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Abstract

On the Galois Module Structure of the Square Root

of the Inverse Different in Abelian Extensions

by

Cindy (Sin Yi) Tsang

Let K be a number field with ring of integers OK and let G be a finite group of odd

order. Given a G-Galois K-algebra Kh, let Ah be the fractional ideal in Kh whose square

is the inverse different of Kh/K, which exists by Hilbert’s formula since G has odd order.

By a theorem of B. Erez, we know that Ah is locally free over OKG when Kh/K is weakly

ramified, i.e. all of the second ramification groups in lower numbering attached to Kh/K

are trivial. In this case, the module Ah determines a class cl(Ah) in the locally free class

group Cl(OKG) of OKG. Such a class in Cl(OKG) will be called A-realizable, and tame

A-realizable if Kh/K is in fact tame. We will write A(OKG) and At(OKG) for the sets

of all A-realizable classes and tame A-realizable classes in Cl(OKG), respectively.

In this dissertation, we will consider the case when G is abelian. First of all, we will

show that At(OKG) is in fact a subgroup of Cl(OKG) and that a class cl(Ah) ∈ A(OKG)

is tame A-realizable if the wildly ramified primes of Kh/K satisfy suitable assumptions.

Our result will imply that A(OKG) = At(OKG) holds if the primes dividing |G| are

totally split in K/Q. Then, we will show that Ψ(A(OKG)) = Ψ(At(OKG)) holds without

any extra assumptions. Here Ψ is the natural homomorphism Cl(OKG) −→ Cl(M(KG))

afforded by extension of scalars and Cl(M(KG)) denotes the locally free class group of

the maximal OK-orderM(KG) in KG. Last but not least, we will show that the group

structure of At(OKG) is connected to the study of embedding problems.

xi
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Chapter 1

Introduction

Let K be a number field with ring of integers OK and let G be a finite group. The set of

isomorphism classes of G-Galois K-algebras (see Section 2.3 for a brief review of Galois

algebras) is in bijective correspondence with the pointed set H1(ΩK , G), where ΩK is the

absolute Galois group of K acting trivially on G. Given h ∈ H1(ΩK , G), we will write Kh

for a Galois algebra representative of h and Oh for its ring of integers.

The Galois module structure of Oh has been a classical problem of interest in number

theory (see Section 1.1 for a brief overview). In this dissertation, we will instead consider

the Galois module structure of the fractional ideal Ah in Kh whose square is the inverse

different of Kh/K (see Sections 1.2 to 1.4 for more details).

1.1 Galois Module Structure of Rings of Integers

Given h ∈ H1(ΩK , G), a classical theorem of E. Noether (see [11, Chapter I, Section 3],

for example) implies thatOh is locally free overOKG when Kh/K is tame. In view of this

result, define

H1
t (ΩK , G) := {h ∈ H1(ΩK , G) | Kh/K is tame}

1



Introduction Chapter 1

and consider only the elements h ∈ H1
t (ΩK , G). In this case, the structure of Oh as a ZG-

module is completely understood due to a result of M. Taylor (see [22, Theorem 1]). For

example, if G is abelian or if G has odd order, then Oh is free over ZG. But very little is

known about the structure of Oh as an OKG-module. We will recall some known results.

First of all, since Oh is locally free over OKG (of rank one), it defines a class cl(Oh)

in the locally free class group Cl(OKG) of OKG. Such a class in Cl(OKG) is said to be

realizable, and we will write R(OKG) for the set of all realizable classes in Cl(OKG). In

other words, the set R(OKG) is the image of the natural map

gal : H1
t (ΩK , G) −→ Cl(OKG); gal(h) := cl(Oh). (1.1.1)

It is natural to ask for the properties of gal as well as the structure of the set R(OKG).

For the moment, assume that G is abelian. Then, the pointed set H1(ΩK , G) is equal

to Hom(ΩK , G) and thus has a group structure. It also contains H1
t (ΩK , G) as a subgroup

(see Remark 2.3.5). However, the map gal is not a homomorphism in general, and so it is

unclear whether R(OKG) is a subgroup of Cl(OKG). In [14, Theorem 6.17 and Corollary

6.20], L. McCulloh gave a complete characterization of the set R(OKG) and showed that

it is indeed a subgroup of Cl(OKG). His result in [14, Theorem 6.7] also implies that gal

is weakly multiplicative in the following sense. For each h ∈ H1(ΩK , G), define

d(h) := {the primes in OK which are ramified in Kh/K}. (1.1.2)

Then, for all h1, h2 ∈ H1
t (ΩK , G) with d(h1) ∩ d(h2) = ∅, we have

gal(h1h2) = gal(h1)gal(h2). (1.1.3)

This weak multiplicativity of gal was also proved in [3, Proposition 3.10] by J. Brinkhuis.

2



Introduction Chapter 1

1.2 The Square Root of the Inverse Different I

In this section, assume that G has odd order. Given h ∈ H1(ΩK , G), we will write Ah

for the fractional ideal in Kh whose square is the inverse different of Kh/K. Note that the

inverse different of Kh/K indeed has a square root by Proposition 1.2.1 below because G

has odd order.

Proposition 1.2.1 Let p be a prime and let F/Qp be a finite extension. Let N/F be a

finite Galois extension with different ideal DN/F and let πN be a uniformizer in N . Then,

we have DN/F = (πN)vN (DN/F ) for

vN(DN/F ) =
∞∑
n=0

(|Gal(N/F )n| − 1), (1.2.1)

where Gal(N/F )n denotes the n-th ramification group of N/F in lower numbering.

Proof. See [20, Chapter IV, Proposition 4], for example. We remark that (1.2.1) is also

known as Hilbert’s formula.

Given h ∈ H1(ΩK , G), a theorem of B. Erez (see [8, Theorem 1 in Section 2]) implies

that Ah is locally free over OKG when Kh/K is weakly ramified (see Definition 2.3.4). In

view of this result, define

H1
w(ΩK , G) := {h ∈ H1(ΩK , G) | Kh/K is weakly ramified}

and consider only the elements h ∈ H1
w(ΩK , G). In this case, the structure of Ah as a ZG-

module is reasonably understood. For example, we have thatAh is free over ZG ifKh/K is

tame (see [8, Theorem 4]) or if the wild primes of Kh/K satisfy some suitable hypotheses

(see [19, Theorem 1]). On the other hand, nothing is known about the structure of Ah as

an OKG- module, and this is what we will study in this dissertation.

3



Introduction Chapter 1

First of all, since Ah is locally free over OKG (of rank one), it defines a class cl(Ah) in

the locally free class group Cl(OKG) of OKG. Such a class in Cl(OKG) is said to be A-

realizable, and tame A-realizable if Kh/K is tame. We will write A(OKG) and At(OKG)

for the sets of all A-realizable and tame A-realizables classes in Cl(OKG), respectively. In

other words, they are the images of H1
w(ΩK , G) and H1

t (ΩK , G), respectively, under the

natural map

galA : H1
w(ΩK , G) −→ Cl(OKG); galA(h) := cl(Ah). (1.2.2)

As in the case of rings of integers, we are interested in the properties of galA as well as

the structures of the sets A(OKG) and At(OKG).

For the moment, assume that G is abelian. As pointed out in Section 1.1, the pointed

set H1(ΩK , G) has a group structure and it contains H1
t (ΩK , G) as a subgroup. However,

it only contains H1
w(ΩK , G) as a subset and galA restricted to the subgroup H1

t (ΩK , G) is

not a homomorphism in general. Nevertheless, we will show that galA preserves inverses

and is weakly multiplicative in the sense of (1.1.3). More precisely, we will prove (recall

the notation introduced in (1.1.2)):

Theorem 1.2.2 Let K be a number field and let G be a finite abelian group of odd order.

For all h, h1, h2 ∈ H1
w(ΩK , G) with d(h1) ∩ d(h2) = ∅, we have

(a) h−1 ∈ H1
w(ΩK , G) and galA(h−1) = galA(h)−1; and

(b) h1h2 ∈ H1
w(ΩK , G) and galA(h1h2) = galA(h1)galA(h2).

Because the map galA restricted to H1
t (ΩK , G) is not a homomorphism in general, it is

unclear whetherAt(OKG) is subgroup of Cl(OKG). By using the techniques developed by

McCulloh in [14], we will give a complete characterization of the setAt(OKG) (see (4.4.6))

and show that it is indeed a subgroup of Cl(OKG). More precisely, we will prove:

4
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Theorem 1.2.3 Let K be a number field and let G be a finite abelian group of odd order.

Then, the set At(OKG) is a subgroup of Cl(OKG). Moreover, given c ∈ At(OKG) and a

finite set T of primes in OK, there exists h ∈ H1
t (ΩK , G) such that

(1) Kh/K is a field extension;

(2) Kh/K is unramified at all v ∈ T ;

(3) c = cl(Ah).

Observe that each h ∈ H1
t (ΩK , G) gives rise to two classes in Cl(OKG), namely cl(Oh)

and cl(Ah). It is then natural to ask how they are related. We will prove:

Theorem 1.2.4 Let K be a number field and let G be a finite abelian group of odd order.

We have cl(Ah)cl(Oh) = cl(Oh2) for all h ∈ H1
t (ΩK , G), and hence At(OKG) ⊂ R(OKG).

Remark 1.2.5 The equality in Theorem 1.2.4 is essentially a special case of a result of

D. Burns (see [4, Theorem 1.4]).

Next, we consider the A-realizable classes cl(Ah) for the elements h ∈ H1
w(ΩK , G) that

do not belong to H1
t (ΩK , G). Using the characterization of At(OKG) given in (4.4.6), we

will prove that a class cl(Ah) ∈ A(OKG) in fact belongs to At(OKG) if the wild primes

of Kh/K satisfies suitable hypotheses. More precisely, we will prove:

Theorem 1.2.6 Let K be a number field and let G be a finite abelian group of odd order.

Let h ∈ H1
w(ΩK , G) and let V denote the set of primes in OK which are wildly ramified

in Kh/K. If

(1) every v ∈ V is unramified over Q; and

(2) the ramification index of every v ∈ V in Kh/K is prime,

5
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then we have cl(Ah) ∈ At(OKG).

Remark 1.2.7 Assume further that every rational prime dividing |G| is totally split in

the extension K/Q. Then, using [23, Theorem 1.1], it may be shown that conditions (1)

and (2) in Theorem 1.2.6 are always satisfied. In this case, we haveA(OKG) = At(OKG).

In view of Remark 1.2.7, it is natural to ask whether the sets A(OKG) and At(OKG)

are always equal. We will prove that this is so if we extend scalars to the maximal OK-

orderM(KG) in KG. More precisely, let Cl(M(KG)) denote the locally free class group

of M(KG) and let

Ψ : Cl(OKG) −→ Cl(M(KG))

be the natural homomorphism afforded by extension of scalars. We will prove:

Theorem 1.2.8 Let K be a number field and let G be a finite abelian group of odd order.

Then, we have Ψ(A(OKG)) = Ψ(At(OKG)).

1.3 The Square Root of the Inverse Different II

In this section, we continue to assume that G has odd order. Given h ∈ H1(ΩK , G),

let Trh denote the trace map of Kh/K. It is well-known that Ah is self-dual with respect

to Trh (this follows from [12, Chapter 3, (2.14)], for example). In other words, we have

Ah = {a ∈ Kh | Trh(aAh) ⊂ OK}.

The map Trh then induces a G-invariant symmetric OK-bilinear form Ah × Ah −→ OK

on Ah. On the other hand, observe that there is a canonical G-invariant symmetric OK-

bilinear from tK on OKG for which the elements of G form an orthonormal basis. That

is, we have tK(s, t) = δst for all s, t ∈ G.

6
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As in Section 1.2, we consider only the elements h ∈ H1
w(ΩK , G), in which case Ah is

locally free over OKG (of rank one) by [8, Theorem 1 in Section 2]. In other words, for

every prime v in OK , there is an isomorphism OKv ⊗OK Ah ' OKvG, where OKv denotes

the ring of integers in the completion Kv of K at the prime v. It is natural to ask whether

this isomorphism may be chosen such that the bilinear forms Trh and tK are preserved,

that is, whether (Ah, T rh) is locally G-isometric to (OKG, tK) (see Definition 2.2.6).

Remark 1.3.1 For K = Q and G abelian, Erez and J. Morales showed in [9, Theorem

4.1] that (Ah, T rh) is in fact G-isometric to (ZG, tQ) (see Definition 2.2.1).

In what follows, assume in addition that G is abelian so that UCl(OKG), the unitary

class group of OKG, is defined (see Subsection 2.2.2). As we will see in Section 3.1, the

pair (Ah, T rh) is locally G-isometric to (OKG, tK) in this case, and hence determines a

class ucl(Ah) in UCl(OKG). By abuse of terminology, such a class in UCl(OKG) will also

be called A-realizable, and tame A-realizable if Kh/K is tame. We will write Au(OKG)

and Atu(OKG) for the sets of all A-realizable and tame A-realizable classes, that is, the

images of H1
w(ΩK , G) and H1

t (ΩK , G), respectively, under the natural map

galA,u : H1
w(ΩK , G) −→ UCl(OKG); galA,u(h) := ucl(Ah).

We are interested in the properties of galA,u as well as the structures of both Au(OKG)

and Atu(OKG). Similar to Theorems 1.2.2, 1.2.3, and 1.2.6, we will prove (recall (1.1.2)):

Theorem 1.3.2 Let K be a number field and let G be a finite abelian group of odd order.

For all h, h1, h2 ∈ H1
w(ΩK , G) with d(h1) ∩ d(h2) = ∅, we have

(a) h−1 ∈ H1
w(ΩK , G) and galA,u(h

−1) = galA,u(h)−1; and

(b) h1h2 ∈ H1
w(ΩK , G) and galA,u(h1h2) = galA,u(h1)galA,u(h2).

7
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Theorem 1.3.3 Let K be a number field and let G be a finite abelian group of odd order.

Then, the set Atu(OKG) is a subgroup of UCl(OKG). Moreover, given c ∈ Atu(OKG) and

a finite set T of primes in OK, there exists h ∈ H1
t (ΩK , G) such that

(1) Kh/K is a field extension;

(2) Kh/K is unramified at all v ∈ T ;

(3) c = ucl(Ah).

Theorem 1.3.4 Let K be a number field and let G be a finite abelian group of odd order.

Let h ∈ H1
w(ΩK , G) and let V denote the set of primes in OK which are wildly ramified

in Kh/K. If

(1) every v ∈ V is unramified over Q; and

(2) the ramification index of every v ∈ V in Kh/K is prime,

then we have ucl(Ah) ∈ Atu(OKG).

Remark 1.3.5 In [15, Theorem 3.6], Morales proved that if G has prime order and the

field K contains all |G|-th roots of unity, then Atu(OKG) is a subgroup of UCl(OKG).

Thus, Theorem 1.3.3 is a generalization of his result.

Remark 1.3.6 There is a natural homomorphism (cf. Remark 2.2.11)

Φ : UCl(OKG) −→ Cl(OKG); Φ([(X,T )]) = [X] (1.3.1)

afforded by forgetting the given G-invariant symmetric OK-bilinear form T on any locally

free OKG-module X. Theorems 1.3.2, 1.3.3 and 1.3.4 are therefore refinements of The-

orems 1.2.2, 1.2.3 and 1.2.6, respectively. In fact, their proofs are essentially the same. To

avoid repetition, we will only give the proofs of Theorems 1.3.2, 1.3.3 and 1.3.4.

8
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1.4 Relation to the Study of Embedding Problems

In this section, assume that G is abelian and let K/k be a Galois subextension of K.

Moreover, set Σ := Gal(K/k) and fix a left Σ-module structure on G.

Definition 1.4.1 Given a group extension

EΓ : 1 G Γ Σ 1

of Σ by G, a solution to the embedding problem (K/k,G,EΓ) is a Galois extension N/K

for which N/k is Galois, and there exist isomorphisms Gal(N/K) ' G and Gal(N/k) ' Γ

such that the diagram

1 1

1 1

Gal(N/K) Gal(N/k) Gal(K/k)

G Γ Σ

' '

commutes. If N/K is tame in addition, then we will call N/K a tame solution.

In [3], Brinkhuis connected the study of realizable classes to that of embedding prob-

lems (cf. Remark 1.4.3) by means of the following commutative diagram, called the basic

diagram (see Chapter 6 below for the construction).

H1(Gal(Kt/k), G) Hom(Ωt
K , G)Σ H2(Σ, G)

Cl(OKG)Σ H2(Σ, (OKG)×)

res tr

gal i∗

ξ

(1.4.1)

Moreover, the top row is exact and all of the maps except possibly gal (recall (1.1.1)) are

homomorphisms (cf. Remark 6.3.2). Here Kt is the maximal tamely ramified extension

9
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of K in some fixed algebraic closure of K and Ωt
K := Gal(Kt/K). Observe that we may

identify Hom(Ωt
K , G) with H1

t (ΩK , G) since G is abelian (see Remark 2.3.5).

