs coeff (mm-1)  2.327 2.189 1.811 
F000  4200 2196 4528.0 
Total no. 
reflections  

90417 25154 84814 

Unique reflections  17225 15158 25189 
final R indices [I > 
2σ(I)]  

R1 = 0.0729 
wR2 = 0.1806 

R1 = 0.1029 
wR2 = 0.2215 

R1 = 0.0389 
wR2 = 0.1260 

largest diff peak 
and hole (e-Å-3)  

3.364 and -2.335 2.483 and -3.034 1.222 and -0.816 

GOF  1.037 0.929 0.834 
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Table 3.4. X-ray Crystallographic Information for 3.5, 3.6 and 3.7 

 3.5 3.6∙4CH2Cl2 3.7∙CH2Cl2 
empirical formula  UO17P2S5F15CoC51H40 UO18P6S4F12Cl8C83H74 UO16P4S4F12Cl2C77H62 

Crystal habit, color  plate, yellow-green plate, pale-green block, pale-green 
crystal size (mm)  0.10 × 0.20 ×0.50 0.40 × 0.20 ×0.05 0.10 × 0.05 ×0.05 
crystal system  monoclinic  triclinic monoclinic  
space group  P21/c P-1 P21/n 
vol (Å3)  6043(1) 10327(1) 8073.7(5) 
a (Å)  16.464(2) 15.625(1) 14.6620(5) 
b (Å)  20.580(3) 24.056(2) 25.1744(9) 
c (Å)  17.835(2) 28.083(2)  21.9983(8) 
α (deg)  90 90 90 
β (deg)  90.708(3) 78.063(5) 96.106(1)  
γ (deg)  90 90 90 
Z  4 4 4 
fw (g/mol)  1729.03 2423.11 2032.32 
density (calcd) 
(Mg/m3)  

1.901 1.559 1.672 

abs coeff (mm-1)  3.292 2.034 2.353 
F000  3384 4824 4040 
Total no. 
reflections  

39529 40377 20067 

Unique reflections  12364 18027  14758 
final R indices [I > 
2σ(I)]  

R1 = 0.0456 
wR2 = 0.0978 

R1 = 0.1107 
wR2 = 0.2422 

R1 = 0.0307 
wR2 = 0.0474 

largest diff peak 
and hole (e-Å-3)  

1.489 and -0.850 3.557 and -1.605 1.188 and -0.884 

GOF  1.028 1.122 1.176 
 

 



 

 109 

3.5  References 

 (1) Arnold, P. L.; Patel, D.; Wilson, C.; Love, J. B. Nature 2008, 451, 315. 
 (2) Arnold, P. L.; Love, J. B.; Patel, D. Coord. Chem. Rev. 2009, 253, 1973  
 (3) Yahia, A.; Arnold, P. L.; Love, J. B.; Maron, L. Chem. Commun. 2009, 2402. 
 (4) Yahia, A.; Arnold, P. L.; Love, J. B.; Maron, L. Chem. Eur. J. 2010, 16, 4881. 
 (5) Arnold, P. L.; Hollis, E.; Nichol, G. S.; Love, J. B.; Griveau, J.-C.; Caciuffo, R.; 
Magnani, N.; Maron, L.; Castro, L.; Yahia, A.; Odoh, S. O.; Schreckenbach, G. J. Am. Chem. 
Soc. 2013, 135, 3841. 
 (6) Jones, G. M.; Arnold, P. L.; Love, J. B. Chem. Eur. J. 2013, 19, 10287. 
 (7) Arnold, P. L.; Pecharman, A.-F.; Hollis, E.; Yahia, A.; Maron, L.; Parsons, S.; 
Love, J. B. Nat. Chem. 2010, 2, 1056. 
 (8) Schnaars, D. D.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2009, 131, 17532. 
 (9) Schnaars, D. D.; Wu, G.; Hayton, T. W. Inorg. Chem. 2011, 50, 4695. 
 (10) Schnaars, D. D.; Wu, G.; Hayton, T. W. Inorg. Chem. 2011, 50, 9642. 
 (11) Pedrick, E. A.; Wu, G.; Kaltsoyannis, N.; Hayton, T. W. Chem. Sci. 2014, 5, 
3204. 
 (12) Berthet, J.-C.; Siffredi, G.; Thuéry, P.; Ephritikhine, M. Eur. J. Inorg. Chem. 
2007, 2007, 4017. 
 (13) Brown, J. L.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2010, 132, 7248  
 (14) Bagnall, K. W.; du Preez, J. G. H. Chem. Commun. 1973, 820. 
 (15) Brown, J. L.; Mokhtarzadeh, C. C.; Lever, J. M.; Wu, G.; Hayton, T. W. Inorg. 
Chem. 2011, 50, 5105. 
 (16) Fortier, S.; Hayton, T. W. Coord. Chem. Rev. 2010, 254, 197. 
 (17) Cornet, S. M.; May, I.; Redmond, M. P.; Selvage, A. J.; Sharrad, C. A.; Rosnel, 
O. Polyhedron 2009, 28, 363. 
 (18) Casanova, D.; Alemany, P.; Bofill, J. M.; Alvarez, S. Chem. Eur. J. 2003, 9, 
1281. 
 (19) Porchia, M.; Brianese, N.; Casellato, U.; Ossola, F.; Rossetto, G.; Zanella, P. 
J. Chem. Soc. Dalton Trans. 1989, 677  
 (20) Liedtke, R.; Scheidt, F.; Ren, J.; Schirmer, B.; Cardenas, A. J. P.; Daniliuc, C. 
G.; Eckert, H.; Warren, T. H.; Grimme, S.; Kehr, G.; Erker, G. J. Am. Chem. Soc. 2014, 136, 
9014. 
 (21) Walker, D. A.; Woodman, T. J.; Schormann, M.; Hughes, D. L.; Bochmann, 
M. Organometallics 2003, 22, 797  
 (22) Whittell, G. R.; Balmond, E. I.; Robertson, A. P. M.; Patra, S. K.; Haddow, M. 
F.; Manners, I. Eur. J. Inorg. Chem. 2010, 2010, 3967. 
 (23) Millot, N.; Santini, Catherine C.; Fenet, B.; Basset, Jean M. Eur. J. Inorg. 
Chem. 2002, 2002, 3328. 
 (24) Bavarian, N.; Baird, M. C. Organometallics 2005, 24, 2889. 
 (25) Alcarazo, M.; Gomez, C.; Holle, S.; Goddard, R. Angew. Chem. Int. Ed. 2010, 
49, 5788. 
 (26) Asadi, A.; Avent, A. G.; Eaborn, C.; Hill, M. S.; Hitchcock, P. B.; Meehan, M. 
M.; Smith, J. D. Organometallics 2002, 21, 2183. 
 (27) Lickiss, P. D.; Lucas, R. J. Organomet. Chem. 1996, 510, 167. 



 

 110 

 (28) Kläring, P.; Jungton, A.-K.; Braun, T.; Müller, C. Eur. J. Inorg. Chem. 2012, 
2012, 1430. 
 (29) Kraft, B. M.; Jones, W. D. J. Organomet. Chem. 2002, 658, 132. 
 (30) Massey, A. G.; Park, A. J. J. Organomet. Chem. 1966, 5, 218. 
 (31) Lehmann, M.; Schulz, A.; Villinger, A. Angew. Chem. Int. Ed. 2009, 48, 
7444. 
 (32) Berthet, J.-C.; Nierlich, M.; Ephritikhine, M. C. R. Chimie 2002, 5, 81. 
 (33) Natrajan, L.; Mazzanti, M.; Bezombes, J. P.; Pecaut, J. Inorg. Chem. 2005, 
44, 6115. 
 (34) Maynadié, J.; Berthet, J.-C.; Thuéry, P.; Ephritikhine, M. Organometallics 
2006, 25, 5603. 
 (35) Schnaars, D. D.; Wu, G.; Hayton, T. W. Dalton Trans. 2008, 6121. 
 (36) Jilek, R. E.; Tomson, N. C.; Shook, R. L.; Scott, B. L.; Boncella, J. M. Inorg. 
Chem. 2014, 53, 9818. 
 (37) Charpin, P.; Lance, M.; Soulie, E.; Vigner, D.; Marquet-Ellis, H. Acta 
Crystallogr. Sec. C 1985, 41, 1723. 
 (38) Bombieri, G.; Brown, D.; Graziani, R. J. Chem. Soc. Dalton Trans. 1975, 
1873. 
 (39) Prakash, J.; Rohde, G. T.; Meier, K. K.; Jasniewski, A. J.; Van Heuvelen, K. 
M.; Münck, E.; Que, L. J. Am. Chem. Soc. 2015, 137, 3478. 
 (40) Mandai, T.; Masu, H.; Johansson, P. Dalton Trans. 2015, 44, 11259. 
 (41) Fukuzumi, S.; Morimoto, Y.; Kotani, H.; Naumov, P.; Lee, Y.-M.; Nam, W. 
Nat. Chem. 2010, 2, 756. 
 (42) Linti, G.; Seifert, A. Z. Anorg. Allg. Chem. 2008, 634, 1312. 
 (43) Logemann, C.; Klüner, T.; Wickleder, M. S. Z. Anorg. Allg. Chem. 2013, 639, 
485. 
 (44) Berthet, Jean C.; Nierlich, M.; Ephritikhine, M. Eur. J. Inorg. Chem. 2002, 
2002, 850. 
 (45) Redshaw, C.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M. B. J. Chem. 
Soc., Dalton Trans. 1992, 1803. 
 (46) Busetto, L.; Zanotti, V.; Bordoni, S.; Carlucci, L.; Albano, V. G.; Braga, D. J. 
Chem. Soc., Dalton Trans. 1992, 1105. 
 (47) Rawji, G. H.; Lynch, V. M. Acta Cryst. 1992, C48, 1667. 
 (48) Kuate, A. C. T.; Sameni, S.; Freytag, M.; Jones, P. G.; Tamm, M. Angew. 
Chem. 2013, 52, 8638. 
 (49) Andrews, C. G.; Macdonald, C. L. B. J. Organomet. Chem. 2005, 690, 5090. 
 (50) Cohen, D.; Carnall, W. T. J. Phys. Chem. 1960, 64, 1933  
 (51) Monreal, M. J.; Diaconescu, P. L. Organometallics 2008, 27, 1702. 
 (52) Harris, R. K.; Pritchard, T. N.; Smith, E. G. J. Chem. Soc., Faraday Trans. 1 
1989, 85, 1853. 
 (53) Kurfürst, M.; Blechta, V.; Schraml, J. Mag. Reson. Chem. 2011, 49, 492. 
 (54) Pell, T. P.; Couchman, S. A.; Ibrahim, S.; Wilson, D. J. D.; Smith, B. J.; 
Barnard, P. J.; Dutton, J. L. Inorg. Chem. 2012, 51, 13034. 
 (55) Kuroboshi, M.; Yano, T.; Kamenoue, S.; Kawakubo, H.; Tanaka, H. 
Tetrahedron 2011, 67, 5825. 
 (56) Bassindale, A. R.; Stout, T. Tetrahedron Lett. 1985, 26, 3403. 



 

 111 

 (57) Torapava, N.; Persson, I.; Eriksson, L.; Lundberg, D. Inorg. Chem. 2009, 
48, 11712. 
 (58) Babai, A.; Pitula, S.; Mudring, A.-V. Eur. J. Inorg. Chem. 2010, 2010, 4933. 
 (59) Berthet, J.-C.; Lance, M.; Nierlich, M.; Ephritikhine, M. Eur. J. Inorg. Chem. 
1999, 2005. 
 (60) Wilkerson, M. P.; Burns, C. J.; Paine, R. T.; Scott, B. L. Inorg. Chem. 1999, 
38, 4156. 
 (61) Sutton, A. D.; John, G. H.; Sarsfield, M. J.; Renshaw, J. C.; May, I.; Martin, L. 
R.; Selvage, A. J.; Collison, D.; Helliwell, M. Inorg. Chem. 2004, 43, 5480. 
 (62) Harris, R. K.; Becker, E. D.; Cabral De Menezes, S. M.; Goodfellow, R.; 
Granger, P. Pure Appl. Chem. 2001, 73, 1795. 
 (63) Harris, R. K.; Becker, E. D.; Cabral De Menezes, S. M.; Granger, P.; 
Hoffman, R. E.; Zilm, K. W. Pure Appl. Chem. 2008, 80, 59. 
 (64) Kannan, S.; Moody, M. A.; Barnes, C. L.; Duval, P. B. Inorg. Chem. 2006, 45, 
9206. 
 (65) Mountain, A. R. E.; Kaltsoyannis, N. Dalton Trans. 2013, 42, 13477. 
 (66) SMART, Apex II, Version 2.1; Bruker AXS Inc.: Madison, WI, 2005. 
 (67) SAINT, Software User's Guide, Version 7.34a; Bruker AXS Inc.: Madison, 
WI, 2005. 
 (68) Sheldrick, G. M. SADABS, University of Gottingen: Germany, 2005. 
 (69) SHELXTL PC, Version 6.12; Bruker AXS Inc.: Madison, WI, 2005. 

 

 



 

 112 

Chapter 4. Reductive Silylation of the Uranyl Ion with R3SiOTf (R = Ph, Me) 

4.1. Introduction .......................................................................................................... 113 

4.2. Results and Discussion ...................................................................................... 115 

4.2.1. Synthesis and Characterization of U(OSiPh3)2(dbm)2(OTf) (4.1) and 

[U(OSiPh3)2(Aracnac)2][OTf] (4.2) ............................................................................ 115 

4.2.2. Reactions with Me3SiOTf  .......................................................................................... 120 

4.2.3. Synthesis and Characterization of UO2(dbmMe)2(THF) (4.3) ...................... 121 

4.2.4. Synthesis and Characterization of U(OSiPh3)2(dbmMe)2(OTf) (4.4) ......... 123 

4.2.5. Synthesis and Characterization of UO2(dbm)2(DMPO) (4.5) ...................... 126 

4.3. Summary ................................................................................................................ 129 

4.4. Experimental Section ......................................................................................... 131 

4.4.1. General Procedures ..................................................................................................... 131 

4.4.2. Synthesis of U(OSiPh3)2(dbm)2(OTf) (4.1)  ........................................................ 131 

4.4.3. Synthesis of 4.1 with 1 equiv Ph3SiOTf ................................................................ 132 

4.4.4. Reaction of 4.1 with Me3SiOTf ................................................................................ 133 

4.4.5. Synthesis of [U(OSiPh3)2(Aracnac)2][OTf] (4.2) ................................................ 133 

4.4.6. Synthesis of H(dbmMe) ................................................................................................ 134 

4.4.7. Synthesis of UO2(dbmMe)2(THF) (4.3) .................................................................. 135 

4.4.8. Synthesis of U(OSiPh3)2(dbmMe)2(OTf) (4.4)..................................................... 136 

4.4.9. Synthesis of UO2(dbm)2(DMPO) (4.5) .................................................................. 136 

4.4.10. Synthesis of 4.1 from 4.5 ........................................................................................ 137 

4.4.11. X-Ray Crystallography ............................................................................................. 138 

4.5. Acknowledgements ............................................................................................ 140 



 

 113 

4.6. References ............................................................................................................. 140 

 

 

4.1 Introduction 

Reductive silylation is a promising means of chemically modifying the uranyl ion 

(Section 1.2),1-7 and is compatible with a variety of co-ligand types, including a 

polypyrrolic “Pacman” macrocycle, 2,5,7-11 β-diketonates and β-ketoiminates, 3,4,12-14 

phosphine oxides,15 and even halides.1 In contrast, however, the scope of silylating 

reagents that are able to effect reductive silylation is not as well established.  In 

particular, it is not clear what roles the leaving group or the incoming silyl group play 

in promoting Si-O bond formation and U6+ reduction.  The identity of both is potentially 

important, a fact which is illustrated by several examples.  For instance, the reductive 

silylation of UO2(Aracnac)2 (Aracnac = ArNC(Ph)CHC(Ph)O, Ar = 3,5-tBu2C6H3) with 

Me3SiI is enabled by the accessible I2/I- redox potential (Figure 4.1a),3 which allows I- 

to function as the reductant in the transformation.  Similarly, reductive silylation of 

UO2(THF)(H2L) (L = polypyrrolic macrocycle) with PhCH2SiMe3 is no doubt enabled by 

the relative stability of the benzyl radical (Figure 4.1b).2 In another example, we 

demonstrated that the reductive silylation of UO2(Aracnac)2 with R3SiH (R = Et, Ph) only 

proceeded in the presence of a Lewis acid activator, namely B(C6F5)3, which was 

required to increase the electrophilicity of the Si center by abstraction of the hydride 

ligand (Figure 4.1c).12,13 In chapter 3, we demonstrated that R3SiOTf (R = Ph, Me) 

promotes the reductive silylation of the cationic uranyl complexes, 

[UO2(dppmo)2(OTf)][OTf] (dppmo = Ph2P(O)CH2P(O)Ph2) and [UO2(TPPO)4][OTf]2 
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(TPPO = Ph3PO), without a Lewis acid activator, however, the presence of a strong 

reductant, Cp2Co, is required to generate the U(IV) complexes, U(OTf)4(dppmo)2 (3.3) 

and [Cp2Co][U(OTf)5(TPPO)2] (3.5), respectively.15 These reactions proceed without 

the addition of a Lewis acid activator, because triflate is a better leaving group than a 

hydride ligand.  

 

Figure 4.1. Examples of reductive silylation of the uranyl ion with various silylating 

reagents. a) reproduced from reference 3. b) reproduced from reference 2. c) 

reproduced from reference 12. 
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Intrigued by the use of R3SiOTf (R = Ph, Me) as silylating reagents in organic and 

main group synthesis,16-18 as well as their ability to silylate the cationic uranyl 

complexes, [UO2(dppmo)2(OTf)][OTf] and [UO2(TPPO)4][OTf]2, we wanted to 

investigate the ability of the silyl trflates, R3SiOTf (R = Ph, Me), to effect the reductive 

silylation of a series of uranyl β-diketonate and β-ketoiminate complexes.  The 

enhanced electrophilicity of the Si center in Ph3SiOTf, relative to that of R3SiH (R = Et, 

Ph), suggests that it should not require the addition of a Lewis acid activator.12-14  

 

4.2 Results and Discussion 

4.2.1 Synthesis and Characterization of U(OSiPh3)2(dbm)2(OTf) (4.1) and 

[U(OSiPh3)2(Aracnac)2][OTf] (4.2) 

 

Addition of 2 equiv of Ph3SiOTf to UO2(dbm)2(THF), in CH2Cl2, results in the 

formation of a dark red solution over the course of 1.5 h. From this solution, the U(V) 

bis-silyloxide, U(OSiPh3)2(dbm)2(OTf) (4.1), can be isolated as red crystalline material 

in 61% yield (Scheme 4.1). Similarly, addition of 2 equiv of Ph3SiOTf to UO2(Aracnac)2, 

in CH2Cl2, results in the formation of a dark red-brown solution, from which 

[U(OSiPh3)2(Aracnac)2][OTf] (4.2) can be isolated as dark red crystalline solid in 57% 

yield (Scheme 4.1). Complexes 4.1 and 4.2 are derived from the 1e- reduction of the U 

center, concomitant with silylation of both oxo ligands, however, the identity of the 

reducing agent involved in these transformations is not immediately apparent. In fact, 

the formation of 4.1 and 4.2 was rather unexpected, since addition of 2 equiv of 

Ph3SiOTf alone to [UO2(dppmo)2(OTf)][OTf], resulted in no reaction (Section 3.2.1.2), 
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however, this is consistent with our hypothesis that the oxo ligands in 

UO2(dbm)2(THF) or UO2(Aracnac)2 are more nucleophilic than those in 

[UO2(dppmo)2(OTf)][OTf]. 

It is also important to note that the formation of complexes 4.1 and 4.2 proceed 

in higher yields if 2 equiv of Ph3SiOTf are added to the reaction mixtures. Addition of 1 

equiv of Ph3SiOTf to UO2(dbm)2(THF) results in formation of complex 4.1 in only 33% 

yield.   

 

 

 

Scheme 4.1. Synthesis of complexes 4.1 and 4.2. 

 

 

Complex 4.1 crystallizes in the monoclinic space group P21/c, while complex 4.2 

crystallizes in the triclinic space group P-1 as a THF solvate, 4.2·THF.  Their solid-state 

molecular structures are shown in Figure 4.2. Complex 4.1 exhibits a pentagonal 

bipyramidal geometry about the uranium center, wherein two oxo-derived triphenylsilyl 

alkoxide ligands occupy the axial coordination sites, while two dbm ligands and one 

triflate ligand occupy the five equatorial coordination sites.  In contrast, the cation in 
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complex 4.2 features an octahedral coordination geometry about the uranium center, 

wherein two oxo-derived triphenylsilyl alkoxide ligands occupy the axial coordination 

sites, while two Aracnac ligands occupy the four equatorial sites.  The monocationic 

charge of this fragment is balanced by the presence of an outer sphere triflate anion.  

The different geometry of 4.2 vs. 4.1 can be rationalized by the greater steric bulk of 

the Aracnac ligand, which forces the [OTf]- counterion out of the uranium coordination 

sphere in complex 4.2.  The U-OSi bond lengths in 4.1 are 2.005(2) and 2.018(2) Å, while 

for 4.2, the U-OSi bond length is 2.044(2) Å (Table 4.1). These values are consistent with 

a significant reduction in the U-O bond order upon silylation, and are comparable to 

other recently reported U(V)-silyloxide U-O bond distances.2,3,12-14 For example, 

U(OB{C6F5}3)(OSiPh3)(dbm)2(THF) (2.2) features a U-O bond length of 2.024(2) Å,14 

and [U(OSiEt3)2(Aracnac)2][HB(C6F5)3] features a U-O bond length of 2.011(4) Å.13 The 

U-Odbm bond lengths in 4.1 (av. U-O = 2.25 Å) are slightly shorter than those observed 

for uranyl dibenzoylmethanate complexes,14,19-22 which is consistent with the absence 

of uranyl character in the molecule. However, the U-Otriflate distance in 4.1 (2.349(2) Å) is 

similar to those exhibited by uranyl triflate complexes.3,23,24  Finally, the U-N and U-Oacnac 

bond lengths in 4.2 are 2.380(2) and 2.153(2) Å, respectively, and are comparable to 

those observed for related U(V) silyloxide complexes, such as 

U(OB{C6F5}3)(OSiPh3)(Aracnac)2.12    
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Figure 4.2. Solid-state structures of U(OSiPh3)2(dbm)2(OTf) (4.1) (top) and  

[U(OSiPh3)2(Aracnac)2][OTf]·THF (4.2·THF) (bottom) with 50% probability ellipsoids. 

For 4.1, all hydrogens have been removed for clarity. For 4.2, all hydrogens, the THF 

solvate, and the triflate counterion have been removed for clarity.  
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Table 4.1. Selected Bond Lengths (Å) and Angles (deg) for Complexes 4.1, 4.2, and 4.4. 

 4.1 4.2 4.4 
U-OSi1 2.005(2) 2.044(2) 2.007(5) 
U-OSi2 2.018(2)  2.016(4) 

U-Oeq 

2.246(2) 
2.259(3) 
2.261(2) 
2.267(2) 

2.153(2) 

2.238(5) 
2.247(4) 
2.265(4) 
2.276(4) 

U-Otriflate 2.349(2)  2.359(4) 
U-N  2.380(2)  
O-Si1 1.669(2) 1.664(2) 1.666(5) 
O-Si2 1.668(2)  1.655(5) 
O-U-O 178.81(8) 180.0 177.8(2) 
U-O-Si1 169.0(1) 164.8(1) 164.3(3) 
U-O-Si2 176.1(1)  168.1(3) 

 

The 1H NMR spectrum of 4.1 in CD2Cl2 features two broad resonances at 11.09 

and 7.57 ppm, which are present in a 12:18 ratio, respectively, and which correspond to 

the three proton environments of the Ph3Si groups. Additionally, each dbm ligand 

features two magnetically inequivalent phenyl environments, a consequence of [OTf]- 

coordination to the equatorial plane.  The 1H NMR spectrum of 4.2 in CD2Cl2 features 

three broad resonances, at 9.78, -0.43 and -0.98 ppm, which correspond to the three 

proton environments of the Ph3Si groups. In addition, the presence of the Aracanc ligand 

is confirmed by the observation of a broad singlet at -0.53 ppm, which is assignable to 

the tBu groups of the Aracnac moiety. The 19F{1H} NMR spectra of 4.1 and 4.2 each 

consist of a single resonance at -81.28 and -78.99 ppm, respectively, corresponding to 

the fluorine atoms of the [OTf]- group. The 29Si{1H} NMR spectrum of 4.1 consists of a 

broad resonance at 102.2 ppm, which is similar to the chemical shifts reported for 

related U(V) silyloxides.25 The 29Si resonance for complex 4.2 was not observed. Finally, 
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the near-IR spectra for 4.1 and 4.2 are similar to those of other U(V) complexes,3,12-14,26-

28 supporting the presence of a 5f1 ion in each complex.  Interestingly, the extinction 

coefficients for the f-f transitions of 4.2 are much weaker than those observed for 4.1, 

consistent with the presence of an inversion center in the former.29,30 

 

4.2.2  Reactions with Me3SiOTf  

 

We also wanted to explore the ability of Me3SiOTf to effect the reductive silylation 

of the uranyl β-diketonate complex, UO2(dbm)2(THF) (2.1). Thus, reaction of 2.1 with 2 

equiv of Me3SiOTf, in CH2Cl2, results in the formation of a dark red-brown solution, from 

which a red crystalline solid can be isolated, which we have tentatively assigned as the 

U(V) bis-silyloxide complex, [U(OSiMe3)2(dbm)2(THF)][OTf] (eq 4.1). The formation of a 

reduced uranyl complex was unexpected, because the reaction of UO2(Aracnac)2 with 

Me3SiOTf only resulted in the ligand protonation product, UO2(OTf)2(H{Aracnac})2.3 This 

difference in reactivity is most easily explained by the basicity of the Aracnac ligand vs. 

dbm, as the Aracnac ligand is more easily protonated; however, the oxo ligands in 

UO2(Aracnac)2 are more sterically protected and harder to silylate, which could also 

account for the difference. 
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Although the solid-state molecular structure of [U(OSiMe3)2(dbm)2(THF)][OTf] 

was not obtained, we have tentatively confirmed its formation using 1H and 19F NMR 

spectroscopies. The 1H NMR spectrum of the isolated red solid, from the reaction of 2.1 

with 2 equiv of Me3SiOTf, in CD2Cl2 (Figure A.5), features six broad paramagnetically 

shifted resonances, indicative of a reduced uranyl complex. The resonances at 8.43, 809 

and 7.17 ppm, which are present in a 4:1:2 ratio, respectively, likely correspond the o-

phenyl, γ-CH, and p-phenyl proton environments of the dbm ligands. Additionally, there 

is a broad resonance at 7.58 ppm, likely corresponding to both the m-phenyl dbm 

proton environment and Me3Si groups proton environment. This spectrum also features 

two broadened resonances at 4.53 and 2.02, indicating there is a THF solvate molecule 

attached to the uranium center. The 19F{1H} NMR spectrum of the isolated red solid, 

from the reaction of 2.1 with 2 equiv of Me3SiOTf, in CD2Cl2 (Figure A.6), consists of a 

single resonance at -76.13 ppm, likely corresponding to the fluorine atoms of an outer-

sphere [OTf]- group, as it is significantly downfield shifted from that of 4.1 (-81.28 

ppm), and really similar to complex 4.2 (-78.99 ppm).  

 

4.2.3. Synthesis and Characterization of UO2(dbmMe)2(THF) (4.3). 

 

To expand the library of supporting ligands for uranyl reductive silylation, the 

utility of dbmMe (dbmMe = OC(Ph)CCH3C(Ph)O) was also probed. H(dbmMe) can be 

synthesized from the reaction of H(dbm) and CH3I, in the presence of K2CO3.31 We 

hypothesize that the electron donating methyl substituents will allow H(dbmMe) to 

exhibit intermediate electron donation properties between the Aracnac and dbm co-
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ligands. Similar to complex 2.1, reaction of 4 equiv of Na(dbmMe), generated in situ, 

with [UO2Cl2(THF)2]2 results in formation of a red-orange solution, from which 

UO2(dbmMe)2(THF) (4.3) can be isolated as a red-orange powder in 33% yield (Scheme 

4.2). This complex features a singlet at 2.28 ppm in its 1H NMR spectrum (CD2Cl2), 

which is assignable to the γ-C(CH3) groups of the dbm ligands.  In addition, broad 

singlets at 4.68 and 2.19 ppm, confirm the presence of THF in the uranyl coordination 

sphere. 

 

Scheme 4.2. Synthesis of UO2(dbmMe)2(THF) (4.3). 

 

We evaluated the strength of the U=O bonds in complex 4.3 relative to the 

previously characterized β-ketoiminate complex, UO2(Aracnac)2, and β-diketonate 

complex, UO2(dbm)2(THF) (2.1). Complex 4.3 features a U=O νsym mode of 827 cm-1 in 

its Raman spectrum (Figure 4.3).  For comparison, the U=O νsym modes for 

UO2(Aracnac)2 and 2.1 were determined to be 812 cm-1,4 and 823 cm-1,14 respectively. 

Surprisingly, this reveals that the U=O bonds in 4.3 exhibit comparable strength to 2.1, 

within error, and shows that the effect of methyl substituents of the dbmMe ligand are 

negligible.   



 

 123 

 

Figure 4.3. Solid-state Raman spectrum of 4.3. U=O νsym stretch is observed at 827   

cm-1 (*). 

 

 

4.2.4.  Synthesis and Characterization of U(OSiPh3)2(dbmMe)2(OTf) (4.4). 

 

Upon establishing the relative donor strength of dbmMe, we subjected 4.3 to our 

Ph3SiOTf reductive silylation protocol. Similarly to complex 4.1, addition of 2 equiv of 

Ph3SiOTf to 4.3, in CH2Cl2, results in the formation of a dark red-brown solution over 

24 h, from which the U(V) bis-silyloxide, U(OSiPh3)2(dbmMe)2(OTf) (4.4), can be 

isolated as red crystalline material in 40% yield (eq 4.2).  

   * 
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 Complex 4.4 crystallizes in the monoclinic space group P21/n, and its solid-state 

molecular structure is shown in Figure 4.4. Complex 4.4 exhibits a pentagonal 

bipyramidal geometry about the uranium center, as determined from the inter-ligand 

bond angles. For example, complex 4.4 exhibits an OSi-U-OSi bond angle of 177.8(2)°, 

while the Oeq-U-Oax bond angles range from 86.1(2) to 96.1(2)°.32-34 The U-OSi bond 

lengths are 2.007(5) and 2.016(4) Å (Table 4.1), and are comparable to those observed 

in complexes 2.2, 2.3, 2.6, 4.1 and 4.2, as well as those previously reported for other 

U(V)-silyloxides.2,3,12,13 The U-OdbmMe bond lengths in 4.4 (av. U-O = 2.26 Å) are similar 

to the U-Odbm bond lengths in 4.1 (av. U-O = 2.25 Å), which demonstrates the similarity 

of the dbm and dbmMe co-ligands. The U-Otriflate distance in 4.4 (2.359(4) Å) is also 

similar to 4.1 (2.349(2) Å), as well as those exhibited by uranyl triflate complexes.3,23,24   
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Figure 4.4. Solid-state structure of U(OSiPh3)2(dbmMe)2(OTf) (4.4) with 50% 

probability ellipsoids. All hydrogens have been removed for clarity.  

