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ABSTRACT 
 

Discovery of disease-associated antibody biomarkers and their binding targets using 

bacterial displayed peptide libraries 

 

By  

 

Serra Eren Elliott 

 

Discovery of biologic molecules specific to a diseased state, or biomarkers, can 

lead to diagnostic development, therapeutic target identification, and improved 

understanding of disease pathogenesis.  Antibodies remain an attractive class of 

biomarkers given their amplification by the immune system, stability, and current 

clinical use.  While the antibody repertoire represents a rich source for biomarker 

discovery, it has been difficult to impartially identify which molecules from this 

repertoire are associated with disease.  This work demonstrates three molecular 

discovery processes centered on the utility of bacterial displayed peptide libraries and 

fluorescence activated cell sorting (FACS) for identifying novel antibody biomarkers 

and their targets.  We applied these methods to discover and characterize disease-

associated antibodies for pre-eclampsia (PE), a condition with unknown etiology that 

affects 5-8% of pregnancies, using an unbiased approach.   

Applying three quantitative screening strategies against a set of PE and healthy-

outcome pregnancies (HOP) identified unique disease-associated antibody binding 

peptides from a fully random 15 amino acid peptide library.  With a two-color 

screening method, we used antibody fractions enriched from plasma to isolate 
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significantly PE cross-reactive and specific peptides distinct from a previously 

identified PE-associated antibody specificity.  We used a panel of these antibody-

detecting peptides to train and validate an Adaptive Boosting classification algorithm 

that achieved high specificity (95%) and a validated overall 80% diagnostic accuracy.  

To more closely replicate the native antibody binding environment, a second 

screening method used unprocessed, diluted plasma.  This approach sequentially 

enriched peptides binding to PE antibodies and removed HOP antibody binders, 

resulting in a strong consensus motif that we further expanded through directed 

evolution.  Importantly, we linked this motif to a region of a common viral antigen, 

Epstein-Barr virus nuclear antigen 1, and a human G protein-coupled receptor, 

GPR50, presenting a novel case for molecular mimicry.  Thus, this method enabled 

unbiased identification of a disease-associated antibody and characterization of its 

targets.  Finally, we developed and applied a unique methodology that combines 

bacterial displayed library screening with next-generation sequencing to profile the 

antibody repertoire of individual PE patients and HOP samples.  This analysis re-

identified the viral antigen-linked motif among several distinct PE- and HOP-

associated antibody specificities, providing broader insights into alterations to the 

immune repertoire in PE.   

This work demonstrates the utility of screening bacterial displayed peptide 

libraries to profile the antibody repertoire and identify new markers of disease.  These 

disease-associated antibody-detecting peptide reagents enable development of 

molecular diagnostics and discovery of antibody binding target(s) to improve 

understanding of disease etiology and potentially elucidate therapeutic targets.   
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1. Background 

 

The circulating human antibody repertoire catalogs the immune response to a 

variety of different targets, including pathogens, environmental allergens, and human 

proteins.  Determining and characterizing the targets of specific antibodies associated 

with a disease can lead to diagnostic development, improved understanding of disease 

pathogenesis, and elucidation of potential therapeutic targets.   However, it remains 

particularly difficult to unambiguously identify these disease-associated antibodies 

and their targets.  Through this research, we demonstrate methods that do not require 

sophisticated knowledge of disease pathogenesis to identify molecular diagnostic 

tools and elucidate antibody binding targets, which may enable future therapeutic 

development.  To emphasize the importance of an unbiased approach, we apply these 

methods to pre-eclampsia (PE), a disease with unknown etiology that affects 5-8% of 

pregnancies.1  While previous studies reported the presence of antibodies against a 

specific region of the angiotensin II type 1 receptor in PE patients,2,3 these have been 

difficult to detect and vary in prevalence. This chapter highlights the need for the 

development and application of unbiased antibody biomarker discovery tools, 

providing motivation for this work and describing the techniques involved.  

A.  Antibodies as disease-specific biomarkers 

In clinical proteomics, the proteins in diseased patients’ samples (i.e., blood, 

tissue) are compared with normal samples to determine biologic molecules unique to 

a diseased state, or biomarkers.4  Work in this area has been applied to a broad 

spectrum of diseases, such as cardiovascular disease,5 cancer,6 Alzheimer’s,7 and 
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systemic lupus erythematosus,8 and has involved a variety of techniques, from mass 

spectroscopy9,10 and protein microarrays11 to gene transcription profiling.12  

In particular, the circulating antibody repertoire represents a rich source for 

biomarker discovery, due to easy access (blood sample), stability, and current clinical 

utility.  Antibodies, or immunoglobulins (Ig), can be divided into several different 

subtypes (IgG, IgM, IgA, IgE, IgD), of which IgG is the most prevalent (~75%) 

circulating class.  The Ig core structure consists of two heavy and two light chains 

comprising a constant fragment (Fc) linked to two regions responsible for binding 

(Fab), resulting in multivalency.  These multivalent antibodies bind to antigenic 

targets, which include proteins, carbohydrates, lipids, and nucleic acids.  The strength 

of the binding interaction between antibody (Ab) and antigen (Ag) is termed affinity, 

usually described by the equilibrium dissociation constant (KD):  

(1.1)     AgAb
ak

dk
AgAb ⋅+

⎯⎯⎯⎯ →⎯

⎯⎯⎯⎯ ⎯←
   

(1.2)        
Ag][Ab

[Ab][Ag] 
⋅

==
a

d
D k

kK  

 
The affinity of the antibody-antigen interaction plays a role in the ability to detect 

antibody markers.  A typical antibody affinity is 10-6 to 10-9 M, and this can be 

thought of as the concentration of antibody at which half of the antigen is bound.  

Thus, increased affinity (lower KD) results in a lower detection limit.  Specificity is 

another important consideration for a diagnostic assay.  Using an antigen that binds 

multiple nonspecific antibodies to detect a disease-associated antibody increases the 

number of falsely diagnosed healthy samples.   

 2



 

Since antigenic targets are typically quite large, antibodies only recognize a small 

section of the antigen, termed an epitope.  Similarly, a small region, paratope, of the 

antibody composed of complementary determining regions mediates the majority of 

binding.  Epitopes can represent linear and discontinuous, conformational sections of 

a given antigen, or even complex macromolecular structures.13  Typical linear 

epitopes comprise 6 to 13 amino acids14 while conformational epitopes include 

stretches of linear regions typically resulting in 9 to 22 amino acids interacting with 

the antibody.15  These discontinuous epitopes are often difficult to precisely identify, 

resulting in large sections of proteins deemed important for antibody binding.16  

Additionally, certain protein structures, such as β-turns, are often observed in 

antigenic sites,17 further impressing the importance of structural context for antibody 

binding.   

Characterizing the precise epitope of interaction can clarify important differences 

associated with a specific disease.  For example, in celiac disease (CD), an immune 

response to gluten, a protein found in wheat, barley, and rye, leads to production of 

antibodies against the human protein, tissue transglutaminase (tTG).  Although rare, 

individuals with other autoimmune diseases demonstrate tTG antibody positivity in 

certain enzyme-linked immunosorbent assays (ELISAs).18  However, characterizing a 

discontinuous epitope for tTG antibodies in CD patients clarified differences between 

CD and these other disease patients with anti-tTG positivity.19   

Regardless of the precise mechanism of antigen interaction, many examples of 

antibody biomarker based diagnostics exist (Table 1-1).  Sensitivity and specificity 

are common metrics for assessing overall accuracy of a diagnostic assay.  In this 
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respect, sensitivity represents the number of true positives (correctly diagnosed as 

disease) out of the total number of disease tested.  Conversely, specificity indicates 

the number of true negatives (correctly classified as healthy) out of the total number 

of healthy evaluated.   

B. Aberrant antibody production and molecular mimicry  

By interacting specifically with antigenic targets, antibodies perform a diverse set 

of functions and are necessary for healthy survival and protection against foreign 

molecules.  B-cells secrete antibodies upon binding of the appropriate antigen to the 

B-cell receptor and the necessary stimulation in a T-cell independent or dependent 

manner.20  Once appropriately stimulated, the B-cell undergoes an affinity maturation 

process, which fine-tunes the binding interaction by selecting for variants with 

increased affinity to the antigen after somatic hypermutation of the B-cell receptor 

binding region.  Focusing on the T-cell dependent process, antigens bound to the B-

cell receptor are internalized, digested, and displayed as fragments on MHC II, which 

must then interact with the appropriate T-cell receptor.  This two-step process helps 

regulate antibody production, reducing the likelihood of self-reactive antibodies.   

Despite this two-step process, various diseases are associated with production of 

unusual, often pathological antibodies, including chronic hypertension,21 

Alzheimer’s,22 chronic graft versus host disease23 and other autoimmune conditions.  

Therefore, sometimes a breakdown in self-reactive antibody production control can 

occur.  This breakdown could be due to aberrant epitope spreading as hypothesized 

for the generation of autoantibodies against tTG in CD.24  In this case, gliadin, a 

component of gluten, forms a complex with tTG as it acts upon the glutamine 
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residues present. Thus, a tTG specific B-cell may endocytose the complex but present 

a gliadin peptide to a gliadin specific T-cell that stimulates the tTG specific B-cell to 

start producing antibodies.25  This epitope spreading phenomenon is associated with 

other diseases and has been shown to precede clinical presentation of rheumatoid 

arthritis.26 Furthermore, if the specific residues involved in the antibody-antigen 

binding are structurally similar to additional proteins, molecular mimicry between 

proteins can increase or trigger autoantibody production.27  For example, three 

autoantibodies associated with lupus patients have been shown to cross-react with 

regions of a common viral protein, Epstein-Barr virus nuclear antigen 1 (EBNA-1).28  

Molecular mimicry mechanisms have been proposed for several autoimmune diseases 

(Table 1-1): Guillain-Barré syndrome and Campylobacter jejuni;29 myasthenia gravis 

and herpes simplex virus 1;30 multiple sclerosis (MS) and Epstein-Barr virus (EBV), 

measles and HHV-6;30 type-1 diabetes (T1D) and Coxsackie B virus, rubella, and 

rhinovirus;30 and scleroderma and human cytomegalovirus.30  In certain cases, such as 

MS and T1D, the molecular mimicry mechanism is thought to involve cross-reactive 

T-cells.31   

As demonstrated by these examples, the molecular mimicry mechanism appears 

to play a significant role in generating autoimmune activity.  Discovering new 

molecular mimicry cases that drive autoantibody activity can improve our 

understanding of disease etiology and lead to new diagnostics and potentially 

therapeutics.  A variety of approaches have been used to discover and characterize 

disease-associated antibodies. 
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Table 1-1: Examples of autoantibody markers of disease and hypothesized 
molecular mimicry in disease pathogenesis 

Disease Target Sens Spec 
Molecular 

Mimicry Proposed Refs 
Myasthenia 
 Gravis 

Acetylcholine receptor 0.96 0.97-
0.99 

Herpes simplex 1 
virus, gpD 

30,32, 
33 

Celiac disease Tissue transglutaminase 0.89a 0.98a Gluten, Hepatitis C 
virus 

30,34 

Type-1 diabetes Islet cells 0.81b

 
0.96b 

 
Enteroviruses, 
rotaviruses 

30,35,
36 

Systemic lupus 
erythematosus 

Nuclear antigens 
(ANA) 

0.98 0.92c 

0.88d 
Epstein-Barr virus, 
EBNA-1 

28,37 

 dsDNA 0.37 1c 
0.97d 

  

Systemic 
sclerosis 

Integrin-NAG-2 complex 
(endothelial cells) 

0.93e 1c,e Cytomegalovirus, 
UL94 

30,38,
39 

 Topoisomerase1  
(Scl-70) 

0.43c,f 1 c,f   

Graves’ disease Thyroid stimulating 
hormone receptor 

0.988 0.996c Yersinia 
enterocolitica 

40,41,
42 

Rheumatic fever Cardiac myosin 0.87 1d Streptococcal 43,44 

Autoimmune 
liver disease 

Cytochrome P4502D6 0.81 0.98 Hepatitis C virus, 
cytomegalovirus, 
herpes simplex 
virus 

45,46 

Rheumatoid 
arthritis 

Cyclic citrullinated 
peptide 

0.48 0.96 Proteus mirabilis 47,48 

 Fc domain of IgG (IgM-
Rheumatoid factor) 

0.54 0.91   

 

Sens – Sensitivity, Spec – Specificity, a – pooled estimate, b – median from review, c –
compared to healthy controls, d- compared to disease control patients, e – using a mimicking 
library-isolated peptide, f – measured by ELISA 

C.  Library screening to characterize disease-associated antibodies 

For the majority of diseases, a sensitive/specific antibody biomarker for diagnosis 

remains unidentified.  Furthermore, the push for more personalized medicine requires 
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new discovery efforts to help typify different diseases or predict and monitor response 

to a specific therapeutic.49  These discovery efforts for new antibody biomarkers 

involve a diverse set of techniques.  While there has been some work to develop 

techniques to characterize unique complementary determining regions of antibodies 

using mass spectrometry,50 it remains difficult to apply and distinguish disease-

associated antibody markers.  More recently, with enhanced sequencing techniques, 

studies have been able to sequence the antibody repertoire itself and identify disease-

associated antibodies.51,52,53  However, in any effort to identify disease-specific 

antibody markers, it is important to characterize what the antibody binds.  Thus, a 

common technique is to screen a set of candidate antigen targets for binding to 

disease-associated antibodies.  

 
i. Protein microarrays 

Protein microarrays enable high-throughput evaluation of proteins of interest for 

binding to disease-associated antibodies in a multiplexed manner.54,55  Up to 103-104 

proteins are immobilized to a substrate, such as a glass slide, sometimes through 

affinity tags.56  By modifying substrate surfaces, proteins attach by noncovalent (e.g., 

hydrophobic or positively charged surfaces) or covalent (e.g., chemically activated 

surfaces such as epoxy or aldehyde esters) approaches.57 Alternatively, protein arrays 

can be generated using cDNA microarrays followed by in situ transcription and 

translation directly before probing for binding.11,58  While 103-104 proteins represents 

a fair amount of candidate targets, the human proteome alone may range from 105 to 

several million molecules, due to post-transcriptional control and post-translational 

modifications.57  This does not include the potential myriad of environmental 
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organisms involved in disease.  Thus, selecting a set of proteins to evaluate with a 

microarray often requires pre-existing knowledge of the disease.  Utilizing these 

previously gained insights into disease etiology can lead to new discoveries, albeit in 

a specific direction.  For example, based upon the knowledge that lupus patients 

possess antibodies against certain “serum factors,” such as cytokines, chemokines, 

and growth hormones, a protein microarray was generated.59  Assaying this 

microarray for binding to serum antibodies in lupus patients and healthy controls 

identified B-cell activating factor (BAFF) as an autoantigen target among others for 

lupus-associated antibodies.   

In addition to the difficulty and bias introduced by selecting a set of proteins to 

analyze, generating the microarrays requires production, folding, and purification of 

these proteins, which adds significant complexity.  Given the solubility requirements 

for protein microarray analysis, membrane proteins, such as G protein-coupled 

receptors (GPCRs), must often be excluded from analysis.56   Some work has been 

done to print GPCRs and their associated lipids into microarrays using modified 

surfaces,60 but the requirement of detergents limits throughput.  Furthermore, with 

full-length protein microarrays, one cannot refine the important epitopes mediating 

the observed binding signal.   

ii. Peptide library screening 

Peptide library screening identifies short binding ligands for a variety of targets, 

such as disease-associated antibodies, out of a large pool of candidates. These 

peptides can be used as diagnostic reagents themselves and serve as antigen 

surrogates, enabling a more refined understanding of the epitope involved in an 
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antibody-antigen interaction.  Although libraries of peptoids, synthetic peptide 

mimetics, have shown promise for disease detection,7,61 these are difficult to relate to 

the native antigen of interest.  Peptide libraries can be displayed on a cell surface or 

assayed as a solid-phase ELISA,17 microarray,62 or nitrocellulose membrane 

(SPOT).63  In one application, a peptide microarray consisting of 7,446 overlapping 

15 amino acid peptides representing 61 M. tuberculosis proteins was probed against 

tuberculosis positive and negative individuals.64  This analysis demonstrated that 

positive and negative individuals produced antibodies against different epitope 

specificities from the same protein while certain shared epitopes exhibited differential 

activity.  The SPOT synthesis methodology has been shown to map discontinuous 

epitopes of a known antigen; however, it requires high peptide density and protein 

concentration to identify these low affinity binders.65  By incorporating knowledge of 

the distance between discontinuous regions in a solved protein structure, these 

discontinuous regions were linked and substitution analysis led to improved binding 

affinity for the antibody.66  Although the SPOT and peptide microarray techniques 

can be useful, these approaches often require pre-existing knowledge of the antigen(s) 

of interest because peptide synthesis cost and efficiency limits the library diversity 

probed.  Since cell surface display uses the natural machinery of the cell to produce 

and display these libraries, the diversity probed can be significantly larger, 109-1011 

members.67  These libraries of peptides can be fully randomized or represent linear 

fragments of protein(s) of interest derived from the human proteome,68 a specific 

virus,14,69 or a particular cell line.70  Peptides identified from a randomized library 

may represent a linear sequence or mimic a discontinuous, conformational epitope 
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(i.e., mimotopes71).  In fact, certain identified mimotopes can mimic the binding site 

of antibodies targeting double-stranded DNA.13  In contrast, libraries composed of 

linear overlapping fragments from a specific protein of interest typically cannot detect 

conformational epitopes.  The gene fragment library approach, which consists of 

different sized fragments from proteins of interest, can identify short linear epitopes 

and large sections of a protein that contain the residues of a discontinuous epitope.72  

In some cases, the known discontinuous regions can be used in conjunction to 

identify specific residues involved in binding.73  However, these approaches are more 

complex and require a priori knowledge of the disease to develop these fragment 

libraries in contrast to random peptide libraries.         

iii. Library screening by cell-surface display 

Peptide display libraries are a major tool for screening and identifying disease-

associated antibody binding peptides.  Commonly used display platforms include 

phage, bacteria, and yeast.  Phage, or bacteriophage, displayed libraries typically use 

M13 or T7 phage and have shown great utility for antibody repertoire profiling.  

Phage display screening against disease-associated antibodies has been applied to a 

variety of conditions, including infectious disease (e.g., Lyme disease74), 

inflammatory disease (e.g., ankylosing spondylitis75), and cancer (e.g., prostate,76,77 

breast,70 and non-small cell lung78), using random74-76 and cDNA libraries.70,77,78  

Furthermore, screening random phage display peptide libraries against autoimmune 

diseases has yielded interesting observations in multiple sclerosis,79 celiac disease,80 

and type-1 diabetes.81  In MS, four identified mimotopes bound antibodies in the 

cerebrospinal fluid in a higher fraction of MS patients compared to disease control, 
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and these shared similarities with envelope proteins of the MS-associated retrovirus.79 

Screening IgA from CD patients with high anti-gliadin titers identified the PEQ 

sequence as important for binding to gliadin.80  Additionally, a monoclonal antibody 

from a T1D patient was screened against a randomized peptide library, which 

identified a common motif among isolated peptides.81  Similar cluster patterns were 

found on the surface of islet antigen 2 for which antibody specificities in type 1 

diabetes are hypothesized to be conformational.  However, in each case, prior 

knowledge of disease-related proteins, made these discoveries possible.  Additionally, 

phage cannot be quantitatively sorted because their small size (24-200 nm) prevents 

flow cytometric analysis.82  Instead, a simple selection process, termed panning, is 

used to enrich binding phage.  Here, antibodies are typically immobilized to a surface 

or beads and phage are panned for binding to the targets.  Furthermore, each panning 

step is followed by an amplification step hosted in bacteria, which greatly reduces 

library diversity independently from peptide function selection.83  

Bacterial displayed peptide libraries utilize the processing capabilities and fast 

replication of bacteria to display and screen a diverse collection of peptides for 

binding.  Bacteria provide a convenient, more easily accessible link between the gene 

and protein binding phenotype.  Moreover, bacterial display enables analysis by flow 

cytometry and fluorescence activated cell sorting (FACS) to quantitatively assess the 

degree of binding based on cell fluorescent intensities,84 discussed in detail later in 

this chapter.  Bacteria can also be selected in a similar fashion as phage display but 

without the biasing amplification process, such as with the flagellar display system, 

FliTrx.85  This system has been applied to identify antibody binding specificities 
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present in scleroderma,38 Sjögren’s syndrome,86 Cogan’s syndrome,87 and 

autoimmune pancreatitis.88  Of these, the antibody binding specificity discovered for 

autoimmune pancreatitis exhibited the strongest diagnostic performance with binding 

activity observed in 18 of 20 patients and only 4 of 40 with pancreatic cancer.   The 

identified peptide sequence was linked to a protein of Helicobacter pylori, and the 

corresponding peptide exhibited similar diagnostic utility in a validation set.   

In addition to the FliTrx system, another bacterial display system of random 

peptide libraries utilizes FACS to identify peptides of interest.  The library displays 

using a circularly permuted version of the outer membrane protein X in E. coli,89 for 

which the display efficiency was further enhanced (eCPX).90  The scaffold enables 

peptide expression on both the N- and C-terminus, which provides more peptide 

flexibility than simple loop insertion into the native transmembrane protein.  This 

permits construction of a library of cells expressing unique peptides that behave more 

like in solution.  To demonstrate the capabilities of this display system, a 15-mer 

library was screened against a pseudo disease consisting of a monoclonal antibody 

spiked into an immunoglobulin pool.91  Multi-parameter cell sorting and differently 

labeled “disease” and control pools enabled selection of “disease” specific peptides, 

which were enhanced with directed evolution.    

While yeast display platforms can be screened by flow cytometry, these require 

longer growth times and due to poor transformation efficiency require multiple 

transformations to achieve >107 diversity.  A benefit to yeast display involves its 

ability to correctly fold and express larger proteins, such as fragments of epidermal 

growth factor receptor.92  Conformational and linear antibody epitopes were 
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distinguished using these fragments.  Similarly, fragment display enabled refinement 

of the binding target for an H1N1 neutralizing antibody.93  These examples highlight 

the benefit of yeast display to express large structural domains from proteins of 

interest, but this approach again requires pre-existing knowledge of potential disease 

targets to characterize antibody binding. 

It is important to note that multiple copies (~10,000 with eCPX) of the peptide are 

expressed on the cell surface.  Therefore, binding interactions to multivalent 

antibodies not only depend on the individual affinity of the peptide for the target but 

also the avidity contributions based on the number of copies displayed on the cell 

surface. The peptides on the surface can be modeled as multivalent ligands and the 

avidity is determined by the inter- and intramolecular binding affinities.  The distance 

between two peptides depends upon the overall density of peptide expression on the 

cell surface.  With bivalent targets, such as IgG, if two peptides are displayed close to 

each other, two unbinding events must occur in rapid succession for the antibody to 

completely dissociate from the cell surface.  Thus, these avidity interactions enhance 

apparent affinities and, importantly, increase the ability to detect the presence of 

antibodies with low affinity or titer.94,95    

iv. Identifying antibody-detecting peptides from a bacterial display library 

With the tools described above, the disease-associated antibody-binding peptides 

can be selected from a random peptide library using a quantitative molecular 

separation process through flow cytometry (see Techniques section).  Importantly, as 

mentioned above, random peptide libraries do not necessitate prior knowledge of 

disease, unlike cDNA libraries generated from tissues or cells previously linked to 
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disease.14,70,77,78  Some studies used few individual patient samples76,79 or a single 

pool of samples38,86-88 for discovery.  However, this approach biases antibody 

identification to a subset of patients, deterring identification of widely prevalent 

antibodies.  By incorporating FACS, peptides can be quantitatively screened for 

cross-reactivity among different patient samples.  These peptides represent antigen 

surrogates, which enables antigenic target characterization based upon sequence 

alignments of identified peptides.  Previous studies with random peptide libraries 

often relied upon few peptide sequences (<10) 38,79,81,86-88 and pre-existing knowledge 

of disease-related antigens74,79-81,86,88 to relate motif similarities to potential antigenic 

targets. However, greater sequence depth facilitates stronger motif characterization to 

understand the variability in certain positions, which would benefit a directed 

evolution strategy for unbiased antigen discovery.  Programs, such as PILEUP,96 

Clustal series,97 and MEME,98 are available to perform these sequence alignments.  

These tools relate amino acids using similarity matrices, such as the blocks 

substitution matrix (BLOSUM)99 and the Tudos matrix generated using the idea of 

“neighborhood selectivity.”100  Highly enriched populations of short (~15 amino 

acids) peptide sequences can often be aligned manually based upon these similarity 

matrices and amino acid properties.  Thus, bacterial displayed peptide library 

screening enables profiling of the immune repertoire to identify aberrant antibody 

specificities involved in a disease, potentially developed in response to an 

environmental trigger, such as a virus (Figure 1-1).  The following section describes 

the motivation behind applying this method to profile the immune response in the 

pregnancy-related disease, pre-eclampsia.   
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Figure 1-1: Bacterial displayed peptide library screening to profile the antibody repertoire. 
(A) An immunologic response to a particular pathogen, such as a virus, initiates production
of antibodies against specific proteins, or antigens.  These can result in binding to antigen
regions, or epitopes, typically observed or an atypical response.  When these atypical 
specificities cross-react with regions of human proteins, a process known as molecular
mimicry, these aberrant antibodies can lead to various problems.  (B) Since these linear 
epitopes are typically 6-13 amino acids in length a 15 amino acid peptide library can be used
to represent these important binding regions.  With fluorescently tagged antibodies, a
quantitative separation process, known as FACS, can be used to select the relevant disease-
associated specificities.   

