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Abstract

Geometric Pursuit Evasion

Kyle Thomas Klein

In this dissertation we investigate pursuit evasion problems set in geometric envi-

ronments. These games model a variety of adversarial situations in which a team of

agents, called pursuers, attempts to catch a rogue agent, called the evader. In particular,

we consider the following problem: how many pursuers, each with the same maximum

speed as the evader, are needed to guarantee a successful capture? Our primary focus

is to provide combinatorial bounds on the number of pursuers that are necessary and

sufficient to guarantee capture.

The first problem we consider consists of an unpredictable evader that is free to

move around a polygonal environment of arbitrary complexity. We assume that the

pursuers have complete knowledge of the evader’s location at all times, possibly obtained

through a network of cameras placed in the environment. We show that regardless of

the number of vertices and obstacles in the polygonal environment, three pursuers are

always sufficient and sometimes necessary to capture the evader. We then consider

several extensions of this problem to more complex environments. In particular, suppose

the players move on the surface of a 3-dimensional polyhedral body; how many pursuers

are required to capture the evader? We show that 4 pursuers always suffice (upper
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bound), and that 3 are sometimes necessary (lower bound), for any polyhedral surface

with genus zero. Generalizing this bound to surfaces of genus g, we prove the sufficiency

of (4g + 4) pursuers. Finally, we show that 4 pursuers also suffice under the “weighted

region” constraints, where the movement costs through different regions of the (genus

zero) surface have (different) multiplicative weights.

Next we consider a more general problem with a less restrictive sensing model. The

pursuers’ sensors are visibility based, only providing the location of the evader if it

is in direct line of sight. We begin my making only the minimalist assumption that

pursuers and the evader have the same maximum speed. When the environment is a

simply-connected (hole-free) polygon of n vertices, we show that Θ(n1/2) pursuers are

both necessary and sufficient in the worst-case. When the environment is a polygon

with holes, we prove a lower bound of Ω(n2/3) and an upper bound of O(n5/6) pursuers,

where n includes the vertices of the hole boundaries. However, we show that with

realistic constraints on the polygonal environment these bounds can be drastically

improved. Namely, if the players’ movement speed is small compared to the features

of the environment, we give an algorithm with a worst case upper bound of O(log n)

pursuers for simply-connected n-gons and O(
√
h+ log n) for polygons with h holes.

The final problem we consider takes a small step toward addressing the fact that

location sensing is noisy and imprecise in practice. Suppose a tracking agent wants to

follow a moving target in the two-dimensional plane. We investigate what is the tracker’s

x



best strategy to follow the target and at what rate does the distance between the tracker

and target grow under worst-case localization noise. We adopt a simple but realistic

model of relative error in sensing noise: the localization error is proportional to the true

distance between the tracker and the target. Under this model we are able to give tight

upper and lower bounds for the worst-case tracking performance, both with or without

obstacles in the Euclidean plane.

Professor S. Suri

Dissertation Committee Chair
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Introduction

Pursuit evasion problems ask a question of the following form: what strategy should

a team of pursuers use to catch an adversarial evader? Due to the numerous variations of

the capabilities of the pursuers and the evader, as well as definitions of what it means

to “catch”, an enormous number of challenging problems have been considered. One

such problem is that of a team of cops chasing a fleeing robber. While the cops may

have a high success rate by applying the intuitive strategy of simultaneously chasing

and surrounding the robber, there is no guarantee that a robber, either through their

own cunning or ignorance, will not escape its pursuers. Pursuit evasion games seek to

not only formalize and prove the success of such an algorithm, but also its optimality

under a variety of metrics such as duration, numbers of cops, etc. Given such a formal

bound, we can then be certain that whenever possible the robber will be apprehended as

efficiently as possible.

The research into these pursuit evasion problems has a rich history dating back as

far as the 1930’s when Rado posed the now classic lion and man problem (discussed
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Introduction

in Section 0.1). In the last eighty or so years, there has been significant work done

in a variety of areas, motivated both by natural applications in surveillance, tracking,

monitoring, military strategy, and search-and-rescue, and by mathematical richness

and complexity that underlie these problems. Indeed, the literature on pursuit evasion

problems spans a surprisingly broad list of areas from applied ones such as robotics,

artificial intelligence, sensor networks and control systems, to theoretical ones such as

mathematics, graph theory, game theory, algorithms and computational geometry. As a

result an enormous and highly diverse literature has emerged dealing with many aspects

of pursuit evasion. This dissertation focuses exclusively on algorithmic research, and

will not discuss many other aspects dealing with strategies and counter-strategies (game

theory), differential games (control theory), motion control, and feedback etc.

In particular we consider the problem of capture in geometric environments, where a

team of pursuers is tasked with locating and capturing an adversarial evader. Our primary

focus is on finding combinatorial bounds on the number of pursuers that are necessary

and sufficient to capture the evader. Guibas et al. introduced a formal framework and

analysis of visibility-based pursuit in complex polygonal environments [25], however, in

order to make the problem tractable, they made one crucial simplifying assumption: the

evader loses if it is “seen” by any pursuer. That is, the pursuers need to only detect the

presence of the evader, and not physically catch it. Under this detection model, Guibas

et al. managed to prove several interesting combinatorial bounds, namely, Θ(log n)

2



Introduction

pursuers are always sufficient and sometimes necessary to locate an evader in a simply

connected n-gon, and Θ(
√
h+ log n) in the presence of h obstacles. However, until our

work there had been little progress on extending their detection bounds to the physical

capture we consider.

Our work begins by attempting to disentangle two orthogonal issues inherent in

pursuit evasion: localization, which is purely an informational problem, and capture,

which is a problem of planning physical moves. In particular, we ask how complex

is the capture problem if the evader localization is available for free? From here, our

work follows a natural progression in regards to both the sensor capabilities and the

complexity of the environments considered. As a result, we are able to build on our

results to find combinatorial bounds on the number of pursuers required to catch an

evader matching the detection bounds of Guibas et al. Additionally, we extend our results

to more realistic real world scenarios by considering three dimensional environments as

well as consider the sensor noise which will be present in any practical application.

0.1 Related Work

The history of pursuit evasion in mathematics can be traced back to the 1930s when

Rado first posed the following puzzle: A lion and a man (each viewed as a single point)

in a closed disc have equal maximum speeds; can the lion catch the man? The apparent

answer to the problem is that the lion can win by the following strategy: move with

3



Introduction

maximum speed in such a way that he always lies on the radius vector from the center

to the man. However, this “conventional wisdom” was shown to be wrong in 1952 by

Besicovitch, who showed a strategy for the man to survive forever [48]. Besicovitch’s

argument has the following form.

Split time into a sequence of intervals, of lengths t1, t2, t3, . . .. At the ith
step, the man runs for time ti in a straight line that is perpendicular to his
radius vector at the start of the step. He chooses to run into the half plane
that does not contain the lion, so certainly the lion does not catch the man
in this time step. The man then repeats this procedure for the next time step,
and so on. Besicovitch shows that there exists a series of time intervals
whose sum is infinite, such that the length of the radius vector remains finite.
Thus, the man can run from the lion forever, while always remaining within
the disc.

This simple argument highlights one of the aspects of pursuit evasion problems

which makes them so attractive; while the questions posed are natural, their solutions are

often surprising and non-trivial. As a result an enormous and highly diverse literature has

emerged dealing with many aspects of pursuit evasion. Many different variations of the

problem are studied depending on the nature of the environment (discrete vs. continuous,

occluded vs. unoccluded), speed and movement constraints, capture rules, etc., and under

colorful names such as Cops-and-Robbers [31], Hunter-and-Rabbit [27, 30], Homicidal

Chauffeur [12], and Princess-and-Monster games [7].

Broadly speaking, the algorithmic formulations of pursuit evasion problems fall into

two categories: discrete and continuous. We begin by discussing the former, which

4



Introduction

primarily considers pursuit evasion on a graph and lays much of the groundwork for the

continuous geometric spaces which is the domain of this work.

0.1.1 Pursuit Evasion in Graphs

Graph-based pursuit evasion has received significant interest for a variety of reasons.

For one, graphs are a natural model for many possible applications, such as search in

buildings or caves, or even inoculating a spreading virus in a computer network through

strategic placement of antivirus software. In addition, their discrete nature can often

make reasoning about their properties simpler than continuous models. While there are

many pursuit evasion games set in graphs, the general idea is that pursuers and evaders

traverse edges, the pursuers win if they occupy the same node or edge as the evader, and

the evader wins if it can indefinitely avoid the pursuers. Though the literature covers a

vast number of models, they primarily differ in the movement capabilities of the players,

or the information available to either one or both of the pursuers and the evaders.

Graph Searching

Graph searching generally has the following setup. The evader can move along edges of

the graph, and the pursuers can execute three moves: place a pursuer at a node; remove

a pursuer from a node; and clear an edge by traversing it from one endpoint to the other.

The pursuer’s objective is then to have every edge in the graph simultaneously clear,

however, an edge only remains clear as long as any path from a contaminated edge to a

5



Introduction

clear edge is contains at least one pursuer. Edge search then asks, what is the minimum

amount of pursuers required to clear all edges in the graph? Edge search was first studied

in the 1970s by Parsons, who imagined the problem of attempting to find a lost spelunker

in a network of caves [59]. A surprising result was shown by LaPaugh [45], namely,

a search strategy using the optimal number of pursuers can always be converted to a

search strategy that avoids recontamination, that is, no edge needs to be cleared twice.

Unfortunately, even though LaPaugh’s result shows that an optimal solution exists with

a polynomial number of moves, it was later shown by Megiddo [50] that computing the

minimum number of pursuers is NP-Complete for general graphs.

Since the original work by Parsons, many related models have been studied. Some

examples of other graph searching games includes node search [36], where an edge is

cleared when both of its incident nodes are occupied by pursuers, and mixed search

[10], which allows clearing via either node or edge searching. Let es(G), ns(G), and

ms(G) denote the minimum number of pursuers required to search a graph G using

edge, node, and mixed search respectively. Then the following inequalities are known

due to [10, 36]:

ns(G)− 1 ≤ es(G) ≤ ns(G) + 1

ns(G) ≤ ms(G) + 1

es(G) ≤ ms(G) + 1

6
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While all three problems are NP-Complete [36, 50], they are closely related to other

well studied graph problems with known approximation algorithms. For example, it is

known that the vertex separation number of a graph G, denoted vs(G) obeys the equality

ns(G) = vs(G) + 1 [36]. In addition, it was shown that the path width of a graph G,

denoted pw(G), is equal to its vertex separator, implying that ns(G) = pw(G) + 1.

While path-width is NP-Complete, there is an O((log n)3/2) approximation algorithm,

and for a fixed k, a solution can be computed linear time, though it is only practical for

very small values of k.

Another well studied graph searching problem, sometimes called helicopter search,

considers node search but with a unoccluded evader, that is, the pursuers always know

the location of the evader [65]. Notice that instead of a question of de-contaminating the

graph, this is a question of pinning the evader so that it has no escape route. This results

in different bounds than that of Parson’s original model, for example, it turns out that a

tree can be searched with two pursuers, as opposed to the Ω(log n) required for edge

search on complete ternary trees [59]. Helicopter search is also closely related to the

node search problem studied in [36], where the evader is lazy and only moves if it is

about to lose. In fact, for both the visible and lazy evader [17, 65], it was shown that

the search number of the graph is exactly one more than its tree width, which can be

used in a reduction to show both problems are NP-Hard. However, similar to path width,
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tree-width is fixed parameter tractable and an O(
√

log n) approximation algorithm is

known.

Cops and Robbers

The general graph-searching problem allows pursuers to “teleport” (jump from one vertex

to any other in a single move), and considers arbitrarily fast moving evaders. In the

Cops-and-Robbers game, the agents alternate turns and can only move to a neighboring

node in a single move, thus giving the game a more natural physical interpretation.

Typically, the game assumes the robber is unoccluded, and ends if a cop reaches the

same node as the robber, or if the robber can indefinitely avoid the cops. Cops-and-

Robbers was first studied independently in [57, 60], which showed that a single cop only

wins if the graph is a member of a special class of graphs, namely dismantlable graphs.

However, the question of the minimum number of cops needed to catch the robber for

a graph G, often called the cop number and denoted c(G), was not addressed. Since

these original investigations, it has been shown that if the initial locations of the cop

and robber are given, determining whether k cops can capture a robber is EXP-TIME

Complete [20, 23].

An open question today is to understand the maximum cop number of general graphs.

Aigner and Fromme [2] have shown that n node graphs with no cycles smaller than

length 5 require at least as many cops as the minimum degree among all nodes of G.

This combined with knowledge of dense graphs gives a lower bound of Ω(
√
n), which
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was conjectured to be tight by Meyniel. However, the best known upper bound is far

from realizing this lower bound, indeed, recently the upper bound was decreased to

O(n/ log n) [16], and then again to O(n ·2−(1+o(1))
√

logn) [64]. Other strategies of upper

bounding relate to the genus of the graph, for example, Aigner and Fromme showed

that a planar graph, which has genus zero, has cop number at most three. Schroeder

extended this to graphs of arbitrary genus g, proving a cop number of at most b3g
2
c+ 3,

however, this bound is not known to be tight. Additional work has studied special classes

of graphs such as Cayley [21], chordal [31], random [11], and graph products [55], as

well as altered models such as partial information [31].

0.1.2 Geometric Pursuit Evasion

Geometric pursuit evasion takes places in the continuous Euclidean space, as opposed

to the discrete space of graph based games. The geometric environment is typically

modeled as a polygon, possibly with holes (serving as polygonal obstacles), and the

players can move anywhere in the free space (the obstacle free interior of the polygon).

Pursuit evasion in polygonal environments has received considerable interest for nearly

two decades. The geometric properties of polygons often results in intellectually deep

problems, while also having the added benefit of being able to accurately model many

real world physical structures. The work in this area can roughly be broken into two
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rather broad categories, detection, where the pursuers need only find the evader, and

capture, where the pursuers must physically reach the evader in order to apprehend it.

Detection

Suppose an arbitrarily fast evader is moving about some simple polygon P . The problem

of detection then asks a group of pursuers to plan search paths such that no matter how

the evader moves, within some finite time t it will be visible to one of the pursuers.

In this case, the standard definition of visibility is used, specifically, the line segment

connecting the pursuer to the evader must not intersect the exterior of the polygon.

Unsurprisingly, via a reduction from edge search, it was shown that computing the

minimum number of required pursuers for a given polygon is NP-Hard [25]. However,

unlike graph searching, Guibas et al. constructed an n-gon in which no strategy using

the optimal number of pursuers existed that avoided recontamination [25], in fact, in any

successful search a region would necessarily be re-contaminated Ω(n) times.

Throughout the literature, the notion of what exactly a pursuer can see is a modeling

decision that differentiates much of the work. In the standard model we consider

a pursuer often called an ∞-searcher which has 360o unlimited range vision of its

surroundings [70]. However, other well studied models include the k-searcher, which

can see only from k infinitely thin beams at a time, as well as searchers equipped with

field of view sensors [22]. While a significant body of work exists on 2-searchers, it
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tends to involve complex characterizations of searchable environments [58], and thus

we shall focus on∞-searchers.

A naive approach and trivial upper bound on the number of sufficient pursuers can be

obtained from the well known art gallery problem, which guarantees complete visibility

of an n-gon using at most bn/3c pursuers. However, in the classic seminal work by

Guibas et al. [25], it was shown that for a simply connected (obstacle free) n-gon P ,

Θ(log n) pursuers are both sufficient and sometimes necessary to detect an arbitrarily

fast evader. Further, it was also shown that by adding h obstacles to the environment

the bound increases to Θ(log n+
√
h). Additional work by Isler et al. studied detection,

except pursuers had the ability to make randomized decisions which the evaders could

not predict. These randomized algorithms allowed a single pursuer to detect the evader

in simply connected polygons in expected polynomial time. Additionally, it was shown

that O(
√
h) pursuers suffice in the presence of h obstacles [29].

In recent years there have been numerous works extending the original results of

Guibas et al. For example, Lavalle and Hinrichsen studied the case of curved environ-

ments [46], and Tovar and Lavalle the case when the evader has bounded speed [73].

Additionally researchers have focused on problems such as finding a search strategy

for a single pursuer that has optimal duration [69], as well as the case in which the

environment is unknown to the pursuer [26, 62]. Further, in some cases the continuous

environment is discretized, sacrificing formal bounds in hopes of using graph search-
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ing techniques in order to obtain an algorithm that is simpler and performs well in

practice [35].

Capture

In order to capture an evader a pursuer must reach the exact coordinate of the evader, in

contrast to detection, which only requires the evader is seen with no distance requirement

between the pursuer and the evader. As a result, capture is based on planning physical

moves, unlike detection, which is purely an informational game. In this setting the

notion of time is particularly important, that is, whether the players move simultaneously

(continuous time) or alternate turns (discrete time). Indeed, as previously mentioned,

using continuous time the lion can indefinitely avoid capture [48], although the lion can

get arbitrarily close [6]. However, using the discrete time model the result shifts to a

lion win, which is an easy corollary of a result by Sgall [66].

Since these initial investigations, there has been a large amount of work studying

variations of the lion and man problem. Often this work considers partially unbounded

environments, and establishes starting conditions under which pursuers can capture the

evader [5, 42, 66], or classifies environments in which a single pursuer can win [4, 56].

As for combinatorial bounds on the number of pursuers required to capture an evader in

more general environments, Isler et al. showed that in simply-connected polygons, two

pursuers can capture an evader by using a randomized strategy [29]. However, extending

these result to environments with obstacles has proved difficult. Indeed, seemingly the
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only relevant result is a recent work of Karnad-and-Isler [34] that deals with a single

circular obstacle.

The primary focus of this work is to solve the capture problem in more complex

settings. While the first step in this scenario is to perform capture in the presence of

obstacles, a longer term vision allows for three dimensional environments and varying

sensing models. It is worth noting that these pursuit evasion games are also studied

as a form of differential games and solved using the Hamilton-Jacobi-Isaacs equation.

Unfortunately, the resulting system of differential equations is intractable for all but

the simplest of the environments, and unsuited for the complex, multiply-connected

environments we study in this dissertation.

0.2 Pursuit Evasion Model

While the model we consider differs slightly in each chapter, based on the environment

we consider and the sensing abilities of the pursuers, the general form of the game is the

same. The pursuit evasion game we consider uses the discrete time model: this avoids

the intractable problem of computing players’ moves and reactions instantaneously, and

also allows approximation of the continuous time setting to an arbitrary level of accuracy

by choosing an appropriately small time step t > 0. We assume a set of pursuers denoted

p1, p2, . . . wish to capture an evader e, and are free to move about a continuous bounded
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environment known to both sides. For the sake of notational brevity, we also use e to

denote the current position of the evader, and pi to denote the position of the ith pursuer.

All the players have the same maximum speed, which we assume is normalized to

1. In each move, a player can move to any position whose shortest path distance from

its current position is at most one; that is, within geodesic disk of radius one. On the

pursuers’ move, all the pursuers can move simultaneously and independently. We say

that pursuers win the game if a pursuer pi is collocated with e, and evader wins the game

if it can elude the pursuers indefinitely.

In accordance with the standard worst case model, we assume that the evader knows

the location and future moves of the pursuers at all times. By proving our bounds against

this adversarial model we guarantee that they hold regardless of the strategy the evader

uses to avoid capture.

0.2.1 Summary of Results

In Chapter 1 we consider the complete information pursuit evasion problem set in

polygonal environments. Suppose the pursuers have perfect knowledge of the evader’s

location, perhaps through access to a camera network, how are necessary and sufficient

to guarantee a successful capture of the evader? We provide two separate algorithms to

capture the evader with three pursuers. Additionally, we construct an example polygon
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in which the evader can avoid capture indefinitely from two pursuers, establishing three

as a tight bound.

In Chapter 2 we consider the complete information pursuit evasion game set on

polyhedral surfaces. We show that 4 pursuers always suffice (upper bound), and that

3 are sometimes necessary (lower bound), for any polyhedral surface with genus zero.

Generalizing this bound to surfaces of genus g, we prove the sufficiency of (4g + 4)

pursuers. Finally, we show that 4 pursuers also suffice under the “weighted region”

constraints, where the movement costs through different regions of the (genus zero)

surface have (different) multiplicative weights.

Next in Chapter 3 we study visibility-based pursuit evasion, where the pursuer’s only

know the location of the evader when it is in direct line of sight. We begin by making

only the minimalist assumption that pursuers and the evader have the same maximum

speed. When the environment is a simply-connected (hole-free) polygon of n vertices,

we show that Θ(n1/2) pursuers are both necessary and sufficient in the worst-case. When

the environment is a polygon with holes, we prove a lower bound of Ω(n2/3) and an

upper bound of O(n5/6) pursuers, where n includes the vertices of the hole boundaries.

We then show with additional assumptions these bounds can be drastically improved.

Namely, if the players movement speed is small compared to the features of the envi-

ronment, we give a deterministic algorithm with a worst case upper bound of O(log n)

pursuers for simply-connected n-gons and O(
√
h + log n) for polygons with h holes.
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Additionally, if the pursuers are allowed to randomize their strategy, regardless of the

players movement speed, we show that with high probability O(1) pursuers can capture

the evader in a simply connected n-gon and O(
√
h) when there are h holes.

Finally, in Chapter 4 we further reduce the sensing capabilities of the pursuers by

incorporating sensor noise. In particular, suppose a tracking agent wants to follow a

moving target in the two-dimensional plane. However, the tracker only has a noisy

estimate of the targets true location. We adopt a simple but realistic model of relative

error in sensing noise: the localization error is proportional to the true distance between

the tracker and the target. We investigate what is the tracker’s best strategy to follow

the target if they both can move with equal speed and at what rate does the distance

between the tracker and target grow under worst-case localization noise. Additionally we

investigate giving the tracker a speed advantage to compensate for the sensor noise, and

the effect of obstacles on the tracking performance. Under a relative error model of noise,

we are able to give upper and lower bounds for the worst-case tracking performance,

both with or without obstacles in the Euclidean plane.
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Chapter 1

Complete Information Pursuit Evasion
in Polygons

1.1 Introduction

There are two fundamental issues inherent in pursuit evasion: localization, which is

purely an informational problem, and capture, which is a problem of planning physical

moves. In this chapter, we study the question: how complex is the capture problem if

the evader localization is available for free? In other words, suppose the pursuers have

complete information about the evader’s current position, how much does it help them

to capture the evader?

Besides being a theoretically interesting question, the problem is also a reasonable

model for many practical settings. Given the rapidly dropping cost of electronic surveil-

lance and camera networks, it is now both technologically and economically feasible

∗Parts of this chapter appeared in a joint journal paper [9] which combined the results from two
independently discovered algorithms, that appeared in the following publications [8, 37]
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to have such monitoring capabilities. These technologies enable cheap and ubiquitous

detection and localization, but in case of intrusion, a physical capture of the evader is

still necessary. For instance, the scenario studied in [74] requires pursuers to capture

an evader in an environment instrumented with a sensor network. The sensor network

provides the location of the evader to the pursuers and facilitates communication among

the pursuers. Our results immediately imply that three pursuers suffice regardless of the

shape of the floor plan in their application.

Our main result is that under the full visibility setting, three pursuers are always

sufficient to capture an equally fast evader in a polygonal environment with holes, using

a deterministic strategy. Complementing this upper bound, we also show that there exist

polygonal environments that require at least three pursuers to capture the evader even

with full information.

We present two different algorithmic strategies for our main result, one called

Minimal Path Strategy and the other Shortest Path Strategy. These were discovered

independently by two teams, Bhadauria-Isler [8] and Klein-Suri [37] around the same

time, and combined into a joint journal paper [9]. The former (Minimal Path Strategy)

uses the visibility graph of the original polygon, and deploys pursuers along the first,

second and third shortest paths in this graph to trap the evader in progressively smaller

sub-polygons (Section 1.3). The latter (Shortest Path Strategy) operates in the continuous

domain, and guards a carefully chosen shortest path so as to trap the evader in a smaller
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polygonal region (Section 1.5). Despite their high-level similarity, the two algorithms

differ significantly in details, and offer independent insights into the problem, motivating

the inclusion of both in this chapter.

The bound on capture time, which is asymptotically the same for both strategies,

is independent of the number of the holes of the polygon, although the capture time

depends on both n and the diameter of the polygon.

Our work bears some resemblance to, and is inspired by, the result of Aigner and

Fromme [2] on planar graphs, showing that graph searching on planar graph requires 3

cops. In that work, the graph is unweighted, does not deal with Euclidean distances, and

require players to move to only neighboring nodes. Unlike the graph model, our search

occurs in continuous Euclidean plane, and players can move to any position within

distance one. Thus, while our bounds are similar, the proof techniques and technical

details are quite different.

1.2 The Problem Formulation

We assume that an evader and pursuers are free to move in a two-dimensional closed

polygon P , which has n vertices and h holes using the standard model of Section 0.2

(the pursuers and evader move within the free-space of P ). The bounds in our algorithm
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depend on the number of vertices n and the diameter of the polygon, diam(P ), which is

the maximum distance between any two vertices of P under the shortest path metric.1

In order to focus on the complexity of the capture, we assume a complete information

(full visibility) setup: each pursuer knows the location of the evader at all times. We also

endow the evader the same information, so e also knows the locations of all the pursuers.

We begin with a high level description of the minimal path strategy, followed by its

technical details and proof of correctness in the next section.

