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ABSTRACT 

 

Impacts of Climate Variability on Surface Energy and Water Budgets in sub-Saharan Africa 

 

by 

 

Laura Suzanne Harrison 

 

According to the IPCC Fifth Assessment Report, climate change will exacerbate 

current climate and non-climate stressors on agricultural systems in sub-Saharan Africa. This 

will adversely impact food security and the wellbeing of communities. Small-scale farmers 

grow more than 90 percent of the food produced in the region and many households depend 

on productive local growing conditions to support for their families. A better understanding 

of recent and near future climate constraints is important for identifying future food security 

risks and locally-appropriate adaptation strategies. 

This dissertation research examines impacts of weather and climate on vegetation 

productivity in geographically diverse areas of east Africa and the semi-arid Sahel. The focus 

of this research is how surface energy and water budgets respond to variations in rainfall and 

temperature. It asks the following questions: Where will warmer temperature pose a hazard 

to rainfed agriculture in the Sahel in the next 20 years? What environment and weather 

conditions led to above average surface temperature during the recent decade in east Africa? 

How have declines in rainfall since the 1980s impacted vegetation productivity and 

hydrology in Tanzania? The research incorporates a variety of earth observation data, 

including historical records from in situ, model-derived, and satellite-observed sources and 
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projections from global climate models. A major contribution is the identification of specific 

areas, mainly in semi-arid climate zones, where increases in temperature and decreases to 

rainfall have large negative impacts on vegetation productivity. The research also presents 

new methods for evaluating land-atmosphere interactions in the context of hazards to 

vegetation. 
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Introduction 

 

In this dissertation we examine impacts of climate variability and climate change in sub 

Saharan Africa. We use a geographic approach to identify how surface energy and water 

budgets in arid, semi-arid, and wet climate regions respond to variations in rainfall, 

temperature, and weather. Our main focus is how vegetation productivity can be impacted 

by these changes. The analysis period is from the last 30 years, when earth observation data 

are most plentiful, to 20 years in the future. We use a variety of earth observation data 

including historical records from in situ, model-derived, and satellite-observed sources and 

projections from global climate models.  

The motivation for this research is the importance of vegetation productivity for food 

security in Africa. There are four main components to food security: Availability of food, 

access to food (purchasing power), personal health to utilize nutrients, and how consistent of 

these factors are through time (Gregory et al., 2005). In the three study areas we examine, 

the African Sahel and two areas in east Africa, many households depend on productive 

growing conditions for generating income or for producing their own food (Thurlow and 

Wobst, 2003; Sissoko et al., 2011). Understanding climate and land surface interactions in 

the recent historical era can support efforts to improve food security. Our capacity to 

anticipate food availability or access problems at local to regional scales would be improved 

by better knowledge of the weather conditions that cause yield reductions in particular areas. 

Understanding historical climate constraints to vegetation productivity provides a frame of 

reference for evaluating potential impacts of future climate change. The information may 

help planners identify strategies to improve resilience in particular communities. Solutions 
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might involve improved economic, political, and agricultural policies, crop insurance 

programs, improved seeds, or conservation-oriented farming techniques (Brown and Funk, 

2008; Garrity et al., 2010). If climate variability becomes more pronounced and widespread, 

as models project, disruptions to food production will become more frequent and more 

severe in sub-humid and semi-arid areas of Africa (Schmidhuber and Tubiello, 2007). 

How climate variability and climate change impact people is inherently a geographic 

problem. Geography is based on the idea that places are both connected and unique. Places 

have physical qualities that are connected to a larger system, but each has a unique 

combination of physical and social characteristics. If rainfall or temperature changed by the 

same amount in every place on earth, different places would be impacted in different ways. 

The same magnitude reduction to rainfall is a larger proportion of the water budget in drier 

areas. The same increase in temperature can lengthen the growing season in a cool area and 

shorten it in a warm area. The response of vegetation to altered environments can range 

from tolerance to large impacts on health and productivity. When one considers the variety 

of ways people interact with the environment, the level of complexity greatly increases. 

Geographic analysis simplifies complexities of the physical world so that, progressively, the 

interconnectedness of people and features of the earth system can be better understood.  

Particularly relevant geographic tools for climate impact analysis are spatial and temporal 

sampling of the earth system and statistical and process-based models. These provide 

observations of the variety of conditions that have existed and help us understand how 

observations relate to each other. Models also help to identify scenarios that may have 

existed in the past or will exist in the future. By applying a model across diverse 

environments, one can illuminate physical spatial gradients that are only clear from a 
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systems standpoint. In this dissertation we explore water and energy budgets using modern 

earth observation datasets, state of the science land simulation models, and a crop water 

balance model. The goal is to improve our understanding of climate-driven environmental 

stress in heterogeneous landscapes of sub Saharan Africa.  

In Chapter 1, we explore spatial-temporal impacts of projected warming in the African 

Sahel. The goal is to provide decision makers with a sense of some of the constraints that 

may develop for rain fed agriculture due to temperature changes in the next 20 years. 

Rainfall is the most limiting factor for productivity in the Sahel, but there is much 

uncertainty as to how climate change will impact rainfall in the region. We consider a 

scenario in which climate conditions in 2026-2035 are similar to 2001-2010 except that 

global warming has increased temperature by the amount projected by the World Climate 

Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble 

mean. We provide an outlook for how temperature changes would impact the crop water 

balance through its influence on atmospheric evaporative demand, or potential 

evapotranspiration, and how rain fed millet yields may respond to additional water stress. 

The projected change to potential evapotranspiration is estimated using historical statistical 

relationships from gridded weather data and CMIP5-projected changes to temperature. We 

place changes in context to local crop water budgets using the USGS GeoSpatial Water 

Requirement Satisfaction Index model, which is currently used for remotely monitoring crop 

productivity in Africa. We identify areas of the Sahel and crop growth stages that would 

experience most negative impacts under this scenario.   

Chapter 2 uses energy budget variables simulated from a climate-land surface model 

experiment to identify factors that contribute to above average surface temperature in east 
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Africa. The purpose of the analysis is to provide information that could help remote 

monitoring of weather-driven vegetation stress. Surface heating is indicative of 

environmental conditions that are stressful for vegetation because it sometimes occurs when 

soil moisture is too low to support normal evaporation and plant photosynthesis. Vegetation 

that is not tolerant of higher temperature may experience a combination of heat and water 

stress, which can have large impacts to productivity. Land surface models are a potentially 

valuable resource for identifying when and where these conditions have occurred because 

they simulate energy and water fluxes for a variety of timescales and land cover types. We 

use output from an experiment in which the Noah land surface model v3.2 is forced with 

RFE 2.0 rainfall, a dataset that is currently used for monitoring in Africa. For areas in and 

near Kenya for a month of the long rains growing season, we examine modeled drivers of 

annual upwelling longwave radiation. We identify geographic variations in anomalous 

surface heating and the mechanisms responsible for warm and cool surface heat anomalies 

between 2002 and 2011. 

In Chapter 3 we examine historical changes to rainfall and the potential impacts of these 

changes in Tanzania from 1982 to 2010. Widespread declines to March to May rainfall have 

been observed over the Greater Horn of Africa during this period. In Tanzania, rainfall 

declines have also been observed during other times of the year. The goal of this analysis is 

to identify where the declines may have influenced natural vegetation and agricultural 

productivity and water resources in Tanzania. For this analysis we use CHIRPS, a new 5.6 

km resolution dataset based on station-observed and satellite-estimated rainfall. To get a 

sense of the general disagreement or agreement about changes to rainfall in the region we 

compare seasonal rainfall trends in CHIRPS to the trends in six other gridded rainfall 
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products. Previously, several studies reported declines to vegetation productivity for large 

areas of Tanzania. These were based on negative trends in satellite-observed vegetation 

index values from NASA GIMMS NDVI dataset. To determine if rainfall changes can 

explain some of these declines we compare interannual variability and historical trends in 

this NDVI dataset and CHIRPS. A model-based analysis is used to identify potential rainfall 

impacts to evapotranspiration, surface runoff, and maize yield potential. For these we use 

the Variable Infiltration Capacity hydrologic simulation model and the USGS GeoSpatial 

Water requirement Satisfaction Index model.  
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Chapter 1 

 

Crop water stress in a warming Sahel: Anticipating impacts with potential 

evapotranspiration projections and a crop water balance model 

 

Abstract 

We explore spatial-temporal impacts of projected warming in the Sahel, an important 

agricultural region of sub-Saharan Africa, during the primary growing season. The goal is to 

provide decision makers with a sense of the constraints that may develop for rainfed 

agriculture due to temperature changes in the next 20 years. Potential evapotranspiration 

(PET) is projected for the 2026-2035 time period using a hybrid statistical method. In this 

approach CMIP5-projected warming is combined with locally-derived empirical 

relationships between PET and anomalous temperature. These are identified using a gridded 

historical record for 2001-2010. We model crop water stress to identify how millet yields 

may be impacted by temperature-induced PET changes. 

Our results show that near-term warming could decrease average yields by 6-10% for 

rainfed millet. These declines would occur along the margins of current productive growing 

areas where farming is already constrained by low rainfall and infertile soil. Results also 

indicate more frequent low productivity seasons in these growing areas. Warming during 

August is the predominant driver, because the additional water stress from higher PET 

coincides with the millet reproductive phase. PET changes are mostly due to larger vapor 

pressure deficits with higher temperature. Based on the identified impact to moisture 
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demand, warmer temperatures will pose a substantial hazard to crop production in the Sahel 

in the next 20 years. 

1.0 Introduction 

One of the most critical aspects of future food security in Africa is how climate change will 

alter vegetation productivity in the Sahel (Batterbury and Warren, 2001; Devereux and 

Edwards, 2004). Climate-driven disruptions to productivity can have major environmental 

and social consequences. Most households in the semi-arid Sahel are highly dependent on 

the productivity of cropping and grazing lands, which in turn are reliant on a short and 

variable June-September rainy season (Rain, 1999; Sissoko et al., 2011). In the 1970’s and 

1980’s, persistent drought transformed millions of people in the Sahel into environmental 

refugees (Myers, 2002). It is possible that in the 21
st
 century climate-driven disruptions will 

be larger in scope and more frequent (Solomon, 2007; Giannini et al., 2013). The Sahel is 

warming at a faster rate than the global average, and by the end of the century, growing 

season temperature is projected to be higher than 20
th 

century extremes (Battisti and Naylor 

2009). Rapid population growth is exposing more people to climate hazards and increasing 

pressure on natural resources (Ramaswamy and Sanders, 1992). By 2050, Niger, one of the 

most impoverished countries in the world, will need to support an additional 32 to 44 

million people, double to triple its 2010 population (PRB, 2010; UN, 2002; UN, 2007; Potts 

et al., 2011). Therefore a major goal of regional and international planners is to increase 

Sahelian communities’ resilience to short term climate shocks and climate change (Adger et 

al., 2003; Dietz et al., 2004).  
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A fairly realistic range of climate change impact scenarios is needed to support food security 

planning in the Sahel (Paeth et al., 2009). This is a challenge because global climate models 

do not show consensus in projections for Sahelian rainfall (Druyan, 2011). Regional rainfall 

exhibits large natural variability on decadal timescales and it is unknown how the West 

African monsoon system will respond to future changes in atmospheric chemical and 

aerosol composition (Biasutti et al., 2008; Hein and De Ridder, 2006; Shanahan et al., 2009; 

Zhang et al., 2007). According to models compared in the Intergovernmental Panel on 

Climate Change 4
th

 Assessment Report, the Sahel of the 21
st
 century is wetter, drier, or no 

different from the recent past (Solomon, 2007). In Niger for instance, end of the century 

projections range between -25% and +49% (Burke et al., 2011). Despite these uncertainties, 

planners can prepare to some extent by being aware of the impacts that projected 

temperature changes could have on pastoral and agricultural activities in the region. Model 

projections for temperature are regarded with relatively higher confidence (Solomon, 2007). 

In the near-term, defined hereafter as the next 15-25 years, temperature changes will be 

mostly a consequence of greenhouse gas concentration increases that have already occurred 

(Neelin, 2011).  

It can take more than a decade for major agriculture investments to produce returns and be 

fully adopted (Reilly and Schimmelpfennig, 2000), so it is important for adaptation 

programs to be proactive. Knowledge of climate risk ‘hot spots’, the areas where even small 

changes to climate would aggravate current problems, can help prioritize these investments 

within the region (Burton and van Aalst, 2004; Lobell et al., 2008). Food insecurity hot spots 

are generally identified by assessing projected scenarios with the context of historical 

observations. One example of this strategy is in Jankowska et al. (2012), which identifies 
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Mali’s ”front line” of vulnerability to near term hazards by exploring relationships between 

livelihoods, malnutrition, precipitation, and temperature. Combining near-term climate 

projections with knowledge of recent constraints to food production can give risk managers 

a sense of what to expect for certain agricultural regions in particular times of the growing 

season (Hellmuth et al., 2011). Using near-term projections is beneficial because some 

aspects of current climate can be compared or reasonably extrapolated.  

Understanding how particular crops will respond to higher temperature is an essential 

component of adaptation to climate change (Thornton, 2012). While rainfall is the major 

limitation to crops in the Sahel, warmer air temperature can exacerbate plant water stress in 

drought years and limit yield potential in average rain years (Ong and Monteith, 1985). One 

concern is that warmer temperatures will harm crop development by more rapidly 

evaporating the soil moisture that plants rely upon between rainfall events. Evaporation rate 

increases exponentially with temperature according to the Clausius-Clapeyron relation. If 

warmer temperature is the main difference in climate, rainfall that was sufficient for 

agriculture in the past may not be sufficient in the future. Since 1975, growing season 

temperatures have increased by 0.6-1.0 °C in Mali, Burkina Faso, Niger, Chad, and Sudan 

(Funk et al., 2012a-e; Funk et al., 2011). Marshall et al. (2012) identified these trends as a 

potential cause of the recent decoupling between evapotranspiration and rainfall in the 

western Sahel. In the eastern Sahel Sheffield et al. (2012) found that increases in evaporative 

demand amplified plant stress during the late 20
th

 century drying trend (Held et al., 2005; 

Zeng et al., 1999). 

The goal of this paper is to explore how crop productivity may be impacted by near-term 

temperature changes by producing regional projections of near-term potential 
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evapotranspiration (PET). PET is the amount of water that atmospheric evaporative demand 

extracts from a saturated surface (Monteith, 1981). PET is commonly used for identifying 

agro-hydro-meteorological hazards  (see e.g. Brown, 2008; Rind et al., 1990) because it is 

the expected rate evapotranspiration if soil moisture is not limiting. We focus on the role of 

temperature, because in the Sahel, a warming trend is projected with higher consensus 

between global climate models than are changes in other factors controlling PET (moisture 

and wind speeds) (Solomon, 2007). We use a hybrid statistical method to estimate the 

influence of above average temperature on PET and crop water stress. We model millet, a 

heat and drought resistant cereal crop important for food security in the Sahel (Suttie et al., 

2005). Millet contributes to 20 to 50% of grain production in Sudan, Niger, and Burkina 

Faso (Leaky et al., 2009). Water stress in millet is symptomatic of major challenges to 

rainfed crop production. One third of millet production comes from crop areas that are 

vulnerable to climate variability and change, in part because farmers plant it when other 

staple crops will not produce (Ben Mohamed et al., 2002; Boschetti et al., 2013; Friborg et 

al., 1997).  

2.0 Background 

2.1 Potential evapotranspiration (PET) in the Sahel 

When water resources cannot support potential evapotranspiration (PET), plants increase 

water use efficiency, but at the cost of less carbon fixation and photosynthesis (i.e. lower net 

productivity) (Hopkins and Hüner, 1995). Large disparity between soil moisture and PET is 

most detrimental to yields when it coincides with plant reproductive processes such as 

flowering and grain filling (Mahalakshmi et al., 1988; Sultan et al., 2005; Winkel et al., 
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1997). The Sahel growing season (June to September, JJAS) is characterized by high levels 

of solar insolation and warm temperatures. This generally leads to high PET that fluctuates 

with monsoon activity and associated changes in cloud cover and near surface moisture. 

Figure 1 shows aridity, the ratio of precipitation to PET (P/PET), for JJAS. July-September 

precipitation in the southern Sahel is sufficient to balance PET and in the wettest areas is 

more than 1.25 times PET. The northern Sahel is more moisture limited, with evaporative 

demand greater than rainfall (aridity < 0.75).  

2.2 Projecting PET 

There is scientific consensus that warmer temperatures have and will continue to increase 

evaporation globally (Bates et al., 2008; Held and Soden, 2006). Regional patterns of 

observed and projected PET change are more ambiguous. Changes to other characteristics of 

the near surface atmosphere can amplify or suppress the impact of warming (Donohue et al., 

2010; Gong et al., 2006; Rayner, 2007). Rates of PET will respond to changes in wind speed 

(McVicar et a., 2012), net radiation (Wild, 2009), atmospheric moisture, and air 

temperature. For PET projections a large amount of uncertainty comes from predicted 

moisture-related climate variables such as cloud cover and vapor pressure (Kay and Davies, 

2008). There is a variety of formulas one can use to estimate PET, so PET projections are 

commonly produced by averaging output from multiple climate models using multiple 

formulas. Bias from combining these sources can cause PET estimates to diverge at global 

and regional scales and in some cases it determines the direction of change to water 

availability (Arnell, 1999; Kingston et al., 2009). New approaches to PET projections may 

reduce uncertainty in regional climate change impact assessments. 
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3.0 Data and Methods 

We use a statistical model to estimate the additional PET that historically occurred during 

conditions that were warmer or cooler than average. The purpose is to use this as a guide for 

what changes to PET we might expect based on near-term average temperature projections. 

Projections tend to be small in magnitude compared to the historical range of daily 

temperature variability. Temperature is the only external predictor in the model. This 

approach accounts for the co-variation of surface radiative energy, humidity, and wind with 

anomalous temperature. Empirical relationships between anomalous temperature and PET 

are derived independently for each ~730 km
2
 section of the study area using gridded land 

surface model simulations for 2001-2010. These locally-derived relationships are used to 

estimate the per-grid cell PET change that would occur given global climate model-

predicted changes to air temperature between 2001-2010 and 2026-2035 periods. Warming-

induced changes to crop water stress are assessed for rainfed millet using a simple crop 

water balance model.  

3.1 Historical reference evapotranspiration 

For our estimate of PET we use a version of the Food and Agriculture Organization of the 

United Nations Paper No. 56 Penman-Monteith (FAO-56 PM) formula (Allen et al., 1998) 

for reference evapotranspiration. Reference evapotranspiration (ETo) and potential 

evapotranspiration are based on similar concepts but are not the same. PET assumes the 

surface is covered with water, which gives no resistance to evaporation, while ETo assumes 

the surface has some (fixed) resistance to evaporation. Atmospheric variables drive ETo 

variability when surface resistance parameters are held constant or are set to zero. In our 

scenario we assume that surface resistance is the same in 2001-2010 and 2026-2035.  
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The benefit of using ETo or the Penman-Monteith equation (Monteith, 1964) on which it is 

based, is that both radiation and aerodynamic influences on atmospheric evaporative 

demand can be considered. Penman-Monteith is physically-based and includes all the 

parameters that govern energy exchange (Monteith, 1964; Allen et al., 1998). When 

meteorological data are available it is considered the choice model for PET (Sheffield et al., 

2012) over the many alternatives (Lu et al., 2005). ETo is denoted as ‘reference’ 

evapotranspiration because it is calculated with resistance parameters for a reference 

surface, usually well-watered grass crop of uniform height. Crop coefficients can then be 

used to modify ETo for specific crop types and growth stages (Doorenbos and Pruitt, 1977). 

FAO-56 PM is the international standard for ETo (Adeboye et al., 2009; Smith, 2000) and is 

actively used for monitoring growing conditions in the Sahel. The Famine Early Warning 

System (FEWS NET) use ETo and rainfall data to identify areas where water stress may 

adversely impact yields. We use the same crop water balance model for this analysis 

(discussed in Section 3.3).  

We use the California Irrigation Management Information System version of FAO-56 PM, 

which uses bulk surface resistance coefficients adapted from Walter et al. (2000) (CIMIS, 

2009). FAO-56 PM separates evaporative demand into two main components: radiative 

energy and aerodynamic-driven ETo [Eq. 1]. Net surface radiation dominates the first 

(energy) component, while the second (aerodynamic) component is driven by temperature, 

vapor pressure deficit (es-ea), and wind speed.  
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Where 

ETo = grass reference evapotranspiration (mm h
-1

) 

Δ = slope of saturation vapor pressure curve (kPa °C
-1

) at Ta 

Rn = net radiation (MJ m
-2

 h
-1

) 

G = soil heat flux density (MJ m
-2

 h
-1

) [ = 0.1*Rn] 

γ = psychrometric constant (kPa °C
-1

) 

Ta = mean hourly air temperature (°C) 

u2 = wind speed at 2 meters (m s
-1

) 

es = saturation vapor pressure (kPa) at Ta 

ea = actual vapor pressure (kPa) at Ta 

λ = latent heat of vaporization (MJ m
-2

 h
-1

) 

Cd = bulk surface resistance and aerodynamic resistance coefficient [ = 0.24] 

 

 Climate data used for FAO-56 PM is from the 0.25 degree GLDAS (Global Land Data 

Assimilation System) (Rodell et al., 2004) land surface state and flux product simulated with 

the Noah 2.7.1 land surface model (Ek et al., 2003). These data are made available by the 

NASA Goddard Earth Sciences Data and Information Services Center 

(http://disc.sci.gsfc.nasa.gov/). Noah 2.7.1 output are used to calculate 3-hourly ETo (mm 3-

hr
-1

). All variables are then aggregated to daily daytime totals and averages. Daily anomalies 

are the difference between these data and 2001-2010 daily means, which are attained by 

fitting quadratic curves to JJAS data.  

http://disc.sci.gsfc.nasa.gov/
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This particular GLDAS product was chosen, because forcing data are observation-derived 

fields rather than model-based reanalysis fields. Precipitation forcing is spatially and 

temporally disaggregated National Oceanographic and Atmospheric Administration 

(NOAA) Climate Prediction Center Merged Analysis of Precipitation (CMAP) fields, which 

are a blending of satellite and gauge observations. Atmospheric forcing data are NOAA 

Global Data Assimilation (GDAS) analysis fields (Derber et al., 1991). Radiation fluxes are 

derived with the Air Force Weather Agency's AGRicultural METeorological modeling 

system (AGRMET) method of combining satellite and station data. 

3.2 Hybrid statistical PET projection 

3.2.1 Statistical PET response to anomalous temperature (2001-2010) 

We use a statistical model to estimate the PET response to temperature anomalies in the 

Sahel during JJAS. This model is designed under the assumption that near-term projected 

warming is analogous to a temperature perturbation from the mean climate. JJAS 

temperature changes projected by climate models for the Sahel between 2001-2010 and 

2026-2035 are 0.4°C – 1.1 °C (Taylor et al., 2012), which is within the range of observed 

daily variability. We build the statistical model based on daily temperature anomalies 

observed during 2001-2010. 2001-2010 is a short record with but we have more confidence 

in data available for this period than longer ones.  

The statistical model (Eq. 2) has two predictive components: a linear regression component 

(βx(t)), with daily temperature anomaly as the predictor, and an autoregressive component 

(αy(t-1)) to model observed first order PET anomaly persistence. Explicit modeling of one-

day autocorrelation prevents overestimation of the PET response to temperature (PET-T). 
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An intercept term γ and model error ε are the third and fourth components. We use β (mm 

day
-1

 °C
-1

), where it is statistically significant at the 95
%

 confidence level, to estimate the 

impact of above average temperature on PET and crop water balance. For the purposes here, 

we explore the implications of a stationary β and projected warming through 2035. 

y(t) = αy(t-1) + βx(t) + γ + ε  [Eq. 2] 

 

Where  

y(t) = Daily PET anomaly (mm) 

α = PET autocorrelation coefficient for lag equal to one 

β = Slope coefficient for temperature anomaly (mm day
-1

 °C
-1

) 

γ = Intercept term 

ε = Model error 

 

The statistical model is fit to each month of JJAS separately. Model parameters are 

estimated at each 0.25° by 0.25° grid cell using maximum likelihood. Model skill is 

estimated using the coefficient of determination (R
2
). R

2
 is the proportion of total observed 

variance explained by the model. Cross-validation is used to identify and remove areas from 

the analysis where model performance is unacceptable (cross-validated R
2
 < 0). In cross-

validation the model is iteratively trained on 9 of the 10 years and tested on the excluded 

year (Michaelsen, 1987). The contribution of temperature to PET-T is calculated by 

comparing R
2
 of a partial model (no autocorrelation parameter) to that of the full statistical 

model.  
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We would expect, based on Equation 1, that the aerodynamic component of PET is the most 

important driver of PET-T because of the direct dependence of vapor pressure deficit on 

temperature. Variability in the surface radiation budget i.e. the radiation component of PET 

may also contribute to PET-T. To attribute β to radiative and/or aerodynamic controls of 

PET, we estimate the response of each component to temperature using simple linear 

regression. In the first regression model temperature predicts aerodynamic component 

anomalies (adPET-T); in the second model radiation component anomalies are predicted 

(rdPET-T). adPET-T represents the evaporative demand that is due to an increase in vapor 

pressure deficit. rdPET-T represents the evaporative demand due to an increase in net 

radiation.  