Remark 1.4.2 Diagram (1.4.1) is a modified and abridged version of the basic diagram

constructed by Brinkhuis in [3, Theorem 5.1]. For example, the Picard group of OKG was

used in place of the locally free class group of OKG, but these two groups are canonically

isomorphic for G abelian (see [7, Theorem 55.26], for example).

Remark 1.4.3 We will see in Proposition 6.1.2 below that a surjective h ∈ Hom(Ωt
K , G)Σ

gives rise to a tame solution to the embedding problem (K/k,G,Eh), where Eh is deter-

mined by tr(h). Now, suppose that i∗ (see (6.0.2)) is injective (as is shown in [2, Theorem

4.1], this is so if K is a C.M. field and G or Σ has odd order). If tr(h) 6= 1 (which corre-

sponds to Eh being non-split), then cl(Oh) 6= 1 as well since (1.4.1) commutes and ξ is a

homomorphism.

In what follows, assume further that G has odd order. Essentially the same proof as

that of [3, Theorem 5.1] will show that (1.4.1) is still commutative when gal is replaced

by galA. More precisely, we will prove:

Theorem 1.4.4 Let K/k be a Galois extension of number fields and set Σ := Gal(K/k).

Let G be a finite abelian group of odd order equipped with a fixed left Σ-module structure.

Then, there is a commutative diagram

H1(Gal(Kt/k), G) Hom(Ωt
K , G)Σ H2(Σ, G)

Cl(OKG)Σ H2(Σ, (OKG)×)

res tr

galA i∗

ξ

, (1.4.2)

where the top row is exact and all of the maps except possibly galA are homomorphisms.

10
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A similar remark to Remark 1.4.3 shows that the commutativity of (1.4.2) relates the

study of tame A-realizable classes to that of embedding problems.

Now, recall from Theorem 1.2.3 that At(OKG) is a subgroup of Cl(OKG). In view of

Theorem 1.4.4, it is then natural to ask whether the group structure of At(OKG) is also

related to the study of embedding problems. For example, define

AtΣ(OKG) := {cl(Ah) : h ∈ Hom(Ωt
K , G)Σ};

Ats(OKG) := {cl(Ah) : h ∈ Hom(Ωt
K , G)Σ and tr(h) = 1}.

Classes in AtΣ(OKG) are said to be tame Σ-A-realizable. We want to determine whether

the above subsets of At(OKG) are in fact subgroups, and if so, whether the group struc-

ture of their quotient AtΣ(OKG)/Ats(OKG) is related to that of H2(Σ, G).

We will prove the following partial result. Given a set V of primes in OK , define

Hom(Ωt
K , G)Σ

V := {h ∈ Hom(Ωt
K , G)Σ | Kh/K is unramified at all v ∈ V } (1.4.3)

and

AtΣ(OKG)V := {cl(Ah) : h ∈ Hom(Ωt
K , G)Σ

V };

Ats(OKG)V := {cl(Ah) : h ∈ Hom(Ωt
K , G)Σ

V with tr(h) = 1}.

Write exp(G) for the exponent of the group G. We will prove:

Theorem 1.4.5 Let K/k be a Galois extension of number fields and set Σ := Gal(K/k).

Let G be a finite abelian group of odd order on which Σ acts trivially on the left. Define

V = VK to the set of primes in OK which are ramified over k. Assume that k contains

all exp(G)-th roots of unity.

11
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(a) The set AtΣ(OKG)V is a subgroup of Cl(OKG). Furthermore, given h ∈ Hom(Ωt
K , G)Σ

V

and a finite set T of primes in OK, there exists h′ ∈ Hom(Ωt
K , G)Σ

V such that

(1) Kh′/K is a field extension;

(2) Kh′/K is unramified at all v ∈ T ;

(3) cl(Ah′) = cl(Ah);

(4) tr(h′) = tr(h).

In particular, the set Ats(OKG)V is also a subgroup of Cl(OKG).

(b) The natural surjective map

φA : tr(Hom(Ωt
K , G)Σ

V ) −→ A
t
Σ(OKG)V
Ats(OKG)V

; φA(tr(h)) := cl(Ah)Ats(OKG)V ,

where h ∈ Hom(Ωt
K , G)Σ

V , is well-defined and is a homomorphism. Furthermore, if i∗

is injective, then φA is an isomorphism.

Remark 1.4.6 Theorem 1.4.5 still holds when Ah is replaced by Oh, in which case the

hypothesis that G has odd order is not required. The proofs of the analogous statements

are verbatim. We simply have to use the characterization of cl(Oh) given in [14, Theorem

6.7] rather than that of cl(Ah) given in Theorem 4.3.2 for h ∈ Hom(Ωt
K , G). Similarly,

we have to use the commutativity of (1.4.1) rather than that of (1.4.2).

1.5 Previously Copyrighted Materials

Theorems 1.2.2, 1.2.3, 1.2.6, and a special case of Theorem 1.2.8 were first published in

On the Galois module structure of the square root of the inverse different in abelian exten-

sions, C. Tsang, J. Number Theory 160, Copyright @ 2016 Elsevier.
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Theorems 1.3.2, 1.3.3, and 1.3.4 will soon appear in On the realizable classes of the square

root of the inverse different in the unitary class group, C. Tsang, Int. J. Number Theory,

Copyright @ 2016 World Scientific.

1.6 Notation and Conventions

Throughout this dissertation, we will fix a number field K and a finite group G. We

will also fix a Galois subextension K/k of K and set Σ := Gal(K/k). Moreover, we will

use the convention that all of the homomorphisms in the cohomology groups considered

are continuous.

The symbol F will denote either a number field or a finite extension of Qp, where p

is a prime number. Given such an F , we will define:

OF := the ring of integers in F ;

F c := a fixed algebraic closure of F ;

OF c := the integral closure of OF in F c;

ΩF := Gal(F c/F );

F t := the maximal tamely ramified extension of F in F c;

Ωt
F := Gal(F t/F );

MF := the set of all finite primes in F ;

[−1] := the involution on F cG induced by the involution s 7→ s−1 on G;

tF := the symmetric G-invariant OF -bilinear form OFG×OFG −→ OF

on OFG for which tF (s, t) = δst for all s, t ∈ G.

We will let ΩF and Ωt
F act trivially on G on the left. We will further choose a compatible

13
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set {ζn : n ∈ Z+} of primitive roots of unity in F c, that is to say, we have (ζmn)n = ζn

for all m,n ∈ Z+. For G abelian, we will write Ĝ for the group of irreducible F c-valued

characters on G, and M(FG) for the unique maximal OF -order in FG.

Remark 1.6.1 Let Qc denote a fixed algebraic closure of Q containing K. Naturally, we

will choose Kc = Qc and kc = Qc. Moreover, we will choose the same compatible set of

primitive roots of unity in Qc for both k and K.

For F a number field and given v ∈MF , let Fv denote the completion of F at v and

write iv : F c −→ F c
v for a fixed embedding extending the natural embedding F −→ Fv.

By abuse of notation, we will also write iv for the F -isomorphism F c −→ iv(F
c) induced

by iv and i−1
v for its inverse. Let ĩv be the embedding ΩFv −→ ΩF induced by iv. More

specifically, we have

ĩv(ω) := i−1
v ◦ ω ◦ iv for all ω ∈ ΩFv . (1.6.1)

Finally, if {ζn : n ∈ Z+} is the chosen compatible set of distinguished primitive roots of

unity in F c, then we will choose {iv(ζn) : n ∈ Z+} to be that in F c
v .

For F a finite extension of Qp and given a finite extension N/F , let πN denote a uni-

formizer in N and write qN for the order of the residue field ON/(πN). Let vN denote the

additive valuation N −→ Z ∪ {∞} on N for which vN(πN) = 1. Given a fractional ON -

ideal A in N , we will also write vN(A) for the unique integer for which A = (πN)vN (A).

Moreover, define:

e(N/F ) := the ramification index of N/F ;

FπN ,n := the n-th Lubin-Tate division field of N corresponding to πN

for each n ∈ Z≥0. Finally, if N/F is Galois, let Gal(N/F )n denote the n-th ramification

14
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group of N/F in lower numbering for each n ∈ Z≥0, and write AN/F for the square root

of the inverse of N/F if it exists.

15



Chapter 2

Prerequisites

2.1 Locally Free Class Groups

Let F be number field and let Λ be an OF -order in FG. We will recall the definition

and an idelic description of the locally free class group Cl(Λ) of Λ (see [7, Chapter 6] for

more details).

Definition 2.1.1 A Λ-lattice is a left Λ-module which is finitely generated and projective

as an OF -module. Two Λ-lattices X and X ′ are stably isomorphic if there exists k ∈ Z+

such that X ⊕Λk ' X ′⊕Λk. The stable isomorphism class of X will be denoted by [X].

Remark 2.1.2 If two Λ-lattices are isomorphic, then plainly they are stably isomorphic.

The converse holds as well when G is abelian or when G has odd order (see [7, Theorems

51.2 and 51.24], for example).

Definition 2.1.3 Let X be a Λ-lattice. For each v ∈MF , define Xv := OFv ⊗OF X. We

say that X is locally isomorphic to Λ or locally free over Λ (of rank one) if Xv ' Λv as

Λv-modules for all v ∈MF . The set of all such Λ-lattices will be denoted by g(Λ).

16
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Definition 2.1.4 The locally free class group of OFG is defined to be the set

Cl(OFG) := {[X] : X ∈ g(Λ)}

equipped with the following group operation. Given X,X ′ ∈ g(Λ), by [6, Corollary 31.7]

there exists X ′′ ∈ g(Λ) such that X ⊕X ′ ' OFG⊕X ′′. It is simple to verify that [X ′′]

is uniquely determined by [X] and [X ′]. We then define [X][X ′] := [X ′′].

Remark 2.1.5 The group operation of Cl(Λ) is usually written additively. Since we will

use an idelic description of Cl(Λ), we will write it multiplicatively instead.

Definition 2.1.6 Let J(FG) be the restricted direct product of the groups (FvG)× with

respect to the subgroups Λ×v for v ∈MF . This definition does not depend on the choice of

the OF -order Λ, since if Λ′ is another OF -order in FG, then Λv = Λ′v for all but finitely

many v ∈MF . Let

∂ = ∂F : (FG)× −→ J(FG)

be the diagonal map and let

U(Λ) :=
∏
v∈MF

Λ×v

be the group of unit ideles.

The locally free Λ-lattices in FG are precisely those of the form

Λ · c :=
⋂
v∈MF

(Λv · cv ∩ FG), (2.1.1)

where c ranges over all ideles in J(FG). The map

jΛ : J(FG) −→ Cl(Λ); jΛ(c) := [Λ · c] (2.1.2)

17
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is surjective because every X ∈ g(Λ) may be embedded into FG, and is also a homomor-

phism by [6, Theorem 31.19]. If Λ = OFG, then we will write j for jOFG for simplicity.

Theorem 2.1.7 If G is abelian, then the map jΛ induces an isomorphism

Cl(Λ) ' J(FG)

∂((FG)×)U(Λ)
.

Proof. See [7, Theorem 49.22 and Exercise 51.1], for example.

2.2 G-Forms and Unitary Class Groups

2.2.1 G-Forms

Let F be a number field or a finite extension of Qp. First, we will recall the definition

of G-forms over OF and give a brief review of their basic properties.

Definition 2.2.1 A G-form over OF is a pair (X,T ) consisting of anOFG-lattice X and

a G-invariant symmetric OF -bilinear form T : X×X −→ OF on X. Two G-forms (X,T )

and (X ′, T ′) over OF are said to be G-isometric (over OF ) if there exists an isomorphism

ϕ : X −→ X ′ of OFG-modules such that

T ′(ϕ(x), ϕ(y)) = T (x, y) for all x, y ∈ X.

Such an isomorphism ϕ is called a G-isometry (over OF ). The G-isometry class of (X,T )

will be denoted by [(X,T )].

Given a G-form (X,T ) over OF , the form T extends uniquely to a G-invariant sym-

metric F -bilinear form on F ⊗OF X via linearity. By abuse of notation, we will use T to

denote this F -bilinear form as well.
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Definition 2.2.2 Let (X,T ) be a G-form over OF . The dual of X (with respect to T ) is

defined to be the OF -module

X∗ := {x ∈ F ⊗OF X | T (x,X) ⊂ OF}.

We say that (X,T ) is self-dual (with respect to T ) if X = X∗. An element x ∈ F ⊗OF X

is said to be self dual (with respect to T ) if

T (s · x, t · x) = δst for all s, t ∈ G.

Next, recall that tF denotes the canonical symmetric OF -bilinear form on OFG for

which tF (s, t) = δst for all s, t ∈ G. The G-forms (X,T ) over OF which are G-isometric

to (OFG, tF ) are precisely those which admit a free self-dual generator over OFG.

Proposition 2.2.3 A G-form (X,T ) over OF is G-isometric to (OFG, tF ) if and only if

there exists x ∈ X such that x is self-dual and X = OFG · x.

Proof. If ϕ : OFG −→ X is a G-isometry, then x := ϕ(1) is self-dual and X = OFG · x.

Conversely, if x ∈ X is self-dual and X = OFG · x, then the map OFG −→ X defined

by β 7→ β · x is a G-isometry .

Now, recall also that [−1] denotes the involution on F cG induced by the involution

s 7→ s−1 on G. Given c ∈ (FG)×, whether the (full) OFG-lattice OFG · c in FG or the

element c is self-dual (with respect to tF ) may be determined simply by considering the

element cc[−1] ∈ (FG)× when G is abelian.

Proposition 2.2.4 Assume that G is abelian and let c ∈ (FG)×.

(a) The OFG-lattice OFG · c is self-dual if and only if cc[−1] ∈ (OFG)×.

(b) The element c is self-dual if and only if cc[−1] = 1.
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Proof. Since tF is OF -bilinear, an element β ∈ FG lies in β ∈ (OFG · c)∗ if and only if

tF (β, sc) ∈ OF for all s ∈ G. (2.2.1)

But G is abelian, and so tF (β, sc) = tF (βc[−1], s), which is the coefficient of s in βc[−1], for

any s ∈ G. Thus, (2.2.1) is equivalent to βc[−1] ∈ OFG and (OFG · c)∗ = OFG · (c[−1])−1.

It follows that OFG · c is self-dual if and only if cc[−1] ∈ (OFG)×, which proves (a).

As for (b), simply observe that tF (sc, tc) = tF (cc[−1], s−1t) for all s, t ∈ G. It follows

that c is self-dual if and only if cc[−1] = 1.

Definition 2.2.5 In view of Proposition 2.2.4, define

FG(s) := {c ∈ (FG)× | cc[−1] ∈ (OFG)×};

FG(1) := {c ∈ (FG)× | cc[−1] = 1}.

Clearly both of the sets above are subgroups of (FG)× when G is abelian.

2.2.2 Unitary Class Groups

Let F be a number field. We will also assume that G is abelian and of odd order. In

this subsection, we will define the unitary class group of OFG, which was first introduced

by Morales in [15, Section 2]. Our approach is slightly different, but the resulting group

is canonically isomorphic to that defined in [15, Section 2].

Definition 2.2.6 Let (X,T ) be a G-form over OF . For each v ∈MF , let Tv denote the

G-invariant symmetric OFv -bilinear on Xv obtained by extending T via linearity. We say

that (X,T ) is locally G-isometric to (OFG, tF ) if (Xv, Tv) and (OFvG, tFv) are G-isometric

over OFv for all v ∈MF . The set of all such G-forms over OF which are also G-isometric

to (X ′, tF ) for some OFG-lattice X ′ in FG will be denoted by g(OFG)s.
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As a set, the unitary class group of OFG is defined to be

UCl(OFG) := {[(X,T )] : (X,T ) ∈ g(OFG)s}.

We will show that the set above has a group structure by giving it an idelic description.

Note that by the definition of g(OFG)s, it suffices to consider the G-forms (X, tF ), where

X is an OFG-lattice contained in FG. The key lies in the following theorem.

Theorem 2.2.7 Let X be an OFG-lattice contained in FG. We have (X, tF ) ∈ g(OFG)s

if and only if X is locally free over OFG and self-dual with respect to tF .

Proof. If (X, tF ) ∈ g(OFG)s, then plainly X is locally free over OFG and self-dual with

respect to tF by Propositions 2.2.3. As for the converse, see [9, Corollary 2.4]; we remark

that its proof requires that G is abelian and of odd order.

Recall that the locally free OFG-lattices in FG are those of the form OFG · c (recall

the notation in (2.1.1)), where c ranges over all ideles in J(FG).