1.3 The Minimal Path Strategy

We show that three pursuers, denoted p1, p2, p3, can always capture an evader using

a deterministic strategy, regardless of the evader’s strategy and the geometry of the

environment. The minimal path strategy is to progressively trap the evader in an ever-

shrinking region of the polygon P . The pursuit begins by first choosing a path Π1 that

divides the polygon into sub-polygons (see Figure 1.1(a))—we will use the notation Pe

to denote the sub-polygon containing the evader. We show that, after an initialization

period, the pursuer p1 can successfully guard the path Π1, meaning that e cannot move

across it without being captured.

1We assume that the area quantity of the polygon is at least as large as the diameter of the polygon,
which can be always ensured through an appropriate scaling, if needed. We give a more precise argument
later in the chapter. This assumption helps us frame the bounds using the diameter alone.
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Figure 1.1: (a) A polygonal environment with two holes (a rectangle and a triangle).
xy is a visibility edge of G(P ), while xz is not. Π1 and Π2 are the first and the second
shortest paths between anchors u and v. The figure (b) illustrates the main strategy of
trapping the evader through three paths.

Figure 1.1(b) illustrates the overall strategy: in a general step, the sub-polygon

Pe containing the evader is bounded by two paths Π1 and Π2, satisfying a geometric

property called minimality, each being guarded by a pursuer. We then choose a third

path Π3 splitting the region Pe into two non-empty subsets. If both regions have holes,

then we argue that the pursuer p3 can guard Π3, thereby trapping e either between Π1

and Π3 (Figure 1.1(b)), or between Π2 and Π3, in which case the pursuit iterates in a

smaller region. If Π3 is not guardable within one of the regions, then we show that

the pursuer p3 can evict the evader from this region, forcing it into a smaller region (as

measured by the number of vertices) where the search resumes.
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1.3.1 Visibility Graphs and Path Guarding

In order for this strategy to work, the paths Πi need to be carefully chosen and must

satisfy certain geometric conditions, which we briefly explain. First, although the pursuit

occurs in continuous space, our paths will be computed from a discrete space, namely,

the visibility graph of the polygon. The visibility graph G(P ) of a polygon P is defined

as follows: the nodes are the vertices of the polygonal environment (including the holes),

and two nodes are joined by an edge if the line segment joining them lies entirely in the

(closed) interior of the polygon. (In other words, the two vertices joined by an edge must

have line of sight visibility.) This undirected graph has n vertices and at most O(n2)

edges. We assign each edge a weight equal to the Euclidean distance between its two

endpoints. See Figure 1.1(a) for an example.

One can easily see that, given two vertices u and v of P , the shortest path from u to

v in G(P ) is also the shortest Euclidean path constrained to lie inside P . (The shortest

Euclidean path has corners only at vertices of G(P ).) However, we cannot make such a

claim for the second, or in general the kth, shortest path—one can create an infinitesimal

“bend” in the shortest path Π1 to create another path that is arbitrarily close to the first

shortest path but does not belong to G(P ). Therefore, we will only consider paths that

belong to G(P ) and are “combinatorially distinct” from Π1—that is, they differ in at

least one visibility edge. However, even then the kth shortest path between two nodes
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can exhibit counter-intuitive behavior. For instance, while in graphs with non-negative

weights the first shortest path is always loop-free, the second, or more generally kth,

shortest path can have loops—this may happen if repeatedly looping around a small-

weight cycle (to make the path distinct from others) is cheaper than taking a different but

expensive edge [28]. Therefore, we will consider only shortest loop-free paths. One of

our technical lemmas proves that these paths are also geometrically non-self-intersecting.

(This is obvious for the shortest path Π1 but not for subsequent paths.) In addition, we

argue that these paths also satisfy a key geometric property, called minimality, which

allows a pursuer to guard them against an evader.

1.4 Proof of Sufficiency of 3 Pursuers

We begin with the discussion of how a single pursuer can guard a path in P , trapping the

evader on one side. We then discuss the technically more challenging case of guarding

the second and the third paths. In order to guarantee that a path in P can be guarded,

it must satisfy certain geometric properties. We begin by introducing two key ideas: a

minimal path and the projection of an evader on a path. In the following, we use the

notation d(x, y) to denote the shortest path distance between points x and y. When

we require that distance to be measured within a subset, such as restricted to a path

Π, we write dΠ(x, y). That is, dΠ(x, y) is the length of path Π between its points x

and y. Occasionally, we also use the notation Π(x, y) to denote subpath of Π between
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points x, y. We use the notation x ≺ y to emphasize that the point x precedes y on

the path Π: that is, if Π is the path from node u to node v, then x ≺ y means that

dΠ(u, x) < dΠ(u, y). The following property is important for patrolling of paths.

Definition 1. (Minimal Path:) Suppose Π is a path in P dividing it into two sub-

polygons, and Pe is the sub-polygon containing the evader e. We say that Π is minimal

with respect to Pe if, for all points x, z ∈ Π and y ∈ (Pe \ Π), the following holds:

dΠ(x, z) ≤ d(x, y) + d(y, z)

Intuitively, a minimal path cannot be shortcut: that is, for any two points on the path,

it is never shorter to take a detour through an interior point of Pe. (This is a weak form

of triangle inequality, which excludes detours only through points contained in Pe.) The

next definition introduces the projection of the evader on to a path, which is an important

concept in our algorithm.

Definition 2. ( Projection:) Suppose Π is a path in P dividing it into two sub-polygons,

and Pe is the sub-polygon containing the evader e. Then, the projection of e on Π,

denoted eπ, is a point on Π such that, for all x ∈ Π, e is no closer to x than is eπ.

Thus, if a pursuer is able to position itself at the projection of e at all times, then

it guarantees that the evader cannot cross the path without being captured. With these

definitions in place, we now discuss how to guard the first path Π1.
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1.4.1 Guarding the First Path

We choose two vertices u and v on the outer boundary of P , and call them anchors. We

let Π1 be the shortest path from u to v in G(P ); this is also the shortest Euclidean path

between u and v constrained to lie inside the environment. Our first observation is that

this path Π1 is always minimal.

Lemma 1. The path Π1 between u and v is minimal.

Proof. For the sake of contradiction, suppose there are two points x, z ∈ Π1 that

violate the minimality. Let the point y /∈ Π1 be the witness of this violation, namely,

d(x, y) + d(y, z) < dΠ1(x, z). But then Π1 can be shortened with the subpath Π1(x, z),

contradicting the fact that Π1 is the shortest u, v path.

The following lemma shows that the projection of e is always exists for a minimal

path.

Lemma 2. Suppose Π is a minimal path between the anchor nodes u and v. Then, for

every position of the evader e in Pe, a projection eπ exists.

Proof. Let us first consider the more interesting case where dΠ(u, v) ≥ d(u, e). In this

case, we claim that the point z at distance d(e, u) along Π is a projection of e. Indeed, for
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any point x ∈ Π such that z ≺ x, the condition dΠ(z, x) > d(e, x) leads to a violation

of the minimality of Π, as follows:

dΠ(u, x) = dΠ(u, z) + dΠ(z, x) = d(u, e) + dΠ(z, x) > d(u, e) + d(e, x)

Similarly, for any point x that ≺ z, the condition d(x, e) < dΠ(x, z) also leads to a

violation:

d(u, e) ≤ dΠ(u, x) + d(x, e) < dΠ(u, x) + dΠ(x, z) = dΠ(u, z)

which is a contradiction because d(u, e) = dΠ(u, z).

On the other hand, if dΠ(u, v) < d(u, e), then we choose v as the projection. In this

case, the argument is identical to the second case above: ∀x ≺ v, d(x, e) ≥ dΠ(x, v),

and thus v is a projection.

The next lemma shows how a pursuer can guard a minimal path. Whenever we refer

to the projection, we mean the unique point chosen by Lemma 2, that is, the point on Π

at d(u, e) from u, or v, whichever is closer.

Lemma 3. Suppose Π is a minimal path between the anchors u, v in P , and a pursuer

p is located at the current projection of e. Suppose on its turn the evader moves from e

to e′. Then, the pursuer p can either capture the evader or relocate to the new projection

e′π in one move.
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Proof. First, suppose that the new position e′ is on different side of the path Π than e,

namely, the evader crosses the path, say, at a point z. Because the evader can move at

most distance one, we have the inequality d(e, z) + d(z, e′) ≤ 1. On the other hand,

since p is located at the projection of e before the move, dΠ(p, z) ≤ d(e, z). Therefore,

the new position of the evader e′ is within distance one of p, and the pursuer can capture

the evader on its move.

If the evader does not cross Π, and moves to a position e′ on the same side of the path,

let e′π be the projection of e′, as defined in Lemma 2. Because the evader moves distance

at most one further from u or at most one closer to u, it must satisfy d(eπ, e
′
π) ≤ 1, and

so p can relocate from eπ to e′π in one move.

Before proceeding further, we make a minor technical digression, to establish that

any path guarded by pursuers can be bounded by the area of the polygon. The strategy

of progressively trapping the evader within smaller sub-polygons brings out a somewhat

counterintuitive property of polygon divisions: a sub-polygon can have a larger diameter

than the original polygon. Figure 1.2 shows an example where the diameter of the

shaded sub-polygon P ′ is larger than the original environment. This complicates the

time complexity analysis of our pursuit strategy because it depends on the length of

paths that are guarded. We resolve this dilemma by arguing these path lengths cannot

exceed the area of the original environment, which in turn is bounded by diam(P )2. Of

course, diameter is a one-dimensional quantity, while area is a two-dimensional quantity,
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but we only care about their numerical magnitudes. We show the required inequality by

choosing an appropriate scale (units) for the environment, as shown in the following

lemma.

u v

P ′

Figure 1.2: Example depicting a shaded sub-polygons P ′ with diameter larger than
diam(P ).

Lemma 4. Suppose Π is a u, v path in sub-polygon P ′ of P . Then, by applying a

suitable rescaling of units we can always guarantee dΠ(u, v) ≤ diam(P )2.

Proof. If dΠ(u, v) ≤ area(P ′), then the lemma holds trivially, because area(P ′) <

area(P ) ≤ diam(P )2. Therefore, assume that dΠ(u, v) > area(P ′). By a simple

rescaling of the units, we can get the desired reverse inequality, as follows. Suppose

we rescale the unit of measurement from 1 to 1 + α. This increases the area of a

triangle by a factor of (1 + α)2, while a segment only increases in length by a factor

of 1 + α. Therefore, a suitably large choice of α will always ensure that the polygon’s

area exceeds the length of Π, because the former grows by a factor of (1 + α)2 while
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the latter grows linearly. In particular, if (1 + α)2 · area(P ′) ≥ (1 + α) · dΠ(u, v), we

obtain α ≤ dΠ(u,v)
area(P ′)

− 1, and therefore any choice of α > dΠ(u,v)
area(P ′)

− 1 will suffice.

With this technical lemma, we can assume throughout the rest of the chapter

that dΠ(u, v) ≤ diam(P )2 always holds. The following lemma shows that within

O(diam(P )2) a pursuer p can either reach the current projection of e or capture it.

Lemma 5. Suppose Π is a minimal path between anchors u, v in P , and a pursuer p is

located at u. Then in O(diam(P )2) moves, p can move to e’s projection.

Proof. By Lemma 3, the projection of e can only shift by distance at most one along

the path Π. Thus, p’s strategy is simply to move along the path from one end to the

other until it coincides with the current projection of e, or captures it. Meanwhile, if the

projection ever “crosses over” the current position of p, the pursuer immediately can

move to the new projection because at that moment p must be within distance one of the

target location. Since p moves a distance of 1 in each turn, and Lemma 4 guarantees we

can scale P such that all paths encountered have length at most diam(P )2, the entire

initialization phase takes at most O(diam(P )2) moves.

1.4.2 Geometric Structure of Pursuer Paths

We now come to the main part of our pursuit strategy. The key idea is to progressively

trap the evader in a region bounded by two minimal paths, which are guarded by two

pursuers, and to use the third pursuer to further divide the current region. When the third
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pursuer subdivides the current region containing e, two possibilities emerge: either the

third path is minimal with respect to both regions and thus guardable by the third pursuer,

limiting the evader to a smaller region than before; or it is only minimal with respect to

one of the regions and the other is hole-free, in which case the third pursuer uses the

capture strategy for a simply-connected polygon to evict the pursuer from this region (or

capture it). In order to formalize our strategy, we first show a key geometric property of

the second and third shortest paths between the anchors in the visibility graph, namely,

that they are non-self-intersecting, and therefore lead to well-defined closed regions.

l1

l2l3

l4

ΠL

Π3(v2, v3)

v1 v4

ΠR

v3 v2

u vΠB

Figure 1.3: Non-self-crossing of shortest paths Π1,Π2,Π3.

Lemma 6. Let Π1 be the shortest path between two anchor points u and v on P ’s

boundary, and focus on the sub-polygon Pe that lies on one side of Π1. Let Π2 and Π3,

respectively, be the second and the third simple (loop-free) shortest paths in the visibility

graph G(Pe) between u and v. Then, Π2 and Π3 are non-self-crossing.
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Proof. Without loss of generality, suppose the path Π3 violates the lemma, and that

two of its edges (v1, v2) and (v3, v4) intersect. See Figure 1.3. We first note that the

intersection point cannot be a vertex of the visibility graph because otherwise the path

has a cycle, and we assumed that Π3 is loop-free. As shown in the figure, we break

the segment (v1, v2) into l1 and l2, and (v3, v4) into l3 and l4. By the triangle inequality

of the Euclidean metric, it is easy to see that the shortest v1, v3 path homotopic to the

segments l1 and l3, denote it ΠL, will have length strictly less than l1 + l3. Similarly,

define ΠR and ΠB, as paths between v2, v4 and v1, v4, respectively. Now consider the

following three paths between v1 and v4, each contained in G(Pe): ΠL ·Π3(v3, v2) ·ΠR,

ΠB , and the shorter of ΠL · (v3, v4) and (v1, v2) · ΠR. They are all shorter than Π3, each

has one less intersection than Π3, and at least one of them must be distinct from both Π1

and Π2, thus contradicting the choice of Π3. If further intersections exist, the argument

can be applied again, until all such intersections are removed.

1.4.3 Shrinking, Guarding and Evicting

In a general step of the algorithm, assume that the evader lies in a region Pe of the

polygon bounded by two minimal paths Π1 and Π2 between two anchor vertices u and

v. (Strictly speaking, the region Pe is initially bounded by Π1, which is minimal, and

portion of P ’s boundary, which is not technically a minimal path. However, the evader

cannot cross the polygon boundary, and so we treat this as a special case of the minimal
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path to avoid duplicating our proof argument.) We also assume that Π1 and Π2 only share

vertices u and v; if they share a common prefix or suffix subpath, we can delete those

and advance the anchor nodes to the last common prefix vertex and the first common

suffix vertex. This ensures that the region Pe is non-degenerate.

The key idea of our proof is to show that, in the visibility graphG(Pe), if we compute

a shortest path from u to v that is distinct from both Π1 and Π2, then it divides Pe into

only two regions, and that the evader is trapped in one of those regions. We will call this

new path the third shortest path Π3. Specifically, Π3 is the simple (loop-free) shortest

path from u to v in G(Pe) distinct from Π1 and Π2. (One can compute such a path using

any of the algorithms for computing k loop-free shortest paths in a weighted undirected

graph [28, 54, 75].)

Lemma 7. The shortest path Π3 between the anchor nodes u and v divides the current

evader region Pe into two regions.

Proof. If the path is disjoint from Π1 and Π2 except at endpoints, then Pe is clearly

subdivided into two (possibly disconnected) regions. If Π3 shares vertices only with Π1

or only with Π2, but in multiple disjoint subpaths creating multiple regions, then each

subpath shares its first and last vertices with either Π1 or Π2, and thus we can replace

all but one with subpaths of Π1 or Π2 and obtain a path no longer than Π3. Therefore,

let us suppose that Π3 shares vertices with both the paths, and so “hops” between Π1

and Π2, sharing common subpaths with them, and creates three or more regions. In that
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case, Π3 must leave and rejoin Π1 and Π2 at least once, as shown by points x, y, z in

Figure 1.4(a). We observe that dΠ2(y, v) is no longer than d(y, z) + dΠ1(z, v), otherwise

Π2 is not the second shortest u, v path, which is a contradiction. Thus the third region

can be removed by altering Π3 to use the subpath Π2(y, v). (A symmetric case arises

when the roles of Π1 and Π2 are swapped.) Thus, we conclude that Π3 can create only

two subregions.

u v

Π1

Π2

x

y

z

Π3

(a)

P−
e

P+
e

e

Π1

Π2

(b)

Figure 1.4: The left figure illustrates the proof of Lemma 7; the right figure illustrates
the two subregions created by a path, Π2 in this case.

Clearly, if Pe contains one or more holes, then at least one of the regions created by

the third shortest path Π3 also contains a hole. The following lemma argues that Π3 is

minimal with respect to such a region. (The next lemma then addresses the case when

the region is hole-free.)
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u

u′
x z

v′

v

Π3

Π1

Π′
3

Π

R

(a)

u

u′
x z

v′

v

Π3

Π1

Π′
3

yΠ

R

(b)

Figure 1.5: Illustrates the proof of Lemma 8.

Lemma 8. Suppose Π3 divides the region Pe into two subregions P+
e and P−e , and

assume that P+
e contains at least one hole. Then, Π3 is a minimal path within the region

P+
e .

Proof. Assume, for the sake of contradiction, that the minimality of Π3 is violated for

two points x, z ∈ Π3. Let u′ be the vertex immediately preceding the point x, possibly

x = u′, and v′ is the vertex immediately following z, possibly z = v′, on Π3. Consider

the shortest path in G(Pe) from u′ to v′. This path must be distinct from Π3(u′, v′), as

a shortest path is necessarily minimal, while by assumption Π3(u′, v′) is not. Thus, if

this path is not a subpath of either Π1 or Π2, we can immediately improve the length

of Π3 by using this subpath, thereby contradicting the choice of Π3. Therefore, assume

without loss of generality that the shortest path from u′ to v′ is a subpath of Π1. Further,

let Π denote the shortest path from point x to point z in P+
e , and consider the region R

bounded by Π1(u′, v′), Π and the segments (z, v′) and (x, u′). If there are any holes in
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R then there is a distinct path Π′3 shorter than Π3 obtained by tightening Π around those

holes as shown in Figure 1.5(a). Thus the hole in P+
e must be outside R, however pick

the closest vertex on a hole in P+
e to Π, call it y. Then a path Π′3 shorter than Π3 can

be obtained using y as shown in Figure 1.5(b). Thus in all cases, if P+
e contains a hole,

Π3 can be shortened, which contradicts its optimality. Thus Π3’s minimality cannot be

violated, and the proof is complete.

Since Π1 and Π2 are the two shortest paths between u and v, the region between

them necessarily contains a hole: otherwise, all vertices except u and v must be reflex

(within the region), which is a contradiction since every simply polygon must have at

least three convex vertices. Thus, at least one of the regions created by Π3 has a hole,

and so Π3 is minimal for that region. The region without holes must have a very special

and simple structure, as shown by the following lemma, and it can be cleared using the

search strategy for simply-connected polygons.

Lemma 9. Suppose Π3 divides the region Pe into two subregions P+
e and P−e . If Π3

fails to be minimal with respect to P+
e , then Π3 has the following simple structure: two

edges plus a subpath of either Π1 or Π2.

Proof. Suppose Π3 fails to be minimal in P+
e . Then, by Lemma 8, P+

e is hole-free.

Non-minimality means that the path can be shortcut, and so all vertices of Π3 cannot be

reflex. Let y be a vertex of Π3 that is convex in P+
e , and let x and z, respectively, be the
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predecessor and successor vertices of y. We claim that x and z are either both vertices

of Π1 or both vertices of Π2. Suppose not. Then, the shortest path from x to z in Pe, call

it Π, is shorter than Π3(x, z). By assumption, at least one of x and z is not in Π1, and

similarly for Π2, thus Π cannot be a subpath of Π1 or Π2.

But, then the path Π3(u, x) ∪ Π ∪ Π3(z, v) is shorter than Π3 and distinct from Π1

and Π2, contradicting the choice of Π3. Thus, x and z both belong to either Π1 or Π2,

and assume, without loss of generality, that they belong to Π1. Then P+
e is bounded by

Π1(x, z) and the edges (x, y) and (y, z), and the proof is finished.

Now, if both regions created by Π3 have holes, then the minimality of Π3 allows a

third pursuer to guard this path, and the pursuit continues in one of the smaller regions.

However, if one region is hole-free and Π3 is not minimal within it, a different strategy is

required. Lemma 11 shows how to either capture the evader in such a region, or to force

the evader out of (evict) this region, while guarding Π3 so the evader cannot reenter this

region.

This is accomplished by fixing an origin O in the region (say, some vertex in P ), and

then letting the pursuer move along the shortest path between O and the current evader

position. It can be shown that the pursuer makes sufficient progress towards the evader

by invoking a result of Isler et al. on the visibility-based version of the cops-and-robbers

game in simply-connected polygons. In their model, a cop can see the robber only

if the line segment connecting the two players does not intersect the boundary of the
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polygon. They showed that a single cop can locate the robber, and two cops can capture

the robber in any simply-connected polygon. In the two-cop strategy, one cop starts from

an arbitrary point O and moves so that it stays on the shortest path between the robber’s

current location and O. Further, whenever the cop moves, its squared distance from

O increases by at least 1/n. Since the cop can not see the robber when it is occluded

from his field of view, the second cop is used to determine the motion direction when

the robber is not visible. They also bound the number of searches necessary. Since in

our model the players know each other’s locations at all times, the second cop is not

necessary, giving us the following result:

Lemma 10 (Capture in a simply connected polygon [29]). A single pursuer can capture

the evader in any simply-connected polygon P in O(n · diam(P )2) moves.

In the following Lemma we use this result to force the evader out of (evict) this

region.

x

y

z

e

p

u vΠ1

Figure 1.6: An illustration of the pursuer’s eviction strategy. Dashed lines denote moves
where e moved first.
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Lemma 11. Suppose the evader lies in hole-free region of k vertices that is bounded by

Π3 and another minimal path. If Π3 is not minimal with respect to this region, then, in

O(k · diam(P )2) moves, a single pursuer p can either capture the evader or force it out

of the region and place itself on e’s projection on the path Π3.

Proof. Assume, without loss of generality, that our hole-free region is bounded by a

minimal path Π1 and the path Π3, which by Lemma 9 must consist of two edges, say,

(x, y) and (y, z). The pursuer p’s strategy is to move to y, and at each turn move to the

point closest to e that is distance one from p and lies on the shortest y, e path, with one

modification. Namely, if p’s move takes it outside the region, then it moves along Π3

toward eπ (which must exist as Π3 is minimal with respect to the other region) until e

reenters, at which point its resumes the pursuit, as depicted in Figure 1.6.

As the shortest path between any two vertices consists of at most two edges, this

region can have diameter no larger than 2 · diam(P ). Thus if e never leaves the region,

then by the known result of Lemma 10, a successful capture occurs in O(k · diam(P )2)

moves. Therefore, assume that e leaves the region at some point. Since Π1 is minimal,

the evader cannot leave the region through that path, and so assume without loss of

generality that the evader crosses the segment (x, y) of Π3. Because p always stays on

the shortest path between e and y, in an unmodified pursuit p’s move would cross (x, y)

as well. In the modified pursuit, p stops at the point where it crosses (x, y) and advances

toward the projection of e.
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We note that the projection of e is within distance one of where e crossed (x, y).

As a result, because p crossed (x, y) at a point closer to y than e, if eπ lies on the

subpath Π3(p, v), then p can reach eπ in one move, and Π3 is guarded and we are done.

Otherwise, p need simply advance forward along Π3 toward eπ. If e never re-enters

the hole free region, then by Lemma 5 p will reach the projection within O(diam(P )2)

moves.

In the case e re-enters the hole-free region, we note that it must do so by crossing

the segment (x, p), and that for each turn e was outside the hole-free region p moved

distance one along the shortest path from y to e. Thus on its next turn p can resume its

pursuit, while having increased its squared distance from y by at least 1/k, which will

guarantee a successful capture occurs in O(k · diam(P )2) moves should e remain within

the hole-free region. Thus e may continually move back and forth between the hole-free

region, but within O(k · diam(P )2) moves e will either be captured, or the pursuer will

successfully guard Π3 by reaching the projection.

We can now summarize the main result of this chapter.

Theorem 1. By following the Minimal Path Strategy, three pursuers can capture an

evader in O(n · diam(P )2) moves in a polygon with n vertices and any number of holes.

Proof. Whenever a new path is introduced which is minimal with respect to both regions,

the size (number of vertices) of the region Pe containing e shrinks by at least one. Thus,
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the number of such paths guarded during the course of the pursuit before e is captured is

at most n, and the total cost of guarding them is at most O(n · diam(P )2). If Π3 is only

minimal with respect to one region R, then in O(k · diam(P )2) moves the evader will

either be forced into R and a pursuer will guard Π3 or the evader will be captured. In

such a case, the vertices on the two bounding edges of Π3 were not removed, thus only

k − 3 of the k vertices were removed from Pe. When k > 3 the cost of removals sums

to at most O(n · diam(P )2). When k = 3, the evader is being evicted from a triangle,

bounded by two edges of Π3 which meet at a vertex y, and an edge of either Π1 or Π2.

We bound the number of such removals by showing each vertex can only be chosen as y

twice. Either y is an interior vertex of Pe, and will not be chosen again as an interior

vertex (as it is now on a bounding path), or y is already on a bounding path, and y will

become an anchor, and never be chosen again. Thus, there are at most 2n removals

where k = 3, and their total cost is at most O(n · diam(P )2).

