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ABSTRACT 

 

Area-efficient Neuromorphic Silicon Architectures using Spatial and Spatio-Temporal 

Approaches 

by 

 

Melika Payvand 

 

In the field of neuromorphic VLSI connectivity is a huge bottleneck in implementing brain-

inspired circuits due to the large number of synapses needed for performing brain-like 

functions. (E.g. pattern recognition, classification, etc.). In this thesis I have addressed this 

problem using a two pronged approach namely spatial and temporal. 

Spatial: The real-estate occupied by silicon synapses have been an impediment to 

implementing neuromorphic circuits. In recent years, memristors have emerged as a nano-scale 

analog synapse. Furthermore, these nano-devices can be integrated on top of CMOS chips 

enabling the realization of dense neural networks. As a first step in realizing this vision, a 

programmable CMOS chip enabling direct integration of memristors was realized. In a 

collaborative MURI project, a CMOS memory platform was designed for the memristive 

memory array in a hybrid/3D architecture (CMOL architecture) and memristors were 

successfully integrated on top of it. After demonstrating feasibility of post-CMOS integration 

of memristors, a second design containing an array of spiking CMOS neurons was designed in 

a 5mm x 5mm chip in a 180nm CMOS process to explore the role of memristors as synapses 

in neuromorphic chips. 
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Temporal: While physical miniaturization by integrating memristors is one facet of 

realizing area-efficient neural networks, on-chip routing between silicon neurons prevents the 

complete realization of complex networks containing large number of neurons. A promising 

solution for the connectivity problem is to employ spatio-temporal coding to encode neuronal 

information in the time of arrival of the spikes. Temporal codes open up a whole new range of 

coding schemes which not only are energy efficient (computation with one spike) but also have 

much larger information capacity than their conventional counterparts. This can result in 

reducing the number of connections to do similar tasks with traditional rate-based methods.  

By choosing an efficient temporal coding scheme we developed a system architecture by 

which pattern classification can be done using a “Winners-share-all” instead of a “Winner-

takes-all” mechanism. Winner-takes-all limits the code space to the number of output neurons, 

meaning n output neurons can only classify n pattern. In winners-share-all we exploit the code 

space provided by the temporal code by training different combination of k out of n neurons 

to fire together in response to different patterns. Optimal values of k in order to maximize 

information capacity using n output neurons were theoretically determined and utilized. An 

unsupervised network of 3 layers was trained to classify 14 patterns of 15 x 15 pixels while 

using only 6 output neurons to demonstrate the power of the technique. The reduction in the 

number of output neurons results in the reduction of number of training parameters and results 

in lower power, area and memory required for the same functionality. 
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I. Chapter 1: Introduction 

There has been a long standing dream to make computers that work like the brain and 

scientist have been working on this problem for decades now. However, the gap between the 

state-of-the-art computers and the brain is still very large. The most important reasons why are 

because: 

1) Computers and the brain have a fundamentally different way of computing. Computers 

have a deterministic approach in processing the input data. There are well-defined logic 

gates which take 0 and 1 logic levels as inputs, and output appropriate 0s and 1s depending 

on the logic function.  Whereas the brain takes a self-organizing method of computation, 

meaning that it learns from mistakes. Let me give the example of throwing a ball into the 

basket. If we were to program a conventional computer to achieve this, all the physical 

laws of gravity would have had to be defined in the program, taking into account details 

such as the size of the ball, and also environmental factors such as the wind or rain and ask 

the computer to calculate the initial velocity and direction of throwing the ball in order to 

make it to the basket. The brain, however, has a completely different approach. The ball is 

thrown and if it does not make it to the basket, it learns from its mistake. The solution to 

the problem of targeting the ball into the basket overshoots and undershoots until the goal 

is reached. That’s how the brain self-organizes the solution to an unknown problem, by 

trial and error.  

2) In computers the execution of instructions is rather sequential. The reason why I say 

“rather” is because today’s computers take advantage of a lot of parallelization using 

GPUs. However, the parallelization works as dividing tasks between different processing 

cores but execution of each task at a specific core is still sequential. This is while the brain 
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processes information massively in parallel: millions of processing units all working at the 

same time.  

3) While brain uses these millions of processing units in parallel, which are connected to 

each other through billions of connections, it only consumes a few tens of watts. If we were 

to run “human-scale” simulations of the brain running in real time, using the best 

supercomputers, that would consume about 12 Giga watts of power. [1] 

The reasons mentioned above makes it clear why building a “brain-inspired” computer is the 

next computing paradigm. These computers will be  

a) Efficient in terms of energy and space 

b) Scalable to large networks 

c) Flexible enough to run complex behavioral model 

Considering how far we have come in silicon industry and all the advances in the field of 

neuroscience and AI, could make us wonder what is stopping us from making these computers? 

The answer lies of course in limitations we face because of the physical properties of silicon 

chips. Below I will talk about the major bottlenecks of building such computers. 

Bottlenecks of implementing brain-inspired computers 

Centralized von Neumann architecture is fundamentally not suitable for representing 

massively interconnected neural networks. In this type of architecture, used in conventional 

computers, the processing unit and the memory are separated from each other. When there is 

an instruction to be executed, special part of the memory is addressed, the data is fetched and 

is processed in the CPU. This is fundamentally in contradiction with how the brain performs 

the computation where the memory is localized to the processing unit and is distributed all 



3 

 

across the brain. In order to make brain-like computers we should also use these distributed 

computing-memory agents, namely neurons and synapses.  

 

1.1 Silicon Neurons 

Silicon neurons emulate the electro-physiological behavior of real neurons. This may be 

done at many different levels, from simple models (like leaky integrate-and-fire neurons) to 

models emulating multiple ion channels and detailed morphology. Depending on the 

application and the level of sophistication required, different models could be used. Leaky 

integrate and fire models are less realistic and do not take into account many of the details of 

what’s going on inside a neuronal cell. But they are simple and need very small area since the 

number of transistors used in the circuit is minimal.  

The first leaky integrate and fire model which was proposed by Carver Mead in the late 

1980s is shown in Figure I-1. In this circuit, a capacitor that represents the neuron’s membrane 

lipid bilayer integrates input current into the neuron. As soon as the capacitor reaches the 

neuron’s threshold, a pulse Vout is generated, the membrane potential Vmem is reset through the 

NMOS transistors and the neuron will be ready for the next current injection. 

 

 

Figure I-1 Axon Hillock Neuron Model [34]. 
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1.2 Silicon synapses 

Conceptually, synapses can be modeled as the connection between neurons with an 

associated strength (weight). In fact, synapses are the adaptive learning agents in the brain: 

Neurons receive inputs and fire, so they have a very specific task: when the membrane potential 

is above a threshold, they fire. However, the synapse’s strength has dynamics and will change 

in the process of learning. These changes are continuous and analog rather than digital. 

Therefore, in order to mimic the synaptic behavior into the silicon we need nonvolatile analog 

memory storage with locally computed memory updates. Note that in order to perform brain-

like functions, a large number of artificial synapses are needed.  

Throughout the history of neuromorphic engineering, circuit designers tried many different 

options as analog memory for artificial synapses. I’ll briefly go over each of them below.  

 

1.2.1 Capacitors 

Capacitors are the first obvious choice for analog memory. They accumulate the charge 

and develop a voltage across their capacitive plate. The only important problem is that they 

leak. So they are not truly non-volatile as they slowly lose the charge. However, different 

solutions have been proposed to overcome this problem. For example, using techniques such 

as generating negative gate-source voltage across the series transistor in order to reduce the 

leakage below the “off subthreshold current” [2], or using them only as an analog memory 

while learning ,and then register the value as a single digital bit depending on the analog value 

of the capacitor voltage. This is called Fusi learning [3]. The idea is presented in Figure I-2 

shown below.  

 



5 

 

In other words, the synapse value is analog in the short term and digital in the long run. The 

positive feedback loop in the circuit will drive the capacitive charge towards a digital 1 or zero 

depending on the current value of the capacitor voltage. If the capacitor voltage is higher than 

a positive Vth,p it will slowly charge the capacitor through a small subthreshold current to VDD 

and if that’s lower than a negative Vth,n it will discharge it towards VSS. Although this is a 

prominent solution, there are two issues rising from it: i) Although some neuromorphic 

engineers argue that for neural network applications, a few number of bits are enough [4], 

employing a true analog memory has advantages which I will talk about some of them later in 

the thesis. Simply put, since digital synapses are a big approximation we could easily end up 

with relatively large errors on applications such as pattern recognition.  ii) One limitation of 

using one capacitor for each synapse is that it takes a large area on chip. If the technology 

process does not provide MIM (Metal-Insulator-Metal) capacitor structures, then having a 

capacitive memory means we need to have a memory array at one part of the chip and having 

neurons in another part which is employing the von Neumann architecture. For reasons we 

discussed before using this architecture is fundamentally different from what the brain does 

 

Figure I-2 The bistability circuit will drive the w node towards one of its two stable states.Figure adopted from 

[3]. 
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and will limit us in parallelizing the structure. Even if the technology process provides a MIM 

capacitor structure, the supporting circuity needed for each synapse in order to enable online-

learning is very area-hungry and will only work for small networks.  

 

1.2.2 Flash 

In the late 90s, C. Diorio and his colleagues in Carver Mead’s lab fabricated synapse 

transistors that not only possessed nonvolatile analog storage, and compute locally their own 

memory updates, but also allowed local computation of the product of their stored memory 

value and the applied input. To ensure nonvolatile storage, they used standard floating-gate 

MOS technology, but adapted the physical processes that write the memory to perform a local 

learning function [5]. Figure I-3 shows the p-type of this synapse transistor.  

The underlying process of non-volatility of the memory lies in trapping electrons in the 

floating gate by employing hot-electron injection which is a well-known process in MOSFETs. 

 

Figure I-3 P-type Synapse Transistor [35]. 
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It occurs in short-channel devices with continuous channel currents, when a high gate voltage 

is combined with a large potential drop across the short channel. Injecting electrons into the 

floating gate will cause a negative voltage to develop on the gate and hence it will decrease the 

threshold voltage of the PMOS, increasing the “weight” of the synapse transistor. On the 

contrary, in order to remove charge from the floating gate and decrease the synaptic “weight”, 

positive high voltages should be applied to the tunneling implant to remove electrons from the 

floating gate, thereby increasing the floating gate voltage. 

The advantage of this method is that the weight multiplication by the input is done locally 

and without any extra circuity. So it’s area-efficient and local. The disadvantages of using these 

synapse transistors are i) There is not a full-blown model of these transistors available in CAD 

tools such as Cadence virtuoso. Therefore, when laying out these devices, the standard CMOS 

process transistors cannot be used and hence the functionality of these devices cannot be 

ensured before their fabrication. ii) Increasing and decreasing the weights are not trivial. High 

voltages are needed in order to facilitate hot-electron-injection and tunneling mechanisms. 

These high voltages need to be generated on chip (or by connecting from an I/O whose ESD 

protection diodes have been removed) and will decrease the oxide life time. 

1.2.3 Multiple SRAMs 

Yet another method of building electronic synapses employed by researcher throughout the 

years have been to use multiple SRAMS [6]. In this method, few bits of memory are devoted 

to each synapse. Analog values of synapse are digitized using a DAC and are kept in the 

SRAM. When reading, the SRAM memory bits are fed into an ADC and the analog value is 

used in the circuit. The advantage of this method is that it’s very robust since the memory is 

kept digitally. The disadvantages are i) it’s volatile. So with the loss of power the memory will 
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be reset. ii) It’s very computationally expensive and area inefficient to use an ADC and a DAC 

for every synapse. These ADCs and DACs can be shared but that serializes the process and 

also needs extra circuitry in order to priority encode which synapse will take use of the shared 

DAC and the ADC.  

 

1.3 Overview 

As stated above, one of the most important bottlenecks of building computers that work 

like the brain, is to make artificial synapses. Although there have been many attempted 

solutions for this problem, packing a large number of silicon synapses in a small area enabling 

the local learning remains an issue. In this thesis, I have investigated a two pronged approach 

namely spatial and temporal to tackle this problem. 

1.3.1 Spatial approach: Memristors 

In recent years, memristors have emerged as a solution for the connectivity problem. These 

nano-devices can be densely integrated on top of CMOS chips and can serve as analog memory 

needed to imitate synapses. What makes memristors a perfect candidate as an artificial synapse 

is not only because they have a nano-size footprint and they take no silicon space, but also they 

are non-volatile analog memory. Also, they imitate biological synapses very well since the 

multiplication of the weight (Memristor’s conductance G) to the input current (I) occurs 

automatically through Ohm’s law (I=GV). The adaptive conductance of the material could 

serve as “analog weights” which develop voltages across the devices, depending on the current 

passing through them as inputs to the network.  

As a first step in realizing integrated memristors as artificial synapses, we designed a 

programmable CMOS chip enabling direct integration of memristor. In a collaborative MURI 
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project, a CMOS memory platform was realized for the memristive memory array in a 

hybrid/3D architecture (CMOL architecture [7]) and memristors were successfully integrated 

on top of it. After demonstrating feasibility of post-CMOS integration of memristors, we 

designed a second chip containing an array of spiking CMOS neurons with an area of 5mm x 

5mm in a 180nm CMOS process to explore the role of memristors as synapses in neuromorphic 

chips.  

1.3.2 Spatio-temporal Coding Approach 

While physical miniaturization by integrating memristors is one facet of realizing area-

efficient neural networks, on-chip routing between silicon neurons prevents the complete 

realization of complex networks containing large number of neurons. A promising solution for 

the connectivity problem is to employ spatio-temporal coding to encode neuronal information 

in the time of arrival of the spikes. Temporal codes open up a whole new range of coding 

schemes which not only are energy efficient (computation with one spike) but also have much 

larger information capacity than their conventional counterparts. This can result in reducing 

the number of connections to do similar tasks with traditional rate-based methods.  

By choosing an efficient temporal coding scheme, I have developed a system architecture 

by which pattern classification can be done using a new algorithm dubbed “Winners-share-all” 

instead of a “Winner-takes-all” mechanism. Winner-takes-all limits the code space to the 

number of output neurons, meaning n output neurons can only classify n pattern. In winners-

share-all we exploit the code space provided by the temporal code by training different 

combination of k out of n neurons to fire together in response to different patterns 
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This thesis will be divided into two major parts: Spatial and Spatio-Temporal approach. In 

Chapter 2,3, and 4, I cover the spatial approach which studies the role of memristors as 

synapses in neuromorphic chips. In chapter 2, I briefly introduce memristors and talk about 

some of the background work on different memristive architectures. Chapter 3 will cover the 

details of the first chip we taped out which incorporated a means for 3D-integrating Memristive 

Arrays for Memory Applications (MAMA). After demonstrating the feasibility of post-CMOS 

integration of memristors on MAMA chip, I then explain, in chapter 4, how we took the next 

step to design an array of spiking CMOS neurons on a second chip to explore the role of 

memristors as synapses in neuromorphic chips.    

The second part of this thesis is devoted to the Spatio-temporal coding approach to 

reduce the number of connectivity needed on chip by exploring the code space provided by the 

temporal codes. Chapter 5 will introduce the concept of information encoding in time and a 

summary of background work on this area. I will then propose the Winners-Share-All (WSA) 

algorithm using the temporal code and compare it to the conventional Winner-Takes-All 

(WTA) counterpart. In chapter 6, I describe how I used this new algorithm to perform a rather 

simple recognition task to cluster 14 letters of English alphabet. And finally chapter 7 will 

summarize the work of this PhD thesis and discuss the future directions.  

 

 

 

II. Chapter 2: Memristors and Memristive Architectures 

As the basic building block of electronics, field effect transistor (FET), approaches the 10-

nanometer regime, a number of fundamental and practical issues start to emerge due to 
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difficulties in nanometer-resolution fabrication, electrostatic control and power management. 

New devices and architectures are expected to continue the scaling trend the semiconductor 

industry has enjoyed in the past decades. Two-terminal resistive switches (also called 

memristive devices or memristors) have attracted increasing interest as a suitable alternative 

to complement transistors. [8]. In this chapter I introduce memristors and explain its underlying 

mechanism. I will also talk about the architectures developed for these nano-devices and how 

they can be used for neuromorphic applications.  

2.1 What is a memristor? 

As can be guessed by the name, it’s a memory resistor: A two-terminal switch which can 

retain its resistive state based on the history of the applied field and hence it’s an analog non-

volatile memory. They are simple passive circuit elements, but their function cannot be 

replicated by any combination of fundamental resistors, capacitors and inductors [9].  

Memristors are typically based on a Metal-Insulator-Metal (MIM) structure. An otherwise 

insulating film is sandwiched between two conductive electrodes. The choice of material for 

this MIM structure has been under extensive research with different stacks. The underlying 

switching mechanism seems to differ for a variety of electrode and memristive materials: 

The mechanism can be attributed to a) phase change due to Joule heating in chalcogenide-

based phase-change memories. b) conductive filament formation due to Joule heating observed 

in certain oxides such as TiO2. c) conductive filament formation due to electrochemical redox 
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processes observed in binary oxides (e.g. NiO, CuO2, TiO2) or chalcogenides, and polymers d) 

field-assisted drift/diffusion of ions in amorphous films and e) possible conformational 

changes in molecules. [8] 

Figure II-1 shows an example of a memristors in which Pt is used as the electrode and TiO2 

as the switching material. There are also some oxygen vacancies in the form of TiO2-x which 

act as charged dopants and can respond to the electric field. In the initial state, a filament of 

conductive TiO2-x is formed in the non-conductive TiO2 film in an irreversible forming step. 