D. Pre-eclampsia 

Pre-eclampsia (PE) affects 5-8% of pregnancies1 and is a major cause of maternal 

mortality (15-20% in developed countries) and morbidities.101  Furthermore, it is 

responsible for an estimated 500,000 fetal deaths worldwide each year.  PE is marked 

by placental abnormalities, such as poor placentation102,103 leading to intrauterine 

growth restriction (IUGR), as well as a maternal inflammatory response and 

endothelial dysfunction, which are involved with the mother’s clinical symptoms.103  

Established guidelines exist for diagnosing PE upon presentation with maternal 

symptoms, such as hypertension and proteinuria after 20 weeks’ gestation;104 
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however, the disease pathogenesis remains poorly understood and presentation 

involves a broad clinical spectrum besides hypertension and proteinuria.105  It has 

recently been proposed that PE may represent a combination of several disease 

subtypes and future studies should recognize this possibility.106  Alongside the 

complicated nature of PE presentation and management, the average cost of a PE case 

is estimated to be £9000 ($14,000).107  Given the global impact of PE, a huge void 

remains to be filled with respect to advancing diagnostic methods, understanding 

disease pathogenesis, and developing an eventual therapeutic.   

i. Current understanding of disease 

Previous work has demonstrated that numerous contributing factors may lead to 

the maternal PE condition.  Several molecules, including cystatin C, beta-trace 

protein, and beta-2-microglobulin, increased in healthy pregnancy show further 

elevation in women with PE.108  Notably, disturbances to angiogenic/antiangiogenic 

protein levels have been observed in PE.  Elevated levels of antiangiogenic proteins, 

soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sEng), findings 

attributed to increased shedding of placental microparticles,109 and lowered levels of 

placental growth factor (PlGF) are often present in PE patients.110,111,112  sFlt-1 binds 

vascular endothelial growth factor (VEGF), thereby inhibiting VEGF’s normal 

proangiogenic activity.  The placenta-derived protein sEng induces vascular 

permeability and hypertension in vivo and is present in the sera of all pregnant women 

but elevated in PE patients.111  Although high sFlt-1 and low PlGF levels have been 

demonstrated in a large number of patients, not all women with these altered levels 

develop PE and many PE patients present without these differences,113,114 indicating 
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the existence of other factors that contribute to PE.  One factor contributing to the 

altered renin-angiotensin system may come from oxidative stress due to placental 

dysfunction.  A study showed renin more readily cleaved the oxidized form of 

angiotensinogen to form angiotensin, which angiotensin converting enzyme (ACE) 

eventually converts to angiotensin II.115  Furthermore, the ratio of reduced to oxidized 

angiotensinogen was lowered in a small group of PE patients.  Another effect of 

placental dysfunction in PE involves decreased levels of catechol-o-methyltransferase 

(COMT) leading to lower levels of the hypoxia-inducible factor-1α inhibitor protein 

2-methoxyoestradiol (2-ME), normally elevated during pregnancy.116  

Besides the alterations of these various proteins already affected in normal 

pregnancies, evidence suggests an immunological response associated with PE.  

Alterations in inflammatory cytokines, such as increased levels of pro-inflammatory 

TNFα, IL-6, and IL-8 have been observed in women with PE.117  In addition, the 

complement system, potently activated by antibody binding, appears dysregulated in 

PE,118,119 since levels of several complement proteins are increased in PE.119,120,121  

Mutations in complement regulatory proteins have been associated with an increased 

risk for PE.118  While PE placental tissue showed increased presence of complement 

protein C4d, this was associated with higher levels of mRNA for complement 

regulatory proteins.119  Furthermore, placental vessels in a transgenic rat model of PE 

showed increased C3 deposits, and supernatant from PE placental explants stimulates 

C3 expression in rat vascular smooth muscle cells.122  In addition to increased 

complement, patients with PE exhibit decreased circulating123 and placental124 levels 

of CD4+CD25+FoxP3+ regulatory T-cells.  These regulatory T-cells help control self-
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reactive antibody production; thus, this reduction can lead to increased autoantibody 

production.125  Furthermore, PE patients possess expanded levels of circulating 

CD19+CD5+ B-cells,126 which produce natural antibodies and are similarly increased 

in autoimmune diseases, including Sjögren’s syndrome and rheumatoid arthritis.127  

Taken together, these observations provide evidence for an immunological response 

consistent with aberrant antibody production in PE.   

Several studies implicate autoantibody binding activity in patients with PE.  PE-

associated antibodies have been shown to bind human proteins, such as β1, β2 and α1 

adrenoreceptors,128 cardiolipin,129 and prothrombin.130  Most notably, PE patients 

produce agonistic autoantibodies against the angiotensin II AT1 receptor (AT1-AA)2 

that can induce PE symptoms, such as hypertension, proteinuria, and raised sFlt-1 

levels, in pregnant mice.3  Other studies have further demonstrated these antibodies 

precede and induce sFlt-1131,132 and sEng production.132  It was later shown that the 

AT1-AA crosses the placenta and contributes to the IUGR often observed in PE.133  

Through competition experiments, scientists identified a seven amino acid epitope 

(AFHYESQ) on the second extracellular loop of the AT1 receptor using antibodies 

isolated from PE patients2 as well as a transgenic rat model.134  This epitope was 

noted to resemble a section on the parvovirus B19 capsid protein VP2 and a human 

antibody against this protein demonstrated activity in the bioassay used to determine 

the presence of AT1-AA, suggesting molecular mimicry as a source for generating 

these AT1-AAs.135  Importantly, co-injection into pregnant mice of the epitope and 

the antibodies isolated from PE patients prevented the manifestation of clinical 

symptoms.3  Although AT1-AAs are found as early as 18 weeks’ gestation, one 
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deterrent to utility as a biomarker for PE is the presence of these antibodies in sera of 

women with abnormal placental perfusion but no PE.136  Addressing the specificity of 

AT1-AAs and resolving whether they are present in all PE cases has been hindered 

because the low antibody titer or affinity impedes ELISA analysis, forcing 

dependence on complex bioassays to determine the presence of AT1-AAs.137,138  

Further investigation of the AT1-AA’s presence in normal pregnancies and PE 

patients will benefit from a method to increase affinity through avidity effects,94,95 

such as bacteria displaying multiple copies of the epitope.  Additionally, attempts to 

isolate other autoantibody biomarkers that may be more specific than the AT1-AA are 

required to advance this hypothesis of an abnormal immune response in PE.    

ii. Necessity of a novel diagnostic assay  

Current diagnosis of PE relies upon presentation of maternal clinical symptoms, 

including hypertension and proteinuria.104  However, 10-15% of pregnant women 

who progress to hemolysis, elevated liver enzymes, and low platelet count (HELLP) 

syndrome and 20-25% of those that develop eclampsia never present with 

hypertension or proteinuria.139  Various groups have suggested using the altered 

levels of sFlt-1, PlGF and sEng as predictors for pre-eclampsia.  Elevated levels of 

sFlt-1 can occur five weeks before clinical manifestations, and decreased levels of 

PlGF can be observed as early as the first trimester of those that develop PE.140  

Several small studies have shown the diagnostic/predictive abilities of these 

angiogenic factors,141 and recently diagnostic aids were constructed to detect levels of 

sFlt-1 and PlGF in patient samples.  Studies on these assays demonstrated that the 

ratio of the proteins may be helpful for diagnosis.142,143  However the PE sample sizes 
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in these two studies were small (15 and 48, respectively) and other studies have 

shown great variability in the sensitivity (62-100%) and specificity (51-85%) of the 

sFlt-1/PlGF ratio.105  As can be expected due to the normal increase in sFlt-1 

concentration during the third trimester, the assay performs better for diagnosing 

early-onset PE105 (before 34 weeks), which only occurs in 10% of PE cases.1  

Additionally, one study evaluating alterations of sFlt-1, PlGF, and sEng in PE 

patients with high risk pregnancies, such as diabetes and chronic hypertension, 

demonstrated only modest differences and odds ratios close to or below one.144 

Ideally, one would be able to predict future PE presentation early on during the 

first or second trimester.  Several studies have evaluated certain clinical risk factors 

(e.g., family history, obesity, smoking, etc.).145  However, one recent study evaluated 

47 different biomarkers alongside various risk factors for predictive performance at 

14-16 weeks’ gestation.146  Most of these markers showed only modest differences 

between PE and healthy controls in a large cohort (n=5623).  Constructing and 

evaluating diagnostic algorithms revealed that only PlGF and cystatin C protein levels 

enhanced predictive performance over clinical characteristics alone for early-onset 

PE.  Thus, while prediction may be ideal, this may be difficult to achieve due to 

disease complexity.  However, enhanced understanding of disease-associated 

molecules is essential for any future predictive diagnostic and potentially eventual 

therapeutic development.  
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E.  Techniques  

i. Flow cytometry and fluorescence activated cell sorting 

Through flow cytometry, cells are forced into a single-file line to be interrogated 

by a laser(s).  Following interrogation by a blue laser (488 nm), the side scatter 

(SSC), which measures refracted or reflected light 90° from the laser line, and 

forward scatter (FSC), diffracted light, are used to characterize the relative 

complexity and size, respectively, of the cell population.  By gating the appropriate 

population, the analysis focuses on healthy and singlet cells, instead of cell 

aggregates.  A variety of additional fluorescent parameters can be measured 

simultaneously using the blue laser or others, such as a red laser (633 nm).  Thus, a 

given cell population can be incubated with multiple fluorescently tagged reagents 

(e.g., antibodies) and quantitatively assessed for the presence of these tags.  

Importantly, based on the degree of fluorescence, an individual cell, for our purposes 

bacteria, can be collected or discarded (Figure 1-2) in a process known as 

fluorescence activated cell sorting (FACS).  In this case, a gate is created to eliminate 

low or non-fluorescent cells based upon the background fluorescence of a negative 

control.  The binding reagents of interest can either be directly conjugated to a tag, or 

a fluorophore-conjugated secondary reagent may be used to bind specifically to the 

protein of interest amongst an assortment of irrelevant proteins.  Commonly used 

fluorophores include the Invitrogen Alexa series, such as Alexa488, and R-

phycoerythrin.  Both Alexa488 and R-phycoerythrin excite at 488 nm; however, their 

spectra differ, enabling distinct emission detection with 530 nm and 576 nm 

photomultiplier tubes, respectively.    
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Figure 1-2: Schematic of fluorescence activated cell sorting (FACS) with a bacterial-
displayed peptide library.   

ii. Bacterial displayed library design 

Traditional libraries are often linear, fully randomized amino acid sequences at a 

user-specified length.  Although the length of a typical linear region of a protein that 

interacts with an antibody, or epitope, is 6-13 amino acids long,14 a longer peptide of 

15 amino acids on the surface may provide structural context with the flanking amino 

acids.  Building upon this idea of conformational significance and taking influence 

from the highly selective conotoxin proteins in cone snail venom,147,148 a multiply-

constrained (MC) library was constructed with a network of four cysteines, which 

form disulfide bonds that impart structural constraints.  Since protein structure is a 

significant aspect of binding, the MC library may yield ligands with high affinity and 

specificity for disease-associated antibodies.   

 To test this hypothesis, we screened traditional libraries (linear and singly-

constrained) and the MC library against a model therapeutic antibody, Herceptin.  
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Utilizing stringent conditions (low nanomolar concentrations) ensured selection of 

high affinity binding ligands.  The isolated sequences and a previously identified 

linear mimotope (H98)149 cloned for bacterial surface expression were compared for 

apparent affinity (Table 1-2).  Analysis by flow cytometry determined fluorescent 

signals associated with peptide binding at varied concentrations of the target antibody 

([T]).  After subtracting the background (Flbkgd) from the mean cell fluorescence 

(MCF), the data was fit to Equation 1.3, derived from Equation 1.2 above.  This 

analysis established the maximum fluorescence (Flmax) and apparent affinity (KD,app) 

for each displayed peptide.  

    (1.3) 

Table 1-2: Properties of Herceptin binding peptides 
 

Clone 
 

Sequence 
KD, App 

 (nM) 
 

Flmax 
Percent 

 Deviation 
MC-1   GCCLYGTCDLDSCG 4 5,800 24.2 
MC-2 GCHSNCAFSCELDCG 5 18,000 6.3 
MC-3   GCCDKNTCDLDHCTCG 24 15,300 12.7 
MC-4 GCFQSGCSEGSSGCTRQWCG 27 9,950 13.2 
Trad-1  RFP-TQVDTNRICCFVM 17 8,400 14.9 
Trad-2 GIFACGQVWSESCGSKE 142 21,000 17.7 
H98 LLGPYELWELSH [149] 9 23,500 11.6 

 
To evaluate the peptides’ apparent affinities, Flmax must be considered because 

this relates to the number of peptides on the cell surface and thus, the contribution of 

avidity effects to enhance apparent affinity.  Therefore, a low Flmax and KD,app 

represents the best overall apparent affinity.  MC-2 performed marginally better than 

the H98 peptide, and MC-1 exhibited the lowest Flmax and KD,app (Figure 1-3A), 

providing preliminary evidence that the MC library yields higher affinity peptides 

than traditional libraries.  Normalizing the fitted curves by the maximum fluorescence 
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highlighted the similar apparent affinities observed for different peptides, such as 

MC-1 and MC-2, and the weaker affinity for the Trad-2 peptide (Figure 1-3B).  

Additional off-rate analysis might provide further insights into the binding kinetics of 

the different peptides.   
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Figure 1-3: Apparent affinity analysis of Herceptin binding clones.  (A) Experimental data 
(points) paired with fitted curves shows variability of maximum fluorescence and apparent
affinity. (B) Normalized fitted curves highlight similarities and differences in apparent affinity.   

  While identifying high affinity disease-associated antibody binders could benefit 

diagnostic development, we also sought to identify specific antibody binding peptide 

epitopes.  Library-designed cysteines could confound protein database searches using 

the generated motifs or possibly result in high affinity mimotopes that show no 

primary sequence resemblance to the original antigen.  For example, although the 

motif highlighted among three of the MC peptides (Table 1-2) resembles one of the 

three known regions (PEADQ) of interaction between Herceptin and HER2,150 the 
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upstream cysteine in the peptide motif is a proline in the native sequence.  Thus, 

although the motif bears resemblance, this dissimilarity might result in a reduced 

score for a hit in database searches when the native antigen recognition sequences 

have not been determined.  Therefore, we selected a traditional, fully randomized 

linear library for use in disease-associated antibody specificity profiling.        

iii. Sequencing isolated peptides 

To identify the sequences corresponding to isolated peptides, the vector encoding 

the peptides must be sequenced and the region of interest identified.  Traditionally 

this proceeds by Sanger sequencing, which incorporates chain-terminating 

polymerase inhibitors.151  These can be attached to a dye and evaluated to effectively 

piece together the sequence of oligonucleotide residues.  Importing the obtained 

sequence files to analysis software, Geneious, enables easy translation of DNA to the 

amino acid sequences encoded.  By selecting individual colonies of bacteria isolated 

from screening, each peptide sequence is matched directly to the clone that encodes 

it. Therefore, following motif analysis, the individual peptides of interest can be 

easily studied further.  However, this process remains relatively low throughput, 

typically yielding only ~100s of sequences.   

In comparison, massively parallelized sequencing processes, next-generation 

sequencing (NGS), permit high-throughput analysis.  Several different instruments 

now exist with varied data output.  For example, the 454 sequencer yields 200,000 

reads of 250 bases, while tens of millions of shorter reads (35-50 bases) can be 

obtained on Illumina’s Genome Analyzer.152  Since these NGS methods return short 

sequence reads, the region of interest corresponding to the peptide sequence must first 
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be amplified from a large library pool of vectors obtained from multiple bacterial 

clones each expressing a unique peptide.  Certain adapter regions are often added for 

the DNA to be sequenced on a specific instrument.  Applying a specific barcode to 

distinct samples enables pooling, thereby increasing throughput.  Although this 

results in a larger depth of sequencing, the specific clones displaying these peptides 

are not directly matched to the sequence.  Thus, sequences of interest must be 

reconstructed for expression.   

iv. Sample handling for diagnostic discovery 

Consented individuals provided samples of blood plasma for use in this work.  In 

the case of whole blood samples in EDTA, which prevents coagulation, the blood was 

centrifuged at 1000g and the plasma fraction isolated and aliquoted (50-200 μL) for 

storage at -20 or -80°C.  In other cases, collaborators provided plasma, which was 

then aliquoted and stored.  To prepare for diagnostic discovery, samples were either 

enriched for the antibody fractions, using ammonium sulfate precipitation reactions2 

or diluted 1:50.  In both cases, samples were depleted of E. coli binding antibodies.91  

Using antibody enriched fractions enabled direct conjugation of a labeling reagent, 

while the diluted plasma samples were labeled using an immunoglobulin G (IgG) 

specific secondary reagent.  While the directly labeled antibody enriched fractions 

facilitated multi-parameter cell sorting, the diluted plasma more closely replicates the 

binding conditions in the body and is anticipated to better support future diagnostic 

development.    
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v. Peptide reactivity analysis 

Bacterial library screening typically reduced library diversity from 8x109 

members to ~1000 peptides.  From these unique peptides, we must identify the one(s) 

showing the highest sensitivity and specificity.  To characterize peptide reactivity 

with patient antibodies, an individual bacterial clone is incubated with several 

different PE and HOP antibody samples followed by fluorescent labeling of these 

cell-bound antibodies and FACS analysis.  This FACS-based analysis recaptures the 

environment used in screening; however, it lacks throughput.  Previous work in the 

lab identified that high density (1011 cells/mL) printing of cells could be probed by a 

monoclonal antibody.153   Thus, to increase throughput, we investigated the utility of 

a bacterial microarray for analyzing antibody fractions from human patients.  After 

printing, the array was heat treated at 65°C for 45 minutes before proceeding to a two 

hour blocking step with 5% milk and 1.5% bovine serum albumin buffer.  A 

secondary labeling step with an antibody binding reagent, Protein A conjugated to 

Alexa647, followed incubation with 1 μM of unlabeled antibodies from ten PE and 

two HOP samples.  In comparing the heat map data obtained for the peptides through 

FACS (Figure 1-4A) and microarray analysis (Figure 1-4B), the results only weakly 

correlated qualitatively, and further analysis demonstrated this discrepancy to be true.  

Therefore, we concluded that while the bacterial microarray would enable higher-

throughput analysis, this could not accurately replace FACS based peptide reactivity 

analysis.  
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Figure 1-4: Different results observed for FACS and microarray-based peptide reactivity
analysis.  Peptides were analyzed for antibody binding activity to PE and HOP samples on
the (A) FACS and using a (B) bacterial microarray. 

vi. Developing diagnostic assays  

A diagnostic assay must achieve high accuracy (sensitivity and specificity) in 

distinguishing healthy from disease samples.  To optimize the performance of any 

diagnostic assay, varied activity cutoffs are plotted for sensitivity and specificity, in a 

receiver operating characteristic curve (ROC).  The area underneath this curve (AUC) 

is an additional metric indicating the overall performance of the assay, where 0.5 

indicates random chance and 1 represents a perfect diagnostic.   

In some cases, one to two antigens or antibody-detecting peptides representing a 

disease-associated antigen can achieve the sensitivity and specificity to serve as stand 

alone diagnostic tests.  Alternatively, an array of multiple reagents may be required to 

account for the variance in immune responses among patients that can lead to 

antibodies with differing epitope specificities, as seen in systemic lupus 

erythematous, where more than 150 putative autoantigens have been documented,13 

and myasthenia gravis.154  A phage-displayed peptide microarray strategy has been 



 

developed for diagnosing prostate77 and breast cancer,78 achieving 88% and 84% 

specificity in a validation set, respectively. Configuring the peptide array in a manner 

that achieves a high surface area to volume ratio, such as with bacterial display, 

increases sensitivity of detection as demonstrated with polyvalent nanoparticles.155     

When a diagnostic assay is composed of multiple reagents and properties, a robust 

algorithm must be developed to combine these properties, optimizing for diagnostic 

accuracy.  In particular, various machine learning algorithms, which modify 

parameters based upon data provided, have been developed and implemented for 

constructing accurate classification algorithms for disease diagnosis.156  These 

algorithms are constructed, or trained, on a set of observed data from clinical samples.  

During the training, sampling methods, such as cross-validation and bootstrapping,157 

facilitate accuracy estimation and parameter optimization.  Cross-validation divides 

the training set into different groups, and trains the algorithm on all but one group (or 

single sample), which is used to test performance, and repeats for all groups.  Single-

sample testing, known as leave-one-out cross-validation, often overestimates the true 

accuracy, while another common method using ten approximately equal-sized groups, 

ten-fold cross-validation, can pessimistically underestimate the true accuracy.157  The 

support vector machine (SVM) algorithm, which maps data to a high-dimensional 

space that enables a linear separation of classes,158 remains a common choice for 

classifier development and has been used in a variety of studies.159,160  Another 

algorithm known as Adaptive Boosting, or AdaBoost, applies additive regression on 

reweighted versions of the training set to focus on misclassified samples after each 

round.161  AdaBoost has been shown to outperform SVM162 and is less prone to over-
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fit the training data than other algorithms.163  Additionally, if over-fitting becomes 

apparent, methods exist to overcome this problem.163   

vii. Identifying antigenic targets 

A consensus region represents the important residues mediating the mimicked 

antibody-antigen interaction.  Therefore, a protein database search for 

similar/identical sequences to peptide motif(s) using NCBI BLASTp164 and/or 

ExPasy ScanProsite165 identifies candidate antigens. These searches can be limited to 

the human proteome to identify potential autoantigens, a specific organism known to 

be involved in disease, or left broad to identify all possible hits.  A broad search 

enables identification of potential trigger antigens, which may have led to cases of 

molecular mimicry for aberrant autoantibody binding.  Conformational epitopes 

resulting from random peptide libraries complicate the discovery of potential 

antigenic targets, since the native protein would have long stretches separating the 

amino acids closely linked together in the mimotope.  Since conformational epitopes 

make up a significant portion (possibly as high as 90%) of antibody specificities,166 

certain algorithms exist to assist with their prediction.166  Additionally, one algorithm 

in particular, incorporates peptide sequences generated by library screening for 

alignment with discontinuous portions of the antigen.167  However, this only works 

for known target proteins with characterized structures.  Thus, the main focus of this 

system of identifying antigenic targets through random peptide library screening 

focuses on linear epitope identification or linear sections composing a larger 

discontinuous epitope. 
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2. Characterization of antibody specificities associated with pre-eclampsia  

  

The presence of maternal autoantibodies has been previously associated with pre-

eclampsia, although the composition of the antibody repertoire in pre-eclampsia has 

not been well characterized.  Given this, we applied a bacterial display peptide library 

to identify peptides that preferentially react with plasma antibodies from patients with 

pre-eclampsia (n=15) versus healthy-outcome pregnancies (n=18). Screening using 

fluorescence-activated cell sorting identified 38 peptides that preferentially bind to 

antibodies from individuals with pre-eclampsia. These pre-eclampsia-specific 

peptides possessed similar motifs of RG/S
G/-WWG/S, RWWG/S, or WGWGXXR/K 

distinct from the angiotensin II type 1 receptor epitope AFHYESQ.  Seven library-

isolated peptides and a cell surface-displayed angiotensin II type 1 receptor epitope 

were used to construct a diagnostic algorithm with a training set of 18 new pre-

eclamptic and 22 healthy-outcome samples from geographically distinct cohorts. 

Cross-validation within the training group resulted in averaged areas underneath a 

receiver operating characteristic curve of 0.78 and 0.72 with and without the known 

receptor epitope, respectively.  In a small validation set (12 pre-eclamptic; 8 healthy), 

the algorithm consisting only of library-isolated peptides correctly classified 10 pre-

eclamptic and 6 healthy, using a predefined cutoff that achieved 61% sensitivity 

(95% confidence interval, 36-83%) at 95% specificity (95% confidence interval, 77-

100%) in training set (n=40) cross-validation.  Our results indicate that antibodies 

with specificities other than anti-angiotensin II type 1 receptor are prevalent in pre-

eclampsia patients and may be useful as diagnostic biomarkers. 
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A. Introduction 

Pre-eclampsia (PE) is a serious disorder that affects 5% to 8% of pregnancies1 

and causes 15% to 20% of maternal mortalities and morbidities in developed 

countries.101 Despite serious global effect, the primary method of PE diagnosis 

continues to rely on presentation of maternal symptoms, including hypertension and 

proteinuria, after 20 weeks of gestation.  However, present diagnostic approaches are 

inadequate to identify patients likely to experience adverse outcomes since 10% to 

15% of women who experience hemolysis, elevated liver enzymes, and low platelet 

levels (HELLP syndrome) and 20% to 25% who progress to eclampsia do not present 

with either hypertension or proteinuria.139 Consequently, there remains a need for 

noninvasive diagnostics that can accurately and reliably identify patients who develop 

PE and those at risk for adverse outcomes. 

Diagnostic development efforts have focused on the identification of protein 

biomarkers with unique presentation in PE.  Multiple proteins exhibit altered serum 

levels in PE and have been pursued as candidate biomarkers and therapeutic targets, 

including soluble vascular endothelial growth factor receptor (sFlt-1), placental 

growth factor (PlGF),113 soluble endoglin,111 placental protein 13,168 and angiotensin 

II type 1 receptor (AT1) autoantibodies (AT1-AAs).2  In particular, much effort has 

focused on evaluating the diagnostic utility of the ratio of the elevated sFlt-1 to 

lowered PlGF levels or the PlGF level alone.169  These biomarkers have yielded high 

diagnostic accuracy for detecting early-onset PE and predicting adverse outcomes.170  

However, these biomarkers are less effective after 34 weeks’ gestation,169 the period 

where 90% of PE cases present.1   Finally, they do not enable accurate prediction of 
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PE during the first trimester,171 since sFlt-1 levels only become significantly altered 

≈5 weeks before PE onset.112 Therefore, despite the use of these biomarkers for early-

onset PE detection, additional biomarkers are needed. 