3.2.2 Projected PET response to climate model-projected warming (2026-2035) 

Projected changes to average near surface air temperature for the Sahel (ΔT) in June, July, 

August, and September are calculated as the difference between 2001-2010 to 2026-2035 

monthly means as simulated by the World Climate Research Programme Coupled Model 

Intercomparison Project (CMIP5) (Taylor et al., 2012). For these periods, we use the CMIP5 

multi-model ensemble mean of historical plus RCP4.5 greenhouse gas emissions scenario 

simulations. In the RCP4.5 scenario radiative forcing is stabilized by 2100 due to 

technological innovation and proactive emissions policy (Clarke et al., 2007; Smith and 

Wigley, 2006; Wise et al., 2009). The multi-model ensemble mean was downloaded as a 

2.5° spatial resolution grid from the Earth System Grid Federation gateway 

(http://pcmdi9.llnl.gov/esgf-web-fe/) and is composed of the following 18 models (34 

ensemble members): ACCESS1-0, ACCESS1-3, bcc-csm1-1, BNU-ESM, CanESM2, 

http://pcmdi9.llnl.gov/esgf-web-fe/
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CCSM4, CESM1-BGC, CESM1-CAM5, CMCC-CM, CNRM-CM5, CSIRO-Mk3-6-0, EC-

EARTH, FGOALS-g2, FIO-ESM, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E.  

For each month and 0.25° grid cell we use β from Equation 2 and ΔT to estimate the PET 

anomaly that historically would be associated with this deviation from average temperature. 

This model-estimated near future PET anomaly (ΔPET) is the same for all days of each 

month. For analysis and use in the crop water balance model, daily ΔPET and daily 

historical PET (PET_HIST) are each aggregated to 10-day and monthly totals. 10-day and 

monthly estimates of average PET for the 2026-2035 time period (PET_PROJ) are created 

from the sum of these fields (PET_HIST + ΔPET). The 10-day data are used for the crop 

water budget model that is discussed below. 

3.3 Impact of projected PET on rainfed crop production 

We use the USGS GeoSpatial Water Requirement Satisfaction Index model (GeoWRSI) 

(Senay and Verdin, 2003) to place projected PET changes in the context of climate-driven 

millet productivity. GeoWRSI is a spatially explicit simple bucket water balance model used 

for seasonal monitoring of crop moisture stress and yield in sub-Saharan Africa (see Tadesse 

et al., 2008, Verdin and Klaver, 2002, and 

http://chg.geog.ucsb.edu/products/geowrsi/index.html). GeoWRSI inputs are rainfall and 

PET in mm calculated for a reference crop using FAO-56 PM. GeoWRSI estimates overall 

crop water satisfaction by tracking moisture deficits through the growing season. Deficits 

occur when plant water use falls below the water requirement. Deficits indicate plant water 

stress and sub-optimal crop performance. Plant water use depends on rainfall, soil water 

surplus from the previous model time step, plant rooting depth, and water holding capacity 
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of the soil. Water requirements are determined by ETo and a crop coefficient (Kc) that 

changes to reflect higher plant water needs in certain growth stages. Initial, vegetative, 

reproductive, and ripening growth stages are 14%, 24%, 38%, and 24% of the total growing 

season length, respectively. Millet water requirements are highest during the reproductive 

stage (Kc = 1), lowest during the initial stage (Kc = 0.3), and moderate for the vegetative and 

ripening stages (Kc = 0.3-0.7). WRSI, the overall crop water satisfaction, ranges from 50 to 

100. WRSI = 50 indicates crop failure due to water stress, WRSI = 100 indicates no stress.  

WRSI for millet is modeled for historical (2001-2010) and near future (2026-2035) periods 

with PET_HIST and PET_PROJ as respective inputs. To estimate the independent impact of 

ΔPET, 2001-2010 rainfall is used for historical and future periods. Recent rainfall 

climatology is as likely of a scenario for 2026-2035 as any model projection since Sahelian 

rainfall is difficult to predict and it is unclear how global warming will impact rainfall in this 

time frame (James and Washington, 2012). 2001-2010 was the wettest decade of the last 40 

years (Peterson and Vose, 1997). Rainfall data for GeoWRSI are 10-day NOAA-CPC-

FEWS NET Rainfall Estimates (RFE 2.0) (Xie and Arkin, 1997). RFE 2.0 was created 

specifically for drought monitoring in Africa and performs well in station validations for the 

Sahel growing season (Herman et al., 1997; Jobard et al., 2011). RFE 2.0 is available at the 

FEWS NET Africa Data Portal (http://earlywarning.usgs.gov/fews/africa/index.php). Start 

of season date is calculated within the GeoWRSI model using a rainfall accumulation 

threshold designed to reflect farmer decisions to wait for significant rain events before 

planting seed (see e.g. Marteau et al., 2011). We evaluate changes to average WRSI and the 

frequency of upper and lower 20
th

 percentile WRSI. To explain why WRSI changes we 

examine plant water deficits during the growth stages.  

http://earlywarning.usgs.gov/fews/africa/index.php
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4.0 Results 

4.1 Historical PET response to anomalous temperature 

4.1.1 Statistical model skill 

Figure 2 shows the statistical model R
2
 for JJAS. The statistical model explained 30-50% of 

PET variability for much of the Sahel. Exceptions are dry regions in northern Mali, northern 

Niger, and northeastern Sudan. The model has most skill in predicting PET variability in 

July and August and in the eastern Sahel. Up to 70% of PET variability is explained in 

central Chad (July-August), southeastern Sudan (JJA), Eritrea (JJAS), and central Senegal 

and Mali (July).  Moderate R
2
 was expected, because the model predicts observed PET 

variability with essentially only one of the four meteorological variables important for PET. 

The West African monsoon, however, creates some degree of covariance because of its 

influence on summer temperature, moisture, and cloud cover. Model skill is mostly due to 

the predictive capacity of anomalous temperature rather than the autocorrelation parameter. 

The temperature parameter accounts for more than 75% of model skill south of 16°N in JJA 

and 14°N in September (not shown). This includes the areas of Chad, Sudan, Eritrea, and 

Mali where model skill is high.  

4.1.2 PET response to anomalous temperature 

Figure 3 shows monthly total PET anomalies associated with 1°C above average. These 

values are computed by scaling β from mm day
-1

 C°
-1

to mm month
-1

. Results are displayed 

where β is statistically significant at the 95
%

 confidence level. Figure 3 shows that for most 

of the Sahel, temperature has the strongest influence on PET in July and August. The June 

PET anomaly associated with a 1 °C anomaly is 5-9 mm for most of the Sahel. The June 
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anomaly is 10-20 mm in east Mauritania, central Mali, and pockets of the east Sahel in 

Sudan and Eritrea. July PET is 10-14 mm above average in Senegal, Mali, northern Burkina 

Faso, Nigeria, and southern Niger, and for ~2/3 of the region between 16° E and 40° E. The 

August PET anomaly is 10-14 mm in these areas and much of the central Sahel. In 

September the PET anomaly drops to 5-9 mm in central Mali, Burkina Faso, Niger north of 

14° N, and Sudan; it remains at 10-14 mm in Senegal, southern Niger, Chad, and Eritrea.  

4.1.3 Mechanism of PET response to anomalous temperature 

Figure 4 shows the mechanisms driving the overall PET response to temperature (PET-T). In 

Figure 4a the JJAS mean of scaled β values from Figure 3 is plotted by aridity. Aridity > 

0.35, meaning precipitation is > 0.35 PET, is a common indicator for where plant growth 

occurs in the Sahel (Le Houérou, 1989). Box plots show the median and inter-quartile range 

(IQR) of PET-T. Median JJAS PET-T is 10-14 mm month
-1

, with high values decreasing 

non-linearly until aridity = 0.35. For aridity > 0.35, PET-T holds constant at 10 mm month
-1

. 

PET-T is well constrained (IQR < 2 mm) for aridity > 0.35. For very arid areas, IQR < 5 

mm. In Panel b PET-T is broken into radiative and advective controls. rdPET-T and adPET-

T are the slope coefficients from simple linear regression models in which temperature 

anomalies predict radiation or aerodynamic component anomalies, respectively.  

Comparison of Figure 4a and 4b shows that adPET-T accounts for most of PET-T. The 

magnitude of adPET-T is more than twice that of rdPET-T at most levels of climate aridity 

and PET-T is nearly identical to adPET-T for aridity < 0.35. For aridity > 0.35 adPET-T 

steadily declines to 6 mm month
-1

 at aridity = 1.8. adPET-T represents the physical 

constraint of evaporation rate by temperature. At warmer temperatures, the moisture 
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threshold at which air becomes saturated is higher. This increases the vapor pressure 

gradient between the moist surface and unsaturated near surface air and accelerates 

evaporation. Simultaneous below average specific humidity would enhance the vapor 

pressure deficit-temperature relationship. For aridity = 1.8 - 0.1 JJAS temperature increases 

from 27°C to 34 °C (not shown). Because saturation vapor pressure increases non-linearly 

with temperature, given a temperature anomaly of equal magnitude, we would expect to see 

a larger increase in evaporation rate in hotter areas. This explains the higher adPET-T 

magnitude in more arid, warmer zones. In general, the results show that drier areas 

experience stronger controls by adPET-T. 

Increased vapor pressure deficit is the major driver of PET-T, but it is not the only factor. 

Despite moister areas having cooler temperatures, PET-T does not decrease for aridity = 

0.35 - 1.8. We see in Figure 4b, from rdPET-T, that it is because the radiation component of 

PET positively responds to temperature. This response is due to covariance between net 

radiation and temperature anomalies. Temperature was a significant predictor of radiation 

component anomalies for approximately one third the study area. 80% of these samples are 

where aridity > 0.35. For aridity > 0.35 rdPET-T is 3-4 mm month
-1

 and IQR < 2 mm.  

Figure 5 illustrates spatial-temporal aspects of PET-T mechanisms. The ratio of adPET-T to 

PET-T is plotted by grid cell for June, July, August, and September. The remaining fraction 

(= 1 - ratio) represents the rdPET-T contribution. Figure 5 shows that for most of the Sahel, 

adPET-T is the dominant driver of PET-T for June, July, August, and September (ratio > 

0.6). Figure 5 also shows that rdPET-T only contributes to PET-T in JAS and its role is 

concentrated in the southern Sahel. Its contribution is greatest in August, when up to 40% of 

PET-T is due to rdPET-T. That rdPET-T is highest in the wettest areas and period of the 
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rainy season indicates rainfall processes might be influencing rdPET-T and to a some extent 

PET-T. Regional rainfall exhibits a similar spatial-temporal pattern with monsoon influence 

greatest during August and in the south (Sultan and Janicot, 2003). Variability in convective 

cloud cover might be responsible because it effectively blocks solar radiation, an important 

control of near surface air temperature. 

4.2 CMIP5 projected warming (2026-2035) 

Figure 6 shows the monthly change in temperature projected by CMIP5 models between 

2001-2010 and 2026-2035 periods. For most of the Sahel, stronger warming occurs in June-

July than in August-September. Between 10° N and 15° N (15° N and 20° N), average 

temperature increases ~0.7 °C (0.8 °C) in June-July and ~0.6 °C (0.7 °C) in August-

September. The largest increases are mainly north of 15° N (0.9-1.1 °C, JJA). Models 

project the least warming (0.4-0.5 °C) in west Senegal (JJAS), central eastern Mali and 

northwest Burkina Faso (August-September), Lake Chad area (September), and east Sudan, 

Eritrea, and north Ethiopia (September). Between 10° N and 15° N the largest increases 

(0.8-0.9 °C, June-July) are in central Mali, north Burkina Faso, west and east Niger, and 

much of the eastern Sahel.  

4.3 Projected impacts to millet water stress 

Figure 7 shows average WRSI for 2001-2010 and the percent decline in WRSI to 2026-

2035. In general, declines of 5% or less are projected in the southernmost Sahel. These are 

areas with rainfall in all months of JJAS and are the least water limited for both historical 

and near future periods. On the outskirt of the least water limited millet growing areas, 

WRSI is projected to decrease by 6-10%. This zone extends ~80-100 km to the north of 
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projected low impact areas from the Atlantic coast to west of Lake Chad. Larger declines 

(11-15%) are projected to the north of this moderate impact zone. In Sudan striking changes 

to WRSI can be seen in Figure 7, with moderate to large impacts projected for most areas 

where results are available. This feature is because rain isohyets are farther south in this part 

of the Sahel. 

Figure 8 shows projected millet water deficit by growth stage. Decreases in average end of 

season WRSI are mainly due to water stress during millet’s reproductive growth stage. 

Projected warming in late July, August, and early to mid-September is responsible. Millet 

requires a high amount of water during this stage (Kc = 1) for flowering and grain filling. 

End of season WRSI is strongly impacted by inadequate soil moisture during this stage. 

Projected PET does not change water deficit during the millet seedling (initial) stage. During 

the vegetative phase, small crop water deficits (2-4 mm in total) occur broadly across the 

Sahel. During the reproductive phase, deficits reach 7-10 mm within a large swath from 

central Senegal to north Burkina Faso and southwest Niger. The largest deficits are in the 

western Sahel (central Mali and north Burkina Faso) and in the eastern Sahel (southern and 

eastern Sudan). During the final growth stage, ripening, plant water needs rapidly decline 

(Kc = 0.7 to 0.3) and have less impact on yield (Winkel et al., 1995). Results show projected 

warming during late August and September will have a smaller impact on WRSI if millet is 

in the ripening stage at that time, which is the case for much of the study area according to 

model parameters. However, large water deficits during ripening can negatively impact 

WRSI, as illustrated by the projected 7-10 mm deficits in isolated areas of central Senegal, 

Mali, north Burkina Faso, southwest and southeast Niger, central Chad and along the 

northern edge of average millet production in Sudan and Eritrea. 
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Figure 9 shows projected changes to the frequency distribution of WRSI. In 2001-2010 

areas with average WRSI near 100 (Fig. 7a) experienced good seasons (upper 20
th

 percentile 

of WRSI) 5 or more years of the 10 (Fig. 9a). Outside of these areas good seasons occurred 

2-3 years of the 10. Fig. 9b shows that near-term warming will reduce good season 

frequency to 4 or 5 years of 10 in the most productive areas and elsewhere the frequency of 

good seasons will drop to 1 to 2 years of 10. Changes to the frequency of lower 20
th

 

percentile seasons are more homogeneous (Fig. 9c,d). 

5.0 Discussion 

In this analysis we illustrated a scenario in which climate conditions are the same in 2026-

2035 and 2001-2010 except that global warming has increased temperature by the amount 

projected by the CMIP5 ensemble mean. We used a simple crop water balance accounting 

model to estimate how changes to potential evapotranspiration may change the prevalence 

of water stress in rainfed millet. Soil or atmospheric water deficits during drought conditions 

cause C4 crops like millet to reduce stomatal conductance, which restricts photosynthesis 

and leads to lower yield (Leaky, 2009). There are many unknowns about future crop 

response to climate change in the Sahel. Rainfall, soil fertility, and breed-specific sensitivity 

to environmental stress will remain important determinants of crop productivity. Changes to 

crop water use efficiency might be important in the mid-century or later, depending on CO2 

concentration and specific growing conditions. Free-air CO2 enrichment experiments have 

shown that higher CO2 concentrations may benefit some C4 crops by allowing them to 

conserve soil moisture during drought periods and delay onset of severe water stress (Sage 

et al., 2003; Leaky, 2009 and references therein). The objective of this analysis was to create 
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a basic outlook for how crop water availability will change in the next 20 years due to 

projected warming. 

Results show that higher evaporative demand will likely become a bigger problem for 

agriculture production in the near future than it has been in the recent decade. There is a 

strong link between PET and temperature in the Sahel. This is mainly because warmer air 

has a higher water holding capacity before saturation and this increases the vapor pressure 

deficit between the ground and the atmosphere. While the most intense warming is projected 

in the beginning of the growing season (June-July), results show that millet yields will be 

mainly impacted by higher crop water requirements during the middle of the growing season 

when the reproductive phase occurs. In the southern and eastern Sahel the statistical model 

showed PET is most responsive to temperature during July-August. Faster evaporation at 

higher temperature is the major driver of projected changes to JJAS PET.  

Results show that near-term warming will disproportionately impact the more arid areas that 

currently experience moderate to severe water stress on average. In these zones soil moisture 

is inadequate to buffer the impact of higher PET. Small declines to average WRSI are 

projected in areas that typically exhibit minimal water stress.  In addition to a lower WRSI 

on average, results show near-term warming will constrain regional millet productivity also 

by changing the frequency distribution of WRSI. For most of the Sahel study area poor 

seasons (lower 20
th

 percentile of WRSI) will become more frequent, from 2 years of 10 in 

2001-10 (Fig. 9c) to 3 years of 10 in 2026-2035 (Fig. 9d). High frequency of poor seasons 

(4-5 years of 10) is projected in the northern cropping areas of central Mali and less spatially 

extensive locales in Niger, Chad, and Sudan. In combination, results project a larger 
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disparity between areas that can and cannot support rainfed millet without substantial risk of 

water stress. 

It would be worthwhile to examine historical rainfall and temperature, insolation, and 

humidity relationships in more detail. We found that there is a positive statistical 

relationship between radiation and temperature anomalies in the rainiest time of the season 

in the southern Sahel, and this had some influence on the temperature-based PET 

projections. It is difficult to separate the influence of rainfall from PET projections because 

rainfall processes influence all characteristics of the near surface atmosphere. PET 

projections that use climate model projections of water vapor and cloud cover are highly 

uncertain for this reason. A wetter 2026-2035 period would probably ameliorate the 

moisture deficits that are projected here, as long as the timing rainfall events were similar. 

An extra 7-10 mm rainfall during the reproductive stage would be sufficient to prevent the 

projected stress from higher evaporative demand. A drier 2026-2035 period could be a 

major challenge to agricultural production because crops would receive less rainfall, grow in 

higher temperatures, and contend with higher evaporative demand. Whether climate is 

wetter or drier on average, warmer temperatures will lead to faster depletion of soil moisture 

between rainfall events.  

6.0 Conclusion 

We used a hybrid statistical approach to identify how near-term warming might impact 

rainfed agriculture in the semi-arid Sahel in the 2026-2035 period. Spatial heterogeneity of 

climate constraints to agriculture will lead to variable impacts of projected warming in the 

Sahel. We have estimated these impacts at a higher spatial resolution than can be achieved 
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with climate models alone. Our goal was to provide a resource for climate-related decision-

support at local and sub-regional scales. For decision makers, high spatial resolution maps 

may be useful to determine risk, such as if investing in rainfed agriculture is a sustainable 

means of improving food security or if alternatives should be considered. We examined the 

sensitivity of an important component of the Sahel water balance, potential 

evapotranspiration, to above average temperature using gridded data from 2001-2010 (0.25° 

spatial resolution). We used this information to identify how and where CMIP5-projected 

warming would alter current geographic constraints to millet production.  

Our method is unique in that the historical relationship between temperature and potential 

evapotranspiration is derived from local statistical regressions that account for observed 

feedbacks between temperature, humidity, wind, and net radiation. This impact assessment 

neglects the influence of projected rainfall because 21
st
 century rainfall projections are 

uncertain for the Sahel. We elected instead to give disaster risk managers a sense of changes 

to expect by placing projected near-term warming, which climate models predict with more 

confidence, in the context of recent growing seasons. The method could be replicated for 

other areas where climate model projections for moisture variables are inconclusive or bias 

from conventional methods of PET projection obscures water resource estimation. 

Results indicate that moisture constraints created by near-term warming will increase risk 

for crop production outside of current high yield potential zones. Warming projected for 

August is particularly hazardous because it coincides with a moisture-sensitive stage of 

millet growth. Projected 0.6-1 °C increases would contract the area where millet can be 

grown without yield loss due to water stress. Millet production potential in 2026-2035, as 

estimated with WRSI and assuming a repeat of 2001-2010 rainfall, is projected to be 6-15% 
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lower than in 2001-2010 in marginal growing areas. Declines of less than 5% are projected 

in areas that experienced minimal water stress in 2001-2010. Impact of near-term warming 

is greater in marginal cropping zones because average rainfall cannot compensate for 

increases to evaporation. Projected temperature changes translate directly into higher vapor 

pressure deficits in these areas. 

If near-term warming will predominantly impact marginal cropping areas, as this analysis 

indicates, the implications are concerning for regional food security. Impacts to other staple 

crops like sorghum and maize may be worse because they are less drought resistant than 

millet. Population growth and yield stagnation in the region, along with recent hiatus from 

severe, long-lasting drought, have led to the expansion of farming into marginal areas (FAO, 

2003; Olsson et al., 2005; Tappan et al., 2004). Increasing national-level millet production 

between 1980-2011 in Chad, Mali, Niger, and Sudan is largely due to extensification (Food 

and Agriculture Organization, 2003). In addition to the hazards temperature changes will 

create, farmers will also be dealing with land degradation from overuse by growing 

populations (Rain, 1999).  

Improving food security in the Sahel in the face of climate change will be challenging. 

Demographics and food production systems are incredibly diverse in the Sahel and effective 

adaptation strategies will need to reflect this diversity (Lambin et al., 2001; Mortimore and 

Adams, 2001; Raynaut, 2001). This analysis has illustrated that the historical climate record 

can provide important information about future changes to agriculture constraints. Planners 

can use this scenario as an alternative to rainfall-based projections of near-term climate 

change impacts in the Sahel.  
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Chapter 2 

 

Identifying sources of surface heating: Attribution of recent events in east Africa 

 

Abstract 

Surface heating can result from severe vegetation stress, suppression of latent or sensible 

heat flux by boundary layer conditions, increased radiative forcing, and other mechanisms. 

Identifying which of these is the source of surface heating is challenging because multiple 

physical processes offset each other to balance the surface energy budget. Energy and water 

fluxes simulated by land surface models provide a resource for diagnosing causes of surface 

heating and cooling at a variety of timescales. We use the Noah land surface model v3.2 to 

examine modeled drivers of annual surface heat variation and mechanisms responsible for 

heating during some drought events for a region in East Africa for 2002-2011. Upwelling 

longwave radiation (LWup) is used to quantify surface heat content and is estimated from 

surface energy balance terms. LWup variance in April 2002-2011 is attributed to radiative 

forcing (RF) or turbulent heat flux forcing (TF) for each grid cell and the regional pattern is 

examined with regression tree analysis. To identify the main cause of heating or cooling 

during annual events we use a simple ratio-based attribution method that quantitatively links 

LWup anomalies to anomalous RF and TF. Attributed LWup maps are used to examine 

several anomalous heating and cooling events in greater detail. 

According to the simulation, radiative forcing, mainly through net shortwave radiation, is 

the main driver of April LWup anomalies for much of the region. Radiative forcing is most 
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important in wet and densely vegetated mountainous areas, such as Kenya’s Rift Valley. 

LWup anomalies are closely linked to evapotranspiration in semi-arid areas with low density 

vegetation, such as eastern Kenya and southern Somalia. Major surface heating events 

corresponded with some drought events, but mechanisms that caused the heating were 

unique in several cases. For example, for a large area in northeast Kenya in 2005 surface 

heating was associated with below average evapotranspiration and anomalously warm air 

temperature. Surface heating occurred during severe drought conditions in 2011 and was 

attributed to high levels of insolation associated with below average cloud cover. Ratio-

based attribution was useful for extracting summary information about complex physical 

processes and may be a practical approach for land model intercomparison. 

1.0 Introduction 

Changes to the climate system alter the pathways through which the Earth surface heats and 

cools (Chapin et al., 2011; Trenberth, 1998). Increased concentrations of greenhouse gases 

in the atmosphere are associated with higher air temperature and a hydrologic cycle with 

more rapid turnover (Solomon et al., 2007). These changes directly impact evaporation and 

precipitation, the main sources of moisture flux at the land-atmosphere interface. Changes to 

evaporation and atmospheric composition also influence cloud development, an important 

factor for radiative energy leaving and reaching the surface (Fairall et al., 2008; Ramanathan 

et al., 1995). The response of the climate system is in turn mediated by moisture and energy 

flux from the surface. Identifying the most important physical mechanisms involved in 

changes to the climate system can be something of a labyrinth. Linkages between them are 

circular and involve complex feedbacks. The basic situation, however, is straightforward. 

The surface must attain a new balance of energy given larger inputs of downwelling 
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longwave radiation, and it will do so by increasing its export of energy through warming and 

longwave radiation emission and through latent and sensible heat fluxes (Boer, 1993).  

Getting an overall picture of what aspects of the surface energy budget are changing can be 

an analytical challenge. Multiple physical processes are active in balancing the energy 

budget and climate change can affect them all (Held and Soden, 2006; Wild et al., 2004). 

One approach is to focus on how physical processes collectively change surface heat 

content. Surface heat content is the ‘leftover’ energy that temporarily resides at the surface 

due to non-equal energy fluxes in and out of the surface. Increased heat content warms the 

surface, increasing surface temperature and emission of longwave radiation to the 

atmosphere. The surface cools in response to decreased heat content. In the IPCC AR4 

report this instantaneous 'surface forcing' was described as a useful diagnostic tool for 

understanding changes in the heat and moisture surface budgets and the accompanying 

climate change (Solomon et al., 2007).  

