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Abstract

Luminous and Dark Matter in Early-type Galaxies

by

Alessandro Sonnenfeld

Three open problems in our understanding of early-type galaxies are 1) identifying the

process(es) responsible for their rapid size evolution, 2) accurately constraining the stellar

IMF and its variations in the population, 3) measuring the density profile of their dark

matter halo. We use strong lensing as the main diagnostic tool to address these issues.

We first dissected a massive elliptical galaxy in its stellar and dark matter components,

measuring both its IMF and the inner slope of the dark matter halo. We then collected

a sample of 45 strong lenses in the redshift interval 0.2 < z < 0.8 and used them, in

combination with lenses from other surveys, to measure the slope of the total density

profile, the stellar IMF and the dark matter mass in the population of massive early-type

galaxies, and their time evolution. Finally, we used our measurements of the evolution of

the density slope to test a galaxy growth scenario based on purely dissipationless mergers.

Our main results are: the stellar IMF of massive early-type galaxies is significantly heavier

than that of the Milky Way and correlates with galaxy mass; the dark matter halo has

a steep slope in at least one system; more compact galaxies have less dark matter than

their extended counterparts at fixed redshift and stellar mass; early-type galaxies evolve

while keeping the slope of their total density profile approximately constant. This last
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result cannot be reproduced with purely dissipationless mergers, therefore a little amount

of dissipation is required.
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Chapter 1

Introduction

1.1 Early-type galaxies

Early-type galaxies (ETGs) are objects of apparent simplicity, characterized by a

smooth stellar distribution, little amounts of gas or dust, and old stellar populations.

They constitute a family of objects of remarkable regularity, captured by tight scaling

relations such as the fundamental plane (Dressler et al. 1987; Djorgovski & Davis 1987)

and the relations between central black hole mass and galaxy properties (Ferrarese &

Merritt 2000; Gebhardt et al. 2000; Marconi & Hunt 2003; Häring & Rix 2004). Despite

tremendous efforts, it is still unknown what the fundamental source of this regularity is,

making ETGs more mysterious objects than their appearance would suggest. Numerical

simulations are now able to reproduce some of the key observables of ETGs (Hopkins

et al. 2009b; Dubois et al. 2013; Remus et al. 2013; Feldmann & Mayer 2014), but

the resolution and statistics that can be reached today are still too low to allow for

meaningful quantitative tests. It is still very challenging to obtain realistic simulations of

the baryonic component of ETGs, since this is affected by a number of complex physical

processes including star formation, feedback from supernovae and the effect of an active
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galactic nucleus (AGN).

Understanding the formation and evolution of ETGs is a fundamental piece in the

cosmological puzzle. Any model that aims at providing a description of the Universe

as a whole must be able to reproduce the observed characteristics of these objects. We

can identify four aspects of the structure of ETGs that are posing challenges to our

understanding of their formation and evolution: the size evolution of ETGs, the stellar

initial mass function (IMF), the properties of the dark matter halo, and the link between

the central black hole and the properties of the galaxy as a whole. This Thesis focuses

on the first three of these problems, described in the following subsections.

1.1.1 The size evolution

At fixed stellar mass, ETGs at high (z > 1) redshift have on average smaller half-

light radii than local quiescent galaxies (e.g. Daddi et al. 2005; Trujillo et al. 2006b; van

Dokkum et al. 2008; Cassata et al. 2011; Newman et al. 2012a). This evolution in the

mass-size relation could be the result of an intrinsic growth, likely as a result of mergers,

or of the emergence of new systems with sizes larger than the average of the pre-existing

population (progenitor bias). The relative relevance of these two effects is still a matter

of debate (Newman et al. 2012a; Carollo et al. 2013; Belli et al. 2013).

Theoretical studies aimed at matching the observed size evolution of quiescent galaxies

have focused on dissipationless (dry) mergers (Naab et al. 2009; Nipoti et al. 2009a; van

der Wel et al. 2009; Hopkins et al. 2010; Oser et al. 2012; Hilz et al. 2013), as the low star

formation rates measured in these galaxies leaves little room for a significant occurrence
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of dissipative (wet) mergers. The predicted and observed merger rates in a dry-merger

scenario, while still insufficient to reproduce the size growth observed at z & 1.5, seem

to be able to account for the late (z . 1.5) size evolution of quiescent galaxies (Nipoti

et al. 2012; Newman et al. 2012a; Posti et al. 2013). In particular, Nipoti et al. (2012)

have shown that, on average, the predictions of a purely dry merger model are marginally

consistent with the observationally inferred evolution of theM∗−Mh andM∗−Re relations

in the redshift range 0 . z . 1.3. Dry mergers, however, appear difficult to reconcile

with the tightness of the observed scaling relations (Nipoti et al. 2009a, 2012; Shankar

et al. 2013). It is not clear then if models based purely on dry mergers can capture the

relevant aspects of the evolution of early-type galaxies (ETGs), or if additional physical

ingredients are required.

In order to make progress, new observational tests are needed. Size and mass provide

a crude description of the structure of a galaxy. More insight can be gained by studying

the density profile of ETGs. As will be shown later in this Thesis, observationally con-

straining the evolution in the slope of the density profile of ETGs can help discriminate

between dry or wet merger evolution scenarios.

1.1.2 The stellar initial mass function

In the Milky Way, the stellar IMF is well described by a broken power-law (Kroupa

2001; Chabrier 2003, e.g.). For stellar masses larger than ∼ 0.5M⊙ the power-law slope

is very close to the Salpeter (1955) value: dN(M)/dM ∝ M−2.35. For smaller masses,

the IMF turns off to a shallower slope. In recent years there has been growing evidence
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that the IMF of massive ETGs differs radically from that of the Milky Way, resulting in a

significantly larger mass-to-light ratio (Auger et al. 2010b; Cappellari et al. 2012; Conroy

& van Dokkum 2012; Spiniello et al. 2014). While the non-universality of the IMF is still

a debated issue (Smith & Lucey 2013), the implications on star formation models of such

a discovery, if confirmed, would be very important. A possible explanation for differences

in IMF between late-type and massive early-type galaxies is a star formation mechanism

based on fragmentation in supersonically turbulent molecular clouds (Padoan et al. 1997;

Padoan & Nordlund 2002; Hennebelle & Chabrier 2008; Hopkins 2012, 2013). Different

conditions, in particular the Mach number, in the star-forming gas would change the

characteristic mass of fragmentation, resulting in different abundances of low-mass stars.

New accurate measurements are needed to test this scenario. In the Milky Way, the

stellar IMF can be measured simply by counting stars. The same thing is not possible

for galaxies outside the local group, let alone for systems at cosmological distances. As

we will show in Chapters 2 and 5, gravitational lensing can be used in combination with

other dynamical probes to constrain the IMF of massive galaxies out to z ∼ 1 (Treu et al.

2010; Sonnenfeld et al. 2012; Barnabè et al. 2013; Smith & Lucey 2013; Sonnenfeld et al.

2014; Shetty & Cappellari 2014).

1.1.3 The dark matter halo

On the observational side, most of the efforts in studies of ETGs have been focused

on improving our current knowledge of the luminous component of these objects, namely

the stellar populations and their cosmic evolution (e.g. Fontana et al. 2004; Cimatti et al.

4



2006; Pozzetti et al. 2010; Peng et al. 2010b; Choi et al. 2014), while very little is known

about the dark matter component. The underlying dark matter distribution is affected

by baryonic physics processes: adiabatic contraction of gas can lead to more concentrated

dark matter halos (Gnedin et al. 2011) whereas supernova feedback can remove dark mat-

ter from the center of a galaxy (Pontzen & Governato 2012). Observational constraints of

dark matter halos can be used to test some of the many models for the effects of baryonic

physics on the evolution of ETGs. Additionally, measuring the density profile of dark

matter in the center of ETGs would help addressing some issues related to the nature

of dark matter itself. Dwarf scale galaxies (Oh et al. 2011) and cluster central galaxies

(Newman et al. 2013) appear to have cored dark matter profiles. Are dark matter cores

ubiquitous? Are they the result of dark matter physics or baryonic physics? What is the

contribution of the halos ETGs live in to the dark matter annihilation signal?

Current observational constraints on the dark matter halos of ETGs are scarce and

come mostly from the analysis of kinematical tracers data, either alone (see, e.g., Cap-

pellari et al. 2013b; Agnello et al. 2014, for recent results) or in combination with strong

gravitational lensing (see, e.g., Sonnenfeld et al. 2012; Newman et al. 2013; Barnabè et al.

2013; Suyu et al. 2014, for recent results). The main advantage of strong lensing is that

it allows for accurate and precise measurements of masses out to cosmological distances,

making it possible to explore the time dimension and address evolutionary questions (see,

e.g., Treu 2010, for a recent review). In Chapters 2 and 5 we show examples of how strong

lensing can be used to probe the dark matter halo of ETGs.
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1.2 Gravitational lensing

Strong gravitational lensing is the main diagnostic tool used in this Thesis to probe

the structure of ETGs. Here we provide a brief overview of the basic equations of strong

lensing. For a comprehensive review of the subject we refer to the work by Schneider

et al. (1992).

The propagation of light rays in spacetime can be described by making use of the

General Relativistic version of Fermat’s principle:

Let S be an event (“source”) and l a timelike world line (“observer”) in a
spacetime (gαβ). Then a smooth null curve γ from S to l is a light ray (null
geodesic) if, and only if, its arrival time τ on l is stationary under first-order
variations of γ within the set of smooth null curves from S to l.

For a quasi-Minkowskian spacetime metric, i. e. in the presence of a small gravitational

potential U ≪ c2, the equations describing the propagation of light rays are formally

identical to the classical case if we introduce the following effective index of refraction:

n ≡ 1− 2U

c2
. (1.1)

It can be shown that, in the presence of a point mass M , the deflection angle α̂ of a

light ray passing in its proximity with impact parameter ξ is

α̂ = −4GM

c2
ξ

|ξ|2 . (1.2)

Cases in which the deflection angle is 1) much smaller than unity and 2) much smaller

than the ratio between the typical length over which the transverse component of the

gravitational potential varies and the extent of the deflecting mass in the direction of

propagation of the light ray, are referred to as thin lenses. Condition 1) is equivalent to
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non-relativistic conditions (as can be verified from Equation 1.2). Condition 2) excludes

mass perturbers for which their transverse size is much smaller than their length in the

direction of propagation. These conditions always hold when dealing with lensing from

stars or galaxies and are violated only in the presence of black holes. The deflection

angle in the presence of a thin lens can be calculated by independently summing the

contributions from individual point masses that define the perturber:

α̂(ξ) =
4G

c2

∫

R2

(ξ − ξ′)Σ(ξ′)
|ξ − ξ′|2 d2ξ′, (1.3)

where Σ(ξ) is the projected surface mass density.

We can then write the fundamental equation of gravitational lensing, namely the lens

equation, relating the angular position of a light source β with the position of its image

θ in the presence of a perturber with deflection angle α̂(θ):

β = θ − Dds

Ds
α̂(θ), (1.4)

where Ds and Dds are the angular diameter distances between observer and source and

deflector and source, respectively. The above equation can be easily generalized to mul-

tiple lens planes. A schematic representation of a gravitational lens system is shown in

Figure 1.1.

The equations presented so far can be used to describe any lensing effect caused by a

thin lens. When multiple images of the same source are produced, we are in the strong

lensing regime. It is useful to introduce the critical density Σcr:

Σcr ≡
c2Ds

4πGDdDds

, (1.5)

where Dd is the angular diameter distance between observer and deflector. The critical

7



Figure 1.1: Sketch of a typical gravitational lens system (Bartelmann & Schneider 2001).

density depends only on the distances between source, deflector and observer and can be

used to define the dimensionless surface mass density κ of a lens:

κ(θ) ≡ Σ(θ)

Σcr

. (1.6)

Only lenses with κ(θ) > 1 for some value of θ can act as strong lenses.

The radius of the iso-density contour within which the average surface mass density

is equal to the critical density is defined as the Einstein radius REin:

κ̄(< REin) = 1. (1.7)

The Einstein radius is close in value to the half-separation between multiple images of

the same source and can be measured with high precision in typical ETG strong lens

systems. Details on how to measure REin can be found in Chapter 3. A measurement of

the Einstein radius of a lens gives the total projected mass enclosed within REin. Mea-
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surements of this kind are used in this Thesis to probe the structure of ETGs.

The structure of this Thesis is the following. In Chapter 2 we present a thorough study

of a strong gravitational lens elliptical galaxy, through which we measured both the stel-

lar IMF and the inner slope of the dark matter halo of this object. In Chapter 3 we

introduce a new strong lensing survey, the Strong Lensing Legacy Survey (SL2S), aimed

at extending in redshift space the current number of known lenses. In Chapter 4 we show

how the data collected from the SL2S survey can be used to measure the total density

profile of the population of massive ETGs and its evolution. In Chapter 5 we use the

same sample of lenses to statistically constrain the stellar IMF and dark matter mass of

the population of ETGs. In Chapter 6 we use the observations of the evolution in the

density profile presented in Chapter 4 to test a theoretical model based on growth of

ETGs by purely dry mergers. We summarize our results and discuss future extensions of

this work in Chapter 7.
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Chapter 2

Stellar and dark matter decomposition in a massive

elliptical galaxy

This chapter was published as Sonnenfeld, A., Treu, T., Gav++08, R., Marshall, P.

J., Auger, M. W., Suyu, S. H., Koopmans, L. V. E., Bolton, A. S. “Evidence for Dark

Matter Contraction and a Salpeter Initial Mass Function in a Massive Early-type Galaxy”

2012, The Astrophysical Journal, 752, 163 and is included here with minor formatting

adjustments.

The stellar IMF is the main source of uncertainty in the determination of the stellar

mass-to-light ratio in systems with good photometric data. Conversely, if we accurately

measure the stellar mass of a system by independent means, it is possible to constrain the

IMF by comparing the true stellar mass with the one inferred from photometric fitting.

It is possible to measure stellar masses dynamically, granted that the contribution of

dark matter to the total mass is taken into account. Determining the stellar IMF and

the properties of the dark matter halo are then two aspects of the same problem.

Observationally, the dark matter halo is defined as a mass component that does not

follow the light distribution. Typically, stellar and dark matter mass are measured by

fitting a bulge and a halo mass component to lensing and stellar kinematics data. The
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density profile of the stellar component is known very accurately from photometry, while

we must assume a parametrized form for the density profile of the halo. The dark matter

halo is believed to have a shallower density profile (ρ(r) ∝ r−1 in dark matter only

simulations Navarro et al. 1997) than the stars, making it possible to disentangle the

two components. For typical early-type galaxy strong lenses however, there are residual

degeneracies between anistropy, stellar mass to light ratio and inner slope of the dark

matter halo and therefore the constraints are weak (Koopmans & Treu 2003; Treu &

Koopmans 2004). For this reason, previous studies have adopted theoretically motivated

mass density profiles for the dark matter halo (Treu et al. 2010; Auger et al. 2010b),

rather than free power laws.

Here we present a detailed study of an early-type galaxy at redshift z = 0.222. The

galaxy is the strong gravitational lens of the system SDSSJ0946+1006, part of the SLACS

sample (Bolton et al. 2004). This ETG is special in that it lenses two sources at different

redshifts, creating two nearly complete Einstein rings of different radii. For this reason,

the system is also referred to as the “Jackpot”. The first lensed source is at redshift

zs1 = 0.609, while there is no spectroscopic measurement of the redshift of the second

ring. Thanks to the presence of the two rings, this system provides more information

than typical gravitational lenses, despite the lack of the second source redshift. A first

study of SDSSJ0946+1006 was carried out by Gavazzi et al. (2008, SLACS Paper VI). An

independent lensing analysis of this system was performed by Vegetti et al. (2010), which

led to the discovery of a small satellite with no visible counterpart. Here we include new

high-quality photometry obtained with the Hubble Space Telescope (hereafter HST) and

new deep and spatially resolved spectroscopy obtained at the Keck Telescope. The goal of
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our study is to separate the contribution of dark and stellar matter to the total mass of the

lens, making as few assumptions as possible about the density profile of the dark matter

halo. This task is achieved by combining lensing and dynamics information. Unlike

typical early-type galaxy lenses, the wealth of information provided by this system allows

us to determine both the mass of the stellar bulge and the inner slope of the dark matter

halo. Thanks to the multi-band HST photometry we are able to obtain a photometric

redshift of the outer ring, that is necessary for improving the constraints from the lensing

data, and to infer stellar masses from stellar population synthesis (SPS) fitting. The

comparison between this measurement of the stellar mass and the one obtained through

lensing and dynamics allows us to constrain the IMF of the stars in the lens. This is

the most robust measurement of the inner slope of the dark matter halo and IMF of an

isolated massive ETG.

The structure of this Chapter is the following. In Section 2.1 we describe the new

photometric data. Our measurement of the photometric redshift of the outer ring is pre-

sented in Section 2.2. In Section 2.3 we present the spectroscopic data and in Section 2.4

we describe measurements of the stellar mass of the lens from stellar population synthesis

fitting. Section 2.5 describes a lensing and dynamics model assuming a power-law density

profile for the total density profile of the lens, while in Section 2.6 we present the bulge-

halo decomposition of the lens. We discuss our results in Section 2.7 and summarize in

Section 2.8.

In this Chapter and throughout this Thesis we assume the following values for the

cosmological parameters: H0 = 70 km s−1Mpc−1, ΩM = 0.3, ΩΛ = 0.7. Magnitudes

are expressed in the AB system, images are North-up and position angles are in degrees

12



Table 2.1: Summary of the HST observations.

Instrument Filter Exp. time Nexp Date
WFC3 IR F160W 2397 s 4 09/12/2009

ACS F814W 2096 s 4 3/11/2006
WFPC2 F606W 4400 s 4 18/12/2009

WFC3 UVIS F438W 2520 s 4 20/03/2010
WFC3 UVIS F336W 5772 s 4 20/03/2010

East of North. In showing our results we display posterior PDFs in multiple projections

wherever possible, but when giving a point estimate of an inferred parameter we quote the

position of the peak of its one-dimensional marginalised distribution, with uncertainties

defined by the 68% credible region.

2.1 Multicolor HST photometry

We present HST images of the lens system SDSSJ0946+1006 in five different bands.

In SLACS Paper VI we reported results based on an ACS F814W image only. Images in

WFPC2 F606W and WFC3-IR F160W (Cycle 16, Program 11202, PI Koopmans) were

available for SLACS Paper IX (Auger et al. 2009). In addition to those data, we now

have WFC3 images in F438W and F336W bands (Cycle 17, Program 11701, PI Treu).

Table 2.1 summarizes the observations. This section describes the data reduction process

(§ 2.1.1) and the photometric properties we derived for the lens galaxy (§ 2.1.2). For

conciseness, we sometimes refer to the F160W, F814W, F606W, F438W, F336W bands

as H, I, V, B, U respectively. A color composite image of the lens system is shown in

Figure 2.1
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Figure 2.1: Left panel: Gravitational lens system SDSSJ0946+1006 in a combination of
F814W, F606W and F336W HST images. Right panel: WFC3-IR F160W image of the
lens system and its surroundings. Note the irregular shape of the faint stellar component
at the outskirts of the lens galaxy (top of the image). At the bottom, a neighbor also
shows signs of tidal disruption. Both these features may be the result of a close encounter
between the two objects.

2.1.1 Data reduction

The data are treated with the standard HST reduction pipeline. For each image,

frames are coadded and resampled in a uniform pixel scale using the software mul-

tidrizzle (Fruchter et al. 2009). Pixel sizes are 0.10′′ for the F160W image, 0.050′′ for

the F814W and F606W images, and 0.0396′′ for the F438W and F336W images. The

images are then brought to the same orientation and 0.050′′ pixel scale by using the

software swarp (Bertin et al. 2002). The PSF of each image is estimated from stars in

the field.
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2.1.2 Lens galaxy properties

The brightness distribution of the main lens galaxy is first obtained by fitting Sérsic

profiles to the data. This task is achieved with the software spasmoid, developed by

M. W. Auger and described by Bennert et al. (2011). Spasmoid fits the data in all the

bands simultaneously with a unique model, determining total magnitude and colors of

the galaxy at once. By using a single Sérsic component we find a best-fit profile described

by a Sérsic index n = 6.0, axis ratio q = 0.95 and effective radius reff = 2.93′′. However,

the residuals left by this single-component fit are rather large. Consequently, we add a

second component, allowing for the position angle of the major axes of the two profiles

to be different but imposing a common centroid. In the fitting process, the light from

the rings is masked out manually. This procedure gives robust estimates of the colors

of the lens, rather independent from the model adopted to describe the data. Color

information will be used in Section 5 to constrain the stellar population. In Fig. 2.2 we

show the images of the system in the five bands, before and after subtracting the main

lens. Residuals are on the order of a few percent in the F814W band image. Table 2.1.2

reports the best-fit structural parameters of the model, while the best-fit colors are given

in Table 2.4. It is worth pointing out that the major axes of the two components are

almost perpendicular, and that the mean surface brightness within the effective radius of

component 1 is a factor ∼ 30 larger than that of component 2. The measured magnitude

in the F814W band is consistent with the value reported by Gavazzi et al. (2008) for the

same object.

In order to both explore model-dependent systematic errors and obtain a computa-
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Component mF814W reff n q PA 〈SB〉e,F814W
(mag) (arcsec) (degrees) (mag arcsec−2)

1 18.38± 0.20 0.50± 0.10 2.34± 0.50 0.79± 0.10 63.0± 1.0 18.87± 0.10
2 17.44± 0.10 4.46± 0.50 1.60± 0.50 0.64± 0.10 −23.4± 1.0 22.68± 0.20

Table 2.2: Best fit parameters for the double-Sérsic model surface brightness profile of
the main lens: magnitude in the F814W band, effective radius, Sérsic index (n), axis ratio
(q), position angle of the major axis (East of North), effective surface brightness. Each
line refers to one of the Sérsic components of the model. The errors represent the typical
range of values for the parameters allowed by the model. These errors are correlated: for
example, an increase in the value of the Sérsic index n results in a change of the effective
radius to fit the observed slope in surface brightness.

tionally more tractable description of the light profile for our lensing analysis, we also

model the lens light with the following surface brightness distribution:

I(x, y) = Icrc

[

1
√

r2c +R2
− 1

√

r2t +R2

]

, (2.1)

where R2 ≡ x2/q+qy2. This profile corresponds to a truncated pseudoisothermal elliptical

mass distribution (tPIEMD) in 3d, with rc and rt corresponding to the core radius and

truncation radius respectively. Note that the number of parameters of the model is the

same as that of a Sérsic profile. Two components are used, as in the Sérsic case. The

best-fit parameters are reported in Table 2.1.2. Both the double-Sérsic and the double-

tPIEMD profiles fit well the photometry of the lens, with residuals within the outer ring

on the order of a few percent in the F814W band (see Figure 2.2).

The inferred total magnitude in the two models is different, but this is due to the

different behavior at large radii, where there are no data. In fact, the magnitude within

the inner ring is the same for the two models to within 0.01 mags and the inferred colors

are consistent within the errors with those reported in Table 2.4.

The infrared F160W data reveal distorsions in the shape of the light distribution at
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Figure 2.2: From top to bottom: HST F160W, F814W, F606W, F438W and F336W
images of the lens system SDSSJ0946+1006 before (left column) and after (middle and
right column) light subtraction. Middle column: light distribution modeled as a double
Sérsic profile, with parameters given in Table 2.1.2. Right column: light distribution
modeled as a double tPIEMD profile, with parameters given in Table 2.1.2.
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Component mF814W rc rt q PA 〈SB〉e,F814W
(mag) (arcsec) (arcsec) (degrees) (mag arcsec−2)

1 18.75± 0.20 0.066± 0.010 0.50± 0.05 0.66± 0.10 63.0± 1.0 19.24± 0.10
2 17.15± 0.10 0.082± 0.010 6.05± 0.10 0.71± 0.10 −24.3± 1.0 22.48± 0.20

Table 2.3: Best fit parameters for the double-tPIEMD model surface brightness profile
of the main lens: magnitude in the F814W band, core radius (rc), truncation radius
(rt), axis ratio (q), position angle of the major axis (East of North), effective surface
brightness.

Table 2.4: Colors of the lens galaxy.

Color Component 1 Component 2 Global
I - H 1.16± 0.05 0.86± 0.05 0.96± 0.05
V - I 0.81± 0.05 0.96± 0.05 0.91± 0.05
B - V 2.36± 0.20 1.52± 0.05 1.73± 0.05
U - B 2.30± 0.30 1.32± 0.10 1.44± 0.10

large radii (see Figure 2.1), a possible signature of tidal interactions. As previously noted

by Gavazzi et al. (2008), a galaxy in the neighborhood of the lens also shows signs of a

tidal interaction (see Figure 2.1). It is possible that the two galaxies are undergoing a

merger. This deviation from a regular light profile is located far from the probed by our

lensing and dynamics measurements and is therefore not a concern for the accuracy of

our models. The central part appears smooth to the few percent level and it is unlikely

that the ongoing interaction would have an effect on its structure, given its deep potential

well. However, as we will discuss in § 2.7.2 this feature provides an interesting clue to

the formation mechanism of this galaxy.

Another interesting feature is revealed by the image in the F336W (U) band, as there

seems to be some structure in the center of the lens (see Figure 2.2). The fact that this

feature is clearly visible only in the U band, where the lens is fainter, may suggest that it

is in fact a bluer object distinct from the central galaxy, or blue emission from an active
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nucleus. Alternatively, the observed detail could be the result of the presence of a dust

lane that separates the light of the lens into two components at shorter wavelengths. In

principle it could also be an additional image of the lensed sources.

One way to discriminate between a blue object or a dust lane is to study the position

of the centroid of the lens in the different bands. A blue object would shift the centroid

towards itself at bluer wavelengths, while a dust lane would remove blue light, causing

the apparent centroid to move away from it. When fitting for the centroid of the lens,

this latter case is observed: the centroid moves by about one pixel towards the S-E in the

F336W and F438W bands with respect to the F814W band. This is a significant effect

given the subpixel accuracy of centroniding, and it suggests that dust is most likely the

cause of the observed feature in the F336W band. A more detailed discussion of the dust

issue is given in Appendix A.

2.2 Photometric redshift of the outer ring

2.2.1 Colors of the ring

One of the main goals of this study is to constrain better the mass distribution in the

lens galaxy by obtaining a photo-z of the outer ring. This task requires a measurement of

the colors of the ring. A color map of the outer ring is obtained as follows. For each pair

of neighboring bands, λ1, λ2, we align the corresponding images and then convolve each

image with the PSF of the neighboring band. In this way we obtain pairs of images with

the same effective PSF, necessary to get an unbiased estimate of the color for each pixel.
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Table 2.5: AB colors of the outer ring

I - H 0.61± 0.10
V - I 0.21± 0.10
B - V 0.15± 0.10
U - B 0.53± 0.10

Global colors are then measured in the following way. For a given pair of bands, we select

individual pixels with flux larger than the background by more than two sigma in both

of the bands considered. We make the assumption that the source has spatially uniform

colors and estimate them statistically by taking a weighted mean of the individual pixel

colors. The measured values of the colors, corrected for galactic extinction, are reported

in Table 2.5.

2.2.2 Measuring the photo-z

To estimate the photometric redshift of the outer ring we make use of the software BPZ

(Bayesian Photo-z; Beńıtez 2000). Photo-z analysis consists of fitting synthetic SEDs to

the observed colors. BPZ works in a Bayesian framework that allows us to combine the

inference with that from other pieces of information: given a prior probability distribution

for the source redshift and galaxy type, BPZ calculates the probability of the source being

at redshift zs2 given its colors C and magnitude m, P (zs2|C, m). The stellar templates

used for the SED fitting are described by Coe et al. (2006). The F814W magnitude

is taken from Gavazzi et al. (2008), where the brightness distribution of the source was

reconstructed after a lens modeling. The value adopted is thereforemF814W = 27.01±0.19

For the redshift distribution we use a prior P (z|mF814W) suggested by Beńıtez (2000)
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Figure 2.3: Solid line: posterior probability distribution function of the source redshift,
as calculated with BPZ, assuming a prior on zs2 from Hubble Deep Field North number
counts. Overplotted are the levels corresponding to 68% and 95% enclosed probability.
Dotted line: posterior PDF assuming a flat prior on zs2.

and based on number counts from the Hubble Deep Field North (HDFN). Figure 2.3

shows the redshift posterior probability distribution function P (zs2|C, mF814W). The

most likely redshift with 68% confidence interval is zs2 = 2.41+0.04
−0.21. As will be shown

later, this information is sufficient to put interesting constraints on the model of the

lens system. We also calculated the photo-z assuming a flat prior on zs2, and found

a nearly identical result. Colors calculated with a different lens light subtraction, the

double-Sérsic model, yield the same photo-z well within the quoted uncertainties.
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Table 2.6: Spectroscopic observations: summary

Date Exp. time Slit width Dichroic Blue grism Red grating Red λc Weather Seeing

12/23/2006 16200 1.0” 560 600/4000 831/8200 6819Å Good 0.8′′

12/24/2006 12600 1.0” 680 300/5000 831/8200 7886Å Good 0.8′′

2.3 Keck Spectroscopy

The data were collected during the nights of 2006 December 23 and 24 with the

LRIS instrument at the Keck Telescope I. The original goals of the observations were

to measure a velocity dispersion profile of the foreground deflector and to measure the

redshift of the outer ring. The first goal was succesfully achieved, while we were not able

to detect any spectroscopic signature from the farthest source.

Because of the dual scope of our study, two different instrumental setups were used.

The first setup, used during the first night, was optimized for a better measurement of

the velocity dispersion of the deflector. The wavelength range in the red detector, the one

used for the measurement of σ, was ∼ 5700 − 7600Å, bracketing important absorption

features in the rest frame of the lens at z = 0.222. During the second night we centered

the slit on the longest arc of the outer ring, and used a setup with a broader wavelength

range, up to ∼ 8600Å. A summary of the observations, with specifications on the setups

used, is provided in Table 2.6. The spectrum of the system is shown in Fig. 2.4. There

is no evidence for the presence of emission lines from objects other than the foreground

lens and the inner ring. Given our measurement of the photo-z of the outer ring, we

would expect Ly-α emission to fall around ∼ 4150Å, but it cannot be identified in our

spectrum. We can put an upper limit of ∼ 5 × 10−18 erg cm−2 s−1 to the flux in Ly-α

22



Figure 2.4: LRIS spectra of the Jackpot. Blue: data from the first night. Red: data from
the second night. The two spectra are extracted from rectangular apertures 1′′ × 3.36′′.
Dotted line: noise level.

from the source.

2.3.1 Velocity dispersion

The velocity dispersion of the main lens is measured by fitting stellar templates con-

volved with a Gaussian velocity distribution to the observed spectrum. This operation

is carried out with a Monte Carlo Markov Chain approach, using a code developed by

M. W. Auger, and described by Suyu et al. (2010). The rest frame wavelength range

used for the fit is 5100 − 5850Å. For the stellar templates we used linear combinations

of nine spectra from the INDO-US library, corresponding to K,G,F and A stars. The

most prominent absorption feature in the wavelength range considered is Mgb (5175Å).

However, we experienced difficulty in finding a good fit to both Mgb and the rest of

the spectrum. It is known that some galaxies have enhanced magnesium features in the

spectrum that are not well reproduced in standard stellar templates (Barth et al. 2002).

For this reason we decided to mask the Mgb absorption line out of the fitted spectrum.

With the aim of obtaining a velocity dispersion profile, we measured σ in a set of
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Slit offset 〈v〉 σ
(arcsec) (km s−1) (km s−1)

-1.05 101± 21 252± 25
-0.84 85± 16 273± 18
-0.63 62± 11 263± 14
-0.42 30± 10 278± 12
-0.21 20± 10 287± 11
0.00 0± 9 287± 11
0.21 −22± 11 286± 11
0.42 −55± 12 299± 13
0.63 −67± 13 274± 15
0.84 −63± 15 272± 19
1.05 −94± 24 301± 25

Table 2.7: Mean velocity and velocity dispersion profile. Apertures are 1.00 × 0.21′′

rectangles.

apertures. The spatial position of the apertures was determined by fitting the centroid

of the trace of the lens in the twodimensional spectra and it is accurate to ∼ 0.02′′. In

Table 2.3.1 and Fig. 2.5 we report the measured values of σ and of the mean velocity

in each aperture, while in Fig. 2.5 we show the fit in the central 0.42′′ as an example.

There is evidence for some rotation, with v2rot ≪ σ2.

2.4 Stellar masses

Here we present a measurement of the stellar mass of the foreground lens galaxy.

The procedure adopted is the following: we fit stellar population synthesis models to the

observed spectral energy distribution (SED) of the galaxy. A measurement of this kind

was already performed by Grillo et al. (2009) and Auger et al. (2009, SLACS Paper IX)

for the same object. Their results agree within the errors. Grillo et al. (2009) used SDSS

multiband photometry (u, g, r, i, z bands) as their observed SED. In SLACS Paper IX,
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Figure 2.5: Left panel: Mean velocity and velocity dispersion profiles of the main lens
within 1.15′′ from the centroid. Right panel: Fit of the velocity dispersion of the lens.
Top: The red curve is the best fit synthetic spectrum. Shaded regions are masked and
not used for the fit. Bottom: Residuals of the fit in fractions of the total flux.

high resolution HST data was used, but only in two bands (F814W and F606W). Auger

et al. (2009) also introduced a powerful statistical analysis method, based on Bayesian

statistics that allows for physically meaningful priors on the model parameters as well

as a full exploration of uncertainties and correlation between the inferred parameters.

With five band HST photometry we can now extend the analysis of SLACS Paper IX,

to obtain a more robust estimate of the stellar mass.

The fitting method is the same as that developed by Auger et al. (2009), and can be

summarized as follows. Composite stellar population models are created from Bruzual

& Charlot (2003) stellar templates. The star formation history is modeled with a single

exponentially decaying burst. The parameters of the model are age, metallicity, exponen-

tial burst timescale, dust reddening and stellar mass. The parameter space is explored

using a Monte Carlo Markov Chain (MCMC) routine, through which the posterior PDF

is characterized. The stellar templates used are based on either a Salpeter or a Chabrier

IMF. For the description of the photometry of the lens we use the double tPIEMD model
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Table 2.8: Stellar mass of the foreground lens, from SPS models

IMF Chabrier Salpeter
log(M∗/M⊙) log(M∗/M⊙)

Comp. 1 10.85+0.09
−0.06 11.13+0.05

−0.11 This work
Comp. 2 11.27+0.05

−0.08 11.52+0.06
−0.08 This work

Total 11.40± 0.06 11.66± 0.06 This work
11.38+0.04

−0.12 11.61+0.02
−0.08 Grillo et al. (2009)

11.34± 0.12 11.59± 0.12 Auger et al. (2009)

described in Sect. 2.1.2, that is consistent with the analyses presented in the following

Sections. The stellar masses of the two components are fitted independently. Results are

listed in Table 2.8, together with the values previously found by Grillo et al. (2009) and

Auger et al. (2009).

The analysis reveals the presence of dust for component 1, coherently with our previ-

ous findings. Repeating the fit with the dust-corrected magnitudes yields indistinguish-

able stellar masses. The logarithm of the stellar masses changes by 0.06 if we use the

description of the light profile with Sérsic components instead of tPIEMDs. This is due

to the different behavior at large radii of the two profiles. Differences in the mass within

the outer Einstein radius for the two models are instead well within the measurement

errors.

2.5 A single component model: measuring the aver-

age slope

In this Section we present a single-component lensing and dynamics study of the

foreground galaxy, where the total density distribution of the lens is described with a
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power-law. The goal is to obtain a measurement of the slope of the total mass profile

and also to test the accuracy allowed by our data in constraining mass models. The

system, with its two Einstein rings, offers more constraints than typical single-source

lenses. However, the analysis is complicated by the presence of two different lenses along

the line of sight. Light rays from the second source are first deflected by the object

corresponding to the inner ring and then by the foreground lens, with the result that,

unlike the single lens case, the relation between the size of the outer Einstein ring and

the enclosed projected mass of the lens is nontrivial. Nevertheless, this can be properly

accounted for as described below.

A first lens modeling of the system was carried out in SLACS Paper VI. The procedure

adopted there was a conjugate points method: multiply imaged spots in the lensed

features are identified, and the lens model is determined by minimizing the distance

between the corresponding points in the source plane. This is a conservative approach,

since it does not make use of all of the information from the surface brightness of the

rings. The main lens was modeled as a power law ellipsoid, with dimensionless surface

mass density κ ≡ Σ/Σcr given by:

κ(~r, zs) =
bγ

′
−1

∞

2
(x2 + y2/q2)(1−γ′)/2 Dls

Dos

, (2.2)

where b∞ = 4π(σSIE/c)
2 and Dls (Dos) is the angular diameter distance of the source

relative to the lens (observer). The second lens (first source corresponding to the brighter

arc) was modeled as a singular isothermal sphere (SIS). The model parameter space was

explored via a MCMC. The results showed that two types of solution are possible: a

model with larger σSIE, shallower slope γ′ and less massive second lens, or a model with
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a more massive second lens and steeper main lens slope (see Figure 9 of SLACS Paper

VI, or black contours of Figure 2.6). Part of this degeneracy was due to our ignorance

of the redshift of the outer ring.

In this Chapter we use the lens model of SLACS Paper VI described above and

improve it by incorporating 1) our measurement of photo-z of the outer ring and 2) a

stellar dynamics analysis.

2.5.1 Stellar dynamics modeling

We wish to use our measurements of the velocity dispersion profile of the lens to

constrain our lens models. This is done with a procedure similar to that adopted by

Suyu et al. (2010), which can be described as follows. For a given model provided by the

lensing analysis, we compute a model velocity dispersion profile and compare it to the

observed one. The model velocity dispersion is obtained by solving the spherical Jeans

equation

1

ρ∗

dρ∗σ
2
r

dr
+ 2

σ2
θ

r
= −GM(r)

r2
, (2.3)

where ρ∗(r) is the density distribution of the light, σr and σθ are the radial and tangential

components of the velocity dispersion tensor, M(r) is the total mass enclosed within the

spherical shell of radius r. We impose spherical symmetry in the mass model by adopting

a spheroidal mass distribution

ρ(r) ∝ r−γ′

(2.4)

with normalization chosen such that the total projected mass enclosed within the Einstein

radius equals that of the corresponding circularized lens model. The light distribution is
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described as the sum of two tPIEMD profiles, with the same parametrization described

in Section 2.1.2 (best-fit parameters are in table 2.1.2). The 3d stellar distribution

corresponding to the surface brightness profile (2.1) used to fit the photometry is

ρ(r) = ρcr
2
c

[

1

r2c + r2
− 1

r2t + r2

]

, (2.5)

with r ≡ x2/q∗ + q∗y
2 + z2. Here we set the axes ratios q∗ to one, as we are assuming

spherical symmetry.