Circulating antibodies represent a rich source for additional biomarker discovery, 

and several observations link the immune system to PE pathogenesis.  Most 

prominently, patients with PE have been found to produce agonistic immunoglobulin 

(Ig) AT1-AAs2 as early as 18 weeks’ gestation.136  Several in vivo and in vitro studies 

have demonstrated a potential pathological role for these antibodies.  Injection of 

AT1-AAs or total IgG isolated from PE patients into pregnant mice induced the 

hallmark PE symptoms (hypertension, proteinuria, and increased sFlt-13 and fetal 

growth restriction133), whereas coinjection with an antibody-blocking peptide epitope 

attenuated these effects.  Interestingly, placental ischemia-stimulated AT1-AAs 

similarly contribute to hypertension in an independent PE rat model.172  AT1-AAs 

increase complement protein C3 deposition in the placenta and kidney of pregnant 

mice,173 while mutations within complement system regulatory proteins seem to be a 

risk factor for PE.118 Complement activation has been further implicated in PE with 

increased C3 deposits in placental vessels from a transgenic PE rat model, and 

supernatant from PE placental explants stimulate C3 expression in rat vascular 

smooth muscle cells.122  Furthermore, isolated CD19+CD5+ B-cells are elevated in PE 

and produce AT1-AAs in culture upon addition of PE serum.126  At the same time, 

individuals with PE exhibit significantly reduced levels of CD4+CD25+ regulatory T-

cells,123 a finding consistent with increased autoantibody production.125 Collectively, 
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these previous studies indicate that immunological alterations are a conserved feature 

in PE.  

Despite a demonstrated role of AT1-AAs in the pathology of PE, their efficacy for 

PE diagnosis has not been established.  Existing assays for AT1-AAs that rely on 

cardiomyocyte beat rate2 or a luciferase reporter138 lack throughput and are unsuitable 

for point-of-care diagnostics.  More importantly, AT1-AA prevalence varies 

significantly in different studies (70%135-95%138), and AT1-AAs are not specific to 

PE because they have been observed in individuals with healthy-outcome pregnancy 

(HOP),135 chronic hypertension,21 and renal allograft rejection.174  Given these 

problems, we investigated whether additional PE-specific antibodies exist that could 

serve as biomarker(s) for PE diagnosis and further implicate a pathophysiological 

role for an altered immune system.  To simultaneously identify antibody biomarkers 

and peptide reagents for their detection, we screened a bacterial display peptide 

library91 against antibodies enriched from the plasma of individuals with PE and 

HOPs. Our results demonstrate the existence of PE-specific plasma antibodies, other 

than AT1-AAs, that may be useful for PE diagnosis.   

B. Materials and Methods  

i. Patient Samples 

Whole blood samples were obtained from pregnant women as aliquots of samples 

taken for routine blood work during clinical assessments at the Santa Barbara Cottage 

Hospital (cohort 1).  The study was approved by the Santa Barbara Cottage Hospital 

review board.  To qualify as affected with PE, subjects fulfilled ≥2 of the following 

criteria: (1) 2 documented blood pressures (BPs) with readings >140/90mm Hg ≥4 
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hours apart, with documented normal BPs in the first half of the pregnancy; (2) 

proteinuria as defined by ≥30 mg/dL on a spot urine check, ≥1+ dipstick reading, or 

≥300 mg/24 hr; (3) central nervous system (CNS) symptoms (visual disturbances or 

unremitting headaches); (4) epigastric pain associated with elevated liver enzymes 

unrelated to other abdominal pathology; or (5) thrombocytopenia with platelet counts 

<100000 U/mL.  This ensured that PE samples met the American College for 

Obstetricians and Gynecologists criteria for mild or severe PE diagnosis. Pre-existing 

hypertension and lupus patients were excluded from cohort 1.  Samples were divided 

into a discovery set (n=33) for initial peptide identification and a training set (n=20) 

for testing diagnostic ability of isolated peptides.  Additional deidentified samples 

provided from University of Texas Medical School at Houston (cohort 2) were used 

in either the training set (n=20) or a validation set (n=20).  These PE samples were 

diagnosed by clinical assessments based on the National High Blood Pressure 

Education Program Working Group Report.  

This study did not distinguish between early- and late-onset PE and did not 

discriminate based on parity. Therefore, these cohorts represent a mix of presentation 

times and parities.  All subjects provided informed consent, and samples were 

collected according to institutional guidelines.  Blood samples for both cohorts were 

obtained near the time of delivery.  In cohort 1, BPs were recorded at the time of 

presentation whereas cohort 2 recorded maximum BP before delivery.  In addition, 

while cohort 1 mainly used the spot urine check, cohort 2 diagnosis used 24-hour 

analysis and the dipstick test (n=7).   
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ii. Bacterial display and library screening 

 The AT1 epitope AFHYESQ was displayed on Escherichia coli MC1061175 

with flanking glycines as a fusion to the N-terminus of the eCPX (enhanced circularly 

permuted OmpX) scaffold90 along with a C-terminal peptide tag (P2x) that binds a 

fluorescent reporter (YPet-Mona) of scaffold expression.176  A 15-mer random 

peptide library displayed on the N terminus of the eCPX scaffold was screened for 

peptides binding to PE-specific antibodies.  All cultures for screening and analysis 

were subcultured (1:50), grown to an OD600 of 0.4-0.6, and induced for one hour with 

0.04% arabinose.  Library screening used antibody fractions in PBS (0.1% BSA) 

prepared by ammonium sulfate precipitation of patient plasma and depleted of E. coli 

binding antibodies.  Magnetic selection enriched for peptides that bind pooled PE 

(n=9) antibodies (5 μmol/L total concentration) labeled with the FluoReporter Mini-

Biotin-XX Protein Labeling Kit (Invitrogen) while outcompeting an unlabeled pool 

of HOP (n=12) antibodies (5 μmol/L total).  Streptavidin (SA) binding peptides were 

removed from the library using MyOne SA-coated magnetic beads. To favor cross-

reactivity, 2 pools of PE antibodies with distinct fluorophores were prepared: group 1 

(n=4) labeled with Alexa Fluor 488 (Invitrogen; green) and group 2 (n=5) 

biotinylated (red) to enable detection with streptavidin-conjugated R-phycoerythrin 

(Invitrogen).  Cells were coincubated with excess unlabeled HOP antibodies and 

labeled PE antibodies, and those cells exhibiting both red and green fluorescence 

were recovered by fluorescence-activated cell sorting (FACS) (Figure 2-1A).  The 

first FACS round utilized 2.5 μmol/L from each PE group and five-fold excess HOP 

pool, while the subsequent two rounds lowered the PE concentration to 1 μmol/L and 
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increased normal antibodies to 10 and 15-fold excess, respectively.  Peptides with 

specificity for PE antibodies were favored in separate sorts using a PE antibody pool 

(n=9) labeled with Alexa Fluor 488 and a biotinylated HOP antibody (n=12) pool.  

After recovering nonfluorescent cells that did not capture HOP antibodies (1 μmol/L), 

cells exhibiting green, not red, fluorescence were collected after labeling with PE and 

HOP antibody pools (1 μmol/L, each) followed by streptavidin-conjugated R-

phycoerythrin (Figure 2-1B).  Screening continued with a set of new PE and HOP 

(n=6 each) samples to enhance PE cross-reactivity and specificity.  After completing 

rounds six and seven for cross-reactivity sorting with 1 μmol/L of each disease group 

and unlabeled 15-fold excess and 20-fold excess of HOP, respectively, two 

specificity rounds were performed to select peptides binding only disease samples as 

described above.  Another negative sorting round enriched bacteria displaying 

peptides that did not bind the biotinylated HOP antibody pool.  Finally, three 

additional rounds of peptide enrichment were performed towards binding pooled PE 

(1 μmol/L) but not HOP (2.5 or 1 μmol/L) antibodies, using the HOP concentration 

that showed the highest binding activity. 

iii. Peptide sequence analysis and down-selection 

Plasmid DNA from ≈200 bacterial colonies was sequenced from the final sorting 

round, from which 83 unique sequences were identified using Geneious. Three 

additional peptides that demonstrated PE reactivity and specificity in an earlier 

screening round were incorporated into the motifs identified by inspection (Figure 2-

1C). The binding activity, or fold fluorescence over a negative control (empty 

scaffold), of each library peptide and the AT1 epitope clone was measured in 

 37



 

duplicate with discovery set PE and HOP (n=6 each) pools.  After incubation with 

each antibody pool (1 μmol/L), cells were labeled using biotinylated anti-human IgA 

+ IgG + IgM (Jackson ImmunoResearch), followed by streptavidin-conjugated R-

phycoerythrin.  On average, peptides exhibited 1.4-fold increased PE antibody-

binding activity compared with HOP.  Therefore peptides demonstrating 50% higher 

PE reactivity over HOP (1.5-fold) were selected as the most specific and ranked 

according to the PE activity quotient defined as the PE-binding activity multiplied by 

the ratio of PE activity to HOP (ie, dynamic range). 

 

Figure 2-1: A 2-color screening methodology isolated a pool of pre-eclampsia (PE)-specific 
antibody-detecting peptides, enabling further characterization of individual peptides. A, After 
coincubating a bacterial displayed peptide library with 2 distinctly labeled pools of PE (red or 

 

 

green fluorophore) and unlabeled pool of healthy-outcome pregnancy (HOP) antibodies 
enriched from plasma, cells expressing peptides that bind antibodies present in both groups 
with PE were isolated. B, Subsequently, the library was coincubated with a labeled HOP
antibody pool (red) and a PE pool (green). Bacteria exhibiting only green fluorescence were 
isolated, ensuring disease specificity. C, Finally, sequence analysis of the enriched pool
identified unique peptides for motif characterization and individual peptide PE- and HOP-
binding activities (fluorescent intensity) were assessed. 
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iv. Patient antibody reactivity assays 

The AT1 epitope and seven down-selected peptides were assayed in duplicate 

against biotinylated antibodies (1 μmol/L) enriched from individual samples of a 

validation set.  This set included 10 PE and 10 HOP from cohort 1 and 20 PE and 20 

HOP from cohort 2.  The mean cell fluorescence associated with each clone was 

divided by that of a negative control for each sample.  Although the class (PE or 

HOP) was known for cohort 1, cohort 2 samples’ classes were revealed only after 

testing peptide reactivity.  To account for the varied peptide activity range, each 

clone’s binding activity was standardized by the average reactivity and standard 

deviation.   

v. Testing for mimicry of the known AT1 epitope 

To determine whether library-isolated peptides were mimicking the known AT1 

epitope, E. coli displaying the AFHYESQ epitope were used to deplete binding 

antibodies, and reactivity with the indicated library-isolated clones was measured.  

The PE antibody pool (1 µmol/L) used for down-selection was incubated with AT1 

epitope expressing cells (1x108 cells/µL). Cells were centrifuged, and the AT1-AA 

depleted supernatant was retained and assayed against library-isolated peptides and 

the AT1 epitope clone.  

vi. Identifying candidate antigens 

The motifs identified by inspection were used to perform protein database 

searches using NCBI blastp and ScanProsite of the human proteome.  After applying 
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a similarity scoring metric, the top 80% of extracellular protein hits from each search 

were compiled into a list of candidate antigens with the corresponding fragment. 

vii. Statistical Analysis 

A subset (20 cohort 1 and 20 randomly selected cohort 2 samples) of the 60 

samples not used for discovery was used to train a classification algorithm followed 

by testing with a validation set (20 remaining cohort 2 samples) to verify peptide 

panel diagnostic accuracy.  To reduce overfitting to the training set, an Adaptive 

Boosting (AdaBoost) classification algorithm, which applies the algorithm 

successively to reweighted versions of the training set,161 was implemented through 

the ada package in R177 using a 4-split tree.  Diagnostic algorithms were generated 

with and without the AT1 epitope included in the peptide panel.  Three trials of ten-

fold cross-validation across a combined set from both cohorts (n=40) yielded each 

sample’s averaged probability for PE classification, which was used to perform 

receiver operating characteristic (ROC) curve analysis with the pROC R package and 

assess algorithm accuracy.  Additional algorithms were trained using cohort 1 or 2 

separately with or without the AT1 epitope.  Subsequently, the performance of the 6 

algorithms was assessed by generating ROC curves and determining the PE, HOP, 

and overall classification accuracy at a 0.5 probability cutoff in the final validation 

set.   

Separately, ROC analysis was performed with Prism 4 software (GraphPad 

Software Inc.) for each library-isolated peptide across the entire set of 60 validation 

samples based upon binding activity.  ROC analysis of the AT1 epitope was 

performed on the same 60 samples for comparison to library-isolated peptides 
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followed by analysis across the entire set of 45 PE and 48 HOP samples described in 

this study.  Excluding Figures 3 and 4, data are presented as mean±SEM.  Statistical 

significance using a Student t-test or Mann-Whitney U-test and Spearman correlation 

were assessed with Prism 4 software.  For all analyses, P<0.05 was considered 

significant.  

C. Results 

i. Identification of peptides binding to plasma antibodies from PE patients 

The 45 PE samples used in this study reflect the heterogeneity of PE presentation 

including early- and late-onset PE cases and atypical severe cases without proteinuria 

(Table 2-1).  To identify PE-specific antibody-detecting peptide reagents within this 

diverse group, a bacterial display library was screened for peptides that bind 

antibodies present in multiple PE patients but not HOP subjects. This screening 

strategy used fluorescence-activated cell sorting to quantitatively measure the 

enrichment of PE antibody-binding peptides from 7% to 87% (Figure 2-2 A,B) of the 

bacterial cell population and reduction of HOP antibody-reactive peptides (Figure 2-

2 C,D).  From this enriched pool, DNA sequencing identified 83 unique peptides, 

enabling further characterization of each member alongside 3 peptides from an earlier 

screening round.  None of the library-isolated peptides were similar to the known AT1 

receptor epitope AFHYESQ, but several different motifs were identified (Table 2-2).  

Three motifs (a-1 to a-3) were similar, and 4 additional motifs were distinct.   
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Table 2-1: Clinical characteristics of patients 
 Discovery 

Samples 
(Cohort 1) 

Training  
Samples 

(Cohort 1) 

Training  
Samples 

(Cohort 2) 

Validation 
Samples 

(Cohort 2) 
Patient 

Characteristics 
HOP 

(n=18) 
PE 

(n=15)
HOP 

(n=10)
PE 

(n=10)
HOP 

(n=12)
PE 

(n=8) 
HOP 
(n=8) 

PE 
(n=12)

Age, yr 29.8 
(1.6) 

29.9 
(2.0) 

27.9 
(2.7) 

30.1 
(2.6) 

26.6 
(1.7) 

25.1 
(2.1) 

25.5 
(2.2) 

26.5 
(1.3) 

GAD, wk 38.0 
(0.7) 

35.3 
(0.8) 

38.9 
(0.4) 

36.8 
(0.9) 

39.1 
(0.5) 

34.8 
(1.2) 

39.6 
(0.3) 

35.7 
(0.6) 

Highest SBP, 
mm Hg 

112.0 
(3.3) 

164.7* 
(5.0) 

114.4 
(3.3) 

161.1* 
(6.8) 

113.1 
(3.4) 

156.3* 
(6.1) 

124.1 
(2.7) 

152.3* 
(5.4) 

Highest DBP, 
mm Hg 

65.4 
(2.2) 

100.2* 
(2.2) 

64.4 
(1.9) 

101.7* 
(1.7) 

66.5 
(2.8) 

94.3* 
(4.2) 

73.9 
(2.0) 

89.8† 
(3.9) 

Proteinuria, 
n (%) 

3 (17%) 13 
(87%)‡

0 (0%) 8 
(80%)‡

0 (0%) 6 (75%) 1 (13%) 7 (58%)

AST > 70 IU/mL,
n (%) 

ND 6 (40%) ND 2 
(20%)

ND 0  ND 0 

ALT > 70 IU/mL,
n (%) 

ND 6 (40%) ND 1 
(10%)

ND 0 ND 1 (8%)

Platelets < 105 
U/mL, n (%) 

0 4 (27%) 0 2 
(20%)

1 (8%) 0 0 1 (8%)

CNS Symptoms,  
n (%) 

1 (6%) 7 (47%) 0 4 
(40%)

1 (8%) 4 (50%) 0 4 (33%)

Epigastric Pain,  
n (%) 

0 3 (20%) 0 2 
(20%)

0 1 (13%) 0 0 

Birth weight, kg ND ND ND ND 3.2 
(0.16) 

2.5 
(0.32) 

3.5 
(0.15) 

2.9* 
(0.22) 

Pre-existing 
Conditions, n (%) 

        

Diabetes T1 ND ND ND ND 0 2 (25%) 0 0 
Diabetes T2 ND ND ND ND 0 0 0 1 (8%)
Lupus 0 0 0 0 0 0 0 0 
Hypertension 0 0 0 0 0 0 0 2 (17%)

Ethnicity, n (%)         
White ND ND ND ND 4 (33%) 2 (25%) 4 (50%) 4 (33%)
Hispanic ND ND ND ND 0 1 (13%) 2 (25%) 1 (8%)
Black  ND ND ND ND 8 (67%) 5 (63%) 2 (25%) 7 (58%)

 

Data are given as the mean (SEM) unless otherwise indicated. PE, pre-eclampsia; HOP, 
healthy-outcome pregnancy; GAD, gestational age at delivery; SBP, systolic blood pressure;
DBP, diastolic blood pressure; AST, aspartate aminotransferase; ALT, alanine 
aminotransferase; CNS, central nervous system. 
* and † indicate a significant difference (P<0.01 and P<0.05, respectively) compared to HOP 
using a Mann-Whitney U-test; ‡PE subjects without proteinuria met the American College for 
Obstetricians and Gynecologists criteria for severe PE.  
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Figure 2-2: Library screening resulted in a PE cross-reactive and specific peptide population. 
Cross-reactivity sorts enriched for peptides that simultaneously bind antibodies present in two
PE groups separately labeled with a red or green fluorophore while competing with an 
unlabeled HOP pool.  A, Prior to FACS, only 7% of the peptide library population showed
cross-reactive binding; however, B, after nine rounds of sorting, 87% bound antibodies
present in two PE groups.  Further sorting rounds focused on enhancing PE specificity using
a red labeled HOP pool and green PE pool.  C, While initially 53% of the PE cross-reactive 
population also bound antibodies in the HOP pool, D, the final library population 
demonstrated high specificity with 78% binding only to the PE antibody pool and 8% also
binding the HOP antibody pool.  Gates were set according to single color and negative
control populations. 
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The library peptide consensus sequence motifs were not sufficiently strong to 

enable identification of antigens that elicited the antibodies.  Roughly 48 candidate 

autoantigens were identified by rank-ordering proteins with high similarity scores 

obtained using blastp and ScanProsite searches (Table 2-3); however, a much larger 

number of non-self proteins in the entire database also carried these motifs. 
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The respective motif name and consensus sequence is shown.  Names indicated 
correspond to peptides with 1.5-fold higher PE activity than HOP 

Consensus: WGWGXXR/K

Consensus: RG/SG/-WWG/S

Motif Sequence      Name
33

22

34
20
15

27
35

13

11
5

28

38
36
37

a-2 25

21

2

19

31

6
Consensus: RWWG/S

Consensus: RWWWG/P

Motif Sequence      Name
a-3

16

b 12
3

17

c 10

14

4
30
1

d 26
23
29

18

e

9

7
8

32

24

Consensus: WWG/-WR/K

Consensus: RWLG/S

Consensus: WGXWS/-XXXR/K

a-1

Table 2-2: Peptide binding motifs

 44



 

Table 2-3: Candidate autoantigens mimicked by library peptides 
Human Protein Sequence Similarity 

Motif a-1 and a-2: RG/S
G/-WWG/S and 

RWWG/S  
Mucin-3A GVRAVRSGWWGGQRRGR 
Angiopoietin-related protein 6 CALYQRGGWWYHACAH 
Angiopoietin-related protein 1 CAHFHKGGWWYNACAH 
Angiopoietin-related protein 2 AHYQKGGWWYNACAH 
Carboxypeptidase Z SADGSKPWWWSYFTSL 
Atrial natriuretic peptide receptor 2 YSGAEKQIWWTGRPIP 
Apolipoprotein L1 TMDYGKKWWTQAQAH 
Scavenger receptor class F, member 1 GRCACRPGWWGPECQQ 
Zona pellucida glycoprotein 2  MACRQRGGSWSPSGWF 
Skeletal muscle chloride channel protein 1 
(several isoforms) RSQQRGGEQSWWGSDPQY 
Angiopoietin-like 3 CPEGYSGGWWWHDECG 
Tubulointerstitial nephritis antigen-like 1 QGCRGGRLDGAWWFLRR  
cadherin, EGF LAG seven-pass G-type 
receptor 3 DQQCPRGWWGSPTCG 
Voltage-dependent L-type calcium channel 
subunit alpha-1S NGSECRGGWPGPNHGI 
Claudin 16 VSTKCRGLWWECVTNA 
Solute carrier family 22, member 3  APLVPCRGGWRYAQA 
G protein-coupled receptor 113 DHSLFQGRGGWSKEGCQ   
Proline-rich protein 24 RGGGGAWWGRGLCGLR  
Immunoglobulin heavy chain variable region RGWSSINGGPVECG 
Glutamate [NMDA] receptor subunit epsilon-4 HDGLDGGWWAPPPPP 
Mucin 3B, cell surface associated GVRAVRSEWWG  

GQRRGRSWDQDRK   
Cadherin, EGF LAG seven-pass G-type 
receptor 1 GWWGNPVCG 
SH3 and PX domain-containing protein 2A GISFRGGQKAEVIDKNSGGWWYV
T-cell receptor beta chain VJ region SGQARGSWCSVSAGCWG  
MRC2 mannose receptor, C type 2 LQSYEGQSRGAWLGMNFN  
A disintegrin and metalloproteinase with 
thrombospondin motifs 7 QPCPARWWAGEWQ 
Extracellular calcium-sensing receptor SFHRKWWGLNLQ 
Proto-oncogene Wnt-1 AANSSGRWWGIVNVA 
Poliovirus receptor-related protein 1 AGAAGRWWGLALGL 
Bestrophin-2 TLVVNRWWSQYLCM 
G protein-coupled receptor 139 WWSPGSACGL 
A disintegrin and metalloproteinase with 
thrombospondin motifs 17 WSPWGAWSMCSRTCG 
ADAMTS-like protein 1 WDAWGPWSECSRTCG 
ADAMTS-like protein 3 WDAWGDWSDCSRTCG 
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Table 2-3: Continued 
Human Protein Sequence Similarity 

Motif  c,d, e: WGWGXXR/K ,WWG/-WR/K, 
and WGXWS/-XXXR/K 

 

Properdin WDSWGEWSPCIRRNM 
PPCPVAGGWGPWGPVS  

SCO-spondin WGPWGPWSHCSRSCG 
Thrombospondin type-1 domain-containing 
protein 4 GVWGAWGPWSACSRSCSG 
Anion exchange protein 3 (Gene SLC4A3) APPHAWGRWSPGEKPEAA 
Semaphorin-5B  ASWGSWSKCSS  

AWGPWSSCSRDCE 
Brain-specific angiogenesis inhibitor 2 WEEWGSWSLCSRSCV 
Brain-specific angiogenesis inhibitor 3 NQWGHWSGCSKSCD 
Catechol-O-methyl transferase LLRHWGWGLCLIGWNE 
placenta apolipoprotein B48 receptor type 2  SAVEQTWGWGDGSSHGS 
Potassium voltage-gated channel isoform 1 AERKRWGWGRLPGAR 
Scavenger receptor cysteine rich domain 
containing, group B PQLDEKRWGWRLGDGSAA 
Anaplastic lymphoma receptor tyrosine kinase CPQAMKKWGWETRGGFG 
RCC1 domain containing 1 RTGELYTWGWGKYGQLGH 
von Willebrand factor C domain-containing 
protein 2-like GDWWKPAQCSKRE  

 
In total, 38 of 86 novel peptides and the AT1 epitope exhibited an average 1.5-

fold increased PE-binding activity compared with HOP, and these peptides were 

ranked according to their PE-specific antibody-binding activity (ie, activity quotient; 

Figure 2-3).  The most PE-specific and reactive peptides exhibited an activity 

quotient of ≥6, and the most highly represented motifs among these peptides were 

determined (Figure 2-4).  The greatest fraction (10/22) of peptides with a high PE 

activity quotient represented the a-1 motif (RG/S
G/-WWG/S), which was also 

comprised of the greatest number of unique peptides.  Individual peptides from these 

motifs did not exhibit reduced PE antibody binding after depletion with the AT1 

epitope AFHYESQ (Figure 2-5), indicating that library-isolated peptides did not 

mimic the AT1 epitope. 
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Figure 2-3:  The AT1 epitope and 38 library-isolated peptides showed PE reactivity and 
specificity. A, Activity quotient, q=(PE Activity)2/HOP Activity, is shown for all peptides 
exhibiting 1.5-fold increased PE binding activity over HOP with B, the corresponding PE and 
HOP binding activity.  Peptides from an earlier screening round separated above the AT1
epitope.    * p < 0.05 one-tailed t-test

  0.0  2.5  5.0  7.5  10.0  12.5
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

*

PE 
HOP 

Fold Fluorescence 
over Background 

0 5 10 15 20
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

AT1
36
37
38

*
*

*
*

*
*

*

35 40
PE Activity Quotient (q)

Pe
pt

id
es

*

*

 47



 

37 36 30 38 40 42 41 AT1
0.0

1.5

3.0

4.5

6.0

7.5

Fl
uo

re
sc

en
t I

nt
en

si
ty

 o
ve

r
B

ac
kg

ro
un

d

p < 0.01

Before Depletion
After Depletion

33         31        25         30         36        37   38        AT1  

 

Figure 2-5: Comparison of antibody reactivity before and after AT1-AA depletion indicates 
distinct specificities. The reactivity of each of the library-isolated peptides analyzed was not 
significantly decreased by AT1-AA depletion. However, the significant loss in binding activity
to the AT1 epitope confirmed appropriate depletion of AT1-AAs from the sample (n=6). 

