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Abstract

On the Galois Module Structure of the Square Root

of the Inverse Different in Abelian Extensions
by

Cindy (Sin Yi) Tsang

Let K be a number field with ring of integers Ok and let G be a finite group of odd
order. Given a G-Galois K-algebra K}, let Aj, be the fractional ideal in K} whose square
is the inverse different of K} /K, which exists by Hilbert’s formula since G has odd order.
By a theorem of B. Erez, we know that Ay, is locally free over O G when K}, /K is weakly
ramified, i.e. all of the second ramification groups in lower numbering attached to K /K
are trivial. In this case, the module A;, determines a class cl(Ay,) in the locally free class
group Cl(OkG) of OxG. Such a class in Cl(OxG) will be called A-realizable, and tame
A-realizable if Kj,/K is in fact tame. We will write A(OxG) and A'(OkG) for the sets
of all A-realizable classes and tame A-realizable classes in Cl(OkG), respectively.

In this dissertation, we will consider the case when G is abelian. First of all, we will
show that A'(OxG) is in fact a subgroup of Cl(OxG) and that a class cl(Ay,) € A(OxG)
is tame A-realizable if the wildly ramified primes of K}, /K satisfy suitable assumptions.
Our result will imply that A(OxG) = AY(OkG) holds if the primes dividing |G| are
totally split in K/Q. Then, we will show that ¥(A(OxG)) = V(A (OkG)) holds without
any extra assumptions. Here ¥ is the natural homomorphism Cl(OxG) — CI(M(KG))
afforded by extension of scalars and CI(M(KG)) denotes the locally free class group of
the maximal Og-order M(KG) in KG. Last but not least, we will show that the group

structure of A'(Ok@G) is connected to the study of embedding problems.
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Chapter 1

Introduction

Let K be a number field with ring of integers O and let G be a finite group. The set of
isomorphism classes of G-Galois K-algebras (see Section 2.3 for a brief review of Galois
algebras) is in bijective correspondence with the pointed set H'(Qx, G), where Q is the
absolute Galois group of K acting trivially on G. Given h € H*(Q, G), we will write K,
for a Galois algebra representative of h and O, for its ring of integers.

The Galois module structure of O, has been a classical problem of interest in number
theory (see Section 1.1 for a brief overview). In this dissertation, we will instead consider
the Galois module structure of the fractional ideal A; in K} whose square is the inverse

different of K, /K (see Sections 1.2 to 1.4 for more details).

1.1 Galois Module Structure of Rings of Integers

Given h € H'(Qg, G), a classical theorem of E. Noether (see [11, Chapter I, Section 3],
for example) implies that Oy, is locally free over O G when K} /K is tame. In view of this

result, define

H!(Qx,G) :={h € H' (Qk,G) | K;/K is tame}
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and consider only the elements h € H} (Qx, G). In this case, the structure of Oy, as a ZG-
module is completely understood due to a result of M. Taylor (see [22, Theorem 1]). For
example, if G is abelian or if G has odd order, then O, is free over ZG. But very little is
known about the structure of O;, as an O G-module. We will recall some known results.

First of all, since Oy, is locally free over Ok G (of rank one), it defines a class cl(Op)
in the locally free class group Cl(OxG) of OxG. Such a class in Cl(OxG) is said to be
realizable, and we will write R(OxG) for the set of all realizable classes in Cl(OxG). In

other words, the set R(Ok(@) is the image of the natural map

gal : H'(Qx,G) — Cl(OxG); gal(h) := cl(Oy). (1.1.1)

It is natural to ask for the properties of gal as well as the structure of the set R(OxG).

For the moment, assume that G is abelian. Then, the pointed set H' (g, G) is equal
to Hom(Qx, G) and thus has a group structure. It also contains H} (Q2x, G) as a subgroup
(see Remark 2.3.5). However, the map gal is not a homomorphism in general, and so it is
unclear whether R(OxG) is a subgroup of Cl(Ox@G). In [14, Theorem 6.17 and Corollary
6.20], L. McCulloh gave a complete characterization of the set R(OxG) and showed that
it is indeed a subgroup of Cl(OxG). His result in [14, Theorem 6.7] also implies that gal

is weakly multiplicative in the following sense. For each h € H'(Qg, G), define

d(h) := {the primes in Ok which are ramified in K} /K}. (1.1.2)

Then, for all hy, hy € H} (Qg, G) with d(hy) Nd(hy) = 0, we have

gal(hihe) = gal(hy)gal(hs). (1.1.3)

This weak multiplicativity of gal was also proved in [3, Proposition 3.10] by J. Brinkhuis.
2
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1.2 The Square Root of the Inverse Different I

In this section, assume that G has odd order. Given h € H'(Q, G), we will write A,
for the fractional ideal in K}, whose square is the inverse different of K} /K. Note that the
inverse different of K}, /K indeed has a square root by Proposition 1.2.1 below because G

has odd order.

Proposition 1.2.1 Let p be a prime and let F/Q, be a finite extension. Let N/F be a
Jinite Galois extension with different ideal ® y/p and let my be a uniformizer in N. Then,

we ha/U@ @N/F = (ﬂN)vN(DN/F) fO?”

o0

on(Dwyr) = Y _(|Gal(N/F),| — 1), (1.2.1)

n=0

where Gal(N/F),, denotes the n-th ramification group of N/F in lower numbering.

Proof. See [20, Chapter IV, Proposition 4|, for example. We remark that (1.2.1) is also
known as Hilbert’s formula. [ |

Given h € H'(Qg, G), a theorem of B. Erez (see [8, Theorem 1 in Section 2]) implies
that Ay, is locally free over O G when K}, /K is weakly ramified (see Definition 2.3.4). In

view of this result, define
H(Qx,G) :={h € H' (Qk,G) | K;/K is weakly ramified}

and consider only the elements h € H] (Qx, G). In this case, the structure of A, as a ZG-
module is reasonably understood. For example, we have that A, is free over ZG if K,/ K is
tame (see [8, Theorem 4]) or if the wild primes of K} /K satisfy some suitable hypotheses
(see [19, Theorem 1]). On the other hand, nothing is known about the structure of Ay, as

an Ok G- module, and this is what we will study in this dissertation.

3
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First of all, since Ay, is locally free over O G (of rank one), it defines a class cl(A4;) in
the locally free class group Cl(OxG) of OxG. Such a class in Cl(OxG) is said to be A-
realizable, and tame A-realizable if K,/ K is tame. We will write A(OxG) and A'(OxG)
for the sets of all A-realizable and tame A-realizables classes in Cl(OxG), respectively. In
other words, they are the images of H. (Qx,G) and H}(Qg, G), respectively, under the

natural map

gal, : HL(Qk,G) — Cl(OG); gal,(h) = cl(Ay). (1.2.2)

As in the case of rings of integers, we are interested in the properties of gal, as well as
the structures of the sets A(OxG) and A'(OkG).

For the moment, assume that G is abelian. As pointed out in Section 1.1, the pointed
set H'(Qk, G) has a group structure and it contains H/}(Qx, G) as a subgroup. However,
it only contains H. (Q,G) as a subset and gal , restricted to the subgroup H} (Q, G) is
not a homomorphism in general. Nevertheless, we will show that gal , preserves inverses
and is weakly multiplicative in the sense of (1.1.3). More precisely, we will prove (recall

the notation introduced in (1.1.2)):

Theorem 1.2.2 Let K be a number field and let G be a finite abelian group of odd order.
For all h,hy, hy € HL(Q,G) with d(hy) Nd(hy) = 0, we have

(a) h™' € H.(Q,G) and gal,(h™') = gal,(h)~'; and
(b) hihy € HL (2, G) and galy(hihs) = galy(hy)galy(hs).

Because the map gal 4 restricted to H} (g, G) is not a homomorphism in general, it is
unclear whether A*(Ox @) is subgroup of Cl(OxG). By using the techniques developed by
MecCulloh in [14], we will give a complete characterization of the set A'(OxG) (see (4.4.6))

and show that it is indeed a subgroup of Cl(OxG). More precisely, we will prove:
4
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Theorem 1.2.3 Let K be a number field and let G be a finite abelian group of odd order.
Then, the set A'(OkG) is a subgroup of Cl(OkG). Moreover, given ¢ € A(OkG) and a

finite set T of primes in Ok, there exists h € H} (g, G) such that
(1) Ky/K is a field extension;

(2) K/K is unramified at all v € T';

(8) ¢ = cl(Ap).

Observe that each h € H}! (Qf, G) gives rise to two classes in Cl(OxG), namely cl(O},)

and cl(Ap). It is then natural to ask how they are related. We will prove:

Theorem 1.2.4 Let K be a number field and let G be a finite abelian group of odd order.
We have cl(Ap)cl(O) = cl(Oy2) for allh € H! (Qk, G), and hence A'(OxG) C R(OkG).

Remark 1.2.5 The equality in Theorem 1.2.4 is essentially a special case of a result of

D. Burns (see [4, Theorem 1.4]).

Next, we consider the A-realizable classes cl(A},) for the elements h € H} (Qx, G) that
do not belong to H}!(Q, G). Using the characterization of A'(OxG) given in (4.4.6), we
will prove that a class cl(A;) € A(OxG) in fact belongs to A (OkG) if the wild primes

of K /K satisfies suitable hypotheses. More precisely, we will prove:

Theorem 1.2.6 Let K be a number field and let G be a finite abelian group of odd order.
Let h € H: (Qx,G) and let V denote the set of primes in O which are wildly ramified

(1) every v € V is unramified over Q; and

(2) the ramification index of every v € V in K /K is prime,

5
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then we have cl(Ap) € AH(OkQG).

Remark 1.2.7 Assume further that every rational prime dividing |G| is totally split in
the extension K/Q. Then, using [23, Theorem 1.1], it may be shown that conditions (1)

and (2) in Theorem 1.2.6 are always satisfied. In this case, we have A(OxG) = A'(OxG).

In view of Remark 1.2.7, it is natural to ask whether the sets A(OxG) and A'(OxG)
are always equal. We will prove that this is so if we extend scalars to the maximal Og-
order M(KG) in KG. More precisely, let CIM (K G)) denote the locally free class group
of M(KG) and let

U : Cl(OG) — CIIM(KG))

be the natural homomorphism afforded by extension of scalars. We will prove:

Theorem 1.2.8 Let K be a number field and let G be a finite abelian group of odd order.
Then, we have V(A(OG)) = V(A(OkG)).

1.3 The Square Root of the Inverse Different 11

In this section, we continue to assume that G has odd order. Given h € H'(Qg, G),
let T'ry, denote the trace map of K /K. It is well-known that Ay, is self-dual with respect

to T'ry, (this follows from [12, Chapter 3, (2.14)], for example). In other words, we have
Ah = {(I S Kh | T’f’h(CI,Ah) C OK}

The map T'rj, then induces a G-invariant symmetric Og-bilinear form A; x A, — Ok
on Ay. On the other hand, observe that there is a canonical G-invariant symmetric Q-
bilinear from tx on Ok G for which the elements of G form an orthonormal basis. That

is, we have tx(s,t) = 04 for all s,t € G.
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As in Section 1.2, we consider only the elements h € H\ (Qf,G), in which case Ay, is
locally free over Ok G (of rank one) by [8, Theorem 1 in Section 2]. In other words, for
every prime v in O, there is an isomorphism Ok, ®p, An ~ Ok, G, where O, denotes
the ring of integers in the completion K, of K at the prime v. It is natural to ask whether
this isomorphism may be chosen such that the bilinear forms T'r, and tx are preserved,

that is, whether (Ap, T'ry) is locally G-isometric to (OxG,tk) (see Definition 2.2.6).

Remark 1.3.1 For K = Q and G abelian, Erez and J. Morales showed in [9, Theorem

4.1] that (Ap, T'ry) is in fact G-isometric to (ZG,tg) (see Definition 2.2.1).

In what follows, assume in addition that G is abelian so that UCI(OxG), the unitary
class group of Ok @G, is defined (see Subsection 2.2.2). As we will see in Section 3.1, the
pair (Ay, Trp) is locally G-isometric to (OxG,tk) in this case, and hence determines a
class ucl(A,) in UCI(OkG). By abuse of terminology, such a class in UCI(OxG) will also
be called A-realizable, and tame A-realizable if K;,/K is tame. We will write A,(OxG)
and A’ (OkG) for the sets of all A-realizable and tame A-realizable classes, that is, the

images of H} (Q,G) and H}(Qk, G), respectively, under the natural map
galy, : Hy(Qk,G) — UCH(OkG);  galy,(h) == ucl(Ay).

We are interested in the properties of gal,, as well as the structures of both A,(OxG)

and A’ (Ok@G). Similar to Theorems 1.2.2, 1.2.3, and 1.2.6, we will prove (recall (1.1.2)):

Theorem 1.3.2 Let K be a number field and let G be a finite abelian group of odd order.
For all hyhy, hy € HL (Qk, G) with d(hy) Nd(hy) =0, we have

(a) h' € H.(Qk,G) and galAyu(hfl) = galA,u(h)*l; and

(b) hihs € Hy(Qk, G) and galy,(hihs) = galy,(h)galy,(hs).
7
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Theorem 1.3.3 Let K be a number field and let G be a finite abelian group of odd order.
Then, the set Al (OxG) is a subgroup of UCIOkG). Moreover, given ¢ € AL (OxG) and

a finite set T of primes in O, there exists h € H} (U, G) such that
(1) K,/K is a field extension;

(2) Ky/K is unramified at all v € T';

(3) ¢ = ucl(Ay).

Theorem 1.3.4 Let K be a number field and let G be a finite abelian group of odd order.
Let h € H.(Qk, G) and let V denote the set of primes in O which are wildly ramified

(1) every v € V is unramified over Q; and
(2) the ramification index of every v € V in K, /K is prime,
then we have ucl(Ay) € AL (OkQG).

Remark 1.3.5 In [15, Theorem 3.6], Morales proved that if G has prime order and the
field K contains all |G|-th roots of unity, then A’ (OkG) is a subgroup of UCI(OxG).

Thus, Theorem 1.3.3 is a generalization of his result.

Remark 1.3.6 There is a natural homomorphism (cf. Remark 2.2.11)

O : UCHOxG) — CUOxG);  ®([(X,T)]) = [X] (1.3.1)

afforded by forgetting the given G-invariant symmetric Og-bilinear form 7" on any locally
free O G-module X. Theorems 1.3.2, 1.3.3 and 1.3.4 are therefore refinements of The-
orems 1.2.2, 1.2.3 and 1.2.6, respectively. In fact, their proofs are essentially the same. To

avoid repetition, we will only give the proofs of Theorems 1.3.2, 1.3.3 and 1.3.4.
8
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1.4 Relation to the Study of Embedding Problems

In this section, assume that G is abelian and let K /k be a Galois subextension of K.

Moreover, set ¥ := Gal(K/k) and fix a left ¥-module structure on G.

Definition 1.4.1 Given a group extension

EFI 1 y G

~
—
~
\s|
~
—_

of ¥ by G, a solution to the embedding problem (K /k, G, Er) is a Galois extension N/K
for which N/k is Galois, and there exist isomorphisms Gal(N/K) ~ G and Gal(N/k) ~T

such that the diagram

1 — Gal(N/K) —— Gal(N/k) —— Gal(K/k) ——— 1

-

1 G r Y 1

commutes. If N/K is tame in addition, then we will call N/K a tame solution.

In [3], Brinkhuis connected the study of realizable classes to that of embedding prob-
lems (cf. Remark 1.4.3) by means of the following commutative diagram, called the basic

diagram (see Chapter 6 below for the construction).
HY(Gal(K!/k),G) —5 5 Hom(Q,G)® — " H2(Y,G)

gal o (1.4.1)

Cl(OxG)* L SN H*(3, (0O G)*)

Moreover, the top row is exact and all of the maps except possibly gal (recall (1.1.1)) are

homomorphisms (cf. Remark 6.3.2). Here K* is the maximal tamely ramified extension
9
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of K in some fixed algebraic closure of K and Q% := Gal(K*/K). Observe that we may
identify Hom(Q%, G) with H}(Qg, G) since G is abelian (see Remark 2.3.5).

Remark 1.4.2 Diagram (1.4.1) is a modified and abridged version of the basic diagram
constructed by Brinkhuis in [3, Theorem 5.1]. For example, the Picard group of O G was
used in place of the locally free class group of Ok G, but these two groups are canonically

isomorphic for G abelian (see [7, Theorem 55.26], for example).

Remark 1.4.3 We will see in Proposition 6.1.2 below that a surjective h € Hom(Q%, G)*
gives rise to a tame solution to the embedding problem (K/k, G, E}), where Ej, is deter-
mined by tr(h). Now, suppose that i* (see (6.0.2)) is injective (as is shown in [2, Theorem
4.1], this is so if K is a C.M. field and G or ¥ has odd order). If tr(h) # 1 (which corre-
sponds to E}, being non-split), then cl(O,) # 1 as well since (1.4.1) commutes and ¢ is a

homomorphism.

In what follows, assume further that G has odd order. Essentially the same proof as
that of [3, Theorem 5.1] will show that (1.4.1) is still commutative when gal is replaced

by gal,. More precisely, we will prove:

Theorem 1.4.4 Let K/k be a Galois extension of number fields and set ¥ := Gal(K/k).
Let G be a finite abelian group of odd order equipped with a fixed left ¥2-module structure.

Then, there is a commutative diagram
HY(Gal(K'/k),G) — % Hom(,G)E — 1 HA(S, Q)

galA 7/* 9 (1.4.2)

Cl(OKG)* S SN H*(%, (OkG)¥)

where the top row is exact and all of the maps except possibly gal, are homomorphisms.
10
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A similar remark to Remark 1.4.3 shows that the commutativity of (1.4.2) relates the
study of tame A-realizable classes to that of embedding problems.

Now, recall from Theorem 1.2.3 that A'(OxG) is a subgroup of Cl(OxG). In view of
Theorem 1.4.4, it is then natural to ask whether the group structure of A*(OxG) is also

related to the study of embedding problems. For example, define

AL(OkG) = {cl(Ap) : h € Hom(Q, G)*};

AL(OkG) == {cl(Ay) : h € Hom(Q, G)* and tr(h) = 1}.

Classes in AL (OkG) are said to be tame 3-A-realizable. We want to determine whether
the above subsets of A'(OkG) are in fact subgroups, and if so, whether the group struc-
ture of their quotient A%L(OxG)/AL(OkG) is related to that of H*(X,G).

We will prove the following partial result. Given a set V' of primes in Ok, define

Hom(Q%, Gy := {h € Hom(Q%, G)* | K;,/K is unramified at all v € V}  (1.4.3)

and

AL(OG)y = {cl(A}) : h € Hom(Q%, G)b

AL(OG)y = {cl(A}) : h € Hom(QE, G) with tr(h) = 1}.

Write exp(G) for the exponent of the group G. We will prove:

Theorem 1.4.5 Let K/k be a Galois extension of number fields and set ¥ := Gal(K/k).
Let G be a finite abelian group of odd order on which ¥ acts trivially on the left. Define
V = Vi to the set of primes in Ok which are ramified over k. Assume that k contains

all exp(G)-th roots of unity.

11
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(a)

(b)

The set AL(Ox Gy is a subgroup of C(OxG). Furthermore, given h € Hom(Q, G)¥
and a finite set T of primes in Oy, there exists h' € Hom(Q%, G)% such that

(1) Kn /K is a field extension;

(2) Ky /K is unramified at allv € T;

(3) cl(Ap) = cl(Ap);

(4) tr(h') =tr(h).

In particular, the set AL(OkG)yv is also a subgroup of Cl(OxQG).

The natural surjective map

AL (OkG)y

. t P .
ba:tr(Hom(Q, G)y) — —A’;(OKG)V :

d)A(t’I“(h)) = Cl(Ah)AZ(OKG)V,

where h € Hom(Q, G)3, is well-defined and is a homomorphism. Furthermore, if i*

15 injective, then G4 is an isomorphism.

Remark 1.4.6 Theorem 1.4.5 still holds when A, is replaced by Oy, in which case the

hypothesis that G has odd order is not required. The proofs of the analogous statements

are verbatim. We simply have to use the characterization of cl(O},) given in [14, Theorem

6.7] rather than that of cl(A4y) given in Theorem 4.3.2 for h € Hom(Q%, G). Similarly,

we have to use the commutativity of (1.4.1) rather than that of (1.4.2).

1.5 Previously Copyrighted Materials

Theorems 1.2.2, 1.2.3, 1.2.6, and a special case of Theorem 1.2.8 were first published in

On the Galois module structure of the square root of the inverse different in abelian exten-

sions, C. Tsang, J. Number Theory 160, Copyright @ 2016 Elsevier.

12
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Theorems 1.3.2, 1.3.3, and 1.3.4 will soon appear in On the realizable classes of the square
root of the inverse different in the unitary class group, C. Tsang, Int. J. Number Theory,

Copyright @ 2016 World Scientific.

1.6 Notation and Conventions

Throughout this dissertation, we will fix a number field K and a finite group G. We
will also fix a Galois subextension K/k of K and set ¥ := Gal(K/k). Moreover, we will
use the convention that all of the homomorphisms in the cohomology groups considered
are continuous.

The symbol F' will denote either a number field or a finite extension of Q,, where p

is a prime number. Given such an F', we will define:

Op = the ring of integers in F;
F° := a fixed algebraic closure of F;
Opec := the integral closure of O in F¢,
Qp == Gal(F°/F);
F':= the maximal tamely ramified extension of F in F¢;
O = Gal(F'/F);
Mp = the set of all finite primes in F’;
[—1] := the involution on F“G induced by the involution s + s~! on G;
tr := the symmetric G-invariant Op-bilinear form OpG x OpG — Op

on OpG for which tp(s,t) = 04 for all s,t € G.

We will let Qp and Q% act trivially on G on the left. We will further choose a compatible

13
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set {(, : n € ZT} of primitive roots of unity in F¢, that is to say, we have ((pnn)™ = ("
for all m,n € Z*. For G abelian, we will write G for the group of irreducible F“-valued

characters on GG, and M(F'G) for the unique maximal Op-order in FG.