Definition 2.2.8 Let J(FG(s)) be the restricted direct product of the groups FvG(s) with

respect to the subgroups (OFvG)× for v ∈MF .

Proposition 2.2.9 Let c, c′ ∈ J(FG).

(a) The G-form (OFG · c, tF ) belongs to g(OFG)s if and only if c ∈ J(FG(s)).

(b) The G-forms (OFG · c, tF ) and (OFG · c′, tF ) are G-isometric over OF if and only if

c′c−1 ∈ ∂(FG(1))U(OFG).

Proof. For (a), it is a direct consequence of Proposition 2.2.4 (a) and Theorem 2.2.7. As

for (b), observe that an isomorphism ϕ : OFG · c −→ OFG · c′ is of the form x 7→ β · x,
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where β ∈ (FG)× is such that c′c−1 ∈ ∂(β) · U(OFG). Because tF is OF -bilinear and G-

invariant, this map ϕ is a G-isometry if and only if tF (β ·c, β ·sc) = tF (c, sc) for all s ∈ G,

which is equivalent to tF (ββ[−1]cc[−1], s) = tF (cc[−1], s) for all s ∈ G. This latter condition

holds precisely when ββ[−1]cc[−1] = cc[−1], or equivalently when ββ[−1] = 1. It then follows

that ϕ is a G-isometry if and only if β ∈ FG(1), and this proves the claim.

By Proposition 2.2.9 (a) and the definition of g(OFG)s, the map

j(s) : J(FG(s)) −→ UCl(OFG); j(s)(c) := [(OFG · c, tF )]

is a well-defined surjection. By Proposition 2.2.9 (b), the above induces a bijection

J(FG(s))

∂(FG(1))U(OFG)
−→ UCl(OFG). (2.2.2)

Since the quotient on the left is a group, this induces a group structure on UCl(OFG).

Definition 2.2.10 The unitary class group of OFG is defined to be the set

UCl(OFG) := {[(X,T )] : (X,T ) ∈ g(OFG)s}

equipped with the group structure induced by the bijection (2.2.2).

Remark 2.2.11 It is clear from Definition 2.2.10 and Theorem 2.1.7 that the map de-

fined in Remark 1.3.6 is a homomorphism.

2.3 Galois Algebras and Resolvends

Let F be a number field or a finite extension of Qp. In this section, we will give a brief

review of Galois algebras and resolvends (see [14, Section 1] for more details).
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Definition 2.3.1 A Galois algebra over F with group G or G-Galois F -algebra is a com-

mutative semi-simple F -algebra N on which G acts (on the left) as a group of automor-

phisms such that NG = F and [N : F ] = |G|. Two G-Galois F -algebras are isomorphic

if there is an F -algebra isomorphism between them which preserves the action of G.

The set of isomorphism classes of G-Galois F -algebras is in bijection with the pointed

set (recall that ΩF acts trivially on G)

H1(ΩF , G) := Hom(ΩF , G)/Inn(G). (2.3.1)

In particular, each h ∈ Hom(ΩF , G) is associated to the F -algebra

Fh := MapΩF
(hG,F c),

where hG is the group G with ΩF -action given by (ω · s) := h(ω)s for s ∈ G and ω ∈ ΩF .

The G-action on Fh is defined by (s · a)(t) := a(ts) for a ∈ Fh and s, t ∈ G.

Let {si} be any set of coset representatives of h(ΩF )\G. An element a ∈ Fh is deter-

mined by the values a(si), and each a(si) may be arbitrarily chosen as long as it is fixed by

all ω ∈ ker(h). Letting F h := (F c)ker(h), the choices of {si} then induce an isomorphism

Fh '
∏

h(ΩF )\G

F h (2.3.2)

of F -algebras. Since h induces an isomorphism Gal(F h/F ) ' h(ΩF ), from (2.3.2) we see

that [Fh : F ] = [G : h(ΩF )][F h : F ] = |G|. Viewing F as embedded in Fh as the constant

F -valued functions, we also have FG
h = F . Hence, indeed Fh is a G-Galois F -algebra.

It is not difficult to verify that every G-Galois F -algebra is isomorphic to Fh for some

homomorphism h ∈ Hom(ΩF , G), and that for h, h′ ∈ Hom(ΩF , G) we have Fh ' Fh′ if
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and only if h and h′ differ by an element in Inn(G). Hence, indeed the set of isomorphism

classes of G-Galois F -algebras is in bijection with (2.3.1).

We make the remark that in the case that G is abelian, the pointed set H1(ΩF , G) is

equal to Hom(ΩF , G) and in particular has a group structure.

Definition 2.3.2 Given h ∈ Hom(ΩF , G), let F h := (F c)ker(h) as above. Let Oh := OFh

and define the ring of integers of Fh by

Oh := MapΩF
(hG,Oh).

If the inverse different of F h/F has a square root, let Ah := AFh/F and define the square

root of the inverse different of Fh/F by

Ah := MapΩF
(hG,Ah).

In the sequel, whenever we write Ah for some h ∈ Hom(ΩF , G), we are implicitly assuming

that AFh/F exists (by Proposition 1.2.1, this is so when G has odd order).

Remark 2.3.3 For F a number field and h ∈ Hom(ΩF , G), for each v ∈MF define

hv ∈ Hom(ΩFv , G); hv := h ◦ ĩv.

It is proved in [14, (1.4)] that (Fv)hv ' Fv ⊗F Fh. We then have that Ohv ' OFv ⊗OF Oh

and Ahv ' OFv ⊗OF Ah as well.

Definition 2.3.4 Given h ∈ Hom(ΩF , G), we say that Fh/F or h is unramified if F h/F

is unramified. Similarly for tame, wild, and weakly ramified. Recall that a finite Galois

extension over F is said to be weakly ramified if all of the second ramification groups (in

lower numbering) attached to it are trivial.
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Remark 2.3.5 Clearly a homomorphism h ∈ Hom(ΩF , G) is tame if and only if it factors

through the quotient map ΩF −→ Ωt
F . Hence, the subset of Hom(ΩF , G) consisting of the

tame homomorphisms may be naturally identified with Hom(Ωt
F , G), and is in particular

a subgroup of Hom(ΩF , G) in the case that G is abelian.

Now, consider the F c-algebra Map(G,F c) on which we let G act via (s ·a)(t) := a(ts)

for a ∈ Map(G,F c) and s, t ∈ G. Note that Fh is then an FG-submodule of Map(G,F c)

for each h ∈ Hom(ΩF , G).

Definition 2.3.6 The resolvend map rG : Map(G,F c) −→ F cG is defined by

rG(a) :=
∑
s∈G

a(s)s−1.

It is clear that rG is an isomorphism of F cG-modules, but not an isomorphism of F cG-

algebras because it does not preserve multiplication. Moreover, given a ∈ Map(G,F c),

we have that a ∈ Fh if and only if

ω · rG(a) = rG(a)h(ω) for all ω ∈ ΩF . (2.3.3)

In particular, if rG(a) is invertible, then h is given by

h(ω) = rG(a)−1(ω · rG(a)) for all ω ∈ ΩF .

The next proposition shows that resolvends may be used to identify elements a ∈ Fh for

which Fh = FG · a or Oh = OFG · a.

Proposition 2.3.7 Assume that G is abelian and let a ∈ Fh.

(a) We have Fh = FG · a if and only if rG(a) ∈ (F cG)×.
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(b) We have Oh = OFG · a with h unramified if and only if rG(a) ∈ (OF cG)×. Further-

more, if F is a finite extension of Qp and h is unramified, then there exists a ∈ Oh

such that Oh = OFG · a.

Proof. See [14, Proposition 1.8] for (a) and [14, (2.11)] for the first claim in (b). As for

the second claim in (b), it follows from a classical theorem of Noether, or alternatively

from [14, Proposition 5.5]. We note that only the first claim in (b) actually requires the

assumption that G is abelian.

Next, we prove a similar criterion which uses resolvends to identify elements a ∈ Ah

for which Ah = OFG · a. To that end, let Tr : Map(G,F c) −→ F cG denote the standard

algebra trace map, which is defined by

Tr(a) :=
∑
s∈G

a(s),

which restricts to the trace map Trh : Fh −→ F of Fh/F for each h ∈ Hom(ΩF , G). By

abuse of notation, we will also write Trh for the G-invariant symmetric F -bilinear form

(a, b) 7→ Trh(ab) on Fh induced by Trh.

Remark 2.3.8 It is well-known that Ah is self-dual with respect to the trace TrFh/F of

F h/F (this follows from [12, Chapter 3, (2.14)], for example). From this, we see that Ah

is self-dual with respect to Trh. In particular, the trace map Trh induces a G-invariant

symmetric OF -bilinear form Ah ×Ah −→ OF on Ah and (Ah, T rh) is a G-form over OF .

Recall that [−1] denotes the involution on F cG induced by the involution s 7→ s−1

on G. Moreover, a simple calculation shows that for all a, b ∈ Fh, we have

rG(a)rG(b)[−1] =
∑
s∈G

Tr((s · a)b)s−1 ∈ FG. (2.3.4)
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Given a ∈ Fh, notice that OFG · a is a full lattice in Fh if and only if rG(a) ∈ (F cG)×

by Proposition 2.3.7 (a). Given such an a ∈ Fh, analogous to Proposition 2.2.4, we may

determine whether the OFG-lattice OFG · a or the element a is self-dual (with respect

to Trh) by considering the element rG(a)rG(a)[−1] ∈ (F cG)× when G is abelian.

Proposition 2.3.9 Assume that G is abelian and let a ∈ Fh with rG(a) ∈ (F cG)×.

(a) The OFG-lattice OFG · a is self-dual if and only if rG(a)rG(a)[−1] ∈ (OFG)×.

(b) The element a is self-dual if and only if rG(a)rG(a)[−1] = 1.

Proof. Let b ∈ Fh be such that {s · b : s ∈ G} is the dual basis of {s · a : s ∈ G} (with

respect to Trh), so that (OFG · a)∗ = OFG · b. It then follows that OFG · a is self-dual

if and only if OFG · a = OFG · b, which in turn is equivalent to rG(a)rG(b)−1 ∈ (OFG)×.

Since rG(b)−1 = rG(a)[−1] by (2.3.4), we see that (a) holds. As for (b), it follows directly

from (2.3.4).

Proposition 2.3.10 Assume that G is abelian and let a ∈ Ah. We have Ah = OFG · a

if and only if

rG(a)rG(a)[−1] ∈ (OFG)×.

Proof. By Proposition 2.3.7 (a), both statements imply that rG(a) ∈ (F cG)×, or equiva-

lently that OFG · a is a full OFG-lattice in Fh. Assuming that this is the case, observe

that because a ∈ Ah and Ah is self-dual, we have

OFG · a ⊂ Ah = A∗h ⊂ (OFG · a)∗.

Hence, we have Ah = OFG · a precisely when OFG · a is self-dual. The claim now follows

from Proposition 2.3.9 (a).
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Remark 2.3.11 Proposition 2.3.10 is an extremely useful tool and will be used repeat-

edly in the rest of this dissertation.

2.4 Cohomology and Reduced Resolvends

Let F be a number field or a finite extension of Qp. We will assume that G is abelian

in this section. Following [14, Sections 1 and 2], we will use cohomology to define reduced

resolvends and explain how they may be viewed as functions on characters of G. They

will play a crucial role in the rest of this dissertation.

Recall that ΩF acts trivially on G and define

H(FG) := ((F cG)×/G)ΩF .

Taking ΩF -cohomology of the short exact sequence

1 G (F cG)× (F cG)×/G 1 (2.4.1)

then yields the exact sequence

1 G (FG)× H(FG) Hom(ΩF , G) 1.
rag δ (2.4.2)

Exactness on the right of (2.4.2) follows from the fact that H1(ΩF , (F
cG)×) = 1, which is

Hilbert’s Theorem 90. Alternatively, a coset rG(a)G ∈ H(FG) belongs to the preimage of

h ∈ Hom(ΩF , G) if and only if h(ω) = rG(a)−1(ω · rG(a)) for all ω ∈ ΩF , which in turn is

equivalent to Fh = FG ·a by (2.3.3) and Proposition 2.3.7 (a). For any h ∈ Hom(ΩF , G),

there always exists a ∈ Fh with Fh = FG · a by the Normal Basis Theorem. This implies

that δ is indeed surjective.
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The exact same argument as above also shows that

H(FG) = {rG(a)G | Fh = FG · a for some h ∈ Hom(ΩF , G)}. (2.4.3)

Similarly, we may define

H(OFG) := ((OF cG)×/G)ΩF .

Then, the argument above together with Proposition 2.3.7 (b) imply that

H(OFG) = {rG(a) | Oh = OFG · a for some unramified h ∈ Hom(ΩF , G)}. (2.4.4)

In view of Proposition 2.3.9, we will also define

H(FG(s)) := {rG(a)G ∈ H(FG) | rG(a)rG(a)[−1] ∈ (OFG)×};

H(FG(1)) := {rG(a)G ∈ H(FG) | rG(a)rG(a)[−1] = 1}. (2.4.5)

It is obvious that both of the conditions rG(a)rG(a)[−1] ∈ (OFG)× and rG(a)rG(a)[−1] = 1

are independent of the choice of the coset representative rG(a). It is also clear that both

of the sets above are subgroups of H(FG).

Definition 2.4.1 Let rG(a)G ∈ H(FG). We define rG(a) := rG(a)G, called the reduced

resolvend of a. Moreover, define ha ∈ Hom(ΩF , G) by

ha(ω) := rG(a)−1(ω · rG(a)) for all ω ∈ ΩF .

called the homomorphism associated to rG(a). This definition is independent of the choice

of the coset representative rG(a), and we have Fh = FG · a by Proposition 2.3.7 (a) and

(2.3.3). We say that rG(a) is unramified if ha is unramified. Similarly for tame and wild.
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Definition 2.4.2 For F a number field, let J(H(FG)) be the restricted direct product

of the groups H(FvG) with respect to the subgroups H(OFvG) for v ∈MF . Let

η = ηF : H(FG) −→ J(H(FG))

be the diagonal map and let

U(H(OFG)) :=
∏
v∈MF

H(OFvG)

be the group of unit ideles.

Next, we explain how reduced resolvends may be interpreted as functions on charac-

ters of G. Recall that Ĝ denotes the group of irreducible F c-valued characters on G.

First of all, let det : ZĜ −→ Ĝ be the homomorphism given by

det

(∑
χ

nχχ

)
:=
∏
χ

χnχ (2.4.6)

and set SĜ := ker(det) (we remark that in [14], this set is denoted by AĜ). Applying the

functor Hom(−, (F c)×) to the short exact sequence

0 SĜ ZĜ Ĝ 1det

then yields the short exact sequence

1 Hom(Ĝ, (F c)×) Hom(ZĜ, (F c)×) Hom(SĜ, (F
c)×) 1. (2.4.7)

Exactness on the right of (2.4.7) follows from the fact that (F c)× is divisible and hence

injective. We will identify the short exact sequences (2.4.1) and (2.4.7) as follows.

30



Prerequisites Chapter 2

First, observe that we have canonical identifications

(F cG)× = Map(Ĝ, (F c)×) = Hom(ZĜ, (F c)×). (2.4.8)

The second identification is given by extending the maps Ĝ −→ (F c)× via Z-linearity, and

the first is induced by characters as follows. On one hand, each resolvend rG(a) ∈ (F cG)×

gives rise to a map ϕ ∈ Map(Ĝ, (F c)×) defined by

ϕ(χ) :=
∑
s∈G

a(s)χ(s)−1. (2.4.9)

On the other hand, given ϕ ∈ Map(Ĝ, (F c)×), one recovers rG(a) by the formula

a(s) :=
1

|G|
∑
χ

ϕ(χ)χ(s) for s ∈ G. (2.4.10)

Since G = Hom(Ĝ, (F c)×) canonically, the third terms

(F cG)×/G = Hom(SĜ, (F
c)×) (2.4.11)

in (2.4.1) and (2.4.7), respectively, are naturally identified as well.

We have thus identified the exact sequences (2.4.1) and (2.4.7). Taking ΩF -invariants

then yields the commutative diagram

HomΩF (ZĜ, (F c)×) HomΩF (SĜ, (F
c)×)

(FG)× H(FG)
rag

, (2.4.12)

where rag is as in (2.4.2) and the corresponding map above is given by restriction to SĜ.
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Under the above identifications, clearly we have H(OFG) ⊂ HomΩF (SĜ,O
×
F c).

Proposition 2.4.3 If F a finite extension of Qp, where p does not divide |G|, then

H(OFG) = HomΩF (SĜ,O
×
F c).

Proof. By (2.4.9) and (2.4.10), clearly |G| ·Hom(ZĜ,O×F c) ⊂ (OF cG)× ⊂ Hom(ZĜ,O×F c).

