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Abstract

Scalable Front End Designs for Communication and

Learning

Aseem Wadhwa

In this work we provide three examples of estimation/detection problems, for

which customizing the Front End to the specific application makes the system

more efficient and scalable. The three problems we consider are all classical, but

face new scalability challenges. This introduces additional constraints, accounting

for which results in front end designs that are very distinct from the conventional

approaches. The first two case studies pertain to the canonical problems of syn-

chronization and equalization for communication links. As the system bandwidths

scale, challenges arise due to the limiting resolution of analog-to-digital converters

(ADCs). We discuss system designs that react to this bottleneck by drastically

relaxing the precision requirements of the front end and correspondingly modi-

fying the back end algorithms using Bayesian principles. The third problem we

discuss belongs to the field of computer vision. Inspired by the research in neu-

roscience about the mammalian visual system, we redesign the front end of a

machine vision system to be neuro-mimetic, followed by layers of unsupervised

learning using simple k-means clustering. This results in a framework that is in-

tuitive, more computationally efficient compared to the approach of supervised
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deep networks, and amenable to the increasing availability of large amounts of

unlabeled data.

We first consider the problem of blind carrier phase and frequency synchroniza-

tion in order to obtain insight into the performance limitations imposed by severe

quantization constraints. We adopt a mixed signal analog front end that coarsely

quantizes the phase and employs a digitally controlled feedback that applies a

phase shift prior to the ADC, this acts as a controllable dither signal and aids in

the estimation process. We propose a control policy for the feedback and show

that combined with blind Bayesian algorithms, it results in excellent performance,

close to that of an unquantized system.

Next, we take up the problem of channel equalization with severe limits on

the number of slicers available for the ADC. We find that the standard flash ADC

architecture can be highly sub-optimal in the presence of such constraints. Hence

we explore a “space-time” generalization of the flash architecture by allowing a

fixed number of slicers to be dispersed in time (sampling phase) as well as space

(i.e., amplitude). We show that optimizing the slicer locations, conditioned on

the channel, results in significant gains in the bit error rate (BER) performance.

Finally, we explore alternative ways of learning convolutional nets for machine

vision, making it easier to interpret and simpler to implement than currently used

purely supervised nets. In particular, we investigate a framework that combines a

neuro-mimetic front end (designed in collaboration with the neuroscientists from
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the psychology department at UCSB) together with unsupervised feature extrac-

tion based on clustering. Supervised classification, using a generic support vector

machine (SVM), is applied at the end. We obtain competitive classification results

on standard image databases, beating the state of the art for NORB (uniform-

normalized) and approaching it for MNIST.
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Chapter 1

Introduction

Problems that require some form of estimation/detection are ubiquitous across

different fields of study. A common feature of such problems is the presence of

an underlying quantity which either takes some mathematical value(s) or belongs

to a particular class. Through various processes it gets modified and/or distorted

by nature. It is then presented to the “estimator” in a noisy form, whose goal

is to recover the true value or class. For example, in communication systems,

the underlying quantity is the stream of symbols generated by the transmitter.

This gets modified partly by design, when the transmitter converts the discrete

sequence into a continuous analog waveform, and partly by the channel, which

includes the physical transmission medium and the receiver circuit. The channel

can introduce distortions such as inter symbol interference and phase/frequency

offsets. The receiver (estimator) then tries to recover the symbols from the noisy

continuous valued signal it receives. This process typically requires an implicit

or explicit estimation of the channel. Another example is the object recognition
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Chapter 1. Introduction

system in computer vision. The underlying quantity to be detected is generally a

broad object category, for instance a “car”. The process of capturing the image

introduces distortions such as rotation, translation, variations in illumination etc.

The receiver (recognition system) tries to guess the true class from the raw image

of pixel intensities, striving to be invariant to the distortion effects which are

irrelevant for detecting the category.

The processing at the receiver can generally be split into two high level blocks:

the “front end” and the “back end”. The former is responsible for preprocessing

the received signal and converting it into a form more convenient for the algorithms

running in the back end. For instance, in communication systems, front end

performs downconversion to the baseband, followed by the analog to digital (A/D)

conversion. The back end then operates on the resulting discrete samples. In

vision, front end can be thought of as comprising of the preprocessing operations

on raw images such as luminance normalization, extraction of edge information

etc. The back end implements the classifier that operates on the features generated

by the front end and learns to predict the object category.

Conceptual division of the receiver architecture, as discussed above, is use-

ful. It simplifies design by splitting the overall problem, researchers can focus

on smaller blocks in isolation, which are easier to optimize, conditioned on the

specifications of the other blocks. For example, a hardware engineer can focus on

developing a circuit that delivers precise samples at a fixed rate with high fidelity.

2



Chapter 1. Introduction

A system engineer can bank on the availability of such a digital signal, safely

ignoring the errors due to quantization and clock jitters and concentrate on devis-

ing efficient algorithms for estimation. Similarly, in machine learning for example,

keeping the lower layer preprocessing and feature extraction fixed, a researcher

can direct her energies towards finding the optimal strategy for regularizing the

classifier that takes these features as inputs.

Such a design process naturally results in development of generic blocks, which

become standard and are reused across several different systems. For example, an

A/D front end that minimizes the quantization error and samples at the Nyquist

rate, thereby preserving the shape of the continuous waveform, is one such stan-

dard block that is used across different systems involving analog and digital inter-

faces (sensor networks, control, communication systems etc). Similarly, a feature

extractor such as SIFT [54] and classifier such as SVM [12] are standard black

boxes used in computer vision.

Using the generic blocks usually works in most cases, but issues arise when

resources become more constrained as systems scale up. As we find out, in such

scenarios, there is great scope of improvement by redesigning the components

taking the additional constraints into account. In this dissertation, we revisit the

system design for three specific problems. We show that redesigning the front

end in a manner that is more adapted to the application at hand leads to better
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Chapter 1. Introduction

efficiency and scalability. Qualitatively, following characteristics are desired from

an efficient front end:

• preserves complete information about the desired quantity, while removing

most of the influences irrelevant for estimation (Minimalism).

• is amenable to low cost circuit implementation, which translates to the re-

quirement of the processing being power efficient and computationally effi-

cient (Scalability).

Depending on the application these requirements drive the design process in in-

teresting ways. Of the three problems discussed in this work, two are from the

field of communication systems and one from machine vision.

In communication systems, the conventional A/D frontend, as discussed ear-

lier, strives to preserve the shape of the continuous waveform. This helps in

maintaining the linearity of the overall system under Gaussian noise and results

in a simple back end. However as the system scales up in bandwidth, this ap-

proach is no more feasible as the cost of high precision ADCs (analog to digital

converters) becomes enormous at high sampling rates. A natural solution is to

relax the requirement on bits of precision, and compensate for the added non-

linearity in the back end using sophisticated algorithms in DSP (digital signal

processing). This complexity trade off between the front end and the back end

is justified due to the Moore’s law, which has resulted in much more favorable
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Chapter 1. Introduction

scaling of the DSP compared to the ADC technology. In this dissertation, we

investigate new architectures for the front end and adapt the corresponding back

end algorithms using Bayesian principles to handle the severe non-linearity.

The front end of a machine vision system has the task of extracting features

suitable for classification. Compared to the other two problems discussed in this

dissertation, this problem is very different as there is a lack of a well defined

system and noise model. Several different approaches have been employed for

solving the recognition problem, but most solutions use an architecture known

as the convolutional neural network (CNN). In recent years, most of the high

performing solutions use supervised deep networks, a specific implementation of

CNNs. However currently they suffer from a few drawbacks, there is a lack of

clarity on exactly how they work and complications in implementation due to

the large number of parameters to be tuned and the increased complexity. Our

objective is to somehow significantly simplify the system without giving too much

away in terms of the performance. This is a difficult objective but we take a few

encouraging initial steps towards it in this work. In the absence of well defined

models, we look to leverage the next best thing available to us: the mammalian

eye. The eye has evolved over thousands of years and the neuroscience literature

contains detailed descriptions of the retinal processing. Inspired by this we build

a neuro-mimetic front end for preprocessing the raw images. This front end when

combined with the neurally plausible idea that our visual system extracts a set
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Chapter 1. Introduction

of “universal features”, leads to the principle of unsupervised learning using k-

means clustering followed by a standard supervised classifier in the final stage.

Even though we only present a preliminary study in this work, this framework

holds promise for an intuitive implementation that has low complexity and is thus

scalable in terms of the size of the dataset. Moreover, other characteristics of

this architecture like the requirement of high sparsity in the neural activations

(discussed in detail later), makes it a potential candidate for low power hardware

implementations.

Sections (1.1),(1.2) and (1.3) introduce the problems considered in this disser-

tation and summarize our contributions. Detailed discussions of these problems

are presented in chapters 2, 3 and 4 respectively.

1.1 Blind Phase/frequency Synchronization

Modern communication transceiver designs leverage Moore’s law for low-cost

implementation by using DSP to perform sophisticated functionalities such as

synchronization, equalization, demodulation and decoding. The central assump-

tion in such designs is that analog signals can be faithfully represented in the

digital domain, typically using ADCs with 8-12 bits of precision. However this

approach runs into a bottleneck with emerging communication systems employing

bandwidths of multiple GHz, such as emerging millimeter wave wireless networks
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Chapter 1. Introduction

(e.g., using the 7 GHz of unlicensed spectrum in the 60 GHz band), as well as

high speed links in wide bandwidth systems such optical communications and

wireline backplane channels. The key reason for this bottleneck is the ADC: as

signal bandwidths scale up to multiples of GHz the cost and power consumption

of high-resolution ADCs become prohibitive [60].

Since we would like to continue taking advantage of Moore’s law despite this

bottleneck, it is natural to ask whether DSP-centric architectures with samples

quantized at significantly less precision (e.g., 1-4 bits) can be effective. Shannon-

theoretic analysis (for idealized channel models) has shown that the loss in channel

capacity due to limited ADC precision is relatively small even at moderately high

signal-to-noise ratios (SNRs) [76]. This motivates a systematic investigation of

DSP algorithms for estimating and compensating for channel non-idealities (e.g.,

asynchronism, dispersion) using severely quantized inputs.

In particular, we first consider a canonical problem of blind carrier phase/frequency

synchronization based on coarse phase-only quantization (implementable using

digitally controlled linear analog preprocessing of I and Q samples, followed by

one-bit ADCs), and develop and evaluate the performance of a Bayesian approach

based on joint modeling of the unknown data, frequency and phase, and the known

quantization nonlinearity. The case of channel dispersion is taken up in chapter

3. To aid phase/frequency recovery in the face of severe quantization we adopt a
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Chapter 1. Introduction

mixed signal architecture that employs a digitally controlled feedback that applies

a phase shift prior to the ADC. This is described next.

Receiver architecture: We consider differentially encoded QPSK over an AWGN

channel. In order to develop fundamental insight into carrier synchronization, we

do not model timing asynchronism or channel dispersion. In the model depicted

in Fig. 1.1, the analog preprocessing front-end performs downconversion, ideal

symbol rate sampling, and applies a digitally controlled derotation phase on the

complex-valued symbol rate samples before passing it through the ADC block.

The derotation phase feedback provides a controllable and variable phase offset

that acts as a dither signal. Properly designed dither aids in faster estimation and

is crucial at high SNRs to ensure diversity in the quantized phase measurements.

The ADC block quantizes the phase of the samples into a small number of bins.

Phase quantization (which suffices for hard decisions with PSK constellations)

has the advantage of not requiring automatic gain control (AGC), since it can

be implemented by passing linear combinations of the in-phase and quadrature

components through one-bit ADCs (quantization into 2n phase bins requires n

such linear combinations) [77]. The quantized phase observations are processed in

DSP by the estimation and control block: this runs algorithms for nonlinear phase

and frequency estimation, computes feedback for the analog preprocessor (to aid

in estimation and demodulation), and outputs demodulated symbols. Design of

this estimation and control block is the subject of this work.
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TX Channel
Analog 

Pre-Processing
Frontend

Analog 
To Digital 

Conversion

Estimation and 
Control
Block

Unknown Phase and 
Frequqency Offset

Digital Feedback
(Derotation Value)

Phase Quantized
Measurements

Figure 1.1: Receiver Architecture

Contributions: We break the synchronization problem into two steps (a) rapid

blind acquisition of initial frequency/phase estimates, (b) continuous tracking

while performing data demodulation. For solving (a) we develop a Bayesian algo-

rithm for blind phase estimation and propose an information theoretic policy for

setting the dither signal. We discuss various properties of this policy in detail and

show, via simulations, that it is not far away from the optimal in terms of achieving

the minimum mean square error of phase for a given number of symbols. For part

(b) we propose an extended Kalman filter (EKF) for frequency/phase tracking.

We provide numerical results demonstrating the efficacy of our approach for both

steps, and show that the bit error rate with 8-12 phase bins (implementable using

linear I/Q processing and 4-6 one bit ADCs) is close to that of a coherent system,

and is significantly better than that of standard differential demodulation (which

does not require phase/frequency tracking) with unquantized observations.
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Chapter 1. Introduction

1.2 Slicer Architectures for Analog-to-Information

Conversion in Channel Equalizers

In this section we study the problem of channel equalization under severe

restrictions imposed on ADC resolution. In this low bits of precision regime (1-

3 bits), it becomes natural to consider alternatives to the general-purpose ADC

that are tailored to the communications application. Thus, we are interested in

the design of analog-to-information converters enabling reliable recovery of the

transmitted data, rather than accurate reproduction of the received signal as for

a standard ADC. In this work, we explore this approach for communication over

static dispersive channels for the simplest possible setting of binary antipodal

signaling over a real baseband channel.

Our starting point is the flash ADC, a popular architecture for high sampling

rates and relatively low resolutions (2-6 bits); see [82, 14] for some recent high-

speed flash ADC designs. An n-bit flash ADC consists of 2n − 1 comparators

sampling synchronously, with comparator thresholds generally spread uniformly

over the input signal voltage range. While fractional sampling is known to be

more robust than symbol-spaced sampling for systems in which ADC resolution

is not an issue, in the regimes we are interested in, the Nyquist sampling rate

is already stressing the state of the art, hence the conventional approach is to

sample at the Nyquist rate. A key question we address is whether, for a fixed
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number of comparators, we can do better by generalizing beyond uniform spacing

and Nyquist sampling. We summarize our contributions below.

Contributions:

(1) We first analyze the standard Nyquist sampled, uniformly spaced design. For a

given channel, we derive easily computable lower and upper bounds for the small-

est number of comparators to avoid an error floor in the bit error rate (BER). The

results give insight into the kind of channels that are worse in terms of requiring a

larger number of comparators; for example, mixed-phase channels are worse than

minimum/maximum phase channels. We also demonstrate via an example how,

for the standard design, the BER can be sensitive to the sampling phase, and that

more robust performance can be obtained by spreading the same number of slicers

across time. This motivates a more systematic study of space-time architectures.

(2) We establish that there are no fundamental performance limitations imposed

by spreading slicers out in space and time, by proving that the `1 distance be-

tween a pair of waveforms is preserved upon quantization by n slicers spread

across time and having randomly distributed thresholds, if n is larger than a lower

bound. The proof of this general result employs the Chernoff bound and the union

bound, analogous to the Johnson-Lindenstrauss (JL) lemma [24]. Its application

to our equalization problem guarantees the absence of an error floor if sufficiently

many 1-bit measurements are obtained with random thresholds. While this result

provides a sound theoretical underpinning for space-time slicer architectures, in
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practice, good performance is obtained with fewer slicers with carefully chosen

thresholds.

(3) We present an approximate optimization technique for adapting, as a function

of the channel, the slicer thresholds for symbol-spaced and fractionally-spaced (at

Ts/2, where Ts denotes the symbol interval) architectures. For a fixed number of

slicers, the performance gains over a standard symbol-spaced uniform ADC are

significant. Depending on the choice of channel, sampling phase and number of

available slicers, the procedure allocates all slicers to one sampling phase or dis-

tributes them among the two phases.

1.3 A Framework for Machine Vision based on

Neuro-Mimetic Front End Processing and

Clustering

Neuro-inspiration has played a key role in machine learning over the years. In

particular, the recent impressive advances in machine vision are based on mul-

tilayer (or “deep”) convolutional nets [50, 75, 47, 15], which loosely mimic the

natural hierarchy of visual processing. Neuro-inspired operations such as local

contrast normalization [11, 40], rectification [62] and sparse autoencoding [66]

12



Chapter 1. Introduction

have been found to be central to improving performance [40]. Most of the best

performing nets today are trained in supervised fashion [47, 15, 85]. Despite

the state of the art classification accuracy achieved by this approach, there are

a number of disconcerting features: a huge number of parameters to be trained,

which leads to long training times [47] and the requirement of large amounts of la-

beled data [36]; lack of a systematic framework for understanding commonly used

“tricks” such as DropOut/DropConnect [85]; the requirement for manual tuning

of parameters such as learning rate, weight decay and momentum [47]; and the

difficulty in interpreting the information being extracted at various hidden layers

of the network [88].

In this work, we ask whether we can simplify both implementation and un-

derstanding of convolutional architectures, based on combining several key obser-

vations. First, while we have at best a coarse understanding of the higher layers

of the visual cortex, we should be able to leverage the fairly detailed picture

available for the front end of the visual system, including retinal ganglion cells

(RGCs) and the lateral geniculate nucleus (LGN), along with the simple cells in

V1. Thus, it should be possible to engineer machine learning front ends to be

faithfully neuro-mimetic rather than merely neuro-inspired. Second, we would like

to build on the intuition that our visual system extracts a set of “universal” fea-

tures for any object being viewed, irrespective of whether a classification task is

to be performed. Research in the field of transfer learning [26], where parameters

13
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of a neural net trained with a dataset have been found to work reasonably well

with other datasets, seems to support this assumption. This implies that a system

which focuses most of its effort on unsupervised learning for feature extraction,

and takes on supervised classification at the end, should have a reasonable chance

of success. Indeed, such an approach has been shown to work reasonably well by a

few researchers, but further effort is needed to provide classification performance

competitive with supervised nets tuned for the purpose of classification. Third,

if we shift the focus to unsupervised learning, then the task becomes one of clus-

tering, for which there are simple, well-established algorithms with little need for

parameter tuning.

