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Abstract

Search for supersymmetry in proton-proton collisions at

8 TeV in events with a single lepton, large jet multiplicity,

and multiple b jets

Paul B. Geffert

This thesis describes a search for supersymmetry in events with a single lep-

ton, large jet multiplicity, multiple b jets, and significant transverse momentum

imbalance in 19.3 fb−1 of pp collisions at
√
s = 8 TeV recorded in 2012 by the

Compact Muon Solenoid experiment at the Large Hadron Collider. This signature

targets strongly produced massive gluinos which decay through top squarks. The

observed yields in the signal regions, spanning a broad range of event kinematics,

agree with the Standard Model background predictions, which are obtained with a

heavy reliance on data control samples. The results of this search are interpreted

as cross section limits in the context of simplified supersymmetric scenarios in

which gluinos are pair produced and cascade decay to a four top quark, two light-

est neutralino final state. By comparing these limits with gluino pair production

cross sections, gluinos with mass less than 1 TeV are excluded for low lightest

neutralino masses, largely independent of top squark mass.
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Chapter 1

Introduction

The primary goal of physics is to explain the universe around us. To this

end, the field of particle physics strives to identify and describe the fundamental

particles of nature and their interactions with one another. Beginning with the

discovery of atoms in the 19th century, particle physics has continued to probe

smaller and smaller distance scales while discovering a plethora of particles. These

findings are encapsulated in the Standard Model of particle physics, a theory

describing all the known fundamental particles and forces, with the exception of

gravity. First developed roughly half a century ago, it is an extremely well-tested

theory.

Despite its great success, the Standard Model is not without its issues. For

instance, it has no explanation of the dark matter inferred from astronomical

observations or the extreme disparity in strength between gravity and the other

fundamental forces, known as the Hierarchy Problem. These problems, along with
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the theory of Supersymmetry (SUSY) which could provide a solution to them, are

discussed in Ch. 2. Various theoretical considerations dictate that current particle

physics experiments may be able to probe the existence of Supersymmetry.

To probe physics at small scales, experiments utilize extremely large particle

accelerators which collide particles at high energy. The higher the energy, the

shorter the distance scale that can be probed. The world’s highest energy particle

collider is the Large Hadron Collider (LHC) located at the European Organization

for Nuclear Research (CERN) near Geneva, Switzerland. When protons collide at

the LHC, much of the energy of the collision is converted into matter, resulting in

the production of many particles. To effectively exploit these collisions for physics,

a detector is positioned next to and surrounding the collision point to measure

the particles that are produced. One such detector is the Compact Muon Solenoid

(CMS), and is located along the LHC ring near the small town of Cessy, France.

Together, the LHC and CMS, which are described in Ch. 3, provide data in which

a broad range of SUSY models can be tested. However, before this can be done,

the raw signals from the CMS detector must be reconstructed into meaningful

objects for physics analysis, as described in Ch. 4.

In order to avoid excessive fine-tuning of the SM parameters, as discussed in

Sec. 2.3.3, it is likely that the production of SUSY particles at the LHC would

result in multiple top quarks in the final state. As described in Ch. 5, this thesis
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targets that signature by searching a sample of events with a single lepton (electron

or muon), multiple b quarks, and large transverse momentum imbalance (E/T).

The paper describing this analysis can be found in [1]. Similar but earlier searches

are documented in [2, 3]. Other recent published SUSY searches using a single-

lepton signature can be found in Refs. [4, 5, 6, 7, 8, 9].

The background estimation in this search is described in Ch. 6. The dominant

background comes from events with exactly one promptly produced lepton in the

final state and is estimated using the momentum spectrum of charged leptons with

the procedure first described in Ref. [10]. The next-largest background comes from

events with tau-leptons, which is estimated by using simulation-derived templates

to emulate tau decays in various control samples. The combined results of the

background estimates are shown alongside the observed yields in data in Ch. 7.

The results of this analysis are interpreted in the context of a set of simplified

SUSY scenarios in Ch. 8. Based on the compatibility of the background predic-

tions with observations, upper limits are placed on the masses of the relevant

SUSY particles in these scenarios. Finally, Ch. 9 concludes the discussion.

3



Chapter 2

Theory

2.1 Standard Model of Particle Physics

The Standard Model (SM) of particle physics describes the fundamental par-

ticles of nature and their interactions via the strong, weak, and electromagnetic

forces. It is a quantum field theory with gauge symmetry given by the group

SU(3)C × SU(2)L × U(1)Y . The local preservation of these gauge symmetries

is what gives rise to these forces. The SU(3)C group, where C represents color

charge, corresponds to the strong force, modelled by the theory of Quantum Chro-

modynamics (QCD) [11, 12, 13]. The SU(2)L×U(1)Y group, where L represents

weak isospin which only couples to left-handed fermions and Y represents weak hy-

percharge, corresponds to the electroweak (EW) force. The EW force is described

by the unification of the weak and electromagnetic (EM) forces by Glashow, Wein-

berg, and Salam [14, 15, 16]. Each of the fundamental forces contained in the SM,
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whose interactions with the constituents of matter are briefly described in this

section, plays a critical role in the measurement detailed herein. A more complete

description of the standard model can be found in [17, 18]. The gravitational

force, which is too weak to be relevant in fundamental particle interactions at the

scales currently accessible to experiment, is not included in the SM.

The Lagrangian describing the standard model is

LSM =− 1

4
Gµν ·Gµν − 1

4
Wµν ·W µν − 1

4
BµνB

µν

+ Lγµ
(
i∂µ − g

1

2
τ ·Wµ − g′

Y

2
Bµ

)
L

+ Eγµ
(
i∂µ − g′

Y

2
Bµ

)
E

+Qγµ
(
i∂µ − g

1

2
τ ·Wµ − g′

Y

2
Bµ − gs

1

2
λ ·Gµ

)
Q

+ Uγµ
(
i∂µ − g′

Y

2
Bµ − gs

1

2
λ ·Gµ

)
U

+Dγµ
(
i∂µ − g′

Y

2
Bµ − gs

1

2
λ ·Gµ

)
D

+

∣∣∣∣(i∂µ − g1

2
τ ·Wµ − g′

Y

2
Bµ

)
φ

∣∣∣∣2 − V (φ)

−
(
yLLφE − yUQiτ2φ∗U + yDQφD + hermitian conjugate

)
,

(2.1)

where the τ matrices are the generators of SU(2)L and the λ matrices are the

generators of SU(3)C . The gauge and matter field content of the SM is summa-

rized in Tables 2.1 and 2.2, respectively. These tables show the representations of

these fields in the SU(3)C and SU(2)L groups, as well as the weak-hypercharge

quantum number in the U(1)Y group.
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Table 2.1: The gauge field content of the SM. The Group column indicates which
gauge group is responsible for the field. The representations of these fields in the
SU(3)C and SU(2)L groups, as well as the weak-hypercharge quantum number in
the U(1)Y group are also shown.

Field Group (SU(3)C , SU(2)L, U(1)Y )

B boson U(1)Y (1,1, 0)

W bosons (W ) SU(2)L (1,3, 0)

Gluons (G) SU(3)C (8,1, 0)

Table 2.2: The matter field content of the SM. The representations of these
fields in the SU(3)C and SU(2)L groups, as well as the weak-hypercharge quantum
number in the U(1)Y group are shown. The quark and lepton fields each have
three generations, of which only the first generation is shown. A subscript L (R)
means the particle is left(right)-handed.

Field Symbol (SU(3)C , SU(2)L, U(1)Y )

Leptons L = (νe,L eL) (1,2,−1/2)

E = eR (1,1,−1)

Quarks Q = (uL dL) (3,2, 1/6)

U = uR (3,1, 2/3)

D = dR (3,1,−1/3)

Higgs φ = (φ+ φ0) (1,2, 1/2)

The Standard Model is one of the most thoroughly tested scientific theories,

and is in agreement with nearly all experimental data. For example, a description

of electroweak precision tests can be found in Ref. [19], strong interaction tests

in Ref. [20], and incredible agreement between experiment and EM theory for the

electron anomalous magnetic moment to seven orders of magnitude in Ref. [21].

The standard model has also successfully predicted the existence of multiple par-
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ticles, such as the Z boson and top quark, before their discovery [22, 23]. More

recently, the observation of a new boson with mass of roughly 125 GeV [24, 25]

appears to be consistent with the predicted SM Higgs boson.

2.1.1 Fundamental Particles

The fundamental particles of the SM have no known sub-structure and com-

prise all of the visible matter in the universe. Figure 2.1 shows the fundamental

particles of the SM separated into distinct categories. The gauge bosons are the

force carrying particles. Gluons (g) mediate the strong force, photons (γ) mediate

the electromagnetic force, and W and Z bosons mediate the weak force. Quarks,

of which there are 6 flavors, interact via all three of these forces, and are bound

together by the strong force to form hadrons. Leptons come in electromagnetically

charged and neutral varieties, of which the former can interact via the electromag-

netic and weak forces, while the latter, called neutrinos (ν), can only interact via

the weak force.

Both leptons and quarks come in 3 generations, or equivalently families, sep-

arated into columns in Fig. 2.1. There is no theoretical reason why there should

only be three generations; rather, this is dictated by experimental observations.

The vast majority of visible matter in the universe contains only particles from the

first generation. For example, an atom consists of an electron cloud surrounding
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Figure 2.1: The fundamental particles described by the Standard Model, color
coded by leptons, quarks, gauge bosons and the Higgs boson. The mass, charge
and spin of each particle is also shown. Figure taken from Ref. [26].
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a nucleus consisting of protons (p) and neutrons, which are bound states of two

up quarks and a down quark and two down quarks and an up quark, respectively.

The dominance of the first generation in everyday matter arises from the fact that

matter containing higher generations of quarks and charged leptons tends to decay

such that only lighter first generation particles remain. The higher generations

only become relevant at larger energy scales, which are more than achieved in

collisions at the LHC.

Finally, it is easy to see that the fundamental particles in Fig. 2.1 are the same

as the fields which appear in the SM Lagrangian in Eq. 2.1, with the notable

exception that Higgs, W, and B fields do not correspond exactly. This is due to

electroweak symmetry breaking, which generates the mass of W and Z bosons [27,

28, 29, 30, 31, 32]. These particles would otherwise be massless in the SM. The

mechanism for this involves the Higgs scalar field, φ, which is a complex doublet

in SU(2)L × U(1)Y space with potential, V (φ) from Eq. 2.1, of the form

V (φ) = µ2φ†φ+ λ(φ†φ)2, (2.2)

where µ2 < 0 and λ > 0. The set of points at which the minimum of the Higgs field

is obtained is invariant under SU(2)L×U(1)Y , but the particular minimum point

chosen by nature spontaneously breaks the symmetry. This symmetry breaking

mixes the W and B boson fields to obtain the W±, Z, and γ boson particles

observed in nature. Three of the four degrees of freedom of the Higgs field are
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used to bestow mass to the W and Z bosons. The Higgs field is, however, invariant

under U(1)EM, the gauge group corresponding to the electromagnetic force, which

leaves the photon massless. The final degree of freedom from the Higgs field

accounts for the massive Higgs boson. The symmetry breaking of the Higgs field

is also responsible for the generation of the charged-lepton and quark masses

through their Yukawa couplings to the Higgs boson, i.e., the last line of Eq. 2.1.

2.1.2 Fundamental Forces

Electromagnetic Force

The electromagnetic force is mediated by photons and only affects particles

with electric charge. It is described by the group U(1)EM, which has charge defined

in terms of the SU(2)L and U(1)Y EW quantum numbers. The EM charge is

given by Q = T 3 + Y , where T 3 is the third component of weak-isospin and Y is

the weak hypercharge. The relativistic field theory that explains EM is known as

Quantum Electrodynamics (QED). Particles with oppositely signed charge attract

and particles with charge of the same sign repel one another. Because the photon

is massless and not self-interacting, this force has infinite range and potential

roughly proportional to 1/r, where r is the distance between the two particles.

The reason the potential is not identically proportional to 1/r is that there

are quantum mechanical corrections which depend on r. These corrections arise

10
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because the vacuum can give rise to an electron-positron pair for a brief time

limited by the uncertainty principle. For the case of an electron, the nearby

temporary electron-positron pairs align such that the positrons are closer to the

electron. This effect causes the charge of the original electron to be screened.

However, as one approaches the original electron, the effect of this charge screening

is reduced and the apparent charge of the electron, and thereby relative strength

of the electromagnetic force, increases. This effect is equivalently described as a

running of the electromagnetic coupling constant, α.

Strong Force

The strong force is mediated by gluons and only couples to quarks and glu-

ons. Like the photon, the gluon is also massless. The strong force is based on

the quantity of color charge, and is described by the theory of Quantum Chro-

modynamics. There are 3 fundamental color charges (red, green, blue) and their

corresponding anti-color charges (anti-red, anti-green, anti-blue). Each quark has

a color and each anti-quark has an anti-color charge. The exchange of a gluon

changes the color state of each participating quark or anti-quark. One widely be-

lieved but not rigorously proven consequence of QCD is confinement, which states

that particles must be color neutral, meaning lone quarks cannot be observed.

This effect results in the following color-neutral bound states of quarks, generally

11
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called hadrons: (a) baryons, which have 3 quarks with color red, green, and blue

and (b) mesons, which have a quark and anti-quark, not necessarily of the same

flavor, with a color and its anti-color.

The group formed under these color charges is SU(3)C , whose fundamental

representation is the set of 3 × 3 unitary matrices with determinant 1. SU(3)C

has 8 independent generators, resulting in 8 different gluons. Since gluons carry

color, they can interact with themselves and the gauge group is non-Abelian, which

is a key difference with electromagnetism. More generally, gauge bosons will be

self-interacting if and only if the corresponding gauge group is non-Abelian.

As in QED, the strong coupling constant, αs, runs with distance, or equiva-

lently energy, but in the opposite direction. If gluons did not self-interact, the

strong coupling constant would instead increase with increasing energy. At ex-

tremely small distance scales, much less than the size of a proton, αs is small

enough such that quarks behave as essentially free particles. This effect is known

as asymptotic freedom, and thankfully allows for perturbative QCD calculations

at high energy.

On the other hand, as the distance between quarks increases, the increased

potential between them eventually makes it more energetically favorable to pull

a qq̄ pair from the vacuum to shield the color charge of the original quarks and

thereby reduce the strong force potential energy. This is called hadronization

12
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and is an extremely important process in high energy particle collisions at the

LHC, in which bare quarks would otherwise be frequently produced. The result

of this hadronization for a high momentum quark or gluon is a collimated spray

of particles, known as a jet.

Weak Force

The weak force is mediated by the massive W and Z vector bosons and cou-

ples to all particles except for gluons. The massive force carriers limit the weak

interaction to short distance scales via the uncertainty principle. However, for

distances below around 10−18 m, corresponding to energies above the W and Z

boson masses, the weak force is comparable in strength to the EM force. If we

define the weak mixing angle, θW , as tan(θW ) = g′

g
, with g and g′ from Eq. 2.1,

then the ratio of EM to W boson coupling constants is sin(θW ) and the ratio of

EM to Z boson coupling constants is cos(θW ) sin(θW ). The measured value of

sin2(θW ) is 0.23150± 0.00016 [19], meaning the weak and EM coupling strengths

are all the same order of magnitude.

As with EM, the weak force does not couple different lepton generations to-

gether. However, unlike QED or QCD, W bosons couple different quark gener-

ations. For example, a charm quark, which is 2nd generation, can change into

a down quark, which is 1st generation, with the aid of a W . The mixing of the

13
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quark flavor eigenstates by the weak force is described by the Cabibbo-Kobayashi-

Maskawa (CKM) matrix.

Another feature that is unique to the weak force is that interactions depend

on the chirality of the interacting fermions. W bosons only couple to left-handed

fermions and right-handed anti-fermions. This arises from the vector minus axial

vector (V-A) nature of the W interactions. Fermion interactions with Z bosons

are only partially V-A, meaning that right-handed fermions, except for neutrinos,

can participate but couple with different strength than left-handed fermions.

2.2 Motivation for Physics Beyond the Standard

Model

Despite the fact that the Standard Model agrees extremely well with virtually

all current experimental data, there are a few reasons why it may not be a complete

description of all particle physics. This section explains some of the motivations for

physics beyond the standard model. Section 2.3 describes the class of extensions of

the standard model with the potential to address these issues, which are targeted

by this search.
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2.2.1 Unification of the Forces

Given the successful unification of the electromagnetic and weak forces in the

SM, it seems natural that all three of the electromagnetic, weak, and strong forces

should similarly be unified. If such unification is correct, one of the implications

would be that the coupling constants of the 3 different forces become identical

at some high energy, mGUT. Here GUT stands for grand unified theory. Above

mGUT, the 3 forces would share the same coupling constant, and below mGUT,

due to some form of symmetry breaking, the forces would have distinct coupling

constants. However, in the SM the gauge couplings of the forces do not come

close to unifying at any energy. This result can be seen in Fig. 2.2, which shows

the running of the inverse coupling constants versus energy. From this figure, it

is clear that the couplings, and hence the 3 forces, cannot be unified within the

framework of the SM. If unification is to occur, there must be additional physics

beyond the standard model.

2.2.2 Dark Matter

Dark matter is the name given to mass inferred from astronomical observations

that does not interact electromagnetically. The first evidence for dark matter came

from the excess of mass in the Coma cluster, as determined from application of the

virial theorem, compared to its luminosity [34]. This observation was not given

15



Chapter 2. Theory

10log Q

1/
i

1/ 1

1/ 2

1/ 3

MSSM

10log Q

1/
i

 Unification of the Coupling Constants
 in  the  SM   and   the  minimal MSSM   

0

10

20

30

40

50

60

0 5 10 15 0

10

20

30

40

50

60

0 5 10 15

Figure 2.2: The running of the inverse SM coupling constants versus energy,
with GeV units. α1 corresponds to the electromagnetic force, α2 corresponds
to the weak force, and α3 corresponds to the strong force. Figure taken from
Ref. [33].
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significant attention, but subsequent studies have provided a plethora of support

for the existence of dark matter.

The first seriously considered evidence came from the anomalous behavior of

the rotation curves of galaxies. A rotation curve shows the rotational velocity

of the visible matter about a galaxy’s center. If there is no dark matter, the

majority of the mass in a galaxy is situated close to its center, leading to decreas-

ing rotational velocities with increasing distance away from the galactic center.

Observations, starting with [35], have found that the rotational velocities do not,

however, decrease with distance, but instead remain rather flat. This is illustrated

in Fig 2.3, which shows the difference between a typical observed and expected

rotation curve. The relative flatness of the observed rotation curve indicates that

the total amount of matter in the galaxy is distributed more uniformly than just

the visible matter. This discrepancy can be accounted for if there is an additional

source of weakly interacting matter, i.e., dark matter.

Another method to infer the presence of dark matter is through gravitational

lensing. Because large amounts of matter will bend the path of light according

to the principles of general relativity, astronomers can examine the distortion of

background galaxies caused by matter in the foreground. An excess of matter

inferred from the gravitational lensing compared to the amount of visible matter

can indicate the presence of dark matter.
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Figure 2.3: Typical rotational velocity versus distance from the center in a
spiral galaxy as predicted (dashed blue line labeled A) and observed (solid red
line labeled B). The drastic difference between these curves is evidence for the
presence of dark matter. Figure taken from Ref. [36].

One striking piece of evidence involving gravitational lensing comes in the form

of the Bullet Cluster. The Bullet Cluster consists of two galaxy clusters which

collided in a direction transverse to the Earth’s line of sight. The baryonic gas of

each cluster, which comprises the majority of the visible mass, was significantly

slowed due to electromagnetic interactions. Because dark matter interacts too

weakly to be slowed significantly during the collision, the dark matter in each

cluster would have passed through the other cluster, resulting in a large amount

of mass away from the baryonic center of the collision. Such a shift of the mass

in the Bullet Cluster is illustrated in Fig. 2.4. In this figure, the baryonic matter
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Figure 2.4: Image of the Bullet Cluster showing the baryonic matter distribution
in gray-scale and the mass contours from gravitational lensing as black contours.
The shift of the centers of mass away form the visible matter is evidence for the
existence of dark matter. Figure taken from Ref. [37].

distribution is shown in gray-scale, while the mass contours from gravitational

lensing are shown as black contours. The shift of the centers of mass away form

the visible matter is direct evidence for the existence of dark matter.

Anisotropies in the cosmic microwave background (CMB), the radiation present

at the time of recombination in the early universe, can be used not only as further

evidence for dark matter, but also as a measurement of its energy density in the

universe. These anisotropies arise from acoustic oscillations of baryons and pho-
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tons in the early universe. The presence of dark matter would have a significant

impact on these oscillations and hence alter the multipole power spectrum of the

CMB. This was measured most recently and precisely by the Planck satellite [38],

which found the ratio of dark matter and baryonic matter densities to be 5.4±0.2.

If the dark matter is a particle, then it must be stable and weakly interacting.

The only SM particles that satisfy this are the neutrinos. Neutrinos, however, are

not good candidates for dark matter for a couple of reasons. If neutrinos were

the dark matter, their relativistic velocities would result in galaxy formation in

the early universe that disagrees significantly with observations. Additionally, the

density of neutrinos is too small to account for the amount of dark matter in the

universe. Thus, there are no candidates for dark matter in the standard model.

2.2.3 Hierarchy Problem

Another issue that makes the standard model much less appealing as a com-

plete theory are the extremely large quantum corrections to the Higgs boson mass.

These corrections stem from the extreme disparity of the strength of the gravita-

tional interaction with the other three fundamental forces, known as the Hierarchy

problem. To get an idea of the relative strength of the electromagnetic and gravi-

tational forces, the force between two protons due to each can be compared. Using

the classical force definitions, Fgravity = Gm2
p/r

2 and FEM = ke2/r2 where G is the
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gravitational constant, mp is the proton mass, k is Coulomb’s constant, and e is the

charge of the proton. This gives the extremely small ratio Fgravity/FEM ∼ 10−36!

However, if the mass of the particles in this comparison were instead 1018 GeV,

the strengths of the two forces would be similar. This mass scale is known as the

Planck Mass, MP ∼ 1018 GeV, and is the scale at which the gravitational force

becomes comparable in strength to the other fundamental forces.

The vastly different scale of the gravitational force affects the mass of the

Higgs boson through loop diagrams. A few relevant one loop Feynman diagrams

are shown in Fig. 2.5. In each diagram, there is an undetermined momentum

in the loop that is integrated over. In performing these integrals, it is necessary

to introduce an upper limit on the momentum, call it Λ, at which new physics

becomes relevant and the current theory is no longer valid. For fermionic loops,

the correction to the Higgs mass is ∆m2
H = − |λf |

2

8π2 Λ2 + . . . , taken from Ref. [39],

where λf ∝ mf is the Higgs coupling to the fermion. The additional omitted

terms in the sum are proportional to log Λ and hence much smaller than the first

term. The massive bosons also contribute terms proportional to Λ2. Because the

coupling strength of the Higgs increases with mass, the dominant loop correction

to the Higgs mass comes from top quark loops.

If there is no new physics beyond the standard model besides gravity, then

Λ ∼MP. However, the mass of the Higgs boson is O(100 GeV). This comes from
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Figure 2.5: Single loop Feynman diagrams contributing to the Higgs boson
mass. (a) shows a fermionic loop, while (b) and (c) show loops with bosons. In
(a), any fermion other than a neutrino can contribute. In (b) and (c), the massive
vector bosons and Higgs can contribute. The V represents either a W or Z vector
boson.
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the fact that fits of the SM parameters prefer a Higgs in this mass range [19]. And

if the recently discovered particle, which is consistent with the Higgs boson [24, 25],

turns out to actually be the Higgs boson, its mass is about 125 GeV. In order to

reconcile the O(1018 GeV) loop diagram corrections to the Higgs mass with the

actual Higgs mass, the bare mass in the theory would need to be fine tuned to 16

orders of magnitude. While such fine tuning is in principle possible, it is a very

un-natural feature of the SM. Theories that are able to mitigate this fine tuning

are therefore appealing.

2.3 Supersymmetry

2.3.1 Basics of SUSY

One class of models of physics beyond the standard model that has the poten-

tial to address the issues in the previous section are those utilizing Supersymmetry

(SUSY) [40, 41, 42, 43, 44, 45]. Supersymmetry is a spacetime symmetry relat-

ing fermions and bosons. Every boson or fermion has a corresponding fermionic

or bosonic, respectively, supersymmetric partner, also known as a superpartner.

Groupings of such partners are referred to as supermultiplets. For reasons that

will be explained, no particle in the SM can be the superpartner of another par-
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ticle in the SM and hence the particle content of the standard model is at least

doubled in supersymmetric extensions.

The following naming conventions will be used to refer to the SUSY partners

of SM particles. In general, such a SUSY partner is called a sparticle. Superpart-

ners of SM fermions are generally called sfermions and more specifically named

by simply adding an “s” in front of the corresponding SM fermion name. Super-

partners of SM bosons are generally called gauginos and more specifically named

by changing the corresponding SM boson name to end in “ino”, e.g., gluino. The

symbol denoting a superpartner of a standard model particle is just the standard

model symbol with a tilde (∼) over it, e.g., a stop is denoted t̃.

The generators of supersymmetric transformations, Q and Q†, can be used

in some linear combination to transform a particle into its superpartner, up to

a spacetime translation or rotation. The properties of these generators deter-

mine many of the important features of supersymmetry. Because the generators

commute with the squared-mass operator, P 2, particles in a supermultiplet have

the same mass. Additional properties of Q and Q† can be used to show that

the number of fermionic and bosonic degrees of freedom in a supermultiplet are

equal. Finally, the SUSY generators commute with the gauge transformation gen-

erators, so superpartners behave the same under all forces as their corresponding

SM partners, i.e., have the same charges.
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There are three fundamental types of supermultiplets, out of which the entire

SUSY particle content can be built.

1. A chiral supermultiplet consists of a spin 1/2 particle, which has two fermionic

degrees of freedom from its two possible spin states, and a complex scalar

field, which has two bosonic degrees of freedom from its real and complex

parts.

2. A gauge supermultiplet consistes of a spin 1 vector boson and a spin 1/2

fermion. Just as in the SM, the vector boson is a massless gauge boson before

spontaneous gauge symmetry breaking, and therefore the fermion must also

have no mass before this symmetry breaking. Since they are each massless,

each has 2 degrees of freedom due to possible spin states.

3. A graviton supermultiplet consists of a spin 2 massless graviton, the particle

that would mediate gravitational interactions, and its superpartner with spin

of 3/2, the gravitino.

In the SM, all vector bosons belong to a gauge supermultiplet as no other

supermultiplet contains spin 1 particles. Because right and left handed gauge

bosons must have the same interactions via the weak force, so too must their

superpartners in the gauge supermultiplet. This means that all the SM fermions,

which behave differently under the weak force depending on their handedness,
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must be in chiral supermultiplets. The SM Higgs boson corresponds to a su-

perposition of the neutral scalar components of two chiral supermultiplets. Two

Higgs supermultiplets are necessary to give mass to the up-type and down-type

quarks.

In order to cancel the quadratic divergences to m2
H , described in Sec. 2.2.3,

SUSY utilizes the fact that loops with bosons and fermions have contributions

with different signs. Together with the fact that the couplings of the particles in a

supermultiplet to the Higgs boson are related, this leads to the cancellation of the

quadratic divergences. Figures 2.5(a) and 2.6 show the relevant one-loop diagrams

from a chiral supermultiplet. The total contribution from these diagrams is given

by

∆m2
H =

1

8π2
(λf̃ − |λf |

2)Λ2 + . . . , (2.3)

taken from Ref. [39], where λf and λf̃ are the Higgs couplings to the fermion

and scalar superpartners, respectively. The additional omitted terms in the sum

are proportional to log Λ and hence much smaller than the first term. Because

λf̃ = |λf |2 in a chiral supermultiplet, the quadratic divergence in 2.3 cancels. In

fact, supersymmetry causes the quadratic divergences due to both SM fermions

and bosons to cancel for all numbers of loops.
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f̃

H

Figure 2.6: Feynman diagram of a one-loop contribution to the Higgs boson
mass from a scalar in a chiral supermultiplet. This diagram cancels the quadratic
divergence from the corresponding fermionic superpartner, which has its one-loop
diagram shown in Fig. 2.5(a).