  

The 1H NMR spectrum of 4.4 in CD2Cl2 features two broad resonances at 10.97 

and 7.68 ppm, which are present in a 12:18 ratio, respectively, and which correspond to 

the three proton environments of the Ph3Si groups. Additionally, similar to 4.1, each 

dbm ligand features two magnetically inequivalent phenyl environments, a consequence 

of [OTf]- coordination to the equatorial plane. This spectrum also features one 

resonance at 1.98 ppm, assignable to the γ-methyl proton environment of the dbmMe 

ligands. The 19F{1H} NMR spectrum of 4.4 consists of a single broad resonance at -81.26 

ppm, corresponding to the fluorine atoms of the [OTf]- group. 
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4.2.5.  Synthesis and Characterization of UO2(dbm)2(DMPO) (4.5). 

 

Interestingly, complexes 4.1, 4.2, and 4.4 require 2 equiv of Ph3SiOTf for their 

formation, but only 1 equiv of OTf is incorporated into the final product. Moreover, the 

identity of the reducing agent involved in the transformation is not immediately 

apparent. To determine the fate of the missing OTf group we monitored the formation 

of 4.1 by 19F(1H} NMR spectroscopy in CD2Cl2.  The in situ 19F(1H} NMR spectrum of the 

reaction mixture reveals the formation complex 4.1, as revealed by a singlet at -81.24 

ppm, along with the presence of unreacted Ph3SiOTf, as revealed by a sharp singlet at -

76.97 ppm.  In addition, two other triflate environments are observed at -76.41 and -

77.68 ppm, which we have been unable to assign.  We also monitored the formation of 

4.1 by 1H NMR spectroscopy in toluene-d8.  The in situ 1H NMR spectrum of the 

reaction mixture reveals the formation of complex 4.1 and unreacted Ph3SiOTf, along 

with small amounts of H(dbm) and unidentified products characterized by resonances 

at 8.22, 7.90, 6.93 and 6.85 ppm.48 These data suggest that, perhaps, the dbm ligand is 

sacrificially oxidized to generate the U(V) center observed in the final product.  The 

resulting dbm radical then undergoes further reactivity, such as abstracting a hydrogen 

atom from the solvent.  To test this hypothesis we recorded a 2H NMR spectrum of the 

reaction mixture in CH2Cl2.  However, this spectrum does not reveal 2H incorporation 

into complex 4.1, H(dbm), or the unidentified products.   

To explain these observations, we propose that reductive silylation with 

Ph3SiOTf results in the generation of a radical, perhaps a triflate radical or dbm radical, 

which subsequently reacts with the other components of the reaction mixture, and 
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forms other OTf- environments observed in the in situ 19F{1H} spectrum. Importantly, 

this hypothesis would account for the 1e- reduction of the uranium center to U(V) and 

the fact that the second triflate moiety is not incorporated into the product. A triflate 

radical is anticipated to be a highly reactive species, which has only been proposed as 

an intermediate in a few instances.  For example, it is likely formed upon photolysis of 

a 1,8-naphthalimide photoacid,35,36 whereupon it undergoes a rapid H-atom 

abstraction to generate triflic acid.  Similarly, methane sulfonate radicals, CH3SO3·, are 

proposed intermediates in methane sulfonation.37-39 Importantly, CH3SO3· is thought to 

be capable of hydrogen atom abstraction from methane,37-39 which is further evidence 

in support of its high reactivity. As a result, it is not clear if its proposed intermediacy 

in the formation of 4.1, 4.2, and 4.4 is reasonable.  Thus, we endeavored to test for the 

presence of any radical species in the reductive silylation reaction by employment of a 

hydrogen atom donor. 

The reaction of either UO2(dbm)2(THF) or UO2(Aracnac)2 with 2 equiv Ph3SiOTf, 

in the presence of 10 equiv of 1,4-cyclohexadiene, a commonly used hydrogen atom 

donor due to its weak C-H bonds,40 was followed by 1H NMR spectroscopy in CD2Cl2, 

which revealed in the formation of complex 4.1 and 4.2, respectively; however, the 

formation of anthracene or bianthracene was not observed.  Accordingly, we turned 

our attention to 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), due to its ability to trap a 

variety of oxygen-centered radicals.41-45 Conveniently, we found that DMPO can easily 

displace THF in UO2(dbm)2(THF), forming a uranyl DMPO complex, UO2(dbm)2(DMPO) 

(4.5), which can be isolated as orange blocks in 84% yield (eq 4.3).  
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The 1H NMR spectrum of 4.5 in CD2Cl2 exhibits four peaks at 7.73, 2.69, 2.31, 

and 1.90 ppm, assignable to the four proton environments of the coordinated DMPO 

ligand. These resonances are shifted slightly downfield from those observed for free 

DMPO (e.g., 6.66, 2.53, 2.10, and 1.36 ppm in CD2Cl2). This spectrum also reveals the 

presence of two magnetically inequivalent phenyl environments, as evidenced by the 

two characteristic o-proton resonances at 8.59 and 8.40 ppm.  This suggests that, 

unlike the THF solvate in complex 2.1, the DMPO ligand does not undergo rapid 

exchange in solution. The different m- and p-proton resonances are overlapping in one 

large multiplet at 7.66 ppm. There is also a resonance at 7.30 ppm, assignable to the 

one γ-proton environment. Complex 4.5 crystallizes in the monoclinic space group 

P21/n; however, the crystals were badly twinned and only a preliminary structure 

could be obtained.  Nonetheless, the X-ray data did confirm its formulation as a DMPO 

complex (Figure A.7).  

The direct incorporation of DMPO into the uranyl coordination sphere should 

ensure the close proximity of the spin trap to the site of radical generation, thus 

ensuring a high probability that any radicals formed will be intercepted before they 

can undergo other, unwanted reactivity.  However, it is important to demonstrate that 

4.5 also undergoes analogous reductive silylation chemistry with Ph3SiOTf. As a result, 
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addition of 2 equiv of Ph3SiOTf to 4.5, forms a deep red-brown solution which was 

allowed to stir for 24 h.  After work-up, complex 4.1 can be isolated as red brown 

crystals in 38% yield (eq 4.4), verifying the reaction proceeds in a similar manner in 

the presence of DMPO.  Although, it should be noted that with DMPO in the uranium 

coordination sphere the reaction proceeds at a slower rate.  Once it was clear the 

reaction of 4.5 with Ph3SiOTf was still generating complex 4.1, we monitored the 

reaction of 4.5 with 2 equiv of Ph3SiOTf in CH2Cl2 by EPR spectroscopy. The in situ EPR 

spectra revealed no resonances, suggesting all of the reaction components are EPR 

silent. To our dismay, these experiments cannot be used to confirm or deny the 

formation a radical by-product in the reaction of 4.5 with 2 equiv of Ph3SiOTf. 

 

4.3  Summary 

In summary, reaction of UO2(dbm)2(THF) (2.1) or UO2(Aracnac)2 with 2 equiv of 

Ph3SiOTf, results in isolation of the reductive silylation products, U(OSiPh3)2(dbm)2(OTf) 

(4.1), and [U(OSiPh3)2(Aracnac)2][OTf] (4.2), respectively. Similarly, reaction of 

UO2(dbmMe)2(THF) (4.3) with 2 equiv of Ph3SiOTf, results in the isolation of the 

reductive silylation product, U(OSiPh3)2(dbm)2(OTf) (4.4), demonstrating that complex 

4.3 and 2.1 undergo analogous reductive silylation chemistry with Ph3SiOTf. This 

suggests that the U=O activation exhibited by the co-ligands is comparable. 

Interestingly, we previously reported that the reaction of UO2(Aracnac)2 with 

Me3SiOTf did not result in reductive silylation. Instead, this reaction only resulted in 

formation of the product of ligand protonation, namely UO2(OTf)2(H{Aracnac})2.3 In 

contrast, it appears that reaction of 2.1 with 2 equiv of Me3SiOTf, results in the 
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formation of a reduced uranyl complex. The varying reactivity exhibited by Ph3SiOTf vs. 

Me3SiOTf is significant because it reveals the importance of the R3Si- group in 

determining the outcome of the reductive silylation reaction. 

Most notably, we have demonstrated that Ph3SiOTf, unlike Ph3SiH, is capable of 

effecting the reductive silylation of uranyl without the addition of an exogenous Lewis 

acid activator.  This observation can be rationalized by the increased electrophilicity of 

the Si center in Ph3SiOTf vs. Ph3SiH, as evidenced by the 29Si NMR resonance of 

Ph3SiOTf (3.6 ppm),49 which is downfield of that observed for Ph3SiH (-21.1 ppm),50 

consistent with its greater silylium character.51  
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4.4 Experimental Section 

4.4.1. General Procedures. All reactions and subsequent manipulations were 

performed under anaerobic and anhydrous conditions under an atmosphere of 

nitrogen. Hexanes and diethyl ether were dried using a Vacuum Atmospheres DRI-

SOLV solvent purification system. THF was distilled twice, first from calcium hydride 

and then from sodium benzophenone ketyl, and stored over 3Å molecular sieves for 24 

h prior to use.  CH2Cl2, CD2Cl2, toluene-d8 and C6D6 were dried over activated 3 Å 

molecular sieves for 24 h before use. UO2(Aracnac)2,52 UO2(dbm)2(THF),14 and 

Ph3SiOTf,49 were synthesized according to previously reported procedures. All other 

reagents were purchased from commercial suppliers and used as received.  

NMR spectra were recorded on a Varian UNITY INOVA 400 spectrometer or an 

Agilent Technologies 400-MR DD2 spectrometer. 1H NMR spectra were referenced to 

external SiMe4 using the residual protio solvent peaks as internal standards. The 

chemical shifts of the 19F{1H} spectra were referenced indirectly with the 1H resonance 

of SiMe4 at 0 ppm, according to IUPAC standard.53,54 29Si{1H} NMR spectra were 

referenced to external SiMe4 in C6D6.  Raman and IR spectra were recorded on a 

Mattson Genesis FTIR/Raman spectrometer. IR samples were recorded as KBr pellets, 

while Raman samples were recorded in an NMR tube as neat solids. UV-vis/NIR 

experiments were performed on a UV-3600 Shimadzu spectrophotometer. Elemental 

analyses were performed by the Microanalytical Laboratory at UC Berkeley.  

 

4.4.2. Synthesis of U(OSiPh3)2(dbm)2(OTf) (4.1). To an orange dichloromethane (3 

mL) solution of UO2(dbm)2(THF) (57.9 mg, 0.073 mmol) was added dropwise a 
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solution of Ph3SiOTf (58.9 mg, 0.144 mmol) in dichloromethane (2 mL), which resulted 

in formation of a dark red-brown solution. The solution was stirred for 1.5 h, 

whereupon the solution was filtered through a Celite column supported on glass wool 

(0.5 cm × 2 cm). The filtrate was concentrated in vacuo, layered with hexanes (2 mL), 

and stored at -25 °C for 24 h. This resulted in the deposition of a dark red crystalline 

material, which was isolated by decanting off the supernatant (62.3 mg, 61% yield). 

Anal. Calcd for UO9Si2SF3C67H52: C, 58.13; H, 3.79. Found: C, 57.88; H, 3.67. 1H NMR 

(CD2Cl2, 25 °C, 400 MHz): δ 11.09 (br s, 12H, Ph3Si ortho CH), 7.57 (br s, 18H, Ph3Si 

meta and para CH), 7.29 (br s, 2H, dbm para CH), 6.32 (br s, 4H, dbm ortho CH), 5.94 

(br s, 4H, dbm ortho CH), 5.09 (br s, 4H, dbm meta CH), 3.87 (br s, 4H, dbm meta CH). 

One dbm para CH resonance was not observed due to overlapping peaks at ~7.4 ppm. 

The γ-CH was also not observed, possibly due to broadening. 19F{1H} NMR (CD2Cl2, 25 

°C, 376 MHz): δ -81.28 (br s, OTf).  29Si{1H} NMR (CD2Cl2, 25 °C, 79 MHz): δ 102.2 (br s, 

Ph3Si). UV-vis/NIR (CH2Cl2, 3.83 × 10-3 M, L·mol-1·cm-1):  916 (ε = 13), 1082 (ε = 24), 

1394(sh, ε = 25), 1454 (ε = 41), 1612 (ε = 36), 1670 (sh, ε = 19). IR (KBr pellet, cm-1): 

1585(sh vw), 1587(w), 1524(sh s), 1512(s), 1489(m), 1479(m), 1458(w), 1437(m), 

1429(m), 1348(sh w), 1333(m), 1319(m), 1296(m), 1288(m), 1236(m), 1200(m), 

1178(m), 1157(w), 1105(vs), 1068(m), 1007(m), 964(m), 939(w), 872(w), 837(s), 

786(vw), 762(w), 744(vw), 712(m), 698(m), 683(m), 631(m), 617(vw), 600(vw), 

530(m), 513(m), 505(sh m).  

4.4.3. Synthesis of 4.1 with 1 equiv of Ph3SiOTf. To an orange dichloromethane (2 

mL) solution of UO2(dbm)2(THF) (40.3 mg, 0.051 mmol) was added dropwise a 

solution of Ph3SiOTf (20.2 mg, 0.049 mmol) in dichloromethane (1 mL).  This resulted 
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in rapid formation of a dark red-brown solution. The solution was stirred for 1.5 h, 

whereupon the solution was filtered through a Celite column supported on glass wool 

(0.5 cm × 2 cm). The filtrate was concentrated in vacuo, layered with hexanes (5 mL), 

and stored at -25 °C for 24 h.   This resulted in the deposition of a dark red crystalline 

material (23.4 mg, 33% yield), which was subsequently identified as complex 4.1 by 1H 

NMR spectroscopy. 

4.4.4. Reaction of 4.1 and Me3SiOTf. To a stirring light orange solution of 

UO2(dbm)2(THF) (48.6 mg, 0.061 mmol) in dichloromethane (6 mL), was added 

Me3SiOTf (22 μL, 0.123 mmol) via micro syringe, which resulted in an immediate color 

change to dark red-brown. The solution was stirred for 1.5 h, whereupon it was filtered 

through a Celite column supported on glass wool (0.5 cm × 2 cm). The red-brown 

filtrate was concentrated in vacuo, layered with hexanes (2 mL), and stored at -25 °C 

for 24 h. This resulted in the deposition of a dark red crystalline material, which was 

isolated by decanting off the supernatant (23.6 mg). The yield is 35%, if the formula, 

[U(OSiMe3)2(dbm)2(THF)][OTf], is assumed. 1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 8.43 

(br s, 8H, dbm ortho CH), 8.09 (br s, 2H, dbm γ-CH), 7.58 (br s, 17H, dbm meta CH and 

CH3), 7.17 (br s, 4H, dbm para CH), 4.53 (br s, 4H, THF), 2.02 (br s, 4H, THF). 19F{1H} 

NMR (CD2Cl2, 25 °C, 376 MHz): δ -76.13 (br s, OTf).  

4.4.5. Synthesis of [U(OSiPh3)2(Aracnac)2][OTf] (Ar = 3,5-tBu2C6H3) (4.2). To a red 

dichloromethane (2 mL) solution of UO2(Aracnac)2 (101.2 mg, 0.093 mmol) was added 

dropwise a solution of Ph3SiOTf (76.4 mg, 0.187 mmol) in dichloromethane (2 mL).  

This resulted in the formation of a slightly darker red solution. The solution was stirred 

for 24 h, whereupon the volatiles were removed in vacuo. The tacky red oil was washed 



 

 134 

with hexanes (3 mL), before being extracted into diethyl ether (4 mL). The solution 

was filtered through a Celite column supported on glass wool (0.5 cm × 2 cm), 

concentrated in vacuo, and stored at -25 °C for 24 h. This resulted in the deposition of a 

dark red crystalline material, which was isolated by decanting off the supernatant 

(93.1 mg, 57% yield). X-ray quality crystals were grown from a solution of THF layered 

with hexanes and stored at 25 °C for 24 h. Anal. Calcd for UO7N2Si2SF3C95H94: C, 64.87; 

H, 5.39; N, 1.59. Found: C, 64.46; H, 5.82; N, 1.49. 1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 

9.78 (br s, 6H, Ph3Si para CH), 9.14 (br s, 2H, Ar para CH or Aracnac γ-CH), 7.75 (m, 4H, 

acnac CH), 7.46 (m, 4H, acnac CH), 7.33 (m, 4H, acnac CH), 6.84 (m, 4H, acnac CH), 6.63 

(br s, 2H, acnac CH), 6.03 (br s, 2H, acnac CH), 5.73 (br s, 2H, Ar para CH or Aracnac γ-

CH), -0.43 (s, 12H, Ph3Si meta CH), -0.53 (s, 36H, CH3), -0.98 (s, 12H, Ph3Si ortho CH), -

1.83 (br s, 4H, Ar ortho CH). 19F{1H} NMR (CD2Cl2, 25 °C, 376 MHz): δ -78.99 (br s, OTf). 

UV-vis/NIR (CH2Cl2, 4.10 × 10-3 M, L·mol-1·cm-1): 1082 (ε = 4), 1382 (sh, ε = 2), 1456 (ε 

= 6), 1664 (ε = 4). IR (KBr pellet, cm-1): 1585(m), 1558(s), 1541(m), 1477(m), 

1462(vs), 1429(m), 1352(m), 1336(m), 1333(m), 1290(m), 1281(sh m), 1246(m), 

1234(m), 1200(s), 1115(s), 1105(sh m), 1063(w), 1028(sh m), 1022(m), 1001(sh w), 

962(w), 953(sh vw), 845(sh w), 824(vs), 770(vw), 744(vw), 712(m), 698(s), 636(m), 

582(vw), 513(s), 442(sh w), 424(m). 

4.4.6. Synthesis of H(dbmMe). The preparation described below was modified from 

the published procedure for H(dbmMe).31 To a stirring colorless solution of dbm 

(5.0121 g, 0.022 mol) in THF (7 mL), was added a white slurry of K2CO3 (4.6239 g, 

0.033 mol) in THF (10 mL), followed by CH3I (1.41 mL, 0.023 mol), which resulted in 

no observable change. The white slurry was refluxed at 75 °C for 5 h, whereupon the 
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solution is a dark orange color, concomitant with a small amount of white solid. Once 

the reaction mixture was cooled to room temperature, deionized water (~ 40 mL) was 

added to quench the reaction, which resulted in a colorless aqueous layer, and an 

orange-brown THF layer. The organic layer was extracted using a seperatory funnel, 

and the aqueous layer was washed with dichloromethane (3 × 10 mL). The 

dichloromethane washes were combined with the organic layer. The orange-brown 

organic fraction was dried with sodium sulphate, whereupon it was filtered, using filter 

paper and a Buchner funnel. All the volatiles were removed from the orange-brown 

filtrate in vacuo, and the resulting orange-brown solid was washed with hexanes (2 × 

10 mL). The dark orange solid was dried in vacuo (4.5793 g, 86% yield). Spectral data 

collected for this material matched those previously reported for H(dbmMe).31 

4.4.7. Synthesis of UO2(dbmMe)2(THF) (4.3). To a stirring THF (3 mL) solution of 

[UO2Cl2(THF)2]2 (427.3 mg, 0.440 mmol), was added dropwise a solution of dbmMe 

(368.8 mg, 1.539 mmol) and NaN(SiMe3)2 (286.3 mg, 1.559 mmol) in THF (3 mL).  This 

resulted in formation of a dark red-orange solution. This solution was stirred for 24 h, 

whereupon the solution was filtered through a Celite column supported on glass wool 

(0.5 cm × 2 cm) to remove NaCl. The solution was then concentrated in vacuo, layered 

with hexanes (3 mL), and stored at -25 °C for 24 h, which resulted in the deposition of 

an red-orange powder. The solid was then extracted into dichloromethane (6 mL), and 

filtered through a Celite column supported on glass wool (0.5 cm × 2 cm). The filtrate 

was then concentrated in vacuo, layered with hexanes (3 mL), and stored at -25 °C for 

24 h, which resulted in the deposition of an red-orange powder (208.9 mg, 33% yield). 

1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 7.95 (br s, 8H, ortho CH), 7.62 (br s, 4H, para CH), 
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7.54 (br s, 8H, meta CH), 4.68 (br s, 4H, THF), 2.28 (s, 6H, CH3), 2.19 (br s, 4H, THF). IR 

(KBr pellet, cm-1): 1599(w), 1581(m), 1541(vs), 1495(m), 1468(m), 1444(w), 1417(s), 

1328(sh m), 1315(m), 1306(m), 1275(m), 1205(w), 1175(w), 1101(w), 1074(w), 

1020(sh w), 1009(m), 926(m), 906(m), 868(w), 800(w), 773(w), 748(m), 714(m), 

694(m), 609(w), 557(w), 532(w). Raman (cm-1): 3064(w), 2968(w), 1599(s), 1491(w), 

1325(s), 1162(w), 1159(w), 1036(w), 1001(s), 839(m), 827(m, U=O νsym), 715(w), 

407(w), 283(w). 

4.4.8. Synthesis of U(OSiPh3)2(dbmMe)2(OTf) (4.4). To a red-orange 

dichloromethane (1 mL) solution of UO2(dbmMe)2(THF) (24.3 mg, 0.030 mmol) was 

added dropwise a colorless solution of Ph3SiOTf (25.2 mg, 0.062 mmol) in 

dichloromethane (1 mL), which resulted in formation of a dark red-brown solution. 

The solution was stirred for 24 h, whereupon the solution was filtered through a Celite 

column supported on glass wool (0.5 cm × 2 cm). The filtrate was concentrated in 

vacuo, layered with hexanes (1 mL), and stored at -25 °C for 24 h. This resulted in the 

deposition of a dark red crystalline material, which was isolated by decanting off the 

supernatant (16.8 mg, 40% yield). 1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 10.97 (br s, 12H, 

Ph3Si ortho CH), 8.82 (s, 4H, dbmMe ortho CH), 7.83 (s, 4H, dbmMe ortho CH), 7.68 (br s, 

18H, Ph3Si meta and para CH), 6.34 (br s, 4H, dbmMe meta CH), 5.83 (br s, 4H, dbmMe 

meta CH), 5.53 (br s, 2H, dbmMe para CH), 3.78 (br s, 2H, dbmMe para CH), 1.98 (s, 6H, 

dbmMe CH3). 19F{1H} NMR (CD2Cl2, 25 °C, 376 MHz): δ -81.26 (br s, OTf).  

4.4.9. Synthesis of UO2(dbm)2(DMPO) (4.5). To an orange dichloromethane (3 mL) 

solution of UO2(dbm)2THF (138.3 mg, 0.175 mmol) was added a colorless solution of 

DMPO (20.1 mg, 0.178 mmol) in dichloromethane (1 mL) dropwise, which resulted in 
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the formation of a slightly more intense orange solution. The solution was allowed to 

stir at room temperature for 20 min, before it was filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm). The filtrate was then concentrated in vacuo, 

layered with hexanes (2 mL), and stored at -25 °C for 24 h, which afforded a dark 

orange crystals (121.5 mg, 84% yield). Anal. Calcd for UO7NC36H33: C, 52.11; H, 4.01; N, 

1.69. Found: C, 52.18; H, 3.91; N, 1.78. 1H NMR (CD2Cl2, 25 °C, 500 MHz): δ 8.59 (m, 4H, 

ortho CH), 8.40 (m, 4H, ortho CH), 7.73 (s, 1H, DMPO CH), 7.66-7.53 (m, 12H, CH), 7.27 

(s, 2H, γ-CH), 2.72 (t of d, JHH = 14.8 Hz, JHH = 2.5 Hz, 2H, DMPO CH2), 2.31 (t, JHH = 15.0 

Hz, 2H, DMPO CH2), 1.90 (s, 6H, CH3). IR (KBr pellet, cm-1): 1612(sh w), 1591(m), 

1537(vs), 1524(vs), 1477(m), 1452(m), 1441(w), 1371(s), 1350(sh m), 1311(m), 

1300(sh w), 1290(sh w), 1221(w), 1190(sh w), 1178(vw), 1148(vw), 1142(w), 

1067(w), 1024(w), 939(w), 902(s), 785(w), 750(m), 716(w), 681(sh w), 685(m), 

609(vw), 606(w), 596(sh vw), 513(w). 

4.4.10. Synthesis of 4.1 from 4.5. To a stirring orange solution of complex 4.5 (53.8 

mg, 0.065 mmol) in dichloromethane (3 mL), was added a colorless solution of 

Ph3SiOTf (52.0 mg, 0.127 mmol) in dichloromethane (2 mL) dropwise, which resulted 

in an immediate color change to dark red. The reaction mixture was allowed to stir for 

24h at room temperature, whereupon the dark red solution was filtered through a 

Celite column supported on glass wool (0.5 cm × 2 cm). The filtrate was then 

concentrated in vacuo, layered with Et2O (2 mL), and stored at -25 °C for 24 h, which 

afforded a dark red crystals (34.3 mg, 38% yield), which was subsequently identified as 

complex 4.1 by 1H NMR spectroscopy. 
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4.4.11. X-ray Crystallography. Data for 4.1, 4.2 and 4.4 were collected on a Bruker 

KAPPA APEX II diffractometer equipped with an APEX II CCD detector using a 

TRIUMPH monochromater with a Mo Kα X-ray source (α = 0.71073 Å). The crystals 

were mounted on a cryoloop under Paratone-N oil and all data were collected at 

100(2) K using an Oxford nitrogen gas cryostream system. A hemisphere of data was 

collected using ω scans with 0.5° frame widths. Frame exposures of 10 s were used for 

both complexes 4.1 and 4.2, while frame exposures of 10 and 15 s were used for 

complex 4.4. Data collection and cell parameter determination were conducted using 

the SMART program.55 Integration of the data frames and final cell parameter 

refinement were performed using SAINT software.56 Absorption correction of the data 

was carried out using the multi-scan method SADABS.57 Subsequent calculations were 

carried out using SHELXTL.58 
 

Structure determination was done using direct or 

Patterson methods and difference Fourier techniques. All hydrogen atom positions 

were idealized, and rode on the atom of attachment. Structure solution, refinement, 

graphics, and creation of publication materials were performed using SHELXTL.58 A 

summary of relevant crystallographic data for 4.1, 4.2 and 4.4 is presented in Table 

4.2. 

The OTf counter ion in 4.2 possesses positional disorder, wherein the SO3 and 

CF3 groups are mutually disordered in a 50:50 ratio. This disorder was modeled by 

assigning C52 and S1 over the same two positions with 0.5 occupancies.  The disorder 

in F1 and O5, F2 and O6, and F3 and O7 was modeled in the same way. 
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Table 4.2. X-Ray Crystallographic Data for Complexes 4.1, 4.2 and 4.4. 
 

 4.1  4.2·THF  4.4  
empirical formula  UO9F3SSi2C67H52 UO8N2F3SSi2C99H102 UO9F3SSi2C69H56 

Crystal habit, color  plate, red-orange block, red block, red 
crystal size (mm)  0.30 × 0.20 × 0.20 0.15 × 0.15 × 0.05 0.25 × 0.25 × 0.10 
crystal system  monoclinic triclinic monoclinic 
space group  P21/c P-1 P21/n 
vol (Å3)  5776.5(2) 2377.60(8) 6159.1(6) 
a (Å)  12.507(2) 13.2871(2) 13.5134(7) 
b (Å)  19.719(3) 14.1711(3) 20.766(1) 
c (Å)  23.422(4) 15.2003(3) 22.408(1) 
α (deg)  90 63.915(1) 90 
β (deg)  89.692(3) 73.800(1) 101.617(2) 
γ (deg)  90 69.232(1) 90 
Z  4 1 4 
fw (g/mol)  1384.36 1831.10 1412.41 
density (calcd) (Mg/m3)  1.592 1.279 1.523 
abs coeff (mm-1)  2.957 1.813 2.775 
F000  2756 937 2820 
Total no. reflections  47674 18712 12541 
Unique reflections  13845 10088 9120 
final R indices [I > 2σ(I)]  R1 = 0.0348 

wR2 = 0.0520 
R1 = 0.0315 
wR2 = 0.0914 

R1 = 0.0505 
wR2 = 0.1030 

largest diff peak and hole 
(e-Å-3)  

0.743 and -0.638 1.665 and -0.989 3.914 and -1.497 

GOF  1.118 1.081 0.923 
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5.1 Introduction 

 

The uranyl ion (trans-UO22+) is well known to be kinetically inert and 

thermodynamically robust.1,2 This stability is reflected in its reactivity, but also in its 

electrochemical properties.  Despite containing the high valent U6+ ion, uranyl is a 

rather poor oxidant.  For example, the standard U(VI)/U(V) redox potential for 

UO22+(aq) is -0.35 V (vs. Fc/Fc+) (Figure 1.3).3 This is much higher than the classic 

U(VI) coordination complex, UF6, which is a really good oxidant, and features a 

U(VI)/U(V) redox potential of 2.38 V (vs. Fc/Fc+).4 Although the coordination of anionic 

donor co-ligands to uranyl is known to lower this potential, it has also been shown that 

the U(VI)/U(V) redox potential can be effected by disruption of the O=U=O bonding 

framework within uranyl. For example, our group previously demonstrated that 

coordination of B(C6F5)3 to the oxo ligand in UO2(Aracnac)2 (Aracnac = 

ArNC(Ph)CHC(Ph)O; Ar = 3,5-tBu2C6H3) results in a 700 mV shift of the U(VI)/U(V) 

couple to more oxidizing potentials.5 Similarly, Schelter and co-workers observed a 

shift of similar magnitude in [K(toluene)]2[UO2(NPh(3,5-(CF3)2C6H3))4] vs. [K(16-

crown-6)]2[UO2(NPh(3,5-(CF3)2C6H3))4], due to coordination of the potassium cations 

to the uranyl oxo ligands in the former complex.6 These shifts in the U(VI)/U(V) redox 

potentials can be explained by a weakening of the U-O bonds from a reduction in 

electron donation from the oxo ligands to the U6+ ion.  