Understanding the geographic nature of anomalous surface heating- the environments in 

which it frequently occurs and the mechanisms involved- is important for anticipating its 

impacts at a variety of time scales. Surface heating associated with soil moisture deficits can 

lead to drought intensification (Chang and Wallace, 1987; Zampieri et al, 2009) and an 

amplified surface temperature response (Fischer et al., 2007ab). The impact these feedbacks 

have on vegetation productivity largely depend on ecosystem resilience to high temperature 

and on concurrent hydrometeorological conditions. For example, during the summer of 

2003, the hottest summer in Europe in 500 years, biogeophysical characteristics were 

important factors for land and atmosphere interactions and regional impacts to vegetation 

productivity. Different impacts to growing season length enhanced growth in high elevation 
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areas and suppressed growth in low elevation areas (Jolly et al., 2005). In areas with well-

watered and high biomass forests, where dense canopies used the excess solar radiation for 

metabolic energy and also shaded the understory, a muted surface heating response was 

observed. (Renaud and Rebetez, 2009). In semi-arid areas dominated by seasonal grassland, 

intercepted radiation led to rapid depletion of soil moisture which helped intensify and 

prolong the heat waves (Teuling et al., 2010). The most well understood hazards high 

temperature poses to crop yields are physiological stress from reduced efficiency or damage 

to photosynthetic tissues and reduced biomass through decreased plant growth duration (Al-

Khatib and Paulsen, 1999; Ritchie and NeSmith, 1991; Tashiro and Wardlaw, 1989; 

Yoshida, 1972). High temperature has been shown to decrease wheat yields by 3 to 5% per 1 

°C increase above 15 °C in wheat under controlled conditions and by larger amounts in field 

conditions (Choudhury and Wardlaw, 1978). Significant economic impacts of high 

temperature are also seen in livestock production systems, where heat stress reduces cattle 

fertility and increases their water requirements and susceptibility to disease and parasites 

(Howden and Turnpenny, 1997).  

Establishing the most important weather and biophysical processes related to the potential 

for surface heating across geographic domains may benefit drought monitoring activities. 

Because higher than average surface temperature can be affiliated with reduced 

evapotranspiration, global surface temperature data from satellites are a promising resource 

for identifying vegetation stress (Garstang and Fitzjarrald, 1999). Thermally-based estimates 

of evapotranspiration are attractive because remotely sensed data provide repeat sampling 

and near global coverage. The estimates are based on a semi-consistent statistical 

relationship that is observed between satellite-observed surface temperature and vegetation 
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indices in some regions (e.g. Ts/VI methods, which are reviewed in Petropoulos et al. 

(2009)). However, use of these methods for monitoring remote regions is hindered by a lack 

of reference knowledge about historical drivers of surface temperature that influence the 

surface temperature-vegetation index slope. For example, Friedl and Davis (1994) found that 

the relationship between surface temperature and the Normalized Difference Vegetation 

Index depends on land cover type and does not always reflect changes to energy partitioning 

associated with evapotranspiration deficits. Karnieli (2010) showed that water-limited and 

energy-limited biomes exhibited slopes of opposite sign. Influence of soil moisture, incident 

radiation, wind speed, leaf area index, and energy partitioning on the slope have also been 

observed (Pierce and Congalton, 1988; Nemani and Running, 1989). Choudhury (1991) 

suggested that improving our ability to relate satellite temperature observations to the 

temperature determined by surface heat balance equations would lead to more effective use 

of satellite data for vegetation analysis. Similarly, a better understanding of how and where 

drought conditions have historically corresponded to surface heating might support 

identification of hazardous conditions for water resources and crop and rangeland 

productivity.  

Land surface model (LSM) experiments are potentially a useful resource for investigating 

causes of abnormal surface heating and cooling. The ability of land surface models to 

provide spatially distributed information in near real time for regions with limited 

observation networks has generated considerable interest in using them for drought 

monitoring (Anderson et al., 2012). Land surface models simulate energy and water fluxes 

across the land-atmosphere interface at sub-daily to annual time steps based on atmospheric 

forcing data (Bonan, 2008). Surface energy balance variables are simulated based on 
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modeled physical processes and parameterized versions of the surface-atmosphere interface. 

LSMs can simulate the influence of vegetation morphological characteristics and soil type 

and texture on energy exchange (Choudhury, 1991). Coupled model experiments involve a 

land-atmosphere system in which simulated land surface processes influence the planetary 

boundary layer structure and thereby affect clouds and precipitation processes (Chen and 

Dudhia, 2001). Uncoupled model experiments do not allow for surface feedbacks but can 

provide physically-based energy flux and hydrometeorological data where it is otherwise 

unavailable. A major challenge to examining land-atmosphere processes across different 

geographic domains is the limited number of sites where surface energy fluxes and relevant 

variables are observed (Baldocchi, 2008). In sub Saharan Africa for example, approximately 

11 observation sites measure surface fluxes with flux towers (Merbold et al., 2009) but 

records are generally intermittent.  .  

In this analysis we examine if anomalous surface heating during the rainy season can be 

consistently attributed to certain atmospheric or vegetative conditions. A potential link 

between drought events and surface heating is given particular attention. Figure 1 shows an 

example of how variations in soil moisture link surface water and energy budgets. When 

moisture is available, most of the surface-to-atmosphere heat transfer occurs through 

evaporation. This occurs in the Figure 1c, the wet soil example. Evaporation effectively 

removes heat from the surface, as indicated by the small magnitude of upwelling longwave 

radiation. For the moderate and dry soil (Figure 1b and 1a), progressively less energy 

transfer occurs through evaporation and more occurs through sensible heating. In some 

regions during drought conditions, dry soil leads to insufficient rates of surface-to-

atmosphere heat transfer which results in surface heating and a larger magnitude of 
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upwelling longwave radiation (Figure 1a). In the Figure 1 example the amount of incoming 

solar energy is the same in all cases of soil wetness. In the real world, insolation and other 

weather conditions may be very different in drought periods vs. rainy (wet soil) periods. 

Using the atmospheric forcing data and the simulated data from a land model experiment 

allows us to identify and examine cases like these. 

The goal of this analysis is to identify climate and geographic factors that are important for 

interannual variations in surface heating and cooling during the Long Rains (March-May) 

rainy season in East Africa. For this geographically diverse study area, we examine how 

monthly weather influences the surface energy budget and identify conditions that 

historically translated into anomalous surface heating or cooling. We use the Noah land 

surface model version 3.2 to examine modeled fluxes of the surface energy budget that have 

an effect on surface temperature. We also examine mechanisms responsible for surface 

heating during some drought events. Biogeophysical properties of the land surface are 

prescribed in the model according to a monthly climatology and do not produce feedbacks to 

atmosphere in this experiment. The analysis is for April 2002-2011 for the region in East 

Africa within 5 °N – 5°S, 33 °E – 43 °E, which mostly encompasses Kenya. Geographic 

variability is large in terms of elevation, vegetation density and land cover type. April is 

important for vegetation productivity because it is typically the wettest month of the Long 

Rains season. Favorable growing conditions are important for pastoralist communities in 

semi-arid areas and for rainfed fed crop production across the region.  

We examine annual drivers of April mean upwelling longwave radiation (LWup) for 2002-

2011. Upwelling longwave radiation is the essential measure used by satellites to estimate 

surface temperature, along with atmospheric corrections and emissivity estimates. LWup is 
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estimated using the surface energy balance equation using the following terms: Monthly 

mean shortwave net radiation (SWnet), longwave downwelling radiation (LWdown), latent 

heat flux (L), and sensible heat flux (H). Variables were output from a land surface model 

simulation experiment with the Noah model (Chen et al., 1996; Ek et al., 2003) in the United 

States Agency for International Development (USAID) Famine Early Warning Systems 

Network (FEWS NET) Land Data Assimilation System (FLDAS). LWup variance in April 

2002-2011 is attributed to total radiative forcing (RF) (the sum of SWnet and LWdown), and 

total turbulent heat flux forcing (TF) (the sum of L and H), for each grid cell. Regression 

tree analysis is used to examine how the interannual variability of LWup for 2002-2011 

varied through the East Africa region. We also identify the main source of heating or 

cooling in each year for each grid cell. For this we apply a method called ratio-based 

attribution, which identifies the fraction of each monthly LWup anomaly due to radiative 

energy and surface-to-atmosphere turbulent heat transfer. Attributed LWup maps and 

simulated surface energy balance variables are used to identify and discuss important 

mechanisms for anomalous heating and cooling events in the region.  

2.0 Data 

2.1 FLDAS Noah experiment 

Data for 2002-2011 is simulated in an experiment from the United States Agency for 

International Development (USAID) Famine Early Warning Systems Network (FEWS 

NET) Land Data Assimilation System (FLDAS). The community Noah land surface model 

v3.2 (Chen et al., 1996; Ek et al., 2003) is forced in uncoupled mode with NOAA-CPC 

African Rainfall Estimation Algorithm 2.0 (RFE) rainfall (Xie and Arkin, 1997) and 
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National Center for Environmental Prediction (NCEP) Global Data Assimilation System 

(GDAS) meteorological data (Derber et al., 1991). This configuration was designed to 

simulate surface energy budget variables that complement the RFE rainfall record. RFE is a 

near-real time product that was developed for operational monitoring of growing conditions 

in Africa. FEWS NET uses 10-day accumulated RFE for drought monitoring activities. RFE 

is a blend of cloud top temperature from Meteosat 7 geostationary satellite infrared data, 

microwave data from Special Sensor Microwave/Imager (SSM/I) and Advanced Microwave 

Sounding Unit (AMSU), and WMO Global Telecommunication System (GTS) station data 

for satellite bias removal. These sources are merged for a daily rainfall estimate at 0.1° 

resolution. For sub-daily forcing of the land surface model RFE 2.0 was broken into 6-

hourly estimates. Disaggregation was accomplished using a temporal weighting scheme that 

distributes RFE 2.0 daily total rainfall into sub-daily rainfall totals that are consistent with 

the temporal distribution of rainfall in the GDAS-CMAP product (Gottschalck et al., 2005). 

GDAS meteorological data come from surface, atmospheric, and satellite observations that 

are gridded for use in weather forecasting models such as the NCEP Global Forecast 

System.  

Surface temperature was not used because it was not available in the FLDAS dataset as a 

monthly-averaged variable. Because monthly emissivity did not change between years in the 

simulation, interannual LWup variability would be similar to that of surface temperature. 

This was confirmed by comparing Noah land surface model-simulated surface temperature 

and calculated LWup from a similar dataset, the 0.25 degree monthly Global Land Data 

Assimilation System Noah simulation from NASA (GLDAS_NOAH025_M) (Rodell et al., 

2004). LWup was calculated with the same method used in this analysis (detailed in Section 
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3.1). Figure 2 shows that upwelling longwave radiation and surface temperature are highly 

correlated in the GLDAS Noah dataset (R= 0.80-1). Upwelling longwave radiation 

anomalies are synonymous with anomalous surface temperature. An advantage to analysis 

with LWup is that it enables the impact of surface energy balance terms on surface heating 

and cooling to be examined based upon the magnitude of their anomalies (all are in units W 

m
-2

). 

The analysis domain for this paper is a region in East Africa from 5 °N – 5°S, 33 °E – 43 °E 

which encompasses Kenya and parts of Tanzania, Uganda, South Sudan, Ethiopia, and 

Somalia. We use surface energy budget terms and some atmospheric forcing variables that 

are output from the model as 24-hr averages. In this paper we analyze monthly mean data 

for April, the center month of the Kenyan ‘Long Rains’ season, for the period 2002-2011. 

Forcing data and surface parameters used for the FLDAS Noah simulation are listed in 

Table 1.  

The East Africa region is shown in Figure 3. Figure 3a shows a regional map of April 

climatological daily rainfall, averaged over 2002-2011 with RFE 2.0 (Xie and Arkin, 1997). 

Figure 3b shows green vegetation fraction (as a percent) from NESDIS/NOAA (Gutman and 

Ignatov, 1998). Green vegetation fraction is the percent of each grid cell where midday 

downward insolation is intercepted by a photosynthetically active green canopy (Chen et al., 

1996). It is an important land surface parameter used by the Noah model to calculate total 

evapotranspiration for each grid cell. As these maps show, rainfall and vegetation density 

are highly variable across the region. April rainfall is highest near Mount Kenya (central 

Kenya), Mount Meru and Kilimanjaro (north Tanzania) and near Lake Victoria. April 

rainfall is lowest in the zone from East Kenya to southeast Somalia and in very arid 
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northeast Kenya in the Chalbi Desert near Lake Turkana. Southern Ethiopia and areas in the 

region’s southwest, including parts of Uganda, Kenya, and Tanzania, receive moderate 

rainfall in April. As seen in Figure 3b, vegetation density varies dramatically across the 

region, from near zero to 85% cover. Vegetation density is highest in the southwest and in 

coast Kenya and southern Ethiopia. The April pattern is similar to what an annual average 

would show because wet areas in April also receive rain through much of the year. The 

exception is in southern Ethiopia and the semi-arid east Kenya-southwest Somalia zone, 

where rain comes in two distinct and short seasons. In these areas April is one of the most 

productive months in terms of vegetation photosynthetic activity. 

In this analysis only meteorological data are used to force the model, so annual differences 

in monthly mean upwelling longwave radiation are due to variations in weather and its 

impact to soil moisture. In the FLDAS experiment biological and reflective properties of the 

land surface do not change between years. Green vegetation fraction data (Gutman and 

Ignatov, 1998) and surface albedo data (Csiszar and Gutman, 1999) are NESDIS/NOAA 5-

year monthly climatology grids, i.e. they vary in space and by month but not between years, 

that are derived from NOAA Advanced Very High Resolution Radiometer (AVHRR) 

satellite data. These datasets were designed for use in numerical weather prediction models. 

We used these climatological datasets because NASA’s Land Information System, the 

platform used to run Noah and other models, is set up to ingest them. Using a monthly 

climatology instead of measured greenness and albedo introduces artificiality to the modeled 

surface energy budget and is a limitation of this analysis. Use of measured greenness data 

has been shown to improve partitioning between surface heating and evapotranspiration, 

which impacts the surface energy budget, planetary boundary layer evolution, cloud, and 
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convection. Advancements in land modeling are geared towards assimilating remotely 

sensed data and incorporating dynamic vegetation, where vegetation growth is modeled not 

prescribed, into models. 

Table 1. Selected FLDAS Noah simulation variables 

Variable Variable type Source 

Mean rain rate Forcing data RFE 2.0 (Xie and Arkin, 1997) 

Other 

meteorological 

variables 

Forcing data National Center for Environmental Prediction (NCEP) 

Global Data Assimilation System (GDAS) (Derber et al., 

1991) 

Elevation Static parameter GTOPO30 Global 30 Arc Second Elevation Dataset 

(Gesch et al., 1999) 

Soil type Static parameter FAO Soils Database (Reynolds et al., 2000) 

Vegetation type Static parameter University of Maryland 1 km vegetation classification 

(Hansen et al., 2000) 

Green vegetation 

fraction  

Monthly 

climatology 

NESDIS/NOAA 0.144 degree monthly 5-year 

climatology green vegetation fraction from NCEP 

(Gutman and Ignatov, 1998) 

Surface albedo Monthly 

climatology 

NESDIS/NOAA 0.144 degree monthly 5-year 

climatology surface albedo from NCEP (Csiszar and 

Gutman, 1999) 

 

2.2 Noah Land Surface Model v3.2 

Noah is a stand-alone one-dimensional column land surface model used for modeling 

physical processes of the hydrologic and energy cycle. The widely used Noah LSM forms 

the land component of the regional and global weather forecasting models at NCEP and of 

the Weather Research and Forecasting model (WRF) at the National Center for Atmospheric 
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Research (NCAR) (Chen and Dudhia, 2001; Zheng et al., 2013). Noah originally began as 

the Oregon State University land model (Mahrt and Ek, 1984; Pan and Mahrt, 1987), and 

after 30 years of evaluation and refinement, model physics continue to be improved by the 

land modeling community (see e.g. (Ek et al., 2003; Niu et al., 2011; Wei et al., 2012)). 

Sustained interest in improving Noah and recent experimentation with the model in regions 

outside the United States (e.g. (Anderson et al., 2012; Chen et al., 2010; Marshall et al., 

2013; Patil et al., 2013; White and Toumi, 2012)) is largely due to the model’s moderate 

complexity but good computational efficiency and reasonable simulation skill for a variety 

of geographic domains and time scales (Chen et al., 1996; Hogue et al., 2005; Jimenez et al., 

2011; Mitchell et al., 2004; Robock et al., 2003; Xia et al., 2013; Xia et al., 2014).  

The Noah model has an explicit vegetation canopy, soil hydrology, and soil 

thermodynamics. Figure 4 shows a schematic of the physical processes involved in Noah 

water and energy budget calculation. Precipitation not intercepted and held by the plant 

canopy goes directly into the soil and infiltrates through up to four soil layers. If the soil is 

saturated the water runs off the surface. Noah is a coupling of three main models: The 

Penman potential evaporation model from Mahrt and Ek (1984), a multilayer soil model 

(Mahrt and Pan, 1984), and a primitive single-layer canopy model (Pan and Mahrt, 1987) 

enhanced with resistance parameterizations (Jacquemin and Noilhan, 1990; Noilhan and 

Planton, 1989). Mahrt and Ek’s (1984) Penman potential evaporation model is a modified 

version of the original 1948 Penman equation that allows for the stability condition of the 

boundary layer to influence turbulent water vapor transport. This form is convenient for use 

in atmospheric models because unlike more sophisticated potential evapotranspiration 

equations it does not require iterative procedures to estimate the influence of stability. 
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Surface temperature is not needed for the calculation and evaporation is only a function of 

atmospheric variables (Mahrt and Ek, 1984). 

In Noah evapotranspiration is modeled as the sum of transpiration from the plant canopy, 

direct (“bare soil”) evaporation of soil water from the uppermost soil layer, and direct 

evaporation of canopy-intercepted water. Bare soil evaporation is modeled such that 

moisture flux occurs at the rate defined by the Penman model (Mahrt and Ek, 1984) until 

soil moisture becomes low and a resistance parameter slows evaporation (Chen et al., 1996). 

Moisture and energy flux through canopy transpiration is defined by Penman and then 

scaled by green vegetation fraction and a canopy resistance term that depends on root zone 

soil moisture, with plant rooting depth dependent on vegetation type.  Sensible heat flux is 

modeled from the gradient between ground and atmospheric surface temperatures plus a 

heat exchange coefficient that depends on parameterized roughness lengths for heat and 

momentum transfer and atmospheric stability (Chen et al., 2010). The coefficient is obtained 

from Monin-Obukhov similarity theory (Monin and Obukhov, 1954), which estimates the 

importance of thermal mixing (buoyancy) and mechanical mixing (wind shear) for near 

surface turbulence. Noah solves the surface energy balance and determines skin surface 

temperature for each grid cell using by applying a linearized surface energy balance 

equation using the combined soil/vegetation surface (Mahrt and Ek, 1984; Chen et al., 

1996). 

Skill for wet-season latent heat flux is conditional upon observed vegetation green-up being 

predictable by the monthly greenness climatology. Larger errors therefore tend to occur in 

semi-arid environments where real vegetation rapidly responds to rainfall (Kurkowski et al., 

2003). Sensible heat flux, ground heat flux, and soil temperature in these environments are 
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simulated with higher skill (Hogue, 2003; Hogue et al., 2005) and could be improved with 

roughness length parameterization schemes outlined in Zheng et al. (2013). 

3.0 Methods 

3.1 Estimate monthly upwelling longwave radiation 

Simulated upwelling longwave radiation (LWup) is used to quantify monthly mean surface 

heat content for each grid cell. LWup is calculated as a residual of a surface energy budget 

(Equation 1) using the following terms: Net solar radiation (SWnet), downwelling 

atmospheric longwave radiation (LWdown), latent heat flux (L), and sensible heat flux (H). 

Ground heat flux is excluded because of its small influence relative to L and H. It is 

negligible over a day because in most ecosystems heat is conducted down into the soil and 

balanced by heat conducted back up to the surface at night (Leuning et al., 2012; Chapin et 

al., 2011). Data are the annual April means of simulated 24-hr data.  

Equation 1. Partial surface energy budget 

LWup = SWnet + LWdown – L – H  

Where 

LWup is estimated upwelling longwave radiation emitted from the surface 

SWnet is the shortwave radiation absorbed by the surface; it is insolation minus the 

radiation reflected by surface albedo  

LWdown is the thermal radiation emitted by the atmosphere and absorbed by the 

surface 
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L is latent heat flux via evapotranspiration; it is the transfer of energy from the 

surface to the atmosphere by water phase change and is distributed by convection 

and atmospheric turbulence.  

H is sensible heat flux; it the transfer of energy from the surface to the atmosphere 

by conduction and is distributed by convection and atmospheric turbulence 

3.2 Identify drivers of anomalous upwelling longwave radiation 

We use a two-tier approach to identify sources of LWup variability. Deviations from mean 

LWup are foremost attributed to variations in directional energy exchange between the 

atmosphere and surface. In doing so we first identify the major driver i.e. is warming caused 

by too much energy added or too little energy removed? From there we more closely 

examine the role of evapotranspiration, sensible heating, and radiative processes. Energy 

exchanges through all processes are related by complex feedbacks. Our goal is to identify 

the dominant factor that led to a warmer or cooler surface on average for the month. 

Surface energy budget terms from Equation 1 are grouped by direction of energy flow. We 

use the grouped terms to match LWup anomalies to anomalous amount of incoming energy 

or anomalous amount of outgoing energy or both. This technique is used to identify the 

primary cause of surface heating or cooling for each year. We use this information to 

identify the main driver of LWup variability through 2002-2011 and to identify interesting 

events during 2002-2011. For these events, we examine fluxes in more detail to identify 

what happened. The grouping of flux terms is shown in Equation 2. SWnet and LWdown, 

the energy inputs, are summed for a collective estimate of atmospheric radiative forcing 

(RF), which is the source of incoming radiative energy. L and H, the main mechanisms for 
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heat transfer away from the surface, are summed for an estimate of turbulent heat flux 

forcing (TF).  

Equation 2. Incoming and outgoing fluxes for the surface energy budget 

RF = SWnet + LWdown 

TF = L + H  

LWup = RF - TF  

Where 

RF is radiative flux forcing, the main source of radiative energy input to the surface 

TF is turbulent heat forcing, the main source of non-radiative energy transfer away 

from the surface 

LWup, SWnet, LWdown, L, H, are from Equation 1 

 

3.2.1 Regional drivers 

We begin by examining the correlation between surface heating and evapotranspiration. 

Ts/VI methods of ET estimation assume an inverse relationship between these in water-

limited vegetated areas. At interannual time scales we might also expect the relationship to 

be influenced by radiative forcing because net radiation is the source of surface energy. At 

each grid cell of the domain (5 °N – 5 °S, 33 °E – 43 °E) we calculate the Pearson 

correlation between April mean LWup and L, and LWup and RF, to identify where 
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evapotranspiration and/or radiative forcing strongly influence surface heating and cooling 

based on LWup. While these are simulated data, not observations, and have a short time 

span, correlation maps are useful for finding the relationship that the Noah land surface 

model simulates. Strong correlation between latent heat flux and LWup might support the 

use of Ts/VI methods in particular areas of the region based on modeled physical processes. 

A more in-depth analysis of the geographic pattern of April LWup control is conducted for 

radiative forcing vs. turbulent heat flux forcing. LWup interannual variability is separated 

into incoming (RF-driven) and outgoing (TF-driven) energy components. In general we 

would expect turbulent heat flux forcing to have a larger influence than radiative forcing 

where soil moisture, wind, or atmospheric stability exhibit large annual fluctuations. We use 

a partitioning of sums of squared errors (variance) approach to identify RF or TF as the 

primary driver of April mean LWup at each grid cell. Then we use these results in a 

regression tree analysis to identify geographic characteristics that tend to be associated with 

areas where surface heating is driven primarily by annual variations in incoming radiation or 

by annual variations in aerodynamic energy transfer away from the surface (variability in 

non-radiation driven turbulent heat flux). Variance partitioning and regression tree methods 

are explained in Sections 3.2.1.1 and 3.2.1.2, respectively. 

3.2.1.1. Partition LWup interannual variability 

The variance of LWup is partitioned into the components of variability due to radiative 

forcing and due to turbulent heat flux forcing. The first step of LWup variance 

decomposition is to calculate the variance of RF, the variance of TF, and the covariance 

between RF and TF. In total, these terms sum to equal the variance of LWup, as shown in 
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Equation 3. This is similar to variance decomposition of the sum of two non-independent 

variables, with the difference being that the covariance term is subtracted. The covariance 

term is subtracted because LWup = RF-TF. LWup is controlled by the energy that still 

resides at the surface after accounting for towards-surface (RF) and away-from-surface (TF) 

energy flux. 

Equation 3. Decompose LWup variance 

Var(LWup) = Var(RF - TF) = var(RF) + var(TF) - 2*cov(RF,TF) 

The second step of variance decomposition is to separate the right hand side of Equation 3 

into a radiative forcing component and a turbulent heat flux forcing component. The fraction 

of LWup variability ascribed to each component is calculated by dividing each component 

by the LWup variance, as shown in Equation 4. This gives a fractional variance term for 

each that ranges from values less than 0 to greater than 1. These terms, Var(LWup)RF and 

Var(LWup)TF from Equation 4, sum to 1. This is similar to a method commonly used in 

regression analysis where the ratio of the explained variance to the total variance (R-squared 

value) is used to identify the fraction of the data that a model explains. Unlike regression 

analysis the fractional variance terms in Equation 4 are not orthogonal.  