We then assume a Osipkov-Merritt model for the velocity dispersion tensor (Osipkov

1979; Merritt 1985):

σ2
θ

σ2
r

= 1− r2

r2a + r2
, (2.6)

where ra is the anisotropy radius (orbits are radially anisotropic beyond ra). Finally,

we simulate the line-of-sight velocity dispersion measured in our apertures. Rotation is

neglected. Although the lens is seen to be rotating, its mean velocity is small compared

to the velocity dispersion and should not contribute much to the dynamics of the object.

The effect of this approximation will be discussed further below.

2.5.2 Combining the constraints

The models of the lens are defined by the set of parameters η ≡ {σSIE,lens, γ
′, σSIS,s1, zs2}:

the strength and power-law index of the foreground lens, the strength of the background

lens and the redshift of the outer ring, respectively. Each model gives a prediction of the

velocity dispersion in each aperture, σ
(mod)
ap,i . The new posterior probability distribution

for the model is obtained via importance sampling: the MCMC sample corresponding to

the lens modeling of SLACS Paper VI is weighted by the likelihood of the measurements
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d ≡ {zs2, σ(meas)
ap,i } given the model parameters η. The following likelihood function is

used:

L(d|η) = Pz(zs2)
∏

i

Gi(σ
(meas)
ap,i |η) (2.7)

where Pz(zs2) is the PDF in Figure 2.3 and

Gi(σ
(meas)
ap,i |η) = 1

√

2π∆2
σ,i

exp−
(σ

(meas)
ap,i − σ

(mod)
ap,i )

2∆2
σ,i

, (2.8)

and σap,i and ∆σ,i are the zeroth and second moment of the posterior PDF of the measured

velocity dispersion in aperture i, respectively.

In Fig. 2.6 we show the updated Posterior PDF obtained by importance sampling

with the photo-z and dynamics measurements, both separately and jointly. It is clear

that although photo-z and stellar kinematics alone leave some degeneracies, the posterior

pdfs are almost perpendicular in this space, and therefore the combination of the two is

particularly effective. The estimate of the slope obtained by marginalizing over the other

parameters is

γ′ = 1.98± 0.02. (2.9)

We stress that our uncertainty on this parameter is a factor of four smaller than the typical

error on γ′ from studies of single-source gravitational lenses with SDSS spectroscopy

(Auger et al. 2010a, see Figure 2.13). Comparable precision was reached by Barth et al.

(2011) for a sample of lens systems with two dimensional kinematics constraints from

integral field spectroscopy.

In order to better understand the significance of these results, we try to quantify the

error introduced by our simplified model for the stellar dynamics. Two of our assumptions

are potential sources of bias: spherical symmetry and the non-rotating approximation.
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Figure 2.6: Posterior PDF of γ′ and σs1 of the updated (filled contours) lens model,
together with the old model of SLACS Paper VI (empty contours). The updated model
includes only the photo-z measurement of the outer ring in the top left panel, only the
velocity dispersion profile of the lens in the top right panel, and both the photo-z and
velocity dispersion profile in the bottom panel. The levels correspond to 68%, 95% and
99.7% enclosed probability.
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The uncertainty in the mass determination from kinematics data is of order δσ2/σ2 ∼

10%. Biases on the order of this uncertainty or smaller are unlikely to bring significant

changes to the results of our analysis. By considering only the velocity dispersion and

neglecting rotation, we underestimate the mass of the galaxy by a factor ∼ (vrot/σ)
2,

which is within 10% in all apertures but one. To gauge the importance of this effect we

perform the following test. We fit the model velocity dispersion profiles to the following

“effective velocity dispersion”: σeff ≡
√

σ2 + v2rot). We then apply the same importance

sampling procedure described above to get a new constraint on the density slope γ′. The

new estimate with 1σ uncertainty is:

γ′ = 1.97± 0.02, (2.10)

which is consistent with the original estimate given by (2.9). On the basis of this result,

we can conclude that our approximation of non-rotating halo introduces a systematic

error of order 0.01 on the inferred value of the slope γ′.

Quantifying the systematics introduced by the spherical symmetry assumption is

more complicated. In a previous work, Barth et al. (2011) performed a robust dynam-

ical modelling of 12 SLACS lenses previously analysed with a spherical Jeans equation

approach by Auger et al. (2010a). The slopes γ′ inferred by Auger et al. (2010a) are

consistent with the more accurate measurements of Barth et al. (2011), with a bias on

γ′ of 0.05± 0.04. However, the uncertainty on γ′ that we achieve in our work is smaller

than that and an estimate of the bias requires additional work. Two distinct effects come

into play. First, the lens has a non-circular projected shape in both its mass and light

distribution. Second, the galaxy may even have asymmetries along the line of sight. The
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importance of these effects on our analysis is quantified in Appendix B. By relaxing the

assumption of spherical symmetry the additional uncertainty on the velocity dispersion

is about δσ2/σ2 ∼ 10%. It follows that none of our results change appreciably.

An independent analysis of the system was carried out by Vegetti et al. (2010). The

method adopted by them is more complex than the one used in SLACS Paper VI: they

made use of information from all the pixels of the lensed features to reconstruct the

source surface brightness as a whole. Using data from the inner ring only, they obtained

the following estimate for the density slope:

γ′ = 2.20± 0.03(stat). (2.11)

This is a local estimate of the slope γ′, obtained by measuring the magnification of the

arc in the radial direction. Our measurement is instead an average slope, obtained by

fitting a single power-law halo to data spanning the lens from the center (dynamics)

to the outer lensed ring. This difference may suggest that the actual mass distribution

of the lens is different from a simple power-law halo. It is also for this reason that we

proceeded to model the system with a more complex model.

2.6 A two-component analysis: dissecting luminous

and dark matter

We perform a two-component lensing and dynamics study where the mass distribution

is composed of a dark matter halo and a bulge of stars.
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2.6.1 Lensing and dynamics modeling

We use a power-law ellipsoid for the dark matter, while the stars are described with

the double tPIEMD model found from the photometry analysis. The second lens is again

modeled as a SIS. The parameters of the stellar distribution are fixed to the best-fit values

reported in Table 2.1.2. The global mass-to-light ratio is left as a free parameter, but

the relative contribution of the two components is fixed according to the results of the

stellar population synthesis analysis presented in Section 2.4. For a unit F814W-band

magnitude, component 1 is measured to be a factor of 1.73 (1.77) heavier than component

2 assuming a Salpeter (Chabrier) IMF. In our lensing model, the mass-to-light ratio of

component 1 is set to be 1.75 times larger than for component 2.

We also allow for constant external shear γext with position angle PAext and constant

external convergence κext in the lens plane. Issues related to the external convergence

are discussed below in a dedicated subsection. Compared to the lensing study presented

in the previous section, this model has two additional free parameters: the stellar mass

MLD
∗

and the external convergence κext. Given the very tight constraint on the average

slope γ′ from the single component analysis, we expect to be able to determine both the

slope of the dark matter halo γDM and the stellar mass MLD
∗

with sufficient accuracy.

The range of values of the slope of the dark matter halo explored in this analysis is

1.0 < γDM < 3.0.

The technique adopted to fit the model to the lensing data is the same used for SLACS

Paper VI: a conjugate points method implemented with a MCMC. The dynamics analysis

is carried out with a procedure very similar to the one described in § 2.5.1: we solve the
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spherical Jeans equation for our model and obtain a synthetic velocity dispersion profile to

be compared to the measured one. The (spherically symmetric) model mass distribution

is obtained by circularizing the projected mass distribution of the lens model, setting

qDM and q∗ to one, and by taking the corresponding spherical deprojections. The light

distribution is set by circularizing the double tPIEMD profile specified in Table 2.1.2.

We then proceed to incorporate information on stellar dynamics and on the redshift

of the background source. This is done by importance sampling, with the same method

described in § 2.5.2.

2.6.2 External convergence

Objects other than the main lens can contribute to the surface mass density κ. This

external convergence is hard to detect and is degenerate with the total mass of the lens

galaxy. Ignoring the contribution to κ from perturbers can lead in principle to a bias in

the measurement of the key parameters of the lens. In order to take into account the

effect of external convergence on our error budget, we include it in our model by gener-

ating random values of κext drawn from a plausible distribution. This procedure allows

us to propagate correctly this uncertainty to the other model parameters. Kinematics

information can also help to constrain κext to some extent, as it is only sensitive to the

mass dynamically associated with the galaxy, in contrast to lensing that is sensitive to

all mass structures along the line of sight to the source.

Insight on the actual value of κext can be gained by studying the lens environment.

According to Treu et al. (2009), this is found to be marginally underdense with respect
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to average lines of sight, therefore there is no evidence for the presence of a group in

the lens neighborhood. The closest cluster known to the NASA/IPAC Extragalactic

Database (NED) is MaxBCGJ146.87912+10.07800, at redshift z = 0.151 and projected

distance 8.70 arcmin from our lens (Treu et al. 2009). If we assume a SIS profile for

the cluster with a typical value for its velocity dispersion σ = 1000 km s−1 we obtain a

contribution to the convergence κcl < 0.01. We also scanned the Sloan Digital Sky Survey

archive looking for massive red galaxies within 5’ of the lens. Only one early-type galaxy

was found, at a redshift z = 0.218 and angular distance 2.6’. If we assume that this object

is the brightest galaxy of a group and associate it with a SIS halo of σ = 500 km s−1 the

corresponding convergence at the location of the lens is κ = 0.02. Finally, the lensing

analysis of Gavazzi et al. (2008) quantified the external shear as γext = 0.07 directed

−31 degrees East of North. The HST images show two objects with the same alignment

relative to the lens (see Fig. 2.1). If we make the assumption that those objects are

responsible for the shear and assume again a SIS profile we obtain κext = |γext| = 0.07.

Hilbert et al. (2007) studied the external convergence associated with strong lensing

systems in cosmological simulations. They found that for a source at redshift zs = 5.7

the distribution of κext is skewed with a peak at −0.04, has zero mean and a scatter of

0.05. A slightly smaller scatter and a peak at −0.02 is found by Suyu et al. (2010) for

sources at zs = 1.39.

Taking all these aspects into account, we adopt as prior for κext in our analysis a

Gaussian distribution peaked at 0.05, with dispersion σκ = 0.05 and truncated to values

in the interval −0.05 < κext < 0.15. This range should capture the indication of a positive

contribution from the object responsible for the shear and take into account the effect
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of random mass clumps along the line of sight. Priors with a broader range of allowed

values of κext lead to larger uncertainties on the other model parameters, but none of the

conclusions of our study is altered.

2.6.3 Results

Contour plots of the posterior PDF for the model parameters are shown in Figures 2.7

and 2.8. The best-fit velocity dispersion profile is plotted in Figure 2.10. The inference

on the two key parameters M∗ and γDM is shown in better detail in Figure 2.9. By

marginalazing over the remaining parameters, our model constrains the stellar mass to

M∗ = 5.5+0.4
−1.3 × 1011M⊙. (2.12)

This estimate comes from lensing and dynamics data, and does not rely on assumptions

on the mass-to-light ratio of the stars. This value will be compared with the measurement

of the stellar mass obtained independently from photometry.

Another important result is the constraint that we obtain on the slope of the dark

matter halo:

γDM = 1.7± 0.2 (2.13)

This result shows strong evidence for a contraction of the dark matter distribution relative

to the r−1 inner slopes typical of dark matter only simulations (Navarro et al. 1997).

Figure 2.11 shows the mean density profile of each mass component compared to the

mean single power-law fit from Sect. 2.5.

Our inference for the anisotropy radius constrains ra > 13 kpc, meaning that radial

anisotropy is ruled out in the region probed by our data. This is consistent with previous
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Figure 2.7: Posterior PDF in the multidimensional space spanned by the stellar mass
MLD

∗
, slope of the dark matter halo γDM, radial anisotropy scale radius ra, strength of

the second lens σs1 and redshift of the second source zs2. The levels correspond to 68%,
95%, 99.7% enclosed probability. Solid contours: constraints from lensing only. Shaded
regions: constraints from lensing, dynamics, and photo-z.
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Figure 2.8: Posterior PDF in the multidimensional space spanned by external convergence
κext, strength and position angle of the external shear, γext, PAext, axis ratio of the dark
matter halo qDM, position angle of the major axis of the dark matter halo, PADM. The
levels correspond to 68%, 95%, 99.7% enclosed probability. Solid contours: constraints
from lensing only. Shaded regions: constraints from lensing, dynamics, and photo-z.
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Figure 2.9: Posterior PDF projected in the space M∗ − γDM. The vertical shaded re-
gions show independent measurements of the stellar mass from photometry, presented in
Section 5.
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Figure 2.10: Best-fit velocity dispersion profile of the lens. Solid line: two components
model. Dashed line: single power-law model.

Figure 2.11: Best-fit density (left) and mass (right) profiles. Solid line: total mass from
bulge-halo decomposition. Dashed line: stellar mass. Dotted line: dark matter. Dash-
dotted line: total mass from single component analysis. The shaded regions represent
1− σ uncertainties.
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work (e.g. Koopmans & Treu 2003; Treu & Koopmans 2004) and expected on theoretical

grounds, because strong radial anistropy would lead to instabilities.

In contrast to the power-law model considered in the previous section, this mass

model has a density distribution with a slope that changes with radius. It is interesting to

compare the local value of the slope at the location of the inner ring with the measurement

of Vegetti et al. (2010). Vegetti et al. (2010) modeled the HST F814W image using

only lensing information from the inner ring. Lensing is only sensitive to projected

masses, therefore, in order for the comparison to be meaningful, we have to consider the

logarithmic slope of the total projected mass distribution, evaluated at the inner Einstein

radius. We find

d logκ

d log r
= −1.1± 0.1. (2.14)

This value is consistent with the slope found by Vegetti et al. (2010), which is given by

−(γ′ − 1) = −1.2, where γ′ is the slope of the 3d mass distribution given in (2.11).

Finally, it is interesting to note how the inference on the stellar mass is rather insen-

sitive to the actual value of the redshift of the second source, zs2 (see Figure 2.7). This

means that, with the current data quality, a spectroscopic measurement of the redshift

of the outer ring would not bring significantly more information.
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Table 2.9: Stellar mass of the foreground galaxy

Method M∗ (M⊙) α

Lensing+dynamics 5.5+0.4
−1.3 × 1011

SPS, Chabrier IMF (2.5± 0.3)× 1011 2.0± 0.4
SPS, Salpeter IMF (4.5± 0.6)× 1011 1.1± 0.2

2.7 Discussion

2.7.1 Luminous and dark matter in the lens

The data in our possession allowed us to study the lens galaxy of the system SDSSJ0946+1006

under multiple aspects. Thanks to the high resolution photometry from HST we were

able to note now the light distribution is well described with two components, while single

component models yield poor fits. These two components appear to be nearly perpendic-

ular (in projection), have significantly different effective radii and surface brightnesses.

The colors of the more compact component (component 1 from now on) are also signifi-

cantly redder (see Table 2.4), indicator of an older or more metal-rich stellar population.

As we will discuss below, these characteristics suggest a particular scenario for the past

evolution of this object.

In Sections 2.4 and 2.6 we presented two independent measurements of the stellar

mass of the foreground galaxy of the system SDSSJ0946+1006 derived with a lens-

ing+dynamics analysis and with a stellar population synthesis study. The measured

values of M∗, obtained by marginalizing over the other model parameters, are reported

in Table 2.9.

The stellar mass measured from gravitational lensing and dynamics, MLD
∗

, is larger
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than the masses obtained from the SPS study, MSPS
∗

. This discrepancy can be quantified

with the “IMF mismatch” parameter α ≡ MLD
∗

/MSPS
∗

, also reported in Table 2.9. A

Salpeter IMF is clearly favored, while the probability of the IMF being heavier than

Chabrier (αChab > 1) is 95%.

This result is in agreement with a general trend observed by Grillo et al. (2009), Treu

et al. (2010) and Auger et al. (2010b) for the early-type galaxies of the SLACS sample.

They find that, on average, a Salpeter IMF better matches the measurements of stellar

masses from lensing and dynamics. A similar result is found by Spiniello et al. (2012)

for a very massive early-type galaxy. As discussed extensively by Treu et al. (2010),

stellar mass and slope of the dark matter halo are degenerate with respect to typical

lensing and dynamics constraints: given a bulge-halo decomposition, steepening the dark

matter profile and decreasing the stellar mass can result in fits to the observed velocity

dispersion and mass within the Einstein radius as good as the original model. Treu et al.

(2010) explained how the observed trend of increasing α with velocity dispersion can

either be interpreted as the effect of a correlation between IMF or dark matter inner

slope with total mass. Auger et al. (2010b) explored this degeneracy by considering

adiabatically contracted DM halos set by an imposed relation between stellar and virial

mass, and found preference for a stellar mass-to-light ratio closer to a Salpeter than a

Chabrier IMF. Similarly, Napolitano et al. (2010) find that a Kroupa IMF, which has a

mass-to-light ratio slightly larger than a Chabrier IMF, fits well adiabatically contracted

DM halos. In the present study we allowed the slope of the dark matter halo of our lens

galaxy to vary freely. Its measured value, γDM = 1.7+0.2
−0.2, is significantly steeper than

the inner slope of a NFW halo. Still, we find a stellar mass larger than what can be
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accounted for with a Salpeter IMF and not compatible with a Chabrier IMF. Our results

imply that a Salpeter IMF provides a far better description of the mass-to-light ratio of

the stellar population than a Chabrier IMF even with a steepened dark matter halo. This

result is consistent with the recent findings of Cappellari et al. (2012) and van Dokkum

& Conroy (2011a).

In contrast, Salpeter-like IMFs are typically ruled out for lower mass systems (Cap-

pellari et al. 2006) or spiral galaxies (Bell & de Jong 2001; Dutton et al. 2011; Suyu et al.

2012; Brewer et al. 2012).

The lensing and dynamics analysis presented in Sect. 2.6 showed evidence for contrac-

tion of the dark matter halo with respect to a baryonless NFW profile. A similar result

is found by Grillo (2012) for an ensemble measurement of 39 massive elliptical galaxy

lenses. This result is in qualitative agreement with many theoretical studies of the evolu-

tion of spheroidal galaxies (Blumenthal et al. 1986; Gnedin et al. 2004; Gustafsson et al.

2006; Abadi et al. 2010; Duffy et al. 2010). Duffy et al. (2010) in their simulations of

redshift z = 2 galaxies find inner dark matter slopes that span the range 1.4 < γDM < 2.0

depending on the different prescriptions adopted to model the effect of the baryons. Our

measured value of γDM falls nicely in that range, although our galaxy is at significantly

lower redshift. Gnedin et al. (2004) provide a prescription to calculate the dark matter

profile of their modified adiabatic contraction (MAC) model. It is interesting to test the

MAC model on the measured slope of the dark matter halo of our galaxy. The final dark

matter density profile of the MAC model of Gnedin et al. (2004) is determined given

the observed light profile, the concentration parameter c of the original (non contracted)

NFW halo and the baryon mass fraction within its virial radius, fb.
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Since we do not have information on the initial properties of the dark matter halo

of our galaxy, we use a few trial values of the virial mass Mvir, spanning a plausible

range indicated by a weak lensing study of ellipticals (Gavazzi et al. 2007), and employ

a mass-concentration relation from Macciò et al. (2008) based on WMAP5 cosmological

parameters. We then calculate the inner slope of the final dark matter distribution with

the software Contra (Gnedin et al. 2004). The inferred inner slope for log (Mvir/M⊙) =

12.0, 13.0, 14.0 is plotted in Fig. 2.12. Despite the large range of virial mass explored,

the slopes of the contracted halos lie around 1.5 < γDM < 2.0 over the spatial region

covered by our data. The MAC model is therefore able to reproduce our measurement

of the dark matter halo slope.

2.7.2 A formation scenario

As our data show, the stellar distribution in the lens galaxy consists of two compo-

nents that differ in alignment, surface brightness and stellar population. This particular

structure suggests different formation histories for the two components. The bright and

compact component may have formed first, and later on accreted stellar systems in the

outskirts without disrupting the structure of the original bulge. Alternatively, compo-

nent 2 might have been present originally and component 1 be formed in a star formation

event following a wet merger. We point out that in the infrared image we see evidence for

tidal distortion in the outskirts of the galaxy (see Figure 2.1), possible indication of an

ongoing merger. Part of the faint extended envelope of component 2 could be material

accreted relatively recently. The presence of the dust lane in the center of the galaxy
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Figure 2.12: Solid lines: Inner slope of the dark matter halo for modified adiabatic
contraction (MAC; Gnedin et al. 2004) models. Dashed lines: Slope of the non-contracted
(NFW) dark matter halo. Shaded region: 68% confidence interval of the slope measured
in this work.
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(see § 2.9.1) may also be the result of a recent merger. We also note that Vegetti et al.

(2010) detected a compact substructure of mass ∼ 3 × 109M⊙ located in the proximity

of the inner ring image, indicating that minor mergers may still be occurring.

Let us consider our first hypothesis: the galaxy consisted initially of the compact

component 1. What are the structural parameters of component 1 and how does it

relate to other elliptical galaxies? Its effective radius is reff = 0.50′′ (see Tables 2.1.2

and 2.1.2), which corresponds to a physical radius of 1.79 kpc. Similar effective radii

are found for high redshift (z > 1.2) ellipticals (Daddi et al. 2005; Trujillo et al. 2006a;

van Dokkum et al. 2008). Its stellar mass as inferred from the SPS analysis is given by

log (MSPS
∗

/M⊙) = 10.85 (log (MSPS
∗

/M⊙) = 11.13) for a Chabrier (Salpeter) IMF. Local

ellipticals with similar values of the stellar mass have effective radii a factor of a few

larger than this object (Shen et al. 2003; Hyde & Bernardi 2009). Analogously, the high

redshift objects of Daddi et al. (2005), Trujillo et al. (2006a) and van Dokkum et al.

(2008) are also significantly more massive than local galaxies with similar effective radii.

Finding objects in the local universe that correspond to these high redshift “red nuggets”

is in fact a standing problem in the study of elliptical galaxies. It is not clear how objects

initially so compact evolve into the more diffuse galaxies that we observe at recent times.

Recent numerical simulations (Hopkins et al. 2009a; Oser et al. 2012) showed how

minor dry mergers can increase the size of elliptical galaxies significantly, with the stars

of the accreted objects that grow the outskirts of the galaxy, even though the observed

and predicted merger rates are such that this mechanism might not be sufficient (?).

The observational signature of this process would be the presence of a compact core, the

original red nugget, surrounded by a more diffuse distribution of stars from the accreted
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systems. The galaxy studied in this paper might be one of these objects.

2.8 Summary

We have presented a new set of photometric and spectroscopic data for the gravi-

tational lens system SDSSJ0946+1006. We used these data to constrain the structural

properties of the foreground elliptical galaxy of the system. On the basis of our results,

the following statements can be made.

• The redshift of the source corresponding to the outer ring is zs2 = 2.41+0.04
−0.21 at 68%

confidence level, as revealed by our photo-z measurement.

• If we describe the total mass distribution with a power-law ellipsoid ρ ∝ r−γ′

,

lensing and dynamics data give as measured value γ′ = 1.98 ± 0.02 ± 0.01. This

parameter should be interpreted as an effective slope of the density profile averaged

over the region within the outer Einstein ring. The special lensing configuration and

the exquisite data quality of our data, allowed us to measure γ′ with unprecedented

precision. The value obtained is consistent with isothermal (γ′ = 2) and is in

agreement with the general trend observed for the massive early-type galaxies of

the SLACS sample, 〈γ′〉 = 2.078 ± 0.027 with intrinsic scatter σγ′ = 0.16 ± 0.02

(Auger et al. 2010a; Koopmans et al. 2009; Barth et al. 2011). See Figure 2.13 for

a comparison of our measurement of γ′ with measurements of the same parameter

for the SLACS sample of early-type galaxies by Auger et al. (2010a).

• We are able to decompose dark and stellar matter with lensing and dynamics data,
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assuming a power-law density profile for the dark matter. The derived stellar mass

is 5.5+0.4
−1.3×1011M⊙, consistent with a Salpeter IMF and inconsistent with a Chabrier

IMF. This constraint on the IMF is plotted in Figure 2.13 together with similar

measurements for the other SLACS lenses obtained by Treu et al. (2010). Note

that we achieve better precision despite using less strict assumptions on the dark

matter profile.

• The slope of the dark matter halo is found to be γDM = 1.7± 0.2. This is a strong

evidence for contraction relative to the r−1 behavior of NFW profile observed in

simulations without baryons, and is in agreement with the inner dark matter profiles

obtained by Duffy et al. (2010) in their simulations of z = 2 galaxies and with the

MAC model of Gnedin et al. (2004). Our inferred bulge-halo decomposition has

a local projected slope at the inner ring in agreement with the value measured by

Vegetti et al. (2010) based on a completely independent technique.

• The particular structure of the stellar distribution, with a compact core and a

misaligned faint extended envelope, might be the result of accretion of low mass

systems by a compact red nugget.

• A spectroscopic detection of the redshift of the outer ring would still help improve

the model, but would not lead to a dramatic change in the results of our analysis.
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Figure 2.13: Top panel: IMF mismatch parameter α ≡ MLD
∗

/MSPS
∗

relative to a Salpeter
IMF vs. lens strength σSIE for the SLACS lenses of Treu et al. (2010) (black crosses) and
for the Jackpot (red cross). Measurements of Treu et al. (2010) are obtained assuming
a NFW dark matter halo with fixed scale radius for the lensing and dynamics analysis.
Bottom panel: average slope of the total density profile γ′ vs. lens strength σSIE for the
SLACS lenses of Auger et al. (2010a) (black crosses) and for the Jackpot (red cross).
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2.9 Appendix

2.9.1 Dust correction

The presence of dust complicates our analysis. Nevertheless, we deal with it by

applying a procedure similar to that adopted by Koopmans et al. (2003) and Suyu et al.

(2009) for the system B1608+656. The details of the procedure are the following.

We select a small region in the center of the galaxy for which we want to apply a dust

correction. We estimate the intrinsic colors of this central part by measuring them in a

region that we think is free of dust.

We assume a dust law from Cardelli et al. (1989), with RV = 3.1. Given the flux in

one band and the colors of the object, the fluxes in the remaining bands are determined

by the dust law. Therefore, with images in two or more bands we can constrain both

the intrinsic flux and the dust content of the object. In our case we determine these

two quantities in the central region of the lens on a pixel-by-pixel basis by fitting the

F814W, F606W and F438W fluxes. We want to check if we can account for the dark lane

observed in the F336W image independently from the data in that band, therefore we do

not include that image in our dust analysis. The F160W image is excluded because of its

lower spatial resolution. The PSF of the different images is not matched. Our inference

on the presence of dust is not affected by this approximation.

The two dust-free colors, F606W - F814W and F438 - F606W, are measured in an

annulus around the center and inside of the inner ring. We cannot rule out the presence

of a uniform dust screen, but that would not affect our conclusions as the tools that we

use for quantitative analyses can account for that. The dust-corrected flux in the lens
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Figure 2.14: Dust correction. Left panel: Dust map of the central part of the galaxy
based on F438W, F606W and F814W images. Dark pixels represent higher column
densities of dust. Middle panel: Original image in the F336W band. Right panel: Dust-
corrected F336W band image, showing a single clump of light. The central parts have
lower signal-to-noise ratio as a result of the noisy dust map.

center is then calculated with the fitting method described in Sect. 5.4 of Suyu et al.

(2009). Figure 2.14 shows the recovered dust map, the F336W image corrected for dust

and its original version. It can clearly be seen how the dust map, obtained without using

data from the F336W, has largest column density right where we observe the dark lane

in the image. In the dust-corrected image, the lens looks indeed more like a single object.

The overall amount of dust is relatively small, as the correction to the total magnitude

in the F606W band is approximately 0.10 mags.

2.9.2 Ellipticity effects

The mass and light distributions of the lens galaxy are well approximated by ellipses,

but we make the assumption of spherical symmetry for the analysis of the kinematics

data. How does this assumption affect the results we present? To answer this question

we make use of the axisymmetric version of the Jeans equations (Binney & Tremaine
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2008)

v̄2R(R, z) = v̄2z(R, z) =
1

ρ∗(R, z)

∫

∞

z

dz′ρ∗(R, z′)
∂Φ

∂z′
(2.15)

v̄2φ(R, z) = v̄2R +
R

ρ∗

∂(ρ8v̄2R)

∂R
+R

∂Φ

∂R
, (2.16)

obtained assuming a distribution of stars of the form f(E,Lz).

We take our best-fit single component model from Section 2.5.1 and make it elliptical

by assuming that the rotation axis Lz is in the plane of the sky and fixing the projected

ellipticities in light and mass to q∗ = 0.95 and q = 0.87 respectively. The first value

is the ellipticity of the best single-component fit to the light profile, the latter value is

given in Gavazzi et al. (2008). Then we assume isotropy in the velocity dispersion tensor,

calculate the line of sight velocity dispersion profile in the two possible cases of oblate

or prolate ellipsoid, and compare it to the corresponding spherical case. Results are

shown in Fig. 2.9.2. Deviations from spherical symmetry bring differences on the order

of a few km s−1 on the velocity dispersion profile, well within our uncertainties on the

measurements, and therefore is not a concern for possible biases.

More important are the effects of asymmetries along the line of sight. We do not

have any direct measurement of the line-of-sight structure of the lens, but from the

observed projected flattening we can get information on the intrinsic shape of the galaxy

by statistical means. Padilla & Strauss (2008) measured the distribution of intrinsic axis

ratios of massive elliptical galaxies. By drawing samples of galaxy shapes from their

inferred distribution and assuming random orientations we find that 68% of the objects

that produce a projected ellipticity q∗ = 0.95 have an axis ratio rounder than 0.8. How

does the velocity dispersion profile of an oblate (prolate) galaxy with minor (major) axis
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along the line of sight and axis ratio of 0.8 differ from that of a spherical galaxy with the

same (observed) projected mass within the Einstein radius? We use the axisymmetric

Jeans equation to address this question as well. We take our best-fit spherical model

and modify it into an oblate (prolate) ellipsoid with the axis ratio of both the light

and mass distribution fixed at 0.8, orienting Lz along the line of sight. The line-of-

sight velocity dispersion profile for isotropic orbits in the oblate and prolate case is also

plotted in Fig. 2.9.2. The spread relative to the spherical case is somewhat larger than

the uncertainties. To make sure that our assumption of spherical symmetry does not

alter the measurements presented in this Chapter we recalculate the inference of the key

model parameters by inflating the error bars on the velocity dispersion measurements by

a factor 1.5, matching the scatter introduced by the unknown line-of-sight oblateness or

prolateness of the lens. None of the results changes appreciably. The lens modeling does

not depend on assumptions on the line-of-sight mass distribution, and so in this regard

our results are robust.
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Figure 2.15: Top: Line-of-sight velocity dispersion profile for a spherical model and for
elliptical models with q∗ = 0.95 and q = 0.87, calculated by solving the axisymmetric
Jeans equation. The models have the same projected mass within the inner Einstein
radius. PSF smearing is not included, resulting in the high central peak. Overplotted
are the error bars on the measured velocity dispersion profile. Bottom: Velocity dispersion
profile of the spherical model and of an oblate (prolate) ellipsoid with minor (major) axis
parallel to the line of sight and axis ratio 0.8.
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Chapter 3

The SL2S Galaxy-scale Lens Sample. Lens Models,

Photometry and Spectroscopy

Parts of this chapter were published as Sonnenfeld, A.; Gavazzi, R.; Suyu, S. H.;

Treu, T.; Marshall, P. J. “The SL2S Galaxy-scale Lens Sample. III. Lens Models, Surface

Photometry and Stellar Masses for the final sample” 2013, ApJ, 777, 97, and Sonnenfeld,

A.; Treu, T.; Gavazzi, R.; Suyu, S. H.; Marshall, P. J.; Auger, M. W.; Nipoti, C. “The

SL2S Galaxy-scale Lens Sample. IV. The dependence of the total mass density profile

of early-type galaxies on redshift, stellar mass, and size” 2013, ApJ, 777, 98, and are

included here with minor edits.

The current number of known early-type galaxy lenses is avobe two hundred. While

some of these lenses were serendipitous findings, most of them were discovered in the

context of dedicated surveys. The largest such survey to date is the Sloan Lens ACS

(SLACS) survey (Bolton et al. 2004), which provided about 80 lenses. Although this

sample has yielded interesting results on the properties of ETGs, there are many astro-

physical questions that can be better answered with a larger number of strong lenses

spanning a larger volume in the space of relevant physical parameters. For instance,

quantities like the dark matter fraction or the density slope of ETGs, measurable with
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lensing and stellar kinematics information, might be correlated with other observables

such as the stellar mass or the effective radius. Moreover, the mass structure of ETGs

could be evolving in time as a result of the mass accretion history. In order to test this

scenario, we need a statistically significant number of lenses covering a range of redshift,

along with robust measurements of their Einstein radius, stellar mass, size and velocity

dispersion. While there are many low-redshift lenses that satisfy this requirement, only

a few of the known lenses at z > 0.3 have all the data necessary for a reliable study of

their mass structure.

One of the goals of the Strong Lensing Legacy Survey (SL2S) collaboration is to

extend to higher redshifts the sample of known galaxy-scale gravitational lenses. In

Papers I and II (Gavazzi et al. 2012; Ruff et al. 2011) we presented the pilot sample of

16 lenses. Here we extend our study to a sample of 61 objects at redshifts up to z = 0.8.

In this Chapter we first show the photometric and spectroscopic data of the full SL2S

galaxy-scale lens sample. We then present the lensing models of the new systems along

with revisited models of the old ones. With respect to Paper I we make more conservative

assumptions about the intrinsic shape of the lensed sources by reconstructing them on a

pixelized grid (Warren & Dye 2003; Suyu et al. 2006; Koopmans & Treu 2004).

The goal of this work is to present our new sample of lenses, characterize it in terms

of Einstein radii and stellar masses, and to compare the effectiveness of ground-based

versus space-based images for the purpose of confirming gravitational lens candidates.

This Chapter is organized as follows. Section 3.1 summarizes the SL2S and the associ-

ated Canada-France-Hawaii-Telescope Legacy Survey (CFHTLS) data, the lens detection

method and the sample selection. In Section 3.2 we present all the photometric data set
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of the SL2S lenses, either coming from the CFHTLS parent photometry or from ad-

ditional Hubble Space Telescope (HST ) and Near infrared (IR) follow-up imaging. We

show in detail the spectroscopic data set and the measurements of redshifts and velocity

dispersions of our lenses in Section 3.3. In Section 3.4 we describe the lens models of

the 61 systems. In Section 3.5 we show measurements of the stellar mass of our lenses

from stellar population synthesis fitting. In Section 3.6 we discuss the properties of SL2S

lenses in relation with lenses from independent surveys. We discuss and summarize our

results in Section 3.7.

3.1 The Strong Lensing Legacy Survey

SL2S (Cabanac et al. 2007) is a project dedicated to finding and studying galaxy-scale

and group-scale strong gravitational lenses in the Canada France Hawaii Telescope Legacy

Survey (CFHTLS). The main targets of this paper are massive red galaxies. The galaxy-

scale SL2S lenses are found with a procedure described in detail in Paper I (Gavazzi et al.

2012) that can be summarized as follows. We scan the 170 square degrees of the CFHTLS

with the automated software RingFinder (?). looking for tangentially elongated blue

features around red galaxies. The lens candidates are then visually inspected and the

most promising systems are followed up with HST and/or spectroscopy.

Previous papers have demonstrated the success of this technique. In Paper I (Gavazzi

et al. 2012), we obtained lens models for a pilot sample of 16 lenses and in Paper II (Ruff

et al. 2011), we combined this information with spectroscopic data to investigate the total

mass density profile of the lens galaxies, and its evolution. Here we complete the sample
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by presenting all the new systems that have been followed-up with either high-resolution

imaging or spectroscopy since the start of the campaign. We also re-analyze the pilot

sample to ensure consistency. This paper is focused on the sample’s photometric data and

lens models, while in Paper IV we present the corresponding spectroscopic observations,

model the mass density profile of our lenses, and explore the population’s evolution with

time.

SL2S is by no means the only systematic survey of massive galaxy lenses: two other

large strong-lens samples are those of the SLACS (Bolton et al. 2004) and BELLS (BOSS

Emission-Line Lensing Survey; Brownstein et al. 2012) survey. SL2S differs from SLACS

and BELLS in the way lenses are found. While we look for lenses in wide-field imaging

data, the SLACS and BELLS teams selected candidates by looking for spectroscopic

signatures coming from two objects at different redshifts on the same line of sight in the

Sloan Digital Sky Survey (SDSS) spectra. These two different techniques correspond to

differences in the population of lenses in the respective samples. Given the relatively

small fiber used in SDSS spectroscopic observations (1.5′′ and 1′′ in radius, for SLACS

and BELLS respectively), the spectroscopic surveys tend to select preferentially lenses

with small Einstein radii, where both the arc from the lensed source and the deflector

can be captured within the fiber. SL2S, on the other hand, finds with higher frequency

lenses with Einstein radii larger than 1”, since they can be more clearly resolved in

ground-based images (even after the lensed sources have been deblended from the light

of the central deflector). At a given redshift, different values of the Einstein radius

correspond to different physical radii at which masses can be measured with lensing. For

a quantitative estimate of the range of physical radii probed by the different surveys,

60



Figure 3.1: Distribution of Einstein radii and effective radii of lenses from SLACS (Auger
et al. 2010a), BELLS (Brownstein et al. 2012), LSD (Treu & Koopmans 2004) and grade-
A SL2S.

we plot in Figure 3.1 the distribution of Einstein radii and the effective radii for lenses

from SL2S (determined in Sections 3.2.1 and 3.4.1), BELLS (Brownstein et al. 2012)

and SLACS (Auger et al. 2010a), together with 5 lenses from the LSD study (Treu &

Koopmans 2004). The different surveys complement each other nicely, each one providing

independent information that cannot be easily gathered from the others.