The trans/cis isomerization of uranyl is also expected to affect the U(VI)/U(V) 

redox potential.  While a cis-uranyl complex has yet to be isolated, there is evidence to 

suggest that cis-UO22+ is a substantially better oxidant that trans-UO22+.  For example, 
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an attempt to synthesize cis-Cp’2UO2 (Cp’ = 1,2,4-tBu3C5H2) by reaction of Cp’2UCl2 with 

KC8 and pyridine-N-oxide, in pyridine, resulted in formation of the U(V) oxo cluster, 

Cp’4(bipy)2U6O13, along with formation of Cp’H and (Cp’)2 (Scheme 1.4).7 In this 

example, it was argued that cis-Cp’2UO2 was initially formed, but quickly decomposed 

via homolytic Cp’-U cleavage.  Similarly, reaction of Cp*2UI(THF) with KC8 and 

pyridine-N-oxide generates (Cp*)2, also via an unstable cis-Cp*2UO2 intermediate 

(Scheme 1.4).8 In another example, Clark and co-workers demonstrated that reaction 

of a tripodal ligand, [Li]3[N(CH2CH2NSitBuMe2)3], with the trans-uranyl complex, [K(18-

crown-6)]2[trans-UO2Cl4], affords a mixed-valent U(V/VI) oxo-imido dimer, [K(18-

crown-6)(Et2O)][UO(μ2-NCH2CH2N(CH2CH2NSitBuMe2)2)]2 (Scheme 1.5),9 formed 

through abstraction of a silyl group from the tripodal ligand and U=O cleavage. All 

these examples can be rationalized by arguing that trans/cis isomerization disrupts the 

O-U-O bonding framework, thereby making the U6+ ion a much better oxidant.  In this 

regard, the isolation and characterization of a cis-uranyl complex could provide unique 

insights into the nature of the U=O bonds within the uranyl fragment, especially with 

respect to f orbital involvement in the U-O bonds1 and the Inverse Trans Influence 

(ITI).10-13 

Drawing inspiration from the results of Clark and co-workers, we sought to 

coordinate a polydentate ligand, specifically a macrocyclic ligand, to the uranyl 

fragment to effect a trans to cis isomerization of the oxo ligands. One ligand that would 

be well suited for this purpose is the 14-membered tetra(aza)macrocycle, (tmtaa)2- 

(tmtaaH2 = dibenzotetramethyltetraaza[14]annulene).  Many transition metal 

complexes of the (tmtaa)2- ligand are known, including cis-TiCl2(tmtaa),14 cis-
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Zr(Bn)2(tmtaa),15 cis-Ru(CNtBu)2(tmtaa),16 and Rh(HCO)(tmtaa).17 The case of cis-

Zr(Bn)2(tmtaa) is particularly informative, as the Zr ion cannot fit within the binding 

pocket of the tmtaa ligand, which results in the enforcement of a cis arrangement of the 

two benzyl ligands.  The example is particularly illustrative because Zr4+ (0.72 Å) has a 

similar ionic radius to U6+ (0.73 Å), which suggests that tmtaa can only bind to one 

hemisphere of the U6+ ion, enforcing a cis stereochemistry of the two oxo ligands.18 In 

this chapter, we report our attempts to ligate (tmtaa)2- to the trans-uranyl ion in order 

to promote a trans/cis oxo isomerization.  However, we do not observe the formation 

of a cis-uranyl complex. Instead, we observe the formation of oxidized tmtaa products 

and several trans-uranyl tmtaa complexes, where only two nitrogen atoms of the tmtaa 

ligands are coordinated to the uranium centers. This demonstrates that the tmtaa 

ligand was more flexible than anticipated, and too easily oxidized. 
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5.2 Results and Discussion 

5.2.1. Synthesis and Characterization of UO2(tmtaaH)(N(SiMe3)2)(THF) (5.1) and 

UO2(tmtaaH)2 (5.2) 

 

Addition of 1 equiv of tmtaaH2 (tmtaa = dibenzotetramethyltetraaza-

[14]annulene) to UO2(N(SiMe3)2)2(THF)2 in Et2O, results in formation of a dark red-

orange solution, from which UO2(tmtaaH)(N(SiMe3)2)(THF) (5.1) can be isolated as 

dark red crystals in 83% yield (Scheme 5.1). In this reaction only two nitrogens of the 

tmtaaH ligand are coordinated to the uranium center, while one of the amide ligands is 

still attached. In an attempt to drive the protonolysis reaction to completion, and 

coordinate the other two nitrogen atoms of the tmtaa ligand to the metal, a mixture of 

tmtaaH2 and UO2(N(SiMe3)2)2(THF)2 was gently heated. The 1H NMR spectra of these 

solutions reveal the formation of a new uranium-containing product, UO2(tmtaaH)2 

(5.2), in a 1:2 ratio with complex 5.1. This demonstrates that complex 5.1 undergoes 

ligand exchange to form 5.2, instead of forming the desired complex, cis-UO2(tmtaa). In 

order to synthesize complex 5.2 purposely, 2 equiv of tmtaaH2 and 1 equiv of 

UO2(N(SiMe3)2)2(THF)2 are heated to 85°C for 18 h, from which 5.2 is isolated as red-

orange crystals in 67% yield (Scheme 5.1).   
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Scheme 5.1. Synthesis of complexes 5.1 and 5.2. 

 

Complexes 5.1 and 5.2 crystallize in the triclinic space group P-1 (Figure 5.1), 

where both exhibit octahedral geometries about the uranium centers. The oxo ligands 

of both complexes exhibit metrical parameters typical of the uranyl(VI) moiety with 

nearly linear O-U-O angles (173.7° for 5.1 and 180° for 5.2),19-21 indicating 

coordination of the tmtaaH ligands have not perturbed the UO22+ fragment (Table 5.1).  

The tmtaaH ligands in 5.1 and 5.2 only coordinate to the uranium centers with two 

nitrogen atoms, while the other two nitrogen atoms still coordinate a proton. The U-

NtmtaaH bond lengths in 5.1 (2.387 and 2.417 Å) are similar to the U-NtmtaaH bond 

lengths in 5.2 (2.37(1) and 2.40(1) Å), which are comparable to the U-N bond lengths 

in uranyl β-diketiminate complexes, such as [UO2(Ar2nacnac)Cl]2 (Ar2nacnac = (2,6-

iPr2C6H3)NC(Me)CHC(Me)N(2,6-iPr2C6H3)) (av. U-N = 2.40 Å),19 UO2(Ar2nacnac)(acac) 

(U-N = 2.419(5) and 2.409(5) Å),22 UO2(Ar2nacnac)(dbm) (U-N = 2.402(5) and 2.388(5) 
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Å),22 UO2(Ar2nacnac)(pyr)2 (U-N = 2.484(7) and 2.515(7) Å),23 and [Li(MeIm)][UO(μ-

O)(Ar2nacnac)(μ-N,C-C4H5N2)2] (U-N = 2.446(5) and 2.459(5) Å).24 Both complexes 5.1 

and 5.2 also do not exhibit alternation in the N-C and C-C bond lengths (Scheme 5.2). 

The binding mode of the tmtaaH ligand in 5.1 and 5.2 is similar to that observed in the 

transition metal complex, cis-MoO2(acac)(tmtaaH).25 Ideally, all four nitrogen atoms of 

the tmtaaH ligand in 5.1 would have coordinated to the uranium center to generate 

significant steric pressure on the UO22+ fragment, but the tmtaa2- macrocycle appears 

to be surprisingly flexible. 

 

 
A. 
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Figure 5.1. Soild-state structures of A) UO2(tmtaaH)(N(SiMe3)2)(THF) (5.1) and B) 

UO2(tmtaaH)2 (5.2), with 50% probability ellipsoids. All hydrogen atoms have been 

omitted for clarity. Complex 5.1 crystallizes with two independent molecules in the 

asymmetric unit, only one is shown here.  

 

Table 5.1. Selected bond lengths (Å) and angles (deg) for complexes 5.1, 5.2, 5.5, and 

5.6. 

 5.1 5.2 5.5 5.6 

U=O av. 1.788 
av. 1.794 1.734(8) 1.74(2) 

1.77(2) 
1.74(2) 
1.77(2) 

U-Ntmtaa 
av. 2.387 
av. 2.417 

2.37(1) 
2.40(1) 

2.38(2) 
2.39(2) 2.51(2) 

U-Namide av. 2.307 - - 2.29(1) 
O-Li - - 2.01(4) 2.03(3) 
Cγ -Cγ  - - 1.53(4) - 
O-U-O av. 173.7 179.999(1) 175.3(6) 175.2(7) 
U-O-Li - - 138(2) 133(1) 

 

B. 
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Scheme 5.2. Bond length comparison for complexes 5.1, 5.2, and 5.5.   

 

The 1H NMR spectrum of 5.1 in C6D6 exhibits one NH resonance at 13.13 ppm, 

and seven aryl resonances at 8.20, 7.33, 7.27, 6.99, 6.95, 6.86, and 6.72 ppm. The eighth 

aryl resonance appears to be overlapping with the resonance at 6.95 ppm. As expected, 

there are also two resonances assignable to the γ-CH protons at 4.90 and 4.63 ppm, 

and three resonances assignable to the CH3 groups of the tmtaaH ligand at 1.88, 1.85, 

and 1.80 in a 1:1:2 ratio, respectively, indicating complex 5.1 maintains its solid-state 

structure in solution. Interestingly, the spectrum also displays two resonances at 0.75 

and 0.46 ppm assignable to the two SiMe3 groups, which suggests the rotation of the 

two SiMe3 groups about the U-Namide bond is hindered in solution. The 1H NMR 

spectrum of 5.2 in C6D6 is very similar to complex 5.1, with one characteristic NH 

resonance at 13.58 ppm, and four aryl resonances at 8.21, 7.24, 6.93, and 6.77 ppm. 

While the 1H NMR spectrum of 5.2 also exhibits two γ-CH proton resonances at 4.99 

and 4.69 ppm in a 1:1 ratio, which is expected based on the solid-state structure, 

surprisingly, there is only one CH3 resonance at 1.90 ppm. Complexes 5.1 and 5.2 also 

exhibit identical U=O νsym stretches of 805 cm-1 in their Raman spectra, which are 

comparable to other uranyl complexes with multiple amide co-ligands, such as 
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[UO2(N{SiMe3}2)3]- (805 cm-1),26 and UO2(NCN)2(THF) [NCN = Me3Si(N)CPh(N)SiMe3] 

(803 cm-1).27 

 

5.2.2. Synthesis and Characterization of the β-diketiminate pyrazolium 

macrocycle (Z-isomer: 5.3; E-isomer: 5.4) 

 

Subsequently, we wanted to explore the reactivity of K2(tmtaa) with 

[UO2Cl2(THF)2]2, as we hypothesized that the formation of KCl should be a better 

driving force than the formation of HN(SiMe3)2. First, the K2(tmtaa) is prepared in situ 

by addition of 4 equiv of KN(SiMe3)2 to 2 equiv of tmtaaH2 in THF. This mixture is then 

added to [UO2Cl2(THF)2]2 in THF, which results in a red-brown slurry, from which the 

β-diketiminate pyrazolium macrocycle (Z-isomer: 5.3; E-isomer: 5.4), which can be 

isolated as a mixture of the E and Z isomers in 12% yield (Scheme 5.3). Compounds 5.3 

and 5.4 are isolated in roughly a 10:1 ratio, respectively. Although no uranium 

containing products can be observed in the in situ 1H NMR spectra, the isolated yields 

of 5.3 and 5.4 are very low. Investigations to determine the identities of the other 

products are still ongoing. 

 

Scheme 5.3. Synthesis of compounds 5.3 and 5.4. 
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Compound 5.3 crystallizes in the monoclinic space group P21/n, while 

compound 5.4 crystallizes in the monoclinic space group P21/c, as the THF solvate 

5.4∙C4H8O (Figure 5.2). Compounds 5.3 and 5.4 are both zwitterions; compound 5.3 is 

the Z-isomer and compound 5.4 is the E-isomer, where both exhibit the same 

pyrazolium cation ring with similar N-N bond lengths (5.3: 1.380(2) Å; 5.4: 1.396(2) 

Å). The C-C bond lengths and C-N bond lengths of the pyrazolium cationic fragments in 

5.3 and 5.4 (avg. C-C: 1.38 Å; avg. C-N: 1.35 Å) are very similar to other structurally 

characterized pyrazolium cations.28-32 For example, the organic compound, 

(pyrazolinonyl)(hydroxypyrazolylium)methaneperchlorate, exhibits two pyrazolium 

cations with an avg. N-N bond length of 1.38 Å, an avg. C-N bond length of 1.37 Å, and 

an avg. C-C bond length of 1.40 Å.28 The positive charges in 5.3 and 5.4 are balanced by 

a negative charge localized on the other γ-carbon. Compound 5.3 exhibits N-C bond 

lengths in the anionic fragment of 1.339(2) and 1.301(2) Å, which are slightly shorter 

compared to the pyrazolium cation fragment, and C-C bond lengths of 1.389(2) and 

1.439(2) Å, which are slightly longer in comparison to the pyrazolium cation fragment. 

The same trend is demonstrated in the anionic fragment of compound 5.4 (C-N: 

1.323(3) and 1.328(2) Å; C-C: 1.404(3) and 1.403(3) Å). The anionic fragment in 5.3 is 

structurally similar to the β-diketiminate lithium salt, 1,5-diphenyl-1,5-

diaazapentadienyl lithium, which is the Z-isomer, and has C-N bond lengths of 1.326(3) 

and 1.322(3) Å, and C-C bond lengths of 1.394(4) and 1.387(4) Å.33 The anionic 

fragment in 5.4 is most structurally similar to the anionic β-diketiminate ligand in the 

complex, [K(LBut)(THF)3] (LButH = [HC{C(tBu)NDipp}{C(tBu)NHDipp}]), which is the E-
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isomer, and exhibits C-N bond lengths of 1.321(5) and 1.340(5) Å and C-C bond lengths 

of 1.417(5) and 1.420(5) Å.34 Compound 5.4 exhibits Cs symmetry, as there is a mirror 

plane that intersects the C3 and C14 γ-carbon atoms, while compound 5.3 exhibits C1 

symmetry. All the other metrical parameters are comparable.   

 

 

Figure 5.2. Solid-state structures of A) C22H22N4 (5.3) and B) C22H22N4∙C4H8O 

(5.4∙C4H8O), with 50% probability ellipsoids. All hydrogen atoms have been removed 

for clarity. Selected bond lengths (Å) for 5.3: N1-N2 = 1.380(2), N1-C2 = 1.352(2), C2-

C3 = 1.378(2), C3-C4 = 1.388(2), N2-C4 = 1.345(2), N3-C13 = 1.339(2), C13-C14 = 

1.389(2), C14-C15 = 1.439(2), C15-N4 = 1.301(2). For 5.4: N1-N2 = 1.396(2), N1-C2 = 

1.346(2), C2-C3 = 1.388(3), C3-C4 = 1.376(3), N2-C4 = 1.347(2), N3-C15 = 1.323(3), 

C15-C14 = 1.404(3), C14-C13 = 1.403(3), C13-N4 = 1.328(2). 

 

Compound 5.3 exhibits two γ-CH resonances at 5.27 and 4.99 ppm in its 1H 

NMR spectrum in C6D6. The C1 symmetry exhibited in the solid-state structure appears 

to be maintained in solution, as there are also 8 aryl proton resonances ranging from 

  A.  B. 
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7.26 to 6.33 ppm, as well as four methyl proton resonances at 2.31, 2.27, 2.06, and 1.48 

ppm. Compound 5.4 also appears to maintain the Cs symmetry exhibited in its solid-

state structure in solution, as there are only four aryl proton resonances at 7.23, 6.96, 

6.86, and 6.52 ppm, and two methyl proton resonances at 2.26 and 1.87 ppm observed 

in its 1H NMR spectrum in C6D6 (Figure A.8). In addition, compound 5.4 also exhibits 

two γ-CH resonances at 5.14 and 4.51 ppm. A 13C{1H} NMR spectrum was recorded of a 

sample containing mostly complex 5.4 in C6D6 (Figure A.9). Compound 5.4 exhibits two 

γ-carbon resonances at 106.97 and 88.77 ppm, six aryl carbon resonances at 154.01, 

133.12, 131.70, 121.92 and 117.37 ppm (the sixth resonance is hidden by the benzene 

resonance), as well as two methyl carbon resonances at 25.73 and 12.89 ppm, which 

supports that the Cs symmetry is maintained in solution.  There are also two NCCH3 

carbon resonances observed at 161.48 and 147.73 ppm. 

In the reaction to form compounds 5.3 and 5.4, we hypothesize that a cis-uranyl 

tmtaa complex, cis-UO2(tmtaa), is transiently generated, however, it is unstable and 

undergoes decomposition, in which the uranium center becomes reduced by 2e-, 

presumably generating UIVO2, while simultaneously oxidizing the tmtaa ligand by 2e-. 

Notably, trans-uranyl is typically a poor oxidant, but when the O-U-O moiety is no 

longer linear, the 6pz uranium AO cannot participate in the σ-bonding framework,1,35 

which weakens the U-O bonds, and allows the U(VI) center to become more oxidizing. 

This reactivity is similar to the previous attempts to make cis-Cp’2UO2 (Cp’ = Cp* or 

1,2,4-C5H2tBu3) (Scheme 1.4),7,8 in which the reactions resulted in ligand oxidation and 

the formation of unwanted “uranium oxides”.   
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5.2.3. Synthesis and Characterization of [Li]2[Li(THF)3Cl]2[UO2Cl2{tmtaa}2UO2Cl2] 

(5.5) 

The reactivity of Li2(tmtaa) with [UO2Cl2(THF)2]2 was also explored. Addition of 

2 equiv of Li2(tmtaa) to [UO2Cl2(THF)2]2 in THF results in a red-brown solution, from 

which [Li]2[Li(THF)3Cl]2[UO2Cl2{tmtaa}2UO2Cl2] (5.5) can be isolated as red-brown 

crystals in 42% yield (based on the stoichiometry in eq 5.1). Complex 5.5 contains the 

{tmtaa}22- dimer, which is a 1e- oxidation product of the [tmtaa]2- ligand, and was 

probably formed by the coupling of two initially formed π radicals.36  

 

Complex 5.5 crystallizes in the triclinic space group P-1, as the THF solvate, 

5.5∙C4H8O (Figure 5.3). Its solid-state structure shows that complex 5.5 is composed of 

two [UO2Cl2(tmtaa)] units linked via a carbon single bond bridge (C14-C14* = 1.53(4) 

Å), which exhibit octahedral geometries about the uranium atoms. One lithium atom 

for each [UO2Cl2(tmtaa)] unit interacts with one uranyl oxo ligand. Complex 5.5 also 

features two co-crystallized [Li(THF)3][Cl] units.  The oxo ligands of complex 5.5 

exhibit metrical parameters typical of the uranyl(VI) moiety with short U=O bond 

lengths of 1.74(2) and 1.77(2) Å and a nearly linear O-U-O angle (175.3(6)°) (Table 

5.1). For each [UO2Cl2(tmtaa)] unit, the tmtaa ligand has two nitrogen atoms bound to 
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the U center and two nitrogen atoms interacting with a Li cation. This binding mode, 

which is reminiscent of the polypyrolic macrocyclic ligand employed by the Arnold 

group to direct uranyl-oxo functionalization,37,38 creates two metal coordination 

pockets, and helps direct Li cation coordination to one of the uranyl oxos in complex 

5.5. The binding mode is also similar to the transition metal complex, cis-

MoO2(acac)(tmtaaH), where only two N atoms of the tmtaaH ligand are coordinated to 

the metal center.25 The Li1-O2 distance in 5.5 is 2.01(4) Å, which is in the normal range 

of UVI=O---Li interactions.6,38-42 For example, the complex, [Li(12-crown-4)]2[UO2Cl4], 

exhibits a Li-O distance of 1.89(2) Å,40 and the uranyl alkyl complex, [Li(DME)1.5]2[U(μ-

O)2(CH2SiMe3)4], which is stabilized by  “ate” complex formation, exhibits two Li-O 

distances of 2.00(1) and 2.02(1) Å.41 The Li1-O2 distance in 5.5 is significantly shorter 

than the UVI=O---K interactions exhibited by [K(toluene)]2[UO2(NPh(3,5-(CF3)2C6H3))4] 

(K-O = 2.589(2) and 2.615(3) Å), however, this difference is consistent with the 

difference in ionic radii of K+ vs. Li+.6 The U-Ntmtaa bond lengths (2.38(2) and 2.39(2) Å) 

in complex 5.5 are comparable to the U-N bond lengths in 5.1 and 5.2, as well as the U-

N bond lengths in typical uranyl β-diketiminate complexes.19,23,24 In addition, 5.5 does 

not exhibit alternation in the N-C and C-C bond lengths of the β-diketiminate portion of 

the {tmtaa}22- ligand attached to the U centers (Scheme 5.2). 
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Figure 5.3. Solid-state structure of [Li]2[Li(THF)3Cl]2[UO2Cl2{tmtaa}2UO2Cl2]∙C4H8O 

(5.5∙C4H8O), with 30% probability ellipsoids for the heteroatoms. All hydrogen atoms 

and the THF solvate have been removed for clarity.  

 

Complex 5.5 is insoluble in non-polar solvents and Et2O, and only exhibits 

partial solubility in THF. However, complex 5.5 is completely soluble in pyridine. The 

1H NMR spectrum of 5.5 in pyr-d5 exhibits distinct singlets at 4.85 and 4.81 ppm, which 

correspond to the two different γ-CH environments, along with 2 sharp singlets at 2.25 

and 1.99 ppm, which correspond to two different methyl environments. The remaining 

methyl resonances could not be assigned. There are two THF resonances at 3.66 and 

1.61 ppm, which integrate to three equivalents of THF, as predicted by the solid-state 

structure.  The 7Li{1H} NMR spectrum in pyr-d5 exhibits two sharp resonances at 3.60 

and 2.67 ppm in a 4:1 ratio, respectively, indicating that in solution the Li cations are 

probably not in the same configuration as the solid-state structure suggests. This is not 
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surprising, considering the donor strength of pyridine could disrupt the Li-O 

interactions. 

Similarly to compounds 5.3 and 5.4, to explain the formation of 5.5, we 

hypothesize that a cis-uranyl tmtaa complex, is transiently generated, but rapidly 

decomposes to form the 1e- oxidation product, [tmtaa]-, which couples to form the 

{tmtaa}22- dimer, along with unobserved low-valent uranium oxides. The difference in 

reactivity between the potassium and lithium salts of the tmtaa ligand can potentially 

be explained by “ate” complex formation, which stabilizes the unobserved cis-uranyl 

intermediate, in the case of the Li example. The dimerization of tmtaa has been 

observed previously during the electropolymerization of Ni(II) tmtaa complexes.36 

Reactivity at the γ-carbon position of the tmtaa ligand in several transition metal 

complexes has also been documented.16,43 For instance, addition of CO to the 

ruthenium carbene complex, Ru(PhCCOOMe)(tmtaa), causes the carbene to attack the 

γ-carbon of the tmtaa ligand and rearrange to generate a bridging C=C-O unit between 

the Ru and the tmtaa γ-carbon.16  

 

5.2.4. Synthesis and Characterization of [Li(THF)]2[UO2(N(SiMe3)2)2(tmtaa)] 

(5.6) 

 

 In an effort to stabilize the highly-oxidzing intermediate formed upon reaction 

of tmtaa with uranyl, we explored the reaction of Li2tmtaa with 

UO2(N(SiMe3)2)2(THF)2.  In particular, we hypothesized that the electron donating 

amide co-ligands on the uranyl starting material would help to stabilize the 
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unobserved intermediate formed in eq 5.1. Importantly, the strongly donating amides 

should make the uranium center less oxidizing, and therefore stop the unwanted 

oxidation of the tmtaa ligand. Thus, an NMR-scale reaction of UO2(N(SiMe3)2)2(THF)2 

with 1 equiv of Li2(tmtaa), in C6D6, results in an immediate color change to red and the 

formation of a new product, indicated by 1H and 7Li NMR spectroscopies. Allowing the 

NMR tube to sit at room temperature for 3 h, results in the formation of red block 

crystals. The identity of the crystals was determined to be 

[Li(THF)]2[UO2(N(SiMe3)2)2(tmtaa)] (5.6) by X-ray crystallography. Gratifyingly, the 

amide co-ligands did hinder the unwanted reduction of the tmtaa ligand, however, a 

cis-uranyl complex was not isolated, probably due to the unique flexibility of the tmtaa 

ligand only allowing 2 nitrogen atoms to coordinate the uranium center, while the 

other 2 nitrogen atoms are free to interact with a lithium cation. 

 

 

 

Complex 5.6 crystallizes in the orthorhombic space group Pnma, as the C6D6 

solvate, 5.6∙2C6D6 (Figure 5.4). Similarly to complex 5.5, the tmtaa ligand is bound to 

the U center by only two nitrogen atoms, and the other two nitrogens are interacting 

with an inner-sphere Li cation. This binding mode creates two metal coordination 

pockets, and helps direct Li cation coordination to one of the uranyl oxos in complex 
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5.6, which is similar to complex 5.5 and is also reminiscent of the polypyrolic 

macrocyclic ligand, employed by the Arnold group.37,38 In contrast to complex 5.5, 

complex 5.6 exhibits a second Li cation, which interacts with all four nitrogen atoms, 

and sits just out of the plane created by these four tmtaa nitrogen atoms. The U-Ntmtaa 

bond length in 5.6 (2.51(2) Å) is slightly longer than the U-Ntmtaa bond lengths in 5.5 

(2.39(2), U1-N2 = 2.38(2) Å), which can be explained by the more electron donating 

nature of the amide vs. chloride co-ligands (Table 5.1). However, the U-Ntmtaa bond 

length in 5.6 is still within the typical range of U-N bond lengths in uranyl β-

diketiminate complexes.19,22-24 The oxo ligands of complex 5.6 exhibit metrical 

parameters typical of the uranyl(VI) moiety with short U=O bond lengths of 1.74(2) 

and 1.77(2) Å, and a nearly linear O-U-O angle (175.2(7)°).  The Li1-O2 distance in 5.6 

is 2.03(3) Å, which is in the normal range of UVI=O---Li interactions,6,38-42 and 

comparable to complex 5.5.  
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Figure 5.4. Solid-state structure of [Li(THF)]2[UO2(N(SiMe3)2)2(tmtaa)]∙2C6D6 

(5.6∙2C6D6), with 50% probability ellipsoids. All hydrogen atoms, THF carbon atoms, 

SiMe3 carbon atoms, and the benzene solvates have been removed for clarity.  

 

 The 1H NMR spectrum of complex 5.6 in C6D6, consistent with its solid-state 

structure, exhibits four tmtaa aryl proton resonances at 7.87, 7.24, 7.04, and 6.79 ppm, 

two tmtaa γ-proton resonances at 4.77 and 4.32 ppm, two tmtaa methyl proton 

resonances at 1.95 and 1.82 ppm, and two resonances at 0.78 and 0.33 ppm, assignable 

to the proton environments of the SiMe3 groups (Figure A.10). Similar to complex 5.1, 

the rotation of the four SiMe3 groups about the U-Namide is hindered in solution. In 

addition, complex 5.6 also exhibits two broad resonances at 3.35 and 1.28 ppm, which 

are assignable to the two proton environments of the THF solvates. The 7Li{1H} NMR 

spectrum of 5.6 in C6D6 features two lithium resonances at 1.87 and -0.47 ppm in a 1:1 

ratio (Figure A.11). This indicates that complex 5.6 retains its solid-state structure in 

solution. 

 

 

5.3  Summary 

 

Reaction of UO2(N(SiMe3)2)2(THF)2 with 1 or 2 equiv of tmtaaH2, results in 

formation of UO2(tmtaaH)(N(SiMe3)2)(THF) (5.1) and UO2(tmtaaH)2 (5.2), 

respectively, where only two nitrogen atoms of the tmtaaH ligands are coordinated to 

the uranium center. Additionally, reaction of [UO2Cl2(THF)2]2 with 2 equiv of 
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K2(tmtaa), results in the formation of the 2e- oxidation products, the β-diketiminate 

pyrazolium macrocycles (Z-isomer: 5.3; E-isomer: 5.4), and some unobserved low-

valent uranium oxides. Similarly, reaction of [UO2Cl2(THF)2]2 with 2 equiv of Li2(tmtaa) 

results in the formation of the 1e- oxidation product, 

[Li]2[Li(THF)3Cl]2[UO2Cl2{tmtaa}2UO2Cl2] (5.5), along with some unobserved low-

valent uranium oxides. We purpose that the difference in reactivity between the 

potassium and lithium salts of the tmtaa ligand is due to the ability of Li cations to form 

“ate” complexes, which could somewhat stabilize a cis-uranyl intermediate.  

All attempts to synthesize the desired cis-UO2(tmtaa) complex were thwarted 

by coordination of only two nitrogen atoms of the tmtaa ligand to the uranium center 

or unwanted  ligand oxidation. In an attempt to hinder the oxidation of the tmtaa 

ligand in the reaction to form 5.5, more electron donating amide co-ligands were 

implemented to stabilize the unobserved intermediate, by making the uranium center 

less oxidizing. Thus, reaction of UO2(N(SiMe3)2)2(THF)2 with 1 equiv of Li2(tmtaa) 

results in the formation of [Li(THF)]2[UO2(N(SiMe3)2)2(tmtaa)] (5.6). The amide co-

ligands did hinder the unwanted reduction of the tmtaa ligand, however, a cis-uranyl 

complex was not isolated.  This is likely caused by the large binding pocket of the tmtaa 

ligand only allowing two nitrogen atoms to coordinate the uranium center. This work 

suggests that the tmtaa ligand is easiliy oxidized and too flexible, for the purposes of 

using it to force a trans/cis isomerization of the uranyl moiety. In the future, more 

robust, rigid, and smaller macrocyclic ligands will need to be investigated.  
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5.4 Experimental 

5.4.1 General Procedures. All reactions and subsequent manipulations were 

performed under anaerobic and anhydrous conditions under an atmosphere of 

nitrogen. Hexanes, Et2O, THF, and toluene were dried using a Vacuum Atmospheres 

DRI-SOLV solvent purification system, and stored over 3 Å molecular sieves for 24 h 

prior to use. C6D6, CH2Cl2, CD2Cl2 and pyr-d5 were dried over activated 3 Å molecular 

sieves for 24 h before use. [UO2Cl2(THF)2]2,20 UO2(N(SiMe3)2(THF)2,44 and tmtaaH2,45 

were prepared according to literature procedures. All other reagents were purchased 

from commercial suppliers and used as received. 

NMR spectra were recorded on a Varian UNITY INOVA 400 MHz spectrometer 

or a Varian unity INOVA 500 MHz spectrometer. 1H and 13C{1H} NMR spectra are 

referenced to external SiMe4 using the residual protio solvent peaks as internal 

standards (1H NMR experiments) or the characteristic resonances of the solvent nuclei 

(13C NMR experiments). 7Li{1H} NMR spectra were referenced indirectly with the 1H 

resonance of SiMe4 at 0 ppm, according to IUPAC standard.46,47 IR spectra were 

recorded on a Mattson Genesis FTIR/Raman spectrometer with a NXR FT Raman 

Module. IR samples were recorded as KBr pellets. Mass spectra were collected by the 

Mass Spectrometry Facility at the University of California, Santa Barbara, using a field 

desorption (FD) ion source with a Waters GCT Premier high-resolution Time-of-flight 

mass spectrometer. Elemental analyses were performed by the Microanalytical 

Laboratory at UC Berkeley.  

5.4.2 Raman Spectroscopy. Raman spectra were recorded on a LabRam Aramis 

microRaman system (Horiba Jobin Yvon) equipped with 1200 grooves/mm 
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holographic gratings, and Peltier-cooled CCD camera.  The 633 nm output of a Melles 

Griot He-Ne laser was used to excite the spectra, which were collected in a back 

scattering geometry using a confocal Raman Microscope (high stability BX40) 

equipped with Olympus objectives (MPlan 50x).  Sample preparation was performed 

inside the glovebox: Pure crystalline solid samples were placed between a glass 

microscope slide and coverslip, sealed with a bead of silicone grease, and removed 

from the glovebox for spectral acquisition. 

 

5.4.3 Synthesis of Li2(tmtaa). The preparation described below was modified from 

the published procedure for Li2(tmtaa).48 To a stirring dark yellow slurry of tmtaaH2 

(200.2 mg, 0.581 mmol) in Et2O (8 mL), was added a 2.5 M solution of nBuLi (0.47 mL, 

1.175 mmol) in hexanes, diluted with 1 mL of Et2O, very slowly dropwise, resulting in 

an immediate change to a dark red solution. The solution was allowed to stir at room 

temperature for ~ 3 min, before the solution was filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm).  The resulting red filtrate was concentrated in 

vacuo (ca. 3 mL), which resulted in the deposition of red crystals (87.3 mg). The 

volume of the red supernatant was further reduced in vacuo (ca. 1.5 mL), and stored at 

-25°C for 24 h, which resulted in the deposition of red crystals (76.8 mg, 79% yield). 