Based on the preceding concepts, we propose and evaluate a convolutional

architecture that attains classification performance comparable to the state of the

art (beating the state of the art for the NORB image database, and coming close

to it for the MNIST handwritten digit database), while lending itself to relatively

straightforward interpretation.

Our design approach and contributions are summarized as follows. We would

like to mention here that most of the work related to the building of the front

end model based on the neuroscience literature has been done by Emre Akbas, a

student of Professor Miguel Eckstein in the Psychology Department at UCSB.

(1) As the first part of our neuro-mimetic front end, we build retinal ganglion

cells (RGCs) with center-surround characteristics, with center-on cells responding
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when the center is brighter than the surround, and the center-off cells respond-

ing in the reverse situation. The number of such cells and the receptive cell size

are matched to the resolution of the images being processed based on the known

parameters of the fovea, the center of the retinal field with the greatest concentra-

tion of RGCs. The RGC outputs can be viewed as being directly transported to

the lateral geniculate nucleus (LGN), with a one-to-one mapping between RGCs

and LGN neurons. Thus, we may view this part of the model as applying to the

cascade of the RGC and LGN. We perform local contrast normalization on the

RGC/LGN outputs, with the neighborhood used determined by reported experi-

mental parameters. We then rectify these outputs before feeding them to the next

layer.

(2) Our second front end stage is a model for V1 simple cells layered on top of

RGC/LGN. These are edge detectors constructed using the rough parameters de-

termined by the classical experiments of Hubel and Wiesel [38, 39]. We quantize

the edge orientations into bins of width π/8 (the actual binning in visual cortex

may be finer-grained, but we choose a relatively coarse bin size to limit complex-

ity). We use several different kinds of edge detectors, so that there are 48 edge

detectors centered at each spatial location. We perform local contrast normaliza-

tion and rectification on the simple cell outputs. The front end is fixed, with the

only tunable parameter being the “viewing distance”. (3) Beyond simple cells,

neuroscientific guidance sufficient for constructing a complete model of the next
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layer is no longer available. We therefore use clustering based on k-means for un-

supervised learning henceforth. We first use k-means clustering of outputs from

simple cells to obtain centroids (each of which can be interpreted as a neuron).

Feature vectors are given by soft assignments to these centroids (which can be

viewed as thresholded neuron outputs), and feature vectors from adjacent regions

are pooled to obtain the final feature vector. A similar procedure (k-means, soft

assignments, and pooling) can be used to build successive layers on top of this.

Note that the structure remains convolutional (the same set of centroids slides

across the image), but we are zooming out (creating feature vectors for larger

segments of the image) as we go up in the hierarchy.

4) After the fixed front end and the unsupervised learning we finally perform clas-

sification via supervised learning of a standard support vector machine (SVM)

[19] with a radial basis function (RBF) kernel. The best error rates we achieve

are: 0.66% on MNIST [50], which is comparable to the best rates reported on this

dataset without data augmentation and 2.52% on NORB (uniform-normalized

[51]), which improves on the state of the art for this dataset.
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Chapter 2

Blind Phase/frequency
Synchronization

In this chapter, we discuss the phase/frequency synchronization problem us-

ing the mixed signal receiver architecture shown in Fig. 1.1, which implements

a very coarse phase quantization. A crucial component of this architecture is

the feedback control or the dither signal, whose design constitutes a significant

portion of this chapter. We observe that the frequency offsets between trans-

mitter and receiver are typically much smaller than the symbol rate, hence the

phase is well approximated as constant over multiple symbols. This enables us to

break the synchronization problem into two components: a phase only estimation

problem and a frequency tracking problem after the initial phase has been cor-

rectly locked. First, we develop a Bayesian algorithm for blind phase estimation,

which includes design of the feedback to the analog preprocessor to aid in esti-

mation. Solving for the optimal feedback control policy is equivalent to finding

Parts of this chapter are reprinted from our conference submission [83], c©[2013] IEEE
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a solution to a Partially Observable Markov Decision Problem (POMDP) which

is computationally intractable. Instead, we propose an information-theoretically

motivated greedy strategy that chooses a feedback that evolves with the posterior

distribution of the phase. This strategy is easy to implement and as seen via simu-

lations performs almost as well as a genie based optimal strategy. For the tracking

step, we use a two-tier algorithm: decision-directed phase estimation over blocks,

ignoring frequency offsets, and an extended Kalman filter (EKF) for long-term

frequency/phase tracking. The feedback to the analog preprocessor now aims to

compensate for the phase offset, in order to optimize the performance of coherent

demodulation.

Map of this Chapter: We begin by discussing the related literature on estima-

tion using quantized observations in section 2.1. The system model is described

in section 2.2. Next, in section 2.3 we present the derivation of observation prob-

ability densities and the formulation of the Bayesian estimator conditioned on the

feedback. We end this section by giving two examples that show the importance

of carefully designing the feedback signal. In section 2.4 we present the greedy

entropy policy for choosing the feedback and place it in the context of related re-

search in the field of designing optimal control for estimation. We end the chapter

by presenting the EKF based tracking algorithm in section 2.5.
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2.1 Related Work

Section 2.4 describes our proposed feedback policy and the literature related

to the field of sequential control and estimation is discussed there. A phase-

quantized carrier-asynchronous system model similar to ours was studied in [78].

However, instead of explicit phase/frequency estimation and compensation as in

this paper, block noncoherent demodulation, approximating the phase as constant

over a block of symbols, was employed in [78]. Whereas a performance degrada-

tion of about 2 dB compared to the unquantized block noncoherent case was

reported in [78], the algorithm proposed in this paper performs better, with bit

error rates almost identical to the unquantized coherent system. Moreover, the

analog preprocessing used in the tracking step is simpler compared to the dither

scheme proposed in [78]. A receiver architecture similar to ours (mixed signal

analog front-end and low-power ADC with feedback from a DSP block) was im-

plemented for a Gigabit/s 60 GHz system in [80], including blocks for both carrier

synchronization and equalization. While the emphasis in [80] was on establishing

the feasibility of integrated circuit implementation rather than algorithm design

and performance evaluation as in this paper, it makes a compelling case for archi-

tectures such as those in Fig. 1.1 for low-power mixed signal designs at high data

rates. Some of the other related work on estimation using low-precision samples

includes frequency estimation [37], amplitude estimation for PAM signaling [81],
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channel estimation [21], equalization [84] and multivariate parameter estimation

from dithered quantized data [22].

2.2 System Model

We now specify a mathematical model for the receiver architecture depicted

in Fig. 1.1. The analog preprocessor applies a phase derotation of e−jθk for the

kth sample. In order to simplify digital control of the derotation, we restrict the

allowable derotation values θ to a finite set of values, denoted by C; in our simu-

lations, we consider a phase resolution of the order of 2π/180. After derotation,

the sample is quantized using n 1-bit ADCs into one of M = 2n phase bins:[
(m− 1)2π

M
,m2π

M

)
for m = 1, ....,M . In our simulations, we consider M = 8 and

M = 12 (Figs. 2.2(a) and 2.3(a)). As mentioned earlier, such phase quantization

can be easily implemented by taking n linear combinations of I and Q samples

followed by 1-bit ADCs. For example, M = 8 bins can be obtained by 1-bit quan-

tization of I, Q, I +Q and I −Q. We always include boundaries coinciding with

the I and Q axes, since these are the ML decision boundaries for coherent QPSK

demodulation.

Denoting the phase-quantized observation corresponding to the kth symbol by

zk, we therefore have the following complex baseband measurement model:

zk = QM

(
arg
(
bke

j(φ+k·2πTs∆f)e−jθk + wk
))

(2.1)
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where,

• M := number of bins over [0, 2π) for phase quantization;

• zk ∈ {1, 2, ......,M} are the observations,

• QM : [0, 2π) → {1, 2, ......,M} denotes the quantization function, QM(x) =⌈
x · M

2π

⌉
for x ∈ [0, 2π),

• bk ∈
{
ejπ/4, ej3π/4, ej5π/4, ej7π/4

}
normalized QPSK symbol transmitted, as-

sumed to be uniformly distributed,

• φ,∆f := the unknown phase and frequency offset,

• Ts:= symbol time period,

• θk ∈ C = {mod(i · dθ, 2π)} , i ∈ I, the derotation value for the kth symbol,

dθ denoting the phase resolution,

• wk:= independent complex AWGN, Re(wk) = Im(wk) ∼ N (0, σ2), where

SNR per bit = Eb
N0

= 1
2σ2 .

The carrier frequency offset ∆f is typically of the order of 10-100 ppm of the

carrier frequency. For example, for a 60 GHz link, the offset could be as large as 6

MHz, but is still orders of magnitude smaller than the symbol rate, which is of the

order of Gsymbols/sec. Thus, it can be set to zero without loss of generality in the

acquisition step (described in Sections 2.3 and 2.4), where we derive estimates of
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the unknown phase φ based on a small block of symbols. We model the frequency

offset in the tracking step (Section 2.5).

2.3 Phase Acquisition: Bayesian Estimation

Setting ∆f = 0, the measurement model (2.1) specializes to

zk = QM(uk)

uk = arg
(
ejpk

π
4 ejβk + wk

)
(2.2)

βk = φ− θk

where uk denotes the unquantized phase, βk is the amount of net rotation of the

transmitted QPSK symbol. pk’s are independent and uniformly distributed over

{1, 3, 5, 7}, since we are interested in blind estimation (without the use of training

symbols). We now drop the subscript k to simplify notation. Conditioned on β

the density of u is given by (derivation is presented in the appendix A.1):

fu(α; β) =
4∑
i=1

1

4
fu|p=2i−1(α; β) ; α ∈ [0, 2π)

fu(α; β) =
4∑
i=1

1

4

ai(2− erfc( ai
σ
√

2
))e

a2
i−1

2σ2

2σ
√

2π
+
e−

1
2σ2

2π

 (2.3)

where ai = cos
(

(2i− 1)
π

4
+ β − α

)
For β = 0 define fu(α) := fu(α; 0). We can infer from the expression above that

the density at non-zero values of β can be evaluated simply by circular shifts (by
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2π) of fu(α). Due to the uniform distribution over the QPSK constellation, fu(α)

is periodic with period 90◦ (as seen in Fig. 2.1). Distribution of the quantized

measurements conditioned on β (φ and θ) is expressed in terms of the integrals of

fu(α) as follows:

pθφ(z = m) = P (z = m|β) =

∫ m 2π
M

(m−1) 2π
M

fu(α; β) dα (2.4)

where m ∈ {1, 2, .......,M}

The single step likelihood of the phase offset, conditioned on the phase measure-

ment in bin m and derotation θ = 0, is given by l(φ|m) = log(p0
φ(z = m)).

Nonzero θ simply results in a circular shift of l(φ|m). Due to the periodicity of

fu(α), it suffices to limit φ to the interval [0, 90◦). The Bayesian estimator, as dis-

cussed next, essentially involves successively adding these single step likelihoods

as more measurements are made. An interesting property to note is the periodic-

ity of l(φ|m) in m with period M/4, which follows from the symmetry induced by

equiprobability of the transmitted symbols. For example, if M = 8 (Fig. 2.2(a)),

a measurement z in bin 1 or bin 3 results in the same likelihood function. Fig.

2.1 shows the three distinct likelihoods for M = 12 (6 one-bit ADCs).
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Figure 2.1: (top) Probability Density of unquantized phase u at β = 0, fu(α)
(bottom) Single step likelihoods l(φ|m) given z = m and θ = 0◦ (M = 12,
SNR=5dB). blue: l(φ|1) = l(φ|4) = l(φ|7) = l(φ|10), green: l(φ|2) = l(φ|5) =
l(φ|8) = l(φ|11), red: l(φ|3) = l(φ|6) = l(φ|9) = l(φ|12) (The plot is best viewed
in color)

2.3.1 Bayesian Estimation given Derotation Phases θk

Conditioned on the past derotation values θk1 (which are known) and the quan-

tized phase observations zk1 , applying Bayes rule gives us a recursive equation for

updating the posterior of the unknown phase as:

p(φ|zk1 , θk1) =
p(zk|φ, θk)p(φ|zk−1

1 , θk−1
1 )

p(zk|θk)
(2.5)

Normalizing the pdf obviates the need to evaluate the denominator. We now

go to the log domain to obtain an additive update for the cumulative log likeli-

hood. Denoting by l1:k(φ) = log
(
p
(
φ|zk1 , θk1

))
the cumulative update up to the

kth symbol, we update it recursively simply by adding the single step update
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lk(φ) = log (p (zk|φ, θk)), as follows:

l1:k(φ) = l1:k−1(φ) + lk(φ) (2.6)

The maximum a posteriori (MAP) estimate after N symbols is given by

φ̂MAP;N = argmax p(φ|zN1 , θN1 ) = argmax l1:N(φ)

We start with a uniform prior p(φ) over [0◦, 90◦). Single step likelihoods, l(φ|m)

for m = 1, ...,M/4, can be precomputed and stored offline, and circularly shifted

by the derotation phase θk as the estimation proceeds. The recursive update (2.6)

requires only the latest posterior to be stored.

2.3.2 Choosing Derotation Phases θk: Two Examples

Setting the values of the derotation phases provides a means of applying a

controlled dither prior to quantization. In the next section, we investigate whether

it could be used for speeding up the phase acquisition. We start by looking at two

motivating scenarios where the naive strategy of setting θk = constant ∀ k fails

to give satisfactory results.

Example 1: Consider 8 phase quantization bins and φ = 10◦ (Fig. 2.2). Choos-

ing θk = 0◦ ∀ k results in a bimodal posterior with a spurious peak at φ = 35◦.

Due to symmetry of the phase boundaries and equiprobable distribution over the

transmitted symbols, the set of observations (1,3,5,7) and (2,4,6,8) leads to the

25



Chapter 2. Blind Phase/frequency Synchronization

posterior being updated in identical ways. With probability of getting bin 3 for

φ = 35◦ being equal to the probability of getting bin 1 for φ = 10◦, there is an

unresolvable ambiguity between the two phases. In general for any phase α, we

have P (zk = i|φ = α, θk = 0) = P (zk = j|φ = 45◦ − α, θk = 0) ∀ i, j ∈ {1, 3, 5, 7}

or ∀ i, j ∈ {2, 4, 6, 8}; which gives rise to a bimodal posterior with peaks at α

and 45◦ − α. Such ambiguities were also noted in the block noncoherent system

considered in [77]. One approach to alleviate this ambiguity is to dither θk ran-

domly; this dithers the spurious peak while preserving the true peak, leading to a

unimodal distribution for the posterior computed over multiple symbols. Another

approach is to break the symmetry in the phase quantizer, using 12 phase bins

instead of 8. However, even this strategy can run into trouble at very high SNR,

as shown by the next example.

Example 2: Now consider 12 phase bins and no noise (or very high SNR), again

with true phase offset φ = 10◦. Since there is no noise, all observations fall in bins

2,5,8,11, resulting in a flat phase posterior over the interval [75◦, 90◦] ∪ [0◦, 15◦] if

there is no dither (θk ≡ 0◦). This could lead to an error as high as 25◦ (Fig. 2.3).

On the other hand, using randomly dithered θks results in an accurate MAP esti-

mate, with the combination of shifted versions (shifted by θk) of the flat posterior

leading to a unimodal posterior with a sharp peak.
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Figure 2.2: Example 1: SNR=5dB, 8 uniform quantization regions

2.4 Phase Acquisition: Feedback Control

While randomly dithered derotation is a robust design choice which overcomes

the shortcomings of the naive strategy of no dither, it is of interest to ask whether

we can do better. In particular, we are interested in finding a dither strategy

that reduces the mean square error of the phase estimate faster (i.e. requiring

fewer symbols), compared to the random dither. The problem concerning us here

belongs to the category of problems related to sequential estimation and control,

which has a large body of research. Most of the relevant references can be found

in the following recent papers : [61, 65, 9], which discuss control policies for mul-

tihypothesis testing, and [4] which looks at control for estimating a continuous
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Figure 2.3: Example 2: SNR=35dB, 12 uniform quantization regions

valued parameter, a scenario similar to ours. These problems are either set over a

finite horizon, then the goal is to find the control policy that minimizes a metric

like the mean square error at the end; or over a variable horizon and the cost

function to be minimized is the sum of the expected number of observations plus

a penalty term for the final estimation being wrong (for the continuous case this

could correspond to the expected mean square error). In the latter case, a stop-

ping criterion also needs to be provided. As discussed in the literature, both these

formulations can be mapped to a Partially Observable Markov Decision Problem

(POMDP), which is intractable to solve optimally. The approach then is to ei-

ther employ approximate solutions (which can still be very complex) or focus on
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characterizing asymptotically optimal solutions (in the limit of large number of

observations and a large coefficient for the penalty term). References [61, 65, 4]

discuss the latter approach. Hence the results obtained in these references are not

directly applicable to our problem since the phase estimation is done over a span

of a few tens of symbols/observations.

In the context of our problem, we find that a simple and intuitive policy which

we call the Greedy Entropy Policy (GE) performs really well and is close to being

optimal as demonstrated by the numerical results. The idea is to pick an action at

each step that minimizes the expected entropy (an information theoretic measure of

uncertainty) of the next step phase posterior. A similar policy has been discussed

in the multihypothesis setting in [61] and used to derive theoretical bounds for the

cost function with the penalty term. Reference [4] proposes a policy that involves

maximizing the fisher information at each step, based on the latest MAP estimate

of the parameter. We hereafter refer to this policy as MFI and discuss its details

later. Since their problem setup is similar to ours, MFI is directly applicable to

our scenario. The authors of [4] prove that MFI is asymptotically optimal but do

not comment on its performance for small n. We find that GE converges to MFI

as the number of observations increase, but performs better for small n, especially

at low SNR. It can be easily shown that GE is equivalent to a policy, which at each

step, greedily maximizes the mutual information between the new observation and

the unknown phase offset. In this form it is identical to the policy discussed in
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[9, 46]. In these references, mutual information between the unknown hypothesis

and the set of observations over a finite horizon is used as the cost function, which

is to be maximized. They show that the greedy approach achieves a value which

is within a constant factor of the optimal cost function and is the best among all

polynomial time algorithms. These guarantees naturally translate to our problem

as well, however unlike [9, 46] we are more interested in minimizing the mean

square error of the phase.