Figure 2-4: Consensus library peptides recognized by pre-eclampsia (PE)-specific antibodies. 
Twenty-two peptides exhibited a high-reactivity quotient (q>6) and were grouped according to 
consensus families, indicated on the right. q=(PE Activity)2/HOP Activity 
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ii. Peptides demonstrate diagnostic ability on a validation set 

To assess the diagnostic efficacy of these PE-specific peptides, seven library-

isolated peptides with PE activity quotients >6 and the AT1 epitope were tested for 

reactivity against 30 new PE and 30 HOP patients. Together, the panel of library-

isolated peptides performed well, achieving 100% accuracy within the cohort 1 

validation set (Figure 2-6), whereas the AT1 epitope alone accurately classified 6 of 

10 PE and 9 of 10 HOP in cohort 1.   
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Figure 2-6: The library-isolated peptides demonstrated strong classification accuracy in a
new set of PE and HOP cohort 1 samples. A, All peptides, including the AT1 epitope 
demonstrated significantly higher PE binding activity than the controls using the Mann-
Whitney U-test (*) or Student’s t-test (†).  B, The heat map shows that these peptides are 
highly cross-reactive with PE patients while remaining specific. C, Summing the 
standardized activity of the library peptides enables 100% diagnostic accuracy. * or † 
p<0.05; ** or †† p<0.001. 

Cross-validation trials across the combined set of both cohorts (n=40) using 

library-isolated peptides with and without the AT1 epitope yielded averaged areas 
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under the curve (AUC) of 0.78 and 0.72, respectively (Figure 2-7), achieving 61% 

(95% confidence interval, 36-83%) sensitivity at 95% (95% confidence interval, 77-

100%) specificity (Table 2-4).  Comparatively, the AT1 epitope alone demonstrated 

an AUC of 0.65 in this set of 40 samples and at 61% sensitivity exhibited 55% (95% 

confidence interval, 32-76%) specificity. 

 

Figure 2-7: Receiver operating characteristic (ROC) curves are shown for algorithm 
predictions using library peptides with and without the angiotensin II type 1 receptor (AT1) 
epitope and the AT1 epitope alone across the combined training sample set (n=40). The
respective areas underneath the ROC curves are also indicated in parantheses. 

 

Next, the classification accuracy of algorithms trained using cohort 1, cohort 2, or 

the combined set with and without the AT1 epitope was assessed using an external 

validation set (20 remaining cohort 2 samples).  The ROC curves of all 6 predictive 

algorithms revealed that use of samples from both cohorts in training resulted in the 

highest AUC, especially when including the AT1 epitope (0.83; Figure 2-8).  The 

algorithm trained using only the library peptides with the combined set attained a 

similar AUC (0.78), and both algorithms achieved comparable overall accuracy, 75% 

and 80%, respectively, at the prescribed cutoff.  Although the algorithm including the 

AT1 epitope yielded only 1 false-positive, it misclassified 2 more PE samples than the 

algorithm using only library peptides (Table 2-5). 
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Table 2-4: Average algorithm predictions 
 With AT1 Epitope Without AT1 Epitope 
Sample ID Average SEM Average SEM 

PE 1-1 0.10 0.03 0.16 0.13 
PE 1-2 0.84 0.09 0.89 0.07 
PE 1-3 0.70 0.13 0.75 0.11 
PE 1-4 0.81 0.08 0.98 0.01 
PE 1-5 0.74 0.04 0.74 0.11 
PE 1-6 0.78 0.10 0.85 0.05 
PE 1-7 0.39 0.06 0.32 0.19 
PE 1-8 0.75 0.11 0.83 0.05 
PE 1-9 0.79 0.05 0.81 0.08 
PE 1-10 0.71 0.08 0.63 0.02 
HOP 1-1 0.13 0.11 0.06 0.03 
HOP 1-2 0.20 0.07 0.05 0.03 
HOP 1-3 0.03 0.01 0.03 0.01 
HOP 1-4 0.25 0.06 0.05 0.04 
HOP 1-5 0.36 0.04 0.31 0.06 
HOP 1-6 0.06 0.04 0.09 0.03 
HOP 1-7 0.26 0.08 0.26 0.10 
HOP 1-8 0.16 0.07 0.34 0.07 
HOP 1-9 0.06 0.02 0.19 0.08 
HOP 1-10 0.38 0.18 0.49 0.08 

PE 2-1 0.82 0.08 0.88 0.03 
PE 2-2 0.65 0.10 0.72 0.01 
PE 2-3 0.36 0.12 0.34 0.13 
PE 2-4 0.13 0.08 0.08 0.05 
PE 2-5 0.73 0.06 0.87 0.08 
PE 2-6 0.17 0.09 0.22 0.08 
PE 2-7 0.30 0.07 0.07 0.03 
PE 2-8 0.24 0.13 0.13 0.05 

HOP 2-1 0.36 0.05 0.29 0.19 
HOP 2-2 0.31 0.10 0.40 0.05 
HOP 2-3 0.26 0.10 0.38 0.01 
HOP 2-4 0.45 0.25 0.38 0.04 
HOP 2-5 0.11 0.04 0.19 0.03 
HOP 2-6 0.30 0.10 0.30 0.06 
HOP 2-7 0.91 0.05 0.91 0.08 
HOP 2-8 0.34 0.03 0.29 0.11 
HOP 2-9 0.34 0.07 0.39 0.06 
HOP 2-10 0.08 0.03 0.24 0.04 
HOP 2-11 0.16 0.04 0.33 0.09 
HOP 2-12 0.32 0.14 0.24 0.02 
Sensitivity 61% 61% 
Specificity 95% 95% 
Accuracy 80% 80% 
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 Finally, classification accuracy was not significantly different when analysis was 

restricted to cases of PE (n=19) identified strictly by proteinuria and no pre-existing 

hypertension.  The array algorithm excluding the AT1 epitope correctly detected 12 

(63%) subjects of this PE subgroup, compared to 70% in the full, more heterogeneous 

group (n=30).  

Table 2-5: Classification algorithm performance 

Training Set 
PE 

(n/N) 
HOP 
(n/N) 

Overall 
(n/N) 

Library Peptides and AT1 epitope       
Cohort 1 4/12 (33%) 7/8(88%) 11/20 (55%) 
Cohort 2 8/12 (67%) 5/8 (63%) 13/20 (65%) 
Combined 8/12 (67%) 7/8 (88%) 15/20 (75%) 

Library Peptides    
Cohort 1 7/12 (58%) 5/8 (63%) 12/20 (60%) 
Cohort 2 5/12 (42%) 7/8 (88%) 12/20 (60%) 
Combined 10/12 (83%) 6/8 (75%) 16/20 (80%) 

 
In addition to evaluating overall diagnostic performance, the antibody-detecting 

peptide algorithm was assessed for adverse outcome detection use.  Because of the 

Figure 2-8:  Receiver operating characteristic (ROC) curves demonstrated improved 
performance using the combined set of samples in a validation set. ROC curves were 
generated for algorithms A, with or B, without the AT1 epitope in the peptide panel against 
the final 20 samples from cohort 2.  The algorithms were trained using samples from 
cohort 1, cohort 2, or the combined set.  The areas underneath the curves (AUC) are also 
indicated.   
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inclusion criteria used in this study, 6 of 30 patients with PE used in training and 

validation exhibited severe symptoms, such as central nervous system disturbances, 

thrombocytopenia, and elevated liver enzymes, without proteinuria.  Importantly, the 

antibody-detecting peptide panel identified 5 of these 6 atypical patients with PE.  

Furthermore, the peptide panel detected 5 of 6 nonproteinuric patients with PE that 

delivered before 37 weeks’ gestation (n=18; Table 2-6). This could help stratify 

patients requiring more timely delivery thereby complementing severe symptom 

detection.  Overall, combining clinical criteria of high BP and proteinuria along with 

the antibody-detecting peptide panel achieved the highest sensitivity for severe 

symptoms and early delivery. 

Table 2-6: Association of antibody-detecting peptide panel reactivity with 
adverse outcomes. 

Detection method 
Severe symptoms

(n=16) 
Early delivery (<37 weeks) 

(n=18) 
Proteinuria 10 (63%) 12 (61%) 
Peptide panel (+AT1 epitope) 12 (75%) 12 (67%) 
Peptide panel 13 (81%)  13 (72%) 
Proteinuria + Peptide panel 15 (94%) 17 (94%) 

 

Severe symptoms include central nervous system disturbances, elevated liver enzymes, 
and/or thrombocytopenia.  Proteinuria refers to patients with pre-eclampsia with positive 
proteinuria. AT1 indicates angiotensin II type 1 receptor 

iii. Statistical analysis of individual peptide performance 

Individual peptides constituting the panel exhibited differing diagnostic efficacy.  

The AT1 epitope exhibited significantly (P<0.05) higher PE antibody binding when 

evaluated across the entire sample set (45 PE and 48 HOP; Figure 2-9).  Here, the 

AT1 epitope detected binding antibodies in 78% of PE and 44% of HOP, resulting in 

an AUC of 0.66. However, binding of antibodies from subjects with PE to the AT1 

epitope was not significantly increased in the validation set composed of 60 samples. 

In contrast, 5 library-isolated peptides exhibited significantly (P<0.05) higher 
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reactivity with PE samples than with HOP samples (Figure 2-10A). In addition, 

library-isolated peptides achieved comparable or higher AUCs than the AT1 epitope.  

Peptides cross-reacted with multiple PE patient antibodies, and antibodies from PE 

that reacted strongly with one peptide tended to bind multiple peptides (Figure 2-

10B). Similarly, HOP antibodies that reacted with one peptide also tended to bind 

multiple peptides including the AT1 epitope.  Nevertheless, the 7-member panel 

exhibited stronger diagnostic efficacy than any individual peptide.  Interestingly, 

peptide binding activity, especially peptide 36 (rs=-0.62), inversely correlated with 

PE patient platelet count in this set (Figure 2-11).  Summing the standardized binding 

activity of the 7 library-isolated peptides and AT1 epitope yielded the overall 

correlation (rs=-0.56) with platelet count. Analysis of other patient characteristics (ie, 

BP or proteinuria) did not reveal strong correlations with peptide standardized 

reactivity.  

Figure 2-9: AT1-AA detection in the entire set of 45 PE and 48 HOP samples.  A. Binding 
activity of the cell-surface expressed AT1 epitope and B. the ROC analysis which yielded an 
AUC of 0.66. Mann-Whitney U-test (**), Student’s t-test (†) where † p<0.05, ** p<0.01 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
B

y

0.0

2.5

5.0

7.5

Fo
ld

 F
lu

or
es

ce
nc

e
ov

er
 B

ac
kg

ro
un

d

PE                         HOP

** , †

A

1- Specificity

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
B

y

0.0

2.5

5.0

7.5

Fo
ld

 F
lu

or
es

ce
nc

e
ov

er
 B

ac
kg

ro
un

d

PE                         HOP

** , †

A

Se
ns

iti
vi

ty

1- Specificity

 54



 

 55

 

 

Figure 2-10: Library-isolated peptides and the angiotensin II type 1 receptor (AT1) epitope 
demonstrate cross-reactivity with pre-eclampsia (PE) patients and decreased healthy-
outcome pregnancy (HOP) binding.  A, Peptide reactivity with 30 samples each of PE and 
HOP in a dot plot, where lines represent the mean of the population. Area underneath the 
ROC curve is also indicated for each peptide in parantheses. B, A heat map shows cross-
reactivity and application as a peptide panel.  Statistical significance indicated for Mann-
Whitney U-test (*), Student t-test (†) where applicable. * or † P<0.05, ** or †† P<0.01 
Standardized reactivity=(sample fluorescence–average fluorescence)/SD of fluorescence. 

 



 

 

D. Discussion 

In this study, we present evidence that PE is associated with a distinctive 

signature of antibody-binding specificities.  This signature was represented in a PE 

antibody-detecting peptide panel composed of multiple epitope specificities.  One 

such specificity corresponds to a 7-mer epitope of the AT1 receptor.2  The 

pathobiological significance of these AT1-AAs is now supported by multiple 

es

ould play a role in PE pathology.  The pursuit for additional PE antibody markers 

has identified an association between PE and antibodies binding various autoantigens, 

including β1, β2 and α1 adrenoreceptors,128 cardiolipin,129 and prothrombin.130  

However, the use of unbiased discovery approaches to characterize the complete 

) 

independent studies, demonstrating their ability to increase BP, proteinuria, and sFlt-

13 and complement deposition.173  Despite this increased complement deposition in 

the placenta and kidney of pregnant mice, blocking the AT1 receptor did not fully 

reduce deposition to HOP levels, leaving open the possibility that other antibodi  

c

Figure 2-11: Peptide binding activity is inversely correlated with the platelet counts in PE
patients.  The strongest correlation observed with peptide 36 and the summed standardized
reactivity for all eight peptides, including the AT1 epitope, are shown. rs=Spearman correlation 
coefficient   
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antibody repertoire has not been described.  Furthermore, the antigens responsible for 

eliciting these autoantibodies have not been determined, and their binding epitope 

specificities remain uncharacterized.  Using an unbiased antibody repertoire analysis 

method, we observed a unique epitope reactivity pattern and used representative 

peptides to develop a PE antibody-detecting panel for diagnosis.  In spite of the 

strong evidence for AT1-AAs in PE, we did not identify peptides with similarity to 

the AT1 epitope AFHYESQ.  This result might be explained by an insufficient 

nonpregnant normotensive subjects.178  Although the mechanism responsible for the 

PE antibody signature is unclear, the reduced prevalence of T-regulatory cells in 

PE1

1

1

1

1 e

antibody affinity or titer, or the high frequency of AT1-AA in HOP subjects (used for 

subtraction) in this and previous studies135,136 and overall increased activity over 

23 may contribute to elevated autoantibody production.  In addition, the 

observation that several nonself proteins also carry these motifs raises the possibility 

that the antibodies may originally be responding to an environmental trigger as 

previously proposed for AT -AAs.135  Regardless of the production mechanism, this 

study supports an altered immune response in PE pathophysiology by verifying the 

presence of PE-specific antibodies in addition to AT -AAs that could be useful for 

diagnosis. 

Despite the demonstrated role of AT -AAs in PE and potential for use in 

diagnosis and guiding therapy, their detection has proven exceptionally difficult.  

Current detection techniques rely upon complex biologic function assays,2,138 that are 

unlikely to be effective for point-of-care diagnosis.  To address this problem, we 

developed a unique binding assay for AT -AA detection using the 7-mer epitop  
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displayed in a high-avidity format on the bacterial cell surface.  One recent study 

demonstrated higher AT1-AA titers in PE patients (n=13) over HOPs (n=30) using the 

27-aa second extracellular loop in an ELISA;178 however, here the cell-displayed 7-

mer was sufficient to detect epitope specific antibodies in 78% of PE patients and 

44% of HOP (45 PE and 48 HOP).  Thus, AT1-AA detection can be performed with 

the 7-mer and does not require the entire loop.  Assays based upon the minimal 7-mer 

may be important for developing therapeutics designed to block this antibody 

specificity3 and differentiate this from specificities present in other diseases such as 

renal allograft rejection.174  For comparison, a biologic function assay identified AT1-

AAs in ≈70% of patients with PE and 20% of HOPs135 in addition to 62% of HOPs 

with abnormal perfusion.136  The percentage of HOP subjects in our study that 

experienced abnormal perfusion during pregnancy is not known because the test is 

not part of routine practice.  Regardless, these results demonstrate the use of an 

epitope-specific binding assay for AT1-AA detection in patients with PE, for which 

researchers have previously relied upon complex biologic function assays.  

The 7-member PE antibody-detecting panel demonstrated a potential use for 

detecting PE cases that is comparable with current protein biomarkers.  The peptide 

panel exhibited 100% accuracy in the validation set from cohort 1 and maintained 

strong accuracy (80%) despite the inclusion of a second cohort from a distinct 

geographic location, which affects a population’s antibody repertoire.179 Despite this 

effect, the panel exhibited comparable diagnostic efficacy to biomarkers in clinical 

development, such as sFlt-1 and PlGF.  Studies evaluating these markers have 

primarily focused on early-onset PE in which they show the strongest accuracy; 
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however, the accuracy drops in late-onset (≥34 weeks) PE.180  Commercially 

available diagnostic kits for the sFlt-1/PlGf ratio and PlGF alone exhibited 59% 

sensitivity at 100% specificity and 77% sensitivity at 95% specificity, respectively, 

across all gestational onsets.169  Similarly, this study did not discriminate between 

early- and late-onset and the antibody-detecting peptide panel achieved 61% 

sensitivity at 95% specificity within the cross-validated training set.  It remains to be 

determined whether the PE-specific peptide panel can perform similarly in larger 

cohorts.  Nevertheless, our results indicate that a PE antibody-detecting peptide panel 

can effectively discriminate PE and HOP samples and demonstrate that PE patients 

possess a distinctive antibody repertoire signature.   

This PE-specific antibody signature was associated with an increased detection of 

adverse outcomes.  A substantial percentage of patients who develop HELLP 

syndrome (10%-15%) or eclampsia (20%-25%) are not detected by the current 

clinical criteria of hypertension and proteinuria.139   Thus, there exists an unmet need 

to identify those at risk of developing these adverse outcomes.  The antibody-

detecting peptide panel outperformed (81%) clinical criteria (63%) in detecting 

patients (n=16) with severe PE characterized by symptoms of central nervous system 

disturbances, elevated liver enzymes, and thrombocytopenia, suggesting that this 

antibody signature is more strongly associated with these severe PE symtpoms.  

Furthermore, peptide binding activity inversely correlated with platelet levels.  

Continued investigation of this association may link a pathophysiological role for 

these antibodies to these severe symptoms.  
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E. Perspectives 

Here, we demonstrated the existence of antibody biomarkers present in PE 

patients distinct from known AT1-AAs that achieve strong diagnostic accuracy (80%) 

for PE.  Thus, our results provide supporting evidence for an altered immune 

response in PE.  Identifying the antigen(s) mimicked by our library-isolated peptides 

may enable characterization of the antibody’s contribution to PE pathogenesis while 

elucidating potential therapeutic targets.  Furthermore, use of the whole or partial 

antigen(s) mimicked by library peptides may further increase sensitivity/specificity of 

the assay.  In addition, the ability to detect PE early in pregnancy before clinical 

presentation would aid patient management.  A time-course study using the PE 

anti

ion was developed using bacterial cells 

that display on their surface the 7-mer AT1 epitope. 

body-detecting peptides described here could identify when these antibodies first 

present to assess their potential use in the early diagnosis of PE.  Finally, because this 

methodology does not require purified antibodies, screening can be conducted using 

unprocessed, diluted plasma to identify peptide diagnostic reagents that bind PE 

specific antibodies without the additional purification step. 

 

 Novelty and Significance 

What is New? 

• This study identified antibody specificities that occur in pregnant women with 

pre-eclampsia (PE) that are distinct from known angiotensin II type 1 receptor 

(AT1) autoantibodies (AT1-AAs) with use for PE diagnosis. 

• A binding assay for AT1-AA detect

 60



 

What is Relevant? 

ays.  

• This peptide panel diagnostic assay demonstrated a high specificity (95%) at 

61% sensitivity in the training set and maintained 80% accuracy in an 

independent validation set. 

• Further characterization may identify antigen(s) mimicked by these PE-

specific peptides potentially leading to novel therapeutic targets. 

• The improved throughput of the binding assay for AT1-AA detection will 

enable larger cohort studies to improve understanding of their prevalence in 

PE and HOP. 

Summary 

PE-specific antibody-detecting peptides isolated from a bacterial display library 

exhibited strong diagnostic efficacy within independent sample sets from distinct 

geographic locations.  Using a unique AT1-AA detection assay the prevalence of 

AT1-AA in subjects with PE and HOP was comparable with that observed in previous 

studies using more complex biological function based bioass
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3. A pre-eclampsia associated Epstein-Barr virus antibody cross-reacts with 

placental GPR50 

 

While the human antibody repertoire reflects immune responses to diverse prior 

environmental exposures, it remains difficult to identify disease-associated antibodies 

and the environmental antigens eliciting these antibodies. To discover environmental 

antigens associated with pre-eclampsia (PE), bacterial display peptide library 

screening and evolution was applied to identify peptide epitopes recognized by 

antibodies occurring in women with PE. This strategy revealed that women with PE 

near delivery exhibit elevated IgG1 titers directed towards motif KXXXC[VIL]GCK 

present in the Epstein-Barr virus nuclear antigen (EBNA-1).  Interestingly, the 

EBNA-1 epitope specific antibodies cross-reacted with a similar epitope within the 

extracellular N-terminus of the human G protein-coupled receptor, GPR50.  GPR50 

was strongly expressed in human placental tissue and found in immortalized placental 

trophoblast cells. Peptide epitopes derived from EBNA-1 and GPR50 exhibited 

significantly higher antibody binding activity among PE patients near delivery 

compared to that observed for healthy-outcome pregnancies at term and nulligravid 

samples. The EBNA-1 peptide potently blocked (IC50≈60-80 pM) binding of the PE-

associated antibody to the peptide epitope within GPR50.  These results reveal the 

existence of sequence level molecular mimicry between EBNA-1 and placental 

GPR50, indicating a mechanism for IgG1 deposition in the placenta, as a prevalent 

immunological feature of pre-eclampsia. 
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A. Introduction  

ve environmental factors that trigger 

disease onset, propagate disease, or influence disease severity.30  However, the 

definitive identification of specific environmental factors has remained elusive in 

most cases.  Nevertheless, the identification of specific environmental factors that 

drive pathological immune responses would greatly aid in the development of 

improved molecular diagnostics and efficacious therapeutic interventions. 

Since the immune system archives environmental antigen exposures within the 

receptor repertoire of memory B- and T-cells, the identification of disease-associated 

antibodies and T-cell receptors (TCRs) and their corresponding antigen preferences 

has been pursued as a means to identify environmental factors. Antigen discovery for 

antibodies has been investigated using protein microarrays,59,181 fragment libraries 

from proteins of interest,69,182,183 and cDNA libraries from tissues or cells involved in 

pathology.70,77 TCR epitope profiling methodologies include enzyme-linked 

immunospot184 and peptide MHC class II tetramer assays.185  These methods have 

enabled identification of both validated antigens59,182-185 and novel candidate 

autoantigens.59,70,77,181,183  However, because such methods rely upon assaying 

antibody repertoires against a predefined, and often incomplete, proteome they have 

not enabled an impartial identification of environmental antigens. Massively parallel 

DNA sequencing of antibody or TCR variable domains has proven to be a powerful 

approach to characterize alterations in the B-52,186 and T-cell187,188 repertoires.  

Characteristic repertoire changes have been observed in multiple sclerosis,186 

rheumatoid arthritis,52 leukemia,187 and severe aplastic anemia.188   Recent advances 

Autoimmune diseases are thought to invol
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have enabled autoantigenic target identification for sequenced antibodies using 

mic

age display 

scre

roarray analysis;52 however, in general, these repertoire sequencing approaches 

have not revealed environmental antigens that may elicit these molecules.  

Consequently, there remains a distinct need for methods which could identify the 

environmental antigens giving rise to pathological immune repertoires. 

Random peptide library screening does not require a priori knowledge of disease 

mechanisms and has been applied to a variety of diseases. In particular, ph

ening has been applied to inflammatory diseases,75 cancers,76 and autoimmune 

diseases.79-81  A phage displayed library screened against CD patients discovered a 

common epitope of gliadin.80  In multiple sclerosis (MS), phage display identified 

peptides that bound a higher fraction of cerebrospinal fluid antibodies in MS than in 

disease control.79 However, these screens either used few individual patient 

specimens76,79 or a single pool/patient-derived antibody for discovery.75,80,81 This 

approach inhibits selective isolation of widely prevalent antibodies in multiple 

individuals.  Furthermore, some relied on few peptide sequences79-81 to identify 

similarities with candidate viral and human antigens and used pre-existing knowledge 

to focus searches for candidate targets.  However, recent application of random 

peptide library screening impartially identified a CD-specific epitope corresponding 

to one of the hallmark environmental antigens, deamidated gliadin, through directed 

evolution.189  Since random peptide library screening requires no prior knowledge of 

the disease, we sought to apply this methodology to identify disease-associated 

antibodies and their binding targets for pe-eclampsia (PE), a disorder affecting 5-8% 

of pregnancies.1 PE causes 15-20% of maternal mortalities and morbidities in 
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developed countries101 and approximately a half million fetal deaths worldwide each 

year.  Despite serious global impact, the etiology of PE remains largely unknown.     