In Table 3.1 we provide a census of SL2S targets that have been followed up so far. The

systems are graded according to their subjective likelihood of being strong lenses: grade

A are definite lenses, B are probable lenses, C are possible lenses or, more conservatively,
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Grade A B C X Total

With high-res imaging 30 3 13 21 67
With spectroscopy 42 14 2 5 63
High-res imaging and spectroscopy 27 3 0 0 30
Total with follow-up 45 14 15 26 100

Table 3.1: Number of SL2S candidates for which we obtained follow-up observations in
each quality bin. Grade A: definite lenses, B: probable lenses, C: possible lenses, X:
non-lenses. We differentiate between lenses with spectroscopic follow-up, high-resolution
imaging follow-up or any of the two. In bold font we give the numbers that add up to
our overall sample size of 61.

systems for which the additional data set does not lead to conclusive answers about their

actual strong lensing nature, and, grade X are non-lenses. Grades for individual systems

are shown in Table 3.4.2 and discussed in Section 3.4.2.

In this paper we show detailed measurements of photometric properties, lens mod-

els and stellar masses for all grade A lenses and for all grade B and C systems with

spectroscopic follow-up. The same selection criterion is applied in Paper IV.

3.2 Photometric observations

All the SL2S lens candidates are first imaged by the CFHT as part of the CFHT

Legacy Survey. CFHT optical images are taken with the instrument Megacam in the

u, g, r, i, z filters under excellent seeing conditions. The typical FWHM in the g and i

bands is 0.′′7. We refer to Gavazzi et al. (2012) for a more detailed description of ground-

based optical observations.

The WIRCam (Puget et al. 2004) mounted on the CFHT was used to get Near IR

follow-up photometry for some of the SL2S lens galaxies (Programs 11BF01, PI Gavazzi,
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and 07BF15 PI Soucail) or from existing surveys like WIRDS (Bielby et al. 2010, 2012)1

or from an ongoing one, called Miracles that is gathering a deep Near IR counter-part

to a subset of the CFHTLS in the W1 and W4 fields (Arnouts et al., in prep). All these

data were kindly reduced by the Terapix team.2 Ks (and sometimes also J and H) band

is used for the systems listed in Table 3.2 to estimate more accurate stellar masses (see

3.5).

In addition to ground-based photometry, 33 of the 61 lens systems presented here

have been observed with HST as part of programs 10876, 11289 (PI Kneib) and 11588

(PI Gavazzi), over the course of cycles 15, 16 and 17 respectively. A summary of HST

observations is given in Table 3.3. The standard data reduction described in Paper I was

performed.

3.2.1 Properties of lens galaxies

We wish to measure magnitudes, colors, effective radii, ellipticities and orientations

of the stellar components of our lenses. This is done first by using the CFHT data, for

all systems. We simultaneously fit for all the above parameters to the full set of images

in the 5 optical filters, and NIR bands when available, by using the software spasmoid,

developed by M. W. Auger and described in Bennert et al. (2011). Results are reported

in Table 3.2.1. For systems with available HST data we repeat the fit using HST images

alone. The measured parameters are reported in Table 3.2.1. Uncertainties on CFHT

lens galaxy magnitudes are dominated by contamination from the background source

1see also http://terapix.iap.fr/article.php?id article=832
2http://terapix.iap.fr
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Table 3.2: Summary of NIR observations

Name Program Filter Exp. time
(s)

SL2SJ021325−074355 11BF01 Ks 1050
SL2SJ021411−040502 07BF15 J,Ks 970,2480
SL2SJ021737−051329 07BF15 J,Ks 2470,1810
SL2SJ021902−082934 11BF01 Ks 1020
SL2SJ022357−065142 11BF01 Ks 1000
SL2SJ022511−045433 WIRDS J,H,Ks 15720,11750,12860
SL2SJ022610−042011 WIRDS J,H,Ks 13230,10240,11300
SL2SJ022648−040610 WIRDS J,H,Ks 1800,820,1570
SL2SJ023251−040823 11BF01 Ks 1010
SL2SJ084909−041226 11BF01 Ks 1370
SL2SJ084959−025142 11BF01 Ks 1580
SL2SJ085826−014300 11BF01 Ks 1570
SL2SJ090106−025906 11BF01 Ks 1320
SL2SJ090407−005952 11BF01 Ks 1050
SL2SJ095921+020638 WIRDS J,H,Ks 7500,16270,2990
SL2SJ220329+020518 11BF01 Ks 1840
SL2SJ220506+014703 MIRACLES Ks 1140
SL2SJ220629+005728 MIRACLES Ks 1340
SL2SJ221326−000946 11BF01 Ks 1280
SL2SJ221852+014038 MIRACLES Ks 970
SL2SJ222012+010606 MIRACLES Ks 1070
SL2SJ222148+011542 MIRACLES Ks 250

Table 3.3: Summary of HST observations

Set Program Instrument Filter Exp. time
(s)

(a) 10876 ACS F814W,F606W 800,400
(b) 11689 WFPC2 F606W 1200
(c) 11588 WFC3 F600LP,F475X 720
(d) 11588 WFC3 F475X 360
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and are estimated to be 0.3 in u band, 0.2 in g and r, 0.1 in all redder bands, while

HST magnitudes have an uncertainty of 0.1. Although we used the same data, some of

the CFHT magnitudes previously reported for the lenses studied in Paper I and Paper

II are slightly inconsistent with the values measured here. This difference is partly due

to a different procedure in the masking of the lensed arcs. In Paper I and II, the lensed

features were masked out automatically by clipping all the pixels more than 4σ above

the best fit de Vaucouleurs profile obtained by fitting the deflector light distribution

with Galfit (Peng et al. 2002, 2010a), while here the masks are defined manually for

every lens. We verified that this different approach is sufficient for causing the observed

mismatch. The masking procedure adopted here is more robust and therefore we consider

the new magnitudes more reliable. In addition, the measurements reported in Paper I

and Paper II were allowing for different effective radii in different bands and the resulting

magnitudes depend on the extrapolation of the light profile at large radii where the signal-

to-noise ratio is extremely low. Here we fit for a unique effective radius in all bands,

resulting in a more robust determination of relative fluxes, i.e. colors, important for the

determination of stellar masses from photometry fitting. We note that this corresponds

to an assumption of negligible intrinsic color gradient in the lens galaxies. However,

asserting an effective radius that is constant across bandpasses mitigates against the

much larger contamination from the lensed source. We verified that the quality of fits

with a unique effective radius is comparable to that achieved by allowing different values

of Reff for different bands, as the difference in the χ2 values between the two cases is

tipically ∼ 10%.

Uncertainties on the HST effective radii are dominated by the choice of the model
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light profile: different models can fit the data equally well but give different estimates

of Reff . The dispersion is ∼ 10%, estimated by repeating the fit with a different surface

brightness model, a Hernquist profile, and comparing the newly obtained values of Reff

with the de Vaucouleurs ones. Uncertainties on the CFHT effective radii are instead

dominated by contamination from the background sources. Effective radii measured

from CFHT images are in good agreement with those measured from HST data, when

present, as shown in Figure 3.2. The scatter on the quantity Reff,CFHT−Reff,HST is ∼ 30%;

we take this as our uncertainty on CFHT effective radii.

3.3 Spectroscopic observations

The SL2S spectroscopic campaign was started in 2006. The goal of our spectroscopic

observations is to measure the lens and source redshifts and lens velocity dispersion

for all our systems. Different telescopes (Keck, VLT and Gemini), instruments (LRIS,

DEIMOS, X-Shooter, GNIRS) and setups have been used to achieve this goal, reflecting

technical advances during the years and the optimization of our strategy. In what follows

we describe the procedure used to measure the three key spectroscopic observables. A

summary of all measurements is given in Table 3.3.2.

3.3.1 Deflector redshifts and velocity dispersions

The typical brightness of our lenses is around i ∼ 20. With an 8m class telescope,

their redshift can be measured from their optical absorption lines with ∼ 10 minutes of

exposure time, while a measurement of their velocity dispersion typically takes from 30
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Name Reff q PA u g r i z J H Ks
(arcsec) (degrees)

SL2SJ020457-110309 1.01 0.67 −20.9 22.81 21.93 20.78 19.82 19.27
SL2SJ020524-093023 0.75 0.64 −75.7 23.69 22.01 20.55 19.50 19.06
SL2SJ020833-071414 1.06 0.81 61.1 22.71 20.64 18.99 18.22 17.90
SL2SJ021206-075528 0.78 0.79 −29.2 23.33 21.32 19.75 18.90 18.61
SL2SJ021247-055552 1.22 1.00 −9.1 23.59 22.73 21.44 20.21 19.77
SL2SJ021325-074355 1.97 0.60 21.2 24.29 22.28 20.78 19.27 18.82 17.43
SL2SJ021411-040502 1.21 0.88 57.1 23.82 22.39 20.88 19.65 19.23 18.55 17.87
SL2SJ021737-051329 0.73 0.90 87.6 23.21 22.17 20.92 19.70 19.33 18.72 17.97
SL2SJ021801-080247 1.02 1.00 −49.8 23.05 22.07 21.32 20.33 19.64
SL2SJ021902-082934 0.95 0.74 82.6 23.02 21.37 19.70 18.94 18.55 17.59
SL2SJ022046-094927 0.53 0.71 −68.5 24.17 22.33 20.88 19.88 19.52
SL2SJ022056-063934 1.42 0.54 −74.8 21.65 19.85 18.47 17.86 17.59
SL2SJ022346-053418 1.31 0.59 63.4 22.93 21.09 19.56 18.70 18.29
SL2SJ022357-065142 1.36 0.95 37.2 23.13 21.03 19.42 18.63 18.30 17.45
SL2SJ022511-045433 2.12 0.72 27.5 20.32 18.58 17.36 16.81 16.55 15.99 15.64 15.48
SL2SJ022610-042011 0.84 0.87 52.0 23.30 21.28 19.70 18.80 18.46 18.09 17.70 17.38
SL2SJ022648-040610 0.48 0.30 −47.5 25.12 23.26 21.57 20.12 19.57 18.90 18.52 18.10
SL2SJ022648-090421 1.40 0.81 56.8 22.65 20.46 18.79 18.06 17.69
SL2SJ022708-065445 0.45 0.28 84.9 23.55 22.49 21.18 20.19 19.76
SL2SJ023251-040823 1.14 0.70 −72.6 22.28 20.71 19.31 18.72 18.44 17.30
SL2SJ023307-043838 1.31 0.85 45.9 23.44 21.98 20.63 19.41 19.03
SL2SJ084847-035103 0.45 0.82 −65.4 24.57 23.57 22.16 20.81 20.39
SL2SJ084909-041226 0.46 0.51 43.7 24.90 23.16 21.70 20.16 19.70 18.60
SL2SJ084934-043352 1.59 0.78 36.4 22.52 20.49 19.01 18.31 18.02
SL2SJ084959-025142 1.34 0.79 −65.4 21.75 19.85 18.56 17.94 17.68 16.63
SL2SJ085019-034710 0.28 0.22 1.2 23.52 21.48 20.07 19.38 19.14
SL2SJ085317-020312 0.85 0.61 16.7 24.45 22.81 21.39 20.12 19.67
SL2SJ085327-023745 1.47 0.81 −24.3 23.07 22.24 21.46 20.29 19.78
SL2SJ085540-014730 0.69 0.82 −70.8 22.80 21.42 20.05 19.37 19.10
SL2SJ085559-040917 1.13 0.82 23.1 23.18 21.10 19.48 18.72 18.35
SL2SJ085826-014300 0.55 0.77 −86.2 24.09 23.15 21.85 20.78 20.38 19.20
SL2SJ090106-025906 0.42 0.82 −67.5 24.53 23.81 22.40 21.16 20.73 19.80
SL2SJ090407-005952 2.00 0.64 71.1 23.59 21.61 20.57 19.47 19.12 17.71
SL2SJ095921+020638 0.46 0.90 42.0 25.28 22.74 21.23 20.23 19.90 19.72 19.38 19.13
SL2SJ135847+545913 0.92 0.79 −72.4 23.93 21.66 20.14 19.16 18.78
SL2SJ135949+553550 1.13 0.67 35.7 24.40 23.30 21.90 20.69 20.04
SL2SJ140123+555705 0.86 0.75 −41.9 23.84 21.64 20.05 18.97 18.57
SL2SJ140156+554446 1.44 0.82 20.2 23.07 20.83 19.28 18.47 18.02
SL2SJ140221+550534 1.52 0.94 −18.1 22.28 20.47 18.89 18.19 17.82
SL2SJ140454+520024 2.03 0.79 67.2 22.37 20.17 18.56 17.73 17.37
SL2SJ140533+550231 0.56 0.67 15.8 24.32 22.48 21.10 20.13 19.62

1.11 0.98 −36.03 23.14 22.28 21.11 20.23 19.73
SL2SJ140546+524311 0.83 0.89 −27.5 23.73 21.62 20.10 19.10 18.74
SL2SJ140614+520253 2.21 0.50 −60.9 22.67 20.64 19.08 18.22 17.85
SL2SJ140650+522619 0.80 0.67 87.4 23.84 22.59 21.31 19.96 19.47

Table 3.4: CFHT photometry. Best fit parameters for de Vaucouleurs models of the
surface brightness profile of the lens galaxies, after careful manual masking of the lensed
images. Columns 2–4 correspond to the effective radius (Reff), the axis ratio of the
elliptical isophotes (q), and the position angle measured east of north (PA). The system
SL2SJ140533+550231 has two lens galaxies of comparable magnitude, and the parameters
of both galaxies are given. The typical uncertainties are a few degrees for the position
angle, ∆q ∼ 0.03 for the axis ratio, 0.3 for u-band magnitudes, 0.2 for g and r-band
magnitudes, 0.1 for magnitudes in the remaining bands, 30% on the effective radii.
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Figure 3.2: Comparison between effective radii measured from ground-based versus space-
based photometry. Error bars on HST effective radii represent the assigned 10% system-
atic uncertainty due to fixing the light profile to a de Vaucouleurs model. The relative
scatter between the best fit values of the two measurements is 30% and is used to quantify
uncertainties in CFHT effective radii.
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Name Reff q PA u g r i z J H Ks
(arcsec) (degrees)

SL2SJ141137+565119 0.85 0.99 2.5 21.68 20.37 19.08 18.55 18.27
SL2SJ141917+511729 2.10 0.64 47.7 23.33 20.96 19.43 18.56 18.21
SL2SJ142003+523137 0.72 0.20 71.2 24.69 22.85 21.43 20.70 20.31
SL2SJ142031+525822 1.11 0.62 −86.0 22.94 20.88 19.36 18.68 18.33
SL2SJ142059+563007 1.62 0.54 −12.6 22.72 20.73 19.29 18.51 18.16
SL2SJ142321+572243 1.42 0.82 62.9 23.67 21.65 20.00 18.95 18.64
SL2SJ142731+551645 0.39 0.31 −63.7 23.33 22.00 20.74 19.85 19.47
SL2SJ220329+020518 0.99 0.81 −44.7 22.68 21.08 19.80 19.15 18.83 17.85
SL2SJ220506+014703 0.66 0.48 87.2 23.71 21.69 20.09 19.24 18.92 17.73
SL2SJ220629+005728 1.37 0.63 −25.1 23.59 22.31 20.99 19.75 19.24 17.66
SL2SJ221326-000946 0.27 0.34 −29.1 23.60 21.78 20.33 19.74 19.44 18.61
SL2SJ221407-180712 0.68 0.72 57.0 24.81 22.81 21.37 20.15 19.73
SL2SJ221852+014038 0.90 0.53 −67.1 23.86 21.70 20.19 19.07 18.67 17.54
SL2SJ221929-001743 1.01 0.78 85.1 21.32 19.52 18.31 17.78 17.50
SL2SJ222012+010606 0.80 0.87 −22.4 22.34 20.47 19.38 18.84 18.56 17.69
SL2SJ222148+011542 1.12 0.81 79.6 22.02 20.15 18.83 18.21 17.91 16.90
SL2SJ222217+001202 1.56 0.66 37.7 22.77 21.03 19.62 18.88 18.53

Table 3.4: continued.

to 120 minutes. Optical spectroscopy data come from three different instruments.

For most of the systems we have data obtained with the LRIS spectrograph at Keck

(Oke et al. 1995). The wavelength coverage of LRIS is typically in the range 3500 −

8000 Å for data taken before 2009 and extends up to 10000 Å for later data, after the

installation of the new detector with much reduced fringing patterns (Rockosi et al. 2010).

The spectral resolution is about 140 km s−1 FWHM on the red side of the spectrograph.

Data reduction for LRIS spectra was performed with a pipeline written by M.W. Auger.

For a set of 13 systems we have VLT observations with the instrument X-Shooter3.

X-Shooter has both a higher resolution (∼ 50 km s−1) and a longer wavelength coverage

(from 3500 Å up to 25000 Å) than LRIS. X-Shooter spectra were reduced with the default

ESO pipeline4. The observations were done by nodding along a long slit of width 0.′′9 for

3ESO/VLT programs 086.B-0407(A), 089.B-0057(A) and 092.B-0663, PI Gavazzi
4http://www.eso.org/sci/facilities/paranal/instruments/xshooter/
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Name Reff q PA mF814W mF606W mF600LP mF475X Set
(arcsec) (degrees)

SL2SJ020833-071414 0.94 0.79 70.5 · · · · · · 18.58 20.69 (c)
SL2SJ021325-074355 2.45 0.67 34.9 · · · 21.08 · · · · · · (b)
SL2SJ021411-040502 0.93 0.91 77.8 19.07 20.73 · · · · · · (a)
SL2SJ021737-051329 0.61 0.91 71.7 19.13 20.77 · · · · · · (a)
SL2SJ021902-082934 0.57 0.73 73.2 · · · · · · 19.55 21.79 (c)
SL2SJ022357-065142 0.88 0.81 48.0 · · · · · · 19.21 21.43 (c)
SL2SJ022511-045433 2.28 0.72 25.1 · · · 17.68 · · · · · · (b)
SL2SJ022610-042011 1.06 0.81 61.9 · · · 20.00 · · · · · · (b)
SL2SJ022648-040610 1.10 0.38 −47.4 · · · 21.45 · · · · · · (b)
SL2SJ023251-040823 0.96 0.74 −68.2 · · · 19.91 · · · · · · (b)
SL2SJ084909-041226 0.49 0.49 39.1 · · · · · · 20.62 23.40 (c)
SL2SJ084959-025142 1.46 0.78 −64.1 · · · 18.80 · · · · · · (b)
SL2SJ085826-014300 0.59 0.81 82.2 · · · 22.22 · · · · · · (b)
SL2SJ090106-025906 0.50 0.80 −20.3 · · · 22.78 · · · · · · (b)
SL2SJ090407-005952 2.50 0.79 74.4 · · · 20.89 · · · · · · (b)
SL2SJ095921+020638 0.54 0.78 26.0 · · · 21.65 · · · · · · (b)
SL2SJ135847+545913 0.70 0.80 −57.1 · · · · · · 19.65 21.99 (c)
SL2SJ135949+553550 1.76 0.61 30.7 · · · 22.01 · · · · · · (b)
SL2SJ140123+555705 0.96 0.78 −43.5 · · · 20.33 · · · 21.66 (b,d)
SL2SJ140156+554446 1.08 0.79 27.2 · · · · · · 18.90 21.10 (c)
SL2SJ140221+550534 1.15 0.87 −43.9 · · · · · · 18.59 20.63 (c)
SL2SJ140533+550231 0.91 0.75 −21.3 · · · 21.75 · · · · · · (b)

0.41 0.93 −12.72 · · · 22.02 · · · · · ·
SL2SJ140546+524311 0.73 0.82 −27.8 · · · · · · 19.44 21.77 (c)
SL2SJ140650+522619 0.60 0.65 84.3 · · · 21.97 · · · · · · (b)
SL2SJ141137+565119 0.65 0.79 8.1 · · · · · · 18.93 20.65 (c)
SL2SJ141917+511729 1.20 0.69 48.8 · · · · · · 19.24 21.54 (c)
SL2SJ142031+525822 1.04 0.65 −80.0 · · · 19.86 · · · · · · (b)
SL2SJ142059+563007 1.31 0.58 −13.6 · · · · · · 18.96 21.01 (c)
SL2SJ142321+572243 0.98 0.85 68.2 · · · · · · 19.48 22.01 (c)
SL2SJ142731+551645 0.50 0.29 −62.1 · · · 21.08 · · · · · · (b)
SL2SJ220329+020518 0.72 0.84 −50.6 · · · · · · 19.79 21.76 (c)
SL2SJ221326-000946 0.50 0.38 −32.5 · · · 20.64 · · · · · · (b)
SL2SJ221407-180712 0.77 0.69 49.1 · · · 21.69 · · · · · · (b)

Table 3.5: HST photometry. Best fit parameters for de Vaucouleurs models of the sur-
face brightness profile of the lens galaxies, after careful manual masking of the lensed
images. Columns 2–4 correspond to the effective radius (Reff), the axis ratio of the el-
liptical isophotes (q), and the position angle measured east of north (PA). The system
SL2SJ140533+550231 has two lens galaxies of comparable magnitude, and the parame-
ters of both galaxies are given. The last column indicates the set of observations used,
from the list in Table 3.3.
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the UVB and VIS arms and 1.′′0 for the NIR arm.

Finally, six systems presented here have data obtained with DEIMOS at Keck (Faber

et al. 2003). The grating used in all DEIMOS observations is the 600ZD, with a wave-

length range between 4500 Å and 9500 Å and a spectral resolution of about 160 km s−1.

DEIMOS data were reduced with the DEEP2 pipeline (Cooper et al. 2012a; Newman

et al. 2012b).

Both redshifts and velocity dispersions are measured by fitting stellar templates,

broadened with a velocity kernel, to the observed spectra. This is done in practice with a

Monte Carlo Markov Chain adaptation of the velocity dispersion fitting code by van der

Marel (1994), written by M. W. Auger and described by Suyu et al. (2010). We used 7

different templates of G and F stars, which should provide an adequate description of the

stars in red passive galaxies, taken from the Indo US stellar library. The code also fits

for an additive polynomial continuum, to accommodate for template mismatch effects

or imperfections in the instrumental response correction. In most cases, a polynomial of

order five is used.

The rest-frame wavelength range typically used in our fits is 3850Å− 5250Å, which

brackets important absorption lines such as Ca K,H at 3934, 3967Å, the G-band absorp-

tion complex around 4300Å and Mgb at 5175Å. Depending on the redshift of the target

and the instrument used, this is not always allowed as part of the wavelength region

can fall outside the spectral coverage allowed by the detector, or because of Telluric

absorption. In those cases the fitted rest-frame region is extended.

Systematic uncertainties in the velocity dispersion measurements are estimated by

varying the fitted wavelength region and order of the polynomial continuum. These are
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typically on the order of 20 km s−1 and are then summed in quadrature to the statistical

uncertainty.

All the optical spectra of our systems are shown in Figure 3.3.

3.3.2 Source spectroscopy

Measuring the redshift of a lensed background source is important not only for de-

termining the geometry of the gravitational lens system, but also to confirm that the

arc is actually in the background relative to the lens. The arcs of the lensed sources

are relatively faint in broad band photometry (g ∼ 24), implying that their continuum

radiation cannot be detected in most cases. However the sources are selected to be blue

(Gavazzi et al. 2012) and are often associated with emission lines from star formation

and/or nuclear activity. The typical redshifts of our arcs are in the range 1 < z < 3. This

means that optical spectroscopy can effectively detect emission from the [OII] doublet at

3727− 3729Å, for the lowest redshift sources, or Ly-α for objects at z > 2.5 or so. This

is the case for roughly half of the systems observed. The remaining half does not show

detectable emission line in the observed optical part of the spectrum, either because the

most important lines fall in the near-infrared, or because emission is too weak. Emission

lines from the arcs can be easily distinguished by features in the lens because they are

spatially offset from the lens light.

X-Shooter observations proved to be remarkably efficient in measuring source red-

shifts. This is in virtue of its wavelength range that extends through the near infrared

up to 25000Å and its medium resolution that limits the degrading effect of emission lines
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from the atmosphere. Of 13 systems observed with X-Shooter, 12 of them yielded a

redshift of the background source, all of which with at least two identified lines.

In addition, for four systems we have near infrared spectroscopic observations with

the instrument GNIRS on Gemini North (PI Marshall, GN-2012B-Q-78, PI Sonnenfeld,

GN-2013A-Q-91), used in cross-dispersed mode, covering the wavelength range 10000Å−

25000Å at once. Of the four systems observed, two of them show two emission lines from

the background source.

In most cases when only optical spectroscopy is available, only one emission line

is detected over the whole spectrum. The [OII] doublet can be easily identified even

with relatively low resolution spectrographs. The identification of the Ly-α line is less

trivial. Ly-α is typically the brightest emission line in the rest frame wavelength range

1000−3000Å when present, but other emission lines like CIV 1546Å, OIII] 1666Åor CIII]

1908Å can sometimes be seen. When we detect an emission line close to the blue end

of the spectrum it could in principle be any of those lines. However a detection of one

of the above lines and a non-detection of the other ones is quite unlikely, unless CIII]

1908Å falls right at the blue edge of the observed spectrum. In that case though we

should expect to observe the [OII] doublet at redder wavelengths. This case is never

encountered, therefore in all cases when we detect an unresolved emission line bluer than

6000Å, and no other lines, we can safely assume it is Ly-α. The system SL2SJ022357-

065142 is a particular case: we detected an emission line spatially associated with the

background source at 9065Å, with a 5 − σ significance. Given the low S/N the line is

both compatible with being the [OII] doublet or an individual line. Possible other lines

are [OIII] 5007Åand H-β, which cannot be ruled out. Therefore we do not claim redshift
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measurements for that source: deeper data is needed to establish whether the line is the

[OII] doublet or not.

The 2d spectra around all the detected emission lines for all the systems are shown

in Figure 3.8. Note that for some systems the line emission is multiply imaged on both

sides of the foreground object. This provides a decisive clue on the lens nature of those

systems, important when ranking our targets by their likelihood of being lenses (Paper

III).

Finally, six background sources are bright enough to be visible with continuum ra-

diation and several absorption/emission features can be identified in their spectra. The

absorption line spectra of these sources are plotted in Figure 3.7.

Despite our efforts in acquiring spectroscopic data for our lenses, seven of the 36 grade

A lenses with spectroscopic follow-up have no measured source redshifts. In Paper II Ruff

et al. (2011) made use of photometric data together with lensing cross-section arguments

to estimate source redshifts, with a technique called photogeometric redshift. Here the

fraction of lenses with no source redshift is small compared to the sample size, therefore

it is not essential to include them in the analysis through the use of this method.

3.4 Lens models

The main goal is to measure Einstein radii of our lenses. We define the Einstein radius

REin to be the radius within which the mean surface mass density Σ̄(< REin) equals the

critical density Σcr of the lensing configuration. While the critical density depends on

the lens and source redshifts, the ratio of Σ̄(< REin)/Σcr (i.e., the convergence) does not:
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Name obs. date Instrument slit width seeing exp. time zd zs σ S/N res.
(′′) (′′) (′′) (s) (km/s) (Å−1) (km/s)

SL2SJ020457−110309 11-19-2013 XSHOOTER 0.9 1.60 1.6 4140 0.609 1.89 250± 30 9 40
SL2SJ020524−093023 12-03-2013 XSHOOTER 0.9 1.60 1.1 2760 0.557 1.33 276± 37 7 40
SL2SJ020833−071414 11-29-2011 LRIS 1.0 1.62 1.0 900 0.428 · · · 295± 27 17 150
SL2SJ021206−075528 01-28-2011 LRIS 0.7 1.62 0.6 2700 0.460 · · · 257± 25 28 120
SL2SJ021247−055552 10-08-2010 XSHOOTER 0.9 1.60 0.7 2800 0.750 2.74 273± 22 22 47

12-09-2012 DEIMOS 1.0 1.90 1.2 3600 253± 28 11 170
SL2SJ021325−074355 09-14-2007 LRIS 1.0 1.68 0.6 1800 0.717 3.48 293± 34 5 220
SL2SJ021411−040502 01-28-2011 LRIS 0.7 1.62 0.6 2700 0.609 1.88 264± 26 13 120

10-08-2010 XSHOOTER 0.9 1.60 0.7 2800 209± 20 27 49
12-09-2012 DEIMOS 1.0 1.88 0.8 3600 287± 47 10 170

SL2SJ021737−051329 12-23-2006 LRIS 1.5 1.68 0.6 2400 0.646 1.85 239± 27 11 160
09-14-2007 LRIS 1.0 1.68 0.6 3600 292± 33 12 120

SL2SJ021801−080247 01-28-2011 LRIS 0.7 1.62 0.6 1800 0.884 2.06 · · · 5 120
12-09-2012 DEIMOS 1.0 0.81 1.0 1200 · · · 5 170
11-18-2013 XSHOOTER 0.9 1.60 1.0 2760 246± 48 7 40

SL2SJ021902−082934 09-13-2007 LRIS 1.0 1.68 0.7 2700 0.389 2.15 289± 23 21 210
SL2SJ022046−094927 12-09-2012 DEIMOS 1.0 1.90 0.8 1800 0.572 2.61 248± 27 10 170

11-20-2013 XSHOOTER 0.9 1.60 1.0 2760 · · · 7 40
SL2SJ022056−063934 09-13-2007 LRIS 1.0 1.68 0.8 1800 0.330 · · · 231± 25 23 220
SL2SJ022346−053418 11-30-2011 LRIS 1.0 1.62 0.6 900 0.499 1.44 288± 28 20 140
SL2SJ022357−065142 08-06-2010 LRIS 1.0 1.64 1.0 900 0.473 · · · 312± 27 23 160

11-01-2010 LRIS 1.0 1.64 0.9 900 289± 28 25 150
SL2SJ022511−045433 09-09-2009 LRIS 1.0 0.81 0.7 1800 0.238 1.20 234± 21 54 500
SL2SJ022610−042011 09-14-2007 LRIS 1.0 1.62 0.6 1800 0.494 1.23 263± 24 15 230
SL2SJ022648−040610 12-23-2006 LRIS 1.5 1.68 0.6 2700 0.766 · · · 333± 24 9 160

10-08-2010 XSHOOTER 0.9 1.60 0.6 2800 324± 21 43 47
11-20-2013 XSHOOTER 0.9 1.60 1.0 2760 · · · 6 40

SL2SJ022648−090421 09-14-2007 LRIS 1.0 1.68 0.6 1800 0.456 · · · 302± 24 23 220
SL2SJ022708−065445 11-23-2013 XSHOOTER 0.9 1.60 0.7 2760 0.561 · · · · · · 9 40
SL2SJ023251−040823 09-13-2007 LRIS 1.0 1.68 0.7 2700 0.352 2.34 281± 26 19 220

10-06-2010 XSHOOTER 1.0 1.60 0.7 2800 247± 32 37 49
SL2SJ023307−043838 11-24-2013 XSHOOTER 0.9 1.60 0.9 2760 0.671 1.87 204± 21 9 40
SL2SJ084847−035103 01-03-2011 XSHOOTER 0.9 1.60 1.0 2800 0.682 1.55 197± 21 19 49
SL2SJ084909−041226 01-02-2011 XSHOOTER 0.9 1.60 0.9 2800 0.722 1.54 320± 24 14 49

12-09-2012 DEIMOS 1.0 1.88 0.8 6000 275± 26 26 160
SL2SJ084934−043352 01-28-2011 LRIS 0.7 1.62 0.6 1800 0.373 · · · 245± 24 23 120
SL2SJ084959−025142 01-01-2011 XSHOOTER 0.9 1.60 0.8 2800 0.274 2.09 276± 35 67 47
SL2SJ085019−034710 01-28-2011 LRIS 0.7 1.62 0.6 2700 0.337 3.25 290± 24 26 120
SL2SJ085317−020312 11-01-2013 DEIMOS 1.0 1.41 0.8 9000 0.698 · · · 213± 20 14 160
SL2SJ085327−023745 11-30-2011 LRIS 1.0 1.62 0.9 4800 0.774 2.44 · · · · · · 150
SL2SJ085540−014730 01-28-2011 LRIS 0.7 1.62 0.6 3600 0.365 3.39 222± 25 24 120

12-09-2012 DEIMOS 1.0 1.88 0.8 2400 209± 31 14 160
SL2SJ085559−040917 01-28-2011 LRIS 0.7 1.62 0.6 3600 0.419 2.95 281± 22 33 120
SL2SJ085826−014300 11-30-2011 LRIS 1.0 1.62 0.9 3600 0.580 · · · 233± 25 · · · 160
SL2SJ090106−025906 01-07-2011 XSHOOTER 0.9 1.60 0.7 2800 0.670 1.19 · · · 7 49
SL2SJ090407−005952 12-30-2010 XSHOOTER 0.9 1.60 0.7 2800 0.611 2.36 183± 21 22 52
SL2SJ095921+020638 02-02-2011 XSHOOTER 0.9 1.60 0.7 2800 0.552 3.35 188± 22 17 47
SL2SJ135847+545913 04-29-2011 LRIS 1.0 1.62 0.8 2700 0.510 · · · 287± 22 28 150

03-22-2013 GNIRS 0.675 · · · 0.7 7200 · · · · · · · · ·
SL2SJ135949+553550 03-17-2010 LRIS 1.0 1.62 0.7 5400 0.783 2.77 228± 29 9 150

04-29-2011 LRIS 1.0 1.62 0.9 5400 234± 28 12 150
SL2SJ140123+555705 07-20-2006 LRIS 1.5 3.36 0.8 1200 0.527 · · · 332± 25 10 210
SL2SJ140156+554446 04-29-2011 LRIS 1.0 1.62 0.8 2700 0.464 · · · 297± 22 34 150
SL2SJ140221+550534 xx-xx-2xxx SDSS · · · · · · · · · · · · 0.412 · · · · · · · · · · · ·
SL2SJ140454+520024 04-30-2011 LRIS 1.0 1.62 0.9 1800 0.456 1.59 342± 20 38 140
SL2SJ140546+524311 04-29-2011 LRIS 1.0 1.62 0.8 2700 0.526 3.01 284± 21 30 140

03-26-2013 GNIRS 0.675 · · · 0.5 4800 · · · · · · · · ·
SL2SJ140614+520253 07-20-2006 LRIS 1.5 3.36 0.8 1200 0.480 · · · 247± 29 11 190

Table 3.6: Summary of spectroscopic observations and derived parameters.
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Figure 3.3: 1d spectra of SL2S lenses and lens candidates (in black). Where available,
we overplot the best fit spectrum obtained for the velocity dispersion fitting (in red).
Only the rest-frame wavelength region used in the fit is shown. Vertical gray bands are
regions of the spectrum masked out of the fit and typically correspond to atmospheric
absorption features. Each plot indicates the redshift of the galaxy and the instrument
used to acquire the data shown.
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Figure 3.4: continued.
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Figure 3.5: continued.
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Figure 3.6: continued.
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Figure 3.7: Spectra of lensed sources that are bright enough to be detected in the con-
tinuum. The vertical dashed lines highlight absorption/emission line features: in order
of increasing wavelength Ly-α (1216Å), SiII (1260Å), SiII (1302Å, 1304Å), CII (1335Å),
SiIV (1393Å, 1402Å), SiII (1527Å), CIV (1549Å), AlII (1670Å).
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Figure 3.8: 2d spectra of SL2S lenses around the identified emission lines from the lensed
arcs. Observer frame wavelength in Å is labeled on the horizontal axis.

81



Name obs. date Instrument slit width seeing exp. time zd zs σ S/N res.

(′′) (′′) (′′) (s) (km/s) (Å−1) (km/s)

SL2SJ140650+522619 04-29-2011 LRIS 1.0 1.62 0.9 3600 0.716 1.47 253± 19 15 150

04-30-2011 LRIS 1.0 1.62 0.9 3600 247± 20 16 160

SL2SJ141137+565119 01-14-2010 LRIS 1.0 1.62 1.3 2700 0.322 1.42 214± 23 35 470

SL2SJ142003+523137 04-30-2011 LRIS 1.0 1.62 0.9 2700 0.354 1.41 · · · 4 150

SL2SJ142031+525822 04-29-2011 LRIS 1.0 1.62 0.8 1800 0.380 0.99 246± 23 24 150

SL2SJ142059+563007 04-29-2011 LRIS 1.0 1.62 0.9 1800 0.483 3.12 · · · 20 · · ·
04-30-2011 LRIS 1.0 1.62 0.8 1800 228± 19 18 160

SL2SJ142731+551645 04-30-2011 LRIS 1.0 1.62 0.8 3600 0.511 2.58 · · · 12 150

SL2SJ220329+020518 08-06-2010 LRIS 1.0 1.62 0.9 2700 0.400 2.15 213± 21 36 170

SL2SJ220506+014703 10-06-2010 XSHOOTER 0.9 1.60 0.8 2800 0.476 2.53 317± 30 29 49

SL2SJ220629+005728 09-13-2007 LRIS 1.0 1.68 0.7 2700 0.704 · · · 290± 39 6 230

SL2SJ221326−000946 09-09-2009 LRIS 1.0 1.62 1.0 1800 0.338 3.45 165± 20 30 150

07-29-2011 XSHOOTER 0.9 1.60 0.8 2800 177± 21 32 56

SL2SJ221407−180712 09-13-2007 LRIS 1.0 1.68 0.7 2700 0.651 · · · 200± 24 6 220

SL2SJ221852+014038 08-06-2010 LRIS 1.0 1.62 0.9 2700 0.564 · · · 305± 23 28 170

11-10-2012 GNIRS 0.675 · · · 0.7 3600 · · · · · · · · ·
SL2SJ221929−001743 09-14-2007 LRIS 0.7 1.68 0.6 1800 0.289 1.02 189± 20 23 420

SL2SJ222012+010606 08-18-2012 DEIMOS 1.0 1.88 1.2 3600 0.232 1.07 127± 15 14 170

SL2SJ222148+011542 08-18-2012 DEIMOS 1.0 1.88 1.2 3600 0.325 2.35 222± 23 25 160

10-01-2012 XSHOOTER 0.9 1.60 1.0 1400 · · · · · · · · ·
11-11-2012 GNIRS 0.675 · · · 0.7 3600 · · · · · · · · ·

SL2SJ222217+001202 08-06-2010 LRIS 1.0 1.62 0.9 900 0.436 1.36 221± 22 13 170

11-01-2010 LRIS 1.0 1.62 0.9 900 200± 29 10 150

Table 3.6: Spectroscopic observations (continued).

in practice then, the deflection angles and lensed image positions can all be predicted

given a model with its Einstein radius in angular units. We only consider Einstein radii

in angular units throughout this paper.