However, the formed filament does not connect the two electrodes together and thus the device 

is in a High Resistance State (HRS). In order to switch the device ON, a sufficiently high 

positive voltage is applied across the device which attracts positively charged vacancies in the 

 

Figure II-1Memristor realization and typical hysteretic I-V behavior. (a) OFF state: An initial fil- ament is 

formed during a one-time formation process. No conductive channel exists; thus the device is in high resistance state. 

(b) Set process: positive voltage drifts the dopants toward the filament, forming a channel, and decreasing the 

resistance. (c) ON state: a low-resistance channel is formed between the two electrodes. (d) Reset process: Applying 

a negative voltage repels the dopants and ruptures the channel, increasing the resistance. Adopted from [10]. 
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oxide to the top electrode. This will cause the filament to grow since the vacancies start to drift 

through the most favorable diffusion paths in the presence of the electric field and hence they 

form a channel between the two electrodes. Once such highly conductive channels are formed, 

the device is in Low Resistance State (LRS) and considered as ON [10]. 

The onset of the figure is illustrating the I-V characteristics of the memristors which 

exhibits an inherent memory with a “pinched hysteresis” which can be used for information 

storage. For example, in the case of resistive memory RRAM, by assigning LRS=”1” and 

HRS=”0”, or in the case of analog memristors, a spectrum of resistive values ranging from a 

HRS to a LRS.  

The I-V characteristic of memristors have 3 main operating regions which are highlighted 

in Figure II-2. The green region in the middle is called a “diode region” where the device acts 

like a reverse biased diode. In the diode region, there is very little current passing by for the 

voltage being applied across the device. The region shown in yellow is the “read region” in 

which the state of the device can be read without changing or disturbing its value, since the 

 

Figure II-2 Memristors' main operating regions; Green: Diode region where tiny current passes through the 

device under the application of electric field. Yellow: Red region where enough current passes through the 

memristors to sense the state of the device without changing its state. Red: Switching region where the memristor 

switches from one state to another.  
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voltage is not high enough to surpass the device threshold for switching. The voltage range in 

the yellow region is “read voltage” which is applied across the device and by sensing the 

current passing through, the resistance of the memristor can be measured. The region illustrated 

in Red in Figure II-2 is where the device switches to the other state. This “write region” consists 

of voltage levels which are greater than the threshold voltage of the device and hence are strong 

enough to move the dopants and change its resistance.  

These three main operating regions provide a design tool in order to use these devices as 

memory elements and perform the desired operation on them. 

 

2.2 Memristors as Memory Elements 

As a first step in using memristors as memory elements we can think of replacing them 

with conventional memory elements in standard memory platforms. Figure II-3 shows such 

platform in which each memory device has an access transistor in series and a certain address 

 

Figure II-3 Standard memory architecture. 
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in the array accessible by its row and the column. The address is fed serially to the array, the 

row and the column are decoded and the desired operation (read/write) is performed.  

Replacing these memory devices with memristors, we end up with an architecture dubbed 

“1T-1R”, shown in Figure II-4, which consists of one resistive memory in series with one 

access transistor at each row and column.  

However, having a series transistor defeats the purpose of using these nano-devices for 

high-density packing of the memory since for each memory element, the limitation is still the 

size of the transistor. Moreover, the current needed for switching of these devices, depending 

on the range of the memristor can range anywhere from 10s of µAs to 10s of mAs which 

applies a constraint on the size required for the series transistor having to be able to drive the 

required current for switching of its corresponding memristor. So can we somehow remove the 

access transistor? The problem raised by doing so is addressability of the memory elements. 

The reason why the transistor is addressable is because it’s a 3 terminal device; However, by 

removing the access transistor we are now left with a completely resistive array which is called 

 

Figure II-4 1T-1R architecture. Memristors are accessed through selecting the series transistor. 
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the “crossbar array”. The crossbar array can be implemented using 2 perpendicular layers of 

parallel nanowires where a memristor is formed at each cross section. In the following section 

I will explain how crossbar arrays can be used to replace conventional memory for a highly 

dense memory array. 

2.2.1 Crossbar 

As was discussed in the previous section, in order to gain from the density of memristors, 

cross bar arrays are used, however, their use comes with challenges since the array is fully 

passive which I will be addressing in this section. 

Selecting the devices in the crossbar array is performed through the application of appropriate 

voltages across the horizontal and vertical nanowire of the desired memristor. Figure II-5 

illustrates this idea for the read and the write mode.  

One row can be read simultaneously by applying Vr, a voltage in the read region of the 

memristor, on the horizontal line and pinning the other side, the vertical line, to zero and 

reading off the current using a trans-impedance amplifier. To program an individual memristor 

to a HRS (“0”) or to a LRS (“1”) -Vw or Vw should be applied across the memristor 

 

Figure II-5 Crossbar memristor array with selected bits for reading and writing [11]. 
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respectively. However, having Vw on one side and 0 on the other side, will cause unwanted 

memory elements to get programmed which is undesirable. In order to solve that problem, to 

program a certain memristor, Vw/2 is applied to one side and -Vw/2 is applied to the other side. 

This way, the non-selected devices have half of the Vw across them which is designed to lie in 

the read region and therefore it does not cause a state change in the device [11].  

Figure II-6 depicts the CMOS level chip architecture to support the crossbar array. 3 

level muxes at row and column are used to determine the read/write mode, the row/column 

select and Write 0 or Write 1 for the write mode. By choosing these 3 bits, desired operation 

is done on the desired memristors.  

Overall, the memristor-based crossbar network structure can offer the following advantages: 

1) it allows ultra-high density memory storage with relatively small number of control 

electrodes: n2 cross-points can be accessed by n-rows and n-columns in the crossbar; 2) it 

offers large connectivity between devices; and each column or row is connected to n-rows or 

columns through n different devices. However, a new challenge rises as the size of the 

 

Figure II-6 CMOS Level Chip Architecture [11]. 
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crossbars gets larger and larger since the parasitic resistance of the nano-wire becomes 

comparable to the memristance and the applied voltages to the crossbars will drop across the 

parasitic resistance instead of the memory device. Moreover, the speed of the write or read 

deteriorates a lot because of the large capacitances on the nanowire caused by the large size of 

the crossbar. In the next section of this chapter I introduce CMOL architecture which tackles 

this problem to enable high density 3D memory in CMOS chips.  

 

2.2.2 CMOL Architecture 

CMOL architecture was first introduced by Strukov. et al in [12] as a solution for densely 

packing memristive devices on top of CMOS chips and I’ll be explaining it from my own point 

of view in this section. 

As I mentioned before, the problem with large crossbars becomes the undesired parasitic on 

the nano-wires. Therefore, instead of having a large crossbar we could instead use multiple 

smaller crossbars. This idea is shown in Figure II-7. In order to address an individual device, 

one row and column is required to address the crossbar in which the device is located in, and 

one row and column is required to address the device within the crossbar. Therefore, a double 

 

Figure II-7 Cutting large crossbars into many small ones. Decoding the crossbar is equivalent to decoding a “blue 

pin” and decoding a memristor within that mini crossbar is equivalent to decoding a “red pin”. Every combination of 

red and blue chooses a unique memristor. 
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decoding scheme is asked for in order to access the device. In CMOL terminology, we call 

addressing the crossbar, selecting the “blue pin” and selecting the device inside the crossbar, 

decoding the “red pin”.  

If these red and blue pins are distributed in the CMOS surface, we end up with an area 

distributed interface as is shown in Figure II-8 .Addressing each blue pin will select an area of 

crossbars and addressing the red pin within that region selects the desired device. Each square 

containing one blue and one red pin is a “CMOS Cell” which contains the supporting CMOS 

circuitry for addressing the memristive devices. The red and the blue pin are the interface 

connecting the underlying CMOS to the integrated top and bottom crossbar nanowires, 

respectively.  

This seems to be solving all the problems, however, if the crossbars are fabricated in a 

Manhattan grid fashion, the pitch between the crossbars are dictated by the CMOS cells pitch 

which is much larger than the memristive nano-size and it defeats the purpose of employing 

memristors. Therefore, in order to exploit the intrinsic nanoscale dimensions of memristors, 

decoupling the underlying CMOS feature size from the device is required. One method of 

 

Figure II-8 CMOL architecture consists of reds and blue pins in an area distributed interface. 
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decoupling is to rotate the nanowires. Such rotation ensures that a shift by one nanowire 

corresponds to the shift from one interface pin to the next one (in the next row of similar pins), 

while a shift by r nanowires leads to the next pin in the same rows (Figure II-9). The bottom 

nanowires are passed through blue pins and the perpendicular top nanowires are passed through 

red pins. At the cross-point of these nanowires memristors are formed which are addressable 

through the red and the blue pin connecting to its corresponding nanowires. This is 

demonstrated in Figure 2.9. The colored region highlights the crossbar selected by addressing 

the blue pin shown with a larger blue circle. The CMOS cell containing this blue pin is 

connected to all the CMOS cells in the highlighted region through the memristive cross points 

inside this region. Therefore, the colored area is the “connectivity domain” of the selected 

CMOS cell. The device marked by X inside the colored region can be selected by addressing 

its corresponding red pin illustrated with the large red circle in Figure II-9. 

CMOL tackles fabrication issues such as interlayer alignment accuracy and integration of 

nanoscale devices over a CMOS sub-system with larger scale feature size. Moreover, it 

 

Figure II-9 Every red and blue pins are embraced inside a CMOS Cell. Every CMOS Cell is connected to a 

neighborhood of CMOS Cells thorough a mini-crossbar. This is shown in pink in this figure and is dubbed the 

connectivity domain of the CMOS Cell shown in gray. 
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provides high- density memory with less parasitics by sharing select circuitry between multiple 

memristors (1T-1R vs 1T-NR). 

How can we use this architecture in order to design functional memory arrays? This is the 

question I will be answering in the next chapter by describing the CMOS memory platform we 

designed in CMOL architecture for 3D memristor integration. 
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III. Chapter 3: Memory Access controller for Memristor 

Applications (MAMA) Chip 

With this vision of a monolithic, 3D-integrated CMOL memory platform in mind, we have 

designed and tested the first prototype of the CMOL architecture complete with integrated 

memristors. This chapter focuses on the challenges involved from a circuit design perspective 

and the steps taken to support memristors with different ranges of resistance, threshold 

voltages, on/off ratio etc. More in-depth analysis of the architectural trade-offs can be found 

in [13] and details of the memristor integration is discussed in [14]. 

The plethora of memristive device designs, each with their unique advantages, requires a 

flexible supporting circuit architecture. The circuit design is strongly influenced by the 

connectivity imposed by the area-distributed interface and also the chip architecture which is 

designed to reflect the CMOL idea. We term this versatile chip the Memory Access controller 

for Memristor Applications (MAMA). A key circuit requirement for the MAMA chip is the 

ability to handle memristors with different Ron/Roff values, and provide the appropriate write 

and read voltages. This chapter explains the configurable architecture and circuits designed as 

a platform for integrating different kinds of memristors.  

 

3.1 Chip Architecture 

The chip consists of an array of CMOS cells, double decoders, programming drivers and 

sensing circuitry shown in blocks in Figure III-1 a. Each CMOS cell houses select circuitry 

including Red and Blue pins required by the area-distributed interface (Figure III-1 b). 
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Selecting two of these Red and Blue pins accesses two of the segmented nanowires and hence 

a unique memristive device at the cross-point. A row-column decoder in turn accesses these 

pins. Thus it requires a double decoding scheme. The double decoders surround the CMOS 

cell array and have their function split among the Blue/Red row/column decoders. Depending 

on the desired operation (Read/Write) the Blue/Red line drivers place appropriate voltages on 

the Red and Blue lines (Figure III-1. c,d) which connects to the Red/Blue pins through the 

CMOS Cell select circuitry (Figure III-1 b). For example, during the read operation, Vr is 

applied across the desired memory cell and the sensing circuitry makes a binary decision 

regarding the memristor state and the data is shifted out serially. In the following sections the 

details of the circuitry in these blocks are described. 

 

3.2 Writing Circuitry (CMOS Cell Design) 

To write on a particular memristor, the device is addressed and the appropriate write 

voltages are applied across it.  This is done through CMOS cells shown in Figure III-1 b. It 

includes two transmission gates controlled by Blue/Red enable signals routed from the double 

decoder.  When the gates are asserted, they drive the Red and Blue pins with the appropriate 

 

Figure III-1 a) Overall chip architecture. b) CMOS cell. When the transmission gates are selected by Red/Blue enable 

signals, they connect the Red/Blue lines to the Red/Blue pins which are the interface to the integrated memristors.  c,d)  

Blue and Red line drivers which places the appropriate voltages on the Red/Blue lines [15]. 

 

 



24 

 

voltages on the Blue/Red lines. De-assertion connects the pins to a default voltage, Vd, in order 

to avoid floating problems such as leakage or unpredictable state-changes due to unwanted 

noise sources.  

The transmission gates together with the memristors comprise a voltage divider. To ensure 

the memristor’s operation in the desired region (i.e. the write region), the voltage drop across 

the transmission gates must be negligible. Therefore, these pass gates need to be sized 

accordingly.  

However, the size of the transmission gates imposes a limitation on the number of CMOS 

Cells which can fit in the chip and hence the size of the memory supported by the chip. As a 

result, there is a trade-off between the maximum current drive and the size of the integrated 

memory on the chip. 

Given these constraints, a size of W/L=42µm/0.6µm in 0.5 µm process is chosen for the 

pass gate transistors. The maximum current supported by these transmission gates for a range 

of input voltages is reported in the next section. This maximum current can be considered as 

the compliance current limiting the current passing through the memristors and hence 

 

Figure III-2 CMOS cell layout. Metal 3 is used as the interface with integrated memristors. This cell occupies an 

area of 32×32 µm2 in a 0.5µm process. 
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preventing device break down [9]. Depending on the required write voltage, the minimum 

resistance supported by the chip can be calculated.  

Layout realization of a CMOS cell is shown in Figure III-2. Since this CMOS chip needs 

to be post-processed for 3D memristor integration, the last metal layer in the On-Semi 0.5µm 

process (Metal 3) is crucial to the area-distributed interface. General power and ground routing 

cannot be done on this metal layer as it risks exposing and damaging these lines, therefore they 

are routed in Metal 2. The size of the pins comprising this area-distributed interface has been 

intentionally made large (24×8 µm2) to reduce the effect of cumulative alignment error. 

 

3.3 Sensing Circuitry  

In order to make a binary decision regarding the memristor state, a current-sensing scheme 

is chosen over a voltage-sensing counterpart. In a conventional voltage-sensing scheme, a 

transimpedence amplifier (TIA) is utilized to convert the signal into a voltage which is then 

compared against a threshold voltage. However, the TIA needs at least a two stage op-amp 

 

Figure III-3 Sensing circuitry. a) The current-sensing scheme. The memristor’s current from the crossbar is 

compared against a reference current by the winner-take-all (WTA) circuit. b) A tunable reference current. The 

current can be changed by tuning the Roff-chip. 

 

 

        

       

Vout

WTA

     
  
  
  

      

    

    

  M1

         

    

          

       

   
0
1

M2

       

         

   
0
1

(b)

   

    

        

       
    

         

(a)



26 

 

with an appropriate output stage in order to drive the resistive load. Moreover, for a high 

resistive gain of the TIA, a large feedback resistor is needed, which takes up a large silicon 

area. Therefore, for a more compact design, the current-sensing scheme is utilized. Also, a 

current-sensing scheme has the advantage of a much larger dynamic range, which is required 

for the configurability. 

Figure III-3 a shows the schematic of the current-sensing circuitry. The current drawn by 

the device in response to a small read voltage, Vr, is compared against a reference current. The 

read voltage should be picked in a region where the memristor’s state does not change.  This 

read voltage is applied by pinning one terminal of the memristor of interest to the default 

voltage, Vd, by an op-amp, while the other terminal is driven by the blue line driver to Vd+Vr. 

This read current is then compared against a reference current using a winner-take-all (WTA) 

circuit. 

As the sensing circuitry is only connected to the memristors when the Read En signal is 

asserted, the pinning loop is not always closed. In order to avoid the settling time of the loop 

when the Read En signal asserts, a very small Ioff current (50 pA, through pbiasdifsr and 

pcasdifsr generated from a current diffuser) is passing through M1 while Read En is not active. 

As soon as Read En is activated, the Ioff current is steered to an alternate path and is drained 

by M2.   

In order to make the sensing circuitry compatible with different memristor types (e.g. 

different Ron and Roff values), a tunable reference current is designed. As is shown in Figure 

III-3 b, this current reference can be tuned by two knobs: the off-chip resistor and the DAC 

output voltage across that resistor. A flexible platform for generating the read and write 

voltages is designed on the PCB test board by using DAC-controlled voltage sources.  
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3.4 Measurement Results 

The chip micrograph is shown in Figure III-4 a. It occupies an area of 2×2 mm2 and was 

fabricated in On-Semi 3M2P 0.5µm technology through the MOSIS service. This area can 

potentially support 1kb of memory. Using an advanced CMOS technology node will allow for 

a larger memory size and smaller CMOS cell size. The range of voltages required for different 

 

Figure III-4 a) Chip micrograph. Different parts of the chip are shown. b) Individual devices integrated on the 

chip. 
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memristor types coupled with the fabrication cost make 0.5µm technology ideal for this 

multipurpose chip. 

In order to test the functionality of the chip independent of successful memristor 

integration, the last row of the CMOS cell arrays is connected to peripheral bond pads. We 

used a potentiometer connected to two of these pads to verify the functionality of the chip over 

a large range of resistances, since a memristor is essentially a resistor in steady state. The PC 

board designed for testing the chip is shown in Figure III-5. On the right DAC voltages are 

configured using an FPGA in order to configure the writing and read voltage of the memristors. 