2.3.2 Supersymmetry is Broken

The major problem with the existence of supersymmetry, as described thus far,

is that if it is an exact symmetry, then the superpartners for many, particularly the

lightest, of the SM particles would have already been observed. Therefore, if SUSY

exists, it must be a broken symmetry so that superpartners can be massive enough

to thus far escape detection. However, to guarantee that the quadratic divergences

in m2
H cancel, only certain types of supersymmetry breaking are possible. In

particular, the couplings arising from the SUSY breaking must have positive mass

dimension, known as soft supersymmetry breaking.
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The Lagrangian for soft supersymmetry breaking is

Lsoft =− 1

2

(
M3G̃G̃ +M2W̃W̃ +M1B̃B̃ + h.c.

)
−
(
Ũ † au Q̃Hu − D̃† ad Q̃Hd − Ẽ† ae L̃Hd + h.c.

)
− Q̃†m2

Q Q̃− Ũ †m2
u Ũ − D̃†m2

d D̃ − L̃†m2
L L̃− Ẽ†m2

e Ẽ

− m2
Hu
|Hu|2 −m2

Hd
|Hd|2 − (bHuHd + h.c.) ,

(2.4)

where h.c. stands for hermitian conjugate. The fields in this Lagrangian are just

the supersymmetrized versions of those in Tables 2.1 and 2.2, with the exception

of the two Higgs fields, Hu and Hd. The au, ad, and ae are complex matrices in

family space, i.e., 3×3, with mass dimension one. The m2
Q, m2

u, m2
d, m2

L, and m2
e

are hermitian matrices in family space with mass dimension two. Each of m2
Hu

,

m2
Hd

, and b have mass dimension two and contribute to the Higgs potential.

One important consequence of soft SUSY breaking is the mixing of the sfermions.

The third line of Eq. 2.4 mixes the different generations of sfermions of the same

type and handedness. For example, the left-handed down-type squark mass eigen-

states can be linear combinations of the left-handed flavor eigenstates d̃, s̃, and b̃.

Additional mixing between the right and left-handed sfermion states is possible

due to the second line of Eq. 2.4, e.g., the bottom squark mass eigenstates can be

a superposition of b̃L and b̃R as well as the left and right-handed components of

the other down-type squarks.
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These mixings can have significant effects in terms of flavor changing neutral

currents (FCNC) and CP violation, each of which is small in the standard model.

Therefore, related experimental tests can place meaningful constraints on the

parameters of soft SUSY breaking. The most stringent constraint on ẽ− µ̃ mixing

is the upper limit on BR(µ→ eγ). Another important FCNC constraint on SUSY

breaking comes from KL−KS mixing, specifically the value of the mass difference

between KL and KS, which constrains s̃− d̃ mixing. Upper limits on the electric

dipole moment of electrons and neutrons constrain CP violating phases in the

SUSY breaking Lagrangian. A summary of FCNC and CP violation constraints

on the SM can be found in Refs. [46, 47]. In general, mixing in the first two

generations is more constrained than in the third generation.

Electroweak symmetry breaking, along with the soft SUSY breaking terms

with M1 and M2 in Eq. 2.4, provides the mixing of the gauginos and higgsinos.

The resulting mass states are referred to as neutralinos (χ̃0
i , where i = 1, 2, 3, 4

in order of increasing mass) if they are neutral or chaginos (χ̃±i , where i = 1, 2 in

order of increasing mass) if they are charged. Neutralinos result from the mixing

of the neutral higgsinos with the bino and neutral wino while charginos result

from the mixing of the charged higgsinos with the charged winos. Gluinos are

not included in the gaugino mixing because they are in a color octet and hence

cannot mix with the other color-neutral gauginos.
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In writing Eq. 2.4, terms that are otherwise allowed by Lorentz and gauge in-

variance, but which violate lepton and baryon number conservation, have been

omitted. These types of interactions have not been experimentally observed,

severely constraining such SUSY breaking couplings; see Ref. [48] for a review.

One such constraint comes from the non-observation of proton decay into a lepton

and meson, e.g., p→ eπ0, which alters both lepton and baryon number by one.

Given these strong experimental constraints, it is necessary to theoretically

explain why the otherwise allowed lepton and baryon number violating couplings

have not produced any observable effects. One possible explanation is via a

symmetry called R-parity, which is a multiplicative quantum number with value

PR = 1 for SM particles and PR = −1 for sparticles. Each vertex must have an

overall R-parity value of 1, and hence must contain an even number of sparticles.

This implies that sparticles are produced in pairs and the lightest supersymmetric

particle (LSP) cannot decay. In many SUSY models, the lightest neutralino, χ̃0
1,

is the LSP. Neutral charge combined with stability due to R-parity make the χ̃0
1

a strong dark matter candidate [49]. For this reason, this document will assume

the LSP is the χ̃0
1 from here on.

While there are other possibilities to circumvent experiment constraints, Ref. [50]

for example, this analysis assumes R-Parity conservation. With this assumption,

the Minimal Supersymmetric Standard Model (MSSM) describes the minimum
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Figure 2.7: The running of the inverse coupling constants in the MSSM versus
energy, with GeV units. α1 corresponds to the electromagnetic force, α2 corre-
sponds to the weak force, and α3 corresponds to the strong force. Figure taken
from Ref. [33].

particle content needed for supersymmetry along with all of the corresponding

soft supersymmetry breaking interactions. Unlike in the standard model, the

strong, weak, and electromagnetic gauge couplings unify at high energies within

the MSSM framework. This is illustrated in Fig. 2.7, which shows the unification

at the mGUT ≈ 1016 GeV scale.
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2.3.3 Naturalness

If soft SUSY breaking is enforced, then the square of the Higgs mass will have

contributions from each sparticle i proportional to m2
iλ

(2)
i log Λ, where λi is the

coupling constant of the sparticle to the Higgs. The fine tuning of a SUSY model

can be defined as the ratio of the corrections to the Higgs mass squared divided

by the Higgs mass squared, ∆m2
H/m

2
H . Ultimately there is no strict upper limit

on the amount of fine tuning, but natural models [51, 52, 53, 54] typically have

fine tuning of O(100) or less.

Depending on the acceptable level of fine tuning, one can set rough upper

limits on the sparticle masses. Since top squarks have the strongest coupling to

the Higgs, their mass is most stringently constrained for a given amount of fine

tuning. For models with fine tuning by a factor of 100, the stop mass must be

roughly 1 TeV or less. The upper limit on this mass scales with the square root of

the amount of fine tuning. While gluinos do not directly couple to the Higgs, they

contribute to the fine tuning via loop corrections to the stop mass. This gives an

upper limit on the gluino mass which roughly a factor of two greater than that

on the stop mass. Due to its 8 TeV center-of-mass energy, much of the parameter

space with stop and gluino masses . 1 TeV is accessible at the LHC, making

searches for these particles quite interesting.
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Because gluinos have a much greater production cross section than stops and

should not be too much heavier due to naturalness arguments, searches specifically

targeting gluino pair production are well motivated. Additionally, because stops

are likely the lightest squarks, it is probable that the gluinos will decay through

stops, i.e g̃ → tt̃(∗), with the subsequent stop decay t̃→ tχ̃0
1. This would result in

a spectacular four top quark and two neutralino final state, which is the primary

target of this search.

2.3.4 Production of Sparticles at the LHC

At the LHC, production of squarks and gluinos has the advantage of being

mediated by the strong force. This results in significantly larger cross sections,

for the same mass, than electroweak production of charginos, neutralinos, and

sleptons. Figure 2.8 shows the tree-level production diagrams at the LHC for

gluino pairs.

The cross section at next to leading order (NLO) with next to leading loga-

rithmic (NLL) contributions [55, 56, 57, 58, 59], denoted σNLO+NLL, for various

sparticles at the LHC are shown in Fig. 2.9. For simplicity, each cross section is

computed with all other SUSY particles decoupled by setting their masses arbi-

trarily high. Because it is mediated weakly, the chargino-neutralino production

cross section is the lowest shown in this figure. Stop and gluino pairs are produced
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Figure 2.8: Tree-level gluino pair production diagrams at the LHC. Both gluon-
gluon fusion (top row) and quark anti-quark pairs (bottom row) contribute. Figure
taken from Ref. [39].

via the strong force and therefore have higher production cross sections. Factors

contributing to gluinos having a higher production cross section than stops are

that there are more color states of the gluinos than for stops, 8 vs 3, and the spin

1/2 gluinos can be produced by a larger number of initial spin states than the

scalar stops.

2.3.5 Simplified Models

Results cannot be efficiently interpreted in the context of the MSSM due to its

large number, over 100, of degrees of freedom. Assumptions about the mechanism

by which SUSY is broken lead to various constrained SUSY models, which have

just a handful of parameters, and hence can be used as a context in which to

interpret search results. However, this is not ideal as the constraints on these
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models can be somewhat arbitrary, and the plethora of different modes of sparticle

production and decay make re-interpreting the results in the context of another

model highly non-trivial.

An approach that alleviates these problems is to interpret a search in terms

of a Simplified Model Spectra (SMS) framework [60, 61, 62]. As their name

suggests, simplified models have a very limited sparticle content, typically just

two or three different sparticles. The same sparticles are produced and decay

through the same channels in each event. For example, one of the most utilized

SMS corresponds to top squark pair production, where each top squark decays

to a top quark and the LSP χ̃0
1. The models are parametrized solely in terms

of the sparticle masses, which generally leads to a physically intuitive picture of

the sensitivity of the analysis. The simplicity of these models allows for a more

convenient re-interpretation of the result in the context of additional models. For

these reasons, it has become common practice to use simplified models to interpret

SUSY searches at CMS. A wide range of such results are shown in [63].

The SMSs used in this analysis correspond to gluino pair production leading

to a final state with four top quarks, which is motivated by naturalness arguments

in Sec. 2.3.3. The simplest of these models is T1tttt, which ignores stops and has

the gluino undergo a 3-body decay to tt̄χ̃0
1. The free parameters of this model are

the gluino and neutralino masses. The other simplified models used are T5tttt
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and T1t1t, in which the gluino decays via a stop, intermediate in mass between

the gluino and neutralino. To reduce the number of free parameters from 3 to 2,

the neutralino mass is fixed to 50 GeV in T5tttt and the gluino mass is fixed to

1 TeV in T1t1t. This means the free parameters are the stop and gluino masses

in T5tttt, and the stop and neutralino masses in T1t1t. Figure 2.10 illustrates

the gluino decay in each of these SMS.
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Experimental Apparatus

This analysis utilizes data from proton-proton collisions at center of mass

energy of 8 TeV from the Large Hadron Collider (LHC) recorded with the Compact

Muon Solenoid (CMS) detector. The LHC produces the highest energy proton-

proton collisions in the world and allows higher energy scales to be probed for new

physics beyond the standard model than ever before. Such experimental probes

would, however, not be possible without the ability to observe with high precision

the results of these collisions, as is done by CMS. This chapter briefly describes

the basic features of the LHC and CMS.

3.1 The Large Hadron Collider

The LHC [64] is located at the European Organization for Nuclear Research

(CERN) near Geneva, Switzerland. The LHC ring, which runs underneath the

French-Swiss border, is 26.7 km long and consists of two side-by-side proton
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beams circulating in opposite directions. The LHC design provides for a max-

imum collision energy of 14 TeV and maximum instantaneous luminosity of L =

1034 cm−2s−1. The LHC also has the ability to accelerate and collide lead ion

beams, but such data is not included in this analysis.

Protons are fed into the LHC ring by an injector complex, as shown in Fig. 3.1,

consisting of the Linac2 linear accelerator, Proton Synchrotron Booster (PSB),

Proton Synchrotron (PS), and finally Super Proton Synchrotron (SPS). Each suc-

cessive accelerator increases the kinetic energy of the protons by about an order

of magnitude. Around the LHC ring are four points at which the collisions occur

and are observed by an experimental installation. Figure 3.1 also shows these four

main experiments around the LHC ring, consisting of LHC-B, which is primarily

used for B-hadron physics; ALICE, which is primarily used for physics with lead

ion collisions; and ATLAS and CMS, which are each general-purpose detectors

designed to provide data for a wide variety of physics analyses.

In order to manipulate the proton beams, the LHC employs over nine thousand

magnets. The beams are bent by 1232 superconducting dipole magnets made from

NbTi wire filament and cooled with superfluid helium to a temperature of less

than 2 K. These dipoles are designed to provide a maximum field of 8.33 T and

collectively store roughly 11 GJ of energy. The beams are focused and corrected

with higher multipole magnets, most of which are the 392 quadrupoles. The
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tremendous amount of energy stored in the LHC magnets makes it imperative

that protections are put in place to safely dissipate this energy in the event of a

quench.

Protons circulate in the LHC in bunches of O(1011) protons with 50 ns spacing,

although the nominal design of the LHC allows for minimum spacing of 25 ns.

These bunches are formed with the correct spacing in the PS. In order for the

large energy in each beam, 360 MJ at the nominal LHC design, to be safely and

effectively dumped from the LHC, there is a 3 µs section of each beam with no

bunches, called the abort gap. This length of time is matched to the LHC beam

extraction kicker magnet rise time, so that the beams can be re-directed to an

external absorber without causing damage.

The data used in this analysis come from the 2012 running period of the LHC.

The 8 TeV center-of-mass energy of the pp collisions during this time was an

increase over the 7 TeV collisions in previous years. Furthermore, the peak in-

stantaneous luminosity achieved in 2012 was 7.7 × 1033 cm−2s−1, and the total

integrated luminosity collected was roughly four times more than had been accu-

mulated previously. These increases in luminosity and energy make searches for

new physics in the 2012 dataset promising.

Beginning in 2013, the LHC has entered a roughly two year shutdown period in

which upgrades and renovations will be made to the LHC and other components
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of the CERN accelerator complex as well as to the experiments positioned around

the ring. This means the 2012 LHC data is likely to provide the definitive word on

collider-based searches for new physics until the LHC restarts at the conclusion of

the current shutdown. The LHC is scheduled to recommence operations in 2015

with the goal of providing higher energy pp collisions at roughly 13 TeV, beginning

another period of exciting potential for discovery.

3.2 The Compact Muon Solenoid

The Compact Muon Solenoid detector is a multi-purpose device, optimized to

measure the particles produced in collisions at the LHC. CMS is situated roughly

100 m underground near the small town of Cessy, France. Despite its name, the

CMS detector is quite large compared to previous generations of collider detectors,

with a 21.6 m length, 14.6 m diameter, and 12500 t weight. The primary goals

for the experiment are to study the Higgs boson and search for new physics, such

as Supersymmetry, at the TeV scale.

CMS comprises multiple sub-detectors, shown in Fig. 3.2, nested in concentric

cylinders about the LHC beam axis and centered on the collision point. Closest

to the collision point, is the tracking system, which measures the trajectories of

charged particles. The next closest sub-system is the electromagnetic calorimeter,
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which measures the energy of electrons and photons, followed by the hadronic

calorimeter, which measures the energy of hadrons. These are all enclosed by the

superconducting solenoid, whose magnetic field bends the trajectories of charged

particles and allows for their momentum to be measured by the tracker. Finally,

the muon system is outside the solenoid but within its return field. CMS has ad-

ditional specialized calorimetry located very near the beam line but far away from

the collision point which is not utilized in the measurement described herein. Fig-

ure 3.3 indicates the behavior of particles produced in a collision as they traverse

the different sub-detectors. Because each sub-detector measures a different aspect

of the particles produced in the collision (also called an event), a full description

is achieved only by combining the measurements from all of the sub-detectors.

Because each saved event requires a significant amount of bandwidth and disk

space to transmit and store as well as computing power to reconstruct, it is not

feasible to save events anywhere near the nominal 40 MHz LHC collision rate. To

reduce the rate by the nearly 5 orders of magnitude while still saving the most

interesting events, CMS employs a dual stage trigger system. The first stage is

known as the Level-1 (L1) trigger and reduces the rate to less than 100 kHz while

the second stage is known as the High Level Trigger (HLT) and reduces the rate

to less than 1000 Hz.
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Figure 3.2: A perspective view of the CMS detector, indicating the location
and orientation of the different sub-detectors. Figure taken from Ref. [66].

CMS uses a right-handed coordinate system centered at the nominal collision

point. The x-axis points toward the center of the LHC ring while the y-axis

points vertically upward. The z-axis, therefore, points along the direction of

the counter-clockwise circulating beam. The pseudorapidity η is defined as η =

− ln [tan (θ/2)], where θ is the polar angle with respect to the z-axis. Within

the xy plane, the azimuthal angle φ is measured counter-clockwise from the x-

axis, and the radial coordinate r is the distance from the z-axis. The xy plane is
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various particles in the different sub-detectors. The scale indicates the distance
from the collision point. Figure taken from Ref. [67].

referred to as the transverse plane. The transverse momentum (pT ) of a particle

refers to its momentum within this plane.

In order to accomplish its physics goals while coping with the extreme LHC

environment, great care was taken in the CMS design to satisfy the following

general constraints. First, the detector should be as hermetic as possible such

that missing transverse momentum, due to the presence of a neutrino or some
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as yet undiscovered weakly interacting particle, can be reliably inferred. Due

to the composite nature of protons, the net momentum of a collision along the

beam axis is not constrained to be zero, and thus only the transverse component

of the net momentum is expected to balance. Next, the detector components

must be able to withstand large doses of radiation, due to the high LHC collision

rate, before significantly degrading in functionality. A related constraint is that

the detector must have enough spatial granularity so that the large number of

particles produced in the collisions can generally be distinctly resolved. Finally,

the detector channels should have read-out and synchronization compatible with

the nominal 25 ns collision rate.

The remainder of this section is devoted to giving an overview of the various

sub-detector systems that comprise CMS. A more detailed description can be

found in Ref. [66].

3.2.1 Solenoid

CMS employs a large, cylindrical, superconducting solenoid to provide a mag-

netic field which curves the trajectories of charged particles via the Lorentz force.

The magnetic field of the solenoid is parallel to the beam axis, which causes the

trajectories of charged particles to curve in the transverse plane. The measured

curvature allows a determination of the momentum. The larger the magnetic
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field, the greater the curvature of the track and precision of the momentum mea-

surement. This curvature is measured for charged particles by the tracker, which

is inside the solenoid, and for muons by the muon system, which is outside the

solenoid and relies on its return field.

The 15.5 m long, 6.3 m diameter, 220 t solenoid is housed in an iron yoke and

provides a nearly uniform 3.8 T magnetic field inside the tracker. The extremely

high magnetic field requires that the solenoid be superconducting. So that the

magnet is not damaged by the force placed on its coils due to its own magnetic

field, the coils are incorporated into the structural material of the magnet. This

feature also helps make the solenoid as thin as possible to reduce the potential for

disrupting the path of particles traversing the detector.

The large energy stored in the solenoid, 2.3 GJ at 3.8 T, combined with its

superconducting nature, result in significant difficulties that must be overcome to

ensure safe operation. Of primary concern, is the case of a superconductive-to-

resistive transition, or quench. When this occurs, the tremendous current, 18 kA

at 3.8 T, causes the resistive section of the coil to heat very quickly. To avoid

damaging the resistive section of the coil through extreme thermal stress, a quench

detection system disconnects the power source and triggers a fast discharge of the

magnet. In a fast discharge, eddy currents are induced in the external mandrel

of the solenoid, which evenly heats the entire coil above the critical temperature.

48



Chapter 3. Experimental Apparatus

So much energy is released during a fast quench that it can take up to three days

to cool the magnet back below the critical temperature.

3.2.2 Tracker

The innermost sub-detector of CMS is the tracking system, which measures

the trajectory of charged particles. The tracker system consists of two main

components: a pixel detector immediately surrounding the beam pipe, and a

silicon strip detector which surrounds the pixel detector. In the presence of the

magnetic field from the superconducting solenoid, the curvature of a track allows

for the determination of its momentum. Centered around the collision point, the

tracker has diameter of 2.5 m and length of 5.8 m, so that its coverage extends to

|η| < 2.5. The exceptional granularity of the tracker allows for resolution of better

than 1% on pT and roughly 10 µm on the transverse impact parameter across

a wide range of track pT values. The efficient and accurate particle trajectory

measurements provided by the tracker are essential to the physics program of

CMS.

The tracker sensors are silicon-based and constitute the largest ever silicon

tracker, with 200 m2 of active sensing area. When a charged particle traverses

one of the sensors, it ionizes atoms in the depletion region, causing current to

flow. The locations of the sensors which exhibit such ionization current allow the
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paths of charged particles to be inferred. Such inferences, however, can be biased

or entirely wrong if there are multiple charged particles which traverse the same

sensor. To reduce this potential, and keep the occupancy per sensor at or below

the percent level, the tracker sensors exhibit a high degree of granularity, with

the smallest sensors nearest the collision point where the density of particles per

unit area is largest. This is achieved by subdividing the tracker into an inner

pixel detector and an outer strip tracker, which together have 75 million readout

channels.

Besides the challenge of operating and monitoring such a large number of

sensors, the biggest challenge facing the tracker is reducing and coping with the

effects of radiation damage. The on-detector read-out chips used by the tracker

are quite radiation hard, meaning that the radiation damage to the sensors is the

limiting factor. The main effect of radiation damage on the silicon is damage to the

crystal lattice structure which reduces the signal, necessitates higher operational

bias voltages, and significantly increases the leakage current. To avoid further

damage from reverse annealing, the sensors must be operated at well below 0◦C.

Furthermore, such low operating temperatures are beneficial because they reduce

the leakage currents. This is important because the leakage currents, which warm

the silicon, have an exponential dependence on temperature and therefore cause

positive feedback and potential thermal runaway.
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Figure 3.4: Cross-section view of the tracker in the rz plane with labels to
denote the different sections of the sub-detector. Lines represent detector modules.
Figure taken from Ref. [66].

Pixel Tracker

The inner pixel portion of the tracker consists of three cylindrical barrel layers

at 4.4, 7.3, and 10.2 cm from the beam axis and two endcap disks spanning

r = 6 − 15 cm on either side at z = ±34.5,±46.5 cm. The arrangement of

the pixel tracker can be seen at the center of Fig. 3.4. The silicon pixel size is

100 × 150 µm2, so that the pixel tracker covers an area of around 1 m2 with

66 million pixels. The sensing silicon is constructed with an n-on-n design, which

allows for functionality even after very high radiation doses.

Read-out chips amplify and buffer the charge from the sensors to which they

are attached. Due to the tremendously large number of pixel channels, their read-
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out is zero-suppressed with adjustable thresholds in order to reduce the amount

of data to a manageable level. In the case of a trigger, the zero-suppressed analog

pixel charges are transferred to digitization modules in the service cavern via

optical link. The analog readout aids in separating signal and noise as well as

identifying pixels hit by multiple charged particles. Once the analog optical signal

has been digitized, it is passed on to the central data acquisition (DAQ) system.

Strip Tracker

The silicon strip portion of the detector surrounds the pixels and consequently

must have a much large active area, 198 m2, of silicon to ensure the same coverage

in η and φ. Long silicon strips are used to keep the number of readout channels,

9.3 million, at a reasonable level. The width of the strips increases with radius

from 80 to 180 µm in the transverse plane while the length increases from 10

to 25 cm. The narrow dimension of the strips is chosen to be primarily in the

transverse plane to maximize the precision with which the radius of curvature,

and hence momentum, can be measured.

The strip tracker consists of 4 sub-systems, which fit together to provide mul-

tiple measurement points of particle trajectories with |η| < 2.5. For nearly this

entire η range, there are at least 9 potential measurement points. The full extent

of the strip tracker is |z| < 282 cm and 20 < r < 116 cm. The Tracker Inner Barrel
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(TIB) and Tracker Inner Disks (TID) are the sub-systems at the lowest radius and

consist of 4 cylindrical barrel layers flanked at each end by 3 disks. The Tracker

Outer Barrel (TOB) surrounds the TIB/TID and consists of 6 cylindrical layers.

Finally, the Tracker EndCaps (TEC), which consist of 9 disks, are positioned just

outside the other sub-systems in z and cover particle trajectories up to η of 2.5.

This arrangement of the sub-systems can be seen in Fig. 3.4.

The silicon strips are arranged in groups of a few hundred to form modules.

Because of the varied geometry of the sub-systems used to fill the tracking volume,

modules come in several shapes and sizes. The first two layers or rings of each

sub-system as well as the fifth rings of the TEC have a second strip detector

module mounted to the back of each module at a stereo angle of 100 mrad. This

provides a more precise measurement of z in the barrel and r in the disks.

Read-out chips amplify, shape, and buffer the charge from the strips to which

they are attached. In the case of a trigger, the analog charge of each strip is

transferred out of the detector to Front End Driver (FED) modules via optical

link. Unlike in the pixels, there is no zero suppression in this step. After the signals

are digitized in the FEDs, pedestal corrections are applied and the common mode

noise subtracted. In normal data taking, the FED performs zero suppression by

only passing clusters of channels and their corresponding signals to the central

DAQ which are potentially relevant for track reconstruction.
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3.2.3 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) of CMS is primarily designed to mea-

sure the energy of electrons and photons with high precision. It consists of a her-

metic arrangement of lead tungstate (PbWO4) crystals with truncated pyramidal

shape read out by photo-detectors. The ECAL surrounds the tracker and covers

the range |η| < 3.0.

The use of lead tungstate is motivated by a number of factors. Its relatively

short radiation length (0.89 cm) allows for the full energy deposition of electrons

and photons in a smaller calorimeter. Its small Molière radius (2.2 cm) contributes

to high spatial granularity. Its radiation hardness ensures useful scintillation after

10 years of LHC operation. Finally, the scintillation time of lead tungstate is on

the order of the maximum LHC collision rate. There are, however, a couple of

challenges that must be addressed when using lead tungstate scintillators. They

have relatively low light output compared to many other crystals and the light

output varies significantly with temperature. To maintain the desired energy

resolution, the crystal temperature must remain stable to within 0.05◦C.

The ECAL is separated into the barrel (EB) and endcap (EE) regions, which

cover |η| < 1.479 and 1.479 < |η| < 3.0, respectively. In the barrel, the crystals

begin at r = 1.29 m, while in endcaps the crystals begin at z = ±3.15 m. To

maximize spatial resolution due to energy sharing, the crystal faces have size sim-
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ilar to the Molière radius. This sizing leads to 61200 crystals in the EB and 7324

crystals in each endcap. The crystals project approximately to the interaction

point and are 22 to 23 cm long, corresponding to roughly 25 radiation lengths.

The light from each crystal is read out by one or two photodetectors attached

to its back face. To cope with the extreme LHC conditions, these photodetectors

are both fast and radiation hard. Additionally, they must function in the high

magnetic field of the solenoid. The differing magnetic field and particle fluxes in

the EB and EE necessitates the use of distinct photodetector technology in each.

A pair of avalanche photodiodes (APDs) reads out each EB crystal, while one

vacuum phototriode (VPT), which is a single gain-stage photomultiplier, reads

out each EE crystal.

Every 25 ns, the signals from the photodetectors are shaped and amplified

before being digitized by an ADC. In the case of EB, the signals from the two

APDs per crystal are summed. The total transverse energy from 5 × 5 groups

of crystals, called trigger towers, are sent to the Level-1 trigger system for each

bunch crossing. When a Level-1 trigger is received, ten 25 ns samples for each

channel are sent to the electronics in the service cavern and then passed to the

central DAQ after a suppression algorithm is applied to reduce the data volume.

The expected energy resolution of the ECAL versus electron energy is shown

in Fig. 3.5. Above 500 GeV, the resolution begins to degrade due to not all
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Figure 3.5: ECAL energy resolution as a function of electron energy as measured
in test beam. Figure taken from Ref. [66].

of the energy being deposited before the shower exits the crystal. To maintain

the resolution shown in this figure, the ECAL must be carefully calibrated to

better than the percent level. One important and dynamic effect that must be

calibrated is the dose-rate dependent loss of optical transmission during irradiation

experienced by the crystals. This is monitored using the ECAL laser calibration

system, which provides calibration data many times a second.
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3.2.4 Hadronic Calorimeter

The hadronic calorimeter (HCAL) of CMS is designed to measure the energy

of particles produced in the LHC collisions that interact through the strong force.