In the beginning of this section, we first discuss these two policies assuming

the consistency of the MAP estimate, i.e. even with constant action the posterior

converges to a unimodal distribution centered around the true value of phase.

This always holds true for the M=12 case with nonzero noise. We then analyze

the special case of zero noise separately, when the phase posteriors are flat and the

MAP estimate is ill-defined. We show that in this case GE reduces the support

of the posterior density by half at every step, thereby reducing the absolute error

at an exponential rate. Finally, we discuss a simple strategy, based on randomly

choosing actions at regular intervals, for ensuring a consistent unimodal posterior

when M=8.
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2.4.1 Greedy Entropy Policy

At step k − 1 (i.e. after observing k − 1 symbols) the net belief about the

phase is captured by the posterior fk−1(φ) := p
(
φ|zk−1

1 , θk−1
1

)
. For simplifying the

notation, we drop the subscript k as the equations described below remain same

for all k. The entropy of the current belief, f(φ) is given by

h(f(φ)) = −
∫
f(φ)log(f(φ))dφ (2.7)

The new posterior, conditioned on the next action θ = θk and observation z = zk,

is given by

fnew(φ|θ, z) =
pθφ(z)f(φ)

pθ(z)
(2.8)

where pθφ(z) represents the conditional distribution of the observation (Eq. 2.4)

given the true phase offset, φ, and the derotation action, θ. The normalization

term in the denominator is the probability density of observing z in the next step

under the effect of taking action θ, averaged over the current belief, i.e.

pθ(z) =

∫
pθφ(z)f(φ)dφ (2.9)

We can now compute the expected entropy of the new posterior if action θ is

chosen, by averaging over the observation density pθ(z)

hθ(fnew(φ)) = Ez [h(fnew(φ|θ, z)] =
M∑
i=1

pθ(zi)h(fnew(φ|θ, z)) (2.10)
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The GE policy chooses the derotation phase that minimizes the entropy of the

new posterior, i.e.

θk = argmin
θ

hθ(fnew(φ)) (2.11)

⇒ θk = argmax
θ

(
h(fφ)− hθ(fnew(φ))

)
= argmax

θ
IU θ (2.12)

Eq. (2.12) presents another way in which the policy can be expressed, i.e. max-

imization of the information utility, IU θ, which is the amount by which the un-

certainty (entropy) is decreased due to the action θ. Information utility can be

expressed in terms of the Kullback-Leibler Divergence, which is useful for proving

its equivalence to MFI as discussed later. Simple arithmetic manipulations using

Eqs. (2.12), (2.7), (2.8) gives

IU θ =

∫
f(φ)Dθ(φ)dφ (2.13)

where Dθ(φ) is the KL divergence between densities pθφ(z) and pθ(z)

Dθ(φ) =
∑
i

pθφ(zi)log
pθφ(zi)

pθ(zi)
(2.14)

It is straightforward to implement the greedy entropy policy by evaluating the

information utility (Eq. 2.13) over the finite set of actions. In the next subsection

we discuss its relationship with the Fisher Information.
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2.4.2 Fisher Information

Fisher information provides a measure of the sensitivity of the estimation prob-

lem to the value of the parameter being estimated. Parameter values that result

in higher fisher information can be estimated with greater accuracy or fewer mea-

surements. The Cramer-Rao bound, which is the inverse of the fisher information,

provides a lower bound on the mean square error for any unbiased estimator. For

the phase offset estimation problem, the fisher information as a function of the

true phase offset and the derotation action, is given by:

FIθ(φ) =
M∑
i=1

(
∂pθφ(zi)

∂φ

)2

· 1

pθφ(zi)
(2.15)

The derivative of the observation density pθφ(z) can be easily computed by differ-

entiating the function fu(·) prior to integration (Eqs. 2.3 and 2.4). In Fig. 2.4

we plot the fisher information as a function of the phase offset (θ has been set to

0) for 4 different cases: SNR low or high and number of regions (M) equal to 8

or 12. We observe that in three of the cases, fisher information is maximum for

phase offsets that bring the final phase after rotation to the “boundary” i.e. one

of the bin edges. This is intuitive at high SNR. Note that the net phase is the

phase offset φ plus the original QPSK phase i · π
4
, i = 1, 3, 5, 7 (plus −θ but that

is 0 here). Note that if the complex QPSK symbol ends up being in the “middle”

of the quantization bin, and the SNR is high, the same measurement would be

recorded at every symbol period, resulting in a flat posterior which is bad for esti-
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mation. Interestingly, when the noise is high enough to knock the symbol around

a lot more and the bins are narrower (M = 12), fisher information is maximized

for a phase offset (30◦) that brings the symbol to the “middle” of the quantization

cone (Fig. 2.4(d)) (for instance, if the QPSK symbol π
4

is transmitted, the net

phase is 30◦ + 45◦ = 75◦ which is exactly in between the phases thresholds at

angles 60◦ and 90◦).

The fisher information computations provide us with a “genie” optimal control

policy i.e. the best action for any given phase offset value is the one that brings the

net phase to a value for which the fisher information is maximized. Of course, in

practice we cannot implement such a policy since knowing the true phase would

obviate the need for phase estimation in the first place. However, we can use

the maximal fisher information value to compute the Cramer-Rao bound which

provides us a benchmark for bounding the MSE performance of the optimal control

policy (and hence any other policy).

We do not know the true value of the phase offset, however in place of that

we can use our best guess, which is the latest MAP estimate. This leads to the

‘maximizing fisher information’ (MFI) policy which chooses actions at each step

as follows:

θ = argmax
θ

FIθ(φMAP ); where φMAP = argmax
φ

f(φ) (2.16)
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where FIθ(φ) is computed via Eq. (2.15). f(φ) is the latest belief/posterior dis-

tribution of the phase offset. MFI chooses optimal actions if the MAP estimate

is close to the true offset. This becomes increasingly true as the number of obser-

vations increase. Indeed in reference [4], it was been shown to be asymptotically

optimal under consistency assumptions. However when the uncertainty in f(φ)

is high, we expect a policy that takes into account the distribution, such as the

GE, to perform better. MFI may not be ideal during the initial stages when the

MAP estimate can be quite bad. In fact, the simulation results presented later

demonstrate that in the case of high noise and coarser quantization, when the

MAP estimate takes a while to settle near the true value, GE performs slightly

better than the MFI policy. It is not surprising that as the uncertainty in f(φ)

reduces and the estimator becomes more confident of the MAP estimate, the GE

policy reduces to MFI. This is proved in the following theorem.

Theorem 1. Given that the latest phase posterior is normally distributed, i.e.

f(φ) ∼ N (φ0, v
2) where v is in the unit of radians; then as the variance becomes

smaller, the greedy entropy policy chooses the same actions as the maximizing

fisher information policy, i.e.

lim
v→0

argmax
θ

IU θ = argmax
θ

FIθ(φ0) (2.17)

Specifically

lim
v→0

IU θ

v2
=

1

2
FIθ(φ0) (2.18)
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The proof is provided in the appendix (A.2). Note that f(φ) is not strictly

Gaussian as its support is [0, π
2
). However, when consistency of the estimate is

guaranteed and as the number of observations increase, the property of asymptotic

distribution of MLE estimators ensures that f(φ) approaches the Gaussian density

with φMAP as the mean. The theorem then kicks in; in fact in our simulations

we find that the equation argmax
θ

IU θ ≈ argmax
θ

FIθ(φ0) starts becoming true as

soon as the standard deviation of f(φ) is within a few degrees. We also note from

the theorem that the value of the information utility scales with the variance of

the posterior density, independent of the actions.
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Figure 2.4: Fisher Information as a function of φ (θ = 0)
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2.4.3 Zero Noise Case

As discussed earlier, when SNR is very high, the resulting posterior density is

flat i.e. uniform over a support interval determined by the set of observations. In

this case a dither is really important, as keeping θk fixed results in the same mea-

surement and no change in posterior. This is a common feature with all systems

involving quantized measurements: at high SNR, dither acts as artificial noise

and provides the necessary diversity of measurements required for estimation. In

this zero noise case, the posterior remains always flat, only the support changes

as we change the action. GE is equivalent to choosing the action that reduces

the support the most and is hence optimal. This is established via the following

lemma, whose proof is discussed in the appendix (A.3).

Lemma 1. In the absence of noise (i.e. wk = 0 ∀k in Eq. (2.2)), the phase

posterior fk(φ) is a uniform density for all values of k. Let Sk denote the size

of its support at time k. The action chosen by the Greedy Entropy policy is the

one that minimizes the expected value of Sk+1. Furthermore, Sk+1 = 1
2
Sk, hence

the absolute phase error reduces exponentially at the rate of 1
2
. Although MFI is

not well defined as there is no unique MAP estimate, but if the MMSE estimate

is used instead in Eq. (2.16), MFI chooses the same actions as the GE policy.
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2.4.4 Avoiding the phase ambiguity for M = 8 case

Till now we have assumed that the φ posterior always converges to the correct

phase offset irrespective of the sequence of actions taken. And this is indeed

true when M = 12, for which the MAP estimate is always consistent. This is

because for any action θ, different values of the true phase offsets result in distinct

observation densities. This can be expressed mathematically as follows

for any φ 6= φ′, D
(
pθφ||pθφ′

)
> 0 ∀ θ (M = 12) (2.19)

However when M = 8, the above condition does not hold. Due to the symmetry

of the angular thresholds, for any given value of φ and a given derotation θ,

there exists another phase offset, φ′, which results in an identical distribution over

the quantized measurements. This means that if θ is kept constant, the limiting

posterior f(φ) is bimodal, with true and spurious peaks at locations φ and φ′

respectively. Value of φ′ is a function of φ (which remains fixed) and θ. The

lemma below specifies this relationship.

Lemma 2. When M = 8 and the true phase is denoted by φ ∈ [0, π
2
), for any

derotation phase θ, there exists an value φ′ ∈ [0, π
2
) 6= φ, such that D

(
pθφ||pθφ′

)
= 0.

This holds for φ′ = mod
(
2θ − φ+ π

4
, π

2

)
.

The proof, which is fairly straightforward, is discussed in the appendix (A.4).

We see that a constant dither policy is unacceptable as it leaves a bimodal am-

biguity in the value of the phase offset. Any other policy in which θk does not
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remain perfectly constant, is generally expected to eliminate bimodality, but may

run into certain issues sometimes. A random dither continuously changes θ and

thereby guarantees a correct unimodal limiting posterior. The same, however,

does not necessarily hold true for the GE or MFI policies. Interestingly, with

either of these policies, there is also a chance, albeit with low probability, of the

final posterior being single peaked at the spurious phase offset value. This can

happen in the following manner: suppose a total of N measurements are made,

out of which a majority, say N1 ≈ N employed a constant action (this can happen,

say with MFI if φMAP remains same). In the remaining few steps, N2 = N −N1,

different value(s) of θ were used. Recall that the final φ posterior is just a summa-

tion of the individual step log likelihoods, the order being irrelevant. Now it may

happen that these few N2 observations are affected by bad noise instances and

the φ posterior, computed based on just these steps, has a larger probability mass

at the spurious value. Since the posterior distribution from the other N1 steps

is perfectly bimodal, the net combined posterior ends up having a much stronger

peak at φ′. Note that the chance for such an event is generally very small, as it

requires getting multiple bad measurements during which φ′ should appear to be

more probable. However we have observed it to happen once in a while during

our monte carlo runs.

A simple modification to the policies MFI/GE can guarantee vanishing prob-

abilities for such bad events. The idea is to pick the actions randomly at regular

39



Chapter 2. Blind Phase/frequency Synchronization

intervals for a fixed fraction, γ, of the steps. For instance, γ = 0.1 means choosing

every 10th action randomly, while the rest are chosen in the usual manner as dic-

tated by the policy being employed. As N tends to infinity, the number of random

dither steps γN tends to infinity as well (for any non-zero value of γ), thereby en-

suring that the limiting posterior is unimodal and converges to the correct phase.

Note that a more efficient scheme can also be used, as described in the reference

[65], where they propose a schedule that employs randomly chosen actions at sam-

pling times that grow exponentially. However, in our problem setup, where we

are concerned with typically less than 100 measurements, the fixed rate schedule

works well with almost no change in the efficiency of the GE/MFI policies.

2.4.5 Simulation Results

The performance of phase acquisition is evaluated using Monte Carlo simula-

tions averaging over randomly generated channel phases. Fig. 2.5 plots results

for two values of SNR: a low value of 5 dB and a high value of 15 dB. The perfor-

mance measures are the root mean squared error (RMSE), which captures average

behavior, and the probability of the phase error being smaller than a threshold,

which captures the tail behavior. Errors are computed modulus 90◦, for instance

if the true phase offset is 80◦ and the estimate is 5◦, this is equivalent to an error

of 15◦. We implement three policies: greedy entropy (GE), random dither (R) and
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Figure 2.5: Results of Monte Carlo simulations of different strategies for choosing
the feedback θk with 4 and 6 ADCs (8 and 12 phase bins) at SNRs 5dB and 15dB.
Policies: Greedy Entropy (GE), Maximizing Fisher Information (MFI), Random
dither (R) and Constant derotation phase (Const)

maximizing the fisher information (MFI). We also simulate the policy of keeping

the derotation phase constant when M=12, the case for which it is consistent. For

comparison we plot the CRLB computed by inverting the maximal fisher infor-

mation (maximum over different values of the true phase offset keeping θ = 0),

this gives the performance of the genie optimal strategy. However, note that this

does not give a valid lower bound when the number of measurements are few and

the errors can be large. This is because the Cramer-Rao bound is based on the
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standard notion of squared error, not the circular modulus error which is more

appropriate in this problem. This is not much of an issue as more observations

are made and the error reduces, the two notions of computing error become same

with increasing probability. From the plots, we make the following observations:

(a) The performance of GE is very close to the “genie” optimal control policy

(CRLB) in all cases. (b) GE and MFI performance are almost identical, GE is

slightly better at low SNR and coarser quantization (4ADCs, 5dB), when MAP

estimate can be bad initially and MFI relies too much on it. (c) At low SNR, there

is little to distinguish between random dithering and GE, since the noise supplies

enough dither to give a rich spread of measurements across different bins. In fact

at low noise and finer quantization (5dB, 12 bins), the constant action performs

as well as others. However, when the quantization is more severe (8 bins), the

greedy entropy policy provides performance gains over random dithering even at

low SNR. To summarize, we find that efficient dithering policies could be effective

for rapid phase acquisition under the scenarios of more severe quantization and

higher SNRs.

Once an accurate enough phase estimate is obtained in the acquisition step,

we wish to begin demodulating the data, while maintaining estimates of the phase

and frequency. In the next section, we describe an algorithm for decision directed

(DD) tracking. In this DD mode, the phase derotation values θk aim to correct for
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the channel phase to enable accurate demodulation, in contrast to the acquisition

phase, where the derotation is designed to aid in phase estimation.

2.5 Phase/Frequency Tracking

We must now account for the frequency offset in order to track the time-

varying phase, and to compensate for it via derotation in order to enable coherent

demodulation. The phase can be written as φ(k) = φ0 + 2πkTs∆f = φ0 + kη,

where η is the normalized frequency offset, defined as the rate of change of phase in

radians per symbol. To get a concrete idea of how fast the phase varies, consider

the following typical values: fc = 60 GHz, bandwidth of 6 GHz, i.e. Ts =

(6 × 109)−1 secs, an offset ∆f = 100ppm · fc, which leads to η = 2πTs∆f =

2π · 10−3 radians; a linearly varying phase rate of 0.36◦ per symbol. We can

therefore accurately approximate the phase as roughly constant over a few tens

of symbols, while obtaining an accurate estimate of the frequency offset η would

require averaging over hundreds of symbols. This motivates a hierarchical tracking

algorithm. Bayesian estimates of the phase are computed over relatively small

windows, modeling it as constant but unknown. The posterior computations

are as in the previous section, with two key differences: the derotation phase

value is our current best estimate of the phase, and we do not need to average

over the possible symbols, since we operate in decision-directed mode. These
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relatively coarse phase estimates are then fed to an extended Kalman filter (EKF)

for tracking both frequency and phase. The filter is initialized with the phase

estimate as derived in the previous section. Note that the data is differentially

encoded over the QPSK symbols (this is necessary as the phase estimation was

performed modulo π
2

in the acquisition stage).

Denote by φ̂MAP;W (k) the MAP phase estimate over a sliding window of W

symbols. This is fed as a noisy measurement of the true time varying phase φ(k)

to an EKF constructed as follows:

Process Model

xk = Axk−1 + wkφ(k)

η(k)

 =

1 1

0 1


φ(k − 1)

η(k − 1)

+ w(k)

where w(k) ∼ N (0, Qk) is the process noise, the state vector comprises the phase

and the normalized frequency offset xk = [φ(k) η(k)]T and the state evolution ma-

trix A = [1 1; 0 1]. Note that Qk is of the form σ2
p · [1 1; 1 1] since the same noise

term influences both the phase and frequency offset i.e. η(k) = η(k − 1) + wk(2),

and φ(k) = φ(k − 1) + η(k) = φ(k − 1) + η(k − 1) + wk(2), hence wk(1) = wk(2).
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Measurement Model

yk = h(xk) + vk

y(k) =

cos(4 · φ̂MAP;W (k))

sin(4 · φ̂MAP;W (k))

 =

cos(4 · φ(k))

sin(4 · φ(k))

+ v(k)

where h(·) is a non linear measurement function. The particular form is chosen

to resolve the issue of unwrapping the phase periodically as it grows linearly:

the factor of 4 inside the sine and cosine arguments chosen to obtain a period of

90◦, since we are only interested in phase estimates over the range [0, π/2]. The

measurement noise is v(k) ∼ N (0, Rk). For the EKF, computation of the Jacobin

of the nonlinear function h(·) is required, which in this case evaluates to

Hk =

−4sin(4φ(k)) 0

4cos(4φ(k)) 0


The EKF update equations are given as follows (we refer the readers to Chapter

10 of [7] for a discussion on EKF, and to [70] for a somewhat similar application
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of EKF for phase tracking).