Since p does not divide |G|, we have |G| ∈ O×F and thus (OF cG)× = Hom(ZĜ,O×F c). The

desired equality now follows from the identification H(FG) = HomΩF (SĜ, (F
c)×).

Definition 2.4.4 For F a number field, observe that the homomorphism

∏
v∈MF

ragFv : J(FG) −→ J(H(FG)) (2.4.13)

is clearly well-defined, and that the diagram

(FG)× J(FG)

H(FG) J(H(FG))

∂

η

∏
v

ragFvragF

commutes. By abuse of notation, we will denote the map in (2.4.13) by rag = ragF .

2.5 The Modified Stickelberger Transpose

Let F be a number field or a finite extension of Qp. We will assume that G is abelian

and of odd order in this section. By modifying what has already been done in [14, Section

4] (see Remark 2.5.7), we define a modified Stickelberger map, whose transpose map will

play an important role in the rest of this dissertation.

32



Prerequisites Chapter 2

Recall from Section 1.6 that we have chosen a compatible set {ζn : n ∈ Z+} of primi-

tive roots of unity in F c and that Ĝ denotes the group of irreducible F c-valued characters

on G.

Definition 2.5.1 For each χ ∈ Ĝ and s ∈ G, let υ(χ, s) ∈ {(1−|s|)/2, . . . , (|s|−1)/2} be

the unique integer (note that |s| is odd since G has odd order) such that χ(s) = (ζ|s|)
υ(χ,s)

and then define

〈χ, s〉∗ := υ(χ, s)/|s|.

Extending this definition by Q-linearity, we obtain a pairing 〈 , 〉∗ : QĜ × QG −→ Q,

called the modified Stickelberger pairing. The map

Θ∗ : QĜ −→ QG; Θ∗(ψ) :=
∑
s∈G

〈ψ, s〉∗s (2.5.1)

is called the modified Stickelberger map.

Proposition 2.5.2 Given ψ ∈ ZĜ, we have Θ∗(ψ) ∈ ZG if and only if ψ ∈ SĜ.

Proof. Write ψ =
∑
nχχ with nχ ∈ Z. For any s ∈ G, we have

(detψ)(s) =
∏
χ

χ(s)nχ

=
∏
χ

(ζ|s|)
υ(χ,s)nχ

= (ζ|s|)
∑
χ |s|〈χ,s〉∗nχ

= (ζ|s|)
|s|〈ψ,s〉∗ .

Since SĜ = ker(det), this implies that ψ ∈ SĜ precisely when 〈ψ, s〉∗ ∈ Z for all s ∈ G,

or equivalently, when Θ∗(ψ) ∈ ZG. This proves the claim.
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Up until now, we have let ΩF act trivially on G. Below, we introduce other ΩF -actions

on G, one of which will make the Q-linear map Θ∗ : QĜ −→ QG preserve the ΩF -action.

Here, the ΩF -action on Ĝ is the canonical one induced by the ΩF -action on the roots of

unity in F c.

Definition 2.5.3 Let m = exp(G) and let µm be the group of m-th roots of unity in F c.

The m-th cyclotomic character of ΩF is the homomorphism κ : ΩF −→ (Z/mZ)× given

by the equations

ω(ζ) = ζκ(ω) for ω ∈ ΩF and ζ ∈ µm.

For n ∈ Z, let G(n) be the group G equipped with the ΩF -action given by

ω · s := sκ(ωn) for s ∈ G and ω ∈ ΩF .

We will need G(−1). But of course, if F contains all m-th roots of unity, then κ = 1

and G(n) = G(0) is equipped with the trivial ΩF -action for all n ∈ Z.

Proposition 2.5.4 The linear map Θ∗ : QĜ −→ QG(−1) preserve the ΩF -action.

Proof. For any χ ∈ Ĝ and s ∈ G(−1), we have (ω ·χ)(s) = χ(sκ(ω)) = χ(ω−1 · s). Since s

and ω−1 · s have the same order, this implies that 〈ω · χ, s〉∗ = 〈χ, ω−1 · s〉∗ and so

Θ∗(ω · χ) =
∑
s∈G

〈ω · χ, s〉∗s

=
∑
s∈G

〈χ, ω−1 · s〉∗s

=
∑
s∈G

〈χ, s〉∗(ω · s)

= ω ·Θ∗(χ).

This shows that Θ∗ preserves the ΩF -action, as desired.
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By Propositions 2.5.2 and 2.5.4, via restricting Θ∗ we obtain an ΩF -equivariant map

Θ∗ : SĜ −→ ZG(−1). Applying the functor Hom(−, (F c)×) then yields an ΩF -equivariant

homomorphism

Θt
∗ : Hom(ZG(−1), (F c)×) −→ Hom(SĜ, (F

c)×); f 7→ f ◦Θ∗,

where ΩF acts on homomorphisms as usual as follows. If X and X ′ are left ΩF -modules

and ϕ : X −→ X ′ is a group homomorphism, then (ϕ ·ω)(x) := ω−1 ·ϕ(ω · x) for ω ∈ ΩF

and x ∈ X. Restricting to the ΩF -invariant homomorphisms, we obtain a homomorphism

Θt
∗ = Θt

∗,F : HomΩF (ZG(−1), (F c)×) −→ HomΩF (SĜ, (F
c)×),

called the modified Stickelberger transpose. Notice that we have a natural identification

HomΩF (ZG(−1), (F c)×) = MapΩF
(G(−1), (F c)×).

To simplify notation, let

Λ(FG) := MapΩF
(G(−1), F c); (2.5.2)

Λ(OFG) := MapΩF
(G(−1),OF c). (2.5.3)

Then, we may view Θt
∗ as a homomorphism Θt

∗ : Λ(FG)× −→ H(FG).

Proposition 2.5.5 We have Θt
∗(Λ(FG)×) ⊂ H(FG(1)) (recall (2.4.5)).

Proof. Let g ∈ Λ(FG)× be given and let rG(a) ∈ H(FG) be such that Θt
∗(g) = rG(a).

Given ψ ∈ SĜ, write ψ =
∑

χ nχ with nχ ∈ Z and define ψ[−1] :=
∑

χ nχχ
−1. From (2.4.9),

is it clear that rG(a)[−1](ψ) = rG(a)(ψ[−1]). Observe further that Θ∗(ψ
[−1]) = −Θ∗(ψ) by
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Definition 2.5.1 and so Θt
∗(g)(ψ[−1]) = Θt

∗(g)(ψ)−1. Since rG(a) = Θt
∗(g) and rG(a) is the

restriction of rG(a) to SĜ via the identification in (2.4.11), we deduce that

(rG(a)rG(a)[−1])(ψ) = rG(a)(ψ)rG(a)(ψ[−1])

= Θt
∗(g)(ψ)Θt

∗(g)(ψ[−1])

= 1.

This shows that rG(a)rG(a)[−1] is the trivial map when restricted to SĜ. By the identi-

fications in (2.4.11), this means that rG(a)rG(a)[−1] = t for some t ∈ G. Applying [−1]

to the above yields rG(a)[−1]rG(a) = t−1 and so t = t−1. Since G has odd order, we must

have t = 1. It follows that rG(a) ∈ H(FG(1)), as desired.

Definition 2.5.6 For F a number field, let J(Λ(FG)) be the restricted direct product of

the groups Λ(FvG)× with respect to the subgroups Λ(OFvG)× for v ∈MF . Let

λ = λF : Λ(FG)× −→ J(Λ(FG))

be the diagonal map and let

U(Λ(OFG)) :=
∏
v∈MF

Λ(OFvG)×

be the group of unit ideles.

Next, observe that the homomorphism

∏
v∈MF

Θt
∗,Fv : J(Λ(FG)) −→ J(H(FG)) (2.5.4)

is well-defined by Proposition 2.4.3 and the fact that Θt
∗(Λ(OFvG)×) ⊂ HomΩFv

(SĜ,O
×
F cv

)
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for all v ∈MF . Recall from Section 1.6 that we have chosen {iv(ζn) : n ∈ Z+} to be the

compatible set of primitive roots of unity in F c
v . Hence, the diagram

Λ(FG)× J(Λ(FG))

H(FG) J(H(FG))

λ

η

∏
v

Θt
∗,FvΘt

∗,F
(2.5.5)

commutes. By abuse of notation, we will denote the map in (2.5.4) by Θt
∗ = Θt

∗,F .

Remark 2.5.7 The Stickelberger pairing 〈 , 〉 : QĜ × QG −→ Q in [14, Section 4] is

defined to be the Q-linear map such that for each χ ∈ Ĝ and s ∈ G, we have

〈χ, s〉 = υ′(χ, s)/|s|,

where υ′(χ, s) ∈ {0, 1, . . . , |s| − 1} is the unique integer such that χ(s) = (ζ|s|)
υ′(χ,s). The

Stickelberger map is defined analogously as in (2.5.1), but with 〈 , 〉∗ replaced by 〈 , 〉.

Propositions 2.5.2 and 2.5.4 still hold when Θ∗ is replaced by Θ (see [14, Propositions 4.3

and 4.5]). The same discussion following Proposition 2.5.4 then yields a homomorphism

Θt = Θt
F : Λ(FG)× −→ H(FG), called the Stickelberger tranpose. However, notice that

Proposition 2.5.5 does not hold when Θt
∗ is replaced by Θt.

For F a number field, the same discussion in Definition 2.5.6 yields a homomorphism

Θt = Θt
F : J(Λ(FG)) −→ J(H(FG)).

This map was a key ingredient in [14], where McCulloh studied the Galois module struc-

ture of Oh for h ∈ H1
t (ΩF , G), or more precisely, the classes they determine in Cl(OFG).
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The Class of the Square Root of the

Inverse Different

3.1 Computation using Resolvends

Let F be a number field. In what follows, assume that G is abelian and of odd order.

Given a weakly ramified h ∈ Hom(ΩF , G), the classes cl(Ah) and ucl(Ah) in Cl(OFG) and

UCl(OFG), respectively, defined by Ah may be computed using resolvends as follows.

First of all, recall that Ah is locally free over OFG by [8, Theorem 1 in Section 2], in

which case the OFG-rank of Ah is necessarily one. Moreover, we have OFv ⊗OF Ah ' Ahv

from Remark 2.3.3. Hence, for each v ∈MF , there exists av ∈ Ahv such that

Ahv = OFvG · av. (3.1.1)

Moreover, by the Normal Basis Theorem, there exists b ∈ Fh such that

Fh = FG · b. (3.1.2)
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Since G has odd order, it follows from [1, Proposition 5.1] that b ∈ Fh may be chosen to be

self-dual. Note that FvG ·av = Fhv = FvG ·b for all v ∈MF and that OFvG ·av = OFvG ·b

for all but finitely many v ∈MF . This implies that there exists c ∈ J(FG) such that

av = cv · b (3.1.3)

for all v ∈MF . Hence, the isomorphism FG −→ Fh of FG-modules defined by β 7→ β · b

restricts to an isomorphism ϕ : OFG · c −→ Ah of OFG-modules. It follows that

cl(Ah) = [OFG · c] = j(c).

If b ∈ Fh is self-dual, then rG(b)rG(b)[−1] = 1 by Proposition 2.3.9 (b). From (2.3.4), it is

easy to see that for all s, t ∈ G, we have Trh(ϕ(s), ϕ(t)) = Trh(s · b, t · b) = δst = tF (s, t).

This implies that ϕ is in fact a G-isometry. Because Ah is self-dual (recall Remark 2.3.8),

the lattice OFG · c is self-dual with respect to tF . It then follows from Proposition 2.2.4

(a) that c ∈ J(FG(s)), and from Proposition 2.2.9 (a) that (Ah, T rh) ∈ g(OFG)s (recall

Definition 2.2.6). Also, we have

ucl(Ah) = [(OFG · c, tF )] = j(s)(c).

Remark 3.1.1 For each v ∈ MF , since the resolvend map rG : Map(G,F c
v ) −→ F c

vG is

an isomorphism of F c
vG-modules, the equation av = cv · b in (3.1.3) is equivalent to

rG(av) = cv · rG(b). (3.1.4)

Using reduced resolvends, the equation above becomes

rG(av) = rag(cv) · rG(b). (3.1.5)
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Notice that the reduced resolvend rG(b) of an element b ∈ Fh satisfying (3.1.2) is already

characterized by (2.4.3), and by (2.4.5) if we require that b ∈ Fh is self-dual in addition

(recall Proposition 2.3.9 (b)). Thus, in order to characterize the classes cl(Ah) and ucl(Ah),

it suffices to characterize the reduced resolvend rG(av) of an element av ∈ Ahv satisfying

(3.1.1) for each v ∈MF .

3.2 Properties of Local Resolvends

Let F be a finite extension of Qp and assume that G is abelian. In this section, when-

ever we write Ah for some h ∈ Hom(ΩF , G), we are implicitly assuming that AFh/F exists

(by Proposition 1.2.1, this is so when G has odd order).

We will prove two fundamental properties of the resolvends rG(a) with Ah = OFG · a

for a weakly ramified h ∈ Hom(ΩF , G). It will be helpful to recall the notation from Sec-

tion 1.6 and the fact that the resolvend map rG : Map(G,F c) −→ F cG is an isomorphism

of F cG-modules.

Proposition 3.2.1 Let h ∈ Hom(ΩF , G) be weakly ramified.

(a) The homomorphism h−1 is also weakly ramified.

(b) If Ah = OFG · a, then there exists an element a′ ∈ Ah−1 with rG(a′) = rG(a)−1 such

that Ah−1 = OFG · a′.

Proof. Since ker(h) = ker(h−1), we have F h = F h−1
and so (a) clearly holds. As for (b),

note that rG(a)rG(a)[−1] ∈ (OFG)× by Proposition 2.3.10, so rG(a)−1 = β · rG(a)[−1] for

some β ∈ (OFG)×. We have rG(a′) = rG(a)−1 for some a′ ∈ Map(G,F c) since rG is bi-

jective. Notice that a′ ∈ Fh−1 by (2.3.3). Since Ah = Ah
−1

and rG(a)−1 = β · rG(a)[−1],

we see that in fact a′ ∈ Ah−1 . Clearly rG(a′)rG(a′)[−1] ∈ (OFG)×, so again by Proposi-

tion 2.3.10, we see that Ah−1 = OFG · a′, as desired.
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To prove the second fundamental property, we will need some facts concerning rami-

fication groups (in lower numbering).

Lemma 3.2.2 Let Nnr/F and N/F be finite Galois extensions with Nnr/F unramified.

(a) If N/F is weakly ramified, then any Galois subextension L/F of N/F is also weakly

ramified.

(b) The homomorphism Gal(NnrN/F ) −→ Gal(N/F ) defined by σ 7→ σ|N induces an

isomorphism Gal(NnrN/F )n ' Gal(N/F )n for all n ∈ Z≥0. In particular, if N/F is

weakly ramified, then so is NnrN/F .

(c) Let e0 := |Gal(N/F )0/Gal(N/F )1|. If N/F is abelian, then for all n ∈ Z≥0 that are

not divisible by e0, we have Gal(N/F )n = Gal(N/F )n+1. In particular, if N/F is also

wildly and weakly ramified, then Gal(N/F )0 = Gal(N/F )1.

Proof. See [23, Proposition 2.2] for (a) and (b); notice that the proof there is valid even

when F 6= Qp. See [20, Chapter IV, Proposition 9, Corollary 2] for (c).

Proposition 3.2.3 Let h1, h2 ∈ Hom(ΩF , G) be such that h1 is unramified.

(a) We have e(F h1h2/F ) = e(F h2/F ).

Assume in addition that h2 is weakly ramified.

(b) The homomorphism h1h2 is also weakly ramified and vFh1h2 (Ah1h2) = vFh2 (Ah2).

(c) If Oh1 = OFG · a1 and Ah2 = OFG · a2, then there exists an element a ∈ Ah1h2 with

rG(a) = rG(a1)rG(a2) such that Ah1h2 = OFG · a.

Proof. Let h := h1h2. Note that ker(h1)∩ker(h2) = ker(h1)∩ker(h) so F h1F h2 = F h1F h.

Since F h1/F is unramified, both F h1F h2/F h2 and F h1F h/F h are unramified. Using the

multiplicativity of ramification indices, we have e(F h/F ) = e(F h2/F ) = e(F h1F h2/F h1),
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which proves (a). To summarize, we have the following the diagram, where the numbers

indicate ramification indices and e := e(F h2/F ).

F

F h1 F h F h2

F h1F h2

1
e

e

e
1

1

Now, assume in addition that F h2/F is weakly ramified. Since F h1/F is unramified,

it follows from Lemma 3.2.2 (b) that F h1F h2/F is also weakly ramified, and hence from

Lemma 3.2.2 (a) that F h/F is weakly ramified as well. Thus, indeed h is weakly ramified.