Finally, the sub-polygon containing the evader will be reduced to a triangle. Notice

this must occur, as otherwise a path Π3 exists which would split Pe. This region clearly

has diameter no larger than diam(P ), and thus the evader can be captured by the third

pursuer in O(diam(P )2) moves with the known result of Lemma 10, for a total of

O(n · diam(P )2) moves over the entire pursuit.
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1.5 The Shortest Path Strategy

In this section we present an alternative strategy to capture the evader. In contrast to the

Minimal Path Strategy which chooses the first, second and the third shortest paths in the

visibility graph to trap the evader, the Shortest Path Strategy directly picks a shortest

path in the evader’s region to trap the evader in a smaller region with fewer vertices. See

Figure 1.7.

Π1 Π2

x

y

zu v

(a)

Π1

Π2

x

y

zu v

(b)

Figure 1.7: In (a), the next path (Π2) chosen by the Minimal Path Strategy (Section 1.3).
In (b), the Shortest Path Strategy using the obstacle move (Section 1.5.1).

A shortest path is guarded in two phases. In the initialization phase, a pursuer moves

onto the evader’s projection. Afterward, the pursuer stays on the projection as described

in Lemma 3. Note that a shortest path in a polygon is minimal with respect to any subset

of the polygon (see also Lemma 1). Hence, it can be guarded regardless of Pe.
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We will divide the pursuers’ strategy into rounds. In each round, the pursuers will

coordinate their moves and restrict the evader to a smaller polygon by choosing two

points and guarding the shortest path between them.

Before presenting the full strategy, we describe two types of moves. In each round

pursuers will perform either a slicing move and/or an obstacle move. Each of the two

moves is a sequence of steps taken by a single pursuer. Before presenting the details, we

introduce the notation we will use for the rest of the paper.

We will use Pi to denote the the evader’s region Pe at round i. We denote the

boundary of Pi by δPi. Let n(Pi) be the total number vertices in Pi (including the

obstacle vertices). The boundary δPi will consist of at most two shortest paths, π1 and

π2, each guarded by a dedicated pursuer. The rest of the boundary will either consist

of a portion of δP , the original polygon’s boundary, or the boundaries of the obstacles.

Hence if the evader tries to escape from Pi it has to cross either π1 or π2 which will

result in capture by Lemma 3. We label the vertices of π1 and π2 in the order they are

encountered while traversing δPi in clockwise direction. Without loss of generality, let

π1 = u1, . . . , uk and let π2 = ul, . . . , um (See Figure 1.8).

At the end of each round, the strategy will maintain the following invariants:

1. n(Pi) > n(Pi+1), the number of vertices in Pi+1 are strictly smaller than the

number of vertices in Pi.
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2. Pi+1 ⊂ Pi, i.e., the new polygon is a subset of the previous one.

3. the paths guarded by the pursuers forming the boundary of Pi+1 are both the

shortest paths in Pi+1.

We are now ready to present the two types of moves and analyze their properties.

1.5.1 Obstacle Move

π1

π3

π2
O

uk

u1
um

ul

(a)

1 2

ui

uj
um ul

uk
u1

π2

π1

(b)

Figure 1.8: Two possible obstacle moves. In (a), to compute π3, we extend the boundary
∂Pi to include ∂O (shown as the bold path). We then compute the shortest path from u1

to uk. In (b), an obstacle move where new paths to be guarded are portions of the old
paths.

This move is performed when an obstacle O is touching either π1 or π2. First

consider the case where there is an obstacle touching exactly one of π1 or π2. Suppose

there is an obstacle touching π1 but not π2 as shown in Figure 1.8(a). In this case, the

obstacle move is performed by finding a shortest path from u1 to uk in the interior of

Pi excluding the points on π1 that touch O. To compute this path, we treat obstacles

touching π1 as part of the boundary and compute a shortest u1 − uk path as shown in
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Figure 1.8(a). More precisely, let G be the visibility graph of Pi. We remove every edge

of G which contains a point in (π1 ∩O). Then, we compute the shortest path from u1 to

uk in this reduced visibility graph.

Let this shortest path be π3. The third pursuer starts guarding π3. Since the evader

can be either between π3 and π1 or between π3 and π2, one of the pursuers from π1 or

π2 will be free and the evader will be restricted to a smaller region.

In the remaining case, there is an obstacle which is touching the boundary of Pi in

multiple points resulting in multiple connected components (see Figure 1.8(b)). This

means that the interior of Pi is composed of multiple connected components. In this case

the evader is already restricted to the connected component it lies in. The obstacle move

is to simply switch to guarding the portion of π1 and π2 which are part of the boundary

of this region. For example, on the right side of the Figure 1.8, if the evader is in region

2 then the new π1 (resp. π2) is the path from ui to uk (resp. ul to uj).

Lemma 12. After an obstacle move, all the invariants mentioned above are maintained.

Proof. We verify that each invariant is maintained.

1. In each obstacle move, we remove an obstacle from Pi and at least one vertex of

this obstacle is not included in Pi+1.
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2. An obstacle move divides Pi into at least two regions, and we pick one. Therefore,

Pi+1 ⊂ Pi.

3. π3 is a shortest path in Pi+1. So are π1 and π2. Hence, the two guarded paths in

Pi+1 are both shortest paths.

1.5.2 Slicing Move

The slicing move is used to restrict the evader to a smaller polygon when no obstacle

touches the guarded paths. In a slicing move two points ua and ub are picked from

δPi such that ua (respectively ub) lies on the boundary portion between uk and ul

(respectively u1 and um). We compute a shortest path between ua and ub and use the

third pursuer to guard this path as shown in Figure 1.9. Note that if there is no path

between ua and ub in Pi, this means that ua and ub are in two different components (i.e.

Pi is disconnected). This can happen only when there is an obstacle whose boundary is

touching δPi at multiple locations making it disconnected. In this case we can use the

obstacle move presented in the previous section (Figure 1.8(b)).

We now describe how ua and ub are chosen.

First, we observe that π1 and π2 can not have common endpoints at both ends. Since

π1 and π2 are both shortest paths, it must be that π1 = π2 and the evader has already
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been captured, otherwise we get a contradiction with the fact that neither π1 nor π2 is

touching an obstacle.

Second, if π1 and π2 intersect at a vertex which is not an end-point, then Pi is

disconnected and the evader can be trapped in a smaller polygon simply by discarding

the components which do not contain the evader.

Hence, we are left with three possibilities which yield three variants of the slicing

move based on the number of boundary vertices between the endpoints of π1 and π2

(Figures 1.9 and 1.10).

π1
π2

π3

um
u1

uk ul

δP

(a) Case 1: The endpoints of π1 and π2 are

different

uk ul

π2
π3

π1

u1
um

δP

(b) Case 2: The paths share one endpoint.

The other endpoints are not adjacent

Figure 1.9: The first two instances of the slicing move.

Case 1: If π1 and π2 share no common endpoints, π3 is chosen as the shortest path

connecting uk and um (i.e. we pick uk as ua and um as ub). This case is illustrated in

Figure 1.9(a).
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Case 2: In the second case, π1 and π2 share a common endpoint (say uk), and there

is at least one vertex on the boundary between the other endpoints (um and u1). In

this case π3 is chosen as the shortest path connecting uk = ul and an arbitrary vertex

between the other two endpoints. This case is illustrated in Figure 1.9(b).

uk ul

u1

e

a
x1 x2 x3 x4 x5

(a) A funnel without obstacles is partitioned

by extending the edges on π1 and π2.

uk ul

u1

e

x1 x2 x3 x4 x5o

(b) A funnel with an obstacle inside. There

exists a point o on the boundary such that

the shortest path from uk to o touches the

obstacle.

Figure 1.10: Case 3. π1 (resp. π2) are the shortest paths from u1 to uk (resp. ul). They
share one endpoint (u1) and the other endpoints are adjacent. i.e. (uk, ul) is an edge on
the polygon boundary.

Case 3: In the third case, π1 and π2 have exactly one common endpoint and the other

endpoints are adjacent (See Figure 1.10). Since an obstacle move is not possible, π1 and

π2 are not touching any obstacles. In this case, π1 and π2 along with the boundary edge

(uk, ul) form a structure called a funnel [24]. The common end-point (u1 in Figure 1.10)

is the apex of the funnel. Both π1 and π2 are inwardly convex: when walking from the

apex to uk, one would always turn locally right. This is because π1 is a shortest path

and no obstacle is touching it from the inside. Therefore, if there was a left turn, one
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could find a shorter path from u1 to uk than π1 which is a contradiction. A symmetric

argument holds for π2.

We now show that when the evader’s current region Pi is a funnel formed by π1, π2

and the polygon boundary, the pursuers can trap the evader inside a triangle in such a

way that at least one side of the triangle is a subset of the polygon boundary and the

remaining sides are guarded by the pursuers. We start with the case when there are no

obstacles inside the funnel. Even though the pursuers can readily win the game in this

case by using the third pursuer and the strategy for simply connected polygons, reducing

the game to a triangle yields improved capture time.

No obstacles: When there are no obstacles inside the funnel, the inward convex

structure of π1 and π2 yields a simple partition of the funnel which can be used for

computing shortest paths easily. The partition is obtained by extending each edge of π1

and π2 toward the edge (uk, ul) as shown in Figure 1.10(a). Suppose edge e on π1 was

extended to form the boundary of a partition cell. The shortest path from u1 to point a

in this partition cell continues along π1 until it leaves e, followed by a line segment from

the last vertex of e to a. We refer the last vertex on the boundary as the corner vertex of

a point.

The pursuers scan the funnel from left to right until they reduce it to a triangle

as follows: Extend all edges on π1 and π2 and let x1, . . . , xm be the intersection of

the extensions with the boundary edge (uk, ul) as shown in Figure 1.10(a). We define
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x0 = uk. Pursuer 3 guards the shortest path from u1 to x1. If the evader is to the left

of π3, we get a triangle. If the evader is to the right, we iterate by releasing the pursuer

guarding the path from u1 to uk and use him to guard the shortest path from u1 to x2.

The pursuers continue guarding the paths from u1 to x2, x3, . . . , xm until a triangle is

reached.

Note that every time the funnel is shrunk by guarding xi, the number of vertices is

reduced by one: when guarding xi, we introduce a vertex at xi but remove two vertices:

xi−1 and the corner of xi. Hence the invariant n(Pi+1) < n(Pi) is maintained.

Obstacles inside the funnel: In this case, we show that there exists a point on the

edge (ul, uk) whose shortest path from u1 touches an obstacle: Remove all the obstacles

from the funnel and compute the partition described above. We start from the leftmost

partition and move toward right. For each partition, we order all the obstacle vertices in

that partition in anti-clockwise direction with respect to their corner vertex. We extend

the line segment from the corner vertex to the first obstacle vertex in this ordering until

it hits edge (ul, uk). In Figure 1.10(b), for partition tx2x3 we extend the line segment

from t to the first vertex in the ordering until it hits (ul, uk) at o. Therefore the shortest

path π3 from u1 to o touches the obstacle. The third pursuer guards this path. We now

consider the part of the funnel the evader is restricted to. If the part contains no obstacles,

we continue as in the previous case and reduce it to a triangle. Otherwise, π3 is touching

an obstacle. We perform an obstacle move and consider this a part of the move.
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Observe that in forming π3 we introduced a new vertex in Pi (at o in Figure 1.10(b)).

However, in computing Pi+1 we removed at least two vertices: if the evader and the

obstacle are on opposite sides of π3, either uk or ul as well as all vertices on the obstacle

touching π3 are removed. If they are on the same side either uk or ul in addition to at

least one of the obstacle vertices π3) are removed. Hence the invariant n(Pi+1) < n(Pi)

is maintained.

We now show that a slicing move maintains all invariants.

Lemma 13. After a slicing move, all the invariants are maintained.

Proof. For case 3, we have already shown that n(Pi+1) < n(Pi). In all other cases,

similar to the proof of Lemma 12, it can be easily verified that the slicing move maintains

all invariants.

1.5.3 Complete Strategy and Analysis

We are now ready to describe the full strategy. At the beginning of the game, two pursuers

pick two separate edges on the boundary and guard them as π1 and π2. Afterward, the

pursuers continue with performing either an obstacle move or a slicing move until the

evader region becomes a triangle as follows: If an obstacle is touching π1 or π2, they

perform an obstacle move. If an obstacle move is not possible and Pi is not a funnel,

they perform one of the slicing moves given in case 1 or case 2 until they reach a funnel.

Once a funnel is reached, the pursuers reduce it to a triangle as described in case 3. When
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a triangle is reached, they use the third pursuer and the strategy for simply-connected

polygons to capture the evader.

We now present our main result which shows that the sequence of moves described

above result in capture in finite number of steps.

Theorem 2. By following the Shortest Path Strategy, three pursuers can capture an

evader in O(n · diam(P )2) moves in a polygon with n vertices and any number of holes.

Proof. Suppose the step size of the pursuers and the evader is one. Let P be the initial

polygon and n be the number of vertices of P . In order to guard a shortest path Π ∈ Pi,

a pursuer must reach Π and move along it toward the evader’s projection. Since the

length of Π is bounded by diam(P )2 by Lemma 4, it can be guarded in O(diam(P )2)

steps.

At each round, at most two paths are guarded (Case 3 of a slicing move may contain

an obstacle move) and at least one vertex is removed. Hence the total number of steps

until the evader is trapped in a triangle is bounded O(n · diam(P )2). Once the evader

is trapped in a triangle Pi, by Lemma 10, it can be captured in O(3 · diam(Pi)
2) steps.

Since Pi is a triangle, the shortest paths inside Pi are the same as shortest paths inside

P , hence its diameter is no greater than diam(P ). Therefore, the number of steps to

capture the evader inside a triangle is O(diam(P )2) .

To sum up, the strategy takes at most n rounds and the length of each round is

O(diam(P )2). Therefore the total number of steps is O(n · diam(P )2).
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1.6 Necessity of 3 Pursuers

In this section, we complement the sufficiency of three pursuers with a lower bound. We

show that any deterministic strategy requires at least 3 pursuers in the worst-case, and

thus the upper bound of the previous section is tight.
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Figure 1.11: A planar graph with min-degree 3 and no three or four cycles (a), example
constructed intersection (b), example edge construction (c), and example of corridors
connecting intersections for the complete graph on four vertices (d), where jagged edges
denote length 1− 2δ and straight edges 2δ.
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Theorem 3. There exists an infinite family of polygons with holes that require at least

three pursuers to capture an evader even with complete information about the evader’s

location.

Proof. The proof is based on a reduction from searching in planar graphs. In particular,

consider a planar graph G, with vertices of degree 3, and no cycles of length three or

four (see Figure 1.11(a)). Aigner and Fromme [2] proved the correctness of a simple

strategy to avoid capture on such a graph, which involves moving only when a pursuer

is capable of capturing it. Consider a vertex u of G with neighbors ux, uy and uz. Then

it is easy to see that no other vertex in the graph has more than one neighbor in the set

{ux, uy, uz}. Therefore, if there are only two pursuers, at least one of u’s neighbors is

not adjacent to any pursuer, and the evader can move to that neighbor without being

captured on the pursuer’s next turn. This argument repeats ad infinitum, showing that

two pursuers cannot capture the evader in this graph. We now describe how to construct

a polygon from G where the evader can mimic this reactive strategy and avoid capture

forever against two pursuers.

Using Fary’s Theorem, embed G so that each edge maps to a straight line segment.

We now transform this straight-line embedding into a polygon with holes. First replace

each node of G with an intersection shown in Figure 1.11(b). An intersection replacing

a node u of G with neighbors x, y, z has three points labeled ux, uy and uz, which we

call intersection points or i-points for short. The intersection is constructed such that
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the shortest path between any pair of i-points (within a single intersection) has length

exactly 2δ, and a shortest path through a given intersection will visit two i-points. To

finish the construction, we then connect each of these intersections with corridors, such

that a corridor replacing an edge from u to x will contain the i-points ux and xu, and

by introducing artificial bends (as seen in Figure 1.11(c)) we can guarantee the shortest

ux, xu path in each corridor has length 1 − 2δ. The resulting connections between

intersections for the complete graph on 4 vertices are depicted in Figure 1.11(d). It is

easy to see that such a construction can ensure that all the corridors are non-overlapping,

and by proper scaling of the environment we can meet all corridor length conditions.

With this transformation, the outer face of the graph becomes the boundary of the

polygon P , while each face of the plane graph becomes a hole.

We now argue that in the constructed polygon P , the evader can indefinitely avoid

capture from two pursuers. To do so, the evader will move between the i-points of P ,

and guarantee that after each move the following invariant holds: both p1 and p2 are

at least distance 1 + 2δ from all i-points of e’s current intersection. The game begins

by each pursuer choosing a location in P , and it is easy to see that the evader can then

choose some i-point such that the invariant initially holds. We then must show, that

at each turn if this invariant is violated, e can move to re-establish it. By doing so we

guarantee neither pursuer is ever closer than 2δ to e, and thus e can indefinitely avoid

capture.
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Suppose e is located at an i-point of an intersection u such that the invariant is

satisfied, and the following move by the pursuers violates the invariant. Let the i-points

of u be ux, uy, and uz. We claim a pursuer can be within distance 1 + 2δ of an i-point

of at most one of x, y, and z, and break our analysis into two cases, either p lies within

distance 1− 2δ of an i-point of u, or not.

In the first case, suppose without loss of generality p is within distance 1− 2δ of ux,

meaning it lies in the corridor from u to x. Then, as the invariant held before p moved

necessarily d(p, ux) ≥ 2δ. Further, as the i-points of u are 2δ apart, it is easy to see that

d(p, uy) ≥ 4δ, and d(p, uz) ≥ 4δ. Thus, as d(uy, yu) = 1− 2δ and d(uz, zu) = 1− 2δ

it follows that p is at least distance 1 + 2δ from the i-points of y and z.

Consider the second case where p is further than 1− 2δ from the i-points of u and

within 1+2δ of i-points of two intersections in the set {x, y, z}. Without loss of generality

suppose they are y and z. Then there exists i-points yv and zw such that d(p, yv) < 1+2δ

and d(p, zw) < 1 + 2δ. Consider the following cycle, p, yv, yu, uy, uz, zu, zw, p, which

has length at most (1 + 2δ) + 2δ + (1− 2δ) + 2δ + (1− 2δ) + 2δ + (1 + 2δ) = 4 + 6δ.

This cycle then has length less than 5, as we can always construct P with an arbitrarily

small δ. Further, as p is at least 1− 2δ from the i-points of u, the shortest paths from p

to yv and zw to p cannot pass through a corridor adjacent to u without being longer than

1 + 2δ, thus this cycle surrounds one or more holes of P . However, G has no cycles of
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length three or four, thus the cycle in P then must have length five or more, and this is a

contradiction.

Thus each pursuer is within distance 1 + 2δ of an i-point of at most one intersection

in the set {x, y, z}. Thus one of xu, yu, and zu will satisfy the invariant and as they

are all within distance one of the i-points of u, e can move to the one which satisfies

the invariant. Thus, at each turn e can re-establish the invariant and indefinitely avoid

capture.
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Chapter 2

Complete Information Pursuit Evasion
on Polyhedral Surfaces

2.1 Introduction

In the previous Chapter, we showed that three pursuers are always sufficient to capture

the evader in a polygon with obstacles if the evader’s location is already known to

the pursuers. However, many robotics applications involve searching or tracking on

“terrain-like” surfaces. We thus investigate a pursuit-evasion game played on the (closed)

surface of a 3-dimensional polyhedron. Suppose multiple pursuers attempt to capture an

adversarial evader, with all players constrained to remain on the polyhedral surface, and

all able to move equally fast, how many pursuers are needed to capture the evader in

finite time?

In addition to the problem’s practical motivations, it is also well-motivated from a the-

oretical perspective; the surface acts as an “intrinsic” obstacle, introducing non-linearity

∗Parts of this chapter appeared in [40].
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in the behavior of shortest paths. For instance, although the genus zero polyhedral

surface is topologically equivalent to a disk, the game has a distinctly different character

and outcome than its planar counterpart (circular arena). In particular, it is known that

a single pursuer can always win the discrete-time man-and-the-lion game in the plane

(an easy corollary of [66]). Therefore, one may hope that an appropriate topological

extension of the “follow the shortest path towards the evader” strategy will also succeed

on the polyhedral surface. However, we show that this is not possible, and provide

a constructive lower bound that at least 3 pursuers are needed in the worst-case for

successful capture on a polyhedral surface. Intuitively, the problem is caused by the

discontinuity in mapping “straight line” shortest paths in the unobstructed planar arena

to geodesics on the polyhedral surface; in the unobstructed plane, a small move by the

evader only causes a small (local) change in the straight line connecting pursuer and the

evader, but on the polyhedral surface, the geodesic can jump discontinuously.

Complementing our lower bound, we show that 4 pursuers always suffice on any

polyhedral surface of genus zero. Specifically, we present a strategy for the pursuers

that always leads to capture of the evader in O(diam(S)(n2 log n+ log diam(S))) time

steps, where n is the number of vertices of the polyhedral surface S and diam(S) is

its diameter (the maximum shortest path distance between any two points). We then

generalize our result to surfaces of non-zero genus and prove that (4 + 4g) pursuers can

always capture an evader on the surface of any genus g polyhedron. Our technique for
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analyzing pursuit evasion on polyhedral surfaces appears to be quite general, and likely

to find application in other settings. As one example, we consider pursuit evasion under

the “weighted region” model of shortest paths, where non-negative weights dictate the

per-unit cost of travel through different regions of the surface.

2.1.1 Related Work

There exists an extensive literature on pursuit-evasion in 3-dimensional environments

and surfaces, but no result appears to be known on the number of pursuers necessary

for capture. Instead, the prior research has focussed on heuristics approaches for

capture [41], classification of environments where capture is achievable [5], or on

game-theoretical questions [43, 51].

The most relevant work to our research is the cops-and-robbers games in graph

theory, where Aigner and Fromme have shown that 3 cops always suffice against a

robber in any planar graph [2], and b3g/2 + 3c cops are necessary for graphs of genus

g [63]. However, the continuous-space of polyhedral surfaces requires very different set

of techniques from those used for graphs.

2.2 Preliminaries and the Lower Bound

We assume that an evader and pursuers are free to move on the (closed) surface of a

3-dimensional polyhedron S using the standard model of Section 0.2. We assume that
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S has n vertices, and therefore O(n) faces and edges. Without loss of generality, we

assume that each face is a triangle, which is easily achieved by triangulating the faces

with four or more sides.

We use the notation Π(a, b) for a shortest path between two points a and b on the

surface S, and d(a, b) for the length of this path. (In general, the path Π(a, b) is not

unique, but its length is.) The path Π(a, b) is piece-wise linear and its vertices lie on the

edges or vertices of the surfaces. Throughout, we will use the terms vertices and edges to

refer to the graph of the polyhedral surface, and points and arcs to refer to the geometric

objects embedded on the surface such as a path. We explain specific properties of these

shortest paths that are used in our analysis in Section 2.3.3. The following theorem

establishes the lower bound for our pursuit game.

Theorem 4. In the worst-case at least three pursuers are required to capture an evader

on the surface of a polyhedron.

Proof. We start with a dodecahedron D, all of whose edges have length 1, as shown in

Fig. 2.1(a). Our polyhedron S is constructed by extending each face of D orthogonally

(to the face) into a “tower” of height diamD + 1, where diamD is geodesic diameter of

the dodecahedron; see Fig. 2.1(b). The polyhedron S has 12 such towers, one for each

of the 12 pentagonal faces of D. The “walls” of these towers meet along the edges of D,

forming the skeleton graph, which we denote G(D), as shown in Fig. 2.1(c). We now
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argue that an evader can indefinitely avoid capture from two pursuers on the surface of

this polyhedron.

(a) (b)

u
x

y

z

(c)

Figure 2.1: A dodecahedron (a); partial construction with three faces orthogonally
extended (b); and the skeleton graph (c).

Suppose there are only two pursuers, p1 and p2. Initially, they choose their locations

on S, and then the evader picks its initial position at a vertex of G(D) to satisfy

d(pi, e) > 1, for i = 1, 2. (It is easy to see that this is possible.) Our proof shows that

regardless of the pursuers’ strategies, the evader can indefinitely maintain this distance

condition (after its move) by always moving among the vertices of G(D), and thus evade

capture forever.

The key observation is that the evader’s choice to remain on the skeleton graph G(D)

means that pursuers gain no advantage from positions not on G(D). In particular, any

pursuer located on the top face of a tower is not an immediate threat to the evader, and

thus can be safely ignored by the evader. (Such a pursuer is more than 2 moves away

from threatening the evader.) Similarly, for any pursuer p positioned on a wall, map
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its position to the nearest point ps on the skeleton, called the shadow of p. (Thus, ps

is the foot of the perpendicular from p to the edge of G(D) that is closest to p.) Since

d(ps, e) ≤ d(p, e), the evader only needs to ensure its distance to ps remains more than 1.

Thus, we only need to ensure that the evader maintains its distance condition with respect

to two pursuers (or their shadows) that are constrained to move along the skeleton graph.

However, the pursuers are not constrained to the vertices of the skeleton graph; they can

situate in the interior of skeleton graph edges.