While the mechanisms behind PE pathology remain unclear, several 

immunological findings have been observed in patients with PE.  Evidence suggests a 

further intensified inflammatory condition with increased levels of pro-inflammatory 

cytokines, IL-6 and IL-8, among PE patients compared to pregnant and non-pregnant 

control patients.190  Additionally, a variety of autoantibodies128,129,130 have been 

associated with PE.  Notably, PE patients produce agonistic antibodies against the 

angiotensin II type 1 receptor (AT1-AAs)2 that appear as early as 18 weeks’ 

gestation.136  These AT1-AAs induced symptoms of PE in an adoptive transfer mouse 

model3 and amplified complement protein C3 deposition in the placenta and kidney of 

pregnant mice.173  Increased C3 deposits have also been observed in placental vessels 

from a transgenic PE rat model, and addition of supernatant obtained from cultured 

PE placental explants enhanced C3 expression in rat vascular smooth muscle cells.122  

Furthermore, mutations within complement system regulatory proteins have been 

implicated in PE.118  In addition to complement system disturbances, PE patients 

exhibit significantly reduced levels of circulating123 and placental124 

CD4+CD25+FoxP3+ regulatory T-cells, which can lead to increased autoantibody 

production.125  Moreover, CD19+CD5+ B-cells, a class associated with the 

production of autoreactive antibodies,127 are elevated in PE patients.126  These 

isolated cells have been shown to produce AT1-AAs in culture upon addition of PE 

serum.  Taken together, these prior studies support an important role for the immune 

system in the pathogenesis of PE. 
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Despite their apparent involvement in PE, previously characterized AT1-AAs are 

difficult to detect and vary in prevalence among studies, from 70%135 to 95%.138  

Pat

B. Materials and Methods 

t half of the pregnancy, ii) proteinuria using a spot 

urine check (≥30 mg/dL), dipstick reading (≥1+), or 24 hour analysis (≥300 mg/24) 

ients with PE were recently shown to possess additional disease-associated 

antibodies distinct from these AT1-AAs, although these antibodies could not be 

conclusively related to any self or environmental antigens (Chapter 2).191   Here, we 

sought to identify antigens that may be recognized by PE-associated antibodies, and 

thereby elucidate the immune mechanisms of pathogenesis.  Our results point to a 

molecular mimicry mechanism operating in PE women near delivery, wherein a viral 

antigen specific antibody cross-reacts with an abundant placental antigen. More 

generally, our study further supports the idea that bacterial display peptide library 

screening may be useful to identify environmental factors involved in human disease 

in an unbiased fashion.  

i. Patient Samples 

The majority of patient samples used in this study have been previously described 

(Chapter 2).191  Whole blood samples from pregnant women with PE or healthy-

outcome pregnancy (HOP) were provided as aliquots of samples taken for routine 

blood work during clinical assessments at the Santa Barbara Cottage Hospital.  The 

Santa Barbara Cottage Hospital Institutional Review Board approved this study.  PE 

subjects fulfilled at least two of the following criteria: i) two documented blood 

pressures (BP) with readings greater than 140/90mm Hg at least 4 hours apart, with 

documented normal BPs in the firs
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iii) 

t the maxima observed upon PE presentation or prior to 

delivery. 

ii. Screening a randomized peptide library against dilute plasma  

A 15-mer random peptide library was displayed on the surface of Escherichia coli 

MC1061175 as a fusion to the N-terminus of the eCPX scaffold.90  Overnight 

incubation of patient derived diluted plasma (1:50) with empty library scaffold 

expressing cells removed E. coli binding antibodies from the retained supernatants.  

Using these depleted plasma samples, library screening sequentially removed 

peptides binding antibodies present in HOP samples using magnetic selection and 

enriched for peptides that bind PE plasma antibodies with fluorescence activated cell 

sorting (FACS).  Groups of three PE and three to four HOP plasma samples were 

pooled together to create six pools of each class.  After incubating with either PE or 

central nervous system (CNS) symptoms (visual disturbances or unremitting 

headaches), iv) epigastric pain associated with elevated liver enzymes unrelated to 

other abdominal pathology, v) or thrombocytopenia with platelet counts less than 

100,000 U/mL.  Additional plasma aliquots from PE, HOP and nulligravid 

individuals and tissue samples were provided from the University of Texas, Houston 

Medical School. These PE samples were diagnosed by clinical assessments based on 

the National High Blood Pressure Education Program Working Group Report.  

Superimposed PE cases (those with a previous history of hypertension) were not 

included, but this study did not discriminate between early-and late-onset PE or based 

on parity.  Subjects provided informed consent, and samples were collected according 

to institutional guidelines.  Blood samples were obtained near the time of delivery.  

Recorded BPs represen
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HOP plasma diluted (1:100 or 1:200) in phosphate buffered saline (PBS), labeling 

proceeded with a biotinylated anti-human IgG specific secondary (Jackson 

ImmunoResearch) diluted (1:500) in PBS with 0.1% bovine serum albumin (BSA).  

Streptavidin (SA)-conjugated magnetic beads were used for magnetic depletion while 

SA conjugated to R-phycoerythrin (SA-PE) (Invitrogen) diluted (1:333) in PBS with 

0.1% BSA fluorescently labeled cells for FACS.  Incubations with plasma or labeling 

reagents were conducted at 4°C.  All PE and HOP pools were quantitatively assessed 

for binding to the library population at each round of FACS to determine which pool 

to use for enrichment or depletion.  The screening was performed in duplicate using 

the same sample pools, but in different order of depletion/enrichment.  Bacterial 

colonies (~130) were randomly selected for sequencing from different rounds of the 

duplicate screens.  Peptide binding motifs were separately determined by inspection 

of the unique sequences identified using the Geneious software package.     

To further evolve the peptide binding motif, a focused bacterial display peptide 

library of the form XXXKXXXC[VIL]GCXXXX was constructed.  Screening against 

this library proceeded as described above but involved three new pools each of PE 

and HOP using further diluted plasma (1:200 and 1:500).  From the focused library, 

about 100 colonies were selected for sequencing from screening rounds (primarily 

from the final round) to assess the impact of increased screening stringency upon the 

consensus motif.   

iii. Identifying the native antigen corresponding to the peptide motif 

Unbiased searches using NCBI BLASTp and ScanProsite identified candidate 

antigens and the corresponding source organism.  Three proteins were chosen as 
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candidate environmental trigger antigens.  These fulfilled the requirements that they 

shared identities with the most common amino acids of the motif, specifically 

KXX[NSTG]C[VIL]GCK, and weren’t hypothetical proteins.  Individual 15-mer 

fragments derived from these proteins were cloned onto the N-terminus of the eCPX 

scaffold along with a C-terminal peptide tag (P2x) that binds a fluorescent reporter 

(YPet-Mona) of scaffold expression.176  The human proteome was separately 

searched to identify candidate autoantigens.  To qualify, the protein shared at least 

five identities to the searched motif.  Two of the six human protein fragments only 

differed by one amino acid, so one was selected for autoantigen assays.  These cell-

surface expressed antigen fragments and library-isolated peptides were evaluated for 

significantly increased PE binding over HOP and dynamic range for at least 15 PE 

and 15 HOP.  After incubating with diluted plasma (1:200), cells were washed twice 

with cold PBS and resuspended with biotinylated anti-human IgG (Jackson 

Imm

ristic (ROC) curve analysis was conducted using Prism 4 or 6 

software (GraphPad Software Inc.).  Epitopes with a statistically significant (p < 0.05) 

difference between PE and HOP and highest dynamic range were down-selected for 

further analysis against 42 PE and 43 HOP samples.   

unoResearch) diluted (1:500) in PBS with 0.1% BSA for secondary labeling.  

Subsequently, the cells were washed with cold PBS and resuspended in SA-PE 

diluted (1:333) in PBS with 0.1% BSA for fluorescent labeling and flow cytometric 

analysis.  The fluorescent intensity measured for each peptide was divided by the 

background intensity of the negative control, scaffold without an N-terminal peptide.  

Statistical evaluation using Student’s t-test or the Mann-Whitney U-test and receiver 

operating characte
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iv. Analyzing full-length EBNA-1 protein activity 

PE (n=36) and HOP (n=39) samples were assayed in duplicate for antibody 

binding to full-length EBNA-1 using a commercial IgG ELISA (GenBio 

ImmunoWell) following the manufacturer’s protocol.  The Spearman correlation 

coefficient between the binding activity of bacterial displayed peptides and the 

ELISA, statistical significance (one-way U-test) of PE activity in the ELISA, and 

distribution normality (Kolmogorov-Smirnov) was evaluated in Prism 4.   

To confirm a relationship between EBNA-1 fragment (EB15) activity and the 

ELISA, EB15 binding antibodies were depleted from ten reactive PE samples, one 

reactive HOP, and nine nonreactive HOP samples and subsequently evaluated by 

ELISA.  Depletions were carried out by incubating plasma samples diluted (1:50) in 

the specimen diluent provided in the commercial kit with ~1x107 cells/μL.  The 

depleted supernatant was retained after centrifugation and evaluated for ELISA 

activity.  This was repeated for duplicate measurement. As a control, the eCPX 

scaffold with just the C-terminal tag peptide was used to “deplete” five reactive PE 

and five nonreactive HOP samples and test for ELISA activity.  Prism 4 analysis 

determined any statistically significant differences between the ELISA activity 

observed among depleted samples.    

The 15-mer EBNA-1 fragment (EB15) was synthesized, including a disulfide 

bond between the cysteine residues.  An unrelated synthetic peptide (NCP) was used 

as a negative control.  Competition assays were conducted by

v. Antibody blocking activity of the EBNA-1 synthetic peptide  

 pre-incubating pools of 

three PE patients for one hour at room temperature with varied concentrations of the 
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syn se pools exhibited high binding 

acti

ly supplied 

vec

esuspension used PBS with 1% BSA.  Activity 

was compared to untransfected cells and an empty vector transfection control.   

Additionally, antibody binding activity was evaluated using HTR-8/SVneo cells 

cultured in RPMI (10% FBS and 1% Pen/

thesized EB15.  Selected patients included in the

vity to GPR50.  These pools were then assayed for antibody binding to the GPR50 

fragment to determine an IC50 value using Prism 4.     

To evaluate antibody binding activity to the full-length GPR50, transient 

transfections were conducted using HEK293T cells.  Cells were cultured in DMEM 

with 10% fetal bovine serum (FBS) and 1% antibiotic (Pen/Strep) prior to splitting 

for transfection, for which the Pen/Strep was removed.  The commercial

tor (OriGene, pCMV-AC-GPR50-GFP) included a C-terminal GFP tag.  Cells 

were harvested on the third day following transfection and pre-blocked for 1.5 hours 

at room temperature in PBS with 3% BSA.  After confirming GFP expression, cells 

were evaluated for GPR50 expression, using a positive control monoclonal antibody 

(R&D Systems), and binding to pools of PE patients and HOPs plasma (1:200) with 

and without EB15 (20 nM) by flow cytometry.  An anti-mouse IgG conjugated to 

Alexa647 (1:500) fluorescently tagged cells labeled with the monoclonal anti-GPR50 

(1:400), while the biotinylated anti-human IgG followed by SA-PE fluorescently 

labeled human plasma antibodies bound to cells.  Labeling reagents were diluted in 

PBS with 1% BSA.  Washes between labeling steps used PBS with 0.05% Tween20 

and 1% BSA but the final wash and r

Strep).  The immunoglobulin (Ig) fraction 

was purified from separate pools of PE and HOP plasma, exhibiting positive or 

negative antibody binding to the GPR50 fragment, respectively.  Testing these Ig 
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pools (500 nM) with and without EB15 (20 nM) for binding to HTR-8/SVneo cells 

proceeded by flow cytometry similar to above except using an anti-human IgG 

secondary directly conjugated to R-phycoerythrin (Jackson ImmunoResearch) 

(1:1

vi. Immunohistochemistry 

Paraffin-embedded tissue sections were cleared using the xylene substitute, 

SafeClear II and dehydrated using 100%, 90%, and 70% ethanol solutions.  Antigen 

retrieval was conducted by microwaving the tissue sections for ten minutes in citrate 

buffer (pH 6).  All incubations with tissue slides were conducted in a humid chamber.  

Washes were performed two to three times each for five minutes, either with dH2O or 

PBS with 0.05% Tween20 (PBST).  In addition to a native peroxidase block, a 

blocking step using PBS with 5% normal goat serum (blocking buffer) preceded 

overnight incubation at 4°C with primary antibody either anti-GPR50 (BMA 

Biomedical) or an isotype control, mIgG1 (Southern Biotech) at 10 μg/mL diluted 

into blocking buffer.  Tissues were incubated with a biotinylated goat anti-mouse IgG 

secondary (1:200) (Vector Labs) diluted in blocking buffer at room temperature for 

one hour.  During this time, the ABC (avidin/biotinylated enzyme complex) reagent 

(Vector Labs) was mixed and allowed to sit for 30 minutes at room temperature.  

Following the secondary, tissues were incubated with the ABC reagent for 45 minutes 

at room temperature.  After adding the freshly prepared ImmPACT NovaRed HRP 

substrate (Vector Labs), the reaction continued for five minutes until stopped with 

dH2O.  Mayer’s hematoxylin counterstained the tissues, followed by dehydration 

00).  Furthermore, the GPR50 specific monoclonal antibody detected GPR50 

expression in this trophoblast cell line, as with HEK293T.      
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with 95% and 100% ethanol, clearing and mounting with DPX mountant.  Slides 

were viewed on an Olympus BX51 microscope using the Q-Capture Pro 7 software.       

C. Results  

i. Library screening reveals an antibody response to a viral target 

To identify antigen targets of antibodies associated with PE, we screened a 

bacterial display peptide library for antibody binding using diluted plasma.  This 

study used samples from a heterogeneous set of women with PE (n=44), HOP (n=47), 

and nulligravid women (n=21) (Table 3-1).  The diverse (8x109 members) peptide 

library underwent six depletion and five enrichment rounds against a subset of the PE 

(n=18) and HOP (n=20).  This screening yielded a peptide population with increased 

binding activity to PE pools and reduced binding to HOP pools (Figure 3-1A).   

Abbreviations: SBP – systolic blood pressure, DBP – diastolic blood pressure, GAD – 
gestational age at delivery, ALT – alanine transaminase, AST – aspartate transaminase, CNS 
– central  nervous system, ND- not determined, NA – not applicable; * p < 0.0001 Mann-
Whitney U-test 

Sequence analysis identified a binding motif (KXXXC[VIL]GC) that comprised 

86% of a total of 91 unique sequences (Figure 3-2A).  This same motif was observed 

in each of two replicate screens performed in parallel, confirming reproducibility.  

Table 3-1: Clinical characteristics of patients

Patient Characteristics 
PE 

(n=44) 
HOP 

(n=47) 
Nulligravid 

(n=21) 
Age, yr 28.9 (1.2) 28.0 (1.0) 26.2 (5.6) 
GAD, wk 35.4 (0.5)* 38.8 (0.3) NA 

Highest DBP, mm Hg 97.1 (1.6)* 67.0 (1.3) 75 (7) 

ALT > 70 IU/mL, n 11 (24%) ND ND 

Platelets < 10  U/mL, n 

Highest SBP, mm Hg 159.7 (2.9)* 114.9 (1.8) 118 (11) 

Proteinuria, n (%) 35 (79%) 3 (7%) ND 

AST > 70 IU/mL, n 10 (21%) ND ND 
CNS symptoms, n 21 (48%) 2 (5%) ND 

5 6 (14%) 1 (2%) ND 
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Further screening of a second generation (focused) library of the form 

XXXKXXXC[IVL]GCXXXX using new pools of plasma from PE and HOP cases 

led to enhanced PE cross-reactivity and specificity (Figure 3-1B).  

 
Although three pools of PE and HOP were evaluated at each round only two 

pools P (n=6) were used to select for disease-associated peptides 

through five rounds of enrichment a ion each.  The other ev

ted low binding activity.  Sequencing individual clones isolated from 

the focused library identified 43 unique sequences from the final population.  These 

sequences exhibited increased prevalence of valine in the middle position and lysine 

following the second cysteine (i.e., KXXXC[VLI]GCK Figure 3-2A).  Comparison 

 of PE (n=6) and HO

nd deplet aluated PE pool 
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of representative peptides from the first and second generation screens confirmed that 

directed evolution resulted in enhanced PE-specific antibody binding (Figure 3-1C). 

Searches of the nonredundant protein database with variations of this extended 

motif yielded several hits, including an N-term  epitope within the Epstein-Barr 

virus (EBV) nuclear antigen 1 (EBNA-1) K

inal

RPSCIGCK that exhibited high similarity.  

To investigate whether the identified motif mimicked the EBNA-1 epitope, bacterial 

displayed 15-mer fragments from EBNA-1 and two other candidate antigens showing 

high similarity (Table 3-2) were assayed for binding to antibodies present in PE and 

HOP samples.  The EBNA-1 fragment (EB15) demonstrated significantly increased 

binding to antibodies present in PE over HOP (Figure 3-2B).  Although another 

candidate antigen fragment, eFB, differentially bound antibodies present in PE 

compared to HOP samples, the PE antibody binding was significantly (p < 0.001) 

lower than that observed with EB15.  Furthermore, EB15 exhibited a greater dynamic 

 

 

from

range for antibody binding activity between PE and HOP samples.  While average

antibody binding to EB15 was 4.8-fold higher among PE than HOP, eFB only

showed a 2.3-fold difference.  Additionally, to correctly differentiate 91% of HOP 

 PE, EB15 detected 73% of PE (n=23, each), while the eFB fragment only 

distinguished 43% of PE.   These observations highlighted the enhanced antibody 

binding to EB15 among PE patients compared to eFB.   

In addition to the PE-specific antibody binding to the EB15 epitope, a commercial 

ELISA evaluated whether a differential trend in antibody binding continued against 

the full-length protein.  In a set of 36 PE and 39 HOP, the overall ELISA activity was 

increased (p < 0.05, one-tailed) among women with PE (Figure 3-2C).  The PE 
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samples also exhibited a skewed distribution towards higher activity, failing the 

Kolmogorov-Smirnov normality test (p < 0.03).  The observed ELISA activity 

correlated well with antibody binding to the bacterial displayed EB15 

(rs=0.77)(Figure 3-2D). For comparison, the second generation library-derived 

peptide showed a similar correlation (rs=0.75), improved from the first generation 

peptide (rs=0.63), highlighting the gain of function obtained via directed evolution.   
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 Library screening reveals presence of antibodies directed towards an epitope of 

the Epstein-Barr virus EBNA-1 protein.  (A) Peptides from the 1 generation random library ost r 
a focused 2nd generation library were enriched for the KXXXC[VIL]GC[KR] motif. (B) 

ELISA for EBNA-1 antibodies exhibits a skewed distribution violating the Kolmogorov-

according to a one-tailed U test.  (D) ELISA signals correlated with binding activity to the 
surface displayed EB15, 1st, and 2nd generation peptides. r  – Spearman correlation 

Reactivity of three candidate antigen epitopes with PE and HOP antibodies is shown.  (C). An 

Smirnov normality test (p < 0.5). PE samples exhibited significantly (p<0.05) higher activity 

s
coefficient  
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Antibody depletion experiments further demonstrated that the motif identified 

from random peptide library screening corresponded to antibody binding to the EB15 

epitope.  Removing antibodies binding to the displayed EB15 resulted in a complete 

loss of binding to the library peptide (Figure 3-3A), indicating these peptides bind the 

same antibody species. Additionally, the contribution of the targeted EB15 epitope to 

the commercial ELISA signal observed for the full-length EBNA-1 was assessed.  

The ELISA evaluated the residual activity of plasma samples depleted of antibodies 

binding the displayed EB15 or scaffold protein only.  Using EB15 reactive samples, 

bacterial displayed EB15 depleted plasma exhibited significantly reduced EBNA-1 

binding activity by ELISA compared to scaffold depleted plasma (Figure 3-3B).  In 

contrast, the EBNA-1 ELISA signals for plasma that did not show antibody binding 

activity to EB15 were not significantly different.  Finally, the EB15 specific antibody 

was determined, using appropriate secondary reagents, to be of the IgG1 subtype 

(Figure 3-4), indicating that it is capable of fixing complement. Taken together, these 

results suggested that an IgG1 antibody prevalent in women with PE near delivery 

recognized an N-terminal linear epitope of EBNA-1 from the Epstein-Barr virus.   
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ii. The EB15 binding antibody cross-reacts with a region of GPR50 

In an effort to identify human protein antigens that could be recognized by these 

epitope specific antibodies, BLASTp was applied to identify a set of candidate human 

antigens that exhibit the highest similarity to the library peptide motif (Table 3-2). 

Table 3-2: Candidate antigen fragments 
ID Protein Organism Sequence 

EB15 EBNA-1 Epstein-Barr Virus RPQKRPSCIGCKGTH 

eFB Protein-Pyridine nucleotide Clostridium sp.:  

GPR50 GPR50 Homo sapiens AVPTPYGCIGCKLPQ 

eFA Iron-Sulfur Protein Salmonella enterica VFINEANCVGCKLCV 

disulfide oxidoreductase CAG:127 
DGDKVKNCIGCKSCS 

hF2 Greb1 Homo sapiens LLGFSGNCVGCGKKG 
hF3 Tesmin Homo sapiens MCSSICKCIGCKNYE 

4 Coiled-coil domain 
containing protein 18 Hom apiens FSNKEDRCIGCEANK 

hF5 Zinc finger protein 501 Homo sapiens PYE

hF o s

TGEK CVGCGKSF 
 
Although five 15-mer fragments derived from candidate autoantigens were 

evaluated for antibody binding, only one fragment from an N-terminal region of a G 

protein-coupled receptor, GPR50, exhibited significantly increased binding to 

antibodies present in PE patients compared to HOP (Figure 3-5A).  Furthermore, the 

EB15 peptide efficiently competed with PE antibody binding to the bacterial 
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displayed GPR50 fragment with an IC50 value of ~60-80 pM (Figure 3-5B).  In 

contrast, a negative control peptide (NCP) did not affect antibody binding to the 

bacterial displayed GPR50 fragment (Figure 3-6). 
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To investigate antibody binding to the full-length GPR50, cells expressing GPR50 

were investigated by flow cytometry.  In transiently transfected cells, GPR50 

expression at the cell surface was confirmed using an anti-GPR50 monoclonal 

antibody and flow cytometry (Figure 3-7A). In this system of apparently strong 

GPR50 presence, GPR50 expressing cells exhibited increased binding to antibodies 

Fig
(A) Binding activity of PE and HOP antibodies to candidate autoantigen epitopes measured by
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ing to near background levels. p-value indicates one-sample t-test   
 

ure 3-5: An EBNA-1 epitope (EB15) specific antibody cross-reacts with a GPR50 epitope.

flow cytometry. (B) Inhibition of antibody binding to GPR50 epitope by EB15 peptide for pools
of diluted plasma from three PE patients. (IC50 values indicated in parentheses.) p-values
represent Mann-Whitney U test results  

GPR50     hF2        hF3      hF4        hF5

p < 0.03

p < 0.01 



 

present in pooled PE plasma compared to that observed with untransfected cells 

(Figure 3-7B).  Furthermore, pre-incubating plasma with EB15 blocked antibody 

binding to the full-length GPR50 protein.  
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A. 

Figure 3-7: The EB15 epitope inhibits antibody binding to HEK293T cells expressing GPR50. 
(A) The GFP signal confirmed transfection of vector, while the anti-GPR50 monoclonal 
antibody verified specific expression of GPR50.  Furthermore, the negative controls fo

B. 

† 

C. 

r
secondary binding using anti-mIgG (mSC) for GPR50 monoclonal and anti-hIgG (hSC) for
plasma samples showed minimal background binding activity.  (B) GPR50 transfected 
HEK293T cells exhibited increased antibody binding to PE pools over the untransfected cells,
which was significantly reduced by EB15. (n=5) * p < 0.01, ** p <0.001, † - p < 0.05  for 

VA and Tukey’s multiple comparison analysis. (C) The empty vector transfection control 

binding compared to GPR50 transfected cells.  However, while the evaluated HOP pools 

untransfected, the signals from the transfection control appeared much more variable. 
Importantly incubation with EB15 did not reduce the antibody binding signal to GPR50 
transfected cells * p < 0.01, ** p <0.001, † - p < 0.05 for one-sample t-test deviation from 
100% (transfected cells). 

ANO
performed similarly to the untransfected cells with the PE pools, showing reduced antibody

demonstrated increased antibody binding to GPR50 transfected cells compared to 
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The empty vector transfected cells also demonstrated significantly reduced 

antibody binding to the PE pools, similar to the untransfected cells (Figure 3-7C).  In 

contrast, empty vector transfected cells exhibited high variability in antibody binding 

to the HOP pools, but compared to untransfected cells, HOP-associated plasma 

antibodies exhibited increased binding to GPR50 transfected cells.  However, 

importantly, incubation with EB15 did not reduce HOP plasma antibody binding to 

the GPR50 transfected cells, indicating this variably increased activity was mediated 

through different antibody specificities than in the PE pools.  

In addition to transient transfection analysis, an immortalized trophoblast cell line, 

HTR-8/SVneo, was assayed for binding to antibody fractions purified from GPR50+ 

PE and GPR50- HOP pools with or without EB15. First, GPR50 expression on HTR-

8/SVneo cells was confirmed by flow cytometry using a GPR50 specific monoclonal 

antibody compared to dary n ontrol (m C) (Figure 3-8A). The EB15 

peptide significantly red  bindin of  antibodies to HTR-8/SVneo cells to 

levels comparable to HOP-associated antibodies as measured by flow cytometry 

(Figure 3-8B).  Thus, the EB15 epitope specific antibodies present in PE were 

ta. 

 a secon  o ly c S

uced g PE

capable of binding to GPR50 expressed on the cell surface in transfected cells and a 

trophoblast-derived cell line.   