Equation 4. Fraction of LWup variance due to radiative forcing and turbulent heat flux 

forcing 

Var(LWup)RF = [var(RF) - cov(RF,TF)] / var(LWup) 

Var(LWup)TF = [var(TF) - cov(RF,TF)] / var(LWup) 

We use the fractional variance term associated with turbulent heat flux forcing to identify 
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the primary factor for LWup interannual variability. This term, Var(LWup)TF from Equation 

4, is here forth referred to as FracVar. FracVar between 0 and 1 gives and indication of how 

much LWup variability was due to non-radiation driven interannual variability in turbulent 

heat flux. FracVar near 1 means that essentially 100% of LWup variability is due to non-

radiation driven TF variability, which is from aerodynamic factors such as wind, stability, 

and vapor pressure gradients. FracVar near 0 means that very little is due to TF and nearly 

all is driven by radiation. FracVar can be greater than 1 or less than 0 because of the impact 

of the covariance term. Covariance between RF and TF is positive. The covariance can be 

larger than the variance of TF when radiative forcing has large interannual variability and 

most of turbulent heat flux variability is due to fluctuations in energy input. In this case 

FracVar is negative. FracVar > 1 occurs when non-radiation drivers substantially influence 

TF variability and relatively low RF variability leads to small covariance. For FracVar > 1 

and FracVar < 0, larger absolute values indicate stronger control of LWup variability by 

non-radiation driven turbulent heat flux forcing or radiative forcing, respectively. 

3.2.1.2. Regression tree analysis  

We use regression tree analysis to examine geographic attributes of TF-driven and RF-

driven areas. Regression trees show the hierarchical order of importance of multiple 

predictor variables by successively splitting predicted data into smaller, more homogenous 

groups using binary classification rules. Regression tree analysis is a useful technique for 

multivariate environmental data analysis because relationships among environmental 

variables tend to be nonlinear and situationally dependent. Functional relationships (e.g. 

logistic, linear) often do not adhere for all cases. For example, the vegetation pattern of a 

landscape could be explained in part by aspect, but the relationships would likely vary at 
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different elevations (from Michaelsen et al., 1994). Unlike traditional regression methods 

that use a slope term to summarize each predictor-predictant relationship, regression tree 

analysis identifies the range of predictor values that best explains the variance of the data 

(usually with analysis of variance, ANOVA). The mean value of the predicted data for this 

range is reported. The regression tree process starts with the entire dataset, from which 

subsets are created, and then is iteratively applied to new subsets. The tree grows until new 

splits do not sufficiently increase explained variance. More extensive explanations of 

regression tree analysis including methods for predicting multiple variables and rules for 

selecting optimum trees can be found in Michaelsen et al. 1994 and Breiman et al. 1984.   

Our regression tree uses ANOVA to explain the spatial pattern of FracVar with three 

variables (names in parentheses): Percent of surface cover by green vegetation (GreenVeg), 

mean daily rainfall (MeanRain), and the Pearson correlation between turbulent heat flux and 

latent heat flux (Correlation.TF.L). The regression tree analysis was conducted using the R 

language and environment for statistical computing and the R ‘rpart’, and ‘RandomForest’ 

packages. This combination of variables was identified using exploratory analysis. Models 

were built using combinations of predictor variables and were compared based upon model 

cross-validated R-squared value and ability to express hierarchical relationships that were 

physically meaningful. The selected model explains more than 50% of FracVar variance. 

Other variables tested were: Soil texture, elevation, surface albedo, correlation between 

rainfall and latent heat flux, mean latent heat flux, mean upwelling longwave radiation, and 

standard deviations of rainfall, radiative forcing and latent heat flux. The selected model was 

manually ‘trimmed’ to remove splits that had minimal contribution to model skill. The 

structure of the selected model was deemed stable by comparing it to output from a 
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RandomForest, which compares 500 trees made from bootstrapped samples of the data. The 

order of importance of the predictors remained the same and the mean square error reduction 

attributed to each predictor was similar across models. 

GreenVeg is from the climatological greenness fraction surface parameter used by Noah in 

April (Figure 3b and Table 1). GreenVeg indicates whether latent heating is mainly through 

plant evapotranspiration or soil evaporation. If GreenVeg = 40, for example, plant 

evapotranspiration accounts for 40% of latent heating and evaporation from the soil 

accounts for the remaining 60%. MeanRain is the mean of 2002-2011 April RFE 2.0 data 

used as model forcing (Figure 3a and Table 1) and is used here to represent regional climate 

gradients. Correlation.TF.L indicates the extent to which evapotranspiration drives TF 

variability on an interannual basis. The following explains Correlation.TF.L in more detail. 

Heat transfer from the surface occurs preferentially through latent heating 

(evapotranspiration), and when evapotranspiration is limited, energy is either transferred 

away through sensible heating or used to heat the surface The strength of TF and L 

correlation depends on how much sensible heating occurs in this situation. Strong TF and L 

correlation occurs where, during conditions of below average evapotranspiration rate, 

energy is not quickly removed from the surface through an increase to sensible heating. 

Since sensible heat flux is not an effective means of surface energy transfer in this situation, 

turbulent heat flux interannual variability follows evapotranspiration interannual variability. 

Numerically, the sign and magnitude of evapotranspiration anomalies and total turbulent 

heat flux anomalies can only be similar if sensible heating remains at its mean rate. 

Otherwise, the TF anomaly is minimized. Weak or negative TF and L correlation indicates 

sensible heating is an active component of TF interannual variability. This occurs where 
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sensible heating is effective at removing energy in the situation explained above, and also 

where evapotranspiration varies little between years such as in very arid or very wet 

ecosystems.  

3.2.2 Drivers of anomalous events 

We identify surface heating and cooling events for each grid cell from annual April LWup 

anomalies. Each LWup anomaly (LWup’) is attributed to one of the following: An 

anomalous rate of incoming energy, an anomalous rate of surface-to-atmosphere energy 

transfer, or a mixture of anomalous rates in both. Attribution is based upon the fraction of 

the LWup anomaly that is caused by turbulent heat flux. This is called ratio-based 

attribution, and is shown in Equation 5 and described in the paragraph below. Ratio-based 

attribution works by comparing the magnitude and the sign of upwelling longwave radiation 

anomalies to the magnitude and sign of turbulent heat flux anomalies and radiative forcing 

anomalies. Mean LWup, RF, and TF are calculated for 2002-2011 and subtracted from the 

data to get annual anomalies LWup’, RF’, and TF’. LWup anomalies are only attributed if 

they are in the lower or upper 25
th

 percentile of the data. This excludes LWup anomalies 

smaller in absolute magnitude than 3.6 W m
-2

. Using a threshold minimizes the influence of 

erroneous energy budget imbalance from the model simulations, which ranged from 0-3 W 

m
-2

 using the monthly means. Distributions of the RF, TF and LWup anomalies are shown in 

Supplementary Figure 1 (Fig. S1). Histograms and quantile-quantile probability plots of 

2002-2011 data from all grid cells shows that RF, TF and LWup anomalies are normally 

distributed.  

Equation 5 shows turbulent flux forcing fraction fTF and a radiative forcing fraction fRF. 
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These  represent the magnitude of each LWup’ that is due to TF’ and RF’, respectively. The 

turbulent flux forcing fraction fTF is calculated from the ratio of TF’ to LWup’. After 

accounting for the difference in sign, fTF indicates the extent to which anomalous turbulent 

flux is responsible for LWup’. TF is considered 100% responsible and the primary driver if 

TF’ magnitude is equal or larger than LWup’ and they have opposite sign (fTF = 1). An 

example is when surface heating occurred because TF was below average and also because 

TF had a larger influence on LWup’ than radiative forcing did. Likewise, RF is considered 

the primary driver (fRF =1) when TF’ and LWup’ are of the same sign, e.g., surface heating 

occurred despite above average TF. A useful aspect of ratio-based attribution is that it shows 

when RF and TF have shared influence on LWup’, with their respective proportions given 

by fTF and fRF. To show the location of anomalous heating events and the relative 

contribution of TF and RF, warm and cool LWup anomalies are each multiplied by fTF and 

fRF.  

Equation 5. Ratio-based attribution 

fTF = -1 * TF’ / LWup’ 

fTF = 0 when fTF < 0 

fTF = 1 when fTF > 1 

fRF  = 1- fTF 

Where 

fTF is the fraction of the surface heat anomaly due to anomalous turbulent heat flux 

fRF is the fraction of the surface heat anomaly due to anomalous atmospheric 
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radiative forcing 

4.0 Results and Discussion 

4.1 Regional controls of April LWup interannual variability 

4.1.1 Correlation with radiative forcing and evapotranspiration  

Figure 5 shows that for 2002-2011 annual variations of April upwelling longwave radiation 

are generally negatively associated with latent heat flux and positively associated with 

radiative forcing. Absolute magnitude of Pearson correlation between LWup and these 

variables is > 0.5 for many parts of the region. Besides these expected relationships (i.e. the 

surface warms from more radiation input and less evaporative cooling) the maps show an 

interesting and distinct spatial pattern of surface heat forcing within the 5 °N – 5 °S, 33 °E – 

43 °E domain. Most areas exhibit a stronger LWup relationship with either radiative forcing 

or latent heat flux. 

Areas west of 38° E exhibit a moderate to strong relationship between radiative forcing and 

LWup (R > 0.6) (Fig. 5a). To the east of 38° E in most areas radiative forcing is not a major 

driver of LWup (R < 0.25). LWup is moderately to strongly correlated with latent heat flux 

(R < -0.6) in northern Tanzania, southern Ethiopia and Somalia, and parts of north and east 

Kenya (Fig. 5b). This indicates evaporative cooling is an important factor for annual 

variations in surface heating in these areas. Low correlation between LWup and L is in some 

areas due to more net radiation partitioned to sensible heat fluxes. The degree to which this 

occurs is related to lower boundary layer conditions and the sensible heat response to these 

conditions as simulated by the Noah land surface model. In Section 4.1.2 we more closely 

examine the regional pattern of LWup control and consider the aggregate influence of latent 
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and sensible heating, turbulent heat flux, for surface to atmosphere energy transfer. In 

Section 4.2 we discuss drivers of large scale surface heating and cooling in selected years 

including atmospheric factors influential to energy partitioning. 

Annual variations in radiative forcing are primarily due to net shortwave radiation. Because 

the model was forced with the same surface albedo in every April of 2002-2011, interannual 

variation in net shortwave radiation is due to variation in cloud cover and cloud–blocking of 

incoming solar radiation. The standard deviations of radiative forcing (RF = SWnet + 

LWdown), net shortwave radiation and downwelling longwave radiation are mapped in 

Figure 6. Comparison of Figure 6a and 6b shows the similarity between SWnet and RF 

variability for most areas of the region. Downwelling longwave radiation, which varies 

based on atmospheric temperature and water vapor content, only exhibits substantial 

interannual variability in climatologically wet areas in the southwest. LWdown and SWnet 

data are generally negatively correlated across the domain, which is expected because both 

are driven by water vapor and cloud cover (mean grid cell Pearson R = -0.53). 

4.1.2 Regional pattern of LWup forcing and geographic attributes of TF- and RF-

driven areas 

The fraction of interannual April LWup variability driven by turbulent heat flux forcing (see 

Section 3.2.1) is mapped in Figure 7. In most areas west of 38 °E turbulent heat flux forcing 

has little or no measureable influence on April LWup variability. The amount of radiation 

coming into the surface is the dominant driver of surface heating and cooling. FracVar is < 

0.25 in these areas, meaning that more than 75% of 2002-2011 LWup variability was due to 

radiative forcing. In southwestern areas where rainfall is high and vegetation is dense this is 
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in part due to consistently high rate of evapotranspiration. Turbulent heat flux has a larger 

influence on surface heating east of 38 °E and in pockets of northern Tanzania. TF control of 

LWup variance increases from 25% to 100% in these areas. Anomalous turbulent heat flux 

created most or all of the variability in LWup in the region from 39 °E to 42.5 °E and 5 °N 

to 3 °S, as shown by FracVar ≥ 1.  

Regional FracVar values were classified with regression tree analysis based on the following 

geographic attributes: Percent of surface cover by green vegetation (GreenVeg), mean daily 

rainfall (MeanRain), and the Pearson correlation between turbulent heat flux and latent heat 

flux (Correlation.TF.L). Figure 8 shows the regression tree. From the top of the tree down, 

thresholds that best define the regional data are seen at the five classification splits. These 

splits explain 56% of the total spatial variability. The regression tree results show that the 

semi-arid and low vegetation density areas of lowland southeastern Kenya and southern 

Somalia are where a direct negative association between surface heating and non-radiation-

driven evaporative cooling occurs, according to the FLDAS simulation. This is further 

explained in the discussion below. 

The regression tree shows that an important criterion for turbulent heat flux control of 

surface heating is moderate to strong correlation between latent heating and total turbulent 

heat flux. This is important because it directly links TF-driven LWup variability to 

evapotranspiration. If L and TF are not positively correlated then evapotranspiration is not 

the main factor in outgoing energy flux. To see where this applies, thresholds from the 1
st
 

and 3
rd

 tree splits are used to map TF and L correlation (Figure 9a). According to the 1
st
 split 

LWup anomalies are caused by anomalous radiative forcing in 51% of the region where TF 

and L are weakly or negatively correlated (R < 0.31, mean FracVar < 0). As seen from 
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Figure 9a these are areas in Kenya 35 °E – 38 °E and along Kenya-northern Uganda and 

Kenya-southern Ethiopia borders. With exception of 1 °S – 4.5 °S and 34 °E – 35 °E 

evapotranspiration does not influence LWup in the western half of the region. Comparison 

of Figure 9a (L influence on TF) and Figure 7 (TF influence on LWup) shows 

evapotranspiration controls LWup through TF mainly in the eastern half of the region. These 

figures show similar spatial patterns with exception of near Lake Victoria, where 

evapotranspiration controls TF but TF does not control LWup. Strongest TF control of 

LWup occurs in the region from central Kenya to southern Somalia where TF and L are 

strongly correlated (R > 0.58, approx. 13% of region). Partial TF control in areas east of 37° 

E correspond to the border of moderate TF and L correlation (R > 0.31).  

Regional topography and April vegetation density are shown in Figure 9b. GreenVeg is 

overlaid on a three-dimensional elevation surface (see Table 1). Dominant regional 

geographic features are an elevation gradient from west to east, with the mountainous Rift 

Valley dividing the Lake Victoria region from the eastern lowlands, and a spatial 

correspondence between elevation and vegetation density. The latter is primarily due to 

more convective rainfall in higher elevation areas. The regression tree identifies green 

vegetation density (GreenVeg) and April mean daily rainfall (MeanRain) as secondary 

explanatory variables for where TF controls LWup. In the 2
nd

 tree split GreenVeg classifies 

an additional 21% of the domain and shows that TF exerts larger influence in areas with less 

than 38% green vegetation cover, such as in eastern lowland areas. Radiative forcing 

dominates LWup variability (mean FracVar < 0) in the Rift Valley and near Lake Victoria 

where vegetation density > 39%. Below the 3rd split the remaining 15% of domain area is 

classified based upon MeanRain. This split shows TF exerts primary control on LWup in 
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semi-arid zones that receive on average between 2.3-3.2 mm day
-1

, which excludes low 

vegetation density areas near Lake Turkana.  

4.2 Annual attributed surface heat anomalies 

Drivers of annual April LWup anomalies were attributed using the method described in 

Section 2.2.2. Supplement Figure 2 (Fig. S2) shows LWup anomalies and the component of 

LWup anomalies attributed to turbulent heat flux forcing and radiative forcing for each year. 

A summary across the region of positive LWup anomalies and sources of annual heating is 

shown in Figure 10. For each year bar heights represent the percent of the region with LWup 

in the upper 25
th

 percentile (LWup’ > 3.60 W m
-2

). Bars 1-3 shows the percent attributed to 

radiative forcing (f <= 0), turbulent flux forcing (f >= 1), and a mix of RF and TF (0 < f < 1). 

Bar 4 shows the sum of these.  

According to simulation the largest area (62% of the region) with anomalously high LWup 

occurred in 2005 (Figures 10 and S2). Other years with spatially extensive abnormal heating 

were 2003 and 2002, during which 39% and 30% of the region, respectively, had 

anomalously high LWup  2005 was unique in that a large area of heating was attributed to 

turbulent heat flux forcing, either as the sole driver (22% of region) or as a partial driver 

along with radiative forcing (21%). In 2002, 2003, and 2011 over 20% of the region 

exhibited anomalous heating attributed to radiative forcing. Figure 10 shows a notable 

difference between 2002-2006 and 2007-2011 in terms of area with warm LWup anomalies. 

Every year in the first part of the time period exhibits RF and TF-combined heating in 20% 

of the region or more. The overall low area with surface heating in 2007-2011 is due to 

several years with widespread cool LWup anomalies (2007, 2008, and 2010) (Fig. S2). In 
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general we find that heating and surface cooling events are associated with multiple factors 

and see no evident shift in forcing mechanism between 2002-2006 and 2007-2011. For 

example, evapotranspiration deficits occurred in multiple years but only led to turbulent heat 

flux-driven surface heating on a large scale in 2005. Sensible heating balanced moisture flux 

deficits in most other cases. Abnormal surface heating attributed to radiative forcing was 

associated with above average downwelling longwave radiation in 2002 and net shortwave 

radiation in 2003 and 2011. In the following sections we use the ratio-based attribution 

results, model forcing data, and model-simulated variables to discuss mechanisms that led to 

surface heating in April 2005 and 2011 and surface cooling in April 2007, 2008, and 2010. 

4.2.1 The biggest heating event: 2005 

The 2005 event shows that an important factor in the link between evapotranspiration and 

surface heating is the degree to which atmospheric conditions support effective energy 

partitioning. In April 2005 LWup was substantially higher than normal in 62% of the region. 

Below average turbulent heat flux was fully responsible for the abnormal warming in more 

than 20% of the region and had a partial role in another 25% of the region (Figure 10). 

Figure 11 shows the locations of anomalous LWup (11a) and the RF (11b) and TF (11c) 

components of these anomalies (same as in Fig. S2). The TF-driven warming in Kenya 

southeast of Lake Victoria and east of 38 °E and in southern Somalia and Ethiopia was 

associated with latent heat flux deficits that were 10-20 W m
-2

 and greater (Fig. 11d). 

Similar evapotranspiration deficits occurred across northeast Kenya and other areas as well, 

but deficits in those areas were matched by positive sensible heat flux anomalies (Fig. 11e).  

Weak positive or absent sensible heat anomalies in northeastern areas of the region 
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ultimately led to TF-driven surface warming in April 2005. Atmospheric conditions led to a 

suppression of sensible heat transfer, which slowed energy removal from the surface and 

increased upwelling longwave radiation. This situation was unique to 2005, at least when 

considering the large area of the domain in which it occurred (Figure 10)  Data indicate that 

sensible heating was suppressed by above average air temperature. Sensible heat flux is 

driven by the temperature gradient between the surface and the air. Across the region, mean 

air temperature was 0.5 to 2 °C above average in 2005 (Fig. 11f). Figure 6g shows that in 

some TF-driven heating areas (northeast and southeast of Lake Victoria) the difference 

between surface and air temperature was small ( 0-1.5 °C). Areas with air temperature 

anomalies < 0.5 °C exhibited larger differences (2-3.5 °C). Sensible heat flux is also driven 

by mechanical mixing of air in the lower boundary layer. We examined wind speed 

anomalies to see if this also was a factor but forcing data show near average wind speed in 

April 2005 (not shown). Thus we conclude that a combination of below average 

evapotranspiration and above average air temperature was responsible for TF-driven heating 

in April 2005. From our available data we were unable to attribute the cause of anomalous 

air temperature in 2005, but it would either be from warm air advection into the region or 

adiabatic warming due to subsidence.  

Radiative forcing also contributed to surface warming in 2005. RF was responsible in east 

Uganda and northwestern Kenya for increasing LWup > 5 W m
-2

 and in some areas > 15 W 

m
-2

 from the 2002-2011 (Fig. 11b). Heating was mainly due to above average insolation and 

also downwelling longwave radiation in some areas. April mean net shortwave radiation was 

5-20 W m
-2 

above average between 1 °S – 5 °N and 33 °E - 38 °E (Fig. 11h). North of Lake 

Victoria positive downwelling longwave radiation anomalies (5-15 W m
-2

) also contributed 
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to radiative forcing (Fig. 11i). Positive downwelling radiation anomalies are consistent with 

a warmer than normal atmosphere and the air temperature anomalies seen in this month. 

4.2.2 The worst drought: 2011 

April 2011 was part of a severe and prolonged drought that affected over 13 million people 

in the Horn of Africa (Ledwith, 2011). Following a failed cropping season in October-

December 2010, the 2011 Long Rains season began late and ended in May with low total 

seasonal rainfall. Poor crop production, high food prices, and political instability led to a 

regional crisis that resulted in high food insecurity in Kenya and Ethiopia and famine in 

Somalia (Funk, 2011; USAID FEWS NET, 2011). Given the importance of the 2010-2011 

drought, and that rainfall was 40-160 mm below average in April for much of the region 

(Fig. 12c), we examine the factors that led to surface heating for more than 20% of this area 

(Fig. 10). Interestingly, ratio-based attribution shows surface heating was mainly due to 

radiative forcing (Fig. 12a, 12b), not evapotranspiration as would be expected from the 

rainfall deficits. Poor rainfall across central Kenya and northeastern areas of the domain 

reduced latent heat flux by 40 W m
-2

 below the April mean (Fig. 12e). However, according 

to the simulation energy partitioning was effective in April 2011 and large positive 

anomalies in sensible heating matched latent heat flux deficits (Fig. 12f). In total, turbulent 

heat flux was average and did not lead to TF-driven heating (Fig. S2).  

Data show that surface heating during the 2011 drought was ultimately due to lack of cloud 

cover, which led to large (> 30 W m
-2

) net shortwave radiation anomalies (Fig. 12d). In 

tropical regions clouds associated with convective rainfall effectively block insolation from 

reaching the surface (McGregor and Nieuwolt, 1998). Abnormally dry periods coincide with 
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high intensity solar radiation in some cases. Interannual variability of SWnet data 

corresponds to annual cloud cover because the land surface model was forced with surface 

albedo climatology. 2011 LWup anomalies (5-20 W m
-2

) correspond to positive net 

shortwave radiation anomalies and 80-160 mm below normal April rain (Fig. 12b, 12c). 

Clear skies also led to below average downwelling longwave radiation due to a lower 

nightttime greenhouse effect (not shown). Rain deficits and enhanced incoming shortwave 

radiation occurred in many areas- in southern Ethiopia, northern Tanzania, and in Kenya’s 

northwest and along the 36th meridian. Why all these areas did not exhibit above average 

LWup was not examined. 

4.2.3. Surface cooling events: 2007, 2008, and 2010 

Notable events with below average LWup are April 2007, 2008, and 2010 (S2). Figure 13 

shows RBA results for 2007 and 2008 and the main source of cooling, which was below 

average net shortwave radiation. The radiative forcing component of LWup anomalies was 

5-20 W m
-2

 west of 38 °E and parts of Ethiopia and Somalia in 2007 (Fig. 13a). In 2008 

smaller magnitude anomalies occurred in similar locations and northern Kenya (Fig. 13c). 

Most of these radiative forcing anomalies were due to below average net shortwave 

radiation (Fig. 13b, 13d). An exception is the cool LWup anomaly area southwest of Lake 

Victoria in 2008. Here, below average downwelling longwave radiation (not shown) 

counterbalanced the weakly positive (< 10 W m
-2

) net shortwave radiation anomalies. 

Downwelling longwave radiation and net shortwave radiation are physically linked through 

cloud radiative properties- clouds block insolation from the surface and emit thermal 

radiation towards the surface. In most cases LWdown anomalies were smaller in magnitude 

than SWnet anomalies.  
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April 2010 is an example of evaporative cooling of the surface due to above average latent 

heat flux. In eastern Kenya, southern Somalia, and southwest of Lake Victoria above-

average turbulent heat flux lowered LWup 5-15 W m
-2 

below the April mean (Fig. 14b). 

Latent heat flux was enhanced by 10-40 W m
-2 

in these areas (Fig. 14d) by anomalously wet 

conditions. April rainfall was 20-160 mm above average (not shown). This event was a 

factor in results from the interannual variability analysis, which identified LWup variability 

as being strongly related to evapotranspiration in the region’s eastern semi-arid lowlands. 

Similar to 2007, 2008, and the geographic analysis results, radiative forcing was the driver 

of 2010 LWup anomalies (-5 to -20 W m
-2

) in western Kenya, Uganda, and part of southern 

Ethiopia (Fig. 14a). Cooling in these areas was mainly due to below average net shortwave 

radiation (Fig. 14c). 

4.3. The geographic nature of anomalous surface heating 

As noted in the Introduction surface temperature observations are sometimes used to 

indicate vegetation stress. Differences between ecosystems, such as the degree to which 

vegetation productivity is limited by energy or water, pose a challenge to making accurate 

thermally-based estimates of evapotranspiration. The results of this analysis shed some light 

upon the issue because the East Africa region has large gradients in climate and vegetation. 

Variance partitioning showed the spatial pattern of LWup control and the regression tree 

identified geographic factors to explain the pattern. Here, we more clearly visualize how 

factors controlling LWup change across the region’s vegetation gradient. We look to the 

frequency of energy-driven and turbulent heat flux-driven events across the region’s 

vegetation density gradient to identify energy-limited and water-limited biomes. For each 

grid cell, the number of anomalous upwelling longwave radiation events that were attributed 
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(using ratio-based attribution) completely to radiative forcing or non-radiative driven 

turbulent heat flux forcing is compared to the total number of anomalous events. Results are 

grouped according to the green vegetation fraction for each grid cell (in 5% vegetation cover 

increments). Boxplots summarize the distributions for each greenness interval. On the x-axis 

of Figures 15a and 15b is green vegetation fraction (0 to 1 is 0 to 100% cover). Figure 15a 

shows the frequency of events driven by radiative forcing. Figure 15b shows the frequency 

of events driven by non-radiative driven turbulent heat flux forcing. Box width indicates the 

number of grid cells in each greenness interval.  