This is done through a sampling technique utilizing alternating layers of absorber

and scintilator. The HCAL and ECAL are quite complementary, because together

they are able to measure the energy of the vast majority of the particles which

emerge from LHC collisions. This ability is crucial to accurately infer the presence

of neutrinos or other weakly interacting particles via momentum imbalance.

The HCAL is composed of 4 distinct sub-systems which enclose the ECAL and

combine to give coverage up to |η| = 5. The 4 designs are necessary to accomo-

date the varying functions of the sub-systems as well as the differing amounts of

radiation to which they are subjected. The majority of the volume of the HCAL

is taken up by the hadronic barrel (HB) and hadronic endcap (HE) sub-systems.

These are the two closest sub-systems to the collision point and are both con-

tained within the solenoid. The furthest extent of coverage in |η| is provided

by the forward hadronic calorimeter (HF), which is considerably offset from the

collision point along the beam axis compared to the rest of the HCAL. Finally,

the outer hadronic calorimeter (HO) is positioned just outside the solenoid and is

designed to collect residual energy from hadronic showers not fully contained in

HB. Figure 3.6 shows the locations of the HCAL sub-systems within CMS.
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Figure 3.6: Longitudinal view of CMS indicating the positions of HB, HE,
HO, and HF. The collision point is at the bottom left corner of the figure. The
dashed lines emerging from the collision point correspond to different values of
pseudorapidity. Figure taken from Ref. [66].

The HB has cylindrical geometry and covers |η| < 1.3, while the HE consists

of an endcap inserted in each side of the solenoid, covering the pseudorapidity

range 1.3 < |η| < 3. The HB and HE are arranged with the aim of minimizing

the gap between them in which particles could avoid detection and contribute to

artificial momentum imbalance. The HB consists of 16 layers of plastic scintillator

separated by steel and brass absorber plates. The HE consists of 17 layers of plastic

scintillator separated by brass absorber plates, except near the HB-HE transition

region, which has fewer layers. The light from each scintillator tile is collected

by a wavelength-shifting (WLS) fiber, which is spliced to a clear fiber outside the
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scintillator. The clear fiber brings the light to be read out by a hybrid photodiode

(HPD). An HPD consists of multiple 20 mm2 hexagonal silicon photodiode pixels

held at a high voltage difference from a photocathode. HPDs are used in HB and

HE due to their insensitivity to magnetic fields and large dynamical range. The

HB and HE consist of towers with granularity of ∆η × ∆φ = 0.087 × 0.087 for

|η| < 1.6 and 0.17 × 0.17 for |η| > 1.6. The different scintillator layers within

a tower are grouped into 1, 2, or 3 depths which are separately read out. The

thickness of HB increases with |η| from 5.4 nuclear interaction lengths (λI) at

η = 0 to around 10 at |η| = 1.3. The HE has roughly constant thickness of 10 λI .

The HO calorimeter is positioned outside the solenoid and innermost iron

section of the return yoke, which it effectively uses as an absorber, and covers the

pseudorapidity range |η| < 1.3. Its main purpose is to collect additional energy

from hadronic showers that escape HB, which is especially important at low |η|,

where the HB thickness is smallest. The HO consists of only one scintillator layer,

except for at the lowest |η| range, in which a second scintillator is placed at lower

radius between the yoke and solenoid. With the inclusion of HO, the thickness of

the HCAL plus ECAL for |η| < 3 is increased to at least 11.8 λI , except in the

barrel-endcap transition region. The HO towers match roughly those of the HB

in position and coverage in η and φ. As in the HB and HE, the scintillator light

is collected by WLS fibers and read out by HPDs.
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The forward hadronic calorimeter (HF), covers the pseudorapidity region 3 <

|η| < 5 and begins 11.2 m from the collision point on either side. Because this

region receives significantly higher radiation doses than the rest of the HCAL,

HF has a distinct design to survive this harsh environment. Instead of plastic

scintillator, much more radiation hard quartz fibers are used, which generate light

via Cherenkov radiation. The quartz fibers are embedded in a steel absorber

structure with thickness of roughly 10 λI and run parallel to the beam axis for

either the entire length of the absorber, 165 cm, or the entire length except the

first 22 cm closest to the collision point. The light yield in the different length

fibers allows for discrimination of electrons and photons from hadrons because

the former deposit a larger fraction of their energy in the first 22 cm. The fibers

are bundled together to achieve granularity of ∆η × ∆φ = 0.175 × 0.175 for the

majority of HF. The light from these bundles is read out by photomultiplier tubes

(PMTs), which are useable in the low magnetic field far away from the solenoid.

The electrical charge transduced in either an HPD or PMT in response to

light from the scintillators or quartz fibers is integrated and read out by an ADC

every 25ns. These readings are sent for every HCAL channel by optical link to

HCAL Trigger/Read-out (HTR) boards in the service cavern. HTRs send trigger

primitives, which consist of the transverse energy summed over the towers in a

given η, φ range, to the Level-1 trigger system. In the event of a Level-1 trigger,
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the HTRs send zero suppressed data as well as all the trigger primitives toward

the central DAQ. In order to monitor the instantaneous luminosity in real-time,

occupancy and energy deposit data from HF are sent from the HTRs to the HF

luminosity system. Sufficiently small luminosity can be determined by the average

fraction of empty towers, while larger luminosity must be extracted from its linear

relationship with the average transverse energy deposited in HF towers.

Upgrade of HO

The potential benefits of HO have been limited so far by the significant rate

at which its HPDs generate large amounts of noise. This spurious noise can erro-

neously indicate the presence of large transverse momentum imbalance, which is

quite detrimental to many physics analyses. Smaller magnitude but more frequent

noise from the HPDs also degrades the energy resolution. The HPDs in HO are

significantly noisier than those in HB and HE due to the smaller, less uniform

solenoid return field. To alleviate these problems and reach the full potential of

the HO, it is necessary to replace the HPDs with some other read-out system.

That project was part of this thesis work and is described below.

The low-noise photo-detection technology that will be used to upgrade HO is

that of silicon photomultipliers (SiPMs). A SiPM consists of an array of many

individual silicon avalanche photodiodes, each operated in Geiger mode with a
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(a) (b)

Figure 3.7: HO MIP signal for an (a) HPD and (b) SiPM. This SiPM can
clearly differentiate a MIP from noise due to its much better signal to noise than
the HPD. Figure taken from Ref. [68].

gain typically of 105 to 106. SiPMs have relatively small dark current, on the

order of a few tens of nanoamperes for the SiPMs and operating conditions to

be used in HO. The breakdown of each pixel is passively quenched via a resistor.

SiPMs are practically insensitive to magnetic fields, and should not be affected

by the return field of the solenoid. Figure 3.7 shows the signal from a minimum

ionizing particle (MIP) that traverses an HO scintillator, as read out by HPDs

and SiPMs. Thanks to their much better signal to noise, the SiPMs can clearly

distinguish the MIP signal. This feature will give HO the potential to aid in muon

identification.

The SiPMs to be installed in HO are 3×3 mm2 with 3600 square pixels of size

50×50 µm2. This number of pixels is sufficient to cover the dynamic range of HO,
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which is around 2500 photo-electrons. They have sub-nanosecond timing jitter as

well as signal decay and recovery time on the order of 10 ns, which is sufficient

to handle the occupancies in HO combined with the 25 ns bunch spacing of the

LHC. The bias voltages of the SiPMs are around 70 V, which eliminates the need

for the high voltage power utilized by the HPDs. For wavelengths of 500 nm,

which is what is delivered from the scintillator via WLS fibers, the SiPMs have a

quantum efficiency of 25− 30%, which is nearly twice that of HPDs.

One complication with using SiPMs is their non-negligible dependence of gain

on temperature. This dependence is a roughly 5 − 10% decrease in the gain per

1◦C increase in temperature. To ensure stability of the SiPM response to the few

percent level, the temperature must be regulated to within a fraction of a degree.

This is done via a Peltier cooling element attached to the back of the board on

which the SiPMs are mounted. A feedback loop utilizing a temperature sensor at

the center of the SiPM mounting board will control the temperature by adjusting

the voltage to the Peltier.

The total amount of hardware that must be replaced to transition from HPDs

to SiPMs in HO has been carefully minimized to reduce the total amount of work

and potential for problems. This is achieved by designing the boards on which

the SiPMs are mounted to mimic the layout of the HPD boards. Figure 3.8 shows

the front and back of the board on which the SiPMs are mounted. The 18 SiPMs
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Figure 3.8: Photographs of the front and back of an HO SiPM mounting board.
In the center of the 18 SiPMs is a small thermistor used to monitor the operating
temperature of the SiPMs. Figure taken from Ref. [69].

on this board are arranged in the same configuration as the HPD pixels. Because

of this design, the HPD can simply be replaced by the SiPM mounting board

packaged with a control board and a board to generate the bias voltages. The

control board attached to the SiPM mounting board is responsible for regulating

the SiPM bias voltages, reading out their leakage currents, and supplying the

Peltier cooler with power. The bias voltages are generated by a separate board

from a 6.5 V low voltage input.

In order to utilize the full dynamic range of a SiPM, the incoming photons

must be spread out across its entire active surface. If instead the photons are

concentrated over a small area of the SiPM, only the pixels occupying that area

will avalanche and the signal will be reduced. To avoid this effect, light mixers are

used to spread the light from the scintillators more uniformly across the SiPMs.
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Light mixers are only used for the SiPMs in the most central return yoke segment,

as this is where the thickness of the calorimeter is lowest and consequently the

signals in HO will be largest.

Before a SiPM can be installed in HO, it must undergo a rigorous quality

control (QC) assessment to ensure optimal functionality of the detector. Not only

must the SiPMs undergo QC, but so too must all of the components that will

be installed, most importantly the Peltier cooler, control board, and bias voltage

board. The QC is done in a multi-step process, beginning with the measurement

of the important properties of each SiPM by the manufacturer and the testing of

the different boards at their production sites. For each SiPM mounting board,

the final grouping of associated boards is assembled at CERN before undergoing

QC in a test stand. Then, when the old HPDs are removed from HO and replaced

with SiPMs, the resulting hardware is briefly tested in its final configuration in

the test-stand before being installed into CMS. The final step of the QC is to

make sure the SiPMs function properly after installation into CMS.

To determine the normal range of the stability and operational parameters of

the SiPMs in the final system configuration, the test-stand mentioned above is

utilized. One such set of operational parameters comes from the analysis of the

SiPM signals in the absence of light, which will be referred to herein as pedestal

events. This analysis relies upon the two key properties of SiPMs. First, is the
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Figure 3.9: Charge distribution in pedestal events for one SiPM. Each pedestal
event integrates the charge over a 100 ns window. Note that there is an overall
offset of charge introduced by the ADC which is much larger than the SiPM
leakage current.

fact that individual SiPM pixels will thermally avalanche with non-negligible rate.

Second is that SiPMs can count small numbers of photons, or equivalently, resolve

small numbers of pixel avalanches. These features are apparent in Fig. 3.9, which

shows the distribution of charge output by a SiPM in many pedestal events. The

highest peak comes from events in which no pixels avalanched, while the second

highest peak comes from events in which exactly 1 pixel avalanched. Subsequent

peaks have larger numbers of pixels which avalanched.

These pedestal charge distributions are fit to extract important operational

parameters of the SiPMs. In particular, Gaussian distributions are used to fit

the 0, 1 and 2 avalanche peaks, an example of which is shown in Fig. 3.10. For
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Figure 3.10: Charge distribution in pedestal events for one SiPM with overlaid
fit. Only the 0, 1, and 2 avalanche peaks are included in the fit range. From the
fit, various operational parameters of the SiPM are extracted.

simplicity and robustness, no higher order peaks are included in the fit range. The

distance between consecutive peaks is determined by the fit and gives the gain of

the SiPMs. This distance is constrained in the fit to be the same between both

sets of consecutive peaks. The relative normalization of the peaks is treated as

a Poisson distribution, but the normalization of the 2 avalanche peak is allowed

to float for reasons which will be described below. The mean of the Poisson

distribution indicates the avalanche rate of the SiPM. If there is no significant

light leak in the system, then this is equivalent to the thermal avalanche rate. A

thermal avalanche rate of a few hundred kilo-Hertz is typical.

The level of normalization enhancement of the 2 avalanche peak compared

to what is expected by the fitted Poisson distribution gives additional interest-
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ing information. This enhancement occurs due to optical cross-talk, in which a

photon emitted during an avalanche in one pixel triggers an avalanche in a neigh-

boring pixel in the same SiPM, as well as afterpulsing in which charge trapped

in the silicon from the original avalanche eventually becomes free and causes an-

other avalanche in the same pixel. Because the test-stand does not have the time

resolution to differentiate these effects, their combination will be referred to as

cross-talk from here on.

To quantify this effect, the cross-talk rate is defined as the probability that an

avalanche in one pixel causes an additional avalanche in the same SiPM in the same

event. The following derivation gives an approximate formula for the cross-talk

rate using the parameters of the fit to the pedestal charge distribution. For a given

pedestal distribution, let N ideal
1 be the number of events with exactly 1 avalanche

in the idealized situation with no cross-talk. Then N ideal
1 = Nobs

1 /(1 − Rxtalk),

where Nobs
1 is the observed number of events with exactly 1 avalanche and Rxtalk

is the cross-talk rate. Assuming that the cross-talk rate is small and ignoring

higher order corrections, the observed number of events with exactly 2 avalanches

should be Nobs
2 ≈ N ideal

1

(
Rideal

12 +Rxtalk

)
, where Rideal

12 is the ratio of 2 avalanche

to 1 avalanche events, ignoring cross-talk effects. Substituting and solving for the

cross-talk rate gives

Rxtalk ≈
Nobs

2 /Nobs
1 −Rideal

12

1 +Nobs
2 /Nobs

1

. (3.1)
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The value of Rideal
12 is taken from the fitted mean number of avalanches divided

by two. The fitted mean is biased somewhat by the presence of cross-talk, but

only by a relative amount equal to the cross-talk rate. The value of Nobs
2 /Nobs

1 is

taken to be Rideal
12 times the fitted multiplicative enhancement of the normalization

of the 2 avalanche peak. The uncertainties, and their correlation, on the fitted

parameters are propagated in the calculation of the cross-talk rate.

The gain, cross-talk rate, and avalanche rate as determined by the pedestal

fits are shown in Fig. 3.11 for nearly all of the SiPMs that will be installed in HO.

These global distribution plots indicate the normal range of these parameters

for properly functioning SiPMs. Outliers are scrutinized heavily and potentially

rejected from the installation depending on the results of other QC tests.

Additionally, SiPM bias voltage scans are performed so that the gain at each

scan point can be determined by fitting the corresponding pedestal charge dis-

tribution. The result is a gain vs voltage distribution which is fit with a line, as

illustrated in Fig. 3.12. The slope of the fitted line gives the dependence of the

gain on the bias voltage and the extrapolation to gain of 0 yields the breakdown

voltage of the SiPM. The slope and breakdown voltage for nearly all SiPMs to be

used in the HO upgrade is shown in Fig. 3.13. Using SiPM signals in the presence

of LED light, different methods are used to measure the breakdown voltage and

gain. This complementarity yields valuable information about the systematic bi-
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Figure 3.11: Distribution of (a) gain, (b) average number of avalanches per
event, and (c) cross-talk rate for nearly all SiPMs to be installed in HO as mea-
sured from the pedestal fit analysis.
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Figure 3.12: Example gain vs bias voltage distribution for one SiPM with
overlaid linear fit. The gain at each bias voltage is determined from a fit to the
pedestal charge distribution at that bias voltage.

ases of each method as well as greater confidence in the result when the different

methods agree.

The analysis of the pedestal charge distributions described here is but one of

many QC tests performed on the SiPMs before they can be installed in CMS.

Other crucial tests are of the SiPM response stability over time, the rate of sig-

nificant amounts of spurious noise, and the effectiveness of the Peltier cooling

element. The large majority of SiPMs and corresponding electronics exhibited no

problematic behavior in the QC tests, and were consequently certified for instal-

lation. This installation is now complete, as all of the HPDs in HO have been

replaced by SiPMs during the current LHC long shut-down period.
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Figure 3.13: Distribution of (a) gain vs voltage slope and (b) breakdown voltage
for nearly all SiPMs to be installed in HO as measured from the pedestal fit
analysis applied to a bias voltage scan.

3.2.5 Muon System

As indicated by its name, the design of the Compact Muon Solenoid exper-

iment places a heavy emphasis on the detection of muons. The muon system

of CMS provides the ability to trigger on muons at Level-1, and in conjunction

with the tracker ensures high detection efficiency and excellent momentum res-

olution for muons. It is housed within the return yoke of the solenoid, which

simultaneously provides a magnetic field to bend the trajectories of muons for

momentum measurement and as an absorber to prevent hadrons from reaching

the muon system. The muon system consists of 3 distinct sub-systems, the drift
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Figure 3.14: Longitudinal view of CMS indicating the positions of the DT, CSC,
and RPC muon sub-systems. The collision point is at the bottom left corner of the
figure. The dashed lines emerging from the collision point correspond to different
values of pseudorapidity. Figure taken from Ref. [70].

tubes (DT), cathode strip chambers (CSC), and resistive plate chambers (RPC).

The positions of these sub-systems within CMS can be seen in Fig. 3.14. In order

to achieve the optimal momentum resolution of the muon system, it is neces-

sary that the muon chambers are aligned amongst themselves and with the inner

tracker to O(100 µm) in the transverse plane. This alignment is performed using

both muon tracks measured by the detector and an optical alignment system.
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The DT sub-system is located in the barrel region and extends to |η| < 1.2. It

consists of 4 stations at increasing radius, with each station being sub-divided into

chambers separated by the return yoke. For the innermost 3 stations, a chamber

consists of 3 superlayers (SL), which in turn consist of 4 layers of rectangular

drift cells. Two of the superlayers have cells running parallel to the beam axis in

order to provide a measurement in the rφ plane, while the third superlayer has

its cells arranged perpendicularly to provide a measurement in the rz plane. The

outermost station only contains 2 superlayers, with cells arranged parallel to the

beam axis. A SL has time resolution on the order of nanoseconds, which allows

the bunch crossing from which a muon emerged to be efficiently determined. An

individual cell has dimensions 13 mm× 42 mm× 2.4 m and contains a wire, elec-

trode strips, and cathode strips running along its length. The geometry combined

with the nominal 85% Ar, 15% CO2 gas mixture results in a linear relationship

between drift time and drift length. A signal produced in a DT cell is amplified,

discriminated, and then time digitized by electronics all within the DT chamber.

The DT electronics combines the individual cell signals to provide track candidate

information to the Level-1 Trigger.

The CSC sub-system is located in the endcap region of CMS and extends from

0.9 < |η| < 2.4. The CSC design is necessarily different than in the DT, due

to the higher signal and background rates as well as the larger and less uniform
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magnetic field. It consists of 4 stations in each endcap, subdivided into trapezoidal

chambers perpendicular to the beam line. A chamber is composed of 6 layers of

anode wires alternating with 7 layers of cathode strips. The strips run radially

to provide a measurement of φ while the wires run perpendicularly to provide a

measurement of η. The wires serve as proportional counters with avalanches which

induce charge on the nearby strips. A chamber has time resolution of less than

5 ns, which allows the bunch crossing from which a muon emerged to be efficiently

determined. The chambers utilize a 40% Ar, 50% CO2, and 10% CF4 gas mixture

at atmospheric pressure. For every bunch crossing, special electronics searches for

patterns consistent with muon tracks separately in the anode and cathode layers

of a chamber. These patterns are then combined to form 3-dimensional track

candidates, which are sent to the Level-1 Trigger. To reduce the data rate from

the CSCs, data from a chamber is only sent to the central DAQ if there is a muon

track candidate with timing consistent with a Level-1 trigger.

The RPC sub-system extends to |η| < 1.6 and consequently overlaps all of

the DTs and much of the CSCs. The RPC system can independently reconstruct

muon tracks with excellent time resolution, 1 ns, but worse position resolution

than the DTs and CSCs. It consists of 4 stations in the barrel and 3 stations in

the endcaps. The innermost two stations in the barrel have two RPC chambers

while the outer two stations each have one. The three stations in the endcaps
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border the innermost CSC chambers and have one chamber each. A chamber

has a parallel-plate structure with read-out strips between the plates to provide

two gaps operated in avalanche mode. For the most precise measurement of φ,

the strips in the barrel run parallel to the beam line and those in the endcap run

radially. Each chamber is filled with a gas mixture of 96.2% C2H2F4, 3.5% iC4H10,

and 0.3% SF6. The signals from the strips are amplified and discriminated before

being passed to the Level-1 trigger and in the case of a trigger, the central DAQ.

3.2.6 Trigger

Given the vast number of detector channels in CMS, each collision event that

is saved requires a significant amount of bandwidth to transmit, memory to store,

and time to reconstruct. These constraints require that the overall rate at which

events are saved is less than around 1000 Hz. To achieve this rate without throwing

out the most interesting events, CMS relies on a two-stage trigger system. The

Level-1 trigger processes each collision and reduces the rate to less than 100 kHz

and feeds the High Level Trigger stage, which reduces the rate to less than 1000 Hz.

The L1 Trigger processes every collision using data from the ECAL, HCAL

and Muon system with coarse granularity to reduce the bandwidth of data that

must be transmitted. The maximum latency for a trigger decision on an event is

3.2 µs. Using the ECAL and HCAL data, electron/photon candidates and jets
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are reconstructed. Candidates for jets from hadronic τ decays are identified by

their narrow width. Additionally, the number of jets, total transverse energy,

missing transverse energy, and scalar jet transverse energy sum are computed.

Using data from all 3 Muon sub-systems, the transverse momentum, charge, η, φ,

and quality of muon candidates are determined. Extrapolating the track back to

the calorimeter, the energy deposited in the ECAL and HCAL is compared with

a threshold to determine if the muon candidate is isolated. The above trigger

objects and global quantities are used to determine whether an event should be

accepted or rejected.

Upon a Level-1 accept, the full data from an event is made available to the

HLT so that more complex trigger algorithms can be computed. Unlike the Level-1

trigger, which uses custom electronics, the HLT uses commercially available pro-

cessors and is software based. This allows the HLT algorithms to be extremely

flexible and easily altered. To maximize the amount of interesting events that

can be saved, the HLT trigger objects should match the offline reconstructed ob-

jects as closely as possible. However, the finite number of processors in the HLT

means that the processing time per event must be limited, and hence the compu-

tationally intensive offline reconstruction algorithms can only be approximated.

Upon passing the HLT, the full data from an event is stored for subsequent offline

reconstruction and analysis.
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Event Reconstruction

Before any meaningful physics analysis of the CMS data can take place, the

raw signals from the detector must be used to reconstruct the particles produced

by the LHC collisions. It is only with the reconstructed objects and global event

quantities that the properties of an event can be fully evaluated. The standard

physics objects that CMS is able to reconstruct are electrons, photons, muons,

taus, and jets. The important global event quantities for this analysis are the

missing transverse momentum (E/T), which is the negative vector sum of the mo-

menta of all reconstructed particles in the collision, and the scalar sum of all jet

pT (HT ). This chapter briefly describes the reconstruction of the objects and

quantities used in this analysis. Photons and taus are not used and therefore are

not discussed here. Information about the reconstruction of these objects can be

found in Refs. [71, 72].
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4.1 Tracks and Primary Vertices

All of the physics objects used in this analysis are reconstructed, at least in

part, using information from the CMS tracker. To measure the trajectory of a

charged particle [73], hits in the pixel tracker are used to seed the track finding al-

gorithm [74]. From the seed, the track reconstruction proceeds via combinatorial

Kalman filter pattern recognition [75]. Due to the 3.8 T magnetic field, charged

particles follow a helical path with radius of curvature determined by their trans-

verse momentum. The effects of energy loss of the particle in the tracker material

and multiple scattering are also accounted for in the pattern recognition.

Nearly all inelastic pp collisions produce charged particles. If at least a few of

the charged particles produced in such a collision are high enough pT to produce

tracks measured by the tracker, the location of the collision can be identified. A

clustering followed by a fitting algorithm [73, 76] is performed using the set of all

tracks to find the 3-dimensional collision locations, called primary vertices (PVs).

A vertex corresponds to the location from which multiple tracks emerge.

To ensure that a reconstructed PV corresponds to a real collision, the follow-

ing quality criteria are utilized. A PV that passes each of these requirements is

considered good.
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• The number of degrees of freedom from the tracks in the vertex fit must be

greater than 4.

• The displacement from the origin in the transverse plane must be less than

2 cm.

• The displacement from the origin along the beam direction must be less

than 24 cm.

The good primary vertex with the largest sum of the transverse momentum

squared of its associated tracks is considered the leading vertex of the event and

assumed to be the origin of the interesting physics objects.

Due to the high instantaneous luminosity provided by the LHC, there are on

average roughly 20 inelastic pp collisions per bunch crossing in the 2012 CMS

pp dataset. These overlapping collisions, referred to as pile-up (PU), generally

produce fewer and lower energy particles than the collisions which are interesting

for physics studies. However, the large number of PU collisions that occur in the

same bunch crossing with an interesting collision can introduce non-negligible bias

in the reconstructed physics objects if care is not taken.
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4.2 Jets

Jets are reconstructed using the anti-kt algorithm [77] with distance parameter

R = 0.5 in y, φ coordinates. This algorithm utilizes the technique of sequential

recombination at the particle level with distance measure proportional to inverse

momentum squared to obtain results that are both collinear and infrared safe. In

other words, the jet boundaries are sensitive to the distribution of higher energy,

collinear, radiation in a parton shower, but not lower energy, infrared, radiation.

The infrared safety is also helpful in minimizing the effects of unrelated low energy

radiation from pileup interactions.

The particle constituents supplied to the jet clustering are supplied by the

Particle Flow (PF) event reconstruction algorithm [78, 79]. This algorithm at-

tempts to identify and reconstruct all the final-state particles in an event. This

consists of electrons, photons, muons, charged hadrons, and neutral hadrons. The

full information of all the CMS sub-detectors is used in a coordinated way by the

PF algorithm. One important consequence of this is that tracking information is

used to precisely determine the momentum of charged hadrons. Because charged

hadrons generally carry much of the energy in a jet, the PF-based jet energy reso-

lution is improved compared to that of traditional jet reconstruction based solely

on calorimetric information.
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It is desirable that the measured energy of a jet match the true energy of the

final-state particles which it encompasses. Therefore, it is necessary to correct

the raw measured energy of jets to account for shifts and non-uniformities in the

energy scale [80]. Such jet energy corrections (JEC) are factorized into distinct

components and applied sequentially to the raw jet energy. The first level of

correction removes the contribution to the jet energy from particles produced in

unrelated PU collisions which overlap with the jet in η and φ. This is done on a

jet-by-jet basis for each event using each jet’s area in rapidity-φ space combined

with the median energy density in the event [81], while accounting for the non-

uniform response of the detector in η. The next level of correction is derived

from simulation and makes the jet response uniform versus η. This is followed

by another simulation-based correction to achieve the correct energy scale as a

function of jet pT . The final correction, applied only to data, is relatively small

and removes residual data-MC differences. The uncertainty on these corrections

comes from a number of sources, illustrated for various jet pT and η in Fig. 4.1. The

uncertainty increases sharply at low pT because of the relatively large contribution

from PU and above |η| = 2 due to loss of acceptance in the tracker.

To minimize the number of selected jets which arise due to detector noise

or other background sources such as mis-reconstructed electrons, the following

minimal set of selection requirements are applied.
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Figure 4.1: JEC uncertainty in percent as (a) a function of jet pT and (b)
a function of jet η. The various sub-components of the uncertainty are shown
individually. Figure taken from Ref. [82].

• Jets must have pT > 40 GeV.

• Jets must have |η| < 2.4, to remain within the tracker acceptance and take

full advantage of the PF reconstruction algorithm.

• Jets must contain at least two particles, at least one of which is a charged

hadron or electron.

• The neutral hadron energy fraction must be less than 99%.

• The neutral electromagnetic energy fraction must be less than 99%.

• The charged electromagnetic energy fraction must be less than 99%.
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• The charged hadron energy fraction must be non-zero.

4.2.1 b-quark Jet Identification

Jets produced by b-quark hadronization (b jets) have unique properties com-

pared to other jets due to the relatively large b-quark mass and lifetime. Of all

the particles produced in the b jet, the hadron containing the original b quark

will have a greater than average fraction of the total momentum and be relatively

long-lived (τ ≈ 1.5 ps). These properties of b jets can be exploited to discriminate

between them and jets from other sources. When a jet has been identified as a b

jet, it is said to be b tagged.