The evader’s strategy is reactive: it remains at a vertex until some pursuer is within

distance 1. When one or both pursuers are within distance 1 of the evader, we show that

the evader can move to a safe neighboring vertex and restore its distance condition. In

particular, suppose evader’s current location is vertex u in G(D), and let x, y, z be the

three neighboring vertices of u. Then it is easy to see that no point other than u among

(the line segments forming) the edges of G(D) is within distance one of more than one

neighbor in the set {x, y, z}. This follows because the minimum length path joining any

two points of the skeleton graph lies entirely in the skeleton graph (i.e., it does not use

the walls or top faces of the surface S). Thus, at least one neighbor of u among {x, y, z}

is more than 1 away from both the pursuers, and this is the vertex to which e moves.
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2.3 Catching the Evader with 4 Pursuers

We begin with a high level description of the pursuers’ strategy, and then develop the

necessary technical machinery to prove its correctness.

2.3.1 Surround-and-Contract Pursuit Strategy

The pursuers’ overall strategy is conceptually quite simple: repeatedly shrink the region

containing the evader while making sure that it cannot escape from this region, which

can be intuitively thought of as a surround-and-contract strategy. More specifically, at

any time, the evader is constrained within a connected portion Si of the surface S, which

is bounded by at most three paths, each guarded by a pursuer. The fourth pursuer is

used to divide Si into two non-empty regions (contraction), trapping the evader within

one of them. This division is done in such a way that that at least one of the 3 pursuers

bounding Si becomes free, thus allowing the process to continue until the target region

reduces to a single triangle, and the capture can be completed.

The paths used by the pursuers are shortest paths on the polyhedral surface, restricted

to the current region. The computation of shortest paths on a polyhedral surface is a

well-known problem in computational geometry, and we rely on the following result

of [14, 53]: given a source point x on the surface of a polyhedron S of n vertices, one

can compute a shortest path map encoding the shortest paths from x to all other points
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TriPolar BiPolar

EndGame

Figure 2.2: A finite state machine representing the possible states of the pursuit and
transitions between them.

on S, in O(n2) time using O(n log n) space. With this map, one can find the shortest

path from x to any other point y in time O(log n+ k) when the path consists of k arcs.

We use phases to monitor the progress of the algorithm: in phase i, the region

containing the evader is denoted Si where Si ⊆ Si−1, for all i. Each time the pursuers

guard a new path dividing Si, the phase transitions, with Si+1 as the region containing

the evader. In addition, each region Si has a rather special form: it is bounded by either

two or three shortest paths. The finite automaton of Figure 2.2 shows the simple state

diagram of the pursuit: the pursuit transitions between regions bounded by 2 and 3

paths until it reaches a special terminal state marked ENDGAME. For ease of reference,

we name the first two states BIPOLAR and TRIPOLAR to emphasize that the regions

corresponding to these states are bounded by shortest paths between 2 or 3 points (poles).

The region in the terminal state ENDGAME is also bounded by 3 paths but contains

no vertices in the interior (only the points of the boundary paths), which simplifies the
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search leading to capture. In particular, the three possible states throughout the pursuit

are the following:

BIPOLAR: Si is bounded by two shortest paths Π(a, b) and Π(a, b)′ between two points

(poles) a and b.

TRIPOLAR: Si contains at least one interior vertex, and is bounded by three shortest

paths Π(a, b), Π(b, c), and Π(a, c).

ENDGAME: Si has no interior vertices and is bounded by three shortest paths Π(a, b),

Π(b, c), and Π(a, c).

We initialize the pursuit by choosing a triangular face (a, b, c) of the surface, and

assigning one pursuer to each of the three (single-arc) shortest paths Π(a, b), Π(b, c), and

Π(a, c). If the evader lies inside the triangle face, we enter the terminal state ENDGAME;

otherwise, we are in state TRIPOLAR. The fourth pursuer shrinks the region Si, resulting

in a smaller TRIPOLAR region, or forces a transition to a BIPOLAR region. In each

state BIPOLAR, at least one interior vertex is eliminated from Si. Further, each state

consists of a finite number of phases, which guarantees that the algorithm terminates in

the region ENDGAME.

In the following, we use ν(Si) to denote the number of interior vertices of Si; that is,

the number of vertices in Si that are not on the boundary paths. Throughout the pursuit,

the following invariant is maintained.
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PURSUIT INVARIANT. During the ith phase of the pursuit, (1) Si ⊆ Si−1, (2) ν(Si) ≤

ν(Si−1), and if phase i− 1 is in state BIPOLAR, then ν(Si) < ν(Si−1), and (3) at

most 4 paths are guarded, each by a single pursuer at any time.

The first condition ensures that the region containing the evader only shrinks; the

second ensures that at least one interior vertex is removed in state BIPOLAR; and the

third ensures that 4 pursuers succeed in capturing the evader.

2.3.2 Guarding Shortest Paths

Our algorithm employs one pursuer to guard a shortest path, ensuring that any attempt

by the evader to cross the shortest path leads to capture. In Chapter 1 Section 1.3,

we show that a single pursuer can accomplish this for minimal paths in polygons.

However, a minimal path is a merely a more general form of a shortest path, and thus any

shortest path is minimal and thus also guardable by a single pursuer. Further, the proofs

in Section 1.3 rely only on the minimality of the paths and not the two-dimensional

problem, thus the result easily extends to this setting, giving the following result.

Lemma 14. Consider a shortest path Π(a, b) on the polyhedral surface S, and suppose

a pursuer p is located at the endpoint a of this path. Then, after at most L+ 1 moves, p

can locate itself at the canonical projection of the evader, where L is the (Euclidean)

length of the Π(a, b).
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2.3.3 Pursuit Strategy for the TRIPOLAR State

In TRIPOLAR state, the current region Si is bounded by three shortest paths, Π(a, b),

Π(a, c), and Π(b, c), between the three poles a, b, c. The pursuers’ strategy is to force the

game either into BIPOLAR or ENDGAME state while preserving the Pursuit Invariant.

Towards that goal, we need to introduce some properties of shortest paths on polyhedral

surfaces.

It is well-known that a shortest path is a sequence of line segments (arcs), whose

endpoints lie on the edges of the surface, and that the path crosses any edge of the

surface at most once. Thus, the sequence of edges crossed by a path, called the edge

sequence, consists of at most n edges. Given a source point a and an edge (b, c), it

is also known that (b, c) is partitioned into O(n) closed intervals of optimality [53],

where the shortest path from a to any point d in an interval follows the same edge

sequence. Let us suppose that an edge (b, c) is partitioned into k intervals of optimality,

[d0, d1], [d1, d2], · · · , [dk−1, dk], where the edge sequence for the interval [di−1, di] is

denoted as σi. Since two adjacent intervals, say [dj−1, dj] and [dj, dj+1], share a common

endpoint dj , there are two equal length shortest paths from a to dj , following edge

sequences σj and σj+1. Because our algorithm may guard one or both of these shortest

paths, we use a superscript to identify the associated edge sequence. In particular, the

shortest path from x to y under the edge sequence σj is denoted Π(x, y)j .
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The following lemma shows that if the shortest paths Π(a, b) and Π(a, c) have the

same edge sequence, and Π(b, c) is a single arc, then the interior of the region bounded

by these 3 paths has no vertex of the surface, which implies that the pursuit region has

entered the terminal state ENDGAME.

Lemma 15. Suppose the current region Si is bounded by pairwise shortest paths between

the three points a, b, c, and that Π(b, c) consists of a single arc. Then, the paths Π(a, b)

and Π(a, c) follow the same edge sequence if and only if Si contains no interior vertices.

Proof. Clearly, if Π(a, b) and Π(a, c) have the same edge sequence, then there cannot

be an interior vertex in Si because Π(b, c) is a single arc. For the converse, if Si has no

interior vertices and Π(b, c) is a single arc, then Si can only contain edges that intersect

both Π(a, b) and Π(a, c). These edges do not cross each other, and therefore they must

be crossed by Π(a, b) and Π(a, c) in the same order.

By the preceding lemma, if Π(a, b) and Π(a, c) follow the same edge sequence and

Π(b, c) consists of a single arc, then we are in the terminal state ENDGAME. Therefore,

assume that either the edge sequences of Π(a, b) and Π(a, c) are unequal or Π(b, c)

consists of multiple arcs. In both cases, the following lemma shows how to either reduce

Π(b, c) to a single point, which changes the state to BIPOLAR, or replace Π(a, b) and

Π(a, c) with shortest paths with the same edge sequence, and Π(b, c) with a single arc,

which changes the state to ENDGAME.
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Figure 2.3: Illustration for the proof of Lemma 16.

Lemma 16. Suppose Si is in state TRIPOLAR, then we can force a transition either to

state BIPOLAR or state ENDGAME.

Proof. Consider the shortest path map with source a, and suppose it partitions Π(b, c)

into k intervals of optimality (across all of Π(b, c)’s arcs), [d0, d1], [d1, d2] · · · , [dk−1, dk]

with corresponding edge sequences σ1, σ2, · · · , σk, where do = b and dk = c. Relabel

Π(a, b) as Π(a, d0)1, and Π(a, c) as Π(a, dk)
k, and order the paths by their endpoints on

Π(b, c) as follows:

Π(a, d0)1,Π(a, d1)1,Π(a, d1)2,Π(a, d2)2, . . . ,Π(a, dk−1)k,Π(a, dk)
k

We leave two pursuers to guard (maintain canonical projections on) the paths Π(a, b)

and Π(a, c), and deploy a guard on the center path Π(a, dk/2)k/2 (constrained to lie

within the current region); see Figure 2.3(a). This path splits the original region Si

into two non-empty regions, each containing half the intervals of optimality, and we
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recurse the process on the side with the evader, namely, the region Si+1. The first two

conditions of the invariant are trivially satisfied, since the evader region can only shrink,

and the third condition holds because the pursuer associated with either the path Π(a, b)

or Π(a, c) is freed up, keeping the total pursuer count at four.

The recursion terminates when the evader is confined between two successive paths

in the original ordering. In particular, if the evader is trapped between paths Π(a, dj)
j

and Π(a, dj+1)j , then we have state ENDGAME as shown shown in Fig. 2.3(b). On

the other hand, if the evader is trapped between two paths Π(a, dj)
j−1 and Π(a, dj)

j ,

we have successfully transitioned to state BIPOLAR, as shown in Fig. 2.3(c). It is

clear that throughout this search, the evader remains confined to a subsurface of Si

and cannot escape without being captured, and that the pursuit invariant is maintained.

Because the path Π(b, c) has at most n arcs, with n intervals of optimality each, we have

k ≤ n2. Thus, in O(log n) phases, we can force a change of state to either BIPOLAR or

ENDGAME.

2.3.4 Pursuit Strategy for the BIPOLAR State

We now describe how to make progress when the search region is BIPOLAR. Without

loss of generality, assume that the current region Si is bounded by two shortest paths

between points a and b, each guarded by a pursuer. The algorithm shrinks the region

by removing at least one vertex from the interior of Si. In particular, let c be a vertex
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Figure 2.4: An abstract illustration of the two paths that may be guarded during state
BIPOLAR.

of the surface that lies in the interior, and consider the two shortest paths (constrained

to remain inside Si) from c to a and b. The concatenation of these two paths splits Si

into two subregions, say R1 and R2, both bounded by three paths. (These paths can

share a common prefix, starting at c, but they do not cross each other.) Only one of these

regions contains the evader, and so by guarding Π(a, b) an Π(a, c) the state of the search

transitions to either TRIPOLAR or ENDGAME depending on whether or not this region,

which becomes Si+1, contains an interior vertex. See Figure 2.4 for illustration. During

this transition the pursuit invariant holds because (1) R1, R2 ⊆ Si, (2) both R1 and R2

contain at least one fewer interior vertex, namely, c, and (3) at most 4 pursers are used.

Thus, we have established the following lemma, completing the discussion of the state

BIPOLAR.

Lemma 17. If the evader lies in a BIPOLAR region Si, then we can force a transition to

a TRIPOLAR or ENDGAME region with at least one fewer interior vertex, and no more

than 4 pursuers are used during the pursuit.
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2.3.5 Pursuit Strategy for the ENDGAME State

We now describe how the pursuers capture the evader when the search region is

ENDGAME. First, by Lemma 16, the path Π(b, c) can be reduced to a single arc.

Next, by Lemma 15, since Si has no interior vertices, Π(a, b) and Π(a, c) follow the

same edge sequence. Thus, Si consists of a chain of faces, each a triangle or a quadri-

lateral. For ease of presentation, we assume that all faces are triangles, which is easily

achieved by adding a diagonal to each quadrilateral. The pursuers perform a sweep of Si,

by repeatedly replacing Π(b, c) with the previous edge in the edge sequence of Π(a, b)

and Π(a, c), until the evader is trapped in a triangle each of whose sides are guarded by a

pursuer. For example, in Figure 2.5(a), the fourth pursuer guards the edge (b, x1), which

either confines the evader to the triangle b, c, x1 or frees the evader guarding Π(b, c).

Lemma 18. Once the evader enters the ENDGAME state, the 4 pursuers can shrink the

confinement region to a single triangle of Si in O(n) phases.

Finally, the following lemma completes the capture inside the triangle.

Lemma 19. If Si consists of a single triangle, then in O(diam(S) log diam(S)) moves

the evader can be captured.

Proof. The pursuers progressively “shrink” the triangle containing the evader, leading

to eventual capture, as follows. Pick the midpoint of the arc (b, c), say d, and deploy
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Figure 2.5: Illustrating the algorithm used for capture in state ENDGAME.

a guard on the arc (a, d); see Figure 2.5(b). This path splits the original triangle into

two non-empty triangles, and we recurse the process on the triangle containing the

evader. Notice that the pursuer associated with either the path Π(a, c) or Π(a, b) is freed

up, keeping the total pursuer count at four. After log diam(S) applications (b, c) will

be replaced with an arc of length at most one, at which point a pursuer can capture

the evader by sweeping the triangle once. At most O(log diam(S)) paths of length

O(diam(S)) are guarded, and so this process takes at most O(diam(S) log diam(S))

moves.

We analyze the total number of moves before the evader is captured. The total

number of pursuer moves over all the BIPOLAR and TRIPOLAR moves is bounded

by the number of paths guarded times the number of steps to guard those paths. By

Lemma 14, the time to guard a path (reach the canonical projection) is proportional to

its length, and the following result shows an upper bound on this length.
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Lemma 20. At a given phase i, diamSi is O(n · diam(S)).

Proof. Consider the longest shortest path Π in Si. Because it crosses any edge of the

surface at most once, it has O(n) arcs, each of length at most diam(S), which yields the

desired bound.

We can now state our main result.

Theorem 5. On a n-vertex genus 0 polyhedral surface S, 4 pursuers can always capture

the evader in O(diam(S)(n2 log n+ log diam(S))) moves.

Proof. There are at most n phases in state BIPOLAR because each occurrence removes

at least one interior vertex from Si. Only two paths are guarded per phase, so BIPOLAR

takes O(n2 · diam(S)) moves. There are at most O(log n) phases during TRIPOLAR

to force the state transition, each requiring a single path to be guarded. Further, there

at most n transitions from state BIPOLAR to TRIPOLAR, and thus there are at most

O(n log(n)) phases in state TRIPOLAR, requiring O(n2 log(n) · diam(S)) moves. In

state ENDGAME, there are O(log n) phases where a path is guarded to reduce Π(b, c) to

a single arc, an additional O(n) phases where an arc is guarded to confine the evader

to a face, and finally O(log(diam(S)) · diam(S)) moves are needed to capture the

evader in a triangle. Adding them up, in the worst case, the total number of moves is

O(n2 log(n) · diam(S) + log(diam(S)) · diam(S)).
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2.4 Catching the Evader on Genus g Surface

In this section, we show that (4 + 4g) pursuers are sufficient to catch the evader on

a polyhedral surface of genus g > 0. The main idea is to cut the surface along 2g

cycles, reducing it to a genus 0 surface. By assigning 2 pursuers to each cycle, we can

ensure that each cycle is guarded, and that the evader cannot cross a cycle without being

captured. We then use the 4 remaining pursuers to search the genus zero surface and

capture the evader.

The existence of these 2g cycles that split a genus g surface into genus 0 subsurfaces

follows from a result of Erickson and Whittlesey [19]. The intuition behind their

algorithm is simple: compute the cut locus of S, which is the closure of the set of

points with at least two shortest paths from a base-point x. Then greedily choose the

shortest cycle that does not disconnect the surface of S; remove this cycle; and choose

the next shortest cycle that does not disconnect S with the first cycle removed, and so on.

After choosing 2g such cycles, all remaining cycles disconnect the surface, and thus the

resulting surface has genus zero. Erickson and Whittlesey show that this greedy strategy

results in a set of 2g loops with the minimum possible sum of lengths, for the given

base-point. We need only a weaker property that each cycle is geodesic (composed of

two shortest paths), and thus cannot be shortcut. In particular, we need the following

result from [19].
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Theorem 6. [19] Given any piecewise-linear manifold M in R3 and any base-point

x ∈M , we can compute the shortest system of loops for M based at x in O(n2) time.

Using a total of 4g pursuers, the 2g cycles found by Erickson and Whittlesey’s

algorithm can be guarded, confining the evader to a gn vertex subsurface of genus zero,

whereupon the evader can be captured by 4 additional pursuers.

Theorem 7. On a n-vertex genus g polyhedral surface S, 4g + 4 pursuers can always

capture the evader in O(((gn)2 log(gn) + log diam(S)) · diam(S)) moves.

2.5 Pursuit Evasion with Weighted Regions

Our surround-and-contract technique appears to be quite general, and may be applicable

to many other settings where shortest paths are well-behaved and where the frequency

of state transitions between BIPOLAR and TRIPOLAR can be combinatorially bounded.

As one illustrative example, we consider the pursuit evasion problem on a polyhedral

surface under a region weighted definition of shortest paths, and deduce the same result

that 4 pursuers suffice in this setting as well.

In the weighted region model, each face f (triangle) of the polyhedral surface S is

associated with a non-negative real weight wf , and traveling along a line segment of

length ` on this face incurs a cost of wf · `. (These weights can be used to model the non-

homogeneity of movement speed on a terrain, such as paved roads, dirt roads, marshlands,

sand, water etc.) Each edge e of the polyhedron also has a weight we ∈ (0,∞] subject
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to the condition we ≤ min{wf , w′f}, where f, f ′ are the two faces adjacent to e. This

condition is imposed to disallow the unnatural phenomena of paths that travel arbitrarily

close to an edge, but not on it.1

A minimum cost path between a source x and a destination y under the weighted

metric is a non-self-intersecting piecewise linear curve, which only makes turns at edges

and vertices of the surface. These shortest paths, however, have some characteristics

that are distinctly different from Euclidean length paths: e.g., the straight line segment

xy is not necessarily the minimum cost path for two points x and y in the interior of

a convex face f . Nevertheless, we show below that the basic structure and proof of

surround-and-contract holds in this generalized path setting.

We first dispense with a computational issue. Computing a weighted region path

is computationally non-trivial, and all the polynomial-time algorithm only compute

a 1 + ε approximation [3, 49, 52]. (Algorithms that compute an exact minimum cost

path take time doubly exponential in n [52].) Our primary goal, however, is to show

the correctness of the strategy and sufficiency of 4 pursuers, and we do not concern

ourselves with the computational aspects.

A more serious issue is the combinatorial complexity of the paths. While Euclidean

shortest paths cross a single edge of the surface at most once, a weighted minimum cost

1edges of infinite weight and, for such an edge, it is permissible to travel along it at the cost of its
neighboring face, but it is not permissible to cross it. This allows for the modeling of an impenetrable
obstacle.
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path can cross an edge Θ(n) times! Without a more careful analysis, this can lead to

an exponential blowup in the complexity of the surface regions: a region bounded by 3

shortest paths can have boundary complexity Ω(n2), causing a shortest path in it to have

complexity Ω(n4), and so on. In the following, we offer a more refined analysis of the

weighted shortest paths and prove that such an explosion does not occur.

2.5.1 Path Complexity under the Weighted Metric

The number of moves required to transition between states BIPOLAR and TRIPOLAR

is controlled by the number of arcs in a shortest path and the intervals of optimality

into which an arcs is subdivided. Deriving a non-trivial upper bound on this complexity

requires delving into the proof of the weighted region shortest path algorithm of Mitchell

et al. [52], which is quite complicated. Instead, we offer below a substantially simpler

and direct proof for bounding the number of intersections between an edge and a shortest

path, which we are able to generalize to our more involved setting.

Lemma 21. Let S be an n-vertex polyhedron with weighted regions, then any shortest

path in S has at most O(n2) arcs.

Proof. Fix a shortest path P in Si, order the edges of Si in the increasing order of weight,

and let e1, e2, . . . , en be this order. We claim that the edge ei intersects P only O(i)

times.
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Figure 2.6: Illustration of proof of Lemma 21.

Consider the edge ei, and suppose it is intersected by Π at x1, x2, x3, . . . xk in that

order (meaning x3 could precede x2 on ei, but Π visits x2 before x3). Then we claim

that Π can always be chosen such that only one subpath Π(xj, xj+1) intersects e1. For

the sake of contradiction, suppose that Π(xl, xl+1) also intersects e1, and without loss

of generality suppose that j + 1 ≤ l. Further, let the first and last points Π(xj, xl+1)

intersects e1 be y1 and y2 respectively (see Figure 2.6(a)). Then, we can construct a

path Π′ by replacing the subpath Π(y1, y2) of Π with the arc (y1, y2). As Π(y1, y2) has

Euclidean length at least as long as (y1, y2), and is weighted at least as much as e1

everywhere, Π′ can be no longer than Π. This process can be repeatedly applied until

there is only one subpath Π(xj′ , xj′+1) which intersects e1.

Now suppose there are two subpaths Π(xj, xj+1), and Π(xl, xl+1) which intersect

e2 (excluding the single subpath which intersects e1) first at y1 and last at y2. Since we

know neither subpath can intersect e1, neither subpath can traverse an edge of weight

smaller than e2. Further, neither subpath can traverse a face f of smaller weight, as to

do so would require crossing one of f ’s bounding edges, which we know have weight

79



Chapter 2. Complete Information Pursuit Evasion on Polyhedral Surfaces

less than or equal to the faces they bound. Thus, Π(y1, y2) has no arc with weight less

than that of e2, and thus the arc (y1, y2) has weighted length no more than Π(y1, y2) and

can replace it. Note that (y1, y2) cannot intersect Π, as to do so would contradict the

choice of Π as the shortest path. Therefore, Π can be chosen such that only one subpath

Π(xj′ , xj′+1) intersects e2 (in addition to the single subpath which intersects e1). This

process can be continually applied for each edge ej where j < i until we have accounted

for all i− 1 edges with weight less than or equal to ei.

The resulting scheme accounts for at most i−1 subpaths to intersect ei. Suppose then

that were an i-th subpath, Π(xj, xj+1). This subpath could necessarily only intersect

el such that l > i. Thus, we can construct a path Π′ no longer than Π by replacing

the subpath Π(xj, xj+1) of Π with the arc (xj, xj+1). Thus in the worst case k =

2(i− 1) + 2 = 2i, where there are i− 1 subpaths intersecting ei, and an arc preceding

and following x2 and xk−1 respectively. Thus in the worst case Π consists of O(n2)

arcs.

The following lemmas generalize the previous result to bound the growth in path

complexity during our algorithm.

Lemma 22. Suppose Si is a subregion of S whose boundary paths have m edges in

total. Then a shortest path Π inside Si has at most m+O(n2) arcs.
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Proof. Using a nearly identical proof to that of Lemma 21, it can be shown that the i-th

shortest edge of S will still have O(i) subpaths intersecting it, excluding those of the

boundary. In Figure 2.6(a) we replaced Π(y1, y2) with the arc (y1, y2). However, the

situation in Figure 2.6(b) may arise, that is, e1 may be intersected by the boundary of

Si. Because the boundary consists of only shortest paths, replacing (y1, y2) with the

concatenation of (y1, x1),Π(x1, x2), (x2, y2) will guarantee that there is only one new

subpath intersecting ei that intersects e1, but, the boundary portion of that subpath may

intersect ei several times. Thus, a shortest path in Si has at most O(n2) arcs from the

O(i) intersections per edge, and at most m additional arcs from the boundary of Si.

Lemma 23. Suppose after j state transitions the evader is confined to Si. Then, a

shortest path in Si consists of at most O(j · n2) arcs.

Proof. We now show that the boundary paths can only grow in complexity during state

transitions (and not between two phases without a state transition). Thus a boundary

path would gain at most O(n2) arcs per state transition, for a total of O(j · n2) after j

state transitions.

First observe that if Si is in state BIPOLAR, then the boundary of Si+1 will have at

most O(n2) more arcs than Si. This is because the paths found splitting Si can only have

O(n2) arcs not on the boundary, and each edge of Si’s boundary can only be present in

one of the two paths (if we clip common prefixes following the poles). Next, note that

while in state TRIPOLAR, there can be many stages, in each of which a single path is
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guarded, however, all the paths are from the same shortest path map. Thus, when we

transition from state TRIPOLAR to BIPOLAR we have one path consisting of a single arc,

and two paths which may traverse the boundary and have gained at most O(n2) new arcs.

Again, no edge of the boundary will be present twice, and thus boundary can only have

gained O(n2) new arcs. Finally, in state ENDGAME we need not worry about growth in

path complexity, as once Π(b, c) is reduced to a single edge Lemma 24 guarantees a path

crosses each edge at most once. Thus after j state transitions, the boundary of Si has at

most O(j · n2) arcs, and thus any shortest path in Si has at most O(j · n2) arcs.

Next, we note that in the weighted case an arc on an n vertex surface may have up

to O(n3) intervals of optimality [52]. Note that during the n stage transitions it takes

to reach state ENDGAME the boundary will at most O(n3) arcs. Thus a surface Si

may effectively have O(n3) vertices, and thus a single arc may have O(n9) intervals

of optimality. However, Lemma 16 will still force a transition out of TRIPOLAR in

O(log n) phases. Thus in O(n · log n) phases the pursuit will reach state ENDGAME.