Remark 1.6.1 Let Q° denote a fixed algebraic closure of Q containing K. Naturally, we
will choose K¢ = Q¢ and k¢ = Q°. Moreover, we will choose the same compatible set of

primitive roots of unity in Q¢ for both k£ and K.

For F' a number field and given v € Mp, let F, denote the completion of F' at v and
write ¢, : F'* — F¢ for a fixed embedding extending the natural embedding F' — F,.
By abuse of notation, we will also write i, for the F-isomorphism F°¢ — i,(F°) induced
by i, and i;! for its inverse. Let ZNU be the embedding Qp, — p induced by 7,. More

specifically, we have

iy(w) =i, owoi, for all w € Qp,. (1.6.1)

Finally, if {¢, : n € Z"} is the chosen compatible set of distinguished primitive roots of
unity in ¢, then we will choose {i,({,) : n € Z*} to be that in F¢.

For F a finite extension of Q, and given a finite extension N/F, let my denote a uni-
formizer in N and write gy for the order of the residue field Oy /(7y). Let vy denote the
additive valuation N — Z U {oo} on N for which vy(my) = 1. Given a fractional Oy-
ideal 2 in N, we will also write vy () for the unique integer for which 21 = (7y)*¥ .

Moreover, define:

e(N/F) := the ramification index of N/F;

Fr\n = the n-th Lubin-Tate division field of N corresponding to my

for each n € Z>(. Finally, if N/F is Galois, let Gal(IN/F),, denote the n-th ramification
14
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group of N/F' in lower numbering for each n € Z>(, and write Ay, p for the square root

of the inverse of N/F if it exists.

15



Chapter 2

Prerequisites

2.1 Locally Free Class Groups

Let F' be number field and let A be an Op-order in F'G. We will recall the definition
and an idelic description of the locally free class group CI(A) of A (see [7, Chapter 6] for

more details).

Definition 2.1.1 A A-lattice is a left A-module which is finitely generated and projective
as an Op-module. Two A-lattices X and X’ are stably isomorphic if there exists k € Z*

such that X @ A* ~ X’ @ A*. The stable isomorphism class of X will be denoted by [X].

Remark 2.1.2 If two A-lattices are isomorphic, then plainly they are stably isomorphic.
The converse holds as well when G is abelian or when G has odd order (see [7, Theorems

51.2 and 51.24], for example).

Definition 2.1.3 Let X be a A-lattice. For each v € Mp, define X, := Op, ®0, X. We
say that X is locally isomorphic to A or locally free over A (of rank one) if X, ~ A, as

A,-modules for all v € Mp. The set of all such A-lattices will be denoted by g(A).

16
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Definition 2.1.4 The locally free class group of OrG is defined to be the set
Cl(OrG) :=A{[X]: X € g(A)}

equipped with the following group operation. Given X, X’ € g(A), by [6, Corollary 31.7]
there exists X” € g(A) such that X @ X' ~ OpG @ X”. It is simple to verify that [X"]
is uniquely determined by [X] and [X']. We then define [X][X'] := [X"].

Remark 2.1.5 The group operation of CI(A) is usually written additively. Since we will

use an idelic description of Cl(A), we will write it multiplicatively instead.

Definition 2.1.6 Let J(F'G) be the restricted direct product of the groups (F,G)* with
respect to the subgroups A for v € Mp. This definition does not depend on the choice of
the Op-order A, since if A’ is another Op-order in F'G, then A, = Al for all but finitely

many v € Mp. Let
0=0Fr: (FG)" — J(FG)

be the diagonal map and let

U =[] A

vEMFE

be the group of unit ideles.

The locally free A-lattices in F'G are precisely those of the form

Acci= () (A e, NFG), (2.1.1)

vEMp

where ¢ ranges over all ideles in J(F'G). The map

Ja : J(FG) — CI(A);  jalc) :=[A - ] (2.1.2)
17
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is surjective because every X € g(A) may be embedded into F'G, and is also a homomor-

phism by [6, Theorem 31.19]. If A = OrG, then we will write j for jo,¢ for simplicity.

Theorem 2.1.7 If G is abelian, then the map ja induces an isomorphism

Proof. See [7, Theorem 49.22 and Exercise 51.1], for example. [ |

2.2 (G-Forms and Unitary Class Groups

2.2.1 G-Forms

Let F' be a number field or a finite extension of Q,,. First, we will recall the definition

of G-forms over Op and give a brief review of their basic properties.

Definition 2.2.1 A G-form over OF is a pair (X, T') consisting of an OpG-lattice X and
a G-invariant symmetric Op-bilinear form T : X x X — Op on X. Two G-forms (X, T')
and (X', T") over O are said to be G-isometric (over Op ) if there exists an isomorphism

¢ : X — X’ of OpG-modules such that
T'(p(x),0(y) =T(x,y)  forallz,yeX.

Such an isomorphism ¢ is called a G-isometry (over Op). The G-isometry class of (X, T')
will be denoted by [(X,T)].

Given a G-form (X,T) over O, the form T extends uniquely to a G-invariant sym-
metric F-bilinear form on F ®p, X via linearity. By abuse of notation, we will use 7" to

denote this F-bilinear form as well.
18
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Definition 2.2.2 Let (X, T) be a G-form over Op. The dual of X (with respect to T ) is
defined to be the Op-module

X*:={z € F®p, X | T(x,X) C Op}.

We say that (X, T) is self-dual (with respect to T) if X = X*. An element z € F ®p, X

is said to be self dual (with respect to T ) if

T(s-z,t-x)=0g for all s,t € G.

Next, recall that ¢tr denotes the canonical symmetric Op-bilinear form on OpG for
which tp(s,t) = ds for all s,t € G. The G-forms (X,T) over O which are G-isometric

to (OrG,tr) are precisely those which admit a free self-dual generator over OpG.

Proposition 2.2.3 A G-form (X, T) over Of is G-isometric to (OrG,tp) if and only if

there exists x € X such that x is self-dual and X = OpG - x.

Proof. If ¢ : OpG — X is a G-isometry, then = := (1) is self-dual and X = OpG - z.
Conversely, if € X is self-dual and X = OpG - z, then the map OpG — X defined
by g+ (- x is a G-isometry . [ |

Now, recall also that [—1] denotes the involution on F°G induced by the involution
s st on G. Given ¢ € (FG)*, whether the (full) OpG-lattice OrG - ¢ in FG or the
element c is self-dual (with respect to tg) may be determined simply by considering the

element ccl~! € (FG)* when G is abelian.
Proposition 2.2.4 Assume that G is abelian and let c € (FG)*.
(a) The OpG-lattice OpG - ¢ is self-dual if and only if ccl™1 € (OpG)*.

(b) The element c is self-dual if and only if ccl=" = 1.
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Proof. Since tp is Op-bilinear, an element § € FG lies in § € (OpG - ¢)* if and only if
tr(B,sc) € Op for all s € G. (2.2.1)

But G is abelian, and so ¢ (3, s¢) = tp(Bcl™Y, 5), which is the coefficient of s in Bcl=Y, for
any s € G. Thus, (2.2.1) is equivalent to Bcl™1 € OpG and (OFG - ¢)* = OpG - (c71)71.
It follows that OpG - ¢ is self-dual if and only if ccl=! € (OpG)*, which proves (a).

As for (b), simply observe that tz(sc,tc) = tp(ccl™1,571t) for all s,t € G. It follows

that c is self-dual if and only if ccl=1 = 1. [

Definition 2.2.5 In view of Proposition 2.2.4, define

FG = {ce (FG)* | cc™V € (0pG)*};

FGpy:={ce (FG)* | e =1}.
Clearly both of the sets above are subgroups of (FG)* when G is abelian.

2.2.2 Unitary Class Groups

Let F' be a number field. We will also assume that G is abelian and of odd order. In
this subsection, we will define the unitary class group of OrG, which was first introduced
by Morales in [15, Section 2|. Our approach is slightly different, but the resulting group

is canonically isomorphic to that defined in [15, Section 2.

Definition 2.2.6 Let (X,T) be a G-form over Op. For each v € Mg, let T, denote the
G-invariant symmetric Op, -bilinear on X, obtained by extending 7" via linearity. We say
that (X, T) is locally G-isometric to (OpG, tp) if (X,,T,) and (OF, G, tr,) are G-isometric
over Op, for all v € Mp. The set of all such G-forms over O which are also G-isometric

to (X', tr) for some OpG-lattice X’ in F'G will be denoted by g(OpG)s.
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As a set, the unitary class group of OpG is defined to be

UCI<OFG> = {[(X7 T)] : (X’ T) S g(OFG)s}'

We will show that the set above has a group structure by giving it an idelic description.
Note that by the definition of g(OrG)s, it suffices to consider the G-forms (X, tr), where

X is an OpG-lattice contained in F'GG. The key lies in the following theorem.

Theorem 2.2.7 Let X be an OpG-lattice contained in FG. We have (X, tr) € g(OpG)s

if and only if X is locally free over OpG and self-dual with respect to tp.

Proof. If (X,tr) € g(OrG)s, then plainly X is locally free over OrG and self-dual with
respect to tp by Propositions 2.2.3. As for the converse, see [9, Corollary 2.4]; we remark
that its proof requires that G is abelian and of odd order. |

Recall that the locally free OpG-lattices in F'G are those of the form OrG - ¢ (recall

the notation in (2.1.1)), where ¢ ranges over all ideles in J(F'G).

Definition 2.2.8 Let J(FG () be the restricted direct product of the groups F,G ) with

respect to the subgroups (O, G)* for v € Mp.
Proposition 2.2.9 Let ¢, € J(FG).
(a) The G-form (OpG - c,tp) belongs to g(OrG)s if and only if c € J(FG)).

(b) The G-forms (OpG - c,tr) and (OpG -, tp) are G-isometric over Op if and only if

det e 8(FG(1))U(OFG).

Proof. For (a), it is a direct consequence of Proposition 2.2.4 (a) and Theorem 2.2.7. As

for (b), observe that an isomorphism ¢ : OpG - ¢ — OpG - ¢ is of the form x — (- x,
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where 3 € (FG)* is such that dc™! € 9(B) - U(OrG). Because tr is Op-bilinear and G-
invariant, this map ¢ is a G-isometry if and only if tz (3¢, B-sc) = tr(c, sc) for all s € G,
which is equivalent to tz(38"Uec ™1 s) = tg(cc™Y, 5) for all s € G. This latter condition

1]

holds precisely when SAIHeel =1 = ecl=1 or equivalently when 8871 = 1. It then follows

that ¢ is a G-isometry if and only if 3 € F'G (1), and this proves the claim. [ |

By Proposition 2.2.9 (a) and the definition of g(OrG)s, the map

j(s) : J(FG(S)) — UCI(OFG); j(s)(c) = [(OFG - C, tF)]

is a well-defined surjection. By Proposition 2.2.9 (b), the above induces a bijection

J(FG(S))
I(FG))U(OrG)

— UCI(OxG). (2.2.2)

Since the quotient on the left is a group, this induces a group structure on UCI(OfrG).

Definition 2.2.10 The unitary class group of OpG is defined to be the set
UCHOrG) :={[(X,T)] : (X,T) € g(OrG)s}

equipped with the group structure induced by the bijection (2.2.2).

Remark 2.2.11 It is clear from Definition 2.2.10 and Theorem 2.1.7 that the map de-

fined in Remark 1.3.6 is a homomorphism.

2.3 Galois Algebras and Resolvends

Let F' be a number field or a finite extension of Q. In this section, we will give a brief
review of Galois algebras and resolvends (see [14, Section 1] for more details).
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Definition 2.3.1 A Galois algebra over F with group G or G-Galois F'-algebra is a com-
mutative semi-simple F-algebra N on which G acts (on the left) as a group of automor-
phisms such that N¢ = F and [N : F] = |G|. Two G-Galois F-algebras are isomorphic

if there is an F-algebra isomorphism between them which preserves the action of G.

The set of isomorphism classes of G-Galois F-algebras is in bijection with the pointed

set (recall that Qp acts trivially on G)
HY(Qp, G) := Hom(Qp, G)/Inn(G). (2.3.1)
In particular, each h € Hom(Qr, G) is associated to the F-algebra
Fy, :== Mapg, ("G, F°),

where "G is the group G with Qp-action given by (w-s) := h(w)s for s € G and w € Qp.
The G-action on F}, is defined by (s - a)(t) := a(ts) for a € F}, and s,t € G.

Let {s;} be any set of coset representatives of h(2r)\G. An element a € Fj, is deter-
mined by the values a(s;), and each a(s;) may be arbitrarily chosen as long as it is fixed by

all w € ker(h). Letting F* := (F¢)kr®  the choices of {s;} then induce an isomorphism

B~ [ 7 (2.3.2)
rQp)\G
of F-algebras. Since h induces an isomorphism Gal(F"/F) ~ h(Qp), from (2.3.2) we see
that [F}, : F] =[G : h(Qp)][F" : F] = |G|. Viewing F as embedded in F}, as the constant
F-valued functions, we also have F¥ = F. Hence, indeed F}, is a G-Galois F-algebra.
It is not difficult to verify that every G-Galois F-algebra is isomorphic to F}, for some

homomorphism h € Hom({2p, G), and that for h, k' € Hom(Q2p, G) we have F), ~ Fj, if
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and only if h and A’ differ by an element in Inn(G). Hence, indeed the set of isomorphism
classes of G-Galois F-algebras is in bijection with (2.3.1).
We make the remark that in the case that G is abelian, the pointed set H'(Qp, G) is

equal to Hom(Qg, G) and in particular has a group structure.

Definition 2.3.2 Given h € Hom(Qp, G), let F" ;= (F¢)kr(") ag above. Let O" := Opn

and define the ring of integers of Fj, by
Oy, := Mapg, ("G,0").

If the inverse different of F"/F has a square root, let A" := Apn s and define the square

root of the inverse different of Fj,/F by
Ay, :=Mapg, ("G, A").

In the sequel, whenever we write Aj, for some h € Hom(Qr, G), we are implicitly assuming

that Apn/p exists (by Proposition 1.2.1, this is so when G has odd order).

Remark 2.3.3 For F' a number field and h € Hom(Qp, G), for each v € My define
h, € Hom(Qp,, G);  hy := h o,

It is proved in [14, (1.4)] that (F,)n, ~ F, ®F F,. We then have that O, ~ Op, ®0, O,

and A, ~ Op, ®o, A, as well.

Definition 2.3.4 Given h € Hom(Qp, G), we say that F),/F or h is unramified if F"/F
is unramified. Similarly for tame, wild, and weakly ramified. Recall that a finite Galois
extension over F' is said to be weakly ramified if all of the second ramification groups (in

lower numbering) attached to it are trivial.
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Remark 2.3.5 Clearly a homomorphism A € Hom({2g, GG) is tame if and only if it factors
through the quotient map Qp — Q%.. Hence, the subset of Hom(Qx, G) consisting of the
tame homomorphisms may be naturally identified with Hom(Q2%, G), and is in particular

a subgroup of Hom(Q2p, G) in the case that G is abelian.

Now, consider the F*-algebra Map(G, F*°) on which we let G act via (s-a)(t) := a(ts)
for a € Map(G, F°) and s,t € G. Note that Fj, is then an FG-submodule of Map(G, F*)
for each h € Hom(Qp, G).

Definition 2.3.6 The resolvend map rq : Map(G, F¢) — F°G is defined by

seG

It is clear that r is an isomorphism of F°*G-modules, but not an isomorphism of F“G-
algebras because it does not preserve multiplication. Moreover, given a € Map(G, F°),

we have that a € F}, if and only if

w-rgla) =rg(a)h(w) for all w € Qp. (2.3.3)

In particular, if rg(a) is invertible, then A is given by

h(w) =rg(a) H(w - ra(a)) for all w € Qp.

The next proposition shows that resolvends may be used to identify elements a € Fj, for

which F, = FG -a or O, = OpG - a.
Proposition 2.3.7 Assume that G is abelian and let a € F},.

(a) We have Fy, = FG - a if and only if rg(a) € (F°G)*.
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(b) We have O, = OpG - a with h unramified if and only if rg(a) € (OpG)*. Further-
more, if F' is a finite extension of Q, and h is unramified, then there exists a € Oy,

such that Oy, = OpG - a.

Proof. See [14, Proposition 1.8] for (a) and [14, (2.11)] for the first claim in (b). As for
the second claim in (b), it follows from a classical theorem of Noether, or alternatively
from [14, Proposition 5.5]. We note that only the first claim in (b) actually requires the
assumption that G is abelian. [ |

Next, we prove a similar criterion which uses resolvends to identify elements a € A,
for which A, = OpG - a. To that end, let Tr : Map(G, F°) — F°G denote the standard

algebra trace map, which is defined by

Tr(a) =Y als),

seG

which restricts to the trace map T'ry, : Fy, — F of F},/F for each h € Hom(Qp, G). By
abuse of notation, we will also write T'rj, for the G-invariant symmetric F-bilinear form

(a,b) — Try(ab) on Fy, induced by T'ry,.

Remark 2.3.8 It is well-known that A” is self-dual with respect to the trace Trpx /r of
F"/F (this follows from [12, Chapter 3, (2.14)], for example). From this, we see that Ay,
is self-dual with respect to T'r,. In particular, the trace map Tr;, induces a G-invariant

symmetric Op-bilinear form A, x A, — Op on A and (A4, Try) is a G-form over Op.

Recall that [—1] denotes the involution on F°G induced by the involution s + s7*

on GG. Moreover, a simple calculation shows that for all a,b € Fj,, we have

re(a)re(d)™ =Y "Tr((s-a)b)s™! € FG. (2.3.4)
seG
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Given a € Fj, notice that OpG - a is a full lattice in F}, if and only if rg(a) € (F°G)*
by Proposition 2.3.7 (a). Given such an a € F},, analogous to Proposition 2.2.4, we may
determine whether the OrG-lattice OrG - a or the element a is self-dual (with respect

to T'ry,) by considering the element rg(a)rg(a)™! € (F°G)* when G is abelian.

Proposition 2.3.9 Assume that G is abelian and let a € F, with rg(a) € (F°G)*.
(a) The OpG-lattice OpG - a is self-dual if and only if rg(a)rg(a) ™ € (OFG)*.
(b) The element a is self-dual if and only if rg(a)rg(a) " = 1.

Proof. Let b € Fj, be such that {s-b:s € G} is the dual basis of {s-a:s € G} (with
respect to T'ry,), so that (OpG - a)* = OpG - b. It then follows that OpG - a is self-dual
if and only if OpG -a = OpG - b, which in turn is equivalent to rg(a)rg(b)™! € (OrG)*.
Since rg(b) ™' = rg(a)l= by (2.3.4), we see that (a) holds. As for (b), it follows directly

from (2.3.4). |

Proposition 2.3.10 Assume that G is abelian and let a € A,. We have A, = OpG - a
of and only iof
rG(a)rG(a)[*l] € (OFG)X

Proof. By Proposition 2.3.7 (a), both statements imply that rg(a) € (F°G)*, or equiva-
lently that OpG - a is a full OpG-lattice in Fj,. Assuming that this is the case, observe

that because a € A;, and A, is self-dual, we have

OFG'CLCA}L:AZ C (OFG&)*

Hence, we have A, = OpG - a precisely when OrG - a is self-dual. The claim now follows

from Proposition 2.3.9 (a). |
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Remark 2.3.11 Proposition 2.3.10 is an extremely useful tool and will be used repeat-

edly in the rest of this dissertation.

2.4 Cohomology and Reduced Resolvends

Let F' be a number field or a finite extension of Q,. We will assume that G is abelian
in this section. Following [14, Sections 1 and 2], we will use cohomology to define reduced
resolvends and explain how they may be viewed as functions on characters of G. They
will play a crucial role in the rest of this dissertation.

Recall that Qg acts trivially on G and define
H(FG) = ((F°G)*/G)*.

Taking )p-cohomology of the short exact sequence

1 > G » (F°G) —— (F°G)* /G —— 1 (2.4.1)

then yields the exact sequence

rag J

1 > G » (FG)* —— H(FG) —— Hom(Qp,G) —— 1. (2.4.2)

Exactness on the right of (2.4.2) follows from the fact that H*(Qp, (F°G)*) = 1, which is
Hilbert’s Theorem 90. Alternatively, a coset rg(a)G € H(FG) belongs to the preimage of
h € Hom(Qr, G) if and only if h(w) = rg(a) H(w-rg(a)) for all w € Qp, which in turn is
equivalent to F, = F'G-a by (2.3.3) and Proposition 2.3.7 (a). For any h € Hom(Qr, G),
there always exists a € F}, with Fj, = F'G - a by the Normal Basis Theorem. This implies

that ¢ is indeed surjective.
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The exact same argument as above also shows that
H(FG) ={rg(a)G | F;, = FG - a for some h € Hom(Qr, G)}. (2.4.3)

Similarly, we may define

H(OpG) = (OrG)* G)%F.

Then, the argument above together with Proposition 2.3.7 (b) imply that
H(OrG) ={rg(a) | O, = OpG - a for some unramified h € Hom(Qp, G)}.  (2.4.4)
In view of Proposition 2.3.9, we will also define

H(FG ) = {re(a)G € H(FG) | ra(a)ra(a) ™ € (OpG)*};

H(FG(U) = {I‘G'(CL)G € H(FG) ’ rg(a)rg(a)[_” = 1}. (2.4.5)

It is obvious that both of the conditions rg(a)rg(a)l™! € (OrG)* and rg(a)rg(a)l=1 =1
are independent of the choice of the coset representative rg(a). It is also clear that both

of the sets above are subgroups of H(F'G).