The particular b-tagging discriminator, or b tagger, used in this analysis is the

Combined Secondary Vertex (CSV) algorithm [83]. This tagger utilizes a likeli-

hood ratio built from variables from the individual tracks within a jet as well as

from a secondary vertex within that jet, if one is found. The tracking variables

are the number of tracks within the jet and their 3-dimensional impact parameter

significances, i.e., measured impact parameter divided by its uncertainty, with re-

spect to the associated primary vertex. A secondary vertex is only associated with

a jet if it is within a ∆R < 0.5 cone of the jet axis as well as distinguishably sep-

arated from the primary vertex associated with that jet. The relevant secondary

vertex variables are its separation from the associated primary vertex divided by
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its uncertainty in the transverse plane, mass, number of tracks, fractional energy

of its tracks compared to all tracks in the jet, η of its tracks relative to the jet axis,

and 2-dimensional impact parameters of its tracks. In the case that no secondary

vertex is associated with the jet, only the tracking variables are used.

This analysis uses the medium working point of the CSV tagger (CSVM).

The b-tag efficiencies and mistag rates at this working point are shown in Fig 4.2

separately for simulated multi-jet QCD and tt̄ pair production events. The CSVM

working point corresponds to values of the CSV discriminator above 0.679, and

is intended to result in a light flavor mistag probability of roughly 1%. Light

flavor jets are defined to come from u, d, and s-quarks as well as gluons. The

charm-quark mistag probability is higher than that for light flavor jets due to the

significantly higher mass of the charm quark. At high jet pT , the products of the

jet are more boosted and the tracks curve less due to the magnetic field, which

makes impact parameter and secondary vertex measurements less precise, thus

reducing the b-tag efficiency and increasing the light flavor mistag rate. At |η| of

around 2.4, the limited acceptance of the tracker also reduces the b-tag efficiency.

While the efficiency and mistag probability in simulation are similar to that in

data, they are not identical. Therefore, the simulated b-tag efficiency is corrected

by a scale factor SFb which is the ratio of the efficiency in data to simulation.

Similarly the charm and light flavor mistag rates are corrected by scale factors
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(a)

(b)

Figure 4.2: The b-tag efficiencies and mistag rates at the CSVM working point
in
√
s = 7 TeV simulation versus (a) jet pT and (b) jet |η|. These quantities are

shown separately for multi-jet QCD and tt̄ pair production events and are similar
to those at

√
s = 8 TeV despite the higher energy and PU. Note that the light

flavor mistag probability has been increased by a factor of 10 so that it is clearly
visible. Figure taken from Ref. [83].
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SFc and SFlf, which are the ratio of the respective mistag rates in data and

simulation. Due to the variation of efficiency and mistag probability with respect

to jet pT and η, the scale factors are binned in each of these variables. In deriving

and applying these scale factors, the jet flavors in simulation are identified using

generator-level information.

4.3 Missing Transverse Momentum

The E/T is computed using the particle candidates reconstructed by the PF

algorithm [84]. Assuming perfect measurement, a large E/T value indicates the

presence of one or more weakly interacting particles in the final state, such as

neutrinos or LSPs. The measured ~E/T is equal to the negative vector sum of the

transverse momentum of all PF candidates, with a couple of corrections [85]. The

larger of the two corrections comes from applying the JEC to jets with pT >

10 GeV, i.e.,

~E/
corr

T = ~E/T −
∑
jets

(
~p corr
T,jet − ~pT,jet

)
. (4.1)

The other correction is designed to remove a φ-dependent asymmetry in the ~E/T.

This correction depends linearly on the number of reconstructed PU vertices in the

event and typically changes the E/T by less than 10 GeV, which is small compared

to the scale relevant for this analysis.
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Unfortunately, detector mis-reconstruction effects can also give rise to large

values of E/T, i.e., artificial E/T. These effects are rare, but the large number

of events collected by the LHC means they will affect a significant number of

events. In order to reliably and effectively utilize a data sample with large E/T for

physics, it is necessary to efficiently reject events which have large artificial E/T.

Various sources of artificial E/T in CMS and the filters used to reject them are

described in Ref. [85]. Figure 4.3 shows the drastic change in the high tail of the

E/T distribution in data after cleaning is applied. Without this cleaning, SUSY

events with high E/T would be hopelessly outnumbered by background.

4.4 Electrons

Electrons in CMS are reconstructed using measurements from the ECAL and

tracker. Each sub-detector provides complementary measurements of the energy

and momentum of an electron, which are combined by the reconstruction algo-

rithms. The electron reconstruction used in this analysis can proceed in two

distinct ways, namely via tracker-driven and ECAL-driven seeding.

This analysis selects electron candidates from the ECAL-driven seeding algo-

rithm [86]. The first step of this algorithm is to find an ECAL “supercluster” seed

for the electron. A supercluster is a group of energy deposits in nearby ECAL
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Figure 4.3: The E/T distribution using the PF algorithm in dijet events. The
open points show the distribution in data before cleaning algorithms have been
applied and the filled points show the distribution after cleaning. The stacked his-
tograms show the leading SM contributions from simulation, which approximately
agree with the cleaned data distribution. Figure taken from Ref. [85].

crystals, which takes into account the distinct pattern of energy deposition asso-

ciated with electrons. This pattern corresponds to a narrow range of deposition

in η but a significant spread in φ due to the curvature of the electron trajectory in

the transverse plane as it traverses the tracker material and emits bremsstrahlung

radiation. A supercluster is matched to a track seed in the pixels from which the

electron track is built. The subsequent electron track reconstruction does not use

the CMS standard algorithm, but instead uses a “Gaussian sum filter” [87] to
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model the details of electron energy loss in the tracker region. If the supercluster

and track momentum measurements agree, then their weighted average is used

to determine the final electron momentum. If they disagree significantly, then

the one that is expected to provide the least biased measurement, based on the

electron momentum, provides the final momentum.

The tracker-driven seeding algorithm [88] is part of the PF event reconstruc-

tion. This algorithm is better for low pT electrons due to the superior resolution

at low-momentum of the tracker and the minimum ECAL energy deposit required

for ECAL-driven seeding. However, for the electron pT threshold used in this anal-

ysis, this is not important. Because PF objects are used to calculate the E/T, to

avoid biases it is important to check that the selected electrons from ECAL-driven

seeding match those found by PF.

To differentiate true, prompt electrons from backgrounds, the following set

of identification criteria are applied. Backgrounds include jets which fluctuate in

their fragmentation to give mostly electromagnetic energy, leptonic hadron decays

within jets, and photon conversions. A less stringent set of requirements are used

to select veto electrons, in order to efficiently reject events with multiple leptons.

• Transverse momentum: Selected electrons must have pT > 20 GeV. This

threshold is largely motivated by trigger efficiency considerations. Veto elec-

trons must have pT > 15 GeV.
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• Pseudorapidity: To remain within the acceptance of the tracker, selected

and veto electrons must have |η| < 2.5 and not be within the transition

region between the EB and EE.

• Track-supercluster ∆φ: The difference in φ between the electron track ex-

trapolated to the ECAL and the supercluster must be less than 0.06(0.03)

for selected electrons in the EB(EE). Veto electrons in the EB(EE) must

have this ∆φ less than 0.08(0.07).

• Track-supercluster ∆η: The difference in η between the electron track ex-

trapolated to the ECAL and the supercluster must be less than 0.004(0.007)

for selected electrons in the EB(EE). Veto electrons in the EB(EE) must have

this ∆η less than 0.007(0.01).

• ECAL shower η width: Prompt electrons have a narrow shower shape in

η compared to backgrounds from π0 meson decays, which give two nearly

overlapping photons. The width of the shower in η is characterized by the

variable σiηiη, defined in [89], which must be less than 0.01(0.03) for selected

and veto electrons in EB(EE).

• Hadronic vs electromagnetic energy: The ratio of energy deposited into the

HCAL behind the electron supercluster divided by the energy of the electron

must be less than 0.12(0.1) for EB(EE) selected electrons. Veto electrons in
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the EB must have this quantity less than 0.15. This requirement is designed

to reject jets which fake prompt electrons.

• dZ: The distance in z between the electron and leading primary vertex at

the point of closest approach must be less than 1(2) mm for selected(veto)

electrons.

• Transverse impact parameter: The distance in the transverse plane between

the electron and leading primary vertex at the point of closest approach

must be less than 0.2(0.4) mm for selected(veto) electrons.

• E vs p: |1/E − 1/p|, where E comes solely from the ECAL and p comes

solely from the tracker, must be less than 0.05 for selected electrons.

• Conversion rejection: Selected electrons can have at most one missing hit in

the inner tracker layers. A full vertex fit, constrained to be consisted with

a conversion, is also performed using the electron track paired with other

tracks. The probability of this fit for any pair which includes the electron

track must be less than 10−6.

• PF electron matching: The closest PF reconstructed electron in ∆R to the

selected electron must have pT within 10 GeV.
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• Relative Isolation: Prompt electrons should have minimal activity in the

tracker and calorimeter in their immediate vicinity, i.e., be isolated. Us-

ing the PF algorithm, the sum of transverse energy from neutral hadrons,

charged hadrons, and photons within a ∆R < 0.3 cone of the electron is com-

puted. Only charged hadrons matched to the same vertex as the electron

are included in this sum. The neutral hadron and photon sum is corrected

for the average contribution from PU based on the energy density in the

event. This transverse energy sum is divided by the pT of the electron to

give the relative isolation of the electron, which must be less than 0.15 for

selected and veto electrons.

The electron selection efficiency is derived with a “tag-and-probe” technique [90]

in a sample of DY events at the Z mass resonance. In this technique, events con-

taining a tag electron that passes the full set of selection criteria and a probe

electron passing a less stringent selection are used. Such events must have dilep-

ton invariant mass near the Z mass, indicating that the probe electron is likely a

real, prompt electron. The efficiency of the selection requirements not applied to

the probe electron is given by the fraction of probe electrons which pass them. The

average electron selection efficiency is found to be roughly 80%. The efficiency

increases with pT and decreases with |η|, but does not vary more than about 20%.
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4.5 Muons

Muons in CMS are reconstructed [91] using information from both the tracker

and muon system. There are two distinct reconstruction approaches, which are

seeded either by information solely from the tracker or muon system. In the first

method, called global muon reconstruction, a muon track is found in the muon

system and matched to a tracker track. The information from the muon system

and tracker is then combined in a global fit of the muon trajectory. In the sec-

ond method, called tracker muon reconstruction, tracker tracks are extrapolated

to the muon system. If the extrapolation matches to a track stub in a DT or

CSC chamber, the tracker track is considered to have come from a muon. For

muons with pT < 200 GeV, the momentum is taken solely from the tracker muon

as the information from the muon system does not significantly improve the res-

olution. For higher pT muons, the tracker and muon system measurements are

used in conjunction to determine the pT . The PF algorithm also finds muon can-

didates [92], starting with the candidates reconstructed with the two algorithms

described above, but utilizing additional information from the calorimeters.

In order to differentiate true, prompt muons from backgrounds, the following

set of identification criteria are applied. Backgrounds include leptonic hadron

decays within jets, hadron punch-through, and cosmic ray muons. Hadron punch-
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through occurs when a hadron produced in a jet makes it all the way to the muon

system. A less stringent set of requirements are used to select veto muons, in

order to efficiently reject events with multiple leptons.

• Transverse momentum: Selected muons must have pT > 20 GeV. As with

electrons, this threshold is largely motivated by trigger efficiency considera-

tions. Veto muons must have pT > 15 GeV.

• Pseudorapidity: To remain within the acceptance of the tracker and muon

system, selected muons must have |η| < 2.4. Veto muons must have |η| <

2.5.

• Reconstruction Algorithm: Selected muons must be reconstructed with both

the global and tracker reconstruction algorithms. Veto muons must be re-

constructed by at least one of the two.

• dZ: The distance in z between the muon track and leading primary vertex

at the point of closest approach must be less than 5 mm for selected and

veto muons.

• Transverse impact parameter: The distance in the transverse plane between

the muon track and leading primary vertex at the point of closest approach

must less than 0.2(2) mm for selected(veto) muons.
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• Normalized χ2: The χ2 per number of degrees of freedom of the global muon

fit must be less than 10 for selected muons.

• Number of valid muon hits: For selected muons, at least one muon chamber

hit must be included in the global muon fit.

• Number of matched muon stations: For selected muons, the extrapolation

of the tracker track to the muon system must match hits in at least two

muon stations.

• Number of pixel hits: For selected muons, the track must have at least one

hit in the pixel tracker.

• Number of tracker layers: For selected muons, the track must have hits in

at least 6 layers of the tracker.

• PF muon matching: Selected and veto muons should both be reconstructed

by the PF algorithm. For selected muons, the pT of the corresponding PF

reconstructed muon must be within 5 GeV. As with electrons, this matching

is important to avoid biases in the E/T, which uses PF reconstructed muons.

• Relative Isolation: As with electrons, prompt muons should be isolated.

The relative isolation within a ∆R < 0.3 cone of the muon is computed in

the same way as for electrons. The sole exception is the correction for the
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contribution from PU to the neutral hadron and photon energy sum. This

correction is obtained by subtracting half of the energy deposited within

the isolation cone of the muon by charged hadrons not associated with the

leading primary vertex. The factor of 0.5 comes roughly from the ratio of

the neutral hadron and photon to charged hadron energy resulting from PU

interactions. Selected(veto) muons must have relative isolation less than

0.12(0.2).

The muon selection efficiency is derived with the same tag-and-probe technique

as described above for electrons. The average muon selection efficiency is found

to be roughly 90%. The efficiency varies by less than 10% with pT and |η|.
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Strategy, Samples, and Selection

5.1 Analysis Strategy

As described in Ch. 2, searches for gluino pair production at the LHC are well

motivated by naturalness considerations and the significant cross-section due to

strong production. As top squark masses are more constrained than other squarks

and gluinos by naturalness, gluinos would likely be heavier than stops and decay

through them, i.e., g̃ → tt̃(∗). If the mixing between the different flavor squarks

is not large and the mass splitting between the stop and LSP is sufficiently large,

then the stops would decay primarily via t̃ → tχ̃0
1. Hence an event with gluino

pair production could result in a final state with four top quarks and two LSPs.

Such an event would almost certainly leave a striking signature in the detector.

The probability of exactly one electron or muon in the final state, either directly

from one of the four W decays or from a tau which is a W decay product (e.g.,
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W → τ ν̄τ where τ → `ν̄`ντ ), is roughly 40%. The probability for all numbers

of leptons in the final state is shown in Fig. 5.1. Because the most likely lepton

multiplicity is one, it is a natural choice to perform a search for this phenomenon in

the single lepton channel. As each of the top quarks yields a bottom quark as one

of its decay products, there would be four b quarks in the final state. Assuming

that three of the four W bosons decay hadronically to produce two quark jets

each, there would be 10 jets in the event, ignoring acceptance and initial state

radiation (ISR) effects. The two weakly interacting LSPs in the final state will

contribute to the E/T.

The mass splitting between the gluino and LSP determines the energy scale

of the event, in particular the sum of E/T and HT will be on the same scale as

2 (m(g̃)−m(χ̃0
1)). This is over a TeV of energy for much of the interesting param-

eter space, but can also be quite small. To obtain sensitivity to as broad a range of

mass splittings as possible, the strategy of using a signal region consisting of mul-

tiple exclusive bins of E/T and HT thresholds has been adopted. Additionally, the

energy scale of the event affects the average jet pT which influences b-tagging ac-

ceptance and efficiency. For this reason, the signal region is divided into exclusive

bins in the number of b-tagged jets, Nb.

Despite the fact that such a signature from gluino pairs decaying through stops

would be quite striking, there are SM processes that can mimic it. The foremost
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Figure 5.1: Distribution of the number of leptons from the decays of 4 W
bosons. Leptons from tau decays are counted toward the total. The relevant
branching fractions for W and τ decays are taken from [47]. Acceptance and
selection efficiency effects are ignored.

such process is tt̄ pair production, which has two true b jets, two W bosons, and

a much higher inclusive cross-section than the signal. The second most likely

process to mimic the signal is single-top production, but this has a smaller cross

section than tt̄ production, only one true b jet, and fewer jets than tt̄. Next is

W boson production in association with multiple jets, which has little true b jet

enrichment. The inclusive W production cross section is very large but decreases

rapidly as the number of associated jets and HT is increased, such that it becomes

a sub-dominant background in this search.
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All other SM processes are expected to have a very small contribution to the

background. The ones considered in this analysis are di-boson (i.e., WW , WZ,

and ZZ) production, Drell-Yan (DY) production with associated jets, tt̄Z and tt̄W

production, and QCD multi-jet production. With the exception of tt̄Z and tt̄W ,

which have extremely small cross sections, all of these processes lack a significant

true b-jet contribution. Leptonic Z boson decays are further suppressed because

they result in two leptons and no true E/T. Finally the QCD background has no

true prompt leptons and few true b jets. Despite its large cross section, these

factors are expected to sufficiently suppress the QCD background to a negligible

level, as confirmed by a dedicated estimate of this background.

The estimation of the SM background is described in Ch. 6 and separately

predicts the components based on the number of taus and leptons in the final state.

The dominant background contribution comes from true single-lepton events (i.e.,

events with exactly one leptonic W decay and no other leptons or taus) and is

estimated using the charged lepton pT spectrum. The majority of the remainder

of the background is comprised of events containing taus, which is estimated by

emulating tau decays in various data control samples.
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5.2 Data Sample

This analysis is performed using a data sample corresponding to 19.3±0.5 fb−1

of integrated luminosity collected by CMS during the 2012 LHC
√
s = 8 TeV pp

collision run. The total integrated luminosity collected by CMS during this period

was 21.8± 0.6 fb−1, but some portions cannot be used due to various temporary

problems in the operation of CMS. For example, a suddenly noisy channel in the

HCAL might lead to a high jet-trigger rate which uses up nearly the entire Level-1

Trigger bandwidth and prevents interesting events from being saved.

The data events in the signal sample of this analysis are required to pass at

least one of a set of multi-object HLT triggers which require E/T, HT , and a lepton

(electron or muon). All of these triggers require the E/T to be greater then 45 or

50 GeV. The triggers with a muon leg require either pmuon
T > 15 GeV and HT >

350 GeV or pmuon
T > 5 GeV and HT > 400 GeV. The triggers with an electron

leg require either pelectronT > 15 GeV and HT > 300 GeV or pelectronT > 5 GeV and

HT > 350 GeV.

The data events in the control sample used to estimate the true single-lepton

background are required to pass at least one of a set of HLT triggers which require

HT and a lepton but no E/T. The HT thresholds are compatible with those of the

signal region; namely HT > 350 GeV for the muon triggers and HT > 300 GeV
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for the electron triggers. To keep the trigger rates at a reasonable level, the lepton

pT requirement is significantly increased to 40 GeV for both electrons and muons

to compensate for the lack of a E/T requirement.

To not exceed its limited computing resources, the reconstruction algorithms

used by the HLT are much faster approximations of the full offline reconstruction

described in Ch. 4. Therefore, the offline and trigger reconstructed objects in an

event will not be identical. More stringent offline requirements than the trigger

thresholds are used to ensure high trigger efficiency. The combined efficiency

of the HT and E/T legs of the signal region triggers is just over 98% for the

signal selection. The HT leg of the control sample triggers has similar efficiency

for the control sample selection. For both the signal and control samples, the

corresponding triggers have roughly 96% efficiency for electrons, 98% efficiency

for muons with |η| < 0.9, and 84% efficiency for muons with |η| > 0.9.

An additional set of triggers requiring onlyHT is used to select a control sample

with no lepton or E/T requirements in which the E/T from detector resolution effects

is modeled. Multiple triggers are needed with different thresholds in order to cover

the entire relevant range ofHT . LowHT events are obtained through low threshold

triggers which have large prescales. The prescale of a trigger is the inverse of the

fraction of events in which that trigger path is considered. The high HT events

are obtained through higher threshold triggers which have smaller prescales or are
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not prescaled at all. This is important because the high HT event rate is much

smaller and combined with a large trigger prescale would result in too few events

in the control sample to effectively model the E/T resolution.

5.3 Simulated Events

In addition to data, this analysis utilizes event samples simulated with Monte

Carlo methods to aid in the background prediction and to interpret the results

in the context of a supersymmetric model. The simulation of SM processes is an

invaluable tool because it allows the background prediction methods to be tested

in a sample with much higher statistical precision than the data and because

generator-level information can be used to obtain the true identity and momentum

of each particle produced in the collision.

The MadGraph 5 generator [93] is used for tt̄, W + jets, DY+jets, tt̄W ,

tt̄Z, and QCD multijet production. The POWHEG generator [94] is used for

single top-quark and tt̄ production. The usage of two tt̄ samples is because

the larger MadGraph version does not specially handle tau-lepton decays via

TAUOLA [95], and consequently is not used in the prediction of the back-

ground consisting of events with taus from W boson decays. The remaining

simulated SM samples, consisting only of diboson production, are generated with
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the PYTHIA 6.4 generator [96]. The samples generated by MadGraph and

PYTHIA use the CTEQ6L1 [97] parton distribution functions (PDFs) to parametrize

the fractional momentum carried by the partonic constituents of each proton. The

single top-quark samples use the CTEQ6.6M [98] PDFs and the POWHEG tt̄

sample uses the CT10 [99] PDFs. Additionally, each sample uses the Geant4

package [100] to model the detector response and PYTHIA 6.4 with tune Z2* [101]

to describe showering and hadronization.

The cross sections for each of the simulated SM samples are calculated at NLO

or higher, with the exception of QCD, for which the leading order (LO) cross

section calculated by the MadGraph generator is used. Most of the higher order

calculations are done using either the program MCFM 6.1 [102] or FEWZ [103].

In the case of tt̄ and single-top production, the cross sections are computed [104]

at approximate next to next to leading order (NNLO). The W + jets process is

simulated in bins of HT , for which the LO cross section in each bin is corrected

by the ratio of the NLO to LO cross section for inclusive W production.

The SUSY signal is generated with MadGraph 5, and uses the same PDFs

and PYTHIA tune as the SM simulation. The key difference is the use of a fast

simulation [105] technique to model the detector response instead of Geant4.

This is done to drastically decrease the simulation time, which is necessary due to

the large number of signal events needed to effectively scan over the relevant SUSY
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parameter space. The fast simulation does a good job of matching the Geant4

based simulation, but a few small differences are noticeable; most notably, the b-

tag and lepton selection efficiencies are a few percent higher in the fast simulation.

To effectively use the SM simulation, significant differences with the data must

be corrected. One such difference is that the simulated distribution of the number

of PU interactions does not match that of the data. The mismatch comes from the

fact that the PU distribution in the simulation was chosen before the majority

of the 2012 dataset had been recorded. Correcting this difference is important

because lepton selection efficiencies vary significantly with the amount of PU.

The PU distribution in data is calculated from instantaneous luminosity measure-

ments combined with the total pp inelastic cross-section, which the corresponding

distribution in simulation is scaled bin-by-bin to match.

Lepton efficiencies in the fast simulation signal samples are corrected to remove

the few percent difference with the data. However, SM simulation lepton efficien-

cies are within a percent of the data and are not corrected. Another difference

between data and simulation is that no trigger requirements are applied to the

simulation. The exact set of triggers used in data are not simulated, meaning the

trigger efficiencies measured in data must be directly applied to the simulation.

The final items to correct in the simulation are the b-tagging efficiency and

mistag rate, using the scale factors described in Sec. 4.2.1. Due to the presence
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of multiple jets in each event, care must be taken in the application of these scale

factors. The corrected efficiencies and mistag rates for the jets in an event are

utilized with the appropriate combinatorial factors to determine the new weight

for that event. For the fast simulation, the slightly different simulated efficiencies

require distinct scale factors, which are applied in the same way.

5.4 Event Selection

In order to effectively target gluino production and decay through stops, the

following requirements are used to select the signal sample: at least one good

primary vertex; six or more jets, at least two of which are identified as b jets by

the CSVM tagger; exactly one selected electron or muon and no additional veto

electrons or muons; HT > 500 GeV; and E/T > 150 GeV. Chapter 4 describes

the reconstruction of these objects. The additional lepton veto is necessary to

simplify the background composition and ensure it is dominated by true single-

lepton events. The HT and E/T requirements are designed to be as minimal as

possible while ensuring that the selected events are on the efficiency plateau for the

corresponding legs of the signal triggers. In order to cross-check the background

estimation methods employed in this analysis, the event yields are also predicted

in a signal depleted validation region. This validation region is selected to be
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kinematically very similar to the signal region, with the only difference being the

requirement of between 3 and 5 jets.

In addition to the above selection some additional cleanup requirements are

necessary. For one, jets are excluded from the jet multiplicity (Nj) and HT cal-

culations if they overlap within ∆R < 0.3 of any veto electrons or muons. This

prevents the double counting of leptons as jets by the PF algorithm. As indicated

in Sec. 4.3, to effectively use a data sample with a large E/T requirement, filters

must be imposed to reject events which are likely to have large artificial E/T. The

filters used in this analysis are designed to remove events affected by the following

problems. These problems have clear signatures, and consequently the filters used

to reject them have minuscule probability to reject non-problematic events.

• Beam halo and beam scraping: The LHC beam can interact with gas in the

beam pipe or the beam collimators, producing showers of particles. Muons

produced in these showers can traverse CMS and deposit significant energy

in the calorimeter in time with the proton bunches.

• HB and HE noise: Individual HPDs as well as groups of 4 HPDs (a readout

box) occasionally generate significant anomalous noise.

• Tracking failure: In events with extremely large tracker hit multiplicity, the

track reconstruction algorithm can fail to efficiently reconstruct tracks. This
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results in events with large calorimeter energy deposits, but relatively few

tracks. This signature can also be created by events which come from proton-

proton collisions far away from the nominal collision point, at |z| ≈ 75 cm.

• HCAL laser misfire: The laser used for HCAL calibration rarely misfires

during collision data taking, leading to huge energy deposits in the HCAL

and E/T due to non-uniformity of the calibration system.

• Noisy EE clusters: There are two 5× 5 groups of crystals in the EE which

occasionally produce high amplitude noise.

• Dead ECAL channels: Around 1% of the crystals in the ECAL are masked

in reconstruction either because they are noisy or have readout-electronics

which cannot send data. In the case that a jet or electron deposits energy

into one or more of these channels, significant artificial E/T can be created.

• Improperly calibrated ECAL channels: In the course of regularly updat-

ing the transparency loss corrections for the ECAL, some channels can be

assigned unphysically large correction factors, leading to E/T.

To gain sensitivity to a broad range of parameter space, the signal region in

this analysis is divided into bins of E/T and Nb as well as by distinct HT thresholds.

The E/T is divided into bins of (150, 250], (250, 350], (350, 450], (450, inf) GeV. Bins
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of exactly 2 and three or more b tags are used. The HT is not separated into

exclusive bins, but rather by three thresholds of 500, 750, and 1000 GeV.
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Background Prediction

There are multiple SM processes which can produce events which pass the event

selection requirements in Sec. 5.4 and thereby mimic the SUSY signature targeted

by this analysis. The prediction of the SM background in the Nb = 2 signal

regions is divided into categories, described below, each of which employs a distinct

estimation method. The categories are distinguished by the number of prompt

leptons in the final state as well as the presence of tau-leptons. Each estimation

method, described in Sec. 6.1-6.3, derives its power mainly from the data, with

the exception of the prediction of the extremely small Z+ jets background, which

is taken from simulation and assigned a 100% systematic uncertainty.

However, the extremely small event yields in the Nb ≥ 3 data control samples

mean they cannot be used to adequately estimate the Nb ≥ 3 signal yields. In-

stead, the Nb ≥ 3 background estimates are obtained from the Nb = 2 predictions

using an extrapolation factor derived in simulation, as described in Sec. 6.4.
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The predictions of the Nj ≥ 6 signal regions and 3 ≤ Nj ≤ 5 validation regions

are performed using identical procedures. The only difference between the two

predictions is the Nj requirement in the respective control samples. Therefore, the

tables and figures in this chapter will focus on the signal region and the validation

region predictions will be summarized in Ch. 7.