3.4.1 The method

We measure Einstein radii by fitting model mass distributions to the lensing data.

We describe our lenses as singular isothermal ellipsoids (SIE), with convergence κ given

by

κ(x, y) =
REin

2r
, (3.1)

where r2 ≡ qx2 + y2/q and q is the axis ratio of the elliptical isodensity contours. The

free parameters of the lens model are therefore REin, the axis ratio q, the position angle
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(PA) of the major axis, and the x and y positions of the centroid. In principle, more

degrees of freedom could be introduced. In some cases, lens models are found to require a

constant external shear, with strength γext and position angle PAext, in order to describe

the lensing effect of massive objects (such as groups or clusters) close to the optical axis.

However, this external shear is highly degenerate with the mass orientation of the main

lens, and our data are not detailed enough to distinguish between the two. For this

reason we only include a shear component for the lenses for which we cannot otherwise

find a working model.

The fit is performed by generating model lensed images and comparing them to the

observed images that have the lens light subtracted. For fixed lens parameters, light from

the image plane is mapped back to a grid on the source plane and the source light distri-

bution is then reconstructed following Suyu et al. (2006). This source reconstruction, as

well as the entire lensing analysis, follows a Bayesian approach. For a given model lens,

the Bayesian evidence of the source reconstruction is computed, which then defines the

quality of the lens model. The lens parameter space is then explored with a Monte-Carlo

Markov Chain (MCMC) sampler, propagating the source reconstruction evidence as the

likelihood of the lens model parameters.

The practical realization of this procedure is done by using the lens modeling software

GLEE, developed by Suyu & Halkola (2010). This approach differs slightly from the one

adopted in Paper I, in that a pixelized source reconstruction is used instead of fitting

Sérsic components. To make sure that our analysis is robust, we repeat the fit for

the systems previously analyzed in Paper I. This allows us to gauge the importance of

systematic effects related to the choice of modeling technique.
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For systems with HST imaging in more than one band, only the bluest band image

is used for the analysis as the signal from the blue star-forming lensed sources is highest.

The g band image is used when modeling CFHT data. Typically we only attempt to

model a small region of the image around the identified lensed sources, then check that

our lens models do not predict detectable lensed sources in areas outside the data region.

We assume uniform priors on all the lens parameters except the centroid, for which we

use a Gaussian PDF centered on the observed light distribution and with a dispersion

of 1 pixel. For systems with only ground-based imaging, for which the lensing signal is

diluted by the large PSF, we keep the centroid fixed to that of the optimal light profile.

In some cases we also adopt a Gaussian prior on the mass PA, centered on the PA of the

light, or we keep the PA fixed. Those cases are individually discussed below.

Our analysis also allows us to determine the brightness of the lensed sources. This

is important information as it allows us to constrain their distance in cases where their

spectroscopic redshift is unknown (Ruff et al. 2011). The unlensed magnitude of the

background object is recovered by fitting Sérsic components to the reconstructed source.

The values of the measured lens parameters with 68% credible intervals (1−σ uncer-

tainties) derived from the posterior probability distribution function marginalized over

the remaining parameters are reported in Table 3.4.2. Cutouts of the lens systems with

the most-probable image and source reconstruction are shown in Figure 3.9. All images

are orientated north up and east left, with the exception of lens models based on WFPC2

data. Those models are performed in the native detector frame in order to avoid degrad-

ing further the quality of the WFPC2 images, as they typically have a low S/N. In such

situations a compass is displayed to guide the eye.
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The formal uncertainties on the Einstein radius given by the MCMC sampling are

typically very small: the 1-σ uncertainty is for most lenses smaller than 1%. However,

our measurements of the Einstein radius rely partly on the assumption of an SIE profile

for the lens mass distribution: in principle, mass models with density slope different

from isothermal or isodensity contours different from ellipses can produce different Ein-

stein radii. Perhaps more significantly, some systematic effects can be introduced at

various points in our analysis: in particular, the assertions of a specific model PSF, a

specific arc mask, and a specific lens light subtraction procedure all induce uncertainty

in the final prepared data image (e.g. Marshall et al. 2007; Suyu et al. 2009). Bolton

et al. (2008a) estimated the systematic uncertainty on typical Einstein radius measure-

ments to be about 2%. We can further verify this result by comparing Einstein radius

measurements from paper I with the new values found here. The analysis of Paper I

differs from the present one in the lens light subtraction, choice of the arc mask and

lens model technique (Sérsic component fitting versus pixelized source reconstruction),

so a comparison of the two different measurements should reflect systematics from most

of the effects listed above. For a few of the systems already analyzed in Paper I, the

current lens models are qualitatively different from the ones presented in Paper I and

the measured values of the Einstein radii are correspondingly different. In most cases

this is in virtue of the collection of new data with HST WFC3 that revealed features

on the lensed arcs, previously undetected, that helped improve the lens model. After

excluding those systems, the relative scatter between the most probable values of REin

measured in the two different approaches (current and previous) is 3%. We thus take 3%

as our estimate of the systematic uncertainty on the measurement of the Einstein radius
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with the technique used here, and convolve the posterior probability distribution for the

Einstein radius obtained from the MCMC with a Gaussian with 3% dispersion. All the

uncertainties on REin quoted in this paper reflect this choice.

3.4.2 The lenses

Although the lens modeling procedure is the same for all lenses, each system has its

own peculiarities that need to be taken care of. In what follows we describe briefly and

case by case the relevant aspects of those lens models that deserve some discussion.

Lens grades are also discussed in this subsection, when explanation is needed, and

are reported in Table 3.4.2. In general we apply the following guidelines. For a system

with HST imaging we require, in order for it to be a grade A, that at least a pair of

multiple images of the same source is visible and that we can describe it with a robust

lens mass model compatible with the light distribution of the lens galaxy (i.e. similar

centroid, orientation and axis ratio). For systems with only ground-based imaging we

impose the additional requirement of having a spectroscopic detection of the background

source, in order to be sure that the blue arcs that we observe are not part of the foreground

galaxy. Spectroscopic data therefore enters the lens classification process. We refer to our

companion paper (Paper IV) when discussing spectroscopic measurements. Furthermore,

systems with a reliable ground-based lens model but no source spectroscopy are given

grade B, as well as systems with secure spectroscopic detection of the source but no

robust lens model. Systems lacking both, or for which we suspect that strong lensing

might not be present are instead given grade C. We stress that a grade is not necessarily
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a statement on the quality or usefulness of a system as a lens, but rather its likelihood of

being a strong lens given the available data. Consequently, grades are subject to change

as new data become available.

• SL2SJ020457-110309. The CFHT data reveal an early-type galaxy with a bright

blue image, tangentially elongated with respect to it. The blue object is spectro-

scopically detected to be at higher redshift than the main galaxy. The lens model

however does not predict the presence of a counter-image. This is probably because

the image of the background source appears to be unusually straight, as opposed to

the typical arc-like shape of strongly lensed images. While there is no doubt that

the foreground galaxy is lensing the background source, our ground-based data

does not allow us to determine whether there is strong lensing or not, therefore we

assign a grade B to this system.

• SL2SJ020524-093023. The visible lensed images in this system consist of one arc.

The lens model predicts the presence of a counter-image, too faint to be visible in

CFHT data.

• SL2SJ020833-071414. The lensed features of this system consist of a double image

of a bright compact component and a low surface brightness ring. The model

cannot fully reproduce the image of the bright double but this is probably due to

the presence of a compact unresolved component, like an AGN. AGNs in the source

plane are difficult to model with a pixelized reconstruction technique, because the

image regularization process smoothes our model images. This effect is present in

other lenses with sharp peaks in the source surface brightness distribution. Since
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the signal-to-noise ratio of the HST image is low and no additional information

comes from spectroscopy, this lens is given a grade B.

• SL2SJ021325-074355. The source lensed by this high redshift galaxy (zd = 0.717)

appears to have two separate bright components. Our source reconstruction con-

firms this picture. There is a massive elliptical galaxy in the foreground that may

be providing extra deflection to the light coming from the source, thus perturbing

the image. This perturber is very close to the observer (z = 0.0161, from SDSS)

and therefore its lensing power is greatly reduced with respect to the main deflec-

tor. We model the mass distribution from this galaxy with an additional SIE with

centroid and PA fixed to the light distribution and REin and q as free parame-

ters. To quickly calculate the deflection angles from this perturber we make the

approximation that it lies at the same redshift as the main lens. While this is not

formally correct, the model still describes qualitatively the presence of an extra

source of deflection towards the direction of the foreground galaxy. The impact of

this perturber on the lensing model is in any case small.

• SL2SJ021411-040502. The source has two bright components, one of which is lensed

into the big arc and its fainter couter-image. The second component forms a double

of smaller magnification. This lens was modeled in Paper I where we explained

how there are two lens models, with different Einstein radii, that match the image

configuration. The pixelized source reconstruction technique adopted here to model

the lens favors the solution alternative to the one chosen in Paper I.

• SL2SJ021737-051329. This lens system is in a cusp configuration, meaning that the
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source lies just within one of the four cusps of the astroid caustic of the lens. Either

a mass centroid offset from the light center or a large shear is required to match the

curvature of the big arc. This was also needed in Paper I and previously found by

Tu et al. (2009). Here, we find the amount of external shear to be γext = 0.11±0.01

• SL2SJ022346-053418. The CFHT image shows an extended arc and a bright knot

at the opposite side with respect to the lens. Although this latter component

might be the counter-image to the arc, its color is different and it is not detected

spectroscopically. Therefore only the arc is used for the lensing analysis. The main

arc has a higher redshift than the lens, however the lens model is not definitive in

assessing whether this system is a strong lens. This is therefore a grade B lens.

• SL2SJ022357-065142. The lensed source appears to have a complex morphology.

We identify three distinct components, each of which is doubly imaged.

• SL2SJ022708-065445. An extended blue arc is clearly visible West of a disky early-

type galaxy. The reconstructed source appears to consist of two components close

to each other. In order to achieve a satisfactory fit, we had to put a Gaussian prior

on the position angle of the mass distribution, centered on the PA of the light.

• SL2SJ023307-043838. This double image system allows us to robustly measure the

Einstein radius of the lens galaxy.

• SL2SJ084934-043352. Only one arc is visible in the CFHT image. In order to

obtain a meaningful lens model we need to fix the PA of the mass profile to that

of the light. This system is a grade B due to the lack of spectroscopic detection of
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the background source.

• SL2SJ084959-025142 is a double-like lens system. Part of the light close to the

smaller arc is masked out in our analysis, as it is probably a contamination from

objects not associated with the lensed source.

• SL2SJ085019-034710. The CFHT image shows a bright arc produced by the lensing

effect of a disk galaxy. The lens model predicts the presence of a counter-image

opposite to the arc, but it is not bright enough to be distinguished from the disk of

the lens. In addition, such a counterimage could suffer from substantial extinction.

• SL2SJ085317-020312. One extended arc is visible. We assign a Gaussian prior to

the mass position angle in order to obtain a reasonable fit.

• SL2SJ085559-040917. The main blue arc of this system is at redshift 2.95. The

other blue features seen in CFHT data however are too faint for us to establish an

unambiguous interpretation of the lens configuration. Therefore we conservatively

assign grade B to this system. Higher resolution photometry is needed to confirm

this lens.

• SL2SJ090106-025906. The WFPC2 image of this system is contaminated with a

cosmic ray, which has been masked out in our analysis. Our lens model predicts an

image at the position of the cosmic ray, the presence of which cannot be verified

with our data. The model however appears to be convincing and the background

source is spectroscopically detected, therefore this is a grade A lens.

• SL2SJ095921+020638. This system, belonging to the COSMOS survey had previ-
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ously been modeled by Anguita et al. (2009). These authors report a source redshift

of 3.14 ± 0.05 whereas we find a slightly greater value of 3.35 ± 0.01 based on our

own XSHOOTER data (Paper IV). They report an Einstein radius REin ∼ 0.′′71 in

close agreement with our 0.′′74± 0.′′04 estimate.

• SL2SJ135847+545913. We identify two distinct bright components in the source:

one forms the big arc, the other one is only doubly-imaged.

• SL2SJ140123+555705 is a cusp-like system: three images of a single bright knot

can be identified on the arc. The counter-image however is too faint to be detected

in the WFC3 snapshot. This lens was already modeled in Paper I. The Einstein

radius that we obtain here is not consistent with the value reported then. This is

because the current model is obtained by analyzing newly obtained WPC3 data,

which reveal more details on the arc. The lack of a counterimage does not prevent

an accurate lens modeling because the main arc is very thin, curved and extended.

• SL2SJ140533+550231. This is a particular system, in that there are two lens galax-

ies of comparable brightness. The lensed image shows four images of a bright knot.

We model the system with two SIE components, centered in correspondence with

the two light components. Our inference shows a substantial degeneracy between

the Einstein radii of the two lenses.

• SL2SJ140546+524311. This system shows a quadruply-imaged bright compact

component. Two of the images are almost merged. A relatively large shear is

required to match the position and shape of the counter-image opposite to the
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arcs.

• SL2SJ140614+520253. A few different blue blobs are visible in the CFHT image,

but there is no working lens model that can associate them with the same source.

As done in Paper I, we model only the bright extended arc. The resulting Einstein

radius differs from the value of Paper I. This reflects the fact that the interpretation

of this system as a lens is not straightforward. This is Grade B until future HST

data shed more light on the actual nature of this system.

• SL2SJ140650+522619 has a cusp configuration. Even though the source appears

to have two separate components, the compact structure outside of the main arc is

actually a foreground object, as revealed by our spectroscopic observations.

• SL2SJ141137+565119 shows a complete ring. Our lens model cannot account for

all the flux in one bright knot on the arc, North of the lens. This could be the

result of the presence of substructure close to the highly magnified unresolved knot

that requires a minute knowledge of the PSF.

• SL2SJ141917+511729. Only two bright points can be identified on the arc of this

system, while no counter-image is visible. The Einstein radius of this lens is rather

large (∼ 4”), which puts this system in the category of group-scale lenses.

• SL2SJ142003+523137. This disk galaxy is producing a lensed arc. The recon-

structed source is compact and difficult to resolve. The predicted counter-image of

the arc is too faint to be detected and possibly affected by extinction.

• SL2SJ142059+563007. The WFC3 image of this lens offers a detailed view on the
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source structure. We identify three separate bright components, two quads and one

double, which allow us to constrain robustly the Einstein radius.

• SL2SJ142731+551645. The source lensed by this disky galaxy is in a typical fold-

like configuration, with two of its four images merging into an arc.

• SL2SJ220329+020518. This system shows a bright arc, and a possible counter-

image close to the center. However, we are not able to fit both the light from the

arc and the candidate counter-image. On the other hand, our spectroscopic analysis

reveals [OII] emission at the redshift of the lens (Paper IV), which suggests that

the blue bright spot close to the center might be a substructure associated with the

lens and not the source. We model the system using light from the arc only. Our

model predicts the existence of a faint counter-image that cannot be ruled out by

our snapshot observation.

• SL2SJ220506+014703. The spectroscopic follow-up revealed emission from the

bright arc at z = 2.52. No emission is detected from its counter-image, but since

the lens model is robust we give this lens a grade A.

• SL2SJ220629+005728. The image shows a secondary component with a color sim-

ilar to the main lens, in the proximity of one of the arcs. This component could

contribute to the overall lensing effect. We modeled it with a singular isothermal

sphere. The fit yielded a small value for its Einstein radius as in Paper I.

• SL2SJ221326-000946 is a disky lens. A merging pair and a third image of the

same bright component are identified on the arc. No counter-image is visible in our
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images.

• SL2SJ221407-180712. Analogous to other systems with CFHT data only, we need

to fix the PA of the mass distribution in order to constrain accurately the Einstein

radius. It is a grade B because of the lack of source spectroscopy.

• SL2SJ221929-001743. Only one source component, at a spectroscopic redshift of

z = 1.02, is visible in the CFHT image. The constraints that this image provides

on the lens model are not good enough and we need to fix the position angle of

the mass to that of the light. The best-fit model does not predict multiple images.

Grade B.

• SL2SJ222012+010606. The CFHT image shows two blue components on opposite

sides of the lens. The brighter arc is measured to be at a higher redshift than

the lens, while we have no spectroscopic information on the fainter blob. The lens

model that we obtain is only partly satisfactory, because it predicts a mass centroid

off by ∼ 1.5 pixels from the light centroid. Moreover, the stellar mass and velocity

dispersion of the foreground galaxy are unusually low in relation to the measured

Einstein radius. It seems then plausible that the secondary source component is

not a counter-image to the main arc. The foreground galaxy is definitely providing

some lensing, but probably not strong. Grade C.

• SL2SJ222148+011542. Two arcs are visible both in photometry and in spec-

troscopy, making this a grade A lens.

• SL2SJ222217+001202. An arc with no clear counter-image is visible in the ground-
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based image of this lens. We put a Gaussian prior on the lens PA, centered on the

light PA and with a 10 degree dispersion, in order to obtain a meaningful model of

this lens. Grade B.

A few of the systems presented here are also part of the sample studied by More

et al. (2012) in their work dedicated to group-scale lenses in the SL2S survey. These are

SL2SJ021325−074355, SL2SJ021411−040502, SL2SJ022511−045433, SL2SJ085559−040917,

SL2SJ090407−005952, SL2SJ140156+554446, SL2SJ140454+520024, SL2SJ141917+511729,

SL2SJ220329+020518 and SL2SJ220506+014703. For easier access, the relevant data of

all lenses and candidates studied here can be found on The Master Lens Database online

archive (Moustakas, Brownstein et al., in prep.).

3.5 Stellar masses

One of the goals of our study is to better understand the mass assembly of early-

type galaxies over cosmic time. While gravitational lensing provides us with a precise

measurement of the total mass enclosed within the Einstein radius of our lenses, mea-

surements of the stellar mass are needed to separate the contribution of baryonic and

dark matter to the total mass balance. In this paper we estimate stellar masses through

stellar population synthesis (SPS) fitting of our photometric measurements: we create

stellar populations assuming a simply-parametrized star formation history and stellar

initial mass function (IMF), calculate magnitudes in the observed bands and fit to the

measurements. The implementation of this procedure is the same as the one in Auger

et al. (2009) and is based on a code written by M. W. Auger. We create composite stellar

95



Name REin q PA ms Grade Notes HST?

(arcsec) (degrees) (mag)

SL2SJ020457-110309 0.57± 0.07 0.71± 0.14 29.4± 32.3 22.61 B N

SL2SJ020524-093023 0.80± 0.10 0.52± 0.15 −44.4± 22.4 23.74 A N

SL2SJ020833-071414 2.66± 0.08 0.76± 0.01 59.4± 0.3 24.88 B Y

SL2SJ021206-075528 1.23± 0.04 0.77± 0.02 −16.9± 4.3 24.72 B N

SL2SJ021247-055552 1.27± 0.04 0.82± 0.05 −32.7± 4.6 25.11 A N

SL2SJ021325-074355 2.39± 0.07 0.54± 0.01 17.9± 0.4 23.68 A Y

comp. 2 0.74± 0.12 0.64± 0.24 53.6 (fixed)

SL2SJ021411-040502 1.41± 0.04 0.60± 0.02 −84.5± 1.1 24.61 A Y

SL2SJ021737-051329 1.27± 0.04 0.85± 0.03 −73.9± 3.1 24.06 A Y

γext 0.11± 0.01 1.0± 0.1

SL2SJ021801-080247 1.00± 0.03 0.78± 0.03 38.8± 4.1 24.79 A N

SL2SJ021902-082934 1.30± 0.04 0.78± 0.06 −80.3± 3.9 26.31 A Y

SL2SJ022046-094927 1.00± 0.03 0.95± 0.02 −42.4± 12.8 24.15 A N

SL2SJ022056-063934 1.20± 0.04 0.63± 0.04 −79.6± 2.7 24.57 B N

SL2SJ022346-053418 1.15± 0.10 0.40± 0.06 70.7± 6.1 24.35 B N

SL2SJ022357-065142 1.35± 0.04 0.79± 0.02 66.2± 2.7 24.73 A Y

SL2SJ022511-045433 1.76± 0.05 0.58± 0.02 24.8± 0.5 23.61 A Y

SL2SJ022610-042011 1.19± 0.04 0.77± 0.03 −12.7± 6.0 25.26 A Y

SL2SJ022648-040610 1.29± 0.05 0.81± 0.07 −65.0± 7.7 25.93 A disky Y

SL2SJ022648-090421 1.56± 0.05 0.85± 0.03 72.1± 4.1 26.16 B N

SL2SJ022708-065445 0.90± 0.05 0.61± 0.11 −86.4±−85.4 24.51 A Disky N

SL2SJ023251-040823 1.04± 0.03 0.93± 0.03 72.3± 22.3 24.36 A Y

SL2SJ023307-043838 1.77± 0.06 0.76± 0.04 51.7± 2.4 24.40 A N

SL2SJ084847-035103 0.83± 0.08 0.74± 0.19 67.4±−58.0 23.83 A N

SL2SJ084909-041226 1.10± 0.03 0.73± 0.03 40.2± 1.8 24.16 A Y

SL2SJ084934-043352 1.25± 0.05 0.66± 0.13 36.4 (fixed) 23.87 B N

SL2SJ084959-025142 1.16± 0.04 0.74± 0.04 −62.8± 2.3 25.85 A Y

SL2SJ085019-034710 0.93± 0.03 0.45± 0.04 1.5± 3.2 25.59 A disky N

SL2SJ085317-020312 0.88± 0.12 0.63± 0.14 15.7± 6.0 24.52 A N

SL2SJ085327-023745 1.32± 0.04 0.71± 0.01 0.5± 1.7 23.07 A N

SL2SJ085540-014730 1.02± 0.04 0.96± 0.03 −48.6± 33.9 25.32 A N

SL2SJ085559-040917 1.34± 0.12 0.47± 0.14 40.8± 25.2 24.14 B N

SL2SJ085826-014300 0.90± 0.03 0.90± 0.04 59.5± 17.8 26.36 A Y

SL2SJ090106-025906 1.03± 0.03 0.46± 0.02 −18.9± 1.2 25.68 A Y

SL2SJ090407-005952 1.41± 0.04 0.64± 0.01 71.7± 0.8 24.32 A Y

SL2SJ095921+020638 0.74± 0.02 0.95± 0.01 −72.1± 2.5 26.79 A Y

SL2SJ135847+545913 1.21± 0.04 0.76± 0.01 −70.7± 1.7 24.30 A Y

Table 3.7: Peak value and 68% confidence interval of the posterior probability distribution
of each lens parameter, marginalized over the other parameters. Columns 2–4 correspond
to the Einstein radius (REin), the axis ratio of the elliptical isodensity contours (q), and
the position angle measured east of north (PA) of the SIE lens model. Column 5 shows
the magnitude of the de-lensed source in the band used for the lensing analysis: the
bluest available band for HST data, or g band for CFHT data. The typical uncertainty
on the source magnitude is ∼ 0.5. Column 6 lists notes on the lens morphology, while
column 7 indicates whether the lens has HST imaging.
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Name REin q PA ms Grade Notes HST?

(arcsec) (degrees) (mag)

SL2SJ135949+553550 1.15± 0.03 0.60± 0.01 55.6± 0.5 25.53 A Y

SL2SJ140123+555705 1.73± 0.07 0.49± 0.04 −43.8± 0.9 26.63 A Y

SL2SJ140156+554446 2.03± 0.06 0.58± 0.01 32.0± 0.3 24.41 A Y

SL2SJ140221+550534 1.23± 0.04 0.76± 0.04 −46.8± 3.1 25.41 A Y

SL2SJ140454+520024 2.55± 0.08 0.54± 0.03 71.0± 0.9 24.79 A N

SL2SJ140533+550231 1.04± 0.07 0.56± 0.02 1.4± 2.2 24.15 A double Y

comp. 2 0.53± 0.07 0.81± 0.06 45.8± 15.4

SL2SJ140546+524311 1.50± 0.05 0.47± 0.05 −54.1± 1.9 26.44 A Y

γext 0.04± 0.02 −33.1± 0.1

SL2SJ140614+520253 4.36± 0.16 0.63± 0.03 −53.3± 2.0 22.58 C N

SL2SJ140650+522619 0.94± 0.03 1.00± 0.01 −27.0± 1.2 24.08 A Y

SL2SJ141137+565119 0.93± 0.03 0.85± 0.01 62.4± 0.3 24.53 A Y

SL2SJ141917+511729 3.08± 0.23 0.62± 0.12 47.5± 5.1 24.83 A Y

SL2SJ142003+523137 1.81± 0.09 0.35± 0.02 66.0± 2.0 24.70 A disky N

SL2SJ142031+525822 0.96± 0.14 0.84± 0.14 −79.3± 5.9 22.45 B Y

SL2SJ142059+563007 1.40± 0.04 0.67± 0.01 −10.3± 0.3 25.17 A Y

SL2SJ142321+572243 1.30± 0.10 0.34± 0.06 43.9± 1.6 31.72 A Y

SL2SJ142731+551645 0.81± 0.03 0.49± 0.02 −62.8± 1.0 24.73 A disky Y

SL2SJ220329+020518 1.95± 0.06 0.45± 0.02 −31.8± 0.2 24.95 A Y

SL2SJ220506+014703 1.66± 0.06 0.73± 0.04 80.6± 3.7 23.68 A N

SL2SJ220629+005728 1.56± 0.07 0.66± 0.04 −29.0± 4.2 24.78 B N

comp. 2 0.16± 0.06

SL2SJ221326-000946 1.07± 0.03 0.21± 0.01 −41.6± 0.5 24.82 A disky Y

SL2SJ221407-180712 0.86± 0.18 0.89± 0.11 57.0 (fixed) 25.01 B N

SL2SJ221852+014038 1.38± 0.08 0.42± 0.10 −66.9± 5.4 25.54 B N

SL2SJ221929-001743 0.63± 0.11 0.74± 0.25 85.1 (fixed) 23.46 B N

SL2SJ222012+010606 2.15± 0.07 0.70± 0.04 −25.5± 2.7 24.09 C N

SL2SJ222148+011542 1.40± 0.05 0.87± 0.03 78.1± 4.0 24.48 A N

SL2SJ222217+001202 1.31± 0.25 0.81± 0.26 34.8± 7.4 24.83 B N

Table 3.7: continued.
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Figure 3.9: Lens modeling results showing, on each row, from left to right, a color cutout
image, the input science imaged used for the modeling with uninteresting areas cropped
out, the reconstructed lensed image, the reconstructed intrinsic source and the difference
image (data−model) normalized in units of the estimated pixel uncertainties.
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Figure 3.9: continued.
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Figure 3.9: continued.

100



Figure 3.9: continued.
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Figure 3.9: continued.
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Figure 3.9: continued.
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Figure 3.9: continued.
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Figure 3.9: continued.
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Figure 3.9: continued.
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Figure 3.9: continued.
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Figure 3.9: continued.

populations from stellar templates by Bruzual & Charlot (2003), with both a Salpeter

and a Chabrier IMF. We assume an exponentially declining star formation history, ap-

propriate given the old age of the red galaxies in our sample. In order to obtain robust

stellar masses, measurements in a few different bands are needed. Although HST images

provide better spatial resolution, useful to deblend the lens light from that of the back-

ground source, our objects have HST data in at most two bands which are not enough

for the purpose of fitting SPS models. CFHT images on the other hand are deep and

available consistently in five different bands for all of the targets. The inclusion of the

HST photometry to the overall SED fitting would not bring much new information and

we therefore discard it. The fit is based on an MCMC sampling. The measured values

of the stellar masses are reported in Table 3.8. The other model parameters are largely

unconstrained. As a result of the well-known degeneracy between age and metallicity,

our photometric data can only put lower limits on these two quantities.

For the systems with additional NIR observations the fit is repeated including those

data. The addition of NIR fluxes produces stellar masses consistent with the values mea-

sured with optical data only, but with smaller uncertainty (see Figure 3.10). The relative
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scatter between stellar masses obtained from optical photometry alone and with the ad-

dition of NIR data is 0.06 dex in logM∗ and the bias is 0.01. This gives us an estimate of

the systematic error coming from the stellar templates being not a perfect description of

the data over all photometric bands; in Paper IV, this systematic uncertainty is added to

the statistical uncertainty on M∗ when dealing with stellar masses. On the one hand the

tight agreement between optical and optical+NIR stellar masses should not come as a

surprise since the two data sets differ in most cases only by the addition of one band. On

the other hand, if the optical data were contaminated with poor subtraction of light from

the blue arcs the resulting stellar masses could be biased. The fact that NIR data, with

little to no contamination from the background source, does not change the inference is

reassuring on the quality of our photometric measurements.

Some of the stellar masses measured here are not consistent with previous measure-

ments from Paper II. This reflects the difference in the measured magnitudes due to the

different source masking strategy discussed in Section 3.2.1. The values reported here

are to be considered more robust.

The median stellar mass of the sub-sample of grade A SL2S lenses is 1011.53M⊙, if a

Salpeter IMF is assumed, and the standard deviation of the sample is 0.3 dex in logM∗.

The distribution in stellar mass of SL2S galaxies is very similar to that of SLACS galaxies,

as shown in Figure 3.10. This is important in view of analyses that combine data from

both samples, as we do in Paper IV.
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Lens name z logM
(Chab)
∗ /M⊙ logM

(Chab)
∗ (NIR)/M⊙ logM

(Salp)
∗ /M⊙ logM

(Salp)
∗ (NIR)/M⊙

SL2SJ020457-110309 0.609 11.20± 0.15 · · · 11.46± 0.15 · · ·
SL2SJ020524-093023 0.557 11.28± 0.12 · · · 11.52± 0.12 · · ·
SL2SJ020833-071414 0.428 11.59± 0.10 · · · 11.84± 0.10 · · ·
SL2SJ021206-075528 0.460 11.33± 0.10 · · · 11.59± 0.10 · · ·
SL2SJ021247-055552 0.750 11.17± 0.17 · · · 11.45± 0.17 · · ·
SL2SJ021325-074355 0.717 11.71± 0.18 11.73± 0.15 11.97± 0.19 11.97± 0.14

SL2SJ021411-040502 0.609 11.34± 0.14 11.38± 0.10 11.60± 0.14 11.63± 0.10

SL2SJ021737-051329 0.646 11.29± 0.15 11.35± 0.11 11.53± 0.16 11.60± 0.11

SL2SJ021801-080247 0.884 11.27± 0.15 · · · 11.54± 0.14 · · ·
SL2SJ021902-082934 0.389 11.24± 0.10 11.20± 0.08 11.50± 0.10 11.45± 0.08

SL2SJ022046-094927 0.572 11.11± 0.12 · · · 11.36± 0.11 · · ·
SL2SJ022056-063934 0.330 11.44± 0.10 · · · 11.69± 0.09 · · ·
SL2SJ022346-053418 0.499 11.51± 0.11 · · · 11.76± 0.11 · · ·
SL2SJ022357-065142 0.473 11.49± 0.10 11.44± 0.08 11.74± 0.10 11.67± 0.08

SL2SJ022511-045433 0.238 11.57± 0.09 11.59± 0.07 11.81± 0.09 11.84± 0.07

SL2SJ022610-042011 0.494 11.48± 0.10 11.41± 0.09 11.73± 0.11 11.64± 0.09

SL2SJ022648-040610 0.766 11.53± 0.12 11.46± 0.11 11.79± 0.12 11.70± 0.11

SL2SJ022648-090421 0.456 11.72± 0.10 · · · 11.97± 0.10 · · ·
SL2SJ022708-065445 0.561 10.93± 0.14 · · · 11.21± 0.14 · · ·
SL2SJ023251-040823 0.352 11.11± 0.10 11.18± 0.08 11.36± 0.09 11.43± 0.07

SL2SJ023307-043838 0.671 11.44± 0.14 · · · 11.71± 0.13 · · ·
SL2SJ084847-035103 0.682 10.97± 0.16 · · · 11.24± 0.16 · · ·
SL2SJ084909-041226 0.722 11.39± 0.14 11.31± 0.10 11.63± 0.13 11.56± 0.11

SL2SJ084934-043352 0.373 11.42± 0.10 · · · 11.67± 0.10 · · ·
SL2SJ084959-025142 0.274 11.27± 0.09 11.27± 0.07 11.52± 0.09 11.51± 0.07

SL2SJ085019-034710 0.337 10.89± 0.09 · · · 11.14± 0.09 · · ·
SL2SJ085317-020312 0.698 11.26± 0.13 · · · 11.51± 0.13 · · ·
SL2SJ085327-023745 0.774 11.13± 0.16 · · · 11.38± 0.16 · · ·
SL2SJ085540-014730 0.365 10.86± 0.10 · · · 11.11± 0.10 · · ·
SL2SJ085559-040917 0.419 11.39± 0.10 · · · 11.63± 0.10 · · ·
SL2SJ085826-014300 0.580 10.76± 0.14 10.81± 0.10 11.01± 0.14 11.06± 0.10

SL2SJ090106-025906 0.670 10.80± 0.17 · · · 11.07± 0.16 · · ·
SL2SJ090407-005952 0.611 11.30± 0.11 11.41± 0.11 11.55± 0.12 11.66± 0.11

SL2SJ095921+020638 0.552 11.03± 0.10 10.81± 0.09 11.28± 0.11 11.04± 0.09

SL2SJ135847+545913 0.510 11.39± 0.11 · · · 11.66± 0.11 · · ·
SL2SJ135949+553550 0.783 11.17± 0.15 · · · 11.41± 0.15 · · ·
SL2SJ140123+555705 0.527 11.54± 0.11 · · · 11.80± 0.11 · · ·
SL2SJ140156+554446 0.464 11.59± 0.10 · · · 11.85± 0.10 · · ·
SL2SJ140221+550534 0.412 11.54± 0.10 · · · 11.79± 0.10 · · ·
SL2SJ140454+520024 0.456 11.85± 0.10 · · · 12.10± 0.10 · · ·
SL2SJ140533+550231 · · · · · · · · · · · · · · ·
SL2SJ140546+524311 0.526 11.42± 0.11 · · · 11.67± 0.11 · · ·
SL2SJ140614+520253 0.480 11.68± 0.11 · · · 11.93± 0.11 · · ·
SL2SJ140650+522619 0.716 11.34± 0.15 · · · 11.60± 0.15 · · ·
SL2SJ141137+565119 0.322 11.04± 0.09 · · · 11.28± 0.09 · · ·
SL2SJ141917+511729 · · · · · · · · · · · · · · ·
SL2SJ142003+523137 0.354 10.44± 0.10 · · · 10.69± 0.10 · · ·

Table 3.8: Stellar masses from the fit of stellar population synthesis models to photomet-
ric data. The redshift of the lens galaxies is reported in column (2).
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Lens name z logM
(Chab)
∗ /M⊙ logM

(Chab)
∗ (NIR)/M⊙ logM

(Salp)
∗ /M⊙ logM

(Salp)
∗ (NIR)/M⊙

SL2SJ142031+525822 0.380 11.31± 0.10 · · · 11.56± 0.09 · · ·
SL2SJ142059+563007 0.483 11.52± 0.10 · · · 11.76± 0.10 · · ·
SL2SJ142321+572243 · · · · · · · · · · · · · · ·
SL2SJ142731+551645 0.511 10.97± 0.12 · · · 11.20± 0.12 · · ·
SL2SJ220329+020518 0.400 11.00± 0.09 11.05± 0.08 11.26± 0.10 11.31± 0.08

SL2SJ220506+014703 0.476 11.26± 0.11 11.29± 0.09 11.51± 0.10 11.53± 0.09

SL2SJ220629+005728 0.704 11.40± 0.15 11.56± 0.12 11.65± 0.15 11.81± 0.12

SL2SJ221326-000946 0.338 10.73± 0.09 10.67± 0.06 10.99± 0.10 10.92± 0.06

SL2SJ221407-180712 0.651 · · · · · · · · · · · ·
SL2SJ221852+014038 0.564 11.52± 0.11 11.52± 0.09 11.79± 0.11 11.78± 0.09

SL2SJ221929-001743 0.289 11.32± 0.09 · · · 11.56± 0.09 · · ·
SL2SJ222012+010606 0.232 10.73± 0.10 10.72± 0.07 10.97± 0.09 10.96± 0.06

SL2SJ222148+011542 0.325 11.30± 0.09 11.31± 0.07 11.55± 0.09 11.56± 0.07

SL2SJ222217+001202 0.436 11.26± 0.10 · · · 11.50± 0.10 · · ·

Table 3.8: continued.

Figure 3.10: . Left panel: Comparison of stellar masses obtained with either optical
ugriz bands only or with optical + near IR bands, for a Salpeter IMF. We observe no
significant differences in the recovered masses. Right panel: Distribution in stellar mass
of the grade A SL2S, SLACS and LSD lenses. SLACS stellar masses are from Auger et al.
(2010a) and LSD masses are taken from Ruff et al. (2011). Stellar masses are obtained
assuming a Salpeter IMF.
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3.6 Sample characterization

We presented effective radii, magnitudes, stellar masses, Einstein radii, lens and source

redshifts, and lens velocity dispersions of our lenses. It is possible at this point to look at

the distribution of our lenses in the parameter space defined by these quantities. Since

our scientific goal is to measure the evolution in the mean density slope with time, it

is very important to assess whether other observables appear to evolve in our sample.

In Figure 3.11 we plot the effective radii, stellar masses and velocity dispersions as a

function of redshift for all our objects, and also for lenses from other surveys. Throughout

this paper, when dealing with stellar masses we refer to values measured from stellar

population synthesis fitting based on a Salpeter initial mass function (IMF). For a fair

comparison, all velocity dispersions, which are measured within rectangular apertures of

arbitrary sizes, are transformed into velocity dispersions within a circular aperture, σe2,

with radius Reff/2 following the prescription of Jørgensen et al. (1995). The values of σe2

for individual SL2S lenses are reported in Table 4.1.

SL2S lenses do not appear to differ from objects from independent lensing surveys in

the average values of Reff , M∗ and σe2. As far as trends with redshift within the SL2S

sample are concerned, there is a mild increase of the stellar mass with z that will need to

be taken into account when discussing the evolution of the mass profile of these objects.