Digital inputs are given through the connectors on both sides of the chip controlled by the 

FPGA. The experimental characterization of the chip along with the memristor integration 

results are reported in this section. 

 

 

Figure III-5 PCB board designed to test the MAMA chip. 
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3.4.1 Writing Circuitry Characterization 

The most important factor of the MAMA chip writing circuitry is the maximum current 

drive for the various memristive loads. As is explained in section 3.2, decreasing the load 

resistance lowers the voltage drop across the memristor, which limits the current drive. Figure 

III-6 a. reports the voltage across a large range of load resistances for different writing voltages. 

The highlighted region (below 2kΩ) shows the memristor range not supported by this chip 

since the voltage drop across the transmission gates becomes dominant. Table 3.1 depicts the 

maximum current provided by the chip in the writing mode for a 10% drop of the writing 

voltages. 

 

 

Table 3.1. Maximum current in the writing mode for a 10% drop of the writing voltage across the gates.  

Writing Voltage (V) 1 2 3 4 5 

Current (µA) 90 178 183 213 260 

 

 

Figure III-6 a) Write circuitry characterization. As the resistive load decreases, the writing voltage drop across the load 

also decreases.  b) Read circuitry characterization. The reference current to the WTA is tuned by two orders of magnitude 

and the response of the read circuitry is plotted. The highlighted region shows the forbidden zone. c)A checkerboard pattern 

is used to program an array of 8x8 devices. The devices with the X,s are either shorted or failed to get programmed.  
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3.4.2 Sensing Circuitry Characterization 

To characterize the sensing circuitry, a read voltage of 0.8V is applied across the varying 

load resistances. The generated current is then compared to the tunable reference current 

varying from 40nA to 4µA and the measurement results are shown in Figure III-6 b. The 

highlighted region illustrates the forbidden zone in which the winner-takes-all comparator is 

in the metastable state. As a result, fluctuations on the chip can affect the output state, giving 

it a probabilistic nature which can be seen in the forbidden zone. The forbidden zone can be 

defined as a region between a maximum low resistance (RIL) and a minimum high resistance 

(RIH). A curve is fit to the data and the relationship between RIL, RIH and Iref in this chip is 

as follows: 

𝑅𝐼𝐻 = 1.8  𝐼 𝑒𝑓
 0.9375  

1

50 𝐼 𝑒𝑓
 

𝑅𝐼𝐿 = 1.8  𝐼 𝑒𝑓
 0.9375  

1

50 𝐼 𝑒𝑓
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3.4.3 Memristor Characterization Results 

Ag/SiO2/Pt memristors are 3D-integrated on the chip [14] and are shown in Figure III-4 

b. These integrated devices, once addressed, are programmed with 500ms, 5V pulses. To verify 

the programming, a 10ms pulse of 0.8V is applied to read the device’s state. Figure III-6 c 

shows the checker board pattern created from an array of 8×8 devices after a program and a 

read pulse. Black squares represent the devices in the low resistive state. Each row of the 

pattern (8 bit) is programmed in parallel and read out serially.  The squares with an “X” mark 

show the memristors which are either shorted or do not get programmed because of the 

fabrication yield. 

Other collaborators on the MURI project have also integrated their memristors on the MAMA 

chip. The micrograph of these 3D integrated memristors are shown in Figure III-6 [15]. 

After successful integration of memristors on MAMA chip, we can move forward to 

investigate how these nano devices can be used as synapses in neuromorphic chips which is 

the subject of the next chapter.  

 

Figure III-7 3D-integrated memristors on top of MAMA chip. on the left, Pt/Al2O3/TiO2/Ti/Pt memristors are used 

from Prof. Strukov's group. On the right, there are Pd/WOx/W memristors fabricated by Prof. Lu’s group. 
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IV. Chapter 4: Spiking CMOS Neurons Chip 

Memristors, as described in the previous chapters, are a very good candidate for an artificial 

synapse in neuromorphic chips: They are analog non-volatile memories which are of nano 

feature size and can be 3D integrated on CMOS chips. Moreover, their resistance changes 

based on the field applied across them. These are all ideal properties for an artificial synapse. 

However, designing supporting circuitry to employ them as synapse in a neural network has 

its own challenges. In this chapter I’m going to address these challenges by discussing how 

configurable circuits are employed to tackle the issues rising up by utilizing a crossbar 

synapses in an array of neurons.  

4.1 Network Architecture 

Let us imagine a very simple neural network where a set of input neurons are connected to 

a set of output neurons through memristors in a crossbar array as is illustrated in Figure IV-1. 

 

Figure IV-1 Neural Network Architecture. Red circles represent the input neurons while the blue represent the 

output neurons. Neurons are modeled with a simple leaky integrate and fire model.  

 

Vth
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 Some of the neurons spike given a vector of analog values at the input. The generated 

spikes travel down the horizontal line through memristors and to the output neurons at the 

bottom. Depending on the value of the memristor’s state, some of the output neurons fire and 

the generated spikes can be utilized to do useful computation in a way that each spike means a 

unique outcome from the network. If we employ an unsupervised learning algorithm such as 

competitive learning by utilizing mechanisms such as Winner-Takes-All (WTA), we can train 

the network to repeat such behavior. WTA enforces competition between neurons in the way 

which the neuron with the highest activation stays active while other neurons shut down.  I 

explain such mechanisms more in depth in chapter 5.  One way to implement WTA in such 

networks is to use lateral inhibition as is shown in Figure IV-2. The first neuron to spike will 

inhibit all the other neurons and will be the only neuron responding to that specific input 

pattern. 

 

Figure IV-2 Applying competition between neurons by lateral inhibition. 
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In order to encourage this firing pattern in a way that the network learns to do this 

computation every time this set of inputs are presented, the causal relationship between the 

firing input and output neurons should be strengthened. This can be done through increasing 

the synaptic strength between the neurons which fired together and decrease the connection 

strength between the set of neurons at the input and the output which did not have any 

correlation in their firing. This is very much in accordance with the Hebb’s postulate on 

learning: “Neurons who fire together, wire together “.  

In order to apply this learning rule and keep the high-density characteristic of memristors, 

we need to find a way of addressing the corresponding memristors and programming them 

without using of a series transistor. Inspiration from learning in the brain gives us a solution to 

this problem.  

4.2 Spike Timing Dependent Plasticity (STDP) 

Spike Timing Dependent Plasticity (STDP) is a biological learning mechanism found to 

exist in the brain [16]. The synaptic strength changes as a result of relative timing of spikes 

between the pre and post-synaptic neurons. The weights undergo Long Term Potentiation 

(LTP) and strengthen if the pre and post-synaptic neurons both depolarize and fire 

 

Figure IV-3 Spike Timing Dependent Plasticity as the learning mechanism observed in the brain. 
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simultaneously. Conversely, the connection between neurons weaken when there is 

uncorrelated firing between the post-synaptic and pre-synaptic neuron, termed Long Term 

Depression (LTD). (Figure IV-3).  

Previous works have demonstrated memristors as a good candidate for mimicking this 

learning mechanism (STDP) in the brain [17]. The question we need to answer remains: how 

can we employ STDP to change memristors’ state in one step without the need for the series 

transistor?  

One solution to this problem was proposed by Zamarreno-Ramos et al, in [18] in which the 

post-synaptic and pre-synaptic pulse shapes are engineered so that depending on the relative 

timing of the pre and post synaptic spike, the voltage drop across the synapse (memristor) will 

differ and hence they can be designed to perform STDP as desired. Figure IV-4 explains this 

idea.  

If ΔT = tpre-tpost > 0 the difference between the pre and the post voltages across the 

memristor will be higher than the threshold and therefore the connection gets strengthen. On 

the contrary, if ΔT < 0, because of the pulse shape design, the voltage difference will be less 

than -Vth and the state of the memristor will decrease and the connection weakens. Prezioso 

 

Figure IV-4 Membrane voltage waveforms. Pre-and post-synaptic membrane voltages for the situations of 

positive ΔT (A) and negative ΔT (B). Figure is taken from [18]. 
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et al in [19] used this idea  for engineering pulse shapes to perform STDP on Al2O3/TiO2-x 

memristors in the crossbar shown in Figure IV-5 a. The results of the experiment are depicted 

in Figure IV-5 b-d. The STDP window is imitated by using pulse shape of the form shown in 

Figure IV-5 d.  

Utilizing the results of these experiments, we designed a chip to generate these specific pulse 

shapes given the inputs at the crossbar.  

4.3 CMOS Spiking Neurons (CSN) Chip 

In a collaborative attempt, memristor’s characteristics mentioned in the previous section 

was used to design a CMOS neurons array which generated pulses of the forms shown in the 

experiment in Figure 4.5. These memristors have the following characteristics: 

• Vth+=1V, Vth- =-1V 

• After forming: 

• Min Res ≈ 10 kΩ (100μA at 1V)   

• Max Res≈ 100 kΩ (10 μA at 1V) 

 

Figure IV-5 Generating STDP window by engineering the pulse shape across the memristors in the crossbar. a) 

memristor corssbar array. b) pulse shapes engineered to enforce STDP across the desired memristor. c) Voltage drop across 

the memristor as a function of the difference in arrival time of the pre and post synaptic neurons. D) STDP window 

generated as a result of the experiment. Figures taken from [19]. 

 

a b c d
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The details about the characteristics of these memristors are reported in [20] and Figure IV-6 

illustrates the characteristics from [20] adopted below: 

 

Employing these memristors in the form of a crossbar array as synapses in the CSN chip 

enforces some constraints on the design of the circuits. In particular, the design has to reflect 

on the following points: 

• Design of Leaky Integrate and Fire neurons with specific pulse shapes.  

• Pulse shapes need to be configurable for experimental purposes. 

• Neuron’s parameter needs to be configurable for experimental purposes. 

• Pulses need to be able to drive the resistive crossbar array for programming purposes. 

• Neuron needs to sink the current from the resistive crossbar array. 

In the remainder of the chapter I explain how I address each of these constraints by designing 

the appropriate circuitry. 

 

Figure IV-6 Characteristics of the memristors used for the Spiking Neuron Chip design. Figure is adopted from 

[20]. 
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4.3.1 Neuron’s Design 

There are 3 main blocks in the design of the neuron, each of which addresses one of the 

constraint I talked about in the previous section. Figure IV-7 depicts these blocks. 

The current from the crossbar gets integrated into the neuron which is designed with a 

Leaky Integrate and Fire (LIF) model and generates a spike upon reaching its threshold. The 

spike goes to the feedforward pulse generator as well as the feedback pulse generator. The 

former propagates into the next layer while the latter places a spike, of the shape shown in 

Figure IV-7, back on the crossbar changing corresponding memristors’ states accordingly. 

There are configurable parameters incorporated in each block in order to gain flexibility on the 

chip. These configurable parameters are explained in details in the following sections. 

4.3.1.1 Leaky Integrate and Fire Neuron 

Figure IV-8 illustrates the design of the leaky integrate and fire neuron (LIF). The voltage 

received at the input of the horizontal lines at the crossbar is converted to a current by pinning 

 

Figure IV-7 Complete neuron's model with feedforward and feedback pulse shapers. 
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the vertical side of the crossbar to a fixed voltage (in this case ground). This current is then 

integrated in the feedback capacitor (10 pF) which leaks through the programmable PMOS 

current source in parallel with it. As soon as the voltage at the output of the integrator goes 

below a certain Vth, the comparator flips to a high voltage which resets the integrator and 

triggers the feedback pulse shaper. S1 switches to the “spike mode” where it connects the 

positive input of the op-amp to the output of the pulse shaper. The high gain op-amp copies 

the pulse shaper output to its negative terminal and hence to the vertical nanowire in the 

crossbar. Depending on the relative timing of the pulse presented at the horizontal line and the 

output pulse generated at the vertical line, the voltage across the memristors varies and the 

memristors are therefore programmed accordingly. The threshold voltage of the neuron is 

connected through a resistor directly to an I/O pad in order to gain control over the neuron’s 

firing.  

 

Figure IV-8 Leaky integrate and fire neuron (1). 
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This op-amp leaky integrator along with the comparator is the core of the LIF neuron. 

However, there are some constraints enforced by the architecture which should be designed 

carefully: 

The integrator I just explained contains a capacitor in the feedback loop of the op-amp and 

hence opens the feedback loop in DC operating mode. In order to get around that problem a 

high value resistor in the form of a “pseudo resistor” [21] is added in parallel with the capacitor. 

(Figure IV-9) 

Moreover, lets us imagine a scenario where one input is applied at the horizontal line and 

because of the state of the memristors is not able to trigger a spike in the neuron. The charge 

accumulated at the integrator should be kept intact for the next input, since the information 

about the previous input is important to be kept for certain applications such as coincidence 

detection. However, since the input pulse is bipolar and takes negative values and the vertical 

 

Figure IV-9 Leaky integrate and fire neuron (2) 
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side of the crossbar is grounded, there is a current flowing in the opposite direction towards 

the input which needs to be sourced through the op-amp. As a result of that, the capacitor 

would lose its information. One solution to that is to employ the diodes as shown in Figure 

IV-9. If the op-amp needs to support current for the crossbar, the current takes the path with 

the diode D1 in parallel with the capacitor and diode D2 protects the charge in the capacitor.  

Additionally, in another scenario we can imagine the memristors being in LRS and as a 

result of that any input can easily trigger the neuron which is not desirable since frequent firing 

of the neuron does not contain any information (it happens for any input!) and is reducing the 

entropy. Therefore, we employ a “draining path” right at the input of the integrator to drain the 

current out of the crossbar and reduce the amount of current going to the integrator. The 

draining current source is designed configurable in order to add control for the amount of 

current going to the neuron. (Figure IV-10) 

 

Figure IV-10 Complete leaky integrate and fire model. 
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Also, as I mentioned in the beginning of the chapter, a competitive learning approach is 

taken toward training this hardware based neural network. This approach is enabled through 

employing Winner-Takes-All (WTA) by utilizing lateral inhibition [22]. If a spike is emitted 

from each of the neurons in the network the signal “global inhibition” is received by all the 

neurons and resets their state through the transmission gate illustrated in Figure IV-10. 

In the aforementioned scenarios for the state of the inputs, memristors and outputs, I have 

explained certain constraints which the op-amp needs to reflect upon: High-gain, high output 

drive and high input and output swing. Figure IV-11 shows the op-amp topology I used in 

order to satisfy these constraints.  

By placing two complementary (NMOS, PMOS) differential pairs in parallel as is depicted 

in Figure IV-11, an extended common mode at the input is achieved. When the input pulse 

 

Figure IV-11 OpAmp topology employed for the integrator in the LIF neuron. The OpAmp has an extended 

common mode range at the input with a class A-B push pull at the output to drive the memristive crossbar array. 
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changes from a positive to a negative value, the NMOS pair start to turn off and the PMOS 

transistors start conducting and exchange their functionality at the input stage and vice versa. 

Hence the gain of the op-amp does not drop as one pair of the transistors turn off. When the 

input voltage is within a range which can make both pairs on, its total trans-conductance will 

be twice of that when only either pair is on and that will double the gain. However, that is not 

of our concern in this design since our constraints is to keep the loop closed by having a high 

enough gain. The gain of the op-amp at the typical-typical (tt) corner and with the common 

mode voltage tied to ground is 91 dB.  

An output stage that exhibits a large output swing, together with a low quiescent power 

consumption, requires a common- source-type class A-B output stage as is shown in Figure 

IV-11. Such an output stage, however, needs to be compensated in order to stabilize the 

amplifier since the output node shows a high-impedance character [23]. The compensation is 

done by adding a zero to the transfer function through R1 and C1. R1 and C1 have to be chosen 

so that the op-amp stays stable with the change in the resistive load as a result of memristors’ 

state change. In our case, R1 is an HPoly with a value of 10k ohms and C is a MIM capacitor 

 

Figure IV-12 Amplifier stay stable for more than 2 orders of magnitude to support the current needed to 

program the memristors in the crossbar array. 
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with a value of 1 pF. The corner simulations are done thoroughly to ensure the stability with 

the change of C and R in different corners. 

 

 Figure IV-12 show the simulation results of the LIF neuron in response to an input shown in 

blue in Figure IV-12a. the spike gets emitted from the neuron and the appropriate pulse shape 

is generated. The op-amp stays stable for over more than two orders of magnitude of change 

of the load and supports the current needed to program the memristors. This is shown in Figure 

IV-12 b.  

4.4.1.2 Feedback/ Feedforward Pulse Shaper 

The desired feedback pulse shape, as we have seen in section 4.2 and is also shown in 

Figure IV-13 is a square pulse with 3 voltage levels: VH, VL and VM = Vpin (=gnd in our design) 

and pulse widths of PW1, PW2 as is illustrated in Figure IV-13.  

Cycle to cycle and batch to batch variation of the memristive crossbars asks for a 

configurable pulse generator whose characteristics can be controlled. The pulse generator and 

the configurability is designed into the chip through DAC voltages and clocks as is shown in 

Figure IV-14. 

 

Figure IV-13 Desired pulse shape with configurable parameters. 
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The shaper block consists of two half-shaper blocks each of which shapes half of the pulse 

(top/bottom). The spike is first received by the top half shaper, is passed through the SR latch 

and therefore is kept high. The transmission gate T1 hence starts conducting DAC1 voltage to 

the output node. The SR output also enables the 10-bit counter C1 to start counting clk1 and 

when the 10th bit goes high, the counter is reset and so is the SR latch at the input. Upon 

resetting the SR latch two events occur:  

1)  T1 stops conducting and therefore the voltage at the output drops. The time it takes for C1 

to count clk1 up to 512 (to flip the 10th bit) determines the length of PW1. 