Time Update:

x̂k|k−1 = Ax̂k−1

P̂k|k−1 = AP̂k−1A
T +Qk

K = P̂k|k−1H
T
k

(
HkP̂k|k−1H

T
k +Rk

)−1

Measurement Update:

x̂k = x̂k|k−1 +K
(
yk − h(x̂k|k−1)

)
P̂k = (I −KHk) P̂k|k−1

P̂k is the estimate of the state error covariance and Hk is evaluated at x̂k|k−1.

The cleaned state estimate, x̂k, provides the latest estimate of the frequency offset

η̂(k) = x̂k(2) and a delayed estimate of the net phase, delayed due to the effect of

sliding window. The measurement at time k, yk, reflects the phase estimated over

the time window [k−W,k], hence the feedback (for undoing the phase at time k)

is set according to θk = x̂k(1) + W
2
· η̂(k).

Tuning the filter: Although the measurement noise covariance Rk can be calcu-

lated from the variance of the posterior of the phase, constructed over the sliding

window, the filter performance was observed to be quite robust to the choice of

Rk over a range of SNR. For the simulations presented in this paper, we assumed

a constant Rk = [0.1 0, 0 0.1]T , which worked well for SNRs 0-15dB and sliding

window length of W = 50 symbols. The scaling of the process noise (Qk) trades
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Figure 2.6: Performance plots of EKF based Tracking Algorithm

off steady state versus tracking performance: small Qk results in accurate esti-

mates but slow reaction to abrupt changes in frequency, while large Qk improves

the response to abrupt changes at the expense of increased estimation error. Since

the ultimate measure of performance is the bit error rate (BER) rather than the

phase estimation error itself, a sensible approach to design is to set Qk to the

largest value (and hence the fastest response to abrupt changes) compatible with

phase estimation errors causing a desired level of degradation in BER relative to

ideal coherent demodulation.
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2.5.1 Simulation Results

Fig. 2.6 shows the tracking algorithm in action. We have used M=8 bins.

Subplot 2.6(a) shows several superimposed snapshots of the windowed posterior

of the phase, whose peaks (the MAP estimates) are used as measurements for

the EKF. In subplot 2.6(c) η was changed from 2π · 10−3 to π · 10−3 after 4000

symbols. The plot shows η̂, the estimate, for choosing Qk = 5 × 10−11[1 1; 1 1]T

which enables the filter to lock onto the new value in about 1000 symbols. The

last subplot 2.6(d) shows BER curves for ideal (unquantized) coherent QPSK

and that of the proposed algorithm, which is almost indistinguishable from the

former. Using noncoherent differential QPSK (DQPSK) obviates the need for

phase synchronization but results in a 2dB performance degradation.
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Slicer Architectures for
Analog-to-Information
Conversion in Channel Equalizers

Our focus in this chapter is to explore A/D front end designs for achieving

optimal BER performance with highly constrained ADC resolution. We consider

antipodal signaling through a static dispersive channel with a finite, short to

moderate length memory (∼ 4− 8 symbol periods). Such channels are commonly

encountered in high speed (∼ 10Gbps) backplane wireline links.

A popular architecture for high sampling rates is the Nyquist sampled flash

ADC, which is comprised of comparators/slicers with thresholds typically spread

uniformly over the input signal range. While this architecture is suitable for

minimizing the reconstruction error of the received signal, it is not efficient as

an analog-to-information converter for recovering the bits sent over the commu-

nication link. This is certainly the case for a dispersive channel, but even for

Parts of this chapter are reprinted from our conference submission [84], c©[2014] IEEE
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non-dispersive channels, it has been shown that Nyquist sampling can be subop-

timal (in terms of channel capacity) in the presence of heavy quantization. We

investigate generalizations of the flash ADC for analog-to information conversion,

as opposed to the standard objective of waveform preservation, for communication

over dispersive channels. Our goal is to understand the performance-complexity

trade off space when the slicers are allowed operate at different sampling phases

and non-uniform thresholds, with the parameters potentially adapted to the chan-

nel. Since the power consumption of a high resolution ADC increases enormously

with the sampling rate, and directly scales with the number of slicers used by the

ADC (a log2(n + 1)-bit ADC employs n slicers), we want to keep the number n

as low as possible.

Map of this Chapter: We first present the related work in section 3.1. System

setup is described in section 3.2. Section 3.3 discusses the performance of the

uniform ADC architecture and presents its limitations in terms of being sensitive

to the channel and the sampling phase. This motivates an architecture that ex-

plores multiple sampling phases, a special case of which, the 1-bit slicer structure,

is analyzed in section 3.4. The result discussed in this section shows that the

mutual information is preserved by randomly dispersing enough slicers in space

(threshold values) and time (sampling phases). The proof of our theoretical re-

sult on `1 distance preservation is analogous to that of the JL lemma [24] which

provides a theoretical basis for compressed sensing. The result also appears at
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first glance to be similar to the bit-conservation principle articulated in [48], but

the details and implications are completely different. The result in [48] considers

signal reconstruction, and can be roughly paraphrased as saying that n 1-bit ob-

servations are equivalent to n/2k k-bit measurements. In contrast, our result says

that n 1-bit measurements are equivalent to n infinite-precision measurements

in terms of guaranteeing the feasibility of reliable data recovery in the low-noise

regime (albeit with a smaller error exponent). The last section of the chapter 3.5

presents an algorithm for choosing the thresholds that approximately minimizes

the bit error rate of the maximum likelihood equalizer.

3.1 Related Work

It is known that Nyquist sampling, even for strictly band-limited inputs, is

not optimal for finite precision measurements. For example, Gilbert [33], Shamai

[74] and Koch [44] have shown that the capacity of bandlimited systems with 1-bit

measurements increases as we sample faster than the Nyquist rate. A related result

is discussed by Kumar et al [48]. The effect of heavily quantized measurements on

communication systems design and performance has received significant attention

recently. For non-dispersive channels, the effect of coarse quantization has been

studied for the ideal AWGN channel [76], carrier-asynchronous systems [77, 83],
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and fading channels [59]. Reference [21] discusses channel estimation with coarsely

quantized samples.

A number of recent papers [92, 13, 63, 64] consider the problem of equaliza-

tion with low-precision analog front ends, and propose methods for designing ADC

quantizer levels. However, the emphasis in all of these papers remains on design-

ing multiple slicer thresholds for a given sample, rather than dispersing slicers

over time as we allow. Moreover, none of these focus on designing the front end

to optimize the minimum BER (based on MAP decoding) as we do. Reference

[92] considers the problem of designing non-contiguous quantizers for maximiz-

ing the mutual information between i.i.d. inputs and quantized outputs. Mutual

information quickly saturates with SNR, and is therefore not a good measure to

optimize for the uncoded or lightly coded systems typical at high speeds. More-

over, non-contiguous quantization, if implemented by parallel comparators, does

not fully utilize the available number of slicers. References [13, 63, 64] also opti-

mize BER as we do, but they restrict attention to simpler processing (based on a

linear transmit filter and DFE rather than the optimal BCJR algorithm employed

here), hence their performance degrades quickly for heavy quantization and heavy

precursor ISI. Our use of optimal nonlinear decoding enables significant reduction

in the number of slicers while avoiding error floors: for instance, with an FR4

channel similar to the one used in [63], the BER that we obtain using only 5

slicers (equivalent to using a log2(6)−bit ADC) is much smaller than what is re-
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ported there using a 3-bit ADC (7 slicers). Of course, the potential power savings

in the analog front end from reducing the number of slicers must be balanced

against the more complex digital backend. Such detailed tradeoffs are beyond our

present scope, but as noted in the conclusions, are an important topic for future

work.

3.2 System Model

We focus on uncoded transmission of binary symbols b = {bi}, with bi chosen

independently and equiprobably from {−1,+1}, at rate 1/Ts over a real baseband

dispersive channel. The continuous time received signal at the input of the A/D

conversion block is given by

xc(t) =
∞∑

i=−∞

bih(t− iTs) + wc(t) (3.1)

where h(t) = (hTX ∗hc∗hRX)(t) is the effective channel impulse response obtained

by convolving the transmit filter hTX(t), the physical channel hc(t), and the receive

filter hRX(t). Assuming white noise n(t) with PSD σ2 at the input to the receive

filter, the noise wc(t) = (n ∗ hRX)(t) at the input to the A/D block is zero mean

Gaussian with autocorrelation function

Rwc(τ) = σ2

∫
hRX(t)hRX(t− τ)dt (3.2)
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Input to quantizer: Let x(k) = x(sk) denote the continuous-valued discrete time

samples obtained by sampling at times {sk}. For Nyquist sampling at rate 1/Ts,

we set sk = (k + τ)Ts, where τ ∈ [0, 1) is the sampling phase (suppressed in

subsequent notation for simplicity of exposition). We assume that the receive

filter is square root Nyquist (e.g. square root raised cosine) at rate 1/Ts, so that

the noise samples wc(kTs) are uncorrelated. However, sampling irregularly, or

faster than 1/Ts, both of which we allow, yields correlated noise samples.

Quantizer: We denote by q(x; T) the output of a quantizer mapping a real-valued

sample x to N + 1 values using thresholds T = {t1, ..., tN}. For a classical n-bit

quantizer, we have N = 2n − 1. For a uniform quantizer over the range [−R,R],

we have

ti = R

(
−1 + i

2

N + 1

)
, i = 1, ..., N (3.3)

Our goal here is to explore more flexible designs, in terms of choice of both N and

T.

In this paper, we consider three different scenarios:

1) T -spaced equalization (TSE): We consider regularly spaced samples at rate

1/Ts, and we use a fixed quantizer for all samples. The effective discrete time

channel is denoted by h = [h(0), h(Ts), .., h((L − 1)Ts)]
T = [h1, h2, .., hL]T , where

L is the channel memory. We note that

x(k) = 〈h,bk−L+1
k 〉+ w(k) (3.4)
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where bk−L+1
k = (bk, bk−1, ...., bk−L+1)T denotes the set of bits affecting the kth

sample, and w(k) are i.i.d. N(0, σ2||hRX ||2). We assume that the same quantizer

T is used for all samples, so that the quantized samples are given by

xq(k) = q (x(k); T) (3.5)

The key question in this setting is how the performance depends on T, where we

allow channel-dependent choices of T.

2) Fractionally spaced equalization (FSE): We consider samples spaced by Ts/2

(the typical choice for FSE), which yields two parallel symbol rate observations,

which can be modeled as two parallel discrete time channels h1 and h2 operating

on the same symbol stream:

xi(k) = 〈hi,bk−L+1
k 〉+ wi(k) , i = 1, 2 (3.6)

where L is the larger of the memory of the two parallel channels. The noise streams

wi(k) are each white, but are correlated with each other. The correlations can be

computed based on the autocorrelation function (3.2) of the continuous-time noise

wc. We also allow the quantizers for the two streams to differ, with thresholds T1

and T2, so that the two-dimensional quantized observation at time k is given by

xq(k) = [q(x1(k); T1), q(x2(k); T2)]T .

3) General space-time equalization: Here we allow the sampling times {sk} to be

arbitrary, and also allow the quantizer Tk for each sample to vary.
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Thus, our goal is to understand how to rethink equalizer design in the classical

settings of scenarios 1 and 2 when we have severe quantization constraints. In

considering scenario 3, we try to provide a theoretical perspective on how flexible

quantizer design can be, in terms of choice of sampling times and quantizers.

In particular, we focus on high rate fractionally spaced sampling with randomly

chosen and scalar Tk, corresponding to one-bit quantization with time-varying

thresholds.

We assume that the discrete time channels corresponding to the sampling

points are known (e.g., see [21] and Chapter 6 in [91] for approaches for chan-

nel estimation with low-precision quantization). We employ the BCJR [6] or the

Viterbi MLSE algorithm [31] to evaluate various quantizer designs (for complete-

ness, a quick review of how these apply to our setting is provided in the appendix

A.5). For irregular or faster than Nyquist sampling, the noise samples at the

quantizer input are correlated, but we ignore these in running the BCJR or MLSE

algorithm, which means that the performance in these settings could potentially

be improved further by accounting for these correlations. However, accounting

for such correlations in severely quantized observations is difficult, and we do not

expect the gains to be significant at the high SNRs (typical for high-speed wireline

links) considered here.

Example channels: We use three channels as running examples (see Figures

3.1(a), 3.1(a), 3.1(a)) throughout the paper. Channel A models a 20 inch FR4
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backplane channel at 10GHz [63], and has discrete time channel impulse re-

sponse (CIR) hA,0 = [.1, .25, .16, .08, .04] (maximum phase, as is typical for back-

plane channels). Channel B, taken from [69], is mixed phase with CIR hB,0 =

[.23, .46, .69, .46, .23]. For simulations with irregular or faster than Nyquist sam-

pling, the continuous channel impulse waveform is required. We generate it using

interpolation with a raised cosine waveform with roll-off factor 0.5. This may

be interpreted as using matched square root raised cosine (SRRC) pulses for

the transmit and receive filters with physical channel impulse response hc(t) =∑L
i=1 hiδ(t − i) (setting Ts = 1 without loss of generality). Channel C is gen-

erated by SRRC transmit and receive pulses as above, with physical channel

hc(t) = .2δ(t− 1) + .3δ(t− 1.85) + .15δ(t− 2.55) + .25δ(t− 3.35) + .05δ(t− 4.6).

This gives a channel with a broader peak (formed from the merging of two peaks)

than the other two. The impulse responses (h(t)) of the 3 channels are shown

in the subfigures 3.1(a), 3.1(a), 3.1(a). The notation hA,τ , 0 ≤ τ < 1 is used to

denote the CIR obtained by sampling at the sampling phase τ (i.e., the sampling

times are at (k + τ)Ts). For instance hC,1/2 = [−.03, .24, .3, .22, .03, .01].

3.3 Nyquist Sampled Uniform ADC

We first consider the standard setting of Nyquist sampling with uniform ADC

with N thresholds as in (3.3), and ask how small N can be for a given chan-

57



Chapter 3. Slicer Architectures for Analog-to-Information Conversion in Channel
Equalizers

nel while avoiding an error floor (i.e., error-free reception at infinite SNR)? An

analytical characterization is intractable, but it is possible to evaluate Nmin nu-

merically by fixing σ2 = 0, and increasing N until the information rate reaches

its maximum value (for binary signaling) of one. The information rate can be

evaluated via Monte Carlo methods using BCJR as described in [3]. However, it

is interesting to explore whether there are analytical insights to be obtained by

examining the channel coefficients. Intuitively, we expect that a channel with a

strong dominant tap should have a lower value of Nmin, compared to a channel

where the taps are comparable. The placement of the dominant tap should also

have a significant effect. We make these intuitions concrete via the lemma stated

next, which provides easily computable bounds for Nmin when all the channel taps

have the same sign (which is often a good approximation for backplane channels,

for example). The proof of the lemma, given in the appendix A.6, is based on

bounds on information rate derived by Zeitler [92].

Before stating the lemma, we note that the symmetric information rate is

invariant under time reversal and scaling (under fixed SNR) of the channel. The

scaling result is standard, and the time reversal result follows because the same

output is generated by feeding a time reversed bit stream (which is another valid

i.i.d. input) to the time reversed channel. Naturally, the bounds in the lemma

also exhibit these invariances. Define g = h
‖h‖1

as a normalized version of h with

unit `1 norm, and set g̃ as the time-reversed version of g, so that g̃i = gL−i+1.
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i = 1, ..., L. Define

Nl =

⌈
1

max
i

(gi)
− 1

⌉
(3.7)

Nu = min

(
{duie , 2 ≤ i ≤ L− 1}, {dvie , 2 ≤ i ≤ L− 1},

⌈
1

g1

− 1

⌉
,

⌈
1

g̃1

− 1

⌉)
(3.8)

where

ui =
1

(gi −
∑i−1

j=1 gj)+

− 1 ; vi =
1

(g̃i −
∑i−1

j=1 g̃j)+

− 1

where (x)+ = x if x > 0 and (x)+ = 0 if x ≤ 0. Thus, we allow ui, vi to take the

value +∞, but the value of Nu is guaranteed to be finite because of the last two

terms in the minimum. It is also easy to see that vL−i+1 = 1

(gi−
∑L
j=i+1 gj)+

− 1.

Lemma 3. The minimum number of levels for avoiding an error floor is bounded

as follows:

Nl ≤ Nmin ≤ Nu

The lower and upper bounds capture the effect of the strength and the location

of the dominant tap, respectively. An examination of the expression (3.8) for

Nu shows that, if we can permute a given set of channel coefficients, maximum

or minimum phase channels (most of the energy in ending or beginning taps)

will generally have smaller Nmin compared to mixed phase channels (most of the

energy in the taps in the middle). Table 3.1 lists the values of Nmin (computed

numerically) for a few different channels along with the lower and upper bounds.

We find that for a fixed channel, varying the sampling phase may slightly change
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Nmin. However, as we show next, the shape of the BER curve and the performance

at moderate SNRs may be far more sensitive to the sampling phase.

h Nl Nu Nmin

hB,0 = [.23 .46 .69 .46 .23] 2 8 5
[.46 .69 .46 .23 .23] 2 4 2
[.69 .46 .46 .23 .23] 2 2 2

hB,1/4 = [.04 .29 .54 .67 .39 .16] 3 8 5
hB,1/2 = [.09 .34 .61 .61 .34 .09] 3 8 6

hA,0 = [.1 .25 .16 .08 .04] 2 4 3
hC,0 = [.05 .33 .26 .11 .02] 2 2 2

Table 3.1: Minimum number of thresholds required to decode with no error at
high SNR. Also listed are the lower and upper bounds computed using Lemma 3.

For suboptimal linear equalization with unquantized samples, it is well known

[34, 69] that fractionally spaced equalizers (FSE) are superior to symbol-spaced

equalizers, providing robustness to sampling phase and avoiding error floors due

to residual interference. However, when optimal BCJR or MLSE equalization is

employed, the difference is not as drastic, but FSE is still more insensitive to

sampling phase, which is attractive because hardware-based control of sampling

phase is not always feasible. We would like to investigate if similar trends hold

with severe quantization, with a quick exploration in this section followed by more

detailed theory and algorithms in later sections. In order to have a fair comparison

between TSE and FSE, we take the number of slicers used in a TSE and disperse

them across different sampling phases to obtain a space-time architecture.
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As an example, we plot in Fig. 3.1(c) the BER over channel B with TSE

(unquantized and uniform ADC with 7 slicers) for sampling phases 0, 0.25 and

0.5. In the unquantized setting, there is a small degradation in performance (∼ 1

dB at 10−5) at sampling phase 0.5. However, the degradation with quantization is

much larger, even though there is no error floor (see the hB,1/2 entry in Table 3.1).