As an additional test, we examine the correlation between mass and effective radius

for SL2S, SLACS and LSD lenses and check it against non-lens galaxies. The goal is to

make sure that these surveys do not preferentially select lenses with a larger or smaller

size than typical ETGs of their mass. The mass-radius relation is seen to evolve with
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time (e.g. Damjanov et al. 2011; Newman et al. 2012b; Cimatti et al. 2012). We correct

for this evolution by considering effective radii evolved to z = 0 assuming the trend

measured by Newman et al. (2012b): logRe(z = 0) = logRe + 0.26z. Effective radii

defined in this way are plotted against measured stellar masses in Figure 3.11, together

with the mass-radius relation measured by Newman et al. (2012b) for low-redshift SDSS

galaxies. Points in the plot of Figure 3.11 should not be considered as evolutionary tracks

of individual objects, as galaxies grow in mass as well as in size. For a given object, its

redshift-evolved size Re(z = 0) is equivalent to its measured effective radius rescaled

by the average size of galaxies at its redshift and at a reference mass. This allows us

to promptly display in a single plot how our lenses compare, in terms of size, to other

galaxies of the same mass, regardless of redshift. We see from Figure 3.11 that lenses

from all surveys lie nicely around the relation found for non-lenses, indicating that our

sample of lenses does not appear special when compared to the more general population

of galaxies of their redshift.

3.7 Summary

We presented photometric and spectroscopic measurements, lens models and stellar

mass measurements for a sample of 61 systems, of which 45 are grade A (definite lenses)

and 14 are grade B (probable lenses). We find that HST imaging, even in snapshot

mode, offers a clear-cut way to determine whether SL2S candidates are actual lenses.

Not surprisingly, most grade A lenses are found for systems with HST data. 13 of the

systems with high-resolution imaging are labeled as grade C lenses, meaning that their
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Figure 3.11: Left panel: Effective radius, stellar mass and velocity dispersion of lenses
as a function of redshift. Right panel: Effective radius vs. stellar mass, where Re values
have been corrected for the evolution in the mass-size relation measured by Newman
et al. (2012b): logRe(z = 0) = logRe+0.26z. The dashed line indicates the mass-radius
relation for SDSS galaxies measured by Newman et al. (2012b).

nature is undetermined. The data for these systems, not shown in this paper, come

largely from WFPC2 snapshot observations. The signal-to-noise ratio of these WFPC2

images is low compared to images taken with ACS or WFC3 despite the longer exposure

times. Most of the remaining grade C systems are targets observed with NIR photometry

and adaptive optics, which proved not to be a very useful technique for the follow-up of

our candidates.

We have shown how spectroscopic observations can be used in combination with

ground-based imaging with good seeing (∼ 0.7′′) to confirm gravitational lens candidates

by the presence of multiply imaged emission lines from the lensed background source.

Ground-based data can be used in some cases to construct lens models and measure

precise Einstein radii: 15 out of 28 lenses with only CFHT photometry are grade A lenses.

The uncertainty on REin for those lenses is still dominated by the 3% systematic error,

meaning that ground based photometry can sometimes be as good as space based imaging
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for the purpose of measuring Einstein radii. For most systems however the information is

not enough to draw definite conclusions on their nature, and in a few cases the data does

not offer enough constraints to measure Einstein radii, mostly because of the difficulty in

detecting and exploiting the counterimage as seen from the ground. The range in Einstein

radii covered by the grade A lenses in our sample is 5−15 kpc, typically larger than those

of other surveys such as SLACS, probing the mass in regions where the contribution of

dark matter is larger.

Stellar masses of lens galaxies can be measured from ground-based data. Measure-

ments ofM∗ are robust to the inclusion of NIR data. NIR should give more reliable stellar

masses, since the blue background sources contribute very little to the infrared flux. Our

result suggests that our measurements of the optical photometry of our lenses have little

contamination from the background sources, and that we effectively deblended lens and

source light. Stellar masses of SL2S lenses cover the range 1011− 1012M⊙, corresponding

to massive ETGs.

We have also shown how SL2S lenses are comparable with lenses from other surveys

in terms of their size, mass and velocity dispersion, and lie on the same M∗−Re relation

as non-lens galaxies.

In the next Chapter we use all these measurements to put constraints on the mass

profile of massive early-type galaxies and its evolution in the redshfit range 0.1 < z < 0.8.
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Chapter 4

The total mass density profile of early-type galaxies

This chapter was published as Sonnenfeld, A.; Treu, T.; Gavazzi, R.; Suyu, S. H.;

Marshall, P. J.; Auger, M. W.; Nipoti, C. “The SL2S Galaxy-scale Lens Sample. IV. The

dependence of the total mass density profile of early-type galaxies on redshift, stellar mass,

and size” 2013, ApJ, 777, 98 and is included here with minor formatting adjustments.

Gravitational lensing, by itself and in combination with other probes, can be used to

great effect to measure the mass profiles of early-type galaxies, both in the nearby universe

and at cosmological distances (Treu & Koopmans 2002a,b; Rusin et al. 2003; Treu &

Koopmans 2004; Rusin & Kochanek 2005; Koopmans et al. 2006; Jiang & Kochanek

2007; Gavazzi et al. 2007; Auger et al. 2010a; Lagattuta et al. 2010). Until recently,

however, this approach was severely limited by the small size of the known samples of

strong gravitational lenses. This has motivated a number of dedicated searches which

have, in the past decade, increased the sample of known strong gravitational lens systems

by more than an order of magnitude (e.g., Browne et al. 2003; Bolton et al. 2008b; Faure

et al. 2008; Treu et al. 2011).

In spite of all this progress the number of known lenses at z ∼ 0.5 and above is

still a severe limitation. Increasing this sample and using it as a tool to understand the
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formation and evolution of massive galaxies is the main goal of our SL2S galaxy-scale

lens search (Gavazzi et al. 2012) and other independent searches based on a variety of

methods (Brownstein et al. 2012; Marshall et al. 2009; Negrello et al. 2010; Pawase et al.

2014; Inada et al. 2012; González-Nuevo et al. 2012; Wardlow et al. 2013; Vieira et al.

2013).

In our pilot SL2S paper (Ruff et al. 2011) we measured the evolution of the density

slope of massive early-type galaxies by combining lensing and dynamics measurements

of a sample of just 11 SL2S lenses with similar measurements taken from the literature

(Treu & Koopmans 2004; Koopmans et al. 2009; Auger et al. 2010b), finding tentative

evidence that the density profile of massive ETGs steepens with cosmic time on average.

This trend was later confirmed qualitatively by an independent study of Bolton et al.

(2012) and agrees with the theoretical work by Dubois et al. (2013). However, the picture

is not clear: the observed trend is tentative at best, while different theoretical studies

find contrasting evolutionary trends (Johansson et al. 2012; Remus et al. 2013). More

data and better models are needed to make progress.

In order to clarify the observational picture, we have collected a much larger sample

of objects, more than tripling the sample of secure lenses with all the necessary measure-

ments, with respect to our pilot study. Photometric, spectroscopic and strong lensing

measurements for this expanded sample are presented in the previous Chapter.

The combination of the photometric, lensing, and spectroscopic data is used in this

Chapter to study the cosmic evolution of the slope of the average mass density profile

of massive early-type galaxies. This is achieved by fitting power law density profiles

(ρ(r) ∝ r−γ′

; γ′ ≈ 2 in the local universe) to the measured Einstein radii and velocity
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dispersions of our lenses. Such a measurement of γ′ is a good proxy for the mean density

slope within the effective radius. The goal of this Chapter is to measure trends of γ′ with

redshift, in continuity with the work of (Ruff et al. 2011), as well as with other structural

properties of massive ETGs, such as stellar mass and size. Such measurements will help

us understand the structural evolution of ETGs from z = 0.8 to present times.

This Chapter is organized as follows. In Section 4.1 we briefly explain how lensing

and kinematics measurements are combined to infer the density slope γ′ and discuss

the physical meaning of such measurements. In Section 4.2 we combine individual γ′

measurements to infer trends of this parameter across the population of ETGs. After a

discussion of our results in Section 4.3 we conclude in Section 4.4.

4.1 Power law models

We now proceed to combine lensing measurements with stellar kinematics information

to infer the total mass density profile of each lens galaxy. We follow the now standard

procedure in lensing and dynamics studies (Treu & Koopmans 2002a), as used by Ruff

et al. (2011). We model the total (dark matter + stars) mass profile as a spherical power

law ρ(r) ∝ r−γ′

in the kinematic analysis. The free parameters of the model are the slope

γ′, and the mass normalization. For a given model we calculate the line of sight velocity

dispersion within the rectangular aperture of our observation, broadened by the seeing,

through the spherical Jeans equation. We assume isotropic orbits and a de Vaucouleurs

profile for the distribution of tracers (de Vaucouleurs 1948), with effective radius fixed

to the observed one. We then compare the model to the observed velocity dispersion
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and Einstein radius to derive posterior probability densities for the free parameters. In

spite of the clear approximations, the method has been shown to be very robust when

compared to results of more sophisticated models (e.g. Barnabè et al. 2011).

The data required for this inference are the Einstein radius of the lens, the redshift of

both the deflector galaxy and the lensed source, and the velocity dispersion of the lens.

Of the 45 grade A lenses of the SL2S sample, 28 have all the required data. For the

analysis presented in this Chapter, only the 25 systems with spectroscopic observations

obtained before January 2013 are used. For the few systems with two or more independent

measurements of the velocity dispersion, we use the weighted average. The inferred values

of γ′ are reported in Table 4.1.

4.1.1 The meaning of γ ′

Before analyzing the measurements in a statistical sense we need to understand what

physical properties the quantity γ′ is most sensitive to. Observations (Sonnenfeld et al.

2012) and simple arguments (galaxies have a finite mass) suggest that the true density

profile deviates from a pure power law, particularly at large radii. Thus our power law

fits to the lensing and kinematics data must be interpreted as an approximation of the

average density slope over a radial range explored by our data. Since for a typical lens

both the Einstein radius and the velocity dispersion probe the region within the effective

radius, we expect that the inferred γ′ will be close to the mean density slope within Reff ,

as suggested by Dutton & Treu (2013a).

However we would like to be more quantitative and explore the two following ques-
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Name zd Reff REin σe2 logMSalp
∗

/M⊙ γ′ Notes

(kpc) (kpc) (km s−1)

SL2SJ021247−055552 0.750 8.92 9.33 267± 17 11.45± 0.17 2.05± 0.09

SL2SJ021325−074355 0.717 17.67 17.22 287± 33 11.97± 0.19 1.79± 0.12

SL2SJ021411−040502 0.609 6.29 9.48 238± 15 11.60± 0.14 1.85± 0.07

SL2SJ021737−051329 0.646 4.27 8.80 270± 21 11.53± 0.16 2.02± 0.09

SL2SJ021902−082934 0.389 3.01 6.88 300± 23 11.50± 0.10 2.26± 0.08

SL2SJ022511−045433 0.238 8.59 6.65 226± 20 11.81± 0.09 1.78± 0.10

SL2SJ022610−042011 0.494 6.44 7.23 266± 24 11.73± 0.11 2.01± 0.12

SL2SJ023251−040823 0.352 4.78 5.15 271± 20 11.36± 0.09 2.39± 0.10

SL2SJ084847−035103 0.682 3.21 6.02 205± 21 11.24± 0.16 1.85± 0.14

SL2SJ084909−041226 0.722 3.55 7.94 312± 18 11.63± 0.13 2.14± 0.06

SL2SJ084959−025142 0.274 6.11 4.84 275± 34 11.52± 0.09 2.32± 0.17

SL2SJ085019−034710 0.337 1.35 4.48 307± 25 11.14± 0.09 2.45± 0.07 disky

SL2SJ085540−014730 0.365 3.48 5.21 222± 19 11.11± 0.10 2.15± 0.11

SL2SJ090407−005952 0.611 16.81 9.47 178± 20 11.55± 0.12 1.48± 0.11

SL2SJ095921+020638 0.552 3.47 4.73 195± 22 11.28± 0.11 2.11± 0.16

SL2SJ135949+553550 0.783 13.08 8.52 229± 19 11.41± 0.15 1.86± 0.14

SL2SJ140454+520024 0.456 11.78 14.80 337± 19 12.10± 0.10 1.95± 0.06

SL2SJ140546+524311 0.526 4.58 9.48 291± 21 11.67± 0.11 2.14± 0.08

SL2SJ140650+522619 0.716 4.35 6.79 258± 14 11.60± 0.15 2.00± 0.07

SL2SJ141137+565119 0.322 3.04 4.34 220± 23 11.28± 0.09 2.15± 0.15

SL2SJ142059+563007 0.483 7.86 8.39 228± 19 11.76± 0.10 1.93± 0.11

SL2SJ220329+020518 0.400 3.86 10.49 218± 21 11.26± 0.10 1.77± 0.09

SL2SJ220506+014703 0.476 3.93 9.87 326± 30 11.51± 0.10 2.19± 0.09

SL2SJ221326−000946 0.338 2.41 5.17 177± 15 10.99± 0.10 1.89± 0.09 disky

SL2SJ222148+011542 0.325 5.27 6.59 224± 23 11.55± 0.09 1.96± 0.13

Table 4.1: Summary of lensing and dynamics measurements.
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tions: what kind of average over the true density profile ρ(r) best reproduces the lens-

ing+dynamics γ′? How sensitive to the ratio REin/Re is the measured γ′ for a fixed galaxy

mass profile? The former issue is relevant when comparing theoretical models to lensing

and dynamics measurements. The latter is important when trying to measure trends of

γ′ with redshift: the ratio REin/Re typically increases for purely geometrical reasons, and

a dependence of γ′ on REin/Re could in principle bias the inference on the evolution of

the slope. In order to answer these questions we simulate γ′ measurements on a broad

range of model mass profiles and compare these with the true density slopes. We consider

a pure de Vaucouleurs profile, a sum of a de Vaucouleurs profile with a Navarro, Frenk

& White (Navarro et al. 1997) profile with two values of the dark matter mass fraction

fDM within the 3d effective radius, and the most probable total density profile from the

bulge + halo decomposition of the gravitational lens SDSSJ0946+1006 by Sonnenfeld

et al. (2012). None of these model profiles is a pure power law. We emphasize that the

range of models is chosen to be broader than what is likely to be found in real galaxies

based on the detailed analysis of SLACS systems by Barnabè et al. (2011).

We again use the spherical Jeans equation to calculate the central velocity dispersion

for each of these model galaxies and then fit power law density profiles with fixed total

projected mass within different Einstein radii. These simulated measurements of γ′ are

plotted in Figure 4.1 as a function of REin/Re for each model profile. In the same plot

we show the local logarithmic density slope −d log ρ/d log r as a function of r, and also

the mass-weighted density slope within radius r

〈γ′(r)〉M =
1

M(r)

∫ r

0

γ′(r′)4πr2ρ(r′)dr′, (4.1)
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Figure 4.1: Solid lines: Local logarithmic density slope as a function of 3d radius, in
units of the effective radius. Dashed lines: mass-weighted density slope within radius
r. Triangles: lensing+dynamics γ′ for REin = r. Different colors indicate the different
model mass profiles listed in the body text.

which has been suggested by Dutton & Treu (2013a) to be a good proxy for the lensing

+ dynamics γ′.

Figure 4.1 shows that measurements of γ′ (triangles) are remarkably independent

of the ratio of the Einstein radius to the effective radius, for all models. This is an

important result: it means that the physical interpretation of γ′ measurements will be

stable against different lenses having different values of REin/Re. Excluding the pure

de Vaucouleurs model, which is ruled out on many grounds (mass-follows light models

fail to reproduce lensing and dynamical data, for example Koopmans & Treu 2003),

122



the difference between the mass-weighted slope and the lensing and dynamics slope is

generally smaller than the typical measurement errors on γ′ of ∼ 0.1, particularly in the

region 0.5Re < r < Re. However the radius at which γ′ and the mass-weighted slope

are closest is slightly different for different mass profiles, and so it is difficult to interpret

γ′ precisely in terms of a mass-weighted slope within a fixed radius. For very accurate

comparisons with lensing and dynamical data, we recommend simulating a lensing and

dynamics measurement of the models.

4.2 Dependence of the mass density profile slope γ ′

on redshift, stellar mass, and effective radius

The main goal of this work is to establish whether, and to what extent, γ′ varies with

redshift across the population of ETGs. It is useful to first study the trends of γ′ on

basic parameters (Section 4.2.1) in order to gain insights about the ingredients that will

have to be considered in Section 4.2.2 to carry out a rigorous statistical analysis.

4.2.1 Qualitative exploration of the dependency of γ ′ on other

parameters

Figure 4.2 shows the individual lens γ′ values as a function of z for SL2S galaxies,

as well as lenses from the SLACS (Auger et al. 2010a) and LSD (Treu & Koopmans

2004) surveys. A trend of γ′ with z is clearly visible, with lower redshift objects having a

systematically steeper slope than higher redshift ones, as previously found by Ruff et al.
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(2011) and Bolton et al. (2012). Before making more quantitative statements on the

time evolution of γ′ we would like to check whether the density slope correlates with

quantities other than redshift. Galaxies grow in mass and size during their evolution,

and a variation of γ′ with time might be the result of a more fundamental dependence

of the slope on structural properties of ETGs. Dependences of γ′ on the effective radius

and the stellar velocity dispersion were explored by Auger et al. (2010a), finding an

anticorrelation with the former and no significant correlation with the latter. Here we

consider the stellar mass, plotted against γ′ in Figure 4.3. A weak trend is visible, with

more massive galaxies having a shallower slope. However the stellar mass is a rather

steep function of redshift in our sample (see Figure 3.11) and the trend seen in Figure 4.3

might just be the result of this selection function. In fact, if we fit for a linear dependence

of γ′ on both z and M∗ we find that our data are consistent with γ′ being independent

of M∗ at fixed z.

A quantity that is expected to correlate with γ′ is the stellar mass density, Σ∗ =

M∗/(2πR
2
e): galaxies with a more concentrated stellar distribution should have a steeper

overall density profile. This was pointed out by Auger et al. (2010a) and Dutton & Treu

(2013a) and is seen in our data, as shown in Figure 4.4. It is therefore important to

account for a dependence of γ′ on Σ∗, or on the two independent variables on which this

quantity depends, Re and M∗, when fitting for the time dependence of the density slope.

This is done in the next Section.
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Figure 4.2: Density slope as a function of redshift for SL2S, SLACS and LSD galaxies.
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Figure 4.3: Density slope as a function of stellar mass. A Salpeter IMF is assumed.
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Figure 4.4: Density slope as a function of stellar mass density.
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4.2.2 Quantitative Inference

In this Section we aim to quantify how the mean density slope 〈γ′〉 depends on galaxy

properties, and on lookback time. The population of ETGs is known to be well-described

by two parameters, as revealed by the existence of the Fundamental Plane relation (Djor-

govski & Davis 1987; Dressler et al. 1987). Two parameters are then probably sufficient

to capture the variation of γ′ across the population of ETGs. For our analysis we focus on

stellar mass and effective radius (this includes also dependencies on stellar mass density,

which is believed to be an important parameter driving γ′, as discussed above). Our ob-

jective is then to measure the trends in γ′ across the three-dimensional space defined by

(z,M∗, Re). This is done with a simple but rigorous Bayesian inference method. We as-

sume that the values of the slope γ′ of our lenses are drawn from a Gaussian distribution

with mean given by

〈γ′〉 = γ′

0 + α(z − 0.3) + β(logM∗ − 11.5) + ξ log (Re/5) (4.2)

and dispersion σγ′ . The stellar mass is in solar units and the effective radius in kpc. We

also assume that individual stellar masses M∗,i are drawn from a parent distribution that

we approximate as a Gaussian:

Pr(M∗,i) =
1

σM∗

√
2π

exp



−

(

logM∗,i − µ
(Samp)
M∗

(zi)
)

2σ
2(Samp)
M∗



. (4.3)

To account for selection effects, we allow for a different mean stellar mass and dispersion

for lenses of different surveys. We also let the mean stellar mass be a function of redshift.

This choice reflects the clear trend of stellar mass with redshift seen in Figure 3.11 for

both the SLACS and the SL2S samples, which in turn is determined by SLACS and SL2S
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both being magnitude-limited samples. The parameter describing the mean stellar mass

is then

µ
(SLACS)
M∗

= ζ (SLACS)(zi − 0.2) + logM∗,0
(SLACS) (4.4)

for SLACS galaxies and

µ
(SL2S)
M∗

= ζ (SL2S)(zi − 0.5) + logM∗,0
(SL2S) (4.5)

for SL2S and LSD galaxies. We assume flat priors on all the model parameters and fit

for them with a Markov chain Monte Carlo following Kelly (2007). The stellar masses

considered in this model are those measured in Paper III assuming a Salpeter IMF. The

full posterior probability distribution function is shown in Figure 4.5 and the median,

16th and 84th percentile of the probability distribution for the individual parameters,

obtained by marginalizing over the remaining parameters, is given in Table 4.2. The fit is

done first with SL2S galaxies only and then repeated by adding SLACS and LSD lenses.

For six lenses of the SLACS sample Auger et al. (2010a) warn that their velocity disper-

sions might be significantly incorrect, and we conservatively exclude them from our fit.

These are SDSSJ0029−0055, SDSSJ0737+3216, SDSSJ0819+4534, SDSSJ0935−0003,

SDSSJ1213+6708 and SDSSJ1614+4522.

By using only the 25 SL2S lenses for which γ′ measurements are possible, we are able

to detect a trend of 〈γ′〉 with Re at the 3-sigma level and a dependence on M∗ at the

1-sigma level: at fixed z and M∗, galaxies with a smaller effective radius have a steeper

density profile. Similarly, at fixed Re, galaxies with a larger stellar mass have a marginally

larger γ′. If we add 53 lenses from SLACS and 4 lenses from the LSD survey, the trends

with M∗ and Re are confirmed at a higher significance, and we detect a dependence of
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Figure 4.5: Posterior probability distribution function for the model parameters of equa-
tion (4.2). Empty contours: Inference with SL2S galaxies only. Filled contours: SL2S +
SLACS + LSD lenses. The different levels represent the 68%, 95% and 99.7% enclosed
probability regions.

Table 4.2: Linear model with scatter.

Parameter SL2S SL2S + Notes

only SLACS + LSD

logM∗,0
(SL2S) 11.50+0.05

−0.05 11.49+0.05
−0.05 Mean stellar mass at z = 0.5, SL2S sample

ζ (SL2S) 0.35+0.34
−0.33 0.38+0.26

−0.26 Linear dependence of mean stellar mass on redshift, SL2S sample

σ
(SL2S)
M∗

0.25+0.05
−0.04 0.23+0.04

−0.04 Scatter in mean stellar mass, SL2S sample

logM∗,0
(SLACS) · · · 11.59+0.03

−0.03 Mean stellar mass at z = 0.2, SLACS sample

ζ (SLACS) · · · 2.35+0.39
−0.39 Linear dependence of mean stellar mass on redshift, SLACS sample

σ
(SLACS)
M∗

· · · 0.17+0.02
−0.02 Scatter in mean stellar mass, SLACS sample

α −0.13+0.24
−0.24 −0.31+0.09

−0.10 Linear dependence of γ′ on redshift.

β 0.31+0.23
−0.23 0.40+0.16

−0.15 Linear dependence of γ′ on logM∗.

ξ −0.67+0.20
−0.20 −0.76+0.15

−0.15 Linear dependence of γ′ on logReff .

γ0 2.05+0.06
−0.06 2.08+0.02

−0.02 Mean slope at z = 0.3, logM∗ = 11.5, Reff = 5 kpc

σγ′ 0.14+0.04
−0.03 0.12+0.02

−0.02 Scatter in the γ′ distribution
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〈γ′〉 on redshift at the 3-sigma level. Lower redshift objects appear to have a steeper slope

than higher redshift counterparts at fixed mass and size. Incidentally, the median value

of ξ, the parameter describing the linear dependence of 〈γ′〉 on logRe, is nearly −2 times

β, the parameter describing the dependence on logM∗. This suggests that 〈γ′〉 grows

roughly as β log (M∗/R
2
e), which is equivalent to the stellar mass density. It appears

then that the dependence of γ′ on the structure of ETGs can be well summarized with a

dependence on stellar mass density, leaving little dependence on M∗ or Re individually.

This confirms and extends the trend with surface mass density seen by Auger et al.

(2010a) and Dutton & Treu (2013a).

We then repeated the fit allowing only for a dependence of 〈γ′〉 on redshift and stellar

mass density:

〈γ′〉 = γ0 + α(z − 0.3) + η(log Σ∗ − 9.0). (4.6)

This model has one less free parameter with respect to Equation 4.2. Our inference on

the parameter describing the dependence on Σ∗ is η = 0.38±0.07, and the scatter in γ′ is

σγ′ = 0.12± 0.02, the same value measured for the more general model of Equation 4.2.

This is again suggesting that the dependence of γ′ on the stellar mass density might be

of a more fundamental nature than dependences on mass and size separately.

4.3 Discussion

The main result of the previous section is that the ensemble average total mass density

slope of galaxies of a fixed stellar mass increases with cosmic time (i.e. decreases with

redshift). This trend with redshift is detected at the 3−σ confidence level and is in good
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agreement with previous results from Ruff et al. (2011) and Bolton et al. (2012).

Before discussing the physical interpretation of this result, however, it is important

to emphasize that what we are measuring is how the population mean density slope

changes in the (z,M∗, Re) space within the population of early-type galaxies, and not

how γ′ changes along the lifetime of an individual galaxy, dγ′/dz. In order to infer the

latter quantity we need to evaluate the variation of γ′ along the evolutionary track of the

galaxy as this moves in the (z,M∗, Re) space. This requires to know how both mass and

size of the galaxy change with time, since the slope depends on these parameters. More

formally,

dγ′(z, logM∗, logRe)

dz
=

∂γ′

∂z
+

∂γ′

∂ logM∗

d logM∗

dz
+

∂γ′

∂ logRe

d logRe

dz
. (4.7)

In a parallel with fluid mechanics, our description of the population of galaxies of Sec-

tion 4.1 is Eulerian, while Equation 6.6 is a Lagrangian specification of the change in

time of the mean slope of an individual galaxy, providing a more straightforward way to

physically understand the evolution of ETGs.

With all these terms entering Equation 6.6, it is no longer clear if the density slope is

indeed getting steeper with time for individual objects. In particular, we have observed

that γ′ depends significantly on stellar mass density (and thus effective radius). It is then

crucial to consider all the terms of the equation before reaching a conclusion. Fortunately

this can be done by combining our measurements with results from the literature.

In the context of our model specified in Equation 4.2, the partial derivatives intro-

duced above can be identified and evaluated as follows:

∂γ′

∂z
= α = −0.31± 0.10, (4.8)
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∂γ′

∂ logM∗

= β = 0.40± 0.16, (4.9)

∂γ′

∂ logRe

= ξ = −0.76± 0.15. (4.10)

Note that we are not considering the effects of scatter: we are assuming that the change

in γ′ is the same as that of a galaxy that evolves while staying at the mean γ′ as it moves

through the (z,M∗, Re) space. By doing so, the evolution in the slope that we derive

from Equation 6.6 will be representative of the mean change in γ′ over the population,

while individual objects can have different evolutionary tracks, within the limits allowed

by our constraints on σγ′ .

The remaining quantities to be estimated are the rate of mass and size growth. In

the hierarchical merging picture ETGs are expected to grow in stellar mass with time,

therefore dM∗/dz < 0. Observationally, we know massive early-type galaxies grow at

most by a factor of two in stellar mass since z = 1 (see, e.g., Lin et al. 2013, and

references therein). Thus we can conservatively take the mean between zero and 2, even

though we will show below that our conclusion are virtually insensitive to this choice:

d logM∗

dz
= −0.15± 0.15. (4.11)

The effective radius grows as a result of the growth in mass, but is itself an evolving

quantity at fixed M∗ (Damjanov et al. 2011; Newman et al. 2012b; Cimatti et al. 2012;

Poggianti et al. 2013): Re = Re(z,M∗(z)). We assume that ETGs grow while staying on

the observed M∗ −Re relation at all times. Then we can write

d logRe

dz
=

∂ logRe

∂z
+

∂ logRe

∂ logM∗

d logM∗

dz
(4.12)
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and use the values measured by Newman et al. (2012b), ∂ logRe/∂z = −0.26± 0.02 and

∂ logRe/∂logM∗ = 0.59± 0.07.

Plugging these values into Equation 6.6 we find that

dγ′

dz
= (−0.31± 0.10) + (0.40± 0.15)(−0.15± 0.15) + (−0.76± 0.15)[(−0.26± 0.02)

+(−0.15± 0.15)(0.59± 0.07)] = −0.10± 0.12

(4.13)

Note that dγ′/dz has little dependence on the mass growth rate d logM∗/dz, which is

the most poorly known quantity in this model. To be more quantitative we plot in

Figure 4.6 the total derivative dγ′/dz as a function of d logM∗/dz, and show that for any

plausible value, spanning over an order of magnitude, the answer is unchanged. Different

assumptions on the evolution of the size-mass relation do not change significantly our

result. For instance, Damjanov et al. (2011) find a more rapid evolution of Re than

Newman et al. (2012b), leading to dγ′/dz = 0.06 ± 0.15, consistent with no change of

the total mass density profile with time.

Thus, the key result is that, when considering all the terms of Equation 6.6, we find

that, on average, individual ETGs grow at approximately constant density slope. The

observed redshift dependence of γ′ at fixed mass and size can then be understood as the

result of the evolution of the size-mass relation and by the dependency of γ′ on the stellar

mass density. Qualitatively, in this picture an individual galaxy grows in stellar mass and

size so as to decrease its central stellar mass density. During this process, the slope of

its total mass density profile does not vary significantly. However the other galaxies that

now find themselves to have the original stellar mass and effective radius of this galaxy

had originally a steeper mass density profile, thus giving rise to the observed trend in
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Figure 4.6: Mean intrinsic change of the density slope with redshift of a massive ETG,
as a function of its mass growth rate.
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∂γ′/∂z.

This is illustrated in Figure 4.7, where we show a possible scenario consistent with

the observations. The evolutionary tracks of two representative galaxies between z = 1

and z = 0 are shown as solid black arrows, in the multi-dimensional parameter space

of stellar mass, effective radius, effective density, and slope of the mass density profile

γ′. The two galaxies are chosen so that one has at z = 1 the same mass and effective

radius that the other has at z = 0. Mass and size are evolved following Equation 4.11

and Equation 4.12. We then assign γ′ at z = 0 based on the observed correlation with

size and stellar mass (effectively with effective stellar mass density, since β ≈ −2ξ) and

assume it does not evolve for an individual galaxy. The apparent evolution of γ′ at fixed

M∗ and Re is consistent with the measured value ∂γ′/∂z = −0.31± 0.10, and is dictated

by a difference in the initial stellar density of their progenitors, being larger for the more

massive object.

In the context of simple one-parameter stellar profiles (e.g. de Vaucouleurs), this

difference in γ′ at fixed mass and size for galaxies at different redshift must be ascribed

to corresponding differences in the underlying dark matter distribution. The implications

of our results for the dark matter profiles of ETGs will be explored in an upcoming paper

(Sonnenfeld et al., in prep.).

An important assumption at the basis of our analysis is that scaling relations of γ′

with mass and size measured at low redshift can be used to predict the evolution of the

slope for higher redshift objects. This assumption holds well if the evolutionary tracks of

higher redshift galaxies stay on parts of the parameter space probed by the lower redshift

systems. To first approximation this seems to be the case for the galaxies in our sample.
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Figure 4.7: Illustration of a scenario consistent with the observed evolution. The evolu-
tionary tracks of two representative galaxies between z = 1 and z = 0 are shown as solid
black arrows, in the multidimensional parameter space of stellar mass, effective radius,
effective density, and slope of the mass density profile γ′. Measured correlations with
stellar mass are used to assign the other parameters as described in the text. The solid
and dotted lines in the top left panel show the mass-size relation at z = 1 from Newman
et al. (2012b) and the scatter around it. Even if γ′ is assumed not to change for an
individual galaxy, γ′ at fixed stellar mass and size is observed to increase reflecting the
difference in their initial (z = 1) stellar density, as shown by the red dashed arrows.
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Figure ?? shows the positions of our lenses in the M∗ − Re space, where the effective

radius of each object is renormalized by the average Re of galaxies at its redshift. Under

our assumptions, objects evolve along lines parallel to the mass-size relation (dashed line)

towards higher masses. There is significant overlap between the high-z SL2S-LSD sample

and the lower redshift SLACS sample, implying that SLACS galaxies are informative on

the evolution in γ′ of SL2S-LSD objects. Differently, one could rely on extrapolations of

the scaling relations for γ′.

A more quantitative explanation of our findings would require a detailed comparison

with theoretical model and is beyond the scope of this work. However, we can check

at least qualitatively how our result compares with published predictions. Nipoti et al.

(2009b) studied the impact of dissipationless (dry) mergers on γ′ finding that for an

individual galaxy the slope tends to get shallower with time. Johansson et al. (2012)

looked at the evolution in the slope on nine ETGs in cosmological simulations, finding

no clear trend in the redshift range explored by our data. Their simulations include both

dry and dissipational (wet) mergers. Remus et al. (2013) examined simulated ETGs in a

cosmological framework and in binary mergers. They found slopes that become shallower

in time, asymptotically approaching the value γ′ ≈ 2.1 as observed in our data. They

also detected a correlation between the amount of in-situ star formation and slope, with

γ′ being larger in systems that experienced more star formation events. Finally, Dubois

et al. (2013) produced zoomed cosmological simulations of ETGs with or without AGN

feedback. They found that the total density slope becomes steeper with time. They also

observed that galaxies with strong AGN feedback have a shallower profile than systems

with no AGN feedback and interpreted this result with the AGN shutting off in-situ star
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formation. Qualitatively, our data is not in stark contrast with any of these models.

A more quantitative comparison is required to find out whether the models work in

detail. This is left for future work. The combination of constraints from the evolution of

the size stellar mass relation obtained via traditional studies of large samples of ETGs,

and our own detailed measurements of the evolution of their internal structure should

provide a stringent test for evolutionary models of ETGs, and thus help us improve our

understanding of the baryonic and dark matter physics relevant at kpc scales.

4.4 Summary and Conclusions

We have presented a comprehensive analysis of the total density profile of a sample

of 25 ETG strong lenses from the SL2S sample. By fitting a power-law density profile

(ρ(r) ∝ r−γ′

) to the lensing and stellar kinematics data of SL2S, SLACS and LSD lenses

we measured the dependence of γ′ on redshift, stellar mass and galaxy size, over the

ranges z ≈ 0.1− 1.0, logM∗/M⊙ ≈ 11− 12, Reff = 1− 20kpc.

Our main results can be summarized as follows:

1. In the context of power-law models for the density profile ρtot ∝ r−γ′

, the (logarith-

mic) density slope γ′ of the SL2S lenses is approximately – but not exactly – that

of a single isothermal sphere (γ′ = 2), consistent with previous studies of lenses in

different samples. This can be understood as the result of the combination of a

stellar mass density profile that falls off more steeply than the dark matter halo.

The relative scaling of the two conspires to produce the power law index close to

isothermal (“bulge-halo” conspiracy).
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2. At a given redshift, the mass density slope γ′ depends on the surface stellar mass

density Σ∗ = M∗/2R
2
e , in the sense that galaxies with denser stars also have steeper

total mass density profiles (∂γ′/∂ log Σ∗ = 0.38± 0.07).

3. At fixed M∗ and Re, 〈γ′〉 depends on redshift, in the sense that galaxies at a lower

redshifts have on average a steeper average slope (∂γ′/∂z = −0.31± 0.10).

4. Once the dependencies of γ′ on redshift and surface stellar mass density are taken

into account, less than 6% intrinsic scatter is left (σ′

γ = 0.12± 0.02).

5. The average redshift evolution of γ′ for an individual galaxy is consistent with

zero: dγ′/dz = −0.10 ± 0.12. This result is obtained by combining our measured

dependencies of 〈γ′〉 on redshift stellar mass and effective radius with the observed

evolution of the size stellar mass relation taken from the literature.

The key result of this work is that the dependency of 〈γ′〉 on redshift and stellar

mass density does not imply that massive early-type galaxies change their mass density

profile over the second half of the lifetime. In fact, at least qualitatively, the observed

dependencies can be understood as the results of two effects. Individual galaxies grow in

stellar mass and decrease in density over the redshift range 1 to 0, while apparently largely

preserving their total mass density profiles. This could be explained by the addition of

stellar mass in the outer part of the galaxies in quantities that are sufficient to explain

the decrease in stellar mass density but insufficient to alter the total mass density profile,

since the regions are already dark matter dominated. As shown by Nipoti et al. (2012),

the growth in size during this period is slow enough that it could perhaps be explained
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by the the infall of dark matter and stars via a drizzle of minor mergers, with material of

decreasing density, tracking the decreasing cosmic density. This process needs to happen

while substantially preserving the total mass density profile.

Alternatively, the evolution at constant slope can be interpreted as the combined

effect of the decrease in stellar mass density and a variation in the dark matter profile

(either a steepening or a decrease of the central dark matter distribution). The latter

effect would be responsible for the term ∂γ′/∂z.

Checking whether these scenarios can work quantitatively requires detailed compar-

isons with theoretical calculations, which are beyond the scope of this paper.

The second important result of this work is that the total mass density profile of early-

type galaxies depends on their stellar mass density, with very little scatter. Qualitatively

this makes sense, as we expect that the more concentrated stellar distributions should

have been able to contract the overall profile the most. Presumably this difference may

trace back to differences in past star formation efficiency or merger history. Therefore,

the tightness of the observed correlation should provide interesting constraints on these

crucial ingredients of our understanding of early-type galaxies.
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Chapter 5

Dark matter halos and stellar IMF of massive ETGs

out to redshift 0.8

This chapter has been submitted to The Astrophysical Journal as Sonnenfeld, A.;

Gavazzi, R.; Suyu, S. H.; Treu, T.; Marshall, P. J. “The SL2S Galaxy-scale Lens Sam-

ple. III. Lens Models, Surface Photometry and Stellar Masses for the final sample”, is

available for consultation as arXiv:1410.1881, and is included here with minor edits.

In Chapter 2 we showed how, thanks to data of excellent quality, we can determine

the stellar IMF and the density profile of the dark matter halo of a massive galaxy. Here

we use strong lensing and stellar velocity dispersion measurements for a set of ∼ 80

lenses from the Strong Lensing Legacy Survey (SL2S) and the Sloan ACS Lens Survey

(SLACS) to statistically infer the same properties in the population of massive galaxies

out to redshift ∼ 0.8. Using the same sample of lenses, we showed in Chapter 4 how

Sonnenfeld et al. (2013b, hereafter Paper IV) measured the mean density slope γ′ of

the total density profile ρ(r) ∝ r−γ′

across the population of massive ETGs, finding that

ETGs evolve while keeping approximately a constant density slope (dγ′/dz = −0.1±0.1).