2) Since flipping Q10 resets the counter and the SR latch, a narrow spike, much like the 

neuron’s spike, gets generated. This spike triggers the second half shaper in which the same 

series of events from the top half unfolds. DAC2 and clk2 control the pulse shape and voltage 

level of the bottom half-shaper independently of the top one.  

 

Figure IV-14 pulse shaper design. Configurability is enabled through the use of DACs and clks. 
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Figure IV-15 depicts the simulation results showing the configurability of the pulse shape. 

DAC1 and DAC2 voltages tune VH and VL and clock frequency of clk1 and clk2 control PW1 

and PW2 independently. 

 

The complete neuron layout containing the LIF and the feedback and the feedforward 

pulse shapers is shown in Figure IV-16. The layout is designed to be tiled in an array of 5x5 

neurons. The blue and red pins shown in the figure are designed as the CMOL architecture 

platform for the possible memristive crossbar 3D integration on top of this chip. Last metal 

layer (Metal 6) is used for the design of these pins. The red pin is connected to the input of the 

integrator and the blue pin gets input from the previous neural layer or an external source. In 

the CMOL architecture as I have explained in the previous chapter, each neuron plays the role 

of the CMOS cell which will be connected to the adjacent neurons through its “connectivity 

domain”. 

 

Figure IV-15 Spectre simulation results illustrating the configurability of the pulse shape through DAC (left) and 

clk (right). 
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4.3.2 Inhibition Network 

Training the network requires employing a form of unsupervised learning and as I 

explained in section 4.3.1 competitive learning algorithm is used for training these spiking 

neurons on chip. Winner-Takes-All (WTA) mechanism in the form of lateral inhibition 

between neurons is an efficient solution for utilizing such learning algorithm. The inhibition 

network is a simple OR gate which takes input from all the neurons’ outputs and gets routed 

to all the neuron’s inputs. Each neuron who fires will rise the OR gate output and shut down 

all the other neurons’ activity. This block is essentially in a feedback loop from the output of 

all the neurons to all of their inputs. Since the neurons are going to be structured in an array 

form, the layout of this block has to be designed carefully. Figure IV-17 illustrates the design 

and the layout of the inhibition block. There are 25 neurons in the array, therefore the OR gate 

has a fan-in of 25. This OR gate is divided into 5 NOR gates who feed into a NAND gate. The 

 

Figure IV-16 Complete layout of the LIF neuron with feedforward and feedback pulse shapers. Red and Blue 

pins are placed to enable CMOL implementation of memristors for 3D integration. 

 

Configurable 
LIF Neuron + 
Feedback 
Spike Driver

Bias 
Network

Fe
ed

b
ac

k 
P

u
ls

e
 S

h
ap

e
r

Fe
ed

fo
rw

ar
d

 P
u

ls
e 

Sh
ap

er

Forward Spike Driver

35 μm

35 μm



48 

 

25 neurons are placed in a 5x5 array and hence each row of the array contains 5 neurons which 

feed the NOR gate in their proximity. The layout of this block is therefore a long narrow 

rectangle placing each NOR gate close to its row. The inverters are sized accordingly in order 

to drive the input gates at the neurons. 

4.3.3 Neural Array 

The neuron block is tiled in a 5x5 array as is depicted in Figure IV-18. Each neuron cell 

has an area of 500µm x 500µm and the whole array takes 2.5 mm2 of the chip. Last two metal 

 

Figure IV-17 Inhibition block schematic (left). Layout of one of the 5 sections (right). 
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Figure IV-18 Complete layout of the LIF neurons 5x5 array. Each neuron takes an area of 500 x 500 µm2. 
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layers are used to route power and ground and the CMOL area distributed interface. Threshold 

voltage, integrator leak parameter and the “current drain” parameters are controlled by the I/O 

pins and are common between the neurons.  

The chip micrograph is shown in Figure IV-19. The chip is designed in Silterra 180 nm 

and takes 5 mm x 5 mm of silicon area. The highlighted squares on the left side of the array 

are MIM caps which are placed to satisfy the DRC requirements of the technology.  

For characterization purposes a stand-alone neuron is placed on the bottom left of the chip 

and all its controllable parameters are routed to the I/O pins. CMOL platform with the area 

distributed interface is visible since the last metal layer was chosen for that and one “CMOS 

Cell” is highlighted in yellow.  

The chip is being wirebonded and will be tested upon packaging.  

 

 

Figure IV-19 Chip Micrograph in Silterra 180 nm. 
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V. Chapter 5: Spatio-temporal Encoding Approach 

So far in this thesis, I have been talking about how we can employ memristors as artificial 

synapses. I explained that since they are nano-scale and can be integrated on top of CMOS 

chips, we can use the space optimally to pack as many of these memory cells as possible in a 

certain area. This chapter starts a different approach to address the problem of connectivity 

between the neurons in neuromorphic chips. An approach that uses a new dimension, time, 

which we can employ to optimize the information encoding and hopefully, through that, we 

can reduce the number of connections needed on the chip to do neural computation.  

5.1 Introduction 

As I mentioned in the introduction, researchers have been trying to mimic the brain to 

perform useful computations for more than 70 years now. The original work of McCulloch and 

Pitts in 1943 proposed a neural network model based on a simplified model of the neurons 

[24]. The model of these neurons are depicted in Figure V-1. In this model, neuron sums the 

product of its inputs by their synaptic strength and if higher than a certain threshold, it generates 

a spike. As it was observed in neuroscience, the higher the input intensity of the neuron, the 

 

Figure V-1 Simple model of the biological neurons (left). First mathematical model of the neurons (right). Figure 

is taken from [26]. 
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higher the frequency of spiking. Therefore, the first obvious assumption was that information 

is encoded in the rate of neural firing: Each neuron would generate a “rate of firing” and the 

“rate” will transfer between the neurons as a continuous floating point number.  

  However, this rate-based code is not very efficient because of the reasons described below: 

1) Maintaining such a set of neurons is energetically expensive, as to encode a single variable 

many spikes need to be generated and averaged over a window of time to calculate the rate of 

firing.  

2) Real neurons rely on pulses as an important part of information transmission from one 

neuron to another. So instead of transferring a “number” as a rate, real neurons communicate 

through single spikes which is much more energetically favorable.  

3) There are very good arguments against the rate-based code, most famously from S. Thorpe 

and his colleagues. In [25] authors argue that there are situations where information processing 

in the brain is too fast to be compatible with the rate based codes. For example, in the visual 

cortex it takes only about 100-150 ms for complex visual stimuli such as faces or food to be 

recognized. This is while the visual information pathway from the retina to the last layer of the 

visual cortex is about 10 layers (shown in Figure V-2). Lateral Geniculate Nucleolus (LGN) 

receives sensory input from the retina and transfer the information through optical nerves to 

the cortex. In V1 features of the image will be extracted and as the information goes further in 

the layers, these features will combine to construct more and more complicated features until 

 

Figure V-2 Neural pathway from the retina to the inferotemporal cortex, where visual objects are recognized. 

Figure taken from [36]. 
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the object is recognized. Taking into account the maximum firing rate of 100 Hz for the 

neurons in that region of the brain, it leaves about 1 spike generation for each processing layer. 

Therefore, rate-based code cannot keep up with this rate of information processing.  

4) Evidence from neuroscience has increasingly made it clear that information is carried in the 

individual action potential rather than aggregate measures such as “firing rate”. Rather than 

the form of the action potential, it is the number and the timing of spikes that matter. In fact, it 

has been established that the exact timing of spikes can be a means for coding information in 

different parts of the brain [26].  

These downsides of the rate-based codes mentioned above will bring us to the next topic: 

Temporal codes.  

5.2 Temporal Codes 

As was argued in the previous section, finding a way to represent information in the 

form of spikes is beneficial. One way of doing so is by encoding intensity in the time-to-first-

spike which compares well with the traditional rate models. The more intense the input is, the 

 

Figure V-3 Intensity to latency conversion. The stronger the input, the faster the neuron spikes. Figure is taken 

from [30]. 
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earlier the spike emits. This will translate a vector of real numbers into a spike train. Figure 

V-3 plots the activation of the neurons versus time for the inputs with different intensity.  

Using temporal codes, a Spiking Neural Network (SNN) can be designed with n input 

neurons Ni to encode an n-dimensional input vectors containing the pattern x = (x1, . . ., xn) 

which are being fed to the network at each successive temporal window (comparable to 

successive steps of traditional NNs computation). In each time window, a pattern x is 

temporally coded relative to a fixed time Tin (enforced by the rate of pattern presentation) 

using a single spike emission of neuron Ni at time ti =Tin−xi, for all i (Figure V-4).  

As we discussed in 5.1, by taking advantage of the temporal code the information of 

each dimension of the input can be encoded using a single spike which can be easily transferred 

to other neuron in the successive layers.  

Due to the nature of the coding using only one spike per pattern presentation, this 

coding scheme is not only fast, but also power efficient. These two measures normally don’t 

occur at the same time, meaning that higher speed of information processing translates to 

 

Figure V-4 Illustration of using temporal codes for computation. Time is divided into time windows and 

information can be encoded depending on which neurons spike in each time window. Figure is taken from [26]. 
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higher power consumption through expression 𝑃 = 𝛼 2𝑓 where α is the activation factor, V 

is the supply voltage, and f is the frequency of operation. Therefore, being able to do the 

computation faster while saving on power is extremely efficient. Other than energy efficiency, 

and speed, temporal codes can also open up a whole new range of coding options, many of 

which are largely unexplored.  

5.3 Time as Basis for Information Encoding 

From a combinatorial point of view, using the time of the spikes as information 

representation provides a large information capacity, given a small set of spiking neurons. For 

instance, consider that a stimulus has been presented to a set of N spiking neurons each of 

which spiking a maximum of one spike in a certain time window. As shown in Figure V-5 

information can be encoded using different schemes which are explained in detail in [25] and 

I will touch upon them below. For each coding scheme introduced, the information capacity is 

also calculated. 

 

 

Figure V-5 Possible neural codes provided by the temporal coding. Figure is taken from [37]. 
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 Count Code 

In this coding scheme, overall number of spikes fired by neurons in a time window are 

counted and each input representation will be coded using the number of the neurons which 

are fired in that time window. With such a coding scheme, the maximum amount of 

information that can be transmitted is equal to log2(N+1) bits, where N is the number of 

neurons, since there are only N+1 possible states of the system.  

 Binary Code 

In this coding method, N bits are to encode the input vector, one bit for each neuron. If the 

neuron is “active” and emits a spike the corresponding bit is 1 and otherwise is zero. The N 

bits can also be justified by considering that since each neuron can have 2 states, the system 

can take 2N states which when applied to Shannon Theorem [27], the information capacity, 

log2 (2
N) will be N bits.  

 Timing Code 

Using “Timing Codes” information is encoded in the precise timing of spikes. Information 

encoding capacity in this case depends on the precision of determining the spike time. The 

more the precision the more we can distinguish between relatively close spikes and hence the 

more the information capacity. If we suppose that spikes can be timed with a precision of 1 

ms, the maximum amount of information that could be transmitted in t ms will be N*log2(t) 

bits. Such timing based codes are clearly potentially extremely powerful, but have the 

drawback that the decoding mechanism would need precise timing evaluations which is rather 

computationally expensive. 
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 Rank Order Coding (ROC) 

Instead of encoding the information in the exact spike time of the neurons, Thorpe et al in 

[25] introduced ROC in which information is encoded in the rank of the spikes from neurons. 

In this coding scheme, the order of the firing between neurons will encode the input vector. 

For example, if we have 3 neurons A, B and C, each permutation of A, B and C will be a new 

code. As there are 3! =6 ways of permuting 3 objects, the code space will be: 

{ABC, ACB, BAC, BCA, CAB, CBA} 

Since there are N! states of the system at each time window for N neurons, the information 

capacity of ROC is log2(N!).  

So far, we have seen how we can use temporal codes to increase the information 

capacity using a fix number of neurons, N. In comparison, timing code and ROC contain a 

relatively large coding capacity. In order to decode the information in the time of arrival of the 

spike we need a very precise timing resolution. We should also keep in mind that decoding 

ROC would also need precise timing since we need to distinguish between the order of spikes. 

 

5.4 Rank Order Code 

In order to use ROC to train neural networks, a learning algorithm is needed which 

reflects upon the order of neural spiking: 𝛥𝑊 = 𝑓(𝑜𝑟𝑑𝑒𝑟). In other words, when a pattern is 

presented to the network of neurons, the weights of the neurons who fire earlier will change 

more than the ones who fire later. As a result of that, after training, the earlier spikes carry 

more information about the input than the later ones do.  
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Now, consider a case where this coding scheme is employed in some form of unsupervised 

learning such as competitive learning. In the unsupervised (clustering) problem, we are given 

a training set {x (1), . . ., x(m)}, and want to group the data into a few “clusters.” Classic 

competitive learning such as K-means clustering algorithm finds K cluster centroids that 

minimizes the distance between data points and the nearest centroid [28]. Simply put, at each 

pattern presentation, there is one cluster whose centroid’s distance to the input vector is the 

least. The new pattern will be grouped with that cluster and a new centroid will be calculated 

for the cluster with the new arrangement.  

In the concept of neural networks, each cluster represents a neuron and its centroid which 

is the mean of the cluster, is the neuron’s weight vector ∈ Rn × k for an n-dimensional input 

vector and k clusters. Every time a new input is fed to the input neurons (𝑈1 and 𝑈2) ( Figure 

V-6 ), the most active output neuron is the one whose weight vector is the closest to the input 

vector. This algorithm is called the Winner-Takes-All (WTA) algorithm, since one neuron 

wins the competition between neurons and takes the input into its cluster. Winning neuron’s 

weights adjust themselves in a way to get closer to the new input pattern and include that 

pattern in the cluster. In other words, weights are the running average of the input patterns.   

 

Figure V-6 Competitive Learning- Each output neuron represents a cluster. N_A and N_B represent cluster 

A and B respectively and WA and WB are the centers of the clusters. Upon the arrival of every input pattern, the 

winner neuron’s weights adjust themselves to get closer to the input pattern. 
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→ 𝛥𝑊 = 𝜀(   𝑊) 

where 𝜀 is the learning rate [29].  

Now, let us apply K-means algorithm to Spiking Neural Networks (SNN) and specifically 

to Rank Order Code (ROC). Under the presentation of each input vector, there is one neuron 

whose weight vector is closest to the input vector resulting in the strongest input and hence the 

earliest spike emission. Lateral inhibition can be employed as a means to implement Winner-

Takes-All such that the first spike at the output layer inhibits all the other neurons and will be 

the winning neuron whose weights are going to change towards the input. This way, each 

neuron will be trained to respond to a specific pattern. For example, in a work done by Rudy 

Guyonneauet al in 2004  they train 4 neurons using the rank order code in a spiking neural 

network to cluster 4 different images [30]. As is shown in Figure V-7, at the end of the training 

set they were able to get each neuron to respond to a specific image from the training set.  
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Hence by using Winner-Takes-All and Rank Order Coding, 4 neurons can encode 4 

images. However, as we mentioned in the previous section, 4 neurons using rank order code 

have the potential of encoding 4!=16 different input vectors and by applying Winner-takes-all, 

this coding space is being wasted and not used to its full potential.  

Moreover, a greedy algorithm like WTA combined with Hebbian learning puts the system 

in a positive feedback loop driving the weights to one or zero which can be digitally stored.  

Digital weights have the advantage of being more robust and immune to noise but are losing a 

lot of information in digitization. However, we want to explore the true analog computation 

and study the power of computation using analog memory which brings us to the concept of 

Winners-Share-All.  

5.5 Winners-Share-All (WSA) 

Instead of forcing the network to have only one winner for each time window which wastes 

the code space, I propose to have multiple winners at the presentation of each input. Then the 

question arises: How many winners are enough? In ROC I explained that the earlier rank spikes 

 

Figure V-7 Emergence of selective responses of each neuron to a specific pattern. Lateral inhibition is applied as 

a winner takes all mechanism and competitive learning results in the assignment of each pattern to the emission of 

one spike from one neuron. Figure is taken from [30]. 
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have a lot more information about the input scene that the later ones do. So how many of them 

should we keep?  

Let us imagine we have n output neurons from which k are firing. The total amount of 

information capacity of this arrangement is then 𝑙𝑜𝑔2(
 
𝑘
). To maximize this information 

capacity, k should be n/2. Therefore, from a combinatorial point of view, if we enforce the 

network to fire half of its output neurons in a time window, we will increase the information 

capacity by: 

α = 
log2(

n
n
2
)

log2 
. 

To get a sense of how much increase this is, for n=10, α    2.4, for n=100 α= 14.5 and for 

n=1000 α=100. Thus as the number of neurons at the output grow, the increase in the 

information capacity becomes more apparent.  

 

Figure V-8 Comparison of the number of output neurons required to recognize patterns between WTA (blue) 

and WSA (red) mechanism. As the number of patterns increase, the efficiency of using WSA becomes more apparent. 
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To highlight yet another advantage of this algorithm, we can compare the number of neurons 

needed in order to classify P numbers of patterns with WSA vs WTA. Figure V-8 depicts this 

comparison. Using WTA, the number of output neurons required for classification grows 

linearly with the number of patterns at the input. However, using WSA, number of neurons 

needed undergoes a logarithmic compression and for large number of patterns the gap between 

the number of output neurons in WTA vs WSA algorithm increases by a lot.  

Although this algorithm is providing us with a lot more information capacity, it’s still lower 

than ROC (log2 𝑛!  𝑣𝑠 log2(
 
𝑘
). However, it should be noted that training networks with ROC 

is much harder than the proposed scheme. Why? 