Even for channels with similar dynamic ranges, the performance of TSE/uniform-

ADC with a fixed set of thresholds can show significant sensitivity to sampling

phase. As a quick remedy, we try spreading the same set of slicers across time, as

shown in Fig. 3.1(b). Changing the sampling phase now corresponds to shifting

the whole space-time slicer structure. We see that now the performance (the BER

curves in gray) is much less sensitive to the phase, although there is still some

degradation for one of the sampling phases. This was a specific configuration,

obtained without any design, which demonstrated the potential of space-time

slicers. However, there are numerous ways in which the slicers can be spread

across time, hence it of interest to develop automated procedures for arriving at

good designs. It is also natural to ask the question as to whether there is any

fundamental disadvantage to spreading slicers across time.

In the next section, we show that even randomly distributed slicers spread

across time suffice to avoid error floors as long as the number of slicers is large

enough, showing that there are no fundamental limitations imposed on the design

space. Of course, the number of slicers predicted by this theoretical result is much
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larger than what is required when the space-time architecture is optimized for a

particular channel, and we consider this problem in Section 3.5.

3.4 One-bit Measurements with Random Thresh-

olds

In this section, we consider the special case of 1-bit measurements spread over

time. Without loss of generality, consider reliable demodulation of bit b0. We

restrict attention to measurements in the interval [0, LTs] affected by this bit. This

choice of observation interval is sensible but arbitrary, and our approach applies

to other choices as well. The measurements in this interval are also affected by

L − 1 “past” ISI bits (b−L+1, ..., b−1) and L − 1 “future” ISI bits (b1, ..., bL−1).

Denote the noiseless received waveform in this interval by s(t), suppressing the

dependence on the desired bit bi and the ISI bits from the notation. Without loss

of generality, we normalize h(t) so that s(t) lies in [−1, 1]. The main result in this

section can be paraphrased as follows: for sufficiently many 1-bit measurements

uniformly spaced in time but with thresholds chosen randomly over [−1, 1], it is

possible (at high SNR) to reliably distinguish between b0 = +1 and b0 = −1, as

long as it is possible to do so with unquantized measurements.
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Information rate: Let xji denote the vector of samples (these may or may not

be quantized) obtained during the interval [iTs, jTs]. For symbol spaced sampling,

the length of xji is j − i+ 1 (the length for general space-time slicers depends on

the specific pattern of sampling times used). The information rate between the

transmitted bits and the received samples is given by

I(b; x) = lim
N→∞

1

N
I(bN1 ; xN1 )

= lim
N→∞

1

N

N∑
i=1

I(bi; x
N
i |bi−1

i−L+1)

≥ lim
N→∞

1

N

N∑
i=1

I(bi; x
i+f
i |bi−1

i−L+1) (3.9)

Inequality (3.9), derived in [92], states that the information rate is lower bounded

by the average (over the past bits) mutual information between the current bit

and the measurements over the next few symbols (f), conditioned on the past

bits. Numerical results in [92] show that this lower bound becomes a fairly tight

approximation for f = L future symbols.

Let xL0 denote the vector of continuous-valued samples obtained by sampling

s(t) uniformly, n times, over the observation interval. Fixing the past ISI bits,

we partition the noiseless waveforms corresponding to all possible realizations of

the future bits into two sets, each of cardinality 2L−1, corresponding to the two

possible values of the “tagged bit” b0: S−1 = {s(t) s.t. b0 = −1} and S+1 =

{s(t) s.t. b0 = +1}. Denote by X−1 and X+1 the corresponding sampled vectors

xL0 . The absence of error floors can be proved by setting the noise level to zero and
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checking whether the lower bound (3.9) on the information rate equals one. This

happens as long as the set of observations generated by the two different values

of the desired bit are mutually exclusive: X−1 ∩X+1 = ∅. Note that this property

always holds for unquantized measurements, as long as at least one sample is

obtained in the first symbol period ([0, Ts]) and the corresponding CIR value

h(0) 6= 0. This follows from the fact that, since the past bits are fixed, and future

ISI bits do not affect the waveform in the interval [0, Ts], b0 = −1 and b0 = +1

result in different samples in the first entry of xL0 . This result is also discussed

in [90], where the author considers symbol spaced samples and shows that the

lower bound (and hence the information rate) goes to one as SNR increases as

long as the first element of the discrete time CIR is nonzero. In general, such

guarantees cannot be provided for quantized measurements. However, we show

that as long as n is large, using randomized thresholds for one-bit quantization

results in similar behavior.

In general (at any SNR), the performance depends on the amount of over-

lap/separability between the sets X−1 and X+1. For the purpose of our proof,

we employ the normalized `1 distance between each pair of elements x−1 ∈ X−1,

x+1 ∈ X+1, defined as follows:

‖x−1 − x+1‖1 =
n∑
i=1

∆ |s−1(i∆)− s+1(i∆)| (3.10)
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where s−1(t) and s+1(t) are the corresponding continuous time waveforms from

sets S−1 and S+1 respectively and ∆ is the sampling interval (for uniform sampling

as assumed in this section, n∆ = LTs). The scale factor ∆ is included for the

normalized `1 norm ‖x−1 − x+1‖1 to approximate the continuous time `1 norm

‖s−1 − s+1‖1 as n gets large. We define the minimum normalized `1 distance

between the two sets as follows:

d = min
x−1∈X−1;x+1∈X+1

‖x−1 − x+1‖1 (3.11)

For unquantized observations, as noted earlier, X−1 ∩ X+1 = ∅, and hence d > 0.

Let us now consider what happens when we pass the unquantized sampled

vector x through a series of one-bit quantizers, with the ith sample compared

to threshold ti. The vector of thresholds is denoted as T = [t1, t2, ....., tn]T , and

defines a quantization function q as follows:

q(x) = (2∆)y ; y(i) =


1 if x(i) ≥ ti

0 if x(i) < ti

i = 1, ....., n (3.12)

The following theorem states that, with a sufficient number of samples n,

quantized with random thresholds, the quantization function q(·) approximately

preserves the `1 norm of the unquantized differences ‖x−1 − x+1‖1. This result

bears some similarity to the JL lemma in which random projections preserve the

norm for embeddings to lower dimension subspaces [1].
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Theorem 2. If each entry of the threshold array T is picked uniformly and inde-

pendently from [−1, 1], then for any constants ε, β, δ ≥ 0, with probability at least

1− δ , for all x−1 ∈ X−1 ; x+1 ∈ X+1 we have

(1− ε) ‖x−1 − x+1‖1 ≤ ‖q(x−1)− q(x+1)‖1 ≤ (1 + ε) ‖x−1 − x+1‖1 (3.13)

for

n ≥ 4Ts
dε2

(
log 2 · (2L2 + L) + L log δ−1

)
(3.14)

where d is the minimum `1 distance defined in (3.11).

Proof. Consider a particular pair of sampled measurements x−1 ∈ X−1 ; x+1 ∈

X+1 (corresponding to s−1(t) ∈ S−1 ; s+1(t) ∈ S+1). Define z = |q(x−1)− q(x+1)|,

so that z(i) = 2∆ if ti lies between (and hence can distinguish between) s+1(i∆)

and s−1(i∆), and z(i) = 0 otherwise. Since ti is uniformly picked from [−1, 1],

z(i) is a (scaled version of a) Bernoulli random variable with parameter pi =

1
2
|s−1(i∆)− s+1(i∆)| and mean 2∆pi. Thus, from (3.10)

E (‖z‖1) = E

(
n∑
i=1

z(i)

)
= 2∆

∑
i

|s−1(i∆)− s+1(i∆)|
2

= ‖x−1 − x+1‖1 (3.15)

so that the quantization function q(·) preserves the norms of the differences in

expectation. It remains to prove a concentration result using a Chernoff bound to

show that the probability of deviation from the expectation goes to zero for large

enough n. Given that the z(i) are independent scaled Bernoulli random variables,

derivation of the Chernoff bound is a straightforward exercise and we state the
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final result, omitting the details. To simplify notation, we use the shorthand

µ = ‖x−1 − x+1‖1 in the following.

Pr (‖z‖1 > (1 + ε)µ) ≤ e−
µ

2∆
((1+ε) log(1+ε)−ε) ≤ e−

µnε2

4LTs (3.16)

where we have substituted ∆ = LTs
n

and used log(1+ε) ≥ ε (for ε ≥ 0) to obtain the

last inequality. Proceeding along similar lines, we obtain an analogous bound for

the probability of deviation below the expectation: Pr (‖z‖1 < (1− ε)µ) ≤ e−
µnε2

4LTs .

Combining with (3.16) yields

Pr (‖z‖1 < (1− ε)µ or ‖z‖1 > (1 + ε)µ) ≤ 2e−
µnε2

4LTs ≤ 2e−
dnε2

4LTs (3.17)

where the last inequality follows from the definition of d in (3.11). There are 2L+1

pairs of distances given the past bits (i.e. |X−1| = |X+1| = 2L), and varying the L

past bits, |X−1| = |X+1| = 2L, and taking the union bound over all possible pairs

x−1 ∈ X−1 ; x+1 ∈ X+1, we obtain

Pr (‖z‖1 ≤ (1− ε)µ or ‖z‖1 ≥ (1 + ε)µ) ≤ 22L · 2e−
dnε2

4LTs ≤ δ (3.18)

which can be bounded as tightly as desired (3.18) by decreasing δ and ensuring

that n meets the condition (3.14).

Remarks: While we have considered uniform sampling for simplicity, this is not

required for the theorem to hold. Using the continuity of the CIR, any non-

uniform sampling strategy that provides sufficient density of samples to capture
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the separation of s−1(t) and s+1(t) in the regions where the waveforms are apart

suffices. The independence of the choice of thresholds is crucial for the concentra-

tion result.

Simulations: Due to the looseness of the union bound used to prove the theo-

rem, picking n based on the theorem is excessively conservative. We now show via

simulations that moderate values of n suffice to provide good equalization perfor-

mance. Our choice of space-time slicers differs from the set-up of the theorem in

two respects:

(1) We pick the thresholds from a Gaussian distribution N(0, 0.4); this performs

far better for moderate values of n than the uniform distribution assumed in the

computations in the theorem. This is because, while the received signal is scaled

to lie in [−1, 1], the density of values near zero is higher (as we vary the possible

choices of future ISI bits).

(2) Instead of picking n random thresholds over the entire duration of [0, LTs]

corresponding to the span of the CIR, we pick thresholds randomly over a single

symbol period Ts. This corresponds to an implementation of slicers operating at

the symbol rate with a fixed threshold set for each slicer. This scheme reduces

the amount of independence and hence averaging (since the thresholds are now

periodic with period equal to the symbol interval), but it is simpler to implement,

and provides good BER performance for the channels considered here with 10-20

slicers per symbol.
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Figure (3.2(b)) shows the BER curve obtained by employing 15 randomly

selected 1 bit slicers for the FR4 channel. The SNR is defined as ‖h‖
2

σ2 . The

BER curves vary slightly for different instances of slicer thresholds, the general

behavior remains the same for a fixed number of slicers and we find that ∼ 15

slicers suffice to avoid the error floor. The bit error rates are computed empirically

using BCJR. Note that the BER obtained for the random slicers case is actually

an upper bound of the minimum BER as the BCJR algorithm used ignores the

noise correlations and hence is not optimal. As also mentioned in the appendix

A.5, it is non-trivial to extend BCJR for the case with quantization and colored

noise (even though each these 2 scenarios alone can be handled).

While the theoretical results of this section are a reassuring testimony to the

flexibility of space-time architectures, in practice, it is often simpler to place slicers

at fewer locations. In the next section, we consider optimization of slicer locations

for TSE and FSE.

3.5 Optimizing slicer thresholds

In the example discussed in Section 3.3, we observed that the uniform ADC

performed very poorly at the sampling phase 0.5 with channel B (hB,1/2). A closer

look at the error events (at 25dB) reveals that most of the errors are caused due

to poor threshold locations rather than large noise samples. Fig. 3.3(a) plots the
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continuous-valued signals corresponding to the correct and incorrect bit sequences

from a simulation run in which bits 1 and 2 have been incorrectly decoded. Both

noiseless and noisy signals are plotted, but they are barely discernible from each

other (i.e., the noise samples are small). The noiseless sequences differ signifi-

cantly at 4 sample locations (locations 2, 3, 5, 6) affected by bits 1 and 2, but

at all of these, the thresholds separating the two waveforms are very close to at

least one of them, hence even a small deviation due to noise greatly increases the

possibility of an incorrect detection. This shows that, for low-precision quanti-

zation, it is critical to choose thresholds that are compatible with the channel

at hand, since “off-the-shelf” uniform ADCs may not effectively separate out the

waveforms corresponding to different bit sequences. Uniform thresholds are more

compatible with Channel B with a different sampling phase, hB,0, but here too,

the performance can be improved by choosing channel-specific thresholds. In this

section, we present a procedure for designing a non-uniform ADC with thresholds

chosen based on the channel, given a constraint on the number of slicers. We first

consider a TSE, and then extend the algorithm to an FSE sampled at twice the

Nyquist rate. We assume that the sampling phase is beyond our control.
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3.5.1 Threshold design for TSE

Ideally, we would like to choose the thresholds, T = [t1, ...., tM ], to minimize the

minimum BER attained by MAP/BCJR decoding. However, this cost function is

analytically intractable, hence we consider the union bound for MLSE performance

and truncate it to a few dominant terms, targeting a high SNR regime. We use as

our cost function an upper bound of this truncated sum, which can be computed

easily for quantized observations.

The MLSE bit error probability, Pe, can be upper bounded using the union

bound, which in its general form can be stated as follows (Section 5.8.1 in [57])

Pe ≤ Pu =
∑
e∈E

∑
b,b′

PB(b,b′)w(e)2−w(e) ; where b′ = b + 2e (3.19)

where E denotes the set of error events. As defined in [57] an error event is a

simple error sequence whose first nonzero entry is at a fixed time, say at index

0. The elements of e take values in {0,±1}, and are nonzero at indices where

the bit sequences b and b′ differ. The number of nonzero elements in e, or its

weight, is denoted by w(e). We denote by PB(b,b′) the pairwise error probability

for binary hypothesis testing between b and b′, which are separated by the error

event expressed by e. For continuous-valued measurements, PB(·) depends only

on e, which reduces the summation
∑

b,b′ PB(b,b′) to a single term that can

be expressed as a function of the standard normal complementary CDF (or Q

function; see (5.76) in [57]). Exact evaluation of PB(·) is difficult for quantized
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observations, hence we bound it from above. This, together with a restriction on

the set of error events, yields an approximate upper bound that serves as our cost

function for threshold design using K-means.

Truncated Union Bound

While there are infinitely many error events in E , at high SNR, it suffices to

consider a small set of most likely events which dominate the summation (3.19).

For continuous-valued measurements, these correspond to the most slowly decay-

ing Q function terms, which correspond to low weight error sequences [57]. For

quantized observations, it is more difficult to identify the dominant error events,

but for the channels considered here, and using the uniform quantizer starting

point, simulations yield the expected result: weight one and two error patterns,

e1 = {±1, 0, 0, 0, ....} and e2 = {±1,±1, 0, 0, 0, ....}, are by far the most dominant.

We therefore restrict attention to these in truncating the union bound (3.19), as

follows:

Pu ≈ Put =
∑

b,b′∈E1

PB(b,b′)w(e1)2−w(e1) +
∑

b,b′∈E2

PB(b,b′)w(e2)2−w(e2) (3.20)

where Ei = {b,b′ s.t. b′ = b + 2ei}, i = 1, 2 and w(e1) = 1, w(e2) = 2. Note

that |E1| = 2(L−1) ·2(L−1). This is because the observations that depend on the bit

in error, b0, are only affected by the truncated bit sequence bL−1
−(L−1). Similarly we
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get |E2| = 2(L−1) · 2(L−1) · 2. For a channel with L = 6, |E1| = 1024, |E2| = 2048

which gives the total terms to be summed over to be N = |E1|+ |E2| = 3072.

Bounding the Pairwise Error Probability

We now wish to bound the pairwise error probabilities PB(b,b′,T) for a par-

ticular set of thresholds T. Denoting pairs of bit sequences (b,b′) by Ω for

brevity, consider the corresponding noiseless unquantized signals x = 〈h,b〉 and

x′ = 〈h,b′〉. Since we are only interested in simple error sequences, x and x′ differ

at most in, say K, consecutive locations. That is, x(i) = x′(i) ∀ i ≤ 0, i ≥ K + 1.

Note that K = L for b,b′ ∈ E1 and K = L + 1 for E2 (changing a given bit

can have an effect over at most L output samples when convolved with a channel

of length L). The binary hypothesis problem of choosing one of b and b′ then

reduces to selecting one of the two vectors, X0 or X1 given by

H0 : X0 = x(1 : K), H1 : X1 = x′(1 : K) ; PB(Ω,T) = PB(X0,X1,T)

Fig. 3.3(a) shows an example of X0 and X1 corresponding to a particular bit

sequence pair in E2. The vectors X0 and X1 are of length K, after quantization

each element takes one of M + 1 values, as there are M thresholds. We can now

obtain a simple upper bound on the pairwise error probability by considering the

probability of error in separating the scalars X0(i) and X1(i). The pairwise error

probability if we only use the ith component depends only on the threshold in T
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that is closest to X0(i)+X1(i)
2

. As a function of this scalar threshold t, we obtain

that

PB(X0(i), X1(i), t) = 2−(2L−2)

(
Q

(
t−Xmin

σ

)
+Q

(
t−Xmax

σ

))
(3.21)

where Xmin = min (X0(i), X1(i)) Xmax = max (X0(i), X1(i))

The factor of 2−(2L−2) is included due to the prior on the truncated bit sequences.