6.1 Single Lepton Background

The dominant background in this search comes from events with exactly one

prompt lepton and no W → τν decays and constitutes roughly two-thirds of

the total background. The Lepton Spectrum (LS) method used to estimate its

contribution is based on the approximate equivalence in the SM of the momen-

tum spectra of charged leptons and neutrinos in W → `ν` decays. Due to this

near equivalence, the charged lepton pT spectrum can be used with small, well-

understood corrections to predict the neutrino, and hence E/T, spectrum. This

has the desirable feature that it can be done in a data-driven manner with re-

spect to important effects which are not necessarily well simulated, such as the

E/T resolution and the high tail of W boson pT distribution. Furthermore, such

a prediction suffers little contamination from SUSY events, which generally have
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an enhanced E/T spectrum compared to their charged lepton pT spectrum due to

the presence of LSPs.

Figure 6.1 illustrates the principle underlying this method by showing the

E/T versus lepton pT in the dominant SM background of tt̄ and a SUSY T1tttt

benchmark model. Consider the neutrino and lepton pT in a single lepton tt̄ event.

In the W rest frame, the lepton and neutrino would have the same momentum.

However, in the lab frame the boost of the W enhances the pT of either the lepton

or neutrino with respect to the other, depending on their angle of decay relative to

the W momentum axis. Because this anti-correlation affects leptons and neutrinos

nearly democratically, the lepton and neutrino(E/T) spectra are similar. This is

very different than the typical SUSY model, as illustrated in the figure, in which

the lepton pT spectrum has a much smaller mean than the E/T spectrum.

In order to use the lepton pT spectrum to accurately predict the E/T spectrum

of SM single lepton events, there are a few important effects which must be taken

into account.

• E/T resolution: Because the detector does not have perfect resolution, the

measured E/T will not be identical to the neutrino pT . Instead, the imperfect

jet and lepton measurements lead to a smearing of the E/T. Because the lep-

ton pT measurements are more precise, the jet energy resolution dominates

the E/T resolution. Therefore, the E/T resolution can be quantified using a
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Figure 6.1: Distributions of E/T vs muon pT for single lepton events in simulated
samples of (a) tt̄ events and (b) the T1tttt model with m(g̃) = 1100, m(χ̃0

1) =
100 GeV. In tt̄ events, the lepton pT and E/T spectra are very similar. In the
T1tttt benchmark model, which is typical of many SUSY models, the E/T is larger
on average than the lepton pT , since it is enhanced by the presence of two LSPs.

QCD multi-jet sample. For events passing the minimal signal selection, the

E/T threshold (150 GeV) is significantly larger than the resolution, meaning

the E/T does serve as a reasonable proxy for the neutrino pT .

• Non single lepton events: The good agreement between the lepton pT and

E/T spectra is only achieved in true single lepton SM events. In events with

multiple neutrinos, disregarding resolution effects, the E/T is given by the

vector sum of the neutrino pT ’s, which will be greater on average than the pT

of the selected lepton. Multiple neutrinos can arise from multiple leptonic
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W decays in an event or a single W → τντ → `ν`ντντ decay. These types

of backgrounds are predicted separately, as described in Sec. 6.2.

• W boson polarization: The polarization of W bosons in SM processes to-

gether with the V − A nature of the weak interaction result in differing

neutrino and lepton pT spectra, described in more detail in Sec. 6.1.2. Due

to the distinct nature of direct W boson and tt̄ production, the W polariza-

tion distribution is different in events with top quarks and W + jets events.

• Lepton pT threshold: Due to the anti-correlation described above between

the lepton and neutrino pT in individual W decays, the lepton pT require-

ment in the signal selection biases the neutrino spectrum. This requirement

removes only events with low lepton pT which can have much larger neutrino

pT . The net result is that the high tail of the E/T spectrum is shifted down

while the lepton pT spectrum is unaffected.

The effects of the last two items in this list are visualized in Fig. 6.2, in which the

generator level muon and muon-neutrino pT spectra in tt̄ simulation are plotted

before and after a muon pT > 20 GeV requirement. Before the pT requirement, the

enhancement of the neutrino spectrum compared to the muon spectrum indicates

the effect of W polarization. The effect of the muon pT requirement is apparent

in the downward shift of the neutrino spectrum.
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Figure 6.2: The muon and muon-neutrino pT spectra in simulated tt̄ single-
lepton events (a) before and (b) after a muon pT > 20 GeV requirement. All
quantities are generator level. Muon |η| < 2.4 is required in both plots.

To predict the single lepton background, a control sample with no E/T require-

ment, lepton pT > 50 GeV, and all the other requirements of the signal selection

is used. The lepton pT threshold is set to be on the efficiency plateau of the

lepton plus HT cross-trigger used to select the events. The lepton pT distribution

in the data control sample is smeared with the E/T resolution derived from data

to obtain a raw prediction of the E/T distribution in the signal region. However,

this raw prediction must still be corrected to account for the final three bullets

in the above list. These three effects are all related to the W boson decays and

are well described in the simulation. The correction of the raw prediction is done

with the multiplicative factor κLS, derived using the SM simulation separately for

116



Chapter 6. Background Prediction

 [GeV]TE
150 200 250 300 350 400 450 500

LSκ 

0

0.5

1

1.5

2

2.5

3

3.5

4
CMS Simulation  = 8 TeVs

Single lepton background
=2

b
6, N≥jetN
>500 GeVTH
>750 GeVTH
>1000 GeVTH

Figure 6.3: κLS as a function of E/T for Nb = 2, Nj ≥ 6, and the three HT

thresholds. The final E/T bin extends to infinity. The 50 GeV bins of E/T are
used here for illustration purposes, while the values of κLS used in the analysis
correspond to the signal E/T bins.

each signal bin of E/T. It is defined as

κLS(E/T) =
N true(E/T)

Npred
raw (E/T)

, (6.1)

whereN true(E/T) is the number of simulated true single lepton events andNpred
raw (E/T)

is the number of raw predicted events when using the simulated lepton pT distri-

bution smeared with the E/T resolution. Figure 6.3 shows κLS as a function of E/T

for Nb = 2, Nj ≥ 6, and the different HT thresholds.
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The most challenging aspects of the Lepton Spectrum prediction are account-

ing for the E/T resolution, W polarization, and systematic uncertainties. The next

three subsections describe in more detail the way in which these are handled.

6.1.1 E/T Resolution

As mentioned above, the lepton pT resolution is significantly better than that

of the E/T, a fact which must be accounted for when using the lepton pT spectrum

to predict the E/T spectrum. This is done using E/T resolution templates derived

in a QCD multijet dominated data control sample. This particular control sample

is used because the E/T should be dominated by detector resolution due to the lack

of neutrinos in QCD multijet events. Further, because the templates are derived

in data, even anomalous sources of large artificial E/T are taken into account in

the prediction, provided that they have the same frequency in QCD multijet and

single lepton events.

To obtain the QCD multijet dominated control sample, no requirement on the

presence of leptons is made. Because the E/T distribution is correlated with both

HT and Nj, the templates are binned in each. Template bins with Nj = 4 and

Nj ≥ 5 are used in the 3 ≤ Nj ≤ 5 validation and Nj ≥ 6 signal region predictions,

respectively. The Nj threshold is relaxed from the signal selection in order to

increase the statistical precision of the templates. Events are also required to
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Figure 6.4: E/T templates for different selections. To decrease the statistical
uncertainty for illustrative purposes, the jet requirement has been loosened to
Nj ≥ 4 and much wider than usual HT bins are used. (a) shows two templates
with different HT requirements, and (b) shows two templates with different Nb.

have at least one CSVM tagged jet. This is important because b jets can decay

semi-leptonically, which produces neutrinos and contributes to the E/T. As with

Nj, the Nb requirement is relaxed compared to the signal selection in order to

increase the statistical precision of the templates. Fig. 6.4 shows a few example

templates and illustrates the effect of the HT and Nb selections on the template

shape. The larger HT selection slightly increases the mean and width of the core

while the Nb selection has very little effect.

The data control sample is selected using a set of HT triggers. As described

in Sec. 5.2, a wide range of HT thresholds are needed due to trigger prescale
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Figure 6.5: Reconstructed HT in 19.3 fb−1 of data for the different HT triggers.

considerations. Fig. 6.5 shows the HT distribution for the different triggers used

in the selection, corrected according to their prescales. An event with a given HT

enters the E/T resolution templates only if it passes the trigger with the lowest

prescale, i.e., highest threshold, which is approximately fully efficient for that HT .

The E/T resolution templates correspond to 10 GeV wide bins of HT with bin

edges such that only one HT trigger is used to select events in a given template.

The following procedure is performed to correct the lepton pT spectrum by

the E/T resolution using a set of toy samples smeared with the E/T resolution

templates. To accomodate the HT binning of the E/T templates, the uncorrected
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lepton pT spectrum is binned in both lepton pT and HT . For a given toy, each

bin of the uncorrected lepton pT spectrum and E/T templates has its number of

entries independently varied according to its statistical uncertainty. For each bin

of the uncorrected lepton pT spectrum, a random value is chosen according to

the applicable E/T resolution template and added vectorially at a random angle to

the pT . The resulting magnitude of the smeared pT along with the normalization

of the original unsmeared bin are used to fill the corrected lepton pT spectrum.

After doing this for all bins of the uncorrected lepton pT spectrum, the corrected

spectrum for that toy is obtained. The central value and statistical uncertainty

on a given bin of the corrected lepton pT spectrum comes from the mean and

standard deviation, respectively, of that bin across the ensemble of toys. The

smearing results in a roughly 10% enhancement of the high lepton pT tail.

6.1.2 W Boson Polarization

The polarization of W bosons is one of the most important factors that gives

rise to the asymmetry of the lepton and neutrino pT spectra in single lepton

events. In particular, asymmetry in the W polarization distribution combined

with the V − A nature of the W decays creates an asymmetry in the angular

distribution of the decay lepton and neutrino in the W rest frame with respect to

the W momentum axis. When boosted to the lab frame, this angular asymmetry
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results in differing lepton and neutrino pT spectra. The relative difference in the

spectra is largest at high pT , which coincides with the phase space probed by this

analysis. This section discusses the effects of W polarization in tt̄ and W + jets

events, which are treated separately due to their distinct characteristics.

To characterize the polarization distribution, the fractions of W bosons with

positive helicity (f+1), negative helicity (f−1), and zero helicity (f0) are used. The

axis used for the helicity calculation is the W flight direction in the lab frame

for W + jets events and in the top rest frame in tt̄ events. The top rest frame is

used in tt̄ events because the W comes from the decay of a top quark. The angle

between the W flight axis and the lepton in the W rest frame is used to define

a polar angle θ∗` and azimuthal angle φ∗` . Using the fact that a spin-1 W decays

to a spin-1/2 lepton and neutrino along with the V − A nature of the decay, one

can calculate the distribution of leptons [106], with the minimal assumption of

azimuthal φ∗` symmetry, in terms of θ∗` :

1

N

dN

d cos θ∗`
= f+1

3

8
(1 + cos θ∗` )

2 + f−1
3

8
(1− cos θ∗` )

2 + f0
3

4
sin2 θ∗` , (6.2)

where N is the event yield. The distribution of cos θ∗` provides a handle to study

the systematic uncertainty associated with the W polarization distribution in MC.

Each of the W bosons in tt̄ events is produced via the decay t → bW+ or

t̄ → b̄W−. In the former decay, the left-handedness of the bottom quark, com-

bined with its relatively small mass compared to the top quark has important
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implications for the W+ polarization distribution. In the limit that the bottom

quark mass goes to zero, it will have negative helicity and conservation of angular

momentum forbids the W from having positive helicity, i.e., f+1 = 0. The actual

non-zero bottom mass is sufficiently low, though, such that f+1 is still small. A

full calculation of the polarization fractions [107] results in the following values.

f0 = 0.687± 0.005

f−1 = 0.311± 0.005

f+1 = 0.0017± 0.0001 (6.3)

These fractions were derived with the assumption that the top quarks are longitu-

dinally unpolarized. This is a reasonable assumption given the parity conserving

nature of the QCD production mechanism and consistent with recent measure-

ments [108, 109]. Only a small, sub-percent polarization arises due to weak-

interaction corrections [110], whose effect on this analysis is more than covered by

the systematic uncertainty assigned to the polarization fractions.

For t̄→ b̄W− decays, the anti-bottom is right-handed and instead the negative

helicity state of the W is heavily suppressed. In fact, the polarization fractions

for W− should be the same as those of W+, but with f+1 and f−1 interchanged.

However, because W− decays to a left-handed lepton but W+ decays to a right-

handed anti-lepton, the distribution of cos θ∗` will be identical between the two.
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The polarization fractions have been measured by multiple experiments [111,

112, 113, 114, 115], which have found them consistent with the above theoretical

prediction. Given this agreement and the fact that the experimental uncertainties

are over five times as large as the theoretical uncertainties, the predicted values

from theory are used. An additional reason for this choice is that there is no po-

tential for contamination from new physics, which could affect the experimentally

measured values.

To obtain a systematic on the W polarization in tt̄ events, a 5% variation is

applied to the f0 helicity polarization fraction. The f−1 fraction is correspondingly

changed such that f+1 + f0 + f−1 = 1 while the tiny f+1 fraction, which has

extremely small uncertainty, is left unchanged. This 5% variation is roughly ten

times larger than the theoretical error on these polarization fractions. Figure 6.6

shows the predicted angular distribution in the W frame and how it changes when

applying this 5% variation.

Unlike in tt̄, the polarization in W + jets events depends strongly on both the

rapidity and transverse momentum of the W due to the EW production mecha-

nism. There is also a small difference between the polarization of W+ and W−.

For the high W -boson pT (pWT ) relevant for this analysis, left handed polarization

should dominate. An analysis using an NLO QCD calculation [116] found the

computation of the polarization fractions to be theoretically robust, higher-order
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Figure 6.6: The dN
d cos θ∗`

distribution in tt̄ events from theory. The curves cor-

responding to 5% variations of f0, used to derive the systematic uncertainty, are
also shown.

QCD corrections to be small, and a theoretical uncertainty of around 10%. The

computed polarization fractions were found to be consistent with measurements

from both CMS [117] and ATLAS [118]. It was also found in [116] that the polar-

ization fractions are also quite stable over pWT , with the left-handed piece on the

order of 60% and rising with pWT , the right-handed piece staying constant around

20-25%, and the remaining longitudinal fraction dropping towards zero as pWT in-
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creases. The above calculation used a center of mass energy of 7 TeV, but the

conclusions were largely independent of this assumption and still hold at 8 TeV.

Since the W+ and W− have very similar polarization fractions, their decay

leptons, which are respectively right and left-handed, should have opposite asym-

metries in cos θ∗` . If W production was charge symmetric, then the asymmetries

would nearly cancel leaving cos θ∗` almost flat. However, W+ production is more

common [119] at the LHC, leading to a shift in the cos θ∗` distribution toward

negative values in W + jets events.

In order to apply a systematic uncertainty to the prediction based on the

uncertainty in the W polarization fractions, the fractions must first be quantified.

Since the polarization in W + jets events depends on the W boson pT , |y|, and

charge, it is parametrized in bins of each of these variables. In particular, 3 bins

of pT corresponding to [100,300), [300,500), and [500,inf) GeV are used along with

3 bins of |y| corresponding to [0,1), [1,2), and [2,5). Events with pWT < 100 GeV

are ignored as they do not result in leptons or neutrinos with high enough pT to

pass the signal or control region selections. Additionally, the pWT > 500 GeV and

2 < |y| < 5 bin for both W+ and W− is not used in the systematic variations due

to a lack of events in this bin which causes an inability to accurately measure the

polarization fractions.
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Figures 6.7 and 6.8 show the dN
d cos θ∗`

distributions in the W + jets simulation

in the bins described above. In each bin a fit is performed to determine the

polarization fractions. From these fits, a few general observations can be made.

The helicity zero fraction decreases at high W -boson pT , while the helicity −1

and +1 fractions gradually increase and remain relatively flat, respectively. At

large rapidity the helicity −1 and +1 fractions increase and decrease, respectively,

while the helicity zero fraction stays roughly the same. These observations are

consistent with those made in the polarization calculations in Ref [116].

After fitting the angular distributions to obtain the polarization fractions, the

systematic uncertainty on the LS prediction due to the W polarization uncertain-

ties in W + jets is determined by varying the polarization fractions in each of

the bins. Based on the theoretical uncertainties in Ref [116], 3 variations of the

polarization fractions are chosen: 1) 10% variation to f−1 − f+1 simultaneously

for W+ and W−; 2) 5% variation of f−1−f+1 separately for W+ and W−; 3) 10%

variation to the longitudinal polarization fraction f0 simultaneously for W+ and

W−. Figure 6.9 shows exactly the reweighting applied for the first variation type

in the 300 < pWT < 500 GeV, 0 < |y(W )| < 1 bin separately for W+ and W−.

The uncertainties from these 3 variations are quite small across all signal bins,

generally at the percent level or less, despite the significant polarization variations.

This is because W + jets is such a small component of the background. The
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Figure 6.7: Fits to the simulated dN
d cos θ∗`

distribution for W+ in W + jets events

in bins of W boson pT and |y|. The helicity fractions in each bin are printed
on each plot. For these plots the cos θ∗` was measured using the generator level
momentum of the W+ and its decay lepton.
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Figure 6.8: Fits to the simulated dN
d cos θ∗`

distribution for W− in W + jets events

in bins of W boson pT and |y|. The helicity fractions in each bin are printed
on each plot. For these plots the cos θ∗` was measured using the generator level
momentum of the W− and its decay lepton.
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Figure 6.9: The simulated dN
d cos θ∗`

distribution in W + jets events for (a) W+

and (b) W− in the 300 < pWT < 500 GeV, 0 < |y(W )| < 1 bin. The distributions
corresponding to a ±10% variation of f−1− f+1, which is used in determining the
systematic uncertainty, are also shown.

procedure used to derive the uncertainties from the W polarization variations is

described in Sec. 6.1.3.

6.1.3 Systematic Uncertainties

There are several distinct systematic effects that could bias the single lepton

background prediction from the LS method. For all of these effects, the bias enters

because the simulation, in which the κLS factors are derived, does not match the

data. To gauge this bias, a given effect is varied by its uncertainty and the change
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in κLS is noted. The relative systematic uncertainty is

Relative Uncertainty =
|κLS(Nominal)− κLS(Variation)|

κLS(Nominal)
. (6.4)

For sources of uncertainty which correspond to multiple variations of κLS, e.g.,

positive and negative variations of a systematic effect, the systematic uncertainty

on κLS is conservatively taken to be the maximum of these variations and treated

as symmetric. The systematic uncertainty is derived separately for each signal

region of the analysis. Although, this relative uncertainty is derived from the

change in κLS, it applies equally well to the final prediction from the LS method.

The sources of systematic uncertainty along with their treatment are:

• Jet and E/T energy scale: This is a dominant uncertainty for the lepton

spectrum method. The uncertainty on the jet and E/T energy scales is highly

correlated, and is therefore treated as one source of uncertainty. Because

the LS method uses lepton pT to predict E/T, a shift in the E/T scale changes

κLS by altering the numerator of Eq. 6.1 but leaving the denominator un-

changed. This uncertainty is measured by varying the energies of all jets and

unclustered calorimeter deposits in each event by ±1σ of their uncertainty.

• W polarization in tt̄: A 5% variation to the f−1 and f0 W helicity fractions

is applied. This 5% variation is roughly ten times larger than the theoretical

error on these polarization fractions. More details are described in Sec. 6.1.2.

131



Chapter 6. Background Prediction

• W polarization in W+jets: 3 variations of the polarization fractions are

used: 1) 10% variation to f−1 − f+1 simultaneously in W+ and W−, 2) 5%

variation to f−1 − f+1 separately for W+ or W−, 3) 10% variation to the

longitudinal polarization fraction, f0, simultaneously in W+ and W−. These

variations are applied in bins of pT (W ) and rapidity of the W . More details

on the procedure and the specifics of the binning are given in Sec. 6.1.2.

• σ(W ): While the inclusive W+jets cross section is well known theoretically

and experimentally, the cross section for W+ ≥ 6 jets is much less con-

strained. The uncertainty on the W + jets cross section is measured using

Z + jets events passing the same HT and Nj selection criteria by comparing

the event yield in data and MC. More details are given in the subsection

below. The contribution of W+bb̄ is particularly uncertain, so an additional

uncertainty from a 100% variation of the W + bb̄ cross section is included.

• σ(tt̄): The tt̄ production cross section is varied by its theoretical uncertainty,

taken from Ref. [104].

• Single top cross sections: The single top cross sections are varied ac-

cording to the uncertainty given in [104]. The t-channel, s-channel and tW

components are varied up or down simultaneously.
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• Lepton efficiency vs pT : This takes into account uncertainties arising from

data to simulation differences in the lepton reconstruction and identification

and is measured by varying the electron and muon efficiencies. The lepton

efficiency is changed according to the data/MC ratios given in Ref. [120],

which are generally within a few percent of unity across the full range of

lepton pT . This leads to a small uncertainty in the prediction in both the

muon and electron channels.

• Z + jets background: The contribution of Z + jets events to the lepton

pT spectrum is assigned a 100% uncertainty. The large relative uncertainty

is intended to cover the poorly known Z plus many jets and Z + bb̄ cross

sections as well as uncertainty on reconstruction and selection inefficiencies

which allow Z → `` events to enter the control sample. This large relative

uncertainty, however, translates to a very small uncertainty on the total

prediction due to the tiny Z + jets contribution to the control sample.

• Muon pT scale: Analogous to changing the E/T scale, a shift in the muon pT

scale would change κLS by altering the denominator of Eq. 6.1 but leaving

the numerator unchanged. The systematic uncertainty due to the muon

pT scale is measured using an ensemble of mock data samples drawn from

tt̄ simulation, where the curvature corrections in each mock data sample
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are smeared according to the uncertainties with which these corrections are

measured in Ref. [121]. See the subsection at the end of this section for more

details.

• Scale factor statistical uncertainty: The statistical uncertainty on the

measurement of the κLS factors are included in the systematic uncertainties.

Table 6.1 summarizes the systematic uncertainties associated with the single

lepton background prediction for the three search HT thresholds.

Systematic Uncertainty on the W + jets cross section

The W + jets cross section uncertainty is measured by comparing data to

simulation in a Z + jets sample. Z + jets makes a reasonable proxy for W + jets

events because of the similarity of their production diagrams. This measurement

is performed in a baseline sample with Nj ≥ 4, HT > 500 GeV, exactly two

selected muons or electrons, and no additional leptons passing the veto selection.

Events are required to pass the lepton+HT cross triggers and have leading lepton

pT > 50 GeV in order to be on plateau for the lepton leg of these triggers.

Figure 6.10 shows the dilepton mass distribution in events with Nj ≥ 4, Nj ≥ 6,

or Nj ≥ 4 and Nb ≥ 2. The Nj ≥ 6 and Nb ≥ 2 selection is not used because too

few events pass this selection for a useful data/simulation comparison.
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Figure 6.10: Dimuon and dielectron mass distribution after an HT > 500 GeV
requirement for: (a) Nj ≥ 4, (b) Nj ≥ 6, and (c) Nj ≥ 4 and Nb ≥ 2. The
uncertainties shown for both simulation and data are statistical only.
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Table 6.2: Yields and ratios in data and simulation in the dilepton mass window
of [80,100] GeV. A baseline cut of HT > 500 GeV is applied.

Nj Nb Data DY Simulation non-DY Simulation Data/Simulation

≥ 4 ≥ 0 1340 1382.5± 7.9 86.4± 4.1 0.91± 0.03

≥ 6 ≥ 0 103 87.8± 2.0 9.0± 1.4 1.07± 0.12

≥ 4 ≥ 2 67 33.7± 1.2 23.9± 2.2 1.28± 0.26

Table 6.2 lists the ratios of data to simulated Drell-Yan event yields in the

dilepton mass window of [80,100] GeV. The expected non-DY yield from sim-

ulation is subtracted from data before dividing by the expected DY yield in

simulation. When determining the uncertainty on κLS, the uncertainty on the

W + jets cross section was taken from the Nj ≥ 6, Nb ≥ 0 line of Tab. 6.2, namely

√
72 + 122 = 14%.

Systematic Uncertainty from the Muon pT Scale

Muon pT scale uncertainties are obtained from the study of the q/pT distribu-

tions of muons in Z events described in Ref. [121]. This study compares the q/pT

distributions of positive and negative muons. A fixed bias q/pT → q/pT + κ is

injected, and the χ2 between the pT distribution of the positively and negatively

charged muons is computed. The curvature bias is the value of κ that minimizes

this χ2, and its distribution as a function of (η, φ) is shown in Fig. 6.11.

Toy studies are performed to understand the systematic error on κLS due to

the muon pT scale uncertainty. A total of 1000 toy samples from tt̄ simulation
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Figure 6.11: Muon curvature bias (a) and its error (b).

scaled to the data luminosity are used. To reduce statistical fluctuations in the

results, events with muons and electrons with |η| < 2.4 and no Nb requirement are

used. For each sample, the curvature bias in each (η, φ) bin is smeared by its error.

The resulting distribution is used to correct the pT distribution of each muon and

electron in the toy sample. The relative difference between the uncorrected yield

and the mean of the distribution of yields across the ensemble of toy samples is

taken as an uncertainty on the muon pT spectrum and hence on κLS.

In addition to being statistically limited, this method is also affected by the

precision with which the curvature bias was determined. As a cross-check, the
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same analysis is performed with a constant curvature bias of 0.05c/ TeV. The

more conservative result from the toy procedure is used as the systematic.

6.2 Dilepton and τ-lepton Backgrounds

Because the LS method does not estimate the backgrounds from events with

dileptons or τ -leptons, they must be estimated separately. This section describes

the procedures used to predict these backgrounds and their associated systematic

uncertainties. A requirement of Nb = 2 is made throughout this section.

The tail of the E/T distribution in reconstructed single lepton events has a small

but non-negligible contribution from dilepton and tau events. The prediction of

these backgrounds can be broken down into two techniques, one data-driven for

the predictions involving leptonic (denoted τ`) and hadronic (denoted τh) tau

decays, the other simulation based for the prediction of dilepton events. These

backgrounds can be subdivided into four distinct categories:

• Dilepton: Events with two promptly produced leptons.

• Single τ`: Events with one tau which decays leptonically and no other taus

or leptons.

• ` + τh: Events with one hadronically decaying tau and one lepton. The

lepton can be promptly produced or from a leptonic tau decay.
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• `+ τ`: Events with one leptonically decaying tau and an additional lepton.

The lepton can be promptly produced or from a leptonic tau decay.

The estimates of these backgrounds utilize the following control samples: recon-

structed dilepton events to predict dilepton, `+ τh, and `+ τ` and reconstructed

single lepton events to predict the single τ` background.

6.2.1 Dilepton: Lost and Ignored

There are two basic ways in which dilepton events can contribute to the selected

single lepton signal sample. These ways, via ignored and lost leptons, are similar

and thus treated together in the background prediction. Ignored lepton events are

those where both leptons are reconstructed, but one of the leptons is not identified

by the lepton veto selection. Because the ignored lepton is reconstructed, it has

its energy properly accounted in the E/T calculation. However, these events do

have an extra neutrino associated with the second lepton which changes the E/T

distribution compared to true single lepton events. In lost lepton events, one

lepton is not reconstructed, generally due to being outside the η or pT acceptance

of the detector. In these events, the pT of the lost lepton is absent from the E/T

calculation. However, for the majority of these events the contribution to the E/T

from the lost lepton is small compared to the contribution from the two neutrinos.
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The prediction uses a control sample of events which have two selected leptons,

each with pT > 20 GeV, no additional leptons passing the veto selection, Nj ≥ 6,

and E/T > 100 GeV. Data events are required to pass the same lepton+HT +E/T

cross-triggers as the single lepton signal sample. To reject Z + jets, for ee and µµ

events there is a veto on invariant dilepton masses between 71 and 111 GeV. The

E/T requirement is placed in order to be on the efficiency plateau for the E/T leg

of the triggers and also serves to further suppress Z + jets events.