Consider the case below with 6 output neurons where there are two cases with the same 

order of spiking pattern except for the 5th and the 6th neuron (. Basically, in one case we have 

the code: 1>2>3>4>5>6 and in the other case, we have: 1>2>3>4>6>5. Although these two 

codes are different, they cannot be used to encode two different objects at the input. Why? 

Since earlier-rank neurons provide a lot more information about the patterns than the later ones 

do, these two rank orders are very similar and cannot be used to encode two different patterns. 

 

Figure V-9 The case with two similar rank codes in which only the rank of two last spikes are different. 
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In other words, the “least-significant-bits (LSBs)” don’t contain much information about the 

input and can be ignored in the coding process. This will result in using only the “Most 

Significant Bits (MSBs)” or in other words, only half of the neurons which is what WSA is 

proposing.  

In the next chapter, I will explain how this idea can be used to perform computation in the 

form of pattern recognition.  
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VI. Chapter 6: Applying WSA to a Classification Problem 

In order to show the power of this algorithm in practice, I applied it to a neural network to 

perform a rather small classification problem in which 14 patterns of English Alphabets are to 

be clustered with 6 neurons. If we were to use the Winner-Takes-All algorithm on this problem, 

we would need 14 neurons at the output. With Winners-Share-All, using only 6 output neurons, 

we should be able to classify (6
3
)=20 patterns. Figure VI-1 shows the training set and the test 

set patterns chosen for this experiment. The set consists of images of the patterns with the size 

15 pixels x 15 pixels and the last column of the training set shows the ideal, non-noisy patterns. 

The rest of the patterns are made by flipping 10 pixels either on the pattern or in a neighborhood 

 

Figure VI-1 Training set and Test set patterns used for the classification problem. 
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of one pixel around the pattern inside the image. The reason for generating the noisy patterns 

this way is because if we flip the pixels somewhere in the corner of the image, it does not 

perturb the pattern at all and hence is very close to the ideal image. Using this method, 5 noisy 

versions of each pattern are generated for training and 2 of them are made for testing in order 

to evaluate how well the network “generalizes”. The concept of generalizing in machine 

learning is referred to how well a neural network classifies the patterns it has not seen before. 

A neural network that clusters the patterns well only when it has been presented with it before 

is only memorizing the patterns rather than learning them. Hence, it’s very important to 

measure the accuracy of the classification done by the network using the test set.  

6.1 Network Architecture 

The network architecture used here is structured in a similar manner to hierarchical neural 

models, specifically to Convolutional Neural Networks (CNNs). A Convolutional Neural 

Network (CNN) is comprised of one or more convolutional layers (often with a subsampling 

step) and then followed by one or more fully connected layers as in a standard multilayer neural 

network. The architecture of a CNN is designed to take advantage of the 2D structure of an 

input image (or other 2D input such as a speech signal). This is achieved with local connections 

and tied weights followed by some form of pooling which results in translation invariant 

features. Another benefit of CNNs is that they are easier to train and have many fewer 

parameters than fully connected networks with the same number of hidden units [31]. 

Figure VI-2 shows the full neural network architecture used in this work. 
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As in CNNs, the first neuronal layer is inspired from V1 in visual cortex which responds to 

orientation edges in the input scene. These edges are designed in the form of filters (kernels) 

in the first layer which are convolved with the input scene (and hence the name convolutional 

NN) which results in extracting the features from the image. The activation of the neurons at 

the first layer in response to the convolutions (extracted features) are propagated to the next 

layer which may or may not be a convolutional layer. In the next layers, the features combine 

to more and more complex features until the pattern is recognized at the last layer.  

Figure VI-2 illustrates how four filters are designed to extract vertical, horizontal, 45 and 

135 degree edges from the image. These (3x3) filters scan the (15x15) input images with non-

overlapping windows and the convolution results in 5x5 feature maps in the second layer. The 

reason why we chose to use non-overlapping windows is because the size of the image we are 

using (15x15) is relatively small and the overlapping windows don’t contain much more 

 

Figure VI-2 Neural network architecture used in this work. Intensity is converted to time of spike in the first 

layer and features of the image are extracted in the second layer. The patterns are recognized at the last layer.  
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information than the non-overlapping ones. The limiting factor in the size of the images is the 

processing power causing simulation times to be very large for larger images and hence making 

the process of design very tedious. Each “feature map” in the second layer contains a certain 

edge. The neurons on the same coordinates on the different feature maps have the same 

receptive field on the input image meaning they get their inputs from the same part of the 

image.  

As is depicted in Figure VI-2, the third layer is combining the features from the second 

layer in a fully connected manner to recognize the images on the output layer. This layer is 

trained in a completely unsupervised fashion using Spike Timing Dependent Plasticity 

(STDP).   

The spiking neural network is coded and simulated in MATLAB. Neurons and synapses 

are modeled mathematically and are discussed below. The rest of the details of the network 

will be discussed later in the chapter.  

6.1.1 Neuron’s Model 

A leaky integrate and fire model is chosen for the neurons as is defined mathematically as: 

 𝑚𝑒𝑚(𝑡) = ∫ (𝐼𝑛𝑝 𝑡 𝑃𝑊𝑀(𝑡)  𝛼  𝑚𝑒𝑚(𝑡))𝑑𝑡
 𝑇

(  1)𝑇

 

𝑛 = 𝑓𝑙𝑜𝑜𝑟(
𝑡

𝑇
) 

 Where T is the clock period for presenting patterns and is chosen here as 10m sec. α is 

the leak coefficient and Input_PWM is the pulse width modulation of the input spikes at each 

layer. This modulation keeps the pulses high until the end of the window. Pulse width 

modulation weights the spikes who come early more than the ones who come later. As we have 

discussed before, in temporal codes the spikes which are emitted first contain more information 
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about the input than the later ones. Therefore, since we are utilizing multiple spikes at each 

layer (WSA) we need to weight them differently based on the time of the arrival. Figure VI-3 

illustrates this idea. As is shown, the neuron integrates the area under the product of the weight 

by the pulse width modulated input. Therefore, the earlier the spikes arrives from the previous 

layer, the larger the area under the curve and the more it triggers the neuron in the next layer.  

At the end of the time window the pulse width modulation and the membrane potential are 

reset to zero and the neuron awaits the next input pattern: 

𝑃𝑊𝑀(𝑛𝑇) = 0 

 𝑚𝑒𝑚(𝑛𝑇) = 0 

𝑛 = 0 1   …  𝑓𝑙𝑜𝑜𝑟 (
𝑡

𝑡𝑒  
) 

Where tend is the length of the simulation.  

6.1.2 Synapse Model 

The connection between the neurons are modeled as a single variable whose value changes 

based on dwp (positive changes of w) and dwn (negative changes of w) such that: 

𝑤(𝑡  𝑑𝑡) = 𝑤0(𝑡)  𝛽 (𝑑𝑤𝑝(𝑡)  𝑑𝑤𝑛(𝑡))  𝑓(. ) 

 

Figure VI-3 Pulse Width Modulation (PWM) of the pre synaptic input spike in order to weight the earlier spike 

more than the later ones. The neuron integrates the dotted green area under the PWM signals and hence the earlier 

signals stimulate the neurons more effectively.  
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Where β will scale the changes of w and f(.) contains the dynamics of the synapses which 

will be discussed in section 6.4.  

In the following sections of this chapter I will go through the details of the design choices 

and output of each layer.  

 

6.2 Layer 1: Converting Pixel Intensity into Spikes 

As I discussed before, in temporal codes each input is presented in a time window and the 

information about the input is converted into spike times. As is shown in Figure VI-4a, in layer 

1, each neuron is assigned to a pixel whose normalized intensity is given as an input to the 

neuron. Pixels refresh their values every 10 ms which is the length of the time bin in which the 

network processes each pattern. In other words, the normalized pixel intensity is presented at 

the beginning of the time window and is kept constant until the end of the time window. The 

input images are normalized by the number of “on” pixels so that if an input pattern has 

intrinsically more number of black pixels than others, it will not cause stronger stimulus for 

the next layer and all patterns have the same total drive for the following neural layer since 

they are scaled by the total number of “on” pixels in the image. 

Note that input patterns are shuffled randomly and then given to the input neurons every 

10 milliseconds. The reason why is if the data is given in some meaningful order, this can bias 

the network and lead to poor convergence and generally a good method to avoid this is to 

randomly shuffle the data prior to each epoch of training. 
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 Raster plot in Figure VI-4b shows the spike times of the 225 neurons in the first layer. 

Figure VI-4c depicts the zoomed version and illustrates the firing of each neuron in every time 

bin (10 ms). The neurons containing a black pixel (with a white background) in the pattern 

presented at each time bin are the ones who emit a spike.  

 

6.3 Layer 2: Extracting features from the Images 

In the field of image processing appropriate filters are applied to an image in order to 

extract certain features from it through convolving these filters with each patch of the image. 

In the concept of neural networks, this translates to neurons whose weight vectors act as the 

filters and whose receptive field act as the input patch. As a result of that, the output of the 

neuron is the convolution (product of sum) of the input image patch with the filters defined by 

the neurons’ weight vector.   

The filters I have chosen at the second layer of the neural network for feature detection are 

vertical, horizontal, 45 and 135 degree edges. The weights (synapses) of these filters are non-

 

Figure VI-4 First layer: converting pixel intensity to spikes. Normalized patterns are presented to the network 

every 10 ms and in that time window network processes these patterns. a) Each neuron is assigned to one pixel. b) 

Raster plot showing the spiking of 225 neurons in the simulation time. c) zoomed version of the raster plot showing 

the spiking of neurons in each 10ms time window in which the patterns are presented. 

 

Time Window

225
Neurons

a b c



70 

 

plastic and are hardwired in the program. As is illustrated in Figure VI-5 a, every 9 neurons 

from the first layer are representing a 3x3 patch from the image and connect to 4 neurons in 

the second layer. These 4 neurons receive spikes from the first layer and depending on the 

dominant features of that patch, the corresponding neurons fire. Since the image is 15 x15 and 

the receptive fields of each group of 4 neurons are of the size 3x3 and are non-overlapping, the 

second layer needs 4 ∗ (
15

3
) ∗ (

15

3
) = 100 neurons. Neurons 1-4 correspond to the left corner 

of the image and neurons 5-8 correspond to the window just to the right of that and so on and 

so forth. In each time bin of 10 ms where a new pattern is presented, spikes from the first layer 

travel through the second layer and the neurons corresponding to the dominant edges of that 

pattern spike. This can be observed in Figure VI-5 b with the highlighted time window. Figure 

VI-6 c depicts the raster plot of the 100 neurons in the second layer in 10000 seconds. 

 

 

Figure VI-5 Second layer: extracting edges from each kernel. 3x3 kernels are taken from the image and are 

convolved with features that are hardwired in the network. This layer of neurons responds to dominant edges existing 

in each 3x3 kernel. 

 

Time Window

225
Neurons

100
Neurons

a) b) c)



71 

 

6.4 Layer 3: Classification 

The third layer in this convolutional neural net is fully connected to the feature extraction 

layer. Our goal here is to train these connections in an unsupervised fashion to classify 14 

patterns shown in Figure VI-1 using spike combinations of 6 output neurons.  In this spiking 

neural network, Spike Timing Dependent Plasticity is used to modify weights and in this 

section I’ll explain the details of the learning and the challenges while training this spiking 

neural network with Winner-Shares-All algorithm in a completely unsupervised fashion.  

 

6.4.1 Challenge 1: Learning 

a) Positive Weight Change 

As explained before, during each time bin, the neuron which spikes earlier carries the most 

amount of information about the input and in order to incorporate that in the model, I use pulse 

width modulation to the input spike which results in longer stimulation of post-synaptic 

neurons from the pre-synaptic spikes arriving earlier.  

To reflect this in the learning algorithm:  

i) The pre-synaptic spikes arriving earlier and causing the post synaptic neuron to fire 

should undergo a larger weight change than the ones who helped with the 

stimulation but arrived later.  

ii) ii) Moreover, I introduce an intermediate parameter C inspired by the calcium 

concentration and its role in learning. This value increases with the arrival of the 

pre-synaptic spike at the synaptic joint and decays over time in the form of 𝑐(𝑡) =

𝑒 𝑎(   𝑠𝑝𝑖𝑘𝑒). When the post-synaptic spike occurs, it samples this parameter at the 

time of its firing and the synaptic change will be directly proportional to this value.  
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Now, combining the two aforementioned ideas, the C parameter should increase in the 

form of 𝑐′(𝑡) = 1  𝑒 𝑎(   𝑠𝑝𝑖𝑘𝑒)  when a pre spikes happens, so that it can incorporate the 

effect of early versus later spikes. Therefore, the later spikes have a lower value of C in 

comparison with the earlier spikes and hence their corresponding weights undergo a smaller 

weight change. Basically, this learning algorithm is a form of anti-STDP rule within the time 

bin, because the weight change will be greater as the pre spike emits earlier in time (within the 

time bin) with respect to the post spike. This is desirable since the weight change reflects the 

mutual information between the pre and the post synaptic neurons which is encoded in the time 

of arrival of the spikes.  

The learning algorithm is shown graphically in Figure VI-7a and can be described 

mathematically as: 

𝑐(𝑡) = ∫(𝛿(𝑡  𝑡  𝑒)  𝛼 ∗ 𝑐(𝑡)) 𝑑𝑡 

𝑐′(𝑡) =  (𝑡  𝑡  𝑒)  𝑐(𝑡) 

𝑑𝑤𝑝 = 𝐿𝑅𝑎 𝑒𝑃 ∗ 𝛿(𝑡  𝑡 𝑜𝑠 ) ∗ 𝑐
′(𝑡) = 𝐿𝑅𝑎 𝑒𝑃 ∗ 𝑐′(𝑡 𝑜𝑠 ) 

Where dwp is the positive weight change and LRateP is the positive learning rate.  

 

b) Negative Weight Change 

When there is no correlation between a pre-synaptic and a post-synaptic neuron the 

connection between them undergoes a negative weight change. This lack of correlation 

translates to the post-synaptic neuron firing before the pre-synaptic counterpart. The later the 
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pre-synaptic neuron spikes with respect to the post synaptic neuron (within a time bin), the 

more uncorrelated the two neurons are. Hence, the same anti-STDP rule applies here.  

Note that the weight could also endure a negative change when there is no correlation 

whatsoever between the pre and post; meaning that the pre-synaptic neuron does not emit any 

spike within the time bin while the post has spiked. In that case the negative weight change is 

maximum. This is described graphically in Figure VI-7b and can be written mathematically 

as: 

𝑐(𝑡) = ∫(𝛿(𝑡  𝑡 𝑜𝑠 )  𝛼 ∗ 𝑐(𝑡)) 𝑑𝑡 

𝑐′(𝑡) =  (𝑡  𝑡 𝑜𝑠 )  𝑐(𝑡) 

 

Figure VI-7 Spiking learning algorithm developed for WSA. Calcium concentration models are used as part of 

the Anti-STDP rule to calculate dwp and dwn. 
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𝑑𝑤𝑛 = 𝐿𝑅𝑎 𝑒𝑁 ∗ (𝛿(𝑡  𝑡  𝑒) ∗ 𝑐
′(𝑡)  𝑝𝑟𝑒 𝑑𝑜𝑒𝑠𝑛𝑡 𝑠𝑝𝑖𝑘𝑒 ∗ 𝛿(𝑡  𝑡 𝑜𝑠 ))

= 𝐿𝑅𝑎 𝑒𝑁 ∗ 𝑐′(𝑡  𝑒) 

Where dwn is the negative weight change and LRateN is the negative learning rate.  

6.4.2 Challenge 2: Inhibition 

As I argued in chapter 5, Winners-Share-All algorithm requires only half of the neurons at 

the output to fire. In order to enforce this requirement, we need to ensure that: 

a) No neuron fires more than once in a specific time window.  

b) With 6 output neurons, upon the arrival of the third spike, all other neurons need to 

be inhibited.  

Figure VI-8 shows the solutions employed to establish the above conditions. A self-

inhibitory connection at each output neuron ensures that no neuron spikes more than once in 

any given time window since the neuron undergoes an inhibition upon spiking (condition a). 

The inhibitory neuron in Figure VI-8 accumulates the spikes emitted from the pool of the 

output neurons and its threshold is set so that it fires after the third spike has been generated 

hence inhibiting all the neurons at the output (condition b). We can model the inhibitory neuron 

with the following mathematical expression: 

 𝑚𝑒𝑚𝑖𝑛ℎ𝑖𝑏𝑖𝑡(𝑡) = ∫ (𝑆𝑝𝑖𝑘𝑒𝑠𝑙𝑎𝑦𝑒 3  𝛼𝑖 ℎ𝑖𝑏 ∗  𝑚𝑒𝑚 𝑖 ℎ𝑖𝑏𝑖 (𝑡))𝑑𝑡
 

(  1)𝑇

 

(𝑛  1)𝑇 < 𝑡 < 𝑛𝑇 

 𝐼𝑛ℎ𝑖𝑏𝑖𝑡 = {
1   𝑚𝑒𝑚 >   ℎ 𝑖 ℎ𝑖𝑏𝑖 
0                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 𝑚𝑒𝑚 𝑖 ℎ𝑖𝑏𝑖 (𝑛𝑇) = 0 

𝑛 = 0 1   …  𝑓𝑙𝑜𝑜𝑟 (
𝑡

𝑡𝑒  
) 
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And therefore each output neuron i can be described as: 

 𝑚𝑒𝑚𝑜𝑢𝑡
𝑖 (𝑡) = ∫ (𝑆𝑝𝑖𝑘𝑒𝑠𝑙𝑎𝑦𝑒 2  𝛼𝑙𝑒𝑎𝑘 ∗  𝑚𝑒𝑚𝑜𝑢𝑡

𝑖 (𝑡)  𝐼𝑛ℎ𝑖𝑏𝑖𝑡  𝛿(𝑡  𝑡𝑠 𝑖𝑘𝑒𝑖
 

(  1)𝑇

)) 𝑑𝑡 

(𝑛  1)𝑇 < 𝑡 < 𝑛𝑇 

Where  𝑚𝑒𝑚𝑜𝑢𝑡
𝑖  refers to the ith. output neuron membrane potential and 𝛿(𝑡  𝑡𝑠 𝑖𝑘𝑒𝑖) is the 

spike emitted from the same output neuron which represents self-inhibition employed to ensure 

the neuron does not spike more than once in any given time window.  