To assess expression of GPR50 in human placentas,192 placental tissue sections 

from PE patients were assayed by immunohistochemistry (IHC). Syncytiotrophoblast 

cells were strongly stained by GPR50 monoclonal antibody, but not by an isotype 

matched control (Figure 3-9). Thus, IHC confirmed the presence of the putative 

autoantigen GPR50 in the placen
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* 

Figure 3-8: HTR-8/SVneo cells express GPR50 and EB15 regulates antibody binding to this
trophoblast model cell line. (A) Cells incubated with the GPR50 specific mo

 

iii. EB15 and GPR50 fragments exhibit increased antibody binding activity in PE 

patients 

The 15-mer fragments exhibited significantly higher binding activity among PE 

patients in a subset of the cohort.  Antibody binding activity to bacterial displayed 

peptides in an expanded set of PE (n=42) and HOP (n=43) further assessed this 

differential activity.  Additionally, 21 nulligravid samples were assayed for binding 

activity.  EB15 and GPR50 fragments demonstrated significantly increased antibody 

binding to PE patients compared to HOP and nulligravid samples (Figure 3-10).  

Interestingly, no significant difference existed between nulligravid antibody binding 

acti

d GPR50.  

 

vity and HOP.  The GPR50 fragment exhibited a lower activity range than EB15 

and reduced HOP antibody binding activity.  Antibody binding activity appeared 

evenly distributed across early- and late-onset PE and adverse outcomes.  These 

results highlighted that the PE condition is associated with significantly increased 

antibody binding activity to EB15 an

noclonal antibody
demonstrated binding above background.  (B) Additionally, EB15 

B.
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reduced PE Ig binding to 
the natively expressed GPR50 in HTR-8/SVneo cells to a similar level as HOP Ig.   - p < 
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 for U-test, †- p < 0.05 for one-sample t-test compared to 100%.  
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Anti-GPR50 Isotype Control 

FOV1 

FOV2 

FOV3 

 

Figure 3-9: PE placental tissue expresses GPR50.  Using the monoclonal antibody against 
GPR50 resulted in strong staining, with higher signal around syncytiotrophoblasts (arrows). 
This staining pattern was confirmed using three different fields of view (FOV) of the same
tissue section 
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D. Discussion 

Here, a PE-associated IgG1 antibody was identified that binds with high affinity 

to EBV protein EBNA-1 and cross-reacts with human GPR50.  Previous studies have 

suggested a role for antibodies in the pathogenesis of PE.  Most notably, IgG 

autoantibodies that agonize AT1 (AT1-AA) have been shown capable of inducing 

blood pressure elevation,3 complement deposition173 and other hallmarks of PE.  In 

addition to AT -AAs, several other PE-associated antibodies have been reported, 

prothrombin.   We previously employed an unbiased discovery approach to 

investigate whether additional antibody specificities exist (Chapter 2)191 and identify 

their preferred epitope binding specificities.  This approach, using antibody fractions, 

indicated the presence of PE-associated antibodies distinct from AT1-AAs, but did not 

reveal either autoantigens or environmental antigens.  Given this problem, we applied 

a substantially modified discovery method termed Antibody Diagnostics via 

800
PE HOP

1

including those binding to β1, β2 and α1 adrenoreceptors,128 cardiolipin,129  and 
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Figure 3-10: PE patients exhibit significantly increased antibody binding to EB15 and 
GPR50 compared to HOP and nulligravid. p-values represent Mann-Whitney U-test analysis

 84



 

Evolution of Peptides (ADEPt),189 which has previously revealed specific 

environmental antigens in an unbiased fashion. The ADEPt method revealed a 

specific epitope within EBNA-1 as a target of t

demonstrated that the same antibody species cro tal GPR50. The 

cross-reactivity of a disease-associated antibody to regions of EBNA-1 and a human 

protein, GPR50, potentially holds further implications for PE pathology.   

Our results provide evidence for a novel case of molecular mimicry, a mechanism 

acetylcholine receptor antibodies have been proposed to associate with herpe  

lycoprotein D.30  Peptides derived from the acetylcholine receptor and 

glycopro 33

44

28

135

193  194 195

he immune response in PE, and 

ss-reacts with placen

proposed for a variety of other diseases.  For example, in myasthenia gravis anti-

s

simplex virus g

tein D inhibited antibody binding to the acetylcholine receptor.   Rheumatic 

fever/carditis patients possess cross-reactive antibodies to streptococcal N-acetyl-βD-

glucosamine and cardiac myosin.   Furthermore, three regions of EBNA-1, one of 

which borders and partially overlaps with our EB15 fragment, bind lupus-associated 

antibodies.   An additional case for molecular mimicry in PE was proposed for the 

generation of AT1-AAs, and a human IgG directed against parvovirus B19 VP2 

demonstrated positivity in the AT1-AA detection assay.   Thus, molecular mimicry 

represents a proposed mechanism of etiology for autoantibody activity in several 

diseases. 

The Epstein-Barr virus (EBV), in spite of being ubiquitous in humans world-

wide, has been associated with a variety of diseases.  For example, EBV reactivation 

is linked to the development of Burkitt’s lymphoma and nasopharyngeal 

carcinoma. Interestingly, 30%  to 36%  of pregnant women show signs of 
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EBV reactivation based on serum antibody panels.  Furthermore, the placental gene 

expression of the Epstein-Barr virus induced gene 3 (EBI3) appears increased in 

PE.196  EBI3 comprises part of IL-27, which inhibits CD4+CD25+ regulatory T-cell 

development,197 and regulatory T-cell levels are decreased in PE.123,124  Therefore, 

reactivation could result in increased viral activity leading to a myriad of effects, 

including amplified antibody titers in a group of women that possess this antibody 

spe

triglyceride levels,202 and hyperlipidemia often precedes PE presentation.203  

Tak

cificity ultimately leading to aberrant binding activity to human proteins, such as 

GPR50.   

While the function of GPR50 is poorly understood, several observations relate to 

PE pathology.  First, the presence of GPR50 in the model trophoblast cell line, HTR-

8/SVneo cells, agrees with a previous finding of GPR50 presence in the placenta,192 

which we further confirmed.  Second, since the PE-associated antibody represents an 

IgG1 subclass, which activates the complement system, antibody binding to this 

placental GPR50 could contribute to the increased complement deposits observed in 

the PE placenta.119,122,173  Through dimerization, GPR50 inhibits the melatonin 

receptor 1,198 and while melatonin exhibits a protective effect in the placenta199 and 

helps regulate blood pressure,200 the levels of melatonin and melatonin receptors 1 

and 2 are reduced in PE.201  Furthermore, mutations in GPR50 have been linked to 

increased 

en together, these observations suggest that EBV-induced autoantibodies to 

GPR50 may be pathogenic in PE, and future studies should be designed to investigate 

this question.  
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Our finding that the GPR50 epitope was reactive with the largest number of PE 

specimens does not rule out the possibility that other, less similar human proteins 

might also bind to the EB15 directed antibody.  Although we focused on cross-

reactivity to GPR50 due to its increased binding activity compared to the other 

evaluated fragments, we observed moderate activity in some PE to other candidate 

targets.  Therefore, cross-reactive binding to these and potentially other less similar 

autoantigens may occur.  For example, kininogen-1 appears dysregulated in PE204,205 

and shares the CVGC sequence, potentially leading to low activity binding.  Thus, 

aside from GPR50, other autoantigens could be recognized by this antibody species 

and contribute to the heterogeneity in presentation and severity of PE.   

Bacterial displayed random peptide library screening enabled the impartial 

identification of an EBV directed antibody capable of cross-reacting with a human 

placental protein.  Therefore, this study provides support for an aberrant immune 

response in PE through a mechanism of molecular mimicry involving a viral antigen 

(EBNA-1) and human proteins, especially the placental protein GPR50.  Although 

this study focused on PE, this approach can be extended to a variety of diseases to 

impartially profile disease-associated antibody-antigen interactions.           
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4. Using next-generation sequencing to characterize individual patient antibody 

binding specificities  

 

Next-generation sequencing (NGS) has significantly increased throughput (>5 

million sequences) compared to traditional Sanger sequencing methods.  Thus, NGS 

enables in depth analysis for a variety of applications, including evaluation of isolated 

sequences from peptide library display screening.  In particular, multiple individual 

screens can be probed simultaneously without excessive numbers of sorting/selection 

rounds to reduce diversity.  We sought to develop and apply a unique method of 

bacterial displayed peptide library screening with NGS to profile individual antibody 

repertoires from pre-eclampsia (PE) patients (n=4) and healthy-outcome pregnancies 

(n=4).  Validating this methodology, we re-identified the previous viral antigen-

linked PE-associated motif (KXXXC[VIL]GC).  An additional PE-enriched motif 

(GXXGAGGG) supports an amplified immune response to the Epstein-Barr virus 

nuclear antigen 1.  This unique approach simultaneously identified PE- and healthy 

pregnancy-associated motifs, highlighting an altered antibody response among 

women with PE. 

A.  Introduction 

The advent of next-generation sequencing (NGS) has enabled high-throughput 

evaluation of millions of sequences, providing a rich source of data.  This tool has 

tremendous potential to change genomics and clinical diagnostics as we quickly 

approach the $1000 personal genome.206  Thus far, current diverse applications of this 
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technology include evaluation of phage display library panning,207,208 gene mutation 

analysis,209 influenza inhibitor design,210 and DNA aptamer selection.211 The ability 

to sequence >400 billion oligonucleotide bases enables full coverage of T- and B-

cells from small organisms, such as zebrafish.212 Although the full repertoire in 

humans has yet to be completely understood, certain insights have been gained.  

Profiling the antibody repertoire in humans by sequencing circulating B-cells 

provided evidence for B-cell memory recall.   Immune repertoire sequencing has 

revealed alterations in multiple sclerosis,  leukemia,  and severe aplastic 

anemia.   Furthermore, NGS has provided insights into ongoing immune responses 

through specific isolation and sequencing of antibody-producing plasmablasts.   

NGS enables an enhanced understanding of the immune repertoire diversity, and it 

has been used to estimate the naïve T-cell repertoire diversity as 3-4x10  (three to 

four-fold higher than previously expected).   As these studies demonstrate, NGS 

represents an invaluable tool for probing the immune repertoire. 

Given this useful tool, we sought to develop and apply a method to profile 

antibody binding specificities using NGS and bacterial displayed peptide library 

screening.  In previous work, peptide library screening incorporated pools of disease 

and healthy samples and required multiple rounds of sorting to reduce library 

109 to ~1000 members for traditional sequencing (Chapters 2 and 

3).1

53

186 187

188

51,52,213

6

214

diversity from 8x

53,189,191  However, one study demonstrated that the most abundant sequences 

identified after four phage selection rounds were among the most abundant in the 1st 

or 2nd round,  but the high diversity at these rounds prevents identification by 

traditional sequencing (~50 clones).215  Thus, we aimed to characterize antibody 
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binding peptides isolated from early screening rounds against individual samples at 

higher library diversity (104-105 members).  We hypothesized that this approach 

would greatly reduce the number of sort rounds while providing an in-depth profile of 

the antibody binding repertoire for each individual.  Instead of focusing on the highly 

enriched sequences that bind antibodies present in disease plasma,68,208 a 

computational algorithm developed in the Daugherty Group at UCSB (Pantazes R, 

Reifert J, Elliott SE, et al. 2014, unpublished), compares the disease- and control-

associated sequences.  This algorithm evaluated the presence of enriched patterns of 

amino acid sequences instead of full-length peptides,68,183 which may reduce the 

number of unique contributors when identifying motifs.  Applying this methodology 

to the pregnancy-related disease, pre-eclampsia (PE), confirmed the previously 

characterized viral antigen-linked motif (Chapter 3) and elucidated additional PE- 

and healthy-outcome pregnancy (HOP)-associated motifs.  Our results show that 

NGS-enabled antibody binding motif analysis yields broad insights into disease-

rela

B.  Materials and Methods 

i. Patient samples 

 

ted alterations to the antibody repertoire.   

A heterogeneous set of PE and HOP (n=4, each) were selected from the same 

cohorts previously described (Chapters 2 and 3).  In addition to clinical parameters, 

the samples showed a range of average antibody binding activity to the previously 

identified and tested antigen fragments from Chapter 3 (Table 4-1).       
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Table 4-1: Characteristics of samples for next-generation sequencing analysis 

Average Antibody Max Blood Enzyme 
 Binding Activity  Pressure Proteinuria WGA

Elevated 

Levels  CNS 
ID EB15 GPR50 SBP DBP Y or N wk Y or N Y or N

PE-1 26 5.3 152 99 Y 37.5 Y N 

PE-3 15 6.3 148 102 N 32 N 

HOP-3 31 1.3 111 66 N 38.5 ND N 

PE-2 1.8 1.3 155 90 ND 36 N Y 
Y 

PE-4 1.7 0.89 167 90 Y 36 Y Y 
HOP-1 1.3 0.90 120 55 N 40.1 ND N 
HOP-2 1.5 1.2 134 70 ND 38.6 ND N 

HOP-4 6.2 1.0 98 59 ND 38 ND N 

 

ii. Library screening 

A fully randomized, 15-mer peptide library displayed on eCPX90 was screened 

against diluted plasma from individual PE and HOP.  Samples were diluted (1:50) 

and depleted of E. coli binding antibodies prior to library incubation as previously 

described (Chapter 3).  A magnetic selection step quickly removed irrelevant 

peptides in preparation for fluorescence activ

Average antibody binding of samples from previous studies expressed as fold fluorescence
over background.  Abbreviations: ND – not determined, SBP – systolic blood pressure, DBP, 

system. 
diastolic blood pressure, WGA – Weeks’ gestational age at delivery, CNS – central nervous 

ated cell sorting (FACS).  A biotin-

conjugated anti-human IgG secondary (1:500) (Jackson ImmunoResearch) was used 

to detect bound IgG following incubation with diluted plasma (1:100).  Finally, cells 

were labeled with streptavidin (SA)-conjugated magnetic beads and application of a 

magnet enabled isolation of antibody bound 

(SA-PE) fluorescently labeled the cells expressing peptides bound to antibodies.  

Labeling reagents were diluted in PBS with 0.1% BSA and incubations conducted at 

cells.  Two rounds of FACS further 

enriched the peptide library for each individual sample.  In this case, two 

concentrations of diluted plasma (1:100 and 1:500) were used.  The same biotinylated 

anti-human IgG secondary (1:500) was used, but SA conjugated to R-phycoerythrin 



 

4°C.  Sort gates were set according to a similarly treated negative control expressing 

only the dis  f f FACS (F1) collec p 4% of 

bind at 1 las i h on  (F iso e

fluorescing cells from th al b g ulati serv ith a 500 p a 

dilution.  To are t stringency single F S sort e 

population following magnetic selection (PE-1) was sorted against 1:500 diluted 

pl cub  the lib  with on  and E on o pl ) evaluated 

iii. Library preparation for sequencing 

Following library screening, the plasmids were isolated from cells using Zyppy™ 

Plasmid Miniprep kit (Zymo Research).  In addition to the four PE and HOP after two 

rounds of FACS, populations from other sort rounds with PE-1, PE-3, HOP-2, and 

HOP-4 were included for sequencing.  The peptide encoding regions of the plasmid 

were amplified and prepared for sequencing (Figure 4-1) on the Illumina platform, 

MiSeq.  Specifically, a two-step PCR process modified from an existing protocol216 

ensured amplification of the peptide region and addition of the required flanking 

adapter and barcoding sequences.  The initial primers (For1 and Rev1) amplified the 

peptide encoding section of the plasmid while adding annealing regions for the 

second set of primers (Table 4-2).  In the second PCR, primers from the Nextera® XT 

Index Kit (Illumina) added the adapter sequences and barcodes (i5 and i7) for dual-

indexing.  The first PCR underwent 25 cycles while the second used 8 cycles with 

annealing temperatures of 65°C and 62°C, respectively.  This two-step PCR resulted 

in 12 different samples, multiplexed by 12 unique i7 barcodes with the same i5 index.   

play scaffold.  The irst round o ted the to

ers :100 p ma dilut on, t e sec d round 2) lated th  higher 

e tot indin  pop on ob ed w  1: lasm

comp his strategy to a higher AC , on

asma.  In ating rary  sec dary  SA-P ly (n asma

the presence of false-positives binding to secondary or SA alone.      
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The 12 unique samples were pooled together in equal amounts following 

quantification by Qbit, using an estimated length of 214 bases and Equation 4.1.  

After diluting each sample to 4 nM, 5 µL of each was removed and pooled together. 

An Agilent Bioanalyzer run evaluated the size and purity of the final pool. 

 

 

(4.1)          (nM)ion concentrat10L)(ng/ion concentrat 6 =×
bp 200  (g/mol) 660 ×
μ  

 

library screening, peptide encoding regions are amplified and modified to include adapte
Figure 4-1: Library screening and preparation for next-generation sequencing.  After initial 

r 
 

s 
sequences, barcodes, and sections required for sequencing.  Finally by de-multiplexing and
comparing the individual PE and HOP we can identify unique peptide sequences and pattern
among PE. 
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Table 4-2: Primers used for library preparation 
Primer Sequence 
For1: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGCCAGTCTGGCCAG 
Rev1: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTGCCACCAGAACCGCC

 

iv. Motif characterization 

A computational algorithm, termed Identifying Motifs Using Next-generation 

sequencing Experiments (IMUNE), developed in the Daugherty Group at UCSB 

(Pantazes R, Reifert J, Elliott SE, et al. 2014, unpublished) was applied to the de-

multiplexed samples to identify patterns of amino acids significantly enriched in the 

PE samples compared to the HOPs.  Different enrichment conditions were evaluated 

across the 8 samples. These conditions include: 4_0, 4_1, 3_0, 3_1, 2_0, and 2_1, 

indicating the number of PE and HOP, respectively, with a given statistically enriched 

pattern.  Related patterns identified with these different enrichment conditions were 

combined to identify common motifs.  A Python code (MotifSearcher) enabled 

searches for sequences comprising a specific motif from the list of unique peptides to 

r of sequences containing the searched motif.  Specifically, if a given 

pep

employed.  

Comparing sequence observations after two FACS rounds (F2) to those in the first 

round (F1) identified the enriched sequences, or those representing a higher fraction 

Shaded region represents the complementary sequence for annealing to the desired regions
of the plasmid for peptide encoding section amplification.   

generate a traditional sequence logo.  This analysis determined the number of 

peptides significantly (≥95% of observations) associated with PE samples out of the 

total numbe

tide sequence was observed 19 out of 20 times in one of the four PE patients, it 

was considered PE-associated.  At the same time, the control- or HOP-specific motifs 

were similarly characterized. 

For additional motif analysis, the web-based MEME algorithm98 was 
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of the total sequences in F2 than F1.  Cases in which a sequence appeared >10 times 

u ere 

algorithm characterized five motifs from the top 1000 ranked sequences.  To

characterize the effect of sort stringency, the single FACS round against PE-1 with 

1:500 diluted plasm

tic selection reduced the library population diversity 

fro

in F2 b t never observed in F1 were also included.  These enriched sequences w

ranked according to the number of observations in the F2 population.  The MEME 

 

a was compared to the population that underwent a less stringent 

F1 (1:100 dilution) followed by a second sort with 1:500 diluted plasma.   

v. Candidate antigen identification 

To relate generated motifs to candidate antigens containing the same amino acid 

sequence, a variety of search algorithms were employed.  Primarily, NCBI BLASTp 

and ScanProsite determined the proteins with similarities/identities to variations of 

motifs.  Additionally, the Immune Epitope Database was searched for sequences with 

positive antibody binding activity.  Where appropriate, hits from organisms, such as 

western clawed frog, fruit fly, or extreme thermophiles, that would be rarely involved 

in the human immune system were removed from search results.  Additionally, 

uncharacterized or putative protein hits were not included.   

C. Results 

i. Screening peptide display library for patient-specific binders 

The first round of magne

m 8x109 to ~106 members.  This reduced diversity enabled FACS-based sorting for 

the subsequent rounds.  The different PE and HOP samples enriched for binders at 

different rates (Figures 4-2 and 4-3).    Only one sample (PE-2) exhibited less than 
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75% binding after two rounds of FACS (F1 and F2) at 63.4% binding, despite 

exhibiting the highest percent binding after the initial magnetic selection.  

Interestingly, library screening against PE-1 and PE-3 enriched for the highest percent 

binding out of the four PE samples and these samples previously showed increased 

binding to antigen fragments EB15 and GPR50.  Additionally, peptide library 

screening with HOP-3, which showed the highest antibody binding activity against 

EB15, enriched the fastest.  For the other samples, less than 30% of the population 

bound to sample antibodies after one round of FACS; however, HOP-3 exhibited 

73.5% binding.  Comparatively, the stringent F1 sort against PE-1 (1:500), resulted in 

a higher percentage (56%) of binders post F1 than when sorted using a 1:100 dilution 

(21.5%).  This indicated that increased stringency enhanced enrichment of strong 

binders; however, both populations exhibited a bimodal distribution of binding 

peptides. 

Importantly, the majority of peptide sequences in each library population 

following two FACS rounds bound to the specific sample being screened against, 

reducing the background noise of nonbinding peptides during sequence analysis.  The 

lack of streptavidin binders was also confirmed.  Estimated diversities of ~104 

abled pooling of the individual screens for multiplexed sequencing by 

MiSeq.  After separate PCR amplification using a two-step process, the DNA 

concentration of each pool was measured to facilitate equimolar pooling.  The Agilent 

Bioanalyzer confirmed the correct size and purity of the pooled DNA.  

members en

 96



 

 97

Post M1 Post F1 Post F2

MCF: 290
Bind: 14.3%

MCF: 347
Bind: 5.7%

MCF: 1296
Bind: 21.5%

MCF: 333
Bind: 16.8%

MCF: 4973
Bind: 86.1%

MCF: 1657
Bind: 63.4%

S
de

 S
ca

tte
r

Si
d

 S
ca

PE-1
i

PE-2 e
tte

r

Red Fluorescence

MCF: 526
Bind: 11.4%

MCF: 689
Bind: 13.2%

MCF: 3477

ca
tt Bind: 89%

PE-3

Si
de

 S
er

MCF: 1979
Bind: 75.9%

MCF: 387
Bind: 14.8%

MCF: 284
Bind: 10.8%r

MCF: 290
Bind: 14.3%

MCF: 347
Bind: 5.7%

MCF: 1296
Bind: 21.5%

MCF: 333
Bind: 16.8%

MCF: 4973
Bind: 86.1%

MCF: 1657
Bind: 63.4%

S
de

 S
ca

tte
r

Si
d

 S
ca

PE-4

Si
de

 S
ca

tte
PE-1

i

PE-2 e
tte

r

MCF: 526 MCF: 689
Bind: 11.4% Bind: 13.2%

MCF: 3477

ca
tt Bind: 89%

PE-3

Si
de

 S
er

MCF: 387
Bind: 14.8%

MCF: 284
Bind: 10.8%r

MCF: 1979
Bind: 75.9%

Red Fluorescence

1:100 1:500 1:500

 

 

PE-4

Si
de

 S
ca

tte

Figure 4-2: Individual screens enriched the library against different PE samples. Each distinct 
screen resulted in a majority population of cells expressing peptides that bind to unique PE.   
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 HOP. 

ii. Sequence analysis identifies the viral antigen-linked motif among other PE-

associated motifs 

From MiSeq sequencing, a total of ~7x106 usable reads were identified.  The 

redundant set of peptides was normalized to ~7.3x105 unique sequences across all 

twelve samples.  The sequence counts for individual screens varied (Table 4-3).     

Despite the reduced number of total usable reads in the post F1 populations, these all 

Figure 4-3: Individual screens enriched the library against different HOP samples. Each 
distinct screen resulted in a majority population of cells expressing peptides that bind to uniq  ue



 

exhibited higher unique sequences than the corresponding post F2 populations.  This 

reflects the higher diversity among the post F1 populations.  Due to the reduced 

coverage (fold oversample), a significant portion (~40-70%) of sequences from post 

F2 was not observed in the post F1 populations. 

Table 4-3: Number of sequence reads for each sample 
Sample ID Unique Total Fold Oversample 

PE-1: Post F2 48,464 337,992 6.97 
PE-2: Post F2 77,657 715,905 9.22 
PE-3: Post F2 29,434 1,046,613 35.6 
PE-4: Post F2 40,877 171,159 4.19 
HOP-1: Post F2 34,900 658,011 18.9 
HOP-2: Post F2 136,517 677,586 4.96 
HOP-3: Post F2 69,488 466,980 6.72 
HOP-4:Post F2 61,179 942,076 15.4 
PE-1: Post F1 (1:500) 58,474 222,265 3.8 
PE-3: Post F1 62,390 257,594 4.13 
HOP-2: Post F1 177,324 510,591 2.88 
HOP-4: Post F1 105,199 191,298 1.82 

Applying the IMUNE algorithm identified a redundant list of statistically enriched 

patterns for a variety of comparisons.  In these patterns, an X indicated that no amino 

acid was significantly enriched at that position.  Combining similar patterns led to a 

general motif for different sets of patterns.  Observed in different enrichment 

conditions, one dominating pattern set (>50 unique patterns) contained the previously

(Fi otif 

ally identified using sequential enrichment and depletion of plasma 

poo

 

identified viral antigen (EBNA-1)-linked motif from Chapter 3, KXXXC[VLI]GCK 

gure 4-4).  Aligning these enriched patterns resulted in a general binding m

similar to that initi

ls (Chapter 3).  Based upon this pattern alignment, a search of KXXXCXGC in 

the list of unique sequences yielded the full set of 15 amino acid peptides containing 

motif 1.  A majority of these peptides (80%) was identified as significantly associated 

with PE samples and used to generate a sequence logo.  Although left undefined 
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during the search, amino acids valine, isoleucine, and leucine showed increased 

representation in the middle position, similar to the first generation motif previously 

identified (Figure 3-2).  Also similar to this first generation motif is the lack of a C-

terminal lysine that showed enrichment after directed evolution (Chapter 3). 