Several important points can be drawn from the frequency results shown in Figure 15. First, 

we see that the model shows ecosystem differences that are similar to what observed surface 

temperature and vegetation indices generally show. In wet and heavily vegetated areas the 

surface state is primarily driven by variations in energy, while in semi-arid and less 

vegetated areas water limitations become an important factor. In very arid areas water is too 

scarce to have a large role on the surface state. Figure 15a shows that surface heating and 

cooling is mostly energy-driven in places with more than 40% vegetation cover. For more 

than 50% of grid cells with a green vegetation fraction > 0.40 radiative forcing was the 

primary cause of anomalous LWup more than half the time. Comparison of Figure 15a and 

15b shows that a transition zone occurs between areas with 25% and 40% vegetation cover, 

where LWup becomes less energy-driven and more aerodynamically-driven with decreased 

greenness. Figure 15b shows that it is in areas with 10% to 35% vegetation cover that 

turbulent heat flux control of LWup was most commonly seen. As showed in the regression 

tree analysis, evapotranspiration is the major driver of turbulent heat flux in low to moderate 

vegetation density areas. Therefore one is most likely to find surface heating induced by 
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vegetative drought in areas with 10% to 35% vegetation cover. 

Another important point that is shown by Figure 15 is that knowledge of vegetation density 

in an area is not enough information to correctly identify the cause of every anomalous 

surface heating or cooling event. Weather introduces multiple meteorological factors that 

become important in some years and not important in others. The driver of anomalous 

LWup is more predictable for energy driven-biomes than transition or water-limited zones. 

The highest medians and upper quartiles, which reach frequencies of 55% to 80%, are for 

green vegetation fraction > 0.4 (Figure 15a). Even for these energy-driven biomes, 

anomalous LWup was caused by aerodynamic processes in at least one year of the eleven 

year period. There are long whiskers in Figure 15 boxplots, particularly for green vegetation 

cover from 5% to 45%. In these areas greenness is clearly not the only important factor: The 

frequency of RF-driven and TF-driven events ranges from 0% to 100% of the time. The 

occurrence of surface heating from vegetative drought is more likely in semi-arid areas than 

wet areas, but even in water-limited biomes less than 50% of the anomalous LWup events 

were attributed to anomalous turbulent heat flux.   

5.0 Conclusion 

5.1 Summary 

We examined drivers of surface heating and cooling for a region of East Africa (5 °N – 5°S, 

33 °E – 43 °E) using surface energy balance variables simulated by the Noah land surface 

model v3.2 for 2002-2011. The model was forced with rainfall data used for operational 

weather monitoring in Africa (RFE 2.0) and GDAS meteorological data. We used upwelling 

longwave radiation (LWup) estimated from a surface energy budget. Because surface 
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emissivity does not change between years in the model, interannual variability in upwelling 

longwave radiation and surface temperature would be similar. April LWup interannual 

variability and annual anomalies were linked to radiative forcing (RF) and turbulent heat 

flux forcing (TF), which are the pathways of incoming and outgoing energy. The purpose 

was to identify if hot surface conditions were due to more radiative energy being added or 

because surface energy was not being removed through high enough evapotranspiration and 

sensible heating rates. Results identified geographic patterns and the climate drivers of 

interesting surface heating and cooling events. Variance partitioning, regression tree 

analysis, and ratio-based attribution were used for the analysis.  

According to variance partitioning and regression tree results, anomalous surface heating 

and cooling during April 2002-2011 was driven by evapotranspiration only in the semi-arid 

low elevation areas in the eastern part of the region (38 °E – 43 °E). The regional analysis 

showed that these are places with substantial latent heat flux variability that receive enough 

rainfall to support low density vegetation. In these areas soil evaporation is the primary 

mechanism for surface cooling because green vegetation covers less than 30% of the 

surface, but transpiration by vegetation is also important. In the greener and wetter 

mountainous areas interannual variability in surface energy balance variables are more 

strongly controlled by net incoming radiation. Abnormal surface heating is more commonly 

occurs from more energy being added to the surface than from moisture limitation to 

evapotranspiration rate. Regional differences in drivers of upwelling longwave radiation 

reflect spatial gradients between energy-driven and moisture-driven ecosystems.  

Results of the ratio-based attribution showed that surface heating is a consequence of 

drought in the East Africa region, but important mechanisms vary based on characteristics of 
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the drought event. Drought events directly impact the surface energy budget by reducing 

evapotranspiration, but reductions in cloud cover associated with rainfall deficits can have a 

larger impact on surface heating than evapotranspiration deficits themselves. In many cases 

with evapotranspiration deficits the model simulated a sensible heating response that 

prevented LWup from increasing above average. In April 2005 however, the simulation 

showed surface heating that stemmed from suppression of evapotranspiration by rainfall 

deficits and suppression of sensible heating by anomalously warm air temperature. During 

the 2011 drought surface heating in April was attributed to high levels of solar radiation 

reaching the surface from anomalously clear skies. Cooling occurred from evaporative 

cooling and below average net shortwave radiation in several years (2007, 2008, and 2010). 

5.2 Method evaluation, limitations, and future directions 

Surface heat content is influenced by multiple energy fluxes whose covariance depends on 

atmospheric and land surface conditions. An inherent feature of modeled and observed 

surface temperature data is complex variability. To deal with these challenges we examined 

modeled upwelling longwave radiation instead of surface temperature and examined the 

surface energy budget foremost based on directional energy flux (RF is in, TF is out). This 

method of breaking anomalous LWup into RF and TF was successful in that it enabled 

interesting surface heating and cooling events to be identified and the geographic pattern of 

surface heat control to be established. A downside to this approach is that the influence of 

evapotranspiration, which many researchers are interested in, is not isolated at the first level 

of analysis. TF-forcing only leads to higher LWup if evapotranspiration deficits are 

accompanied by suppressed sensible heat flux. Variance partitioning results were somewhat 

redundant to the initial LWup-RF and LWup-L correlation analysis. However, the variance 
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approach helped with quantifying the role that reduced or enhanced rates of aerodynamic 

energy transfer away from the surface, i.e. non-radiation driven evapotranspiration and 

sensible heating, have on surface heating and cooling. 

There are many important factors involved in surface energy and water budgets that were 

not examined in this analysis. Differences in vegetation type for example, such as shallow-

rooted grasses vs. deep-rooted trees, can play a major role in the surface energy response to 

hydrometeorological conditions. A major limitation to the analysis is that aspects of the 

atmospheric-land modeling experiment are unrealistic. Green vegetation fraction, an 

important parameter for surface energy partitioning, is the same every year in the 

experiment despite the fact that actual plant cover is dynamic and depends on environmental 

conditions. Vegetation growth is highly responsive to seasonal rainfall in this region, which 

causes actual phenology and plant cover to differ between years. Surface albedo is another 

important parameter that is modeled as constant between years. Surface albedo determines 

the amount of solar radiation that is absorbed by the surface. Vegetation response to drought 

or very wet conditions can lead to increased albedo and less absorbed energy or decreased 

albedo and more absorbed energy, respectively. If albedo is highly variable this may 

influence results, as radiative energy input is an important driver of surface heating and 

cooling. This was an uncoupled model experiment, so land responses to hydrologic 

conditions did not produce feedbacks to the atmospheric state. Overall, it is important to 

remember that model simplification of the land surface comes at a cost to biological 

complexity and other important factors in land-atmosphere interactions.   

We see potential for the ratio-based attribution method as a means of standardized 

intercomparison of land surface model experiments. This is because results depend on the 
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degree to which energy partitioning occurs, which is in turn dependent on the 

parameterizations used in the land model. Application of the method to multi-model 

simulations might help clarify the impact of different land model parameterizations for 

simulated surface heating. Using LWup with ratio-based attribution could be particularly 

useful for identifying unique events from a long time series dataset. A good candidate event 

to investigate further is April 2011, during which regional drought led to anomalous sensible 

heating according to the FLDAS Noah simulation. The spatial extent and intensity of 

anomalies is indicative of a major positive air temperature feedback by drought. Surface 

feedbacks to air temperature during 2011 could be examined with a coupled model 

simulation. In future analysis we would also like to quantify relationships between modeled 

upwelling longwave radiation and surface temperature and observed land surface 

temperature from Moderate Resolution Imaging Spectroradiometer Land Surface 

Temperature (MODIS LST). Comparisons of MODIS LST to data simulated by a set of 

widely used land surface models could identify common biases between models and also 

identify regions where biogeophysical processes are well understood.  

The purpose of this analysis was to improve our understanding of the mechanisms that lead 

to increases in surface temperature. This is a timely goal, because changes that are occurring 

in the global climate system are markedly altering surface hydrology and energetics. While 

some changes are systematic, such as higher global temperature, geographic differences 

result in unique regional impacts. For this analysis we hoped to identify certain geographic 

features and atmospheric conditions that systematically lead to anomalous surface heating 

events in East Africa during the recent historical period. We developed a method to process 

energy flux data so that events and the primary driver of events can be identified. We found 
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that drought in this region can lead to surface heating through enhanced insolation 

associated with clear skies and through reduced evapotranspiration, and that the latter occurs 

mainly in areas with 10-35% vegetation cover. Anomalous heating and cooling events most 

commonly occur in areas with 40-75% vegetation cover due to variations in absorbed solar 

radiation. These general rules are accompanied by large variability between years and 

locations. Perhaps the most important finding is the variety of ways anomalous heating can 

be manifest by weather and hydrologic conditions. In the future, consideration of these 

factors may help to improve thermally-derived estimates of evapotranspiration.  
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Chapter 3 

 

Impacts of rainfall declines on vegetation and hydrology in Tanzania between 1982 and 

2010 

 

Abstract 

Declines in rainfall since the 1980s has been observed in multiple regions of Tanzania. 

These are associated with the well-documented March to May reductions over the Greater 

Horn of Africa and with declines during other times of the year. We seek to identify areas 

where rainfall declines may have impacted natural vegetation productivity, maize 

productivity, or water resources. Widespread declines to vegetation productivity have been 

reported based on satellite observations, but links between the vegetation declines and the 

rainfall declines have not been established.  

Using CHIRPS, a new 0.05 degree resolution gridded rainfall product that blends station 

observations with satellite estimates of precipitation, we examine trends in October to May, 

October to February, and March to May rainfall for 1982 to 2010. Trends in six other 

gridded rainfall products and the NASA GIMMS Normalized Difference Vegetation Index 

(NDVI-3g) dataset are also examined. Trends in evapotranspiration and surface runoff at 

0.25 degree resolution are estimated using the Variable Infiltration Capacity (VIC) 

hydrologic simulation model. Potential impacts to rain fed maize area explored using the 

USGS GeoSpatial Water requirement Satisfaction (GeoWRSI) model. We find that rainfall 

declines in central and northern Tanzania can explain observed vegetation declines. We 
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locate Tanzania’s watersheds and agricultural areas that may have been most negatively 

impacted. 

1.0 Introduction 

Declines in rainfall in Tanzania in recent decades are in part due to a widespread reduction 

in March to May rainfall observed over the Greater Horn of Africa. Records show March to 

May rainfall has been in decline since the 1980s with an abrupt shift towards drought 

conditions after 1998 (Lyon et al., 2012; Williams and Funk, 2011; Funk et al., 2008). A 

growing set of evidence indicates that in Tanzania, rainfall also declined during other times 

of the year. This could have had major impacts to agriculture, natural ecosystem 

productivity, and regional livelihoods. Maize production is the most important agricultural 

activity in Tanzania and is a major factor in its economy (Thurlow and Wobst, 2003). 

Inadequate soil moisture is one of the main challenges to agriculture in semi-arid areas of 

Tanzania (Mongi et al., 2010; Barron et al., 2003; Gowing et al., 2003).  

Multiple studies have documented changes to growing season rainfall in parts of Tanzania, 

including important maize production areas in the south and central-north regions (e.g. Estes 

et al., 2010). In the south yields are high due to wet climate. In Arusha and Shinyanga 

provinces, the declines are more concerning because of semi-arid climate and moderate to 

low maize yields (Rowhani et al., 2011). Studies have identified a general shift towards 

lower annual totals (Paavola, 2006), shorter seasons (Mary and Majule, 2009), and more 

extreme wet and dry events (Omondi et al., 2013). Mongi et al. (2010) and Mary and Majule 

(2009) showed that the observed changes were congruent with perceptions of local people. 
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Farmers reported that drought had become a bigger problem in recent decades and that rain 

fed agriculture had become more difficult because of it.  

Declines to the March to May ‘Long Rains’ are attributed to changes to tropical circulation 

associated with enhanced sea surface temperature in the equatorial Indian-Pacific Ocean 

region. Williams and Funk (2011) identified a mechanism through which anthropogenic-

driven warming in the Indian Ocean could have contributed to the rainfall declines. Lyon et 

al. (2012) proposed that the rainfall declines were due to a natural shift in the temperature 

gradient between the west equatorial Pacific and the central and east Pacific. According to 

Yang et al. (2014), CMIP5 model projections of East Africa rainfall should be used with 

caution because they do not simulate sea surface temperature patterns that are important for 

rainfall in the region. Therefore it is uncertain how the long rains will be in the future. 

For Tanzania, a more complete understanding of the spatial patterns of rainfall trends and 

the implications of these trends for agriculture, natural ecosystem productivity, and regional 

livelihoods is needed. A challenge thus far has been sparse station data in gridded 

precipitation datasets (Rowhani et al., 2011). Climatic Research Unit data (CRU, 

New et al. 2002), for example, only uses rainfall observations from three climate stations for 

the entire country. Coarse resolution data does not adequately represent Tanzania’s 

geography and complex rainfall regime. Some areas in Tanzania have single rainfall season. 

Others have two seasons that are influenced by different regional and large-scale climate 

drivers. Interannual variability in October to December rainfall is influenced by the El Nino-

Southern Oscillation (Ogallo 1988; Hastenrath et al., 1993; Nicholson and Kim, 1997; 

Nicholson and Selato, 2000) and the Indian Ocean Dipole (Saji et al. 1999; Abram et al., 

2008). March to May rainfall is linked to convective activity in the tropical Indo-Pacific 
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Ocean region, but drivers of interannual variability are complex and not well understood 

(Williams and Funk, 2011 and references therein). In addition to supporting a rapidly 

growing human population, rainfall in both these seasons is important for the rich diversity 

of Tanzania’s natural ecosystems. Improved climate data could better support planning 

within the country and identification of at-risk areas. 

In this paper we conduct a geographic assessment of historical changes to Tanzania’s 

growing season rainfall and eco-hydrology. Our goal is to identify areas in Tanzania where 

rainfall declines may have impacted crop yields, natural vegetation productivity, or water 

resources. We use a new gridded rainfall product that was designed for monitoring drought 

impacts where surface data is sparse. The Climate Hazards Group InfraRed Precipitation 

with Stations (CHIRPS) dataset has high spatial resolution (0.05° latitude x 0.05° longitude) 

and is available at monthly, decadal (10-day), pentad (5-day), and daily time steps. It is 

based on a high quality climatology grid, infrared satellite observations, and station data 

from multiple sources (Funk et al., 2014). We use CHIRPS data to examine changes to 

Tanzania vegetation productivity and surface hydrology between 1982 and 2010. Multiple 

datasets are available for comparison for this period.  

We begin with an introduction to Tanzania’s geographic and seasonal patterns of rainfall. 

Tanzania has three major cropping seasons so we use the CHIRPS data to explain where 

each of these is located. We also review what some earlier studies reported in terms of 

rainfall trends and trends in satellite-observed vegetation productivity. We begin the analysis 

by examining trends in October to May, October to February, and March to May rainfall 

using CHIRPS. Then we ask if the changes shown in CHIRPS are also shown in other 

rainfall products. We compare CHIRPS trends to trends in six other gridded rainfall 



76 

 

products. We use an independent record of vegetation productivity, the GIMMS NDVI-3g 

dataset, to identify if trends in satellite-observed Normalized Difference Vegetation Index 

could be related to the rainfall declines. Impacts to the water balance are examined using 

evapotranspiration and surface runoff simulated from the Variable Infiltration Capacity 

(VIC) hydrologic simulation model (Liang et al. 1994). We use the GeoWRSI model (Senay 

and Verdin, 2003), which is actively used for monitoring cropping activities in Africa by the 

Famine Early Warning Systems Network (FEWS NET), to identify if rainfall changes may 

have intensified or introduced new limitations to maize production related to water stress. 

Finally, we discuss the level of confidence we have in regard to these vegetation and 

hydrology impacts. 

2.0 Background 

2.1 Tanzania rainfall and cropping seasons 

A map of Tanzania’s administrative zones (provinces) is provided in Figure 1.  

Tanzania has a complex rainfall pattern. Annual rainfall ranges from less than 400 mm to 

greater than 1400 mm (Figure 2). Rain primarily falls between October and May, with a 

pronounced dry period around February in northern Tanzania. Tanzania’s semi-arid region 

extends southwest from the Tanzania-Kenya border through north-central and central 

Tanzania, from 2 °S-9 °S and 34 °E-38 °E. Annual rainfall is 300 mm to 600 mm. The 

lowest rainfall totals occur in the northern part of this region, in Arusha and eastern Manyara 

provinces, and between Iringa and Dodoma provinces around 7 °S. The semiarid region is 

punctuated by areas with topography that receive higher amounts of rainfall. Mount 
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Kilimanjaro (3°4’S, 37°21’E), the highest free-standing mountain in the world (5,895 m 

elevation), is the most extreme example and is one of the wettest areas in Tanzania.  

The east arm of the East African Rift Valley extends from Kenya through Tanzania’s semi-

arid region around 35 °E to Lake Nyasa at the Tanzania-Malawi border. There it meets the 

western arm of the East African Rift, which forms the long Lake Tanganyika along the 

Tanzania-Democratic Republic of the Congo border. A large plateau at approximately 1000 

m elevation is between the east and west arms of the Rift. From 35 °E to the west across the 

central region plateau, rainfall increases from 600 mm to 1000 mm. Areas near Lake 

Victoria receive more than 1200 mm. East of the Rift is a low coastal plain. Most areas in 

east and southern Tanzania receive 800 mm to 1200 mm rainfall.  Sections of Ruvuma and 

Iringa provinces near Lake Nyasa in the southwest receive more than 1200 mm. 

Tanzania’s agroclimatic areas fall into two major categories- those with unimodal rainfall 

and those with bimodal rainfall. Central and southern Tanzania have a single rainy season 

are that begins between October and December and ends around May. Planting for the 

unimodal season starts around November and harvest occurs in May or June. A dry period 

occurs around February. In northern and eastern Tanzania this dry period is accentuated and 

separates rainfall into two seasons. Planting for the ‘short rains’ minor cropping season, 

known as Vuli, starts in October or November and harvest occurs in late January to 

February. Planting for the ‘long rains’ major cropping season, often called Masika, follows 

the Vuli season in late February to March and harvest occurs in July or August (FAO/WFP, 

1998). For most of Tanzania seasonal rainfall tapers off in May or June and is followed by a 

four to five month dry period. The lean season, when income and supply from the previous 
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season runs low, lasts from October to January in bimodal areas and from November to 

March in unimodal areas (FEWS NET). 

Figure 3 shows the areas that receive rainfall during October to February and March to May. 

Greater than 80% annual rainfall occurs between October and May in Tanzania. Areas in 

central, west, and southern Tanzania receive 60-80% of their annual rainfall between 

October and February. Annual totals in northern and eastern areas are influenced by rainfall 

accumulated during the short rains and the long rains. March and April are the wettest 

months in these areas. The long rains account for more than 50% of annual rainfall in parts 

of northern provinces Arusha, Kilimanjaro, Manyara and eastern provinces Tanga, Pwani, 

Morogoro, and Lindi. Short rains have larger accumulations than the long rains in Kagera 

and Mwanza provinces near Lake Victoria and along transition zones between bimodal and 

unimodal areas. This variety of seasonal patterns is shown for several places in Figure 4. 

Bukoba, in the far northwest near Lake Victoria, has much higher rainfall than Arusha, 

which is in north-central Tanzania. In Arusha the long rains season is prominent. Shinyanga, 

in central Tanzania, has a dry season from June to September and steady rainfall for most of 

December to April. Mbeya, in southern Tanzania, has a much wetter unimodal season. 

2.2 Previously identified rainfall and NDVI trends in Tanzania  

Paavola (2006) examined historical rainfall for Morogoro Province in inland southeast 

Tanzania. Morogoro is semi-arid to wet with a long rainy season from December to May 

with the peak in March and April. Annual rainfall was reported to have declined since the 

1950s with a potential increase to interannual variability. Paavola shows rainfall between 

1922 and 2005 for Morogoro town (6.8 °S, 37.7 °E). The observations come from the 
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Global Precipitation Dataset, Climatic Research Unit, School of Earth and Environment, 

University of East Anglia, UK, and the Tanzania Meteorological Agency. The time series 

shows lower rainfall since the 1980s.  A period of stronger decline can be seen after the late 

1990s.Mary and Majule (2009) presented convergence between rainfall observations and 

local perception about changes to growing season rainfall in the Manyoni district of Singida 

province in semi-arid central Tanzania. Rainfall data were from the Tanzania 

Meteorological Department. Between 1922 and 2007 the season had shortened in duration 

due to less rain at the onset (October/November) and at the end (April/May) of the season. 

More pronounced declines had occurred since 1982. Changes to the distribution also 

suggested increasing drought frequency within the season. Mary and Majule report that 

rainfall declines and increased variability have been noticeable enough to trigger an 

adaptation response by farmers. They plant a number of crop varieties and species on the 

same land to reduce the risk associated with increased drought (Climate Change Secretariat, 

2010; Mary and Majule 2009).  

The UNDP Climate Change Country Profile from McSweeney et al. (2010a and 2010b) 

summarized national trends using gridded rainfall data from the Climatic Research 

Unit (1961-2000, 0.5° resolution)  (New et al. 2002), University of Delaware (1961-2006, 

0.5° resolution) (Matsuura and Willmott, 2007), and Global Precipitation Climatology 

Centre (1960-1979, 2.5° resolution) (Adler et al., 2003). The document reports statistically 

significant decreases to the national average for annual, June to September, and March to 

May rainfall. MAM rainfall had the largest decline at 4 mm mo
-1

 (6%) per decade. The 

annual trend was 2.8 mm mo
-1

 (3.3%) per decade, with largest declines in southern 

Tanzania. Estes et al. (2010) examined trends in several climate variables from the Princeton 



80 

 

Global Forcing gridded product (Sheffield et al., 2006) for the period 1979 to 2010. They 

limited analysis in Tanzania to three zones where the data were bias-corrected by global 

summary of the day (GSOD) station data. They found declines in the ratio of rainfall to 

potential evapotranspiration in all three. Decreases in rainfall were responsible in the zone 

near Mara-Arusha-Kilimanjaro provinces and in the zone near Mbeya province in the south. 

Omondi et al. (2013) reported significant decreases in annual total precipitation at three 

locations in Tanzania using daily station data. These were for 1961 to 1991 at Bukoba and 

Mwanza, which are to the west and south of Lake Victoria, and for 1971 to 2009 at Dar es 

Salaam along the east coast. For Dodoma in central Tanzania, a linear trend over the 1971 to 

2009 period showed significant increases. Time series of Dodoma show that the increasing 

trend is mainly due to more intense rainfall in the wettest days between the mid-1990s and 

the mid-2000s. In the 2000s the data show a declining trend in the annual maximum 5-day 

rainfall accumulation. 

Two studies used the NDVI-3g dataset produced by NASA’s Global Inventory Modeling 

and Mapping Studies (GIMMS) group to identify trends in the region. Kim et al. (2013) 

showed decreasing trends in NDVI for the 1982 to 2006 period and detailed statistical 

properties of the NDVI trends (e.g. abrupt, long-term, hockey-stick, etc.). Their results show 

declines in much of Tanzania north of 8 °S and west of 38° E and in smaller areas farther 

south. In total, 36% of Tanzania showed a declining trend. Most of the trends in the central-

northwest were associated with a change point that occurred during the 1990s or the 2000s. 

Vrieling et al. (2013) used NDVI-3g to calculate trends in the length of growing period from 

1981 to 2011. They found significant declining trends that were associated with a later start 

to the growing season. Julien et al. (2009) analyzed an earlier version of GIMMS (1981-
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2003) and also obtained negative length of growing period trends in Tanzania. The cause of 

the NDVI declines was not examined in these papers. 

3.0 Data and Methods 

3.1 Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) 

The CHIRPS dataset extends from 1981 to present. It has spatial resolution of 0.05° latitude 

x 0.05° longitude and is available at monthly, decadal (10-day), pentad (5-day), and daily 

(for Africa) time steps. The CHIRPS methodology blends in situ observations with unbiased 

satellite rainfall estimates (Funk et al., 2014). Biases in monthly rainfall estimates from 

several satellite datasets are removed using a 0.05° resolution global gridded precipitation 

monthly climatology. The Climate Hazards Precipitation Climatology, CHPclim (Funk et 

al., 2012), was created using historical station data and geostatistical relationships (e.g. 

between rainfall and elevation, longitude, and latitude) to model spatial gradients. Station 

data are blended with the unbiased satellite product, the Climate Hazards InfraRed 

Precipitation (CHIRP), at pentad and monthly timescales. Blending at each 0.05 degree 

CHIRP grid cell involves up to five neighboring stations, with higher weights for stations 

that are closer. CHIRP grid cells that have multiple stations end up with values that are a 

weighted combination of all sources.  