 

6.4.3 Challenge 3: Correlation in the input patterns 

In this problem we have a set of synthetic and relatively small images which results in high 

correlation between pixels. Hence, there is similarities between the patterns which makes it 

more likely for different patterns to be recognized as a single one and therefore it’s challenging 

to separate them as different classes. The solution I employed for this problem is what I call 

habituation because it diminishes the innate response of the neurons to a frequently repeated 

stimulus. In habituation, the network finds the similarities between the patterns and ignore 

 

Figure VI-8 Inhibitory neuron designed to ensure not more than half of the output neurons fire at any given time 

window. 

 

𝐼𝑛ℎ𝑖𝑏𝑖𝑡 = ∫(𝑆𝑝𝑖𝑘𝑒𝑠𝑙𝑎𝑦𝑒 3  α𝑖 ℎ𝑖𝑏 ∗ 𝐼𝑛ℎ𝑖𝑏𝑖𝑡)

 

 

  ℎ 𝑖 ℎ𝑖𝑏𝑖 

Inhibitory 
LIF Neuron
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them and instead looks for dissimilarities. This is illustrated in Figure VI-9. An intermediate 

habituation leaky integrate and fire neuron is introduced between each neuron in layer 2 and 

layer 3. It receives its input from the neuron in layer 2 and its output spikes modifies the 

connection between the corresponding neurons in layer 2 and layer 3. The threshold of this 

habituation neuron is set so that it can detect the frequent firing of its input neuron in layer 2. 

The frequent firing of such neuron identifies a common feature in that specific location on the 

image. Information theoretically, that feature contains very little information about the pattern 

since it’s very probable to happen and therefore has a low entropy and can be ignored.  

The habituation neuron can be defined as: 

 𝑚𝑒𝑚 ℎ𝑎𝑏𝑖 (𝑡) = ∫ (𝑆𝑝𝑖𝑘𝑒𝑠𝑙𝑎𝑦𝑒 2  𝛼ℎ𝑎𝑏 ∗  𝑚𝑒𝑚 ℎ𝑎𝑏𝑖 )𝑑𝑡
 

0

 

ℎ𝑎𝑏𝑖𝑡 = {
1     𝑚𝑒𝑚ℎ𝑎𝑏𝑖𝑡 >   ℎℎ𝑎𝑏𝑖𝑡
0                    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Note that unlike other neurons that we have so far introduced, the habituation neuron does 

not reset at the end of the time window since it has to keep the history of the patterns. It only 

 

Figure VI-9 Habituation neuron designed to ignore the similarities between the input patterns and look for the 

differences between patterns which helps to separate patterns.  

 

   𝑖

𝑊𝑖 

 ℎ𝑎𝑏

ℎ𝑎𝑏𝑖𝑡 𝑎𝑡𝑖𝑜𝑛 = ∫(𝑆𝑝𝑖𝑘𝑒𝑠𝑙𝑎𝑦𝑒 2  αℎ𝑎𝑏 ∗ ℎ𝑎𝑏𝑖𝑡 𝑎𝑡𝑖𝑜𝑛)

 

 

Vth
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resets when it reaches the threshold and fires a spike. The modification of weight due to 

habituation is modeled below: 

𝑑𝑤𝑖  = 𝛼 (𝑑𝑤𝑝𝑖   𝑑𝑤𝑛𝑖  )  𝛽 ∗ 𝛿(𝑡  𝑡ℎ𝑎𝑏𝑖  𝑖  ) ∗ 𝑒𝑥𝑝 ( 𝛾𝑡)  

where dwpij and dwnij are the positive and negative changes of weight due to STDP between 

neurons i,j in layer 2 and 3 which I explained in section 6.4.2.  𝛿(𝑡  𝑡ℎ𝑎𝑏𝑖  𝑖  ) are the spikes 

from the habituation neuron which are decreasing the weight between neurons i and j as 

discussed above. However, there is an exponential decay associated with the habituation since 

as the network learns the input data the effect of it should become less and less in order to 

encourage convergence. This works similar to the heuristics generally applied to learning rate 

in neural network in order to achieve convergence faster. 

 

6.4.4 Challenge 4: Greedy Attractor  

a) Homeostatic Plasticity 

Neuronal activity is the key to learning by the changes of synaptic connectivity through the 

‘Hebbian’ mechanism or in the spike form, ‘Spike Timing Dependent Plasticity (STDP)’. 

However, STDP is a non-controlled growth or decay of synaptic ‘weights’ and hence, a 

destabilizing force in neural circuits. For example, in the context of WSA algorithm, if one 

combination starts off being favorable for multiple patterns, hebbian based learning will 

encourage that behavior (since it’s a positive feedback mechanism) and the weights run off to 

the extremes and hence lose a lot of information. 
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One proposed idea to solve this problem is that the average neuronal activity is maintained 

within a range by homeostatic plasticity mechanism which dynamically adjust synaptic 

strength in the correct direction to promote stability [32]. 

The authors in [32] argue that the data from in vitro cortical networks indicate that 

homeostatic synaptic plasticity rules independently adjust excitatory and inhibitory feedback 

loops within recurrent cortical networks so that activity is preserved despite change in drive. 

When activity falls too low (because, for example, sensory drive is reduced), excitation 

between pyramidal neurons is boosted and feedback inhibition is reduced ( Figure VI-10 ). 

This should raise the firing rates of pyramidal neurons. Conversely, when activity is too high, 

excitation between pyramidal neurons is reduced, and excitation onto interneurons and 

inhibitory inputs back onto pyramidal neurons are increased, thereby boosting feedback 

inhibition. This should lower the activity of pyramidal neurons. So, homeostatic regulation of 

network activity in recurrent cortical circuits is accomplished through a coordinated set of 

changes that selectively adjust different classes of synapse to drive network activity towards 

some set point. 

 

Figure VI-10 Concept of homeostatic plasticity in the brain. Feedback mechanisms are applied in order to keep 

the firing rate of a neuron in a target range. Figures are taken from [32]. 
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Employing homeostatic property has two main advantages: 

1) It will not let one output neuron (or in our case one combination) get very greedy and 

respond to many input patterns. In other words, it will “watch” the competition and 

make sure all the combinations will get a chance to respond to some input pattern. 

2) It will also act as a regularizer for the neural network to avoid overfitting. Overfitting 

is a concept in machine learning where the network starts fitting too well to the training 

set and loses generalization and hence do not do well on the testing set. In this case 

network parameters start changing because of the “noise” in the data set and have a 

poor performance in recognizing patterns that have not been presented to it before. 

Regularization will make sure to control the growth of the weights in a way that the 

network response to small random variations in the input is minimal which is also what 

the homeostatic property is doing. 

 

b) Homeostatic Plasticity in action 

To dynamically adjust synaptic strength in the correct direction to promote stability in the 

weights, we need to first identify the greedy behavior in neurons. Therefore, we need a type of 

“Neural State Machine (NSM)” to recognize if a neural state is happening too often or too 

rarely.  Figure VI-11 illustrates this idea. Each neuron in the state machine is assigned to 

respond to the advent of a certain combination or state. Since we have enforced the condition 

of a maximum number of 3 (half of the output neurons) to fire at every time bin, then every 

neuron in the state machine takes input from 3 neurons which make a unique combination. The 

leaky integrator and fire neuron is designed to fire after detecting the 3 neuron firing at its 

input. As a result of that at each time window, the spikes out of the neural state machine 
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indicate the combination that has occurred. The inset in Figure VI-11 depicts the detection of 

the combination 1,2,3 from the first neuron in the NSM.  

Now, to find out if a combination is happening too often or too rare and correct it, we feed 

the spikes from the neural state machine with detected combinations to a block with leaky 

integrator units. The time constant of these leaky integrators are a design choice and has to be 

picked in order to determine what it means to be too often or too rare depending on the network 

behavior. Each leaky integrator (LI) parameter keeps the history of every combination 

occurrence and if it’s greater than a certain threshold of Vth,p it generates a spike which 

translates to that combination being happening too often. On the contrary, if the LI parameter 

goes below a threshold of Vth,n, a spike will be generated which means that the combination is 

dormant and is taking place too rare.  

This can be mathematically described as below: 

 

Figure VI-11 Neural State Machine (NSM) designed to control the appearance frequency of the WSA codes. 
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 𝑚𝑒𝑚𝑁𝑆𝑀
𝑖 (𝑡) =  ∫ ( ∑ 𝛿 (𝑡  𝑡𝑠 𝑖𝑘𝑒  )  𝛼3 ∗  𝑚𝑒𝑚𝑁𝑆𝑀

𝑖 (𝑡)) 𝑑𝑡 

𝑘3𝑖

 =𝑘1𝑖

 

(  1)𝑇

 

(𝑛  1)𝑇 < 𝑡 < 𝑛𝑇 

𝑘1𝑖  𝑘 𝑖  𝑘3𝑖 ⋲ {  uro      th   th om    t o }  

𝑆𝑝𝑖𝑘𝑒𝑁𝑆𝑀
𝑖 = {

1                 𝑚𝑒𝑚𝑁𝑆𝑀
𝑖 >   ℎ 𝑁𝑆𝑀 

0                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                
 

𝐿𝐼𝐶𝑜𝑚𝑏𝑖 (𝑡) = ∫ (𝑆𝑝𝑖𝑘𝑒𝑁𝑆𝑀
𝑖  𝛼2 ∗ 𝐶𝑜𝑚𝑏𝐹𝑟𝑒𝑞𝐷𝑒𝑡

𝑖)𝑑𝑡
 

0

 

𝐶𝑜𝑚𝑏𝐹𝑟𝑒𝑞𝐷𝑒𝑡𝑖  (𝑡) =  𝐿𝐼𝐶𝑜𝑚𝑏𝑖  (𝑡)   𝜉 

Where ξ is a positive bias added to the output of the integrator as a DC shift in order to 

detect the non-spiking combination through the decay parameter going below the low 

threshold: 

𝐶𝑜𝑚𝑏𝑇𝑜𝑜𝑂𝐹𝑡𝑒𝑛 = {
1   𝐶𝑜𝑚𝑏𝐹𝑟𝑒𝑞𝐷𝑒𝑡 >   ℎ   

0                          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐶𝑜𝑚𝑏𝑇𝑜𝑜𝑅𝑎𝑟𝑒 = {
1   𝐶𝑜𝑚𝑏𝐹𝑟𝑒𝑞𝐷𝑒𝑡 <   ℎ  
0                          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

We can now use the information from the combination occurrence frequency in order to 

correct the direction of network convergence to promote stability. One way of doing so which 

is inspired by the work in [33] is to use each “too often spikes (TOS)” to increase the threshold 

of the neurons in the combination and to use each “too rare spike (TRS)” to decrease the 

threshold of the corresponding neurons. Increasing the threshold decreases the activity of the 

neurons and decreasing it increases their activity so it will put the system in a negative feedback 

loop which controls the combination frequency within a range as was discussed in the part a 

of this section (Figure VI-11 ). The OR gates in the figure are used to shrink the outputs from 
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the number of combinations to the number of output neurons. jth OR at the top is summing the 

TOS including neuron j and ith OR at the bottom is doing so for TRS including neuron i.  

However, since we were dealing with combinations of neuron firing here, a neuron might 

be contributing in TOS at the same time as it is doing so for TRS. To make that clear let me 

give an example. If combination “1,2,3” is happening too often and “1,4,6” is not being seen 

at all, then neuron 1’s threshold should increase because of the TOS and also decrease because 

of TRS. Therefore, we need an averaging mechanism to determine how the threshold of each 

neuron has to change on average.  That can be achieved by using another set of integrators 

which keep track of the history of TOS and TRSs. This is illustrated graphically in Figure 

VI-11. The output of these averaging neurons are used to modify the threshold of the output 

neurons with a feedback shown in green in the Figure.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑟𝑃
𝑖(𝑡) = ∫ (∑(𝐶𝑜𝑚𝑏𝑇𝑜𝑜𝑂𝑓𝑡𝑒𝑛 )  𝛼3 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑟𝑃

𝑖(𝑡))𝑑𝑡 

 

 

0

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑟𝑁
𝑖 (𝑡) = ∫ (∑(𝐶𝑜𝑚𝑏𝑇𝑜𝑜𝑅𝑎𝑟𝑒 )  𝛼3 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑟𝑁

𝑖 (𝑡))𝑑𝑡 

 

 

0

 

𝑗 ⋲ {𝑎𝑙𝑙 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛𝑙 𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖 ℎ𝑛𝑒 𝑟𝑜𝑛} 

  ℎ
𝑖 (𝑡) =   ℎ0  𝛽1 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑟𝑃

𝑖(𝑡)  𝛽2 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑟𝑁
𝑖 (𝑡) 
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6.5  Results 

6.5.1 Weight Evolution 

Weights of the output neurons are initialized using normal distributed random numbers. 

The mean is chosen to be small since we have noticed by choosing large means closer to 1, the 

weights get saturated very fast and learning stops. The standard deviation of the normal 

distribution has to be chosen large enough to separate the weights sufficiently in the beginning 

but also not so large that the weights saturate. After 140 epochs of training, looking at the 

weight evolution of the connections to layer 3 as is shown in Figure VI-12, it’s apparent that 

they take analog values between zero and one. The weights don’t run off to the maximum and 

minimum and maintained in the analog region by the negative feedback mechanisms employed 

in the network. These analog weights provide us with a lot more information capacity to encode 

the input scene.  

 

Figure VI-12 Weight evolution showing the weights converging to analog values. 
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6.5.2 Output Neurons Output 

Let us now look at the output of the network as is depicted in Figure VI-13. In each time 

window of 10 ms, the outputs of 6 output neurons are monitored and are shown as raster plots. 

But as can be noticed, not all the 3 output neurons fire at all times since we only ensured that 

not more than 3 neurons fire, but we never enforced exactly 3 neurons to fire. Moreover, it 

seems rather unnatural to force exactly half of the neurons to fire in response to every pattern 

and looking at it more carefully, this can potentially increase the code space even more. This 

way, in the code space, not only we have combinations of 3 out of 6 neurons firing, but also 

we can have combinations of every pair of neurons, and also only one neuron to fire in response 

to patterns. This increases the code space for 6 output neurons to: 

(
6

3
)  (

6

 
)  (

6

1
) = 41 

And in a more generalized form for n output neurons to: 

 

Time Window

Not all the 3 spike…

Figure VI-13 Spikes from the output neurons. Zoomed in view is showing that half of the neurons don't necessarily 

spike at each clock cycle. 
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6.5.3 Classification 

The ultimate measure of how well Winners-Share-All algorithm works is by determining 

the classification accuracy on the test set which the network was not presented by during 

training. This is shown in Figure VI-14. The network performance on the test set reaches 87%. 

Note that since this is a small synthetic image set, the separation of the patterns is more difficult 

than natural images. In the figure it’s also shown how different patterns from Figure VI-1, 

numbered orderly from 1 to 14, are assigned to unique combinations from the code space and 

hence are separate by the network. 

This codes are highlighted in Figure VI-14 by black circles which are picked by the 

maximum number of counts for a code per pattern.  

 

 

Figure VI-14 Network performance on the test set. On the left, the network accuracy converges to 87%. On the 

right, each pattern gets assigned to a unique combination from a set of 41 codes in the code space. 
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6.5.4 Discussion 

The network starts with a random initial condition and over the course of training picks 

certain codes for each pattern. One interesting study is to see if there is any correlation between 

the “distance” of the patterns and the “distance” of the codes that are being picked. The former 

 

Figure VI-15 Edit distance vs Pattern similarity for all the patterns.  
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can be measured by the similarity between the patterns which I’m defining as the number of 

common pixels between the patterns while the former is simply the edit distance between the 

codes. Edit distance is a way of quantifying how dissimilar two strings are to one another by 

counting the minimum number of operations needed to transform one string to the other. For 

example, the edit distance between two codes of ‘1,2,3’ and ‘3,4,5’ are 2, since 2 substations 

are needed to transform one to the other. For each pattern I plot the edit distance of the code 

assigned to it during the simulation versus its similarity to all other patterns. This is shown in 

Figure VI-15. The data points are the average of data for 3 initial condition. As can be seen 

from the figure, the probability of lower edit distance goes higher as the similarity between the 

patterns increases. This can be confirmed in the case where all the pixels are the same (self-

comparison), the code is the same and hence the edit distance is zero. Therefore, the output of 

the network, gives us another piece of information other than the recognition, and that is how 

similar the patterns are.  
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VII. Conclusion and Future Work 

7.1 Conclusion  

In this thesis I address the issues that the neuromorphic field faces in terms of number of 

connections needed on chip to perform brain-like functions. I explain the two-pronged method 

I investigated in order to tackle this problem.  