Spectral data of this material matched those previously reported for this complex.48 

5.4.4 Synthesis of UO2(tmtaaH)(N(SiMe3)2)(THF) (5.1). To a stirred bright orange 

Et2O (2 mL) solution of UO2(N(SiMe3)2)2)(THF)2 (68.0 mg, 0.0925 mmol) was added a 

dark yellow solution of tmtaaH2 (31.8 mg, 0.0923 mmol) in Et2O (4 mL) dropwise, 

which resulted in an immediate color change to dark red-orange. The solution was 
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allowed to stir for 15 h at room temperature, whereupon no visible change was 

observed. The dark red solution was filtered twice through a Celite column supported 

on glass wool (0.5 cm × 2 cm), which produced a small orange plug. The clear red 

filtrate was concentrated in vacuo (ca. 2 mL). Storage at -25°C for 24 h resulted in the 

deposition of dark red crystals (151.3 mg, 83% yield).  Anal. Calcd C32H49N5O3Si2U1: C, 

45.43; H, 5.84; N, 8.28. Found: C, 45.70; H, 5.79; N, 8.02.  1H NMR (C6D6, 25 °C, 400 

MHz): δ 13.13 (s, 1H, NH), 8.20 (d, JHH = 8 Hz, 1H, aryl CH), 7.33 (t, JHH = 8 Hz, 1H, aryl 

CH), 7.27 (d, JHH = 7 Hz, 1H, aryl CH), 6.99 (t, JHH = 7 Hz, 1H, aryl CH), 6.95 (t, JHH = 8 Hz, 

2H, aryl CH), 6.86 (d, JHH = 7 Hz, 1H, aryl CH), 6.72 (d, JHH = 8 Hz, 1H, aryl CH), 4.90 (s, 

1H,  γ-CH), 4.63 (s, 1H, γ-CH), 4.18 (br m, 4H, THF), 1.88 (s, 3H, CH3), 1.85 (s, 3H, CH3), 

1.80 (d, JHH = 6 Hz, 6H, CH3), 1.48 (br t, JHH = 6 Hz, 4H, THF), 0.75 (s, 9H, SiMe3), 0.46 (s, 

9H, SiMe3).  IR (KBr pellet, cm-1): 1620(s), 1595(m), 1547(s), 1508(m), 1466(s), 

1444(sh m), 1437(m), 1381(s), 1365(s), 1288(m), 1271(m), 1257(sh m), 1252(m), 

1240(m), 1196(sh w), 1186(m), 1157(w), 1105(w), 1068(w), 1039(w), 1014(m), 

928(s), 891(m), 883(m), 875(m), 868(m), 845(sh s), 835(s), 793(m), 773(w), 742(s), 

692(w), 667(w), 661(w), 650(w), 640(w), 611(w), 575(w), 559(w), 536(w), 532(w), 

511(w), 482(w), 474(w), 457(w), 424(w), 410(w). Raman (neat solid, cm-1): 1581(m), 

1577(m), 1539(vs), 1501(s), 1494(s), 1486(s), 1467(m), 1437(m), 1340(m), 1325(m), 

1278(m), 1267(m), 1220(m), 1023(w), 1011(w), 929(w), 863(w), 830(m), 805(m, U=O 

νsym), 746(w), 653(w), 597(w), 541(w), 471(w), 379(w), 321(w), 186(m), 136(m), 

95(m). 

5.4.5 Synthesis of UO2(tmtaaH)2 (5.2). To a stirred orange solution of 

UO2(N(SiMe3)2)2)(THF)2 (136.6 mg, 0.186 mmol) in toluene (3 mL) was added a green-
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yellow solution of tmtaaH2 (128.0 mg, 0.372 mmol) in toluene (4 mL) dropwise, which 

yielded an immediate color change to red-brown. The reaction mixture was sealed 

under vacuum in a bomb flask, whereupon it was heated at 85°C for 18 h, which 

resulted in a red-brown solution concomitant with a red-orange powder. The solution 

was decanted away from the red-orange powder, and washed quickly with Et2O (2 mL) 

(118.9 mg, 67% yield). X-ray quality crystals of 2 were grown out of neat toluene.  Anal. 

Calcd C44H46N8O2U1: C, 55.23; H, 4.58; N, 11.71. Found: C, 55.62; H, 4.56; N, 11.63.  1H 

NMR (C6D6, 25 °C, 400 MHz): δ 13.58 (s, 2H, NH), 8.21 (d, JHH = 8 Hz, 4H, aryl CH), 7.24 

(t, JHH = 7 Hz, 4H, aryl CH), 6.93 (t, JHH = 8 Hz, 4H, aryl CH), 6.77 (t, JHH = 8 Hz, 4H, aryl 

CH), 4.99 (s, 2H, γ-CH), 4.69(s, 2H, γ-CH), 1.90 (d, 24H, CH3).  IR (KBr pellet, cm-1): 

1618(m), 1593(w), 1560(sh m), 1545(s), 1512(m), 1464(m), 1446(w), 1435(w), 

1380(m), 1362(s), 1290(w), 1263(w), 1225(w), 1192(sh vw), 1178(w), 1153(w), 

1107(m), 1045(w), 1018(m), 1003(w), 941(sh vw), 920(m), 906(vs), 868(sh w), 

862(m), 852(sh w), 829(m), 808(m), 793(m), 752(m), 742(s), 729(s), 688(w), 667(w), 

648(w), 606(w), 573(m), 559(w), 538(m), 523(w), 503(w), 484(w), 471(m), 459(w), 

434(w), 420(w), 411(w), 403(w). Raman (neat solid, cm-1): 1581(s), 1536(s), 1502(s), 

1464(s), 1430(m), 1325(s), 1286(s), 1223(m), 1148(m), 1032(w), 925(w), 834(m), 

805(m, U=O νsym), 734(w), 653(w), 593(w), 554(m), 463(w), 361(w), 326(w), 223(w), 

191(w), 113(m). 

5.4.6 Synthesis of the β-diketiminate pyrazolium macrocycle (Z-isomer: 5.3). To a 

stirred dark yellow slurry of tmtaaH2 (82.6 mg, 0.240 mmol) in THF (1 mL), was added 

a colorless solution of KN(SiMe3)2 (96.6 mg, 0.484 mmol) in THF (1 mL) dropwise, 

which resulted in a red-brown solution. The solution was allowed to stir at room 
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temperature for 5 minutes, whereupon it was added to a stirring yellow slurry of 

[UO2Cl2(THF)2]2 (117.4 mg, 0.121 mmol) in THF (1.5 mL) dropwise. This resulted in an 

immediate change to a dark red-brown solution, concomitant with the formation of a 

brown suspended solid. The mixture was allowed to stir at room temperature for 40 

min. All of the volatiles were removed in vacuo, and the resulting red-brown solid was 

triturated with Et2O (1 mL). The red-brown solid was extracted into Et2O (5 mL), and 

filtered through a Celite column supported on glass wool (0.5 cm × 2 cm), which 

generated a brown plug and an orange filtrate. The orange filtrate was concentrated in 

vacuo (ca. 1 mL). Storage at -25°C for 24 h resulted in the deposition of orange crystals 

(10.2 mg, 12% yield). The identity of the orange crystals were determined to be a mix 

of compounds 5.3 and 5.4 in a 10:1 ratio based on the 1H NMR spectrum. Anal. Calcd 

C22H22N4: C, 77.16; H, 6.48; N, 16.36. Found: C, 76.83; H, 6.38; N, 15.99. 1H NMR (C6D6, 

25 °C, 400 MHz): δ 7.05 (t, JHH = 8 Hz, 1H, aryl CH), 7.01 (d, JHH = 9 Hz, 1H, aryl CH),  

6.97 (d, JHH = 8 Hz, 1H, aryl CH),  6.73 (d, JHH = 9 Hz, 1H, aryl CH), 6.70 (d, JHH = 8 Hz, 1H, 

aryl CH), 6.61 (d, JHH = 8 Hz, 1H, aryl CH), 6.42 (t, JHH = 7 Hz, 1H, aryl CH), 6.33 (t, JHH = 7 

Hz, 1H, aryl CH), 5.27 (s, 1H, γ-CH), 4.99 (s, 1H, γ-CH),  2.31 (s, 3H, CH3), 2.27 (s, 3H, 

CH3), 2.06 (s, 3H, CH3), 1.48 (s, 3H, CH3). ESI-MS: m/z 343.18 [M-H]+.  IR (KBr pellet, 

cm-1): 1589(sh m), 1581(m), 1549(m), 1516(m), 1468(m), 1460(m), 1444(sh m), 

1410(sh s), 1396(vs), 1385(sh m), 1367(m), 1309(sh w), 1299(m), 1272(sh w), 

1265(m), 1207(m), 1173(w), 1155(w), 1103(w), 1029(w), 1024(w), 1007(m), 928(w), 

850(w), 827(w), 810(m), 802(m), 771(w), 742(sh m), 744(s), 733(m), 719(s), 677(m), 

627(m), 602(w), 543(w), 490(m). 
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5.4.7 Synthesis of the β-diketiminate pyrazolium macrocycle (E-isomer: 5.4). For 

preparation see experimental details for compound 5.3. X-ray quality crystals of 5.4 

were obtained from recrystallizing a mixture of 5.3 and 5.4 from a concentrated 

Et2O/THF solution in a 5:1 ratio. 1H NMR (C6D6, 25 °C, 400 MHz): δ 7.23 (d, JHH = 7 Hz, 

2H, aryl CH), 6.96 (t, JHH = 6 Hz, 2H, aryl CH), 6.86 (d, JHH = 6 Hz, 2H, aryl CH), 6.52 (t, JHH 

= 5 Hz, 2H, aryl CH), 5.14 (s, 1H, γ-CH), 4.51 (s, 1H, γ-CH), 2.26 (s, 6H, CH3), 1.87 (s, 6H, 

CH3).  13C{1H} NMR (C6D6, 25 °C, 126 MHz): δ 161.48 (s, 2C, NCCH3), 154.01 (s, 2C, 

NCaryl), 147.73 (s, 2C, NCCH3), 133.12 (s, 2C, aryl CH), 131.70 (s, 2C, aryl CH), 121.92 (s, 

2C, NCaryl), 117.37 (s, 2C, aryl CH), 106.97 (s, 1C, γ-CH), 88.77 (s, 1C, γ-CH), 25.73 (s, 2C, 

CH3), 12.89 (s, 2C, CH3). One aryl CH resonance is not observed due to overlap with the 

benzene resonance. 

5.4.8 Synthesis of [Li]2[Li(THF)3Cl]2[UO2Cl2{tmtaa}2UO2Cl2] (5.5). To a cold (-25°C) 

stirred yellow slurry of [UO2Cl2(THF)2]2 (66.2 mg, 0.068 mmol) in THF (1.5 mL), was 

added a cold (-25°C) red solution of Li2(tmtaa) (49.2 mg, 0.138 mmol) in THF (1 mL) 

dropwise, which resulted in an immediate change to a dark red-brown solution. The 

solution was allowed to stir for ~ 1 min at room temperature, whereupon the red-

brown solution was filtered through a Celite column supported on glass wool (0.5 cm × 

2 cm). The red-brown filtrate was concentrated in vacuo, and layered with Et2O (1.5 

mL). Storage at -25°C for 48 h, resulted in the deposition of red-brown crystals (36.2 

mg, 28% yield based on the starting materials, or 42% yield based on the stoichiometry 

in eq 5.1). Anal. Calcd C68H92Cl6Li4N8O10U2: C, 43.03; H, 4.89; N, 5.90. Anal. Calcd 

C60H76Cl6Li4N8O8U2: C, 41.09; H, 4.37; N, 6.39. Found: C, 40.99; H, 3.96; N, 6.22. 1H NMR 

(pyr-d5, 25 °C, 400 MHz): δ 7.17 (br s, 2H, aryl CH), 7.09 (t, 4H, aryl CH), 7.01 (br s, 2H, 
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aryl CH), 6.97 (d, 4H, aryl CH), 6.90 (br s, 2H, aryl CH), 6.87 (br d, 2H, aryl CH), 4.85 (s, 

2H, γ-CH), 4.81 (s, 2H, γ-CH), 2.25 (s, 3H, CH3), 1.99 (s, 3H, CH3). 7Li{1H} NMR (THF-d8, 

25 °C, 155 MHz): δ 1.93 (s, LiCl). 7Li{1H} NMR (pyr-d5, 25 °C, 155 MHz): δ 3.60 (s, 4Li), 

2.67 (s, 1Li). IR (KBr pellet, cm-1): 1660(m), 1645(sh w), 1618(sh w), 1591(w), 1535(sh 

w), 1518(m), 1473(s), 1441(m), 1373(sh s), 1362(vs), 1273(w), 1259(w), 1182(m), 

1107(w), 1059(sh w), 1039(m), 1014(sh w), 928(sh w), 897(s), 818(sh w), 800(m), 

787(sh w), 743(w), 740(w).  

5.4.9 Synthesis of [Li(THF)]2[UO2(N(SiMe3)2)2(tmtaa)] (5.6). To an orange solution 

of UO2(N(SiMe3)2)2(THF)2 (7.6 mg, 0.010 mmol) in C6D6 (1 mL), in an NMR tube, was 

added a red solution of Li2(tmtaa)2 (3.6 mg, 0.010 mmol) in C6D6 (0.5 mL) dropwise, 

which resulted in a slightly darker red solution. The solution was allowed to stand at 

room temperature for 3 h, whereupon red block crystals formed, whose identity was 

confirmed using X-ray crystallography. 1H NMR (C6D6, 25 °C, 400 MHz): δ 7.87 (d, JHH = 

8 Hz, 2H, aryl CH), 7.24 (t, JHH = 8 Hz, 2H, aryl CH), 7.04 (t, JHH = 8 Hz, 2H, aryl CH), 6.79 

(d, JHH = 8 Hz, 2H, aryl CH), 4.77 (s, 1H, γ-CH), 4.32 (s, 1H, γ-CH), 3.35 (br s, 8H, THF), 

1.95 (s, 6H, CH3), 1.82 (s, 6H, CH3), 1.28 (br s, 8H, THF), 0.78 (s, 18H, SiMe3), 0.33 (s, 

18H, SiMe3). 7Li{1H} NMR (C6D6, 25 °C, 155 MHz): δ 1.87 (s, 1Li), -0.47 (s, 1Li). 

 

5.4.10 X-ray Crystallography. The solid-state molecular structures of complexes 5.1, 

5.2, and 5.6, and compounds 5.3 and 5.4, were determined similarly with exceptions 

noted in the following paragraph. Crystals were mounted on a cryoloop under 

Paratone-N oil. Data collection was carried out on a Bruker KAPPA APEX II 

diffractometer equipped with an APEX II CCD detector using a TRIUMPH 
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monochromater with a Mo Kα X-ray source (α = 0.71073 Å). Data for 5.1 - 5.4 and 5.6 

were collected at 100(2) K, using an Oxford nitrogen gas cryostream system. A 

hemisphere of data was collected using ω scans with 0.5° frame widths.  Frame 

exposures of 5, 10, 10 and 20 seconds were used for 5.1, 5.3, 5.4, and 5.6 respectively, 

while frame exposures of 10 and 20 seconds were used for complex 5.2. Data for 5.5 

were collected on a Bruker Proteum2 diffractometer equipped with a PLATINUM CCD 

detector using multilayer optics with a CuKα X-ray source (α = 1.4178 Å). The crystals 

of 5.5 were mounted on a cryoloop under Paratone-N oil, and all data were collected at 

100(2) K using an Oxford nitrogen gas cryostream system. A hemisphere of data was 

collected using ω and ϕ  scans with 0.5° frame widths. Frame exposures of 30 and 60 

seconds were used for 5.5. Data collection and cell parameter determination for 

complexes 5.1 – 5.6 were conducted using the SMART program.49 Integration of the 

data frames and final cell parameter refinement were performed using SAINT 

software.50 Absorption correction of the data was carried out using the multi-scan 

method SADABS.51 Subsequent calculations were carried out using SHELXTL.52 
 

Structure determination was done using direct or Patterson methods and difference 

Fourier techniques. All hydrogen atom positions were idealized, and rode on the atom 

of attachment. However, hydrogen atoms were not assigned to the disordered carbon 

atoms.  Structure solution, refinement, graphics, and creation of publication materials 

were performed using SHELXTL.52  

Complex 5.2 contains an oxo ligand in the main residue that exhibits mild 

disorder. Since no other positions were indentified in the difference map, the disorder 

was addressed by not refining the atom anisotropically. Complex 5.5 contains a THF 
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solvent molecule that exhibits positional disorder. The positional disorder was 

addressed by modeling the molecule in two orientations in a 50:50 ratio. Disordered 

atoms were not refined anisotropically and were constrained with the EADP and DFIX 

commands. Hydrogen atoms were not assigned to these carbon atoms. Additionally, 

complex 5.5 exhibits some mild disorder of the other THF solvates. The disorder was 

addressed with the EADP command. Complex 5.6 exhibits mild disorder of the two 

SiMe3 groups. The disordered carbon atoms were not refined aniostropically and were 

constrained with the EADP and SADI commands. Additionally, one of these carbon 

atoms exhibits positional disorder. The positional disorder was addressed by modeling 

the atom in two orientations in a 50:50 ratio. A summary of crystallographic data for 

5.1-5.6 is presented in Tables 5.2-5.3. 
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Table 5.2. X-ray Crystallographic Information for 5.1, 5.2, and 5.5. 

 5.1  5.2  5.5∙C4H8O 
empirical formula  UN5O3Si2C32H49 UN8O2C44H46 UCl3Li2N4O6C38H54 

Crystal habit, color  block, red block, red-orange  shard, red-brown 
crystal size (mm)  0.4 × 0.3 × 0.2 0.3 × 0.2 × 0.2 0.2 × 0.1 ×0.05 
crystal system  triclinic triclinic triclinic 
space group  P-1 P-1 P-1 
vol (Å3)  3576(2) 990(2) 2074.0(2) 
a (Å)  12.614(4) 8.568(8) 10.6754(7) 
b (Å)  17.491(5) 9.760(8) 13.6529(9) 
c (Å)  17.517(5) 11.88(1) 14.8458(9) 
α (deg)  93.119(4) 91.84(2) 81.566(5)  
β (deg)  103.060(4) 94.46(2) 77.776(4) 
γ (deg)  106.749(4) 90.84(2) 80.959(5) 
Z  4 1 2 
fw (g/mol)  845.97 956.92 1021.11 
density (calcd) 
(Mg/m3)  

1.572 1.605 1.635 

abs coeff (mm-1)  4.644 4.148 13.182 
F000  1680 474 1014 
Total no. 
reflections  

17762 3959 3477 

Unique reflections  11513 3035 2552 
final R indices [I > 
2σ(I)]  

R1 = 0.0460 
wR2 = 0.0950 

R1 = 0.0903 
wR2 = 0.1954 

R1 = 0.0728 
wR2 = 0.1725 

largest diff peak 
and hole (e-Å-3)  

3.014 and -2.262 4.722 and -4.512 2.609 and -0.709 

GOF  0.896 1.107 1.097 
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Table 5.3. X-ray Crystallographic Information for 5.3, 5.4 and 5.6. 

 5.3 5.4∙C4H8O 5.6∙2C6D6 
empirical formula  N4C22H22 N4OC26H30 ULi2N6O4Si4C54H56D12 

Crystal habit, color  block, orange hexagon, orange block, red 
crystal size (mm)  0.1 × 0.1 ×0.05 0.1 × 0.1 ×0.05 0.2 × 0.1 ×0.05 
crystal system  monoclinic monoclinic orthorhombic 
space group  P21/n P21/c Pnma 
vol (Å3)  1799.6(3) 2186.0(2) 5838(2) 
a (Å)  12.281(1) 8.9736(4) 24.581(3) 
b (Å)  10.405(1) 12.4407(6) 19.479(3) 
c (Å)  14.842(1) 19.6623(8)  12.193(2) 
α (deg)  90 90 90  
β (deg)  108.383(6) 95.202(3) 90 
γ (deg)  90 90 90 
Z  4 4 4 
fw (g/mol)  342.44 414.54 1229.41 
density (calcd) 
(Mg/m3)  

1.264 1.260 1.399 

abs coeff (mm-1)  0.077 0.078 2.909 
F000  728 888 2480 
Total no. 
reflections  

4485 3027 5154 

Unique reflections  3179 2336 2164 
final R indices [I > 
2σ(I)]  

R1 = 0.0474 
wR2 = 0.1266 

R1 = 0.0373 
wR2 = 0.0850 

R1 = 0.0906 
wR2 = 0.2033 

largest diff peak 
and hole (e-Å-3)  

0.322 and -0.274 0.231 and -0.246 2.187 and -1.263 

GOF  0.837  0.999 0.942 
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6.1 Introduction 

 

The uranyl (UO22+) ion is known to exhibit a strictly linear O-U-O bond angle,1 

which rarely deviates past 170°. Multiple attempts have been made to generate a cis-

uranyl complex,2-9 employing two major strategies, however none have been 

successful. The first strategy is to introduce oxo ligands to a uranium precursor 

complex, where the geometry is predisposed for cis coordination2,3 The second 

strategy is to generate a cis-uranyl complex, by ligating a bulky, multidentate ligand to 

a trans-uranyl moiety, in order to effect a trans to cis isomerization.4-6 However, most 

attempts have failed due to either ligand oxidation or ligand decomposition (discussion 

in Section 1.4).2-4 Inspired by the second strategy, we sought to coordinate a 

polydentate macrocyclic ligand to the uranyl fragment to effect a trans to cis 

isomerization of the oxo ligands. 

Several researchers have previously explored the coordination of macrocycles 

to the uranyl ion. For example, Sessler and co-workers have demonstrated that the 

uranyl ion can fit within the binding pocket of the 20-membered pentaphyrin ligand.10 

With this large binding pocket there is no steric pressure placed upon the two oxo 

ligands, and, as a result, the trans configuration is observed experimentally.10-12 

Similarly, Sessler and co-workers also demonstrated that the uranyl ion fits within the 

binding pocket of the 18-membered alaskaphryin ligand.13 In contrast, there are no 

known uranyl porphyrin complexes, likely because the uranyl ion cannot be 

accommodated by the binding pocket of the smaller 16-membered porphyrin core.11 

These observations suggest that coordination of uranyl to a small (≤16 member ring 
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size) macrocycle could effect the desired trans/cis isomerization.  In Chapter 5, our 

group demonstrated that reaction of the anionic 14-membered macrocycle, [tmtaa]2- 

(tmtaaH2 = dibenzotetramethyltetraaza[14]annulene), with trans-uranyl precursors, 

resulted in the formation of the four tmtaa uranyl complexes, 

UO2(tmtaaH)(N(SiMe3)2)(THF) (5.1), UO2(tmtaaH)2 (5.2),  [Li]2[Li(THF)3Cl]2- 

[UO2Cl2{tmtaa}2UO2Cl2] (5.5), and [Li(THF)]2[UO2(N(SiMe3)2)2(tmtaa)] (5.6), where 

only two nitrogen atoms of the tmtaa ligands coordinate to the uranium centers, 

effectively leaving the O-U-O fragments unperturbed. This showcases that the tmtaa 

ligand is too flexible, and we hypothesize that more rigid and smaller macrocycles 

should be investigated.  Tetradentate macrocycles will apply better steric pressure to 

the O-U-O fragment, and could result in O-U-O deformation. Accordingly, in 

collaboration with the Mirica group at Washington University in St. Louis, we sought to 

explore the reactivity of the uranyl ion with the 12-membered macrocyclic ligands, HN4 

(HN4 = 2,11-diaza[3,3](2,6) pyridinophane) and MeN4 (MeN4 = N,N’-dimethyl-2,11-

diaza[3,3](2,6) pyridinophane), which were synthesized by Jason W. Schultz in the 

Mirica group. These HN4 and MeN4 ligands were recently shown to act as tetradentate 

ligands for transition metal ions, while leaving two open coordination sites in a cis 

arrangement.14-16 
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6.2 Results and Discussion 

6.2.1 Synthesis and Characterization of UO2Cl2(HN4) (6.1) and UO2Cl2(MeN4) (6.2)  

Addition of 2 equiv of HN4 to [UO2Cl2(THF)2]2, in MeCN, results in the formation 

of a yellow-orange slurry, from which UO2Cl2(HN4) (6.1) can be isolated as a yellow 

crystalline solid in 66% yield (Scheme 6.1). Similarly, addition of 2 equiv of MeN4 to 

[UO2Cl2(THF)2]2, in MeCN, results in the formation of an orange-yellow slurry, from 

which UO2Cl2(MeN4) (6.2) can be isolated as a yellow–orange powder in 73% yield 

(Scheme 6.1).  

 

Scheme 6.1. Synthesis of complexes 6.1 and 6.2. 

 

Complex 6.1 crystallizes in the monoclinic space group P21/m as the MeCN 

solvate, 6.1∙2MeCN (Figure 6.1), while complex 6.2 crystallizes in the orthorhombic 

space group Cmcm as the MeCN solvate, 6.2∙2MeCN (Figure 6.1). Complex 6.2 is also 

isolable in a second crystal modification (6.2a) with no co-crystallized MeCN solvate, 

which occupies the orthorhombic space group Pbcn (See Below). All four nitrogen 

atoms of the macrocyclic ligands are coordinated to the U centers in complexes 6.1 and 

6.2, generating 8-coordinate species. According to the continuous shape measure 

developed by Alvarez and co-workers,17 the geometries about the uranium centers in 
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6.1 and 6.2 could be described as either a triangular dodecahedron (6.1: CSM = 3.47; 

6.2: CSM = 3.79), or a snub diphenoid J84 (6.1: CSM = 3.44; 6.2: CSM = 3.24).  The O-U-

O angles in 6.1 and 6.2 are 164.1(3)° and 168.2(3)°, respectively (Table 6.1). These O-

U-O angles are amongst the smallest reported for the uranyl fragment, and are 

comparable to those observed for Cp*UO2(tBu-MesPDIMe) (O-U-O = 167.4(4)°),18 

[NEt4]2[UO2(η5-Cp*)(CN)3] (O-U-O = 168.40(9)°),19 UO2(SCS)(py)2 (SCS = C(PPh2S)2; O-

U-O 168.5(1)°),20 [UO2(BIPMTMS)(DMAP)2] (BIPMTMS = C(PPh2NSiMe3)2; DMAP = 4-

(dimethylamino)pyridine; O-U-O = 167.16(9)°),21 [UO2(O-2,6-tBu2C6H3)2(THF)2] (O-U-O 

= 167.8(4)°),22 and [UO2(κ2-NO3)2(nPrbtp)] (nPrbtp = 2,6-bis(5,6-di-n-propyl-1,2,4-

triazin-3-yl)pyridine; O-U-O = 166.2(1)°).23 We suggest that the deviation from 

linearity in complexes 6.1 and 6.2, in particular, is due to an unfavorable steric 

interaction between the oxo ligands and the macrocycle backbone.  In this regard, the 

smaller O-U-O angle in 6.1 vs. 6.2 may be due to the shorter U-NR (R = H, Me) and U-

Npyr bond lengths in the former, which is a result of the smaller steric profile of HN4 vs. 

MeN4.  A difference in M-NR bond distances between HN4 and MeN4 can also be seen in 

[FeCl2(HN4)][Cl] (Fe-N = 2.189(1) Å),24 and [FeCl2(MeN4)][FeCl4] (Fe-N = 2.237(2) and 

2.219(2) Å).25 The U-O bond lengths in 6.1 (1.776(5) and 1.785(5) Å) and 6.2 (1.779(6) 

Å), in contrast to the O-U-O angles, are similar to those exhibited by trans-uranyl.23 

Interestingly, the Npyr-M-Npyr angles in 6.1 (58.5(2)°) and 6.2 (56.2(2)°) are much 

smaller than those observed in other HN4 and MeN4 complexes,26-28 such as 

[Fe(HN4)Cl2][Cl] (84.95(7)°),24 [FeCl2(MeN4)][FeCl4] (78.05(8)°),25 OsCl2(MeN4) 

(82.4(3)°),29 and MnCl2(MeN4) (73.5(1)°).30 This difference can be rationalized by 

greater steric constraints placed upon the RN4 ligands by the uranyl fragment in 
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complexes 6.1 and 6.2, which are also reflected in the odd coordination geometries 

about the uranium centers. 

 

 

Figure 6.1. Solid-state structures of 6.1-6.4, with 50% probability ellipsoids. A) Solid-

state structure of UO2Cl2(HN4)∙2MeCN (6.1∙2MeCN). B) Solid-state structure of 

UO2Cl2(MeN4)∙2MeCN (6.2∙2MeCN). C) Solid-state structure of UO2(OTf)2(HN4) (6.3). D) 

Solid-state structure of [UO2(OTf)(THF)(MeN4)][OTf]∙0.5C4H8O (6.4∙0.5C4H8O). 

Complex 4 crystallizes with two independent molecules in the asymmetric unit. Only 

one is shown for clarity. Counterions, solvate molecules, and all hydrogen atoms have 

been omitted for clarity for complexes 6.1 – 6.4. 

 
 
 

  A. B. 

D. C. 
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Table 6.1. Selected bond lengths (Å) and angles (deg) for complexes 6.1-6.4. 

 6.1 6.2 6.2a 6.3 6.4 

U=O 1.776(5) 
1.785(5) 1.779(6) 1.769(4) 1.759(6) 

1.781(6) 
1.76(1) 
1.77(1) 

U-Npyr 
2.639(6) 
2.674(7) 2.732(5) 2.693(5) 2.626(7) 

2.635(7) 
2.68(1) 
2.73(1) 

U-NR 2.601(5) 2.727(6) 2.728(5) 2.580(7) 
2.597(7) 

2.63(1) 
2.67(1) 

U-Cl 2.735(1) 2.686(2) 2.677(2) - - 

U-OOTf - - - 2.397(6) 
2.409(6) 2.34(1) 

O-U-O 164.1(3) 168.2(3) 168.3(3) 162.8(3) 161.7(5) 
Npyr-U-Npyr 58.5(2) 56.2(2) 57.3(2) 59.4(2) 57.8(3) 
Difference 
in O-U-O 
and Npyr-U-
Npyr planes 

0 10.99(9)° 27.1(5)° 9.8(9)° 9.2(6)° 

Distance of 
the Npyr 
atom from 
the 
equatorial 
plane 

av. 1.298 Å 1.288(5) Å 1.083(5) Å av. 1.302 Å av. 1.305 Å 

 

An interesting aspect of these structures is the displacement of the N atoms of 

the two RN4 pyridine rings from the uranyl equatorial plane (defined by U1, N2, N2*, 

Cl1 and Cl1* in 6.1 and U1, N2, and N2* in 6.2). In particular, the Npyr atoms are 

displaced from the uranyl equatorial plane by 1.298 Å and 1.288(5) Å in 6.1 and 6.2, 

respectively (Table 6.1).  Deviations of multiple donor atoms from the equatorial plane 

of the UO22+ ion are very rare, and only a handful of examples are known.23,31-35 For 

instance, the nitrogen atoms in [UO2(terpy)2][OTf]2 (terpy = 2,6-bis(2-

pyridyl)pyridine) and [UO2(phen)3][OTf]2 (phen = 1,10-phenanthroline), feature 

maximum displacements from the uranyl equatorial plane of 0.49 and 0.71 Å, 
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respectively.33,36 Similarly, an N atom in the recently reported UO2Cl2(H2BBP) (H2BBP = 

2,6-bis(2-benzimidazolyl)pyridine) is displaced from the uranyl equatorial plane by 

0.74 Å.31 The most striking example of donor atom displacement from the equatorial 

plane is that exhibited by [NEt4]2[UO2(η5-Cp*)(CN)3].  In this example, the maximum 

displacement of one of the carbon atoms on the cyclopentadienyl ring is 1.494(6) Å.19  

Another interesting aspect of the structures of 6.2 and 6.2a, in particular, is the 

difference between the planes defined by the O-U-O and Npyr-U-Npyr atoms (Figure 6.2).  