Fig. 3.3(b) plots this function for different indices i = 1, ...., 7 for hB,1/2. The

probability of error for deciding between the hypothesis H0 and H1 can be upper

bounded by each of the probabilities of error based on the scalar components as

we vary i, hence minimizing over i provides an upper bound:

PB(X0,X1,T) ≤ min
i=1,..,K

PB(X0(i), X1(i),T)

= min
i

min
t∈T

PB(X0(i), X1(i), t) = min
t∈T

min
i
PB(X0(i), X1(i), t) (3.22)

Defining

g(Ω, t) = min
i
PB(X0(i), X1(i), t) (3.23)

we can rewrite the upper bound as

PB(b,b′,T) = PB(Ω,T) ≤ min
t∈{t1,...tM}

g(Ω, t) (3.24)

Fig. 3.3(c) shows an example plot of the function g(Ω, t).
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Optimization using K-means

Applying Eq. (3.24) to Eq. (3.20), we get an upper bound on the truncated

union bound, which is our cost function

∑
Ω∈E1∪E2

PB(Ω)w(Ω)2−w(Ω) ≤
N∑
n=1

min
t∈T

g(Ωn, t)w(Ωn)2−w(Ωn)

=
∑
n

min
t∈T

f(Ωn, t) (3.25)

Defining

f(Ω, t) = g(Ω, t)w(Ω)2−w(Ω) (3.26)

where w(Ω) denotes the weight of the error event e = b′−b
2

corresponding to

Ω = (b,b′).

The problem of finding the thresholds now reduces to the following minimiza-

tion problem

T∗ = argmin
T

N∑
n=1

min
t∈{t1,..,tM}

f(Ωn, t) = argmin
T

N∑
n=1

f(Ωn, t
∗
n) (3.27)

We note that the above formulation is identical to the clustering problem where

we are given N data points Ωn, which are required to be grouped into M clusters

to minimize the total distortion. The distortion function is specified by f(Ω, t)

and the M cluster centers represent the thresholds. We can therefore apply the

standard K-means [56] algorithm to obtain candidate solutions. This involves two

alternating steps:

Assignment Step: At the ith iteration we have the M cluster centers/thresholds
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{ti1, ...., tiM}. A ‘data point’ Ωn gets assigned to the threshold with index j∗ =

argmin
j=1,..,M

f(Ωn, t
i
j)

Update Step: The jth threshold gets updated as ti+1
j = min

t

∑
Ω∈tij

f(Ω, t); where

the summation is over the data points assigned to tij in the previous iteration.

The functions f(Ω, t) can be easily computed, and we compute and store them

for each Ω over a grid for the parameter t. This makes the minimization in the

update step straightforward. We use a grid of size 200, after first normalizing the

channel to limit the range of the unquantized channel output to [−1, 1], and then

using a grid of size .01 for t. The K-means algorithm typically converges in a

small number of iterations (< 10).

Simulations

The BER attained with the non-uniform ADCs designed using the preceding

procedure is plotted in Fig. 3.4. The algorithm was run at the SNR of 20dB;

higher SNR gives the same values for the thresholds. Since K-means has the

tendency to get stuck in local minima, we run it several times with different

random initializations and pick the best. We see a drastic improvement for hB,1/2

and a considerable gain even for hB,0. Note that, even though the cost function

(plotted in gray curves) is an approximate (and rather loose) upper bound, it

seems to follow a shape similar to the BER curves, and the benefit of minimizing

it gets translated to the actual BER.
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3.5.2 Threshold design for FSE Ts/2

Now, consider the problem of designing thresholds for slicers spread across two

sampling phases separated by half a symbol period i.e. an FSE Ts/2 architecture.

We now have two parallel discrete channels, h1 and h2. Fixing the total budget

of slicers to M , suppose that we fix M1, the number of slicers placed at the first

phase (so that M −M1 are placed at the second phase), then the threshold values

can be computed using exactly the same machinery as earlier. We then optimize

by searching over the values of M1. The results for TSE are then a special case

corresponding to M1 = 0 or M1 = M , and indeed, in several examples, it turns

out that allocating all available slicers to one of the two sampling phases results

in the lowest cost. For instance, for channel B, it is best to put all the 7 slicers at

sampling phase 0 (hB,0). When we increase the number of slicers to M = 9 a 7-2

split configuration turns out to be the best, but it is only marginally better than

having all 9 at hB,0. This makes sense, since in this case the sampling phase 0 is

a good choice. For channel C, with sampling phases 0 and 0.5 and a budget of

M = 3 slicers (2 slicers are enough for this channel to ensure no error floor, see

Table 3.1), we find that the optimal configuration is a 2-1 split (Fig. 3.4). We

notice a 2dB (1dB) gain compared to using a TSE non-uniform architecture at

the sampling phase 0.5 (0).
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Our overall observation is that TSE with channel-optimized thresholds signif-

icantly outperforms the standard uniform ADC. The additional gain obtained by

generalizing to FSE depends on the channel and the sampling phase. Of course,

the trends might be quite different if BCJR decoding is replaced with lower-

complexity algorithms. For example, for continuous-valued observations, FSE is

much better than TSE for linear equalizers, but is typically only marginally better

with BCJR decoding.
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Figure 3.1: (a) Channel A,B,C (left, center, right) (b) TSE ADC architecture
(left) and Space-time architecture (right) (c) Bit error rate curves for channel B
corresponding to different sampling phases 0, 0.25, 0.5
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Figure 3.2: (a) One-bit measurements with randomly varying thresholds (b)
Bit error rates for the channel hA,0 = [.1, .25, .16, .08, .04]
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Figure 3.3: (a) Example of an error event with channel hB,1/2 at 25dB. Plot in
gray is after noise addition. The small circles denote slicers. (b) Probability of
error for different indices Eq. (3.21) (c) g(Ω, t) for the sequence shown in (a) at
25dB
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Figure 3.4: The curves in gray depict the cost function (Eq. 3.25) (a)
MLSE BER for hB,0 = [.23, .46, .69, .46, .23] (b) MLSE BER for hB,1/2 =
[.1, .34, .61, .61, .34, .1] (c) MLSE BER for FR4 channel hA,0 = [.1, .25, .16, .08, .04]
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Figure 3.5: (a) Bit error rate curves for channel C with sampling phases 0 and 0.5
and a budget of 3 thresholds (b) Non-uniform ADC thresholds at t = 0 (c) Non-
uniform ADC thresholds at t = 0.5 (d) Optimal space-time slicers configuration
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Chapter 4

A Framework for Machine Vision
based on Neuro-Mimetic Front
End Processing and Clustering

In this chapter, we explore a front end design for machine vision that leverages

the neuroscientific research about the visual pathway and combines it with unsu-

pervised feature extraction using k-means clustering. This framework when com-

bined with a final layer of supervised classification using support vector machine

(SVM) yields excellent recognition performance with standard image databases

of NORB (uniform-normalized) and MNIST.

Map of this Chapter: After a discussion of the related work in section 4.1

we present the neuro-mimetic front end design in section 4.2. We first describe

the processing performed by Retinal Ganglion Cells (RGCs) and then discuss the

operation of the V1 simple cells. Then we move on to the higher layer processing

using clustering and show how features such as edges and combinations of edges

Parts of this chapter are reprinted from our conference submission [2], c©[2014] IEEE
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(corners, junctions etc) are extracted by the learned centroids. This is discussed

in section 4.3. We conclude the chapter by presenting the experimental results in

section 4.4.

The development of the RGC and V1 processing stages has been done by Emre

Akbas, a student in the Department of Psychology and Brain Sciences, UCSB.

4.1 Related work

The relevant papers in experimental and computational neuroscience which

our front end model is based on are mentioned in Section 4.2. The importance of

carefully designing the pre-processing layer has been noted in the machine learning

literature. It was shown in [18] that optimizing the various parameters of a single

layer convolutional architecture, followed by simple non-linear clustering using

k-means, results in performance even better than several deep architectures. In

[15], it was found that adding a pre-processing contrast-extraction layer to the deep

CNN architecture improves recognition performance with the NORB dataset.

There has also been recent interest in using center-surround processing in

computer vision (e.g., [43]). Early modeling of simple cells was performed using

Gabor functions [58], but a more neuro-plausible model was reported to yield

superior edge detection performance in [5]. It is also worth mentioning “analog
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retina” hardware that uses loose neuro-inspiration to extract sparse features (with

reduced power consumption) from image sensors for dynamic object tracking [25].

There are several references [71, 49, 53, 16, 89] that have employed layers

of unsupervised feature extraction prior to supervised classification, an approach

adopted in this work as well. Most of these papers use some form of reconstruction

error combined with a sparsity constraint as the cost function for training the

unsupervised layers. This differs from our use of k-means clustering to learn

the weights of the unsupervised layers, an approach which is much simpler to

implement computationally. A few references that have used k-means clustering

for vision include [18, 17]. In these papers the clustering step is used directly

on the raw images and their implementation of k-means differs significantly from

ours, especially for the higher layers. We use much fewer number of centroids and

get better error performance on the dataset common amongst their work and ours

(NORB, [18]).

4.2 The Front End Model

Our model consists of two layers of neurons, the first corresponding to the

RGC/LGN cascade, and the second to V1 simple cells, along the primate visual

pathway. We model the fovea, the small part of the visual field around the center

of gaze where the visual acuity is highest [86]. The fovea is responsible for tasks
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that require high-resolution spatial detail such as reading. The diameter of the

fovea is reported to be between 4.17◦ and 5.21◦ [45, 86]. The average of these

estimates is 4.69◦, and we model our “digital fovea” as a 4.16◦-by-4.16◦ square

patch having the same area as a disk with 4.69◦ diameter.

. . .. . .

. 
. .

. . .

. 
. .. . .

219 cells

219 cells

4.16°

4.
16

°

(a)

−7 −5 −3 −1 0 1 3 5 7
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0

0.1

0.2

0.3

(b)

Figure 4.1: (a) Cross marks show cell centers which are arranged on the vertices
of a regular grid. In each row (or column) there are 219 RGCs. Each RGC cell
applies a difference-of-Gaussian (DoG) filter, which defines the receptive field of
the cell. Receptive fields of neighboring cells heavily overlap. (b) Difference of
Gaussian filter along a single dimension. X-axis indices correspond to number of
RGC cells.

4.2.1 RGC/LGN processing

The number of RGCs in the fovea is estimated around 120, 000 [29, 79]. Among

many types of RGCs [28], midget RGCs (sustained response cells or P-cells) carry

the high-acuity information [45] and comprise 80% of all the RGCs in the retina

[23]. About half of these cells are ON-center-OFF-surround and the other half

are OFF-center-ON-surround [86]. Based on this evidence, we create two parallel

visual pathways, one for ON-center cells and the other for OFF-center cells. Each
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pathway contains approximately 48000 cells. The cell centers are located on the

vertices of a square regular grid (Fig. 4.1(a)). The front end also includes two

mechanisms that are critical for operation over the wide dynamic range exhibited

by natural stimuli: local luminance gain control (LGC) and contrast gain control

(CGC) [10, 11].

We first apply LGC as described by Carandini and Heeger [11]. Denoting by

x the input image, the luminance normalized image c is given as

ci,j =
xi,j − xi,j

xi,j
(4.1)

where i, j denote a pixel and xi,j is a weighted average around pixel i, j,

xi,j =
∑
p

∑
q

wp,qxi−p,j−q. (4.2)

where the weights w are given by the Gaussian surround filter suggested in [8],

normalized to sum to 1.

Computation of center-surround contrast is classically modeled using the difference-

of-Gaussian (DoG) model [73, 27, 20] consisting of two components, center and

surround, each of which is a 2D Gaussian function. We set the parameters of the

center and surround Gaussian filters based on the values given for the macaque

retina [20] (details in the appendix A.7). Taking the difference between these gives

a DoG filter (Fig. 4.1(b)) whose radius covers about 7 cell centers along a row.

Convolving the luminance-normalized image with the DoG filter, the ON-center

cell responses are governed by the positive part of the output, and the OFF-center
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by the negative part (Fig. 4.2). We apply CGC as follows. The output (spike

rate) of a cell whose center is at i, j set to [11] is given by

ri,j =

∑
p

∑
q vp,qci−p,j−q

β +
√∑

p

∑
qwp,qc2

i−p,j−q

(4.3)

where v are the difference-of-Gaussian weights. The square-root term in the

denominator, called the local contrast, is the weighted root mean square of the

luminance normalized intensity values within the whole receptive field. The area

defined by w is called the suppressive field. The parameter β has been fit to neural

data by Bonin et al [8], but this value is for cells outside of the fovea, and hence

is not directly usable for our model. We therefore choose a value of β (= 0.1)

so that the cells in our model qualitatively match various effects (step change in

luminance, step change in contrast, size and contrast tuning) described by Bonin

et al. [8].
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Figure 4.2: RGC processing pipeline for a single RGC cell
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Finally, the non-negative spike rate of the cell is obtained via a rectification

non-linearity [10]:

yONi,j = max(0, ri,j − TRGC) (4.4)

yOFFi,j = max(0,−ri,j − TRGC) (4.5)

where TRGC is the rectification threshold: we set TRGC = 0, which corresponds to

simply splitting responses into positive and negative components. Such “polarity

splitting” has been used in several machine learning algorithms (e.g., [16]), and

preserves more information than absolute value rectification. The overall flow of

RGC processing is illustrated for a single cell in Fig. 4.2.

While both luminance and contrast gain control are thought to start at the

retina, lateral geniculate nucleus (LGN) cells strengthen CGC [10]. For this rea-

son, we refer to this layer as the RGC/LGN layer.

4.2.2 V1 simple cells

The V1 layer consists of two populations of neurons: simple cells and complex

cells. While there is a strong consensus on the computation performed by V1

simple cells – they extract oriented edges – the picture is less clear about the com-

plex and hypercomplex cells. Hubel and Wiesel [38] suggest that some complex

cells are implementing an OR-like (or MAX-like) operation, while there are recent
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(a) (b) (c)

Figure 4.3: A simple cell sums the output of RGC/LGN cells according to its
incoming weights, these are represented here in terms of the colors of the circles.
The darker the color of a cell, the more weight it has. Transparent cells have
zero weight. Weights of each simple cell are normalized to sum to 1. For each
simple cell, the weight connections to the midget-ON and OFF RGCs are shown
on the left and right sides respectively. (a) orientation 0◦, OFF-ON-OFF type
connection to midget ON. (b) orientation 45◦, ON-OFF-ON type connection to
midget ON. (c) orientation 135◦, ON-OFF type connection to midget ON.

studies [30, 41] which suggest significant computational diversity among complex

cells. We therefore only include simple cells in our front end model.

Simple cells have incoming connections from the RGC/LGN layer. We create

simple cell receptive fields based on the size (0.25◦x0.25◦ [39]) and the shapes

([38, Fig. 2]) reported by Hubel and Wiesel for foveal simple cells. While this

seminal work that we draw upon is almost five decades old, there are only a few

other studies [35, 67] of primate foveal V1 cells, and the detail they present are

insufficient to implement a complete simple cell population. Other models for

parafoveal neurons (5◦− 6◦ degrees off-center) [58, 72] are similar in concept, but

different in size, from the Hubel/Wiesel foveal model.

There are a total of 48 different types of simple cells in our model. There

are 8 orientations, starting at 0◦ (horizontal edge) and increasing in increments
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of 22.5◦. For each orientation, there are 6 kinds of simple cells: two ON-OFF-

ON, two OFF-ON-OFF and one each of the type ON-OFF and OFF-ON. To

understand the differences between these types we illustrate three different simple

cells in Figure 4.3. Each simple cell is connected to both midget-ON and midget-

OFF RGCs (and thus obtains information from both the positive and negative

parts of the DoG outputs), and its shape is characterized by the set of nonzero

weights. Each simple cell has a receptive field size of 7x7 RGC cells, but depending

on its shape and type (equivalently, the set of nonzero weights), the number of

incoming connections vary from 14 to 39 RGC/LGN cells. The unnormalized

output of the simple cell at location (i, j) with orientation θ and shape γ is the

sum of its afferent inputs:

s
(raw)
i,j,θ,γ =

∑
p,q

`ONp,q y
ON
i−p,j−q +

∑
p,q

`OFFp,q yOFFi−p,j−q (4.6)

where ` are the weights (e.g. as shown in Fig. 4.3) of the incoming RGC/LGN

cells. The superscripts ON and OFF refer to the midget-ON and midget-OFF

pathways. Similar to the contrast gain control occurring at the previous layer,

cortical neurons are also locally normalized [10]. Carandini and Heeger [11] pro-

pose several variations of the normalization model. (Normalization has also been

successfully used in bio-inspired methods [40, 55, 68]. ) In our experiments, we

use a normalization similar to (4.3) used at the RGC/LGN layer: local demeaning,

followed by a divisive normalization with root-mean-square of nearby outputs, a
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measure of local contrast.

s
(norm)
i,j,θ,γ =

s
(raw)
i,j,θ,γ − s

(raw)
i,j,θ,γ

max

ε,√∑
p,q,θ,γ

wp,q

(
s

(raw)
i−p,j−q,θ,γ − s

(raw)
i,j,θ,γ

)2

 (4.7)

where the summation is taken over the suppressive field w across orientations and

shapes, s
(raw)
i,j,θ,γ is a weighted local average (using w as weights) of unnormalized V1

outputs for θ, γ around i, j, and ε is a small positive constant to prevent division

by zero (we set it to 0.001). Finally, the normalized simple cell output is rectified

to yield a non-negative spike rate

si,j,θ,γ = max(0, s
(norm)
i,j,θ,γ ). (4.8)

4.2.3 Viewing distance and foveal image resolution

Our model has a 4.16◦x4.16◦ visual field. For a typical viewing distance of

50 cm, this field corresponds to a 3.6x3.6 cm2 patch. The smaller the viewing

distance, the smaller the image patch covered by the fovea, and vice versa.

In order to implement our model digitally, one has to assume a size for the

foveal image. One possibility is to assume that the resolution is limited by the

number of photo receptor cells. In the fovea, there are almost exclusively cone

photo receptors. Based on the cone density at the fovea [45], there are about

3 · 105 cells which would mean a 550x550 pixel resolution. Considering the typical

viewing distance example given above, 3.6 cm would correspond to 550 pixels
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resulting in a 152.8 pixels/cm density which is too high compared to pixel densities

of available displays (≈ 40 − 100 pixels/cm). To close this gap, one either has

to increase the resolution of the input image or scale down the foveal image size.