2.5.2 Modifications to State ENDGAME

Unlike in the unweighted case, the straight arc between two points no longer is nec-

essarily a shortest path. Thus, we cannot simply “walk” the arc (b, c) up Si as before.
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However, the minimum weight internal edge (an edge not in the boundary) in Si is a

shortest path and can be guarded, thus we will exploit this to reduce Si to a single face. 2

Recall that state ENDGAME consists of a single chain of triangles (after reducing

(b, c) to a single arc). Let (d1, d2) be the internal edge with minimum weight in Si.

Without loss of generality, suppose that d1 is on Π(a, b), then we deploy the fourth

pursuer to guard Π(d1, c). The following Lemma shows that Π(d1, c) crosses each edge

at most once.

Lemma 24. Π(d1, c) crosses each edge at most once.

Proof. Suppose that the edge (x, y) is intersected twice at points x1 and x2, and let (x, y)

be the first such edge in the edge sequence followed by Π(a, b) and Π(a, c) starting from

a. Then notice, there must be a second edge after (x, y) in the edge sequence that is also

intersected twice. This is true as Π(d1, c) only turns at edges and vertices, and thus must

intersect at least one edge between the first and second intersection of (x, y), and then

this edge would be intersected again by Π(d1, c) before reaching c. Let the edge with

minimum weight that is intersected twice (besides (x, y)) be (u, v), and suppose it is

intersected at u1 and u2. See Figure 2.7(a).

Suppose that (x, y) has weight ω1 and (u, v) has weight ω2. If ω1 ≤ ω2, construct

a path Π(d1, c)
′ by replacing Π(x1, x2) with the arc (x1, x2). Similarly, if ω2 ≤ ω1,

2It is possible that the minimum weight internal edge is not a shortest path. However, any shorter path
necessarily includes part of the guarded boundary, and the evader cannot move along such a path without
being captured.
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construct Π(d1, c)
′ by replacing Π(u1, u2) with the arc (u1, u2). In both cases, Π(d1, c)

′

is no longer than Π(d1, c), and each edge has one less intersection. This can be repeatedly

applied until no edge is intersected more than once.
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Figure 2.7: In (a) an illustration for the proof of Lemma 24, and in (b) an illustration
for the proof of Lemma 25.

Thus Π(d1, c) can be guarded without introducing any additional internal edges. The

following Lemma shows how to remove all internal edges from Si by guarding such a

path.

Lemma 25. Suppose Si is a weighted subsurface in state ENDGAME, and Π(b, c)

consist of a single arc, then Si can be reduced to a single face.

Proof. We describe a procedure to remove an internal edge in at most two phases and

maintain the property that one of the three bounding paths is an arc. This procedure

can then be applied recursively to remove the remaining internal edges. Without loss of

generality, suppose (d1, d2) is the minimum weight internal edge, and d1 is on Π(a, b),

84



Chapter 2. Complete Information Pursuit Evasion on Polyhedral Surfaces

see Figure 2.7(b). Deploy the fourth pursuer to guard Π(d1, c). If the evader is in R1,

then we are done, as (d1, d2) is no longer an interior edge, (b, c) is a single arc, and the

pursuer guarding Π(a, c) is no longer necessary.

Otherwise, (b, c) no longer needs to be guarded, and the pursuer is reused to guard

(d1, d2), which is a shortest path. Then, regardless of whether the evader is in R2 or R3,

(d1, d2) is no longer an internal edge and has become part of the boundary, and one of

the bounding paths no longer needs to be guarded. Thus this process can be applied

recursively to R2 or R3 to remove further internal edges. Further, in both stages the

Pursuit Invariant is trivially maintained.

By Lemma 23 and the fact there are O(n) state transitions, each boundary path can

cross at most O(n3) edges. Thus, after O(n3) phases all internal edges are removed and

the evader is confined to a single face.

2.5.3 Weighted Time to Capture

With the preceding sections we have covered all three states, and thus conclude that our

algorithm will result in the capture of the evader. However, we must still address the

time to capture. As in the unweighted case, the diameter of the environment can grow as

we confine the evader to smaller a smaller subsurfaces of S, but unlike before, it can

grow larger. This is because the original diameter may be small due to passing through

regions with small weights, which are subsequently removed via path guarding. Let the
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minimum (non-zero) weight assigned to any face or edge be ωmin and similarly let ωmax

be the maximum weight. The following Lemma bounds the path growth in terms of the

input parameters.

Lemma 26. In a given phase i, diamSi is at most O(ωmax

ωmin
· n3 · diam(S))

Proof. Consider an arbitrary shortest path Π in Si. By Lemma 23 we know that any

shortest path in Si consists of at most O(n3) arcs. Let x, y be an arc of Π with Euclidean

length `. Then, the shortest x, y path in S has weighted length at most ωmin·` ≤ diam(S).

In Si, the arc x, y has length at most ωmax · `, and thus the arc x, y has weighted length

at most ωmax

ωmin
· diam(S). Thus, as there are at most O(n3) arcs, the maximum length of

any shortest path in Si is at most O(ωmax

ωmin
· n3 · diam(S)).

Theorem 8. Given a polyhedron S with n vertices, and weighted regions with min

weight ωmin and max weight ωmax, 4 pursuers can capture the evader in O(ωmax

ωmin
· n6 ·

diam(S) + log((ωmax

ωmin
) · diam(S)) · ωmax

ωmin
· diam(S)) moves.

Proof. First notice, that with the exception of ENDGAME, the only increase in the time

bound from the non-weighted problem is the increased worst case path length. Thus, the

worst case number of moves in states BIPOLAR and TRIPOLAR is O(ωmax

ωmin
· n4 log(n) ·

diam(S)). Then, in state ENDGAME there may be up to O(n3) phases in which a path

is guarded taking a worst case O(ωmax

ωmin
· n6 · diam(S)) moves. Finally, when the evader

is captured on the final face, it can have diameter at most O(ωmax

ωmin
· diam(S)), and thus
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by Lemma 19 the evader can be captured in at most O(log((ωmax

ωmin
) · diam(S)) · ωmax

ωmin
·

diam(S)) moves. Therefore, the worst case number of moves to capture the evader is

O(ωmax

ωmin
· n6 · diam(S) + log((ωmax

ωmin
) · diam(S)) · ωmax

ωmin
· diam(S)).
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Chapter 3

Visibility Based Pursuit Evasion

3.1 Introduction

In visibility-based pursuit-evasion the pursuers are equipped with cameras, able to

maintain omni-directional line-of-sight visibility, and only know the location of the

evader when it is visible, that is, in direct line of sight. Thus, not only must the pursuers

plan and coordinate their moves until some pursuer can reach the same location as the

evader, they must also contend with the fact that the location of the evader is often

unknown. The problem is motivated by applications in robotics, and has drawn a

significant interest since it was introduced by Suzuki and Yamashita [70], although much

of the prior work has focused on the simpler problem of evader detection, where the

pursuers win as soon as the evader is “seen” by some pursuer [22, 25, 29, 58, 72].

We begin by making only the minimally necessary assumption that all players

(pursuers and evader) have equal maximum speed, which is normalized to one by

Parts of this chapter appeared in the following publications: [38, 39]
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appropriate scaling of the environment. On its turn, each player can move to any position

within distance one of its current location, where the distance is measured using the

shortest path (geodesic) distance avoiding the obstacles in the environment. Our first

result gives a tight bound of Θ(n1/2) for the number of pursuers needed to capture the

evader when the environment is a simply-connected (hole-free) polygon of n vertices.

Generalizing this result, we show that at least Ω(n2/3) pursuers are needed for capture

in polygons with holes. Complementing this lower bound, we prove an upper bound of

O(n1/2h1/4), for h ≤ n2/3, and O(n1/3h1/2) otherwise, where h is the number of holes

in the polygon. More simply, the upper bound is O(n5/6).

We then show with additional assumptions these bounds can be drastically improved.

Namely, if the players’ movement speed is small compared to the “feature size” of

the environment, we give a deterministic algorithm with a worst case upper bound

of O(log n) pursuers for simply-connected n-gons and O(
√
h + log n) for multiply-

connected polygons with h holes. Further, if the pursuers are allowed to randomize their

strategy, regardless of the players’ movement speed, we show that O(1) pursuers can

capture the evader in a simply connected n-gon and O(
√
h) when there are h holes with

high probability.

These results may be considered a theoretical bridge between two incomparable

results. On one hand, Guibas et al. [25] prove that successful pursuit-evasion requires

O(log n) pursuers in a simple polygon, and O(h1/2 + log n) pursuers in a polygon with
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h holes. Their strategy works even against an arbitrarily fast evader, but it only ensures

a line of sight detection of the evader, not physical capture. On the other hand, we can

match these bounds for capture, but require that the maximum step size (speed) of the

evader be less than the minimum feature of the environment. With no such restriction,

then many more pursuers are needed for the capture even if pursuers also move as fast

as the evader. However, when the pursuers are allowed to randomize their movements

the minimal condition of equal speeds is enough for a randomized capture algorithm to

to match the bounds for randomized localization of Isler et al. [29].

Additionally, recall that in Chapter 1 we showed that if the location of the evader is

always known to the pursuers, e.g., using an ubiquitous camera network, then 3 pursuers

are enough to win the game. In a sense, this suggests that “localization” of the evader

is the more difficult part of the pursuit evasion, and the evader’s power comes from its

ability to “disappear” from the collective sights of all the pursuers.

3.2 Capture in Simple Polygons

In this section, we establish the tight bound of Θ(n1/2) for the number of pursuers

needed to capture the evader. We use the standard model for geometric pursuit evasion

given in Section 0.2, where the environment is an n vertex polygon P . The players’

sensing model is visibility-based: two players see each other only when they are in line
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of sight. We assume a global communication model so that if the evader is visible to one

pursuer, then all pursuers know the location of the evader.

Our first theorem shows that, in the worst-case, at least Ω(n1/2) pursuers are needed

to capture the evader in n-vertex polygons.

3.2.1 The Lower Bound Construction

Theorem 9. In an n-vertex simple polygon, at least Ω(n1/2) pursuers are needed in the

worst-case to capture an equally fast evader.

Proof. We give a construction of a polygon and the evader’s strategy that forces Ω(n1/2)

pursuers for a win. The polygon consists of a long corridor acting as a “base,” of length

B, with n−1 equally spaced “notches,” and n long “channel corridors,” interleaved with

the notches. See Figure 3.2.1. Each channel corridor also has a notch at one end, and the

length of each such corridor is C, chosen so that C > B. The players’ maximum speed

is set to 2C +B, ensuring that players can move between the notches of two arbitrary

channels in a single move, but pursuers cannot search more than two channels in one

move: searching three or more channels requires speed of at least 4C, which is strictly

larger than 2C + B. (The channel lengths take into account the notches, and we can

scale the polygon as necessary to normalize the speed to unit speed.)

We now argue that capturing the evader in this polygon requires at least 1
2
n1/2

pursuers. Given any placement of fewer than 1
2
n1/2 pursuers, there exists a consecutive
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block of n1/2 channel corridors and the section of base between them that does not have

any pursuers. If the evader moves to a channel in this block, pursuers cannot determine

the identity of the channel because the notches in the base block their visibility. Since

each pursuer can search at most two corridors on its move, collectively these fewer than

1
2
n1/2 pursuers cannot search all the n1/2 corridors, leaving at least one safe corridor for

the evader to hide. The evader can, therefore, continue to elude the pursuers indefinitely

by repeatedly moving into such a “safe” corridor on its turn. This completes the

proof.

{C {
B

Figure 3.1: Construction for the proof of Theorem 9.

The rest of this section presents a matching upper bound, by giving an algorithm that

guarantees a win for O(n1/2) pursuers in all simply-connected polygons of n vertices.

The next few subsections describe the geometric preliminaries and constructions that

form the basis for our proof.
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Figure 3.2: A block partition of a polygon (k = 8).

3.2.2 A k-block Partition

We begin by describing a partition of the polygon P into subpolygons, called k-blocks,

that plays an important role in our pursuit strategy. Each k-block is just a connected

subpolygon of at most k vertices, and the partition satisfies the following properties:

1. the number of k-blocks in the partition is O(n/k),

2. the edges common to adjacent k-blocks are polygon diagonals, and

3. the adjacency graph of the partition, called the block graph, is a binary tree.

Specifically, our k-block partition is an “unrefinement” of a triangulation of P : a

triangulation partitions P into (n− 2) triangles, using (n− 3) diagonals; our partition

retains O(n/k) carefully chosen diagonals so that the resulting subdivision has the

k-block partition properties. See Figure 3.2.2 for an example. In fact, the degree bound

of the adjacency graph is the only non-trivial property—a naive partition can easily lead
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to unbounded fanout. We call the diagonals separating the k-blocks cut edges. The

following lemma shows constructively that a k-block partition always exists.

Lemma 27. Every simply-connected polygon on n vertices admits a k-block partition

for any 3 ≤ k ≤ n.

Proof. Let T be a triangulation of P . The dual graph of the triangulation is a binary

tree; the nodes of the graph are the triangles and its edges connect adjacent triangles. We

describe a recursive algorithm to identify the cut edges that define the desired k-block

partition. Since a subtree of size k corresponds to a subpolygon with k + 2 vertices, we

choose cut edges to break the tree into components of at most k − 2 nodes, which form

k-blocks.

We inductively assume that the tree is rooted at a degree one node r, which can

initially be an arbitrary leaf node. For any node u in the tree, let s(u) denote the size of

the subtree rooted at u, including the node u itself. If s(r) ≤ k − 2, then we are done.

Otherwise, we choose any node u such that s(r)− s(u) ≤ k−2 but s(r)− s(x) > k−2

for any child x of u, and cut the edge between u and its parent. Next, if u has only one

child x, then we simply recurse on the subtree Tu, but if u has both its children x and y,

then we also cut the edges (u, x), (u, y) and then recurse on the subtrees Tu \ (u, y) and

Tu \ (u, x). (During the recursive call, the size fields of the root nodes are recomputed

for the new subtrees.)
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For the correctness of the algorithm, we first note that the partition clearly creates

valid k-blocks. Second, by construction, each block is bounded by at most three cut

edges, thus ensuring that the block graph is a binary tree. Finally, to show that the total

number of cuts made is O(n/k), observe that in the block graph, any node of degree 1

or 2 is adjacent to a block so that the union of the neighboring blocks contains more than

k vertices—otherwise, our algorithm will not have made the cut between the blocks.

Since the number of degree 3 nodes is at most the number of leaves, the graph has size

O(n/k), and the proof is finished.

After an initial search to localize the evader to a block, a placement of one pursuer

per cut edge is sufficient to maintain the identity of the current block containing the

evader. In particular, let B(e) denote the current block containing the evader. Then the

following lemma is straightforward.

Lemma 28. Suppose a pursuer is placed on each cut edge of a k-block partition of the

polygon. Then, after any move of the evader that crosses a block boundary, the pursuers

know the identity of B(e), the block containing the evader.

The initial search can be performed using the following result of Guibas et al. [25].

We use the notation diam(P ) for the diameter of the polygon under the shortest path

metric.
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Lemma 29 ([25]). Given a simply connected n vertex polygon P , O(log n) pursuers

can locate the evader in O(n · diam(P )) moves.

3.2.3 Critical Moves

We begin with a simple sufficient condition to trigger the end-game: an immediate

capture of the evader. Specifically, we say that an evader’s move from its current

position e to the new position e′ is critical with respect to a pursuer p if there exists a

point ec on the evader’s path that is both visible to p and closer to p’s current position

than to the evader’s start position. Mathematically, a move from e to e′ is critical for

pursuer p at point ec if (1) ec lies on the path from e to e′, (2) ec is visible to p, and (3)

d(p, ec) ≤ d(e, ec). If the evader’s move is critical with respect to k pursuers, we call it

a k-critical move. Figure 3.3(a) shows a k-critical event for k = 4, with f serving as the

critical point. The following lemma shows the important connection between a k-block

partition and a k-critical move.

Lemma 30. Suppose each cut edge of the k-block partition is guarded by a pursuer,

and a group of pursuers p1, p2, . . . , pk are so positioned that an evader’s move becomes

k-critical with respect to these k pursuers. Then, one of the pursuers pi can capture the

evader on its next move.

Proof. By definition of a k-critical move, for each pursuer pi, there is a critical point,

say, eci , on the evader’s path, closer to pi than to the evader’s start position. That is,
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d(pi, eci) ≤ d(e, eci), for all i. (The critical points for different pursuers need not be the

same.) By triangle inequality, we also have that

d(pi, e
′) ≤ d(pi, eci) + d(eci , e

′) ≤ d(e, eci) + d(eci , e
′)

≤ d(e, e′) ≤ 1

where the second inequality follows from the definition of a critical move and the

last inequality from the unit maximum speed assumption. Thus, if the terminal position

e′ of the evader is visible from any of the critical points eci , then the corresponding

pursuer can capture the evader by first moving to its (visible) critical point and then

to e′. Therefore, assume that none of the critical points are visible from the evader’s

position e′. In this case, we first move all the pursuers to a carefully chosen waypoint f ,

defined as follows. The waypoint f is the last location at which the evader is seen by

any pursuer during its move from e to e′. After moving to the waypoint, each pursuer

pi still has 1 − d(pi, f) ≥ d(f, e′) amount of remainder distance in its current move

because d(pi, f) ≤ d(e, f). If the evader’s terminal position e′ is visible from f , the

evader can be captured by any of the pursuers.

Thus, assume that the evader’s location e′ is invisible from the waypoint also. Sup-

pose B(e′) is the block containing the evader, which the pursuer know by Lemma 28,

and by construction B(e′) has at most k vertices. We first observe that the waypoint f

must lie in B(e′): the evader’s entry into B(e′) was seen by a cut edge pursuer. Consider
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Figure 3.3: In (a) illustration of proof of Lemma 30. In (b) an example crossing
sequence.

the shortest path in B(e′) from f to the evader’s final position e′—necessarily, this path

cannot be longer than the portion of the evader’s path between f and e′, and because

the two end positions are mutually invisible, the shortest path must contain at least one

polygon vertex. Without loss of generality, let z be the last (closest to e′) vertex on the

path from f to e′. The vertex z is necessarily in B(e′), and is visible from e′. Since there

are at most k choices for the vertex z, each of our k pursuers follows a shortest path

from the waypoint f to one of these vertices (see Figure 3.3(a) for illustration), and the

one reaching z can successfully capture the evader. This completes the proof.

3.2.4 Forcing a Critical Move

The main problem now is to devise a pursuer strategy that forces a k-critical move in a

finite number of steps. Unfortunately, the cut edges can be arbitrarily longer than the
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normalized speed of the players, and thus even if we position k pursuers on an edge

of length L� k, the evader can cross the edge without triggering a critical event. We,

therefore, resort to a more complex structure and search strategy, which is motivated by

the following simple observation: If the evader crosses a square-shaped region of the

environment with pursuers at its corners, then it is a critical move.

In order to make this idea more precise, we first define a crossing sequence. Let

R be a square contained entirely within the polygon P . A crossing sequence for R is

a sequence of moves in which the evader enters and exits the square through distinct

boundary edges. Figure 3.3(b) shows an example. (We note that an evader path is not a

crossing sequence if it enters and exits the square through the same edge.)

Lemma 31. Consider a square R fully contained in the polygon P , and let pa and pb,

respectively, be two pursuers located at the corners a and b of R. Then, any crossing

sequence in which the evader exits R through the edge (a, b) forces a critical event with

respect to pa or pb.

Proof. First, consider the simpler case when the crossing sequence consists of a single

evader move: that is, the evader, originally outside the square, crosses it in a single move,

exiting through the edge (a, b), say, at a point x. In this case, elementary geometry

shows that min{d(pa, x), d(pb, x)} ≤ d(e, x), ensuring a critical event.

The case when the crossing sequence consists of multiple moves requires more

tedious, but still elementary, argument. See Figure 3.4 for an illustration. We first
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introduce the idea of a projection. Given the evader’s position e inside the square, its

projection on an edge (a, b), denoted πe(a, b), is the point on (a, b) that is closest to e.

(In other words, the projection is the foot of the perpendicular from e to (a, b).) The

key observation is that a pursuer located at the projection πe(a, b) is closer to any point

of (a, b) than the evader, and so any evader move crossing the edge (a, b) is critical for

that pursuer. If the evader enters R through an edge adjacent to (a, b), namely, (a, d) or

(b, c), then pa or pb can easily maintain their position on the evader’s projection on (a, b):

because the “horizontal projection” of the evader’s position can change by at most one

in a move, the pursuers pa or pb can reposition themselves at the evader’s projection on

the edge (a, b).

ed

a b

c

πe(a, b)

}
e′

∆

}
∆ ∆

}pa pb

Figure 3.4: Illustrating the proof of Lemma 31

Thus, it remains only to consider the evader’s entrance through the edge (c, d), which

is the opposite side of the square from (a, b). In this case, clearly, both pa and pb can

be arbitrarily far from the projection πe(a, b)—the side length of R can be much larger

than 1, the players’ speed, and the evader may enter in the middle of the edge (c, d).
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However, in this case, the evader is also far away from the edge (a, b), and we ensure

that a crossing sequence has a critical event for at least one of the pursuers. In order to

track the pursuers’ progress, let us introduce ∆ = d(e, πe(c, d)), the distance between

the evader’s current position and its projection on the entrance edge (c, d).

The pursuer pa now aims for the point that is

min{∆, d(a, πe(a, b))} away from a along the edge (a, b), while pb aims for an analogous

point measured from b. (See Figure 3.4.) Each move of the evader can increase ∆ by at

most one, and so pa and pb can both reach their targets each turn. Once pa or pb reaches

the projection, the claim of the lemma is clearly satisfied. Otherwise, both the pursuers

are as close to the projection as is the evader, and together they guarantee that any move

of the evader that causes it to exit through (a, b) is critical for both the pursuers. In

particular, for any position of pa in the interval between a and πe(a, b), the pursuer pa

guarantees a critical event, while pb guarantees a critical event for any position in the

interval from πe(a, b) to b. This completes the proof.

An easy consequence of Lemma 31 is that by placing two pursuers at each vertex of

R, for a total of eight, we can guarantee that any crossing sequence through the square R

is critical move. (We could, in fact, reduce the number of pursuers to just four, one per

corner but for convenience and a future simplicity, we choose to keep all eight pursuers.)

One subtle point, however, is that the evader can exit through the same side it entered,

therefore, without completing a crossing sequence, but in the process force pursuers

101



Chapter 3. Visibility Based Pursuit Evasion

to move off their desired corner positions! Our next lemma shows that the pursuers

can immediately recover their initial positions, following any such “fake” move by the

evader.

Lemma 32. If the evader enters and exits the square R through the same side, without

completing a crossing sequence, then all eight corner pursuers can recover their initial

positions on the next move after the evader’s exit.

Proof. Without loss of generality, assume that the evader enters and exits R through

the side (c, d), and that the exit move occurs at time t. By the projection invariant

maintained by the pursuers, each of them is within distance 1 of its initial corner at time

t, and therefore can recover its initial state on its next move. It is worth pointing out

that if the evader exits through (c, d) but immediately reenters R through a different

edge in the same move, then a crossing sequence is completed, immediately leading to

capture—this follows from the projection invariant maintained by the pursuers.

The idea of crossing sequence through a square extends easily to squares “truncated”

by intersection with the polygonal environment. The intersection R ∩ P between the

square R and the polygon P consists of possibly many (connected) cells. Consider one

such cell F that does not contain any vertex of P , and call it empty. It is easy to see

that F has a constant number of boundary edges—at worst, each of its corners can be

lopped off by a polygon edge, resulting in an 8-sided cell. Thus, there are at most four
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sides of F inherited from R, each possibly truncated by a polygon edge, and at most

four sides defined by polygon edges. Since the polygon edges are impenetrable by either

the evader or the pursuers, it is easy to see that the critical move claim of the preceding

lemma holds also for such a truncated cell F of the square R. In particular, we have the

following easy corollary of Lemma 31.

Corollary 1. Given a square R = (a, b, c, d), let F be an empty cell of the common

intersectionR∩P , let (a′, b′) be a non-polygon edge of F , and let pa′ , pb′ be two pursuers

placed at a′ and b′. Then, any crossing sequence by the evader exiting F through the

edge (a′, b′) is a critical move for one of these pursuers.

3.2.5 Edge Covers and the Constrained Delaunay Triangulation

We mentioned earlier that no bounded number of pursuers on a cut edge can prevent the

evader from crossing it. Instead we build a geometric “cover” around each cut edge in

such a way that the evader cannot cross the cover without being captured. We begin

with the following technical lemma that forms the basis of such a cover.

Lemma 33. Consider a circle C and a chord (a, b) in it. Then, there always exist two

squares R1, R2 contained in C so that (a, b) lies in the union R1 ∪R2.

Proof. Let r be the radius of the circle C. Let h and h′ be the lengths of two segments

into which (a, b) divides the circle’s diametric chord that is perpendicular to (a, b).

Without loss of generality, assume that h ≤ h′, which implies that h ≤ r. It is now easy
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to see that the two squares, each with side length ` = ((|ab|/2)2 + |h|2)1/2 ≤ r
√

2,

satisfy the conditions of our lemma, as illustrated in Figure 3.5(a). Since every circle of

radius r admits a contained square of side length r
√

2, these squares lie within C.

a b

h′

hl l′

(a)

a

b

c

(b)

Figure 3.5: (a) illustrates the proof of Lemma 33 and (b) shows an example triangle
from a CDT.