Because lost and ignored dilepton events contain leptons that are either not

reconstructed or in an extreme kinematic regime, i.e., very low pT or high η,

it is rather difficult to model them properly using a data control sample. This

difficulty motivates the use of the E/T shapes of these backgrounds from simula-

tion. Since ignored and lost lepton events come from the same SM processes as

selected dilepton events, the prediction is obtained by scaling the simulated E/T

distribution of these backgrounds to the ratio of yields in data over simulation in

the above control sample. The E/T distributions in data and simulation in this

dilepton control sample, with the integral of the simulation scaled to that of the

data, are shown in Fig. 6.12. The resulting data/simulation normalization ratios

are 0.73 ± 0.18, 0.46 ± 0.20, and 0.44 ± 0.32 for HT >500, 750, and 1000 GeV,

respectively. Using these ratios to scale the simulated E/T spectrum, the lost and

ignored dilepton predictions are listed in Table 6.3 and can be seen in figure 6.13.
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Figure 6.12: E/T distribution of the Nj ≥ 6 and Nb = 2 dilepton control sample
in data and simulation, with the integral of the simulation scaled to that of the
data, for the different HT thresholds.

Table 6.3: Predicted yields for the ignored and lost lepton backgrounds for the
different HT thresholds, Nj ≥ 6, and Nb = 2. The first uncertainty is statistical
and the second is systematic.

Prediction

E/T bin [GeV] HT > 500 HT > 750 HT > 1000 GeV

[150, 250) 12.52±1.38±3.41 4.02±0.63±1.76 1.34±0.34±1.00

[250, 350) 2.56±0.65±0.75 1.30±0.38±0.60 1.13±0.35±0.86

[350, 450) 0.63±0.30±0.22 0.40±0.19±0.20 0.19±0.12±0.15

[450,∞) 0.10±0.09±0.05 0.06±0.05±0.04 0.05±0.05±0.04
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Figure 6.13: Predicted E/T distribution of lost and ignored lepton events for
Nj ≥ 6 and Nb = 2. The errors shown include the systematic uncertainties.

Systematic Uncertainties on the Lost and Ignored Dilepton Prediction

The systematic uncertainty on the lost and ignored dilepton prediction comes

from the following sources, described in more detail below.

• The relative statistical uncertainty on the data to simulation scale factor.

• The uncertainty on the pile-up distribution.

• The uncertainty on the lepton selection efficiencies.

• The uncertainty on the trigger efficiency.

• The uncertainty on the top-quark pT spectrum.

143



Chapter 6. Background Prediction

Unlike the data-driven methods used for predicting the other backgrounds in this

analysis, this method can be more heavily biased by assumptions in the simulation,

i.e., the last four items in the above list.

The uncertainty on the prediction due to the uncertainty on the pile-up dis-

tribution is important to consider because lepton identification efficiencies and

possibly the Nj and Nb distributions depend on the amount of pile-up. This un-

certainty is derived by first recalculating the weights used to scale the simulated

pile-up distribution to match that of the data. The recalculation is done after

increasing and decreasing the inelastic pp cross section, which is used to calculate

the pile-up distribution in data, by 5%. For each of these variations, the predic-

tion is re-calculated by re-determining the data to simulation ratio in the dilepton

control sample as well as the true E/T distribution in simulation. For each signal

bin, the larger change in the predicted yield from the two variations is taken as a

systematic uncertainty. This systematic uncertainty is less than 12% for the lower

E/T signal bins but is on the order of 40% for the highest bin due to very limited

statistics in that bin.

The difference in lepton selection efficiencies between data and simulation is an

important effect for this prediction because the signal region and control samples

are affected by it in different ways. For example, a decrease in the lepton efficiency

will decrease the yield in the dilepton control sample, but potentially increase the
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yield in the single lepton signal region though feed-down. As found in Ref. [120],

the lepton efficiencies in data and simulation are close to 1 with small statistical

uncertainty and a 2% systematic uncertainty. To estimate the uncertainty due

to a possible lepton efficiency difference in data and simulation, the simulated

efficiencies are increased and decreased by 2%. For each signal bin, the larger

change in the predicted yield from the two variations is taken as a systematic

uncertainty. The uncertainty across the signal bins varies from roughly 2-8%

The lepton leg of the cross-triggers used to select the control and signal samples

in this analysis is roughly 94% efficient on average. The dilepton events used in

this prediction are nearly 100% efficient for the lepton leg of the trigger because of

the presence of two leptons. However, lost and ignored dilepton background events

will be less efficient due to the presence of only one selected lepton. This means

there is some trigger inefficiency due to the lepton leg that is not accounted for in

the data/MC ratio in the dilepton control sample. To account for this potential

bias of the prediction, a 6% systematic uncertainty, equal to the average lepton

trigger leg inefficiency, is assigned to the prediction.

In order to measure the uncertainty due to the top pT spectrum, the W -boson

pT spectrum in tt̄ simulation is varied and compared to data. The W -boson

pT in an event is reconstructed from the vector sum of the lepton ~pT and ~E/T.

This test uses a single lepton sample with HT > 500 GeV, Nj ≥ 4, Nb ≥ 2,
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Figure 6.14: W -boson pT distribution in data and simulation for a single lepton
sample with requirements Nj ≥ 4, Nb ≥ 2, HT > 500 GeV, and E/T > 150 GeV.
The 1 sigma variations in the simulated spectrum are shown as red dashed lines.

and E/T > 150 GeV. The E/T and HT requirements are set in order to be on

the efficiency plateau for the signal triggers. The b-tag multiplicity requirement

ensures a highly tt̄ dominated sample. To vary the W -boson pT spectrum in

simulation, the W pT of each event is multiplied by a scale factor. The simulated

spectrum is varied up and down until the normalized χ2 between the data and

simulated distributions increases by 1. The variation factors that achieve this

are 1.023 and 0.951. The data and resulting simulated W pT spectra are shown

in Fig. 6.14. The systematic uncertainty on the prediction is obtained from the

maximum change in the prediction after re-weighting the lost and ignored lepton

events in tt̄ simulation to match the two varied W pT spectra. This systematic

uncertainty tends to be in the range of 10-25%.
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Table 6.4: Systematic uncertainties, in percent, on the lost and ignored lepton
prediction for HT >(500/750/1000) GeV, Nj ≥ 6, and Nb = 2.

E/T bin: [150,250) [250,350) [350,450) ≥ 450 GeV

PU 2.6/2.6/6.7 0.5/4.0/4.4 4.1/4.2/12 42/42/47

top quark pT 8.2/3.6/0.9 13/14/13 24/24/33 12/12/15

lepton efficiency 4.7/4.7/4.6 6.1/6.2/4.6 2.1/2.1/2.3 8.0/8.0/2.0

trigger efficiency 6.0/6.0/6.0 6.0/6.0/6.0 6.0/6.0/6.0 6.0/6.0/6.0

data/simulation scale 25/43/73 25/43/73 25/43/73 25/43/73

Total 28/44/74 29/46/75 35/50/81 51/62/88

The systematic uncertainties in all signal bins are shown in Table 6.4.

6.2.2 Hadronic tau

Due to the neutrinos from tau decays, events with tau leptons have an en-

hanced E/T spectrum. In ` + τh events, the hadronic tau decay contributes to

the E/T via a neutrino but potentially also to the jet multiplicity. To estimate

the E/T in these events, a similar dilepton control sample to the one in Sec. 6.2.1

is used, but with a few differences. Namely, data events are also selected with

the lepton+HT triggers, the Nj threshold is reduced by one, the HT threshold is

loosened to 425 GeV, and the E/T requirement is dropped for eµ events and set

to 40 GeV for ee and µµ events in order to suppress Z + jets. The HT and Nj

requirements are relaxed from the baseline signal selection for reasons described

below. The requirement on HT is placed to retain trigger efficiency.
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The concept of the prediction is to separately use each lepton in a control

sample event to emulate a hadronic tau decay via pT -dependent tau-jet response

functions derived in simulation. These functions correspond to the pT of the tau-

jet, i.e., the jet resulting from the hadronic tau decay, as a fraction of the tau pT

and are shown in Fig. 6.15. The templates are derived in a simulated tt̄ sample

with a selection similar to the signal selection to minimize bias. In particular, one

W is required to decay to an e or µ with true pT > 20 GeV and |η| < 2.4 and the

other W is required to decay to a τ with |η| < 2.4 which decays to hadrons. If a

generator level tau is matched to a reconstructed jet within ∆R < 0.2 and the jet

has fewer than 11 associated PF charged candidates, the ratio of the reconstructed

jet pT and generator-level tau pT enters the template. The requirement on the

number of PF charged candidates helps reject overlapping jets that are not related

to the tau decay.

For a lepton in the dilepton control sample, a random number rj is picked from

the appropriate tau-jet response function. To simulate the neutrino from the tau

decay, (1− rj)~p`T is added vectorially to the ~E/T already present in the event. The

pT of the emulated jet, rjp
`
T , is then counted among the jets and added to the HT

calculation, provided it passes the jet pT threshold of 40 GeV. The event is then

required to pass the signal selection. In order to get a more precise prediction, the

τh emulation is performed a hundred times for each lepton in each event and then
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Figure 6.15: Tau-jet response functions in pT (τ) bins.

averaged to determine the contribution of that event. Applying this procedure

to the dilepton control sample provides the raw predicted E/T spectrum. The

statistical uncertainty on the prediction comes from the square root of the sum of

the squares of the contributions from each event in the control sample.

In order to correct the raw predicted E/T spectrum in data, two ratios derived

in simulation, called α and κ, are used. These factors are determined and applied

in the same way for the `+ τh, `+ τ`, and single τ` predictions.

The scale α is the ratio of the simulated signal yield of ` + τh events in the

range 100 ≤ E/T < 250 GeV to the raw prediction in simulation of the same range:

α =
`+ τh signal yield in 100 ≤ E/T < 250 GeV

raw prediction in 100 ≤ E/T < 250 GeV
(6.5)

149



Chapter 6. Background Prediction

This is done for each HT requirement and normalizes the raw prediction at low

E/T. α is taken from simulation because many of the systematics inherent to the

simulation cancel out in the ratio. The α factor takes into account many different

effects, but for this background component, the tau to hadrons branching ratio is

of chief importance with lepton acceptance and efficiency effects also relevant.

The second scale which corrects the prediction is a κ-factor. These κ-factors

are the ratio in simulation of the ` + τh signal yield within a particular E/T bin

to the number of events in the prediction in that bin obtained by multiplying the

raw prediction by the α factor:

κ =
`+ τh signal yield in E/T bin

α× raw prediction in E/T bin

The κ-factors correct for potential systematic biases in the procedure, such as pT

or η dependent lepton efficiency or biases in the tau to hadrons decay response

templates. These κ-factors can have large statistical errors in the most stringently

selected signal regions due to the small event yields. The systematic uncertainty

on κ is taken to be 100% ·(1−κ). The κ-factors for each of the three HT selections

are shown in Fig. 6.16.

To obtain the final data driven prediction, the raw E/T prediction from data

in each signal bin is multiplied by the appropriate α and κ:

Prediction(HT , E/T) = Raw Prediction(HT , E/T)× α(HT )× κ(HT , E/T)
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Figure 6.16: κ-factors used in the `+ τh prediction for Nj ≥ 6 and Nb = 2. The
error bars denote the statistical uncertainty.

In the ` + τh prediction, the emulated hadronic tau decays do not contribute

the number of b-tagged jets. The fact that actual hadronic tau decays can be b

tagged is accounted for in the α and κ factors described above.

The systematic error on the prediction from the α and κ factors comes from

a combination of the statistical precision on their calculation and any biases that

are encoded in the deviation of the κ-factors from one. This error is determined

in the same way for the `+ τh, `+ τ`, and single τ` predictions. Systematic errors

are calculated as:

systematic from α, κ

prediction
=

1

κ
· (δκstat. ⊕ 100% · (1− κ))⊕ 1

α
· δαstat.
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An additional systematic uncertainty on this prediction is assigned to gauge

the uncertainty on the tau-jet response templates. This systematic is determined

from the change in the prediction after using response templates determined when

loosening the cut on the matched jet’s PF charged candidate multiplicity from less

than 11 to less than 16. This systematic is less than 10% for all signal regions

with the exception of one very low statistics HT > 1000 GeV and Nj ≥ 6 E/T bin.

Because this background prediction uses a dilepton control sample to estimate

a background with only one lepton in the final state, the α factor must be corrected

to account for the inefficiency of the lepton leg of the triggers for the sample in the

numerator of Eq. 6.5. The simulated ` + τh yield is therefore reduced by 6% to

account for this, directly resulting in the same reduction of α. An uncertainty of

3% is assigned to the prediction to account for the potential spread in the trigger

inefficiency due to the |η| dependent muon trigger efficiency.

The simulated yields and predictions used to obtain the κ factors and the

predictions in data for ` + τh events are listed in Tables 6.5, 6.6, and 6.7 for the

HT requirements of 500, 750, and 1000 GeV, respectively. In these tables, the

simulated yields and predictions have been scaled by the α factors of 0.54± 0.04,

0.51 ± 0.06, and 0.59 ± 0.12 for the HT >500, 750, and 1000 GeV selections,

respectively. Closure tests in simulation showing the predicted E/T spectrum over
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Table 6.5: `+ τh: Predicted yields for HT >500 GeV, Nj ≥ 6, and Nb = 2. This
selection corresponds to an α factor of 0.54± 0.04.

Simulated Simulated Data-driven

E/T bin [GeV] Yield Prediction κ Prediction

[150, 250) 23.62±2.19 27.34±1.51 0.86±0.09 20.57±2.46±4.25

[250, 350) 7.09±1.34 6.32±0.67 1.12±0.24 4.63±1.22±1.18

[350, 450) 2.11±0.66 1.26±0.27 1.67±0.63 1.39±0.63±0.78

[450,∞) 0.23±0.21 0.61±0.24 0.37±0.37 0.05+0.20
−0.04

+0.39
−0.05

Table 6.6: `+ τh: Predicted yields for HT >750 GeV, Njetsix, and Nb = 2. This
selection corresponds to an α factor of 0.51± 0.06.

Simulated Simulated Data-driven

E/T bin [GeV] Yield Prediction κ Prediction

[150, 250) 11.64±1.57 12.48±0.97 0.93±0.15 7.95±1.43±1.65

[250, 350) 4.97±1.08 4.55±0.54 1.09±0.27 2.52±0.94±0.72

[350, 450) 2.09±0.66 1.15±0.25 1.82±0.70 0.58±0.30±0.35

[450,∞) 0.23±0.21 0.57±0.23 0.40±0.40 0.05+0.20
−0.04

+0.37
−0.05

the expected yield can be seen in Fig. 6.17. The data driven prediction and the

simulated E/T spectrum shown for comparison, are displayed in Fig. 6.18.

6.2.3 Leptonic tau + lepton

Events in this category have two leptons in the final state where at least one

of the leptons comes from a leptonic tau decay. They differ from the lost and

ignored dilepton events previously described because of the presence of additional

neutrinos from the tau decay. The control sample for this prediction is the same
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Table 6.7: ` + τh: Predicted yields for HT >1000 GeV, Nj ≥ 6, and Nb = 2.
This selection corresponds to an α factor of 0.59± 0.12.

Simulated Simulated Data-driven

E/T bin [GeV] Yield Prediction κ Prediction

[150, 250) 3.39±0.83 4.18±0.50 0.81±0.22 1.67±0.74±0.69

[250, 350) 2.73±0.74 2.90±0.50 0.94±0.30 1.11±0.67±0.43

[350, 450) 1.24±0.52 1.05±0.25 1.18±0.57 0.06+0.70
−0.06

+0.42
−0.03

[450,∞) 0.23±0.21 0.56±0.26 0.40±0.41 0.00+0.24
−0.00

+0.43
−0.00
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Figure 6.17: ` + τh: As a closure test, the Nj ≥ 6 and Nb = 2 prediction from
simulation is overlaid on the E/T distribution from simulation. By construction,
the yields of the two distributions should be identical in any signal E/T bin.
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Figure 6.18: ` + τh: The E/T spectrum prediction for Nj ≥ 6 and Nb = 2 from
data overlaid with the simulated E/T distribution. The integral of the MC truth
distribution is scaled to match that of the prediction from data. The uncertainty
shown for the prediction from data includes the systematic uncertainties.

used for `+ τh, except that the Nj and HT requirements are those of the nominal

signal selection.

The method to predict these events is similar to the method used for the `+τh

background, the difference being that leptons in the control sample are used to

predict leptonic tau decays. This requires the use of a leptonic tau decay response

function. The response functions used can be found in Fig. 6.19. They are derived

in simulation from the pT ratio of the generator level lepton to its mother tau. As

seen in the figure, the templates are nearly identical in the different tau pT bins

because their derivation is not sensitive to measurement resolution and acceptance

effects. The templates are derived from a simulated tt̄ sample in which one W

is required to decay to a τ with |η| < 2.4 which decays to a muon. The other
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Figure 6.19: Tau-lepton response functions for various pT (τ) bins.

W is required to decay hadronically to avoid confusion when matching the tau to

its decay lepton. Tau to muon decays are used to create the templates, but they

apply equally well to tau to electron decays.

From the tau-lepton response function, a random number, r`, is drawn. For

one of the two leptons in the control sample event, (1− r`)~p`T is added vectorially

to the ~E/T and the lepton is replaced by an emulated one with pT of r`p
`
T . The

resulting event is required to pass the signal selection, meaning that the emulated

decay lepton must have pT < 15 GeV. One hundred samples are performed for

each lepton in each event and averaged to determine the contribution of that
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Figure 6.20: κ-factors used in the `+ τ` prediction for Nj ≥ 6 and Nb = 2. The
error bars denote the statistical uncertainty.

event to the raw prediction. The statistical uncertainty on the raw prediction is

determined in the same way as in the `+ τh prediction.

In this sample, the α factors come predominantly from lepton acceptance and

efficiency effects, but the tau to lepton branching ratio is also important. The

κ-factors for each of the three HT selections are shown in Fig. 6.20.

This background prediction uses a dilepton control sample to estimate a back-

ground with two leptons in the final state, with only one selected. Because the

non-selected lepton is less likely to fire the lepton leg of the trigger, there is a po-

tential difference in trigger efficiency between the control and signal samples. To

account for this potential bias, the average lepton leg inefficiency, 6%, is assigned

as a systematic uncertainty to the prediction.
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Table 6.8: `+ τ`: Predicted yields for HT >500 GeV, Nj ≥ 6, and Nb = 2. This
selection corresponds to an α factor of 0.83± 0.12.

Simulated Simulated Data-driven

E/T bin [GeV] Yield Prediction κ Prediction

[150, 250) 9.68±1.46 8.08±0.89 1.20±0.22 9.26±2.20±2.70

[250, 350) 1.99±0.60 2.15±0.42 0.93±0.33 1.16±0.46±0.46

[350, 450) 0.46±0.31 0.29±0.14 1.60±1.33 0.00+1.33
−0.00

+1.23
−0.00

[450,∞) 0.50±0.34 0.23±0.13 2.16±1.86 0.00+1.80
−0.00

+1.84
−0.00

Table 6.9: `+ τ`: Predicted yields for HT >750 GeV, Nj ≥ 6, and Nb = 2. This
selection corresponds to an α factor of 1.09± 0.22.

Simulated Simulated Data-driven

E/T bin [GeV] Yield Prediction κ Prediction

[150, 250) 4.45±1.03 4.64±0.70 0.96±0.26 2.91±1.23±1.02

[250, 350) 1.05±0.42 1.88±0.46 0.56±0.26 0.30±0.16±0.28

[350, 450) 0.24±0.22 0.38±0.18 0.64±0.66 0.00+0.70
−0.00

+0.83
−0.00

[450,∞) 0.47±0.34 0.31±0.17 1.55±1.38 0.00+1.69
−0.00

+1.66
−0.00

The simulated yields and predictions used to obtain the κ factors and the pre-

dictions in data for ` + τ` events are listed in Tables 6.8, 6.9, and 6.10 for the

HT requirements of 500, 750, and 1000 GeV, respectively. In these tables, the

simulated yields and predictions have been scaled by the α factors of 0.83± 0.12,

1.09±0.22, and 1.21±0.54 for the HT >500, 750, and 1000 GeV selections, respec-

tively. Closure tests in simulation showing the predicted E/T spectrum overlaid on

the expected yield are shown in Fig. 6.21. The data driven prediction and the E/T

distribution from simulation, shown for comparison, are displayed in Fig. 6.22.
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Table 6.10: ` + τ`: Predicted yields for HT >1000 GeV, Nj ≥ 6, and Nb = 2.
This selection corresponds to an α factor of 1.21± 0.54.

Simulated Simulated Data-driven

E/T bin [GeV] Yield Prediction κ Prediction

[150, 250) 1.07±0.48 0.89±0.26 1.20±0.64 1.02±0.78±0.73

[250, 350) 0.27±0.19 1.47±0.44 0.18±0.14 0.02+0.22
−0.02

+1.01
−0.02

[350, 450) 0.22±0.22 0.16±0.08 1.38±1.55 0.00+1.68
−0.00

+2.08
−0.00

[450,∞) 0.47±0.34 0.31±0.18 1.51±1.39 0.00+1.83
−0.00

+1.97
−0.00
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Figure 6.21: ` + τ`: As a closure test, the Nj ≥ 6 and Nb = 2 prediction from
simulation is overlayed on the simulated E/T distribution. By construction, the
yields of the two distributions should be identical in any signal E/T bin.
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Figure 6.22: ` + τ`: The E/T spectrum prediction for Nj ≥ 6 and Nb = 2 from
data overlaid with the simulated E/T distribution. The integral of the simulated
distribution is scaled to match that of the prediction from data. The uncertainty
shown for the prediction from data includes the systematic uncertainties.

6.2.4 Single tau

The final major contributor to the background E/T distribution is events with

a single tau and no other leptons, where the tau decays to an electron or a muon.

These events have an enhanced E/T distribution compared to true single lepton

events due to the neutrinos from the tau decay. The procedure to estimate this

background is very similar to that for ` + τ` described above, with the major

difference being the use of a single lepton control sample rather than a dilep-

ton control sample. This control sample is the same as the signal sample with

the exception that the E/T requirement is dropped and events can enter on the

lepton+HT (+E/T) triggers. For electron events, there is an additional require-
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Figure 6.23: κ-factors used in the single τ` prediction for Nj ≥ 6 and Nb = 2.
The error bars denote the statistical uncertainty.

ment of 0.26 < ∆φ(E/T, j1) < 3.05, where j1 is the highest pT jet, which is used to

suppress QCD.

Leptons in the control sample are used to emulate τ` decays just as in the

`+τ` prediction. After emulation, the resulting event is required to pass the signal

selection, meaning that the emulated decay lepton must have pT > 20 GeV. Each

event is sampled a hundred times and averaged. The statistical uncertainty on

the raw prediction is determined in the same way as in the other tau predictions.

The α factors for the single tau prediction are dominated by the tau to lepton

branching ratio. The κ-factors for each of the HT selections are shown in Fig. 6.23.

The simulated yields and predictions used to obtain the κ factors and the pre-

dictions in data for single τ` events are listed in Tables 6.11, 6.12, and 6.13 for

the HT requirements of 500, 750, and 1000 GeV, respectively. In these tables, the
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Table 6.11: single τ`: Predicted yields for HT >500 GeV, Nj ≥ 6, and Nb = 2.
This selection corresponds to an α factor of 0.17± 0.01.

Simulated Simulated Data-driven

E/T bin [GeV] Yield Prediction κ Prediction

[150, 250) 58.74±3.60 53.82±0.88 1.09±0.07 47.25±1.84±5.37

[250, 350) 13.61±1.73 12.58±0.41 1.08±0.14 8.87±0.75±1.40

[350, 450) 3.74±1.03 2.98±0.20 1.26±0.36 1.84±0.34±0.65

[450,∞) 0.60±0.35 1.06±0.12 0.57±0.34 0.28±0.10±0.27

Table 6.12: single τ`: Predicted yields for HT >750 GeV, Nj ≥ 6, and Nb = 2.
This selection corresponds to an α factor of 0.17± 0.01.

Simulated Simulated Data-driven

E/T bin [GeV] Yield Prediction κ Prediction

[150, 250) 23.53±2.25 20.49±0.52 1.15±0.11 18.66±1.17±3.32

[250, 350) 6.74±1.24 6.95±0.30 0.97±0.18 3.51±0.44±0.72

[350, 450) 3.48±1.00 2.36±0.17 1.47±0.44 1.65±0.34±0.73

[450,∞) 0.60±0.35 0.91±0.10 0.66±0.39 0.29±0.10±0.23

simulated yields and predictions have been scaled by the α factors of 0.17± 0.01,

0.17±0.01, and 0.19±0.02 for the HT >500, 750, and 1000 GeV selections, respec-

tively. Closure tests in simulation showing the predicted E/T spectrum overlaid

on the expected yield are shown in Fig. 6.24. The data driven prediction and the

simulated E/T distribution, shown for comparison, are displayed in Fig. 6.25.
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Table 6.13: single τ`: Predicted yields for HT >1000 GeV, Nj ≥ 6, and Nb = 2.
This selection corresponds to an α factor of 0.19± 0.02.

Simulated Simulated Data-driven

E/T bin [GeV] Yield Prediction κ Prediction

[150, 250) 7.66±1.31 7.59±0.34 1.01±0.18 6.64±0.71±1.43

[250, 350) 2.00±0.69 2.84±0.20 0.70±0.25 0.97±0.20±0.55

[350, 450) 0.86±0.55 1.31±0.14 0.66±0.42 0.35±0.11±0.30

[450,∞) 0.21±0.21 0.73±0.10 0.29±0.29 0.07±0.04±0.20
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Figure 6.24: single τ`: As a closure test, the Nj ≥ 6 and Nb = 2 prediction
from simulation is overlaid on the simulated E/T distribution. By construction,
the yields of the two distributions should be identical in any signal E/T bin.
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Figure 6.25: single τ`: The E/T spectrum prediction for Nj ≥ 6 and Nb = 2
from data overlaid with the simulated distribution. The integral of the simulated
distribution is scaled to match that of the prediction from data. The uncertainty
shown for the prediction from data includes the systematic uncertainties.

6.3 QCD Multijet Background

The QCD multijet background to this search is very small, but non-trivial

to estimate. The absence of promptly produced leptons means that some back-

ground source must mimic a prompt lepton for an event to pass the selection.

Some of these backgrounds are briefly discussed in Sec. 4.5 for muons and Sec. 4.4

for electrons. Additionally, because multijet events do not have significant gen-

uine E/T from neutrinos, large mis-measurements of the jet energies are usually

required in order to pass the signal selection. Finally, the fact that the multijet

background is not particularly b-quark enriched further suppresses it with respect

to the dominant tt̄ background. However, despite the multiple factors that reduce
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the multijet background, it has an enormous cross section and therefore could pos-

sibly appear in the signal and control samples. Because the cross section is poorly

known theoretically and the multijet background contains difficult to simulate

mis-reconstruction and mis-measurement effects, the estimate of this background

should rely heavily on data. Due to the small expected QCD background yield, a

simple and relatively imprecise approach can be used.

The QCD multijet background is estimated using the sidebands of the relative

isolation distribution. The analysis selection is performed as usual except the

relative isolation requirement is removed. Before extrapolating the QCD back-

ground from the sideband, the small contribution of non-QCD backgrounds, i.e.,

those with promptly produced leptons, must be determined. This is done by

treating the entire non-QCD background as originating from tt̄ and normalizing

its cross section such that the expected number of such events equals the data

yield in the QCD depleted, low relative isolation region. The treatment of tt̄ as

the sole component of the prompt lepton background is justified because it is by

far the dominant component and the isolation shape of the other prompt lepton

backgrounds is very similar.

After normalizing its cross section, the relative isolation distribution from tt̄

simulation is then subtracted from that observed in data to remove its contam-

ination of the high isolation sideband. Assuming the multijet relative isolation
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distribution is flat over the relevant region, it is extrapolated into the signal re-

gion by scaling the tt̄-subtracted data yield in the sideband by the ratio of the

width in isolation of the signal to sideband regions. Because the electron triggers

impose an isolation requirement, the extent of the electron isolation sideband used

in the prediction is restricted to avoid trigger bias. The muon triggers have no

such isolation requirement, and hence the muon sideband can extend to higher

isolation.