We choose the latter for simplicity and assume that the foveal image resolution is

equivalent to the RGC resolution, i.e. 219x219 (61 pixel/cm). That is, at every

pixel there is a RGC cell center. With these settings, the radius of the center

component for a midget-ON cell is 1.27 pixels and the radius of the surround

component is 5.53 pixels. An image from the MNIST dataset [50], which is 28x28

pixels, would be seen by 28x28 midget-ON RGC cells (and by the same number of

midget-OFF cells); and would cover approximately 0.5x0.5 cm2 area on a display

with 60 pixel/cm viewed at 50 cm distance. An image from the NORB dataset

[51] (96x96 pixels) would cover 1.6x1.6 cm2.

While one RGC center per pixel is a sensible design choice, it is possible to tune

the viewing distance parameter in our model. For example, larger values would

increase the number of RGC centers per pixel, and require sub-pixel computations.

We do not experiment with the viewing distance parameter in this paper, but note

that it could be of interest, for example, when comparing the performance of our

model with human performance on the same task in psychophysics experiments.
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Figure 4.4: Sample RGC and V1 output. First row is for an image from
MNIST, the second row is for NORB. The first column has the original images.
The second and third columns are midget-ON and midget-OFF outputs. The
last three columns are outputs of 4 simple cells at different orientations. The
midget-ON and OFF responses seem to light up the relevant regions containing
activity.

4.3 Higher Layer Processing

Our front end implements 48 types of simple cells centered around each input

pixel, so that our front end outputs, for each pixel, an f -dimensional feature

(f = 48 for monocular images as in MNIST, and f = 96 for NORB, which

consists of a set of binocular images). We employ k-means clustering on this

f -dimensional data, as a natural proxy for complex cell modeling. Thus, the

feature map for an N × N image at our front end output is N × N × f , while

that after the first layer of clustering is N ×N × k (to be cut down by pooling).

We consider two implementations: a single layer of clustering followed by pooling

and supervised classification, or two layers of clustering (and pooling), and then

using a concatenation of layers 1 and 2 features for classification. The second
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implementation is consistent with visual models for higher layers, which predict

connections from both layers V1 and V2 into V3.

4.3.1 Layer 1 of clustering

We have denoted by si,j the activations of simple cells centered at a particular

spatial location i, j. To represent a response in general, we drop spatial coordinates

from the notation and denote the activations by a = si,j, an f -dimensional vector.

We implement spherical k-means clustering [93] using an inner product similarity

metric aTc, where c denotes a cluster center. This is equivalent to clustering

using a standard Euclidean distance metric with a unit norm constraint on the

cluster centers. In our implementation, we use the online clustering algorithm in

[93], which has the advantage of being less sensitive to initialization. We speed up

the algorithm by using mini-batches instead of iterating over single data points.

Note that computation of the inner product of a data vector with a cluster

center is identical to weighted summations in classical neural networks, hence

we may interpret each cluster center as a neuron. The subsequent nonlinearity,

however, is different from the sigmoidal nonlinearity in standard neural networks.

As described shortly, we use soft assignments, which may be interpreted in terms

of local competition between the neurons.
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In addition to using the standard inner product as a similarity metric, we also

consider a modified version that takes into account the correlations in simple cell

activations. Given the weights connecting LGNs to the simple cells, represented

by L = [`1, .., `48], we compute the 48×48 correlation matrix as Cl = LTL and use

the metric aTC−1
l c or (C

− 1
2

l a)T (C
− 1

2
l c) for k-means. This can be viewed as doing

whitening before clustering. For NORB, where f = 96 and simple cell outputs

are concatenation of the left and right channels, we do not have prior information

about the correlations among the two channels, and model them as independent.

Given the centroids, the soft activations are evaluated by

f
(
[aTC−1c1, ......,a

TC−1cK1 ]T
)

where C = Cl or C = I and K1 are the number of layer 1 cluster centers learned.

We use the soft threshold as the encoding function, i.e. f(x) := max(0, x − T ).

It is known that neurons fire only when active above a certain threshold hence

rectification for the non-linearity is a natural choice. For choosing the value of T

we take the simple approach of setting it to maintain a certain level of sparsity

on average. For instance, we can choose T for 80% sparsity (i.e., only 20% of

the neurons have non-zero activations on average). This design rule gives us a

direct and intuitive handle on controlling the level of sparsity, as opposed to the

regularization parameter generally used in cost functions containing a sparsity

term [89, 71, 49]. The resulting design conforms to the intuition that neural
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activity on average is expected to be low. The final activation vector generated is

of length K1 + 1: the last coordinate is set to a non-zero value when all the K1

responses corresponding to the centroids turn out to be zero after thresholding.

This typically corresponds to patches with no or negligible activity.

Features extracted by layer 1, as expected, correspond to different kinds of

edges, blobs etc. In order to visualize a centroid, we back project its receptive

fields to the raw image level and plot the patches closest to it. Since layer 1

centroids are connected directly to the simple cell responses, their receptive field

size is same as that of the simple cells: 7×7 RGCs or pixels in the image domain.

In Figure 4.5, for the MNIST dataset, we show visualizations for four centroids.

Figure 4.5: Left side: layer 1 centroids. Right side: layer 2 centroids. Each row
plots patches closest to that centroid.
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4.3.2 Layer 2 of clustering

The idea with the second layer of clustering is to extract more complex fea-

tures: combination of simple edges like corners, L-junctions etc. The expansion

of receptive field size or zooming out is achieved via local spatial pooling and

concatenation. Max-pooling over a small neighborhood also results in local trans-

lation invariance. Pooling is generally followed by subsampling, hence it results in

reducing the resolution of the feature maps. Denoting the max-pooled activations

at the spatial location i, j by bi,j, these are then concatenated over a 2× 2 neigh-

borhood to generate 4(K1+1)-dimensional input for the second layer of clustering,

given by [bi,j; bi,j+1; bi+1,j, bi+1,j+1]. These activations now correspond to larger

patches of the raw image. Clustering is performed using the similarity metric:

1∑
ii=0

1∑
jj=0

bTi+ii,j+jjwii,jj

‖bi+ii,j+jj‖ ‖wii,jj‖
(4.9)

where a second layer centroid is represented by c(2) = [w0,0;w0,1;w1,0;w1,1]. Using

this metric can be interpreted as individually comparing the four quadrants of the

larger patch and computing an averaged matching score. This is expected to group

together shapes with similar arrangement of edges, with the metric interpreted as

stitching the edges together. The soft assignment encoding function is as in layer

1.

In order to understand how pooling, subsampling and concatenation enlarges

the receptive field size, consider a simple 1D example. Suppose that layer 1
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centroids/neurons have a receptive field of size 7 (i.e. a neuron at location i in

layer 1 gets its inputs from layer 0 neurons indexed at [i− 3, i+ 3]). Now suppose

we do pooling and subsampling, both by a factor of 2. For pooling by a factor of

2, layer 1 neurons at i and i+ 1 are pooled together to generate a layer 2 neuron,

so that the effective receptive field (with respect to layer 0) for this new neuron

is 8: [i− 3, i + 4]. Since we subsample by a factor of 2, the neighbor of this new

neuron is based on pooling layer 1 neurons at i + 2 and i + 3. Now, when these

two neighboring layer 2 neurons are concatenated, their resulting receptive field

size is 10 in terms of layer 0: [i− 3, i+ 4] + [i− 1, i+ 6] = [i− 3, i+ 6].

In our experiments with MNIST, after layer 1 clustering, we perform 2 × 2

pooling, subsampling by 3 and 2×2 concatenation, followed by layer 2 clustering:

hence layer 2 centroids correspond to 11× 11 sized raw image patches. Figure 4.5

shows visualizations of a few layer 2 centroids using these 11× 11 patches.

4.4 Experiments

In this section, we evaluate our model on two standard image classification

benchmarks, MNIST [50] and NORB [51]. The only free parameter for the neuro-

mimetic front end is the viewing distance which we set to 50cm. For the higher

layers we experiment with number of centers K1 = 200 or 600 for layer 1, and

K1 = 200 and K2 = 600 when employing both layers 1 and 2. Thresholds are
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Sparsity level= 80% Sparsity level= 95%
(Layer 1) (Layer 1) (Layer 1+2) (Layer 1) (Layer 1) (Layer 1+2)
(K1=200) (K1=600) (K1=200) (K1=200) (K1=600) (K1=200)

(K2=600) (K2=600)
MNIST 0.73 0.72 0.66 0.78 0.78 0.68
NORB 3.96 3.71 2.94 2.58 2.52 2.90

Table 4.1: MNIST and NORB results: error rate (%) on the test set.

chosen to keep the sparsity level at either 80% or 95% for both layers. We use

non-linear SVM with the radial basis function (RBF) kernel [12] for supervised

classification. RBF SVM has two parameters: the cost parameter, which we fix

to 100 as that seemed to be a robust choice in our experiments, and the scale

parameter for the kernel, γ, which is set via a grid search using cross-validation

on a subset of the training set. Several references have used data augmentation

(via affine distortions) to enlarge the training set in order to boost classification

performance, but we do not employ it here.

MNIST: MNIST consists of 28 × 28 images of handwritten digits. The dataset

contains 60K training and 10K testing images. The front end produces feature

maps of size 28 × 28 × (K1 +1). If only layer 1 is used for classification, spatial

average pooling over a 4× 4 grid followed by concatenation provides a 1D vector

of dimension 42× (K1+1) to be fed into the RBF SVM. When layer 2 is also used,

we fix K1 = 200 and max-pool layer 1 activations over a 2×2 local neighborhood.

This is subsampled by a factor of 3, and edges are cropped, giving feature maps

of size 8× 8× 201. We then concatenate neighboring responses over a 2× 2 grid,
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which leads to a feature map size 7 × 7 × 804. The 804-length feature vectors

are clustered in layer 2 using K2 = 600 centroids, producing feature maps of size

7 × 7 × 601. Finally, layer 2 features for classification are generated by pooling

over a 3 × 3 grid, coarser than layer 1 since the activations now correspond to

larger image patches (11 × 11, layer 1 centroids represent 7 × 7). Concatenating

layer 1 and 2 features results in a total of 42 · 201 + 32 · 601 = 8625 features per

image, which is comparable to the length of layer 1 features alone with K1 = 600

(9616). For MNIST, we find that using whitening prior to layer 1 clustering, as

discussed in subsection 4.3.1, yields better results, hence we only report those

error rates (Table 4.1). We see that the best error rate 0.66% is achieved using

both layer 1 and 2 features and a sparsity level of 80%. Increasing the sparsity

appears to degrade the performance, especially when using just layer 1. The state

of the art on MNIST (without distortions) is 0.39% [52], which is achieved using

a purely supervised net. Although the error rate we get is higher than that, it is

comparable to the rates reported by several other references, 0.64% [71], 0.82%

[53], 0.59% [49], that use a combination of unsupervised and supervised learning.

NORB: We use the normalized-uniform variant [51] of the NORB dataset. Each

of the training and test sets have 24300 binocular images of 5 classes of toys placed

on a uniform background. Each monocular image is 96× 96. We pre-process the

images by cropping 8 pixels from all sides reducing the image size to 80 × 80,

in order to speed up the processing of the dataset. This cropping discards some
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of the uniform background and it does not affect the final performance. The

operations are mostly identical to those for MNIST, hence we only mention the

differences here. Due to the larger image sizes, the final spatial pooling before

classification is done over a finer grid: 5 × 5 for layer 1 and 4 × 4 for layer 2.

Another difference is that max pooling is performed over 3 × 3 neighborhoods

after layer 1 clustering, the layer 2 centroids represent 12 × 12 patches. As with

MNIST, the size of concatenated layer 1 and 2 features is comparable to layer 1

features with K1 = 600 centers. For NORB, unlike MNIST, omitting whitening

at layer 1 clustering results in better performance. We believe this could be due to

the inability of the correlation matrix (Cl) to model correlations between the left

and right channels. The current best result on the normalized-uniform NORB, to

the best of our knowledge, is the one reported in [15] and is 2.87% without data

augmentation and 2.53% with translation distortions. The best result obtained

by us of 2.52% thus improves upon the state of the art; it is even marginally

better than the previous best with distortions, even though we do not employ

distortions.

Discussion: While these classification results are encouraging, there are several

unanswered questions. Design choices such as whitening and sparsity level appear

to be dataset dependent for optimizing the classification performance. It might be

the case that the optimal sparsity levels depend on the noisiness of the dataset or

hierarchy of the layer. The impact of whitening before clustering is also not clear.
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In [18], whitening using the empirical covariance matrix has been found to improve

performance, but it did not improve our results. We generally expect higher layer

features to improve recognition performance, but in the NORB experiments with

95% sparsity, we were surprised to find performance degrading with the inclusion

of layer 2 features. Clearly, our understanding of how best to combine information

generated from different layers is far from complete. While our focus has been on

feature design via clustering, it is important to explore multiple options for the

supervised classification layered on top of it (e.g., comparing multilayer neural

nets to the nonlinear SVM used here).
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Conclusions

In this dissertation we have provided three distinct examples and in each case

recognized the importance of carefully designing a front end that is more suited to

the requirements of the system. Although the designs are specific to the problems

at hand, such endeavors provide useful guidelines and insight into system design.

For instance, our work in this dissertation has highlighted the importance of using

Bayesian principles as means of efficiently extracting information and the promise

of neural inspiration in scenarios when precise modeling is not possible.

We conclude by summarizing our contributions and pointing out some future

directions in each of the three case studies taken up in this work.

5.1 Blind Phase/frequency Synchronization

The framework for ADC-constrained receiver design illustrated in this work

has two core components:
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(a) digitally controlled analog preprocessing: this provides the dither required for

estimation with coarsely quantized observations in the acquisition step, and the

correction required for coherent demodulation in the tracking step;

(b) Bayesian algorithms for estimation and feedback generation: this involves

propagation of posterior probabilities in a manner that accounts for the quanti-

zation nonlinearity while probabilistically modeling unknown data and channel

parameters. These posteriors are used to compute both the feedback for the ana-

log preprocessor and the ultimate estimates of interest.

Our numerical results indicate that such architectures provide a promising ap-

proach for DSP-centric designs that exploit Moore’s law despite the ADC bottle-

neck encountered at high communication bandwidths.

The success of a Bayesian approach for the simplified model considered here

motivates future research on a comprehensive framework for receiver design sub-

ject to severe quantization constraints. Although we have also analyzed channel

equalization separately, it is of interest to jointly address the problem of carrier

synchronization with timing synchronization and dispersion. It is important to

consider extensions to larger amplitude/phase constellations. It is also of interest

to develop a deeper theoretical understanding of fundamental performance limits

under quantization constraints.
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5.2 Slicer Architectures for Analog-to-Information

Conversion in Channel Equalizers

We show in this work that, for communication over dispersive channels with

low-precision quantization, there is significant scope for improving on generic ADC

designs by focusing on analog-to-information in which slicer thresholds are chosen

so as to effectively separate out waveforms corresponding to different bit sequences.

In addition to choosing slicer thresholds as a function of the channel, spreading

slicers out over time can improve upon Nyquist rate sampling. We have shown

that there are no error floors when we take this concept to an extreme, with one-bit

comparators dispersed uniformly over time. We have also provided an algorithm

for choosing slicer thresholds for TSE and FSE (sampled at twice the symbol

rate), which yields designs that significantly outperform the standard Nyquist-

sampled uniform ADC. In summary, our results show that, despite the increased

dynamic range due to channel dispersion, it is possible to significantly reduce the

number of slicers (and hence the power consumption of the analog front end),

while recovering the information encoded in the received signal.

There are a number of open issues for future research. We have used the BCJR

algorithm to benchmark performance in this paper, but it is of interest to reduce

the complexity of the digital equalizer, and to design the analog-to-information

converter accordingly. In particular, it is of interest to explore if we can improve
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performance relative to prior attempts along these lines based on linear trans-

mit filters and DFE [13, 63, 64], possibly using a judicious combination of the

simplicity of the DFE with the more comprehensive exploration of sequence space

obtained using more complex MLSE/BCJR algorithms. Extending our framework

to larger constellations is also an important topic for future work. Another inter-

esting issue relates to noise correlations for fractionally spaced sampling, which

we have accounted for in simulations but ignored in our current designs. The

effect of such correlations is expected to be minor at high SNR, but it is certainly

of interest to explore, especially in low SNR settings, if it is possible to develop

elegant approaches for handling correlations for quantized observations, both in

terms of analysis and design. While our focus here has been on communication-

theoretic considerations, from a circuit designer’s point of view, it is essential

to trade off complexity and power consumption of the analog front end and the

associated digital backend (e.g., using fewer slicers in the analog front end may

require complex digital processing). Further effort is also needed to account for,

and design around, effects such as slicer metastability (i.e., uncertainty in digital

output when the sample value is close to the threshold) and errors in sampling

phases. Finally, while our starting point here is the flash ADC architecture, it

is of interest to explore whether the concept of analog-to-information conversion

can be effectively applied to obtain more power-efficient designs starting from the

pipelined or successive approximation register architectures, for example.
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5.3 Neuro-Mimetic Front End Processing and

Clustering

We have shown that an architecture based on neuro-mimetic front end process-

ing and clustering offers a promising approach for “universal” feature extraction

for machine vision. Layering a generic (but powerful) supervised classifier on top

is shown to provide performance close to, or exceeding, the state of the art for two

well known image databases. Key advantages of our approach are its simplicity,

the small number of tunable parameters, and the ability to easily interpret the

features being extracted at each layer.

We view this work as a first step towards bridging the gap between compu-

tational neuroscience and machine learning: machine vision algorithms are of-

ten neuro-inspired but rarely implement computations that strictly follow neuro-

scientific findings, while psychophysical models that try to follow physiological

visual processing more closely are typically applied to restricted problems with

artificial inputs[32, 87]. The results in this paper show that leveraging neuro-

scientific findings more carefully can pay off in terms of machine vision perfor-

mance.

An obvious disadvantage of our approach, from the point of view of machine

learning, is that we are limited in our front end design by the state of knowledge in

neuroscience, instead of learning purely from data. For example, our model here is
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restricted here to grayscale images, because more work is needed to put together

the available experimental evidence regarding color processing at the RGC/LGN

layers, which exhibits features such as red-green and blue-yellow opponency [28].