Moreover, from Proposition 1.2.1, we know that

vFh(Ah) = −(|Gal(F h/F )0|+ |Gal(F h/F )1| − 2)/2;

vFh2 (Ah2) = −(|Gal(F h2/F )0|+ |Gal(F h2/F )1| − 2)/2.

If (e, p) = 1, then F h/F and F h2/F are both tame, and Gal(F h/F )1 = 1 = Gal(F h2/F )1.

If (e, p) > 1, then F h/F and F h2/F are both wildly and weakly ramified. In this case, we

have Gal(F h/F )0 = Gal(F h/F )1 and Gal(F h2/F )0 = Gal(F h2/F )1 by Lemma 3.2.2 (c).

Since |Gal(F h/F )0| = e = |Gal(F h2/F )0|, we have vFh(Ah) = vFh2 (Ah2). This proves (b).

Finally, to prove (c), notice that rG(ai)rG(ai)
[−1] ∈ (OFG)× for i ∈ {1, 2} by Proposi-

tions 2.3.7 (b) and 2.3.10. Let a ∈ Map(G,F c) be such that rG(a) = rG(a1)rG(a2), which

exists as rG is bijective. We have a ∈ Fh by (2.3.3), and clearly rG(a)rG(a)[−1] ∈ (OFG)×.

Hence, again by Proposition 2.3.10, we will have Ah = OFG · a as long as a ∈ Ah. But

Ah = MapΩF
(hG,Ah), so it remains to show that a(s) ∈ Ah for all s ∈ G.
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To that end, observe that rG(a) = rG(a1)rG(a2) implies that for each s ∈ G, we have

a(s) =
∑
rt=s

a1(r)a2(t).

On one hand, because a1 ∈ Oh1 , we have vFh1Fh2 (a1(r)) ≥ 0 for all r ∈ G. On the other

hand, since a2 ∈ Ah2 and F h1F h2/F h2 is unramified, we have vFh1Fh2 (a2(t)) ≥ vFh2 (Ah2)

for all t ∈ G. We then see that vFh1Fh2 (a(s)) ≥ vFh2 (Ah2). But F h1F h2/F h is unramified

and vFh2 (Ah2) = vFh(Ah) from (b), so the above inequality becomes vFh(a(s)) ≥ vFh(Ah).

This shows that a(s) ∈ Ah for all s ∈ G, as desired. This proves (c).

Remark 3.2.4 Proposition 3.2.3 (c) turns out to be an extremely useful tool and will

be used repeatedly in the rest of this dissertation.

3.3 Proofs of Theorems 1.2.2 and 1.3.2

Theorem 1.3.2 Let K be a number field and let G be a finite abelian group of odd order.

For all h, h1, h2 ∈ H1
w(ΩK , G) with d(h1) ∩ d(h2) = ∅, we have

(a) h−1 ∈ H1
w(ΩK , G) and galA,u(h

−1) = galA,u(h)−1; and

(b) h1h2 ∈ H1
w(ΩK , G) and galA,u(h1h2) = galA,u(h1)galA,u(h2).

Proof. To prove (a), let h ∈ H1
w(ΩK , G) be given. The fact that h−1 ∈ H1

w(ΩK , G) follows

directly from Proposition 3.2.1 (a). Next, let b ∈ Kh be as in (3.1.2), and we will take b to

be self-dual. For each v ∈MK , let av ∈ Ahv and cv ∈ (KvG)× be as in (3.1.1) and (3.1.3),

respectively. As noted in Section 3.1, we have c := (cv) ∈ J(KG(s)) and ucl(Ah) = j(s)(c).

Now, notice that rG(b) ∈ (KcG)× by Proposition 2.3.7 (a) and let b′ ∈ Map(G,Kc)

be such that rG(b′) = rG(b)−1; such an element b′ exists because rG is bijective. From

(2.3.3) and Proposition 2.3.7 (a), we see that b′ ∈ Kh−1 and Kh−1 = KG · b′. Clearly b′ is
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also self-dual (with respect to Trh−1) from Proposition 2.3.9 (b). For each v ∈MK , apply

Proposition 3.2.1 (b) to obtain an element a′v ∈ Ah−1
v

with rG(a′v) = rG(av)
−1 such that

Ah−1
v

= OKvG·a′v. Recall from (3.1.4) that rG(av) = cv ·rG(b), and so rG(a′v) = c−1
v ·rG(b′).

It follows that a′v = c−1
v · b′. As in Section 3.1, we then deduce that

ucl(Ah−1) = j(s)(c
−1) = j(s)(c)

−1 = ucl(Ah)
−1.

This completes the proof of (a).

To prove (b), let h1, h2 ∈ H1
w(ΩK , G) with d(h1)∩ d(h2) = ∅ be given. Set h := h1h2.

The fact that h ∈ H1
w(ΩK , G) is a direct consequence of Proposition 3.2.3 (b). Next, for

i ∈ {1, 2}, let bi ∈ Khi be as in (3.1.2), and we choose bi to be self-dual. For each v ∈MK ,

let ai,v ∈ A(hi)v and ci,v ∈ (KvG)× be as in (3.1.1) and (3.1.3), respectively. As noted in

Section 3.1, we have ci := (ci,v) ∈ J(KG(s)) and ucl(Ahi) = j(s)(ci).

Now, there exists b ∈ Map(G,Kc) such that rG(b) = rG(b1)rG(b2), again because rG

is bijective. From (2.3.3) and Proposition 2.3.7 (a), we see that b ∈ Kh and Kh = KG · b.

From Proposition 2.3.9 (b), it is clear that b is also self-dual (with respect to Trh). Note

that for each v ∈MK , at least one of (h1)v and (h2)v is unramified as d(h1) ∩ d(h2) = ∅.

Then, by Proposition 3.2.3 (c), there exists av ∈ Ahv with rG(av) = rG(a1,v)rG(a2,v) such

that Ahv = OKvG ·av. Recall from (3.1.4) that rG(ai,v) = ci,v ·rG(bi) for i ∈ {1, 2}, and so

rG(av) = c1,vc2,v · rG(b). It follows that av = c1,vc2,v · b. As in Section 3.1, this gives

ucl(Ah) = j(s)(c1c2) = j(s)(c1)j(s)(c2) = ucl(Ah1)ucl(Ah2).

This completes the proof of (b).

Theorem 1.2.2 Let K be a number field and let G be a finite abelian group of odd order.

For all h, h1, h2 ∈ H1
w(ΩK , G) with d(h1) ∩ d(h2) = ∅, we have
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(a) h−1 ∈ H1
w(ΩK , G) and galA(h−1) = galA(h)−1; and

(b) h1h2 ∈ H1
w(ΩK , G) and galA(h1h2) = galA(h1)galA(h2).

Proof. This is a direct consequence of Thereom 1.3.2 because galA = Φ ◦ galA,u, where Φ

is the homomorphism from (1.3.1) (cf. Remark 2.2.11).
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Chapter 4

Characterization of the A-Realizable

Classes in Cl(OKG) and UCl(OKG)

Let F be a number field. In what follows, assume that G is abelian and of odd order. As

discussed in Section 3.1, given a weakly ramified h ∈ Hom(ΩF , G), its square root of the

inverse different Ah defines a class cl(Ah) in Cl(OFG), and a class ucl(Ah) in UCl(OFG).

Recall also from Remark 3.1.1 that in order to characterize these two classes, it suffices

to characterize the reduced resolvends rG(av) for which Ahv = OFvG ·av for each v ∈MF .

This is the goal of this chapter, and we will give a brief outline of our strategy below.

First, in Section 4.1, we will show that for each v ∈ MF , we may factor hv = hnrv h
tot
v

for some hnrv , h
tot
v ∈ Hom(ΩFv , G) such that hnrv is unramified and that F

htotv
v /Fv is totally

ramified. We then see from Proposition 3.2.3 (c) that it suffices to compute the reduced

resolvends rG(av,nr) and rG(av,tot) for which Ohnrv = OFvG ·av,nr and Ahtotv = OFvG ·av,tot.

The reduced resolvends rG(av,nr) are already characterized by (2.4.4). Hence, it remains

to compute the reduced resolvend rG(av,tot). We will consider the case when hv is tame in

Section 4.2 and then the case when hv is wild in Section 4.5. In the latter case, we will

have to assume that v is unramified over Q and that e(F
htotv
v /Fv) is prime.
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4.1 Factorization of Local Homomorphisms

Let F be a finite extension of Qp and assume that G is abelian. In this section, we will

write π := πF for a chosen uniformizer in F and q := qF for the order of OF/(π). Let F nr

be the maximal unramified extension of F contained in F c and define Ωnr
F := Gal(F nr/F ).

It will also be helpful to recall the notation in Section 1.6.

Definition 4.1.1 Let h ∈ Hom(ΩF , G). We say that

h = hnrhtot, where hnr, htot ∈ Hom(ΩF , G)

is a factorization of h with respect to π if hnr is unramified and F htot ⊂ Fπ,n for some

n ∈ Z≥0. The level of such a factorization is defined to be

`π(hnrhtot) := min{n ∈ Z≥0 | F htot ⊂ Fπ,n}.

Proposition 4.1.2 Every homomorphism h ∈ Hom(ΩF , G) admits a factorization with

respect to π. Moreover, for any such factorization h = hnrhtot, we have

(a) `π(hnrhtot) = 0 if and only if h is unramified;

(b) `π(hnrhtot) ≤ 1 if and only if h is tame;

(c) `π(hnrhtot) ≤ 2 if h is weakly ramified.

Proof. Let F ab be the maximal abelian extension of F contained in F c and let Fπ be the

union of Fπ,n for n ∈ Z≥0. We have F ab = F nrFπ and F nr∩Fπ = F from Local Class Field

Theory. Hence, there is a natural isomorphism Gal(F ab/F ) ' Gal(F nr/F )×Gal(Fπ/F ).

We may then regard Gal(F nr/F ) and Gal(Fπ/F ) as subgroups of Gal(F ab/F ).

Now, since G is abelian, every h ∈ Hom(ΩF , G) factors through ΩF −→ Gal(F ab/F ).
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Viewing h as a homomorphism Gal(F ab/F ) −→ G, let hnr and htot denote its restrictions

to Gal(F nr/F ) and Gal(Fπ/F ), respectively. Then, clearly h = hnrhtot is a factorization

with respect to π. If h = hnrhtot is any factorization of h with respect to π, then plainly

(a) and (b) hold. As for (c), see the proofs of [5, Proposition 4.1 and Lemma 4.2].

If h ∈ Hom(ΩF , G) is tame, then it factors through the quotient map ΩF −→ Ωt
F and

we may regard h as a homomorphism Ωt
F −→ G. In this case, a more explicit factorization

of h may be given, which we will describe below.

First, we will recall the structures of the extensions F nr/F and F t/F and their Galois

groups (see [10, Sections 7 and 8], for example). On one hand, the field F nr is obtained by

adjoining to F all n-th roots of unity for (n, p) = 1. Hence, the group Ωnr
F is procyclic

and is topologically generated by the Frobenius automorphism φ = φF given by

φ(ζn) = ζqn for all (n, p) = 1. (4.1.1)

As for the field F t, it is obtained by adjoining to F nr all n-th roots of π for (n, p) = 1.

We will choose a coherent set of radicals {π1/n : n ∈ Z+} such that (π1/mn)n = π1/m and

then define πm/n := (π1/n)m for m,n ∈ Z+. These choices of radicals then determine a

distinguished topological generator σ = σF of the procyclic group Gal(F t/F nr) given by

σ(π1/n) = ζnπ
1/n for all (n, p) = 1. (4.1.2)

If we let φ also denote the unique lifting of φ from Ωnr
F to Ωt

F fixing the radicals π1/n for

(n, p) = 1, then Ωt
F is topologically generated by φ and σ. In particular, any homomor-

phism h ∈ Hom(Ωt
F , G) is uniquely determined by its values on φ and σ.

Remark 4.1.3 By abuse of notation, we will also write σ for some chosen lift of σ in ΩF .

If h ∈ Hom(ΩF , G) is tame, then the value h(σ) is independent of the choice of the lift.
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Next, notice that φσφ−1σ−1 = σq−1 because both sides have the same effect on ζn and

π1/n for (n, p) = 1. Let (Ωt
F )ab be the abelianization of Ωt

F . Moreover, let φ and σ be the

images in (Ωt
F )ab of φ and σ, respectively. Then, the group (Ωt

F )ab is the direct product of

the cyclic group 〈σ〉 of order q−1 with the procyclic group topologically generated by φ.

In view of this observation, define

G(q−1) := {s ∈ G | the order of s divides q − 1}. (4.1.3)

Because G is abelian, we see that any h ∈ Hom(Ωt
F , G) may be defined by specifying the

values h(φ) and h(σ), provided that h(σ) ∈ G(q−1).

Definition 4.1.4 Let h ∈ Hom(Ωt
F , G). Define

hnr ∈ Hom(Ωt
F , G); hnr(φ) := h(φ) and hnr(σ) := 1;

htot ∈ Hom(Ωt
F , G); htot(φ) := 1 and htot(σ) := h(σ).

Clearly h = hnrhtot, which we will call the factorization of h with respect to σ.

Remark 4.1.5 Let h ∈ Hom(Ωt
F , G) and let h = hnrhtot be the factorization of h with

respect to σ. Clearly hnr is unramified because hnr(σ) = 1. We will also see in Proposi-

tion 4.2.2 that F htot = F (π1/|s|), where s := h(σ) ∈ G(q−1). This means that h = hnrhtot is

in fact a factorization of h with respect to −π in the sense of Definition 4.1.1.

4.2 Decomposition of Local Tame Resolvends

Let F be a finite extension of Qp. We will assume that G is abelian and of odd order

in this section. We will characterize the reduced resolvends rG(a) for which Ah = OFG ·a

for a tame h ∈ Hom(ΩF , G), or equivalently h ∈ Hom(Ωt
F , G) (recall Remark 2.3.5).
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As in Section 4.1, we will write π := πF for a chosen uniformizer in F and q := qF for

the order of OF/(π). Let φ and σ be defined as in (4.1.1) and (4.1.2), respectively. Also,

let G(q−1) be as in (4.1.3). We will also need a further definition.

Definition 4.2.1 For each s ∈ G(q−1), define fs = fF,s ∈ Λ(FG)× by

fs(t) :=


π if t = s 6= 1

1 otherwise

(recall (2.5.2)). Notice that fs indeed preserves ΩF -action because all (q − 1)-st roots of

unity are contained in F , and so elements in G(q−1), as well as π, are fixed by ΩF . Such a

map in Λ(FG)× is called a prime F-element over F . Also, define FF := {fs : s ∈ G(q−1)}

to be the collection of all prime F-elements over F .

Proposition 4.2.2 Given s ∈ G(q−1), define h ∈ Hom(Ωt
F , G) by h(φ) = 1 and h(σ) = s.

Then, we have F h = F (π1/|s|), and there exists a ∈ Ah such that Ah = OFG · a and

rG(a) = Θt
∗(fs).

Proof. Let e := |s| and Π := π1/e. Notice that F h = F (Π) because ker(h) is topologically

generated by φ and σe, which both fix Π, and [Ωt
F : ker(h)] = e = [F (Π) : F ]. Hence, the

field F h is totally ramified over F and has Π as a uniformizer. So, we have Oh = OF [Π]

(see [20, Chapter I, Proposition 18], for example). Because Ah = Π(1−e)/2Oh by Proposi-

tion 1.2.1, we see that {Πk+(1−e)/2 | k = 0, 1, . . . , e−1} is an OF -basis of Ah. We will show

that their average

α :=
1

e

e−1∑
k=0

Πk+ 1−e
2

is a free generator of Ah over OFGal(F h/F ). Note that α ∈ Ah because (e, p) = 1.
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The group Gal(F h/F ) is cyclic of order e and is generated by the element Π 7→ ζeΠ,

which is the restriction of σ to F h. For each i = 0, 1, . . . , e− 1, we have

σi(α) =
1

e

e−1∑
k=0

ζ
(k+ 1−e

2
)i

e Πk+ 1−e
2 .

For l = 0, 1, . . . , e− 1, multiply the above equation by ζ
−(l+(1−e)/2)i
e to obtain

σi(α)ζ
−(l+

(1−e)
2

)i
e =

1

e

e−1∑
k=0

ζ(k−l)i
e Πk+ 1−e

2 .

Now, summing the above over all i = 0, 1, . . . , e− 1 then yields

e−1∑
i=0

σi(α)ζ
−(l+ 1−e

2
)i

e =
1

e

e−1∑
k=0

Πk+ 1−e
2

e−1∑
i=0

ζ(k−l)i
e = Πl+ 1−e

2 . (4.2.1)

Since {Πl+(1−e)/2 | l = 0, 1, . . . , e− 1} is an OF -basis of Ah and ζe ∈ OF , this shows that

indeed Ah = OFGal(F h/F ) ·α. Since α ∈ F h and Ah = MapΩF
(hG,Ah), it is not hard to

see that the map a ∈ Map(G,F c) given by

a(t) :=


ω(α) if t = h(ω) for ω ∈ Ωt

F

0 otherwise

is well-defined and satisfies Ah = OFG · a, as desired.