This difference is 10.99(9)° and 27.1(5)° in 6.2 and 6.2a, respectively. As a 

consequence, the geometry about the uranium center in 2a is best described as a 

square antiprisim (CSM = 3.38).17 Presumably, the change in RN4 ligand orientation 

upon moving from complex 6.2 to complex 6.2a allows the uranyl fragment to avoid 

the large perturbation of the O-U-O fragment. Although, it is important to note that the 

O-U-O bond angles in 6.2 and 6.2a are basically identical, despite this difference 

between the O-U-O and Npyr-U-Npyr planes. 

 

Figure 6.2. Solid-state structures of (A) 6.2 and (B) 6.2a, with 50% probability 

ellipsoids, highlighting the difference between the O-U-O and Npyr-U-Npyr planes. All 

hydrogens and the MeCN solvates in 6.2 have been removed for clarity. 

B. A. 
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6.2.2 Synthesis and Characterization of UO2(OTf)2(HN4) (6.3) and 

[UO2(OTf)(THF)(MeN4)][OTf] (6.4) 

 

In an effort to strengthen (and shorten) the U-N bonds, and thereby decrease 

the O-U-O angle even further, we explored the substitution of the chloride ligands in 

6.1 and 6.2 with weaker electron donating pseudo-halide ligands. Thus, addition of 1 

equiv of HN4 to UO2(OTf)2(THF)3 in MeCN, results in formation of an orange solution, 

from which UO2(OTf)2(HN4) (6.3) can be isolated in a 76% yield as an orange powder 

(Scheme 6.2). Similarly, addition of 1 equiv of MeN4 to UO2(OTf)2(THF)3 in THF, results 

in formation of [UO2(OTf)(THF)(MeN4)][OTf] (6.4), which can be isolated as an orange 

powder in a 73% yield (Scheme 6.2).  We also attempted the reaction of MeN4 and 

UO2(OTf)2(THF)3 in MeCN. However, X-ray quality crystals could not be grown from 

this solvent. 

 

Scheme 6.2. Synthesis of complexes 6.3 and 6.4. 
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Complex 6.3 crystallizes in the orthorhombic space group Pna21, while complex 

6.4 crystallizes in the triclinic space group P-1 as a THF solvate, 4∙0.5C4H8O (Figure 

6.1). As with complexes 6.1 and 6.2, all four nitrogen atoms of the macrocyclic ligand 

are coordinated to the U centers in 6.3 and 6.4. Complex 6.3 also features two [OTf]- 

ligands within its inner coordination sphere, while complex 6.4 features a THF ligand 

and an [OTf]- ligand within its inner coordination sphere. Similar to 6.1 and 6.2, the 

geometries about the uranium centers in 6.3 and 6.4 could be described as either a 

triangular dodecahedron (6.3: CSM = 2.37; 6.4: CSM = 2.49),17 or a snub diphenoid J84 

(6.3: CSM = 2.80; 6.4: CSM = 2.58). Gratifyingly, the O-U-O bond angles in 6.3 

(162.8(3)°) and 6.4 (161.7(5)°) are smaller than those observed in 6.1 and 6.2 (Table 

6.1), and, more significantly, are smaller than any O-U-O angles reported previously.19-

23 These smaller angles are likely due to the exchange of chloride for the poorly 

electron donating [OTf]- ligands, which strengthens the U-N interactions.  That said, the 

U-NR and U-Npyr distances in 6.3 and 6.4 are not significantly shorter than those 

observed in 6.1 and 6.2.  In contrast, the U-N bond lengths in complexes 6.1 – 6.4 (ca. 

2.66 Å) are significantly longer than the U-N bond lengths in the tmtaa uranyl 

complexes UO2(tmtaaH)(N(SiMe3)2)(THF) (5.1) (tmtaaH2 = dibenzotetramethyl-

tetraaza[14]annulene), UO2(tmtaaH)2 (5.2), [Li]2[Li(THF)3Cl]2[UO2Cl2{tmtaa}2UO2Cl2] 

(5.5), and [Li(THF)]2- [UO2(N(SiMe3)2)2(tmtaa)] (5.6) (ca. 2.41 Å), indicating the 

anionic [tmtaa]2- ligand does have a stronger interaction with the uranium metal 

center than the neutral HN4 and MeN4 ligands.  Similar to 6.1 and 6.2, both complexes 

6.3 and 6.4 exhibit U=O distances that are typical of the uranyl fragment (6.3: 1.759(6) 

and 1.781(6) Å, 6.4: 1.76(1) and 1.77(1) Å).37 Both structures exhibit displacement of 
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the N atoms of the two RN4 pyridine rings from the uranyl equatorial plane (defined by 

the atoms U, N2, N4, O3 and O4 in 6.3 and U, N2, N4, O3 and O6 in 6.4). In particular, 

the Npyr atoms are displaced from the equatorial plane by 1.302 Å and 1.305 Å in 6.3 

and 6.4 (Table 6.1). These deviations are comparable to the deviations observed in 6.1 

and 6.2. The other metrical parameters in 6.3 and 6.4, including the Npyr-U-Npyr angles, 

are comparable to those observed in 6.1 and 6.2.   

 

6.2.3 Raman U=O νsym Stretch Comparison 

 

In an effort to better understand the effect of coordinating the RN4 macrocycles 

to the uranyl fragment, since the differences between the O-U-O bond angles of 

complexes 6.1 – 6.4 are rather small (only a total difference of 7°), we turned to Raman 

spectroscopy. This technique has proven to be useful for probing the relative strengths 

of the U=O bond in the uranyl fragment.38 Raman spectroscopic data for complexes 6.1 

– 6.4 are shown in Table 6.2.  Complexes 6.1 and 6.2 exhibit U=O νsym modes at 813 

and 815 cm-1, respectively, in their Raman spectra.  Interestingly, these values are on 

the lower end of the U=O νsym modes measured previously for the uranyl ion, and are 

similar to those observed for uranyl complexes with anionic, electron rich ligands, such 

as [UO2(CO3)3]4- and UO2(Aracnac)2 (Aracnac = ArNC(Ph)CHC(Ph)O; Ar = 3,5-

tBu2C6H3).39,40 For further comparison, the U=O νsym mode in [UO2Cl2(THF)2]2 was 

found to be 20 cm-1 higher, at 835 cm-1.  Both of these observations suggest that 

coordination of the macrocycle ligand to the uranyl ion does weaken the U-O bond to 

some extent.  Complexes 6.3 and 6.4 exhibit U=O νsym modes at 833 and 831 cm-1, 
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respectively (Figure 6.3; Table 6.2), in their Raman spectra. For comparison, the U=O 

νsym mode in UO2(OTf)2(THF)3 is observed at 842 cm-1, an increase of ca. 10 cm-1 vs. the 

values observed for 6.3 and 6.4. Again, this difference can be interpreted as evidence 

that the U=O bonds in the uranyl moiety are weakened upon coordination of the RN4 

macrocycle. That said, it is unlikely that the decrease in the U=O νsym mode observed 

upon coordination of RN4 to [UO2Cl2(THF)2]2 or UO2(OTf)2(THF)3 is due to the bending 

of the O-U-O fragment. Instead, this decrease is probably due to coordination of a 

relatively good tetradentate donor to the uranyl moiety.  In particular, it should be 

noted that complexes 6.1 and 6.2, which feature larger O-U-O angles than 6.3 and 6.4, 

actually exhibit weaker U=O bonds (as indicated by their lower U=O νsym modes). Their 

weaker U=O bonds can be rationalized by the stronger donor strength of Cl- vs. OTf-, 

highlighting the fact that the identity of the equatorial ligands has a greater effect on 

the U=O νsym frequency than does a change in O-U-O angle, at least when the changes in 

the O-U-O angles are small. It is also important to note that the three perturbed uranyl 

complexes, Cp*UO2(tBu-MesPDIMe) (O-U-O = 167.4(4)°),18 UO2(O-2,6-tBu2C6H3)2(THF)2 

(O-U-O = 167.8(4)°),38 and complex 6.2 (O-U-O = 168.2(3)°), with very similar O-U-O 

angles, exhibit vastly different U=O νsym streches of 789, 808, and 815 cm-1, 

respectively. This is definitely a consequence of the donating strength of the various 

co-ligands. 
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Table 6.2. Comparison of the U=O νsym Stretch for a Series of Uranyl Complexes. 

Complex U=O νsym 
stretch (cm-1) Ref. 

[UO2(OCH(iPr)2)2]4 713 41 
[Na(THF)UO2(NCN)2]2(μ2-O) [NCN = 
Me3Si(N)CPh(N)SiMe3] 757 42 

[Na(THF)2PhCN][UO2(NCN)3]  773 42 
[UO2(OH)4]2- 784 43 
Cp*UO2(MesPDIMe) (MesPDIMe = 2,6-((Mes)N=CMe)2C5H3N) 788 18 
Cp*UO2(tBu-MesPDIMe) (tBu-MesPDIMe = 2,6-
((Mes)N=CMe)2-p-C(CH3)3C5H2N) 789 18 

UO2[OCH(tBu)Ph]2(THF)2 796 41 
[UO2(N{SiMe3}2)4]2- 801 44 
UO2(NCN)2(THF)  803 45 
UO2(O-2,6-tBu2C6H3)2(THF)2 804 22 
UO2(OCHPh2)2(THF)2 804 41 
[UO2(N{SiMe3}2)3]- 805 44 
UO2(tmtaaH)(N(SiMe3)2)(THF) (5.1) 805 Ch. 5 
UO2(tmtaaH)2 (5.2) 805 Ch. 5 
UO2(O-2,6-Ph2C6H3)2(THF)2  808 38 
[UO2(CO3)3]4- 812 39 
UO2(Aracnac)2 (Aracnac = ArNC(Ph)CHC(Ph)O) 812 40 
UO2Cl2(HN4) (6.1) 813 Ch. 6 
UO2Cl2(MeN4) (6.2) 815 Ch. 6 
UO2(NCN)2 818 42 
UO2(N{SiMe3}2)2(THF) 819 44 
UO2(NCS)2(Me-N-Sal)3(H2O)2 (Me-N-Sal = p-CH3-
salicylideneaniline) 822 46 

UO2(tBuacnac)2(THF) (tBuacnac = tBuNC(Ph)CHC(Ph)O) 823 40 
UO2(dbm)2(THF) (2.1) 823 Ch. 2 
UO2(dbmMe)2THF (4.3) 827 Ch. 4 
UO2(sal-p-phdn)(H2O) (sal-p-phdn = N,N’-p-phenylene-
bis(salicylideneiminato)) 830 47 

[UO2(OTf)(THF)(MeN4)][OTf] (6.4) 831 Ch. 6 
UO2(OTf)2(HN4) (6.3) 833 Ch. 6 
[UO2Cl2(THF)2]2 835 (834, 840) Ch. 6 (42,45) 
[UO2Cl(O-2,6-Me2C6H3)(THF)2]2 835 22 
[UO2(TPPO)4][OTf2]  839 48 
[UO2(O-2,6-Cl2C6H3)2(THF)2]2 839 22 
UO2(OTf)2(THF)3 842 Ch. 6 
[UO2(OAc)3]- 843 39 
[UO2(dppmo)2OTf][OTf]  849 49 
[UO2Cl4]2- 854 39 
[UO2(H2O)5]2+ 870 39 
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Figure 6.3. Solid-state Raman spectrum of 6.3. U=O νsym stretch is observed at 833   

cm-1 (*). 

 

6.2.4 Solution Phase Behavior of Complexes 6.1 - 6.4 

 

Finally, we explored the chemical properties and solution phase behavior of 

complexes 6.1 – 6.4. Complexes 6.1 – 6.3 are insoluble in non-polar solvents, aromatic 

solvents, and Et2O and THF, and only sparingly soluble in CH2Cl2 and MeCN. In contrast, 

complex 6.4 is slightly soluble in THF, and very soluble in CH2Cl2 and MeCN. The 1H 

NMR spectrum of 6.1 in CD2Cl2 features diastereotopic methylene environments at 

5.23 ppm and 4.82 ppm for the HN4 ligand, consistent with its ligation to a metal 

center.50-52 Similarly, the 1H NMR spectrum of 6.2 in CD2Cl2 exhibits diastereotopic 

methylene resonances at 4.85 and 4.29 ppm for the MeN4 ligand (Figure 6.4). Also 

observed in this spectrum is a singlet at 3.57 ppm, which is assignable to the two 

* 
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methyl substituents.  The 1H NMR spectrum of 6.3 in CD2Cl2 features diastereotopic 

methylene environments at 5.19 ppm and 4.91 ppm for the HN4 ligand.50 In addition, 

this spectrum also features a broad resonance at 5.76 ppm, which we have assigned to 

the NH substituent. The 19F{1H} NMR spectrum of 6.3 exhibits a singlet -77.41 ppm. As 

observed for 6.3, the 1H NMR spectrum of 6.4 in CD2Cl2 exhibits diastereotopic 

methylene resonances at 4.87 and 4.53 ppm. The spectrum also features a CH3 

resonance at 3.59 ppm and two broad singlets at 3.73 and 1.84 ppm, which are 

assignable to the THF ligand. The 19F{1H} NMR spectrum of 6.4 in CD2Cl2 only exhibits 

a single resonance at -77.56 ppm, suggesting that the inner- and outer-sphere [OTf]- 

moieties undergo rapid exchange in solution. 

 

Figure 6.4. 1H NMR spectrum of complex 6.2 in CD2Cl2. Asterisks indicate the presence 

of MeCN, Et2O, and hexanes. 

* 

* 

* 

* 
* 
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Complexes 6.1 – 6.4 are also very soluble in pyridine.  However, dissolution of 

complex 6.2 in pyridine-d5 results in displacement of the macrocycle from the uranyl 

coordination sphere, according to 1H NMR spectroscopy, along with probable 

formation of UO2(py)3(Cl)2 (eq 6.1).53 This observation is significant because it 

suggests that uranyl-macrocycle interaction in 6.2 is relatively weak; no doubt because 

of the mismatch between the uranyl ion and the MeN4 macrocycle binding pocket.  

Dissolution of 6.1, 6.3, or 6.4 in pyridine does not result in macrocycle dissociation, 

likely because of the smaller steric profile of HN4 (in the case of 6.1 and 6.3) or the 

positive charge of the complex (in the case of 6.4).  Both effects are anticipated to 

strengthen the uranyl–macrocycle bonds. 

 

6.3  Summary 

 

The four 8-coordinate perturbed uranyl complexes, UO2Cl2(RN4) (R = H; 6.1; Me, 

6.2), UO2(OTf)2(HN4) (6.3), and [UO2(OTf)(THF)(MeN4)][OTf] (6.4), can be synthesized 

by ligation of the 12-membered macrocyclic ligands HN4 and MeN4 to the uranyl ion. 

Complexes 6.3 and 6.4 exhibit the smallest O-U-O bond angles yet reported, although 

all four complexes feature O-U-O angles that are 168° or smaller. These small O-U-O 
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angles are a result of steric repulsion between the oxo ligands of the uranyl fragment 

and the macrocycle backbone, which is a consequence of the small binding pocket of 

the RN4 ligand.  Perhaps more importantly, our results reveal that coordination of a 

small macrocycle to the uranyl ion is a viable strategy for the perturbation of the O-U-O 

angle.  Although these complexes are clearly not cis-uranyl complexes, they do give a 

lot of insight into how to potentially isolate a cis-uranyl complex in the future. As 

evidenced by the relatively small Npyr-U-Npyr angles of complexes 6.1 – 6.4, the 

macrocyclic ligands still feature significant flexibility. Also, dissolution of 6.2 in 

pyridine, will displace the macrocyclic ligand, indicating they are not strongly bound to 

the metal centers. Future studies will need to focus on macrocycles with even greater 

rigidity, such as the “cross-bridged” cyclam ligands,54,55 and focus on anionic 

macrocycle ligands, which result in shorter uranyl-macrocycle bonds on account of the 

greater electrostatic attraction to UO22+, as evidenced by the difference in U-N bond 

lengths between complexes 6.1 – 6.4 (ca. 2.67 Å) and the tmtaa uranyl complexes 5.1, 

5.2, 5.5, and 5.6 (ca. 2.41 Å).   
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6.4 Experimental 

6.4.1 General Procedures.  All reactions and subsequent manipulations were 

performed under anaerobic and anhydrous conditions under an atmosphere of 

nitrogen. Et2O, THF and toluene were dried by passage over activated molecular sieves 

using a Vacuum Atmospheres solvent purification system.  CH2Cl2, CD2Cl2, MeCN, 

MeCN-d3 and pyr-d5 were dried over activated 3Å molecular sieves for 24 h before use. 

[UO2Cl2(THF)2]2,37 UO2(OTf)2(THF)3,56 HN4,57 and MeN4,58 were prepared according to 

literature procedures. All other reagents were purchased from commercial suppliers 

and used as received.   

NMR spectra were recorded on a Varian UNITY INOVA 400 spectrometer or a 

Varian UNITY INOVA 500 spectrometer. 1H NMR spectra were referenced to external 

SiMe4 using the residual protio solvent peaks as internal standards. The chemical shifts 

of 19F{1H} were referenced indirectly with the 1H resonance of SiMe4 at 0 ppm, 

according to IUPAC standard.59,60 IR spectra were recorded on a Mattson Genesis 

FTIR/Raman spectrometer. UV-vis/NIR experiments were performed on a UV-3600 

Shimadzu spectrophotometer. Elemental analyses were performed by the 

Microanalytical Laboratory at UC Berkeley.  

6.4.2 Raman Spectroscopy. Raman spectra were recorded on a LabRam Aramis 

microRaman system (Horiba Jobin Yvon) equipped with 1200 grooves/mm 

holographic gratings, and Peltier-cooled CCD camera.  The 633 nm output of a Melles 

Griot He-Ne laser was used to excite the sample, and spectra were collected in a back 

scattering geometry using a confocal Raman Microscope (high stability BX40) 

equipped with Olympus objectives (MPlan 50x).  Sample preparation was performed 
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inside the glovebox: Pure crystalline solid samples were placed between a glass 

microscope slide and coverslip, sealed with a bead of silicone grease, and removed 

from the glovebox for spectral acquisition. 

6.4.3 Characterization of [UO2Cl2(THF)2]2. This complex was prepared according to 

the published procedure.37 Raman (neat solid, cm-1): 1491 (w), 1463 (w), 1460 (w), 

1367 (w), 1248 (w), 1231 (w), 1046 (w), 922 (m), 884 (vs), 835 (vs, U=O νsym), 238 

(m), 192 (m), 176 (m). 

6.4.4 Characterization of UO2(OTf)2(THF)3. This complex was prepared according to 

the published procedure.56 Raman (neat solid, cm-1): 1448 (w), 1332 (w), 1233 (m), 

1162 (w), 1029 (sh w), 1016 (m), 999 (sh w), 915 (m), 878 (m), 843 (s, U=O νsym), 758 

(m), 580 (w), 564 (w), 346 (w), 343 (w), 317 (m), 177 (m). 

6.4.5 Synthesis of UO2Cl2(HN4) (6.1). To a stirring yellow solution of [UO2Cl2(THF)2]2 

(30.6 mg, 0.032 mmol) in MeCN (2 mL), was added dropwise an off-white slurry of HN4 

(15.0 mg, 0.062 mmol) in MeCN (1 mL).  This resulted in an immediate color change to 

dark yellow, concomitant with the deposition of yellow solid. The mixture was then 

allowed to stir at room temperature for 1 h, whereupon the slurry was heated to ca. 70 

°C. After 5 min at 70 °C, most of the solid had dissolved, and the yellow-orange slurry 

was quickly filtered through a Celite column (2 cm × 0.5 cm) supported on glass wool.  

Storage of the yellow filtrate at -25 °C for 24 h resulted in the deposition of a yellow 

crystalline solid (24.1 mg, 66% yield).  X-ray quality crystals of 6.1 were grown from a 

hot, concentrated MeCN solution that was allowed to cool slowly to room temperature. 

Anal. Calcd for UCl2N4O2C14H16: C, 28.93; H, 2.77; N, 9.64. Found: C, 29.25; H, 2.42; N, 

9.91. 1H NMR (CD2Cl2, 25 °C, 500 MHz): δ 7.57 (t, JHH = 8 Hz, 2H, aryl CH), 7.17 (d, JHH = 
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8 Hz, 4H, aryl CH), 5.23 (dd, JHH = 6 Hz, JHH = 16 Hz, 4H, CH2), 4.82 (d, JHH = 16 Hz, 4H, 

CH2). The NH resonance was not observed. 1H NMR (pyr-d5, 25 °C, 400 MHz): δ 7.39 (t, 

JHH = 8 Hz, 2H, aryl CH), 7.05 (d, JHH = 8 Hz, 4H, aryl CH), 6.47 (t, JHH = 6 Hz, 2H, NH), 

5.33 (dd, JHH = 6 Hz, JHH = 16 Hz, 4H, CH2), 4.82 (d, JHH = 16 Hz, 4H, CH2). IR (KBr pellet, 

cm-1): 1606 (sh m), 1599 (s), 1583 (m), 1470 (m), 1443 (s), 1423 (sh m), 1379 (m), 

1373 (sh w), 1311 (m), 1290 (w), 1255 (w), 1209 (w), 1155 (m), 1088 (m), 1061 (s), 

1041 (s), 1010 (sh m), 997 (s), 949 (w), 910 (s), 903 (vs), 889 (vs), 816 (s), 791 (s), 752 

(m), 706 (w), 671 (w), 636 (vs), 480 (w). Raman (neat solid, cm-1): 1582 (w), 1395 (w), 

1260 (w), 1099 (w), 1015 (m), 910 (w), 813 (vs, U=O νsym), 760 (w), 709 (w), 520 (w), 

424 (w), 196 (m). 

6.4.6 Synthesis of UO2Cl2(MeN4) (6.2). To a stirring yellow solution of 

[UO2Cl2(THF)2]2 (48.5 mg, 0.050 mmol) in MeCN (1 mL), was added dropwise a 

colorless solution of MeN4 (24.3 mg, 0.091 mmol) in MeCN (1 mL). This resulted in an 

immediate color change to orange-yellow, concomitant with the deposition of an 

orange-yellow precipitate. This orange-yellow slurry was allowed to stir at room 

temperature for 10 min, whereupon the orange-yellow solid was isolated by decanting 

off the supernatant. The solid was washed with Et2O (1 mL), and then dried in vacuo 

(41.8 mg, 73% yield). X-ray quality crystals of 6.2 were grown from a concentrated 

MeCN solution layered with and equal volume of Et2O, and which was stored at -25 °C 

for 24 h. Anal. Calcd for UCl2N4O2C16H20: C, 31.54; H, 3.31; N, 9.20. Found: C, 31.17; H, 

2.58; N, 10.35. 1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 7.52 (t, JHH = 8 Hz, 2H, aryl CH), 7.05 

(d, JHH = 8 Hz, 4H, aryl CH), 4.85 (d, JHH = 15 Hz, 4H, CH2), 4.29 (d, JHH = 15 Hz, 4H, CH2), 

3.57 (s, 6H, CH3). IR (KBr pellet, cm-1): 1597 (m), 1578 (w), 1468 (m), 1452 (sh m), 
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1446 (s), 1427 (sh w), 1385 (m), 1367 (w), 1309 (w), 1263 (w), 1254 (w), 1232 (w), 

1219 (m), 1182 (w), 1165 (m), 1093 (sh w), 1088 (m), 1082 (m), 1014 (s), 980 (w), 

951 (w), 895 (vs), 885 (sh m), 812 (sh w), 802 (s), 762 (m), 727 (w), 636 (w), 538 (w), 

471 (w), 455 (w). Raman (neat solid, cm-1): 1580 (w), 1465 (w), 1454 (w), 1386 (w), 

1258 (w), 1085 (w), 1015 (m), 815 (s, U=O νsym), 769 (w), 730 (w), 403 (m), 396 (m), 

284 (m), 240 (m), 199 (m), 152 (m), 118 (vs).  

6.4.7 Synthesis of UO2(OTf)2(HN4) (6.3). To a stirring yellow solution of 

UO2(OTf)2(THF)3 (49.5 mg, 0.063 mmol) in MeCN (1 mL), was added dropwise an off-

white slurry of HN4 (14.6 mg, 0.061 mmol) in MeCN (1 mL).   This resulted in an 

immediate color change to orange. The orange solution was allowed to stir at room 

temperature for 10 min, whereupon it was filtered through a Celite column (2 cm × 0.5 

cm) supported on glass wool. The resulting orange filtrate was concentrated in vacuo 

to ca. 1 mL, and layered with Et2O (3 mL). Storage of this solution at -25 °C for 24 h 

resulted in the deposition of orange powder (38.6 mg, 76% yield). X-ray quality 

crystals were grown from a MeCN solution layered with an equal volume of Et2O, which 

was stored at -25 °C for 24 h. Anal. Calcd for UF6N4O8S2C16H16: C, 23.77; H, 1.99; N, 6.93. 

Found: C, 24.19; H, 1.21; N, 7.09. 1H NMR (CD2Cl2, 25 °C, 400 MHz): δ 7.66 (t, JHH = 8 Hz, 

2H, aryl CH), 7.29 (d, JHH = 8 Hz, 4H, aryl CH), 5.76 (br s, 2H, NH), 5.19 (dd, JHH = 5 Hz, 

JHH = 16 Hz 4H, CH2), 4.91 (d, JHH = 16 Hz, 4H, CH2). 1H NMR (pyr-d5, 25 °C, 400 MHz): δ 

7.59 (br t, JHH = 9 Hz, 2H, aryl CH), 7.28 (d, JHH = 7 Hz, 4H, aryl CH), 6.17 (br s, 2H, NH), 

5.23 (br d, JHH = 14 Hz 4H, CH2), 4.96 (d, JHH = 16 Hz, 4H, CH2). 19F{1H} NMR (CD2Cl2, 25 

°C, 376 MHz): δ -77.41. 19F{1H} NMR (pyr-d5, 25 °C, 376 MHz): δ -77.29. IR (KBr pellet, 

cm-1): 1610 (sh w), 1603 (w), 1585 (w), 1475 (w), 1450 (m), 1325 (s), 1309 (sh m), 
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1296 (m), 1252 (sh m), 1232 (s), 1203 (s), 1198 (s), 1178 (s), 1171 (sh m), 1088 (w), 

1068 (w), 1057 (m), 1026 (m), 1009 (vs), 950 (w), 942 (sh w), 903 (s), 825 (w), 802 

(m), 796 (w), 756 (w), 633 (vs), 579 (w), 571 (w), 515 (m). Raman (neat solid, cm-1): 

1587 (w), 1474 (w), 1393 (w), 1264 (w), 1243 (w), 1079 (w), 1028 (m), 833 (s, U=O 

νsym), 762 (m), 585 (w), 574 (w), 415 (m), 349 (w), 325 (w), 181 (w). 

6.4.8 Synthesis of [UO2(OTf)(THF)(MeN4)][OTf] (6.4). To a stirring yellow solution 

of UO2(OTf)2(THF)3 (67.1 mg, 0.086 mmol) in THF (1.5 mL), was added dropwise a 

colorless solution of MeN4 (22.0 mg, 0.082 mmol) in THF (1 mL).  This resulted in the 

immediate color change to orange. The mixture was allowed to stir at room 

temperature for 10 min, whereupon it was filtered through a Celite column (2 cm × 0.5 

cm) supported on glass wool. The resulting orange filtrate was then layered with Et2O 

(1 mL). Storage of this solution at -25 °C for 24 h resulted in the deposition an orange 

powder, which was isolated by decanting off the supernatant (56.8 mg, 73% yield). X-

ray quality crystals were grown in a 2 vial system, whereby a THF solution (3 mL) of 

6.4 was transferred to a 4 mL scintillation vial that was placed inside a 20 mL 

scintillation vial. Et2O (2 mL) was then added to the outer vial. Storage of this 2 vial 

system at -25 °C for 24 h afforded orange X-ray quality crystals. Anal. Calcd for 

UF6N4O9S2C22H28: C, 29.08; H, 3.11; N, 6.17. Found: C, 29.50; H, 3.07; N, 5.89. 1H NMR 

(CD2Cl2, 25 °C, 400 MHz): δ 7.67 (t, JHH = 8Hz, 2H, aryl CH), 7.23 (d, JHH = 8 Hz, 4H, aryl 

CH), 4.87 (d, JHH = 15 Hz, 4H, CH2), 4.53 (d, JHH = 15 Hz, 4H, CH2), 3.73 (br s, 4H, THF), 

3.59 (br s, 6H, CH3), 1.84 (br s, 4H, THF). 1H NMR (pyr-d5, 25 °C, 400 MHz): δ 7.59 (br s, 

2H, aryl CH), 7.22 (br s, 4H, aryl CH), 4.94 (d, JHH = 15 Hz, 4H, CH2), 4.78 (d, JHH = 16 Hz, 

4H, CH2), 3.66 (br s, 4H, THF), 2.93 (br s, 6H, CH3), 1.62 (br s, 4H, THF). 19F{1H} NMR 
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(CD2Cl2, 25 °C, 376 MHz): δ -77.57. 19F{1H} NMR (pyr-d5, 25 °C, 376 MHz): δ -77.41. IR 

(KBr pellet, cm-1): 3049 (w), 3006 (sh w), 2980 (m), 2962 (sh m), 2943 (sh m), 2877 

(w), 2873 (w), 2806 (sh vw), 1603 (m), 1583 (m), 1470 (sh m), 1462 (m), 1452 (sh m), 

1390 (w), 1362 (sh w), 1327 (s), 1265 (s), 1255 (s), 1234 (s), 1223 (m), 1205 (s), 1173 

(sh m), 1155 (s), 1080 (sh w), 1068 (w), 1065 (w), 1030 (s), 1012 (s), 957 (w), 912 (m), 

883 (m), 866 (m), 854 (m), 812 (m), 768 (m), 756 (w), 729 (w), 636 (vs), 580 (sh w), 

573 (m), 526 (w), 517 (m), 471 (w). Raman (neat solid, cm-1): 1608 (w), 1585 (w), 

1465 (w), 1391 (w), 1262 (m), 1237 (w), 1227 (w), 1079 (w), 1030 (m), 1028 (m), 924 

(w), 831 (s, U=O νsym), 766 (w), 764 (w), 574 (w), 418 (m), 347 (w), 187 (w), 116 (m). 

 

6.4.9 X-ray Crystallography. The solid-state molecular structures of complexes 6.1 – 

6.4 were determined similarly with exceptions noted in the following paragraph. 

Crystals were mounted on a cryoloop under Paratone-N oil. Data collection was carried 

out on a Bruker KAPPA APEX II diffractometer equipped with an APEX II CCD detector 

using a TRIUMPH monochromater with a Mo Kα X-ray source (α = 0.71073 Å). Data for 

6.1 – 6.4 were collected at 100(2) K, using an Oxford nitrogen gas cryostream system. 