Although intriguing, a trend of the parameter γ′ is not of easy interpretation. It is not

clear how dark matter and baryons conspire to mantain a constant density slope while the
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stellar component becomes less concentrated. Here we address this question by fitting a

two-component model, consisting of a stellar spheroid and a dark matter halo, to the same

data. We characterize simultaneously the distribution of dark matter halo and stellar

IMF properties with a hierarchical Bayesian inference method: a robust statistical tool

that allows us to properly take into account scatter in the population. We explicitly take

into account the selection function of our lensing surveys, allowing us to learn about the

general population of galaxies rather than just characterizing the population of strong

lenses.

This Chapter is organized as follows. In Section 5.1 we describe the model adopted to

describe the density profile of the lenses in our sample. In Section 5.2 we introduce the

statistical framework used for the analysis of the population of ETGs. In Section 5.3 we

explain how the selection function of lensing surveys is taken into account. In Section 5.4

we assume a Navarro Frenk and White (NFW Navarro et al. 1997) model for the dark

matter halo of all lenses and combine individual measurements to infer the properties of

the population of massive ETGs. In Section 5.5 we generalize the analysis to the case of

halos with free inner slope. After a discussion of our results in Section 5.6 we conclude

in Section 5.7.

The number of SL2S lenses with a complete set of data necessary for a lensing

and dynamics analysis is now 28, with the addition of systems SL2SJ020524-093023,

SL2SJ021801-080247 and SL2SJ022046-094927 to the sample analyzed in Paper IV.
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5.1 Two component mass models

The analysis presented in Paper IV is based on power-law model density profiles for the

total (stellar and dark) mass. Though very instructive, studying the total density profile

leaves open questions on what the detailed structure of the mass profile is. Different

mass profiles could give rise to the same value of γ′ when fitted with a power-law model.

Massive ETGs have a slope close to γ′ ≈ 2. Models in which the mass follows the light

correspond to steeper slopes (γ′ ≈ 2.3). In order to get γ′ = 2 there must be a non-stellar

(dark) component with a mean slope shallower than isothermal. We want to disentangle

the contribution of the dark component to the mass distribution of our lenses from that

of the stars. For this purpose, we consider mass models with two components: a stellar

spheroid and a dark matter halo. We model the stellar spheroid with a de Vaucouleurs

profile with effective radius fixed to the observed one, and a uniform prior on the stellar

mass-to-light ratio. The dark matter halo is modeled with a generalized Navarro, Frenk

& White (gNFW) profile (Zhao 1996):

ρDM(r) ∝
1

rγDM(1 + r/rs)3−γDM

. (5.1)

Both components are spherical. We fix the effective radius of the stellar component to

the observed one, and the scale radius of the dark matter is fixed to rs = 10Re, which

is a typical value seen in numerical simulations (e.g. Kravtsov 2013). The impact of this

choice on our inference will be discussed at the end of this Section. This mass model has

three degrees of freedom, which we describe in terms of the stellar mass M∗, the projected

dark matter mass within a cylinder of 5 kpc radius MDM5, and the inner slope of the dark

matter halo γDM. We fit this model to the observed Einstein radius and central velocity
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Figure 5.1: Posterior probability distribution for a de Vaucouleurs + gNFW mass model
of the gravitational lens SL2SJ142059+563007. The model parameters are the total
stellar mass M∗, the inner slope of the dark matter halo γDM and the projected dark
matter mass MDM5 enclosed within a cylinder of 5 kpc radius.

dispersion with the same procedure used in Paper IV. Model Einstein radii are calculated

given M∗, MDM5 and γDM assuming spherical profiles, and model velocity dispersions are

calculated through the spherical Jeans equation assuming isotropic orbits. The fit is done

in a Bayesian framework, assuming a uniform prior on logM∗, logMDM5 and γDM, and

restricting the range of possible values for the latter quantity to 0.2 < γDM < 1.8. Note

that this is very similar to the “free” model adopted by (Cappellari et al. 2012).

As an example, we show in Figure 5.1 the posterior probability distribution function

of the model parameters for the lens SL2SJ142059+563007. The model is largely un-
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constrained, since it consists of three free parameters that are fit to only two pieces of

data: the Einstein radius and the central velocity dispersion. As expected and observed

by previous authors (e.g. Treu & Koopmans 2002a,b), there is a strong degeneracy be-

tween the inner slope and normalization of the dark matter component. The tilt of this

degeneracy is determined in part by our choice of parametrizing the dark matter halo

in terms of the mass enclosed within 5 kpc. This is not directly observable, while the

mass enclosed within the Einstein radius is better constrained by the data. For the lens

in this example, the Einstein radius is larger than 5 kpc, therefore for fixed dark matter

mass within REin, the inferred mass at 5 kpc will depend on the assumed value of the

dark matter slope. Nevertheless, 5 kpc is close in value to the median Einstein radius

of the lenses considered in this work and the choice of MDM5 to parametrize the dark

matter mass will prove useful later in this work, when analyzing the entire set of lenses

statistically.

For systems with data of exceptional quality, the degeneracy between dark matter

mass and slope can be broken without having to make additional assumptions (e.g.

Sonnenfeld et al. 2012). In our work, we do not wish to constrain γDM and MDM5

for individual systems, but we measure their population average values by statistically

combining measurements over a large number of lenses. This will be the subject of

Sections 5.2, 5.4 and 5.5. Nevertheless, it is interesting to constrain the dark matter

content and the stellar mass of individual lenses. This can be done, provided we make a

more restrictive assumption on the shape of the dark matter halo. We do this by fixing

the inner slope of the dark matter halo to γDM = 1 and hence restrict ourselves to NFW

density profiles for the rest of this section. The free parameters of the model are now
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the stellar mass M∗ and the normalization of the dark matter halo, MDM5. The model is

very similar to the one used by Treu et al. (2010). The only difference lies in the choice

of the scale radius of the NFW component, rs. In Treu et al. (2010) this was fixed to 30

kpc, while here we fix it to ten times the effective radius of the stellar component.

We fit this model to the lensing and stellar kinematics data of each one of the SL2S

lenses, as well as lenses from the SLACS survey. Our two component model, with a

de Vaucouleurs spheroid and an NFW dark matter halo, provides excellent fits to most

of our lenses. The only exceptions are a few SLACS lenses with very steep density

slope γ′ > 2.2, i.e. with relatively large velocity dispersions for their Einstein radius

(similar to PG1115+080 Treu & Koopmans 2002b). In the context of our model, a steep

density slope corresponds to a larger ratio between stellar and dark matter mass, since

the NFW halo has a much shallower density profile than a de Vaucouleurs profile at the

scale relevant for our measurements, i.e. at the effective radius. The steepest density

profile we can construct with such a two component model is a galaxy with no dark

matter. For these few SLACS lenses, even if we assign the entire mass enclosed within

the Einstein radius to the spheroid, the model velocity dispersion is still smaller than

the measured one, although consistent within the uncertainty. A perfect match with the

data would require γDM > 2, excluded by our prior. The inference then favors small dark

matter masses for those systems. Adopting a more flexible model for the stellar density

profile does not help in this case: Posacki et al. (2014) did a similar spheroid and halo

decomposition to the same SLACS lenses considered here using a multigaussian fit to the

photometry, and still found very small dark matter fractions for some of the objects.

The derived model parameters for the SL2S lenses are reported in Table 5.1. The
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parameters considered are the stellar mass, M∗, the projected dark matter mass enclosed

within 5 kpc, MDM5, the projected dark matter mass enclosed within Re, MDMe, the

fraction of dark matter mass projected within a cylinder of radius Re, fDMe, and finally

the IMF mismatch parameter (Treu et al. 2010), defined as the ratio between the true

stellar mass and its estimate based on stellar population synthesis models assuming a

Salpeter IMF, M
(SPS)
∗ :

αIMF ≡ M∗

M
(SPS)
∗

. (5.2)

In this parametrization, a Chabrier IMF corresponds to logαIMF ≈ −0.25. Individual

measurements of the IMF mismatch parameter and the dark matter fraction are plotted

as a function of redshift in Figures 5.2 and 5.3. Under the above assumptions and with

typical data quality, we are able to determine dark matter masses with a ∼ 50% precision

on individual objects. We recall that the values reported are obtained by assuming a

fixed ratio between scale radius of the dark matter halo and effective radius of the light

distribution, rs = 10Re. Decreasing the value of the proportionality constant to rs = 5Re

results in dark matter masses smaller by ∼ 0.10 dex and stellar masses larger by ∼ 0.05

dex. We use these values as an estimate of the systematic uncertainty introduced by fixing

the value of the dark matter scale radius. The systematic uncertainty introduced by fixing

the dark matter slope is only moderately larger, as can be deduced from Figure 5.1.

Most of the individual measurements of the IMF normalization are consistent with

a Salpeter IMF. There are however a few outliers in the measurements shown in Fig-

ure 5.2.This is because the values of αIMF plotted in Figure 5.2 are obtained by marginal-

izing over the dark matter mass. The actual probability distributions in the αIMF−MDM5
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Figure 5.2: IMF mismatch parameter αIMF = M∗/M
(Salp)
∗ , referred to a Salpeter IMF, as

a function of redshift for galaxies of the SL2S, SLACS and LSD samples.

space are very elongated and extend closer to the value logαIMF = 0 than the marginal-

ized posterior would suggest. The strong degeneracy between stellar and dark matter

mass is taken fully into account in the population analysis described in the next Section.

5.2 Hierarchical Bayesian Inference

As shown above, the lensing and stellar kinematics data available for typical strong

lenses are not sufficient to constrain both the slope and the normalization of the dark
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Name z Re logMSalp
∗

logMLD
∗

logαIMF logMDM5 logMDMe fDMe

(kpc) M⊙ M⊙ M⊙ M⊙

SL2SJ020524−093023 0.56 4.82 11.52± 0.12 11.54+0.08
−0.11 −0.01± 0.18 10.41+0.37

−0.29 10.38+0.37
−0.29 0.12+0.17

−0.06

SL2SJ021247−055552 0.75 8.92 11.45± 0.17 11.90+0.06
−0.09 0.44± 0.19 10.63+0.23

−0.37 11.05+0.23
−0.37 0.22+0.15

−0.12

SL2SJ021325−074355 0.72 17.67 11.97± 0.19 12.21+0.12
−0.18 0.21± 0.25 11.04+0.11

−0.17 11.96+0.11
−0.17 0.54+0.16

−0.17

SL2SJ021411−040502 0.61 6.29 11.60± 0.14 11.54+0.08
−0.10 −0.07± 0.17 11.16+0.05

−0.06 11.32+0.05
−0.06 0.55+0.08

−0.08

SL2SJ021737−051329 0.65 4.27 11.53± 0.16 11.57+0.09
−0.12 0.03± 0.19 11.06+0.09

−0.11 10.95+0.09
−0.11 0.33+0.12

−0.09

SL2SJ021801−080247 0.88 7.90 11.54± 0.14 11.75+0.16
−0.53 0.04± 0.46 10.93+0.33

−0.52 11.26+0.33
−0.52 0.39+0.43

−0.28

SL2SJ021902−082934 0.39 3.01 11.50± 0.10 11.56+0.04
−0.07 0.05± 0.12 10.48+0.29

−0.30 10.13+0.29
−0.30 0.07+0.08

−0.03

SL2SJ022046−094927 0.57 3.45 11.36± 0.11 11.49+0.05
−0.10 0.11± 0.14 10.48+0.30

−0.30 10.23+0.30
−0.30 0.10+0.12

−0.05

SL2SJ022511−045433 0.24 8.59 11.81± 0.09 11.67+0.12
−0.13 −0.14± 0.15 11.08+0.11

−0.20 11.47+0.11
−0.20 0.55+0.13

−0.18

SL2SJ022610−042011 0.49 6.44 11.73± 0.11 11.76+0.09
−0.13 0.01± 0.16 10.82+0.23

−0.48 10.99+0.23
−0.48 0.25+0.18

−0.17

SL2SJ023251−040823 0.35 4.78 11.36± 0.09 11.50+0.03
−0.04 0.13± 0.10 10.22+0.25

−0.15 10.19+0.25
−0.15 0.09+0.07

−0.03

SL2SJ023307−043838 0.67 9.21 11.71± 0.13 11.17+0.28
−0.51 −0.63± 0.41 11.35+0.02

−0.04 11.79+0.02
−0.04 0.89+0.07

−0.09

SL2SJ084847−035103 0.68 3.21 11.24± 0.16 11.09+0.19
−0.23 −0.18± 0.28 11.18+0.09

−0.15 10.87+0.09
−0.15 0.55+0.16

−0.19

SL2SJ084909−041226 0.72 3.55 11.63± 0.13 11.65+0.07
−0.08 0.02± 0.15 11.00+0.11

−0.16 10.76+0.11
−0.16 0.20+0.08

−0.07

SL2SJ084959−025142 0.27 6.11 11.52± 0.09 11.56+0.03
−0.06 0.03± 0.10 10.33+0.31

−0.22 10.47+0.31
−0.22 0.14+0.14

−0.05

SL2SJ085019−034710 0.34 1.35 11.14± 0.09 11.16+0.03
−0.04 0.02± 0.10 10.25+0.23

−0.18 9.39+0.23
−0.18 0.03+0.03

−0.01

SL2SJ085540−014730 0.36 3.48 11.11± 0.10 11.35+0.05
−0.10 0.22± 0.13 10.50+0.27

−0.34 10.25+0.27
−0.34 0.14+0.13

−0.08

SL2SJ090407−005952 0.61 16.81 11.55± 0.12 11.35+0.33
−0.61 −0.30± 0.48 11.21+0.05

−0.09 12.09+0.05
−0.09 0.92+0.06

−0.11

SL2SJ095921+020638 0.55 3.47 11.28± 0.11 11.24+0.05
−0.14 −0.09± 0.16 10.45+0.33

−0.31 10.20+0.33
−0.31 0.15+0.19

−0.08

SL2SJ135949+553550 0.78 13.08 11.41± 0.15 11.91+0.09
−0.13 0.46± 0.22 10.74+0.21

−0.36 11.44+0.21
−0.36 0.41+0.19

−0.22

SL2SJ140454+520024 0.46 11.78 12.10± 0.10 12.17+0.07
−0.07 0.07± 0.12 11.08+0.08

−0.11 11.69+0.08
−0.11 0.40+0.09

−0.09

SL2SJ140546+524311 0.53 4.58 11.67± 0.11 11.71+0.08
−0.09 0.03± 0.14 10.80+0.15

−0.27 10.74+0.15
−0.27 0.18+0.09

−0.09

SL2SJ140650+522619 0.72 4.35 11.60± 0.15 11.52+0.07
−0.07 −0.08± 0.17 11.06+0.08

−0.10 10.96+0.08
−0.10 0.35+0.08

−0.08

SL2SJ141137+565119 0.32 3.04 11.28± 0.09 11.29+0.05
−0.13 −0.03± 0.16 10.56+0.32

−0.35 10.21+0.32
−0.35 0.14+0.18

−0.08

SL2SJ142059+563007 0.48 7.86 11.76± 0.10 11.68+0.11
−0.14 −0.10± 0.16 10.85+0.16

−0.25 11.17+0.16
−0.25 0.38+0.17

−0.16

SL2SJ220329+020518 0.40 3.86 11.26± 0.10 11.17+0.14
−0.21 −0.13± 0.24 11.30+0.03

−0.04 11.12+0.03
−0.04 0.64+0.11

−0.10

SL2SJ220506+014703 0.48 3.93 11.51± 0.10 11.76+0.07
−0.09 0.24± 0.13 10.76+0.19

−0.38 10.60+0.19
−0.38 0.12+0.09

−0.07

SL2SJ221326−000946 0.34 2.41 10.99± 0.10 10.88+0.11
−0.15 −0.13± 0.17 11.06+0.06

−0.07 10.57+0.06
−0.07 0.49+0.12

−0.10

SL2SJ222148+011542 0.33 5.27 11.55± 0.09 11.51+0.13
−0.18 −0.07± 0.19 10.88+0.19

−0.34 10.92+0.19
−0.34 0.34+0.20

−0.19

Table 5.1: Redshifts, effective radii, stellar masses from SPS fitting (from Paper III)
and from lensing and dynamics, projected dark matter masses within 5 kpc and within
the effective radius, projected dark matter fractions within the effective radius of SL2S
lenses.
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Figure 5.3: Fraction of mass in dark matter projected within a cylinder of radius equal
to the effective radius, as a function of redshift.
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matter halo of individual objects. An important question is whether the IMF normal-

ization or the dark matter fraction evolve with time within the population of ETGs.

One possible way of addressing this question is performing a linear fit for αIMF(z) and

fDMe(z). However, the analysis of Paper IV revealed that the density slope γ′ of ETGs is

a function of mass and size as well as redshift. This dependency of γ′ on M∗ and Re will

presumably be reflected on αIMF or fDMe. It is then important to take all dependencies

into account when addressing the time evolution of these two parameters.

We want to characterize the population of early-type galaxies which our strong lenses

are drawn from. The focus is on the stellar mass, the IMF normalization, the dark

matter mass within 5 kpc and the inner dark matter slope. Our lenses span a range

of redshifts, stellar masses and sizes and we are interested to measure whether there

are structural variations with these quantities. In analogy to the work of Paper IV, the

strategy we adopt is a hierarchical Bayesian inference method. We assume that the values

of the parameters describing individual galaxies, ωi, are drawn from a parent distribution

described by a set of hyper-parameters τ to be determined from the data d. From Bayes

theorem,

Pr(τ |d) ∝ Pr(d|τ )Pr(τ ). (5.3)

In turn, the probability of observing the data d given the population model τ can be

written as the following product over the individual objects’ marginal distributions:

Pr(d|τ ) =
N
∏

i

∫

dωiPr(di|ωi)Pr(ωi|τ ). (5.4)

The integrals run over all the parameters of individual galaxies ωi. The first term in

the product of Equation 5.4 is the likelihood function for an individual galaxy’s model
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parameters ωi given the data di. The set of model parameters for an individual galaxy is

ωi = (M∗,i,MDM5,i, γDM,i, αIMF,i, zi, Re,i), where MDM5 is the dark matter mass within the

effective radius. The data consist of the measured Einstein radius REin,i, effective radius,

redshift, velocity dispersion within the aperture used for spectroscopic observations σap,i

and the stellar mass measured with the stellar population synthesis analysis, M
(SPS)
∗,i . In

order to speed up computations, redshifts and effective radii of all lenses are assumed

to be known exactly. This approximation does not introduce any significant uncertainty

since the typical precision on effective radii measurements is 10% (Sonnenfeld et al.

2013a), which corresponds to a small uncertainty on the key model parameters, and the

uncertainty on redshifts is δz = 0.001. The likelihood of observing data di for lens i,

given its parameters ωi can be factorized as follows:

Pr(di|ωi) = Pr(REin,i|ωi)Pr(σap,i|ωi)×

Pr(M
(SPS)
∗,i |ωi)δ(R

(obs)
eff ,i − Re,i)δ(z

(obs)
i − zi) (5.5)

This is possible because the observational uncertainties on the measured Einstein ra-

dius, velocity dispersion and SPS stellar mass are independent of each other. For some

lenses in the SL2S sample, more than one velocity dispersion measurements is available

(Sonnenfeld et al. 2013b). In those cases, the velocity dispersion term in Equation 5.5

becomes a product over the multiple measurements.

The second term in the integrand of (5.4) is the probability for the galaxy’s individual

stellar mass and halo mass given the set of hyper-parameters τ . The hyper-parameters

must describe the population of galaxies from which our strong lenses are drawn. Sim-

ilarly to Paper IV, we assume that the structural properties of ETGs, in this case the
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dark matter mass and the IMF normalization, are a function of redshift, stellar mass and

effective radius. In the formalism of Kelly (2007),

ξi = {zi,M∗,i, Re,i} (5.6)

are the independent variables, while

ηi = {MDM5,i, γDM,i, αIMF,i} (5.7)

are the dependent variables. It is useful to distinguish among the hyper-parameters the

ones that describe the distribution in the independent variables, ψ, and those describing

the distribution of dependent variables, which we label as θ, following the notation of

Kelly (2007). The quantity Pr(ωi|τ ) has then the following form:

Pr(ωi|τ ) = Pr(ξi|ψ)Pr(ηi|ξi, θ), (5.8)

where ωi = ξi ∪ ηi and τ = ψ ∪ θ. The probability distribution of the independent

variables describes how galaxies in our sample are distributed in the {z,M∗, Re} space.

It encodes both information on the distribution of galaxies in the Universe and the way

lens candidates are targeted in our lensing surveys, in terms of selections in stellar mass

(or similarly, luminosity), redshift and size. We assume that the distribution in the

independent variables can be written as the product of two Gaussians in logM∗ and

logRe:

Pr(ξi|ψ) =

1

σ∗

√
2π

exp

[

−(logM∗,i − µ∗(ωi))
2

2σ2
∗

]

×

1

σR

√
2π

exp

[

−(logRe,i − µR(ωi))
2

2σ2
R

]

. (5.9)
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The mean of these Gaussians is assumed to be different for lenses of different surveys:

µ(SL2S)
∗

= ζ (SL2S)
∗

(zi − 0.5) + log µ
(SL2S)
∗,0 , (5.10)

µ(SLACS)
∗

= ζ (SLACS)
∗

(zi − 0.2) + log µ
(SLACS)
∗,0 , (5.11)

µ
(SL2S)
R = ζ

(SL2S)
R (zi − 0.5) + β

(SL2S)
R (logM∗ − 11.5) +

logµ
(SL2S)
R,0 , (5.12)

µ
(SLACS)
R = ζ

(SLACS)
R (zi − 0.2) + β

(SLACS)
R (logM∗ − 11.5)

+ logµ
(SLACS)
R,0 . (5.13)

We also assume different values of the dispersion σ∗, σR for SL2S and SLACS lenses. Note

that there’s no explicit term for the distribution in z in Equation 5.9. This is equivalent to

assuming a uniform distribution in redshift. The more physically relevant quantity is the

second term in Equation 5.8, which describes the properties of the dark matter halos and

stellar IMF for galaxies of given z, M∗ and Re. The goal of this work is to understand the

properties of massive galaxies, irrespective of their lens nature. However, some galaxies

are more likely to be strong lenses than others, because the lensing probability depends

in part on the density profile (Mandelbaum et al. 2009). Moreover, some strong lenses

are more easily detectable than others, as discussed for example by Arneson et al. (2012);

Smith & Lucey (2013); Gavazzi et al. (2014). Then, in order to make accurate statements

on the evolution on galaxies based on strong lensing measurements, we must take into

account these selection effects. It is important to verify whether the selection of lenses

in the SLACS or SL2S surveys introduce a significant bias with respect to the general
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population of ETGs, and to quantify it. The term Pr(ηi|ξi, θ) should then include a

term taking into account the probability for a galaxy described by parameters ηi of

being a strong lens detected in a survey. We describe such probability with a set of

hyper-parameters λ. The term relative to the dependent variables is then also assumed

to be product of Gaussians, multiplied by a selection function term S(ηi|ξi,λ):

Pr(ηi|ξi, θ,λ) = S(ηi|ξi,λ)×

1

σDM

√
2π

exp

[

−(logMDM5,i − µDM(ξi))
2

2σ2
DM

]

×

1

σγ

√
2π

exp

[

−(γDM,i − µγ(ξi))
2

2σ2
γ

]

×

1

σIMF

√
2π

exp

[

−(logαIMF,i − µIMF(ξi))
2

2σ2
IMF

]

×

S(ηi|ξi,λ). (5.14)

The term S(ηi|ξi,λ), which will be discussed in Section 5.3, represents the lensing selec-

tion function. This term multiplies the intrinsic distribution of galaxy parameters, which

we assumed to be described by a product of Gaussians, to give the distribution observed

in strong lenses. Note that a similar decomposition could in principle be written for

the distribution in the independent variables, Pr(ξi|ψ). In practice, we are interested

in recovering the true distribution for the dependent variables only. The means of the

Gaussians in Equation 5.14 are in general functions of galaxy redshift, stellar mass and

effective radius. In particular, we expect the dark matter mass to grow with the stellar

mass. We also expect the ratio between stellar and dark mass and the dark matter slope

to vary with projected stellar mass density, Σ∗ = M∗/(2πR
2
e), as the results of Paper IV

highlighted how the density profile of ETGs at fixed redshift depends to first order on

Σ∗, with systems with more compact stellar distributions having steeper density slopes.
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We then choose to parametrize the scaling relations of dark matter halo and stellar IMF

normalization in terms of M∗ and Σ∗, as follows:

µDM = ζDM(zi − 0.3) + βDM(logM∗,i − 11.5) +

ξDM log Σ∗/Σ0 + logMDM,0 (5.15)

µγ = γ0 (5.16)

µIMF = ζIMF(zi − 0.3) + βIMF(logM∗ − 11.5) +

ξIMF log Σ∗/Σ0 + logαIMF,0 (5.17)

Although it might seem more natural to assume a scaling in M∗ and Re, which would

isolate the dependence on stellar mass to only one parameter, M∗ and Re are highly

correlated because of the observed tight mass-size relation. As a result, dependences on

M∗ or Re are highly interchangeable and it is difficult to isolate the two with our data.

A parameterization in terms of M∗ and Σ∗ mitigates this effect. For the average dark

matter slope we do not allow for any scaling with any independent variable. This choice

is driven by the little information available from our data on the slope for an individual

galaxy (see Figure 5.1). Allowing for too much freedom would result in the average

slope of the population of galaxies being undetermined. As always, when the likelihood

is not very informative, it is important to choose very carefully the model parameters

and priors. To summarize, the set of hyper-parameters describing the distribution of

independent variables is

ψ = {ζ∗, µ∗,0, σ∗, ζR, βR, µR,0, σR}, (5.18)
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with each parameter defined separately for the distribution of SL2S and SLACS lenses,

while the hyper-parameters describing the dependent variables distribution is

θ = {ζDM, βDM, ξDM,MDM,0, σDM, γ0, σγ ,

ζIMF, βIMF, ξIMF, αIMF,0, σIMF,λ}. (5.19)

Finally, we need to specify the form of the selection function correction S(ηi|ξi,λ) in

Equation 5.14. The following section is devoted to it.

5.3 The selection function

With the term “selection function” we define the mapping between the global popu-

lation of ETGs and the subset of the population sampled by our lens catalogs. The goal

of this section is to characterize this selection function in a both accurate and computa-

tionally tractable way. SL2S and SLACS, from which our lenses are chosen, are different

lensing surveys and are in general subject to different selection effects. Nevertheless,

selection effects for the SL2S and SLACS surveys are qualitatively similar, and will be

treated within the same framework.

We can identify three main sources of selection. The first one is the brightness of the

lens. Both SLACS and SL2S samples were assembled by following-up massive ETGs,

brighter than a threshold. For the subset of SLACS galaxies we are considering, the

lower limit to the brightness was implicitly set by the requirement of the lens galaxy

being targeted in the SDSS spectroscopic survey and having sufficient S/N to allow for a

velocity dispersion measurement (citation needed). For SL2S, only ETGs brighter than

21.5 in i-band were followed-up (Gavazzi et al. 2014). While the luminosity function of
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ETGs is well described by a one or two Schechter functions (Ilbert et al. 2013), selection

in brightness results in a different luminosity function for strong lenses, with a cut at

low luminosities. Luminosity is not directly parametrized in the model described in

Section 5.2, but it is tightly related to the stellar mass. This selection effect can then

be captured by the parameters describing the distribution in stellar mass in equations

(5.10) and (5.11).

The second selection effect is due to different lenses having different strong lensing

cross-sections, Xlens, i.e. different probability of producing systems of multiple images of

background sources. Mandelbaum et al. (2009) studied in detail how lensing cross-section

depends on lens properties. As expected from general lensing theory, their main finding

is that galaxy mass and density profile are the most important parameters determining

Xlens: more massive galaxies have larger lensing cross-section, and so do galaxies with

a steeper density profile, at fixed mass. Quantitatively, the probability of a galaxy de-

scribed by parameters ωi of being a strong lens is proportional to Xlens(ωi). Therefore,

the term S(ηi|ξi,λ) in Equation 5.14, which is proportional to the probability of detect-

ing a lens of parameters ωi given a selection function described by λ, should also be

proportional to Xlens. The strong lensing cross-section of a lens with a smooth density

profile monotonically decreasing with radius is given by the area enclosed by the radial

caustic, i.e. the points in the source plane mapped to points of infinite magnification in

the radial direction. For simplicity, we calculate Xlens(ωi) assuming spherical symmetry,

as the area enclosed within the radial critical curve, unlike the tangential critical curve,

is not very sensitive to the ellipticity of the lens. Formally, the term Xlens has units of

solid angle. In practice, Xlens is rescaled so that the probability Pr(ηi|ξi, θ,λ) defined
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in Equation 5.14 integrated over ηi is normalized to unity. The third selection effect

that we consider is the different detectability of strong lenses of different properties in

the two surveys considered, i.e. the probability, given a strong lens, of detecting it in a

given lensing survey. The detection probability in the SL2S was studied by Gavazzi et al.

(2014), while that in SLACS-like surveys was studied by Arneson et al. (2012). The most

obvious parameter determining the detection probability is the brightness of the lensed

background source: brighter arcs are easier to detect for both the SL2S and SLACS

surveys. In addition to the source brightness, another important parameter determining

the detection probability in both SL2S and SLACS is the Einstein radius. Gavazzi et al.

(2014) have shown how the selection function for SL2S lenses is mostly a function of

REin, with a peak in the range 1′′ < REin < 3′′. SL2S lenses are selected photometrically

by looking for blue arcs around red galaxy in ground based observations (Gavazzi et al.

2012). This technique works best for lenses with Einstein radius larger than ∼ 1′′, since

arcs with REin smaller than that are difficult to resolve in ground based photometry. The

upper limit is due to the fact that lenses with radius smaller than 3′′ were preferentially

targeted in the lens-finding algorithm, to favor galaxy-scale lenses over group-scale ones.

For SLACS, lens candidates were selected by looking for emission lines from lensed star-

forming galaxies, and then confirmed by HST imaging. Lenses with too small Einstein

radii are more difficult to confirm with this method, because of confusion between the

source and the deflector light. At the opposite end, lenses with too large Einstein radii

can escape the selection because the lensed features contribute little to the flux deposited

within the 1.′′5-radius fiber used by SDSS spectroscopic observations. This description

matches qualitatively the findings of Arneson et al. (2012). The results of Arneson et al.
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(2012) cannot be directly applied to our analysis though, because the lens models consid-

ered by them have power-law density profiles, different from the two-component profiles

adopted here. We summarize these properties instead by approximating the detection

probability with a Gaussian function in REin, which multiplies the previously discussed

lensing cross-section term in the selection correction:

S(ηi|ξi,λ) =
AXlens√
2πσsel

exp

{

−(REin(ωi)−Rsel)
2

2σsel

}

(5.20)

where REin is a function of the lens parameters ωi and A is a normalization constant.

Here λ = {Rsel, σsel} are hyper-parameters describing the selection function, which can

be different for SL2S and SLACS surveys. Note that there is no source brightness term

in Equation 5.20, which we anticipated being important in determining the detection

probability of a strong lens. This is because the source brightness is not directly modeled

in the hierarchical Bayesian inference framework introduced in the previous section. The

term Equation 5.20 should then be considered as the effective selection function, obtained

by marginalizing over all possible values of the source brightness. To illustrate what a

selection function of the form given by Equation 5.20 corresponds to in terms of stellar

and dark matter mass, we show in Figure 5.4 how the Einstein radius of a typical lens

changes as a function of M∗ and MDM5, the other parameters being fixed. A Gaussian

selection function in the Einstein radius implies that only lenses that occupy a band in

the logM∗ − logMDM5 plane can be observed. In the same plot we show the lensing

cross-section depends on M∗ and MDM5. As expected, larger masses correspond to larger

lensing cross-sections.
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Figure 5.4: Solid lines: levels of constant angular Einstein radius (in arcsec) as a function
of logM∗ and logMDM5 for a lens at redshift zd = 0.3, with source redshift zs = 1.5,
effective radius Re = 5kpc and γDM = 1. Intensity map: logarithm of the strong lensing
cross section, Xlens in arcsec2.
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5.4 Results, NFW halos

Before proceeding to analyze the most general case, we focus in this section on models

with a fixed dark matter slope γDM = 1, corresponding to an NFW profile. This will

indicate whether we can get an adequate description of the evolution of the structure

of massive galaxies with a simple dark matter model. We need to explore the posterior

probability distribution Pr(τ |d) via Markov Chain Monte Carlo (MCMC). This requires

evaluating, for each lens and at each step of the chain, the likelihood term Pr(di|ωi) given

by Equation 5.5 and integrating over all possible values of the lens parameters ωi, as given

by Equation 5.4. The integration over logαIMF can be performed analytically, because

both the likelihood Equation 5.5 and the parent distribution Equation 5.14 are Gaussian

in logαIMF. Integrals over z and logRe are trivial, because lens redshift and effective

radius are assumed to be known exactly. We are left with two-dimensional integrals

over logM∗ and logMDM5. This is a computationally expensive operation, because M∗

and MDM5 enter the likelihood and the selection function term S(ηi|ξi,λ) through the

Einstein radius and the velocity dispersion, which are in general non-analytic functions of

these parameters. In order to speed up the computation, we sample the likelihood term

beforehand for each galaxy and then perform the integrals in Equation 5.4 via Monte

Carlo integration at each step of the chain, evaluating the integrand by importance

sampling (see e.g. Suyu et al. 2010; Busha et al. 2011, and references therein). For both

computational and physical reasons (our lenses have a finite amount of stars and dark

matter), we truncate the distribution Equation 5.14 between 10.5 and 12.5 in logM∗ and

between 10.0 and 12.0 in logMDM5. In order to be self-consistent, at each step of the
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chain all probability terms must be normalized to unity. The term Pr(ηi|ξi, θ) requires

particular care, as it contains a term, S, that is non-analytic in the model parameters.

The following equality should hold

∫

dηiPr(ηi|ξi, θ) = 1 (5.21)

for each set of values of ξi and θ. This is an implicit equation for the normalization

constant in Equation 5.14, which we solve via Monte Carlo integration.

We assume a uniform prior on all model hyper-parameters. We sample the posterior

probability distribution with an MCMC with 100000 points, using PyMC (Patil et al.

2010). The median, 16th and 84th percentile of the posterior probability distribution

function (PDF) of each parameter, marginalized over the other parameters, are listed

in Table 5.2. The inference on the hyper-parameters describing the dependent variables

(MDM5 and αIMF), ξ, is plotted in Figures 5.5 and 5.6.

The parameters explored by this model are numerous. Among the results of this

analysis we highlight the following. Under the assumption that dark matter halos of all

ETGs have an NFW profile:

• The average projected dark matter mass within 5 kpc in massive ETGs is logM0 =

10.80+0.14
−0.11.

• We find marginal evidence for an anticorrelation between dark matter mass enclosed

within 5 kpc (MDM5) and stellar mass density Σ∗ (parameter ξDM < 0), as well as

a correlation between MDM5 and redshift (parameter ζDM < 0). No strong corre-

lations between central dark matter mass and stellar mass is detected (parameter

βDM is consistent with zero).
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With S No S Parameter description

µ
(SL2S)
∗,0 11.53+0.06

−0.06 11.54+0.06
−0.06 Mean stellar mass at z = 0.5, SL2S sample

ζ
(SL2S)
∗ 0.46+0.32

−0.29 0.42+0.31
−0.30 Linear dependence of mean stellar mass on redshift, SL2S sample

σ
(SL2S)
∗ 0.27+0.05

−0.04 0.27+0.05
−0.04 Scatter in mean stellar mass, SL2S sample

µ
(SLACS)
∗,0 11.66+0.03

−0.04 11.67+0.03
−0.03 Mean stellar mass at z = 0.2, SLACS sample

ζ
(SLACS)
∗ 2.40+0.39

−0.41 2.42+0.36
−0.41 Linear dependence of mean stellar mass on redshift, SLACS sample

σ
(SLACS)
∗ 0.24+0.03

−0.02 0.23+0.03
−0.02 Scatter in mean stellar mass, SLACS sample

µ
(SL2S)
R,0 0.69+0.04

−0.03 0.68+0.04
−0.03 Mean effective radius at z = 0.5, logM∗ = 11.5, SL2S sample

ζ
(SL2S)
R 0.26+0.21

−0.18 0.25+0.22
−0.16 Linear dependence of mean effective radius on redshift, SL2S sample

β
(SL2S)
R 0.65+0.13

−0.14 0.70+0.13
−0.13 Linear dependence of mean effective radius on stellar mass, SL2S sample

σ
(SL2S)
R 0.17+0.03

−0.03 0.16+0.03
−0.02 Scatter in mean effective radius, SL2S sample

µ
(SLACS)
R,0 0.71+0.01

−0.01 0.70+0.01
−0.01 Mean effective radius at z = 0.2, logM∗ = 11.5, SLACS sample

ζ
(SLACS)
R 0.09+0.16

−0.18 0.02+0.16
−0.19 Linear dependence of mean effective radius on redshift, SLACS sample

β
(SLACS)
R 0.61+0.04

−0.05 0.65+0.05
−0.04 Linear dependence of mean effective radius on stellar mass, SLACS sample

σ
(SLACS)
R 0.07+0.01

−0.01 0.07+0.01
−0.01 Scatter in mean effective radius, SLACS sample

ζDM 0.57+0.44
−0.43 0.94+0.25

−0.24 Linear dependence of logMDM5 on redshift.

βDM 0.10+0.27
−0.24 −0.10+0.19

−0.19 Linear dependence of logMDM5 on logM∗.

ξDM −0.57+0.27
−0.24 −0.27+0.18

−0.19 Linear dependence of logMDM5 on log Σ∗

logMDM,0 10.78+0.14
−0.11 10.63+0.06

−0.07 Mean MDM5 at z = 0.3, logM∗ = 11.5, Reff = 5 kpc

σDM 0.29+0.08
−0.06 0.23+0.04

−0.04 Scatter in the MDM5 distribution

ζIMF −0.05+0.06
−0.09 −0.06+0.06

−0.09 Linear dependence of IMF normalization on redshift.

βIMF 0.22+0.04
−0.05 0.18+0.05

−0.05 Linear dependence of IMF normalization on logM∗.