Definition 2.4.1 Let rg(a)G € H(FG). We define r¢(a) := rg(a)G, called the reduced

resolvend of a. Moreover, define h, € Hom(Qg, G) by
he(w) :=rg(a) H(w-rg(a)) for all w € Qp.

called the homomorphism associated to rg(a). This definition is independent of the choice
of the coset representative rg(a), and we have Fj, = F'G - a by Proposition 2.3.7 (a) and

(2.3.3). We say that r¢(a) is unramified if h, is unramified. Similarly for tame and wild.
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Definition 2.4.2 For F' a number field, let J(H(FG)) be the restricted direct product

of the groups H(F,G) with respect to the subgroups H(Op,G) for v € Mp. Let
n=nr:HFG) — J(H(FG))
be the diagonal map and let

UH(OrG)) = [] #(OrG

veEMp

be the group of unit ideles.

Next, we explain how reduced resolvends may be interpreted as functions on charac-
ters of G. Recall that G denotes the group of irreducible F¢-valued characters on G.

First of all, let det : ZG — G be the homomorphism given by

det (Z nxx> = H X" (2.4.6)

and set Sg := ker(det) (we remark that in [14], this set is denoted by Az). Applying the

functor Hom(—, (£°°)*) to the short exact sequence

0 s S y 7G Aty G

~
—_

Q)

then yields the short exact sequence
1 — Hom(G, (F°)*) — Hom(ZG, (F°)*) — Hom(Sg, (F°)*) — 1. (2.4.7)

Exactness on the right of (2.4.7) follows from the fact that (F¢)* is divisible and hence

injective. We will identify the short exact sequences (2.4.1) and (2.4.7) as follows.
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First, observe that we have canonical identifications
(F°G)* = Map(G, (F°)*) = Hom(ZG, (F°)¥). (2.4.8)

The second identification is given by extending the maps G — (F©)* via Z-linearity, and
the first is induced by characters as follows. On one hand, each resolvend rg(a) € (F°G)*

gives rise to a map ¢ € Map(G, (F°)*) defined by
o) = Y alo)(s) (249)
On the other hand, given ¢ € Map(a, (F€)*), one recovers rg(a) by the formula
a(s) := ’—é| Z e(x)x(s) for s € G. (2.4.10)
X

Since G = Hom(G, (F°)*) canonically, the third terms
(F°G)* /G = Hom(Sg, (F°)*) (2.4.11)

in (2.4.1) and (2.4.7), respectively, are naturally identified as well.
We have thus identified the exact sequences (2.4.1) and (2.4.7). Taking Qp-invariants

then yields the commutative diagram

Homg, (ZG, (F¢)*) ———— Homg, (Sg, (F©)*)

: (2.4.12)

(FG)” H(FG)

rag

where rag is as in (2.4.2) and the corresponding map above is given by restriction to Sg.
31



Prerequisites Chapter 2

Under the above identifications, clearly we have H(OpG) C Homg, (Sa, OF.)-

Proposition 2.4.3 If I a finite extension of Q,, where p does not divide |G|, then
H(OrG) = Homq, (Sg, OF.).

Proof. By (2.4.9) and (2.4.10), clearly |G|-Hom(ZG, OF.) C (Op-G)* C Hom(ZG, OF.).
Since p does not divide |G|, we have |G| € O and thus (Op.G)* = Hom(ZG@, O5.). The

desired equality now follows from the identification H(F'G) = Homg, (Sg, (F°)*). |

Definition 2.4.4 For F' a number field, observe that the homomorphism

H ragr, : J(FG) — J(H(FQ)) (2.4.13)

vEMp

is clearly well-defined, and that the diagram

(FG)* J(FG)
ragr H ragr,
H(FG) . J(H(FG))

commutes. By abuse of notation, we will denote the map in (2.4.13) by rag = ragp.

2.5 The Modified Stickelberger Transpose

Let F' be a number field or a finite extension of Q,. We will assume that G is abelian
and of odd order in this section. By modifying what has already been done in [14, Section
4] (see Remark 2.5.7), we define a modified Stickelberger map, whose transpose map will

play an important role in the rest of this dissertation.
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Recall from Section 1.6 that we have chosen a compatible set {(, : n € Z*} of primi-
tive roots of unity in F¢ and that G denotes the group of irreducible F“-valued characters

on (.

Definition 2.5.1 For each x € G and s € G, let v(x, s) € {(1—|s])/2,..., (|s|—1)/2} be
the unique integer (note that |s| is odd since G has odd order) such that y(s) = ({s)***

and then define

06 8)+ = v(x; 8)/s].

Extending this definition by Q-linearity, we obtain a pairing ( , ). : QG x QG — Q,

called the modified Stickelberger pairing. The map

0.:QG — QG; 0.(¢) = > (¥, s).s (2.5.1)

se€G

is called the modified Stickelberger map.
Proposition 2.5.2 Given ¢ € ZG, we have 0.(¥) € ZG if and only if 1 € Sa.

Proof. Write ¢ = )" n,x with n, € Z. For any s € G, we have

(detv))(s H X(s
— H(C\s\)”(x’s)""
X

= (o) e1O0s e

= (Go) P10,

Since Sz = ker(det), this implies that ¢ € Sz precisely when (1, s), € Z for all s € G,

or equivalently, when ©,(¢)) € ZG. This proves the claim. [
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Up until now, we have let (2 act trivially on GG. Below, we introduce other (2p-actions
on (&, one of which will make the Q-linear map O, : @@ — QG preserve the Q) p-action.
Here, the Q2g-action on G is the canonical one induced by the Qp-action on the roots of

unity in F°.

Definition 2.5.3 Let m = exp(G) and let p,, be the group of m-th roots of unity in F*.
The m-th cyclotomic character of Qp is the homomorphism k : Qp — (Z/mZ)* given
by the equations

w(¢) = ¢*W for w € Qp and ¢ € py,.

For n € Z, let G(n) be the group G equipped with the Qg-action given by

K(wn)

Ww-s:=Ss§ for s € G and w € Qp.

We will need G(—1). But of course, if F' contains all m-th roots of unity, then x = 1

and G(n) = G(0) is equipped with the trivial Qpg-action for all n € Z.
Proposition 2.5.4 The linear map ©, : QG — QG(—1) preserve the Qp-action.

Proof. For any x € G and s € G(—1), we have (w- x)(s) = x(s"®)) = x(w™* - ). Since s

and w™! - s have the same order, this implies that (w - x, s), = (x,w ™! - s). and so

O.(w-x) =) (w-x,8).s

seG

= Z(X,w_l - 8).S

seG

=3 0 s)lw- s)

seG

=w - 0.(X).

This shows that ©, preserves the QQp-action, as desired. [ |
34



Prerequisites Chapter 2

By Propositions 2.5.2 and 2.5.4, via restricting ©, we obtain an {)g-equivariant map
O, : Sg — ZG(—1). Applying the functor Hom(—, (£°)*) then yields an {2p-equivariant

homomorphism
O : Hom(ZG(-1), (F°)*) — Hom(Sg, (F°)*); [+ fo0O,,

where () acts on homomorphisms as usual as follows. If X and X’ are left Qp-modules

and ¢ : X — X’ is a group homomorphism, then (¢ -w)(z) := w™ - p(w-z) for w € Qp

and x € X. Restricting to the Qp-invariant homomorphisms, we obtain a homomorphism

! = 0!, : Homg, (ZG(—1), (F)*) — Homa, (Sg, (F)*),

*

called the modified Stickelberger transpose. Notice that we have a natural identification
Homg, (ZG(—1), (F)*) = Mapq,. (G(—1), (F°)*).

To simplify notation, let
A(FG) := Mapq, (G(—1), F°); (2.5.2)
A(OrG) == Mapg, (G(—1), OFc). (2.5.3)
Then, we may view ©% as a homomorphism ©° : A(FG)* — H(FQG).
Proposition 2.5.5 We have ©OL(A(FG)*) C H(FG) (recall (2.4.5)).

Proof. Let g € A(FG)* be given and let rg(a) € H(FG) be such that ©'(g) = rg(a).
Given ¢ € Sg, write 1) = > n, withn, € Z and define Y= > X From (2.4.9),
is it clear that rg(a)=U(y) = rg(a)(7Y). Observe further that O, (y!=1) = -0, () by
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Definition 2.5.1 and so ©%(g)(v[1) = ©%(g)(x))~". Since rg(a) = ©'(g) and rg(a) is the

restriction of rg(a) to Sg via the identification in (2.4.11), we deduce that

(re(@)ra(a)™)(¥) = ro(a)(@)re(a) ()

This shows that rg(a)re(a)l™! is the trivial map when restricted to Sgz. By the identi-
fications in (2.4.11), this means that rg(a)rg(a)l™! = ¢ for some t € G. Applying [—1]
to the above yields rg(a)"Urg(a) = t7! and so t = t~1. Since G has odd order, we must

have t = 1. It follows that r¢(a) € H(FG)), as desired. |

Definition 2.5.6 For F' a number field, let J(A(FG)) be the restricted direct product of

the groups A(F,G)* with respect to the subgroups A(Op,G)* for v € Mp. Let
A= Ap: A(FG)* — J(A(FG))
be the diagonal map and let

UAMOrG)) = ][] MORG)"

’UEMF
be the group of unit ideles.
Next, observe that the homomorphism
I1 ©.r : JMFG)) — J(H(FG)) (2.5.4)

UEMF

is well-defined by Proposition 2.4.3 and the fact that ©}(A(Or,G)*) C Homg,, (Sg, Of.)
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for all v € Mp. Recall from Section 1.6 that we have chosen {i,((,) : n € Z"} to be the

compatible set of primitive roots of unity in F°. Hence, the diagram

A(FG)* A J(A(FG))
o, I1e:x (2.5.5)
H(FG) ; J(H(FG))

commutes. By abuse of notation, we will denote the map in (2.5.4) by ©% = © .

Remark 2.5.7 The Stickelberger pairing ( , ) : QG x QG —» Q in [14, Section 4] is

defined to be the Q-linear map such that for each x € G and s € G, we have

(x,s) =v'(x,s)/|sl,

where v/(x, s) € {0,1,...,|s| — 1} is the unique integer such that x(s) = ((j5/)" ®*. The
Stickelberger map is defined analogously as in (2.5.1), but with ( , ). replaced by (, ).
Propositions 2.5.2 and 2.5.4 still hold when ©, is replaced by © (see [14, Propositions 4.3
and 4.5]). The same discussion following Proposition 2.5.4 then yields a homomorphism
O = 0L : A(FG)* — H(FG), called the Stickelberger tranpose. However, notice that
Proposition 2.5.5 does not hold when ©! is replaced by ©°.

For F' a number field, the same discussion in Definition 2.5.6 yields a homomorphism
0" = 0L : JIAN(FQ)) — J(H(FQ)).

This map was a key ingredient in [14], where McCulloh studied the Galois module struc-

ture of Oy, for h € H(Qp, G), or more precisely, the classes they determine in C1(OpG).
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The Class of the Square Root of the

Inverse Different

3.1 Computation using Resolvends

Let F' be a number field. In what follows, assume that G is abelian and of odd order.
Given a weakly ramified h € Hom(Qp, G), the classes cl(A4;) and ucl(4;) in Cl(OrG) and
UCI(OFrG), respectively, defined by A, may be computed using resolvends as follows.

First of all, recall that A, is locally free over OpG by [8, Theorem 1 in Section 2], in
which case the OpG-rank of A, is necessarily one. Moreover, we have Op, ®p, A >~ Ap,

from Remark 2.3.3. Hence, for each v € Mg, there exists a, € Ay, such that
Ap, = O G - a,. (3.1.1)
Moreover, by the Normal Basis Theorem, there exists b € F}, such that

F,=FG-b. (3.1.2)
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Since G has odd order, it follows from [1, Proposition 5.1] that b € F}, may be chosen to be
self-dual. Note that F,,G-a, = F,,, = F,G-b for all v € Mg and that Op,G-a, = Op,G-b

for all but finitely many v € Mp. This implies that there exists ¢ € J(F'G) such that

Ay =0Cy - b (3.1.3)

for all v € Mp. Hence, the isomorphism F'G — F}, of FFG-modules defined by g+ 3 -b

restricts to an isomorphism ¢ : OpG - ¢ — A, of OpG-modules. It follows that

cl(Ap) = [OrG - c] = j(c).

If b € F), is self-dual, then r¢(b)rg (b)Y = 1 by Proposition 2.3.9 (b). From (2.3.4), it is
easy to see that for all s, € G, we have Try(¢(s), p(t)) = Trp(s-b,t-b) = b5 = tr(s,t).
This implies that ¢ is in fact a G-isometry. Because Ay, is self-dual (recall Remark 2.3.8),
the lattice OpG - ¢ is self-dual with respect to tp. It then follows from Proposition 2.2.4
(a) that c € J(FG(y)), and from Proposition 2.2.9 (a) that (A, Try) € g(OpG), (recall

Definition 2.2.6). Also, we have

ucl(Ap) = [(OrG - ¢, tr)] = jio(c).

Remark 3.1.1 For each v € Mp, since the resolvend map rg : Map(G, F¢) — F¢G is

an isomorphism of F°G-modules, the equation a, = ¢, - b in (3.1.3) is equivalent to

re(ay) = ¢, - ra(b). (3.1.4)

Using reduced resolvends, the equation above becomes

ra(ay) = rag(c,) - ra(b). (3.1.5)
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Notice that the reduced resolvend rg(b) of an element b € F), satisfying (3.1.2) is already
characterized by (2.4.3), and by (2.4.5) if we require that b € F}, is self-dual in addition
(recall Proposition 2.3.9 (b)). Thus, in order to characterize the classes cl(Ay) and ucl(Ap),
it suffices to characterize the reduced resolvend r¢(a,) of an element a, € A, satisfying

(3.1.1) for each v € Mp.

3.2 Properties of Local Resolvends

Let F' be a finite extension of @, and assume that G is abelian. In this section, when-
ever we write Aj for some h € Hom(Qp, (), we are implicitly assuming that Apn/p exists
(by Proposition 1.2.1, this is so when G has odd order).

We will prove two fundamental properties of the resolvends rg(a) with A, = OpG - a
for a weakly ramified h € Hom(Qpg, G). It will be helpful to recall the notation from Sec-
tion 1.6 and the fact that the resolvend map rg : Map(G, F°) — F°G is an isomorphism
of F°G-modules.

Proposition 3.2.1 Let h € Hom(Qp, G) be weakly ramified.

(a) The homomorphism h™" is also weakly ramified.

(b) If Ay, = OrG - a, then there exists an element a’ € Ap-1 with rg(a’) = rg(a)™ such

that Ahfl = OFG ~al.

Proof. Since ker(h) = ker(h™"), we have F* = F' and so (a) clearly holds. As for (b),
note that re(a)rg(a)™ € (OrG)* by Proposition 2.3.10, so rg(a)™ = - rg(a)™Y for
some 3 € (OpG)*. We have rg(a’') = rg(a)™! for some o’ € Map(G, F*) since rg is bi-
jective. Notice that a’ € Fj,-1 by (2.3.3). Since A" = A" " and rg(a)™' = B - rg(a)™Y,
we see that in fact @/ € A,-1. Clearly rg(a)rg(a)™! € (OrG)*, so again by Proposi-

tion 2.3.10, we see that A,-1 = OpG - d, as desired. [ ]
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To prove the second fundamental property, we will need some facts concerning rami-

fication groups (in lower numbering).

Lemma 3.2.2 Let N /F and N/F be finite Galois extensions with N™ | F unramified.

(a) If N/F is weakly ramified, then any Galois subextension L/F of N/F is also weakly

ramified.

(b) The homomorphism Gal(N""N/F) — Gal(N/F) defined by o — o|n induces an
isomorphism Gal(N" N/F),, ~ Gal(N/F), for alln € Z>q. In particular, if N/F is
weakly ramified, then so is N""N/F.

(c) Let eg := |Gal(N/F)o/Gal(N/F),|. If N/F is abelian, then for all n € Zsq that are
not divisible by eg, we have Gal(N/F),, = Gal(N/F),+1. In particular, if N/F is also
wildly and weakly ramified, then Gal(N/F)y = Gal(N/F);.

Proof. See [23, Proposition 2.2] for (a) and (b); notice that the proof there is valid even

when F' # Q,. See [20, Chapter IV, Proposition 9, Corollary 2] for (c). [

Proposition 3.2.3 Let hy, hy € Hom(Q2p, G) be such that hy is unramified.

(a) We have e(FM"2 |F) = e(F'2/F).

Assume in addition that hy is weakly ramified.

(b) The homomorphism hihy is also weakly ramified and vpnyn, (AM72) = v, (AR2).

(c) If Op, = OpG - ay and Ap, = OpG - as, then there exists an element a € Ap,p, with

rg(a) =rg(ar)rg(az) such that App, = OrG - a.

Proof. Let h := hyhy. Note that ker(h;) Nker(hy) = ker(hy) Nker(h) so FM 'z = phiph,
Since FM /F is unramified, both F" Fh2 /[h2 and FM " /Fh are unramified. Using the

multiplicativity of ramification indices, we have e(F"/F) = e(F"/F) = e(F™ Fh2 /i),
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which proves (a). To summarize, we have the following the diagram, where the numbers

indicate ramification indices and e := e(F"2/F).

Fhiph

DN

Fh1 Fh th

N4

F

Now, assume in addition that F"*2/F is weakly ramified. Since F" /F is unramified,
it follows from Lemma 3.2.2 (b) that F" F2/F is also weakly ramified, and hence from
Lemma 3.2.2 (a) that F"/F is weakly ramified as well. Thus, indeed h is weakly ramified.

Moreover, from Proposition 1.2.1, we know that

vpn (A") = —(|Gal(F"/F)o| + |Gal(F" /F),| — 2)/2;

vpra (A") = —(|Gal(F" /F)o| + |Gal(F"* /F),| - 2) /2.

If (e,p) = 1, then F"/F and F"2/F are both tame, and Gal(F"/F), = 1 = Gal(F"2/F),.
If (e,p) > 1, then F"/F and F"2/F are both wildly and weakly ramified. In this case, we
have Gal(F"/F)y = Gal(F"/F); and Gal(F"?/F), = Gal(F"2/F); by Lemma 3.2.2 (c).
Since |Gal(F"/F)o| = e = |Gal(F"2/F)o|, we have vpn (A") = v, (A"2). This proves (b).

Finally, to prove (c), notice that rg(a;)rg(a;) ™Y € (OrG)* for i € {1,2} by Proposi-
tions 2.3.7 (b) and 2.3.10. Let a € Map(G, F°) be such that rg(a) = rg(ar)rg(as), which
exists as r is bijective. We have a € F}, by (2.3.3), and clearly rg(a)rg(a)™ € (OpG)*.
Hence, again by Proposition 2.3.10, we will have A, = OpG - a as long as a € A,. But

Ap = Mapg, ("G, A"), so it remains to show that a(s) € A" for all s € G.
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To that end, observe that rg(a) = rg(a;)rg(az) implies that for each s € G, we have

a(s) =Y ai(r)as(t).

rt=s

On one hand, because a; € Op,, we have vpn, pry(a1(r)) > 0 for all r € G. On the other
hand, since ay € Ay, and F" Fh2/Fh2 is unramified, we have vpn, gy (ag(t)) > vpn, (A12)
for all t € G. We then see that vpn, gy (a(s)) > vpny (A"2). But F™M F"2 /F" is unramified
and vpn, (A"2) = vpn (A") from (b), so the above inequality becomes vgn(a(s)) > vpn (AR).

This shows that a(s) € A" for all s € G, as desired. This proves (c). |

Remark 3.2.4 Proposition 3.2.3 (c¢) turns out to be an extremely useful tool and will

be used repeatedly in the rest of this dissertation.

3.3 Proofs of Theorems 1.2.2 and 1.3.2

Theorem 1.3.2 Let K be a number field and let G be a finite abelian group of odd order.
For all h,hy, hy € HL(Q,G) with d(hy) Nd(hy) = 0, we have

(a) h™' € H(Q,G) and galAﬂ(h_l) = galy,(h)™'; and
(b) hihs € Hy(Qk, G) and galy,(hihs) = galy,(h)galy,(ho).

Proof. To prove (a), let h € H. (Q, G) be given. The fact that h= € H. (Qg, G) follows
directly from Proposition 3.2.1 (a). Next, let b € K}, be as in (3.1.2), and we will take b to
be self-dual. For each v € M, let a, € A, and ¢, € (K,G)* be asin (3.1.1) and (3.1.3),
respectively. Asnoted in Section 3.1, we have ¢ := (¢,) € J(KG(s)) and ucl(Ay) = ji5)(c).

Now, notice that rg(b) € (K°G)* by Proposition 2.3.7 (a) and let v € Map(G, K°)
be such that rg(b') = rg(b)™!; such an element ¥ exists because rg is bijective. From

(2.3.3) and Proposition 2.3.7 (a), we see that ' € Kj-1 and Kj-1 = KG-bV'. Clearly V/ is
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also self-dual (with respect to T'r,-1) from Proposition 2.3.9 (b). For each v € M, apply
Proposition 3.2.1 (b) to obtain an element a}, € A, -1 with rg(a;,) = rg(a,)~" such that
A1 = Ok, G-a;,. Recall from (3.1.4) that rg(a,) = ¢y re(b), and so rg(a)) = ¢, -ra (V).

It follows that a/, = c;' - b'. As in Section 3.1, we then deduce that

ucl(Ay-1) = jio () = jio (0) 7" = ucl(4,) "

This completes the proof of (a).

To prove (b), let hy, hy € HL (Qg, G) with d(hy) Nd(hsy) = 0 be given. Set h := hyhs.
The fact that h € HL (Qg,G) is a direct consequence of Proposition 3.2.3 (b). Next, for
i€ {1,2},let b; € K}, be asin (3.1.2), and we choose b; to be self-dual. For each v € M,
let a;, € Ay, and ¢, € (K,G)* be as in (3.1.1) and (3.1.3), respectively. As noted in
Section 3.1, we have ¢; := (¢;,) € J(KG(s)) and ucl(Ay,) = js)(ci)-

Now, there exists b € Map(G, K¢) such that rg(b) = rg(by)rg(bs), again because rg
is bijective. From (2.3.3) and Proposition 2.3.7 (a), we see that b € K}, and K;, = KG -b.
From Proposition 2.3.9 (b), it is clear that b is also self-dual (with respect to Try). Note
that for each v € M, at least one of (h1), and (hs), is unramified as d(h;) Nd(hy) = 0.
Then, by Proposition 3.2.3 (c), there exists a, € Ay, with rg(a,) = rg(ai,)re(as,) such
that Ay, = Ok,G-a,. Recall from (3.1.4) that rg(a;,) = ¢ip-ra(b;) for i € {1,2}, and so

ro(ay) = c1uC2 - ra(b). It follows that a, = ¢ ¢, - b. As in Section 3.1, this gives

ucl(An) = jis(erca) = Jis)(c1)ds)(c2) = ucl(Ap, Jucl(Ap,).