An advantage of this method is that it does not use multijet simulation nor

does it depend on the predicted cross-sections of the backgrounds. Because the full

event selection is applied, the predictions are only practical for the HT > 500 GeV

selection due to a lack of events in the high relative isolation sideband. However,

inclusive QCD simulation shows that the yield of events passing HT > 750 GeV

is an order of magnitude smaller than for HT > 500 GeV, which is negligible.

Figures 6.26–6.28 (6.29–6.31) show the results of the QCD background pre-

diction to the pT (E/T) spectrum in both the electron and muon channels and

Tab. 6.14(6.15) summarizes these results. As a result of these measurements,

which are consistent with zero QCD contribution to the MET signal regions

(E/T > 250 GeV) and the pT spectrum relevant for the single lepton prediction

(pT > 250 GeV), the QCD background can be safely neglected in this analysis.
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Figure 6.26: QCD relative isolation distribution in the muon (left) and electron
(right) channels before (top) and after (bottom) background subtraction for 50 <
pT < 100 GeV. In the lower plots, the MC is scaled to the predicted yield. The
highest histogram bin contains the overflow.

167



Chapter 6. Background Prediction

Relative Isolation
0 0.2 0.4 0.6 0.8 1 1.2 1.4

E
ve

nt
s/

0.
01

-210

-110

1

10

210

tt
QCD

(a)

Relative Isolation
0 0.2 0.4 0.6 0.8 1 1.2 1.4

E
ve

nt
s/

0.
01

-210

-110

1

10

210
tt

QCD

(b)

Relative Isolation
0 0.2 0.4 0.6 0.8 1 1.2 1.4

E
ve

nt
s/

0.
01

-5

0

5

10

15

20

tt
QCD

(c)

Relative Isolation
0 0.2 0.4 0.6 0.8 1 1.2 1.4

E
ve

nt
s/

0.
01

-5

0

5

10

15

20

tt
QCD

(d)

Figure 6.27: QCD relative isolation distribution in the muon (left) and electron
(right) channels before (top) and after (bottom) background subtraction for 100 <
pT < 250 GeV. In the lower plots, the MC is scaled to the predicted yield. The
highest histogram bin contains the overflow.
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Figure 6.28: QCD relative isolation distribution in the muon (left) and electron
(right) channels before (top) and after (bottom) background subtraction for pT >
250 GeV. In the lower plots, the MC is scaled to the predicted yield. The highest
histogram bin contains the overflow.
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Figure 6.29: QCD relative isolation distribution in the muon (left) and electron
(right) channels before (top) and after (bottom) background subtraction for 50 <
E/T < 100 GeV. In the lower plots, the MC is scaled to the predicted yield. The
highest histogram bin contains the overflow.
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Figure 6.30: QCD relative isolation distribution in the muon (left) and electron
(right) channels before (top) and after (bottom) background subtraction for 100 <
E/T < 250 GeV. In the lower plots, the MC is scaled to the predicted yield. The
highest histogram bin contains the overflow.
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Figure 6.31: QCD relative isolation distribution in the muon (left) and electron
(right) channels before (top) and after (bottom) background subtraction for E/T >
250 GeV. In the lower plots, the MC is scaled to the predicted yield. The highest
histogram bin contains the overflow.
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Table 6.14: Predicted QCD backgrounds to pT distribution for HT >500 GeV.

Lepton pT range Subtracted yield Scale factor QCD estimate

Muon

50 < pT < 100 134.3± 15.4

0.1

13.4± 1.5

100 < pT < 250 34.3± 7.3 3.4± 0.7

pT > 250 0.0± 0.2 0.00± 0.02

Electron

50 < pT < 100 12.9± 8.2

0.75

9.7± 6.1

100 < pT < 250 4.3± 4.1 3.3± 3.1

pT > 250 1.6± 1.5 1.2± 1.1

Table 6.15: Predicted QCD background to E/T distribution for HT >500 GeV.

Lepton E/T range Subtracted yield Scale factor QCD estimate

Muon

50 < E/T < 100 172.3± 17.6

0.1

17.2± 1.8

100 < E/T < 250 50.0± 10.8 5.0± 1.1

150 < E/T < 250 7.2± 5.6 0.7± 0.6

E/T > 250 0.0± 1.8 0.00± 0.18

Electron

50 < E/T < 100 2.0± 8.3

0.75

1.5± 6.3

100 < E/T < 250 0.9± 6.7 0.7± 5.1

150 < E/T < 250 1.1± 4.0 0.9± 3.0

E/T > 250 0.0± 1.6 0.0± 1.2
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6.4 Extrapolating the Nb = 2 Prediction to Nb ≥ 3

Because the dominant background in this search is tt̄, and each top-quark

decay results in one bottom-quark, the Nb ≥ 3 selection drastically reduces the

background yield. The third b tag must come from either a b quark produced by

gluon splitting, or the mistag of a light flavor or charm jet. These sources of b

tags are suppressed by the low occurrence rate of the former and the low mistag

rate of the latter.

Due to their small event yields, the Nb ≥ 3 data control samples cannot be used

to adequately estimate theNb ≥ 3 signal yields. Therefore, theNb ≥ 3 background

is estimated from the Nb = 2 background predictions using extrapolation factors

from simulation, referred to as R32. A separate R32 factor is derived for each

signal region and is defined as:

R32 =
Nb ≥ 3 yield

Nb = 2 yield
, (6.6)

so that the Nb ≥ 3 prediction in a given signal bin is simply:

(Nb ≥ 3 prediction) = (Nb = 2 prediction)×R32. (6.7)

The full set of relevant SM processes are used to calculate R32. It is important to

have separate R32 for different Nj, HT , and E/T selections as the resulting change

in event kinematics can alter R32. The HT and E/T selections affect the average
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Table 6.16: R32 in the E/T signal bins for the different HT thresholds and Nj ≥ 6.
The quoted uncertainties are statistical only.

R32

E/T bin [GeV] HT > 500 HT > 750 HT > 1000 GeV

[150, 250) 0.223± 0.004 0.226± 0.005 0.242± 0.011

[250, 350) 0.213± 0.007 0.225± 0.011 0.238± 0.019

[350, 450) 0.203± 0.014 0.200± 0.017 0.190± 0.022

[450,∞) 0.210± 0.022 0.210± 0.022 0.220± 0.026

jet pT and |η|, sculpting the b-tag efficiencies. The Nj selection has a larger effect

because additional jets provide more opportunities to tag a third jet in the event.

Table 6.16 lists the values of R32 in each of the signal regions.

In derivingR32, the jet b-tag probabilities in the simulated events are reweighted

to match the data, as described in Sec. 4.2.1. To maximize the statistical precision

with which R32 is measured in simulation, a combinatorial reweighting approach

is utilized in which the tag efficiency of each jet in the event is used to calculate

the contribution of the event to each Nb bin. To properly evaluate the statistical

uncertainty on R32 given that events can contribute to both the numerator and

denominator of Eq. 6.6, the “jackknife” resampling technique [122] is used.

Because the R32 factors are derived in simulation, the Nb ≥ 3 background

prediction is sensitive to biases arising from differences between simulation and

data. There are multiple such potential differences, described below, for which

systematic uncertainties on R32 are assigned.
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• b-tag efficiency/mistag rate: The scale factors used to reweight the

simulated b-tag efficiency and mistag rates to match the data have associated

uncertainty [83]. The SFb and SFc values across all jet pT and |η| bins are

simultaneously varied up or down by their uncertainty, and the resulting

maximum change in R32 is taken as a systematic. Separately, the SFlf

values across all bins are simultaneously varied by their uncertainty and the

resulting change in R32 is taken as a systematic.

• Kinematic differences in the non b-quark hadronic system: Be-

cause the mistag rates vary considerably with jet pT and |η|, the kinematic

differences in the non b-quark jets can influence R32. To evaluate such dif-

ferences, the non b-tagged jets in each Nb = 2 event are randomly assigned

a flavor such that one is treated as coming from a c quark and the others

are treated as light flavor with regards to their mistag probabilities. After

this flavor assignment, R32 is calculated in both simulation and data, and

the relative difference between the two is taken as a systematic error on R32.

• Gluon splitting: The simulation does not model initial state or final state

radiation g → bb̄ or g → cc̄ splitting particularly well. According to CMS

standard practice, the contribution of events with gluon splitting to bb̄ or cc̄
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Table 6.17: Systematic uncertainties, in percent, on R32 for
HT >(500/750/1000) GeV and Nj ≥ 6.

E/T bin: [150,250) [250,350) [350,450) ≥ 450 GeV

SFb and SFc 3/3/3 3/3/3 4/4/4 5/5/6

SFlf 4/4/4 4/4/4 4/4/5 4/4/4

Kinematic differences 0.6/0.3/5 0.2/0.4/4 1/2/15 16/16/16

Gluon splitting 7/6/7 6/6/5 3/3/5 8/8/7

Charm fraction 6/6/5 7/8/9 9/11/13 12/12/11

Total 11/10/11 10/11/12 11/13/22 22/22/22

is varied up and down by 50% and the resulting maximum change in R32 is

taken as a systematic uncertainty.

• Charm-quark fraction: Because the charm content in the simulation is

not precisely known, the fraction of events with a c quark not originating

from gluon splitting is varied up and down by 50%. The resulting maximum

change in R32 is taken as a systematic uncertainty. This is a conservative

estimate of the uncertainty because the majority of the c quarks in the

sample which do not originate from gluon splitting are from W decays, and

therefore reasonably well modeled.

The relative systematic uncertainty on R32 in the signal regions from the above

sources is shown in Tab. 6.17.

Finally, a cross-check is performed by comparing R32 in simulation and data

to determine whether there are any other sources of mis-modeling in the sim-

177



Chapter 6. Background Prediction

ulation which bias R32. This comparison is done in an HT < 400 GeV and

100 < E/T < 250 GeV control sample to avoid signal contamination. Because

of the HT requirement, the usual lepton+HT (+E/T) triggers are not efficient,

and single electron or muon triggers are used instead to select the events. The

only other modifications to the usual signal selection are an increased lepton pT

threshold of 30 GeV to remain on the efficiency plateau of the single lepton trig-

gers and selecting in bins of Nj ≥ 6 and Nj = 5. For Nj ≥ 6, R32 is measured

to be 0.235 ± 0.065 (stat.) in the data and 0.195 ± 0.013 (stat.) in simulation.

For Nj = 5, R32 is is measured to be 0.158 ± 0.015 (stat.) in the data and

0.142± 0.003 (stat.) in simulation. In each Nj bin, the measured values agree to

within statistical uncertainty and the cross-check is passed.
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Results

The estimates of the distinct background components1 described in Ch. 6 are

combined and plotted with the observations in data for the three HT selections

in Fig. 7.1 for the Nb = 2 and 3 ≤ Nj ≤ 5 validation region. Figure 7.2 shows

the total background prediction for the Nb ≥ 3 validation region along with the

data. The predicted and observed yields in the validation regions agree reasonably

well, demonstrating a successful cross-check of the estimation methods. Figs. 7.3

and 7.4 show the observations and predictions in the Nj ≥ 6 signal regions for

Nb = 2 and Nb ≥ 3, respectively. A point from the T1tttt SMS, excluded by this

analysis, is shown for reference.

The predictions and observations in the validation regions are summarized

in Tables 7.1-7.6 for the different HT and Nb selections. The predictions and

observations in the E/T signal bins are summarized in Tables 7.7-7.12. Because

1For simplicity, the subdominant background contributions from lost and ignored dilepton,
`+τ`, and `+τh are summed and collectively referred to as “Dilepton” throughout this chapter.
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Figure 7.1: Data (dots with error bars) overlaid on the total prediction (red
histogram) for 3 ≤ Nj ≤ 5 and Nb = 2 for the three HT selections. The top
panel shows the absolute yields while the bottom shows the difference between
the observation and prediction, divided by its uncertainty. The purple line is
the predicted contribution from single taus and the blue line is the predicted
dilepton contribution. The red error band includes the statistical error in the
single lepton scale factor and the JET/MET scale uncertainty and the black error
band indicates the total uncertainty on the prediction. A reference signal point
(dashed histogram) is shown for comparison.

the relative contributions of individual background components can differ between

the Nb bins and are not specifically predicted in the Nb ≥ 3 case, only the total

prediction is quoted for Nb ≥ 3. The signal yields in two points from the T1tttt

SMS, only one of which is within the exclusion reach of this analysis, are shown

for reference.

180



Chapter 7. Results

[GeV]T E
200 300 400 500 600 700 800 9001000

E
ve

nt
s/

50
 G

eV

-110

1

10

210

 3≥
b

 5, N≤jetN≤3
>500 GeVTH

CMS  = 8 TeVs -119.3 fb

Data

Sum predicted

Single Tau

Dilepton

)=(1100 GeV,100 GeV)
LSP

,m
g~

(m

[GeV]T E
200 300 400 500 600 700 800 900 1000

  r
es

id
ua

ls
N

or
m

al
iz

ed

-3
-2
-1
0
1
2
3

(a)

[GeV]T E
200 300 400 500 600 700 800 9001000

E
ve

nt
s/

50
 G

eV

-110

1

10

 3≥
b

 5, N≤jetN≤3
>750 GeVTH

CMS  = 8 TeVs -119.3 fb

Data

Sum predicted

Single Tau

Dilepton

)=(1100 GeV,100 GeV)
LSP

,m
g~

(m

[GeV]T E
200 300 400 500 600 700 800 900 1000

  r
es

id
ua

ls
N

or
m

al
iz

ed

-3
-2
-1
0
1
2
3

(b)

[GeV]T E
200 300 400 500 600 700 800 9001000

E
ve

nt
s/

50
 G

eV

-110

1
 3≥

b
 5, N≤jetN≤3

>1000 GeVTH

CMS  = 8 TeVs -119.3 fb

Data

Sum predicted

Single Tau

Dilepton

)=(1100 GeV,100 GeV)
LSP

,m
g~

(m

[GeV]T E
200 300 400 500 600 700 800 900 1000

  r
es

id
ua

ls
N

or
m

al
iz

ed

-3
-2
-1
0
1
2
3

(c)

Figure 7.2: Data (dots with error bars) overlaid on the total prediction (red
histogram) for 3 ≤ Nj ≤ 5 and Nb ≥ 3 for the three HT selections. The top
panel shows the absolute yields while the bottom shows the difference between the
observation and prediction, divided by its uncertainty. The single tau and dilepton
background components are shown for reference only, as their contributions are
not separately predicted with R32. The red error band includes the statistical
error in the single lepton scale factor and the JET/MET scale uncertainty and
the black error band indicates the total uncertainty on the prediction. A reference
signal point (dashed histogram) is shown for comparison.
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Figure 7.3: Data (dots with error bars) overlaid on the total prediction (red his-
togram) for Nj ≥ 6 and Nb = 2 for the three HT selections. The top panel shows
the absolute yields while the bottom shows the difference between the observation
and prediction, divided by its uncertainty. The purple line is the predicted con-
tribution from single taus and the blue line is the predicted dilepton contribution.
The red error band includes the statistical error in the single lepton scale factor
and the JET/MET scale uncertainty and the black error band indicates the to-
tal uncertainty on the prediction. A reference signal point (dashed histogram) is
shown for comparison.
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Figure 7.4: Data (dots with error bars) overlaid on the total prediction (red
histogram) for Nj ≥ 6 and Nb ≥ 3 for the three HT selections. The top panel shows
the absolute yields while the bottom shows the difference between the observation
and prediction, divided by its uncertainty. The single tau and dilepton background
components are shown for reference only, as their contributions are not separately
predicted with R32. The red error band includes the statistical error in the single
lepton scale factor and the JET/MET scale uncertainty and the black error band
indicates the total uncertainty on the prediction. A reference signal point (dashed
histogram) is shown for comparison.
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Table 7.1: Observed and predicted yields in the E/T signal bins forHT >500 GeV,
3 ≤ Nj ≤ 5, and Nb = 2. The first uncertainty on each prediction is statistical
and the second is the full systematic uncertainty. The background component
estimates are shown separately. The expected signal yields and their statistical
uncertainty are shown for two T1tttt SMS points labeled by (mg̃,mLSP) in GeV.

E/T: [150,250) [250,350) [350,450) ≥ 450 GeV

1 ` 1012±31±53 220±16±26 38.8±7.5±9.7 6.8±3.3±3.1

Dilepton 251.8±9.3±16.3 67.6±4.6±6.7 13.5±1.8±1.8 2.1±0.6±0.2

Single Tau 160.7±3.4±9.5 51.2±2.1±11.6 13.3±1.1±6.5 2.5±0.5±0.6

Z + jets 3.9±0.3±3.9 0.8±0.2±0.8 0.2±0.1±0.2 < 0.1

QCD multijet 1.6± 3.1± 3.1 0.0± 1.2± 1.2

Total Prediction 1429±33±56 339±17±30 65.7±7.8±11.8 11.4±3.4±3.2

Data, total (µ, e) 1420 (800, 620) 350 (193, 157) 67 (34, 33) 17 (9, 8)

T1tttt (1150, 500) 0.8±0.1 0.7±0.1 0.9±0.1 0.5±0.1

T1tttt (1100, 100) 0.9±0.1 1.0±0.1 1.2±0.1 1.4±0.1

Table 7.2: Observed and predicted yields in the E/T signal bins forHT >750 GeV,
3 ≤ Nj ≤ 5, and Nb = 2. The first uncertainty on each prediction is statistical
and the second is the full systematic uncertainty. The background component
estimates are shown separately. The expected signal yields and their statistical
uncertainty are shown for two T1tttt SMS points labeled by (mg̃,mLSP) in GeV.

E/T: [150,250) [250,350) [350,450) ≥ 450 GeV

1 ` 182±14±12 63.8±9.9±8.9 14.0±4.8±3.8 4.1±2.6±1.9

Dilepton 36.1±3.1±3.8 20.6±2.6±3.4 5.1±1.0±1.1 1.3±0.4±0.1

Single Tau 29.1±1.4±4.7 10.0±0.8±1.9 2.8±0.4±0.9 1.5±0.3±0.4

Z + jets 1.0±0.2±1.0 0.2±0.1±0.2 < 0.1 < 0.1

QCD multijet < 1 < 0.1 < 0.1 < 0.1

Total Prediction 248±15±14 95±10±10 22.0±4.9±4.0 6.9±2.7±1.9

Data, total (µ, e) 270 (145, 125) 80 (42, 38) 22 (13, 9) 9 (4, 5)

T1tttt (1150, 500) 0.3±0.0 0.3±0.0 0.3±0.0 0.3±0.0

T1tttt (1100, 100) 0.7±0.1 0.7±0.1 0.9±0.1 1.1±0.1
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Table 7.3: Observed and predicted yields in the E/T signal bins for
HT >1000 GeV, 3 ≤ Nj ≤ 5, and Nb = 2. The first uncertainty on each prediction
is statistical and the second is the full systematic uncertainty. The background
component estimates are shown separately. The expected signal yields and their
statistical uncertainty are shown for two T1tttt SMS points labeled by (mg̃,mLSP)
in GeV.

E/T: [150,250) [250,350) [350,450) ≥ 450 GeV

1 ` 29.1±5.6±2.8 12.3±4.7±2.5 8.0±4.2±3.0 2.2±1.9±1.2

Dilepton 10.9±2.0±2.4 9.1±1.7±2.2 2.9±0.8±1.0 0.7±0.4±0.2

Single Tau 5.7±0.6±1.4 1.4±0.2±0.6 0.3±0.1±0.4 0.7±0.3±0.3

Z + jets 0.4±0.1±0.4 0.2±0.1±0.2 < 0.1 < 0.1

QCD multijet < 0.1 < 0.1 < 0.1 < 0.1

Total Prediction 46.2±5.9±3.9 23.0±5.0±3.4 11.3±4.3±3.2 3.6±2.0±1.3

Data, total (µ, e) 52 (23, 29) 16 (10, 6) 6 (3, 3) 5 (2, 3)

T1tttt (1150, 500) < 0.1 < 0.1 < 0.1 < 0.1

T1tttt (1100, 100) 0.4±0.1 0.4±0.1 0.4±0.1 0.6±0.1

Table 7.4: Observed and predicted yields in the E/T signal bins forHT >500 GeV,
3 ≤ Nj ≤ 5, and Nb ≥ 3. The first uncertainty on each prediction is statistical and
the second is the full systematic uncertainty. The expected signal yields and their
statistical uncertainty are shown for two T1tttt SMS points labeled by (mg̃,mLSP)
in GeV.

E/T: [150,250) [250,350) [350,450) ≥ 450 GeV

Total Prediction 147.0±3.5±6.6 32.4±1.7±2.9 5.3±0.6±1.0 1.0±0.3±0.3

Data, total (µ, e) 178 (93, 85) 29 (19, 10) 7 (4, 3) 0 (0, 0)

T1tttt (1150, 500) 0.5±0.1 0.5±0.1 0.4±0.0 0.3±0.0

T1tttt (1100, 100) 0.5±0.1 0.8±0.1 0.6±0.1 0.9±0.1
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Table 7.5: Observed and predicted yields in the E/T signal bins forHT >750 GeV,
3 ≤ Nj ≤ 5, and Nb ≥ 3. The first uncertainty on each prediction is statistical and
the second is the full systematic uncertainty. The expected signal yields and their
statistical uncertainty are shown for two T1tttt SMS points labeled by (mg̃,mLSP)
in GeV.

E/T: [150,250) [250,350) [350,450) ≥ 450 GeV

Total Prediction 26.0±1.6±1.6 9.5±1.0±1.0 1.9±0.4±0.4 0.6±0.3±0.2

Data, total (µ, e) 32 (13, 19) 9 (6, 3) 2 (1, 1) 0 (0, 0)

T1tttt (1150, 500) 0.1±0.0 0.2±0.0 0.2±0.0 0.2±0.0

T1tttt (1100, 100) 0.3±0.1 0.5±0.1 0.5±0.1 0.8±0.1

Table 7.6: Observed and predicted yields in the E/T signal bins for
HT >1000 GeV, 3 ≤ Nj ≤ 5, and Nb ≥ 3. The first uncertainty on each prediction
is statistical and the second is the full systematic uncertainty. The expected sig-
nal yields and their statistical uncertainty are shown for two T1tttt SMS points
labeled by (mg̃,mLSP) in GeV.

E/T: [150,250) [250,350) [350,450) ≥ 450 GeV

Total Prediction 4.5±0.6±0.4 2.4±0.5±0.4 1.0±0.4±0.3 0.3±0.2±0.1

Data, total (µ, e) 3 (2, 1) 0 (0, 0) 0 (0, 0) 0 (0, 0)

T1tttt (1150, 500) < 0.1 < 0.1 < 0.1 < 0.1

T1tttt (1100, 100) 0.2±0.0 0.3±0.1 0.2±0.0 0.4±0.1
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Table 7.7: Observed and predicted yields in the E/T signal bins forHT >500 GeV,
Nj ≥ 6, and Nb = 2. The first uncertainty on each prediction is statistical and the
second is the full systematic uncertainty. The background component estimates
are shown separately. The expected signal yields and their statistical uncertainty
are shown for two T1tttt SMS points labeled by (mg̃,mLSP) in GeV.

E/T: [150,250) [250,350) [350,450) ≥ 450 GeV

1 ` 230±15±12 40.8±7.0±4.9 11.6±4.3±2.9 0.2+1.4
−0.2

+0.6
−0.2

Dilepton 42.3±3.6±6.0 8.3±1.5±1.5 2.0+1.5
−0.7

+1.5
−0.8 0.2+1.8

−0.1
+1.9
−0.1

Single Tau 47.2±1.8±5.4 8.9±0.7±1.4 1.8±0.3±0.6 0.3±0.1±0.3

Z + jets 0.4±0.1±0.4 < 0.1 < 0.1 < 0.1

QCD multijet 1.6± 3.1± 3.1 0.0± 1.2± 1.2

Total Prediction 320±16±14 58.1±7.2±5.3 15.4+4.6
−4.3

+3.3
−3.1 0.7+2.3

−0.3
+2.0
−0.3

Data, total (µ, e) 350 (189, 161) 55 (30, 25) 10 (6, 4) 1 (0, 1)

T1tttt (1150, 500) 2.3±0.1 2.6±0.2 1.8±0.1 1.5±0.1

T1tttt (1100, 100) 2.5±0.2 3.4±0.2 3.2±0.2 4.4±0.2
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Table 7.8: Observed and predicted yields in the E/T signal bins forHT >750 GeV,
Nj ≥ 6, and Nb = 2. The first uncertainty on each prediction is statistical and the
second is the full systematic uncertainty. The background component estimates
are shown separately. The expected signal yields and their statistical uncertainty
are shown for two T1tttt SMS points labeled by (mg̃,mLSP) in GeV.

E/T: [150,250) [250,350) [350,450) ≥ 450 GeV

1 ` 81.0±9.1±5.5 18.6±4.8±2.6 7.9±3.6±2.1 0.2+1.4
−0.2

+0.6
−0.1

Dilepton 14.9±2.0±2.6 4.1±1.0±1.0 1.0+0.8
−0.4

+0.9
−0.4 0.1+1.7

−0.1
+1.8
−0.1

Single Tau 18.7±1.2±3.3 3.5±0.4±0.7 1.6±0.3±0.7 0.3±0.1±0.2

Z + jets 0.2±0.1±0.2 < 0.1 < 0.1 < 0.1

QCD multijet < 1 < 0.1 < 0.1 < 0.1

Total Prediction 114.8±9.4±6.9 26.3±4.9±2.9 10.6+3.7
−3.6

+2.4
−2.3 0.6+2.2

−0.2
+1.9
−0.2

Data, total (µ, e) 141 (76, 65) 26 (13, 13) 9 (6, 3) 1 (0, 1)

T1tttt (1150, 500) 1.4±0.1 1.6±0.1 1.3±0.1 1.3±0.1

T1tttt (1100, 100) 2.2±0.2 3.1±0.2 3.0±0.2 4.2±0.2
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Table 7.9: Observed and predicted yields in the E/T signal bins for
HT >1000 GeV, Nj ≥ 6, and Nb = 2. The first uncertainty on each prediction
is statistical and the second is the full systematic uncertainty. The background
component estimates are shown separately. The expected signal yields and their
statistical uncertainty are shown for two T1tttt SMS points labeled by (mg̃,mLSP)
in GeV.

E/T: [150,250) [250,350) [350,450) ≥ 450 GeV

1 ` 32.5±6.0±3.1 6.7±3.0±1.3 1.6±1.5±0.6 0.0+1.1
−0.0

+0.6
−0.0

Dilepton 4.0±1.1±1.4 2.3±0.8+1.4
−1.0 0.2+1.8

−0.2
+2.1
−0.2 0.0+1.9

−0.0
+2.0
−0.0

Single Tau 6.6±0.7±1.4 1.0±0.2±0.6 0.4±0.1±0.3 < 0.1

Z + jets < 0.1 < 0.1 < 0.1 < 0.1

QCD multijet < 0.1 < 0.1 < 0.1 < 0.1

Total Prediction 43.2±6.1±3.7 9.9±3.1+2.0
−1.7 2.2+2.3

−1.6
+2.2
−0.7 0.1+2.2

−0.1
+2.1
−0.1

Data, total (µ, e) 46 (24, 22) 11 (5, 6) 4 (3, 1) 1 (0, 1)

T1tttt (1150, 500) 0.6±0.1 0.6±0.1 0.5±0.1 0.7±0.1

T1tttt (1100, 100) 1.6±0.1 2.0±0.1 2.2±0.2 3.2±0.2

Table 7.10: Observed and predicted yields in the E/T signal bins for
HT >500 GeV, Nj ≥ 6, and Nb ≥ 3. The first uncertainty on each prediction
is statistical and the second is the full systematic uncertainty. The expected sig-
nal yields and their statistical uncertainty are shown for two T1tttt SMS points
labeled by (mg̃,mLSP) in GeV.

E/T: [150,250) [250,350) [350,450) ≥ 450 GeV

Total Prediction 71.1±3.5±8.3 12.4±1.6±1.8 3.1±0.9±0.7 0.1+0.5
−0.0

+0.4
−0.0

Data, total (µ, e) 84 (47, 37) 16 (7, 9) 2 (1, 1) 0 (0, 0)

T1tttt (1150, 500) 2.8±0.1 3.0±0.2 1.9±0.1 1.5±0.1

T1tttt (1100, 100) 3.9±0.2 4.1±0.2 4.0±0.2 4.7±0.2
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Table 7.11: Observed and predicted yields in the E/T signal bins for
HT >750 GeV, Nj ≥ 6, and Nb ≥ 3. The first uncertainty on each prediction
is statistical and the second is the full systematic uncertainty. The expected sig-
nal yields and their statistical uncertainty are shown for two T1tttt SMS points
labeled by (mg̃,mLSP) in GeV.