 
In evaluating the other highly represented patterns, another set was identified as 

enriched in three PE and only one HOP.  Evaluating the similarities from these ~35 

patterns elucidated a second PE-associated motif ([LME][YW]X[WFY]DX[RK])  for 

searching the unique sequence list (Figure 4-5).  Interestingly, this shared some 

similarities with motif c, WGWGXX[RK], identified in a previous antibody profiling 

study using antibody fractions (Chapter 2).191   
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Figure 4-4: Identifying the PE-associated peptides containing the viral antigen-linked motif. 
Several patterns observed to be significantly enriched in PE patients screened represented 
the previously identified motif.  After searching the unique peptides for this motif, the number

PE-
Associated

Total  

of PE-associated peptides were identified and aligned to generate a sequence logo.   
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Patterns 

Search for motif in unique peptides

[LME][YW]X[WFY]DX[RK] 

 
Motif 1 comprised four fixed residues, while motif 2 shared five positions but 

only one was com

 

of PE-associated peptides (91%).  This aligned with the observation that thes

pletely fixed.  Despite the increased number of unique sequences 

containing motif 2 (1683) than motif 1 (1465), motif 2 exhibited a higher percentage

e 

sequences predominantly stemmed from 3_1 enriched patterns.  Additionally, since 

two of the HOP samples used in this analysis possessed antibodies capable of binding 

to EB15, these contribute to the reduced percentage of PE-associated peptides 

observed in motif 1 compared to motif 2.   

Figure 4-5: Characterizing a new PE-associated motif.  Similar patterns found to be 
statistically enriched in three PE were combined to characterize the motif.  Searching the set 
of unique peptides identified the PE-enriched sequences for logo generation and determined
the number of PE-associated peptides.
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Another motif initially consisted of three defined positions (GAG).  Almost 

25,000 sequences posse ese occurred ≥95% of the 

time in PE samples.  However, using the generated sequence logo (Figure 4-6A) to 

define additional residues (GXXGAGGG) er peptides but 

these exhibited a higher enrichment among PE patients (Figure 4-6B).  Thus, motif 3 

consisted of 723 disease-enriched sequences out of 793 total (91%).  This highlighted 

the importance of refining motifs to understand PE-associated epitopes. 

 

tified enriched patterns. In fact, one motif 

(ASXTXW) consisted of more HOP-associated peptides. 

entified many sequences; however, a substantial
percenta
the

ssed this motif, but only 75% of th

, the search returned few

Search: GAG A. B. Search: GXXGAGGG 

The motifs identified by patterns significantly enriched among PE samples 

according to the IMUNE algorithm exhibited a high percentage of disease-associated 

unique peptides.  For comparison, a number of patterns identified by the algorithm 

from the 2_1 comparisons with reduced enrichment in PE compared to HOP were 

evaluated for PE-associated peptides.   The patterns with low enrichment according to 

IMUNE exhibited similar numbers of disease and control peptides (Figure 4-7), 

indicating the significance of IMUNE-iden

ge of these were not enriched in PE.  (B) Using six defined positions decreased
 total sequence count to ~800, but 91% of these were highly enriched in PE. 

Figure 4-6: Defining additional motif positions increases PE-associated enrichment.  (A) 
Using only three defined positions id
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. Candid rmined from eas

Focusing on the most represented amino acids as indicated by the sequence logo 

(L[YW]XWDXR) resulted in reduced total sequences (720) but increased specificity 

(93%).  Searching this motif in ScanProsite identified a number of interesting 

candidate antigen hits.  Initially searching the human proteome returned five unique 

protein hits (Table 4-4).  Among nonhuman hits, several represent homologues to 

t  

(  

path

iii ate antigens dete dis e-associated motifs 

hese human proteins in mice and rats.  Interestingly, a prominent reoccurring hit

~580 strains) represented a protein from Acinetobacter baumannii, an opportunistic

ogen associated with hospital-derived infection.    

 Table 4-4: Human protein hits for prominent next-generation 
sequencing motif L[YW]XWDXR 

Human Protein Sequence 
Calmodulin-binding transcription activator 1 AAVVLYKWDRRAISI 
Protein cordon-bleu.  GIKELYAWDNRRETF 
Elongation factor G, mitochondrial FLPLLWNWDRRSGSQ 
Insulin-like growth factor 1 receptor. NLQQLWDWDHRNLTI 
Prostaglandin F2-alpha receptor Isoform 5 LQMRLWTWDFRVNAL 

Motif 3 (GXXGAGGG) corresponded to a common sequence found in a variety 

of viruses and pathogens, including the human adenovirus, Epstein-Barr virus (EBV), 

and torque teno virus.  Searching the Immune Epitope Database returned 36 positive 
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hits for antibody-antigen binding.  Many of these hits represented the same organism 

or multiple studies identifying similar sequences.  Thus, these hits were condensed to 

six unique organisms, including EBV and a section of EBNA-1 that represents the 

immunodominant region217 (Table 4-5).  Although this motif may be present among 

the HOP samples it appeared significantly enriched among these PE.   

These IMUNE-identified PE-enriched motifs enabled candidate human and 

pro [VIL]GC and 

GX

environmental antigen discovery.  Importantly, this in-depth antibody repertoire 

filing approach distinguished two distinct motifs (KXXXC

XGAGGG) from the same viral antigen, EBNA-1.  This discovery highlights an 

altered antibody response to this antigen among PE patients. 

Table 4-5: Positive antibody binding hits in the Immune Epitope Database 
for motif GXXGAGGG 

Sequence Protein Organism 
GAGGGAGAGGAGAGGGGRGR Epstein-Barr nuclear  Human  
GAGGGAGGAGAGGGAGGAGA antigen 1 (EBNA-1) herpesvirus 4 
AGGAGAGGGAGAGGA   

SSSSAGGGGGGAGGGGGGGG early phosphoprotein P34 herpesvirus 4 
Human 

MTSVNSAEASTGAGGGGSNSVK 
Probable coat protein Human 
VP1 parvovirus B19 

TGAGGGGSNSVKSMWSEGATFS VP2 
Human 
parvovirus B19 

SGGGAGGGSSGSGQSGVDLSPV 

Adhesin P1 precursor 
(Cytadhesin P1) Mycoplasma 
(Attachment protein) pneumoniae 

LKE r unataSGVKPGQFAAIVGAGGGL alcohol dehyd ogenase Curvularia l
GLS G LSAPSTGAGGGLPGP Myelin basic protein Cavia porcellus 

LGG
artite motif

ining 67 ns GAGGGGDHADKLSLYSETDS conta
trip -

Homo sapie 

iv. Identifying control-specific motifs and related candidate antigens 

In addition to discovery of PE-associated motifs, this methodology of individual 

screening followed by cross-examination of PE- and HOP-enriched patterns, enabled 
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identification of control- or HOP-specific motifs.  To focus on truly HOP-specific 

motifs, the patterns enriched in four HOP and zero or one PE samples were evaluated.  

This analysis led to three main motifs identified as highly enriched among HOP 

samples (Figure 4-8 A-C).  The HOP-specific sequences comprising these motifs 

represented 95.7%, 97.7%, and 92.9%, respectively, of total sequences. These 

control-associated specificities may be present among PE but reduced compared to 

the PE-associated motifs identified.  Control-specific motifs highlighted a skewed 

antibody repertoire among the PE samples.    

[PGA]H[DE][WY]K[GA][ST][ST]GX[KR]
A. B.

YX[TSA][TS]LX[YW]C.

 
Fig ) One motiure 4-8: Control-specific motifs identified using the IMUNE algorithm.  (A f

 
One motif (Figure 4-8A) comprised more sequences than the others; however, it 

mainly consisted of the highly represented amino acids glycine and serine.  Therefore, 

 
com eprised the largest number of sequences; however, (B) (C) other motifs exhibited high r 
sequence complexity.  All motifs exhibited high specificity (>92%) for control samples. 
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searches of the protein database using BLASTp did not return any significant hits and 

ScanProsite identified greater than 900 hits.  For the other two motifs, the set of 

protein hits and corresponding organisms were evaluated and summarized.   The 

control motif [PGA]HD[WY]K exhibited the greatest sequence complexity and 

resulted in the fewest hits (Table 4-6).  Many of these hits include pathogenic viruses, 

such as human cytomegalovirus, or commonly encountered organisms like 

Saccharomyces cerevisiae.  No human protein hits were identified for this motif using 

ScanProsite.  In contrast, motif YX[TSA][TS]LX[WY] resulted in a large variety of 

hits, including several human proteins (Table 4-7) and various pathogens (Table 4-

8).  For some of these human hits, homologous proteins were identified in other 

organisms, such as primates, horses, rabbits, and mice.   

Table 4-6: Candidate antigens for HOP-specific motif [PGA]HD[WY]K 
Sequence Protein Organism 
PHDYK Cellobiose 2-epimerase Ruminococcus albus 
AHDYK D-alanine--D-alanine ligase Clostridium novyi 
PHDWK Envelope glycoprotein H Human cytomegalovirus 
AHDYK Glycerol kinase  Francisella philomiragia 
PHDYK Hyaluronan synthase Streptococcus pyogenes  
AHDYK Apolipoprotein N-acyltransferase Salmonella typhimurium 
PHDWK Protein LST4 Kluyveromyces lactis 
AHDYK Nucleotide exchange factor SIL1  
GHDYK Ribonuclease alpha-sarcin Aspergillus giganteus 
AHDYK Ribonuclease H Saccharomyces cerevisiae 
GHDWK Exosome complex exonuclease DIS3  
AHDYK Nucleotide exchange factor SIL1  
GHDYK Ribonuclease mitogillin Neosartorya fumigata 
GHDYK Ribonuclease mitogillin Aspergillus restrictus 
AHDYK Ubiquitin-like protein-NEDD8-like 

protein RUB3 
Oryza sativa subsp. japonica 

AHDYK ATP-dependent RNA helicase SrmB Haemophilus influenzae 
AHDYK TonB-dependent heme receptor A Haemophilus ducreyi 
GHDYK UvrABC system protein B Ureaplasma parvum serovar 3 
AHDWK Glycoprotein G Rabies virus 
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Table 4-7: Candidate antigens from the human proteome for HOP-specific motif 

Sequence Protein 
YX[TSA]TLX[WY] 

YISTLPY A-kinase anchor protein 1, mitochondrial 
YNSTLTW Wolframin 
YIATLLY Myelin and lymphocyte protein 
YLSTLRW Cystic fibrosis transmembrane conductance regulator. 
YFSTLDY Cation channel sperm-associated protein 3 
YLATLTW EGF-like module-containing mucin-like hormone receptor-like 2 
YKSTLGY DnaJ homolog subfamily C member 18 
YTTTLDY Protein FAM101B 
YLTTLAW Olfactory receptor 5A1 
YLSTLLY Bardet-Biedl syndrome 12 protein 
YSSTLRW UPF0378 protein KIAA0100 
YQSTLPW Sushi domain-containing protein 5 
YASTLGY Transcription factor SOX-14 
YLSTLYY Sushi, von Willebrand factor type A, EGF and pentraxin domain-

containing protein 1 
YVATLDY Protein transport protein Sec24D 
YVTTLLY 5'-AMP-activated protein kinase subunit beta-1 
 
Table 4-8: Candidate environmental antigens for HOP-specific motif 

  
YX[TSA]TLX[WY] 
Sequence Protein Organism
YVATLVY Dol-P-Glc:Glc(2)Man(9)GlcNAc(2)-PP-

Dol alpha-1,2-glucosyltransferase 
Emericella nidulans 

Y
ibonuclease subunit B 

. 
ereus, 

ETTLTY ATP-dependent 
helicase/deoxyr

Bacillus thuringiensis, B
weihenstephanensis, B. c
B. anthracis 

YGATLRY Protein FimA Bordetella pertussis 
Y ipin synthase ClsA WATLSY Major cardiol Bacillus subtilis 
YNTTLKY Envelope glycoprotein B Human cytomegalovirus 
Y HKU1 LSTLWY Spike glycoprotein Human coronavirus 
YKTTLEY Mitochondrial Rho GTPase 1 Candida albicans 
Y Schizosaccharomyces pombe KTTLAY Mitochondrial Rho GTPase 1 
Y 3  SSTLLY Secretory component protein psh
YRATLNW Glutamyl-Q tRNA(Asp) synthetase Yersinia pestis, Y. 

pseudotuberculosis 
YMSTLTY Alpha-hemolysin Staphylococcus aureus 
YFSTLNY Vacuolar ATPase assembly integral 

membrane protein VMA21 
Cryptococcus neoformans 

Y visiae GSSLQW A1 cistron-splicing factor AAR2 Saccharomyces cere
YTTTLTY Cell wall protein AWA1  
Y ridine(16/17) synthase 

[NAD(P)(+)]  
  

GATLAY tRNA-dihydrou  
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Table 4-8:  Continued  
Sequence Sequence Sequence 
YTTTLTY Haze protective factor 1 Saccharomyces cerevisiae 
YRSTLNY Cysteine-tRNA ligase 1 Tropheryma whipplei 
YESTLNY PAB-dependent poly(A)-specific Scheffersomyces stipitis 

ribonuclease subunit PAN2 
YFTTLTY Tetraacyldisaccharide 4'-kinase Bacteroides vulgatus 
YEATLAY Isopentenyl-diphosphate delta-isomerase Lactobacillus casei 
YTSTLNW Cellulose synthase catalytic subunit Escherichia coli 
YETTLAW Cellulose synthase catalytic subunit 

[UDP-forming] 
Xanthomonas axonopodis 

YVSTLLY TP-dependent dethiobiotin synthetase 
BioD 

Fusobacterium nucleatum 

YQTTLSY Vitamin B12 transporter BtuB Vibrio vulnificus 
YLSTLFY CD2 homolog African swine fever virus 
YGSTLDW UPF0061 protein YdiU Salmonella enteritidis PT4 
YTSTLNW Cellulose synthase catalytic subunit 

[UDP-forming] 
Salmonella typhimurium 

YQATLDY Adenylosuccinate synthetase Serratia proteamaculans 
YDSTLSY  FO synthase Mycobacterium tuberculosis, 

M. bovis, M. leprae, M. 
paratuberculosis 

YPSTLGY Methionin Me aminopeptidase 2 ycobacterium tuberculosis, 
M. bovis 

YPATLEY Queuine tRNA-ribosyltransferase Haemophilus ducreyi 
YFSTLYY L-rhamnonate dehydratase Burkholderia ambifaria, B. 

s, B. phymatum, B.  phytofirman
xenovorans 

YVTTLTY DNA-directed RNA polymerase subunit 
beta 

Arcobacter butzleri 

YDSTLDY  FO synthase Nocardia farcinica 
YSSTLDY FO synthase subunit 1 Methanosarcina acetivorans 
YSSTLEY FO synthase subunit 1 Methanosarcina barkeri, M. 

mazei 
YPSTLRY Xylanolytic transcriptional activator 

xlnR 
Aspergillus terreus 

YGSTLVY Endo-1,4-beta-xylanase A  Butyrivibrio fibrisolvens 
YYSTLLY Protein transport protein SEC23 iculi Encephalitozoon cun
YLSTLYY L-rhamnonate dehydratase Delftia acidovorans 
YLTTLEY RNA-directed RNA polymerase L Newcastle disease virus 
YGSTLSW Probable glutathione S-transferase 

GSTF2 
Oryza sativa subsp. Japonica 
(rice) 

YNTTLLY Bifunctional lycopene cyclase/phytoene haeosphaeria nodorum 
synthase 

P
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v. Enriched sequences from different sorting rounds with the same sample 

nt tool t, the 

list generated by NGS.  Therefore, only 

rt ro ed to a single 

stringent sor rst FACS screen (F1) (PE-3, HOP-2, and HOP-4) were 

evaluated by MEME.  Analysis of the two PE sample comparisons (PE-1 and PE-3) 

f motifs already identifie ithm 

E-1 inked 

creening ( UNE 

algorithm (Figure 4-4).  The less stringently sorted population indicated a strong 

onstrating

 Furthe entified 

by MEME among the F2 enriched sequences for P

ept for the 

otif did not appear among enriched sequences 

ntributed fewer se

m 

3 (KGXGG[A o the 

G motif (Figu

reflected IMUNE-identified motifs 

Although MEME represents an excelle  for motif developmen

algorithm cannot handle the entire sequence 

the top 1000 sequences enriched in the second so und (F2) compar

t (PE-1) or the fi

demonstrated enrichment o d using the IMUNE algor

(Figure 4-9).  The F2 enriched sequences from P  comprised the EBNA-1 l

motif previously identified by ADEPt s Chapter 3) and the IM

enrichment for PE-associated motifs, dem  that sort stringency affected 

isolation of important disease-related peptides. rmore, the first motif id

E-3 represented another major 

IMUNE-identified PE-associated motif (L[YW]XWDXR) (Figure 4-5) exc

C-terminal arginine.  In contrast, this m

for PE-1.  However, this sample co quences to the motif than PE-2 

and PE-3.  Additionally, two clearly related motifs (XGAG and HXXXGAG) fro

the PE-1 analysis and a motif from PE- G]Q) shared similarities t

predominant PE-associated GXXGAGG re 4-6B).   
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Similar to the disease-associated motifs, the algorithm-identified control-specific 

motifs were represented among the F2 enriched sequences from the HOP samples 

(Figure 4-10). The first motifs from HOP-2 ([RK]AXHEX) and HOP-4 

Figure 4-9: Enriched motifs after two rounds of FACS for PE samples.  (A) Evaluating 
enrichment in PE-1 post F2 versus PE-1 post F1 with stringent sort conditions and (B) the 
PE-3 

p-value
A.

 

(XXHD[WFY]K) appeared related and shared similarities with the [PGA]HD[WY]K 

motif (Figure 4-8B).  Additionally, the third motif ([GA][ST]SGXK) from the HOP-

2 analysis was near identical to the HOP-specific motif comprised of the largest 

B.

post F2 population compared to the F1 population yielded PE-enriched motifs.   



 

number of sequences ([GA][ST]SGXK) (Figure 4-8A).  The second motif 

(Y[DSN]T[SA]PR) from the HOP-4 analysis exhibited weak similarities to the third 

algorithm-identified control motif (YX[STA]TLX[WY]) (Figure 4-8C).       
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This comparison analysis between two rounds of sorting the same sample did not 

take into account disease- versus control-associated motifs.  Therefore, some of the 

different motifs identified may be ubiquitously represented and enriched across PE 

Figure 4-10: Enriched motifs after two rounds of FACS for HOP samples.  Direct 
comparisons of peptide observations were made between the second round and the first
round of FACS for (A) HOP-2 and (B) HOP-4.   
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and HOP.  This explains the presence of certain motifs among enriched sequences 

(e.g., EXNRL, WD[NDS]VXK, [ST]NTXK) that did not appear as highly PE- or 

HOP-enriched when using IMUNE.  However, these results demonstrated that 

multiple approaches revealed similar motifs enriched in PE and HOP samples. 

D. Discussion 

In this study, we demonstrated that NGS enables in-depth characterization of an 

individual’s antibody binding repertoire. Specifically, we profiled the binding 

specificities of the circulating antibody repertoire in PE and HOP samples.  By 

identifying PE- and HOP-associated motifs, we provide further evidence of an altered 

immune response among PE patients.  Importantly, in this analysis, we re-identified 

the viral antigen (EBNA-1)-linked motif from previous work (Chapter 3).  This 

serves to co-validate the reproducibility of this motif using a different method and the 

ability of the IMUNE algorithm to identify disease-associated motifs.   

We applied multiple methodologies to characterize differences in antibody 

binding specificities between PE and HOP individuals.  Other similar studies have 

focused on the most repeated sequences identified in the library population.208 

However, different conditions unrelated to binding could account for increased 

representation among library members.  For example, it has been shown that the 

amplification process between selection rounds with phage greatly reduces the 

 

peptides to one for generating the statistical

diversity.207  Instead, for IMUNE, we normalized all observations of the specific

ly enriched patterns, which prevents any 

inappropriately higher sequence repeats from skewing the motifs due to undesired 

issues, such as PCR bias or improved cell growth/expression.  We hypothesized that a 
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given sequence need only be considered once, since numerous unique peptide 

sequences should comprise important motifs.  A similar extension of this was applied 

to identify human-derived peptides associated with disease from a phage displayed 

library.183  To characterize the enriched peptides, we compared two rounds of sorting 

from the same patient sample.  Thus, the inherent biases, such as cell growth and 

PCR, should be present in both rounds, accounting for these undesired issues.  

Evaluating enriched sequences between a second and third round identified low 

nanomolar affinity binders from a DNA aptamer library. Similarly, the most highly 

enriched peptides corresponded to the motifs identified from the IMUNE algorithm, 

highlighting the skewed antibody response.     

While we re-identified the previous EBNA-1 linked motif (KXXXC[IVL]GCK) 

(Chapter 3), we also discovered further differences between the antibody repertoires 

present in PE and HOP individuals.  One of these motifs (GXXGAGGG) represents a 

previously identified immunodominant region of EBNA-1.   This provides further 

support for an increased antibody response towards this viral antigen among PE 

patients compared to HOP (Chapter 3).  Moreover, the previously described methods 

that depleted peptides binding to HOP-associated antibodies (Chapters 2 and 3) 

would hinder identification of this motif due to the likely presence of this specificity 

among HOP.  This motif was also identified in a region of capsid proteins from 

parvovirus B19, which was previously implicated in PE for a possible molecular 

mimicry mechanism leading to the agonistic antibodies against the angiotensin II type 

1 receptor (AT1-AAs).   Another strong, PE-associated motif (L[YW]XWDXR) 

shared similarities with a number of human proteins, including insulin-like growth 

211  

217

135
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factor receptor 1 and prostaglandin FP2α receptor.  Interestingly, the insulin-like 

growth factor system appears to play a role in fetal growth, while alterations are 

associated with growth restriction218 and PE patients exhibit reduced levels of 

insulin-like growth factor.219  Additionally, evidence suggests the prostaglandin FP2α 

receptor is expressed in the umbilical vein and potentially mediates the contraction 

effect through the agonist, prostaglandin FP2α.220  Umbilical endothelial cells 

produce increased prostaglandin FP2α when exposed to plasma from women with PE 

compared to healthy pregnancies.221  Effectively linking the candidate autoantigen(s) 

to this motif will require further investigation of antibody binding activity, as shown 

in Chapter 3.  However, the additional PE-associated motifs identified through this 

new methodology enhance our understanding of the altered antibody response in PE 

patients. 

To complement the PE-associated motifs, the discovery of HOP-associated motifs 

provides additional evidence of an altered immune response.  These motifs exhibit 

similarities with a variety of viruses and human pathogens.  Interestingly, several hits 

with the YX[TSA][TS]LX[WY] motif included protein homologs (e.g., 

mitochondrial Rho GTPase 1 and FO synthase) found in different organisms, 

potentially indicating a ubiquitous specificity.  The large diversity of candidate hits, 

especially for the YX[TSA][TS]LX[WY] motif, highlights the need for directed 

evolution (Chapter 3) to expand the motifs and reduce the number of similar 

proteins.  While these antibody specificities may still be present among PE patients, 

their presence appears reduced with respect to the HOP samples or relevant disease-

associated motifs.  A significant reduction in antibody binding activity to these HOP-
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associated peptides accompanied by increased binding to PE-associated peptides 

could yield an accurate diagnostic.  A previous study included a panel of serum 

peptides with increased and decreased levels in PE compared to HOP that exhibited 

strong diagnostic accuracy.205 Furthermore, understanding the relevant antigens these 

PE and HOP-associated motifs represent may reveal a pathological role for these 

alterations to the antibody repertoire.   

Our results demonstrate the utility of NGS to characterize antibody binding 

peptides isolated by bacterial display library screening; however, this study evaluated 

a small set of samples.  As with many diseases, PE presentation is very heterogeneous 

and the existence of multiple disease subtypes has been proposed.106  Thus, additional 

samples would provide a more accurate representation of disease diversity and enable 

antibody repertoire profiling for various subtypes (i.e., early-onset, nonproteinuric, 

etc.).  Furthermore, supplemental analysis of enriched peptides between sort rounds, 

such as post F1 compared to single magnetic selection, may indicate the point at 

which the sharpest enrichment occurs.  However, especially important for this 

analysis, a higher degree of oversampling of unique sequences must be achieved to 

guarantee complete sequence coverage.  Despite these potential areas of 

improvement, the in-depth antibody binding profile obtained through NGS identified 

PE- and HOP-associated motifs, providing further insights into the altered antibody 

response in PE.  