This completes the proof of (b). |

Theorem 1.2.2 Let K be a number field and let G be a finite abelian group of odd order.
For all hyhy, hy € HL (Qk, G) with d(hy) Nd(hy) =0, we have
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(a) h™t € H.(Q,G) and gal,(h™') = gal,(h)~'; and
(b) hihy € HY (g, G) and gal,(hihs) = galy(hy)gal,(hs).

Proof. This is a direct consequence of Thereom 1.3.2 because gal, = ® o gal, ,,, where ®

is the homomorphism from (1.3.1) (cf. Remark 2.2.11). |
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Chapter 4

Characterization of the A-Realizable

Classes in Cl(OxG) and UCH O G)

Let F' be a number field. In what follows, assume that G is abelian and of odd order. As
discussed in Section 3.1, given a weakly ramified h € Hom(Qr, G), its square root of the
inverse different A, defines a class cl(A,) in Cl(OpG), and a class ucl(Ay) in UCHOrG).
Recall also from Remark 3.1.1 that in order to characterize these two classes, it suffices
to characterize the reduced resolvends r¢g(a,) for which A, = Og,G-a, for each v € Mp.
This is the goal of this chapter, and we will give a brief outline of our strategy below.
First, in Section 4.1, we will show that for each v € Mp, we may factor h, = h™ h!
for some A", hi?t € Hom(Qp,, G) such that ™ is unramified and that F,' o / F, is totally
ramified. We then see from Proposition 3.2.3 (¢) that it suffices to compute the reduced
resolvends r¢(@y nr) and 7¢(ay tor) for which Opnr = Op, G - Gy and Apior = Op, G - ay 1ot
The reduced resolvends rg(a, ) are already characterized by (2.4.4). Hence, it remains
to compute the reduced resolvend r¢(ay 10t). We will consider the case when h,, is tame in
Section 4.2 and then the case when h, is wild in Section 4.5. In the latter case, we will

have to assume that v is unramified over Q and that e(Fy' v /F,) is prime.
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4.1 Factorization of Local Homomorphisms

Let F' be a finite extension of (Q, and assume that G is abelian. In this section, we will
write 7 := 7p for a chosen uniformizer in F' and ¢ := g for the order of Op /(7). Let F™"
be the maximal unramified extension of F' contained in F° and define Q) := Gal(F™" / F).

It will also be helpful to recall the notation in Section 1.6.

Definition 4.1.1 Let h € Hom(Qp, G). We say that
h = h" h', where ™", h'" € Hom(Qp, G)

is a factorization of h with respect to 7 if K" is unramified and F"*" C F ,, for some

n € Zxo. The level of such a factorization is defined to be
Ce(W Bt := min{n € Zso | F*"" C Fpp}.

Proposition 4.1.2 Every homomorphism h € Hom(Qp, G) admits a factorization with

respect to w. Moreover, for any such factorization h = h""h'°*, we have
(a) L:(h""h*Y) =0 if and only if h is unramified;

(b) L:(h"h'°") < 1 if and only if h is tame;

(c) €.(R""h'") < 2 if h is weakly ramified.

Proof. Let F% be the maximal abelian extension of ' contained in F¢ and let F, be the
union of Fy, for n € Zsg. We have F% = F" F, and F""NF, = F from Local Class Field
Theory. Hence, there is a natural isomorphism Gal(F®/F) ~ Gal(F™ /F) x Gal(F,/F).
We may then regard Gal(F™ /F) and Gal(F,/F) as subgroups of Gal(F®/F).

Now, since G is abelian, every h € Hom(Qr, G) factors through Qp — Gal(F/F).
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Viewing h as a homomorphism Gal(F®/F) —s G, let h™™ and h'* denote its restrictions
to Gal(F™" /F) and Gal(F,/F), respectively. Then, clearly h = h""h'*" is a factorization
with respect to 7. If h = h""h'°! is any factorization of h with respect to 7, then plainly
(a) and (b) hold. As for (c), see the proofs of [5, Proposition 4.1 and Lemma 4.2]. W

If h € Hom(Qp, G) is tame, then it factors through the quotient map Qr — Q% and
we may regard h as a homomorphism Q% — G. In this case, a more explicit factorization
of h may be given, which we will describe below.

First, we will recall the structures of the extensions F™"/F and F"/F and their Galois
groups (see [10, Sections 7 and 8], for example). On one hand, the field F" is obtained by
adjoining to F all n-th roots of unity for (n,p) = 1. Hence, the group Q¥ is procyclic

and is topologically generated by the Frobenius automorphism ¢ = ¢y given by

o(¢n) = (! for all (n,p) = 1. (4.1.1)

As for the field F*, it is obtained by adjoining to F™ all n-th roots of 7 for (n,p) = 1.
We will choose a coherent set of radicals {7'/" : n € Z*} such that (7'/™)" = 7!/™ and
then define 7™/ := (7¥/™)™ for m,n € Z*. These choices of radicals then determine a

distinguished topological generator o = o of the procyclic group Gal(F*/F™") given by

o(7/m) = Grm for all (n,p) = 1. (4.1.2)

1/n for

If we let ¢ also denote the unique lifting of ¢ from Q% to Qf fixing the radicals 7
(n,p) = 1, then Q% is topologically generated by ¢ and ¢. In particular, any homomor-

phism A € Hom(Q%, G) is uniquely determined by its values on ¢ and o.

Remark 4.1.3 By abuse of notation, we will also write o for some chosen lift of o in Qp.
If h € Hom(Qp, G) is tame, then the value k(o) is independent of the choice of the lift.
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Next, notice that pop~to~! = ¢9=! because both sides have the same effect on ¢,, and
7'/ for (n,p) = 1. Let (©2%)% be the abelianization of Q. Moreover, let ¢ and @ be the
images in (Q%)% of ¢ and o, respectively. Then, the group (%)% is the direct product of
the cyclic group (7) of order ¢ — 1 with the procyclic group topologically generated by ¢.

In view of this observation, define

G(g-1) = {5 € G | the order of s divides ¢ — 1}. (4.1.3)
Because (G is abelian, we see that any h € Hom(Q%, G) may be defined by specifying the
values h(¢) and h(c), provided that h(o) € G(4-1).
Definition 4.1.4 Let h € Hom(Q%, G). Define

" € Hom(Q%, G); " (¢) := h(¢) and h"" (o) := 1;

h*" € Hom(Q%, G);  h'*(¢) := 1 and h*** (o) := h(o).

Clearly h = h™ h'*°t, which we will call the factorization of h with respect to o.

Remark 4.1.5 Let h € Hom(Q%, G) and let h = h™ h'** be the factorization of h with
respect to 0. Clearly h™" is unramified because h"" (o) = 1. We will also see in Proposi-
tion 4.2.2 that F** = F(r'/l), where s := h(0') € G (,_1). This means that h = h" h'*" is

in fact a factorization of h with respect to —7 in the sense of Definition 4.1.1.

4.2 Decomposition of Local Tame Resolvends

Let F' be a finite extension of QQ,. We will assume that G is abelian and of odd order
in this section. We will characterize the reduced resolvends rg(a) for which A, = OrG-a

for a tame h € Hom(Q, G), or equivalently h € Hom(Q%, G) (recall Remark 2.3.5).
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As in Section 4.1, we will write 7 := 7 for a chosen uniformizer in F' and ¢ := ¢ for

the order of Or/(r). Let ¢ and o be defined as in (4.1.1) and (4.1.2), respectively. Also,

let G(4—1) be as in (4.1.3). We will also need a further definition.

Definition 4.2.1 For each s € G(4_1), define f, = fr, € A(FG)* by

m ift=s#1
fs(t) ==

1 otherwise

(recall (2.5.2)). Notice that fs indeed preserves 2p-action because all (¢ — 1)-st roots of
unity are contained in F', and so elements in G'(,—1), as well as 7, are fixed by {2p. Such a
map in A(F'G)* is called a prime §-element over F. Also, define §p := {fs: s € Gy_1)}

to be the collection of all prime §-elements over F.

Proposition 4.2.2 Given s € G(4_1, define h € Hom(QY, G) by h(¢) = 1 and h(o) = s.

Then, we have F"* = F(z'/11) and there exists a € Ay, such that A, = OrG - a and

ra(a) = ©,(f;).

Proof. Let e := |s| and II := 7/¢. Notice that F* = F(II) because ker(h) is topologically
generated by ¢ and ¢, which both fix II, and [Q% : ker(h)] = e = [F(IT) : F]. Hence, the
field F" is totally ramified over F' and has II as a uniformizer. So, we have O" = Op|[II]
(see [20, Chapter I, Proposition 18], for example). Because A" = II!'=¢/20" by Proposi-
tion 1.2.1, we see that {II**(1=¢)/2 | k = 0,1,...,e—1} is an Op-basis of A". We will show

that their average

e—1

o= 1Zl_[]“rl%e
e

k=0

is a free generator of A" over OrGal(F"/F). Note that a € A" because (e,p) = 1.
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The group Gal(F"/F) is cyclic of order e and is generated by the element IT — (II,

which is the restriction of o to F. For each i =0,1,...,e — 1, we have
-1
; 1< (k+15%)i gy 1z
o'(a) ==Y (e =
e
k=0

)/2)i

For [ =0,1,...,e — 1, multiply the above equation by C;(H(l*e to obtain
i —+952y 1 — (k=Dippk+13°
o' () =-> « .
k=0

Now, summing the above over all # = 0,1,...,e — 1 then yields

e—1 . —(l+1_e)i 1 e—1 . e—1 . -

AR | G WG LS | (4.2.1)
e
=0 k=0 i=0

Since {II+(1=¢)/2 | | = 0,1,...,e — 1} is an Op-basis of A" and ¢, € O, this shows that
indeed A" = OpGal(F"/F)-a. Since a € F" and A;, = Mapg,,. ("G, A"), it is not hard to

see that the map a € Map(G, F°) given by

w(a) if t = h(w) for w € QF
a(t) :=

0 otherwise

is well-defined and satisfies A, = OpG - a, as desired.

Finally, we will use the identification H(F'G) = Homg, (Sg, (F°)*) in (2.4.12) to show
that re(a) = ©L(f,). To that end, let ¥ € G and let v := v(, s) be as in Definition 2.5.1.
Then, we have x(s) = (Y and k:=v—(1—¢)/2 € {0,1,--- ,e—1}. On one hand, by the

definition of a, we have

rG(a>(X) = ioj(a)x(s)_’ — - 0.2( )Ce (k+15)i
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1—e

The same computation as in (4.2.2) then shows that rg(a)(y) = II** 2" = 7t On

the other hand, we have

OL(f)(X) = fs (Zbc, t>*t> =[] ()bt = mtos (4.2.2)

teG teG

also. Hence, indeed rg(a) = ©L(f), and this completes the proof. |

Next, we will consider an arbitrary tame h € Hom(Qr, G).

Theorem 4.2.3 Let h € Hom(Q%, G). If Ay, = OpG - a, then we have

TG(G’) = u@i(fs)

for some u € H(OpG) and for s := h(o).

Proof. Let h = h" h'°* be the factorization of h with respect to . By Proposition 2.3.7
(b) and (2.4.4), there exists a,, € Opnr such that Opnr = OpG - a,, and rg(ay,) = u' for
some v € H(OpG). Similarly, by Proposition 4.2.2, we have Aptot = OpG - a4 for some
Aot € Ap,,, With rg(aw) = ©L(fs), where s := h(o). Applying Proposition 3.2.3 (¢), we
then obtain an element o’ € Aj with rg(a') = rg(an,)rg(aw) such that A, = OpG - d'.

Since A, = OpG - a also, we have a = (- a’ for some € (OpG)*. It follows that

re(a) = rag(B)ra(a’) = (rag(B)u)OL(fs),

where u := rag(8)u’ € H(OrG). This proves the claim. |

Theorem 4.2.4 Let s € G(g—1) and v € H(OpG). If h is the homomorphism associated
to u®L(fs), then h is tame and h(c) = s. Moreover, there exists an element a € Ay, such
that Ay, = OrG - a and

TG(a) = ugi(fs)
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Proof. Let h™ and h'** be the homomorphisms associated to u and ©!(f,), respectively.
Notice that A" is unramified by (2.4.4) and so h""(c) = 1. We also know from Proposi-
tion 4.2.2 that h!! is tame. Since h = A" h'°* by definition, this implies that & is tame.
In particular, we may view h as an element of Hom(Q%, () (recall Remark 2.3.5).

Now, Proposition 4.2.2 also implies that h'**(¢) = 1 and h'** (o) = s. We then deduce
that h(o) = h'**(o) = s, which proves the first claim. This also shows that h = h""h' is
the factorization of h with respect to . The same argument in the proof of Theorem 4.2.3

verbatim then shows that there exists a € A; satisfying the desired properties. |

Remark 4.2.5 Theorems 4.2.3 and 4.2.4 are modifications of [14, Theorem 5.6], where
McCulloh proved the analogous statements, but with A;, and ©! replaced by O; and ©?,

respectively (recall Remark 2.5.7).

The next proposition will be needed for the proof of Theorem 1.2.4. It will be helpful

to recall the definitions of the pairing ( , ) and the map ©' from Remark 2.5.7.
Proposition 4.2.6 For all s € G,_1), we have OL(f,)O'(fs) = O'(fs2).

Proof. Let x € G be given. As computed in (4.2.2) and the proof of [14, Proposition 5.4],
we know that (OL(f,)0!(f,))(x) = #5108k and ©!(f,2)(x) = 757, So, it suffices to
show that (x, s).+(x, s) = (x, s?). To that end, let e := |s| and let k € {0,1,...,e—1} be
such that x(s) = ¢¥, so x(s?) = ?*. Ifk € {0,1,...,(e—1)/2}, then 2k € {0,1,...,e—1}
and so

(x,8)s + (x,8) = k/e+k/e =2k/e = (x, s%).

Ifke{(e+1)/2,...,e—1}, then 2k € {e+1,...,2¢ — 2} and so

(o 8)e + (6 8) = (k = o) e+ kfe = (2K — &) fe = (x, 5*).

The completes the proof. [ |
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4.3 Approximation Theorems

Let F' be a number field. In what follows, assume that G is abelian and of odd order.

We will give preliminary characterizations of the sets

AN(OrG) := {cl(Ap) : tame h € Hom(Qp, G)}
Al (OrG) := {ucl(A},) : tame h € Hom(Qp, G)}
of tame A-realizable classes in Cl(OpG) and UCI(OrG), respectively.

Definition 4.3.1 Recall Definition 4.2.1 and define
S=38r ={f € JIANFQ)) | f, € §r, for all v € Mp}.

Theorem 4.3.2 Let h € Hom(Qp, G), say with F, = FG-b. Then, we have h is tame if

and only if there exists ¢ € J(FG) such that

rag(c) =n(re(b)) " uL(f) (4.3.1)

for some u € U(H(OrG)) and f € §. Moreover, if (4.53.1) holds, then
(1) for allv € Mg, we have f, = fr,s, for s, := hy(0F,);

(2) for all v € Mg, we have f, =1 if and only if h, is unramified;
(3) 3(c) = cl(An);

(4) c € J(FGs) and js(c) = ucl(Ap) if b is also self-dual.

Proof. First, assume that h is tame. For each v € Mp, let a, € Ay, and ¢, € (F,G)* be as

in (3.1.1) and (3.1.3), respectively. By Theorem 4.2.3, we have rg(a,) = u,0L(fr, s,) for
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some u, € H(Op,G) and for s, := h,(0p,). This implies that fg, ;, = 1 if and only if &,

is unramified, and so f := (fr,s,) € §. Moreover, from equation (3.1.5), we obtain

rag(c,) =ra(b)'ra(ay) =ra(b) w0 (fr,.s.)-

Setting ¢ := (¢,) € J(FG) and u := (u,) € U(H(OrG)), we see that (4.3.1) indeed holds.
Conversely, suppose that there exists ¢ € J(F'G) such that the equality (4.3.1) holds

for some v € U(H(OpG)) and f € §. Then, for each v € My, we have

rag(co)ra(b) = u,©L(fo),

with f, = fr, s, say. Note that h is the homomorphism associated to r¢(b), so clearly h, is
that associated to u,0%(fr, s,) and thus is tame by Theorem 4.2.4. This shows that A is
tame. Theorem 4.2.4 also gives h,(0r,) = s,, which proves (1), and (2) follows directly
from (1). Now, again by Theorem 4.2.4, there exists a, € A, such that A,, = Op,G - a,
and rg(ay) = uyOL(fF,s,). In particular, we obtain r¢(a,) = rag(c,)rq(b), meaning that

there exists ¢, € GG such that

rg(a,) = (¢ - ra(b))t, = (coty) - (D).

This implies that a, = (¢yt,)-b. Set t := (t,) € U(OpG). Then, as in Section 3.1, we see
that cl(Ap) = j(ct) = j(c). If bis also self-dual, then ct € J(F'G(y)) and so ¢ € J(FGy)).

We have ucl(Ap) = js)(ct) = jis)(c) as well. This proves (3) and (4). |

Remark 4.3.3 Theorem 4.3.2 (without the statement in (4)) is analogous to [14, Theo-
rem 6.7, where McCulloh proved the corresponding statements with A;, and O replaced

by Oy, and O, respectively (recall Remark 2.5.7). The proof is verbatim, except we have
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to use [14, Theorem 6.7] rather than Theorem 4.3.2 (cf. Remark 4.2.5).

Notice that Theorem 4.3.2 implies that for any ¢ € J(F'G), we have j(c) € A/(OrQG)

if and only if rag(c) is an element of
N(H(FG)U(H(OrG))OL(F) (4.3.2)

(recall (2.4.3)). Similarly, for any ¢ € J(FGs)), we have j(c) € AL (OpQG) if and only if
rag(c) is an element of

n(H(FG)))U(H(OrG))OL(T) (4.3.3)

(recall (2.4.5) and Proposition 2.3.9 (b)). However, it is unclear whether the sets in (4.3.2)
and (4.3.3) are subgroups of J(H(F'G)) because § is only a subset of J(A(FG)). Below,
we will state two approximation theorems which were proved by McCulloh in [14]. They
will allow us to replace § by J(A(FG)) in both (4.3.2) and (4.3.3).

First, we will need some further definitions (recall (2.5.2) and (2.5.3)).

Definition 4.3.4 Let m be an ideal in Op. For each v € Mp, define

Um(OFg) = (1 + mOFg) N (Opvc)x

Un(AMOE,G)) == {9, € MOE,G)* | go(s) € Un(Ope) for all s € G with s # 1}

and set

Ul (MOFG)) (H U (MOg,G )ﬂJ(A(FG)).

veEMp
Definition 4.3.5 For g € J(A(FG)) and s € G, define

= [ o e ITE"

UEMF UEMF
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Theorem 4.3.6 Let m be an ideal in OF divisible by both |G| and exp(G)?.
(a) We have Homg, (Sg, Un(Or:)) C H(OFp,G) for all v € M.
(b) We have OL(UL(AMOFG))) C U(H(OFG)).

Proof. See [14, Theorem 2.14] for (a). As for (b), observe that by (a), it suffices to show
that for each v € My, we have ©L (U}, (A(OF,G))) C Homg,, (Sg, Un(OF¢)). To that end,
let g, € U, (A(OF,G)) be given. For any ¢ € Sg, we have (1,1), = 0 and (¢, 5), € Z

for all s € G. Since g,(s) € Un(Op¢) for s # 1, we see that

0.(9.)(¥) = . (Zw, 8>*s> = [ 9(s)®"

seG s#1

indeed lies in Uy (Op¢). This proves the claim. |

Theorem 4.3.7 Let g € J(A(FG)) and let T be a finite subset of Mp. Then, there ezists
f € F such that f, =1 for allv €T and

fo (mod MA(FG))Un(A(OF@))).

S
Il

Moreover, we may choose f so that for each s € G(—1) with s # 1, there ezists w € Qp

such that f,.s # 1 (recall Definition 2.5.3).

Proof. See [14, Proposition 6.14]. |

4.4 Proofs of Theorems 1.2.3, 1.3.3, and 1.2.4

Theorem 1.2.4 Let K be a number field and let G be a finite abelian group of odd order.
We have cl(Ap)cl(Oy) = cl(O2) for allh € H (Qg, G), and hence A(OxG) C R(OxG).
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Proof. Let h € H! (g, G) be given, with K}, = KG - b say. On one hand, we know from
Theorem 4.3.2 that cl(A4;) = j(c) for some ¢ € J(KG) such that

rag(c) =n(ra (b)) ud.(f), (4.4.1)

where u € U(H(OkQ)) and f, = fk,.s, for s, := hy(0k,). On the other hand, from [14,
Theorem 6.7] (cf. Remark 4.3.3), we have cl(O},) = j(¢) for some ¢ € J(KG) such that

rag(c) = n(ra(b)) " ud'(f),

where u € U(H(OkG)) and f € § may be assumed to be the same as those in (4.4.1).

Then, we have

rag(cc') = n(ra(b)?) " u*©L(f)O'(f).