A hemisphere of data was collected using ω scans with 0.5° frame widths.  Frame 

exposures of 5, 10, 15, 5, and 45 seconds were used for complexes 6.1, 6.2, 6.2a, 6.3, 

and 6.4, respectively. Data collection and cell parameter determination were 

conducted using the SMART program.61 Integration of the data frames and final cell 

parameter refinement were performed using SAINT software.62 Absorption correction 

of the data was carried out using the multi-scan method SADABS.63 Subsequent 

calculations were carried out using SHELXTL.64 
 
Structure determination was done 
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using direct or Patterson methods and difference Fourier techniques. All hydrogen 

atom positions were idealized, and rode on the atom of attachment. However, 

hydrogen atoms were not assigned to the disordered carbon atoms.  Structure solution, 

refinement, graphics, and creation of publication materials were performed using 

SHELXTL.64  

Complex 6.1 contains a MeCN solvent molecule that exhibits mild positional 

disorder about the methyl carbon atom. The positional disorder was addressed by 

modeling the CH3 group in two orientations in a 50:50 ratio. Hydrogen atoms were not 

assigned to this carbon atom. Complex 6.1 was also mildly twined. The twinning was 

subsequently revealed by using the program CELL_NOW.65 Complex 6.2 contains two 

oxo ligands and two chloride ligands in the main residue that exhibit positional 

disorder. The positional disorder was addressed by modeling the affected atoms in two 

orientations in a 50:50 ratio. Additionally, complex 6.2 exhibits some mild positional 

disorder of the two MeCN solvent molecules. Hydrogen atoms were not assigned to 

these carbon atoms. Complex 6.4 exhibits positional disorder of one OTf moiety in the 

main residue. This disorder was addressed by modeling the OTf moiety in two 

orientations in a 50:50 ratio. The atoms of the OTf moiety were not refined 

anisotropically. Complex 6.4 also contains a THF solvent molecule that exhibited 

positional disorder, which was address by modeling the molecule in two orientations 

in a 50:50 ratio. Disordered atoms were not refined anisotropically and were 

constrained with the EADP, DFIX, and FLAT commands. Hydrogen atoms were not 

assigned to these carbon atoms.  A summary of relevant crystallographic data for 6.1 – 

6.4 is presented in Tables 6.3-6.4.   
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Table 6.3. X-ray Crystallographic Information for 6.1 – 6.2a. 

 6.1∙2MeCN  6.2∙2MeCN   6.2a 
empirical formula  UCl2N6O2C18H22 UCl2N6O2C20H26 UCl2N4O2C16H20 

Crystal habit, color  block, yellow orange shard, light yellow  block, orange 
crystal size (mm)  0.15 × 0.15 × 0.05 0.1 × 0.05 × 0.025 0.1 × 0.1 × 0.05 
crystal system  monoclinic orthorhombic orthorhombic  
space group  P21/m Cmcm Pbcn 
vol (Å3)  1146.9(1) 2334(2) 1864.1(8) 
a (Å)  8.3513(5) 16.085(7) 9.434(2) 
b (Å)  15.0623(9) 10.152(4) 14.676(3) 
c (Å)  9.9039(6) 14.291(6) 13.464(4) 
α (deg)  90 90 90 
β (deg)  112.981(3) 90 90 
γ (deg)  90 90 90 
Z  2 4 4 
fw (g/mol)  660.32 691.40 609.29 
density (calcd) 
(Mg/m3)  

1.912 1.968 2.171 

abs coeff (mm-1)  7.334 7.213 9.011 
F000  622 1320 1144 
Total no. 
reflections  

2451 1285 1902 

Unique reflections  2279 1149 1177 
final R indices [I > 
2σ(I)]  

R1 = 0.0286 
wR2 = 0.0764 

R1 = 0.0360 
wR2 = 0.0609 

R1 = 0.0304 
wR2 = 0.0510 

largest diff peak 
and hole (e-Å-3)  

3.015 and -1.765 1.386 and -0.822 0.896 and -0.971 

GOF  1.107 1.052 0.949 
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Table 6.4. X-ray Crystallographic Information for 6.3 and 6.4. 

 6.3  6.4∙0.5C4H8O  
empirical formula  UF6N4O8S2C16H16 UF6N4O9.5S2C24H32 
Crystal habit, color  block, orange rod, brown  
crystal size (mm)  0.10 × 0.10 × 0.05 0.1 × 0.05 × 0.04 
crystal system  orthorhombic triclinic 
space group  Pna21 P-1 
vol (Å3)  2378.5(2) 3159(5) 
a (Å)  11.7508(5) 12.33(1) 
b (Å)  18.807(1) 16.38(2) 
c (Å)  10.7623(4) 16.61(2) 
α (deg)  90 90.59(2) 
β (deg)  90 100.23(2) 
γ (deg)  90 106.38(2) 
Z  4 4 
fw (g/mol)  808.48 944.69 
density (calcd) 
(Mg/m3)  

2.258 1.983 

abs coeff (mm-1)  7.098 5.363 
F000  1528 1825 
Total no. 
reflections  

4744 10655 

Unique reflections  3857 3616 
final R indices [I > 
2σ(I)]  

R1 = 0.0341 
wR2 = 0.0759 

R1 = 0.0612 
wR2 = 0.0812 

largest diff peak 
and hole (e-Å-3)  

1.771 and -2.114 1.344 and -1.170 

GOF  0.930 0.823 
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7.1 Introduction 

7.1.1 Actinide Aryl Complexes 

 

Not much is known about the chemistry of the An-Caryl bond, as only a few 

actinide aryl complexes have been structurally characterized.1-4 Like the majority of 

alkyl actinide complexes, actinide aryl complexes have been dominated by the use of 

cyclopentadienyl (Cp) as a supporting ligand, specifically the bis(Cp) framework or 

“metallocene” framework.1,2,5-9 For example, Kiplinger and co-workers demonstrated 

that reaction of the dimethyl uranium complex, (η5-Cp*)2UMe2, with 1 equiv of HNPh2 

at 100 °C, led to the isolation of the uranium metallacycle, (η5-Cp*)2[U(N,C)-(o-

C6H4)NPh], which has been structurally characterized (Scheme 7.1a).1 This product is 

likely formed by intermolecular C-H activation at the ortho position on the phenyl ring. 

Additionally, Evans and co-workers synthesized a telluride supported aryl complex 

with the formula, (η5-Cp*)2U(η2-TeC6H4) (Scheme 7.1b),2 and Zi and co-workers 

synthesized the thorium metallacycle, [η5-1,2,4-(Me3C)3C5H2]2Th[η2-N,C-{N(p-

MeC6H3)(SiHPh2)}] (Scheme 7.1c).4 Notably, these aryl complexes are supported by 

chelate-type ligands. The first and only crystallographically characterized “true” 

uranium phenyl complex, (η5-Cp*)2U(hpp)(C6H5), was synthesized by Evans and co-

workers by reaction of (η5-Cp*)2U(hpp)(Cl) with PhLi (Scheme 7.1d).3 
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Scheme 7.1. Synthesis of a) (η5-Cp*)2[U(N,C)-(o-C6H4)NPh], b) (η5-Cp*)2U(η2-TeC6H4), 

c) [η5-1,2,4-(Me3C)3C5H2]2Th[η2-N,C-{N(p-MeC6H3)(SiHPh2)}], and d) (η5-

Cp*)2U(hpp)(C6H5). Scheme reproduced from references 1-4. 

 

There are only a small number of structurally characterized non-metallocene 

actinide aryl complexes,6 such as [Li(DME)3]2[Th(C6H5)6],10 [Li(THF)(12-crown-

4)]2[Th(C6H5)6],10 Th(2-C6H4CH2NMe2)4,11 [Li][U(2,3-C6H3CH2NMe2)(2-

C6H4CH2NMe2)3],11 and [Li][Li(THF)2][UCl2(2,3-C6H3CH2NMe2)(2-C6H4CH2NMe2)2].11 
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Our research group has utilized the chelating N,N-dimethylbenzylamine ligand to 

isolate and crystallographically characterize a rare non-metallocene, homoletic 

thorium aryl complex, Th(2-C6H4CH2NMe2)4, which is synthesized by reaction of 

ThCl4(DME)2 and 5 equiv of 2-Li-C6H4CH2NMe2 (Scheme 7.2).11 This ligand is bidentate 

and can provide kinetic stabilization of the M-C bond because of a strong σ-donating 

dimethylamino group.12-17 Similarly, the N,N-dimethylbenzylamine ligand has also 

been used to stabilize a series of homoleptic lanthanide(III) aryl complexes, namely 

Ln(2-C6H4CH2NMe2)3 (Ln = Er, Yb, Y, Lu),12 and the U(IV) complex, UCl2(2-

C6H4CH2NMe2)(TpMs),17 however, the X-ray crystallographic data was of poor quality 

for this complex. 

 

Scheme 7.2. Synthesis of Th(2-C6H4CH2NMe2)4. Scheme adapted from reference 11. 

 

7.1.2 Metal-Stabilized Benzynes 

 

Benzynes are widely used in organic chemistry,18 as they are highly reactive 

intermediates that allow for multiple, rapid functionalizations of an aromatic ring in a 

single step. However, as noted by Tadross and Stoltz, “metal-catalyzed processes are 

still considered to be underdeveloped”,18 which points to a need for further work with 
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metal-stabilized benzyne chemistry. Nonetheless, metal-mediated benzyne reaction 

strategies are known. Transition metal benzyne reactivity studies first came to light in 

1979, when Erker and coworkers found, upon heating, the transition metal complex, 

Cp2ZrIV(C6H5)2, forms the dianionic benzyne complex, Cp2ZrIV(C6H4), by loss of benzene 

(Scheme 7.3a).19,20 It is proposed that the dianionic metallacyclopropene form of the 

complex is in resonance with the neutral aryne π-donor form, which is considered the 

“true” benzyne form.21 Buchwald and coworkers really pioneered this area of study by 

showing that this same zirconium benzyne complex, Cp2ZrIV(C6H4), is able to undergo 

insertion chemistry by several reagents, namely tBuCN, diethylacetylene, and acetone, 

to form the insertion products (Scheme 7.3a).20 Since the discovery of the zirconium 

benzyne complexes, several transition metal aryl complexes have been used to 

synthesize the corresponding benzyne complexes.22-25 Among these is the germanium 

benzyne complex, GeIV(Tbt)(Dipp)(C6H4) (Scheme 7.3b),25 which has been shown to 

undergo chalcogenide insertion reactivity, when exposed to elemental sulfur, selenium 

and tellurium to generate GeIV(Tbt)(Dipp)(κ2-C6H4E) (E = S, Se, Te).25 Interestingly, 

there are also two transition metal dibenzyne complexes that have been structurally 

characterized, [Li(THF)3]2[LiCl(THF)2]2[Li(THF)2]4[Ta(η2-C6H4)2Ph4]2 and  

[Li(THF)]4[LiPh(THF)]-[Nb(η2-C6H4)2Ph3].24  
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Scheme 7.3. Reactivity of aryl complexes of a) zirconium and b) germanium and c) 

uranium. Scheme adapted from references 9, 19, 20, and 25.  

 

More recently, the use of metal-stabilized benzyne complexes as intermediates 

in organic synthesis is becoming more popular.19,20,22,23,26,27 Interestingly, the early 

transition metal benzynes exhibit varying reactivity from the late metal benzynes. This 

is partly a result of the two resonances forms available to the benzyne ligand.21 Early 

metal benzynes, like Cp2ZrIV(C6H4),19,20 typically feature the metalla-cyclopropene 

resonance form, and readily react with electrophiles, such as nitriles, ketones and 

alkynes, to generate the insertion products.20,22-24 In contrast, late metal benzynes, 

which are often described with the neutral aryne resonance form, can react with 

nucleophiles, such as CH3-,21,28 and can undergo [2 + 2 + 2]-cycloaddition with 
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alkynes.29-34 For example, the total synthesis of Taiwanin C, developed by Mori and 

coworkers, utilizes a palladium-catalyst to generate a palladium aryne intermediate, 

which undergoes [2 + 2 + 2]-cocyclization of the aryne ring.29 The palladium catalyst is 

used to stabilize the reactive aryne intermediate, and simultaneously guide it towards 

subsequent reactivity. Additionally, the platinum benzyne complex, 

(triphos)Pt(Me)(C6H4)+ (triphos =  PhP[CH2CH2PPh2]2), developed by Gagné and 

coworkers, has been shown to undergo C-C bond coupling of the methyl and the 

benzyne ligands within the complex to generate toluene.21 Furthermore, the use of the 

palladium catalyst, Pd(OAc)2, has been shown to aid in the challenging transformation 

of acrylamides and arynes into quinolinones, by generating a palladium benzyne 

intermediate.35 Notably, late metal benzynes can also react with electrophiles,23,36-38 

generating similar insertion products as those observed for early metal benzynes. 

Actinide benzyne reactivity is also still relatively unexplored, however, on 

account of the high electropositivity of the metal, actinide benzynes should behave like 

early metal benzynes.  Preliminary reactivity studies appear to confirm this hypothesis.  

For example, Marks and co-workers isolated a uranindene complex, (η5-Cp*)2U(κ2-

C(Ph)=C(Ph)C6H4), from the reaction of (η5-Cp*)2UPh2 with diphenylacetylene. They 

proposed that this transformation proceeds through an unobserved U(IV) benzyne 

intermediate, (η5-Cp*)2U(η2-C6H4), based on elimination of benzene at room 

temperature (Scheme 7.3c).9 Evans and co-works reported a similar transformation 

with the same benzyne intermediate.7 A previous Hayton group member, Dr. Lani 

Seaman, reported the syntheses of the first isolable actinide benzyne complexes, 

[Li][U(2,3-C6H3CH2NMe2)(2-C6H4CH2NMe2)3] and [Li][Li(THF)2][UCl2(2,3-
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C6H3CH2NMe2)(2-C6H4CH2NMe2)2] (Scheme 7.4).11 Both complexes are stabilized 

through “ate” complex formation, and the chelating N,N-dimethylbenzylamine  ligands. 

(The SQUID magnetometry data for [Li][U(2,3-C6H3CH2NMe2)(2-C6H4CH2NMe2)3] can 

be seen in Figure A.12). 

 

 

Scheme 7.4. Synthesis of [Li(THF)2][UCl2(2,3-C6H3CH2NMe2)(2-C6H4CH2NMe2)2] and 

[Li][U(2,3-C6H3CH2NMe2)(2-C6H4CH2NMe2)3]. Scheme adapted from reference 11. 

 

In a related example, the isolable actinide diphenylacetylene complex, [η5-1,2,4-

(Me3C)3C5H2]2Th(η2-C2Ph2), reacts with a variety of electrophiles, including CS2, 

benzophenone, benzylnitrile, pyridine, pyridine N-oxide, N,N’-

dicyclohexylcarbodiimide and CH3CONMe2, to give the insertion products (Scheme 

7.5).39,40 However, it is possible that alternate reactivity manifolds could also be 

accessible in a uranium benzyne.  In particular, uranium has more available oxidation 
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states in comparison to a Group 4 metal, and a high valent uranium benzyne could 

behave differently than a Group 4 benzyne. 

 

 

Scheme 7.5. Reactivity of a thorium metalla-cyclopropene complex. Scheme adapted 

from references 39 and 40. 

 

In this chapter, we report the synthesis and characterization of a thermally 

stable uranium(IV) dibenzyne complex, and also explore its reactivity with both 

electrophiles and oxidants.  This report represents the first reactivity study of an 

isolable actinide benzyne complex. 
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7.2 Results and Discussion 

7.2.1. Synthesis and Characterization of [Li]2[U(2,3-C6H3CH2NMe2)2(2-

C6H4CH2NMe2)2]  (7.1) and [Li][Li(THF)2][U(2,3-C6H3CH2NMe2)2(2-

C6H4CH2NMe2)2] (7.2) 

 

Addition of 6 equiv of 2-Li-C6H4CH2NMe2 to UCl4, in a 2:1 mixture of Et2O:THF at 

room temperature, results in formation of the U(IV) dibenzyne complex, [Li]2[U(2,3-

C6H3CH2NMe2)2(2-C6H4CH2NMe2)2] (7.1), which can be isolated as dark blue crystalline 

solid in 40% yield after recrystallization from Et2O (Scheme 7.6).  Interestingly, in a 

few instances, a small number of dark brown crystals of a second product, 

[Li][Li(THF)2][U(2,3-C6H3CH2NMe2)2(2-C6H4CH2NMe2)2] (7.2), were also isolated from 

the reaction mixture.  Complex 7.2 is also a dibenzyne complex and only differs from 

7.1 by the inclusion of two molecules of THF, which coordinate to one of its Li cations 

(see below).  Importantly, though, complex 7.1 can be formed exclusively if care is 

taken to remove all of the THF before recrystallization of the reaction mixture.   If no 

THF is present, complex 7.2 is not formed, and even if small amounts of THF are 

present during crystallization the yield of 7.2 is very low (just a few crystals). 

 

Scheme 7.6. Synthesis of complexes 7.1 and 7.2. 
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Complex 7.1 crystallizes in the monoclinic space group C2/c, while complex 7.2 

crystallizes in the monoclinic space group P21/n (Figure 7.1). Complex 7.1 features a 

distorted octahedral coordination geometry about the U center (if the benzyne ligands 

in 7.1 are considered to be monodentate ligands). Two of the arylamine ligands are 

bound in a N,C-κ2 fashion, whereas the other two are bound in a C,C-η2 fashion, forming 

two benzyne ligands.  The dimethylamino groups of the two benzyne ligands are 

arranged in a “trans” orientation with respect to each other, and each dimethylamino 

group is bound to a Li cation.  Each Li cation also coordinates to an ipso-carbon of an 

arylamine ligand, the C2 carbon of a benzyne ligand, and the C3 carbon of the other 

benzyne ligand (see Scheme 7.6 for numbering convention), in an overall tetrahedral 

geometry.  It is likely that these Li-Cbenzyne interactions play an important role in 

stabilizing the benzyne ligand.  The U-Cbenzyne bond lengths in 7.1 are 2.409(3) and 

2.432(3) Å (Table 7.1), which are comparable to the U-Cbenzyne distances in the 

structurally similar U(IV) monobenzyne complex, [Li][U(2,3-C6H3CH2NMe2)(2-

C6H4CH2NMe2)3] (2.340(5) and 2.473(5) Å).11 Not surprisingly, the U-Caryl distance in 

7.1 (2.609(4) Å) is substantially longer than the U-Cbenzyne distances, however it is 

similar to other reported U-Caryl bond lengths.2,3,7,8,11 Finally, the C-C bond lengths in 

the two benzyne rings do not exhibit any alternation, consistent with the expected 

dianionic metalla-cyclopropene resonance form found in our previously characterized 

benzyne complexes, as well as the Group 4 and 5 benzyne complexes.19,20,24  

Complex 7.2 has a similar coordination geometry about the U center as that 

found for 7.1 (Figure 7.1); however, the dimethylamino groups of the two benzyne 

ligands are instead arranged in a “cis” orientation with respect to each other.  Both 
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dimethylamino groups are bound to the same Li cation, which also interacts with each 

C2 carbon of the benzyne ligands (see Scheme 7.6 for numbering convention), and the 

ipso-carbon of an aryl amine ligand, to generate a distorted square pyramidal 

coordination geometry.  The other Li cation is bound to the two C3 carbons of the 

benzyne ligands, along with two THF molecules, in an overall tetrahedral arrangement.  

Interestingly, only two other dibenzyne complexes have been previously structurally 

characterized, namely, [Li(THF)3]2[LiCl(THF)2]2[Li(THF)2]4- [Ta(η2-C6H4)2Ph4]2 and 

[Li(THF)]4[LiPh(THF)][Nb(η2-C6H4)2Ph3].24 However, a few other transition metal 

dibenzynes have been synthesized but not characterized by X-ray crystallography, 

including [Li(Et2O)]3[W(p-Tol)4(η2-C6H3CH3)2].41-44 

 

 A. 
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Figure 7.1. Solid-state structures of (A) [Li]2[U(2,3-C6H3CH2NMe2)2(2-C6H4CH2NMe2)2] 

(7.1) and (B) [Li][Li(THF)2][U(2,3-C6H3CH2NMe2)2(2-C6H4CH2NMe2)2] (7.2) with 50% 

and 30% probability ellipsoids, respectively. All hydrogen atoms have been removed 

for clarity.   

 

Table 7.1. Selected bond lengths (Å) for complexes 7.1 and 7.2. 

 7.1 7.2 

U-Cbenzyne 
2.409(3) 
2.432(3) 

2.404(6) 
2.417(6) 
2.427(6) 
2.455(7) 

U-Caryl 2.609(4) 2.570(6) 
2.629(6) 

U-Namine 2.697(3) 2.745(5) 
2.752(5) 

Li-N 2.042(6) 2.17(1) 
2.26(1) 

Li-Cbenzyne 
2.234(7) 
2.298(8) 

2.26(1) 
2.28(1) 
2.47(1) 
2.47(1) 

B. 
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 Complex 7.1 is insoluble in hexane, but quite soluble in Et2O, THF, and aromatic 

solvents.  It is stable as a solid, and as a C6D6 solution, for at least 3 weeks at room 

temperature.  In C6D6, complex 7.1 appears blue, and exhibits 15 resonances in its 1H 

NMR spectrum, ranging from 75.43 to -42.86 ppm, consistent with the C2 symmetric 

structure observed in the solid-state.  Additionally, the 7Li{1H} spectrum of 7.1 in C6D6 

exhibits a distinctive resonance at 48.03 ppm.  This large downfield shift is consistent 

with incorporation of the Li cation into the secondary coordination sphere of the 

paramagnetic uranium ion, and is consistent with the structure observed by X-ray 

crystallography.  This spectrum also features a second resonance, at 13.53 ppm, which 

is assignable to an unidentified minor impurity.  Interestingly, complex 7.1 appears 

brown when dissolved in THF-d8, and its 1H NMR spectrum is substantially more 

complicated than that observed in C6D6.  In particular, this spectrum features 28 

resonances ranging from 36.79 ppm to -42.32 ppm, consistent with a C1 symmetric 

structure.  Additionally, the 7Li{1H} spectrum in THF-d8 features two resonances at 

7.72 and 2.95 ppm, in a 1:1 ratio.  Both of these observations are consistent with the 

NMR spectra anticipated for complex 2, and suggest that complex 7.1 converts into 7.2 

when dissolved in THF.  The profound color changes observed upon changing the Li 

coordination environments suggest that the Li-Cbenzyne interactions have a profound 

effect on the overall electronic structure of the complex.  These experiments also 

identify the U-Cbenzyne bonds as the probable chromophore for this complex. Finally, the 

NIR spectrum of 7.1 is similar to those of other U(IV) complexes,11,45,46 which is in 

agreement with the benzyne ligands being in the dianionic resonance form.    
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7.2.2. Synthesis and Characterization of [Li][U(2-C6H3CH2NMe2-3-COPh2)2(2-

C6H4CH2NMe2)] (7.3)  

 

Scheme 7.7. Reactivity of complex 7.1. All reactions performed at -25 °C in Et2O. 

 

In an effort to understand the chemical properties of actinide benzyne 

complexes, the reactivity of 7.1 with a variety of substrates was explored. Thus, 

treatment of complex 7.1 with 2 equiv of benzophenone in Et2O results in an 

immediate color change from dark blue to red-orange (Scheme 7.7), indicating the 

formation of [Li][U(2-C6H3CH2NMe2-3-COPh2)2(2-C6H4CH2NMe2)] (7.3), which can be 

isolated as a red-orange solid in 61% yield after work up.  Also formed in the reaction 

is one equiv of 2-Li-C6H4CH2NMe2, which was confirmed by inspection of the 1H and 
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7Li{1H} NMR spectra of the reaction mixture.47 Interestingly, reaction of 7.1 with only 1 

equiv of benzophenone does not result in a mono-inserted product, but rather 

complexes 7.1 and 7.3 in a 1:0.2 ratio, respectively, as determined by inspection of the 

1H and 7Li{1H} NMR spectra of the reaction mixture. The formation of 7.3 is 

reminiscent of the reaction of the homoleptic U(IV) tetrabenzyl complex, U(CH2C6H5)4, 

with 4 equiv of benzophenone to generate U[OC(C6H5)2(CH2C6H5)]4 (Scheme 7.8).48 

Replacement of two reactive U-C bonds with two stronger U-O bonds is the driving 

force for this reaction. The formation of 7.3 is also similar to the addition of ketones to 

Group 4 benzynes.20,37,38 

 

Scheme 7.8. Insertion chemistry of tetrabenzyluranium. Scheme adapted from 

reference 48. 

 

Complex 7.3 crystallizes in the monoclinic space group P21/n, as the hexanes 

solvate 7.3∙0.5C6H14 (Figure 7.2).  Its solid-state structure confirms the insertion of one 

benzophenone molecule into each benzyne ligand, specifically at the C3 position (see 

Scheme 7.7 for numbering convention).  The stereochemistry of the insertion can be 

rationalized on the basis of the reduced steric profile of C3 vs. C2, the uranium-bound 

carbon next to the dimethylamino group.  The U-O bond lengths in 7.3 are 2.144(3) and 



 

 225 

2.253(3) Å, which are comparable to those observed in other U(IV) alkoxides.48-51 The 

C-O bond distances (1.425(4) and 1.438(5) Å) are indicative of C-O single bonds, 

demonstrating reduction of the C=O bonds of the benzophenone moiety.48,50 Finally, 

the U-Caryl bond lengths in 7.3 range from 2.453(4) to 2.651(4) Å, and are similar to 

those in complexes 7.1 and 7.2. 

 

 

Figure 7.2. Solid-state structure of [Li][U(2-C6H3CH2NMe2-3-COPh2)2(2-

C6H4CH2NMe2)]∙0.5C6H14 (7.3∙0.5C6H14) with 50% probability ellipsoids. All hydrogen 

atoms and the hexane solvate have been removed for clarity. Selected bond lengths (Å) 

and angles (deg): U1-O1 = 2.144(3), U1-O2 = 2.253(3), U1-C2 = 2.453(4), U1-C4 = 

2.651(4), U1-C24 = 2.557(4), U1-N1 = 2.909(3), U1-N2 = 2.734(4), C21-C25 = 1.526(6), 

C16-C30 = 1.523(6), C25-O1 = 1.425(4), C16-O2 = 1.438(5), O1-U1-O2 = 120.6(1). 
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The 1H NMR spectrum of 7.3 in C6D6 consists of 32 paramagnetically shifted 

resonances ranging from 63.73 to -64.81 ppm, consistent with the C1 symmetric 

structure observed in the solid state (Figure 7.3). The 7Li{1H} NMR spectrum displays a 

single, paramagnetically shifted resonance at -117.68 ppm.  Finally, the NIR spectrum 

of 7.3 is similar to those of other U(IV) complexes, confirming that no uranium redox 

chemistry has occurred upon insertion.11,45,52,53    

 

 
Figure 7.3. 1H NMR spectrum of complex 7.3 in C6D6. Asterisks indicate the presence 

of Et2O. 

 

 

 

* * 
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7.2.3 Synthesis and Characterization of [Li][Li(Et2O)][U(2,3-C6H3CH2NMe2)(2-

C6H3CH2NMe2-3-C(Ph)=N)(2-C6H4CH2NMe2)2] (7.4) 

 

Nitrile insertion reactivity of complex 7.1 was investigated with MeCN, tBuCN, 

and PhCN. Although both MeCN and tBuCN appeared to react with complex 7.1, based 

on obvious color changes to red-brown, and the observations of new paramagnetic 

products in the in situ 1H NMR spectra, products from these reactions were never 

crystallized. However, similar to the benzophenone reactivity, addition of 2 equiv of 

PhCN to complex 7.1 results in formation of an insertion product, specifically the U(IV) 

ketimide complex, [Li][Li(Et2O)][U(2,3-C6H3CH2NMe2)(2-C6H3CH2NMe2-3-C(Ph)=N)(2-

C6H4CH2NMe2)2] (7.4), which can be isolated as a green-brown crystalline solid in 21% 

yield after work-up (Scheme 7.7). Comparable nitrile insertion reactivity has been 

observed previously for the actinides. For example, reaction of (η5-Cp*)2ThPh2 or (η5-

Cp*)2UMe2 with excess PhCN yields the ketimide complexes, (η5-Cp*)2Th(N=CPh2)2 

and (η5-Cp*)2U(N=CPhMe)2, respectively.54 Similarly, reaction of [η5-1,2,4-

(Me3C)3C5H2]2Th(η2-C2Ph2) with PhCN, generates the azametallacycle, [η5-1,2,4-

(Me3C)3C5H2]2Th[N=C(Ph)C(Ph)=C(Ph)].39 Likewise, reaction of (η5-Cp*)2Th(η4-C4Ph2) 

with PhCN, affords the azametallacycle, (η5-Cp*)2Th[N=C(Ph)(C4Ph2)C(Ph)=N].55 

Curiously, the isolation of 7.4 in reasonable yields requires the addition of two equiv of 

PhCN, but only one equiv is incorporated into the final product. It is not entirely clear 

why the second equivalent of PhCN is needed, but we speculate that it may coordinate 

to a Li cation in 7.1, which changes the steric profile of the benzyne ligand and allows 

for the insertion to occur. 
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Complex 7.4 crystallizes in the monoclinic space group P21/n (Figure 7.4).  The 

eight-coordinate U(IV) center features two N,C-κ2 bound arylamine ligands, one C,C-η2 

bound benzyne ligand, and one N,C-κ2 bound aryl-ketimide ligand. The 

stereochemistry of nitrile insertion is the same as that observed in complex 7.3.  Also 

present in the structure are two Li cations. One Li cation is bound to an ipso-carbon of 

the arylamine ligand, the C2 carbon of the benzyne ligand (see Scheme 7.7 for 

numbering convention), the nitrogen atom of the aryl ketimide ligand, and the nitrogen 

atom of a dimethylamino group. The other Li cation is bound to the ipso-carbon of the 

aryl ketimide ligand, the C3 carbon of the benzyne ligand, the nitrogen atom of a 

dimethylamino group, and a molecule of diethyl ether.  The U1-N4 bond distance 

(2.37(1) Å) is comparable to other U(IV)-Nketimide bond lengths.54,56 The N4-C38 

distance (1.27(2) Å) is indicative of a double bond, and also supports the formation of 

the ketimide functional group.57 Finally, the U-Caryl bond lengths in 7.4 are 2.57(2), 

2.62(2) and 2.68(1) Å, which are similar to those found in complex 7.3. 
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Figure 7.4. Solid-state structure of [Li][Li(Et2O)][U(2,3-C6H3CH2NMe2)(2-

C6H3CH2NMe2-3-C(Ph)=N)(2-C6H4CH2NMe2)2] (7.4) with 50% probability ellipsoids.  

Et2O carbons and all hydrogen atoms have been removed for clarity. Selected bond 

lengths (Å) and angles (deg): U1-N4 = 2.37(1), N4-C38 = 1.27(2), C37-C38 = 1.51(2), 

U1-C1 = 2.62(2), U1-C10 = 2.45(1), U1-C11 = 2.39(1), U1-C23 = 2.57(2), U1-C32 = 

2.68(1), C10-C11 = 1.41(2), U1-C32 = 2.68(1), C10-U1-C11 = 33.7(5), C32-U1-N4 = 

67.4(4). 