ξIMF 0.08+0.06
−0.06 0.04+0.07

−0.06 Linear dependence of IMF normalization on log Σ∗

logαIMF,0 0.04+0.01
−0.01 0.05+0.02

−0.01 Mean IMF normalization at z = 0.3, logM∗ = 11.5, Reff = 5 kpc

σIMF 0.01+0.02
−0.01 0.02+0.02

−0.01 Scatter in the IMF normalization distribution

R
(SL2S)
sel 1.28+0.28

−0.20 · · · Mean observable Einstein radius, SL2S sample

σ
(SL2S)
sel 0.61+0.18

−0.13 · · · Dispersion in observable Einstein radius, SL2S sample

R
(SLACS)
sel 0.95+0.16

−0.24 · · · Mean observable Einstein radius, SLACS sample

σ
(SLACS)
sel 0.20+0.10

−0.06 · · · Dispersion in observable Einstein radius, SLACS sample

Table 5.2: NFW model. Median, 16th and 84th percentile of the posterior probabil-
ity distribution function of each model hyper-parameter, marginalized over the other
parameters. Results are reported for the full case and ignoring the selection function.
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Figure 5.5: Model hyper-parameters describing the dark matter mass within a shell of
radius reff . Empty contours: inference with no selection function term. Filled contours:
including the selection function term. The different levels represent the 68%, 95% and
99.7% enclosed probability regions.
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Figure 5.6: IMF parameters. The red dots indicate the parameter values corresponding
to a universal IMF. Empty contours: inference with no selection function term. Filled
contours: including the selection function term.
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• The IMF normalization is consistent with an IMF slightly heavier than Salpeter:

logαIMF,0 = 0.04± 0.02.

• The IMF normalization correlates positively with stellar mass (βIMF = 0.21±0.05).

No correlation with redshift or stellar mass density is detected.

In order to illustrate the effect of the selection function term Pr(ωi|λ), we also show the

posterior PDF obtained excluding it from our analysis. Such model without the selection

function correction strictly describes the population of strong lenses used in our analysis,

as opposed to the general population of massive ETGs. The posterior PDF of the model

without the selection function term is consistent with the more sophisticated model

taking into account selection effects. Nevertheless, the inferred properties of the dark

matter halos are slightly different in the two cases. By not accounting for the selection

function we detect a strong dependence of the dark matter mass with redshift, as the

parameter ζDM is larger than zero with more than 3−σ significance for this model (empty

contours in Figure 5.5). A positive value of ζDM means that lenses at lower redshift have

preferentially smaller dark matter masses than lenses at higher redshift. At the same

time, the average dark matter mass at the reference point z = 0.3, logM∗ = 11.5,

Σ∗ = Σ0 is smaller with respect to the full analysis: logM0 = 10.62+0.08
−0.10. Given the

nature of our strong lens sample, with lenses from the SLACS survey dominating the

low-redshift part of the sample and SL2S lenses populating the high-redshift end, this

result implies that SLACS lenses have on average smaller dark matter masses than similar

lenses at higher redshift. Since the trend in redshift of MDM5 is greatly reduced when

selection effects are taken into account, this suggests that the lower dark matter masses
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measured for SLACS lenses is not necessarily related to an intrinsic difference between

ETGs at low and intermediate redshift, but might just be the result of the SLACS survey

selecting preferentially lenses in smaller dark matter halos. We further investigated this

aspect by repeating the analysis for SLACS and SL2S lenses separately, with and without

the selection function term. We confirmed that the SLACS sample is more sensitive to

selection effects. In particular it is the Einstein radius selection term of Equation 5.20

that drives the offset between the model with Pr(ωi|λ) and the one without. According

to our model, the detection efficiency in the SLACS survey, which we fit directly for, is

a Gaussian in REin with mean Rsel = 0.96+0.15
−0.21 and dispersion σsel = 0.20+0.10

−0.06. This is

a peaked function in REin that favors the detection of lenses with smaller Einstein radii

and therefore smaller dark matter masses.

We chose to parametrize the dark matter content with the dark matter mass projected

within 5 kpc. Many studies, both observational and theoretical, focus instead on the mass

enclosed within the effective radius, MDMe. For a better comparison with the literature it

is then useful to check what our results imply for this quantity. As we show in Appendix

5.8.1, MDMe increases with M∗ with a power smaller than unity and has a strong anti-

correlation with stellar mass density, meaning that ETGs are not homologous systems.

5.4.1 Evolution of individual objects

The above analysis reveals how key quantities of massive ETGs scale with redshift,

stellar mass and stellar mass density. In order to gain a better understanding of the

evolution of ETGs, it is useful to consider the evolution of individual objects along their
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evolutionary tracks. In a fluid kinematics analogy, we would like to transition from

an Eulerian description of the fields MDM5 and αIMF at fixed M∗, z and Re, which is

given by the analysis presented above, to a Lagrangian description of the evolution of

these quantities along the history of individual galaxies. While the latter quantity is not

directly observable, it can be inferred with the formalism introduced in Paper IV, which

connects the observed scaling relations with external constraints on the evolution of size

and stellar mass. We denote with d/dz the derivative with respect to redshift along the

evolutionary track of an individual galaxy. Then we can write

d logMDM5

dz
=

∂ logMDM5

∂z
+

∂ logMDM5

∂ logM∗

d logM∗

dz
+

∂ logMDM5

∂ log Σ∗

d log Σ∗

dz
(5.22)

and

d logαIMF

dz
=

∂ logMDM5

∂z
+

∂ logMDM5

∂ logM∗

d logM∗

dz
+

∂ logαIMF

∂ log Σ∗

d log Σ∗

dz
. (5.23)

This is the evolution in MDM5 and αIMF of a galaxy for which these quantities scale with

z, M∗ and Σ∗ in the same way as the population averages µDM and µIMF. The presence

of scatter will in general modify the picture, but we expect the above expressions to be

correct to first order. Equations 5.22 and 5.23 hold as long as the population of ETGs

is not significantly polluted by the formation of new objects that enter the sample in

the redshift range that we consider. Current estimates show that the number density of

massive galaxies evolves very modestly below redshift 1 (Cassata et al. 2013; Ilbert et al.

2013; Muzzin et al. 2013).
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The partial derivatives in Equation 5.22 can be identified with the parameters ζDM,

βDM and ξDM measured in our analysis, while those in Equation 5.23 are matched to

ζIMF, βIMF and ξIMF. The two total derivatives, d logM∗/dz and d log Σ∗/dz are the rate

of change in stellar mass and stellar mass density of an individual galaxy. The latter

depends on the former, and on the evolution of the effective radius as well:

d log Σ∗

dz
=

d logM∗

dz
− 2

d logRe

dz
. (5.24)

As in Paper IV, we can evaluated d logRe/dz by combining constraints from the redshift

and mass dependence of Re, assuming again that individual galaxies evolve in the same

way as the average:

d logRe

dz
=

∂ logRe

∂z
+

∂ logRe

∂ logM∗

d logM∗

dz
. (5.25)

For the scaling of effective radius with mass, we take the value measured by Newman et al.

(2012a): ∂ logRe/∂ logM∗ = 0.59 ± 0.07. The redshift dependence has been measured

by a number of authors (e.g. Damjanov et al. 2011; Newman et al. 2012a; Cimatti et al.

2012; Huertas-Company et al. 2013), with significant scatter between the measurements.

Here we take ∂ logRe/∂z to be the mean between these measurements, and use the

standard deviation as an estimate of its uncertainty: ∂ logRe/∂z = −0.37 ± 0.08. With

this prescription we evaluate the derivatives Equation 5.22 and Equation 5.23, which we

plot in Figure 5.7 as a function of the, unknown, mass growth rate d logM∗/dz. The

uncertainties on the derived evolution of enclosed dark matter and IMF normalization are

relatively large, in part due to the uncertainty on the mass-size relation and its evolution.

We expect the dark matter enclosed within 5 kpc to exhibit little change over time, since

most of the matter accreted in the later phases of the evolution of an ETGs will likely
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Figure 5.7: Left panel: Rate of change in projected dark matter enclosed within a cylinder
of radius 5 kpc along the evolutionary track of an individual galaxy, calculated from
Equation 5.22, as a function of the growth rate in stellar mass. Right panel: Rate of
change in the IMF normalization along the evolutionary track of an individual galaxy,
calculated from Equation 5.23, as a function of the growth rate in stellar mass. An NFW
profile for the dark matter halo is assumed. The different colors represent the 68%, 95%
and 99% probability regions.

Figure 5.8: Rate of change in projected dark matter enclosed within a cylinder of radius 5
kpc along the evolutionary track of an individual galaxy, calculated from Equation 5.22,
as a function of the growth rate in stellar mass, inferred ignoring the selection function
term. An NFW profile for the dark matter halo is assumed. The different colors represent
the 68%, 95% and 99% probability regions.
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grow the outskirts of the galaxy. We also expect the IMF normalization to show little

change over time, because a significant change of the IMF would require the accretion

or formation of stars with an extremely different IMF from the preexisting population, a

scenario at odds with our current knowledge of stellar populations in the Universe. Our

measurements are consistent with these expectations, though with the current data we

are unable to make precise statements in this regard.

In Figure 5.8 we plot the evolution in dark matter mass inferred from the population

model without the selection function term – that is to say, assuming that the strong

lenses from both the SL2S and SLACS survey are an unbiased sample of the general

population of early-type galaxies. Under this assumption, the data require dark matter

masses to decrease with time at a significant rate, with more than 3-σ confidence, in sharp

contrast with the result plotted in Figure 5.7, which does take the selection function into

account. It is difficult to imagine a physical scenario in which the stellar mass increases

by a modest amount while at the same time a comparable, or larger, amount of dark

matter is ejected from the inner 5 kpc of a galaxy. We believe that the implausible

scenario of Figure 5.8 is an indication that the selection function does indeed need to be

included in the modeling. (However, as we will show below, the lack of selection function

modeling in our previous work does not actually affect the conclusions of papers I-IV.)

5.5 Results, free inner slope

The results of the analysis presented in Section 5.4 depend on the assumption of a fixed

NFW shape for the dark matter profile of all ETGs. Here we relax that assumption and
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consider gNFW profiles instead, with density profile given by Equation 5.1. We impose

that individual values of the inner dark matter slope lie in the range 0.2 < γDM < 1.8,

as we expect the dark matter density profile to be shallower than the total density

profile, which is measured to be close to isothermal (γ′ ≈ 2 Koopmans et al. 2006). As

pointed out in Section 5.1, allowing for one extra degree of freedom in the dark matter

halo model results in a significant degeneracy in the determination of the properties of

individual galaxies. However, we know that ETGs constitute a family of objects with

rather homogeneous characteristics. The large number of available lenses therefore can

help us break the degeneracy and pin down the population average properties of the

luminous and dark matter distributions. In particular, the tilt of the degeneracy contour

between the dark matter mass within 5 kpc and the inner slope, plotted in Figure 5.1 for

one of the SL2S lenses, depends on the value of the Einstein radius: the data constrain the

projected mass enclosed within REin and the value of MDM5 is obtained by extrapolating

the Einstein mass to 5 kpc assuming a value of γDM. Different lenses have different values

of REin, therefore the direction of the degeneracy contour between MDM5 and γDM will

be different for each lens, depending on the amount of extrapolation required to match

the mass at 5 kpc from the mass at REin. If the scatter in MDM5 across the population of

massive ETGs is small, then it is possible to rule out extreme values of the dark matter

slope by simply multiplying the probability distribution for individual lenses, which is

what our hierarchical Bayesian model effectively does.

The posterior PDF for the parameters describing the population distribution of dark

matter halos and IMF normalizations is plotted in Figure 5.9 and Figure 5.10, while the

median and 68% confidence interval is listed in Table 5.3 for all the inferred parameters.
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Figure 5.9: Model hyper-parameters describing the dark matter mass within a shell of
radius reff and inner slope, for a gNFW dark matter halo. Empty contours: inference
with no selection function term. Filled contours: including the selection function term.
The different levels represent the 68%, 95% and 99.7% enclosed probability regions.
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Figure 5.10: IMF normalization hyper-parameters, for a gNFW dark matter halo. The
red dot indicates the parameter values corresponding to a universal IMF. Empty con-
tours: inference with no selection function term. Filled contours: including the selection
function term.
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Figure 5.11: Model hyper-parameters describing the average dark matter mass within 5
kpc, average dark matter slope and average IMF normalization, for galaxies at z = 0.3,
logM∗ = 11.5, Re = 5kpc. Empty contours: inference with no selection function term.
Filled contours: including the selection function term.

The average inner dark matter slope inferred in our analysis is consistent with γDM = 1

corresponding to an NFW profile, though with a significant uncertainty: γ0 = 0.85+0.16
−0.18.

The scatter in the slope is not well constrained and can be as large as σγ ∼ 0.5. The

inference on the parameters describing the dark matter mass and IMF normalization

is very similar to the NFW case: mild anticorrelation between MDM5 and stellar mass

density and a positive correlation with redshift, no strong correlation ofMDM5 with stellar

mass, strong correlation between αIMF and stellar mass. The main difference is a smaller

scatter in MDM5 in the gNFW case.
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With S No S Parameter description

logµ
(SL2S)
∗,0 11.53+0.06

−0.06 11.55+0.06
−0.06 Mean stellar mass at z = 0.5, SL2S sample

ζ
(SL2S)
∗ 0.32+0.35

−0.31 0.45+0.33
−0.32 Linear dependence of mean stellar mass on redshift, SL2S sample

σ
(SL2S)
∗ 0.27+0.05

−0.04 0.28+0.05
−0.04 Scatter in mean stellar mass, SL2S sample

log µ
(SLACS)
∗,0 11.66+0.03

−0.03 11.67+0.03
−0.03 Mean stellar mass at z = 0.2, SLACS sample

ζ
(SLACS)
∗ 2.36+0.36

−0.43 2.44+0.35
−0.43 Linear dependence of mean stellar mass on redshift, SLACS sample

σ
(SLACS)
∗ 0.23+0.03

−0.02 0.23+0.03
−0.02 Scatter in mean stellar mass, SLACS sample

logµ
(SL2S)
R,0 0.69+0.04

−0.04 0.67+0.04
−0.04 Mean effective radius at z = 0.5, logM∗ = 11.5, SL2S sample

ζ
(SL2S)
R 0.36+0.22

−0.24 0.28+0.22
−0.20 Linear dependence of mean effective radius on redshift, SL2S sample

β
(SL2S)
R 0.65+0.16

−0.15 0.69+0.14
−0.14 Linear dependence of mean effective radius on stellar mass, SL2S sample

σ
(SL2S)
R 0.18+0.04

−0.03 0.16+0.03
−0.02 Scatter in mean effective radius, SL2S sample

log µ
(SLACS)
R,0 0.70+0.01

−0.01 0.70+0.01
−0.01 Mean effective radius at z = 0.2, logM∗ = 11.5, SLACS sample

ζ
(SLACS)
R 0.07+0.18

−0.17 0.03+0.18
−0.19 Linear dependence of mean effective radius on redshift, SLACS sample

β
(SLACS)
R 0.64+0.05

−0.05 0.63+0.05
−0.05 Linear dependence of mean effective radius on stellar mass, SLACS sample

σ
(SLACS)
R 0.07+0.01

−0.01 0.07+0.01
−0.01 Scatter in mean effective radius, SLACS sample

γ0 0.80+0.18
−0.22 0.57+0.41

−0.35 Mean γDM at z = 0.3, logM∗ = 11.5, Reff = 5 kpc

σγ 0.34+0.27
−0.14 0.69+0.21

−0.25 Scatter in the γDM distribution

ζDM 0.86+0.31
−0.30 0.94+0.27

−0.21 Linear dependence of MDM5 on redshift.

βDM 0.05+0.22
−0.21 −0.22+0.18

−0.19 Linear dependence of MDM5 on logM∗.

ξDM −0.49+0.20
−0.22 −0.33+0.17

−0.18 Linear dependence of MDM5 on log Σ∗

logMDM,0 10.69+0.08
−0.07 10.62+0.07

−0.09 Mean MDM5 at z = 0.3, logM∗ = 11.5, Reff = 5 kpc

σDM 0.26+0.08
−0.05 0.22+0.05

−0.04 Scatter in the MDM5 distribution

ζIMF −0.11+0.09
−0.09 −0.06+0.08

−0.09 Linear dependence of IMF normalization on redshift.

βIMF 0.19+0.05
−0.05 0.20+0.04

−0.04 Linear dependence of IMF normalization on logM∗.

ξIMF 0.09+0.06
−0.07 0.06+0.06

−0.07 Linear dependence of IMF normalization on logΣ∗

logαIMF,0 0.04+0.02
−0.02 0.05+0.02

−0.02 Mean IMF normalization at z = 0.3, logM∗ = 11.5, Reff = 5 kpc

σIMF 0.02+0.02
−0.01 0.02+0.02

−0.01 Scatter in the IMF normalization distribution

R
(SL2S)
sel 1.34+0.31

−0.23 · · · Mean observable Einstein radius, SL2S sample

σ
(SL2S)
sel 0.68+0.18

−0.16 · · · Dispersion in observable Einstein radius, SL2S sample

R
(SLACS)
sel 0.96+0.24

−0.27 · · · Mean observable Einstein radius, SLACS sample

σ
(SLACS)
sel 0.30+0.13

−0.07 · · · Dispersion in observable Einstein radius, SLACS sample

Table 5.3: gNFW model. Median, 16th and 84th percentile of the posterior probabil-
ity distribution function of each model hyper-parameter, marginalized over the other
parameters. Results are reported for the full case and ignoring the selection function.
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Figure 5.12: Left panel: Rate of change in projected dark matter mass within a cylinder
of radius 5 kpc along the evolutionary track of an individual galaxy, calculated from
Equation 5.22, as a function of the growth rate in stellar mass. Right panel: Rate of
change in the IMF normalization along the evolutionary track of an individual galaxy,
calculated from Equation 5.23, as a function of the growth rate in stellar mass. The dark
matter halo is described with a gNFW profile.

To better illustrate the degeneracies in the model we plot in Figure 5.11 the projection

of the posterior PDF on the parameters describing the average dark matter mass, slope

and IMF normalization for galaxies at z = 0.3, logM∗ and Re = 5kpc. We can see a

significant degeneracy between the IMF normalization and both the dark matter mass

and density slope. As discussed by Auger et al. (2010a) these degeneracies are expected

in a study of this nature and illustrate how independent constraints on the stellar IMF

can help determine the properties of the dark matter halos of ETGs.

In continuity with the work of Section 5.4.1, we can calculate the rate of change of

MDM5 and αIMF along the evolutionary tracks of individual galaxies in the gNFW case.

These are plotted in Figure 5.12. The same operation is trivial for the dark matter slope,

since we are assuming that the average slope is constant across the whole population of

massive galaxies. The measurements on the dark matter mass and IMF normalization

are consistent with no evolution, similarly to the simpler NFW case.
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5.6 Discussion

In Paper IV we studied the evolution of the total density profile of massive ETGs.

We found that the population average slope of the density profile, γ′, increases with

decreasing redshift, at fixed M∗ and Re, and increases with Σ∗. We also showed how

γ′ stays more or less constant along the evolution of individual galaxies between z = 1

and z = 0. The goal of the present paper is to understand what changes in the internal

structure are responsible for the observed correlations of γ′ with z, M∗ and Re. The main

steps forward in this work compared to Paper IV are 1) the use of a more physically

realistic density profile, composed of a spheroid and halo instead of a single power-law

component, and 2) a treatment of the lensing selection function, explicitly accounted for

when deriving our results. The latter is an important point, as it allows us to make

accurate statements on the general population of massive galaxies, and not only on the

population of lenses.

The analysis carried out in this paper is split into two parts: first we fix the inner

slope of the dark matter halo to γDM = 1, then we relax this assumption. The inference

on the population distribution of dark matter masses and stellar IMF normalization is

consistent in the two cases, as the average dark matter slope inferred in Section 5.5 is

very close to that of an NFW profile. We found that the dark matter mass enclosed

within 5 kpc anticorrelates with the stellar mass density and positively correlates with

redshift. These correlations mirror the trends of the slope of the total density profile γ′

with Σ∗ and z measured in Paper IV. At fixed redshift, galaxies with a more compact

stellar distribution (larger Σ∗) tend to have smaller dark matter masses. Stellar mass
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density is in turn related to the formation and evolution history. We know for example

that minor dry mergers tend to decrease the concentration of stars by building up an

extended envelope of accreted stars (Naab et al. 2009). Galaxies with a more extended

stellar component then might be systems that have gone through more merger events

than the average. It would then be interesting to test whether in simulations such systems

are found to have larger central dark matter masses, at fixed radius, as suggested by our

data.

One important point is that the inference on the evolution of the dark matter mass

within 5 kpc depends significantly on the selection function. In particular, our analysis

reveals how SLACS lenses have preferentially smaller dark matter masses with respect

to the population average. Our work is the first to explicitly fit for the selection function

in deriving the properties of early-type galaxies from strong lensing measurements. The

way the selection function correction is implemented is by describing the distribution

function of lenses as a product between the general distribution of massive galaxies and

the probability of detecting them in lensing surveys. The latter term is in turn the

product between the lensing cross-section and an Einstein radius selection term, which

describes the different probability of detecting strong lenses of different Einstein radii.

According to the works of Arneson et al. (2012) and Gavazzi et al. (2014), dedicated to

the selection function of SLACS-like surveys and SL2S respectively, the Einstein radius

seems to be the main quantity determining the detection probability. Of the two terms

in the selection function, the Einstein radius selection is the dominant one while the

lensing cross section correction has little effect on the results of our analysis. Strong

lenses are drawn from the high mass end of the population of galaxies. At fixed stellar
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mass, the difference between the distribution of strong lenses and the general distribution

of galaxies is small compared to the scatter in the population. Even though lenses with

radically different density profiles can have significantly different cross-sections, as shown

by Mandelbaum et al. (2009), the lensing cross-section bias is in practice small because

of the small intrinsic scatter in density profile across the population of ETGs (consistent

with the small scatter of the mass plane, Auger et al. 2010a; Nipoti et al. 2008).

In light of this result it is important to verify the impact of the selection function

on the measurement of the redshift evolution of the slope of the density profile carried

out in Paper IV, which was based on the same sample of lenses used here. As we show

in Appendix 5.8.2, the results of Paper IV are robust to selection function effects. As a

further test, we checked whether the galaxies described in our population model lie on

the Fundamental Plane relation. As shown in Appendix 5.8.3, that is the case.

The results presented in this work are all based on the assumption of a fixed de

Vaucouleurs profile with a spatially constant mass-to-light ratio for the stellar distribution

and an isotropic velocity dispersion tensor. If any of these assumptions break down, for

example with an evolving stellar profile or orbital anisotropy, then the inference might

suffer from biases. Studies of ETGs with more complex dynamical models that fit for

orbital anisotropy have found no evidence for significant anisotropies (e.g. Cappellari et al.

2013b). It seems unlikely that allowing for anisotropy would bring significant changes to

our results. We tested for the effect of fixing the light profile to a de Vaucouleurs model

by repeating the analysis of SL2S lenses with both a Hernquist (Hernquist 1990) and a

Jaffe (Jaffe 1983) profile for the stars, and found no difference in the results. The effect

of assuming a spatially constant mass-to-light ratio can be more subtle. In particular, if
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the stars accreted in merger events, which are thought to be the main drivers of the size

growth of ETGs, have a lighter IMF or even a smaller mass-to-light ratio with respect to

the pre-existing stellar population, then the light distribution of the stellar component

will have a shallower profile than its mass distribution. Indeed some observations suggest

that the mass-to-light ratio decreases with increasing radius in early-type galaxies (e.g.

Szomoru et al. 2013; Mart́ın-Navarro et al. 2014). In particular, Szomoru et al. (2013)

estimate the half-mass radius to be ∼ 25% smaller than the half-light radius. At fixed

light profile, a galaxy with a negative gradient in the mass-to-light ratio has a steeper

density profile than a model with constant M/L, and thus requires less stellar mass and

more dark matter to produce the slope of the total density profile measured with lensing

and dynamics. If not taken into account, such a gradient in the mass-to-light ratio would

then lead to an overestimate the IMF normalization and an underestimate of the dark

matter mass. More detailed data is necessary to rule out this possibility. Nevertheless, if

we repeat the analysis assuming a stellar half-mass radius 25% smaller than the half-light

radius for each lens, as suggested by the observations of Szomoru et al. (2013), we find

results consistent with the original analysis.

In this work we explored correlations between the dark matter mass and stellar IMF

with redshift, stellar mass and size. We know a more significant correlation must exist

between dark matter mass and the environment of the lens, since ETGs at the center of

clusters and large groups have larger projected dark matter masses than our lenses.

We leave the exploration of correlations with the environment to future work, when

better data and a more extended sample of lenses will be available, covering a broader

range of environments.
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5.6.1 Comparison with previous works

The inner dark matter slope of ETGs has been measured in a limited number of

cases. Sonnenfeld et al. (2012) measured γDM = 1.7 ± 0.2 for the gravitational lens

SDSSJ0946+1006, a z = 0.222 ETG from the SLACS sample. This value is slightly

larger than the average inferred here, but is not implausible given the large scatter in

γDM of the population allowed by our data.

Grillo (2012) found γDM = 1.7 ± 0.5 for the average of the SLACS lenses assuming

a Salpeter IMF, which should however be corrected to 1.40+0.15
−0.26 as described by Dutton

& Treu (2013a). In our work we let the IMF normalization be a free parameter and

find a marginally shallower average dark matter slope and an IMF slightly heavier than

Salpeter. Given that most mass enclosed within the Einstein radius is stellar, a small

change in the IMF can result in a significant change in the dark matter. Indeed, if we

repeat our analysis imposing a Salpeter IMF, we find much steeper dark matter slopes,

consistent with the result of Grillo (2012). Oguri et al. (2014) fitted for an average mass

profile of ETG lenses in a similar way to the analysis of Grillo (2012) but using a larger

sample of lenses and including constraints from gravitational microlensing data for a

few of them. They measured the dark matter slope to be γDM = 1.60+0.18
−0.13, the dark

matter fraction to be around 30% and find an IMF normalization slightly smaller than a

Salpeter IMF. While dark matter fraction and IMF normalization are in good agreement

with our findings, the slope of the dark matter halo measured by Oguri et al. (2014) is

significantly larger. Even though the lenses used in the analysis of Oguri et al. (2014) are

for the most part the same ones used here, there are two important differences between
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the two works. The first difference is that Oguri et al. (2014) used microlensing data

for a few system and no stellar kinematics information. The second difference is that

we allowed for scatter in the population of galaxies, while Oguri et al. (2014) assumed a

fixed inner slope and scaling with stellar mass of the dark matter halo, and fixed stellar

IMF for all systems. It is possible that by allowing for scatter the inference on the dark

matter slope would be consistent with our results. Dutton & Treu (2013b) and Dutton

et al. (2013) find that ETGs of the mass range logM∗ ∼ 11.5 favor a slightly heavier than

Salpeter IMF and standard NFW halos for the dark matter, in perfect agreement with

our results. Barnabè et al. (2013) successfully constrained the inner dark matter slope

for two galaxies of the SLACS sample, thanks to a more sophisticated stellar dynamics

analysis based on spatially resolved spectroscopic data. They measured γDM = 0.92+0.72
−0.64

for SDSSJ0936+0913 and γDM = 0.46+0.41
−0.30 for SDSSJ0912+0029. Cappellari et al. (2013a)

put constraints on the dark matter fractions of a large number of local ETGs from the

ATLAS 3D sample finding an average fraction of 13% within a sphere of radius Re,

corresponding to fDMe ∼ 25% for an NFW profile, consistent with our results.

Concerning the IMF of ETGs and its variations with galaxy mass, a large number of

works have been published in recent years. Robust constraints on the IMF of individual

systems are only available for a very limited number of objects. Sonnenfeld et al. (2012)

showed that a Chabrier IMF is ruled out at 95% confidence level in SDSSJ0946+1006,

a much more massive (logM∗ ∼ 11.6) ETG. Spiniello et al. (2012) found preference

for a Salpeter IMF over a Chabrier IMF for a very massive lens galaxy in a group-

scale halo. Barnabè et al. (2013) find an IMF close to Salpeter for two SLACS lenses.

These results are consistent with our work. Microlensing provides an independent way
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to determine the absolute value of the stellar mass-to-light ratio and therefore the IMF

mismatch parameter and the dark matter fraction. Recent works by Oguri et al. (2014)

and Schechter et al. (2014) find an IMF consistent with Salpeter and Jiménez-Vicente

et al. (2014) find a projected dark matter fraction consistent with our results. A Salpeter

IMF appears to be preferred over Chabrier even at z ∼ 0.8 (Shetty & Cappellari 2014),

in agreement with our results.

Smith & Lucey (2013) constrain the IMF normalization of a massive low redshift lens

to be close to that of a Kroupa IMF and inconsistent with a Salpeter IMF. While their

result appears to be in tension with our model, our data allows for a certain degree of

scatter in the IMF normalization and it is possible that this galaxy is just an outlier in

the IMF distribution of massive ETGs, especially considering uncertainties and intrinsic

scatter in the correlation between the IMF normalization and galaxy global parameters

like stellar velocity dispersion.

A series of studies based on lensing and dynamics (Treu et al. 2010; Auger et al.

2010b; Posacki et al. 2014), on the analysis of stellar absorption features (van Dokkum &

Conroy 2010, 2011b, 2012; Conroy & van Dokkum 2012; Ferreras et al. 2013; La Barbera

et al. 2013) and on spatially resolved stellar dynamics (Cappellari et al. 2012; Tortora

et al. 2013) have found indications for a systematic variation of the IMF with galaxy

mass or velocity dispersion, with the more massive systems requiring a heavier IMF. Our

result of an increasing IMF normalization with stellar mass further confirm the trend.

Finally, Brewer et al. (2014) constrained the IMF normalization of the population of

spiral galaxy bulges, with a hierarchical Bayesian inference technique similar to the one

adopted in this paper, finding that the average IMF normalization must be smaller than

186



that of a Salpeter IMF. If we extrapolate our results down to the typical masses of spiral

bulges, we find IMFs consistent with their results.

5.7 Summary and Conclusions

We re-examined the SL2S sample of ETG lenses, extending the sample of grade A

lenses and lenses usable for a joint lensing and stellar dynamics analysis with the use

of key spectroscopic data recently acquired. We then used SL2S and SLACS lenses to

explore two component mass models describing the stellar spheroid and dark matter halo

of massive ETGs. We fit for the distribution function of dark matter masses, dark matter

inner slopes and stellar IMF normalization across the population of massive ETGs with a

Bayesian hierarchical inference method that allows for scatter in the population and takes

into account the selection function, i.e. the mapping between the general population of

massive galaxies and our sample of lenses. This is the most statistically robust attempt

at describing the population of ETGs with gravitational lensing data. We found the

following.

• The projected dark matter mass within 5 kpc, MDM5, correlates with redshift and

anti-correlates with stellar mass density. The average dark matter mass for galaxies

at z = 0.3, stellar mass of logM∗ = 11.5 and effective radius Re = 5 kpc is

〈logMDM5〉 = 10.7± 0.1(stat) ± 0.1(syst).

• SLACS lenses appear to have slightly smaller dark matter masses than the popu-

lation average for galaxies of similar mass, size and redshift.
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• The time evolution of the dark matter mass for individual objects, inferred by

tracing the dark matter mass for galaxies of average mass and size at each redshift, is

consistent with a mass within the inner 5 kpc that is constant with time. Correcting

for the selection function is critical for recovering this result.

• The average inner slope of the dark matter halos of our lenses is consistent with

that of an NFW profile. We were unable to test for correlations of the slope with

redshift, stellar mass or size because the uncertainties are too large with the current

data. Spatially extended stellar kinematics data would help better constrain the

dark matter slope.

• The IMF normalization is close to that of a Salpeter IMF and is heavier for galaxies

with larger stellar mass, in agreement with previous studies.

Our finding of central dark matter content anti-correlating with stellar mass density

can be interpreted as the result of more compact galaxies living in dark matter halos

of smaller mass. Stellar mass density is believed to be closely related to the assembly

history of a galaxy: mergers that are predominantly dry contribute to create an extended

envelope of stars, therefore galaxies with larger size might have undergone significantly

more mergers with respect to more compact objects of similar mass. Our result then

seems to agree with the notion that mergers are more frequent in larger halos (Fakhouri

& Ma 2009), as well as with recent claims of correlation between environmental density

and size of massive ETGs (Cooper et al. 2012b; Lani et al. 2013).

Current and future surveys such as the Dark Energy Survey, the Large Synoptic

Survey Telescope, and Euclid will provide tens of thousands of new lenses (Oguri &
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Marshall 2010). Hierarchical Bayesian inference will allow to optimally combine the

information from such a large number of systems and enable us to probe further the

interplay between dark matter and baryons.

5.8 Appendix

5.8.1 Dark matter enclosed within Re

We want to derive what our findings on the variation ofMDM5 across the population of

ETGs correspond to in terms of the projected dark matter enclosed within the effective

radius, MDMe. Let us derive how MDMe scales with redshift, stellar mass and stellar

mass density. For simplicity we restrict ourselves to the NFW case. For galaxies with

Re = 5kpc, MDM5 = MDMe by definition. Therefore for these galaxies the variation with

z of the dark matter mass projected within the effective radius, at fixed stellar mass and

stellar mass density, is described exactly by ζDM:

∂ logMDMe

∂z
= ζDM = 1.02+0.32

−0.26. (5.26)

Let us consider the variation of MDMe with stellar mass, at fixed redshift and stellar

mass density. In order for the stellar mass density to be fixed, at a variation in stellar

mass δ logM∗ must correspond a variation in effective radius δ logRe = 0.5δ logM∗. At

fixed dark matter content, a variation in effective radius introduces a change in MDMe.

In particular for a galaxy with Re = 5kpc and an NFW dark matter halo with rs = 10Re,

δ logMDMe ≈ 1.61δ logRe. (5.27)
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Then, at fixed stellar mass density and redshift, the variation in MDMe with stellar mass

is given by the sum of a term describing the increase in halo mass, captured by the

hyper-parameter βDM, and a term due to the increase in effective radius:

∂ logMDMe

∂ logM∗

= βDM + 0.80 = 0.56± 0.20. (5.28)

Finally a similar argument shows that, at fixed redshift and stellar mass, a variation

in stellar mass density corresponds to a change in MDMe given by

∂ logMDMe

∂ logM∗

= ξDM − 0.80 = −1.26+0.31
−0.33. (5.29)

For homologous systems, ∂ logMDMe/∂logM∗ = 1 and ∂ logMDMe/∂log Σ∗ = 0. The

fact that the values we measure are inconsistent with these implies that ETGs are not

homologous systems.

5.8.2 Relation to power-law models

In Paper IV we measured the slope of the density profile and its variation across the

population of strong lenses, assuming a power-law form for the density profile. Here

we are fitting a model consisting of a stellar spheroid and a dark matter halo to the

same exact set of lenses. Are the results from the two analyses consistent? Additionally,

in this work we take into account the lensing selection function. What would be the

effect of the selection function on the analysis of Paper IV? We can answer both these

questions by generating mock samples of lenses from the population distribution inferred

here, and then analyzing them with the same method of assuming power-law density

profiles that we used in Paper IV. We generated mock ensembles of 80 lenses, uniformly
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distributed in redshift between z = 0.1 and z = 0.8, with a Gaussian distribution in

stellar mass centered at µ∗ = 11.6 and with dispersion σ∗ = 0.3, values similar to the

distribution of SL2S and SLACS lenses. Effective radii were drawn from a Gaussian with

mean given by Equation 5.12 and dispersion σ
(SL2S)
R , and dark matter masses were drawn

from a Gaussian with mean given by Equation 5.15 and dispersion σDM. For simplicity

we assumed NFW profiles for the dark matter halos, since the inference with free inner

slope is consistent with that assuming NFW profiles. The values of the hyper-parameters

describing effective radius and dark matter distributions were drawn from the posterior

PDF obtained from the fit described in Section 5.4. For each ensemble we drew one

set of hyper-parameters, and then drew the individual values of effective radii and dark

matter masses. We then simulated measurements of the density slope γ′ and added noise.

This was done in Paper IV by fitting a power-law density profile to the measured central

velocity dispersion and Einstein radius. In our case we can calculate the model velocity

dispersion while the Einstein radius is simply set equal to the effective radius. We have

shown in Paper IV that the ratio between the Einstein radius and the effective radius

has little impact on the measurement of γ′. Each mock sample is then fit with the same

model for the population distribution of γ′ used in Paper IV, which consists of a Gaussian

distribution with mean given by

〈γ′〉 = γ′

0 + α′(z − 0.3) + β ′(logM∗ − 11.5) + ξ′ logRe/5 kpc (5.30)

and dispersion σ′

γ . For each mock realization, we fit for the parameters of this distribution

with MCMC, to give the posterior PDF for the Paper IV model parameters given the

mock data. This allows us to perform the posterior predictive checks we need. For our
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With Pr(ωi|λ) No Pr(ωi|λ) Paper IV

α −0.30+0.26
−0.24 −0.40+0.15

−0.18 −0.31+0.09
−0.10

β 0.35+0.18
−0.20 0.40+0.15

−0.14 0.40+0.16
−0.15

ξ −0.64+0.19
−0.19 −0.51+0.17

−0.16 −0.76+0.15
−0.15

γ0 1.88+0.05
−0.08 1.95+0.04

−0.04 2.08+0.02
−0.02

σγ 0.15+0.04
−0.04 0.11+0.03

−0.03 0.12+0.02
−0.02

Table 5.4: Fit of a Gaussian distribution in density slope with mean given by Equa-
tion 5.30 and dispersion σ′

γ to mock populations of lenses drawn from the two component

model of Section 5.4.

test statistic, we predict the marginalized PDFs for the Paper IV model parameters, by

considering the average of these quantities over the ensemble. Results from this exercise

are reported in Table 5.8.2. The parameters recovered in this way are well consistent with

the values measured in Paper IV, with the exception of the mean density slope, γ0. The

slope measured for mocks generated from our two component model is systematically

shallower than the value measured directly on the lenses of our sample. This discrepancy

reflects the inability of reproducing relatively large values of the density slope (γ′ > 2.2)

with sums of de Vaucouleurs and NFW profiles, as discussed in Section 5.1. However,

the key trends with z, M∗ and Re are recovered, meaning that the conclusions of Paper

IV, namely that γ′ correlates with Σ∗ and anticorrelates with z, are perfectly consistent

with the present work. Furthermore, there is little difference between the values of the

power-law parameters obtained by fitting mocks created by taking the selection function

into account or not. This is an important result, as it implies that the results of Paper

IV are robust with respect to selection effects.
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5.8.3 A Posterior Predictive Test

Our hierarchical Bayesian model provides us with the the posterior probability distri-

bution in the hyper-parameters describing the population of massive galaxies. One way

to verify whether the inferred model is a realistic one is to draw mock observations from

the posterior probability distribution and compare them with real galaxies. In particular

it is interesting to check if mock galaxies drawn from our model lie on the Fundamental

Plane. For simplicity, we consider the stellar mass Fundamental Plane (Hyde & Bernardi

2009):

log

(

Re

kpc

)

= a log
( σ0

km s−1

)

− 2.5b log

(

M∗

2πR2
e

)

+ c, (5.31)

where σ0 is the central velocity dispersion. Hyde & Bernardi (2009) measured a = 1.3989,

b = 0.3164, c = 4.4858 from a sample of ∼ 50000 ETGs in the SDSS. Stellar masses were

obtained by Gallazzi et al. (2005) assuming a Chabrier IMF. The observed scatter around

Equation 5.31 is 0.11.