Observe that h? is the homomorphism associated to r¢(b)?. From Proposition 4.2.6, we
also know that ©((f)©'(f) = ©'(f’), where f’ € Fis given by f, = fi. .. It then follows
from [14, Theorem 6.7] that cl(Op2) = j(ed) = j(c)j(c’) = cl(Ap)cl(Oy), proving the first
claim. Since R(Ok@G) is a subgroup of Cl(OxG) by [14, Corollary 6.21], we immediately
deduce that A'(OxG) C R(OkG), as desired. |

Theorem 1.3.3 Let K be a number field and let G be a finite abelian group of odd order.
Then, the set Al (OxG) is a subgroup of UCIOkG). Moreover, given ¢ € AL (OxG) and

a finite set T of primes in O, there exists h € H} (U, G) such that
(1) Ku/K is a field extension;

(2) Ky/K is unramified at all v € T';

(3) ¢ = ucl(Ay).
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Proof. Let p, denote the composition of the homomorphism J(KG(,)) — J(H(KG)) ob-

tained by restricting the map rag in Definition 2.4.4 followed by the quotient map

J(H(KQ))
(H(KG)))U(H(OKG))OL(J(MKG)))

JH(KG)) — ;
We will show that A% (Ok@G) is a subgroup of UCI(OkG) by showing that
S (ALK G)) = Ker(py), (142)
or equivalently, that for any ¢ € J(KGy), we have j (c) € AL(OxG) if and only if
rag(c) € n(H(KGw)UH(OxG))OL(J(MKE))). (4.4.3)

To that end, let ¢ € J(KG(y)) be given. First, suppose that ji)(c) = ucl(A) for some
tame h € Hom(Qg, G), with K, = KG - b say. Since G has odd order, we may take b to
be self-dual by [1, Proposition 5.1, so r¢(b) € H(KG(1y) by (2.4.3) and Proposition 2.3.9
(b). Also, by Theorem 4.3.2, there exists ¢’ € J(KGy)) such that j.)(c') = ucl(A4;) and

rag(c') € n(H(KGw)UH(OkG))OL(J(MKE))).
Since j5)(c) = ucl(Ay) also, from the bijection in (2.2.2), we see that
c=c (mod O((KG1))U(OkG)).

It is then clear that (4.4.3) indeed holds.

Conversely, assume that (4.4.3) holds. Then, we have

rag(c) = n(ra(b)) " udi(g) (4.4.4)
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for some r¢(b) € H(KG(1)), u € U(H(OkG)), and g € J(A(KG)). Now, let m be an ideal

in Ok. By Theorem 4.3.7, there exists f € § such that

g=f  (mod AA(KG))U.(A(OKG))). (4.4.5)

Choosing m to be divisible by both |G| and exp(G)?, from Proposition 2.5.5 and Theo-

rem 4.3.6 (b), the above then implies that

©.(9) = OL(f) (mod n(H(KGw))U(H(OkG))).

Hence, changing b and w in (4.4.4) if necessary, we may assume that g = f. Note that b is
self-dual by Proposition 2.3.9 (b) as r¢(a) € H(KG ). If h := hy is the homomorphism
associated to r¢(b), then h is tame and j)(c) = ucl(A;) by Theorem 4.3.2. This proves
(7.4.1). It remains to show that h may be chosen such that (1) and (2) are satisfied.
Let T be a finite set of primes in Og. First of all, by Theorem 4.3.7, we may choose
the f € § in (4.4.5) such that f, =1 for all v € T. By Theorem 4.3.2, this implies that
h, is unramified for all v € T', so (2) holds. We may also choose the f € § in (4.4.5) such
that for each s € G(—1) with s # 1, there exists w € Qk with f,.; # 1. In particular, we
have f, = fk,.ws for some v € M. But observe that h,(0k,) = w - s by Theorem 4.3.2
and that (s) = (w - s) by Definition 2.5.3. This shows that s € h(Qk) for all s € G\ {1}
and so h is surjective. It follows that K, is a field, and so (1) holds as well. This completes

the proof of the theorem. [ |

Theorem 1.2.3 Let K be a number field and let G be a finite abelian group of odd order.
Then, the set A'(OG) is a subgroup of Cl(OkG). Moreover, given ¢ € A (OkG) and a
finite set T of primes in O, there exists h € H} (g, G) such that

(1) Kn/K s a field extension;
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(2) K/ K is unramified at allv € T';
(3) ¢ = cl(Ap).

Proof. Since ®(ucl(Ay)) = cl(Ay) for all h € HL (Qg,G), where @ is the homomorphism
in (1.3.1) (cf. Remark 2.2.11), this follows directly from Theorem 1.3.3.
Alternatively, let p be the composition of the homomorphism rag in Definition 2.4.4

followed by the quotient map

J(H(KQ))
N(H(KG))U(H(OkG))OL(J(AMKG)))

JH(KG)) —
Then, essentially the same argument as in the proof of Theorem 1.3.3 shows that
JTH(A(OkG)) = ker(p),
or equivalently, that for any ¢ € J(KG), we have j(c) € A'(OkQG) if and only if
rag(c) € n(H(KG))U(H(OG))OL(J(A(KQ))). (4.4.6)

This shows that A(OkG) is a subgroup of Cl(Ox@G). The second claim in the theorem

may also be proved using a similar argument as that in the proof of Theorem 1.3.3. B

4.5 Decomposition of Local Wild Resolvends I

Let F' be a finite extension of Q,. We will assume that G is abelian and of odd order in

this section. Under certain hypotheses, we will compute the reduced resolvends r¢(a) for
which A, = OrG - a for a wildly and weakly ramified h € Hom(Qp, G). It will be helpful

to recall the notation set up in Section 1.6.
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First, we make the following observation.

Proposition 4.5.1 Assume that F'/Q, is unramified and that p is odd. If N/F is a finite

Galois extension with different ideal ® y/p and e(N/F) = p, then N/F is weakly ramified

and ’UN(QN/F) = 2(p — 1)

Proof. Notice that |Gal(N/F)| = e(N/F) = p. Moreover, since Gal(N/F'),/Gal(N/F),
has order coprime to p (see [20, Chapter IV, Proposition 7, Corollary 1], for example),
we must have |Gal(N/F);| = p as well. Now, suppose on the contrary that N/F is not
weakly ramified. This means that Gal(N/F), # 1, and so we must have |Gal(N/F)s| = p.

Then, Proposition 1.2.1 implies that
on(@nyp) = D (IGal(N/F)u| = 1) > 3(p — 1).

n=0

From [16, Chapter III, Theorem 2.5], we also have that

onN(Dnyr) <p—1+un(p)

But vy (p) = p since e(N/Q,) = e(N/F)e(F/Q,) = p. Hence, we have 2p —1 < 3(p — 1)
and so p = 2, which is a contradiction. This proves that N/F must be weakly ramified,
and the claim that vy (D n/p) = 2(p — 1) also follows. |

The next proposition is analogous to Proposition 4.2.2 (also recall (2.5.2)).

Proposition 4.5.2 Assume that F'/Q, is unramified and let h € Hom(Q2p, G) be so that

e(F"/F)=p and F" C F,5. Then, there exists a € Ay, such that A, = OrG - a and

ra(a) = ©.(g)

for some g € A(FG)*.
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The proof of Proposition 4.5.2 will take up most of the rest of this section. In the se-
quel, assume that F//Q, is unramified and let h € Hom(§2r, G) be as in Proposition 4.5.2.
To simplify notation, set L := F" and let ¢ := ¢, be the chosen primitive p-root of unity
in F¢. Moreover, notice that since G has odd order, the hypothesis e(F"/F) = p implies
that p is odd. Hence, by Proposition 4.5.1, the extension L/F is weakly ramified and we

have vi(Ar/r) = 1 — p. Finally, the hypothesis L C F,, gives the following.

Lemma 4.5.3 There exists v € F(C) such that L(¢) = F(¢,2'/?) and that '/ — 1 is a

uniformizer in L(C).

Proof. See [18, Section 3 and the discussion following Lemma 8]. This lemma requires the
hypotheses that F'/Q, is unramified with p odd and that L C F,,. [ |

Let x € F(C) be given by the above lemma. The fact that vz (z"/? —1) > 1 will be
important, as we will see. We summarize the set-up in the following diagram, where the

numbers indicate the ramification indices.

L(¢) = F(¢,2"/?)

ok
L P L:=F
p
F(() vr(Arp) =1—p
[
Vit —1) =1
1

Qp, (pisodd)

Moreover, we will need some further notation.

Definition 4.5.4 Write F, := Z/pZ. For each i € F,, if z is an element of order 1 or p

in a group, we will write 2* for 2™, where n; € Z is any integer representing i. We will
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also define ¢(i) € {(1 —p)/2,...,(p — 1)/2} to be the unique integer representing i (cf.

Definition 2.5.1). If 7 € F ¥, we will write i~! for its multiplicative inverse in FJ.
Definition 4.5.5 For each i € F;, define

1

w; € Gal(L(Q)/L);  wi(¢) =¢"
Moreover, define z; := w;(x) and

2P = wi (2P,

)

which is clearly a p-th root of x;. We will also write y; for :1721 7 to simplify notation.

Now, consider the element
1 C\? Ccl? Cc\?
- ZH k) | 2 1+Hy< o [ (4.5.1)
keFy ’LEFX zEIFX ’LEFX

We will show that the element a € Map(G, F'¢) defined by

w(a) if s = h(w) for w € Qp
a(s) := (4.5.2)

0 otherwise
is well-defined and that it satisfies the conclusion of Proposition 4.5.2.

Remark 4.5.6 The definition of the element « in (4.5.1) is motivated by the definition
of g € A(FG)* in Lemma 4.5.11, the computation of ©%(g)(x) for x € G in (4.5.4), and

the formula (2.4.10).

First, we will use a valuation argument to show that o € Ay /p.
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Lemma 4.5.7 We have o € L.

Proof. By definition, we have y; € L(() for all i € F}. So, clearly a € L(¢) and we have
a € L if and only if « is fixed by the action of Gal(L({)/L). Now, notice that an element
in Gal(L(¢)/L) is equal to w; for some j € F). Moreover, observe that w;w; = wj; and

80 wj(y;) = y;i for all i € F . Hence, for each k € F,,, we have

wi [ TT v ™ ) = T v = ] ¥ ™.

i€Fy i€Fy i€Fy

This implies that w; permutes the summands

L H g H yclie=1)

i€Fy i€Fy
in the definition of . This shows that w;(a) = a and so o € L. |
Lemma 4.5.8 For alli € Fy and n € Z, we have vy)(y;) = 0 and vy (y; — 1) > 1.

Proof. For each i € F, we have y; —1 = 2P =1 = w;(2"/? —1). Since vre)(@P—1) =1,

this implies that vy (y; —1) = 1 and so vy (y;) = 0. Now, the second claim is obvious

for n = 0. For n € Z", we have
v Wi = 1) = v — D) +ool ™+ + 3 +1) > 140.
For n € Z~, use the above to deduce that
oL (Wi — 1) = v (W) +ore(l —y ") = 04+ 1.

This completes the proof of the lemma. |
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Proposition 4.5.9 We have o € Ay /.

Proof. Recall that v (Ar/r) =1 — p and that v (p) = p. Hence, we have

vp(a) =vp | D [T ™ | - »

keFp icry
c(ik
v [ > T '—1|+p|-p
keFp \ieFy
zmin{vL Z Hyf(ik)—l ,p}—p.
keFy \icFy

By identifying F, with {0,1,...,p — 1}, for each k£ € F, we have

p—2 p—1
c(ik c(lk c(ik c((p—1)k
I 1= 5 (T ) 6 - ) 69 -,

ieFX i=1 I=i+1

It then follows from Lemma 4.5.8 the element above has positive valuation, and so

vy, Z Hyic(ik)—l > 1.

k€Fp \icFy

This shows that vy (a) > 1 — p, whence o € Ay /p, as claimed. [
Next, we will compute the Galois conjugates of avin L/F. First, observe that because

[L: F)] and [F(C) : F| are coprime, there is canonical isomorphism
Gal(L(¢)/F) ~ Gal(L/F) x Gal(F(¢)/F).
Let 7 € Gal(L/F') be the generator which is identified with

7€ Gal(L(O)/F(Q);  F(x'/?) := ¢al/p (4.5.3)
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via this isomorphism. We will also choose a lift w, of 7 in Qp.

Proposition 4.5.10 For all j,k € F,,, we have

P I w™ ) = ¢ I vt

i€Fy i€Fy

In particular, this implies that for all j € F,, we have

)=~ 3 [ T w™ |

keFp i€Fy

Proof. Let j,k € F, be given. Since Gal(L(¢)/F) is abelian, for any i € ¥ we have

() = (7 ow)(a'7)
= (wi o 77)(x'/7)
= wi((at)

= (7 ;.

We then see that

=j H yic(ik) _ H g_rljz'kyic(ik)

i€Fy i€Fy
i€Fy

—j — c(ik

= (907 T

i€Fy

=¢* T ™,

i€Fy

which proves the proposition. |
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Finally, we will define the desired element g € A(FG)*. Recall that w, is a lift of 7
in Qp and define ¢ := h(w,). Notice that ¢ has order p. It will also be helpful to recall

Definition 2.5.3.

Lemma 4.5.11 The map g € Map(G(—1), (F°)*) given by

x; ifs:tiforiEF;
g(s) ==
1 otherwise

is well-defined and preserves Qp-actions. In particular, we have g € A(FG)*.

Proof. Clearly g is well-defined since ¢ has order p. To show that g preserves ()p-actions,
let w € Qp and s € G(—1) be given.

If s =t for some i € [, then s has order p and so w - s is determined by the action
of won ¢. Let j € FX be such that w|p) = wj|r). Then, we have w™"(¢) = ¢/, which in

turn gives w - s = s/ = ¥, It follows that

g(w - s) = 2 = wj(w;) = w(g(s)).

Now, if w-s = t' for some i € F)*, then the above shows that s = w™" - (w - s) = t” for
some j € F as well. Hence, if s # ti for all i € [, then the same holds for w - s. In this

case, we have

g(w-s) =1 =w(l) =w(yg(s))

Hence, indeed g preserves Qp-actions, and so g € A(FG)* by definition. |
We are now ready to prove Proposition 4.5.2.

Proof. Let a € Map(G, F¢) be as in (4.5.2) and let g € A(FG)* be as in Lemma 4.5.11.

Since a € A p by Proposition 4.5.9 and L = F" it is clear that a is well-defined and

that a € Aj,. We will show that A, = OpG - a and rg(a) = ©L(g).
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First of all, we will use the identification H(FG) = Homg,. (Sg, (£¢)*) in (2.4.12) to
show that r¢(a) = ©L(g). So, let y € G be given and let k € IF, be such that x(t) = ¢*.

By Definitions 2.5.1 and 4.5.4, we have (x,t'), = c(ik)/p for all i € F¥, and so

Ol =g | S (utht' | =TT «>" = [T v™. (4.5.4)

ieFy i€Fy ieFy

On the other hand, by the definition of a, we have

ro(a)(x) = > 7 (@)(x(®)) "t = T (a)c "

J€EF, JjeF,

Then, using Proposition 4.5.10, we obtain

Z Z le H yc(”) g—jk

]E]Fp lE]Fp ZEFX
_ _} : H y?(il) 2 :Cj(sz)
1
ZGIFP i€Fy Jj€EFp
o c(ik)
= H Yi
i€Fy

This shows that rg(a) = ©%L(g), and hence rg(a)rg(a)=! = 1 by Proposition 2.5.5. We
then deduce from Proposition 2.3.10 A, = OrG - a as well. This completes the proof. W

The next theorem is analogous to Theorem 4.2.3.

Theorem 4.5.12 Assume that F'/Q, is unramified and let h € Hom(Qp, G) be such that
e(Fh/F) =p. If Aj, = OpG - a, then we have

ra(a) = u6.(g)

for some u € H(OrG) and g € A(FG)*.
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Proof. Since F//Q, is unramified and e(F"/F) = p, we know from Proposition 4.5.1 that
h is weakly ramified. Proposition 4.1.2 then implies that h has a factorization h = h"" h!°
with respect to p and we have F"""" C F,,. Notice also that e(F""/F) = e(F"/F) = p
by Proposition 3.2.3 (a).

By Proposition 2.3.7 (b) and (2.4.4), there exists ap, € Opnr With Opnr = OpG - ay,
and rg(ay,,) =« for some u' € H(OpG). Now, note that Proposition 4.5.2 applies to h'*,
and hence there exists ay; € Ay,,, such that Ayt = OpG - ay and re(ar) = OL(g) for
some g € A(FG)*. Using Proposition 3.2.3 (c), we then obtain an element o’ € A, such
that rg(a') = rg(an)rg(aw) and Ay, = OpG-d’. But A, = OpG-a also, and so a = (-d’

for some g € (OpG)*. It follows that

re(a) = rag(B)re(a’) = (rag(B)u)O.(g),

where u := rag(8)u’ € H(OrG). This proves the claim. |

4.6 Proofs of Theorem 1.2.6 and 1.3.4

Theorem 1.3.4 Let K be a number field and let G be a finite abelian group of odd order.
Let h € H.(Qx,G) and let V denote the set of primes in O which are wildly ramified

in Kp/K. If

(1) every v € V is unramified over Q; and

(2) the ramification index of every v € V in K /K is prime,
then we have ucl(Ay) € AL (OkG).

Proof. Let b € K}, be as in (3.1.2), where we will take b to be self-dual. For each v € M,

let a, € Ay, and ¢, € (K,G)* be as in (3.1.1) and (3.1.3), respectively. Then, as noted
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in Section 3.1, we have ¢ := (¢,) € J(KG()) and ucl(Ay) = jis)(c). Moreover, recall from
(3.1.5) that we have rag(c,) = ra(b)'rg(a,), where rg(b) € H(KG(1)) by (2.4.3) and
Proposition 2.3.9 (b). From (4.4.3), we then see that ucl(4;) € AL(OxG) will hold as

long as for all v € Mg, we have

ra(a,) € H(Ok,G)OL(AK,G)¥). (4.6.1)

If v ¢ V, then (4.6.1) follows from Theorem 4.2.3. If v € V and p € N is the prime lying
below v, then K, /Q, is unramified by hypothesis (1) and e(K" /K,) = p by hypothesis

(2). Hence, Theorem 4.5.12 applies and (4.6.1) holds. This proves the theorem. |

Theorem 1.2.6 Let K be a number field and let G be a finite abelian group of odd order.
Let h € H: (Qx, Q) and let V denote the set of primes in Ok which are wildly ramified
in Kp/K. If

(1) every v € V is unramified over Q; and
(2) the ramification index of every v € V in Ky /K is prime,

then we have cl(Ay,) € A(OkG).

Proof. Since ®(ucl(Ay)) = cl(Ap) for all h € H} (Qk, G), where ® is the homomorphism

in (1.3.1) (cf. Remark 2.2.11), this follows directly from Theorem 1.3.4. |
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Chapter 5

Characterization of the A-Realizable

Classes in CIM(KG))

Let F' be a number field. In what follows, assume that G is abelian and of odd order. As
discussed in Section 3.1, given a weakly ramified h € Hom(Qr, G), its square root of the
inverse different A, defines a class cl(A4;) in Cl(OpG). Recall further from Remark 3.1.1
that in order to characterize this class, it suffices to study the reduced resolvends r¢(a,)
for which A, = Op,G - a, for each v € Mp.

We have computed such reduced resolvends in Theorems 4.2.3 and 4.2.4 when h, is
tame, and in Theorem 4.5.12 when h,, is wild. In the latter case, we had to assume that v
is unramified over Q and that e(F* /F,) is prime. The goal of this chapter is to compute
such reduced resolvends when h, is wild and without these two additional assumptions.
The crucial step is to prove that rg(a,)(x) € O, for all x € G (recall (2.4.9)). We will do
so by first computing the valuations of certain Gauss sums over p-adic numbers. The de-
scription of rg(a,) that we will obtain in Theorem 5.2.8, however, only characterizes the
class ¥(cl(Ay)) € CI{M(FG)) and not the class cl(Ay,) € CI(OrG). Recall that M(FG)
denotes the maximal Op-order in F'G, and here ¥ : Cl(OpG) — CI(M(FG)) denotes
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the natural homomorphism afforded by extension of scalars.
Throughout this chapter, the symbol p will denote a prime number (not necessarily

odd). We will also use the following notation (cf. Definition 4.5.4).

Definition 5.0.3 Write F,, := Z/pZ. For each i € F, if z is an element of order 1 or p
in a group, we will write z* for 2™, where n; € Z is any integer representing i. For p odd,
we will also define ¢(i) € {(1—p)/2,...,(p—1)/2} to be the unique integer representing i

(cf. Definition 2.5.1). If i € F¥, we will write i~" for its multiplicative inverse in ).

Definition 5.0.4 Note that QQ, contains all (p—1)-st roots of unity. We will write I@g for
the group of Q,-valued characters on F. Given ¢ € @, we will extend it to a map on F,
by setting ¢(0) = 0. In addition, for each n € N which divides p — 1, let R, := (F)" be

the subgroup of F consisting of the non-zero n-th powers in F,.

5.1 Computation of Valuations

5.1.1 Valuations of Gauss Sums over Q,

In this subsection, let ¢ denote a primitive p-th root of unity in Q7. We will estimate

the valuations of the following Gauss sums.

Definition 5.1.1 For each ¢ € Iﬁp; and j € [, define

Gle.j) = (k).

keF,

Lemma 5.1.2 For all p € ]ﬁg and j € ¥, we have

(a) G(1,0) =p—1 and G(p,0) =0 if p # 1;

(b) G(e,5) = ¢(j)"'G(p,1) and G(1,j) = —1.
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Proof. The claims in (a) follow from the orthogonality of characters, and both equalities
in (b) follow from a simple calculation. |

In view of Lemma 5.1.2, it remains to consider the Gauss sums G(p, 1) for ¢ # 1.

Proposition 5.1.3 Let p € Iﬁp; be a character of order n # 1. For all j € F, we have

g, ) (G(p,4)) = (p—1)/n.