 

The 1H NMR spectrum of complex 7.4 features 29 paramagnetically shifted 

resonances ranging from 44.68 to -46.36 ppm, consistent with the C1 symmetric 

structure observed in the solid state. The 7Li{1H} NMR spectrum, as anticipated for the 

C1 symmetric structure, features two highly shifted resonances at 182.26 and -69.42 

ppm, in a 1:1 ratio. The near-IR spectrum of 7.4 is similar to complexes 7.1 and 7.3, as 



 

 230 

well as other U(IV) complexes, supporting the presence of a 5f2 ion, and indicating that 

its remaining benzyne ligand is still in the dianionic resonance form.11,45,46 

 

7.2.4 Synthesis and Characterization of [Li][Li(Et2O)][U(2,3-C6H3CH2NMe2)(5-

C6H3CH2NMe2-2-S)(2-C6H4CH2NMe2)2] (7.5) 

 

During these investigations, we also explored the reactivity of 7.1 with ethylene 

sulfide, a common sulfur source.58,59 Thus, reaction of complex 7.1 with excess 

ethylene sulfide in Et2O, resulted in a red solution, from which a few red crystals of 

[Li]2[U(2,3-C6H3CH2NMe2)(5-C6H3CH2NMe2-2-S)(2-C6H4CH2NMe2)2] (7.5) were 

isolated in one instance (Scheme 7.7).  Complex 7.5 forms as a result of sulfur insertion 

into the U-C3 bond of one of the benzyne ligands (see Scheme 7.7 for numbering 

convention), forming a new aryl thiolate ligand. Comparable sulfur insertion reactivity 

has been observed previously for transition metal benzynes.  For example, reaction of 

Ge(Tbt)(Dipp)(C6H4) with elemental sulfur, results in the formation of the germanium-

metallacycle, Ge(Tbt)(Dipp)(κ2-C6H4S) (Scheme 7.3b).25 Interestingly, even in the 

presence of excess ethylene sulfide, only the mono-insertion product (7.5) is formed.  

Complex 7.5 crystallizes in the monoclinic space group P21/n (Figure 7.5). The 

eight-coordinate U(IV) center features two N,C-κ2 bound arylamine ligands, one C,C-η2 

bound benzyne ligand, and one S,C-κ2 bound aryl thiolate ligand. The stereochemistry 

of nitrile insertion is the same as that observed in complexes 7.3 and 7.4. Also present 

in the structure are two Li cations.  One Li cation is bound to sulfur atom of the aryl 

thiolate ligand, the C2 carbon of the benzyne ligand (see Scheme 7.7 for numbering 
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convention), the ipso-carbon of the arylamine ligand and the nitrogen atom of a 

dimethylamino group.  The other Li cation is bound to the ipso-carbon of the aryl 

thiolate ligand, the C3 carbon of the benzyne ligand, the nitrogen atom of a 

dimethylamino group, and a molecule of diethyl ether.  The U1-S1 bond distance 

(2.887(2) Å) is on the longer side of typical U(IV)-S single bonds. For example, the 

U(IV) trisulfide complex, [K(18-crown-6)][U(η3-S3)(N(SiMe3)2)3] exhibits U-S bond 

lengths of 2.835(1), 2.819(1), and 2.760(1) Å,60 and the U(IV) bridging chalcogenide 

complex, [((Me3Si)2N)3U]2(μ-S)], exhibits an av. U-S distance of 2.662 Å.61 The C1-S1 

distance in 7.5 (1.780(9) Å) is indicative of a single bond, and comparable to other aryl 

thiolate ligands.25,62 For example, the Co(III) complex, Co(CH3)(PMe3)3(κ2-C6H4S), 

exhibits a C-S bond length of 1.765(3) Å,62 and the germanium-metallacycle complex, 

Ge(Tbt)(Dipp)(κ2-C6H4S), exhibits a C-S bond length of 1.783(4) Å.25 Finally, the U-Caryl 

bond lengths in 7.5 are 2.591(9), 2.62(1) and 2.562(9) Å, which are similar to those 

found in complex 7.4. 



 

 232 

 

Figure 7.5. Solid-state structure of [Li][Li(Et2O)][U(2,3-C6H3CH2NMe2)(5-

C6H3CH2NMe2-2-S)(2-C6H4CH2NMe2)2] (7.5) with 50% probability ellipsoids. All 

hydrogens have been removed for clarity. Selected bond lengths (Å) and angles (deg): 

U1-S1 = 2.887(2), U1-C2 = 2.591(9), U1-C10 = 2.531(9), U1-C11 = 2.44(1), U1-C19 = 

2.62(1), U1-C28 = 2.562(9), C1-S1 = 1.780(9), S1-Li1 = 2.40(2), C2-U1-S1 = 59.3(2), 

C10-U1-C11 = 36.3(3). 

 

7.2.5 Reactivity of 7.1 with Unsaturated Hydrocarbons 

 

We also probed the reactivity of 7.1 with alkenes and alkynes.  Surprisingly, we 

observe no reaction between 7.1 and a wide variety of unsaturated hydrocarbons, 

including cyclopentene, cyclooctene, tetracyanoethylene, phenylacetylene, 

diphenylacetylene, and norbornene.  This contrasts dramatically with the reactivity 
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observed for transition metal benzyne complexes, which readily react with alkynes and 

alkenes.19,20,22,23,26 To explain this observation we suggest that the presence of the 

dimethylamino arms in 7.1, as well as its inner sphere Li cations, provide sufficient 

steric protection to the benzyne carbons to prevent insertion.  The ejection of 2-Li-

C6H4CH2NMe2 during the formation of complex 7.3, which presumably occurs to relieve 

steric pressure upon insertion of benzophenone, is consistent with this hypothesis.   

 

7.2.6 Synthesis and Characterization of [Li(12-crown-4)2][Li][U(2-C6H3CH2NMe2-

3-(N-N=N-Ad))2(2-C6H4CH2NMe2)2] (7.6) 

 

Finally, the reactivity of 7.1 with a variety of oxidants was probed.  For example, 

reaction of complex 7.1 with 2 equiv of AdN3, followed by addition of 2 equiv of 12-

crown-4, results in formation of [Li(12-crown-4)2][Li][U(2-C6H3CH2NMe2-3-(N-N=N-

Ad))2(2-C6H4CH2NMe2)2] (7.6), which can be isolated as a red crystalline solid in 42% 

yield after work up (Scheme 7.7). Complex 7.6 forms as a result of azide insertion into 

each U-C3 bond of the benzyne ligands (see Scheme 7.7 for numbering convention), 

forming two aryl triazenido ligands.  Insertion of an organoazide into a U-C bond to 

form a triazenido ligand has been observed previously.7,48,63 Also of note, in contrast to 

the reaction of U(CH2C6H5)4 with 4 equiv of AdN3 (Scheme 7.8),48 where two AdN3 

serve to oxidize the uranium center, while the remaining two undergo U-C bond 

insertion,48 we observe no evidence for oxidation of the metal center and formation of 

a U(VI) imido complex in this reaction. Interestingly, similar to the reactivity of 7.1 

with benzophenone, reaction of 7.1 with only 1 equiv of AdN3 does not result in a 
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mono-inserted product, but rather complexes 7.1 and 7.6 in a 1:1 ratio, respectively, as 

determined by inspection of the 1H and 7Li{1H} NMR spectra of the reaction mixture.  

Complex 7.6 crystallizes in the monoclinic space group P21/n, as a discrete 

cation/anion pair. Its solid-state molecular structure is shown in Figure 7.6. The eight-

coordinate U(IV) anion features two N,C-κ2 bound arylamine ligands, as well as two 

N,C-κ2 bound aryl triazenido ligands, formed from azide insertion in the U-C3 benzyne 

linkage. Notably, the stereochemistry of azide insertion is the same as those observed 

in complexes 7.3, 7.4 and 7.5.  Also present in the structure is a Li cation, which is 

bound to one ipso-carbon of an arylamine ligand, and four nitrogen atoms of the aryl 

triazenido ligands in a N,N-κ2 arrangement.  Interestingly, the U-N1 (2.742(8) Å) and U-

N4 (2.515(7) Å) distances are longer than those observed for other uranium triazenido 

complexes.48,63 This discrepancy is likely due to the presence of the Li cation, which 

also competes for triazenido electron density.  In addition, the variation in the N-N 

bond lengths (N1-N2 = 1.34(1), N2-N3 = 1.29(1), N4-N5 = 1.33(1), N5-N6 = 1.23(1) Å), 

suggests that the triazenido fragment features localized π-bonding. Furthermore, the 

new C-N bond lengths between the former benzyne ligands and the inserted AdN3 

ligands are 1.40(1) and 1.45(1) Å. Finally, the U-Caryl bond lengths in 7.6 range from 

2.50(1) to 2.613(9) Å, and are similar to those found in complexes 7.3, 7.4 and 7.5. 
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Figure 7.6. Solid-state structure of [Li(12-crown-4)2][Li][U(2-C6H3CH2NMe2-3-(N-

N=N-Ad))2(2-C6H4CH2NMe2)2]∙OC4H10 (7.6∙OC4H10) with 50% probability ellipsoids.  

The [Li(12-crown-4)2]+ cation, the Et2O solvate, and all hydrogen atoms have been 

removed for clarity. Selected bond lengths (Å) and angles (deg): U1-C1 = 2.52(1), U1-

C10 = 2.520(9), U1-C19 = 2.50(1), U1-C28 = 2.613(9), U1-N1 = 2.742(8), U1-N4 = 

2.515(7), N1-N2 = 1.34(1), N2-N3 = 1.29(1), N4-N5 = 1.33(1), N5-N6 = 1.23(1), C11-N1 

= 1.40(1), C6-N4 = 1.44(1), C1-U1-N4 = 55.9(3), C10-U1-N1 = 52.8(3), N1-N2-N3 = 

114.3(7), N4-N5-N6 = 114.1(7).  

 

The 7Li{1H} NMR spectrum of complex 7.6 in THF-d8 displays two resonances at 

75.15 and -44.63 ppm, in a roughly 1:1 ratio.  Also present in the spectrum is a less 

intense resonance at 0.98 ppm (featuring ca. 40% of the intensity of the other two 

resonances), which is assignable to the [Li(12-crown-4)2] moiety.  The observation of 
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two highly paramagnetically-shifted resonances in this spectrum, when only one is 

expected, indicates that a structural change has occurred upon dissolution of 7.6 in 

THF-d8. This structural change most likely involves the incorporation of two Li cations, 

with different coordination environments, into the secondary coordination sphere of 

the uranium ion.  Interestingly, addition of a several-fold excess of 12-crown-4 to this 

sample, in an attempt to favor the separated ion pair structure, results only in the 

slight growth of the [Li(12-crown-4)2] resonance.  Even under these conditions, the 

resonances at 75.15 and -44.63 ppm are still the major resonances in the spectrum.  

Despite the complexity of the 7Li{1H} NMR spectrum, the 1H NMR spectrum of complex 

7.6 only features 35 paramagnetically shifted resonances, which range from 48.68 to -

62.70 ppm.  This is close to the 39 resonances predicted from inspection of the solid-

state structure.  In addition, only one broad resonance is observed for the 12-crown-4 

methylene protons (at 3.58 ppm), likely due to fast exchange of Li between free 12-

crown-4 and Li-coordinated 12-crown-4.  Finally, the near-IR spectrum of 7.6 is 

consistent with the presence of a 5f2 ion, supporting the U(IV) oxidation state 

assignment.11,45,52,53 

We also probed the reactivity of 7.1 with Me3SiN3, but surprisingly, we 

observed no reaction.  In contrast, complex 7.1 rapidly reacts with I2 to generate dark 

red-brown solutions, but no tractable products could be isolated from these mixtures.  

The reactions of 7.1 with other oxidants, such as AgPF6, [Fc][PF6], S8, and PhSSPh, also 

lead to intractable mixtures.  Reaction of 7.1 with oxygen-atom transfer reagents, such 

as TEMPO (TEMPO = (2,2,6,6-tetramethylpiperidin-1-yl)oxyl), pyridine-N-oxide, and 

morpholine-N-oxide, generate dark orange brown solutions, however, these also 
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proved to be intractable. In summary, our attempts to generate a U(VI) benzyne 

complex were unsuccessful, which is perhaps not surprising considering that a high 

valent uranium benzyne is likely to be much more reactive than complex 7.1.   

 

7.3  Summary 

 

Reaction of UCl4 with 2-Li-C6H4CH2NMe2 results in formation of the U(IV) 

dibenzyne complex, [Li]2[U(2,3-C6H3CH2NMe2)2(2-C6H4CH2NMe2)2] (7.1), in good 

yields.  Complex 7.1 is a rare example of a dibenzyne complex, and has proven to be an 

excellent substrate for probing the reactivity of the actinide-benzyne linkage. Complex 

7.1 reacts with a variety of electrophiles, such as benzophenone, benzonitrile and 

ethylene sulfide, to give the insertion products, [Li][U(2-C6H3CH2NMe2-3-COPh2)2(2-

C6H4CH2NMe2)] (7.3), [Li][Li(Et2O)][U(2,3-C6H3CH2N- Me2)(2-C6H3CH2NMe2-3-

C(Ph)=N)(2-C6H4CH2NMe2)2] (7.4), and [Li][Li(Et2O)]- [U(2,3-C6H3CH2NMe2)(5-

C6H3CH2NMe2-2-S)(2-C6H4CH2NMe2)2] (7.5),  respectively. Reaction of complex 7.1 

with the AdN3 also results in an insertion product,  [Li(12-crown-4)2][Li][U(2-

C6H3CH2NMe2-3-(N-N=N-Ad))2(2-C6H4CH2NMe2)2] (7.6). Overall, our study 

demonstrates that actinide benzynes generally behave like early metal benzynes. This 

observation is probably not surprising, given that both uranium and the early 

transition metals are similarly electropositive and likely feature electronically similar 

M-Cbenzyne interactions.  However, one contrast between our U(IV) benzyne and those 

of Groups 4 and 5, is that oxidation of the metal center is possible for 7.1.  Despite this 

difference, we see no evidence for the oxidation of 7.1 with the use of oxidizing 
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substrates (e.g., organoazides).  Nonetheless, oxidation of the uranium center in 7.1 is 

possible, and is also of significant interest, given that high valent metal benzynes could 

feature different reactivity than their lower valent counterparts.  In this regard, we will 

continue to probe the reactivity of 7.1 in an effort to discover novel actinide benzyne 

reactivity. 
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7.4 Experimental 

7.4.1 General Procedures.  All reactions and subsequent manipulations were 

performed under anaerobic and anhydrous conditions under an atmosphere of 

nitrogen or argon.  Hexanes, Et2O, THF and toluene were dried by passage over 

activated molecular sieves using a Vacuum Atmospheres solvent purification system.  

C6D6 and THF-d8, were dried over activated 3Å molecular sieves for 24 h before use. 

UCl4 and 2-Li-C6H4CH2NMe2 were prepared according to literature procedures.64,65 All 

other reagents were purchased from commercial suppliers and used as received.   

NMR spectra were recorded on a Varian UNITY INOVA 400 spectrometer or an 

Agilent Technologies 400-MR DD2 spectrometer. 1H NMR spectra were referenced to 

external SiMe4 using the residual protio solvent peaks as internal standards. The 

chemical shifts of 7Li{1H} were referenced indirectly with the 1H resonance of SiMe4 at 

0 ppm, according to IUPAC standard.66,67 IR spectra were recorded on a Mattson 

Genesis FTIR/Raman spectrometer. UV-vis/NIR experiments were performed on a UV-

3600 Shimadzu spectrophotometer. Elemental analyses were performed by the 

Microanalytical Laboratory at UC Berkeley.  

 

7.4.2 Synthesis of [Li]2[U(2,3-C6H3CH2NMe2)2(2-C6H4CH2NMe2)2] (7.1).  To a 

stirring green solution of UCl4 (128 mg, 0.337 mmol) in THF (2 mL), was added a light 

yellow suspension of 2-Li-C6H4CH2NMe2 (286 mg, 2.03 mmol) in Et2O (4 mL). The red-

orange mixture was allowed to stir for 24 h at 25 °C, which resulted in formation of a 

dark brown solution concomitant with the deposition of a grey precipitate. All the 

volatiles were removed in vacuo, which generated a dark red-brown solid. The solid 
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was then extracted into Et2O (8 mL), and the resulting solution was filtered through a 

Celite column (2 cm × 0.5 cm) supported on glass wool. The volume of the dark brown 

filtrate was then reduced in vacuo and the concentrated solution was stored at -25 °C 

for 24 h, which resulted in the deposition of a blue solid of 7.1 (106.6 mg, 40% yield).  

In a handful of instances, a few brown crystals were also isolated from the reaction 

mixture.  These were confirmed to be [Li][Li(THF)2][U(2,3-C6H3CH2NMe2)2(2-

C6H4CH2NMe2)2] (7.2) by X-ray crystallography.  Anal. Calcd for ULi2N4C36H46: C, 54.96; 

H, 5.89; N, 7.12. Found: C, 55.12; H, 5.57; N, 6.75. 1H NMR (C6D6, 25 °C, 400 MHz): δ 

75.43 (s, 1H), 31.30 (s, 1H), 25.85 (s, 1H), 22.88 (s, 1H), 18.47 (s, 3H), 17.22 (d, JHH = 8.0 

Hz, 1H), 13.07 (d, JHH = 9.3 Hz, 1H), 6.95 (s, 1H), 3.70 (s, 1H), 2.65 (d, JHH = 8.8 Hz, 1H), 

0.73 (d, JHH = 8.2 Hz, 1H), -1.98 (s, 3H), -11.53 (s, 1H), -42.66 (s, 3H), -42.86 (s, 3H). 

7Li{1H} NMR (C6D6, 25 °C, 155 MHz): δ 48.03 (s). 1H NMR (THF-d8, 25 °C, 500 MHz): δ 

36.79 (s, 1H), 34.95 (s, 1H), 20.48 (t, JHH = 8.4 Hz, 1H), 20.18 (d, JHH = 5.8 Hz, 1H), 20.13 

(d, JHH = 7.9 Hz, 1H), 20.07 (t, JHH = 7.5 Hz, 1H), 19.74 (d, JHH = 7.1 Hz, 1H), 17.69 (d, JHH = 

10.1 Hz, 1H), 17.04 (d, JHH = 5.2 Hz, 1H), 16.69 (d, JHH = 6.8 Hz, 1H), 11.27 (d, JHH = 4.0 

Hz, 1H), 9.79 (br s, 3H), 8.41 (t, JHH = 5.4 Hz, 1H), 8.16 (t, JHH = 5.6 Hz, 1H), 6.92 (d, JHH = 

9.6 Hz, 1H), 6.63 (d, JHH = 4.5 Hz, 1H), 5.71 (d, JHH = 5.7 Hz, 1H), 5.51 (s, 1H), 5.21 (br s, 

3H), -3.06 (d, JHH = 9.3 Hz, 1H), -4.17 (br s, 1H), -4.36 (d, JHH = 10.2 Hz, 1H),  -6.90 (br s, 

1H), -10.37 (br s, 1H), -19.79 (s, 3H), -20.06 (s, 3H), -38.32 (s, 3H), -42.32 (s, 3H). Two 

of the CH3 resonances were not observed, possibly due to paramagnetic broadening. 

7Li{1H} NMR (THF-d8, 25 °C, 155 MHz): δ 7.72 (s, 1Li), 2.95 (s, 1Li).  UV-vis/NIR (C6H6, 

4.19 × 10-3 M, L∙mol-1∙cm-1):  586 (ε = 1081), 598 (ε = 1109), 602 (ε = 1106), 700 (sh, ε = 

146), 734 (sh, ε = 101), 914 (ε = 45), 958 (ε = 55), 1094 (ε = 99), 1148 (sh, ε = 110), 
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1212 (ε = 158), 1424 (ε = 105), 1544 (ε = 104).  IR (KBr pellet, cm-1): 3039 (w), 3004 

(m), 2945 (m), 2854 (m), 2816 (s), 2775 (s), 2698 (w), 1597 (w), 1585 (sh w), 1562 

(w), 1520 (w), 1479 (sh m), 1463 (sh m), 1454 (vs), 1421 (sh m), 1413 (m), 1389 (w), 

1362 (m), 1282 (w), 1273 (m), 1267 (m), 1230 (m), 1235 (m), 1207 (w), 1171 (m), 

1146 (m), 1111 (w), 1092 (m), 1070 (w), 1043 (m), 1030 (s), 1001 (s), 966 (w), 887 

(w), 864 (w), 845 (s), 823 (sh m), 795 (w), 760 (s), 740 (s), 700 (m), 698 (m), 625 (w), 

525 (w), 450 (w).  

7.4.3 Synthesis of [Li][U(2-C6H3CH2NMe2-3-COPh2)2(2-C6H4CH2NMe2)] (7.3).  To a 

dark blue solution of complex 7.1 (60.2 mg, 0.077 mmol) in Et2O (3 mL), was added a 

solution of benzophenone (28.3 mg, 0.155 mmol) in Et2O (1 mL). After addition, the 

solution quickly changed to a red-orange color, concomitant with the deposition of a 

pale yellow precipitate. The suspension was allowed to stir for 15 min, whereupon it 

was filtered through a Celite column (2 cm × 0.5 cm) supported on glass wool. The 

resulting red filtrate was collected and its volume was reduced in vacuo to ca. 2 mL.  

Storage of this solution at -25 °C for 24 h resulted in the deposition of a red-orange 

solid (47.4 mg, 61% yield).  X-ray quality crystals were grown from a concentrated 

Et2O solution that contained a few drops of hexanes, and which was stored at -25 °C for 

24 h. Anal. Calcd for ULiN3O2C53H54: C, 63.03; H, 5.39; N, 4.16. Found: C, 62.79; H, 5.55; 

N, 3.89. 1H NMR (C6D6, 25 °C, 400 MHz): δ 66.73 (s, 2H, aryl CH), 61.69 (br s, 2H, aryl 

CH), 56.76 (s, 1H), 34.20 (s, 2H, aryl CH), 28.83 (br s, 2H, aryl CH), 26.28 (s, 3H, CH3), 

24.08 (s, 1H), 23.01 (s, 1H), 22.19 (s, 1H), 17.31 (s, 1H), 12.90 (s, 3H, CH3), 10.38 (s, 

1H), 8.65 (s, 1H), 0.89 (s, 1H), -3.09 (s, 3H, CH3), -3.54 (s, 1H), -4.51 (s, 1H), -5.57 (s, 

1H), -14.40 (s, 1H), -15.98 (1H), -17.19 (s, 1H), -19.54 (s, 3H, CH3), -24.26 (br s, 2H, aryl 
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CH), -29.65 (s, 1H), -34.84 (s, 3H, CH3), -39.66 (s, 1H), -45.43 (br s, 2H, aryl CH), -47.87 

(s, 1H), -53.42 (s, 1H), -58.43 (s,1H), -58.47 (br s, 2H, aryl CH), -64.81 (s, 3H, CH3). One 

CH resonance, integrating to 1H, and one aryl CH resonance, integrating to 2H, were 

not observed. 7Li{1H} NMR (C6D6, 25 °C, 155 MHz): δ -117.68 (s).  UV-vis/NIR (C6H6, 

6.23 × 10-3 M, L∙mol-1∙cm-1):  516 (sh, ε = 22), 546 (ε = 21), 572 (sh, ε = 14), 622 (sh, ε = 

10), 678 (ε = 25), 752 (ε = 5), 832 (ε = 5), 952 (sh, ε = 14), 1034 (ε = 30), 1066 (ε = 30), 

1150 (ε = 48), 1290 (ε = 25), 1448 (ε = 14), 1570 (ε = 11), 1774 (ε = 8), 1818 (sh, ε = 7).  

IR (KBr pellet, cm-1): 3070 (w), 3040 (w), 3027 (m), 2954 (sh m), 2956 (m), 2852 (m), 

2819 (m), 2777 (m), 2686 (sh w), 1595 (w), 1489 (m), 1462 (sh m), 1456 (m), 1444 (s), 

1402 (w), 1381 (w), 1358 (sh w), 1352 (w), 1309 (w), 1282 (w), 1261 (w), 1234 (w), 

1173 (m), 1153 (w), 1140 (w), 1113 (w), 1093 (w), 1082 (w), 1036 (s), 1028 (s), 1007 

(sh s), 1001 (s), 931 (w), 910 (w), 895 (w), 845 (m), 841 (sh m), 823 (w), 785 (m), 764 

(m), 756 (s), 746 (m), 723 (w), 700 (vs), 673 (w), 642 (m), 644 (m), 632 (w), 617 (w), 

567 (w), 528 (w), 472 (w), 441 (w), 426 (w).  

7.4.4 Synthesis of [Li][Li(Et2O)][U(2,3-C6H3CH2NMe2)(2-C6H3CH2NMe2-3-

C(Ph)=N)(2-C6H4CH2NMe2)2] (7.4). To a cold (-25 °C) stirring dark blue solution of 

complex 7.1 (83.2 mg, 0.106 mmol) in Et2O (2 mL) was added cold (-25 °C) PhCN (22 

μL, 0.213 mmol) via microsyringe.  The solution turned a dark green-brown color 

within seconds of addition.   The solution was allowed to warm to room temperature, 

with stirring.  After 30 min, the volatiles were removed in vacuo to produce a tacky 

dark brown solid.  This material was extracted into Et2O (2.5 mL), and the resulting 

brown solution was quickly filtered through a Celite column (2 cm × 0.5 cm) supported 

on glass wool. The volume of the dark green-brown filtrate was then reduced in vacuo 
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to ca. 1 mL.  Storage of this solution at -25 °C for 2 weeks resulted in the deposition of 

dark green-brown crystals of 7.4 (20.9 mg, 21% yield).  Anal. Calcd for ULi2N5OC47H61: 

C, 58.56; H, 6.38; N, 7.27. Found: C, 58.93; H, 6.34; N, 7.45. 1H NMR (C6D6, 25 °C, 400 

MHz): δ 44.68 (br s, 1H), 34.69 (s, 1H), 28.19 (s, 1H), 27.52 (s, 1H), 27.03 (s, 1H), 26.05 

(s, 3H), 24.91 (s, 1H), 24.41 (s, 1H), 20.13 (s, 2H), 18.80 (s, 3H), 14.82 (s, 1H), 13.43 (s, 

1H), 9.79 (s, 1H), 9.36 (s, 1H), 9.04 (s, 1H), 6.86 (s, 3H), 6.37 (s, 3H), 4.99 (s, 1H), 0.96 

(s, 3H), -0.30 (s, 1H), -1.07 (s, 1H), -5.86 (s, 3H), -6.04 (s, 1H), -10.93 (s, 1H), -22.53 (br 

s, 2H, aryl CH), -28.87 (s, 1H), -30.97 (s, 1H), -32.00 (s, 3H), -46.36 (br s, 2H, aryl CH). 

One CH3 resonance, three CH resonances, and the Et2O resonances were not assigned.  

7Li{1H} NMR (C6D6, 25 °C, 155 MHz): δ 182.26 (s, 1Li), -69.42 (s, 1Li). UV-vis/NIR (Et2O, 

1.99 × 10-3 M, L∙mol-1∙cm-1):  718 (ε = 606), 1114 (ε = 167), 1164 (ε = 176), 1224 (ε = 

150), 1444 (ε = 78), 1610 (ε = 63). IR (KBr pellet, cm-1): 3026 (w), 2966 (m), 2949 (m), 

2831 (m), 2818 (s), 2775 (s), 2702 (w), 1599 (s), 1589 (sh m), 1570 (m), 1541 (w), 

1481 (m), 1464 (sh vs), 1454 (vs), 1429 (sh m), 1362 (m), 1275 (m), 1261 (m), 1242 

(m), 1173 (m), 1146 (w), 1093 (m), 1070 (w), 1039 (sh m), 1028 (s), 1005 (s), 989 (sh 

m), 881 (w), 850 (s), 827 (m), 802 (m), 771 (sh m), 758 (m), 742 (s), 702 (s), 646 (w), 

617 (w).  

7.4.5 Synthesis of [Li][Li(Et2O)][U(2,3-C6H3CH2NMe2)(5-C6H3CH2NMe2-2-S)(2-

C6H4CH2NMe2)2] (7.5). To a cold (-25 °C) stirring dark blue solution of complex 7.1 

(36.2 mg, 0.046 mmol) in Et2O (2 mL), was added cold (-25 °C) ethylene sulfide (11.0 

μL, 0.185 mmol) via microsyringe. The solution quickly changed to a vibrant red color 

after addition. The solution was allowed to warm to room temperature, with stirring. 

After 20 min, the red solution was filtered through a Celite column (2 cm × 0.5 cm) 
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supported on glass wool. The resulting red filtrate was concentrated in vacuo, and 

stored at -25 °C for 24 h. This resulted in the deposition of a few red crystals of 

complex 7.5. 

7.4.6 Synthesis of [Li(12-crown-4)2][Li][U(2-C6H3CH2NMe2-3-(N-N=N-Ad))2(2-

C6H4CH2NMe2)2] (7.6). To a cold (-25 °C) stirring dark blue solution of complex 7.1 

(70.4 mg, 0.089 mmol) in Et2O (2 mL), was added a cold (-25 °C) solution of AdN3 (32.1 

mg, 0.181 mmol) in Et2O (1 mL). The solution quickly changed to a vibrant red color 

after addition. The solution was allowed to warm to room temperature, with stirring. 

After 10 min, 12-crown-4 (29 μL, 0.179 mmol) was added to the solution via 

microsyringe, which resulted in no visible change. The red solution was then filtered 

through a Celite column (2 cm × 0.5 cm) supported on glass wool. The resulting red 

filtrate was transferred to a 4mL scintillation vial that was placed inside a 20mL 

scintillation vial. Toluene (2 mL) was then added to the outer vial. Storage of this two 

vial system at -25 °C for 72 h afforded red crystals, which were isolated by decanting 

off the supernatant (55.8 mg, 42% yield). Anal. Calcd for ULi2N10O8C72H108: C, 57.90; H, 

7.29; N, 9.38. Found: C, 57.52; H, 6.88; N, 9.59. 1H NMR (THF-d8, 25 °C, 400 MHz): δ 

48.68 (s, 1H), 40.32 (s, 1H), 26.34 (br s, 1H), 25.50 (s, 1H), 24.09 (s, 1H), 23.79 (s, 1H), 

22.82 (s, 1H), 22.67 (s, 1H), 17.68 (s, 1H), 13.71 (s, 3H), 12.44 (s, 1H), 10.47 (s, 3H), 

10.04 (s, 1H), 7.83 (br d, JHH = 9.2 Hz, 1H), 5.86 (s, 3H), 5.42 (d, JHH = 11.0 Hz, 3H), 4.47 

(d, JHH = 10.9 Hz, 3H), 3.74 (s, 1H), 3.58 (s, 32H, crown), 3.22 (s, 1H), 2.29 (s, 1H), 2.05 

(s, 1H), 0.88 (s, 1H), 0.76 (br s, 3H), 0.55 (s, 1H), 0.09 (s, 1H), -1.42 (d, JHH = 7.6 Hz, 3H), 

-2.13 (s, 3H), -2.53 (d, JHH = 8.8 Hz, 3H), -7.93 (br s, 1H), -8.08 (d, JHH = 9.4 Hz, 3H), -8.16 

(d, JHH = 11.6 Hz, 3H), -22.36 (s, 1H), -23.50 (s, 3H), -62.70 (s, 3H). One CH resonance, 
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integrating to 1H, one CH3 resonance, integrating to 3H, and two CH3 resonances, 

integrating to 6H, were not assigned. 7Li{1H} NMR (THF-d8, 25 °C, 155 MHz): δ 75.15 

(s), 0.98 (s), -44.63 (s). UV-vis/NIR (Et2O, 4.97 × 10-3 M, L∙mol-1∙cm-1):  730 (ε = 57), 

900 (ε = 3.6), 964 (ε = 4.2), 1066 (ε = 37.7), 1112 (ε = 75.6), 1176 (ε = 117.3), 1212 (ε = 

99.6), 1426 (ε = 41.1), 1592 (ε = 19). IR (KBr pellet, cm-1): 3028 (w), 2952 (sh m), 2922 

(sh s), 2900 (s), 2846 (s), 2814 (m), 2765 (m), 1603 (sh w), 1591 (w), 1545 (w), 1489 

(sh w), 1475 (sh w), 1460 (sh m), 1450 (s), 1421 (m), 1379 (s), 1363 (s), 1342 (m), 

1306 (m), 1288 (m), 1254 (sh s), 1244 (s), 1201 (m), 1169 (m), 1132 (vs), 1093 (vs), 

1039 (sh m), 1024 (s), 1005 (m), 976 (w), 922 (m), 849 (m), 814 (w), 783 (w), 741 (w), 

731 (sh w), 696 (w), 665 (w), 636 (w), 552 (w), 463 (w).  