Our idea is to cover each cut edge with the union of two squares as in Lemma 33,

but use a particular kind of underlying triangulation to achieve the necessary empty-cell

condition (cf. Corollary 1). Specifically, we use the Constrained Delaunay Triangulation

of P [15, 68] as the basis for our partition. The constrained Delaunay triangulation

has the following properties: (1) each edge of the polygon appears as an edge of the

triangulation, and (2) each triangle’s circumcircle encloses no vertex that is visible from

the interior of the triangle. Figure 3.5(b) shows an example.

Consider a cut edge (a, b) of the constrained Delaunay triangulation, which by

definition has a circumcircle C empty of any visible vertices of P . By Lemma 33,

we can find two squares R1, R2 that “cover” (a, b) and lie entirely within C. These
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squares may intersect the boundary of the polygon P but, by definition of CDT, the cells

containing the edge (a, b) are empty of any visible vertices. We define the cover(a, b)

as the union of these two “truncated squares.” These edge covers are utilized in the

following way in our pursuit strategy.

LetB be a k-block partition, andBi a k-block ofB. DefineB−i = Bi\{∪jcover(aj, bj)}

as the contracted block corresponding to Bi, where (aj, bj) are the (at most three) cut

edges bounding Bi. Similarly, we define B+
i = Bi ∪j {cover(aj, bj)} as the extended

block corresponding to Bi. Since each edge cover has a constant number of vertices, all

contracted or extended blocks clearly have size O(k). We call two blocks (contracted

or extended) neighbors if their original blocks share a common cut edge. We have the

following lemma.

Lemma 34. Any evader move between two neighboring contracted blocks is a crossing

sequence.

Proof. Let B−1 and B−2 be two contracted blocks neighboring the cut edge (a, b). Any

move by the evader fromB−1 toB−2 , or vice versa, must cross at least one of the truncated

squares of cover(a, b).

We say that a cut edge is k-covered if we replace each pursuer in cover(a, b) by k

co-located pursuers. Clearly, any evader move that crosses a k-covered edge is k-critical,
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and results in capture on pursuers’ next move (cf. Lemma 30). At a high level our

capture algorithm has the following form.

Algorithm HoleFreeCapture

1. Construct a k-block partition of P , using the Constrained Delaunay Triangulation.

Place one pursuer on each cut edge to track B(e), the current k-block containing

the evader.

2. Perform a sweep of the block graph until the evader is trapped in an extended

block B+(e) whose adjacent cut edges are all k-covered. With the pursuers in this

position, any move by the evader exiting B+(e) is a k-critical move, leading to

capture.

3. With the evader confined to an extended k-block, we use an additional set of O(k)

pursuers to find and capture the evader in B+(e).

By choosing k = n1/2, this leads to a search and capture strategy using O(n1/2)

pursuers: there are O(n/k) = O(n1/2) cut edges, each requiring one pursuer, and at

most 3 groups of O(n1/2) pursuers needed to sweep the block graph. It only remains to

describe the details of Steps 2–3, which is the focus of the next two lemmas.

Lemma 35. With O(k) pursuers, we can confine the evader to an extended block.
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Proof. We use the fact that the block graph is a binary tree, whose nodes correspond to

the k-blocks and whose edges correspond to cut edges, and that pursuers always know

B(e), the block containing the evader, by Lemma 28. Inductively, assume that B(e)

belongs to the subtree rooted at a node u, and the cut edge between u and its parent is

k-covered; if u is root, then the parent is null. Let x and y be the two children of u, one

of them may be null. For notational convenience, we use U,X, Y to denote the blocks

corresponding to u, x and y, respectively.

We begin by repositioning two groups of O(k) pursuers each to form k-covers of

the cut edges (u, x) and (u, y), and then use a constant number of pursuers to search the

constant-size subpolygons cover(u, x) and cover(u, y). By the end-game algorithm (cf.

Lemma 36), if the evader is in these subpolygons, it is either captured or forced to exit

it. The key observation is that once the evader has exited cover(u, x) and cover(u, y),

the pursuers in the cover prevent the evader from crossing between the neighboring

contracted blocks. Thus, after leaving the covers if the evader remains in U+, then

it is confined: moving to a neighboring contracted block forces a k-critical event (cf.

Lemma 34). Because all three neighboring cut edges of U+ are k-covered, the claim

follows in this case. Otherwise, the evader must have moved outside the extended block

U+. Without loss of generality, assume that the evader is either in the extended block

X+ or in a descendant node of x. In either case, the evader cannot enter U− because of

the k-covering of (u, x). We can therefore free up the k-covering pursuers from edges
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(u, v) and (u, y), and recursively search the subtree rooted at x. The search terminates

within O(n/k) such steps.

3.2.6 The End Game

The last step of our algorithm deals with capturing the evader when it is confined to

an extended k-block, using O(k) pursuers. At a superficial glance, it may appear that

this can be done by combining the localization algorithm of Guibas et al. [25] with a

modified lion-and-man algorithm of Isler et al. [29]. Unfortunately, this strategy fails

due a technical subtlety: the lion-and-man algorithm of [29] relies on a small step size

assumption, which precludes the arbitrary speed with which the evader is allowed to

move in our problem. However, since we have O(k) pursuers available to us, we can

design a simple direct algorithm for this end game.

Lemma 36. Let P be a k-vertex simple polygon. Then, in O(diam(P )2) steps O(k)

pursuers can capture an equally fast evader.

Proof. The algorithm operates in two phases: a preparation phase followed by an attack

phase. The preparation phase begins by triangulating P . We then assign one pursuer to

each edge of the triangulation, including the polygon boundary edges, which positions

itself at the projection of the evader. We define the projection πe(a, b) of the evader for

an edge (a, b) as the closest point on the edge to the evader measured by direct Euclidean

distance ignoring the polygonal boundary–this is either the foot of the perpendicular

108



Chapter 3. Visibility Based Pursuit Evasion

from the evader’s position or an endpoint a or b. Since the evader cannot leave P , and

moves at most distance one in each move, each pursuer can arrive at its projection in

O(diam(P )) moves, which completes the preparation phase.

a

b

d

c

Figure 3.6: The end game: shrinking the triangle during the attack phase.

With each pursuer at the projection of its designated edge, the attack phase starts.

Any move by the evader crossing a triangle is a critical move for some pursuer. Let p

be a pursuer for whom this is a critical move. Since the entire polygon is collectively

visible to the pursuers, the end position of the evader after the move is also known to p,

and therefore p can capture the evader on its next move.

Thus, to avoid capture, the evader must remain confined to a single triangle, say,

∆(a, b, c). In this case, the three pursuers assigned to the triangle progressively “shrink”

the area within which the evader lies, leading to eventual capture, as follows. Imagine

sliding one of the edges of the triangle, say, (a, b) toward c by distance one, creating

a “shrunken” triangle ∆(a′, b′, c). Position a new pursuer p′ on the edge (a′, b′) at the

projection πe(a′, b′) in O(diam(P )) moves. Now, if the evader lies in the strip between

(a, b) and (a′, b′), then a single pursuer can eventually capture the evader by sweeping
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this strip—the width of the strip is one, and the evader cannot cross the strip boundaries

because they contain pursuers on projection points. If, however, the evader is in the

triangle ∆(a′, b′, c), then we have successfully reduced the height of the triangle by one,

which must lead to capture in O(diam(P )2) steps. This completes the proof.

This completes our discussion of the algorithm HoleFreeCapture. As discussed

earlier, by choosing k = n1/2, we achieve the following theorem, which is the main

result of this section.

Theorem 10. O(n1/2) pursuers are always sufficient to capture an equally fast evader

in any simple polygon of n vertices in O(n · diam(P ) +
√
n · diam(P )2) moves.

Proof. As the capture will clearly occur, we need only analyze the worst case number

of moves. By invoking Lemma 29 the pursuers can determine the initial k-block

containing the evader in O(n · diam(P )) moves. Additionally, the pursuers will cover

at most O(
√
n) cut edges taking at most O(

√
n · diam(P )2) moves due to invocations

of the end-game algorithm (Lemma 36) to force the evader out of k-covers. Finally,

when the evader is captured in a k-block it takes O(diam(P )2) moves for a total of

O(n · diam(P ) +
√
n · diam(P )2) moves.
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3.3 Capture in Polygons With Holes

In this section, we extend our results to polygonal environments with holes, also called

multiply-connected polygons. We assume that the polygon contains h disjoint polygonal

holes, and the total number of vertices including the holes is n.

3.3.1 An Ω(n2/3) Lower Bound Construction

We begin with a construction showing that in the worst-case at least Ω(n2/3) pursuers

are needed to capture the evader. The proof follows the basic outline of Theorem 9, but

requires a more complicated construction.

Theorem 11. In the worst-case, at least Ω(n2/3) pursuers are needed to capture an

equally fast evader in a multiply-connected polygon with n vertices.

Proof. Our construction is based on a rectangular grid of r rows and c columns (see

Figure 3.7). We convert this into a polygon by making each edge of the grid into a

narrow corridor, so that the resulting polygon has r · c (rectangular) holes. Place a small

notch in the middle of each corridor to block visibility across the notch. Next, at the top

boundary of the grid, place the “comb” construction of Theorem 9, uniformly spaced so

that there are n/c channel corridors in each of the c columns of the grid. We associate

each group of n/c channel corridors with the grid column immediately preceding it.

The height C of the comb corridors is chosen such that C > WH , where W and H ,
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respectively, are the width and the height of the grid (taking into account the notch

detours). Finally, the movement speed of the players is set to 2C + WH , which is

strictly smaller than 4C. This speed allows the evader to move between any two channel

corridors in a single move but no pursuer can search more than two such corridors.

{C {
W

{H
Figure 3.7: The lower bound construction for capture in polygon with holes (r = 2 and
c = 4). An extended column is shown with an ellipse around it.

Define an extended column as the subpolygon consisting of the chain of r notched

corridors associated with a grid column together with its n/c channel columns. See

Figure 3.7. Given any placement of pursuers in the polygon, we call an extended column

uncovered if no point of the extended column is visible to any pursuer. We claim that

given any placement of c/4 pursuers in the polygon, (1) there are at least 3c/4 uncovered

extended columns, and (2) if r =
√
c, there is a group of

√
c/2 uncovered extended

columns such that the evader can move between any two of them undetected.
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The first claim follows from the fact that corridor notches limit a pursuer’s visibility

to at most one extended column. Since there are c/4 pursuers and c extended columns,

at least 3c/4 are uncovered. We prove the second claim by contradiction: assume the

claim is false, and partition the uncovered extended columns into equivalence classes

(groups) g1, g2, . . . , g` such that the evader can move between two columns of the same

group undetected but not between two columns of different groups. Because we have

3c/4 uncovered extended columns, and by assumption each group gi has fewer than

√
c/2 columns, the number of equivalence classes is ` > (3c/4)/(

√
c/2) = 3

√
c/2. We

can order these groups in their natural left-to-right order: all columns of one group must

precede columns of the next group. We now claim that there must be at least one pursuer

in every row between two consecutive groups: otherwise the evader can sneak between

columns of two different groups, violating the equivalence class partition. Because the

number of rows is r =
√
c, this implies there are at least 3

√
c/2 · √c = 3c/2 pursuers,

contradicting our initial assumption of at most c/4 pursuers. Thus, claims (1) and (2)

are both true.

Thus, there is a group of
√
c/2 uncovered extended columns for any placement of

c/4 pursuers. The evader’s strategy is to always move into one of these columns. Each

of these columns contains n/c channel corridors for a total of n
2
√
c

channel corridors. If

we choose r = n1/3 and c = n2/3, then r =
√
c, and we have 1

2
n2/3 channel corridors

for the evader to hide on its turn. Thus, if there are fewer than c/4 = 1
4
n2/3 pursuers, the
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evader can indefinitely avoid capture by repeatedly moving into ones of the uncovered

channel corridors that is not searched by pursuers on their turn. The entire polygonal

environment, with holes, has O(n) vertices, and this completes the proof that Ω(n2/3)

pursuers are required in the worst-case.

In the rest of the section, we present an upper bound for the number of pursuers

needed to capture the evader in a polygon with holes.

3.3.2 A k-block Partition of Polygons with Holes

We first extend the earlier notion of a k-block partition to polygons with holes. Our new

partition has the structure of a planar graph, instead of a tree, and consists of two types

of regions: triangles and k-block subpolygons (possibly with holes). The key property is

that no two k-blocks are adjacent—they are adjacent only to triangles of the partition.

More specifically, our partition satisfies the following properties:

1. the number of triangles (and blocks) in the partition is O(n/k) if h ≤ n/k, and

O(
√
nh/k) otherwise,

2. the adjacency graph of the partition is planar, and is called the block graph, and

3. every k-block of the partition has only triangles of the partition as its neighbors.

We construct such a partition through recursive calls to the well-known planar

separator theorem.
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Lemma 37. [18] Every planar graph G = (V,E) on n nodes admits a partition of the

nodes into three sets A, S, and B, such that neither A nor B has more than 2n/3 nodes,

S has at most
√

6n nodes, and there are no edges with one endpoint in A and the other

endpoint in B. The set of nodes S is called a separator of G.

The only non-trivial part is that we want our separators to be of size O(
√
h), and

not O(
√
n), but still want the two parts to be balanced in n. We do this by a suitable

contraction of the triangulation graph of the polygon, and a recursive use of the separator

theorem to achieve the balanced partition. We first need the following lemma as an

intermediate result.

Lemma 38. Given a triangulation of a polygon P with n vertices and h holes, we can

find a set of O(
√
h) triangles whose removal partitions P into two (possibly discon-

nected) sub-polygons, each containing at most 2h/3 holes and 2n/3 vertices.

Proof. The graph-theoretic dual of the triangulation is an O(n) size planar graph, with a

vertex for each triangle and an edge between two nodes if those triangles have a common

boundary edge. In this graph, there is a cycle surrounding each of the h holes, and it is

the structure of those cycles that is important to us. We reduce this triangulation graph to

an O(h) size planar graph, by repeatedly contracting vertices of degree 2, and deleting

vertices of degree one, until all vertices have degree three. The resulting graph G has
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h faces, each vertex has degree 3, and so by Euler’s formula, it has O(h) vertices and

edges as well.

By the planar separation theorem, we can find a separator of size O(
√
h) that splits

the graph into two parts, each containing at most 2h/3 nodes, as well as 2/3 of the faces

of G. In the primal space of triangulation, the separator corresponds to O(
√
h) triangles,

splitting the polygon into two pieces, each containing at most 2h/3 holes. However,

the split does not guarantee any balance for the number of polygon vertices. Thus, if

either piece contains more than 2n/3 vertices, we apply the algorithm recursively until

no piece has more than 2n/3 vertices. The total number of triangles used to achieve

the desired partition follows the recurrence T (h) = T (2h/3) +O(
√
h), with T (1) = 1,

which solves to T (h) = O(
√
h). In the base case, the subpolygon contains no holes,

and a single triangle is sufficient to split the polygon into two pieces, each of size at

most 2n/3. This completes the proof.

We repeatedly apply Lemma 38 to construct our k-block partition.

Lemma 39. Every multiply-connected polygon with n vertices and h holes admits a

k-block partition for any 3 ≤ k ≤ n.

Proof. We apply Lemma 38 recursively to our polygon P until each piece is a subpoly-

gon of k vertices, possibly with holes. The recursive partition naturally corresponds to a

binary tree, called the partition tree, whose leaves are the k-blocks and non-leaves are
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the separators. The blocks corresponding to any two leaves necessarily are on opposite

sides of a separator, and thus the partition has the desired adjacency property. It only

remains to bound the total number of triangles and blocks. Each triangle is part of a

separator, so the number of triangles equals the total size of all the separators used in the

partition. The number of blocks (leaves of the partition tree) is upper bounded by the

number of non-leaf nodes, which in turn is upper-bounded by the number of triangles.

First, consider the case when the number of holes is h ≤ n/k. We classify the

triangles into two groups, depending on whether or not the sub-polygon being split has

holes. If the sub-polygon is hole-free, then a single triangle can split it in a balanced

1
3
–2

3
ratio, and so the total number of triangles used for splitting hole-free sub-polygons

is O(n/k). To bound the number of triangles used for splitting sub-polygons with holes,

consider an intermediate sub-polygon Pj created during the partition, which has hj > 0

holes. Call this sub-polygon i-big if (2/3)i+1h < hj ≤ (2/3)ih. There are at most

(3/2)i+1 i-big subpolygons because the subproblems at any level of the partition tree are

pairwise disjoint, and there are a total of h holes shared among them. The maximum

value of i with an i-big sub-polygon is log3/2 h, and since the separator of an i-big

polygon has size O(
√

(2/3)ih), the total size of all the separators (number of triangles)

created during the partition tree is

log3/2 h∑
i=0

(
3

2

)i+1

· c
√(

2

3

)i
h,
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for some constant c. One can easily verify that this sums to O(h). Thus, the total number

of triangles in the partition is O(h+ n/k) = O(n/k).

Now, assume that h > n/k, and consider an intermediate sub-polygon Pj with nj

vertices and hj holes. In this case, call the sub-polygon i-big if either (2/3)i+1h < hj ≤

(2/3)ih or (2/3)i+1n < nj ≤ (2/3)in. (Intuitively, a subpolygon is i-big if either its

number of holes or its number of vertices is large enough to force a split to the next

level.) We claim that there are at most 2 · (3/2)i+1 subpolygons that are i-big. This

holds because all subproblems at any level of the partition tree are pairwise disjoint,

and at most h/(2/3)i+1h = (3/2)i+1 polygons arise due to the condition on the number

of holes, and at most n/(2/3)i+1n = (3/2)i+1 due to the condition on the number of

vertices.

Since (2/3)log3/2(n/k)n = k, each non-leaf sub-polygon created during recursive

partitioning is i-big for some i where 0 ≤ i < log3/2(n/k). Since the separator of an

i-big polygon has size O(
√

(2/3)ih), we can bound the total size of all the separators

created during the partition tree as

log3/2(n/k)∑
i=0

2 ·
(

3

2

)i+1

· c
√(

2

3

)i
h,

for some constant c. One can easily verify that this sums toO(
√
nh/k), which completes

the proof.

The following lemma is straightforward.
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Lemma 40. Suppose a pursuer is placed in each triangle of a k-block partition of the

polygon. Then, after any move of the evader that crosses a block or triangle boundary,

the pursuers know the identity of B(e), the block or triangle containing the evader.

Additionally, the evader can be initially located using the following result of Guibas

et al.

Lemma 41 ([25]). Given an n vertex polygon P with h holes, O(
√
h+ log n) pursuers

can locate the evader in O(n · diam(P )) moves.

3.3.3 Analysis of Capture in Polygons with Holes

We now have all the pieces in place to describe the outline of the capture strategy

and derive our main result. Following our scheme for the polygons without holes, we

construct the k-block partition using the constrained Delaunay triangulation of P so that

any diagonal (edge of a triangle) can be covered using the construction of Lemma 33. In

particular, we can k-cover all three edges of a triangle so that a k-critical evader move

immediately leads to capture. At a high level, our capture algorithm has the following

form.

Algorithm PolygonWithHolesCapture

1. Construct a k-block partition of P , using the Constrained Delaunay Triangulation.

Place one pursuer in each separating triangle to track the current block, or the

triangle, B(e) containing the evader.
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2. Position pursuers at nodes of the partition tree until the evader is trapped in an

extended block B+(e), whose adjacent triangles are all k-covered. With the

pursuers in this position, any move by the evader exiting B+(e) is a k-critical

move, leading to capture.

3. With the evader confined to an extended k-block, we use an additional set of

O(k +
√
h) pursuers to find and capture the evader in B+(e).

Only Steps 2 and 3 require explanation—the k-block partition is already described

by Lemma 39. Step 3, in fact, is also easy because the end-game algorithm of Lemma 36

works even with holes: a polygon with k vertices, including holes, can always be

triangulated using O(k) triangles, and our end-game algorithm requires a constant

number of pursuers per triangle. We note that B(e)+ has O(k +
√
h) vertices because

in the worst-case, a block may neighbor O(
√
h) separating triangles. Thus, the only

remaining part is Step 2, which is analyzed in the following lemma.

Lemma 42. With O(k
√
h) pursuers, we can confine the evader to an extended block.

Proof. We first position pursuers to achieve k-covering of each of the O(
√
h) triangles

for the separator at the root node of the partition tree. We then search the O(
√
h) covers,

which either leads to the capture or evicts the evader from these covers. The important

observation is that once the evader is outside all the covers associated with the root’s

separator, it is confined to the (extended) blocks of one side of the separator—any
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crossing of the separator causes a k-critical event and leads to immediate capture.1 Once

the root node is covered, we recursively apply the algorithm to the child node whose

subtree contains the block B(e) with the evader, which the pursuers know by Lemma 40.

The recursion stops when we reach a leaf node at which point the evader is confined to

an extended k-block. Let us now examine the total number of pursuers needed in this

search. Because the number of holes in a subproblem shrinks by factor 2/3 at each level,

the number of pursuers needed to k-cover all the separators along a root-to-leaf path has

the following recurrence: T (h) = T (2h/3) +O(k
√
h), which solves to O(k

√
h).

We can now prove our main result.

Theorem 12. Let f(n, h) be the number of pursuers needed to capture an equally fast

evader in a polygon of n vertices and h holes. Then,

f(n, h) =


O(n1/2 · h1/4) if h ≤ n2/3

O(h1/2 · n1/3) otherwise

Proof. By Lemma 42, we can confine the evader to a single extended k-block using

O(k
√
h) pursuers, and then use the end-game algorithm to complete the capture with

O(k +
√
h) additional pursuers. We choose the appropriate value of k, depending on

the number of holes, to prove the result.

1The evader may exit all the covers but remain within a triangle. In that case, we treat the triangle as a
trivial block.
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When h ≤ n2/3, then we choose k = n1/2/h1/4. In this case, we have h ≤ n/k.

The block partition has O(n/k) = O(n1/2 · h1/4) triangles, each requiring one pursuer.

The k-covering of triangles requires O(k
√
h) = O(n1/2 · h1/4) pursuers. Thus, the total

number of pursuers is O(n1/2 · h1/4).

When h > n2/3, then we choose k = n1/3. In this case, h > n/k, and the block

partition has O(
√
nh/k) = O(n1/3 · h1/2) triangles, each requiring a single pursuer.

The k-covering of triangles needs additional O(k
√
h) = O(n1/3 · h1/2) pursuers, for the

total of O(n1/3 · h1/2). This completes the theorem.

The bounds of the preceding theorem can be combined into a single upper bound of

O(n5/6), giving the following Theorem.

Theorem 13. Suppose P is a n vertex polygon with h holes, where n includes the

vertices of the holes. Then O(n5/6) pursuers can capture an equally fast evader in

O(n · diam(P ) + log(n) · diam(P )2) moves.

Proof. The worst case number of pursuers is given as a corollary of Theorem 12, thus

we concern ourselves with the duration of the capture. By invoking Lemma 41 the

pursuers can determine the initial k-block containing the evader in O(n · diam(P ))

moves. Additionally, before confining the evader to an obstacle free k-block at most

O(log n) sets of triangles must be k-covered, each taking O(diam(P )2) moves when

the evader must be evicted from a cover by Lemma 36. Thus, with the final invocation
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of the End Game algorithm to capture the evader in a k-block, the worst case number of

moves is O(n · diam(P ) + log(n) · diam(P )2).

3.4 Minimum Feature Size Assumption

We now show that a minimum feature size property of the environment is sufficient to

yield significantly better upper bounds for the capture problem. Specifically, we show

that O(log n) pursuers are always sufficient to catch the evader in a simply-connected

polygon of n vertices, and O(
√
h+ log n) if there are h holes. The pursuers’ winning

strategy is deterministic, and succeeds in polynomial time. The minimum feature size of

a polygonal environment is defined as follows.

Definition 3. Minimum Feature Size (MFS): The minimum feature size of a (multiply-

connected) polygon P is the minimum distance between any two vertices, where the

distance is measured by the shortest path within the polygon.

We assume that the minimum feature size of the environment is lower bounded by

the maximum speed of the players: i.e., the environment has minimum feature size of

at least one. One can check that the polygon used in our lower bound (Figure 3.2.1)

violates the minimum feature size: the players’ maximum speed is 1 but there are pairs

of vertices that are within 1/
√
n of one another.

The primary reason that the minimum feature size allows a large reduction in the

number of required pursuers is that a 1-critical move by the evader will result in its
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capture, regardless of knowledge of which k-block contains the evader. Meaning, a

square can be guarded with eight pursuers, even if no additional pursuers are deployed

in P . The following lemma proves this fact.

Lemma 43. Suppose that the minimum feature size of P is at least one. Then if the

an evader’s move becomes critical with respect to a pursuer p, then p can capture the

evader on its next move.

Proof. As shown in Lemma 30, if e’s move to e′ is critical for p at some point ec, then

it must be the case that d(p, e′) ≤ d(e, e′) ≤ 1. Thus, if the terminal position e′ of the

evader is visible to p, then p can capture the evader.

e′

v

p

e

ev

ec

Figure 3.8: The proof of Lemma 43.

Let ev be the last position during e’s move where the evader is visible to p. Us-

ing the triangle inequality and the assumption d(p, ec) ≤ d(e, ec), we conclude that

d(p, ev) ≤ d(e, ev). Notice then that the line segment (p, ev) must contain a vertex of

the environment, call it v, blocking p’s visibility past the point ev (see Figure 3.8). We

claim that the shortest path homotopic to (p, ev, e
′) is (p, v, e′), that is, it consists of a
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single vertex v. Since the path (p, ev, e
′) has length at most 1, the shortest path of the

same homotopy also has length at most one, and the minimum feature size forbids two

vertices with shortest path distance less than one. Thus, v is visible from both p and e′,

and d(p, v) + d(v, e′) ≤ 1. The pursuer p, therefore, can capture by first moving to v

and then to e′ in a single move.