Proof. By the first claim in Lemma 5.1.2 (b), we have vg, ) (G (¢, j)) = v, ) (G(p, 1)) for
all j € F. Hence, it is enough to prove the above inequality for j = 1. We will do so by

computing the valuation of the sum

Si=> Glp.j)"

jEF,

in two different ways. On one hand, using Definition 5.1.1, we have

S=3"3 (k- ky )tk

JEF, kielFy
1<i<n

— Z gp(/{;l...kn)zgj(kﬁ---Mn)

k;€Fy j€Fp
1<i<n

k;€Fp
1<i<n
kl ++kn =0

Since each ¢(ky - -+ ky,) is either 0 or a (p — 1)-st root of unity, this shows that

Vg, (0 (9) Z vg, ) =p— 1. (5.1.1)

On the other hand, recall from Lemma 5.1.2 (a) that G(p,0) = 0 since ¢ # 1, and from
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Lemma 5.1.2 (b) that G(p,7) = v(j)"'G(p, 1) for j € F¥. Since ¢ has order n, we then

deduce that
S = Z Qp(j)_nG(SO’ 1)n = (p - 1)G(‘107 1)n'

JEFY

Since p — 1 € Z; is a p-adic unit, this shows that

Vg, () (5) = n - vy, (G, 1)). (5.1.2)

The desired inequality now follows from (5.1.1) and (5.1.2). |

Proposition 5.1.4 Let p € IEE be a character of order n # 1. For all j € F*, we have

D’

n—1
G ) =14+n) ¢*
=1 kERn,
Proof. First of all, we have
n—1 n—1 A ‘ n—1
> G ) = PR)CE =Y Ry S (k)
1=0 1=0 keF, keF,  1=0

Note that ker(p) = R, because o has order n. In particular, we may regard 1, ¢, -+ , " !

as the distinct characters on IFX/R,. By the orthogonality of characters, we see that

n—1 l n ifkeR,
p(k) =
1=0 0 otherwise.
It follows that
n—1
> Gl g)=n D"
1=0 keRp
Since G(1,j) = —1 by Lemma 5.1.2 (b), the claim now follows. |
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5.1.2 Valuations of Local Wild Resolvents

Let F' be a finite extension of @, and assume that G is abelian. First of all, we will

recall the definition of resolvents (cf. (2.4.9)) and make a few important observations.

Definition 5.1.5 Let a € Map(G, F°) and x € G. The resolvent of a at x is defined by

(a]x) = als)x(s)

se€G
Lemma 5.1.6 Let N/F be a finite abelian extension that is wildly and weakly ramified.
(a) We have Gal(N/F)o = Gal(N/F), and Gal(N/F)y is elementary p-abelian
(b) The inverse different of N/F has a square root, and vy(An/p) =1 — |Gal(N/F)o|.
(¢) There exists o« € Ay/p such that Ayjp = OpGal(N/F) - a.

Proof. The equality Gal(N/F)y, = Gal(N/F'); was proved in Lemma 3.2.2 (c). It follows
that Gal(N/F), is elementary p-abelian because the quotients Gal(N/F),, /Gal(N/F), 11
are p-abelian for all n € ZT by [20, Chapter IV, Proposition 7, Corollary 3|. The claims
in (b) then follow immediately from Proposition 1.2.1 since Gal(N/F), = 1. From (a)
and (b), we obtain vy (Ay/p) =1 (mod |Gal(N/F),]). The existence of o € An/p in (c)
then follows from [13, Theorem 1.1]. |

Next, we compute the resolvents (a | x) of an element a for which A, = OpG - a for a
wildly and weakly ramified h € Hom (g, G). We note that for any such h € Hom(Qp, G),

the inverse different of F"/F has a square root by Lemma 5.1.6 (b) and so A, exists.

Proposition 5.1.7 Let h € Hom(Qp, G) be wildly and weakly ramified such that F"/F

is totally ramified. Then, there exists a € Ay such that Ay, = OpG - a and

(a]|x) €05 forallyed. (5.1.3)
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The proof of Proposition 5.1.7 will take up most of the rest of this subsection. In the
following, let h € Hom(Q2r, G) be as in Proposition 5.1.7 and set L := F". We will also
write ¢ for a primitive p-th root of unity in F*°. Moreover, let o € A/ be any element
such that A, /p = OpGal(L/F) - o; such an element a exists by Lemma 5.1.6 (c). It is

clear that the map a € Map(G, F°) given by

w(a) if s = h(w) for w € Qp
a(s) := (5.1.4)

0 otherwise

is well-defined and it satisfies A, = OpG - a. It remains to show that (a | x) € OF. holds

for all y € G. To that end, notice that for any y € é, we have

(alx)= ) als)x(s)™" (5.1.5)

SEh(QF)

Observe that h(Q2p) ~ Gal(L/F'), which is equal to Gal(L/F'), because L/F is totally
ramified. It then follows from Lemma 5.1.6 (a) that h(€2r) has exponent p. In particular,

this implies that (a | x) is an element of L(().

Lemma 5.1.8 For all x € G, we have vro((a] x™h) = —vre((a | x)). In particular,
we have vp(Tr(a)) = 0.

Proof. We know from Proposition 2.3.10 that rg(a)(x)re(a) () € Orp forall x € G
Since rg(a)l"U(x) = (a | x™!), the first claim clearly holds. Observe that Tr(a) = (a | 1),
so clearly vp(Tr(a)) = 0 holds as well. |

Next, notice that we have a canonical isomorphism
Gal(L(¢)/F) ~ Gal(L/F) x Gal(F(¢)/F)

because [L : F] and [F(() : F] are coprime. We will consider two different cases.
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Proposition 5.1.9 If [F(() : F] is even, then (a | x) € OF. for all x € G

Proof. 1f [F(C) : F] is even, then the group Gal(F(¢)/F') contains the element w_; such

that w_1(¢) = (7! Set w:=1idy X w_;. Then, for any y € G, we see from (5.1.5) that

(alx™)= Y als)x(s)=w| D> als)x(s)™ | =wlla|x):
s€h(QF) s€h(Qr)
This shows that (a | x) and (a | x™') are Galois conjugates in L(¢)/F, and hence have

the same valuation in L({). It then follows from Lemma 5.1.8 that (a | x) € Op.. |
Proposition 5.1.10 If [F(¢): F] <p—1, then (a | x) € O for all x € G.

Proof. If [F(C) : F] < p—1, then Gal(F'(¢)/F) ~ R,, for some n € N\ {1} dividing p— 1.
Suppose on the contrary that there exists x € G such that vrey((a | x)) # 0. In view of
Lemma 5.1.8, replacing x by x ' if necessary, we may assume that vy ((a | x)) > 0. We
also know that x # 1. For each k € R,, let wj, denote the element such that wy(¢) = ¢*

and set wy, := id; X wg. Observe that from (5.1.5), we have

(alxX*) = D al)x(s)F=a | > als)x(s)™ | =@rl(a] ).
s€h(QF) s€h(Qp)
This implies that (a | x) and (a | x*) are Galois conjugates in L(¢)/F, and hence have
the same valuation in L({). In particular, we have vy ((a | X¥)) > 0 for all k € R,,.
Next, let ¢ € ﬁ}% be any character of order n. For each s € h(Q2p), let j, € F, denote

the element such that x~!(s) = ¢/* and consider the sum

n—1
Si= > als)Y G-
=1

Seh(QF)

Below, we will compute the valuation of S to obtain a contradiction.
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Notice that by Lemma 5.1.6, there exists r € Z* such that Gal(L/F)y ~ (Z/pZ)".
Moreover, set e := e(F/Q,) and d := e(F(¢)/F). We summarize the set-up in the diagram

below, where the numbers indicate ramification indices.

/ L(¢)
L o L:=F"
T Rn
b /_\ F(C) v (App) =1—p
[y
p—1
’ Q(¢)

First of all, for each [ = 1,2,...,n — 1, we have ' # 1 because ¢ has order n # 1.
If j, = 0, then G(¢', j;) = 0 by Lemma 5.1.2 (a). If j, # 0, then using Proposition 5.1.3
and the fact that vy (Az/rp) =1 —p", we deduce that
ed p—1

v (a(s)G(@', 4s)) = d(1 —p") + o A

- dp’“<§ - 1) +d. (5.1.6)

Since d < |R,| = (p—1)/n and ed > p— 1 by the multiplicativity of ramification indices,
we see that e > n and so (5.1.6) is positive. We then deduce that vy (S) > 0.
Next, let H be the subgroup of h(Q2r) consisting of the elements s for which j; = 0.

Since G(¢',0) =0 for [ = 1,2,...,n — 1, using Proposition 5.1.4, we may rewrite

S = Z a(s) <1+n Z stk> —Za(s) <1+n Z C(O)k> :

sER(QF) k€ERy, seH kERy,
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Using (5.1.5) and the fact that x~!(s) = ¢’ for each s € h(Qp), the above simplifies to

S=Tr(@)+n Y (a] ") —p3 als).

keR, seH

Recall that vp(Tr(a)) = 0 from Lemma 5.1.8. Since vp)(S) > 0 and v ey((a | X)) > 0

for all k € R,,, we deduce that

v, (pZa(s)) =0.

But this in turn implies that
02 wvi(p) +vr(Ayp) =ep"+(1=p") =p'(e—1)+1,

which is impossible because e > 1. Hence, we must have (a | x) € Oj. for all x € G. m
We are now ready to prove Proposition 5.1.7.

Proof. Let a € Map(G, F*) be as in (5.1.4). We already know that A, = OpG - a, and so

it remains to show that (5.1.3) also holds. If p =2, then (a | x) = (a | x7!) for all x € G

because of (5.1.5). We then see from Lemma 5.1.8 that (5.1.3) indeed holds. If p is odd,

then either [F(¢) : F] = p — 1, which is even, or [F({) : F] < p— 1. We then see from

Propositions 5.1.9 and 5.1.10 that (5.1.3) holds in this case as well. |

The next theorem is the key to the proof of Theorem 5.2.8.

Theorem 5.1.11 Let h € Hom(Qp, G) be wildly and weakly ramified. If A, = OrG - a,
then

(a]x) € OFe for all x € G.

Proof. By Proposition 4.1.2, there exists a factorization h = h™ h*" of h, with respect

. . . . tot . .
to some chosen uniformizer in F' say. Moreover, the extension F* /F is also wildly and
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weakly ramified by Proposition 3.2.3 (a) and (b).
Now, there exists a,, € Opnr such that Opnr = OpG - ay, and rg(ay,) € (OpG)* by

Proposition 2.3.7 (b). In particular, we have

(nr | x) € OF for all y € G. (5.1.7)
On the other hand, there exists a;,; € Aptor such that Apiee = OpG - ay and

(a0t | X) € OF for all y € G (5.1.8)

by Proposition 5.1.7. Applying Proposition 3.2.3 (c), we then obtain an element o’ € A,
such that A, = OpG-ad’ and rg(a') = rg(an.)rg(ae). Since Ay, = OpG - a also, we have

a=f-ad for some B € (OpG)*. In particular, we have

(a|x) = B0 (anr | X) (@t | X) for all x € CAJ

Clearly B(x) € OF. for all G. It then follows from (5.1.7) and (5.1.8) that (a | x) € OF.

for all y € G as well. This proves the theorem. [ |

5.2 Decomposition of Local Wild Resolvends 11

Let F' be a finite extension of Q,. We will assume that G is abelian and of odd order
in this section. We will compute the reduced resolvends rg(a) for which A, = OpG - a,
where h € Hom(Qp, G) is any wildly and weakly ramified homomorphism. It will be help-
ful to recall the notation set up in Definitions 5.0.3 and 5.0.4.

First of all, by modifying the proof of Proposition 4.5.2, we will prove the following

analogous result (recall (2.5.2)).
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Proposition 5.2.1 Let h € Hom(Qp, G) be wildly and weakly ramified such that F"/F

has degree p. Then, there exists a € F}, such that Fy, = FG - a and

(1) rg(a) = ©L(g) for some g € A(FG)*;
(2) (a|x) € Op. forall x € G.

The proof of Proposition 5.2.1 will take up most of the rest of this section. In what
follows, let h € Hom(Q2r, G) be as in Proposition 5.2.1. To simplify notation, set L := F*
and let ¢ := ¢, be the chosen primitive p-root of unity in F*°. Since G has odd order, the
hypothesis that F"/F has degree p implies that p is odd. In addition, let o/ € Ay p be
such that Az /p = OpGal(L/F) - o/; such an element o’ exists by Lemma 5.1.6 (c).

Next, notice that Gal(F(¢)/F) ~ R,, for some n € N dividing p — 1 and let d denote

the image of (p — 1)/n in IF,. Moreover, there is a canonical isomorphism
Gal(L(¢)/F) ~ Gal(L/F) x Gal(F(¢)/F)

because [L : F] and [F(¢) : F] are coprime. We will fix a generator 7 of Gal(L/F) and let
7 € Gal(L(¢)/F(C)) be the element which is identified with 7. We summarize the set-up

in the following diagram, where the numbers indicate the degrees of the extensions.

P <’7~:> L= Fh

Rn
()| /_\ F(C) Apjr = OpGal(L/F) - o

d:= (p—1)/n (mod p)

Q, (pisodd)
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Definition 5.2.2 For each i € [F), define

Yi = Z ()¢

keF,,
First, we will give some basic properties of these elements y; € L(().
Lemma 5.2.3 For alli € F,, we have
(1) y; € OZ(@); and
(2) 7(yi) = C'yi; and
(3) yi € F(Q).

Proof. The map o' € Map(G, F*) defined by

w(a') if s = h(w) for w € Qp
a'(s):=
0 otherwise
is clearly well-defined and it satisfies A, = OpG - @’ (cf. (5.1.4)). Let w, be a lift of 7 in

Qp and set ¢ := h(w,). Note that ¢ has order p. If x € G is such that y(¢) = (', then
(@x)= Y dExs)™ =Y @)X
seh(Qp) keFp

(cf. (5.1.5)), which is equal to y;. We then deduce from Theorem 5.1.11 that (a) holds. As

for (b), it follows from a simple calculation. Using (b), we further deduce that

Neyro W) = 1] 7w) = T ¢*vi =

keF, keF,

Thus, indeed y? € F({)*, and this proves the lemma. [
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Next, consider the element (cf. (4.5.1))

N ::% SO :zl? (1 I L yic(il(pm) _

keF, i€R, i€Rn i€Ry,

We will show that the element a € Map(G, F'°) defined by

w(a) if s = h(w) for w € Qp
a(s) := (5.2.1)

0 otherwise

is well-defined and that it satisfies the conclusion of Proposition 5.2.1.

Definition 5.2.4 For each i € R,,, define
w; € Gal(L(¢)/L);  wi(¢) =

(cf. Definition 4.5.5 and note that our notation here is different). Clearly, we have
wi(yj) = Yij for all j € I, (5.2.2)

First of all, we will show that a € L (cf. Lemma 4.5.7) and then compute the Galois

conjugates of a in L/F (cf. Proposition 4.5.10).
Lemma 5.2.5 We have o € L.

Proof. By definition, we have y; € L(C) for all ¢ € F,,. So, clearly o € L({) and we have
a € L if and only if « is fixed by the action of Gal(L(¢)/L). Now, notice that an element

in Gal(L(¢)/L) is equal to w; for some j € R,,. For each k € F,, we have

wj (H yic(ilk)> _ H yf;rlk) _ H yic(iﬂjk)

i€Rp 1€Ry i€Ry
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by (5.2.2). This implies that w; permutes the summands

1 Hyc(z , Hylz (p—1))

ZERn ’LeRn

in the definition of v and hence fixes «. Thus, indeed o € L. [ |

Proposition 5.2.6 For all j, k € F),, we have

(H e 1k:)) ]k:d H yG(iflk)'

1€ER, 1€ER,

In particular, this implies that for all j € F,, we have

i 1 1 c(i™
o) =3 (e T ).
L i€Ry,

Proof. Let j,k € F,, be given. Since Gal(L(()/F') is abelian, for any i € R,,, we have

T (yi) = (7 ow;) (1)
= (wi o) (1)
= wi(CPy)

= (Yy;.
by (5.2.2) and Lemma 5.2.3 (2). We then see that

~j c(i~1 ije(i™ c(i™t
= (H el k)) = T ety

i€R, i€Ry
=[] ot
i€ Ry,
1 — n C iilk
= (IRp=D/n H yi( )
i€ Ry,
Since d := (p — 1)/n (mod p), the proposition now follows. |
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Next, we will define the desired element g € A(FG)* (cf. Lemma 4.5.11). Below, we
will fix a lift w, of 7 in Qp and set ¢ := h(w,). Notice that ¢ has order p. It will also be

helpful to recall Definition 2.5.3.

Lemma 5.2.7 The map g € Map(G(—1), (F°)*) given by

yPifs=t4""" forie R,

1 otherwise

is well-defined and preserves Qp-actions. In particular, we have g € A(FG)*.

Proof. Clearly g is well-defined since ¢ has order p. To show that g preserves ()p-actions,
let w € Qp and s € G(—1) be given.

If s =t for some i € R, then s has order p and w- s is determined by the action
of won ¢. Let j € R, be such that w|p) = wj|r(). Then, we have w™'(¢) = ¢/, which
in turn gives w - s = s/ =14 )7 Recall further that y” € F(¢) by Lemma 5.2.3 (3)

and that y;; = w;(y;) by (5.2.2). It follows that

9(w - s) = yi; = wi(y) = w(g(s)),

Now, if w-s =t? """ for some i € R,, then the above implies s = w™ - (w-s) =t @~
for some j € R, as well. Hence, if s # t¢ """ for all i € R,,, then the same holds for w- s.

In this case, we have

gw-5) =1=w(1) =w(yg(s)).

Hence, indeed g preserves Qp-actions, and so g € A(F'G)* by definition. [ |
We are now ready to prove Proposition 5.2.1.
Proof. Let a € Map(G, F©) be as in (5.2.1) and let g € A(FG)* be as in Lemma 5.2.7.

Since o € L by Lemma 5.2.5 and L = F", clearly a is well-defined and a € F},.
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First of all, we will use the identification H(FG) = Homg,. (Sg, (£¢)*) in (2.4.12) to
show that r¢(a) = ©L(g). So, let y € G be given and let k € IF, be such that x(t) = ¢*.

By Definitions 2.5.1 and 4.5.4, we have (x,t¢ '), = ¢(d~'i"'k)/p for all i € R,,, and so

0l(9)(x) =g (Z(x,td_” PRI ) IT s .
1€ER, i€ER,
On the other hand, by the definition of a, we have
ro(a)(x) = > () (x®)) " =D P (a)¢ "

jeF, Jjel,

Then, using Proposition 5.2.6, we obtain

SR PRI

]GIFplE]Fp i€Ry
_ (i) j(di—k)
——Z [Tv" "> ¢
zer i€Rn jEF,

= [Tu" .

i€Ry

So, indeed r¢(a) = ©i(g). Since y; € Of,, for all i € F,, by Lemma 5.2.3 (1), the above
computation also shows that (a [ x) € OF, for all x € G and that F}, = FG-a by Prop-
osition 2.3.7 (a). Hence, the map a in (5.2.1) satisfies all of the desired properties. W

The next theorem is analogous to Theorem 4.5.12.

Theorem 5.2.8 Let h € Hom(Qp, G) be wildly and weakly ramified. If A, = OpG - a,
then there exists f € M(FG)* such that

re(a) = rag(8)ud;(g)

for some u € H(OrG) and g € A(FG)*.
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Proof. By Proposition 4.1.2, there exists a factorization h = h" h'° of h, with respect to
some chosen uniformizer of F' say. From Proposition 3.2.3 (a) and (b), we know that h'*
is also wildly and weakly ramified. Because F*” /F is totally ramified, Lemma 5.1.6 (a)
implies that Gal(F"”/F) is elementary p-abelian.

Since h'°(Qp) ~ Gal(F"" /F), we have

h'"(Qp) = Hy X Hy x -+ x H, (5.2.3)

for subgroups Hy, Ho, ..., H, each of order p. For each i =1,2,...,r, define
h; € Hom(Qp, G);  hi(w) == m(h'"(w)),

where 71; : h'°'(Qr) — H; is the projection map given by (5.2.3). By definition, we have
h'* = hihy - - - h,. For each i = 1,2,...,r, it is clear that F" c F"* and [F" : F] = p.

Hence, Proposition 5.2.1 applies and there exists a; € Fj, with £}, = F'G - a; such that
ra(a;) = ©L(g;) for some g; € A(FG)*

and (a; | x) € OF. for all x € G. On the other hand, by Proposition 2.3.7 (b) and (2.4.4),

there exists a,, € Opnr such that Opnr = OrG - a,, and

ra(an:) = u for some u € H(OrG).

Let a' € Map(G, F°) be such that rg(a') = rg(an.)re(ar) - - - re(a,); such an element o
exists because rg is bijective. We have that a’ € F}, by (2.3.3) and that F, = FG - a’ by
Proposition 2.3.7 (a). But Fj, = FG - a also, so a = -’ for some € (FG)*. It follows
that

ra(a) = rag(B)ra(a’) = rag(8)ud.(g),
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where ¢ := g192- -+ g» € A(FG)*. It remains to show that § € M(FG)*.
To that end, notice that M(FG)* = MapQF(@, OF.) via the identification in (2.4.8).

Moreover, for any y € @, we have

(a]x) = B0)(an [ x)(a1]x)--(ar | x).

It is clear that (a,, | x) € Of. because rg(a,,) € (OpG)*. We also have (a | x) € O
by Theorem 5.1.11 and (a; | x), ..., (ar | x) € Of. by choice. It follows that S(x) € O
and so indeed f € M(FG)*. |

5.3 Proof of Theorem 1.2.8

Theorem 1.2.8 Let K be a number field and let G be a finite abelian group of odd order.
Then, we have V(A(OkG)) = V(A(OkG)).

Proof. Let h € H} (Qk, G) be given, with K}, = KG-b say. For each v € M, let a, € Ay,
and ¢, € (K,G)* be as in (3.1.1) and (3.1.3), respectively. As explained in Section 3.1,
we have ¢ := (¢,) € J(KG) and cl(A,) = j(c). We want to show that U(j(c)) = ¥(j(c))
for some ¢ € J(KG) with j(¢) € AY(OkQ).