However, we believe that this additional effort in faithful modeling is well worth

it because of the potential benefits from leveraging evolution. In particular, we

would like to extend our approach (both in terms of neuro-mimetic front end and

layered clustering) to other kinds of data, such as audio and video.

A fundamental challenge, as we aim to build additional layers using clustering,

is to develop a quantitative understanding of whether all of the relevant informa-

tion is being captured by our feature extractor. The only available metric at

present to evaluate the efficacy of our architecture is classification performance

after inserting a supervised layer, which is sensitive to the dataset and perhaps

to the complexity of the supervised layer. An important open question, therefore,

is if there are alternative metrics for evaluating the quality of information being

extracted by unsupervised learning models such as ours. Of course, in parallel

with this line of inquiry, we would like to continue optimizing our architecture so

that it meets or surpasses classification performance on standard databases.
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A.1 Derivation of the Phase Distribution

The expression for the unquantized phase is given by Eq. (2.2) as follows

u = arg
(
ejp

π
4 ejβ + w

)
= arg(v)

p is uniformly distributed over {1, 3, 5, 7} and w is complex WGN with variance

σ2 per dimension. Let us denote coordinates of the random complex variable v

by X = Re(v) and Y = Im(v). Conditioned on p, X ∼ N
(
cos(pπ

4
+ β), σ2

)
and

Y ∼ N
(
sin(pπ

4
+ β), σ2

)
. To evaluate the distribution of the argument of v, we

transform from Cartesian to polar coordinates (x = rcos(α), y = rsin(α)) which

gives the following joint distribution

f(r, α) = r2f(x, y)

f(r, α) =
r2

2πσ2
e−

1
2σ2 (x−cos(pπ

4
+β))

2

e−
1

2σ2 (y−sin(pπ
4

+β))
2

(A.1)

f(r, α) =
r

2πσ2
e−

1
2σ2 (r2+1−2rcos(pπ

4
+β−α))
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where (A.1) follows from the independence of X and Y . We can now marginal-

ize out r to get the distribution of u

fu(a) =

∫ ∞
0

r

2πσ2
e−

1
2σ2 (r2+1−2ra)dr (A.2)

a = cos(p
π

4
+ β − α)

where dependence on α has being expressed through a. Integral (A.2) can be com-

puted by observing that f(a) (dropping subscript u) is the derivative of another

integral g(a) defined below, which in turn can be easily evaluated by completing

squares in the exponent and expressing in terms of the standard Q function.

g(a) =
1

2π

∫ ∞
0

e−
1

2σ2 (r2+1−2ra)dr

=
σ√
2π
e−

(1−a)2

2σ2 (1−Q (a/σ))

f(a) = g′(a) =
a(1−Q(a/σ))e

a2−1

2σ2

σ
√

2π
+
e−

1
2σ2

2π
(A.3)

Averaging out p we get Eq. (2.3).
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A.2 Proof of Theorem 1

Consider the Taylor series expansion of the KL divergence (Eq. 2.14) centered

at φ0 (note that φ0 = φMAP since f(φ) ∼ N (φ0, v
2))

Dθ(φ) = Dθ(φ0) + (φ− φ0)D
′θ(φ0) +

(φ− φ0)2

2
D
′′θ(φ0) + ... (A.4)

the superscripts ′ and ′′ denote derivatives with respect to φ. Substituting this in

Eq. (2.13) gives

IU θ = Dθ(φ0)

∫
f(φ)dφ + D

′θ(φ0)

∫
f(φ)(φ− φ0)dφ +

D
′′θ(φ0)

∫
f(φ)

(φ− φ0)2

2
dφ+ ... (A.5)

since f(φ) is normally distributed, this simplifies to

IU θ = Dθ(φ0) +
v2

2
D
′′θ(φ0) +O(v4) (A.6)

or

lim
v→0

IU θ

v2
= lim

v→0

Dθ(φ0)

v2
+ lim

v→0

1

2
D
′′θ(φ0) (A.7)

Consider the first term in the equation above

Dθ(φ0)

v2
=
∑
i

pθφ0
(zi)

v2
log

(
pθφ0

(zi)∫
pθφ(zi)f(φ)dφ

)

=
∑
i

pθφ0
(zi)

v2
log

(
pθφ0

(zi)

pθφ0
(zi) + v2

2
hθφ0

(zi) +O(v4)

)
(A.8)

where hθφ(z) =
∂2pθφ(z)

∂φ2
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where we have used the Taylor series expansion for pθφ(zi) around φ0 to get Eq.

(A.8). Applying the limit v → 0 using the L’Hospital’s rule (and using the fact

that pθφ(z) is strictly positive for any finite SNR), the expression above simplifies

to

lim
v→0

Dθ(φ0)

v2
=
−1

2

∑
i

hθφ0
(zi)

=
−1

2

∑
i

∂2pθφ0
(zi)

∂φ2
=
−1

2

∂2

∂φ2

(∑
i

pθφ0
(zi)

)

=
−1

2

∂2

∂φ2
(1) = 0

where we use the fact that pθφ(z) is the observation density and hence sums to 1.

The first term in Eq. (A.7) is thus 0. For the second term, evaluating the double

derivative of the KL divergence and using simple arithmetic simplifications (that

we skip) gives

1

2
D
′′θ(φ0) =

1

2

∑
i

hθφ0
(zi)log

(
pθφ0

(zi)∫
pθφ(zi)f(φ)dφ

)
+

1

2

∑
i

(
∂pθφ(zi)

∂φ

)2

φ=φ0

1

pθφ0
(zi)

(A.9)

which is a summation of two terms, the second one is the fisher information

evaluated at φ0

1

2
D
′′θ(φ0) =

1

2
T1 +

1

2
FIθ(φ0) (A.10)

Fisher information is independent of v. The proof of the theorem is complete by

observing that the first terms goes to 0 as v → 0. This is because the argument
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of the log term approaches 1.

lim
v→0

pθφ0
(zi)∫

pθφ(zi)f(φ)dφ
= 1 (A.11)

This can be easily derived by using the Taylor series expansion of pθφ(zi) around

φ0.

A.3 Proof of Lemma 1

In the absence of noise, it is straightforward to see that the unnormalized

single step phase density, pθφ(z), is uniformly distributed in φ for any given value

of θ and z. Moreover, its support has the same size as the bin size which is 2π
M

(30◦ or 45◦ for M = 12 and M = 8 respectively). Starting from a uniform prior,

the phase posterior after k steps is given by

fk(φ) ∝
k∏
j=1

p
θj
φ (zj) (A.12)

this follows from the recursive update rule given by Eq. (2.5). The first part of

the lemma follows directly from the fact that the product of uniform densities is

also a uniform density, with a support that is the intersection of the individual

support intervals.

Since fk(φ) = 1
Sk

, its entropy is given by

h(k) = −
∫
fk(φ)log(fk(φ))dφ = log(Sk) (A.13)
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We see that the entropy of a uniform density is equal to the logarithm of the length

of the support interval. Hence minimizing entropy corresponds to minimizing the

support. Let us denote the support interval of fk(φ) by [φ1
k, φ

2
k]; 0 ≤ φ1

k ≤ φ2
k

(we can assume it to be of this particular form if we do not wrap around to

force the phase to lie in the interval [0, π
2
), something that we do in practice for a

simpler implementation). Note that φ2
k−φ1

k = Sk and Sk ≤ 2π
M

. Now, conditioned

on the action θk+1 and the QPSK symbol pk
π
4
; pk ∈ {1, 3, 5, 7}, the net final

phase in the next step, Ωk+1, lies uniformly in the interval Ωk+1 ∈
[
Ω1
k+1,Ω

2
k+1

]
=[

φ1
k − θk+1 + pk

π
4
, φ2

k − θk+1 + pk
π
4

]
. Since this interval is less than 2π

M
, the bin size,

there are only two quantized phase measurements possible at k+ 1; let us denote

them by indices i− 1 and i.
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Figure A.1: Distribution of the net phase Ωk+1. Dotted line denotes the phase
threshold. Note that Ω2

k+1 − Ω1
k+1 = Sk

pθkφ (zk+1) =


α ; zk+1 = i− 1

1− α ; zk+1 = i

(A.14)

α = Pr(Ωk+1 ≤ threshold) ∈ [0, 1]

116



Appendix A.

The relative probabilities of getting these two measurements, denoted by {α, 1− α},

is determined by the action θk+1 through which we can control the location of

the uniform Ωk+1 density relative to the closest threshold. It can be easily seen

that if we get the measurement zk+1 = i − 1, the uncertainty in phase will be

reduced to an interval of size αSk. This means that the conditional entropy

h(k + 1|z = i− 1) = log(αSk). Similarly h(k + 1|z = i) = log((1− α)Sk). Hence

the average entropy is given by

E[h(k + 1)] = αlog(αSk) + (1− α)log((1− α)Sk) (A.15)

this is minimized when α = 1
2
. This means that irrespective of the measurement,

the support of the new posterior is half of the earlier support, i.e. Sk+1 = Sk
2

.

Since S0 = π
2

we get an exponentially decreasing support Sk = π
2k+1 . GE strives

to make α = 1
2

by choosing an action θ that places the net phase distribution

symmetrically around one of the thresholds. This is equivalent to saying that the

expected value of the net final phase is equal to one of the “boundaries” (phase

thresholds). Note that this strategy is optimal as choosing any value of α other

than 1
2

results in a support size that on average is greater than half of the previous

support. Also note that even though MFI is not well defined because of the flat

posterior, if we choose φMAP as the mean of the posterior, it is same as GE since

fisher information is maximized when the net phase is placed at the boundary at

high SNR.
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A.4 Proof of Lemma 2

The key observation to see why the lemma holds is this: it can be easily inferred

from equations (2.3) and (2.4) that the set of phase offset rotations β = φ− θ ={
α, π

4
− α + k π

2

}
; k ∈ I; ∀ α result in identical conditional densities P (z|β) when

M=8. For fixed derotation, these different values correspond to different phase

offsets. Setting k = 0 we can write:

α = φ− θ and
π

4
− α = φ′ − θ (A.16)

⇒ φ′ =
π

4
− α + θ =

π

4
− φ+ 2θ (A.17)

It suffices to consider k = 0 if φ′ is wrapped around to lie in the interval [0, π
2
).

A.5 BCJR Algorithm

The BCJR algorithm relies on a Markov structure [6], and applies directly

to quantized observations with Nyquist sampling. For faster sampling, the noise

correlation can still be handled by state extension if the observations are un-

quantized [42], but the Markov structure is destroyed by quantization. Thus, for

FSE/space-time architectures, we simply ignore the noise correlations, so that the

BER attained is an upper bound on the minimum possible BER.

For TSE, the state at time k is Sk = {bk, bk−1, ....., bk−L+2}. From (3.4), the

observation x(k) is a function of Sk−1, Sk and the noise w(k). The standard BCJR
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equations for the posterior probability of the state are given by

p(Sk|xN0 ) ∝ p(Sk|xk0)p(xNk+1|Sk,xk0) = p(Sk|xk0)p(xNk+1|Sk) = αkβk (A.18)

Forward Recursion

αk = p(Sk|xk0) =
∑
Sk−1

p(xk|Sk, Sk−1)p(Sk|Sk−1)αk−1 (A.19)

Backward Recursion

βk = p(xNk+1|Sk) =
∑
Sk+1

βk+1 p(xk+1|Sk, Sk+1)p(Sk+1|Sk) (A.20)

Note that, for i.i.d. binary signaling, the only computation required is of

p(xk|Sk, Sk−1), since p(Sk|Sk−1) = 0.5. From (3.4), (3.5), the likelihood of the

observation given the states is given by

Continuous Observations

p(x(k)|Sk, Sk−1) ∝ exp

(
−1

2σ2
‖x(k)− µ‖2

)
(A.21)

Quantized Observations

p(xq(k)|Sk, Sk−1) = Q

(
l − µ
σ

)
−Q

(
u− µ
σ

)
; l ≤ x(k) ≤ u (A.22)

where µ = 〈h,bk−L+1
k 〉. The quantized observation xq(k) is specified via the

interval [l, u]. Q(·) denotes the standard normal Q-function. Note that bkk−L+1 is

specified completely via Sk and Sk−1. Note that MLSE using the Viterbi algorithm

[31] can be run in similar fashion, since it also involves the same core computation

of the observation likelihoods (A.22). Since we are ignoring noise correlations, the

preceding approach extends directly to FSE with quantization.
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A.6 Proof of Lemma 3

To prove the lemma, we utilize bounds on information rate derived by Zeitler

[92], which are valid for both unquantized and quantized measurements, assuming

i.i.d. bits and symbol spaced sampling (independent noise samples).

Lower Bound

I(b, z) ≥ lim
N→∞

1

N

∑
i

I
(
bi, z

i+L−1
i |bi−1

i−L+1

) stationarity
= I

(
bi, z

i+L−1
i |bpast

)
(A.23)

= H(bi)−H
(
bi|zi+L−1

i ,bpast

)
= 1−H

(
bi|zi+L−1

i ,bpast

)
(A.24)

Upper Bound

I(b, z) ≤ lim
N→∞

1

N

∑
i

I
(
bi, z

i+L−1
i |bi−1

i−L+1,b
i+L−1
i+1

)
stationarity

= I
(
bi, z

i+L−1
i |bpast,bfuture

)
(A.25)

= H(bi)−H
(
bi|zi+L−1

i ,bpast,bfuture

)
= 1−H

(
bi|zi+L−1

i ,bpast,bfuture

)
(A.26)

Here z denotes measurements at the symbol rate: z = x (unquantized), z = xq

(quantized). The lower bound is the average mutual information between a bit (bi)

and the set of observations it affects (which are zi+L−1
i ), conditioned on the past

bits (bpast = bi−1
i−L+1). If we further condition on the future bits (bfuture = bi+L−1

i+1 )

we get the upper bound.
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We set the noise variance to zero, and consider the normalized channel g =

(g1, ...., gL)T with gj ≥ 0 for all j. Setting i = 0 without loss of generality, let

y = zL−1
0 = xL−1

0 denote the portion of the continuous-valued output containing

contributions from b0:

y(j) = ...+gj−1b1 +gjb0 +gj+1b−1 + ... or y = Gpbpast +Gfbfuture + b0g (A.27)

where Gp and Gf are appropriately defined matrices of size L× (L− 1).

In order to derive the lower bound Nl, consider the upper bound (A.26) on

information rate. Let y+1 denote the value of y conditioned on b0 = +1 and y−1

denote the corresponding value for b0 = −1. Conditioned on the past and future

bits, ∆y = y+1−y−1 = 2g. Since ‖g‖1 = 1, each output sample y(j) is confined to

[−1, 1] (since the input bits are from ±1). For a uniform ADC with N thresholds

covering this range, the size of each quantization bin is 2
N+1

. If the thresholds

separate even one component of ∆y, we can distinguish between b0 = +1 and

b0 = −1, and the conditional entropy term in (A.26) is zero. This happens if N

is large enough that the bin size is smaller than the biggest separation, given by

max
k

2gk:

2

N + 1
≤ max (2g)⇒ N ≥ 1

max(g)
− 1 (A.28)

If N is smaller than the preceding value, it is easy to see that there is at least

one set of values for the past and future bits (e.g., set them all to one) for which

b0 = +1 and b0 = −1 cannot be distinguished.
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For deriving Nu, we consider the lower bound (A.24) on the information rate.

Conditioned on the past bits, the possible values of the components of y+1 and

y−1 are given by

y+1(j) = ..+ gj−2b
l
2 + gj−1b

l
1 + gj + gj+1b−1 + ..

y−1(j) = ..+ gj−2b
k
2 + gj−1b

k
1 − gj + gj+1b−1 + ..

where the superscripts l and k are used to denote that the future bits b1, b2, ...

need not be the same. The minimum value of y+1(j) and the maximum value of

y−1(j) are given by

y∗1(i) := min
bjfuture

y1(i) = −
i−1∑
t=1

gt + gi + gi+1b−1 + ..

y∗−1(i) := max
bkfuture

y−1(i) =
i−1∑
t=1

gt − gi + gi+1b−1 + ..

We have an open eye at sample j if y∗+1(j) − y∗−1(j) > 0, which happens if

2
(
gj −

∑j−1
t=1 gt

)
≥ 0. If there is a threshold between y∗+1(j) and y∗−1(j), then

we can separate b0 = +1 and b0 = −1 irrespective of the value of the future bits.

This corresponds to the following condition on N :

2

N + 1
≤ 2

(
gi −

j−1∑
t=1

gt

)
⇒ N ≥ 1

gj −
∑i−1

t=1 gt
− 1 (A.29)

We get a set of upper bounds onN for each j = 1, ..., L, along with a corresponding

set of bounds for the time-reversed channel. Minimizing across these gives the

bound Nu stated in the lemma.
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A.7 Difference of Gaussian parameters

We use the classical difference-of-Gaussians (DoG) model ([73, 27, 20]):

R(x, y) = Kce
− (x2+y2)

r2c −Kse
− (x2+y2)

r2s (A.30)

where Kc and rc are the contrast gain and radius of the center component, re-

spectively, and Ks, rs are the same for the surround component. DoG parameter

values for the foveal RGCs are not directly available in published data. Croner

and Kaplan [20] report

• median values of rc = 0.03◦ and rs = 0.18◦, for cells at 0◦ − 5◦ eccentricity

(The eccentricity of a point A on the retina is the angle between the center

of the fovea and A); and

• median values of rc = 0.05◦ and rs = 0.43◦ for cells at 5◦ − 10◦ eccentricity.

rc, rs increase linearly with eccentricity [20]. Hence, we fit a line to the values

above (e.g. for rc, two points on the line are (2.5◦, 0.03) and (7.5◦, 0.05) where we

took 2.5◦ as the representative eccentricity for the 0◦−5◦ interval, and 7.5◦ for the

5◦− 10◦). We choose 1◦ as the representative eccentricity for foveal RGCs, where

the lines yield rc = 0.024◦ and rs = 0.105◦. The degree/pixel ratio for our model

is 4.16◦/219 pixels = 0.019 degree/pixel. Therefore, rc = 0.024/0.019 = 1.27

pixels and rs = 0.105/0.019 = 5.53 pixels. The values of Kc and Ks are inversely

proportional to the center and surround areas, respectively [20].
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