Due to the preceding lemma, the pursuers need only 1-cover each cut edge, which

can be done withO(1) pursuers. Further, it is no longer necessary to position pursuers on

the cut edges to track the current k-block of the evader as a 1-critical move is sufficient

to capture the evader without this knowledge. As a result, when sweeping the block

graph the pursuers will not know which subtree to recursively search after covering the

cut edges (cf. Lemma 35). When this occurs, the pursuers use the localization strategy

of Lemma 29 to find the evader, and determine which subtree to search. Thus, by setting

k = 3 our algorithm will confine the evader to an extended 3-block, at which point

O(1) pursuers can capture the evader using the end game algorithm, and we obtain the

following theorem.

Theorem 14. Suppose P is a simply connected n vertex polygon with MFS at least 1.

Then O(log n) pursuers can capture an equally fast evader in O(n2 · diam(P ) + n ·

diam(P )2) moves.
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Proof. Over the course of the algorithm at most three cut edges are covered at any one

time, each using O(1) pursuers. An additional O(log n) pursuers are reused to search for

the evader, and finally O(1) pursuers are used to capture the evader when it is confined

to an extended 3-block. Thus O(log n) pursuers suffice to capture the evader.

For each recursive covering of cut edges in Lemma 35 one node is removed from

the block graph and one search occurs. Thus, over the course of the algorithm, the

evader must be located at most n times. By Lemma 29 the n searches each have duration

O(n · diam(P )), and take a total of O(n2 · diam(P )) moves. Additionally the end game

algorithm may be invoked O(n) times to force the evader out of edge covers and once

for the final capture taking O(n · diam(P )2) moves. Thus the evader will be captured in

O(n2 · diam(P ) + n · diam(P )2) moves.

When P contains holes, we again take advantage of the fact a 1-critical move is

sufficient for capture and cover triangles with O(1) pursuers and set a block size of

3. Once again, due to the absence of pursuers on each cut edge, when sweeping the

partition tree it is necessary to search each of the subtrees to determine which one the

evader is in, which can be done with Lemma 41.

The following theorem bounds the total number of pursuers and moves needed to

capture the evader.
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Theorem 15. Suppose P n vertex polygon with h holes and MFS at least 1. Then

O(
√
h + log n) pursuers can capture an equally fast evader in O(n2 · diam(P ) + n ·

diam(P )2) moves.

Proof. We make one slight modification to our algorithm used in Theorem 12; when

the pursuit reaches a point where the evader has been confined to a simply connected

polygon, stop covering triangles and apply Theorem 14. By Lemma 38 each separator

splits the polygon into subpolygons with at most 2/3 as many holes, and thus the

total number of triangles covered before reaching the simply connected polygon is

T (h) = T (2h/3) +O(
√
h) = O(

√
h). Therefore O(

√
h) pursuers are needed to cover

the triangles. Further, O(
√
h + log n) pursuers are reused to locate the evader, and

O(log n) are used to capture the evader in a simply connected subpolygon for a total of

O(
√
h+ log n) pursuers.

The evader need only be located during each recursive partitioning, of which there

are at most O(log(h)), until a simply connected subpolygon is reached. The O(log(h))

searches each have duration O(n · diam(P )) by Lemma 41 for a total of O(n · log(h) ·

diam(P )) moves. Additionally, the end game algorithm may be invoked n times to force

the evader out of covered triangles taking O(n · diam(P )2) moves. Finally, invoking

Theorem 14 takes O(n2 · diam(P ) + n · diam(P )2) moves. Thus the evader will be

capture in O(n2 · diam(P ) + n · diam(P )2) moves.
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3.5 A Randomized Pursuit Strategy

In our upper bounds so far, we have assumed that the evader can always predict the

deterministic strategy of the pursuers. But now suppose that the pursuers have access to

a source of randomness which the evader cannot predict. If they use this to randomize

their movements, they can capture the evader in simply connected polygons with O(1)

pursuers, and O(
√
h) when there are h holes, even without the minimum feature size

assumption 2.

The first step to achieving these bounds is the following lemma that shows that a

1-critical move is sufficient for a pursuer to capture the evader with probability 1/n.

Lemma 44. If the evader’s move is critical with respect to a pursuer p, then p can

capture the evader on its next move with probability 1/n.

Proof. As e’s move to e′ is critical with respect to p, we know that d(p, e′) ≤ 1. Thus, if

e′ is visible to p, it is captured. Otherwise, there is at least one vertex on the shortest

path from p to e′. Thus, suppose there are m vertices within distance one of p. The

pursuer uniformly at random chooses and moves along the shortest path to one of those

m vertices. With probability 1/m ≥ 1/n the pursuer gains visibility of e and has moved

along the shortest path to e. Thus p can use to remainder of its move to capture the

evader.
2Applying the minimum feature size assumption reduces the expected time to capture by a factor of n,

but does not change the number of required pursuers.
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Suppose now that we use the MFS capture algorithm for simply connected polygons,

except now edges are covered with probability 1/n using Lemma 44. If the evader

performed a critical move it would have 1/n chance of being captured (if no critical

move is performed it will be captured). If the evader avoided capture after the critical

move, the pursuers simply restart the algorithm. Thus, the evader is expected to be

captured in n rounds of the algorithm.

In order to actually reduce the number of pursuers required to capture the evader,

we replace the O(log n) pursuers with a single pursuer using the following randomized

strategy of Isler et al. [29].

Lemma 45. Given a simply connected n-gon, a single pursuer has a randomized

strategy that can locate the evader in diam(P ) moves with probability at least 1/n.

Using the preceding lemma, we are able to prove the following theorem.

Theorem 16. Suppose P is a simply-connected n-vertex polygon. Then, O(1) pursuers

can capture the evader in O(n3 · ln(n) ·diam(P ) +n2 ·diam(P )2) expected moves with

probability at least 1− 1
n

.

Proof. There are n expected rounds of the algorithm before the evader is captured.

In each round, the evader must be located at most n times (by the same reason as

Theorem 14), for a total of n2 localizations. When locating the evader, the probability

of success of a single trial is at least 1/n. Using the inequality (1 + x) ≤ ex, one can
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easily show that after 3n ln(n) trials of Lemma 45, the probability of not locating the

evader is at most 1/n3. Then, by the union bound, the probability of failure in any of the

n2 localizations, is at most n2 · 1/n3 = 1/n.

Thus, the n2 localizations finish in O(n3 · ln(n) · diam(P )) moves, with probability

at least 1− 1/n. The remainder of the algorithm consists of executions of the end game

algorithm and covering edges, both of which are deterministic, and their repetition over

n rounds takes at most O(n2 · diam(P )2) moves. Finally, O(1) pursuers are used to

cover the three cut edges, one pursuer is reused to locate the evader, and O(1) to perform

the end game algorithm and capture the evader, for a total of O(1) pursuers.

If P contains holes, we again use the MFS capture algorithm (Theorem 15) with

the exception that triangles are covered with probability 1/n. As in Theorem 15 the

triangles are covered in order to confine the evader to a simply-connected polygon at

which point the simply-connected algorithm is invoked (in this case the algorithm of

Theorem 16). Finally, in order to reduce the number of required pursuers we replace the

O(
√
h + log n) pursuer deterministic localization algorithm of Guibas et al. with the

following randomized strategy of Isler et al. [29].

Lemma 46. Given a multiply-connected n-gon with h holes, O(
√
h) pursuers have

a randomized strategy which can locate the evader in O(n · diam(P )) moves with

probability at least 1/n2.
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Using the preceding Lemma, we are able to prove the following Theorem.

Theorem 17. Suppose P is a multiply connected n vertex polygon with h holes. Then,

O(
√
h) pursuers can capture the evader in O(n5 · ln(n) · diam(P ) + n2 · diam(P ))

expected moves with probability at least 1− 1
n

.

Proof. There are n expected rounds of the algorithm before the evader is captured. In the

worst case, the evader must be located n times per round, for a total of n2 localizations3.

During one localization, the probability of success of a O(n · diam(P )) move trial is

at least 1
n2 . Using the inequality (1 + x) ≤ ex, one can easily show that after 3n2 ln(n)

trials of Lemma 46, the probability of not locating the evader is at most 1/n3. Then,

by the union bound, the probability of failure in any of the n2 localizations, is at most

n2 · 1/n3 = 1/n.

Thus, the n2 localizations finish in O(n5 · ln(n) · diam(P )), with probability at least

1 − 1
n

. The remainder of the algorithm consists of covering triangles, cut edges, and

executing the end-game algorithm which are all deterministic, and their repetition over

n rounds takes at most O(n2 · diam(P )2) moves. Finally, O(
√
h) pursuers are used to

guard the separating triangles, O(
√
h) are reused to locate the evader, and O(1) pursuers

by the algorithm of Theorem 16, for a total of O(
√
h) pursuers.

3Some of the localizations will be in the invocation of Theorem 16, however, considering them
localizations among obstacles greatly simplifies the analysis at the cost of a slight increase in the time
bound
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Chapter 4

Trackability with Imprecise
Localization

4.1 Introduction

The problem of tracking a single known target is a classical one with a long history in ar-

tificial intelligence, robotics, computational geometry, graph theory and control systems.

The underlying motivation is that many robotic applications including search-and-rescue,

surveillance, reconnaissance and environmental monitoring have components that are

best modeled as a tracking problem. The problem is often formulated as a pursuit-evasion

game, with colorful names such as Man-and-the-Lion, Cops-and-Robbers, Hunter-and-

Rabbit, Homicidal Chauffeur, and Princess-and-Monster [2, 7, 12, 31]. Visibility-based

pursuit evasion [25, 70], in particular, has been a topic of great interest, in part due to its

simple but realistic model: a team of pursuers is tasked with locating a single adversarial

evader in an geometric environment with polygonal obstacles where pursuers learn the
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evader’s position only when the latter is in their line-of-sight. After two decades of

research, tight bounds are known for detection or capture of the evader for many basic

formulations of the problem [9, 25, 39], although the topic remains a rich subject of

ongoing research [40, 56].

Most theoretical analyses of tracking, however, assume an idealized sensing model,

ignoring the fact that all location sensing is noisy and imprecise in practice: the target’s

position is rarely known with complete and error-free precision. Although some papers

have explored models to incorporate practical limitations of idealized visibility including

angular visibility [33], beam sensing [58], field-of-view sensors [22], and range-bounded

visibility [13], the topic of sensing noise or imprecision has largely been handled

heuristically or through probabilistic techniques such as Kalman filters [32, 47, 67, 71].

One exception is [61], where Rote investigates a tracking problem under the absolute

error model: in this model, the target’s position is always known to lie within distance

1 of its true location, regardless of its distance from the tracker. The analysis in [61]

shows that, under this noise model, the distance between the tracker and the target can

grow at the rate of Θ(t1/3), where t is the time parameter. Our model, by comparison,

deals with a more severe form of noise, with imprecision proportional to the distance

from the tracker. In [44], Kuntsevich et al. consider the same relative error model as

ours, but without any obstacles. Their work has a control-theoretic perspective, with a

primary goal of deriving a bound on the time needed by the tracker to capture the target.
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Our main contribution is to analyze the worst-case behavior of trackability as a function

of the localization precision parameter λ.

Motivation and the Problem Statement. This chapter takes a small step towards

bridging the gap between theory and practice of trackability, and analyzes the effect

of noisy sensing. In particular, we consider a tracking agent P who wants to follow a

moving target Q in d-dimensional Euclidean space using a noisy location sensor. For

simplicity, we analyze the problem in two dimensions, but the results easily extend to d

dimensions, as discussed in Section 4.5. We use the notation Q(t) and P (t) to denote

the (true) positions of the target and the tracker at time t. We adopt a simple but realistic

model of relative error in sensing noise: the localization error is proportional to the

true distance between the tracker and the target. More precisely, the localization error

is upper bounded as ||Q(t) − Q̃(t)|| ≤ 1
λ
||P (t) − Q(t)|| at all times t, where λ ≥ 1

is the quality measure of localization precision. Thus, the closer the target, smaller

the error, and a larger λ means better localization accuracy, while λ = 1 represents

the completely noisy case when the target can be anywhere within a disk of radius

||P (t)−Q(t)|| around Q(t). It is important to note that the parameter λ is used only

for the analysis, and is not part of information revealed to the tracker. In other words,

the tracker only observes the approximate location Q̃(t), and not the uncertainty disk

containing the target. The relative error model is intuitively simple (farther the object,

larger the measurement error) and captures the realism of many sensors: for instance, the
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resolution error in camera-based tracking systems is proportional to the target’s distance,

and in network-based tracking, latency causes a proportionate localization uncertainty

because of target’s movement before the signal is received by the tracker.

We study the tracking problem as a game between two players, the tracker P and

the target Q, which is played in continuous time and space: that is, each player is

able to instantaneously observe and react to other’s position, and the environment is

the two-dimensional plane, with or without polygonal obstacles. Both the target and

the tracker can move with equal speed, which we normalize to one, without loss of

generality. With the unit-speed assumption, the following holds, for all times t1 ≤ t2:

||Q(t2)−Q(t1)|| ≤ |t2 − t1|, ||P (t2)− P (t1)|| ≤ |t2 − t1|

Under the relative localization error model, the reported location of the target Q̃(t)

always satisfies the following bound, where λ is the accuracy parameter:

||Q(t)− Q̃(t)|| ≤ ||P (t)−Q(t)||
λ

We measure the tracking performance by analyzing the distance function between

the target and the tracker, namely, D(t) = d(P (t), Q(t)), over time, with D(0) being

the distance at the beginning of the game. Under error-free localization, the distance

remains bounded as D(t) ≤ D(0). We analyze how ||D(t)−D(0)|| grows under the

relative error model, as a function of λ. Our main results are as follows.
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Our Results. We show that the simple greedy strategy of “always move to the observed

location of the target” achieves D(t) ≤ D(0) + t/λ2. That is, the target’s distance

from the tracker can grow at most at the rate of O(λ−2), the inverse quadratic function of

the localization parameter. We prove this rate to be worst-case optimal with a matching

lower bound: a strategy for the target that ensures that, under the relative error model, it

can increase its distance as D(t) ≥ D(0) + Ω(t/λ2).

We then extend this analysis to environments with polygonal obstacles, and show

that the tracker can increase its distance by Ω(t) in time t for any finite λ. This is

unsurprising because two points within a small margin of sensing error can be far apart

in free-space, thereby fooling the tracker into “blind alleys.” More surprisingly, however,

if we adopt a localization error that is proportional to the geodesic distance (and not the

Euclidean distance) between the target and the tracker, then the distance increases at a

rate of Θ(λ−1). This bound is also tight within a constant factor: the tracker can maintain

a distance of D(t) ≤ D(0) + O(t/λ) by the greedy strategy, while the target has a

strategy to ensure that the distance function grows as at least D(t) ≥ D(0) + Ω(t/λ).

Our analysis also helps answer some other questions related to tracking performance.

For instance, a natural way to achieve good tracking performance in the presence of

noisy sensing is to let the tracker move at a faster speed than the target. Then, what is

the minimum speedup necessary for the tracker to reach the target (or, keep within a
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certain distance of it)? We derive upper and lower bounds for this speedup function,

which are within a constant factor of each other as long as λ ≥ 2.

4.2 Tracking in the Unobstructed Plane

We begin with the simple setting in which a tracking agent P wants to follow a moving

target Q in the two-dimensional plane without any obstacles. We show that the trivial

“aim for the target’s observed location” achieves essentially the best possible worst-case

performance. We first prove the upper bound on the derivative D′(t) of the distance

function D(t), and then describe an adversary’s strategy that matches this upper bound.

4.2.1 Tracker’s Strategy and the Upper Bound

Our tracker uses the following obvious algorithm, whose performance is analyzed in

Theorem 18 below.

GREEDYTRACK. At time t, the tracker P moves directly towards the target’s observed

location Q̃(t).

Theorem 18. By using GREEDYTRACK, the tracker can ensure that D(t) ≤ D(0) +

O(t/λ2), for all t ≥ 0.

Proof. Consider the true and the observed positions of the target, namely Q(t) and Q̃(t),

respectively, at time t, and let γ be the angle formed by them at P (t). See Figure 4.1.

Consider an arbitrarily small time period ∆t during which P moves towards Q̃(t) and
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Q(t) moves away from P (t). We want to compute the derivative of the distance function,

given as Equation (4.1).

D′(t) = lim
∆t→0

D(t+ ∆t)−D(t)

∆t
(4.1)

Q

D(t)
λ

Q̃

P ∆t

∆tD(t)
γ
a

b
c

Figure 4.1: Proof of Theorem 18.

The new distance between the target and the tracker is given by bc in Fig. 4.1. In the

triangle abc, we have ab = ∆t sin γ and ac = D(t) + ∆t−∆t cos γ. We, therefore, can
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bound D(t+ ∆t) as follows (where the final inequality uses the fact
√

1 + x ≤ 1 + x
2
):

D(t+ ∆t) =
√

(∆t sin γ)2 + (D(t) + ∆t−∆t cos γ)2

=

√√√√√√√∆t2 sin2 γ +D(t)2 + 2D(t)∆t(1− cos γ)

+ ∆t2 − 2∆t2 cos γ + ∆t2 cos2 γ

=
√

∆t2 +D(t)2 + 2D(t)∆t(1− cos γ) + ∆t2 − 2∆t2 cos γ

=
√

(D(t) + ∆t)2 − 2D(t)∆ cos γ + ∆t2 − 2∆t2 cos γ

=

√√√√√√√ (D(t) + ∆t)2 − 2∆t(D(t) + ∆t) + ∆t2 − 2D(t)∆ cos γ

− 2∆t2 cos γ + 2∆t(D(t) + ∆t)

=

√√√√√√√ (D(t) + ∆t−∆t)2 − 2D(t)∆t cos γ − 2∆t2 cos γ

+ 2∆t(D(t) + ∆t)

=
√
D(t)2 + 2∆t(D(t) + ∆t)(1− cos γ)

= D(t)
√

1 + 2∆t(D(t) + ∆t)(1− cos γ)/D(t)2

≤ D(t) + (∆t)(1 + ∆t/D(t))(1− cos γ)

Returning to Equation (4.1), we get

D′(t) = lim
∆t→0

D(t+ ∆t)−D(t)

∆t
≤ lim

∆t→0
(1 + ∆t/D(t))(1− cos γ) = 1− cos γ
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Finally, since sin γ ≤ 1
λ

, we get D′(t) ≤ 1 −
√

1− 1
λ2 , which simplifies by the

Taylor series expansion:

D′(t) ≤ 1− (1− 1

2λ2
− 1

8λ4
− · · · ) =

1

2λ2
+

1

8λ4
+ · · · ≤ 1

λ2

This completes the proof that D(t) ≤ D(0) + t/λ2.

4.2.2 Target’s Strategy and the Lower Bound

We now show that this bound is asymptotically tight, by demonstrating a strategy for

the target to grow its distance from the tracker at the rate of D(t) ≥ D(0) + Ω(t/λ2),

for all t ≥ 0. We think of the target as an adversary who can choose its observed

location at any time subject only to the constraints of the error bound: ||Q(t)− Q̃(t)|| ≤

1
λ
(||P (t) − Q(t)||). (Recall that the tracker only observes the location Q̃(t), and has

no direct knowledge of either the parameter λ or the distance ||P (t) − Q(t)||. Those

quantities are only used in the analysis. However, the lower bound holds even if the

tracker knows the uncertainty disk, namely, the localization error 1
λ
(||P (t)−Q(t)||).)

In order to analyze the lower bound, we divide the time into phases, and show

that the distance from the tracker increases by a multiplicative factor in each phase,

resulting in a growth rate of Ω(1 + λ−2). If the ith phase begins at time ti, then we let

di = ||Q(ti)−P (ti)|| denote the distance between the target and the tracker at ti. During
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the ith phase, the target maintains the following invariant for a constant 0 < α < 1 to be

chosen later.

Gap Invariant. Throughout the ith phase, the target moves along a pathQ(t) such that

||Q(t)−P (t)|| ≥ αdi, for all times t, and all reported locations satisfy ||Q(t)−Q̃(t)|| ≤

αdi/λ.

See Figure 4.2(a) for an illustration. Consider the isosceles triangle with vertices at

Q(ti), qa and qb, whose base qaqb is perpendicular to the line P (ti)Q(ti). The equal sides

of the triangle have length 2di, the base has length 2αdi/λ, and let qc be the midpoint

of the base. The target’s strategy is to move from Q(ti) to either qa or qb, and report

its location Q̃(t) at the closest point on the line Q(ti)qc; i.e. at all times, Q̃(t) is the

perpendicular projection of Q(t) onto the line Q(ti)qc. By the symmetric construction,

and the choice of the points qa and qb, the tracker cannot tell whether the target is moving

to qa or qb. Thus, any deterministic tracker makes an incorrect choice in one of the

two possible scenarios. For the worst-case performance bound, we can equivalently

assume that the target non-deterministically guesses the tracker’s intention, and moves

to the better of the two possible locations, qa or qb. The tracker makes this choice based

on whether the tracker is on or below the line Q(ti)qc, or not. In the former case, the

target moves to qa, and to to qb otherwise. The ith phase terminates when the target

reaches either qa or qb, and the next phase begins. (We note that, after i phases, there

are 2i possible choices made by the tracker, reflected in whether it is above or below

141



Chapter 4. Trackability with Imprecise Localization

P (ti) Q(ti)

qa

qb

qcdi
2di

2di

αdi
λ
αdi
λ

(a)

P (ti) Q(ti)

qa

qc
di

2di αdi
λ

di P (ti+1)

(b)

Figure 4.2: Target’s strategy during the ith phase (a), and proofs of Lemmas 47 and 48
(b).

the line Q(ti)qc at the conclusion of each phases. For each of these possible “worlds”

there is a corresponding deterministic strategy of the target that “fools” the tracker in

every phase, resulting in the maximum distance increase.) There is one subtle point

worth mentioning here. It is possible that during the phase, the distance between the

players may shrink if the tracker temporarily moves towards the same final location

as the target—however, our Gap Invariant ensures that that the target’s noisy location

remains within the permissible error bound throughout the phase. The following lemma

shows that this simple strategy of the target can maintain the Gap Invariant for any

choice of α ≤ 0.927.

Lemma 47. The target can maintain the Gap Invariant for any α ≤ 0.927.
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Proof. Consider an arbitrary phase i. By construction, we have ||Q(t)− Q̃(t)|| ≤ αdi
λ

throughout this phase, so we only need to show D(t) ≥ αdi. There is one subtle

point worth mentioning here. While the target’s strategy will ensure that its distance

from the tracker grows by a certain multiplicative factor at the end of the phase, the

distance between the players may shrink during the phases. This happens when the

tracker temporarily moves towards the same final location as the target. In spite of this

temporary “lucky” guess by the tracker, we need to ensure that the target’s noisy location

remains within the permissible error bound throughout the phase. The constant α is

introduced precisely to guarantee this validity, and we arrive at its value as follows.

Let di+1 be the distance between P and Q if both moved toward qa for the duration

of phase i. Note that di+1 is the length of the segment P (ti)qa minus 2di, as shown in

Figure 4.2(b). The length of P (ti)qa can be calculated from the right triangle qaP (ti)qc,

while the length of qaqc is known by construction. Finally, Q(ti)qc has length di less

than P (ti)qc. Thus, we have:

di+1 =

√
(

√
4d2

i −
d2
iα

2

λ2
+ di)2 +

d2
iα

2

λ2
− 2di

=

√
5d2

i −
d2
iα

2

λ2
+ 2di

√
4d2

i −
d2
iα

2

λ2
+
d2
iα

2

λ2
− 2di

= di

√
5 + 4

√
1− α2

4λ2
− 2di
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In order to satisfy the Gap Invariant, we must choose an α such that the following

inequality holds:

αdi ≤ di

√
5 + 4

√
1− α2

4λ2
− 2di

α2 + 4α + 4 ≤ 5 + 4

√
1− α2

4λ2

α2 + 4α + 4 ≤ 5 + 4− α2

2λ2

α2(1 +
1

2λ2
) + 4α− 5 ≤ 0

This gives the following upper bound:

α ≤
−4±

√
16 + 4(1 + 1

2λ2 )5

2(1 + 1
2λ2 )

≤ 1

3
(
√

46− 4)

The preceding lemma shows that our construction satisfies the Gap Invariant, and so

we can now lower bound the distance growth during a single phase.

Lemma 48. At the start of phase i+ 1, we have di+1 ≥ di

√
1 + α2

2λ2 , where α = 0.927

is an absolute constant.

Proof. Suppose, without loss of generality, that the target is at qa at the termination of

the ith phase, which means the tracker is on or below the line Q(ti)qc. By the unit speed

assumption, the target needs exactly 2di time for this move. The minimum value of
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di+1 is at least as large as if P had moved directly to qc by distance 2di, as shown in

Figure 4.2(b). We can calculate di+1 from the right triangle qaP (ti+1)qc, as follows:

di+1 ≥

√
(

√
4d2

i −
α2d2

i

λ2
− di)2 +

α2d2
i

λ2

=

√
d2
i − 2di

√
4d2

i −
α2d2

i

λ2
+ 4d2

i −
α2d2

i

λ2
+
α2d2

i

λ2

= di

√
5− 4

√
1− α2

4λ2

≥ di

√
5− (4− α2

2λ2
)

= di

√
1 +

α2

2λ2

We can now prove the main result of this section.