E/T: [150,250) [250,350) [350,450) ≥ 450 GeV

Total Prediction 25.9±2.1±3.1 5.9±1.1±1.0 2.1±0.7±0.5 0.1+0.5
−0.0

+0.4
−0.0

Data, total (µ, e) 37 (18, 19) 12 (5, 7) 2 (1, 1) 0 (0, 0)

T1tttt (1150, 500) 1.9±0.1 2.1±0.1 1.4±0.1 1.4±0.1

T1tttt (1100, 100) 3.5±0.2 3.8±0.2 3.6±0.2 4.5±0.2

Table 7.12: Observed and predicted yields in the E/T signal bins for
HT >1000 GeV, Nj ≥ 6, and Nb ≥ 3. The first uncertainty on each predic-
tion is statistical and the second is the full systematic uncertainty. The expected
signal yields and their statistical uncertainty are shown for two T1tttt SMS points
labeled by (mg̃,mLSP) in GeV.

E/T: [150,250) [250,350) [350,450) ≥ 450 GeV

Total Prediction 10.4±1.5±1.5 2.4±0.7±0.5 0.4+0.5
−0.3

+0.4
−0.2 0.0+0.5

−0.0
+0.5
−0.0

Data, total (µ, e) 14 (5, 9) 4 (1, 3) 1 (0, 1) 0 (0, 0)

T1tttt (1150, 500) 0.7±0.1 0.8±0.1 0.6±0.1 0.8±0.1

T1tttt (1100, 100) 2.5±0.2 2.6±0.2 2.5±0.2 3.4±0.2
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Interpretation

To understand the sensitivity of this analysis to natural SUSY, it is useful to

interpret its results in the context of relevant SUSY scenarios. This is done using

the T1tttt, T1t1t, and T5tttt simplified models introduced in Sec. 2.3.5, which

consist of gluino pair production decaying through top squarks to a final state

of 4 top quarks and 2 LSPs. To interpret the results in terms of a given SUSY

scenario, its signal yield and corresponding systematic uncertainty are required.

The signal acceptance times efficiency and derivation of the corresponding sys-

tematic uncertainties are described in Sec. 8.1 and 8.2, respectively. The result of

the interpretation in a SUSY scenario is an upper limit on the cross section and a

decision on whether that scenario can be excluded by comparing to the predicted

theoretical cross section, as described in Sec. 8.3.
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8.1 Acceptance times Efficiency

Figures 8.1 and 8.2 show the signal acceptance times efficiency in the T1tttt

m(χ̃0
1) vs m(g̃) plane for Nb = 2 and Nb ≥ 3, respectively, with HT > 500 GeV

and Nj ≥ 6. Each of the three E/T signal bins is shown separately. These plots

illustrate that the greater the m(g̃) − m(χ̃0
1) mass splitting, the more energy is

available to contribute to the HT and E/T of the event. Figures 8.3 and 8.4 show

the signal acceptance times efficiency in the T1t1t m(χ̃0
1) vs m(t̃) plane for Nb = 2

and Nb ≥ 3, respectively, with HT > 500 GeV and Nj ≥ 6. Again, lower m(χ̃0
1)

is correlated with greater E/T and HT and hence higher efficiency. The stop mass

is also somewhat correlated with the event kinematics, as a higher m(t̃) increases

the momentum of the χ̃0
1 and hence the E/T. Figures 8.5 and 8.6 show the signal

acceptance times efficiency in the T5tttt m(t̃) vs m(g̃) plane for Nb = 2 and

Nb ≥ 3, respectively, with HT > 500 GeV and Nj ≥ 6. These plots illustrate the

same effects of varying the gluino and stop masses as the above two models. The

acceptance times efficiency maps for the higher HT thresholds can be found in

Ref. [123] and behave similarly to those for HT > 500 GeV in all three SMSs but

with a smaller normalization.
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Figure 8.1: Signal acceptance times efficiency for the three E/T signal regions for
HT > 500 GeV, Nj ≥ 6, and Nb = 2 across the T1tttt m(χ̃0

1) vs m(g̃) plane.
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Figure 8.2: Signal acceptance times efficiency for the three E/T signal regions for
HT > 500 GeV, Nj ≥ 6, and Nb ≥ 3 across the T1tttt m(χ̃0

1) vs m(g̃) plane.
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Figure 8.3: Signal acceptance times efficiency for the three E/T signal regions for
HT > 500 GeV, Nj ≥ 6, and Nb = 2 across the T1t1t m(χ̃0

1) vs m(t̃) plane.
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Figure 8.4: Signal acceptance times efficiency for the three E/T signal regions for
HT > 500 GeV, Nj ≥ 6, and Nb ≥ 3 across the T1t1t m(χ̃0

1) vs m(t̃) plane.
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Figure 8.5: Signal acceptance times efficiency for the three E/T signal regions for
HT > 500 GeV, Nj ≥ 6, and Nb = 2 across the T5tttt m(t̃) vs m(g̃) plane.
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Figure 8.6: Signal acceptance times efficiency for the three E/T signal regions for
HT > 500 GeV, Nj ≥ 6, and Nb ≥ 3 across the T5tttt m(t̃) vs m(g̃) plane.
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8.2 Signal Systematic Uncertainties

This section describes the systematic uncertainties on the signal yield that are

used in the calculation of the signal cross section limits. For brevity, this thesis

does not show every systematic uncertainty in every signal region, but instead

uses a set of example plots to illustrate the important behavior of the uncertainties

across parameter space. The systematic uncertainties on the signal yield are due

to:

• Jet and E/T energy scale: The uncertainty due to the E/T and jet energy

scale is evaluated as described in Sec. 6.1.3. Figures 8.7, 8.8, and 8.9 plot this

uncertainty in the T1tttt, T1t1t, and T5tttt SMS, respectively, for Nb = 2

and HT > 500 GeV. The uncertainties for the Nb ≥ 3 selection have the

same qualitative behavior. In all of these models, this uncertainty is highest

for the case of small m(g̃)−m(χ̃0
1) mass splitting, in which the Nj, HT , and

E/T distributions are most steeply falling.

• PU re-weighting: The systematic uncertainty due to the modeling of the

PU distribution in simulation is evaluated in the same way as Sec. 6.2.1.

This is a subdominant systematic and is typically on the order of 5% or less.

• b-tagging scale factors: The systematic uncertainty due to the b-tagging

efficiency and mistag scale factors is evaluated in the same way as described
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in Sec. 6.4, with one alteration. Namely, the uncertainty on the scale factors

is inflated to account for potential differences between the full simulation and

the fast simulation used to produce the signal samples. This systematic is

small for the Nb = 2 selection because of the presence of four b quarks in the

signal, but can be significant for the Nb ≥ 3 selection. Figures 8.10, 8.11,

and 8.12 plot this uncertainty in the T1tttt, T1t1t, and T5tttt SMS, re-

spectively, for Nb ≥ 3 and HT > 500 GeV. This uncertainty is largest in

T1tttt at very small m(g̃) −m(χ̃0
1) due to the lower average b-jet pT with

correspondingly larger scale factor uncertainty.

• Luminosity: The uncertainty on the integrated luminosity is 2.6% [124].

• Lepton efficiency: The electron identification and reconstruction efficiency

in the signal sample is scaled to match that in the data by 98±3% for barrel

electrons and 86 ± 7% for endcap electrons. The muon identification and

reconstruction efficiency in the signal sample is scaled to match that in the

data by 95± 3%. The uncertainty on the muon and electron efficiency scale

factors is taken to be fully correlated. These scale factors were determined

for fast simulation in the studies presented in Ref. [120]. The uncertainty on

the signal yield in all T1tttt, T1t1t, and T5tttt scan points from this effect

is consistently close to 3.5%, which is taken to be the systematic uncertainty.
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• Trigger efficiency: The triggers used to select signal events have both a

muon or electron component and a HT (+E/T) hadronic component, both of

which cause some inefficiency in selecting signal events. The signal selection

efficiency is scaled by 98 ± 0.3% to account for the hadronic component of

the triggers. To account for the efficiency of the electron component of the

triggers, the yield of simulated signal events with an electron is scaled by

a factor of 96 ± 5%. Similarly, signal events with a muon are scaled by a

factor of 98±4% for |ηµ| < 0.9 and 84±4% for |ηµ| > 0.9. The uncertainties

on the muon and electron trigger legs are taken to be correlated. These

trigger efficiencies were determined in the studies presented in Ref. [120].

The uncertainty on the signal yield in all T1tttt, T1t1t, and T5tttt scan

points due to the trigger efficiency is consistently between 4-5%. Therefore

5% is taken to be the systematic uncertainty for all models. Together, the

trigger efficiency and lepton efficiency scale factors account for a roughly

10% decrease in the signal yields of all of the SMS scan points.

• PDFs: The uncertainty on the parton distribution functions leads to an un-

certainty on the event kinematics, and hence efficiency times acceptance, of

signal events. This uncertainty is evaluated using the procedure described in

Ref. [125]. Figures 8.13 and 8.14 plot the uncertainty on the signal efficiency

times acceptance due to the PDFs in the T1tttt and T1t1t SMS, respectively,
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for HT > 500 GeV. For simplicity, in each E/T signal bin, the plane is divided

into three regions in which a flat uncertainty of 50, 30, or 15% is assigned.

This helps to smooth the significant point-to-point fluctuations in the PDF

uncertainty. Larger uncertainties arise at smaller m(g̃) −m(χ̃0
1) due to the

increased reliance on the kinematic tails for acceptance. Additionally, the

uncertainty is sufficiently similar between the Nb = 2 and Nb ≥ 3 bins such

that the same PDF uncertainty is used for each. In T5tttt the uncertainty

due to the PDFs is relatively flat across all model points, and a 20% system-

atic uncertainty due to this effect has been assigned to every signal region

for every model point. A more detailed description of the procedure used to

determine the PDF uncertainties is given below in Sec. 8.2.1.

• ISR: Because this search has signal regions with stringent requirements

on E/T and HT , events with significant ISR can make an important con-

tribution to the signal acceptance, particularly for models with small mass

splitting between the gluino and LSP. Therefore, it is important to assess a

systematic uncertainty on the signal yield to account for how well the sig-

nal MC models ISR effects. To account for the differences in ISR in data

and MC, this analysis follows the official CMS SUSY group recommended

ISR reweighting procedure for the signal MC. The procedure reweights each

event as a function of gluino pair pT by amounts decreasing from 1.0±0.0 for
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pT < 120 GeV down to 0.8±0.2 for pT > 250 GeV. Because some weights are

non-unity, the reweighting also leads to a change in the central value of the

signal efficiency, which is commensurate with the value of the uncertainty.

Figures 8.15, 8.16, and 8.17 plot this uncertainty in the T1tttt, T1t1t, and

T5tttt SMS, respectively, for Nb = 2 and HT > 500 GeV. The uncertainties

for the Nb ≥ 3 selection are extremely similar. The uncertainty becomes

large for small m(g̃) − m(χ̃0
1), where ISR is necessary to sufficiently boost

the system to generate enough E/T to pass the selection. In T5tttt, where

this mass splitting is large because the LSP mass is fixed at 50 GeV, the

uncertainty due to ISR is small across the entire model space.

Only the uncertainties for the HT > 500 GeV selection are shown because those for

the higher HT thresholds show similar qualitative behavior and larger statistical

fluctuations due to lower efficiency.

8.2.1 PDF Uncertainty Calculation

The uncertainty on the signal efficiency times acceptance due to the PDFs

is evaluated using the PDF4LHC Working Group Interim Recommendations de-

scribed in Ref. [125]. Three PDF sets are used in this calculation, namely CTEQ6.6,

MSTW2008 [126], and NNPDF2.0 [127]. An envelope defined by the central values

and eigenvector variations of the three PDF sets is used to determine the uncer-
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Figure 8.7: E/T and jet energy scale signal uncertainties for the three E/T signal
regions for HT > 500 GeV, Nj ≥ 6, and Nb = 2 across the T1tttt m(χ̃0

1) vs m(g̃)
plane.
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Figure 8.8: E/T and jet energy scale signal uncertainties for the three E/T signal
regions for HT > 500 GeV, Nj ≥ 6, and Nb = 2 across the T1t1t m(χ̃0

1) vs m(t̃)
plane.
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Figure 8.9: E/T and jet energy scale signal uncertainties for the three E/T signal
regions for HT > 500 GeV, Nj ≥ 6, and Nb = 2 across the T5tttt m(t̃) vs m(g̃)
plane.
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Figure 8.10: Uncertainty on the signal yield due to the b-tagging scale factors
for the three E/T signal regions for HT > 500 GeV, Nj ≥ 6, and Nb ≥ 3 across the
T1tttt m(χ̃0

1) vs m(g̃) plane.
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Figure 8.11: Uncertainty on the signal yield due to the b-tagging scale factors
for the three E/T signal regions for HT > 500 GeV, Nj ≥ 6, and Nb ≥ 3 across the
T1t1t m(χ̃0

1) vs m(t̃) plane.
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Figure 8.12: Uncertainty on the signal yield due to the b-tagging scale factors
for the three E/T signal regions for HT > 500 GeV, Nj ≥ 6, and Nb ≥ 3 across the
T5tttt m(t̃) vs m(g̃) plane.
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Figure 8.13: Uncertainty on the signal acceptance time efficiency due to PDFs
for the three E/T signal regions for HT > 500 GeV and Nj ≥ 6 across the T1tttt
m(χ̃0

1) vs m(g̃) plane. These uncertainties apply to the Nb = 2 and Nb ≥ 3
selections.
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Figure 8.14: Uncertainty on the signal acceptance time efficiency due to PDFs
for the three E/T signal regions for HT > 500 GeV and Nj ≥ 6 across the T1t1t
m(χ̃0

1) vs m(t̃) plane. These uncertainties apply to the Nb = 2 and Nb ≥ 3
selections.
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Figure 8.15: Uncertainty on the signal yield due to ISR modeling for the three
E/T signal regions for HT > 500 GeV, Nj ≥ 6, and Nb = 2 across the T1tttt m(χ̃0

1)
vs m(g̃) plane.
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Figure 8.16: Uncertainty on the signal yield due to ISR modeling for the three
E/T signal regions for HT > 500 GeV, Nj ≥ 6, and Nb = 2 across the T1t1t m(χ̃0

1)
vs m(t̃) plane.
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Figure 8.17: Uncertainty on the signal yield due to ISR modeling for the three
E/T signal regions for HT > 500 GeV, Nj ≥ 6, and Nb = 2 across the T5tttt m(t̃)
vs m(g̃) plane.

tainty. This is done because the differences in signal yield between the different

PDF sets are as large as the differences arising from their eigenvector variations.

The recommended procedure for each PDF set for evaluating the uncertainty due

to the variation of its eigenvectors is used.

For both CTEQ and MSTW, the uncertainty from the eigenvector variation

is determined from the following equations, taken from [128]:

∆X+
max =

√√√√ N∑
i=1

[
max(X+

i −X0, X
−
i −X0, 0)

]2
(8.1)

∆X−max =

√√√√ N∑
i=1

[
max(X0 −X+

i , X0 −X−i , 0)
]2

(8.2)

Here X
+(−)
i represents the signal efficiency times acceptance after the positive

(negative) variation of the ith of N eigenvectors. The nominal efficiency times
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acceptance is denoted by X0. The larger of ∆X+
max and ∆X−max is taken to be a

symmetric uncertainty due to the eigenvector variations. Because the uncertainty

variations provided by the CTEQ set are at the 90% Confidence Level, they must

be reduced by a factor of 1.645 to convert to standard 68% Confidence Level

uncertainties. For NNPDF, the central value and uncertainty come from the mean

and standard deviation of the distribution of the efficiency times acceptance over

all of the eigenvector variations.

Using the central value and uncertainty from each of the PDF sets, the total

uncertainty is determined from the envelope constructed to have a central value

of

XCV =0.5× [max(XCTEQ + σXCTEQ
, XMSTW + σXMSTW

, XNNPDF + σXNNPDF
)

+min(XCTEQ − σXCTEQ
, XMSTW − σXMSTW

, XNNPDF − σXNNPDF
)]

(8.3)

and symmetric uncertainty given by

σ(XCV) =0.5× [max(XCTEQ + σXCTEQ
, XMSTW + σXMSTW

, XNNPDF + σXNNPDF
)

−min(XCTEQ − σXCTEQ
, XMSTW − σXMSTW

, XNNPDF − σXNNPDF
)].

(8.4)

To avoid unphysical uncertainties, the bottom edge of the envelope is not allowed

to extend below 0. The final total relative uncertainty is taken to be XCV/σ(XCV).
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In regions of SMS parameter space which have low signal efficiency, this proce-

dure can result in large variations in the uncertainty for neighboring model points,

due to the small number of events over which the PDF variations are averaged.

These fluctuations become particularly problematic when the number of selected

events is less than the number of eigenvector variations. To mitigate these fluc-

tuations, the uncertainty for a given model point is computed by including its

neighboring model points, which should have roughly the same uncertainty due

to PDFs. That is to say, the events in the neighboring model points are treated

as though they belong to the model point in question when calculating its uncer-

tainty. The increase in event yields and effective averaging between nearby model

points reduces the variations to a reasonable level. This averaging, however, is

only needed in the T1tttt SMS, which has small efficiencies near its diagonal.

8.3 Exclusion Limits

Limits are set using a modified-frequentist CLs method [129, 130, 131] with

a one-sided profile likelihood ratio test statistic. The inputs to the limit setting

are the background predictions, observations in data, and yields from the signal

model in question. The limit setting takes the 3 E/T signal regions for both Nb = 2

and Nb ≥ 3, for a total of 6 signal regions, into account simultaneously in a global
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fit to determine a 95% Confidence Level (C.L.) upper limit on the signal cross

section separately for each HT threshold. The final limit in a given signal model

is taken from the HT threshold with the best expected limit.

As mentioned in Sec. 2.3.4, the gluino pair-production cross sections used

for setting mass limits are determined using NLO plus NLL calculations. At

m(g̃) = 1.2 TeV, near the edge of sensitivity for this analysis, the cross section

of 4.4 fb means that only roughly 85 gluino pairs would have been produced

in the entire dataset. The theoretical uncertainty on the cross sections is due

to renormalization and factorization scale variations and the parton distribution

functions [132]. Because massive gluino pair-production probes the poorly con-

strained tails of the PDFs, the uncertainty on the cross section is quite large at

above 20-30% for nearly all of the interesting parameter space. This is illustrated

in Fig. 8.18, which shows the pair-production cross section and its theoretical

uncertainty as a function of m(g̃).

An important aspect of the limit setting procedure is the treatment of uncer-

tainties. Below is a list describing the handling of uncertainties and their corre-

lations in each of the background predictions as well as the signal yield. Due to

the multiple signal bins, it is necessary to take correlations of uncertainties across

the different bins into account. Statistical uncertainties are modeled as Poisson
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Figure 8.18: Gluino pair-production cross section and its theoretical uncertainty
as a function of m(g̃). The solid line represents the central value and the shaded
band denotes the uncertainty.

and systematic uncertainties are modeled as multiplicative and lognormal. All

correlations listed below are conservatively treated as 100% correlated.

• Signal Yields: Each source of uncertainty on the signal yield is taken to

be correlated between all E/T bins. The JES component of the systematic

uncertainty is also correlated with the JES systematic uncertainty on the

single lepton background prediction. Note that the theoretical uncertainty

on the production cross section is not included in the limit calculation, but

rather its effect is shown via variations in the observed limit curves.
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• Single Lepton: The systematic uncertainty on the prediction is correlated

across all bins.

• single τ`, ` + τ`, ` + τh, and lost and ignored dilepton backgrounds: These

predictions are each treated separately in the limit code. The systematic

uncertainty for each is correlated across all E/T bins.

• QCD: The QCD contribution is not considered in the limit determination

as it is negligible.

• Z+jets prediction: The systematic uncertainty is taken as correlated across

all signal bins.

• Background prediction uncertainty between b-tag bins: The uncertainty on

the background prediction is treated as 100% correlated between the Nb = 2

and Nb ≥ 3 signal regions for a given E/T bin. The one exception to this is

the uncertainty on the Nb ≥ 3 predictions due to the uncertainty on R32,

which is not correlated with the Nb = 2 predictions.

• R32 uncertainty: The systematic uncertainty on the R32 factors used to

make the Nb ≥ 3 predictions has two components: (1) An uncorrelated

uncertainty between E/T bins due to limited simulated event yields. (2) All

other sources of uncertainty, which are correlated between E/T bins.
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The effect of signal contamination of the background estimation was quanti-

fied as follows. For each of the data driven background estimates, the expected

contribution due to signal contamination is subtracted from the prediction and

the limits are calculated. The resulting change in the limit contours after account-

ing for signal contamination is much less than the difference between the median

and 1σ expected limit curves. Therefore, signal contamination is neglected in the

limits shown here.

The limit curves for each of the three HT selections in the T1tttt, T1t1t, and

T5tttt mass planes are shown in Figs. 8.19, 8.20, and 8.21, respectively. For the

final limit on each model point, the HT selection giving the best expected limit

is used. The HT selection giving the best expected limit at each point in T1tttt,

T1t1t, and T5tttt is shown in Figs. 8.22, 8.23, and 8.24, respectively, along with

the resulting exclusion contours.

For the vast majority of parameter space, the lowest HT threshold gives the

best expected limit. In T5tttt, however, there is a clear trend of higher HT

selections giving better expected limits at lower stop masses. This is because

reducing the stop mass reduces the momentum of the LSPs and increases the

momentum of the top quarks produced in the g̃ → t̃t decays, which results in

lower E/T and higher HT on average. This trend is also seen at low stop mass in

T1t1t, although with the further complication that for m(t̃)−m(χ̃0
1) < 175 the top
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Figure 8.19: 95% C.L. upper limits on the production cross section in T1tttt
for Nj ≥ 6, Nb bins of 2 and ≥ 3, and (a) HT > 500 GeV, (b) HT > 750 GeV,
(c) HT > 1000 GeV. The z axis corresponds to the observed limit. The observed
(±1σ theory) and expected (±1σ experimental) limit contours are also shown.
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Figure 8.20: 95% C.L. upper limits on the production cross section in T1t1t
for Nj ≥ 6, Nb bins of 2 and ≥ 3, and (a) HT > 500 GeV, (b) HT > 750 GeV,
(c) HT > 1000 GeV. The z axis corresponds to the observed limit. The observed
(±1σ theory) and expected (±1σ experimental) limit contours are also shown.
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Figure 8.21: 95% C.L. upper limits on the production cross section in T5tttt
for Nj ≥ 6, Nb bins of 2 and ≥ 3, and (a) HT > 500 GeV, (b) HT > 750 GeV,
(c) HT > 1000 GeV. The z axis corresponds to the observed limit. The observed
(±1σ theory) and expected (±1σ experimental) limit contours are also shown.

quark from the stop decay is off mass shell. For small m(g̃) and m(g̃)−m(χ̃0
1) in

T1tttt, where events only pass the E/T requirement due to hard ISR, the resulting

extreme correlation between E/T and HT means the HT > 750 GeV selection gives

competitive expected limits to HT > 500 GeV.

The final limit plots indicate the following mass limits, which are conservatively

quoted in terms of the−1σtheory exclusion contour on the observed limit. In T1tttt,

gluinos of up to 1180 GeV are excluded for low χ̃0
1 masses and χ̃0

1 masses of up

440 GeV are excluded for 1 TeV gluinos. For the case of on-shell stops in T1t1t,

χ̃0
1 masses below 380 to 480 GeV are excluded for 1 TeV gluinos, depending on

the stop mass. For on-shell stops and χ̃0
1 mass of 50 GeV in T5tttt, gluino masses

below 1 to 1.2 TeV are excluded, depending on the stop mass. The T1t1t and
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Figure 8.22: The HT selection with the best expected 95% C.L. cross section
upper limit for Nj ≥ 6 and Nb bins of 2 and ≥ 3 is shown in (a) for each point
in the T1tttt plane. (b) shows the resulting observed (±1σ theory) and expected
(±1σ experimental) exclusion contours obtained from using the limits from the
HT selections shown in (a) with the observed limit plotted on the z axis.

T5tttt limits are compatible with those in T1tttt for off-shell stops, and illustrate

that the gluino and χ̃0
1 mass exclusions do not depend strongly on the stop mass.

A final noteworthy point is that these results are complementary to direct stop

searches [4, 133, 134, 135], which are similarly motivated by naturalness. For the

1 TeV gluino mass in T1t1t, this analysis excludes a larger range of (m(t̃),m(χ̃0
1))

parameter space than current direct stop searches.

In addition to this search, there are two other recent searches at CMS for gluino

production and decay through stops in the single lepton channel [1]. One of these
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Figure 8.23: The HT selection with the best expected 95% C.L. cross section
upper limit for Nj ≥ 6 and Nb bins of 2 and ≥ 3 is shown in (a) for each point
in the T1t1t plane. (b) shows the resulting observed (±1σ theory) and expected
(±1σ experimental) exclusion contours obtained from using the limits from the
HT selections shown in (a) with the observed limit plotted on the z axis.

uses nearly identical signal regions to this search but predicts the backgrounds

using a fit to the E/T distribution in various control samples. Consequently, its

exclusion sensitivity is very similar to that shown here. The other search places a

stringent requirement on the φ angle between the reconstructed W and `, which

rejects the vast majority of the single lepton background. The smaller, dilepton

dominated background leads to an enhanced exclusion sensitivity of approximately

100 GeV in gluino mass for low LSP masses. Despite this increased exclusion sen-
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Figure 8.24: The HT selection with the best expected 95% C.L. cross section
upper limit for Nj ≥ 6 and Nb bins of 2 and ≥ 3 is shown in (a) for each point
in the T5tttt plane. (b) shows the resulting observed (±1σ theory) and expected
(±1σ experimental) exclusion contours obtained from using the limits from the
HT selections shown in (a) with the observed limit plotted on the z axis.

sitivity, having two versions of the search with significantly different background

composition is crucial to prepare for the event that an excess is observed in either.
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Conclusion

This thesis describes a search for Supersymmetry in events with a single lepton,

large jet multiplicity, and multiple b jets in 19.3 fb−1 of pp collisions at
√
s = 8 TeV

collected with the CMS experiment. The search targets gluino pair production and

decay through top squarks in R-parity conserving SUSY models, as is motivated

by naturalness arguments and the χ̃0
1 providing a dark matter candidate. Since

these types of events would have large HT and E/T due to the heavy gluino mass

and presence of two χ̃0
1, significant requirements are placed on these variables to

reduce the Standard Model backgrounds. With the above selection, the dominant

background comes from tt̄ production.

The major background components to this search are predicted using data-

driven methods. The dominant background, consisting of events with exactly one

prompt lepton, is predicted by the charged lepton pT spectrum, after suitable

corrections to account for minor differences between charged and neutral leptons
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from W -boson decays. The backgrounds coming from events with one or more

tau leptons are predicted by emulating tau decays in data control samples using

response functions derived in simulation. Another significant background con-

tribution comes from lost and ignored dilepton events, which are predicted by

their simulated E/T distribution normalized by the relative data/simulation yields

in a suitable control sample. Finally, the QCD multijet background is shown to

be negligibly small by extrapolating from a high relative lepton isolation control

sample.

The background prediction in each signal region is in good agreement with the

observation in data and no evidence for new physics is found. Limits at 95% C.L.

are set in the context of three Simplified Model Spectra, each consisting of gluino

pair production and decay through top squarks to a four top and two LSP final

state. The SMSs are differentiated by their assumptions about the masses of the

top squarks, gluinos, and LSPs. In these models, gluino masses below 1150 GeV

are excluded for low χ̃0
1 masses and χ̃0

1 masses below 440 GeV are excluded for a

gluino mass of 1 TeV, with fairly weak dependence on the stop mass. This small

stop mass dependence makes this search a powerful counterpart to natural SUSY

searches targeting direct stop production.
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