Notice that for each v € M, there exists g, € M(K,G)* such that
rag(B,)ra(a,) € H(Ok,G)OL(A(K,G)™). (5.3.1)

Indeed, if h, is tame, then we may take 5, = 1 by Theorem 4.2.3. If h, is wild, then such
a [, exists by Theorem 5.2.8. Let 5 := (3,) € UM(KG)) and define ¢ := fc € J(KG).
Observe that

ker(V) = j(O((KG)* )UM(KG)))
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by Theorem 2.1.7 and so ¥ (j(c)) = ¥(j(c’)). Moreover, for each v € My, we have

rag(c,) = rag(B.)rag(c) = ra(b) " (rag(B.)re(av))

from equation (3.1.5). Since r¢(b) € H(KG) by (2.4.3), we deduce from (5.3.1) that

rag(c') € n(H(KG))U(H(OxG))OL(J(AKG))).

It then follows from (4.4.6) that j(¢') € A'(OkG), and this proves the theorem. |
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Chapter 6

Commutativity of the Basic Diagram

Recall from Section 1.6 that K /k is a fixed Galois subextension of K and ¥ := Gal(K/k).
Throughout this chapter, we will assume that G is abelian and fix a left >-module struc-
ture on G. Via the quotient map Gal(K"*/k) — X, this induces a natural left Gal(K"/k)-
action on G. Via the natural action of Gal(K'/k) on K', this extends to a left Gal(K"/k)-
action on K'G. In view of Remark 2.3.5, we will identify Hom(Q%;, G) with the subgroup
of Hom(Q g, G) consisting of the tame homomorphisms.

The goal of this chapter is to explain the construction of the basic diagram
HY(Gal(K!/k),G) —5— Hom(Q,G)® — " H2(%,G)
gal e (6.0.1)

Cl(OkG)> S SN H*(%, (O G)X)

that we had in (1.4.1) (cf. Remark 1.4.2), where the top row is exact and all of the maps

except possibly gal (recall (1.1.1)) are homomorphisms. Here

it HA (S, G) — HA(X, (O G)) (6.0.2)
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denotes the homomorphism induced by the natural inclusion map G — (OxG)*. Then,
assuming that G has odd order, we will show that (6.0.1) still makes sense and commutes
when gal is replaced by gal, (recall (1.2.2)). Essentially the same proof will also recover
the already known fact that (6.0.1) commutes, in which case the assumption that G has

odd order is not required.

Definition 6.0.2 For each v € X, we choose once and for all a lift ¥ of v in Gal(K*/k)
with T=1

6.1 The Top Row: Hochschild-Serre Sequence

Recall that Q% acts trivially on G on the left. From the Hochschild-Serre spectral se-

quence (see [21, Chapter I Section 2.6], for example) associated to the group extension

1 > Qb » Gal(K'/k) > > 1,

we then obtain an exact sequence
HY(Gal(K/k),G) —5 5 Hom(Q,, G)® —— H2(X,G). (6.1.1)

Here res is given by restriction and tr is the transgression map. We remark that (6.1.1)
is also part of the five-term inflation-restriction exact sequence in group cohomology (see
[17, Proposition 1.6.7], for example). Below, we will recall the definitions of the ¥-action

on Hom(Q%, G) and the map ¢r in this particular setting.

Definition 6.1.1 The X-action on Hom(Q%, ) is defined by

(h-y)(w):=7""-h(wy ")  forallwe O
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for h € Hom(Q%, G) and v € ¥. This definition is independent of the choice of the lift 7
because G is abelian. Next, define ¢ : ¥ x ¥ — QF by setting (v, d) := (7)(0) ()~ .
The transgression map tr : Hom(Q%, G)* — H?*(X,G) (see [17, Proposition 1.6.6], for
example) is defined by

tr(h) :==[hod|,

where [—] denotes the cohomology class. This definition is also independent of the choice

of the lifts 7 for v € 3.

Next, we explain how the exact sequence (6.1.1) is related to the study of embedding

problems. To that end, first observe that each group extension

Er: 1 y G —> T > 2] > 1

of ¥ by G induces a left ¥-module structure on G via conjugation in I' as follows. For

each v € X, choose a lift o(v) of v in I". Then, for s € G, we have

s = o(uls)o(y) ). (6.1.2)

This definition does not depend upon the choice of the lift o(y) because G is abelian. In

addition, define a map cg,. : ¥ x ¥ — G by

cer(7,0) =17 (a(y)o(8)o(yd) ). (6.1.3)

Let E(K/k,G) denote the set of all equivalence classes of the group extensions of ¥ by G
for which the induced left ¥-module structure on G coincides with the one that we have
fixed. It is well-known (see [17, Theorem 1.2.4] or [24, Theorem 6.6.3], for example) that

the map Er — cg. induces a bijection between F(K/k,G) and the group H*(3, G), and
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the map cp,. represents the trivial cohomology class if and only if Er splits.

Proposition 6.1.2 Let h € Hom(Q,G)* be surjective. Then, the field L = (K*)ker(®)
is a tame solution to the embedding problem (K/k,G, Ey) for some group extension Ej,

of ¥ by G whose equivalence class corresponds to tr(h).

Proof. First, we will show that L/k is Galois by showing that Gal(K*/L), which is equal
to ker(h), is normal in Gal(K"'/k). So, let wy, € Gal(K"/k) be given and write wj, = Fwy

for some v € ¥ and wy € QY. For any w € ker(h), we have

h(wiwwi ') = h(Fwowwy 'F1)
=7 (h-7)(wowwy ")

=7+ (Mwo)h(w)h(wo) ™),

where the last equality follows because h is Y-invariant and is a homomorphism on ..
Since w € ker(h), we then deduce that h(wyww; ') = 1 and hence wyww, ' € ker(h). This
shows that ker(h) is normal in Gal(K*/k) and so L/k is Galois.

Next, note that since A is surjective, it induces an isomorphism & : Gal(L/K) — G.
Let I'y, := Gal(L/k) and let t : G — Gal(L/K) — I'}, denote the homomorphism n
followed by the natural inclusion Gal(L/K) — Gal(L/k). Then, the diagram

1 — Gal(L/K) —— Gal(L/k) —— Gal(K/k) ——— 1

k

1 G Iy, X 1

clearly commutes. Notice that L/K is clearly tame since L is contained in K*. Tt follows
that L/K is a tame solution to the embedding problem (K /k, G, E},), where E}, denotes

the group extension of ¥ by G in the bottom row in the above diagram.
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Finally, for each v € X, choose o(v) := 7|1 to be a lift of  in T';. The left 3-module
structure on G via conjugation in I'j, is then given as follows. Given any s € G, since h

is surjective, we have h(w) = s for some w € Q4. Then, we have

vk s = L_l(U(’Y)L(S)G(V)_l)’
= h((F|e)(wl)Fl)™)
= h(Fwy ")

=75,

where the last equality follows because h is ¥-invariant. This shows that the equivalence

class of E, lies in E(K/k,G). Also, the map cg, : ¥ x ¥ — G in (6.1.3) is given by

¢, (7,0) = .} (0(7)(6)0(78) )
= h((71£)OL)(v0]2) ™)

= (ho?)(7,9),

and so the equivalence class of Ej, corresponds to ¢tr(h). This proves the proposition. W

6.2 The Bottom Row: Frohlich-Wall Sequence

Notice that Ok G equipped with the natural left ¥-action, namely that induced by
the given left 3-action on G and O (recall that ¥ := Gal(K/k)), is a X-ring. That is, for

ally € Y and 3,5 € OxG, we have v- (8+ ') =~v-B+~-6 and v- (BF') = (v-B)(v-5).

We obtain a homomorphism

£: Cl(OG)* — H*(Z, (0xG))
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from the Frohlich-Wall sequence associated to Ok G (see [3, Section 1], for example). We
will recall the definitions of the ¥-action on Cl(OxG) and the map ¢ in the subsequent

subsections.

6.2.1 The Left >X-Action on Cl(OxG)

Definition 6.2.1 Let X and X’ be OxG-modules. A group isomorphism ¢ : X — X’

is called a semilinear isomorphism if there exists a v € X such that

eB-x)=(v-B) o) for all 5 € OxG and =z € X.

Moreover, any such v € X is called a grading of ¢.

Definition 6.2.2 Let [X] € Cl(OxG). Given v € %, define v - [X] := [Y] if there exists
a semilinear isomorphism ¢ : X — Y having v as a grading. Clearly the isomorphism
class [Y] of Y (recall Remark 2.1.2) is uniquely determined by that of X. Moreover, note
that such a Y always exists, as we may take Y := X, to be the abelian group X equipped

with the structure

Brz:=("1-B)x for all § € (OxG)™ and = € X, (6.2.1)

as an OxgG-module and take ¢ = idx to be the identity on X.

It is clear that Definition 6.2.2 defines a left ¥-action on the group Cl(OxG). Below,
we will verify that Cl(Og Q) is in fact a left ¥-module under this action and so Cl(OxG)*

is a subgroup of Cl(OxG).

Proposition 6.2.3 Let [X], [X'] € Cl(OkG). For all v € ¥, we have
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Proof. Let [X"] € CI(OkG) be such that [X"] = [X][X']. By Definition 2.1.4, this means

that there exists an isomorphism

0: XX — OxGap X"

of OgG-modules. Let X, denote the abelian group X equipped with the OxG-structure
defined as in (6.2.1), and similarly for X/ and X. Let ¢, : OxG — OxG denote the

bijective map given by 3+ 7 - 8. Then, the map
(QO-Y >, idxu) oW : X’Y @X'ly — OKG@ X,;/
is an isomorphism of OxG-modules and so [X] = [X,|[X]], as desired. |

The next proposition ensures that diagram (1.4.2) is well-defined.

Proposition 6.2.4 Let h € Hom(Q%, G)* be such that Ay, exists. For ally € 3, the map

¢y 1 ra(An) — ra(An);  y(rela)) =7 rg(a) (6.2.2)

1s well-defined and is a semilinear isomorphism having v as a grading. In particular, we

have 7 - [Ay] = [An] and so gal,(Hom(Q%, G)*) C Cl(OxG)* when G has odd order.

Proof. First, we will check that ¢, (rg(Ap)) C rg(Ay) so that ¢, is well-defined. To that
end, let a € Aj, be given and let o’ € Map(G, K€) be such that 7 - rg(a) = rg(a’), which
exists since rg is bijective. We will use (2.3.3) to check that o’ € Kj. So let w € Q% be

given. Since a € K}, we have ¥ 'w¥ - rg(a) = rg(a)h(7 'w¥) and so

werg(d) =7 (7w rala)) = ra(a’)(h -7 (w).

Since h is Y-invariant, we then see that w-rg(a’) = rg(a’)h(w) and so a’ € Kj,. To show
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that in fact a’ € Ay, observe that K"/k is Galois because h is Y-invariant (cf. the proof
of Proposition 6.1.2). Let ® xn ;, denote the different ideal of K " /k. Similarly for D xn /K
and D/, Then, we have D g, = D gn ) kD /. But notice that (D gn ) = D gy and
T D k) = Diyk- It follows that F(D gn/x) = D/ and so F(Agn k) = Agn i as well.
Since a € Ay, we deduce that o’ € Aj, and so ¢,(rg(a)) € rg(Ap). This shows that ¢, is
well-defined.

Once we see that ., is well-defined, it is now clear that ¢, is a semilinear isomorphism
having 7 as a grading. Since the resolvend map restricts to an isomorphism A, ~ ro(Ay)

of OxG-modules, we have [A)] = [rg(Ax)] and the above shows that 7 - [4;] = [4,]. W

Remark 6.2.5 Let h € Hom(Q%, G)*. Essentially the same argument as in the proof of

Proposition 6.2.4 shows that for all v € 3, the map

0y 1q(On) — ra(Oh);  @y(ra(a)) =7 rg(a)

is well-defined and is a semilinear isomorphism having v as a grading. In particular, we

have v - [Oy] = [O4] and so gal(Hom(Q%, G)*) € Cl(OxG)*.

6.2.2 The Homomorphism ¢

Definition 6.2.6 Given an OxG-module X, define Sem(X) to be the group consisting
of all pairs of the form (¢, ), where ¢ : X — X is a semilinear isomorphism having ~y
as a grading, and the group operation is defined by (¢, 7)(¢',7) := (v¢',77'). Moreover,

let Aut(X) denote the group of OxG-automorphisms on X. The map

gx :Sem(X) — 35 gx(p,7) =7

is then a homomorphism with ker(gx) = Aut(X).
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Now, consider an element [X] € Cl(OxG)*. The fact that [X] is Y-invariant means
that gx is surjective. Moreover, since X is locally free over Ok G (of rank one), an Ok G-
automorphism of X is of the form 3 : x +— - x for some § € (OxG)*. Hence, we may

identify Aut(X) with (OxG)*. We then obtain a group extension

Ex: 11— (OxG)* =% Sem(X) 25 5

~
—_

of ¥ by (OxG)*, where ix (/) := (13,1). Notice that this group extension induces a left
Y-module structure on (OxG)* via conjugation in Sem(X) as follows (cf. (6.1.2)). For

each v € X, choose a lift (¢,,7) of v in Sem(X). Then, for 8 € (OxG)*, we have

v # B =ty (09, 1) (Ws, 1)(931, 7)) = 15 (93905957, 1) (6.2.3)

But for any € (OxG)*, we have (¢, )(x) = 0y (8- 5 (x)) = (v- B) - 2. It follows
that o, ges V=45 and so v x § =~ 3. In other words, the left X-module structure
on (OgG)* given by (6.2.3) coincides with the existing one.

Hence, analogously to the bijective correspondence between E(K /k,G) and H?*(X, G)
described in Section 6.1, the group extension Ey also defines a class in H*(Z, (OxG)*).
In particular, it is represented by the 2-cocycle dx : 3 x ¥ — (OgG)* determined by

the equations (cf. (6.1.3))

dx(v,9) -z = (gpwgo(ggp;;l)(x) for all z € X. (6.2.4)

Definition 6.2.7 Define ¢ : CI(OxG)* — H?*(X, (OxG)*) by setting £([X]) = [dx],
where [—] denotes the cohomology class. It is not hard to see that this definition depends

only on the isomorphism class [X] of X (recall Remark 2.1.2).
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Proposition 6.2.8 The map & is a homomorphism.

Proof. Let [X],[X'] € C1(OkG)* be given and let X" := X ®p,¢ X’. Since G is abelian,
[7, Theorem 55.16] implies that X" is locally free over Ok G (of rank one). Moreover, we
have [X][X'] = [X"] (cf. the proof of [7, Theorem 55.26]).

For each v € 3, let ¢, and go’7 be semilinear automorphisms on X and X', respectively,
having v as a grading. Then, clearly goi; =y ® 30’7 is a semilinear automorphism on X"
having ~ as a grading. Let dx be defined as in (6.2.4). Similarly for dy. and dx~. Then,

for all v,0 € ¥, x € X, and 2’ € X', we have

dxn(7,6) - (x @ ') = (&5e05 ) (z @ )
= (0105055 ) (1) © (£, 05055 ) (2)
= (dX(’% 5) : ZL’) & (dX’(’% 5) . ZL’,)

= (dx(7,0)dx(7,0)) - (x © ).

This shows that dx» = dxdy and so £([X"]) = £([X])E([X]), as desired. |

6.3 Proof of Theorem 1.4.4

Theorem 1.4.4 Let K/k be a Galois extension of number fields and set ¥ := Gal(K/k).
Let G be a finite abelian group of odd order equipped with a fixed left ¥-module structure.

Then, there is a commutative diagram

HY(Gal(K'/k),G) — 5 Hom(Q,G)E — 5 HX(S, Q)

galA v ’

CllOkG)* ———— H2 (%, (0OxG))
100



Commutativity of the Basic Diagram Chapter 6

where the top row is exact and all of the maps except possibly gal, are homomorphisms.

Proof. Notice that the diagram makes sense because gal,(Hom(Q%, G)*) C Cl(OxG)*
by Proposition 6.2.4. We already know that the top row is exact. The maps res, tr, and i*
are also clearly homomorphisms, and £ is a homomorphism by Proposition 6.2.8. Thus,
it remains to verify the equality i* o tr = £ o gal 4.

To that end, let h € Hom(QY, G)* be given. By Definition 6.1.1, the class (i* otr)(h)

is represented by the 2-cocycle d : ¥ x ¥ — (OxG)* defined by

d(v,0) == h((7)(0)(v9) ™).

Next, let X :=rg(A). Note that X ~ A, as OxG-modules and so gal,(h) = [X]. For
each v € X, let ¢, : X — X be defined as in (6.2.2), which is a semilinear isomorphism
having 7 as a grading by Proposition 6.2.4. By Definition 6.2.7, the class (£ o gal 4)(h) is

then represented by the 2-cocycle dx : ¥ x ¥ — (OxG)* defined by the equations

dx(7,6) -z = ((F)(0)(y0)™) - for all x € X.

But (7)(6)(76)"' € Q. It then follows from (2.3.3) that

(T)(©@)(0) ") -z =h((7)(0)(10)"") -&  forallz € X.

This shows that dx = d, whence (i* o tr)(h) = (£ o gal,)(h), as desired. |

Remark 6.3.2 Essentially the same proof as that of Theorem 1.4.4 (cf. Remark 6.2.5)
shows that (1.4.1) also makes sense, where the top row is exact and all of the maps except

possibly gal are homomorphims, and that (1.4.1) commutes (cf. Remark 1.4.2).
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Chapter 7

Characterization of the tame

>-A-Realizable Classes in Cl1(OgG)

As in Chapter 6, recall that K/k is a fixed Galois subextension of K and ¥ := Gal(K/k).
Throughout this chapter, we will assume that G is abelian and fix a left >-module struc-
ture of G. It will be helpful to recall from Remark 1.6.1 that we have chosen K¢ = Q° = k¢
as well as the same compatible set {(, : n € Z} of primitive roots of unity in Q° for both
k and K. We will also identify Hom(Q%, G) with the subgroup of Hom(Q, G) consisting

of the tame homomorphisms (cf. Remark 2.3.5) as follows.

Definition 7.0.3 Let h € Hom(Q%, G). For w € Q, we will write h(w) for h(w|gt). In

particular, we will sometimes regard h as a homomorphism Q; — G.

Definition 7.0.4 Define Vj to be the set of primes in M} which are ramified in K/k,

and define Vi to be the set of primes in M lying above the primes in V.

The goal of this chapter is to characterize, under the hypotheses of Theorem 1.4.5, the

tame Y- A-realizable classes coming from the homomorphisms i € Hom(Qf, G)} (recall

(1.4.3)). We will do so by refining the characterization of A'(OxG) given in (4.4.6). The
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crucial step is to make suitable choices for the embeddings 7, : Q° — K¢ and the uni-

formizers 7, in K, for v € M. We will need the following notation (cf. Definition 6.0.2).

Definition 7.0.5 For each w € My, let ¢, : Q¢ — k be the chosen embedding extend-
ing the natural embedding k — k,,. The prime v,, € M for which the v,,-adic absolute
value on K is induced by i, is called the distinguished prime (in K ) above w. Moreover,
for each v € My lying above w, choose an element ~, € 3 such that v = v,, 0 v, !, and

choose 7,, = 1. We choose once and for all a lift 7, of v, in €} with 7, = 1.

7.1 Choices of Embeddings and Uniformizers

7.1.1 Choices of Embeddings

Definition 7.1.1 Given v € Mk, let w € M), be the prime lying below v and note that
the v-adic absolute value on K is induced by ,, 07, !. Via restricting i,, 05, ', we then
obtain an embedding K — k¢ which extends to a continuous embedding K, — k¢ .
We will lift this to an isomorphism e;' : K¢ — k¢. We will then define i, : Q° — K¢

by setting i, := &, 0 i, 0 ¥, ', which clearly extends the natural embedding K — K,,.

To summarize, for all v € Mg and w € M}, such that w lies below v, the following

diagram commutes.

Yo
Ev e
K¢ < = kS L > K¢
va Zw Ty
@c Qc Yo N Qc
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Here, we define 7, := ¢, 0 5;3 and notice that we have 7, = 1. Observe also that we have

the relation
By = Yo O Gy, OV (7.1.1)

Proposition 7.1.2 Let h € Hom(Q%, G)*. Then, for allv € My and w € M, such that

w lies below v, we have (recall Definition 7.0.3)
hoy(Yo 0w o %71) =Yy * o, (W) Jor allw € Q, .

Proof. Let v € My and w € M}, be such that w lies below v. We have h, = ho @; (recall

(1.6.1)) by definition. Using (7.1.1), we then deduce that

ho(Toowo ) = h(iy" o Jyowo 7, ™" oiy)
= h(7, 0 ’L;j O W O iy, o%_l)
=7 (h-) (i, owoiy,)

=Y hvw (w),

where the last equality follows because h is X-invariant. This proves the claim. [ |

7.1.2 Choices of Uniformizers and their Radicals

For each w € M, let 7, be a chosen uniformizer in k,, and let {7?11,/ ":n € Z*} denote

the chosen coherent set of radicals of 7, in kS, (recall Section 4.1).

Definition 7.1.3 Given v € My, let w € M, be the prime lying below v. If v ¢ Vi, we
will choose T, := &,(m,) to be the uniformizer in K,, and = sv(mlu/n) for n € Z* to
the coherent radicals of 7, in K. If v € Vi, then we will choose the uniformizer in K,

and its radicals arbitrarily.
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Lemma 7.1.4 For allv € Mg and w € My, such that w lies below v, we have v & Vi if

/n

and only if v, & Vi. In particular, we have /" = %(ml,i") for alln € Z* in this case.

Proof. Since K/k is Galois, clearly v ¢ Vi if and only if v, ¢ Vi. Since 3, = g, 0¢, !, it

/n 1/n

is also clear that m/" = e, (ma/") = %(5%(#110/”)) = %(ﬂ'},ﬁn)) for all n € Z* in this case.
|

Next, observe that the choices made in Definitions 7.1.1 and 7.1.3 in turn determine

a distinguished topological generator o, = oy, of Gal(K!/K!") (recall (4.1.2)). In par-

ticular, because we chose {i,((,) : n € Z*} to be the compatible set of primitive roots of

unity in K, we have
oo (T/™) = iy (G /™ for (n,p) =1, (7.1.2)

where p denotes the rational prime lying below v. As noted in Remark 4.1.3, by abuse of

notation, we will also use o, to denote some chosen lift of o, in Q, .