In Tanzania, station data in CHIRPS comes from a variety of sources including the Tanzania 

Meteorological Agency, NCDC Global Summary of the Day (GSOD), WMO Global 

Telecommunication System (GTS), and Global Historical Climate Network (GHCN2). A 

problem that CHIRPS shares with other rainfall products in Africa is a decline in reporting 

meteorological stations after the late 1980s. Figure 5 shows the high density of station data 
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that was available in the 1980s in Tanzania compared to the much lower coverage in the 

2000s. We are using a more recent version (version 1.9) than the version that is available to 

the public (version 1.8). CHIRPS version 1.9 is an interim product designed to improve 

upon data quality issues in version 1.8. A subset of station data from the Tanzania 

Meteorological Agency was found to be irregular compared to neighboring stations. It was 

determined that the differences were due to reporting in tenths of inches instead of 

millimeters and a conversion of 2.54 was applied to these data in version 1.9. A new version 

of CHIRPS is planned for release in 2015. It will have more historical station data and 

higher quality control in Tanzania and elsewhere. 

3.2 Rainfall trend analyses and inter-product comparison 

Rainfall trends are estimated using the Theil-Sen single median method, which is a non-

parametric technique of linear regression (Sen 1968; Thiel 1959). The Theil-Sen method 

gives the median value of the difference between all combinations of data points. Theil-Sen 

is more accurate than least squares linear regression in the case of outliers and skewed or 

heteroscedastic data (Siegel 1982). Statistical significance is computed using the Mann-

Kendall (Kendall’s tau) test for a monotonic trend in a time series, which is based on rank 

correlation between the time series and a time vector (Mann 1945). 

Trends are calculated for 1982 to 2010 using seasonal rainfall accumulations in the eight 

rainfall datasets listed in Table 1. For CHIRPS, October to May, October to February, and 

March to May rainfall trends are examined. For all the rainfall datasets we examine October 

to February and March to May trends. CHIRPS and CHIRP are resampled to 0.25° 

resolution for the comparison. We compare the products based on the percent change in 
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rainfall per decade. Between-product differences in the percent change are in part influenced 

by differences in the product means. The main difference between their seasonal means is 

that the coarser resolution data (GPCP, CMAP, and NCEP/NCAR R1) do not resolve 

regional rainfall gradients within the country, such as the dry corridor through northern and 

central Tanzania.  

It should be noted that these rainfall products are not independent since some of the products 

use data from the same sources. CHIRPS and University of Delaware both use station data 

from GHCN2. CHIRPS and Princeton both use Global Precipitation Climatology Project 

(GPCP) and Tropical Rainfall Measuring Mission (TRMM). We include CHIRP trends in 

the comparison to show if trends in CHIRPS originate from station data or from other 

sources. The difference between CHIRPS and CHIRP is that CHIRP does not have stations 

reporting through the data period. Trends in CHIRP come from estimates derived from 

satellite infrared sensors. Trends in CHIRPS come from estimates that are driven mainly by 

station reports and where stations do not report, from the combination of interpolated station 

data and satellite data.  

Table 1. Gridded datasets used in the analysis 

Dataset Abbrevia

tion 

Resolution Information and access Citation 

Climate 

Hazards Group 

InfraRed 

Precipitation 

with Station 

data 

CHIRPS 0.05° latitude 

x 0.05° 

longitude 

Version 1.9. The most up-to-date 

publically available CHIRPS (version 

1.8) can be downloaded here: 

ftp://chg-

ftpout.geog.ucsb.edu/pub/org/chg/pro

ducts/CHIRPS-latest  

Funk et 

al., 2014 

CHIRPS 

without station 

data 

CHIRP 0.05° latitude 

x 0.05° 

longitude 

ftp://chg-

ftpout.geog.ucsb.edu/pub/org/chg/pro

ducts/CHIRP/monthly/  

Funk et 

al., 2014 

GPCP Version 

2.2 Combined 

GPCP 2.5° latitude × 

2.5° longitude 

http://www.esrl.noaa.gov/psd/data/gri

dded/data.gpcp.html  

Adler et 

al., 2003 

ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRPS-latest
ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRPS-latest
ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRPS-latest
ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRP/monthly/
ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRP/monthly/
ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRP/monthly/
http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html
http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html
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Precipitation 

Data Set 

(Final) 

GPCC Global 

Precipitation 

Climatology 

Centre 

GPCC GPCC Global 

Precipitation 

Climatology 

Centre 

http://www.esrl.noaa.gov/psd/data/gri

dded/data.gpcc.html  

Schneider 

et al., 

2011 

CPC Merged 

Analysis of 

Precipitation 

CMAP 2.5° latitude × 

2.5° longitude 

http://www.esrl.noaa.gov/psd/data/gri

dded/data.cmap.html  

Xie and 

Arkin, 

1997 

University of 

Delaware 

Precipitation 

U. 

Delaware 

0.5° latitude x 

0.5° longitude 

http://www.esrl.noaa.gov/psd/data/gri

dded/data.UDel_AirT_Precip.html  

Matsuura 

and Will

mott, 200

7 

Global 

Meteorological 

Forcing 

Dataset for 

Land Surface 

Modeling 

Princeton 0.25° latitude 

x 0.25° 

longitude 

http://rda.ucar.edu/datasets/ds314.0/  

Downloaded from: 

http://hydrology.princeton.edu/data/p

gf/0.25deg/daily/  

Sheffield 

et al., 

2006 

NCEP/NCAR 

Reanalysis 1 

NCEP/N

CAR R1 

2.5° latitude × 

2.5° longitude 

http://www.esrl.noaa.gov/psd/data/gri

dded/data.ncep.reanalysis.surface.htm

l  

Kalnay et 

al., 1996 

GIMMS 

AVHRR 

Global NDVI-

Third 

generation 

NDVI-3g 0.0833° 

latitude × 

0.0833° 

longitude 

Downloaded February 2013 from 

NASA ftp site. 

Current download site: 

http://ecocast.arc.nasa.gov/data/pub/g

imms/3g/  

Pinzon 

and 

Tucker, 

2014 

 

3.3 NDVI trend analysis 

Annual mean normalized difference vegetation index (NDVI) is used as a proxy for annual 

vegetation productivity due to its relationship to photosynthetic activity. NDVI is a ratio of 

reflectance in the visible and near infrared portions of the electromagnetic spectrum and 

represents canopy absorption of photosynthetic active radiation (Sellers 1985; Tucker and 

Sellers, 1986). We use the NDVI-3g product from the NASA Global Inventory Monitoring 

and Modeling System (GIMMS) group (Pinzon and Tucker, 2014) (Table 1). NDVI-3g 

(1981-2012) is an extended and improved version of earlier GIMMS NDVI which comes 

http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html
http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html
http://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html
http://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html
http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html
http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html
http://rda.ucar.edu/datasets/ds314.0/
http://hydrology.princeton.edu/data/pgf/0.25deg/daily/
http://hydrology.princeton.edu/data/pgf/0.25deg/daily/
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html
http://ecocast.arc.nasa.gov/data/pub/gimms/3g/
http://ecocast.arc.nasa.gov/data/pub/gimms/3g/
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from NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data. NDVI-3g 

improvements account for issues related to calibration loss, orbital drift, and volcanic 

eruptions. This dataset was described in Pinzon and Tucker (2014) as having low 

uncertainty (on the order of ±0.005 in NDVI units) and is therefore suitable for detection of 

seasonal and inter-annual climate forcings.  

Our goal with NDVI-3g is to establish if some of the declines reported in Kim et al. (2013) 

and Vrieling et al. (2013) in Tanzania could be due to changes in rainfall. Annual mean 

NDVI was calculated using the bi-monthly NDVI-3g data for the November to October 

period. Seasonal curves using bi-monthly NDVI data showed that the vegetative season 

generally begins in November in Tanzania following the arrival of seasonal rains in October. 

Green-up occurs later in areas with later starts to the rainy season. After June to August, 

depending on the region, NDVI values gradually declines to a minimum around October. To 

determine the degree to which annual vegetation productivity from NDVI responds to 

October to May rainfall accumulations we compute the Pearson correlation coefficient 

between these values at each grid cell. Maps of these values are used to identify where 

NDVI-3g may show a vegetation response to rainfall during the 1982 to 2010 period. 

We conduct a per-pixel trend analysis on annual mean NDVI. We also examine time series 

of areal averages of the data for some areas with declining trends. For these analyses we 

convert annual mean NDVI into standardized anomalies. Standardized anomalies are 

deviations from the 1982-2010 mean that are divided by the 1982-2010 standard deviations. 

Using standardized anomalies is helpful for cross-dataset comparisons when the data 

variables not always linearly related or are unitless. At each grid cell linear regression is 



86 

 

used to estimate the linear change in NDVI between 1982 and 2010. For comparison, the 

same methodology was applied to October to May rainfall totals from CHIRPSv9.  

3.4 Hydrology analysis 

We use the Variable Infiltration Capacity (VIC) hydrologic simulation model (Liang et al. 

1994) to explore the potential hydrologic impacts of the CHIRPS rainfall trends. The VIC 

model, which is described in detail in Njissen et al. (1997, 2001a, 2001b), has been used to 

study climate impacts to large river basins in the US and around the world (e.g. Nijssen et al. 

2001c). It is currently used for monitoring water budgets and drought in Africa by the Land 

Surface Hydrology Group at Princeton University. In our experiment VIC iss forced with a 

daily version of CHIRPS that is spatially aggregated to 0.25° latitude x 0.25 ° longitude 

resolution. Other atmospheric forcings for the model come from the Princeton University 

dataset (Table 1). We examine changes to simulated annual evapotranspiration and surface 

runoff. Daily data for these variables were summed to the month then averaged over the 

October to September water year. The VIC model calculates the moisture fluxes for each 

grid cell independently. Evapotranspiration is from canopy evaporation, evaporation from 

bare soils, and transpiration (Liang et al, 1994). VIC uses a standalone routing model that is 

based on a representation of reservoirs and streams (Njissen et al., 2001c). Trends in runoff 

at each grid cell would occur from changes to local and upstream runoff changes. Trends in 

runoff do not account for influence of groundwater-surface water interactions on stream 

flow because this is not modeled in VIC (Trambauer et al., 2013). Evapotranspiration and 

runoff trends were calculated at each grid cell using the Theil-Sen method and statistical 

significance was identified using Kendall’s tau (p < 0.05). The model was initialized on 
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January 1982. Several years of outputs were omitted from the analysis to account for model 

spin up. Trends were calculated for the 1984 to 2009 period. 

To identify where changes in surface runoff could be important for water resources we 

overlay a map of the major water basins in Tanzania on the trend results. We created this 

shapefile by combining two sources. The base map was the USGS HydroSHEDS Drainage 

Basin (Beta) 30 second version which was downloaded from 

http://hydrosheds.cr.usgs.gov/dataavail.php. This map has many small scale basins, so we 

used ArcMap version 10.1 to aggregate them into nine major water basins. These are the 

major basins according to Tanzania’s Ministry of Water. They are described in Table 2. 

Detailed descriptions of the basins and the map used for aggregation of HydroSHEDS data 

can be found at http://maji.go.tz/basins/index.php. The shapefile for river outlines came 

from the USGS Hydro1K dataset and was downloaded at 

http://www.fao.org/geonetwork/srv/en/metadata.show?id=30934&currTab=simple. The 

shapefile of major lakes was from the Global Lakes and Wetlands Database (GLWD-

Level1) and was downloaded at http://www.wwfus.org/science/data.cfm.  

We conduct an additional VIC experiment to test if changes in temperature are contributing 

to the evapotranspiration and runoff trends. Princeton data show significant increases in 

annual mean air temperature between 0.1 °C and 0.5 °C per decade in Tanzania (not shown), 

which could influence evapotranspiration and runoff by increasing evaporative demand. We 

remove any long term trends that are present in the Princeton temperature data using the 

method from Hamlet et al., 2005. In the de-trended data the mean of each month is equal to 

the climatological mean but daily variability remains the same as in the original data.  The 

http://hydrosheds.cr.usgs.gov/dataavail.php
http://maji.go.tz/basins/index.php
http://www.fao.org/geonetwork/srv/en/metadata.show?id=30934&currTab=simple
http://www.wwfus.org/science/data.cfm
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VIC model is run again using the de-trended temperature data. Trends are recalculated using 

evapotranspiration and runoff from this experiment.  

Table 2. Tanzania’s nine major water basins 

Text from http://maji.go.tz/basins/nine.php  

ID Name Basin description 

1 Lake Victoria 

Basin 

A source of the White Nile River 

2 Internal Drainage 

Basin 

Internal drainage basins of Lake Eyasi, Manyara and Bubu 

Complex. Rainfall varies greatly from year to year. 

3 Pangani Basin Major water uses are domestic, irrigation, industries, hydropower, 

livestock, fisheries, recreation, transportation 

4 Wami/Ruvu 

Basin 

Basin consists of wide plains and large mountain ranges and 

consists of two main river systems, the Wami and the Ruvu, and 

coastal rivers south of Dar es Salaam  

5 Rufiji Basin The climate in the basin differs from the coast (two rainy seasons) 

to the highlands in the upper part of the catchment (unimodal 

rainfall). Land use in the Basin is agriculture, mining, forestry, 

livestock keeping, fishing, wild life, navigation, and human 

settlements. 

6 Ruvuma River 

and Southern 

Coast Basin 

Basin is comprised of five major independent rivers that drain into 

the Indian Ocean. Ruvuma River is shared by Tanzania and 

Mozambique.  

7 Lake Nyasa 

Basin 

Lake Nyasa is shared by Tanzania, Malawi, and Mozambique. The 

Tanzania side of the basin has a drainage area of 37,000 km
2 

(28% 

of the total drainage area in the lake). 

8 Lake Rukwa 

Basin 

Major water uses are domestic water supply for urban centers 

Mbeya and Sumbawanga and for smaller towns and rural areas. 

Also for smallholder irrigation. Important source in the dry season 

despite poor water quality. 

9 Lake Tanganyika 

Basin 

The Tanzania side of the basin contributes 60% of the total runoff 

to Lake Tanganyika. The main river is the Malagarasi. Its main 

tributaries are Moyowosi River from the north and Igome River 

from the east.  

 

3.5 Maize water stress analysis 

We use the United States Geological Survey (USGS) GeoSpatial Water Requirement 

Satisfaction Index model (GeoWRSI) (Senay and Verdin, 2003) to place rainfall changes in 

http://maji.go.tz/basins/nine.php
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context of rainfed maize. We seek to identify the areas where maize yield potential may 

have declined due to increased levels of water stress. GeoWRSI is a spatially explicit simple 

bucket water balance model that is used for seasonal monitoring of crop moisture stress and 

yield in Africa (Tadesse et al., 2008, Verdin and Klaver, 2002, and 

http://chg.geog.ucsb.edu/products/geowrsi/index.html). GeoWRSI estimates overall crop 

water satisfaction by tracking moisture deficits through the growing season. It provides an 

estimate of the yield potential of the crop given how much water was available for growth. 

End of season WRSI of 100 mean high potential (no stress). WRSI of 50 means crop failure 

due to high stress. Deficits in soil moisture throughout the season can influence yield 

potential and WRSI but the largest impacts occur when the crop is water stressed during the 

reproductive (flowering) stage.  

We modeled three seasons with the GeoWRSI model for 1982 to 2010: The unimodal 

season (October to May), the short rains season (October to February), and the long rains 

season (March to June). GeoWRSI was forced with a 10-day version of CHIRPS at 0.05° 

resolution. The other climate forcing variable, potential evapotranspiration, came with the 

GeoWRSI model. Originally it was calculated from NOAA Global Data Assimilation 

(GDAS) analysis fields (Derber et al., 1991) using the FAO-56 PM equation from Allen et 

al., 1998. In our experiment rainfall is the primary factor in annual differences in WRSI 

because we used 10-day climatological means (2000-2010) for potential evapotranspiration 

in every year. Spatial variations are from rainfall, soil characteristics, and the length of 

growing period at each grid cell. For length of growing period we used maps that come with 

the GeoWRSI installation file. The start of season is calculated using a 3-dekad rainfall-

accounting method that was developed at the Agriculture-Hydrology-Meteorology 

http://chg.geog.ucsb.edu/products/geowrsi/index.html
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(AGRHYMET) Regional Center in Niamey, Niger (AGRHYMET, 1996) and is the standard 

method for GeoWRSI. If there is at least 25 mm rainfall during three consecutive dekads 

(10-day periods) and at least 20 mm fall during the 2
nd

 and 3
rd

 dekads in this window, the 

season is determined to have started. 

For three regions in Tanzania we visually examine historical changes in mean monthly 

rainfall and crop water use in each of the four stages of crop growth. Several studies have 

reported a shift towards drought conditions in East Africa in 1999 (Lyon et al., 2012; 

Williams and Funk, 2011; Funk et al., 2008). Therefore we break the WRSI time series into 

two historical periods: Period 1 is 1982 to 1998 and Period 2 is 1999 to 2010. Differences in 

mean WRSI and mean start of season date for each period are calculated and tested for 

statistical significance. We used the Welch’s t-test (Welch, 1947) to test the hypothesis that 

the two populations have equal means. Welch’s test is similar to Student’s t-test but is used 

when the variance of the two populations differ, which was the case for most of the WRSI 

time series.  We also conduct a linear trend analysis at a per-pixel basis using WRSI for the 

short rains, long rains, and unimodal seasons. 

4.0 Results 

4.1 Changes to rainfall according to CHIRPS 

Based on the CHIRPSv9 product, rainfall during the October to May season declined 

throughout much of Tanzania during the 1982-2010 period. Figure 6 shows trends in 

seasonal-accumulated rainfall in terms of the percent change per decade. For the plots the 

Theil-Sen slope was multiplied by 10 and divided by the 1982-2010 mean at each grid cell. 

Significance at the 95
th

 percent confidence level is shown in the plots by stippling. Figure 6a 
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shows that October to May rainfall totals declined by 6-10% per decade in northern 

Tanzania in Arusha, Manyara, Kilimanjaro, and Tanga provinces and in southern Tanzania 

in Morogoro, Iringa, and Ruvuma provinces. Some places in these areas show significant 

declines of 10-14% per decade. 6-10% per decade declines are also in northwest, central and 

coastal Tanzania. Trends are significant along the northwest and southwest borders, in 

Shinyanga province in central Tanzania, and in the areas with 10-14% per decade declines. 

Smaller declines of 2-6% per decade are seen in most other areas of the country. 

Characteristics of changes to the wet season are more clearly shown by the trends in October 

to February and March to May rainfall (Figure 6). Drying trends are seen in both of these 

periods. With the exception of the Arusha-Manyara-Kilimanjaro area, changes to October to 

February rainfall are more substantial. Shinyanga and Singida in central Tanzania and 

Morogoro and Ruvuma in southern Tanzania have significant declines of 14-18% in the first 

part of the wet season. In the Arusha-Manyara-Kilimanjaro area it is March to May rainfall 

trends that are significant. The data indicate that the Vuli, Masika, and unimodal rainy 

seasons have all experienced declines in rainfall. In some areas the estimated trends amount 

to seasonal declines of 30% or more through the 1982-2010 period.  

4.2 Comparison of CHIRPS with other gridded datasets 

4.2.1 Rainfall 

Figure 7 shows the percent change in rainfall per decade for October to February for the 

rainfall products in Table 1. Rainfall declines are shown in light green to red colors. Rainfall 

increases are shown in blues. For October to February rainfall, CHIRPS, GPCP, GPCC, 

CMAP, U. Delaware, Princeton, and NCEP/NCAR R1 all show declines. Similar to 

CHIRPS, GPCC and CMAP show declines over most of the country. There is general 
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agreement between products that rainfall declined in the southern region. Statistically 

significant (p < 0.05) negative trends are in southern Tanzania in CHIRPS, GPCP, GPCC, 

CMAP, U. Delaware, and Princeton products. Declines in the northeast and central region 

are also a common feature but trends are not significant. For the northeast region, CHIRPS, 

GPCP, CMAP, and NCAR/NCEP R1 show negative trends. CHIRPS, GPCP, CMAP, and 

U. Delaware show rainfall declines in central region. Near Lake Victoria, GPCC and 

Princeton have positive trends. CHIRPS and CMAP show declines in this area. CHIRP 

shows almost no trends except for a negative trend in the south and a positive trend in the 

central-north.  

Figure 8 shows trend results for March to May. CHIRPS March to May declines are less 

spatially extensive than October to February declines. CHIRPS March to May trends are 

largest in the northern region around Arusha, Manyara and Tanga provinces. CHIRPS, 

GPCP, CMAP, and NCEP/NCAR R1 all show significant negative trends in the same area 

and throughout the northern and central regions. Negative trends in Manyara area and along 

Tanzania’s east coast are in GPCC, Princeton, and U. Delaware products. In western 

Tanzania, GPCP, CMAP, CHIRP, and NCEP/NCAR R1 show negative trends. Positive 

trends are in parts of the southern region in Princeton, U. Delaware, GPCC, and CHIRP. 

4.2.2 Satellite observations of vegetation productivity 

Figure 9 shows the NDVI annual mean and the Pearson correlation coefficient at each pixel 

for 1982 to 2010 data. The Pearson correlation shows the degree to which vegetation 

productivity from NDVI responds to October to May rainfall on an interannual basis. 

Isohyets for mean October to September rainfall (400 mm interval) are overlaid on both 

these maps. The main area for moderate vegetation productivity (NDVI ≤ 0.5) is in central 
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and northern-central Tanzania. This area receives less than 800 mm rainfall annually. Mount 

Kilimanjaro can be clearly seen along the northern border as the area with 0.7 NDVI 

encircled by two isohyets. High productivity areas (0.7 NDVI to 0.8 NDVI) are mainly seen 

in places with greater than 800 mm rainfall. These are along the coast, and in areas near 

Lake Victoria and western Tanzania, and between the 1200 mm and 1600 mm isohyets in 

the south. It is common for patterns in mean NDVI to be similar to patterns in rainfall. For 

NDVI to respond to interannual fluctuations in rainfall or to long term changes in rainfall, 

the vegetation must be water-limited.  Davenport and Nicholson (1993) compared an earlier 

version of NDVI based on AVHRR to in situ rainfall observations in East Africa for 1982 to 

1985. They found NDVI to be sensitive to interannual fluctuations in rainfall in areas with 

less than approximately 1000 mm per year or 200 mm per month. The correlation map in 

Figure 9b shows a similar pattern. In much of Tanzania’s central and northern areas which 

have less than 1000 mm annual rainfall, annual mean NDVI and October to February 

rainfall is moderately positively correlated (R > 0.4). Strong correlation (R = 0.6-1.0) mainly 

occurs in areas that receive less than 800 mm rainfall. In these areas it is reasonable to 

believe that the NDVI-3g product may show declining trends in vegetation productivity that 

are a response to declining trends in rainfall.  

Results from the NDVI and rainfall linear trend analyses are shown in Figure 10. Slope 

coefficients are multiplied by 10 to show changes in terms of the number of standard 

deviations per decade. Stippling in Figure 10a shows where NDVI trends were statistically 

significant (p-value < 0.05). Significance stippling was omitted from Figure 10b. NDVI-3g 

shows a large area of significant declines in central Tanzania. Significant declines are also 

seen in areas of western, southern and northern Tanzania in Arusha province. For the most 
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part, trends in NDVI are spatially coherent. We focus on the widespread declines in the 

central and northern region. In some of these areas results show decreases in NDVI by 0.4 to 

0.8 per decade which equates to a change of 1 to 2 standard deviations over the 1982 to 2010 

period. In the same general region, the CHIRPS trends are of similar magnitude. Significant 

increases to NDVI were found in a large swath between 6 °S and 11 °S and west of Lake 

Victoria. Based on the correlation results these areas receive high amounts of rainfall and are 

not strongly water-limited. We do not examine the cause of these NDVI increases.   

Three areas of the central region and an area of Arusha province are examined further. 

These areas are shown by box outlines in Figure 10. Location and extent of these boxes were 

selected based on declining NDVI and rainfall trends and by NDVI and rainfall climatology. 

The purpose of the boxes is for examining NDVI and rainfall time series in more detail. 

They are not meant to be independent samples from the region. Boxes in the central region 

(from west to east, Shinyanga-Tabora West, Shinyanga-Tabora Central and Singida) differ 

due to a west to east rainfall gradient. Shinyanga-Tabora West is the wettest area. The box in 

Arusha province was selected because the NDVI trend indicated substantial changes to 

vegetation productivity- the trend is large compared to mean NDVI values in that area. For 

each of these boxes NDVI data and rainfall data was averaged and converted to standardized 

anomalies. Linear regression was conducted with these values. Figure 11 shows the time 

series, the rainfall and NDVI correlation, and the estimated rate of change (in standard 

deviations per year) for each box. Statistical significance of trends is denoted with an 

asterisk. Pearson correlation between rainfall and NDVI is also shown. Years are labelled by 

the year the season began. For example, 1997 rainfall and NDVI are for the 1997/98 season 

which begins in October for rainfall and November for NDVI. 
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The plots show very similar interannual variability in NDVI (November to October mean) 

and rainfall (October to May total). Correlation between NDVI and rainfall time series in 

Shinyanga-Tabora West, Shinyanga-Tabora Central, Singida, and Arusha are 0.65, 0.83, 

0.83, and 0.76, respectively (Figure 11). Several features in the extracted time series appear 

responsible for the declining linear trends. These are a wetter period in the 1980s than the 

more recent period, a very wet and productive year in 1997 that is presumably due to the 

strong 1997-1998 El Nino, and multiple years with below average rainfall and NDVI values 

after 1997.  