Finally, we will use the identificationH(FG) = HomΩF (SĜ, (F
c)×) in (2.4.12) to show

that rG(a) = Θt
∗(fs). To that end, let χ ∈ Ĝ and let υ := υ(χ, s) be as in Definition 2.5.1.

Then, we have χ(s) = ζυe and k := υ− (1− e)/2 ∈ {0, 1, · · · , e−1}. On one hand, by the

definition of a, we have

rG(a)(χ) =
e−1∑
i=0

σi(α)χ(s)−i =
e−1∑
i=0

σi(α)ζ
−(k+ 1−e

2
)i

e .
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The same computation as in (4.2.2) then shows that rG(a)(χ) = Πk+ 1−e
2 = π〈χ,s〉∗ . On

the other hand, we have

Θt
∗(fs)(χ) = fs

(∑
t∈G

〈χ, t〉∗t

)
=
∏
t∈G

fs(t)
〈χ,t〉∗ = π〈χ,s〉∗ (4.2.2)

also. Hence, indeed rG(a) = Θt
∗(fs), and this completes the proof.

Next, we will consider an arbitrary tame h ∈ Hom(ΩF , G).

Theorem 4.2.3 Let h ∈ Hom(Ωt
F , G). If Ah = OFG · a, then we have

rG(a) = uΘt
∗(fs)

for some u ∈ H(OFG) and for s := h(σ).

Proof. Let h = hnrhtot be the factorization of h with respect to σ. By Proposition 2.3.7

(b) and (2.4.4), there exists anr ∈ Ohnr such that Ohnr = OFG · anr and rG(anr) = u′ for

some u′ ∈ H(OFG). Similarly, by Proposition 4.2.2, we have Ahtot = OFG · atot for some

atot ∈ Ahtot with rG(atot) = Θt
∗(fs), where s := h(σ). Applying Proposition 3.2.3 (c), we

then obtain an element a′ ∈ Ah with rG(a′) = rG(anr)rG(atot) such that Ah = OFG · a′.

Since Ah = OFG · a also, we have a = β · a′ for some β ∈ (OFG)×. It follows that

rG(a) = rag(β)rG(a′) = (rag(β)u′)Θt
∗(fs),

where u := rag(β)u′ ∈ H(OFG). This proves the claim.

Theorem 4.2.4 Let s ∈ G(q−1) and u ∈ H(OFG). If h is the homomorphism associated

to uΘt
∗(fs), then h is tame and h(σ) = s. Moreover, there exists an element a ∈ Ah such

that Ah = OFG · a and

rG(a) = uΘt
∗(fs).
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Proof. Let hnr and htot be the homomorphisms associated to u and Θt
∗(fs), respectively.

Notice that hnr is unramified by (2.4.4) and so hnr(σ) = 1. We also know from Proposi-

tion 4.2.2 that htot is tame. Since h = hnrhtot by definition, this implies that h is tame.

In particular, we may view h as an element of Hom(Ωt
F , G) (recall Remark 2.3.5).

Now, Proposition 4.2.2 also implies that htot(φ) = 1 and htot(σ) = s. We then deduce

that h(σ) = htot(σ) = s, which proves the first claim. This also shows that h = hnrhtot is

the factorization of h with respect to σ. The same argument in the proof of Theorem 4.2.3

verbatim then shows that there exists a ∈ Ah satisfying the desired properties.

Remark 4.2.5 Theorems 4.2.3 and 4.2.4 are modifications of [14, Theorem 5.6], where

McCulloh proved the analogous statements, but with Ah and Θt
∗ replaced by Oh and Θt,

respectively (recall Remark 2.5.7).

The next proposition will be needed for the proof of Theorem 1.2.4. It will be helpful

to recall the definitions of the pairing 〈 , 〉 and the map Θt from Remark 2.5.7.

Proposition 4.2.6 For all s ∈ G(q−1), we have Θt
∗(fs)Θ

t(fs) = Θt(fs2).

Proof. Let χ ∈ Ĝ be given. As computed in (4.2.2) and the proof of [14, Proposition 5.4],

we know that (Θt
∗(fs)Θ

t(fs))(χ) = π〈χ,s〉+〈χ,s〉∗ and Θt(fs2)(χ) = π〈χ,s
2〉. So, it suffices to

show that 〈χ, s〉∗+〈χ, s〉 = 〈χ, s2〉. To that end, let e := |s| and let k ∈ {0, 1, . . . , e−1} be

such that χ(s) = ζke , so χ(s2) = ζ2k
e . If k ∈ {0, 1, . . . , (e−1)/2}, then 2k ∈ {0, 1, . . . , e−1}

and so

〈χ, s〉∗ + 〈χ, s〉 = k/e+ k/e = 2k/e = 〈χ, s2〉.

If k ∈ {(e+ 1)/2, . . . , e− 1}, then 2k ∈ {e+ 1, . . . , 2e− 2} and so

〈χ, s〉∗ + 〈χ, s〉 = (k − e)/e+ k/e = (2k − e)/e = 〈χ, s2〉.

The completes the proof.

53



Characterization of the A-Realizable Classes in Cl(OKG) and UCl(OKG) Chapter 4

4.3 Approximation Theorems

Let F be a number field. In what follows, assume that G is abelian and of odd order.

We will give preliminary characterizations of the sets

At(OFG) := {cl(Ah) : tame h ∈ Hom(ΩF , G)}

Atu(OFG) := {ucl(Ah) : tame h ∈ Hom(ΩF , G)}

of tame A-realizable classes in Cl(OFG) and UCl(OFG), respectively.

Definition 4.3.1 Recall Definition 4.2.1 and define

F = FF := {f ∈ J(Λ(FG)) | fv ∈ FFv for all v ∈MF}.

Theorem 4.3.2 Let h ∈ Hom(ΩF , G), say with Fh = FG ·b. Then, we have h is tame if

and only if there exists c ∈ J(FG) such that

rag(c) = η(rG(b))−1uΘt
∗(f) (4.3.1)

for some u ∈ U(H(OFG)) and f ∈ F. Moreover, if (4.3.1) holds, then

(1) for all v ∈MF , we have fv = fFv ,sv for sv := hv(σFv);

(2) for all v ∈MF , we have fv = 1 if and only if hv is unramified;

(3) j(c) = cl(Ah);

(4) c ∈ J(FG(s)) and j(s)(c) = ucl(Ah) if b is also self-dual.

Proof. First, assume that h is tame. For each v ∈MF , let av ∈ Ahv and cv ∈ (FvG)× be as

in (3.1.1) and (3.1.3), respectively. By Theorem 4.2.3, we have rG(av) = uvΘ
t
∗(fFv ,sv) for
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some uv ∈ H(OFvG) and for sv := hv(σFv). This implies that fFv ,sv = 1 if and only if hv

is unramified, and so f := (fFv ,sv) ∈ F. Moreover, from equation (3.1.5), we obtain

rag(cv) = rG(b)−1rG(av) = rG(b)−1uvΘ
t
∗(fFv ,sv).

Setting c := (cv) ∈ J(FG) and u := (uv) ∈ U(H(OFG)), we see that (4.3.1) indeed holds.

Conversely, suppose that there exists c ∈ J(FG) such that the equality (4.3.1) holds

for some u ∈ U(H(OFG)) and f ∈ F. Then, for each v ∈MF , we have

rag(cv)rG(b) = uvΘ
t
∗(fv),

with fv = fFv ,sv say. Note that h is the homomorphism associated to rG(b), so clearly hv is

that associated to uvΘ
t
∗(fFv ,sv) and thus is tame by Theorem 4.2.4. This shows that h is

tame. Theorem 4.2.4 also gives hv(σFv) = sv, which proves (1), and (2) follows directly

from (1). Now, again by Theorem 4.2.4, there exists av ∈ Ahv such that Ahv = OFvG · av

and rG(av) = uvΘ
t
∗(fFv ,sv). In particular, we obtain rG(av) = rag(cv)rG(b), meaning that

there exists tv ∈ G such that

rG(av) = (cv · rG(b))tv = (cvtv) · rG(b).

This implies that av = (cvtv) · b. Set t := (tv) ∈ U(OFG). Then, as in Section 3.1, we see

that cl(Ah) = j(ct) = j(c). If b is also self-dual, then ct ∈ J(FG(s)) and so c ∈ J(FG(s)).

We have ucl(Ah) = j(s)(ct) = j(s)(c) as well. This proves (3) and (4).

Remark 4.3.3 Theorem 4.3.2 (without the statement in (4)) is analogous to [14, Theo-

rem 6.7], where McCulloh proved the corresponding statements with Ah and Θt
∗ replaced

by Oh and Θt, respectively (recall Remark 2.5.7). The proof is verbatim, except we have
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to use [14, Theorem 6.7] rather than Theorem 4.3.2 (cf. Remark 4.2.5).

Notice that Theorem 4.3.2 implies that for any c ∈ J(FG), we have j(c) ∈ At(OFG)

if and only if rag(c) is an element of

η(H(FG))U(H(OFG))Θt
∗(F) (4.3.2)

(recall (2.4.3)). Similarly, for any c ∈ J(FG(s)), we have j(s)(c) ∈ Atu(OFG) if and only if

rag(c) is an element of

η(H(FG(1)))U(H(OFG))Θt
∗(F) (4.3.3)

(recall (2.4.5) and Proposition 2.3.9 (b)). However, it is unclear whether the sets in (4.3.2)

and (4.3.3) are subgroups of J(H(FG)) because F is only a subset of J(Λ(FG)). Below,

we will state two approximation theorems which were proved by McCulloh in [14]. They

will allow us to replace F by J(Λ(FG)) in both (4.3.2) and (4.3.3).

First, we will need some further definitions (recall (2.5.2) and (2.5.3)).

Definition 4.3.4 Let m be an ideal in OF . For each v ∈MF , define

Um(OF cv ) := (1 + mOF cv ) ∩ (OF cv )×

U ′m(Λ(OFvG)) := {gv ∈ Λ(OFvG)× | gv(s) ∈ Um(OF cv ) for all s ∈ G with s 6= 1}

and set

U ′m(Λ(OFG)) :=

( ∏
v∈MF

U ′m(Λ(OFvG))

)
∩ J(Λ(FG)).

Definition 4.3.5 For g ∈ J(Λ(FG)) and s ∈ G, define

gs :=
∏
v∈MF

gv(s) ∈
∏
v∈MF

(F c
v )×.

56



Characterization of the A-Realizable Classes in Cl(OKG) and UCl(OKG) Chapter 4

Theorem 4.3.6 Let m be an ideal in OF divisible by both |G| and exp(G)2.

(a) We have HomΩFv
(SĜ, Um(OF cv )) ⊂ H(OFvG) for all v ∈MF .

(b) We have Θt
∗(U

′
m(Λ(OFG))) ⊂ U(H(OFG)).

Proof. See [14, Theorem 2.14] for (a). As for (b), observe that by (a), it suffices to show

that for each v ∈MF , we have Θt
∗(U

′
m(Λ(OFvG))) ⊂ HomΩFv

(SĜ, Um(OF cv )). To that end,

let gv ∈ U ′m(Λ(OFvG)) be given. For any ψ ∈ SĜ, we have 〈ψ, 1〉∗ = 0 and 〈ψ, s〉∗ ∈ Z

for all s ∈ G. Since gv(s) ∈ Um(OF cv ) for s 6= 1, we see that

Θt
∗(gv)(ψ) = gv

(∑
s∈G

〈ψ, s〉∗s

)
=
∏
s 6=1

gv(s)
〈ψ,s〉∗

indeed lies in Um(OF cv ). This proves the claim.

Theorem 4.3.7 Let g ∈ J(Λ(FG)) and let T be a finite subset of MF . Then, there exists

f ∈ F such that fv = 1 for all v ∈ T and

g ≡ f (mod λ(Λ(FG)×)U ′m(Λ(OFG))).

Moreover, we may choose f so that for each s ∈ G(−1) with s 6= 1, there exists ω ∈ ΩF

such that fω·s 6= 1 (recall Definition 2.5.3).

Proof. See [14, Proposition 6.14].

4.4 Proofs of Theorems 1.2.3, 1.3.3, and 1.2.4

Theorem 1.2.4 Let K be a number field and let G be a finite abelian group of odd order.

We have cl(Ah)cl(Oh) = cl(Oh2) for all h ∈ H1
t (ΩK , G), and hence At(OKG) ⊂ R(OKG).
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Proof. Let h ∈ H1
t (ΩK , G) be given, with Kh = KG · b say. On one hand, we know from

Theorem 4.3.2 that cl(Ah) = j(c) for some c ∈ J(KG) such that

rag(c) = η(rG(b))−1uΘt
∗(f), (4.4.1)

where u ∈ U(H(OKG)) and fv = fKv ,sv for sv := hv(σKv). On the other hand, from [14,

Theorem 6.7] (cf. Remark 4.3.3), we have cl(Oh) = j(c′) for some c′ ∈ J(KG) such that

rag(c′) = η(rG(b))−1uΘt(f),

where u ∈ U(H(OKG)) and f ∈ F may be assumed to be the same as those in (4.4.1).

Then, we have

rag(cc′) = η(rG(b)2)−1u2Θt
∗(f)Θt(f).

Observe that h2 is the homomorphism associated to rG(b)2. From Proposition 4.2.6, we

also know that Θt
∗(f)Θt(f) = Θt(f ′), where f ′ ∈ F is given by f ′v = f ′Kv ,s2v . It then follows

from [14, Theorem 6.7] that cl(Oh2) = j(cc′) = j(c)j(c′) = cl(Ah)cl(Oh), proving the first

claim. Since R(OKG) is a subgroup of Cl(OKG) by [14, Corollary 6.21], we immediately

deduce that At(OKG) ⊂ R(OKG), as desired.

Theorem 1.3.3 Let K be a number field and let G be a finite abelian group of odd order.

Then, the set Atu(OKG) is a subgroup of UCl(OKG). Moreover, given c ∈ Atu(OKG) and

a finite set T of primes in OK, there exists h ∈ H1
t (ΩK , G) such that

(1) Kh/K is a field extension;

(2) Kh/K is unramified at all v ∈ T ;

(3) c = ucl(Ah).
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Proof. Let ρu denote the composition of the homomorphism J(KG(s)) −→ J(H(KG)) ob-

tained by restricting the map rag in Definition 2.4.4 followed by the quotient map

J(H(KG)) −→ J(H(KG))

η(H(KG(1)))U(H(OKG))Θt
∗(J(Λ(KG)))

.

We will show that Atu(OKG) is a subgroup of UCl(OKG) by showing that

j−1
(s) (Atu(OKG)) = ker(ρu), (4.4.2)

or equivalently, that for any c ∈ J(KG(s)), we have j(s)(c) ∈ Atu(OKG) if and only if

rag(c) ∈ η(H(KG(1)))U(H(OKG))Θt
∗(J(Λ(KG))). (4.4.3)

To that end, let c ∈ J(KG(s)) be given. First, suppose that j(s)(c) = ucl(Ah) for some

tame h ∈ Hom(ΩK , G), with Kh = KG · b say. Since G has odd order, we may take b to

be self-dual by [1, Proposition 5.1], so rG(b) ∈ H(KG(1)) by (2.4.3) and Proposition 2.3.9

(b). Also, by Theorem 4.3.2, there exists c′ ∈ J(KG(s)) such that j(s)(c
′) = ucl(Ah) and

rag(c′) ∈ η(H(KG(1)))U(H(OKG))Θt
∗(J(Λ(KG))).

Since j(s)(c) = ucl(Ah) also, from the bijection in (2.2.2), we see that

c ≡ c′ (mod ∂((KG(1))U(OKG)).

It is then clear that (4.4.3) indeed holds.

Conversely, assume that (4.4.3) holds. Then, we have

rag(c) = η(rG(b))−1uΘt
∗(g) (4.4.4)
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for some rG(b) ∈ H(KG(1)), u ∈ U(H(OKG)), and g ∈ J(Λ(KG)). Now, let m be an ideal

in OK . By Theorem 4.3.7, there exists f ∈ F such that

g ≡ f (mod λ(Λ(KG)×)U ′m(Λ(OKG))). (4.4.5)

Choosing m to be divisible by both |G| and exp(G)2, from Proposition 2.5.5 and Theo-

rem 4.3.6 (b), the above then implies that

Θt
∗(g) ≡ Θt

∗(f) (mod η(H(KG(1)))U(H(OKG))).