Theorem 19. Under the relative error localization model, a target can increase its

distance from an equally fast tracker at the rate of Ω(λ−2). In other words, the target

can ensure that D(t) ≥ D(0) + Ω(t/λ2) after any phase ending at time t.

Proof. The target follows the phase strategy, where that after the ith phase that lasts 2di

time units, the distance between the tracker and the target is at least di
√

1 + α2

2λ2 . There-

fore, the distance increases during the ith phase by at least the following multiplicative

factor (using a Taylor series expansion):
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di

√
1 + α2

2λ2 − di
2di

=

√
1 + α2

2λ2 − 1

2
≥ α2

4λ2
− α4

16λ4
= Ω(

1

λ2
)

4.3 Trackability with a Faster Tracker

The results of the previous section establish bounds on the relative advantage available

to the target by the localization imprecision. Its distance from the tracker can grow

at the rate of Θ(λ−2) with time. A tracking system can employ a number of different

strategies to compensate for this disadvantage. In this section, we explore one such

natural mechanism: allow the tracker to move at a faster speed than the target. A

natural question then is: what is the minimum speedup necessary to cancel out the

localization noise as a function of λ? We give bounds on the necessary and sufficient

speedups, which match up to small constant factors as long as λ ≥ 2. The general form

of the speedup function is (1− 1
λ2 )−1/2. The following theorem proves the sufficiency

condition.

Theorem 20. Suppose the target moves with speed one, and the tracker has speed

S =
√

1
1−1/λ2 , where λ is the localization precision parameter. Then, the tracker can

maintain D(t) ≤ D(0), for all times t ≥ 0.

Proof. Our analysis closely follows the proof of Theorem 18, and calculates the increase

in the distance during time ∆t. During this time, the tracker is able to move S∆t, while
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the target can move at most ∆t. We can then calculate distance at time t + ∆t from

the triangle abc (Fig. 4.1), where ab = S∆t sin γ and ac = D(t) + ∆t− S∆t cos γ, as

follows:

D(t+ ∆t) =
√

(S∆t sin γ)2 + (D(t) + ∆t− S∆t cos γ)2

=

√√√√√√√S2∆t2 sin(α)2 +D(t)2 + 2D(t)∆t(1− S cos(α)) + ∆t2

− 2∆t2S cos(α) + ∆t2S2 cos(α)2

=
√
S2∆t2 +D(t)2 + 2D(t)∆t(1− S cos(α)) + ∆t2 − 2∆t2S cos(α)

=
√
S2∆t2 + (D(t) + ∆t)2 − 2D(t)∆tS cos(α)− 2∆t2S cos(α)

=

√√√√√√√S2∆t2 + (D(t) + ∆t)2 − 2∆t(D(t) + ∆t) + 2∆t(D(t) + ∆t)

+ ∆t2 −∆t2 − 2D(t)∆tS cos(α)− 2∆t2S cos(α)

=

√√√√√√√S2∆t2 + (D(t) + ∆t−∆t)2 + 2∆t(D(t) + ∆t)−∆t2

− 2D(t)∆tS cos(α)− 2∆t2S cos(α)

= D(t)

√√√√√√√ 1 + S2∆t2/D(t)2 −∆t2/D(t)2

+ 2∆t(D(t) + ∆t)(1− S cos(α))/D(t)2

≤ D(t) + S2∆t2/2D(t)−∆t2/2D(t) + ∆t(1 + ∆t/D(t))(1− S cos γ)

This allows us to bound D′(t) ≤ 1− S cos γ, from which it follows that D′(t) ≤ 0

as long as S ≥
√

1
1−1/λ2 .
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We now show that if λ ≥ 2, this is the minimum speedup necessary as a function

of λ, up to a small constant factor. We use the phase-based strategy of Theorem 19,

however, the value of α determined by Lemma 47 is not sufficient to maintain the Gap

Invariant in this case because of the higher speed of the tracker. Instead, the following

lemma gives the sufficient choice of α.

Lemma 49. Let λ ≥ 2 and and α ≤ 0.68 be a constant. Then, the Gap Invariant can

be maintained in any phase as long as S ≤ 1√
1−1/λ2

.

Proof. Suppose, without loss of generality, that the target is at qa at the termination

of the ith phase, which means the tracker is below the line Q(ti)qc. By the unit speed

assumption, the target needs exactly 2di time for this move. The minimum value of

di+1 is at least as large as if P had moved directly to qc by distance 2Sdi, as shown in

Figure 4.2(b). We can calculate di+1 from the right triangle qaP (ti+1)qc, as follows:

di+1 ≥

√
(

√
4d2

i −
α2d2

i

λ2
− (2Sdi − di))2 +

α2d2
i

λ2
≥ di

√
(2S − 3)2 + α2(S − 1/2)/λ2

(4.2)

In order to satisfy the Gap Invariant, we must choose an α such that the following

inequality holds:
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αdi ≤ di

√
5 + 4

√
1− α2

4λ2
− 2Sdi

α2 + 4αS + 4S2 ≤ 5 + 4

√
1− α2

4λ2

α2 + 4αS + 4S2 ≤ 5 + 4− α2

2λ2

α2(1 + ε2/2) + 4αS + 4S2 − 9 ≤ 0

This gives the following upper bound when λ is minimum and S is maximum, which

by assumption is 2 and 1/
√

1− (1/22), respectively.

α ≤ −4S +
√

16S2 − 4(1 + 1/2λ2)(4S2 − 9)

2(1 + 1/2λ2)
≤ 0.68

We can now prove a lower bound on the increase in the distance during the ith phase.

Lemma 50. If λ ≥ 2, α ≤ 0.68, and S ≤ (1 − 1/λ2)−1/2, then at the start of the

i+ 1 phase, we have di+1 ≥ di
√

(2S − 3)2 + α2(S − 1/2)/λ2, where α = 0.68 is an

absolute constant.

Proof. Suppose, without loss of generality, that the target is at qa at the termination

of the ith phase, which means the tracker is below the line Q(ti)qc. By the unit speed

assumption, the target needs exactly 2di time for this move. The minimum value of

di+1 is at least as large as if P had moved directly to qc by distance 2Sdi, as shown in

Figure 4.2(b). We can calculate di+1 from the right triangle qaP (ti+1)qc, as follows:
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di+1 ≥

√
(

√
4d2

i −
α2d2

i

λ2
− (2Sdi − di))2 +

α2d2
i

λ2

= di

√
5 + 4S2 − 4S − 2(2S − 1)

√
4− α2

λ2

≥ di
√

5 + 4S2 − 4S − 4(2S − 1)(1− α2/8λ2)

= di
√

4S2 − 12S + 9 + Sα2/λ2 − α2/2λ2

= di
√

(2S − 3)2 + α2(S − 1/2)/λ2

Remark. The preceding lemma can be used to calculate the maximum tracker speed

for which the target can still force a non-negative distance for a specific λ as follows:

√
(2S − 3)2 + α2(S − 1/2)/λ2 = 1

4S2 − 12S +
α2S

λ2
= −8 +

α2

2λ2

2S −
(

12− (α/λ)2

4

)2

−
(

12− α2/λ2

4

)2

= −8 +
α2

2λ2

2S − 12− α2/λ2

4
= −

√
−8 +

α2

2λ2
+ (

12− α2/λ2

4
)2

S =
−
√
−8 + α2

2λ2 + (12−α2/λ2

4
)2 + 12−α2/λ2

4

2

As λ gets large, the upper and lower bound are within a constant factor of each other.

Indeed, with a more careful choice of α, we can show that the upper and lower bounds
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are within a factor of 5.32 (as opposed to 10.23 for the above simple analysis) of each

other for λ ≥ 2, but we omit those details from this abstract.

4.4 Tracking in the Presence of Obstacles

The presence of obstacles makes the tracking problem considerably harder under the

localization noise. The following simple example (Fig. 4.3) shows that the target can

grow its distance from the tracker as D(t) ≥ D(0) + t, for any finite value of λ. The

obstacle consists of a single U -shaped non-convex polygon. Initially, the target is at

distance D(0) from the tracker, and the “width” of the obstacle is less than D(0)/2λ, so

that the localization error is unable to distinguish between a target moving inside the

U channel, or around its outer boundary. One can show that no matter how the tracker

pursues, its distance from the target can grow linearly with time.

D(0)/2λ
QP

Q(t)

Q̃(t)
D(0)

Figure 4.3: Impossibility of tracking among obstacles.

Path Proportionate Error. In order to get around this impossibility of tracking, we

propose a path proportionate error measure, where the localization error is proportional

to the shortest path distance between the target and the tracker, and not the Euclidean

distance as used before. That is, the tracking signal and the physical movement of the
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agents follow the same path metric. Formally, the localization error at time t always

obeys the following bound:

d(Q(t), Q̃(t)) ≤ d(P (t), Q(t))

λ

We show that the best tracking performance in this model is D(t) = D(0)+Θ(t/λ);

that is the distance grows linearly with 1/λ, as opposed to the inverse quadratic function

for the unobstructed case.

4.4.1 Tracking Upper Bound

The tracker’s strategy in this case is also greedy, except now the tracker makes short-

term commitments in phases, instead of continuously changing its path towards the new

observed location. In particular, for each phase, the tracker fixes its goal as the observed

position of the target at the start of the phase, moves along the shortest path to this goal,

and then begins the next phase.

MODIFIEDGREEDY. The initial phase begins at time t = 0. During the ith phase,

which begins at time ti, the tracker moves along the shortest path to the observed location

of the target at ti, namely, Q̃(ti). When tracker reaches Q̃(ti), the ith phase ends, and

the next phase begins.

The upper bound on the tracking performance is given by the following theorem.
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Theorem 21. Using MODIFIEDGREEDY, the tracker can ensure that D(t) ≤ D(0) +

O(t/λ).

Proof. First note that because d(Q̃(ti), Q(ti)) ≤ D(ti)/λ, it follows that ti+1 − ti =

D(ti) + xD(ti), where −1
λ
≤ x ≤ 1

λ
. Thus, the target’s progress during the ith phase is

upper bounded as d(Q(ti), Q(ti+1)) ≤ D(ti) + xD(ti). Next, by applying the triangle

inequality, the distance between P andQ at the beginning of phase ti+1 is upper bounded

as

d(P (ti+1), Q(ti+1)) = d(Q̃(ti), Q(ti+1))

≤ d(Q̃(ti), Q(ti)) + d(Q(ti), Q(ti+1))

≤ D(ti)

λ
+D(ti) + xD(ti)

Finally, the upper bound on the rate of distance increase can be derived as follows:

d(P (ti+1), Q(ti+1))− d(P (ti), Q(ti))

ti+1 − ti
≤ D(ti) +D(ti)/λ+ xD(ti)−D(ti)

D(ti) + xD(ti)

=
1/λ+ x

1 + x
≤ 2

λ+ 1

where the final inequality uses the fact that the minimum value occurs when x = 1/λ. In

conclusion, during each phase the distance between the tracker and the target increases

by at most a factor of 2
λ+1

, giving the bound D(t) ≤ D(0) +O( t
λ
)
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4.4.2 Tracking Lower Bound.

Our final result is to prove that the trackability achieved by MODIFIEDGREEDY is

essentially optimal. In particular, we construct an environment with polygonal obstacles

and a movement strategy for the target that ensures D(t) ≥ D(0) + Ω(t/λ). The

construction of the polygonal environment is somewhat complicated and requires a

carefully designed set of obstacles. The main schema of the construction is shown

in Figure 4.4, where each edge of the “tree-like” diagram corresponds to a “channel”

bounded by obstacles, and each face corresponds to a “gadget” consisting of a group

of carefully constructed obstacles, with the outer face occupied entire by a single large

obstacle.

d0 d0
λ

(1 +
1
λ
)d1

d1
λ

d2
λ

(1
+

1
λ
)d0

(1 +
1
λ )d

0
d1
λ

d2
λ

d2
λ

d2
λ

(1 + 1
λ )d1

(1 + 1
λ )d1

(1 +
1
λ
)d1

(1 + 1
λ )d2

(1 + 1
λ )d2

(1 + 1
λ )d2

Figure 4.4: A high level schema for the lower bound construction. The numbers next to
the edges denote the “path length” in the corresponding channels.

As in the proof of Theorem 19, the target moves either to top or the bottom point of

the gadget during a phase, depending on the tracker’s location. The gadget construction

is such that the movement of the target along either path is indistinguishable to the tracker
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because both paths are satisfied by a common set of observed locations throughout the

path. Thus, by invoking the earlier equivalence principle, we may as well assume that

the target knows the tracker’s choices. If the target moves to the top, then the next phase

occurs in the top gadget, otherwise the bottom, and so on.

To realize the geometric scheme of Figure 4.4, we replace each edge of the graph

with a channel as shown in Figure 4.5(a). The desired edge length can be realized

by adding any number of arbitrarily skinny bends such that the length of the shortest

path through each channel equals the edge length. Each face is replaced with a set of

obstacles, called a gadget, see Figure 4.5(b) for an abstract illustration. The jagged line

between each pair of nodes corresponds to a channel such that shortest path through

that channel has the given length. The target will move along the shortest path through

either the top or bottom channel while reporting its location in the center channel.

Meanwhile, the channels connecting the top and bottom to the center will guarantee that

d(Q(t), Q̃(t)) ≤ 1
λ
d(Q(t), P (t)) at all times t during a phase.

Gadget Construction and its Properties

We now describe the construction of our gadgets and establish the geometric properties

needed for the correctness of our lower bound. Each gadget is constructed out of two

building blocks, the bent channels seen in Figure 4.5(a), and intersections depicted in

Figure 4.6(a). Each intersection has the property that the shortest path between any

two of the points among a, b and c has length 2δ, where δ can be made arbitrarily close
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ε

L

ε

(a)

{ (1 +
1
λ
)di{

di
4λ

di
2λ

di
2λ

di
2λ

di
2λ

Q(ti)

qa

qc

qb

{

(b)

Figure 4.5: The channel construction in (a). In (b) the shortest paths between nodes on
the center path have length di

4λ
, and the remaining all have length di

2λ
.

to 0. Thus we can construct a channel that branches into two channels such that the

path length through the intersection is the same regardless of the branch chosen. In

Figure 4.6(b), we depict the construction of a gadget using only intersections (triangles)

and channels (jagged lines).

As in the lower bound for the unobstructed case, the target starts the phase at Q(ti),

and moves to qa or qb while the observed location of the targets moves along the shortest

path from Q(ti) to qc. In particular, let Πa, Πc, and Πb denote the shortest paths from

Q(ti) to qa, qc and qb respectively. The following lemma establishes several properties

needed for the feasibility of the target’s strategy.

Lemma 51. We can construct a gadget for each phase i such that (1) Πa, Πc and Πb

have length (1 + 1
λ
)di and (2) for any point xc at distance ` along Πc, the corresponding
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c

a
b

δ
δ δ

δ

δδ

(a)

Q(ti)

qa

qc

qb

di
4λ − δ di

4λ − δ

di
4λ − δ di

4λ − δ di
4λ − δ

di
4λ − δ

di
2λ − 2δ

di
2λ − 2δ

di
2λ − 2δ

di
4λ − 2δ di

4λ − 2δ di
4λ − 2δ

di
2λ − 4δ

di
2λ − 4δ

...

...

...

≤ di
4λ − 2δ

≤ di
4λ − 3δ

≤ di
4λ − δ

(b)

Figure 4.6: In (a) an example intersection such that the shortest path between any pair
of a b and c has length 2δ. In (b) an example gadget construction, where each triangle
corresponds to an intersection with corners representing the points a b and c. The
horizontal channels have length di

4λ
between each pair of vertical dashed lines, except for

the initial distance before the first line (which can be made arbitrarily small), and the
remaining spillover distance after the last dashed line.

points xa and xb distance ` along Πa and Πb, respectively, satisfy d(xc, xa) ≤ di
λ

and

d(xc, xb) ≤ di
λ

.

Proof. By construction, the shortest path in each channel between the dashed lines in

Figure 4.6(b) has length di
4λ

, and therefore this construction can be extended until Πa, Πc

and Πb have length exactly (1 + 1
λ
)di. Next, by the symmetry of the construction, we

need only show that d(xc, xa) ≤ di/λ. We ignore the case where xc lies in the channels

before the first dashed lines, as the length of such channels can be made arbitrarily

small to guarantee that d(xa, xc) ≤ di/λ. The maximum distance between xa and xc

then occurs when xa lies at the midpoint between two intersections in the top channel.
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However, in this case one can easily verify that the following holds:

d(xc, xa) = δ +
di
4λ
− 2δ + 2δ +

di
2λ
− 2δ + 2δ +

di
4λ
− δ =

di
λ

This completes the proof.

Gap Invariant and the Proof of the Lower Bound

We now formulate the invariant maintained by the target so that its motion is valid under

our (path proportionate) localization error and achieves the desired lower bound.

SP-Gap Invariant. Throughout the ith phase, the target moves along a path Q(t) such

that D(t) ≥ di for all times t, and all reported locations satisfy d(Q(t), Q̃(t)) ≤ di
λ

.

Lemma 52. For the duration of phase i, SP-Gap Invariant is maintained.

Proof. Whether Q moves along Πa or Πb, they are both shortest paths (and this cannot

be shortcut by P ), implying that D(t) ≥ di for the duration of the phase. Without

loss of generality, suppose Q chooses Πa. Then, after time t, both the target and its

observed position have moved a distance of t along Πa and Πc, respectively. Therefore,

by Lemma 51, we have d(Q(t), Q̃(t)) ≤ di
λ

.

We can prove our lower bound.

Theorem 22. The target’s strategy guarantees that after each phase ending at time t,

the distance function satisfies D(t) ≥ D(0) + Ω( t
λ
).
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Proof. The proof is by induction on the phase i. The basis of the induction is i = 0.

Since the localization error makes target’s top and bottom paths indistinguishable to the

tracker, the target can ensure that at the end of phase 0 the target is on the side of Πc that

is opposite P . Without loss of generality, suppose that that target has reached qa. Then

the best case for P is if it moved d0

λ
along Πc, which achieves D(t1) ≥ D(0) + D(0)

2λ
.

Now assume by induction that after phase i − 1 ends at time ti, we have D(ti) ≥

D(ti−1) + D(ti−1)/2λ = di. Suppose now that P has yet to reach the gadget cor-

responding to phase i when Q has finished phase i at time ti+1. Then necessarily

D(ti+1) ≥ di + di/λ, as that is the length Πa and Πb. Otherwise if P has moved into

the gadget, then the inequality D(ti) ≥ di ensures that the closest the target can be to

the tracker is if P has moved di
λ

along Πc, which implies D(ti+1) ≥ D(ti) + D(ti)
2λ

.

Thus, in a round with duration (1 + 1
λ
)di, the distance increases by at least di/2λ.

Thus, in the ith phase, the distance increases by a factor of at least

di/2λ

(1 + 1
λ
)di

=
1

2λ(1 + 1
λ
)

=
1

2 + 2λ

Thus, at the end of any phase, we have the inequality D(t) ≥ D(0)+Ω(t/λ), which

completes the lower bound.
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4.5 Extension to d dimensions

Our analysis of trackability was carried out for 2-dimensional Euclidean plane, but the

results generalize easily to d dimensions. Indeed, in the unobstructed case, our analysis

of the upper bound only makes use of the triangle inequality: the region of interest

is the triangle formed by P (t), Q(t), and Q̃(t), and the target Q moves directly away

from P . Thus, within an arbitrarily small time interval ∆t, P and Q are moving within

the two-dimensional plane of the triangle P (t)Q(t)Q̃(t). The upper bound analysis

therefore extend to any dimension d ≥ 2. The same reasoning also holds in the presence

of obstacles. Finally, the lower bound construction of d = 2 immediately implies that

the trackability lower bound holds in all dimensions d ≥ 2.

4.6 Simulation Results

In our first simulation, we use a GPS trace of a hike available from [1]. Using the scale

of the GPS coordinate system, the total length of the trace is 0.51, and we place the

tracker at an initial distance of 0.014 away from the target (Fig. 4.7), so that their initial

separation is about 2.5% of the entire trarectory length. During the simulation, the target

follows the GPS trace, the tracker moves directly toward the current reported location of

the target, and they both have the same speed. The localization error for this simulation

is set to λ = 3, a fairly high level of imprecision. At each instant, the revealed location
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Q̃ of the target makes the largest allowable angle (deviation) from the PQ line. In our

simulation, we consistently chose Q̃ to be the rightward point of tangency. However,

results were similar or better if Q̃ is chosen using some other rule such as, leftward point,

or randomly chosen between left and right. In Figure 4.7 we depict the paths followed

by the players and observe that despite the initial distance between P and Q, and the

large localization error, the tracker P quickly reduces its distance to Q. In fact, the gap

continues to shrink, becoming almost zero, after only about 1/4 of the trace. Figure 4.8

zooms into the initial portion of the trajectory to more clearly show the tracking path.

Q̃
Q
P

Figure 4.7: Depiction of the trajectories of P , Q, and Q̃.

Our second simulation uses a synthetic trajectory to force a worst-case (adversarial)

tracking behavior: instead of moving along a fixed path, the target Q always moves

directly away from P . The tracker moves directly toward the observed location Q̃, which
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Q̃
Q
P

Figure 4.8: A zoomed-in view to illustrate the quick tracking convergence.

as in the previous simulation is chosen as the rightward point of tangency at maximum

distance from Q. The error parameter is again set to λ = 3 and the simulation begins

with P positioned at the origin and Q at the point (10, 10). The result is shown in

Figure 4.9. Essentially, P always moves to the right of Q’s true location, and as a result

Q moves further to the left at each step. This results in a spiralling trajectory in which

the distance between P and Q is increasing by approximately .05 per time unit.

In another variation of this similation, the initial conditions are the same, except

that Q̃ is chosen uniformly at random among all possible locations of Q̃. In this case,

we found that the distance between tracker and target grows only by about .005 per

time unit, namely, an order of magnitude better than the adversarial target of the first

simulation.
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Q̃
Q
P

Figure 4.9: Paths taken by P , Q, and Q̃ take in a worst case simulation.
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Figure 4.10: Growth in distance over time for simulations and proved bounds.
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Finally, Figure 4.10 graphs the increase in distance over time for this simulation

setup. The curves labeled upper and lower bounds show the theoretical limits established

in Section 4.2. SIM WORST and SIM RANDOM show the results for the spiralling

simulation, both with the worst-case target trajectory and the random target trajectory.

We observe that in the worst case where Q̃ is always chosen at the maximum possible

distance from Q, the distance growth is very close to our upper bound, but if Q̃ is chosen

randomly, the distance increase is about half of the theoretical (adversarial) lower bound.
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Conclusion

In this dissertation we studied several variants of geometric pursuit evasion, with

a focus on finding combinatorial bounds on the number of pursuers that are sufficient

and necessary for capturing an adversarial evader. We began with a model in which the

pursuers are equipped with powerful sensors giving perfect knowledge of the evader’s

location in a polygonal environment. By following a natural progression in regards to

both the sensing capabilities and complexity of environments considered, we are able to

advance those results to more feasible sensing models and more realistic models of the

real world such as polyhedral surfaces.

We began in Chapter 1 by considering the complete information pursuit evasion

problem set in polygonal environments and gave two algorithms showing that three

pursuers are always sufficient to capture an evader. Further, we proved this bound is

tight by constructing an example where three pursuers are required. In Chapter 2, we

extended these results to polyhedral surfaces and showed that 4 pursuers always suffice

(upper bound), and that 3 are sometimes necessary (lower bound), for any polyhedral
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surface with genus zero. Generalizing this bound to surfaces of genus g, we prove the

sufficiency of (4g + 4) pursuers. Finally, we show that 4 pursuers also suffice under the

“weighted region” constraints, where the movement costs through different regions of

the (genus zero) surface have (different) multiplicative weights. While open questions

remain such as establishing a tight bound for polyhedral surfaces, and a lower bound

for non-zero genus polyhedron, the primary question remains to find bounds when the

location of the evader is not already known by the pursuers, which we address in the

following chapter for polygonal environments.

In Chapter 3 we studied visibility-based pursuit evasion, where the pursuers only

know the location of the evader when it is in direct line of sight. We begin my making

only the minimalist assumption that pursuers and the evader have the same maximum

speed. When the environment is a simply-connected (hole-free) polygon of n vertices,

we show that Θ(n1/2) pursuers are both necessary and sufficient in the worst-case. When

the environment is a polygon with holes, we prove a lower bound of Ω(n2/3) and an

upper bound of O(n5/6) pursuers, where n includes the vertices of the hole boundaries.

We then showed that with additional assumptions these bounds can be drastically

improved. Namely, if the players movement speed is small compared to the features of

the environment, we give a deterministic algorithm with a worst case upper bound of

O(log n) pursuers for simply-connected n-gons and O(
√
h+ log n) for polygons with
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h holes. In addition to obtaining tight lower bounds, it remains a challenging problem to

extend these results to polyhedral surfaces.

Finally, in Chapter 4 we further reduced the sensing capabilities of the pursuers by

incorporating sensor noise. In particular, we adopt a simple but realistic model: the

localization error is proportional to the true distance between the tracker and the target.

We gave an algorithm for the tracker to following the target, and showed that this strategy

is asymptotically optimal in the Euclidean plane, both with and without obstacles. An

interesting direction for future work is to investigate the feasibility of extending our

results on capture to this model in order to account for sensor noise present in real world

applications.
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