In order to compare our model with the Fundamental Plane measurements we drew

1000 samples from the posterior PDF, then generated one SL2S-like galaxy for each

sample and calculated the observables that enter Equation 5.31. Differently from the test

of Appendix 5.8.2, we fix the galaxy redshift to z = 0.3 for a better match with the Hyde

& Bernardi (2009) sample. Stellar population synthesis stellar masses are corrected to a

Chabrier IMF for consistency. In Figure 5.13 we plot the stellar mass Fundamental Plane

observed by Hyde & Bernardi (2009) together with the mock observations generated from

our model. The scatter in the mock observations is the result of both intrinsic scatter in

the distribution of the parameters describing the individual galaxies and the uncertainty
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Figure 5.13: Stellar mass Fundamental Plane from mock observations generated from
the posterior probability distribution function of sections 6 and 7. The coefficient of the
Fundamental Plane relation are not fitted to the mock observations but are taken from
the work of Hyde & Bernardi (2009).

in the hyper-parameters. The mock observations lie on the Fundamental Plane Even

though Fundamental Plane constraints were not explicitly used in our inference, this

result shows that our model provides a correct description of the distribution in size,

stellar mass and velocity dispersion.
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Chapter 6

Testing a dry merger evolution scenario

This chapter was published as Sonnenfeld, A.; Nipoti, C.; Treu, T.; “Purely Dry

Mergers do not Explain the Observed Evolution of Massive Early-type Galaxies” 2014,

ApJ, 786, 89, and is included here with minor formatting adjustments.

ETGs are generally believed to grow as a result of dissipational (dry) mergers. As

discussed in § 1.1.1, dry mergers appear to be able to account for the size evolution of

ETGs at z < 1 and are compatible with the low star formation rates measured in these

objects.

In this Chapter we test the dry merger scenario by adding to the size-evolution con-

straints the recent measurement of the evolution of the slope γ′ of the total density profile

of massive (M∗ > 1011M⊙) ETGs in the range 0 < z < 1. Sonnenfeld et al. (2013b) show

that ETGs increase in mass and size while keeping their density slope approximately con-

stant and close to isothermal (γ′ ≈ 2). By combining these two observational constraints

we show that an evolution driven by purely dry mergers is ruled out, and some amount

of dissipation is needed.

The Chapter is organized as follows. In Section 6.1 we construct a dry-merger evolu-

tionary model and we compare with observations the evolution of γ′ for a sample of mock
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galaxies. In Section 6.2 we extend the model by including dissipation in the mergers and

compare the predictions of this new model with observations. In Section 6.3 we quantify

the amount of dissipation needed to fit both observational constraints and compare. We

then discuss our results in Section 6.4 and conclude in Section 6.5.

6.1 Dry mergers

6.1.1 Evolution in mass, size, and density slope

In the dry-merger scenario, galaxies increase their stellar and dark mass by accreting

material from other galaxies. No new stars are generated during or after the merging

process. Nipoti et al. (2012) presented an analytic model, based on both cosmological

and galaxy-merger N -body simulations, which allows to compute the dry-merging driven

evolution of halo mass Mh, stellar mass M∗, effective radius Re and velocity dispersion,

expected for spheroidal galaxies in ΛCDM cosmology. We refer the reader to Nipoti et al.

(2012) for a detailed description of the model: here we just recall that the merger rate,

as a function of z, Mh and merger mass ratio ξ, is the one measured in the Millennium

simulations (Fakhouri et al. 2010) and that the variations in Re and M∗ are related by

d lnRe

d lnM∗

(ξ) =

[

2− ln (1 + ξ2−βR)

ln (1 + ξ)

]

, (6.1)

where βR is the logarithmic slope of the stellar mass-size relation (Re ∝ MβR

∗
). The

model depends on few parameters (essentially βR and the minimum merger mass ratio

ξmin) and on the stellar-to-halo mass relation (SHMR) used to associate halo and stellar

masses. Here we adopt the model of Nipoti et al. (2012) with ξmin = 0.03, βR = 0.6

196



and Leauthaud et al. (2012) SHMR, but we verified that our results do not depend

significantly on these choices.

In this paper we extend the model by computing the change in the slope γ′ of the

total density profile to be compared with measurements of the same quantity from the

lensing and stellar kinematics study of Sonnenfeld et al. (2013b). In practice, we need a

formula analogous to equation (6.1), which gives dγ′/d lnM∗ expected for dry mergers as

a function of the merger mass ratio of ξ. For this purpose, we use a set of dissipationless

binary-merger N -body simulations, which are described in Section 6.1.2. The analysis

of these N -body calculations leads us to parameterize the change in γ′ resulting from

mergers of mass ratio ξ as

dγ′

d lnM∗

(ξ) = aξ + b, (6.2)

with a = 0.6 and b = −0.73 (dashed line in Figure 6.1). In practice, dry mergers make

the density profile shallower and, for the same amount of total accreted mass, minor

mergers are more effective at changing the density slope than major mergers.

We note that throughout the paper ξ indicates the dark matter mass ratio between

the satellite and the main galaxy. The corresponding stellar mass ratio is in general

different from ξ, because M∗/Mh depends on Mh. In our model when a halo of mass Mh

undergoes a merger with mass ratio ξ the increase in dark matter mass is ξMh, and the

increase in stellar mass is R∗hξMh, where R∗h is the ratio of stellar to dark matter mass

of the satellite. For given increase in stellar mass, the variation of Re and γ′ depends

on ξ, but not on R∗h: this is justified because our N -body simulations indicate that the

effect of varying R∗h is small (see Section 6.1.2).
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6.1.2 N-body simulations of binary dissipationless mergers

In order to estimate dγ′/d lnM∗ as a function of the merger mass ratio ξ (see Sec-

tion 6.1.1), we collect a set of dissipationless binary-merger N -body simulations by com-

bining new simulations and simulations from previous works. In particular we take four

simulations with ξ = 1 and Mh/M∗ = 49 of Nipoti et al. (2009b, runs named 2D1ph,

2D1po, 4D1ph, 4D1po in table 2 of that paper) and two simulations with ξ = 0.2 and

Mh/M∗ = 49 of Nipoti et al. (2012, see section 3.3.2 in that paper). Our reference set

of binary-merger simulations (named set D in Table 6.1 and Figure 6.1) is supplemented

by two new simulations with ξ = 0.5 and Mh/M∗ = 49 (in all runs of this set the main

galaxy and satellite have the same Mh/M∗). In these simulations (except runs 4D1ph

and 4D1po, which are re-mergers of runs 2D1ph and 2D1po; see Nipoti et al. 2009b) both

the progenitor galaxies are represented by the two-component galaxy model D of Nipoti

et al. (2009b, see table 1 of that paper). In all the runs of this set the ratio between the

effective radius of the satellite and of the main galaxy is ξ0.6 and the orbits are parabolic:

some encounters are head-on (rperi = 0), others are off-axis (rperi/rvir ≃ 0.2 for ξ = 0.2

and ξ = 0.5; see Nipoti et al. (2009b) for the orbital parameters of the ξ = 1 runs). Here

rperi is the pericentric radius and rvir is the virial radius of the main halo.

In order to minimize systematic errors, we measure γ′ in simulated galaxies with

the same method used in observations. In particular, the density slope γ′ measured by

Sonnenfeld et al. (2013b) is obtained by fitting a power-law ρ ∝ r−γ′

to the luminosity-

weighted line-of-sight velocity dispersion within a circular aperture of radius Re/2 and

to the total projected mass within a cylinder of radius REin. For a given lens the value
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Figure 6.1: Change in the density slope γ′ per logarithmic unit of accreted stellar mass as
a function of merger mass ratio ξ in dissipationless binary-merger N -body simulations.
The different models are described in Table 6.1. Filled symbols indicate head-on mergers
while empty symbols refer to off-axis mergers (for the sake of clarity, the filled and empty
points are shifted horizontally by -0.02 and 0.02, respectively). The error bars account
for projection effects. The dashed line is the linear best-fit to the set of models D. In
the case ξ = 1 we consider two successive steps of a merger hierarchy: mergers of two D
models (step 1; lower points the plot) and re-mergers of the remnant of step 1 with an
identical system (upper points in the plot).
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Set (Mh/M∗)1 C1 (rs/Re)1 (Mh/M∗)2 C2 (rs/Re)2
D 49 8.0 11.6 49 8.0 11.6

D1 49 5.0 11.6 49 5.0 11.6

D2 49 8.0 6.0 49 8.0 6.0

D3 49 8.0 11.6 35 8.5 8.8

D4 49 8.0 11.6 75 8.5 15.0

Table 6.1: Paramaters of galaxy models in dissipationless binary-merger N -body simu-
lations. Set: name of the simulation set. C: NFW concentration. rs: NFW scale radius.
Re: effective radius. Mh: total dark-matter mass. M∗: total stellar mass. Subscript 1 is
for the main galaxy, subscript 2 for the satellite.

of the Einstein radius REin depends on the distance of the lensed background source:

REin increases for increasing source redshift zs. Typical strong lenses such as those of the

SLACS (?) or SL2S (?) surveys have Einstein radii not too different from their effective

radii. Sonnenfeld et al. (2013b) showed that measurements of γ′ with lensing and stellar

dynamics are very stable against variations of the ratio REin/Re. When measuring γ′ in

simulated galaxies we will always assume REin = Re, as varying the ratio REin/Re has

little impact on the measured γ′.

For our reference set of N -body simulations (set D) dγ′/d lnM∗ as a function of the

merger mass ratio ξ is fitted by Equation 6.2 with a = 0.60± 0.19 and b = −0.73± 0.13.

The evolution in γ′ is obtained by fixing the parameters a and b in Equation 6.2 to

their best-fit values. We verified that our results are robust against variations of a and

b within the measured uncertainties. Of course, it is important to verify whether the

adopted formula for dγ′/d lnM∗(ξ) is also robust against variation of the parameters

characterizing the galaxy models. For this purpose we ran eight additional simulations

with the same orbital and galaxy parameters as the corresponding simulations of set D,

but changing the concentration C ≡ rvir/rs, where rs is the Navarro Frenk and White
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(NFW Navarro et al. 1997) scale radius, the stellar-to-halo mass ratio M∗/Mh and the

ratio rs/Re of the progenitor galaxies. The values of the parameters of these additional

sets of simulations (named D1, D2, D3 and D4) are reported in Table 6.1 and are chosen

to span the range of values expected for real galaxies. We note that in all cases the

progenitors have γ′ in the range 1.97 . γ′ . 2.03. The results of the runs D1, D2, D3

and D4 are very similar to those of the corresponding runs D (see Figure 6.1). Thus we

conclude that our adopted formula is robust with respect to variations in the properties

of the host galaxy and its satellite within realistic ranges.

All the binary-merger N -body simulations were run with the parallel N -body code

FVFPS (Fortran Version of a Fast Poisson Solver; Londrillo et al. 2003; Nipoti et al.

2003). The parameters of the simulations with ξ = 1 are given in Nipoti et al. (2009b).

In the runs with ξ < 1 we adopted the following values of the code parameters: minimum

value of the opening parameter θmin = 0.5 and softening parameter ε = 0.04Re, where Re

is the initial effective radius of the main galaxy. The time-step ∆t, which is the same for

all particles, is allowed to vary adaptively in time as a function of the maximum particle

density ρmax: in particular, we adopted ∆t = 0.3/(4πGρmax)
1/2. The initial conditions

of the new simulations are realized as in Nipoti et al. (2009b), but with dark matter

particles twice as massive as the stellar particles. The total number of particles used in

each simulation is in the range 1.6− 3.4× 106.

In all the simulations used in this work the galaxy collision is followed up to the

virialization of the resulting stellar system. We define the merger remnant as the systems

composed by the bound stellar and dark matter particles at the end of the simulation.

The intrinsic and projected properties of the progenitors and of the merger remnants are
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determined as in Nipoti et al. (2009b), with the exception of γ′, which, as pointed out

above, is computed with the same procedure used for observed lenses by Sonnenfeld et al.

(2013b).

6.1.3 The model sample

Our goal is to follow the evolution of a sample of model galaxies between z = 1 and

z = 0, matching the characteristic of the sample observed by Sonnenfeld et al. (2013b).

We thus consider Ngal = 1000 objects with logM∗ drawn from a Gaussian with mean

µ∗ = 11.5 and dispersion σ∗ = 0.3. The starting point of the evolutionary tracks of all

galaxies is fixed at z = 0.3, which is the redshift for which observations of γ′ are most

robust. Effective radii are drawn from the mass-size relation measured by Newman et al.

(2012a). Halo masses are assigned with the same SHMR used in the galaxy evolution

model described in Section 6.1.1. For fixed M∗, Mh and Re, the value of γ
′ is not uniquely

determined as this depends on additional parameters, such as the orbital anisotropy and

the concentration of the dark matter halo. The initial values of γ′ are then drawn from

the distribution measured by Sonnenfeld et al. (2013b). Once the initial values are set,

M∗, Mh, Re and γ′ are evolved according to our model as described in Section 6.1.1.

Roughly half of the accreted stellar mass and the corresponding change in γ′ is due to

mergers with ξ < 0.2. Since ξ = 0.2 is the smallest mass ratio we consider in our N -body

simulations, our predictions on the evolution of γ′ for the sample of mock galaxies relies

in part on an extrapolation of Equation 6.2. We verified that even in the extreme case

in which the function dγ′/d lnM∗(ξ) flattens abruptly below ξ = 0.2 the conclusions of

202



our analysis do not change.

6.1.4 Comparison with observations

The measurements by Sonnenfeld et al. (2013b) constrain the parameter γ′ in ETGs

as a function of their redshift, stellar mass and half-light radius. The mean change of γ′

with one of these parameters and others fixed is measured to be

∂γ′

∂z
= −0.31± 0.10, (6.3)

∂γ′

∂ logM∗

= 0.40± 0.16, (6.4)

∂γ′

∂ logRe
= −0.76± 0.15. (6.5)

According to the formalism introduced in Sonnenfeld et al. (2013b), the observed change

of γ′ with redshift for a galaxy with a mass growth rate d logM∗/dz and a size growth

rate of d logRe/dz is

dγ′

dz
=

∂γ′

∂z
+

∂γ′

∂ logM∗

d logM∗

dz
+

∂γ′

∂ logRe

d logRe

dz
. (6.6)

The quantities d logM∗/dz and d logRe/dz are not constrained by the observations, but

are directly provided by our model for the dry merger evolution of galaxies.

An implicit assumption of Equation 6.6 is that the observed trends of γ′ with stellar

mass and size are determined uniquely by the intrinsic evolution of galaxies, and not by

the appearance of new objects with time. This is a reasonable approximation, given that

the total number density of quiescent galaxies has little evolution since z ∼ 1 (Cassata

et al. 2013), particularly at the large masses of our sample (Ilbert et al. 2013).
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Figure 6.2 shows the model evolution of the density slope averaged over the sample

of 1000 galaxies, 〈γ′〉. The mean change in γ′ with redshift for the sample average is

dγ′/dz = 0.33, and the scatter over the sample is σdγ′/dz = 0.15. The average mass and

size growth rates are d logM∗/dz = −0.27 (galaxies roughly double in stellar mass from

z = 1 to z = 0) and d logRe/dz = −0.36 respectively. The figure also shows the observed

mean change in γ′ calculated following Equation 6.6. This is dγ′/dz = −0.13±0.12. The

key result is that predicted and observed evolution in γ′ differ significantly.

Equation 6.6 provides an efficient way to quickly compare model predictions with

observations. However, in this context the “observed” evolution of γ′ is really a combina-

tion of observed quantities (the partial derivatives) and model predictions (d logM∗/dz

and d logRe/dz). A more direct evaluation of the goodness of the model is obtained by

comparing models to the observables, i.e. the partial derivatives. Such a comparison

is done in Section 6.3. Here we simply point out a discrepancy between the predicted

evolution of γ′ and observed data, the significance of which will be discussed later.

6.2 Wet mergers

The above analysis is based on the assumption that the growth of galaxies is a result

of purely dry mergers. In practice, mergers between galaxies are expected to involve the

accretion of gas, which can radiate away energy and sink to the central parts of the main

galaxy, eventually leading to star formation episodes. This infall of gas can alter the

density profile of the accreting galaxy, making it steeper. Thus introducing dissipation

in our model should help reproduce the observed evolution of γ′.
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Figure 6.2: Left panel. Solid line: Density slope γ′, averaged over the mock galaxy
population described in Section 6.1.3, as a function of redshift. Shaded region: 68%
confidence region for the observed change in γ′ for a population of galaxies with the same
mass and size growth rate as the model one. Right panel. Average stellar mass of the
mock galaxy sample as a function of redshift.

Following the spirit of our approach we introduce dissipation using a simple toy model.

In spite of its simplicity this approach allows us to isolate cleanly the effect of dissipation

and estimate whether this solution can work at all. Thus it should provide a very good

complement to hydrodynamic cosmological simulations which are just starting to achieve

the resolution to model the internal structure of ETGs (Feldmann et al. 2010; Oser et al.

2012; Johansson et al. 2012; Remus et al. 2013; Dubois et al. 2013).

We wish to test whether dissipation can work and therefore we consider a plausible yet

somewhat extreme model which maximizes the effects on the mass profile. In practice,

we assume that a small fraction of the baryonic mass of the merging satellite is cold gas,

which, in the merging process, falls exactly to the center of the galaxy and forms stars.

We calculate the response of the mass distribution of the galaxy to the infall of cold gas

following the adiabatic contraction recipe of Blumenthal et al. (1986), which is stronger

than more recent ones based on numerical simulations (e.g. Gnedin et al. 2004).
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The galaxies are modeled as spherical de Vaucouleurs stellar bulges and a dark matter

halo with an NFW profile. The ratio between halo mass and stellar mass is Mh/M∗ = 50,

and the ratio between the scale radius of the NFW profile and the effective radius of the

stellar component is rs/Reff = 10. For given infalling mass we first calculate the new

distribution of stellar and dark matter mass following adiabatic contraction. Then we

calculate the stellar half-light radius. Finally we calculate γ′ consistently with lensing

and dynamics measurements.

The change in Re and γ′ is caused by both the addition of new material at r = 0 and

by the subsequent contraction of the preexisting mass. The two effects have a comparable

impact on γ′. Figure 6.3 shows the original mass distribution as well as the one following

gas infall and adiabatic contraction for a typical system. The relation between the change

in γ′ due to and the accreted gas mass dMg can be fitted with a linear relation

dγ′

dMg

=
c

M∗

, (6.7)

with c = 7.9 (see Figure 6.3). The exact value of c depends on the properties of the main

galaxy. However, for the same parameters explored in Section 6.1.1 and summarized in

Table 6.1 the variation of c is smaller than 10%.

This ingredient is then added to the model describing the evolution of γ′ in the dry

merger case. The accreted gas mass is assumed to be a fraction fg of the accreted stellar

mass, so dMg = fgdM∗: for simplicity we assume that fg is independent of redshift,

stellar and halo mass. Then Equation 6.2 is modified to

dγ′

dM∗

(ξ) =
1

M∗

[aξ + b+ cfg] . (6.8)
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Figure 6.3: Left panel: Stellar (red) and dark matter (black) mass profiles for a model
galaxy, before and after the infall of gas at the center and the subsequent adiabatic
contraction. The blue vertical lines indicate r = Reff . Right panel: Top: Change in
the density slope as a function of infalling gas (blue dots), and its best linear fit of
Equation 6.7 (dashed line). Bottom: Logarithmic change in the effective radius as a
function of infalling gas (blue dots), and its best linear fit of Equation 6.9 (dashed line).

The effect of the infall of gas on the effective radius is quantified as

d logRe

d logM∗

= −2.8fg, (6.9)

which is a measure of the reduced increase of Re due to dissipation (see also Ciotti et al.

2007). This term will be added to Equation 6.1 when calculating the size evolution in

the model with wet mergers.

We set fg = 0.1 and calculate the evolution of the population average of γ′ analogously

to Section 6.1.4. Results are plotted in Figure 6.4, together with the observed evolution

calculated with Equation 6.6. The average change in γ′ is now dγ′/dz = −0.15 with a

scatter of σdγ′/dz = 0.03. Note that this new model modifies also the interpretation of

the observational results owing to the slightly smaller theoretical size growth entering

Equation 6.6. The key result is that, by introducing a reasonable amount of dissipation,

model predictions and observations are now in good agreement.
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Figure 6.4: Solid line: Density slope γ′, averaged over the mock galaxy population
described in Section 6.1.3 and evolved taking into account the effects of wet mergers
assuming fg = 0.1. Shaded region: 68% confidence region for the observed change in
γ′ for a population of galaxies with the same mass and size growth rate as the model
one. For comparison, we plot the average γ′ of galaxies from cosmological simulations of
Johansson et al. (2012), Dubois et al. (2013) and Remus et al. (in prep.).
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So far we have focused our attention to the evolution of the density slope γ′. There is

another important piece of observations that a successful model of galaxy evolution needs

to reproduce: the size evolution. We want to verify whether the two models considered so

far predict a size growth consistent with observations. This is done in Figure 6.5, where

we plot Re as a function of z for the sample average in both the dry and wet merger

model, together with the observed average size evolution of galaxies with the same mass

as the model average, for various literature measurements and assuming no progenitor

bias. Most measurements imply a stronger size evolution than our model predictions

for both the dry and wet merger case, the discrepancy being worse for the wet merger

model. Adding dissipational effects then helps matching γ′ observations, but increases

the tension with size evolution data. Our knowledge of the size distribution of massive

ETGs at z < 1 therefore should rule out models with too much dissipation. In the

following section we determine how much disspation is needed, if at all, to best match

both sets of observables. This inference will also allow us to perform model selection, i.e

to compare how well the purely dry merger scenario compares with the wet merger one.

6.3 Constraining the amount of dissipation

As shown in Section 6.2, the infall of cold gas and the subsequent adiabatic contraction

help reconcile the predicted evolution of the density profile with observations. At the

same time however adiabatic contraction leads to a decrease of the effective radius, such

that models with too much dissipation are in tension with size evolution measurements.

The importance of these two effects increases with increasing gas fraction, which we
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Figure 6.5: Solid lines: redshift evolution of the mock sample average of the effective
radius in the dry (red) and wet (blue) merger case. A gas fraction fg = 0.1 is assumed
in the latter case. Dashed lines: observed size growth we infer from the best-fit size
evolution measurements by Damjanov et al. (2011), Newman et al. (2012a), Cimatti
et al. (2012), Huertas-Company et al. (2013) assuming no progenitor bias.
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parameterize with fg. We wish to estabilish which values of fg provide the best match to

the data, including both density slope and size measurements. We do this by generating

mock populations of ETGs, evolved with different values of fg, and by comparing scaling

relations of γ′ and Re with observations. Our mock population is built by picking, for

each one of the Ngal = 1000 mock galaxies described in Section 6.1.3, a random snapshot

on its evolutionary track. This results in a set of galaxies uniformly distributed in redshift

in the interval 0 < z < 1. Sizes and density slopes of these mock galaxies will depend

on the amount of dissipation allowed by the model, parameterized by fg. For fixed fg,

we can infer how the average density slope of the mock population scales with redshift,

stellar mass and effective radius by measuring ∂γ′/∂z, ∂γ′/∂ logM∗, ∂γ
′/∂ logRe with

the same method used by Sonnenfeld et al. (2013b). Similarly, we can measure how the

average effective radius scales with redshift and stellar mass. We assume the following

relation:

〈logRe〉 = logR0 +
∂ logRe

∂z
(z − 0.3) +

+
∂ logRe

∂ logM∗

(logM∗ − 11). (6.10)

We then fit for fg by comparing the model partial derivatives of γ′ and Re with the

values measured by Sonnenfeld et al. (2013b) (Equation 6.3, Equation 6.4, Equation 6.5)

and in size evolution studies. The redshift dependence of the average effective radius,

∂ logRe/∂z, has been measured by different authors. As Figure 6.5 shows, there is

some scatter between the reported values, possibly indicative of an underlying systematic

uncertainty in the determination of the size evolution, of differences in the selection

function. In order to take this uncertainty into account, we assume as the observed
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value of ∂ logRe/∂z the mean between the values measured by Newman et al. (2012a),

Damjanov et al. (2011), Cimatti et al. (2012), Huertas-Company et al. (2013), and we

take their standard deviation as the uncertainty:

∂ logRe

∂z
= −0.37± 0.08. (6.11)

The mass dependence ofRe is measured by Newman et al. (2012a) to be ∂ logRe/∂ logM∗ =

0.59 ± 0.07. The fit is done in a Bayesian framework. The posterior probability distri-

bution for the gas fraction, as well as the redshift evolution of γ′ and Re, is shown in

Figure 6.6.

The data prefer non-zero values of the gas fraction, with a median and 1− σ interval

of fg = 0.08± 0.01. Purely dry merger models (fg = 0) are disfavored at more than 99%

CL (formally at 8-σ). The redshift dependence of γ′ is well matched by the model, and

the z-dependence of Re is consistent with observations at the 2− σ level. Although not

plotted in Figure 6.6, we verified that the dependences of γ′ on Re and M∗, as well as the

dependence of Re on M∗, are well consistent with observations. This is expected, since

the same observed scaling relations were used to initialize the mock sample at z = 0.3.

6.4 Discussion

In Section 6.1.4 we evaluated the mean evolution in the slope of the density profile

γ′ of a mock sample of massive ETGs, under the assumption of growth by purely dry

mergers. We found that purely dry mergers produce a strong decrease in γ′, dγ′/dz = 0.33

on average, inconsistent with observations. This result is robust against different choices

for the SHMR and against variations in the values of the model parameters. We then
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Figure 6.6: Filled contours: Posterior probabiliy distribution of the parameters describ-
ing the mock population of ETGs, projected on the space defined by the gas fraction,
the dependence of γ′ on redshift, and the dependence of Re on redshift. Dashed and
dotted lines: 68% and 95% enclosed probability of the observed redshift dependence of
γ′, from Sonnenfeld et al. (2013b), and of the effective radius, obtained by combining
measurements by Newman et al. (2012a), Damjanov et al. (2011), Cimatti et al. (2012)
and Huertas-Company et al. (2013), as explained in the text.
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extended our model allowing for a modest amount of star formation in the mergers, and

quantified the resulting effect on γ′.

When considering simultaneously the evolution in density slope and size, we find that

models with dissipation are strongly favored over purely dry merger models. The most

probable model has fg = 0.08, which according to our assumptions means that 8% of the

accreted baryonic mass consists of gas that falls to the center of the galaxy and forms

stars. The mock galaxies in our sample double their stellar mass between z = 1 and

z = 0, on average. This would imply that 4% of the final stellar mass of our galaxies

being the result of in-situ star formation at z < 1, or a specific star formation rate

(sSFR) of ∼ 0.01Gyr−1. These numbers are consistent with the largest amount of recent

star formation allowed by observations of ETGs, including spectral properties (Trager

et al. 2000; Treu et al. 2002; ?; Thomas et al. 2010), the evolution of the Fundamental

Plane (Treu et al. 2005), UV (Kaviraj et al. 2011) and mid-IR fluxes (Fumagalli et al.

2013) and spectral energy distribution fitting (van Dokkum et al. 2010; Tonini et al.

2012). Thus we conclude that our model is as wet as it can be without violating known

observational constraints. The other extreme assumption of our model is that this cold

gas falls all the way to the center before forming stars. Although this is clearly a toy-

picture, it is at least qualitatively consistent with the “blue cores” seen in the center

of massive ETGs at these redshifts (Menanteau et al. 2001; Treu et al. 2005; Pipino

et al. 2009). Observations of color gradients and their evolution (e.g. Szomoru et al.

2013) provide additional tests for the plausibility of the proposed scenario. Preliminary

calculations show the predicted change in colors due to wet mergers to be relatively small,

and consistent with observations. However a more detailed comparison requires a careful
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assessment of the observational selection function as well as additional assumptions on

the star formation history and stellar populations. This is beyond the scope of this paper

and left for future work.

Purely dry mergers maximize the size growth of ETGs for a given increase in mass,

and thus introducing some dissipation makes it harder to explain this observation. Even

though the tension with the size-growth data is much less than that between purely dry

mergers and the evolution of the mass density profiles, it illustrates the challenges of

achieving a fully self consistent and quantitative description of the evolution of massive

early-type galaxies. The discrepancy might be the result of progenitor bias (e.g. van

der Wel et al. 2009; Cassata et al. 2013), which we have not accounted for. López-

Sanjuan et al. (2012) estimate that progenitor bias contributes ∼ 20% to the observed size

evolution at z < 1. This however raises the question of whether the observed evolution

in the density slope might also be strongly influenced by progenitor bias effects. Can the

observation of 〈γ′〉 ≈ 2 between z = 1 and z = 0 still be consistent with the dry merger

model if we allow for the continuous emergence of new systems pushing the population

average 〈γ′〉 towards the measured value? This is very unlikely. Our model shows that

dry mergers decrease the average density slope of a population of galaxies by ∼ 0.3

between z = 1 and z = 0. On the other hand, the scatter in γ′ over the population

of massive ETGs is as small as 0.12 (Sonnenfeld et al. 2013b). In order to reproduce

both the observed 〈γ′〉 and scatter at z = 0, the descendants of z = 1 ETGs must be

strongly outnumbered by newly born systems, at odds with observations (Ilbert et al.

2013; Cassata et al. 2013).

The toy model developed in Section 6.2 is far from perfect, given the many simplifying
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assumptions it is based on. The effect of wet mergers on the density profile of ETGs is

probably less pronounced in reality than in the idealized case considered here, and must be

studied with dedicated numerical simulations in order to make quantitative statements.

Nevertheless, our work shows with great clarity that i) dry mergers cannot be the only

mechanism driving the evolution of massive ETGs; ii) a small amount of dissipation,

consistent with observations, can bring the predicted evolution of γ′ in agreement with

lensing measurements, as previously proposed by Ruff et al. (2011). This finding is

consistent with results from cosmological simulations that include dissipative effects,

which predict trends in γ′ in qualitative agreement with the data (Johansson et al. 2012;

Remus et al. 2013; Dubois et al. 2013, see Figure 6.4).

As an alternative to the wet merger scenario, Bolton et al. (2012), based on the results

of simulations by Nipoti et al. (2009b), suggested off axis major dry mergers as a way

to increase the density slope. However, among the off-axis simulations of Nipoti et al.

(2009b), only those with M∗/Mh ∼ 0.1 produce remnants with γ′ higher than in the

progenitor, while γ′ decreases sharply in those with the more cosmologically motivated

stellar-to-dark mass ratio M∗/Mh ∼ 0.02. Moreover, we stress that a crucial point in

connecting models with observations is defining γ′ in a consistent way. Theoretical works

(e.g. Nipoti et al. 2009b; Johansson et al. 2012; Dubois et al. 2013) often define γ′ by

fitting ρ(r) with a power law ρ(r) ∝ r−γ′

over a range of radii. The two methods give

different values of the slope (see Figure 6.7) and we verified that, by measuring γ′ as

described in Section 6.1.1, the higher values of γ′ predicted by the simulations of Nipoti

et al. (2009b) get revised downward by an appreciable amount. The net effect, and one

of the core result of our work, is that dry mergers decrease the density slope γ′, as defined
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in lensing and dynamics measurements.

Finally, while our results suggest that dissipation plays a role in the evolution of

ETGs, the origin of the cold gas involved in the process can still be subject of debate.

Gas can for example be produced as a result of stellar mass loss. If internal sources of

gas are the dominant ones, then wet mergers might not be necessary to keep the density

profile from getting shallower, provided that the gas can effectively cool down and reach

the central parts of the galaxy. Mergers might still play a role by inducing starbursts in

the pre-existing gas.

6.5 Conclusions

We studied the effect of dry mergers on the slope of the density profile of massive

ETGs. Both minor and major mergers produce a decrease in the density slope γ′, the

effect being stronger for minor mergers, at fixed accreted mass. However, purely dry

mergers produce a strong decrease in γ′ with time, inconsistent with lensing observations

at more than 99% significance. We thus developed a toy model to account for the infall

of cold gas and star formation following wet mergers. We found that it is sufficient to

accrete 4% of total mass in the form of cold gas to match the observed evolution in γ′

since z ∼ 1, while still be consistent with the observed size evolution. We suggest a

scenario where the outer regions of massive ETGs grow by accretion of stars and dark

matter, while small amounts of dissipation and nuclear star formation conspire to keep

the mass density profile constant and approximately isothermal.
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Figure 6.7: Total density slope γ′ as defined in lensing and dynamics studies vs. γ′

obtained by a direct fit to the angle-averaged density profile ρ(r) for the merger remnants
(circles) and progenitors (squares) of the N -body simulations of Nipoti et al. (2009b).
Vertical error bars account for projection effects.
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Chapter 7

Future directions

This Thesis explores the structure of early-type galaxies with different strong lensing-

based observational approaches. We can identify two strategies that can improve mea-

surements of this kind in both precision and accuracy. These are 1) including information

about the environment of lenses and 2) increasing the number of known lenses, taking

advantage of current and upcoming surveys. In this Chapter we discuss these two strate-

gies.

7.1 The environment of lenses

One limitation of strong lensing is that it is only sensitive to projected masses. This

complicates the interpretation of some of the results obtained so far. For instance, one

of the main results of Chapter 5 is that galaxies with a more compact stellar distribution

have a smaller amount of projected dark matter within a fixed physical aperture. We

do not know if these differences in the projected dark matter mass arise because of

differences in the mass in the inner few kpcs or at large radii. These two scenarios would

have very different implications on our understanding of the evolution of ETGs. In the

former case, a reduced amount of dark matter in the center of more compact galaxies
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would point towards feedback mechanisms that, being stronger for systems with a larger

concentration of baryons, pushed dark matter out from the inner regions. In the latter

case instead a smaller projected dark matter mass would reflect a smaller halo mass. As

discussed in Chapter 5, such a relation between halo mass and stellar mass density could

be the result of mergers being more frequent in halos of larger mass, a result that would

have important implications for galaxy assembly models.

Measurements of the environment of our strong lenses could help discriminate be-

tween these two scenarios. The mass of a halo correlates with the abundance of member

galaxies. Counting the number of galaxies associated with the same halos as our lenses

would then give us an independent constraint on the halo mass, breaking the degeneracy

between total mass and mass in the center. Although there have been a few studies of

the environment of strong lenses (Fassnacht et al. 2007; Auger et al. 2008; Treu et al.

2009), these have been limited by the lack of spectroscopic information and/or by low

statistics. Photometric data allows only for very noisy measurements of the environment

of a galaxy. Spectroscopic redshifts of neighboring galaxies are necessary in order to

obtain an accurate description of the environment of a lens. We started a spectroscopic

campaign in which we collected data on the environment of a few SL2S lenses using the

instrument DEIMOS on Keck and we will continue gathering data of this kind in the

upcoming months, possibly using the Gemini Telescopes.

Additional information on both the mass of the halo and on its geometry could be

gathered by using weak lensing measurements, in continuity with the work by Gavazzi

et al. (2007), or X-ray emission by the intragroup medium, at least for the most massive

systems. Future X-ray surveys such as eROSITA could provide us with X-ray measure-
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ments on a statistically significant number of strong lens ETGs in groups, allowing for

accurate assessment of their environment.

7.2 Strong lensing in the LSST era

Ongoing surveys such as the Dark Energy Survey (DES) and the Hyper Suprime-

Cam (HSC) survey will allow for the discovery of hundreds of new lenses, and upcoming

surveys such as the Large Synoptic Survey Telescope (LSST) and Euclid will push the

number of known lenses to tens of thusdands (Oguri & Marshall 2010). The work pre-

sented in this Thesis is based for the first part on a detalied study of one strong lens

system characterized by a rare double ring configuration, the “Jackpot”, and for the

second part on the analysis of a relatively large (N ∼ 80) number of regular strong

lenses. It is easy to see how increasing the number of known lenses would help with the

second strategy, although this would pose new challenges such as carrying out follow-up

observations for large numbers of lenses and reducing the sources of systematic errors,

currently comparable to the statistical uncertainties. At the same time, as new lenses are

discovered a non-negligible fraction of these (roughly one in a thousand Gavazzi et al.

2008) will be double lens plane systems, allowing for studies like the one described in

Chapter 2 to be possible for a statistically significant number of systems. Moreover, it

will be possible to discover systems with even more exotic congigurations. Double lenses

such as the “Jackpot” could, if the two lenses have comparable strength, produce three

rings instead of two (Werner et al. 2008). The additional ring would appear closer to

the center with respect to the “Jackpot” case and corresponds to light rays coming from
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Figure 7.1: Left panel: Sketch of the lensing optical bench for a system of two lenses
at two different redshifts generating a total of three Einstein rings. With respect to the
case of SDSSJ0946+1006, the additional ring is formed from ligh rays coming from the
background source (S) and crossing the optical axis (from Werner et al. 2008). Right
panel. Simulation of a double lens system with a triple ring configuration. Light from
the foreground lens galaxy has been subtracted. Blue images correspond to the farthest
source, while yellow images correspond to the first source/second lens.

the background source and crossing the optical axis before reaching the observer (see

Figure 7.1). Such systems would provide more constraints with respect and would allow

to reconstruct the density profile of their lenses in greater detail.

With the two-order-of-magnitude increase in the number of lenses granted by LSST

and Euclid, strong lensing will likely continue to be an excellent tool for the study of

early-type galaxies in the next decade.
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