Firstly, the advent of memristors as nano-size devices which can be 3D integrated on top 

of CMOS chips guided us through making platforms in the CMOS process to utilize them as 

possible memory devices and also as synaptic connections between the CMOS neurons. Two 

chips were taped out to explore these possibilities. First chip was realized as a configurable 

memory platform designed with the CMOL architecture providing appropriate programming 

and sensing circuitry along with the decoding to access the memory cells. This chip was 

successfully used by our collaborators for 3D integration and its configurability enabled the 

required supporting circuitry for different types of memristors. Second chip was also designed 

as a configurable pool of CMOS neurons designed under the CMOL architecture. The CMOS 

neurons generate programmable pulse shapes which are engineered to implement online 

learning through STDP while driving the memristive crossbar array.  

Secondly, by taking advantage of the coding theory, I was able to develop a novel algorithm 

to exploit the coding space provided by the spiking neural networks. I introduced the concept 

of Winners-Share-All as a replacement for Winner-Takes-All which takes a combinatorial 

approach in coding the spikes emitted from the output neurons. By employing this algorithm 

less number of neuronal agent is required to perform classification tasks and hence it also 

reduces the number of connections and training parameters. In the thesis, I point out the 
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challenges encountered by using this algorithm and how I used a network of recurrent neurons 

to overcome them. I used this algorithm to classify 14 artificial images using only 6 output 

neurons and achieved a classification accuracy of 87% using a completely unsupervised 

approach. 

 

7.2 Future Directions 

I used the Winners-Share-All algorithm to classify artificial images. In order to show the 

true power of this algorithm, it has to be tested against standard platforms such as the 

handwritten digit data set known as MNIST. Similar approaches utilized for the artificially 

made data set can be taken for MNIST. Firstly, the features of MNIST images need to be 

extracted in the form of filters to be used in a Convolutional Neural Network. This can be done 

by training an auto-encoder which is being applied on randomly chosen patches of the MNIST 

training data set. The patches need to have the same size as we desire for the filters. The auto-

encoder finds the basis vectors by which the images in the dataset can be defined. Figure 

VII-1shows the features extracted from MNIST by training an auto-encoder with a hidden size 

 

Figure VII-1 400 features extracted from MNIST training set by training an autoencoder. 
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of 400 and a visible size of 7x7 which is the size of the patches randomly chosen from MNIST 

training set. These filters can then be used to extract the features of every single image in the 

training data set which will be transformed in the form of spikes. The last layer of the network 

will be identical to the one we used in this thesis.  

This coding algorithm could also be expanded to work at every layer. In other words, all 

the layers of a deep network can be coded using this algorithm. Doing so will be extremely 

efficient in terms of area since the exploitation of the temporal code is being utilized at every 

layer and the number of parameters will reduce at each layer by the α parameter of WSA.  
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Appendix I: MATLAB Code developed for Layer 1: Image 

Intensity to Spike Conversion 

 

%Multi Neuron first layer----mROC all excitatory 
% initialize parameters 
%the size of Y should at least be the simulation end time divided by 10 
dt = 0.5 ; 
%nSide=size(H,1);   
nSide=15; 
n_1stLayer=nSide*nSide; 
nint=0; 

  
% reserve memory 
T = ceil (92400/dt) ;  %The number should be maximum 10*the size of the Y 
vth1= 55; 
v = zeros (n_1stLayer,T) ; %  n x T, v: membrane potential 
v (:,1) =0; % vectors 
Iapp= 1000* Y; 

  
% for loop over time 
for t =1:T-1; 

   
    if floor(t*0.5/10)==t*0.5/10 
        tint=t; 
        nint=floor(t*0.5/10); 
        v(:,t)=0; 

         
    end    

     
    Input=Iapp(:,nint+1)*dt; %sampling Y at the beginning of the frame 

rate clock and keeping it up until the next sample 
    %update vectorized ODE 
    v(:,t+1) = v(:,t)+Input ; 

     
    %handle spikes ( reset v ) 
    fired = v(:,t)>= vth1; % neurons  fired? find the ones whose membrane 

potential is greater than vth 
    v(fired ,t) = vth1; 
    v(fired ,t+1) = 0; 
    Iapp(fired,nint+1)=0; 

   
end 

  
%plot spike raster 
spks = double(v==vth1); 
clf , hold on ; 
[X,Y3] = meshgrid((0:T-1)*dt,1:n_1stLayer) ; 
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idx = find(spks==1) ; 
plot (X(idx),Y3(idx) ,['r','.'] ) ; %inhibitory: k=2, plot is red. 

Excitatory: k=1, plot is black 

  
xlim([0,T*dt]); 
%xlim([0,100]); 
ylim([0,n_1stLayer]); 
xlabel('Time[ms]') 
ylabel('Unit #') 
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Appendix II: MATLAB Code developed for Layer 2: 

Extracting Features 

 

%Generating the kernels 

KernelSize=3; 
Kernel_45=zeros(KernelSize,KernelSize); 
Kernel_135=zeros(KernelSize,KernelSize); 
Kernel_Vert=zeros(KernelSize,KernelSize); 
Kernel_Horz=zeros(KernelSize,KernelSize); 

  
for i=1:KernelSize 
    for j=1:KernelSize 
        if i==j 
         Kernel_135(i,j)=1; 
        else  
            Kernel_135(i,j)=-0.5; 
        end 
        if i+j==KernelSize+1 
            Kernel_45(i,j)=1; 
        else 
            Kernel_45(i,j)=-0.5; 
        end 
        if i==(1+KernelSize)/2 
            Kernel_Horz(i,:)=1; 
        else 
            Kernel_Horz(i,:)=-0.5; 
        end 
        if j==(1+KernelSize)/2 
            Kernel_Vert(:,j)=1; 
        else 
            Kernel_Vert(:,j)=-0.5; 
        end 
    end 
end 

 

 

%Multi Neuron Edge Detection Layer----mROC all excitatory 
% initialize parameters 
dt = 0.5 ; 

 
ImageSide=15; 
n_2ndLayer=4*(ImageSide/KernelSize)*(ImageSide/KernelSize); 
nint=0; 
TFR=10; 
inhibit=zeros(n_2ndLayer,1); 
inhibit_others=0; 

  
% reserve memory 
T = ceil (92400/dt) ; 
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vth2= 3; 
v2 = zeros (n_2ndLayer,T) ; %  n x T, v: membrane potential 
v2(:,1) =0;       % vectors 
Input2=zeros(225,T); 
Y_45Deg=zeros(9,1);  % one number for each edge at every kernel 
Y_135Deg=zeros(9,1);  
Y_Horz=zeros(9,1);  
Y_Vert=zeros(9,1);  
Edge=zeros(100,1); 

  
%Edge Detection Kernels 

  
Kernel_45Deg=reshape(Kernel_45,[1 9]); 
Kernel_Vert=reshape(transpose(Kernel_Vert),[1 9]); 
Kernel_135Deg=reshape(Kernel_135,[1 9]); 
Kernel_Horz=reshape(transpose(Kernel_Horz),[1 9]); 

  

  
% for loop over time 
for t =1:T-1; 

     
    % Reseting values at the frame rate clock cycle  

     
    if floor(t*dt/TFR)==t*dt/TFR 
        tint=t; 
        nint=floor(t*dt/TFR);  
        v2(:,t)=0;           % reset membrane potential 
        Input2(:,t)=0;       % Reset the input     
        inhibit=0;           % Reset inhibit signal 
        inhibit_others=0; 

         
    end    

     
    Input2(:,t+1)=Input2(:,t)+spks(:,t+1);   %If there is an spike in the 

time frame, keep it until the end of the time window. 

     
    %applying kernels to the input's window 
    for i=1:1:25 

     
        Y_45Deg(i,1)= Kernel_45Deg* Input2(9*i-8:9*i,t); 
        Y_135Deg(i,1)= Kernel_135Deg* Input2(9*i-8:9*i,t); 
        Y_Horz(i,1)= Kernel_Horz* Input2(9*i-8:9*i,t); 
        Y_Vert(i,1)= Kernel_Vert*Input2(9*i-8:9*i,t); 
        Edge(i*4-3:i*4,1)=[Y_45Deg(i);Y_Vert(i);Y_135Deg(i);Y_Horz(i)]; 
    end 

     
    %Input1(:,nint+1)=Iapp(:,nint+1)*dt; 
    %update vectorized ODE 
    v2(:,t+1) = v2(:,t)+ (Edge)*dt-inhibit(:,1)-0.2*inhibit_others; 

     
    %handle spikes ( reset v ) 
    inhibit=zeros(n_2ndLayer,1); 
    fired2 = v2(:,t)>= vth2; % neurons  fired? find the ones whose 

membrane potential is greater than vth 
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    v2(fired2 ,t) = vth2; 
    v2(fired2 ,t+1) = 0; 
    inhibit(fired2)=20; 
    inhibit_others=sum(fired2); 
    %Input2(fired2,t+1) =0; 

   
end 

  
%plot spike raster 
spks2 = double(v2==vth2); 
clf , hold on ; 
[X_2,Y3_2] = meshgrid((0:T-1)*dt,1:n_2ndLayer) ; 

  

  
idx_2 = find(spks2==1) ; 
plot (X_2(idx_2),Y3_2(idx_2) ,['r','.'] ) ;  

  
xlim([0,T*dt]); 
%xlim([0,100]); 
ylim([0,n_2ndLayer]); 
xlabel('Time[ms]') 
ylabel('Unit #') 

  

 
%normalizing the spikes 

T1=size(spks2,2); 
sum_period=zeros(1,T1); 
DIVIDE_SUM=zeros(1,T1); 
spks2_normalized=zeros(size(spks2)); 

  
for t =1:T1; 
    if t==1 
        sum_period(t)=0; 
    else 
        sum_period(t)=sum(spks2(:,t))+sum_period(t-1); 
    end 
    if floor(t*dt/TFR)==t*dt/TFR 
        DIVIDE_SUM(t-19:t)=sum_period(t-1); 
        sum_period(t)=0; 
    end 
end 

  
for t=1:T1-1 
    spks2_normalized(:,t)=spks2(:,t)./DIVIDE_SUM(:,t); 
end 
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Appendix III: MATLAB Code Developed for Layer 3: 

Classification 

 

%third layer for classification 
% initialize parameters 
clc 
dt = 0.5 ; 
n_2ndLayer=100; 
n_3rdLayer=6; 
nint=0; 
TFR=10; 
inhibit_weak=zeros(n_3rdLayer,1); 
k_n3tau=0.5;   %neuron time constant% 

  
IC=normrnd(0.04,0.12,[n_2ndLayer*n_3rdLayer 1]);  %Initial condition 
vth3_nominal=ones(6,1)*0.35; 
vth_comb=3; 
vth_comb1=1; 

  
vth_homeo_pos1=2.8; 
vth_homeo_neg1=0.3; 

  
vth_homeo_pos3=1.8; 
vth_homeo_neg3=0.25; 
k3=0.006; %Threshold change time constant 
k3_ex=0.003; 

  
k3_single=0.001; %Threshold change time constant 
k3_ex_single=0.006; 

  
alpha_hab=0.01; 
vth_hab=3; 
kCTRL=0.04; 
vth_CTRL_neg=2; 
vth_CTRL_pos=0.4; 
k_homeo=0.01; 

  
%STDP PARAMS-------------------------------------------------------------- 
alpha=0.1;   %STDP time constant. The sooner it dies, the sooner the 

effect of a(Pre,Post) spike goes away 

  
LRateN=0.0001;   %Negative learning rate 
NumofInput=n_2ndLayer; %Number of inputs from the edge detection layer 
NumofOutput=n_3rdLayer; %Number of output neurons in the classification 

layer 
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% reserve memory ---------------------------------------------------------

- 
T = ceil (80000/dt) ; 
v3 = zeros(n_3rdLayer,T); %  n x T, v3: membrane potential 

  
v3(:,1) =0;       % vectors 
Pre_PWM_singleNeuron=zeros(n_2ndLayer,T); 
Pre_PWM_SN_norm=zeros(n_2ndLayer,T); 
INN=zeros(n_2ndLayer,1); 
posts=zeros(n_2ndLayer*n_3rdLayer,T); 
LInt1=zeros(n_2ndLayer*n_3rdLayer,T); 
LInt2=zeros(n_2ndLayer*n_3rdLayer,T); 
Input3_weighted=zeros(n_3rdLayer,1); 
CombDtct1=zeros(6,T); 
CombDtct2=zeros(15,T); 
CombDtct=zeros(20,T); 

  
Spike_Comb_time=zeros(20,T); 

  
OUT1_homeo=zeros(6,T); 
OUT3_homeo=zeros(20,T); 

  
OUTPUT_homeo1=zeros(6,T); 
OUTPUT_homeo3=zeros(20,T); 

  
homeo_pos_spike=ones(20,T); 
homeo_neg_spike=ones(20,T); 

  
homeo_pos_spike1=ones(6,T); 
homeo_neg_spike1=ones(6,T); 

  
Exc1_OUT=zeros(n_3rdLayer,T); 
Inh1_OUT=zeros(n_3rdLayer,T); 

  
Exc_OUT=zeros(n_3rdLayer,T); 
Inh_OUT=zeros(n_3rdLayer,T); 

  
spike_inhib=zeros(n_3rdLayer,T); 
spike_exc=zeros(n_3rdLayer,T); 

  
habituation=zeros(size(spks2,1),T); 
habituation_all=zeros(size(spks2,1)*6,T); 

  
FR_CTRL=zeros(6,T); 
FR1=zeros(6,T); 

  
posts_CTRL=zeros(6,T); 
check_fire=zeros(6,T); 
CTRL_UP_vth=zeros(6,T); 
CTRL_DN_vth=zeros(6,T); 
MAX_Indx=zeros(6,1); 
NumberFired=zeros(1,T); 

  
%STDP matrices ---------------------------------------------------------- 



103 

 

Pre=zeros(n_2ndLayer*n_3rdLayer,T); 
Pre_PWM=zeros(n_2ndLayer*n_3rdLayer,T); 
Pre_PWM_norm=zeros(n_2ndLayer*n_3rdLayer,T); 
Post_PWM=zeros(n_2ndLayer*n_3rdLayer,T); 
dwP=zeros(NumofInput*NumofOutput,T); 
dwN=zeros(NumofInput*NumofOutput,T); 
dw=zeros(NumofInput*NumofOutput,T); 
w=zeros(NumofInput*NumofOutput,T); 
y1_STDP=zeros(NumofInput*NumofOutput,T); 
y2_STDP=zeros(NumofInput*NumofOutput,T); 
tint=20; 
vth_time=zeros(6,T); 

  
vth3=vth3_nominal; 
% for loop over time------------- 
for t =1:T-1; 
    %LRateN=0.0002*exp(-0.000025*t);   %Negative learning rate 
    LRateP=0.0072*exp(-0.00003*t);   %Positive learning rate 
    % Reseting values at the frame rate clock cycle  

     
    if floor(t*dt/TFR)==t*dt/TFR 
        tint=t; 
        nint=floor(t*dt/TFR);  
        v3(:,t)=0;           % reset membrane potential 
        Pre_PWM_singleNeuron(:,t)=0;       % Reset the input     
        Pre_PWM_SN_norm(:,t)=0; 
        inhibit_strong=0;           % Reset inhibit signal 
        inhibit_weak=0; 
        Pre_PWM(:,t)=0;       % Reset the SR latch with the Pre connected 

to it     
        Post_PWM(:,t)=0;      % Reset the SR latch with the Post connected 

to it   
        Pre_PWM_norm(:,t)=0; 
        y1_STDP(:,t)=0; 
        y2_STDP(:,t)=0; 
        LInt1(:,t)=0; 
        LInt2(:,t)=0; 
        dwP(:,t)=0; 
        dwN(:,t)=0; 
        CombDtct(:,t)=0; 
        CombDtct2(:,t)=0; 
        NumberFired(t-1)=0; 
        MAX_Indx=zeros(6,1);         
    end    

      
    w(:,1)=IC; 
    Pre_PWM_singleNeuron(:,t+1)=Pre_PWM_singleNeuron(:,t)+spks2(:,t+1);   

%If there is an spike in the time frame, keep it until the end of the time 

window. 
    