In Shinyanga-Tabora West (3°S – 6 °S/31 °E – 32.25 °E), all the years with rainfall or 

NDVI that was higher than one standard deviation above the mean, the wet or productive 

years,  occurred before 1999. The NDVI and rainfall time series both show significant 

declines of 0.05 standard deviations per year. Interannual correspondence between NDVI 

and rainfall is clear with exception of 2004 through 2009. In Shinyanga-Tabora Central (3.5 

° S – 5.25 °S / 32.25 °E – 34.25 °E) NDVI and rainfall both show significant declining 

trends that have similar magnitude. As in west Shinyanga-Tabora, all of the most productive 

or wet years, based on a one standard deviation threshold, occurred before 1999. Between 

1984 and 1990 there was a prolonged period of above average rainfall and NDVI compared 

to the rest of the time series. This period, a wet 1997, and a dry 2010 appear to explain some 

of the trend. In Singida (4°S – 6.5 °S / 34.25 °E – 35.25 °E) rainfall and NDVI trends are 

similar in magnitude but the NDVI trend is not significant at p < 0.05. In 1997 rainfall and 

NDVI were both 2.5 standard deviations above the mean. 1997 was also a wet and 

productive year in Shinyanga-Tabora area but the year is more outstanding in Singida. Box 3 
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also shows higher NDVI and rainfall values in the 1980s than in the 1990s and 2000s, with 

exception of 1997. 

The Arusha box (2.25 °S – 3.25 °S / 36.25 °E – 37 °E) shows declining trends for rainfall 

and NDVI that are similar magnitude to each other but neither trend is statistically 

significant. The trend magnitudes are a decline of 0.03 standard deviations per year, which is 

change of less than 1 standard deviation over the 1982 to 2010 period. The most productive 

or wet years occurred between 1984 and 2000. The highest rainfall and NDVI values 

occurred in 1997. The two years following this event show low productivity despite near 

average rainfall. 2008, the driest year in the time series, led to very low productivity. 

Rainfall and NDVI were 1.5 to 2 standard deviations below the mean in 2008.  

4.3 Impacts to surface hydrology 

The percent change per decade for rainfall and evapotranspiration and the magnitude of 

change to surface runoff (in mm mo
-1

 per decade) are shown in Figure 12. These trends were 

calculated over the 1984 to 2009 period. At an annual time scale the changes to rainfall are 

most substantial in northeastern Tanzania, from Arusha and Manyara provinces to the coast. 

Dark red colors indicate changes that are roughly equivalent to a 35 to 45 percent decline 

over the 1984 to 2009 period. Even larger declines appear over Mt. Kilimanjaro and in 

Tanga province near the Usambara Mountains. Central areas of Morogoro province also 

shows up in dark red. Country-wide, annual rainfall trends are similar to those for October to 

May (Figure 6). Comparison of rainfall and evapotranspiration trends shows that the rainfall 

declines translated directly into evapotranspiration reductions for much of Tanzania’s 

northeast and eastern areas. Evapotranspiration declines are also seen in central Tanzania. 

These declines may explain why NDVI-3g shows declines in vegetation productivity in 
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central Tanzania and the Arusha area. Comparatively smaller impact of rainfall declines on 

evapotranspiration in the central region indicates a difference in ecohydrology or factors 

related to other climate variables. However, rainfall appears to be the primary factor in 

evapotranspiration and runoff trends in Tanzania as there were no major changes to results 

when the model was forced with de-trended temperature data. 

Results show major changes to hydrology in Tanzania’s water basins. Surface runoff trends 

in some of Tanzania’s major water basins (see Table 2 for their description) between 1 °S 

and 6°S and in the southern region are roughly equivalent to a 50% decline in runoff over 

the 1984 to 2009 period. Decreases in runoff in many areas are significant and large relative 

to the historical mean. Figure 12 maps the location of per-pixel surface runoff trends in mm 

mo
-1

 per decade and is overlaid with the major basins and river network. We also aggregate 

runoff for the basin level and show monthly mean runoff for 1984 to 2009 for several basins 

(Figure 13). The runoff trends imply a decrease in the total amount of flow through some 

river networks and less inflow to wetlands and lakes downstream. This would translate into 

longer dry periods for seasonal water sources and potentially, impacts to lake water levels. 

The major cause of the runoff trends appears to be rainfall. Evapotranspiration decreased in 

these areas. 

As seen in Figure 12, rainfall on and near Tanzania’s central plateau flows through the Lake 

Victoria Basin, the Internal Drainage Basin of the north-central region, and the Lake 

Tanganyika Basin. Substantial declines to runoff magnitudes are seen in the southern 

drainage area of the Lake Victoria Basin. Declining trends are seen in the Internal Drainage 

Basin watersheds that supply Lake Eyasi and the smaller Lake Manyara. The Lake 

Tanganyika Basin shows declines that are largest near the headwaters of the Moyowosi 
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River, a main tributary of the Malagarasi River that flows into Lake Tanganyika. Most of the 

Malagarasi’s tributaries show declines, which may be important for Lake Tanganyika since 

60% of its water comes from Tanzania’s side of the basin. The impact of rainfall declines in 

the southern region are seen at the headwaters of the Ruvuma River and near tributaries of 

the Rufiji River. The largest declining trends in the Rufiji Basin are were not identified as 

statistically significant. These are near the Kilombero Valley floodplain, one of Africa’s 

largest wetlands and a World Heritage Site (Kangalawe and Liwenga, 2005). Lake Rukwa 

has a history of large fluctuations in lake levels due to variability in its intermittant streams. 

Drainage into Lake Rukwa from the east and south side of the basin shows non significant 

and declining trends.  In the northeast, declining runoff is in the Pangani Basin near the 

coast and also near Mount Kilimanjaro. 

Basin-total runoff declined by 13 to 16 percent per decade in Tanzania’s Internal Drainage 

Basin (-21.82 mm mo
-1

, p < 0.05), Ruvuma River and Southern Coast Basin (-10.32 mm mo
-

1
, p < 0.05), and Lake Nyasa (Lake Malawi) basin (-4.75 mm mo

-1
, p < 0.05) (Table 3). Lake 

Tanganyika basin had the largest absolute magnitude trend (-32.24 mm mo
-1

, p < 0.1). 

Figure 13 shows total basin runoff for these basins. 

Table 3. Surface runoff trends for Tanzania water basins 

Basin Trend (Theil-Sen slope in 

mm mo
-1

 yr
-1

) 

Change (per decade) relative to 

the 1984-2009 mean  

1 Lake Victoria -15.82 -5.9% 

2 Internal Drainage Basin -21.81* -16.4% 

3 Pangani Basin -8.44 -13.9% 
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4 Wami/Ruvu Basin 2.01 4.4% 

5 Rufiji Basin -21.39 -9% 

6 Ruvuma River and 

Southern Coast Basin 

-10.32* -13.9% 

7 Lake Nyasa Basin -4.75* -16.3% 

8 Lake Rukwa Basin -6.7 -4% 

9 Lake Tanganyika Basin -32.24 -9% 

* Denotes significance at p < 0.05 

4.4 Impacts to maize water stress 

Here we examine WRSI model output for the short rains season (October to February), long 

rains season (March to June), and unimodal season (October to May). Primarily we explore 

the changes to WRSI and the causes of these changes at a regional level. We follow with 

examination of the per-pixel linear trend analyses. Figure 14 shows 1982 to 2010 mean 

WRSI in northern Tanzania and central and southern Tanzania. In the northern region WRSI 

values for the short and long rains were averaged. Regional-level examination is for three 

regions: two in northern Tanzania and one in central Tanzania. The extent of each region is 

shown by the yellow-black outlines in Figure 14. Table 4 lists details about the regions. In 

northern Tanzania, areas west of 34°E are grouped as Region 1 and areas east of 34 °E are 

grouped as Region 2. The short rains and long rains seasons begin earlier and last longer in 

Region 1 than in Region 2. Mean WRSI in Figure 14 shows maize yield potential as 

generally average in Region 1. Region 2 has mainly areas with mediocre to average potential 

due to water stress.  Places in Region 2 with good to very good potential are near the coast 

and Mount Kilimanjaro. Declining rainfall trends are in all regions but trends in Region 2 

are larger than in Region 1. Region 3 is a subset of Tanzania’s central-northern area with a 
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unimodal season where per-pixel trend results show a particularly strong declining trend in 

WRSI. Maize yield potential is average to mediocre in Region 3. Within Region 3 water 

stress is a bigger problem in eastern areas.  

Figure 15 shows time series of standardized WRSI anomalies for the short and long rains 

seasons in Region 1 and Region 2 and for the unimodal season in Region 3. Years are 

labelled by the year the season began. For example, WRSI for the 1997 long rains season 

corresponds the season that began in March 1997. WRSI for the 1997 short rains and 

unimodal seasons corresponds to seasons that began around October 1997. Two main 

features are visible in the time series. First, there was a period of above average maize 

potential in the 1980s. Second, in Region 2 (March to May season) and Region 3, many of 

values are below average in the more recent years. These features were also seen in the 

NDVI time series. We grouped the data into two periods: Period 1 from 1982 to 1998 and 

Period 2 from 1999 to 2010. We chose the two periods based on the previously documented 

shift in 1999 towards lower rainfall. In Figure 15 Period 1 is shown as open circles and 

Period 2 as filled circles. Figure 16 provides a more detailed look at growing season rainfall 

in Period 1 and Period 2. Mean monthly rainfall during 1982 to 1998 and 1999 to 2010 is 

shown for each region. For the northern regions the biggest difference in monthly rainfall is 

in April.  April rainfall in Period 1 was wetter by approximately 40 mm. October, 

November, and February rains were also wetter in Period 1. Region 2, the more water 

stressed region, shows a decline in May rainfall as well. In Region 3, December through 

February rainfall and April and May rainfall totals are lower in Period 2 than in Period 1. 

There are some months with higher rainfall in Period 2. These are March in all three regions, 

September in Region 1, and November in Region 3. Figure 16 shows only a marginal 
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difference in October rainfall in Region 3, but on average the growing season start date was 

2 dekads later in Period 2. According to the Welsh t-test this difference was not statistically 

significant. Regions 1 and 2 also did not have significant differences in season onset.  

Results vary by region in terms of rainfall impacts on crop water use. Figure 17 shows the 

amount of water used via evapotranspiration by the crop during its four main growth stages 

for Period 1 (in gray) for Period 2 (in green). These values are compared to the average 

amount of water required for no crop stress to occur (in white). The amount required 

depends on how much water is needed to support biological processes and to satisfy 

atmospheric evaporative demand. The amount of water evapotranspired is lower than the 

amount required when plants close stomata to prevent water loss. This slows photosynthesis 

and plant and grain development. Figure 17 shows, for Region 1, a small decline in 

evapotranspiration during the maize ripening stage of the short rains season and no 

differences in other times. The impact of rainfall changes was small compared to the water 

limitations that maize typically faces during the middle to end of the growing season in this 

region. WRSI for the short rains and the long rains seasons in Region 1 are very similar in 

Period 1 and Period 2 (Table 4).  For Region 2, small declines are seen during the short rains 

during the flowering and ripening stages. These did not translate into significant declines to 

WRSI. Larger declines occurred during the long rains season: On average, maize water 

stress during flowering increased by about 50% in Region 2 (Figure 17). Soil moisture 

deficits in late April through June are responsible for the evapotranspiration declines in 

flowering and ripening stages. The long rains WRSI shows average yield potential in Period 

1 and mediocre yield potential in Period 2. The difference in mean WRSI was not significant 

but the p-value was low (p=0.07). 
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Region 3 is different from Regions 1 and 2 in that it was selected based on the presence of 

declining trends in WRSI in that area. A larger amount of water is required during the 

flowering stage here than in Regions 1 and 2 because the entire growing period is 6 months 

long. Figure 17 shows an approximate 50% decrease in evapotranspiration between Period 1 

and Period 2 during flowering In Region 3. The flowering stage is typically between mid-

February and mid-April in this region. Depending on how long soil moisture is stored in this 

area, rainfall declines in January, February, and April could be responsible for the increase 

in water stress. Changes in rainfall during April and May contributed to evapotranspiration 

reductions during the ripening stage. WRSI for both periods shows average yield potential 

although mean WRSI was lower in Period 2 than in Period 1. The difference was not 

significant but the p-value was low (p=0.06). 

Table 4. Regions analyzed with GeoWRSI 

Region Season Start of season 

(1982-2010 

mean) 

Length of 

growing 

period 

Mean 

WRSI 

(1982-

1998) 

Mean 

WRSI 

(1999-

2010) 

Welsh Two 

Sample 

t-test p 

value 

1 October-

February 

October 11th 120 days 86.8 85.7 0.67 

1 March-

June 

March 1st 140 days 75.2 75.7 0.81 

2 October-

February 

October 11th 100 days 65.1 62.7 0.65 

2 March-

June 

March 11th 110 days 81.9 76.6 0.07 

3 October-

May 

October 11th 180 days 85.3 80.2 0.06 

 

Results from the per-pixel linear regression trend analysis on WRSI for the short rains, the 

long rains, and the unimodal season are shown in Figure 18. From these maps one can 

pinpoint the areas in Regions 1, 2, and 3 where changes to WRSI are concentrated. The 
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slope of the trend is shown in terms of the percent decline in WRSI over the entire 1982-

2010 period. Empty pixels show where there were too many years with no start to the season 

to conduct the analysis. The companion figure to each trend plot shows the R-squared value 

of the linear trend. Declines in short rains WRSI are in Kagera province and in northern 

Tanga province in the West Usambaras Lushoto Mountain Reserve. The long rains season 

has declines of 20% or more in the Arusha-Manyara-Kilimanjaro-Tanga area. Trends in 

these areas explain 11% to 30% of the historical variability. In northern Kanga and Arusha 

provinces there are increasing trends also with R-squared values between 0.11 and 0.30. For 

the unimodal season the declining trends are concentrated in the Shinyanga-Tabora-

Manyara-Singida-Dodoma area. The linear trends show declines of 20% in the Lake Eyasi 

area. Trends explain 20% to 40% of the historical variability there. 

5.0 Discussion 

Comparison of 1982 to 2010 trends in the CHIRPS product to other rainfall products 

showed that trend magnitudes for seasonal rainfall totals are relatively consistent across 

datasets and are consistent with the findings of previous studies. Rainfall declines in 

Tanzania during October to February and March to May of 1982-2010 were a common 

feature of all the products compared. Rainfall during each of these periods is important 

locally for the annual total and the short rains, long rains, and unimodal cropping seasons. 

Multiple products showed negative trends for March to May rainfall in areas of central and 

northern Tanzania. Multiple products showed statistically significant negative trends in 

October to February rainfall in southern Tanzania. October to February and March to May 

rainfall declines are on the order of 5% to 20% per decade. It should be noted that some of 
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the products compared are not independent because they use the same station data sources. 

Also, there were differences in the spatial extent of trends. 

Results using CHIRPS and the GeoWRSI model showed that reductions in rainfall during 

critical growth stages could have led to increased water stress for maize in rainfed areas of 

central Tanzania and in northeast Tanzania during the long rains season. At a regional 

average the differences were not significant. However, the per-pixel trend maps showed that 

changes to maize yield potential were substantial in areas of Shinyanga, Arusha, Singida, 

Dodoma, Manyara, and in neighboring provinces. These are areas that receive 300mm to 

700 mm annual rainfall. Shinyanga and Arusha are important contributors to national maize 

production (Rowhani et al., 2011), so yield declines in these areas could impact domestic 

food supply and the economy. No major changes to water stress were identified in high 

production areas of the southern region. Long term records for regional and local level 

yields would be helpful for identifying signs of increased crop water stress in the central and 

north-central region. Farmer access to agricultural inputs, pests and disease, and climate 

extremes are some of the many factors that influence yields. In terms of delayed onset of the 

growing season, which was reported in Mary and Majule (2009) in Singida province and by 

Vrieling et al. (2013) for larger areas, we found that the average date of onset was later in 

the more recent period in central and northeast Tanzania (long rains). We also examined per-

pixel trends in the onset date (not shown) and found delays of one to two months in Singida 

and Manyara. However, no changes in the onset date were statistically significant. 

Our purpose in analyzing evapotranspiration and runoff trends from CHIRPS and the VIC 

model was to identify where hydrologic impacts would have been most apparent. Validation 

is important for confirming authenticity of these trends. Hydrologic simulation models in 
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general do not represent all the processes that are important in the terrestrial water budget in 

semi-arid areas (Trambauer et al., 2013). This would include parts of central and northern 

Tanzania. The VIC model is useful in that channel networks are represented in the model, 

but runoff simulated by the model has not been validated in these basins.  Most validations 

of VIC output are in the mountainous western United States or at much larger spatial scales 

than are used here. Finally, the meteorological data used to run hydrologic models can be a 

major source of error. For CHIRPS, poor quality station data could potentially create 

erroneous trends.  

We are confident in saying that based on the data analyzed here, rainfall declines reduced 

vegetation productity between 1982 and 2010. VIC evapotranspiration and NDVI-3g both 

show statistically significant declines in the central region, e.g. Shinyanga, Tabora and 

Singida, in the northern region, e.g. Arusha, Tanga, and near Mount Kilimanjaro, in the 

southern region in Ruvuma, and along some sections of the east coast. Interannual variations 

in rainfall and NDVI were found to be similar in these areas. A closer look at Arusha area 

and the central region time series showed that rainfall and NDVI trends were mainly driven 

by a wet and productive period in the 1980s and generally below average conditions after 

the 1997-98 El Nino event.  

Substantial declines to surface runoff were estimated using the VIC model. Given the 

magnitude of trends and importance of water resources in Tanzania the surface runoff trends 

deserve to be examined more fully. Observed stream flow records, accounts from experts in 

the region, or some other form of validation are needed to confirm these trends. Along some 

river networks we identified trends of 20% per decade. Declines to rainfall over the central 

region plateau impacted drainage into the Lake Victoria Basin, the Internal Drainage Basin 
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of the north-central region, and the Lake Tanganyika Basin. Rainfall declines over the 

southern highlands impacted drainage into the two major rivers, the Ruvuma River and the 

Rufiji River. Rainfall declines also impacted the Kilombero Valley floodplain, an important 

resource for wildlife and tourism. Overall, total runoff declined by 9 to 16% per decade in 

several Tanzania watersheds (Lake Tanganyika, Lake Nyasa, Ruvuma River and Southern 

Coast, and the Internal Drainage basin). Drainage in these basins provides 50-60% of total 

inflow into Lake Tanganyika and Lake Nyasa (Lake Malawi). It also supports biologically-

rich wilderness areas, hydroelectric power stations, and provides drinking water for 

communities. Rapid growth of human population, expansion of cropland and increase in 

livestock population pose a major threat to the sustainability of water resources in the 

Eastern Rift Valley Lakes zone (Yanda and Madulu, 2005), and declines in the inflow of 

water would exacerbate these issues.  

The CHIRPS dataset uses rainfall observations from more than 25 stations in Tanzania, and 

is based on a fine resolution (0.05°) climatology grid. We have concerns about the lower 

number of reporting stations after the 1980s and about the quality of some of the stations 

used in CHIRPS. We did not examine how these influence trends in the data. The next 

version of CHIRPS (anticipated release: 2015) will have more station data in this region and 

will be useful for future comparison. In spite of these concerns, CHIRPS was found to be a 

very useful product for geographic assessment of impacts. The variety of temporal 

resolutions was useful for running a hydrologic simulation model and a crop model. Its high 

resolution provides much in the way of spatial detail about the rainfall trends. Based on 

agreement with NDVI-3g in Arusha area and in the central region, regional details from 

CHIRPS seem authentic there. CHIRPS trends in the southern region (Mbeya, Irigina, south 
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Morogoro) could not be corroborated with NDVI-3g because vegetation is not water-limited 

enough for the NDVI signal to reflect water stress.  

6.0 Conclusion 

We conducted a geographic assessment of the impacts that changes to rainfall between 1982 

and 2010 may have had in Tanzania. Rainfall trends we examined have been well-

documented in previous studies, but until now, trend assessments have been at local scales 

or with coarse resolution. Our goal was to identify areas where the rainfall declines may 

have impacted natural vegetation productivity, maize productivity, and water resources. For 

this a high resolution gridded precipitation dataset was needed. We used CHIRPS, a new 

gridded rainfall product that has high spatial resolution blends station observations with 

satellite estimates of precipitation (Funk et al., 2014).  

October to February and March to May trends show rainfall declines between 5% and 20% 

per decade. Trends of similar magnitude were seen in multiple rainfall products. We were 

able to show with CHIRPS data that negative trends in GIMMS NDVI-3g vegetation index 

can be directly attributed to declines in October to May rainfall. These are primarily in the 

central region and in the northeast region near Arusha. We used CHIRPS to run experiments 

with the Variable Infiltration Capacity (VIC) hydrologic model and the USGS GeoSpatial 

Water Requirement Satisfaction Index (GeoWRSI) model. Evapotranspiration trends from 

VIC closely mimic the spatial pattern and intensity of CHIRPS annual rainfall declines. 

GeoWRSI results showed that the abrupt decline in March to May rainfall after 1999 

increased the possibility of water stress during yield-sensitive stages in central and northeast 

maize production areas. Based on the findings of other studies we tested if the data showed a 
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later start to the growing season in central Tanzania. After 1999, the growing season did 

start later on average but the difference was not statistically significant.  

Declines in October to May rainfall have important implications for water resources. Three 

major drainage basins showed significant declines in annual runoff due to rainfall declines 

during October to May in the central region. These basins feed Lake Victoria, Lake 

Tanganyika, Lake Nyasa, and seasonal lakes in the semi-arid northern Tanzania. Since rapid 

population growth is already increasing competition for water in this region, continuation of 

the declines could have major consequences. In southern Tanzania near Mbeya, Irigina, and 

southern Morogoro, declines to annual rainfall are also from reductions in October to 

February and March to May rainfall. Impacts to rainfed maize were not identified here, 

presumably because rainfall is still quite high. We did find declines to evapotranspiration 

and to surface runoff that feeds the Ruvuma River, the Rufiji River, and the Kilombero 

Valley floodplain, an important resource for wildlife and tourism.  

Based on the general agreement between CHIRPS trends, previously documented localized 

rainfall trends, and trends in other gridded rainfall products, it is clear that Tanzania has 

experienced substantial changes to rainfall in recent decades. We have identified spatial and 

temporal details about these trends and impacts to vegetation and hydrology. We hope that 

future studies will provide evidence for confirming or negating the modeled trends. In 

central and northern Tanzania, observed vegetation declines indicate that rainfall declines 

substantially altered the natural landscape. Attention should be given to understand how 

livelihoods in the region may have been affected. 
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Conclusion 

Energy and water cycles are sensitive to changes in weather and climate. Factors that 

influence evapotranspiration are particularly important because this process involves a large 

exchange of energy between water and the environment, which connects energy and water 

budgets, and because it is a strong determinant of vegetation productivity. We explored 

some of these factors in this dissertation research. In Chapter 1 we showed how increased 

rate of evaporation at higher air temperature influences how much water is available for 

plants. In Chapter 2, we showed how annual climate variability and energy exchange 

processes affect surface temperature. In Chapter 3 we showed the widespread impacts that 

regional-scale rainfall changes can have on evapotranspiration, vegetation productivity, and 

hydrology. 

In our study areas, the African Sahel and east Africa, moisture and radiation are particularly 

important to the surface energy budget. Insolation and downwelling longwave radiation 

provide the radiative energy required for evaporation and surface heating. What happens to 

energy and water at the surface depends on heat and moisture gradients and on the stability 

and amount of mechanical mixing in the boundary layer. These factors are naturally 

connected as part of the climate system, so changes to one produce a reaction in multiple 

others. This connection makes analysis of the energy and water budgets a non-trivial 

venture. To deal with complexity we grouped fluxes by their mechanistic type, for example, 

into radiative and non-radiative processes in Chapters 1 and 2. In these chapters we 

evaluated the influence of these processes as a whole. In Chapter 2 we used this strategy to 

identify specific fluxes that had importance impacts on the overall energy budget.  
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A recurrent theme of results was that mechanisms of energy exchange fluctuate in different 

weather conditions and across ecosystems. In the Sahel we found that evaporative demand is 

higher on days with above average temperature because of a larger vapor pressure gradient, 

but that net radiation also plays a role during the wettest time of the season. We speculated 

this was because cloud cover would be an important factor for cooling air temperature 

during this time. To explore how surface energy balance and surface temperature is 

influenced by interannual variations in radiation and evapotranspiration, we focused on the 

area in and around Kenya. This region in east Africa has high heterogeneity in terms of 

climate types and experienced several major drought events since 2001. We found that 

insolation is the primary driver of surface heat anomalies during April, the rainiest month of 

the long rains season. In semi-arid areas heat and moisture gradients and turbulence are also 

important. The importance of rainfall for surface energy and water budgets was most clearly 

shown in the analysis of post-1982 rainfall declines in Tanzania. The magnitude and timing 

of rainfall reductions are important to ecohydrology in many places, but the most visible 

impacts have been in semi-arid areas.  

Pronounced sensitivity of semi-arid and marginal productivity areas to variations in weather 

and climate was shown throughout the dissertation research. Warming temperatures may 

increase evaporative demand by 10 mm mo
-1

 °C
-1

 throughout the Sahel, but impacts to 

agriculture would most likely occur in the more marginal productivity areas where low and 

erratic rainfall is already a challenge. Vegetation in semi-arid central and north central 

Tanzania responded negatively to less convective activity over east Africa in recent decades, 

according to a satellite-observed vegetation index record. In the semi-arid areas in Kenya, 

Somalia, and Ethiopia, we identified several cases of widespread moisture stress and above 
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average surface temperature, which can be damaging to vegetation, between 2001 and 2011. 