Hence, changing b and u in (4.4.4) if necessary, we may assume that g = f . Note that b is

self-dual by Proposition 2.3.9 (b) as rG(a) ∈ H(KG(1)). If h := hb is the homomorphism

associated to rG(b), then h is tame and j(s)(c) = ucl(Ah) by Theorem 4.3.2. This proves

(7.4.1). It remains to show that h may be chosen such that (1) and (2) are satisfied.

Let T be a finite set of primes in OK . First of all, by Theorem 4.3.7, we may choose

the f ∈ F in (4.4.5) such that fv = 1 for all v ∈ T . By Theorem 4.3.2, this implies that

hv is unramified for all v ∈ T , so (2) holds. We may also choose the f ∈ F in (4.4.5) such

that for each s ∈ G(−1) with s 6= 1, there exists ω ∈ ΩK with fω·s 6= 1. In particular, we

have fv = fKv ,ω·s for some v ∈ MK . But observe that hv(σKv) = ω · s by Theorem 4.3.2

and that 〈s〉 = 〈ω · s〉 by Definition 2.5.3. This shows that s ∈ h(ΩK) for all s ∈ G \ {1}

and so h is surjective. It follows that Kh is a field, and so (1) holds as well. This completes

the proof of the theorem.

Theorem 1.2.3 Let K be a number field and let G be a finite abelian group of odd order.

Then, the set At(OKG) is a subgroup of Cl(OKG). Moreover, given c ∈ At(OKG) and a

finite set T of primes in OK, there exists h ∈ H1
t (ΩK , G) such that

(1) Kh/K is a field extension;
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(2) Kh/K is unramified at all v ∈ T ;

(3) c = cl(Ah).

Proof. Since Φ(ucl(Ah)) = cl(Ah) for all h ∈ H1
w(ΩK , G), where Φ is the homomorphism

in (1.3.1) (cf. Remark 2.2.11), this follows directly from Theorem 1.3.3.

Alternatively, let ρ be the composition of the homomorphism rag in Definition 2.4.4

followed by the quotient map

J(H(KG)) −→ J(H(KG))

η(H(KG))U(H(OKG))Θt
∗(J(Λ(KG)))

.

Then, essentially the same argument as in the proof of Theorem 1.3.3 shows that

j−1(At(OKG)) = ker(ρ),

or equivalently, that for any c ∈ J(KG), we have j(c) ∈ At(OKG) if and only if

rag(c) ∈ η(H(KG))U(H(OKG))Θt
∗(J(Λ(KG))). (4.4.6)

This shows that At(OKG) is a subgroup of Cl(OKG). The second claim in the theorem

may also be proved using a similar argument as that in the proof of Theorem 1.3.3.

4.5 Decomposition of Local Wild Resolvends I

Let F be a finite extension of Qp. We will assume that G is abelian and of odd order in

this section. Under certain hypotheses, we will compute the reduced resolvends rG(a) for

which Ah = OFG · a for a wildly and weakly ramified h ∈ Hom(ΩF , G). It will be helpful

to recall the notation set up in Section 1.6.
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First, we make the following observation.

Proposition 4.5.1 Assume that F/Qp is unramified and that p is odd. If N/F is a finite

Galois extension with different ideal DN/F and e(N/F ) = p, then N/F is weakly ramified

and vN(DN/F ) = 2(p− 1).

Proof. Notice that |Gal(N/F )0| = e(N/F ) = p. Moreover, since Gal(N/F )0/Gal(N/F )1

has order coprime to p (see [20, Chapter IV, Proposition 7, Corollary 1], for example),

we must have |Gal(N/F )1| = p as well. Now, suppose on the contrary that N/F is not

weakly ramified. This means that Gal(N/F )2 6= 1, and so we must have |Gal(N/F )2| = p.

Then, Proposition 1.2.1 implies that

vN(DN/F ) =
∞∑
n=0

(|Gal(N/F )n| − 1) ≥ 3(p− 1).

From [16, Chapter III, Theorem 2.5], we also have that

vN(DN/F ) ≤ p− 1 + vN(p).

But vN(p) = p since e(N/Qp) = e(N/F )e(F/Qp) = p. Hence, we have 2p− 1 ≤ 3(p− 1)

and so p = 2, which is a contradiction. This proves that N/F must be weakly ramified,

and the claim that vN(DN/F ) = 2(p− 1) also follows.

The next proposition is analogous to Proposition 4.2.2 (also recall (2.5.2)).

Proposition 4.5.2 Assume that F/Qp is unramified and let h ∈ Hom(ΩF , G) be so that

e(F h/F ) = p and F h ⊂ Fp,2. Then, there exists a ∈ Ah such that Ah = OFG · a and

rG(a) = Θt
∗(g)

for some g ∈ Λ(FG)×.
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The proof of Proposition 4.5.2 will take up most of the rest of this section. In the se-

quel, assume that F/Qp is unramified and let h ∈ Hom(ΩF , G) be as in Proposition 4.5.2.

To simplify notation, set L := F h and let ζ := ζp be the chosen primitive p-root of unity

in F c. Moreover, notice that since G has odd order, the hypothesis e(F h/F ) = p implies

that p is odd. Hence, by Proposition 4.5.1, the extension L/F is weakly ramified and we

have vL(AL/F ) = 1− p. Finally, the hypothesis L ⊂ Fp,2 gives the following.

Lemma 4.5.3 There exists x ∈ F (ζ) such that L(ζ) = F (ζ, x1/p) and that x1/p − 1 is a

uniformizer in L(ζ).

Proof. See [18, Section 3 and the discussion following Lemma 8]. This lemma requires the

hypotheses that F/Qp is unramified with p odd and that L ⊂ Fp,2.

Let x ∈ F (ζ) be given by the above lemma. The fact that vL(ζ)(x
1/p − 1) ≥ 1 will be

important, as we will see. We summarize the set-up in the following diagram, where the

numbers indicate the ramification indices.

F

F (ζ)

L

L(ζ) = F (ζ, x1/p)

vL(ζ)(x
1/p − 1) = 1

L := F h

vL(AL/F ) = 1− p

Qp (p is odd)

1

p− 1

p

p− 1

p

Moreover, we will need some further notation.

Definition 4.5.4 Write Fp := Z/pZ. For each i ∈ Fp, if z is an element of order 1 or p

in a group, we will write zi for zni , where ni ∈ Z is any integer representing i. We will
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also define c(i) ∈ {(1 − p)/2, . . . , (p − 1)/2} to be the unique integer representing i (cf.

Definition 2.5.1). If i ∈ F×p , we will write i−1 for its multiplicative inverse in F×p .

Definition 4.5.5 For each i ∈ F×p , define

ωi ∈ Gal(L(ζ)/L); ωi(ζ) := ζ i
−1

.

Moreover, define xi := ωi(x) and

x
1/p
i := ωi(x

1/p),

which is clearly a p-th root of xi. We will also write yi for x
1/p
i to simplify notation.

Now, consider the element

α :=
1

p

∑
k∈Fp

∏
i∈F×p

y
c(ik)
i

 =
1

p

1 +
∏
i∈F×p

y
c(i)
i + · · ·+

∏
i∈F×p

y
c(i(p−1))
i

 . (4.5.1)

We will show that the element a ∈ Map(G,F c) defined by

a(s) :=


ω(α) if s = h(ω) for ω ∈ ΩF

0 otherwise

(4.5.2)

is well-defined and that it satisfies the conclusion of Proposition 4.5.2.

Remark 4.5.6 The definition of the element α in (4.5.1) is motivated by the definition

of g ∈ Λ(FG)× in Lemma 4.5.11, the computation of Θt
∗(g)(χ) for χ ∈ Ĝ in (4.5.4), and

the formula (2.4.10).

First, we will use a valuation argument to show that α ∈ AL/F .
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Lemma 4.5.7 We have α ∈ L.

Proof. By definition, we have yi ∈ L(ζ) for all i ∈ F×p . So, clearly α ∈ L(ζ) and we have

α ∈ L if and only if α is fixed by the action of Gal(L(ζ)/L). Now, notice that an element

in Gal(L(ζ)/L) is equal to ωj for some j ∈ F×p . Moreover, observe that ωjωi = ωji and

so ωj(yi) = yji for all i ∈ F×p . Hence, for each k ∈ Fp, we have

ωj

∏
i∈F×p

y
c(ik)
i

 =
∏
i∈F×p

y
c(ik)
ji =

∏
i∈F×p

y
c(j−1ik)
i .

This implies that ωj permutes the summands

1,
∏
i∈F×p

y
c(i)
i , . . . ,

∏
i∈F×p

y
c(i(p−1))
i

in the definition of α. This shows that ωj(α) = α and so α ∈ L.

Lemma 4.5.8 For all i ∈ F×p and n ∈ Z, we have vL(ζ)(yi) = 0 and vL(ζ)(y
n
i − 1) ≥ 1.

Proof. For each i ∈ F×p , we have yi−1 = x
1/p
i −1 = ωi(x

1/p−1). Since vL(ζ)(x
1/p−1) = 1,

this implies that vL(ζ)(yi − 1) = 1 and so vL(ζ)(yi) = 0. Now, the second claim is obvious

for n = 0. For n ∈ Z+, we have

vL(ζ)(y
n
i − 1) = vL(ζ)(yi − 1) + vL(ζ)(y

n−1
i + · · ·+ yi + 1) ≥ 1 + 0.

For n ∈ Z−, use the above to deduce that

vL(ζ)(y
n
i − 1) = vL(ζ)(y

n
i ) + vL(ζ)(1− y−ni ) ≥ 0 + 1.

This completes the proof of the lemma.
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Proposition 4.5.9 We have α ∈ AL/F .

Proof. Recall that vL(AL/F ) = 1− p and that vL(p) = p. Hence, we have

vL(α) = vL

∑
k∈Fp

∏
i∈F×p

y
c(ik)
i

− p
= vL

∑
k∈Fp

∏
i∈F×p

y
c(ik)
i − 1

+ p

− p
≥ min

{
vL

∑
k∈Fp

∏
i∈F×p

y
c(ik)
i − 1

 , p

}
− p.

By identifying Fp with {0, 1, . . . , p− 1}, for each k ∈ Fp we have

∏
i∈F×p

y
c(ik)
i − 1 =

p−2∑
i=1

((
p−1∏
l=i+1

y
c(lk)
l

)
(y
c(ik)
i − 1)

)
+ (y

c((p−1)k)
p−1 − 1).

It then follows from Lemma 4.5.8 the element above has positive valuation, and so

vL

∑
k∈Fp

∏
i∈F×p

y
c(ik)
i − 1

 ≥ 1.

This shows that vL(α) ≥ 1− p, whence α ∈ AL/F , as claimed.

Next, we will compute the Galois conjugates of α in L/F . First, observe that because

[L : F ] and [F (ζ) : F ] are coprime, there is canonical isomorphism

Gal(L(ζ)/F ) ' Gal(L/F )×Gal(F (ζ)/F ).

Let τ ∈ Gal(L/F ) be the generator which is identified with

τ̃ ∈ Gal(L(ζ)/F (ζ)); τ̃(x1/p) := ζ−1x1/p (4.5.3)
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via this isomorphism. We will also choose a lift ωτ of τ in ΩF .

Proposition 4.5.10 For all j, k ∈ Fp, we have

τ̃ j

∏
i∈F×p

y
c(ik)
i

 = ζjk ·
∏
i∈F×p

y
c(ik)
i .

In particular, this implies that for all j ∈ Fp, we have

τ j(α) =
1

p

∑
k∈Fp

ζjk ∏
i∈F×p

y
c(ik)
i

 .

Proof. Let j, k ∈ Fp be given. Since Gal(L(ζ)/F ) is abelian, for any i ∈ F×p we have

τ̃ j(yi) = (τ̃ j ◦ ωi)(x1/p)

= (ωi ◦ τ̃ j)(x1/p)

= ωi(ζ
−jx1/p)

= ζ−i
−1jyi.

We then see that

τ̃ j

∏
i∈F×p

y
c(ik)
i

 =
∏
i∈F×p

ζ−i
−1jiky

c(ik)
i

=
∏
i∈F×p

ζ−jky
c(ik)
i

= (ζ−jk)(p−1)
∏
i∈F×p

y
c(ik)
i

= ζjk
∏
i∈F×p

y
c(ik)
i ,

which proves the proposition.
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Finally, we will define the desired element g ∈ Λ(FG)×. Recall that ωτ is a lift of τ

in ΩF and define t := h(ωτ ). Notice that t has order p. It will also be helpful to recall

Definition 2.5.3.

Lemma 4.5.11 The map g ∈ Map(G(−1), (F c)×) given by

g(s) :=


xi if s = ti for i ∈ F×p

1 otherwise

is well-defined and preserves ΩF -actions. In particular, we have g ∈ Λ(FG)×.

Proof. Clearly g is well-defined since t has order p. To show that g preserves ΩF -actions,

let ω ∈ ΩF and s ∈ G(−1) be given.

If s = ti for some i ∈ F×p , then s has order p and so ω · s is determined by the action

of ω on ζ. Let j ∈ F×p be such that ω|F (ζ) = ωj|F (ζ). Then, we have ω−1(ζ) = ζj, which in

turn gives ω · s = sj = tij. It follows that

g(ω · s) = xij = ωj(xi) = ω(g(s)).

Now, if ω · s = ti for some i ∈ F×p , then the above shows that s = ω−1 · (ω · s) = tij for

some j ∈ F×p as well. Hence, if s 6= ti for all i ∈ F×p , then the same holds for ω · s. In this

case, we have

g(ω · s) = 1 = ω(1) = ω(g(s)).

Hence, indeed g preserves ΩF -actions, and so g ∈ Λ(FG)× by definition.

We are now ready to prove Proposition 4.5.2.

Proof. Let a ∈ Map(G,F c) be as in (4.5.2) and let g ∈ Λ(FG)× be as in Lemma 4.5.11.

Since α ∈ AL/F by Proposition 4.5.9 and L = F h, it is clear that a is well-defined and

that a ∈ Ah. We will show that Ah = OFG · a and rG(a) = Θt
∗(g).
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First of all, we will use the identification H(FG) = HomΩF (SĜ, (F
c)×) in (2.4.12) to

show that rG(a) = Θt
∗(g). So, let χ ∈ Ĝ be given and let k ∈ Fp be such that χ(t) = ζk.

By Definitions 2.5.1 and 4.5.4, we have 〈χ, ti〉∗ = c(ik)/p for all i ∈ F×p , and so

Θt
∗(g)(χ) = g

∑
i∈F×p

〈χ, ti〉∗ti
 =

∏
i∈F×p

x
〈χ,ti〉∗
i =

∏
i∈F×p

y
c(ik)
i . (4.5.4)

On the other hand, by the definition of a, we have

rG(a)(χ) =
∑
j∈Fp

τ j(α)(χ(t)j)−1 =
∑
j∈Fp

τ j(α)ζ−jk.

Then, using Proposition 4.5.10, we obtain

rG(a)(χ) =
1

p

∑
j∈Fp

∑
l∈Fp

ζjl ∏
i∈F×p

y
c(il)
i

 ζ−jk

=
1

p

∑
l∈Fp

∏
i∈F×p

y
c(il)
i

∑
j∈Fp

ζj(l−k)


=
∏
i∈F×p

y
c(ik)
i .

This shows that rG(a) = Θt
∗(g), and hence rG(a)rG(a)[−1] = 1 by Proposition 2.5.5. We

then deduce from Proposition 2.3.10 Ah = OFG · a as well. This completes the proof.

The next theorem is analogous to Theorem 4.2.3.

Theorem 4.5.12 Assume that F/Qp is unramified and let h ∈ Hom(ΩF , G) be such that

e(F h/F ) = p. If Ah = OFG · a, then we have

rG(a) = uΘt
∗(g)

for some u ∈ H(OFG) and g ∈ Λ(FG)×.
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Proof. Since F/Qp is unramified and e(F h/F ) = p, we know from Proposition 4.5.1 that

h is weakly ramified. Proposition 4.1.2 then implies that h has a factorization h = hnrhtot

with respect to p and we have F htot ⊂ Fp,2. Notice also that e(F htot/F ) = e(F h/F ) = p

by Proposition 3.2.3 (a).

By Proposition 2.3.7 (b) and (2.4.4), there exists anr ∈ Ohnr with Ohnr = OFG · anr

and rG(anr) = u′ for some u′ ∈ H(OFG). Now, note that Proposition 4.5.2 applies to htot,

and hence there exists atot ∈ Ahtot such that Ahtot = OFG · atot and rG(atot) = Θt
∗(g) for

some g ∈ Λ(FG)×. Using Proposition 3.2.3 (c), we then obtain an element a′ ∈ Ah such

that rG(a′) = rG(anr)rG(atot) and Ah = OFG ·a′. But Ah = OFG ·a also, and so a = β ·a′

for some β ∈ (OFG)×. It follows that

rG(a) = rag(β)rG(a′) = (rag(β)u′)Θt
∗(g),

where u := rag(β)u′ ∈ H(OFG). This proves the claim.