Pre_PWM(:,t)=[Pre_PWM_singleNeuron(:,t);Pre_PWM_singleNeuron(:,t);Pre_PWM_

singleNeuron(:,t);Pre_PWM_singleNeuron(:,t);Pre_PWM_singleNeuron(:,t);Pre_

PWM_singleNeuron(:,t)];  %NEW 
    

Pre(:,t)=[spks2(:,t);spks2(:,t);spks2(:,t);spks2(:,t);spks2(:,t);spks2(:,t

)];     
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    Pre_PWM_SN_norm(:,t+1)=Pre_PWM_SN_norm(:,t)+spks2_normalized(:,t+1); 
    

Pre_PWM_norm(:,t)=[Pre_PWM_SN_norm(:,t);Pre_PWM_SN_norm(:,t);Pre_PWM_SN_no

rm(:,t);Pre_PWM_SN_norm(:,t);Pre_PWM_SN_norm(:,t);Pre_PWM_SN_norm(:,t)]; 

     
    if t==1 
        habituation(:,t)=0; 
    else 
        dhabituation=spks2(:,t-1)-alpha_hab*habituation(:,t-1); 
        habituation(:,t)=habituation(:,t-1)+dhabituation; 
        habituation(hab_fire,t)=0; 
    end 

     
    hab_fire=habituation(:,t)>=vth_hab; 
    habituation(hab_fire,t)=vth_hab; 
    habituation(hab_fire,t+1)=0; 
    

habituation_all(:,t)=[hab_fire;hab_fire;hab_fire;hab_fire;hab_fire;hab_fir

e]; 

     
    INN=Pre_PWM_norm(:,t)*10; 
    INN_T=transpose(INN); 

        

     
    for i=1:1:6 
        if t==1 
            Input3_weighted(i,t)=INN_T((i-1)*100+1:i*100)*w((i-

1)*100+1:i*100,1); 
        else 
            Input3_weighted(i,t)=INN_T((i-1)*100+1:i*100)*w((i-

1)*100+1:i*100,t-1); 
        end 
    end 
   Input3_weighted;  

            
    %update vectorized ODE------------------------------------------------

----- 

     
    dv3=(15*Input3_weighted(:,t)-k_n3tau*v3(:,t))*dt; 
    %dv3_2=floor(dv3*100)/100; 
    if t==1 || t==tint 
        v3(:,t)=0; 
    else 
        inhib=sum(fired3); 
        v3(:,t) = v3(:,t-1)+ 0.008*dv3-1.5*inhibit_weak-inhibit_strong-

0.05*inhib;%+0.5*Exc_OUT(:,t)-Inh_OUT(:,t); 
    end 
    %--------------------------------------------------------------------- 
    %adding noise--------------------------------------------------------  

     
    if t>2000 && t<7000  
        %disp('noise'); 
        for i=1:6 
            v3(i,t) = awgn(v3(i,t),20); 
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        end              
    end 
    %---------------------------------------------------------------------      
    %handle spikes ( reset v ) 
    inhibit_weak=zeros(6,1);  %take points off only one time. and then let 

it be. 
    fired3 = v3(:,t)>= vth3(:,1); % neurons  fired? find the ones whose 

membrane potential is greater than vth 
    %inhibit_weak=inhibit_weak+sum(fired3); 
    inhibit_weak(fired3)=10; 
    v3(fired3 ,t) = 5; 
    v3(fired3 ,t+1) = 0; 

     
    % This part is added because there are multiple neurons firing 
    %bc of the fact that we cannot have small steps of time. Smaller time 
    %steps will cause speed degredation by a lot. So we'll let more 

neurons 
    %to fire and then do some compuation to get rid of the ones we dont 
    %want. 
    if t==1 
        NumberFired(t)=0; 
    else 
        NumberFired(t)=NumberFired(t-1)+sum(fired3); 
    end 

     
    if NumberFired(t)>3 

         
        SORT_ME=sort(v3(:,t-1),'descend'); 

         
        if SORT_ME(1)==SORT_ME(2) 
            tt=find(v3(:,t-1)==SORT_ME(1)); 
            MAX_Indx(1)=tt(1); 
            MAX_Indx(2)=tt(2); 
            for j=3:6 
                MAX_Indx(j)=find(v3(:,t-1)==SORT_ME(j)); 
            end 
        else 
            for j=1:6 
                MAX_Indx(j)=find(v3(:,t-1)==SORT_ME(j)); 
            end 
        end 

         
        if NumberFired(t)==4 

             
            for i=0:2:4 
                if sum(fired3)-NumberFired(t-1)==i 
                    fired3(MAX_Indx(i/2+2))=0; 
                    v3(MAX_Indx(i/2+2),t)=0; 

                     
                end 
                NumberFired(t)=0; 
            end 
        elseif NumberFired(t)==5 
            for i=1:2:5 
                if sum(fired3)-NumberFired(t-1)==i 
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                    fired3(MAX_Indx(i/2+3/2:i/2+5/2))=0; 
                    v3(MAX_Indx(i/2+3/2:i/2+5/2),t)=0;                 
                end 
                NumberFired(t)=0; 
            end 
        elseif NumberFired(t)==6 
            for i=2:2:6 
               if sum(fired3)-NumberFired(t-1)==i 
                   fired3(MAX_Indx(i/2+1:i/2+3))=0; 
                   v3(MAX_Indx(i/2+1:i/2+3))=0; 
               end 
            end                     
            NumberFired(t)=0; 
        end 

         
    end 

     
    %CONTROL THE FIRING RATE ---------------------------------------------

- 

     
    posts_CTRL(:,t)=fired3; 
    if t==1  
        FR_CTRL(:,t)=0.75; 
    else 
        dFR1=posts_CTRL(:,t-1)-kCTRL*FR_CTRL(:,t-1); 
        FR1(:,t)=FR1(:,t-1)+dFR1; 
        FR_CTRL(:,t)=0.75+FR1(:,t); 
    end 
    FR_fire_neg=FR_CTRL(:,t)>=vth_CTRL_neg; 
    FR_fire_pos=FR_CTRL(:,t)<=vth_CTRL_pos; 

     
    FR_CTRL(FR_fire_neg,t)=vth_CTRL_neg; 
    FR_CTRL(FR_fire_pos,t)=vth_CTRL_pos; 

     
    FR1(FR_fire_neg,t)=0; 
    FR1(FR_fire_pos,t)=0; 

     
    check_fire(:,t)=FR_fire_pos; 
    %-------------------------------------------------------------------- 
    %NEURAL STATE MACHINE------------------------------------------------ 

     
    Index=1; 
    dCombDtct=zeros(NumofOutput,1); 
    dCombDtct2=zeros(NumofOutput,1); 
    dCombDtct1=zeros(NumofOutput,1); 

     
    %combinations of 1----------------- 
    combMAT1=nchoosek(1:NumofOutput,1); 

     
    for m=1:size(combMAT1,1) 
        if t==1 || t==tint 
            dCombDtct1(m)=0; 
        else 
            dCombDtct1(m)=(sum(fired3(combMAT1(m,:)))); 
        end 
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    end 

     
    if t==1 || t==tint 
        CombDtct1(:,t)=0; 
    else 
        CombDtct1(:,t)=CombDtct1(:,t-1)+dCombDtct1; 
        CombDtct1(CombFired1,t)=0; 
    end 

     
    CombFired1=CombDtct1(:,t)==2; 
    CombDtct1(CombFired1,t)=2; 

     
    %combinations of 2--------------------- 
    combMAT2=nchoosek(1:NumofOutput,2); 

     
    for m=1:size(combMAT2,1) 
        if t==1 || t==tint 
            dCombDtct2(m)=0; 
        else 
            dCombDtct2(m)=(sum(fired3(combMAT2(m,:)))); 
        end 
    end 

     
    if t==1 || t==tint 
        CombDtct2(:,t)=0; 
    else 
        CombDtct2(:,t)=CombDtct2(:,t-1)+dCombDtct2; 
        CombDtct2(CombFired2,t)=0; 
    end 

     
    CombFired2=CombDtct2(:,t)==2; 
    CombDtct2(CombFired2,t)=2; 

     
    %combinations of 3------------------------- 
    combMAT=nchoosek(1:NumofOutput,NumofOutput/2); 
    for k=1:size(combMAT,1) 
        if t==1 || t==tint 
            dCombDtct(k)=0; 
        else 
            dCombDtct(k)=(sum(fired3(combMAT(k,:)))); 
        end 
    end 

       
    if t==1 || t==tint 
        CombDtct(:,t)=0; 
    else 
        CombDtct(:,t)=CombDtct(:,t-1)+dCombDtct; 
        CombDtct(CombFired,t)=0; 
    end 

     
    CombFired=CombDtct(:,t)>=vth_comb; 
    CombDtct(CombFired,t)=vth_comb; 

  
    inhibit_neuron=sum(CombFired); 
    inhibit_strong=(inhibit_neuron>=1)*5; 
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    spk_comb=double(CombDtct(:,t)==vth_comb); 
    spk_comb1=double(CombDtct1(:,t)==vth_comb1); 

     
    %-------------------------------------------------------------------- 
    % Homeostatis SINGLE------------------------------------------------- 

     
    if t==1  
        OUTPUT_homeo1(:,t)=0.75; 
        fired_homeo_pos1=1; 
        fired_homeo_neg1=1; 
        homeo_pos_spike1(:,t)=0; 
        homeo_neg_spike1(:,t)=0; 
    else 

     
    dOUT1=(spk_comb1-k_homeo*OUTPUT_homeo1(:,t-1))*dt; 
    OUT1_homeo(:,t)=OUT1_homeo(:,t-1)+1*dOUT1; 
    OUT1_homeo(fired_homeo_pos1,t)=0;   %to reset the value after firing 
    OUT1_homeo(fired_homeo_neg1,t)=0;   %to reset the value after firing 
    OUTPUT_homeo1(:,t)=OUT1_homeo(:,t)+0.75; 
    OUTPUT_homeo1(:,1)=0.75; 
    fired_homeo_pos1=OUTPUT_homeo1(:,t)>=vth_homeo_pos1; 
    fired_homeo_neg1=OUTPUT_homeo1(:,t)<=vth_homeo_neg1; 

        
    OUTPUT_homeo1(fired_homeo_pos1,t)=vth_homeo_pos1; 
    OUTPUT_homeo1(fired_homeo_neg1,t)=vth_homeo_neg1; 

     
    homeo_pos_spike1(:,t)=fired_homeo_pos1; 
    homeo_neg_spike1(:,t)=fired_homeo_neg1; 

     
    end 

         
    if t==1 
        Exc1_OUT(:,1)=0; 
        Inh1_OUT(:,1)=0; 
    else 
        %Excitatory Input to the output neuron OR INSTEAD WE CHANGE THE 
        %THRESHOLD 
        dExc1_OUT=(homeo_neg_spike1(:,t-1)-k3_ex_single*Exc1_OUT(:,t-

1))*dt; 
        Exc1_OUT(:,t)=Exc1_OUT(:,t-1)+dExc1_OUT; 

         
        %Inhibitory Input to the output neuron OR INSTEAD WE CHANGE THE 
        %THRESHOLD 

  
        dInh_OUT1=(homeo_pos_spike1(:,t-1)-k3_single*Inh1_OUT(:,t-1))*dt; 
        Inh1_OUT(:,t)=Inh1_OUT(:,t-1)+dInh_OUT1; 
        if Exc1_OUT(:,t)<=0 
            Exc1_OUT(:,t)=0; 
        end 

         
        if Inh1_OUT(:,t)<=0 
            Inh1_OUT(:,t)=0;             
        end         
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    end 
    %------------------------------------------------------------------- 
    %Homeostasis TRIPLE------------------------------------------------- 

     
    if t==1  
        OUTPUT_homeo3(:,t)=0.75; 
        fired_homeo_pos3=1; 
        fired_homeo_neg3=1; 
        homeo_pos_spike(:,t)=0; 
        homeo_neg_spike(:,t)=0; 
    else 
    Spike_Comb_time(:,t)=spk_comb;     
    dOUT3=(spk_comb-k_homeo*OUTPUT_homeo3(:,t-1))*dt; 
    OUT3_homeo(:,t)=OUT3_homeo(:,t-1)+1*dOUT3; 
    OUT3_homeo(fired_homeo_pos3,t)=0;   %to reset the value after firing 
    OUT3_homeo(fired_homeo_neg3,t)=0;   %to reset the value after firing 
    OUTPUT_homeo3(:,t)=OUT3_homeo(:,t)+0.75; 
    OUTPUT_homeo3(:,1)=0.75; 
    fired_homeo_pos3=OUTPUT_homeo3(:,t)>=vth_homeo_pos3; 
    fired_homeo_neg3=OUTPUT_homeo3(:,t)<=vth_homeo_neg3; 

     

     
    OUTPUT_homeo3(fired_homeo_pos3,t)=vth_homeo_pos3; 
    OUTPUT_homeo3(fired_homeo_neg3,t)=vth_homeo_neg3;       

  
    homeo_pos_spike(:,t)=fired_homeo_pos3; 
    homeo_neg_spike(:,t)=fired_homeo_neg3; 

     
    end 

     
    for i=1:NumofOutput 
        FindIndx=find(combMAT==i); 
        GR20=find(20<FindIndx & FindIndx<=40); 
        GR40=find(FindIndx>40); 
        FindIndx(GR20)=FindIndx(GR20)-20; 
        FindIndx(GR40)=FindIndx(GR40)-40; 
        spike_inhib(i,t)=sum(homeo_pos_spike(FindIndx,t)); 
        spike_exc(i,t)=sum(homeo_neg_spike(FindIndx,t)); 
    end 

     
    if t==1 
        Exc_OUT(:,1)=0; 
        Inh_OUT(:,1)=0; 
    else 

         
        %Excitatory Input to the output neuron OR INSTEAD WE CHANGE THE 
        %THRESHOLD 

  
        dExc_OUT=(spike_exc(:,t-1)-k3_ex*Exc_OUT(:,t-1))*dt; 
        Exc_OUT(:,t)=Exc_OUT(:,t-1)+dExc_OUT; 

                          

         
        %Inhibitory Input to the output neuron OR INSTEAD WE CHANGE THE 
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        %THRESHOLD 

  
        dInh_OUT=(spike_inhib(:,t-1)-k3*Inh_OUT(:,t-1))*dt; 
        Inh_OUT(:,t)=Inh_OUT(:,t-1)+dInh_OUT; 
        if Exc_OUT(:,t)<=0 
            Exc_OUT(:,t)=0; 
        end 

         
        if Inh_OUT(:,t)<=0 
            Inh_OUT(:,t)=0;             
        end 
    end 

     
    if t==1  
        CTRL_UP_vth(:,t)=0; 
        CTRL_DN_vth(:,t)=0; 
    else 
        CTRL_UP_vth(:,t)=CTRL_UP_vth(:,t-1)+FR_fire_neg; 
        CTRL_DN_vth(:,t)=CTRL_DN_vth(:,t-1)+FR_fire_pos; 
    end 

     
    %vth3(:,1)=vth3_nominal+0.025*Inh_OUT(:,t)-

0.011*Exc_OUT(:,t)+0.025*Inh1_OUT(:,t)-0.011*Exc1_OUT(:,t); 
    vth3(:,1)=vth3_nominal+0.025*Inh_OUT(:,t)-

0.01*Exc_OUT(:,t);%+0.011*Inh1_OUT(:,t)-0.011*Exc1_OUT(:,t); 

     
    for i=1:7 
        if t>2*(i*15400-1400) && t<2*(i*15400) 
            vth3(:,1)=vth_time(:,i*15400-1400); 
        end 
    end 

         
    vth_time(:,t)=vth3; 

         
    %END OF HOMEOSTASIS---------------------------------------------------

- 

     
    % WEIGHT UPDATE-------------------------------------------------------

- 
    %SR latch output 

                 
    %POSITIVE WEIGHT CHANGE-----------------------------------------------

- 

  
    %decay in time 
    dLInt1=(Pre(:,t)-alpha*LInt1(:,t))*dt; 
    LInt1(:,t+1)=LInt1(:,t)+dLInt1; 

     
    % SR-leaky integrator (SR minus decay) 

     
    y1_STDP(:,t)=Pre_PWM(:,t)-LInt1(:,t); 
    %y1_STDP(:,t)=LInt1(:,t); 

     
    for j=1:6 



111 

 

        posts((j-1)*100+1:j*100,t)=fired3(j); 
    end 

     
    dwP(:,t)=posts(:,t).*y1_STDP(:,t)*LRateP; 
    Post_PWM(:,t+1)=Post_PWM(:,t)+posts(:,t); 

     
    %NEGATIVE WEIGHT CHANGE----------------------------------------------- 

  
    %decay in time 
    dOUT2=(posts(:,t)-alpha*LInt2(:,t))*dt; 
    LInt2(:,t+1)=LInt2(:,t)+dOUT2; 
    y2_STDP(:,t)=Post_PWM(:,t)-alpha*LInt2(:,t); 

     
    % SR-decay 

     
    

dwN(:,t)=Pre(:,t).*y2_STDP(:,t)*LRateN+~Pre_PWM(:,t).*posts(:,t)*LRateN;  
    dw(:,t)=0.3*(dwP(:,t)-dwN(:,t))-0.0081*exp(-

0.00003*t)*habituation_all(:,t); 
    if t==1 
        w(:,t)=IC; 
    else 
        w(:,t)=w(:,t-1)+dw(:,t); 
    end 
    for i=1:n_2ndLayer*n_3rdLayer 
        if w(i,t)>=0.7 
            w(i,t)=0.7; 
        elseif w(i,t)<=-0.01 
            w(i,t)=-0.01; 
        end 
    end 
%-------------------------------------------------------------------------   
end 
%Plot Pre spikes 
%figure(1) 
%plot (X_2(idx_2),Y3_2(idx_2) ,['r','.'] ) ;  
%xlim([0,T*dt]); 
%ylim([0,n_2ndLayer]); 

  
%Plot spike raster 
figure(2) 
spks3 = double(v3==5); 
clf , hold on ; 
[X_3,Y3_3] = meshgrid((0:T-1)*dt,1:n_3rdLayer) ; 
idx_3 = find(spks3==1) ; 
plot (X_3(idx_3),Y3_3(idx_3) ,['r','.'] ) ;  
xlim([0,T*dt]); 
ylim([0,n_3rdLayer]); 
xlabel('Time[ms]') 
ylabel('Unit #') 

  
%plot weights------------------------------------------------------------- 
%for i=1:6 
 %   figure(i+2) 
  %  plot((0:T-1)*dt,w((i-1)*100+1:i*100,:)); 
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%end 

  
%plot homeostatic spikes ------------------------------------------------ 
%figure(10) 
%clf , hold on ; 
%[X_neg_homeo,Y_neg_homeo] = meshgrid((0:T-1)*dt,1:20) ; 
%idx_homeo_neg = find(homeo_neg_spike==1) ; 
%plot(X_neg_homeo(idx_homeo_neg),Y_neg_homeo(idx_homeo_neg),['r','.']); 
%xlim([0,T*dt]); 
%ylim([0,n_3rdLayer]); 
%xlabel('Time[ms]') 
%ylabel('Unit #') 

  

 

 

 

 

 

 