In the 2005 drought, anomalous heating was linked to below average evapotranspiration and 

in the 2011 drought, it was linked to above average insolation.  

The geographic pattern of high sensitivity in semi-arid areas has important implications for 

efforts to increase resilience to climate change in Africa. There is much uncertainty as to 

how climate change will impact rainfall in the Sahel and east Africa. Rainfall in both these 

regions is influenced by sea surface temperature gradients in the Pacific, Indian, and Atlantic 

Oceans that interact with weather systems on the continent. In east Africa, climate models 

have trouble simulating historical observed variability, and in the Sahel, it is uncertain how 

future atmospheric aerosol concentrations will influence the Inter Tropical Convergence 

Zone. Fortunately this uncertainty is not as limiting to planning as it would seem. As shown 

in this research, negative effects of higher temperature and more frequent drought would be 

seen first in the marginal growing areas of Africa. Climate change will disproportionally 

affect communities where weather and climate variability have historically impacted 

vegetation productivity and water resources. It is important that planners focus on these 

communities because climate change has or will make it more difficult for them to sustain 

their livelihoods. These communities may also offer strategies for dealing with extreme 

climate. A wide variety of adaptation strategies will be necessary to help people deal with 

climate-related challenges.  

We close the dissertation with a discussion about the merits and disadvantages of three 

models we used and ideas for research in the future. We used a simple crop water balance 

accounting model (GeoWRSI) and two complex models that simulate energy and water 

fluxes between the atmosphere and land surface (Noah and VIC). The land surface models 
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were run in uncoupled mode, i.e. the land surface state did not produce feedbacks to the 

atmosphere.  

In terms of ease of interpretation, the GeoWRSI model was the best. It does not account for 

many important biogeophysical factors for plant growth and productivity, but the model is 

simple enough that modeled impacts to plant stress can be easily traced back to stress during 

particular growth stages and/or changes to the onset of seasonal rainfall. This is useful 

model feature for identifying basic ways in which historical and future changes to rainfall or 

evaporative demand will influence the plant water supply. In terms of annual variations in 

vegetation phenology, the GeoWRSI model was more realistic than our land surface model 

simulations. It uses accumulated rainfall to model when vegetation begins growing each 

season. The land surface model simulations used a prescribed phenology. 

Based on our experience with the model, we have several suggestions for future GeoWRSI 

work. Foremost, validation of GeoWRSI output with historical yield observations would 

increase confidence in model results. The GIMMS NDVI-3g product (1981-2011) might be 

helpful in water-limited areas if yield data are not available. In Chapter 3 we found 

convergence between this product, CHIRPS rainfall, and maize WRSI trends in some areas 

of Tanzania. Second, GeoWRSI has an option for modeling rangeland productivity, which 

could be useful in the semi-arid areas of Africa, but there has been no research published 

using GeoWRSI rangeland output. This indicates that the model needs more attention before 

its use. Comparison to other rangeland models would be a good place to begin. Calibrating 

the model to observed productivity might help. NDVI-3g could be a good resource for this 

because African rangelands are mainly in semi-arid areas. Third, multiple mechanisms of 

crop response to projected rainfall and temperature changes could be modeled if crop 



114 

 

phenology was temperature-dependent in GeoWRSI (when appropriate). Efforts to amend 

the model could be worthwhile if there is sufficient knowledge about the phenology of 

maize varieties grown in a region and if the model were run at higher temporal frequency 

with daily or 5-day data, for example.  

Land surface models (LSMs) are useful for studying climate impacts to regional energy and 

water budgets. There are very few in situ observations for surface energy fluxes available in 

Africa. Flux towers are only in a handful of places and tend to have short observation 

periods. LSMs have benefits and drawbacks. A major benefit of LSM data is that the energy 

budget terms are simulated based on basic physical mechanisms of energy exchange. 

Variability is a response to the forcing data and to other terms, so one can get a complete 

picture of what happened on the ground during droughts and for time periods as long as 

forcing data are available. For instance, we used the VIC hydrologic simulation model to 

analyze evapotranspiration and surface runoff during the last three decades. The downside to 

using LSM-simulated data is that the picture you get may not be accurate. Uncertainties in 

LSM data come from the forcing data and the parameterizations that model use to simplify 

complex processes involved in land-atmosphere interactions. In the future we would like to 

experiment more with climate models and land surface models to determine how closely 

they represent observed vegetation-climate relationships. One of the less realistic aspects of 

our simulated data was that the modeled seasonal cycle of vegetation cover did not change 

from year to year. In semi-arid areas vegetation green up and cover largely depends on 

rainfall. It may be worthwhile to create a more realistic gridded record of vegetation 

phenology to use in historical simulations and to explore assimilation of remotely sensed 

data for forecast simulations with LSMs. 
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As one question is answered, many new ones are born in its place. Managing and conducting 

research is therefore a challenging and rewarding experience. In this dissertation we 

examined impacts of climate variability on energy and water budgets and vegetation 

productivity in several regions of Africa. In the future we will work toward a more in depth 

understanding of these topics. Some potential research ideas were discussed above. More 

generally, the goal is to advance our understanding of how society interacts with the natural 

world. A major unknown is how future climate change will interact with continued human 

population growth and unsustainable use of natural resources. At the foundation of 

Geography is the importance of place- that places are unique and yet their physical qualities 

are connected to a larger system. This makes it a useful tool for exploring these problems. 

We look forward to using and expanding on the knowledge we gained to help find solutions 

for the future. 
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Figures 

Chapter 1 

Figure 1 

Aridity by month for the June-September rainy season. Aridity is the ratio of average 

precipitation P (mm) to potential evapotranspiration PET (mm) over the 2001-2010 time 

period. Aridity is computed with RFE2.0 rainfall, GLDAS Noah LSM 2.7.1 data, and FAO-

56 PM equation for reference evapotranspiration. Areas in light blue are drier while areas in 

dark blue are wetter. 
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Figure 2 

Fraction of PET variability explained by the statistical model (R
2
). The statistical model uses 

the current temperature anomaly and the PET anomaly from the previous day to predict 

daily PET anomalies. The model is fit to each month of JJAS separately. Shown where 

cross-validated R
2 

> 0
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Figure 3 

Potential evapotranspiration response to above average temperature (PET-T). The monthly 

total potential evapotranspiration (PET) anomaly (mm) associated with 1 °C above average 

is plotted. Anomalies are derived from local statistical regressions between temperature and 

PET with 2001-2010 data (𝛽 from Eq. 2). The model accounts for feedbacks between 

temperature, humidity, wind, and net radiation. Values are shown that were statistically 

significant at the 95
%

 confidence level and cross-validated R
2 

> 0.
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Figure 4 

Mechanisms of overall potential evapotranspiration response to above average temperature 

(PET-T) as a function of mean June-September (JJAS) aridity. Aridity, which is described 

and mapped by month in Figure 1, is plotted on the x-axis. Boxplot whiskers show 1.5 times 

the inter-quartile range. a) JJAS mean PET-T (See Fig. 3 caption). b) Response of 

aerodynamic (adPET-T) and radiation (rdPET-T) components of PET to above average 

temperature. adPET-T and rdPET-T are estimated using simple linear regression. Sample 

size is based on statistical significance of these regressions. 
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Figure 5 

Extent to which vapor pressure deficit is the driver of monthly potential evapotranspiration 

response to above average temperature (PET-T). Plotted ratio values are the fraction of PET-

T due to the PET aerodynamic component response to temperature (adPET-T); the 

remainder (1-ratio) is due to the PET radiation component response (rdPET-T). Values are 

shown where PET-T is statistically significant at 95
%

 confidence level and cross-validated 

R
2 

> 0
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Figure 6 

Projected monthly temperature change between 2001-2010 and 2026-2035 time periods. 

June-September temperature projections are from the World Climate Research Programme 

Coupled Model Intercomparison Project (CMIP5) multi-model ensemble mean of historical 

plus RCP4.5 greenhouse gas emissions scenario simulations. Models are listed in Section 

3.2.2. 
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Figure 7 

Projected impact of regional warming on millet water stress. a) Average millet WRSI for 

2001-2010. b) Projected change to WRSI by 2026-2035 (percent difference; all values are 

negative). Calculated with rainfall for 2001-2010, potential evapotranspiration for 2001-

2010 and 2026-2035, and the USGS GeoSpatial Water Requirement Satisfaction Index 

model (GeoWRSI) 
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Figure 8 

Projected water deficit during initial, vegetative, reproductive, and ripening stages of millet 

growth for the 2026-2035 period. Deficits are due to the impact of near-term warming on 

plant water balance. Calculated with rainfall for 2001-2010, potential evapotranspiration for 

2001-2010 and 2026-2035, and the USGS GeoSpatial Water Requirement Satisfaction Index 

model (GeoWRSI) 
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Figure 9 

Projected changes to the frequency of good and poor growing seasons in the Sahel due to 

near-term warming. Upper and lower 20
th

 percentile end of season millet WRSI (WRSI) 

values are calculated for 2001-2010. Top two panels show frequency of good growing 

seasons (upper 20
th

 percentile WRSI) for (a) 2001-2010 and (b) 2026-2035. Bottom two 

panels show frequency of poor growing seasons (lower 20
th

 percentile WRSI) for (c) 2001-

2010 and (d) 2026-2035
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Chapter 2 

Figure 1 

Influence of soil moisture on the surface energy budget. Processes involved in heat transfer 

to and from the surface are shown in the case of (a) dry soil, (b) moderately dry soil, and (c) 

wet soil. Each panel shows radiative fluxes through incoming solar radiation, the influence 

of surface albedo, and upwelling longwave radiation. Panels also show non-radiative heat 

transfer through conduction and turbulent mixing (evaporation and sensible heating). Figure 

from The Comet Program https://www.meted.ucar.edu/nwp/model_physics/print.htm  

When soil is wet, most energy leaves the surface through evaporation and cools the surface. 

A decline in soil moisture forces less energy transfer through evaporation and more energy 

transfer through sensible heating. Sensible heating is much less effective at removing heat 

from the surface than evaporation, so declines in soil moisture can lead to a warmer surface, 

as shown by higher emission of upwelling longwave radiation in the dry soil example. 

 

 

  

https://www.meted.ucar.edu/nwp/model_physics/print.htm
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Figure 2 

Relationship between upwelling longwave radiation and surface temperature. The map 

shows pearson correlation between April mean upwelling longwave radiation and surface 

temperature from the 0.25° monthly Global Land Data Assimilation System Noah dataset 

for the 2002-2011 period (GLDAS_NOAH025_M, Rodell et al., 2004). 

In the FLDAS output monthly average surface temperature was not available, so we use 

upwelling longwave radiation to examine annual deviations in surface heating. In this figure 

we show that upwelling longwave radiation calculated from land surface model output has 

very similar interannual variability as the land surface model’s surface temperature output. 

The data used to create this figure is from a NASA GLDAS land surface model experiment 

that also uses the Noah land model. Upwelling longwave radiation was calculated using the 

same method as was used with the FLDAS data. 
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Figure 3 

April rainfall and vegetation density in the East Africa domain. (a) Mean April daily rainfall 

(mm day
-1

) and (b) mean April green vegetation fraction (shown as a percent).Data from 

RFE 2.0 (Xie and Arkin, 1997) and NCEP (Gutman and Ignatov, 1998) 

a) 

  

b) 
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Figure 4 

Noah Land Surface Model. This schematic shows hydrologic processes that are simulated in 

the Noah land surface model. Our analysis examines the influence of radiative and turbulent 

energy transfer processes on the surface energy budget through the lens of surface heating 

and cooling. The energy budget is intimately linked to dynamics in the surface water budget. 

In the FLDAS experiment, atmospheric data (precipitation, humidity, insolation, 

downwelling longwave radiation, etc.) from RFE 2.0 (Xie and Arkin, 1997) and NCEP’s 

Global Data Assimilation System (GDAS) (Derber et al., 1991) are used to force the Noah 

land surface model v3.2 (Chen et al., 1996; Ek et al., 2003) in uncoupled mode.  
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Figure 5 

Surface heating correspondence to radiative forcing and evapotranspiration, 2002-2011. 

Mapped Pearson correlation between upwelling longwave radiation, LWup, and (a) radiative 

forcing, RF, and (b) latent heat flux, L. Data are monthly means for April from the FLDAS 

Noah simulation. 

a) 

 

b) 
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Figure 6 

Radiative forcing interannual variability is driven by insolation. Maps show the standard 

deviations of April mean (a) radiative forcing (RF = SWnet + LWdown), (b) net shortwave 

radiation and (c) downwelling longwave radiation for 2002-2011. Data from the FLDAS 

experiment. 

a) 

 

b) 
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Figure 7 

Major driver of annual variation in upwelling longwave radiation varies geographically. 

Overall influence of turbulent heat flux (TF) on interannual surface heat variability, 2002-

2011. The ratio of turbulent flux forcing to upwelling longwave radiation (LWup) variability 

is mapped. Ratio values < 0 means TF had no influence on LWup, from 0 to 1 indicate 

percent of TF control (0-100%), and > 1 means TF had full control of LWup variability, 

outweighing any influence by radiative forcing (RF). Ratio = [Var(TF) – Cov(TF,RF)] / 

Var(LWup). Data are monthly means for April from the FLDAS Noah v3.2 LSM 

simulation. 
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Figure 8 

Regression tree classification of geographic variability. Classification of the region by 

primary driver of surface heating. The regression tree shows the thresholds that best define 

the regional pattern of upwelling longwave radiation (LWup) forcing (Figure 1). 

Explanatory variables are Pearson correlation between annual April turbulent heat flux and 

latent heat flux (Correlation.TF.L), mean April green vegetation density (GreenVeg, %), and 

mean daily April rainfall (MeanRain, mm day
-1

). Labels show number of grid cells that fall 

into each group, their mean value, and the percent of total areal coverage of the 10° x 10° 

east Africa domain. Values correspond to Figure 1, where < 0 means TF has no influence on 

LWup, from 0 to 1 shows the percent of LWup variability driven by T , and > 1 means TF 

fully controlled LWup variability. 

 

 

 



152 

 

 

Figure 9 

Geographic attributes that correspond to the regional pattern of LWup forcing. Map a shows 

the Pearson correlation between annual April turbulent heat flux and latent heat flux 

(Correlation.TF.L) using thresholds defined by the regression tree. In b, mean April green 

vegetation density (%) is overlaid on a 3D elevation surface. Elevation is exaggerated 

1000x. 

a) 

 

b) 
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Figure 10 

Instances of large and small-scale anomalous heat events during 2002-2011. Bar charts show 

the area that exhibited anomalous surface heating in each April of 2002-2011 and the 

responsible forcing. Anomalous surface heating is defined as > 75
th

 percentile upwelling 

longwave radiation. Area is plotted in terms of the percent of the domain (33 °E – 43 °E, 5 

°N – 5 °S) with LWup above this threshold. Bars show the total area with heating (purple) 

and the area attributed to radiative forcing, RF (orange), turbulent heat flux forcing, TF 

(green), and a mix of both RF and TF (blue). 
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Figure 11 

Factors for surface heating in April 2005. Panels show atmospheric and energy flux 

variables that were influenctial in generating  large-scale anomalous surface heating in April 

2005. a) Upwelling longwave radiation, LWup, anomaly, (W m
-2

), b) LWup anomaly 

attributed to radiative forcing (W m
-2

), c) LWup anomaly attributed to turbulent heat flux 

forcing (W m
-2

), d) Latent heat flux anomaly (W m
-2

), e) Sensible heat flux anomaly (W m
-

2
), f) Air temperature anomaly (°C), g) Surface temperature minus air temperature (°C), h) 

Net shortwave radiation anomaly (W m
-2

), i) Downwelling longwave radiation anomaly (W 

m
-2

). Data for d and e are from GLDAS Noah 0.25° resolution monthly simulation 

(GLDAS_NOAH025_M) from http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings. All 

other data from FLDAS Noah simulation. 
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Figure 12 

Drought-related surface heating in April 2011. Panels show factors that lead to anomalous 

surface heating in some parts fo east Africa during the 2011 drought. a) Upwelling longwave 

radiation, LWup, anomaly, (W m
-2

), b) LWup anomaly attributed to radiative forcing (W m
-

2
), c) rainfall anomaly (mm mo

-1
), d) Net shortwave radiation anomaly (W m

-2
),  e) Latent 

heat flux anomaly (W m
-2

), f) Sensible heat flux anomaly (W m
-2

). Data from FLDAS Noah 

simulation.
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Figure 13 

Radiation-driven surface cooling events in April 2007 and 2008. Panels show the location 

and intensity of anomalous surface cooling in April 2007 and 2008 and how the cooling 

corresponded to below average net shortwave radiation. Upwelling longwave radiation 

anomaly attributed to radiative forcing (W m
-2

) and net shortwave radiation anomaly (W m
-

2
) for April 2007 (a and b) and April 2008 (c and d). Data from FLDAS Noah simulation. 

.
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Figure 14 

Widespread evaporative cooling in April 2010. In April 2010 high evaporation rates played 

a major role in the anomalous surface cooling that occurred throughout the region. Below 

average net shortwave radiation was also an important factor. Panels show the anomalous 

upwelling longwave radiation attributed to these factors. a) radiative forcing (W m
-2

) and b) 

turbulent heat flux forcing (W m
-2

), c) Net shortwave radiation anomaly (W m
-2

), d) Latent 

heat flux anomaly  (W m
-2

). Data from FLDAS Noah simulation.
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Figure 15 

Identifying the cause of surface heating using vegetation density. The frequency of 

radiation-driven (a) and turbulent heat flux-driven (b) anomalous surface heating and 

cooling events (2002-2011) are displayed as a function of vegetation density using boxplots. 

The plots show that in wet and heavily vegetated areas the surface energy state is primarily 

driven by variations in energy and that in semi-arid and less vegetated areas variations in 

water supply become important factor. This is similar to relationships seen in observed 

surface temperature and vegetation index data. It is important to note the wide range of 

scenarios that can occur within an ecosystem type, and that it is differences in atmospheric 

conditions that are responsible. Data from the FLDAS experiment. 

 

a) 

 

b) 
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Supplement  

Figures S1 and S2 are below the captions 

Figure S1 caption:  Distribution of anomalies. Data statistics show variables used in ratio-

based attribution are approximately normally distributed. Histogram plots  and normal 

quantile-quantile plots of (a,b) radiative forcing (RF)  anomalies, turbulent heat flux (TF) 

anomalies (c,d), and upwelling longwave radiation (LWup) anomalies (e,f). 

Figure S2 caption: Ratio-based attribution of anomalous upwelling longwave 

radiation, LWup. Column a shows LWup anomalies (W m
-2

) for each April of 2002-2011 

(rows 1-10). Ratio-based attribution is used to attributed LWup anomalies to radiative 

forcing, RF, and/or turbulent heat flux forcing, TF. Only LWup anomalies in upper or lower 

25
th

 percentile (|LWup’| > 3.6 W m
-2

) are attributed and mapped. The RF-component of 

LWup anomalies is shown in column b (W m
-2

). The TF-component of LWup anomalies is 

shown in column c (W m
-2

). Data from FLDAS Noah simulation. 

 

 

 



161 

 

S1. Distribution of anomalies 
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S2. Ratio-based attribution of anomalous upwelling longwave radiation, LWup. 



163 

 

  



164 

 

Chapter 3 

Figure 1             

Level 1 administrative zones in Tanzania. Global Administrative Unit Layers from FAO.  
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Figure 2            

Tanzania physical geography. Annual rainfall (a) and elevation (b). Rainfall calculated using 

CHIRPS. Elevation from 

http://upload.wikimedia.org/wikipedia/commons/8/87/Tanzania_Topography.png.  

a)  

 

b) 

   

http://upload.wikimedia.org/wikipedia/commons/8/87/Tanzania_Topography.png
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Figure 3            

Seasonal rainfall in Tanzania. The percent of annual rainfall received during October to 

February (a) and during March to May (b). Calculated with CHIRPS data. 

a) 

 

b) 
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Figure 4            

Monthly rainfall in selected areas. Mean monthly rainfall for 1982-2010 at Bukoba (a), 

Arusha (b), Shinyanga (c), and Mbeya (d). Calculated with CHIRPS data. 

 

 

Figure 5            

Stations used in CHIRPS in 1982 and 2010. From Pete Peterson, UC Santa Barbara Climate 

Hazards Group.  
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Figure 6            

Rainfall trends in CHIRPS, 1982-2010. Percent change to season total per decade for 

October to May (a), October to February (b), and March to May (c). Gray stippling shows 

significance at p < 0.05. 
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Figure 7            

October to February rainfall trends (1982-2010) in several rainfall datasets. Percent change 

to season total per decade for the datasets in Table 1. Stippling shows significance at p < 

0.05 for both positive and negative trends. Figure from Shraddahanand Shukla, UC Santa 

Barbara Climate Hazards Group.

 



170 

 

Figure 8            

October to February rainfall trends (1982-2010) in several rainfall datasets. Percent change 

to season total per decade for the datasets in Table 1. Stippling shows significance at p < 

0.05 for both positive and negative trends. Figure from Shraddahanand Shukla, UC Santa 

Barbara Climate Hazards Group. 
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Figure 9            

Relationship between vegetation productivity and rainfall, 1982-2010. November to October 

mean Normalized Difference Vegetation Index (NDVI) from GIMMs NDVI-3g (a). Pearson 

correlation between October to May rainfall (CHIRPS) and November to October mean 

NDVI (NDVI-3g) (b). 

a) 

 

b) 
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Figure 10            

Trends in vegetation productivity and rainfall, 1982-2010. Trends in standardized anomalies 

for (a) November to October mean NDVI (NDVI-3g) and (b) October to May rainfall 

(CHIRPS). The four boxes show where areal averages are extracted for time series analysis. 

Boxes from west to east: Shinyanga-Tabora West  (3°S – 6 °S/31 °E – 32.25 °E), 

Shinyanga-Tabora Central (3.5 ° S – 5.25 °S / 32.25 °E – 34.25 °E), Singida (4°S – 6.5 °S / 

34.25 °E – 35.25 °E), Arusha (2.25 °S – 3.25 °S / 36.25 °E – 37 °E). 

a) 

 

b) 
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Figure 11            

NDVI and rainfall time series of standardized anomalies for the boxes shown in Figure 11: 

Shinyanga-Tabora West (a), Shinyanga-Tabora Central (b), Singida (c), and Arusha (d). 

Plots show a linear trend equation for each NDVI and rainfall time series. 

a) 

 
 

b) 
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c) 

 
 

d) 
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Figure 12            

Trends in hydrology, 1984-2009. Percent change per decade to annual (October to 

September) rainfall (a), evapotranspiration (b), and magnitude of surface runoff trend (mm 

per decade) (c). Data simulated in the 0.25 ° CHIRPS-Princeton-VIC hydrologic model 

experiment. Stippling shows significance at p < 0.05. Major drainage basins (Table 2) are 

shown in 12c. 

a, b) 

 

 
c) 
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Figure 13  

Surface runoff in Tanzania water basins, 1984-2009. Per-pixel simulated runoff is summed 

for total runoff (in mm mo-1) for the following basins: a) Internal Drainage Basin, b) 

Ruvuma River and Southern Coast Basin, c) Lake Nyasa basin, d) Lake Tanganyika basin. 

Text shows the Theil-Sen slope (mm mo-1 yr
-1

) and the magnitude of the slope compared to 

the 1984-2009 mean (in percent change per decade). Asterisk denotes trend significance at 

p< 0.05. Data is from the 0.25 ° CHIRPS-Princeton-VIC hydrologic model experiment. 

 

a)  

 
b) 

 
c) 
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d) 
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Figure 14            

Yield potential for rainfed maize in Tanzania. For northern (a) and central/southern (b) 

Tanzania, the 1982-2010 mean Water Requirement Satisfaction Index (WRSI). WRSI is 

calculated from the USGS GeoSpatial Water Requirement Satisfaction Index (GeoWRSI) 

model using CHIRP rainfall data. Three regions of interest are outlined in yellow/black. 

 

a) 

 
b) 
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Figure 15           

Time series of standardized WRSI anomalies for 1982-2010. For Region 1, the short rains 

and long rains seasons (a,b). For Region 2, the short rains and long rains seasons (c,d). For 

Region 3, the unimodal October to May season (e). 

 

a,b) 
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c,d) 

 

e) 
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Figure 16           

Regional rainfall during 1982-1998 and 1999-2010. Mean monthly rainfall for Region 1, 

Region 2, and Region 3 are plotted for years 1982-1998 in gray and 1999-2010 in blue 

hashes. Calculated with CHIRPS. 
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Figure 17           

Regional crop water use during 1982-1998 and 1999-2010. For Regions 1, 2, and 3, the 

amount of water used by the crop during major growth stages is plotted for years 1982-1998 

in gray and for 1999-2010 in green. The average amount of water required for no water 

stress to occur is plotted in white. 
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Figure 18           

Trends in maize water stress, 1982-2010. Percent decline to Water Requirement Satisfaction 

Index (WRSI) over the 1982-2010 period and the R-squared values for the linear trends. For 

the short rains season (a,b), the long rains season (c,d) and the unimodal October to May 

season (e,f). Calculated with the USGS GeoWRSI model and CHIRPS data. 

 

a) 

 
b) 

 
c) 
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d) 

 
 

e) 

 

 
f) 
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