 115



 

5. Additional applications of the newly developed AT1 epitope binding assay for 

antibody detection 

 

While agonistic antibodies against the angiotensin II type 1 receptor appear to 

play a role in pre-eclampsia pathology, characterizing the presence of these antibodies 

has been limited by assay throughput.  However, we recently developed a high-

avidity assay that enabled higher-throughput fluorescence-based detection of antibody 

binding to the AT  epitope.  Here, we demonstrate extensions of this epitope specific 

binding assay to evaluate antibody presence in non-pregnant women and a new pre-

eclampsia mouse model. 

binding to the epitope characterized for these AT1-AAs.  This assay 

enables higher-throughput analysis for the presence of AT1 epitope binding 

antibodies.  In comparison, recently developed ELISAs using AT1 expressing cells222 

or the second extracellular loop178 do not indicate the specific binding sequence 

1

A. Introduction 

Pre-eclampsia (PE) is associated with an intensified inflammatory condition190 

and increased autoantibody activity,128-130 including antibodies that bind GPR50 

(Chapter 3).  Additionally, agonistic antibodies against the angiotensin II type 1 

receptor (AT1-AAs) appear to play a role in PE pathology.3  However, detecting these 

antibodies remains difficult, since complex, biologic function based assays such as 

cardiomyocyte beat rate2 and luciferase reporter signal,138 show the greatest 

sensitivity. As previously discussed (Chapter 2),191 we developed a novel assay to 

detect antibodies 
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responsible for the signal.  This is especially important for discerning the PE-

associated AFHYESQ binding antibodies from distinct AT1 receptor binding 

antibody specificities found in other diseases, such as renal allograft rejection.174  

We sought to extend the applications of this assay to determine the presence of 

AT1-AAs in women who have never been pregnant (nulligravid) and a new mouse 

model of PE.  It has been previously shown that non-pregnant normotensive samples 

exhibit reduced levels of AT1 receptor binding antibodies compared to HOP, while 

PE samples demonstrate further increased activity.   Thus, we aimed to further 

characterize this relationship using the epitope specific assay.  Furthermore, recently 

it was shown that injecting pregnant and non-pregnant mice with LIGHT, or tumor 

necrosis factor superfamily member 14, induced symptoms of PE.223  LIGHT is a 

 cytokine that has been associated with autoimmune and 

infl

The previously described AT1 epitope binding assay (Chapter 2)  was applied 

in this study.  A fragment of the characterized AT1 epitope (AFHYESQ) flanked by 

glycine residues to increase flexibility was displayed on bacteria using the eCPX 

178

pro-inflammatory

ammatory conditions.224  The results of this study and others190 provide support 

for an intensified inflammatory condition associated with PE.  Thus, we sought to 

evaluate the presence of AT1 epitope binding antibodies in this new mouse model.  

Our results confirm a relative increase in AT1 epitope antibody binding activity from 

nulligravid to HOP and furthermore to PE samples.  Additionally, LIGHT-injected 

pregnant and non-pregnant mouse samples exhibited increased AT1 epitope binding 

activity. 

B. Materials and Methods        

191
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scaffold.90   Samples from women who had never been pregnant (nulligravid) (n=21) 

and pregnant and non-pregnant mice were provided from the University of Texas, 

Houston Medical School.  Mouse model development and experiments were 

con

d not 

expressing peptide.  Statistical analysis of Mann-Whitney U test and ANOVA with 

Tukey’s multiple comparisons test was conducted using Prism4 or Prism6      

ducted by collaborators at the University of Texas, Houston Medical School.  To 

evaluate binding to antibodies present in human plasma samples, antibody fractions 

were enriched through ammonium sulfate precipitations and labeled with biotin.  

Incubating antibody fractions (1 μM) with the bacterial displayed fragment followed 

by diluted (1:333) streptavidin-conjugated R-phycoerythrin (SA-PE) (Invitrogen) 

enabled binding analysis by flow cytometric fluorescence.  Binding of the nulligravid 

samples was compared to previously analyzed PE (n=45) and healthy-outcome 

pregnancy (HOP) (n=48) samples (Chapter 2).191  Binding to antibodies present in 

mouse model samples utilized unprocessed diluted plasma (1:100) in PBS.  After 

incubating AT1 epitope expressing bacteria with mouse plasma, labeling steps 

proceeded with reagents diluted in PBS with 0.1% BSA.  A biotin-conjugated mouse 

IgG specific secondary (1:200) (Vector Labs) was followed by incubation with SA-

PE to fluorescently tag the antibodies bound to the AT1 epitope, enabling analysis by 

flow cytometry.  All antibody binding activity was measured in duplicate and 

normalized by background activity with a negative control, eCPX scaffol

C. Results and Discussion 

Using the AT1 epitope assay to detect antibodies demonstrated that nulligravid 

(n=21) samples exhibited similar binding activity as background.  In comparison to 
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previously evaluated PE (n=45) and HOP (n=48) samples (Chapter 2),191 antibody 

binding activity in nulligravid samples was significantly reduced (Figure 5-1).  This 

agrees with previous results using the second extracellular loop of the AT1 receptor in 

an ELISA.178  In comparison, the nulligravid binding activity observed with the EB15 

and GPR50 fragments appeared similar to HOP but significantly lower than the PE 

activity (Figure 3-10).  Our results indicate that healthy pregnancy is associated with 

increased AT1-AA production, while patients with PE experience further escalations 

in antibody production.  Previous studies have demonstrated increased levels of pro-

inflammatory cytokines and decreased anti-inflammtory cytokine (IL-10) in PE 

compared to control.190  While reduced compared to PE, the pregnant control samples 

exhibited increased inflammatory cytokines compared with non-pregnant samples.  

Thus, inflammation could lead to increased autoantibody production with further 

intensity in PE resulting in aberrant levels.      

p <0.0001

p <0.01

p <0.01

 

 
Evaluating antibody binding to the AT1 epitope in non-pregnant mouse samples 

revealed a dynamic increase in binding activity upon infusion of LIGHT for 14 days 

(n=8) compared to saline (n=7) (Figure 5-2).  In contrast, a five day infusion (n=8) 

Figure 5-1: Antibody binding to the AT1 epitope is significantly reduced in nulligravid (NG) 
samples.  Binding activity compared to previously analyzed PE and HOP.  p – values 

hitney U test  represent results from Mann-W
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did not significantly differ from saline injection.  Interestingly, injecting a tissue 

transglutaminase (tTG) blocker (n=5), cystamine, prevented this signal of antibody 

production, indicating tTG involvement.  This builds upon previous observations 

indicating a role for tTG in PE pathology.225  PE patients exhibited increased levels 

of tTG while cystamine reduced antibody mediated hypertension and proteinuria in 

the adoptive transfer mouse model.  Furthermore, a mouse knockout of the pro-

inflammatory cytokine IL-6 (IL-6-/-) infused with LIGHT (n=3) did not exhibit 

enhanced binding activity, instead showing similar levels to saline injection.  

Similarly, a conditional knockdown of hypoxia-inducible factor 1 alpha, HIF-1a, in 

endothelial cells (HIF-1a v-cad cre) did not exhibit increased antibody production 

upon LIGHT infusion (n=6).  These results indicated that increased autoantibody 

production by LIGHT was mediated by IL-6 and HIF-1a.   

 

 
While non-pregnant mice experiencing a 14 day infusion exhibited increased AT1 

Figure 5-2: LIGHT affects plasma antibody binding activity to the bacterial displayed AT1
epitope in non-pregnant mice. p-values indicate results from Tukey’s multiple comparisons
test following ANOVA 

epitope binding activity, pregnant mice could not be subjected to the same level of 
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LIGHT injection without pregnancy loss.  Instead, pregnant mice had been injected 

with LIGHT at gestational day 13.5 and 14.5 of pregnancy.  Despite this reduced 

injection rate, the mice treated with LIGHT (n=13) demonstrated increased AT1 

epitope binding activity compared to saline injections (n=8) (Figure 5-3).  This 

apparent antibody binding activity mediated by LIGHT injection indicates potential 

placental involvement to initiate a similar response as the 14 day infusion in non-

pregnant mice.  Similarly, treatment with cystamine (n=4) reduced the antibody 

binding activity observed, although this result was not statistically significant due to 

increased variance.  However, mice treated with HIF-1a siRNA (small interfering or 

silencing RNA) and LIGHT (n=4) exhibited significantly reduced AT1 epitope 

binding.  Thus, results from pregnant mice reflect similar AT1 antibody production 

responses to LIGHT as the non-pregnant mice despite reduced injection.  

p < 0.03
p < 0.03 p < 0.05

 
Figure 5-3: In a pregnant mouse model, LIGHT induces plasma antibody binding to the 
bacterial displayed AT1 epitope. p-values indicate Mann-Whitney U test results  

Our results demonstrate the utility of this AT1 epitope binding assay for the 

detection of AT1-AAs in various samples.  The significantly reduced antibody 

binding to nulligravid samples confirms an epitope specific change in antibody 
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production previously shown with the full-length second extracellular loop.178  

Furthermore, we have shown increased antibody binding to the AT1 epitope in 

response to LIGHT in non-pregnant and pregnant mice that involves tTG, IL-6, and 

HIF-1a.  Despite reduced LIGHT injection compared to non-pregnant mice, the 

pregnant mice exhibited a similar pattern of increased antibody production in 

response to LIGHT, pointing towards placental involvement.  Overall, these mouse 

model results indicate a relationship between the inflammatory condition associated 

with PE and autoantibody production.    
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6. Conclusions 

While various biomarkers have been proposed for pre-eclampsia (PE) diagnosis, 

few have demonstrated accuracies required for clinical utility.  In an effort to fill this 

need, we focused on the circulating antibody repertoire and characterized antibody 

specificities in PE (Chapter 2).  Here, bacterial displayed peptide library screening 

identified PE-specific antibody-detecting peptides.  Using differently labeled 

antibody fractions enriched from plasma samples of PE and healthy-outcome 

pregnancies (HOP), multi-parameter cell sorting isolated PE cross-reactive and 

specific peptides.  We also developed a peptide display-based assay sensitive enough 

to detect antibody binding to the angiotensin II type 1 receptor (AT1) epitope without 

using complex biologic function based assays.2,138 This enables higher-throughput 

evaluation of AT1-AA activity, which was utilized to perform AT1 epitope specific 

analysis of antibodies present in a mouse model of PE (Chapter 5).   Furthermore, 

depleting antibodies binding this AT1 epitope verified that library screening identified 

antibody biomarkers present in PE patients distinct from known AT1-AAs.  A panel 

of antibody-detecting peptides, representing different antibody specificities, achieved 

strong diagnostic accuracy (80%) with high specificity (95%) in a set of cross-

validated training samples.  Importantly, we verified the 80% overall diagnostic 

accuracy from training in a full validation set of new samples, which differs from 

previous studies in the lab using machine learning algorithms.153,160  This represents 

A. Perspectives 

i. Developing an antibody-detecting diagnostic for pre-eclampsia 
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an important step because many classification algorithms over-fit the training data.  

Combining the peptide panel with traditional diagnostic criteria of proteinuria and 

ulted in improved detection of PE patients that experienced severe 

sym e reactivity 

negatively correlated with platelet levels in PE patients, indicating a relationship 

between antibody binding and PE symptoms.  This study provided evidence for an 

altered antibody response in PE that resulted in the development of an antibody-

detecting peptide array to differentiate PE from HOP.  However, the characterized 

motifs did not enable unambiguous discovery of autoantigen or potential 

environmental trigger antigen.    

hypertension res

ptoms or delivered early (<37 weeks’ gestation).  Furthermore, peptid

ii. Identifying disease-associated antibody binding targets 

While discovery of disease-associated antibodies enabled development of a PE 

classifier, the identity of the corresponding antigen(s) could improve understanding 

of the antibody’s role in PE and elucidate potential therapeutic targets.  Furthermore, 

rather than the mimicking library peptides, utilizing whole or partial antigen(s) to 

detect antibody presence may enhance diagnostic accuracy of the assay.  Instead of 

antibody fractions, unprocessed, diluted plasma may better replicate the native 

antibody binding environment leading to improved motifs that more closely relate to 

protein targets.  Therefore, a second study screened against unprocessed plasma to 

discover a PE-associated binding motif using a significantly altered screening method 

and characterized antibody binding targets (Chapter 3).  Importantly, our results 

demonstrate a novel case for molecular mimicry operating near the time of delivery 

by which a PE-associated IgG1 antibody cross-reacts with a viral antigen (EBNA-1) 
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and a human G protein-coupled receptor (GPR50).  While not a new concept, 

discovery of novel molecular mimicry mechanisms without depending on prior 

knowledge of disease pathology remains difficult.  Moreover, this marks our first 

successful venture to link a library peptide motif to previously uncharacterized 

antibody binding protein targets using bacterial display.  In characterizing this 

molecular mimicry interaction, we provided additional evidence suggesting that 

directed evolution of disease-associated motifs improves immune activity profiling, 

as previously shown in a celiac disease study.189  Through directed evolution, PE-

associated peptide binding activity increased and the correlation improved between 

library peptide reactivity and the ELISA signal observed for antibody binding to the 

identified target antigen, EBNA-1.  The EBNA-1 derived fragment (EB15) 

sequestered antibody binding activity to the GPR50 fragment and the full-length 

protein expressed in cells.  Furthermore, results indicated GPR50 expression in a 

trophoblast model cell line and placental tissue.  As an IgG1 subtype, this antibody 

can activate the complement system; therefore, antibody binding to this placental 

protein may contribute to the increased complement deposition observed.   

While additional findings, such as inhibition of the melatonin receptor 1,  may link 

GPR50 to PE-related disturbances, it remains unclear if aberrant antibody binding to 

this placental protein or other similar proteins causes any PE-related effects.  

However, since the EB15 peptide inhibited antibody binding to GPR50 in vitro, it 

might effectively block any aberrant antibody binding in vivo as well.  An adoptive 

transfer model, similar to the study on AT1-AAs in pregnant mice,  could provide 

119,122,173

198

3
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insights into these questions of PE pathology and effective blocking activity for this 

GPR50 and EBNA-1 cross-reactive antibody.    

iii. Applying next-generation sequencing to profile individual antibody repertoires 

highlights alterations in PE 

In addition to the EBNA-1 linked specificity (Chapter 3) we sought to identify 

new motifs by characterizing individual antibody repertoires of PE and HOP 

(Chapter 4).  Using next-generation sequencing (NGS) enables higher resolution of 

individuals’ antibody specificities that can be cross-examined between healthy and 

disease samples.  Therefore, we developed and applied a unique methodology to 

profile individual patients’ antibody-binding repertoire using NGS to analyze 

sequences obtained from bacterial displayed library screening with PE and HOP 

samples (n=4, each).  Distinct individuals’ peptide encoding DNA sequences were 

isolated, PCR amplified, and uniquely barcoded to enable pooling.  After NGS, a 

computational algorithm (IMUNE) developed in the Daugherty Group at UCSB 

identified peptide patterns enriched separately in PE and HOP by cross-examining the 

individual repertoires.  Analysis of algorithm-derived patterns led to PE- and HOP-

associated motifs, which were confirmed using a second method of evaluating 

enriched sequences from different rounds of screening.  Thus, multiple approaches 

revealed similar alterations to the antibody repertoire.  Importantly, the previously 

characterized viral antigen (EBNA-1)-linked motif (KXXXC[VLI]GCK) was 

identified by this new method.  Re-identifying this motif validates the algorithm’s 

ability to discover disease-associated motifs and further demonstrates the motif’s 

reproducibility using various methods.  Another highly represented PE motif 
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(L[YW]XWDXR) shared similarities with a number of human proteins.  

Interestingly, a third PE-associated motif shared strong similarities to the 

immunodominant region of EBNA-1,217 providing support for increased antibody 

binding activity against this viral antigen in PE.  Only one of the HOP-associated 

motifs yielded a reasonable number of hits (<20) for antigen fragment analysis; 

however, in general, these HOP-associated motifs shared similarities with a number 

of human pathogens.  The new motifs identified by this approach would benefit from 

directed evolution to characterize the candidate antigens they represent.  In general, 

this NGS-enabled in-depth motif analysis by cross-examination and peptide 

enrichment provides further evidence of a skewed antibody response in PE patients 

compared to HOP.   

iv. Overall conclusions 

Taken together, the results from these studies demonstrate changes in the 

circulating antibody repertoire in patients with PE compared to HOP.  These 

alterations enabled development of an antibody-detecting peptide-based classifier, 

achieving a validated accuracy of 80% for this heterogeneous disease.  Moreover, 

motif characterization through three methodologies revealed a skewed antibody 

response, resulting in PE- and HOP-associated binding motifs.  Thus, we have 

provided supporting evidence for an altered immune response in PE.  Several 

observations point to an aberrant immune response, including dysregulated 

complement system,118,119,122,173 altered levels of B-cells126 and T-cells,123,124 and an 

intensified inflammatory condition.190  Interestingly, the AT1-AA detection results 

from the LIGHT injected mouse model of PE provide a link between the increased 
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inflammatory condition and antibody production.  As researchers continue to 

investigate the immunological alterations in PE, these different components, 

including aberrant autoantibody binding activity, may reveal insights into PE 

etiology.   

A significant contribution of this work is the demonstration of unbiased antibody 

binding target identification.  Specifically, library screening, directed evolution, and 

candidate antigen fragment activity analysis resulted in the characterization of a new 

example of molecular mimicry leading to antibody binding to human proteins.  While 

previous antigen discovery efforts were aided by pre-existing knowledge of disease 

etiology,189 our results emphasize the utility of peptide library screening for de novo 

identification of antigenic targets. Here, we applied this process to a PE-associated 

antibody specificity; however, this can be extended to a variety of diseases.  

Furthermore, we have demonstrated the powerful depth of sequence coverage 

provided by NGS, which will be an important tool for future applications of antibody 

repertoire profiling.  Combining individual repertoire profiling by NGS with directed 

evolution strategies will enable investigation of multiple disease-associated motifs in 

parallel, revealing broad insights into disease etiology.        

B.  Future Directions 

A major impact of these discoveries involves the new investigation opportunities 

they enable.  Our results indicate a molecular mimicry mechanism acting in PE near 

the time of delivery in which an antibody cross-reacts with the viral antigen EBNA-1 

and human protein GPR50.  Since mice also express GPR50 in the placenta,192 an 

adoptive transfer model, similar to the AT1-AAs investigation by our collaborators,3 

 128



 

can investigate how this antibody activity might play a role in pathology.  To focus on 

this antibody specificity, GPR50/EBNA-1 binding antibodies could be purified from 

PE patients.  Purified antibody would be injected into pregnant mice with or without 

the blocking peptide EB15.  The minimum concentration of peptide required to fully 

blo

eady associated with PE.  

Therefore, extending the insights gained from our results into an in vivo mouse model 

could provide evidence of a pathological role for this newly identified PE-associated 

antibody specificity.   

In addition to this viral antigen-linked antibody specificity, NGS analysis of 

individual antibody repertoires identified PE and HOP-associated motifs.  However, 

these motifs often yielded a large number of hits from BLASTp or ScanProsite 

ck antibody binding to the GPR50 fragment was ~4x10-10 M, which means the 

antibody binding sites were largely saturated at this point.  Based on a bivalent 

antibody and the 1:200 plasma dilution performed for this assay, this yields roughly 

4x10-8 M of antibody in circulation.  Since we don’t know the precise affinity of the 

antibody for GPR50 or EB15, this serves as a rough estimate of the antibody 

concentration.  Based on a mouse blood volume of 2 mL, ~12.5 µg of purified 

antibody should be injected to obtain a comparable concentration.  In comparison, the 

AT1-AA adoptive transfer model injected ~20 µg of purified antibodies into pregnant 

mice.3  Taking several measurements, including blood pressure, urinary protein, and 

levels of melatonin, sFlt-1, and PlGF, will determine potential antibody effects and 

whether EB15 administration attenuates these effects.  Furthermore, evaluating the 

kidney or placenta for complement deposition173 might demonstrate this antibody’s 

role in the complement system dysregulation118-122,173 alr
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searches.  Building upon previous success with directed evolution (Chapter 3),189 

these motifs can be further evolved to expand the epitope while increasing cross-

reactivity and specificity.  Applying this directed evolution strategy to the PE-

associated motif L[YW]XWDXR may enable identification of new PE-related 

antibody binding targets.  Especially interesting would be the discovery of an 

antibody specificity that is significantly reduced or lacking in PE patients.  A similar 

condition has been shown in children with recurrent infections that exhibit normal 

levels of total IgG but reduced activity towards Haemophilus influenzae type b, 

despite immunization.226  Combining measurements of differential antibody binding 

activities (reduced and enhanced) may improve diagnostic accuracy of an antibody-

detecting peptide panel.  For example, a profile of 19 increased/decreased serum-

derived peptides yielded a classifier with 93% and 90% accuracy in training and 

validation sets, respectively.205  Evolving these motifs will enable discovery of 

additional PE-associated alterations in antibody activity towards specific antigens.  

Characterizing these specificities could improve understanding of disease etiology 

and diagnostic performance of an antibody-detecting panel.  

Although we have demonstrated the benefit of a diagnostic tool near the time of 

delivery to detect PE, especially those with non-traditional PE presentation (i.e., no 

proteinuria), a predictive test is highly sought after.   Recently, 47 biomarkers were 

evaluated for PE identification during the first trimester with a large cohort of 5623 

pregnant women.146  However, the study showed that molecular biomarkers did not 

significantly improve predictive performance compared to clinical risk factors alone 

for all PE.  Combining the ratio of cystatin C/PlGF with clinical risk factors resulted 
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in moderate predictive accuracy for early-onset PE in the validation set with 44% 

sensitivity at 95% specificity (AUC=0.73).  The low prevalence of early-onset PE 

(0.5% in the study) limits this model’s clinical application because for every one 

correctly diagnosed early PE there would be 23 false-positives.146  Thus, accurate 

prediction of PE during the first trimester remains elusive.  In an effort to fill this 

unmet need, samples obtained during the first trimester from women destined for PE 

and HOP can be screened for antibody markers.  After dividing the samples into 

discovery and validation sets, the discovery samples will be screened by individual 

antibody repertoire analysis with NGS followed by motif evolution.  Reactivity 

analysis with library peptides and antigen fragments in the validation set will provide 

preliminary performance statistics.  Given the overall success of our bacterial 

displayed library screening in PE near delivery191 and celiac disease,153,160,189 we 

hypothesize that first trimester screening of PE and HOP samples will yield predictive 

antibody biomarkers for PE detection.        

In addition to these PE-related future studies, different methodological advances, 

such as discontinuous or structural epitope discovery, remain unexplored.  Our 

studies on antibody epitope profiling have primarily focused on identifying linear 

epitopes or potentially, a linear section of a discontinuous epitope.  A substantial 

portion of all antibody epitopes are rather discontinuous, comprising residues from 

sections of greater than 40 amino acids.227  In fact, some estimate that peptides of 7-

15 amino acids in length from linear sections of candidate antigens recover all major 

functional residues only ~50% of the time.  Although it may not be important to 

capture all functional residues to retain activity, an understanding of the complete 
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epitope may be desired.  Other studies have utilized pre-existing knowledge of 

discontinuous epitopes to refine the residues involved from discontiguous protein 

sections through co-incubation73 or fusion.66  However, the biterminal eCPX scaffold 

enables conveniently linked co-expression of different peptides.  Therefore, an 

identified disease-related motif or specific peptide can be expressed on one terminus 

with a peptide library expressed on the other.  Screening for cooperatively enhanced 

binding may reveal additional functional residues stemming from a discontinuous 

section.  Identifying important functional residues of a discontinuous epitope may 

help boost antibody detection sensitivity.  Moreover, in combination with 

discontinuous epitope prediction tools167 different candidate targets can be 

investigated for alignment with these discontinuous motifs.  In addition to probing for 

linear sections of discontinuous epitopes, we can search for structural mimotopes with 

different library constructions.  As previously discussed, a library designed to include 

multiple disulfide constraints affected the apparent affinity of identified antibody 

binders (Chapter 1).  We hypothesized that the structure imparted by these disulfide 

bonds enables selection of high affinity structural mimotopes.  While these might be 

difficult to relate to an antigenic target, the efficacy of these peptides as diagnostic 

reagents has not been investigated.  For direct comparison, the same patients used for 

screening in the ADEPt189 method (Chapter 3) that yielded the EBNA-1/GPR50 

motif can be screened against this multiply-constrained peptide library.  Since 

screening the fully randomized library naturally identified a disulfide-constrained 

motif, it will be interesting to compare the motif results from screening a library that 
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already includes such constraints.  These different library construction approaches 

could yield novel discontinuous and structural epitopes/mimotopes.            

While applying NGS to isolated peptides from library screening profiles the 

binding repertoire, this high-throughput technology has also provided insights into the 

antibody sequences themselves.  Specifically, sorting and sequencing individual 

antibody producing plasmablasts provides a profile of the current immune response.  

This group of cells typically represents a small percentage (<1%) of circulating B-

cells.  However, recent exposures (e.g., infection) or chronic immune responses (e.g., 

autoimmune diseases) increase the presence of these plasmablasts (>30% in 

infections).213  Methodological advances have enabled sequencing of the entire 

variable region of the antibodies produced by these plasmablasts.51,52,213  Combining 

these variable regions with constant domains facilitates production of human derived 

full-length antibodies in the lab.  However, the binding specificities of these 

antibodies must then be determined.  Thus far, studies of plasmablast-derived 

antibodies have relied upon pre-existing knowledge to probe protein microarrays.  

However, our technology represents an invaluable tool for profiling antibody binding 

specificities.  Specifically, by screening bacterial displayed peptide libraries against 

these human-derived antibodies, their individual binding specificities can be 

characterized.  As previously demonstrated, searching the identified binding motifs in 

protein databases yields candidate antigens.  While these candidate hits can be 

evaluated individually by bacterial displayed fragment analysis, protein/peptide 

microarrays based on these unbiased search results can also be constructed and 

probed.  Therefore, combining NGS-based antibody sequencing with bacterial 
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displayed peptide library antibody profiling will provide a direct link between the 

antibody species and the specific epitope to which it binds.   

Through this work, we have established the powerful utility of bacterial displayed 

peptide library screening to profile the antibody repertoire.  The results from this 

work demonstrate this tool’s application for diagnostic development and the ability to 

gain insights into disease etiology through antibody target identification.  Thus, this 

impactful technology provides new ways to expand our knowledge of the changes to 

the circulating antibody repertoire in response to disease.   
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