 

7.4.7  X-ray Crystallography. The solid-state molecular structures of complexes 7.1 – 

7.6 were determined similarly with exceptions noted in the following paragraph. 

Crystals were mounted on a cryoloop under Paratone-N oil. Data collection was carried 

out on a Bruker KAPPA APEX II diffractometer equipped with an APEX II CCD detector 

using a TRIUMPH monochromater with a Mo Kα X-ray source (α = 0.71073 Å). Data for 

7.1 – 7.6 were collected at 100(2) K, using an Oxford nitrogen gas cryostream system. 

A hemisphere of data was collected using ω scans with 0.3° frame widths.  Frame 

exposures of 30, 20, 10, 10, 30 and 30 seconds were used for complexes 7.1, 7.2, 7.3, 

7.4, 7.5 and 7.6, respectively. Data collection and cell parameter determination were 

conducted using the SMART program.68 Integration of the data frames and final cell 

parameter refinement were performed using SAINT software.69 Absorption correction 

of the data was carried out using the multi-scan method SADABS.70 Subsequent 
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calculations were carried out using SHELXTL.71 
 
Structure determination was done 

using direct or Patterson methods and difference Fourier techniques. All hydrogen 

atom positions were idealized, and rode on the atom of attachment. However, 

hydrogen atoms were not assigned to the disordered carbon atoms.  Structure solution, 

refinement, graphics, and creation of publication materials were performed using 

SHELXTL.71  

Complex 7.3 contains a hexane solvent molecule that exhibits mild positional 

disorder. Hydrogen atoms were not assigned to these carbon atoms.  Complex 7.4 

contains an Et2O solvent molecule within the main residue that exhibits positional 

disorder of the CH3 groups. The positional disorder was addressed by modeling the CH3 

groups in two orientations in a 50:50 ratio. The Et2O carbon atoms were not refined 

anisotropically and were constrained with the EADP, DFIX, and FLAT commands. 

Complex 7.6 exhibits positional disorder of one 1-adamantyl group. The positional 

disorder was addressed by modeling the adamantyl group in two orientations in a 

50:50 ratio. The EADP and DFIX commands were used to constrain both orientations. 

Complex 7.6 also contains an Et2O solvent molecule that exhibited positional disorder, 

which was address by modeling the molecule in two orientations in a 50:50 ratio. 

Disordered atoms of the 1-adamantyl group and the Et2O solvent molecule were not 

refined anisotropically and were constrained with the EADP, DFIX, and FLAT 

commands. Complex 7.6 also exhibits some mild positional disorder of the carbon 

atoms in one of the 12-crown-4 moieties.  These atoms were constrained with the 

EADP and DFIX commands.  A summary of relevant crystallographic data for 7.1-7.6 is 

presented in Tables 7.2 – 7.3. 
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Table 7.2. X-ray Crystallographic Information for 7.1 – 7.3 

 7.1  7.2 7.3∙0.5C6H14  
empirical formula  ULi2N4C36H46 ULi2N4O2C44H62 ULiN3O2C56H61 

Crystal habit, color  square, blue rod, brown  plate, red-orange 
crystal size (mm)  0.10 × 0.10 × 0.05 0.1 × 0.05 × 0.04 0.30 × 0.20 ×0.05 
crystal system  monoclinic monoclinic  monoclinic  
space group  C2/c P21/n P21/c 
vol (Å3)  3413.5(2) 4203(2) 4523.3(3) 
a (Å)  25.7342(8) 21.494(5) 17.3133(7) 
b (Å)  9.9023(4) 10.946(2) 13.2031(6) 
c (Å)  18.1648(9) 18.895(4) 20.2884(8) 
α (deg)  90 90 90 
β (deg)  132.487(2) 109.009(4) 102.751(2) 
γ (deg)  90 90 90 
Z  4 4 4 
fw (g/mol)  786.68 930.89 1053.05 
density (calcd) 
(Mg/m3)  

1.531 1.471 1.546 

abs coeff (mm-1)  4.789 3.901 3.635 
F000  1552 1872 2116 
Total no. 
reflections  

11593 26296 31161 

Unique reflections  3491 8565 11212 
final R indices [I > 
2σ(I)]  

R1 = 0.0263 
wR2 = 0.0501 

R1 = 0.0419 
wR2 = 0.0614 

R1 = 0.0356 
wR2 = 0.0734 

largest diff peak 
and hole (e-Å-3)  

1.119 and -0.720 1.665 and -1.737 2.748 and -2.687 

GOF  0.995 0.929 1.010 
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Table 7.3. X-ray Crystallographic Information for 7.4 – 7.6 

 7.4 7.5 7.6∙OC4H10  
empirical formula  ULi2N5OC47H61 ULi2N4OSC40H56 ULi2N10O9C76H105 

Crystal habit, color  shard, brown plate, red  plate, red 
crystal size (mm)  0.05 × 0.025 × 0.01 0.20 × 0.10 × 0.05 0.1 × 0.05 × 0.025 
crystal system  monoclinic monoclinic  monoclinic 
space group  P21/n P21/n P21/n 
vol (Å3)  4310(2) 8923.0(5) 8115(4) 
a (Å)  9.993(3) 11.6066(8) 11.966(3) 
b (Å)  19.938(4) 17.008(1) 26.333(7) 
c (Å)  22.005(6) 19.985(2) 25.774(7) 
α (deg)  90 90 90 
β (deg)  100.579(8) 96.068(5) 92.425(5) 
γ (deg)  90 90 90 
Z  4 4 4 
fw (g/mol)  953.84 892.86 1554.60 
density (calcd) 
(Mg/m3)  

1.470 1.512 1.273 

abs coeff (mm-1)  3.806 4.226 2.057 
F000  1896 1784 3204 
Total no. 
reflections  

16676 90457 36957 

Unique reflections  7409 17260 16552 
final R indices [I > 
2σ(I)]  

R1 = 0.0722 
wR2 = 0.1245 

R1 = 0.0648 
wR2 = 0.0807 

R1 = 0.0806 
wR2 = 0.2109 

largest diff peak 
and hole (e-Å-3)  

1.506 and -1.135 3.349 and -1.868 3.162 and -2.924 

GOF  0.959 1.257 1.035 
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Appendix A 

 

Table A.1.  Electrochemical parameters for UO2(dbm)2(THF) (2.1) in CH2Cl2 (vs. 

Fc/Fc+, [NBu4][PF6] as supporting electrolyte).   

Reduction feature Scan rate, V/s Ep,c, V  
 

 0.025 -1.167   
 0.05 -1.154   
 0.1 -1.189   
 0.25 -1.206   
 0.5 -1.230   
 0.75 -1.248   
 1 -1.283   
Ferrocene Scan rate, V/s Ep,a, V ∆Ep, V ip,c/ip,a 
 0.025 0.052 0.089 1.06 
 0.05 0.062 0.094 1.06 
 0.1 0.051 0.109 1.05 
 0.25 0.059 0.132 1.07 
 0.5 0.072 0.160 1.09 
 0.75 0.082 0.155 1.13 
 1 0.086 0.200 1.15 

 

∆Ep is defined as the potential difference between the cathodic wave and the anodic 

wave generated after the change in sweep direction.  



 

 254 

 

Figure A.1. 19F{1H} NMR spectrum of the in situ reaction of UO2(dbm)2(THF) with 1 

equiv of B(C6F5)3 and 2 equiv HSiEt3 in CD2Cl2; after 24 h at 25 °C. Experimental 

Details: To an orange CD2Cl2 solution (1 mL) containing UO2(dbm)2(THF) (24.1 mg, 

0.030 mmol) was added dropwise a colorless CD2Cl2 solution (0.75 mL) of B(C6F5)3 

(16.0 mg, 0.031 mmol) and HSiEt3 (10 μL, 0.061 mmol), resulting in a color change to 

deep red. The tube was sealed, and the 1H and 19F{1H} NMR spectra were recorded 

after standing at room temperature for 24 h (19F spectrum shown above). These 

spectra revealed the formation of 2.3 and 2.4, in a 1:2 ratio, which was determined by 

comparing the integrations of the meta C–F resonances in the 19F NMR spectrum.  

Asterisks indicate resonances assignable to complex 2.4, while ^ indicates resonances 

assignable to complex 2.3.  Several other 19F resonances are observed that were not 

assignable to any known species. 

   ^   ^ 

    ^      * 

* 

 

  * 
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Figure A.2. 19F{1H} NMR spectrum of the in situ reaction of [UO2(dppmo)2OTf][OTf] 

with 2 equiv Ph3SiH and B(C6F5)3 in TCE-d2; after 5 min at 25 °C. Experimental 

Details: A pale yellow TCE-d2 solution (1 mL) containing [UO2(dppmo)2OTf][OTf] (31.0 

mg, 0.022 mmol) was sealed in a J. Young NMR tube, and the 1H, 19F{1H}, and 31P{1H} 

NMR spectra was recorded. Then a colorless CD2Cl2 solution (1 mL) of Ph3SiH (12.1 mg, 

0.046 mmol) and B(C6F5)3 (23.5 mg, 0.046 mmol) was added dropwise, resulting in a 

pale yellow solution. The tube was sealed, and the 1H, 11B, 19F{1H}, and 31P{1H} NMR 

spectra were recorded after standing at room temperature for 5 min (19F spectrum 

shown above). The J. Young NMR tube was then thermolyzed for 72 h at 105 °C, 

whereupon a color change to pale green is observed and the 1H, 11B, 19F{1H}, and 

31P{1H} NMR spectra were recorded again. ^ indicates resonances assignable to 

[UO2(dppmo)2OTf][H(BC6F5)3], and + indicates resonances assignable to Ph3SiOTf. 

^ 

^ 

^ 
^ 

+ 
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Figure A.3. Partial 19F{1H} NMR spectrum of the in situ reaction of 

[UO2(dppmo)2OTf][OTf] with 2 equiv Ph3SiH and B(C6F5)3 in TCE-d2; after 72 h at 105 

°C. Experimental Details: See Figure A.2. Astericks indicates resonances assignable to 

[B(C6F5)4]-, ^ indicates resonances assignable to pentafluorobenzene, and + indicates 

resonances assignable to Ph3SiF. 

 

 

 

 

 

* * 

* 

^ ^ 
^ + 
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Figure A.4.  1H NMR spectra of the in situ reaction of [UO2(dppmo)2(OTf)][OTf] with 4 

equiv of Ph3SiOTf and 2 equiv of Cp2Co in CD2Cl2. Experimental Details: To a stirring 

pale yellow CD2Cl2 solution (1 mL) containing [UO2(dppmo)2(OTf)][OTf] (34.3 mg, 

0.025 mmol), was added dropwise a light brown CD2Cl2 solution (1 mL) of Ph3SiOTf 

(41.4 mg, 0.101 mmol) and Cp2Co (9.3 mg, 0.051 mmol). This resulted in an immediate 

color change to yellow-green. After 20 min, the reaction mixture was transferred to a J. 

Young NMR tube, and the 1H, 19F{1H}, and 31P{1H} NMR spectra were recorded.  The 

NMR solution was returned to the vial, and stirring was continued.  1H, 19F{1H}, and 

31P{1H} NMR spectra were similarly recorded after 2 h, 4.5 h, 7 h, and 24 h of stirring at 

room temperature. In addition, a green precipitate began to form in the reaction 

mixture after 4 h.  # indicates resonances assignable to complex 3.1, + indicates 

resonances assignable to complex 3.4, % indicates resonances assignable to 

# # 
# 

# # 

20 min 

^ ^ 

^ 

+ 
+ + 

+ + + 

# 

^ 

# 

2 h 

4.5 h 

7 h 

24 h 
% 

< 

< 
< 

< < 



 

 258 

[Cp2Co][OTf], ^ indicates resonances assignable to complex 3.3, and < indicates the 

resonances of an unidentified U(IV) silyloxide-containing species. 

 

 

Figure A.5. 1H NMR spectrum of “[U(OSiMe3)2(dbm)2(THF)][OTf]” in CD2Cl2 at 25 °C. 

Asterisks indicate the presence of hexanes. 

* 
* 

* 
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Figure A.6. 19F{1H} NMR spectrum of “[U(OSiMe3)2(dbm)2(THF)][OTf]” in CD2Cl2 at 25 

°C.  



 

 260 

 

Figure A.7. Solid-state ball and stick structure of UO2(dbm)2(DMPO) (4.5). Complex 

4.5 crystallizes in the monoclinic space group P21/n, with the unit cell parameters: a = 

13.709(1) Å, b = 15.876(1) Å, c = 16.617(1) Å, α = 90°, β = 101.017(7)°, γ = 90°, Volume 

= 3550.1(5).  Only connectivity could be confirmed from this structure.  
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Figure A.8. 1H NMR spectrum of a mixture of the two isomers of C22H22N4 (Z-isomer: 

5.3; E-isomer: 5.4) in a 2:3 ratio in C6D6. ^ indicates resonances assignable to 

compound 5.3, + indicates resonances assignable to compound 5.4, and asterisks 

indicate the presence of Et2O and THF.  

^ ̂ ^ ̂  ^ ^ 
^ ^ ^ + + + + + 

+ 

+ 

+ 

* 
* 

* 

* 

^ 

^ ̂  
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Figure A.9. 13C{1H} NMR spectrum of a mixture the two isomers of C22H22N4 (Z-isomer: 

5.3; E-isomer: 5.4) in a 2:3 ratio in C6D6. ^ indicates resonances assignable to 

compound 5.3, + indicates resonances assignable to compound 5.4, and asterisks 

indicate the presence of Et2O.  

 

 

+ + + 

+ 
+ + 

+ 

+ 

+ + 
+ 

+ 

* 
* 

* 
* 

^ ^ 
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Figure A.10. 1H NMR spectrum of [Li(THF)]2[UO2(N(SiMe3)2)2(tmtaa)] (5.6) in C6D6 at 

25 °C. Asterisks indicate the presence of Et2O and HN(SiMe3)2. 

 

* 

* * 
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Figure A.11. 7Li{1H} NMR spectrum of [Li(THF)]2[UO2(N(SiMe3)2)2(tmtaa)] (5.6) in 

C6D6 at 25 °C.  
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Figure A.12.  Temperature dependence of µeff for [Li][U(2,3-C6H3CH2NMe2)(2-

C6H4CH2NMe2)3] from 4 K to 300 K (χdia = -3.73 ×  10-4 cm3·mol-1, mass = 18.2 mg, M = 

780.75 g/mol). Magnetism Measurements: Magnetism data were recorded using a 

Quantum Design MPMS 5XL SQUID magnetometer. The complex, [Li][U(2,3-

C6H3CH2NMe2)(2-C6H4CH2NMe2)3], was analyzed using 18.2 mg of powdered 

crystalline material loaded into a NMR tube, which was subsequently flame sealed.  

The solid was kept in place with ~45 mg quartz wool packed on either side of the 

sample.  Data for [Li][U(2,3-C6H3CH2NMe2)(2-C6H4CH2NMe2)3] was collected using a 5 

T field between 4 K and 300 K.  Diamagnetic correction for 2, χdia = -3.73 × 10-4 

cm3·mol-1, was made using Pascal’s constants.1 

 (1) Bain, G. A.; Berry, J. F. J. Chem. Educ. 2008, 85, 532. 
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B.1 Synthesis of [Li(Et2O)]2[Li(THF)2]2[U(C6H4)2(C6H5)4] (B.1). To a cold (-25 °C), 

stirring green solution of UCl4 (101.1 mg, 0.266 mmol) in THF (2 mL) was added cold (-

25 °C) PhLi  (1.30 mL, 2.66 mmol).  The solution immediately turned dark orange-

brown and the solvent was removed in vacuo to give a very dark brown oil.  The oil was 

extracted into pre-cooled diethyl ether (-25 °C).  A grey precipitate was immediately 

removed by filtration through a Celite column (2 cm × 0.5 cm) supported on glass wool.  

The resulting brown filtrate was concentrated in vacuo.  Storage of the solution at -25 

°C for 44 d resulted in the formation of a few emerald green crystals of complex B.1.  

These crystals were only isolated once.  In one instance, a few emerald green crystals of 

[Li(Et2O)]4[LiCl][U(C6H4)2(C6H5)3(OC4H9)] (B.2), were isolated from a similar reaction 

mixture, although the yield was again very low. Other attempts to repeat this synthesis 

lead to the isolation of many colorless crystals of [Li(THF)]4[C6H5]4 (B.3) (See Below). 

 

 

Scheme B.1. Synthesis of B.1 and B.3. 
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Figure B.1. Solid-state structure of [Li(Et2O)]2[Li(THF)2]2[U(C6H4)2(C6H5)4] (B.1), with 

50% probability ellipsoids. Hydrogen atoms omitted for clarity. Selected bond lengths 

(Å) and angles (deg): U1-C1 = 2.542(5), U1-C2 = 2.435(3), U1-C3 = 2.629(4), U1-C4 = 

2.715(4), C1-C2 = 1.420(6), C1-U1-C2 = 33.1(1), C1-U1-C2i = 86.3(1), C3-U1-C3i = 

101.1(2), C4-U1-C4i = 165.2(2). 
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B.2 Synthesis of [Li(Et2O)]4[LiCl][U(C6H4)2(C6H5)3(OC4H9)] (B.2). To a cold (-25 °C), 

stirring green solution of UCl4 (66.9 mg, 0.176 mmol) in THF (2 mL) was added cold (-

25 °C) PhLi  (0.78 mL, 0.176 mmol), which resulted in a dark red brown solution. Then, 

n-butanol (16.5 μL, 0.180 mmol) was immediately added via microsyringe, which did 

not result in any visible change. The solution was quickly filtered through a Celite 

column (2 cm × 0.5 cm) supported on glass wool, which afforded a dark brown filtrate 

and a black-brown plug. The filter was rinsed with Et2O (<1 mL) to dissolve most of the 

plug. The volume of the filtrate was reduced in vacuo (ca. 1.5 mL), and storage of the 

solution at -25 °C for 3 h resulted in the formation of a few colorless crystals, which 

were removed by decanting the solution. The dark brown mother liquor was quickly 

filtered again through a Celite (2 cm × 0.5 cm) supported on glass wool. The resulting 

dark brown filtrate was transferred to a 4mL scintillation vial that was placed inside a 

20mL scintillation vial. Hexanes (2 mL) was then added to the outer vial. Storage of this 

two vial system at -25 °C for 30 d afforded a few green rhombic crystals towards the 

mouth of the inner vial. The identity of the green rhombic crystals were confirmed 

twice from two separate reactions by a unit cell determination of a green rhombic 

crystal: a = 23.56 Å, b = 12.70 Å, c = 35.40 Å; α = 90°, β = 99.30°, γ = 90°, as well as a = 

23.68 Å, b = 12.89 Å, c = 35.62 Å; α = 90°, β = 98.72°, γ = 90°, which both match the unit 

cell originally obtained for B.2 (Table B.1).  
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Scheme B.2. Synthesis of complex B.2. 

 

 

Figure B.2. Solid-state structure of [Li(Et2O)]4[LiCl][U(C6H4)2(C6H5)3(OC4H9)] (B.2) 

with 50% probability ellipsoids. Hydrogen atoms omitted for clarity. Selected bond 

C48 

C49 

C50 

C51 
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lengths (Å) and angles (deg): U1-C1 = 2.440(5), U1-C2 = 2.555(5), U1-C3 = 2.559(5), 

U1-C4 = 2.447(5), U1-C5 = 2.701(5), U1-C6 = 2.659(5), U1-C7 = 2.656(5), U1-O1 = 

2.371(3), C1-C2 = 1.404(7), C3-C4 = 1.428(7), O1-C48 = 1.418(6), C48-C49 = 1.513(7), 

C49-C50 = 1.487(8), C50-C51 = 1.504(9). 

 

 

 

Figure B.3. Solid-state structure of [Li(THF)]4[C6H5]4 (B.3), with 50% probability 

ellipsoids for the phenyl carbons. Hydrogen atoms omitted for clarity. Selected bond 

lengths (Å): Li1-C7 = 2.311(4), Li1-C9 = 2.260(4), Li1-C11 = 2.341(4), Li2-C7 = 

2.257(4), Li2-C8 = 2.249(4), Li2-C9 = 2.304(4), Li1-Li2 = 2.700(5), Li1-Li3 = 2.500(5), 

Li1-Li4 = 2.628(5), Li2-Li3 = 2.585(5), Li2-Li4 = 2.661(5), Li3-Li4 = 2.622(5), Li1-O2 = 

2.016(4).   
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B.3 Synthesis of ScIII(L1)(N=CtBu2)(Cl) (B.4). To a stirring yellow solution of 

(L1)ScCl2 [L1 = CH3C(2-6-(iPr)2-C6H3N)CHC(CH3)(NCH2CH2NMe2)]1 (100.4 mg, 0.226 

mmol) in toluene (~3 mL), was added a yellow slurry of LiN=CtBu2 (66.5 mg, 0.452 

mmol) in toluene (~3 mL). The slurry was allowed to stir at room temperature for 10 

min, whereupon the color of the slurry took on an orange hue. The slurry was allowed 

to stir for an additional 72 h, whereupon a yellow-orange solution was generated, 

concomitant with the deposition of a very fine white precipitate. The fine white solid 

was removed via centrifugation. The volatiles of the resulting light orange solution 

were removed in vacuo. The resulting orange oil was triturated with hexanes (1 mL), 

which resulted in a mixture of orange solid and orange oil. The oil was extracted in 

hexanes (3 mL), decanted away from the solid and discarded. The orange solid was 

dried in vacuo (97.9 mg, 79% yield). X-ray quality crystals were grown out of a 

concentrated toluene solution stored at -25 °C for 24 h. 1H NMR (C6D6, 25 °C, 400 MHz): 

δ 7.24 (m, 3H, Dipp), 5.00 (s, 1H, γ-CH), 3.37 (m, 2H, CH2), 2.86 (m, 2H, CH2), 2.34 (s, 

3H, CH3), 2.15 (s, 3H, CH3), 1.66 (s, 6H, iPr-Dipp), 1.62 (s, 6H, iPr-Dipp), 1.51 (d, JHH = 9 

Hz, 3H, CH3), 1.30 (s, 18H, tBu) 1.20 (d, JHH = 9 Hz, 3H, CH3). 

 

Scheme B.3. Synthesis of complex B.4. 
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Figure B.4. Solid-state structure of ScIII(L1)(N=CtBu2)(Cl) (B.4) with 50% probability 

ellipsoids. All hydrogen atoms have been removed for clarity. Complex B.4 crystallizes 

with two independent molecules in the asymmetric unit; only one is shown here for 

clarity. Selected bond lengths (Å) and angles (deg): Sc1-N1 = 2.184(5), Sc1-N2 = 

2.194(4), Sc1-N3 = 2.343(5), Sc1-N4 = 1.988(4), N4-C22 = 1.243(6), Sc1-Cl1 = 2.424(2), 

Sc1-N4-C22 = 171.8(4). The Sc-Nketimide bond length (1.988(4) Å) falls in between the 

Sc-N bond lengths in the complexes ScIII(L1)(HNDipp)(Me) (Sc-NHDipp = 2.047(3) Å) 

and ScIII(L1)(NDipp)(DMAP)  (Sc=NDipp = 1.881(5) Å).1 
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Figure B.5. 1H NMR spectrum of complex B.4 in C6D6.  
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B.4 Synthesis of [ScIII(N=CtBu2)3]2 (B.5). To a stirring, off white slurry of ScCl3(THF)3 

(100.5 mg, 0.273 mmol) in THF (2 mL), was added a white slurry of LiN=CtBu2 (159.9 

mg, 1.086 mmol) in THF (3 mL), which resulted in an immediate change to a yellow 

slurry. After stirring at room temperature for 15 min, the solid completely dissolved. 

The resulting yellow solution was allowed to stir for an additional 1.33 h, whereupon 

all the volatiles were removed in vacuo. The resulting yellow solid was triturated with 

hexanes (2 mL), and extracted into hexanes (5 mL). The resulting yellow slurry was 

filtered through a Celite column (2 cm × 0.5 cm) supported on glass wool. All the 

volatiles were removed from the yellow filtrate in vacuo, which afforded a yellow oil. 

The yellow oil was dried in vacuo for 3 h, which resulted in the formation of a yellow oil 

concomitant with a yellow solid. Several drops of cold (-25 °C) hexanes were added to 

the mixture. Storage of the mixture at -25 °C for 1 h, resulted in formation of a yellow 

solution concomitant with a yellow solid. The supernatant was decanted quickly from 

the solid and discarded. The solid was dried in vacuo, and then extracted into hexanes 

(~2 mL). The resulting yellow solution was concentrated in vacuo (ca. 1.5 mL), and 

storage of the solution at -25 °C for 24 h, afforded yellow crystals (82.6 mg, 65% yield). 

1H NMR (C6D6, 25 °C, 400 MHz): δ 1.40 (s, 36H, tBu), 1.37 (s, 72H, tBu). 

 

Scheme B.4. Synthesis of complex B.5. 

 



 

 276 

 

Figure B.6. Solid-state structure of [ScIII(N=CtBu2)3]2 (B.5) with 50% probability 

ellipsoids. All hydrogen atoms have been removed for clarity. Selected bond lengths (Å) 

and angles (deg): Sc1-Sc2 = 3.218(1), Sc1-N1 = 2.210(4), Sc1-N2 = 2.151(4), Sc1-N3 = 

2.004(4), Sc1-N4 = 2.012(4), Sc2-N1 = 2.229(4), Sc2-N2 = 2.166(4), Sc2-N5 = 2.026(4), 

Sc2-N6 = 1.996(5). Sc1-N1-Sc2 = 92.9(1), Sc1-N2-Sc2 = 96.4(2), N3-Sc1-N4 = 117.3(2), 

N5-Sc2-N6 = 112.1(2). 
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Figure B.7. 1H NMR spectrum of complex B.5 in C6D6.  
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B.5  X-ray Crystallography. The solid-state molecular structures of complexes B.1 – 

B.5 were determined similarly with exceptions noted in the following paragraph. 

Crystals were mounted on a cryoloop under Paratone-N oil. Data collection was carried 

out on a Bruker KAPPA APEX II diffractometer equipped with an APEX II CCD detector 

using a TRIUMPH monochromater with a Mo Kα X-ray source (α = 0.71073 Å). Data for 

B.1 – B.3 were collected at 100(2) K, data for B.4 were collected at 173(2) K, and data 

for B.5 were collected at 140(2) K, using an Oxford nitrogen gas cryostream system. A 

hemisphere of data was collected using ω scans with 0.5° frame widths.  Frame 

exposures 10 seconds were used for complexes B.1 - B.5. Data collection and cell 

parameter determination were conducted using the SMART program.2 Integration of 

the data frames and final cell parameter refinement were performed using SAINT 

software.3 Absorption correction of the data was carried out using the multi-scan 

method SADABS.4 Subsequent calculations were carried out using SHELXTL.5 
 
Structure 

determination was done using direct or Patterson methods and difference Fourier 

techniques. All hydrogen atom positions were idealized, and rode on the atom of 

attachment. Structure solution, refinement, graphics, and creation of publication 

materials were performed using SHELXTL.5 A summary of relevant crystallographic 

data for complexes B.1−B.5 are presented in Tables B.1-B.2. 
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Table B.1. X-ray Crystallographic Information for B.1, B.2 and B.3 

 B.1 B.2 B.3  
empirical formula  C48H56Li4O4U C100H142Cl2Li10O10U2 C40H52Li4O4 
Crystal habit, color  plate, green diamond, green needle, colorless  
crystal size (mm)  0.20 × 0.1 × 0.05 0.1 × 0.05 × 0.25 0.30 × 0.05 ×0.05 
crystal system  orthorhombic monoclinic triclinic 
space group  Pbcn C2/c P-1 
vol (Å3)  4824.3(2) 10331.8(7) 1826.0(5) 
a (Å)  14.0716(4) 23.4693(9) 9.242(1) 
b (Å)  18.4128(5) 12.6104(4) 10.202(2) 
c (Å)  18.6195(5) 35.308(2) 20.017(3) 
α (deg)  90 90 85.338(5) 
β (deg)  90 98.614(2) 83.932(4) 
γ (deg)  90 90 77.091(5) 
Z  4 4 2 
fw (g/mol)  962.72 2120.50 624.60 
density (calcd) 
(Mg/m3)  

1.325 1.363 1.468 

abs coeff (mm-1)  3.402 3.234 0.068 
F000  1920 4280 642 
Total no. reflections  10469 45118 7314 
Unique reflections  5302 13345 4647 
final R indices [I > 
2σ(I)]  

R1 = 0.0404         
wR2 = 0.1239 

R1 = 0.0467          
wR2 = 0.0975 

R1 = 0.0549 
wR2 = 0.1183 

largest diff peak and 
hole (e-Å-3)  

1.963 and -0.971 1.685 and -1.530 0.403 and -0.399 

GOF  0.976 1.053 1.020 
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Table B.2. X-ray Crystallographic Information for B.4 and B.5 

 B.4 B.5 
empirical formula  C30H52ClN4Sc C54H106N6Sc2 
Crystal habit, color  block, yellow block, pale-yellow 
crystal size (mm)  0.26 × 0.10 × 0.05 0.26 × 0.25 × 0.20 
crystal system  triclinic monoclinic 
space group  P-1 P21/n 
vol (Å3)  3245(2) 5885(2) 
a (Å)  10.683(4) 12.206(3) 
b (Å)  15.633(5) 22.474(5) 
c (Å)  20.213(7) 21.472(5) 
α (deg)  88.596(7) 90 
β (deg)  89.309(7) 92.432(4) 
γ (deg)  74.077(6) 90 
Z  4 4 
fw (g/mol)  549.16 929.36 
density (calcd) 
(Mg/m3)  

1.124 1.049 

abs coeff (mm-1)  0.332 0.267 
F000  1192 2056 
Total no. reflections  12594 10921 
Unique reflections  8071 6140 
final R indices [I > 
2σ(I)]  

R1 = 0.0806         
wR2 = 0.2347 

R1 = 0.0793       
wR2 = 0.2113 

largest diff peak and 
hole (e-Å-3)  

1.246 and -0.702 0.899 and -0.529 

GOF  1.048 1.062 
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