Proposition 7.1.5 Let h € Hom(Q¥, G)*. Then, for allv € My and w € My, such that

w lies below v and v ¢ Vi, we have

hv(av) = Yo hvw (va)

provided that (., is contained in k, where e, = |h,(0,)].

Proof. Let v € Mg and w € My, be such that w lies below v and v ¢ V. We already know
from Proposition 7.1.2 that h, (7,00, 09 ) = Yo - hu, (0, ) (cf. Definition 7.0.3). Thus,
it suffices to show that h, (7, 0 0y, 09 ') = hy(0,), or equivalently, that 7, o o, 05, "
and o, have the same action on the fixed field L := K" of ker(h,).

Let h, = h"ht be the factorization of h, with respect to o, (recall Definition 4.1.4).

Set L™ 1= K" and Ltot .= K" Clearly L ¢ L™ L*! and both 7, 0 ¢, 07, " and o,
105



Characterization of the tame X-A-Realizable Classes in CI(OxG) Chapter 7

act as the identity on L™ because L™ /K, is unramified. We also have L' = Kv(m%/ “)

by Proposition 4.2.2. Hence, it remains to show that

(o 0 0uy 070 (/) = oy (m/).

But 1/ = 7,(m+®") by Lemma 7.1.4 since v ¢ Vi. Using (7.1.2), we then obtain

(Fo © Tu, 0%~ )@/ ) = Ty, (G, )L
= (o 0, ) (G )/
= (To 0w, 0T ) (Cen) )/
= iy(Ce, )/

= Oy (ﬂ'zl;/ev )a

where 7,71(¢.,) = (., because (., € k by hypothesis and i, = 7, 0 i,, 0¥, " by (7.1.1).

So, indeed 7, 0 7,, 07, ' and o, have the same action on L. This proves the claim. M

7.2 Embeddings of Groups of Ideles

In this section, assume that k contains all exp(G)-th roots of unity. In this case, we
have A(FG) = Map(G, F) for F € {k,K,k,, K,}, where w € My and v € My (recall
Definition 2.5.3 and (2.5.2); notice that their definitions do not require that G has odd
order). The isomorphisms ¢, for v € M then induce the following embeddings of groups

of ideles. It will be helpful to recall Definitions 2.4.2 and 2.5.6.

Definition 7.2.1 Define v : J(A(kG)) — J(A(KG)) by setting

v(g)y =€y O Gu
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for each v € My, where w € My, is the prime lying below v.

Similarly, define p : J(H(kG)) — J(H(KG)) by setting

p((rg(a))y :=ra(ey 0 ay)

for each v € My, where w € My, is the prime lying below v and rg(a), = re(aw). Notice

that the definition of p does not require that k contains all exp(G)-th roots of unity.

First, we will prove some basic properties concerning the map v. To that end, recall
that the choices of uniformizers m,, in k,, for w € M}, determine a subset § of J(A(kG))
(recall Definitions 4.2.1 and 4.3.1; again their definitions do not require that G has odd
order). Similarly, the choices of uniformizers r, in K, for v € My made in Definition 7.1.3

determine a subset §Fx of J(A(KG)).

Proposition 7.2.2 Let f € § and write f, = fi,.s, for each w € My. For allv € Mg
and w € My, such that w lies below v and v ¢ Vi, we have v(f), = fx, s, In particular,

if fo=1 for allw €V, then v(f) € §k.

Proof. Let v € Mg and w € My, be such that w lies below v and v ¢ V. Also, let ¢,
and ¢, denote the orders of the residue fields of K, and k,,, respectively. The order of s,
divides g, —1 by definition and hence divides ¢, —1. Because v ¢ Vi, we have 7, = &,(m,,)
by definition and it is clear that v(f), = fx,.s,. We then see that v(f), € Fx,. If f, =1
for all w € Vi, then clearly v(f), = 1 lies in Fg, for all v € Vi as well. We then deduce

that v(f) € §k in this case. |
Proposition 7.2.3 Let f € §x and write f, = fk, s, for each v € My. If
(1) s, =1 for allv € Vi ; and

(2) 8y = Su, for allv € Mg and w € My, such that w lies below v,
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then we have f = v(g) for some g € J(A(kQ)).

Proof. For each w € My, recall that A(k,G) = Map(G, k,,) and define g,, € A(k,G)* by

Ty ifs=s8,, #1
gw(s> =
1 otherwise.

Note that ¢ := (gu)w € J(A(kG)) because f € J(A(KG)) implies that s, = 1 for all but
finitely many v € M. To prove that f = v(g), let v € My be given and let w € M be
the prime lying below v. If s, # 1, then s, # 1 also by (2) and so v ¢ Vi by (1). In
this case, we have m, = €,(m,) by definition. Because s, = s,, by (2), we then deduce
that v(9)y = fk,s,- If su, =1, then s, = 1 by (2) and clearly v(g), = 1 = fk, s, This
shows that f =v(g) and so f € v(J(A(kG))), as claimed. |

Next, we will show that certain diagrams involving v and p are commutative.

Proposition 7.2.4 The diagram

A(KG)* ol J(A(KG))
AEG) - J(AKG))

commutes, where 15 denotes the map induced by the natural inclusion k — K.

Proof. Recall that Ay and Ax denote the diagonal maps. Now, let g € A(kG)* be given.

Also, let v € Mg and let w € M}, be the prime lying below v. Then, we have

(VO)‘k)(g)v:5Uoiwog:iv0%og
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since €, 0 4, = 1, 07, by Definition 7.1.1. Since g takes values in k, we have 7,09 = ¢
and so

(Vo) (9 =ivog = (Ak 0 ta)(g)o-

Hence, we have v o A\, = Ak o) and the diagram commutes. |

Proposition 7.2.5 The diagram

J(A(KG)) - J(AMKG))
oL, ol
J(H(kG)) m J(H(KG))

commutes, provided that G has odd order so that O and O ;- are defined.

Proof. Let g € J(A(kG)) be given. Also, let v € Mk and let w € My, be the prime lying

below v. On one hand, we have

(0L k o )(9)e = OL k(€ © gu)- (7.2.1)

On the other hand, let r¢(a,,) € H(k,G) be such that O, (g.) = 7¢(a.) so that

(100 1)(9)s = ra(ey 0 ay). (7.2.2)

Moreover, recall from the identification H(k,G) = Homgq, (S ,(kg)*) in (2.4.12) that

we have 7¢(a,)(¢) = ©1 ,.(9)(¥) forall ¢ € Sz . Here G, denotes the group of irreducible
ky-valued characters on G and recall that Sz C 7G. Below, we will show that (7.2.1)
and (7.2.2) are equal using the identification H(K,G) = Homg, (Sg , (K7)*) in (2.4.12).

Here @v denotes the groups of irreducible Kj-valued characters on G and Sg C Z@v.
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To that end, let ¢ € Sg and write ¢ = > n,x. Define e, o¢p := 37 n, (! o x),

which clearly lies in Sg (recall (2.4.6)). Since 7¢(a,) = ©L ;(gw), we then deduce that

ra(ev 0 aw)(¥) = eu(ra(aw)(e,” 0 ¥)) (7.2.3)

710 S) %
:5v<ng(3)<€v QM)

seG

= [T o g)ts)

seG

= @i,K(gv © gu) ()

The third equality above holds because (e, 01, s), = (1, s). for all s € G, which we will
prove below. Observe that clearly it suffices to show that (' o x, s). = (X, s). holds for
all x € G, and s € G. Recall that we chose the same compatible set {C,, : n € Z*} of roots
of unity in Q¢ for both k& and K. We also chose {i,(¢,) : n € Z"} and {i,(¢,) :n € ZT}
to be the compatible sets of roots of unity in K¢ and k¢, respectively.

Now, let x € G, and s € G be given. Let v = v(x, $) be as in Definition 2.5.1. Then,

we have x(s) = i,((js))" and (x,s). = v/|s|. Observe that

(e, o x)(s) = (g, 0 ) (¢a))”
= (iw o % ) (¢s))"

= iw(Qs\)U7

where ¢! 04, = i,, 07, " by Definition 7.1.1 and 7,7 *((s|) = (|5 because k contains all
exp(G)-th roots of unity. Again by Definition 2.5.1, this shows that (g, o x, s). = v/|s|
as well. Hence, we have (y,s). = (e, 0 x, s). and so the third equality in (7.2.3) indeed
holds. Tt follows that (7.2.1) and (7.2.2) are equal and so O - ov = 0O ;. This shows

that the diagram commutes. |
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7.3 Preliminary Definitions

In this section, we will assume that the left X-action on G is trivial. Then, the -
action on GG induced by the natural quotient map €2, — > and the given X-action on G is
trivial, which agrees with the convention set up in Section 1.6. From the Hochschild-Serre

spectral sequence associated to the group extension

1 s Qe > > > 1,
we then obtain an exact sequence
Hom(Q, G) —%— Hom(Qg, G)* —2— HX(S,G) (7.3.1)

which is analogous to (6.1.1). Here res denotes restriction. The ¥-action on Hom(Qg, G)
and the transgression map tr are defined in the exact same manner as in Definition 6.1.1.

More precisely, for each v € X, choose and fix a lift 7 of v in €.

Definition 7.3.1 The Y-action on Hom(Qk, G) is defined by

(h-7)(w) :=~"" h(wy ™) for all w € Qk

for h € Hom(Qg, G) and v € . This definition is independent of the choice of the lift 7

because G is abelian. Next, define ¢ : ¥ x ¥ — Qy by setting (v, ) := (7)(6)(70)~ .

The transgression map tr : Hom(Qg, G)* — H%*(Z, G) is defined by
tr(h) :==[hod|,
where [—] denotes the cohomology class. This definition is also independent of the choice

of the lifts 7 for v € 3.
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Remark 7.3.2 If we regard Hom(Q%, G) as a subset of Hom(Q, G) via Remark 7.0.3,
then the Y-action Hom(Qf, G) and the transgression map on Hom(Qf, G)* induced by
Definition 7.3.1 agree with those in Definition 6.1.1. In particular, the identical notation

does not cause any confusion.
Definition 7.3.3 Define (recall Definition 2.4.1)

Hs(KG) = {rg(a) € H(KG) | hy € Hom(Qg, G)*};

H(KG) :={rg(a) € H(KG) | hy € Hom(Qg, G)*) and tr(h,) = 1}.
It is clear that both of the sets above are subgroups of H(KG).

Proposition 7.3.4 Assume that k contains all exp(G)-th roots of unity. Then, we have

(0% k o V)(M(A(RG)¥)) C n(H(KG)),

provided that G has odd order so that @i,K 1s defined.

Proof. Because k contains all exp(G)-th roots of unity, the map v is defined and results

from Section 7.2 apply. Now, let g € A(kG)* be given. We have

(0% k o V)(Ak(g)) = (O k 0 Ax)(talg)) = (0 O 1) (1 (9)).

where v o Ay = Ak oty by Proposition 7.2.4 and O ;- o Ax = no ©! ;- because diagram
(2.5.5) commutes. Recall that ¢y : A(kG)* — MK G)* denotes the map induced by the
natural inclusion & — K. Thus, it suffices to show that ©. ;- (ta(g)) € H(KG).

To that end, first recall that H(kG) = ((Q°G)*/G)® and H(KG) = ((Q°G)*/G)%*x

by definition. Let ¢y : H(kG) — H(KG) denote the natural inclusion induced by the
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inclusion Qg C Q. From the identification (2.4.11), we see that there is a commutative

diagram
Homg, (Sg, (Q°)*) ————— Homyg, (Sg, (Q°)*)

H(kG)

H(KG)

ln
From this, it is clear that if © ,(g) = r¢(a), then O 1 (1a(g)) = tn(ra(a)). In particular,
the homomorphism % associated to ©! (1 (g)) is equal to res(h,). Since (7.3.1) is exact,
we then see that h € Hom(Qy, G)> and tr(h) = 1. Thus, indeed O, (1a(g)) € Hs(KG),

and this proves the claim. [ |

7.4 Proof of Theorem 1.4.5 (a)

Theorem 1.4.5 Let K/k be a Galois extension of number fields and set ¥ := Gal(K/k).
Let G be a finite abelian group of odd order on which ¥ acts trivially on the left. Define
V = Vi to the set of primes in Ok which are ramified over k. Assume that k contains

all exp(G)-th roots of unity.

(a) The set AL(OkG)y is a subgroup of Cl(OkG). Furthermore, given h € Hom(Qk, G

and a finite set T of primes in Ok, there exists h' € Hom(Q%., G)% such that

(1) Ky /K is a field extension;

(2) Ky /K is unramified at allv € T;

(3) cl(Ap) = cl(Ap);

(4) tr(h') =tr(h).

In particular, the set AL(OxQ)y is also a subgroup of Cl(OxG).
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Proof. Let pyx; denote the composition of the homomorphism rag given in Definition 2.4.4

followed by the natural quotient map

J(H(KG))
(Hs(KG)U(H(OG))(O ko v)(J(A(KG)))

JH(KG)) — ;
We will show that AL(OxG)y is a subgroup of Cl(OxG) by showing that
7 (AS(OkG)v) = ker(ps), (7.4.1)
or equivalently, that for any ¢ € J(KG), we have j(c) € AL(OkG)y if and only if
rag(c) € n(Hs(KG))U(H(OkG))(O. k o v)(J(A(KG))). (7.4.2)
To that end, let ¢ € J(KG) be given. First, assume that (7.4.2) holds, so
rag(c) = n(ra(b)) " u(O: x o v)(g) (7.4.3)

for some rg(b) € Hy(KG), u € UH(OkG)), and g € J(A(kG)). Let m be an ideal in O.
Then, by Theorem 4.3.7, there exists f € § such that f,, = 1 for all primes w € My

which are ramified in K/k and

Q
Il
—

(mod A\ (A(KG)*)UL(A(O:G))).

Choosing m to be divisible by |G| and exp(G)?, by Theorem 4.3.6 (b), the above yields

Ol4(0) = OL4(f)  (mod O, M(AGKG)))U(H(OLG))).

Since p o O, = ©. ;c ov by Proposition 7.2.5, by Proposition 7.3.4, applying y to the
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above equation then yields
(©Lxov)(9) = (O ko v)(f) (mod n(H(KG))U(H(OkG))). (7.4.4)

Thus, by changing b and u in (7.4.3) if necessary, we may assume that ¢ = f. Note that
v(f), =1for all v € V and that v(f) € Fx by Proposition 7.2.2. Hence, if h := hy, is the
homomorphism associated to r¢(b), then h is tame with h, unramified for all v € V" and
j(c) = cl(Ap) by Theorem 4.3.2. Since r¢(b) € Hyx(KG), we know that h is X-invariant,
and the above then shows that j(c) € AL(OrGQ)y.

Conversely, assume that j(c) = cl(Aj) for some h € Hom(Q%, G)3, with K, = KG-b
say. Then, by Theorem 4.3.2, there exists ¢ € J(KG) such that j(¢') = cl(Ap) and

rag(c) =n(ra(b)) " ud; (f) (7.4.5)

for some u € U(H(OkG)) and f’ € Fx. Moreover, for each v € My, we have f, = fi. .
for s, = hy(0k,), and s, = 1if v € V. Since ¥ acts trivially on G, by Proposition 7.1.5, we
have s, = s,,, for all v € Mg and w € M;, with w lying below v (recall Definition 7.0.5).
Proposition 7.2.3 then implies that f' = v(g) for some g € J(A(kG)). Since j(c) = cl(4y)

also, by Theorem 2.1.7, we have

c=d (mod O((KG)*)U(OkQG)).

Clearly rag((KG)*) C Hs(KG). We may then write (7.4.5) as

rag(c) = n(ra(b)ra(b’) ut/ (€] x o v)(g) (7.4.6)

for some rq(V') € Hy( KG) and v’ € H(OxG). Note that rg(b) € Hs(KG) because h is -
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invariant. It follows that (7.4.2) indeed holds. This proves (7.4.1), and it remains to show
the existence of i/ € Hom(Q%, G)3 such that (1) to (4) are satisfied.

Let T be a finite set of primes in Og. First, notice that the same discussion following
(7.4.3) shows that there exists f € §x such that (7.4.4) holds. In particular, by changing
b and ' in (7.4.6) if necessary, we may assume that g = f. By Theorem 4.3.7, we may
also assume that f, = 1 for all w € My, lying below the primes in V' UT', and that f, # 1
for all s € G with s # 1 (notice that € acts trivially on G(—1) because k contains all
exp(G)-th roots of unity). In particular, by Proposition 7.2.2, we have that v(f), = 1
forall v € VUT and v(f) € §k.

Now, let A’ be the homomorphism associated to r¢(b)rg (V). From (7.4.6) and The-
orem 4.3.2, we then deduce that A’ is tame with A/ unramified for all v € V' UT and
that j(c) = cl(Ay), whence (2) and (3) hold. Because rg(V') € Hy(KG) and h = hy, is -
invariant, it is clear that A’ € Hom(Q%, G)} and we have tr(h') = tr(h), and so (4) holds
as well. Finally, for each s € G with s # 1, we have f; # 1 by choice so f, = f, s for
some w € M. Then, we have v(f), = fk, s by Proposition 7.2.2 and hence b/ (og,) = s
by Theorem 4.3.2. This means that A’ is surjective so K}, is a field, as claimed in (1).

Because gal , is weakly multiplicative (recall Theorem 1.2.2 (b)), what we have proved
above implies that A% (OkG)y is closed under multiplication. Since C1(OkG) is finite, it

follows that AL(OxG)y is also a subgroup of Cl(OkG). This proves the theorem. |

7.5 The Quotient AL(OxG)y /AL OKG)y

In what follows, we will assume all of the hypotheses stated in Theorem 1.4.5. Then,
the sets AL(OkG)y and AL(OkQG)y are both subgroups of Cl(OxG) by Theorem 1.4.5
(a). We are interested in the group structure of the quotient AL(OxG)y /AL (OkG)y

and its relation to that of tr(Hom(Q%, G)3).
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Proposition 7.5.1 Let h, hy, hy € Hom(Q%, G)3.

(a) cl(An,)cl(An,) = cl(Apinon,) for some hy € Hom(Qk, G)% with tr(h) = 1.
(b) cl(Ap)cl(Ap-1) =1 (mod AL(OG)y).

(c) If tr(hy) = tr(hy), then cl(An,) = cl(Ap,) (mod AL(OG)y ).

Proof. By Theorem 1.4.5 (a), there exists hy, € Hom(QY, G)y such that cl(Ay,) = cl(Ap,),
tr(hh) = tr(hy), and d(hb) Nd(hy) = 0 (recall the notation introduced in (1.1.2)). From

Theorem 1.2.2 (b), we then deduce that

Cl(Ahl)Cl(Afu) = Cl(Ahlh’Q) = Cl(Afnhzhs)v

where h, := hy'h,. It is clear that tr(h,) = 1, and so (a) holds. As for (b), simply note
that cl(Ay)cl(Ap-1) = 1 by Theorem 1.2.2 (a). Alternatively, notice that (b) follows from
(a) applied to h; = h and hy = h™!; this alternative argument is important because the
equality cl(Op,)cl(Op-1) = 1 does not hold in general (cf. Remark 1.4.6).

Now, to prove (c), first observe that (a) and (b) together imply that
cl(Ap))cl(Ap,) "t = cl(Ahl)cl(Ah51) = cl(Ahlhgth) (mod A’ (OxG)y)

for some h, € Hom(Q%, G} with tr(hs) = 1. If tr(hy) = tr(hy), then tr(hihy hy) = 1
and we deduce that cl(A4y,) = cl(A4y,) (mod AL(OG)y ), as desired. |

7.6 Proof of Theorem 1.4.5 (b)

Theorem 1.4.5 Let K/k be a Galois extension of number fields and set ¥ := Gal(K/k).
Let G be a finite abelian group of odd order on which ¥ acts trivially on the left. Define
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V = Vi to the set of primes in Ok which are ramified over k. Assume that k contains

all exp(G)-th roots of unity.

(b) The natural surjective map

AL(OkG)y

. t Y .
b tr(Hom(Qy, G)y) — —-AI;(OKG)V :

d)A(tT‘(h)) = Cl(Ah).Az(OKG)V,

where h € Hom(Q, G)3:, is well-defined and is a homomorphism. Furthermore, if i*

18 1njective, then &4 1s an isomorphism.

Proof. The map ¢4 is well-defined by Proposition 7.5.1 (c¢). To show that it is a homo-
morphism, let hy, hy € Hom(QY%, G)3 be given. Note that by Proposition 7.5.1 (a), there
exists h, € Hom(Q%, G)% such that tr(h,) = 1 and cl(Ap, )cl(An,) = cl(Ap,n,n.). Then,
we see that

Gatr(h))da(tr(h)) = ba(tr(hihohs)) = Galtr(hihs))

and so ¢4 is indeed a homomorphism. This proves the first claim.

To prove the second claim, let h € Hom(Q%, G)3 be such that ¢4(¢r(h)) = 1. This
means that cl(A4;) € AL(OkG)y. Because AL(OkG) is a subgroup of Cl(OxG) by Theo-
rem 1.4.5 (a), we have cl(A;)™" = cl(Ay,) for some hy € Hom(Qf, G)Y with tr(hs) = 1.
In particular, we may assume that d(hs) Nd(h) = () (recall (1.1.2)). Since gal, is weakly

multiplicative by Theorem 1.2.2 (b), we deduce that
1= Cl(Ah)d(Ahs) = Cl(AhhS)'

Now, recall Theorem 1.4.4. Since £ is a homomorphism, we obtain (£ogal 4)(hh;1h)) =1
and hence (i* o tr)(hhs) = 1. If ¢* is injective, then this implies that ¢r(hhs) = 1 and so

tr(h) = 1. Hence, in this case the map ¢4 is injective and so is an isomorphism. |
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