4.6 Proofs of Theorem 1.2.6 and 1.3.4

Theorem 1.3.4 Let K be a number field and let G be a finite abelian group of odd order.

Let h ∈ H1
w(ΩK , G) and let V denote the set of primes in OK which are wildly ramified

in Kh/K. If

(1) every v ∈ V is unramified over Q; and

(2) the ramification index of every v ∈ V in Kh/K is prime,

then we have ucl(Ah) ∈ Atu(OKG).

Proof. Let b ∈ Kh be as in (3.1.2), where we will take b to be self-dual. For each v ∈MK ,

let av ∈ Ahv and cv ∈ (KvG)× be as in (3.1.1) and (3.1.3), respectively. Then, as noted
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in Section 3.1, we have c := (cv) ∈ J(KG(s)) and ucl(Ah) = j(s)(c). Moreover, recall from

(3.1.5) that we have rag(cv) = rG(b)−1rG(av), where rG(b) ∈ H(KG(1)) by (2.4.3) and

Proposition 2.3.9 (b). From (4.4.3), we then see that ucl(Ah) ∈ Atu(OKG) will hold as

long as for all v ∈MK , we have

rG(av) ∈ H(OKvG)Θt
∗(Λ(KvG)×). (4.6.1)

If v /∈ V , then (4.6.1) follows from Theorem 4.2.3. If v ∈ V and p ∈ N is the prime lying

below v, then Kv/Qp is unramified by hypothesis (1) and e(Khv
v /Kv) = p by hypothesis

(2). Hence, Theorem 4.5.12 applies and (4.6.1) holds. This proves the theorem.

Theorem 1.2.6 Let K be a number field and let G be a finite abelian group of odd order.

Let h ∈ H1
w(ΩK , G) and let V denote the set of primes in OK which are wildly ramified

in Kh/K. If

(1) every v ∈ V is unramified over Q; and

(2) the ramification index of every v ∈ V in Kh/K is prime,

then we have cl(Ah) ∈ At(OKG).

Proof. Since Φ(ucl(Ah)) = cl(Ah) for all h ∈ H1
w(ΩK , G), where Φ is the homomorphism

in (1.3.1) (cf. Remark 2.2.11), this follows directly from Theorem 1.3.4.
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Chapter 5

Characterization of the A-Realizable

Classes in Cl(M(KG))

Let F be a number field. In what follows, assume that G is abelian and of odd order. As

discussed in Section 3.1, given a weakly ramified h ∈ Hom(ΩF , G), its square root of the

inverse different Ah defines a class cl(Ah) in Cl(OFG). Recall further from Remark 3.1.1

that in order to characterize this class, it suffices to study the reduced resolvends rG(av)

for which Ahv = OFvG · av for each v ∈MF .

We have computed such reduced resolvends in Theorems 4.2.3 and 4.2.4 when hv is

tame, and in Theorem 4.5.12 when hv is wild. In the latter case, we had to assume that v

is unramified over Q and that e(F hv
v /Fv) is prime. The goal of this chapter is to compute

such reduced resolvends when hv is wild and without these two additional assumptions.

The crucial step is to prove that rG(av)(χ) ∈ O×F cv for all χ ∈ Ĝ (recall (2.4.9)). We will do

so by first computing the valuations of certain Gauss sums over p-adic numbers. The de-

scription of rG(av) that we will obtain in Theorem 5.2.8, however, only characterizes the

class Ψ(cl(Ah)) ∈ Cl(M(FG)) and not the class cl(Ah) ∈ Cl(OFG). Recall thatM(FG)

denotes the maximal OF -order in FG, and here Ψ : Cl(OFG) −→ Cl(M(FG)) denotes
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the natural homomorphism afforded by extension of scalars.

Throughout this chapter, the symbol p will denote a prime number (not necessarily

odd). We will also use the following notation (cf. Definition 4.5.4).

Definition 5.0.3 Write Fp := Z/pZ. For each i ∈ Fp, if z is an element of order 1 or p

in a group, we will write zi for zni , where ni ∈ Z is any integer representing i. For p odd,

we will also define c(i) ∈ {(1−p)/2, . . . , (p−1)/2} to be the unique integer representing i

(cf. Definition 2.5.1). If i ∈ F×p , we will write i−1 for its multiplicative inverse in F×p .

Definition 5.0.4 Note that Qp contains all (p−1)-st roots of unity. We will write F̂×p for

the group of Qp-valued characters on F×p . Given ϕ ∈ F̂×p , we will extend it to a map on Fp

by setting ϕ(0) = 0. In addition, for each n ∈ N which divides p− 1, let Rn := (F×p )n be

the subgroup of F×p consisting of the non-zero n-th powers in Fp.

5.1 Computation of Valuations

5.1.1 Valuations of Gauss Sums over Qp

In this subsection, let ζ denote a primitive p-th root of unity in Qc
p. We will estimate

the valuations of the following Gauss sums.

Definition 5.1.1 For each ϕ ∈ F̂×p and j ∈ Fp, define

G(ϕ, j) :=
∑
k∈Fp

ϕ(k)ζjk.

Lemma 5.1.2 For all ϕ ∈ F̂×p and j ∈ F×p , we have

(a) G(1, 0) = p− 1 and G(ϕ, 0) = 0 if ϕ 6= 1;

(b) G(ϕ, j) = ϕ(j)−1G(ϕ, 1) and G(1, j) = −1.
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Proof. The claims in (a) follow from the orthogonality of characters, and both equalities

in (b) follow from a simple calculation.

In view of Lemma 5.1.2, it remains to consider the Gauss sums G(ϕ, 1) for ϕ 6= 1.

Proposition 5.1.3 Let ϕ ∈ F̂×p be a character of order n 6= 1. For all j ∈ F×p , we have

vQp(ζ)(G(ϕ, j)) ≥ (p− 1)/n.

Proof. By the first claim in Lemma 5.1.2 (b), we have vQp(ζ)(G(ϕ, j)) = vQp(ζ)(G(ϕ, 1)) for

all j ∈ F×p . Hence, it is enough to prove the above inequality for j = 1. We will do so by

computing the valuation of the sum

S :=
∑
j∈Fp

G(ϕ, j)n

in two different ways. On one hand, using Definition 5.1.1, we have

S =
∑
j∈Fp

∑
ki∈Fp
1≤i≤n

ϕ(k1 · · · kn)ζj(k1+···+kn)

=
∑
ki∈Fp
1≤i≤n

ϕ(k1 · · · kn)
∑
j∈Fp

ζj(k1+···+kn)

=
∑
ki∈Fp
1≤i≤n

k1+···+kn=0

ϕ(k1 · · · kn)p.

Since each ϕ(k1 · · · kn) is either 0 or a (p− 1)-st root of unity, this shows that

vQp(ζ)(S) ≥ vQp(ζ)(p) = p− 1. (5.1.1)

On the other hand, recall from Lemma 5.1.2 (a) that G(ϕ, 0) = 0 since ϕ 6= 1, and from
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Lemma 5.1.2 (b) that G(ϕ, j) = ϕ(j)−1G(ϕ, 1) for j ∈ F×p . Since ϕ has order n, we then

deduce that

S =
∑
j∈F×p

ϕ(j)−nG(ϕ, 1)n = (p− 1)G(ϕ, 1)n.

Since p− 1 ∈ Z×p is a p-adic unit, this shows that

vQp(ζ)(S) = n · vQp(ζ)(G(ϕ, 1)). (5.1.2)

The desired inequality now follows from (5.1.1) and (5.1.2).

Proposition 5.1.4 Let ϕ ∈ F̂×p be a character of order n 6= 1. For all j ∈ F×p , we have

n−1∑
l=1

G(ϕl, j) = 1 + n
∑
k∈Rn

ζjk.

Proof. First of all, we have

n−1∑
l=0

G(ϕl, j) =
n−1∑
l=0

∑
k∈Fp

ϕl(k)ζjk =
∑
k∈Fp

ζjk
n−1∑
l=0

ϕl(k).

Note that ker(ϕ) = Rn because ϕ has order n. In particular, we may regard 1, ϕ, · · · , ϕn−1

as the distinct characters on F×p /Rn. By the orthogonality of characters, we see that

n−1∑
l=0

ϕl(k) =


n if k ∈ Rn

0 otherwise.

It follows that
n−1∑
l=0

G(ϕl, j) = n
∑
k∈Rn

ζjk.

Since G(1, j) = −1 by Lemma 5.1.2 (b), the claim now follows.
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5.1.2 Valuations of Local Wild Resolvents

Let F be a finite extension of Qp and assume that G is abelian. First of all, we will

recall the definition of resolvents (cf. (2.4.9)) and make a few important observations.

Definition 5.1.5 Let a ∈ Map(G,F c) and χ ∈ Ĝ. The resolvent of a at χ is defined by

(a | χ) :=
∑
s∈G

a(s)χ(s)−1.

Lemma 5.1.6 Let N/F be a finite abelian extension that is wildly and weakly ramified.

(a) We have Gal(N/F )0 = Gal(N/F )1 and Gal(N/F )0 is elementary p-abelian

(b) The inverse different of N/F has a square root, and vN(AN/F ) = 1− |Gal(N/F )0|.

(c) There exists α ∈ AN/F such that AN/F = OFGal(N/F ) · α.

Proof. The equality Gal(N/F )0 = Gal(N/F )1 was proved in Lemma 3.2.2 (c). It follows

that Gal(N/F )0 is elementary p-abelian because the quotients Gal(N/F )n/Gal(N/F )n+1

are p-abelian for all n ∈ Z+ by [20, Chapter IV, Proposition 7, Corollary 3]. The claims

in (b) then follow immediately from Proposition 1.2.1 since Gal(N/F )2 = 1. From (a)

and (b), we obtain vN(AN/F ) ≡ 1 (mod |Gal(N/F )1|). The existence of α ∈ AN/F in (c)

then follows from [13, Theorem 1.1].

Next, we compute the resolvents (a | χ) of an element a for which Ah = OFG ·a for a

wildly and weakly ramified h ∈ Hom(ΩF , G). We note that for any such h ∈ Hom(ΩF , G),

the inverse different of F h/F has a square root by Lemma 5.1.6 (b) and so Ah exists.

Proposition 5.1.7 Let h ∈ Hom(ΩF , G) be wildly and weakly ramified such that F h/F

is totally ramified. Then, there exists a ∈ Ah such that Ah = OFG · a and

(a | χ) ∈ O×F c for all χ ∈ Ĝ. (5.1.3)
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The proof of Proposition 5.1.7 will take up most of the rest of this subsection. In the

following, let h ∈ Hom(ΩF , G) be as in Proposition 5.1.7 and set L := F h. We will also

write ζ for a primitive p-th root of unity in F c. Moreover, let α ∈ AL/F be any element

such that AL/F = OFGal(L/F ) · α; such an element α exists by Lemma 5.1.6 (c). It is

clear that the map a ∈ Map(G,F c) given by

a(s) :=


ω(α) if s = h(ω) for ω ∈ ΩF

0 otherwise

(5.1.4)

is well-defined and it satisfies Ah = OFG · a. It remains to show that (a | χ) ∈ O×F c holds

for all χ ∈ Ĝ. To that end, notice that for any χ ∈ Ĝ, we have

(a | χ) =
∑

s∈h(ΩF )

a(s)χ(s)−1. (5.1.5)

Observe that h(ΩF ) ' Gal(L/F ), which is equal to Gal(L/F )0 because L/F is totally

ramified. It then follows from Lemma 5.1.6 (a) that h(ΩF ) has exponent p. In particular,

this implies that (a | χ) is an element of L(ζ).

Lemma 5.1.8 For all χ ∈ Ĝ, we have vL(ζ)((a | χ−1)) = −vL(ζ)((a | χ)). In particular,

we have vF (Tr(a)) = 0.

Proof. We know from Proposition 2.3.10 that rG(a)(χ)rG(a)[−1](χ) ∈ O×F (ζ) for all χ ∈ Ĝ.

Since rG(a)[−1](χ) = (a | χ−1), the first claim clearly holds. Observe that Tr(a) = (a | 1),

so clearly vF (Tr(a)) = 0 holds as well.

Next, notice that we have a canonical isomorphism

Gal(L(ζ)/F ) ' Gal(L/F )×Gal(F (ζ)/F )

because [L : F ] and [F (ζ) : F ] are coprime. We will consider two different cases.
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Proposition 5.1.9 If [F (ζ) : F ] is even, then (a | χ) ∈ O×F c for all χ ∈ Ĝ.

Proof. If [F (ζ) : F ] is even, then the group Gal(F (ζ)/F ) contains the element ω−1 such

that ω−1(ζ) = ζ−1. Set ω := idL × ω−1. Then, for any χ ∈ Ĝ, we see from (5.1.5) that

(a | χ−1) =
∑

s∈h(ΩF )

a(s)χ(s) = ω

 ∑
s∈h(ΩF )

a(s)χ(s)−1

 = ω((a | χ)).

This shows that (a | χ) and (a | χ−1) are Galois conjugates in L(ζ)/F , and hence have

the same valuation in L(ζ). It then follows from Lemma 5.1.8 that (a | χ) ∈ O×F c .

Proposition 5.1.10 If [F (ζ) : F ] < p− 1, then (a | χ) ∈ O×F c for all χ ∈ Ĝ.

Proof. If [F (ζ) : F ] < p−1, then Gal(F (ζ)/F ) ' Rn for some n ∈ N\{1} dividing p−1.

Suppose on the contrary that there exists χ ∈ Ĝ such that vL(ζ)((a | χ)) 6= 0. In view of

Lemma 5.1.8, replacing χ by χ−1 if necessary, we may assume that vL(ζ)((a | χ)) > 0. We

also know that χ 6= 1. For each k ∈ Rn, let ωk denote the element such that ωk(ζ) = ζk

and set ω̃k := idL × ωk. Observe that from (5.1.5), we have

(a | χk) =
∑

s∈h(ΩF )

a(s)χ(s)−k = ω̃k

 ∑
s∈h(ΩF )

a(s)χ(s)−1

 = ω̃k((a | χ)).

This implies that (a | χ) and (a | χk) are Galois conjugates in L(ζ)/F , and hence have

the same valuation in L(ζ). In particular, we have vL(ζ)((a | χk)) > 0 for all k ∈ Rn.

Next, let ϕ ∈ F̂×p be any character of order n. For each s ∈ h(ΩF ), let js ∈ Fp denote

the element such that χ−1(s) = ζjs and consider the sum

S :=
∑

s∈h(ΩF )

a(s)
n−1∑
l=1

G(ϕl, js).

Below, we will compute the valuation of S to obtain a contradiction.
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Notice that by Lemma 5.1.6, there exists r ∈ Z+ such that Gal(L/F )0 ' (Z/pZ)r.

Moreover, set e := e(F/Qp) and d := e(F (ζ)/F ). We summarize the set-up in the diagram

below, where the numbers indicate ramification indices.

F

F (ζ)

L

L(ζ)

L := F h

vL(AL/F ) = 1− pr

Qp

Qp(ζ)

ed
p−1

e

p− 1

d

pr

d

pr

Rn

First of all, for each l = 1, 2, . . . , n − 1, we have ϕl 6= 1 because ϕ has order n 6= 1.

If js = 0, then G(ϕl, js) = 0 by Lemma 5.1.2 (a). If js 6= 0, then using Proposition 5.1.3

and the fact that vL(AL/F ) = 1− pr, we deduce that

vL(ζ)(a(s)G(ϕl, js)) ≥ d(1− pr) +
ed

p− 1
· pr · p− 1

n

= dpr
( e
n
− 1
)

+ d. (5.1.6)

Since d ≤ |Rn| = (p− 1)/n and ed ≥ p− 1 by the multiplicativity of ramification indices,

we see that e ≥ n and so (5.1.6) is positive. We then deduce that vL(ζ)(S) > 0.

Next, let H be the subgroup of h(ΩF ) consisting of the elements s for which js = 0.

Since G(ϕl, 0) = 0 for l = 1, 2, . . . , n− 1, using Proposition 5.1.4, we may rewrite

S =
∑

s∈h(ΩF )

a(s)

(
1 + n

∑
k∈Rn

ζjsk

)
−
∑
s∈H

a(s)

(
1 + n

∑
k∈Rn

ζ(0)k

)
.
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Using (5.1.5) and the fact that χ−1(s) = ζjs for each s ∈ h(ΩF ), the above simplifies to

S = Tr(a) + n
∑
k∈Rn

(a | χk)− p
∑
s∈H

a(s).

Recall that vF (Tr(a)) = 0 from Lemma 5.1.8. Since vL(ζ)(S) > 0 and vL(ζ)((a | χk)) > 0

for all k ∈ Rn, we deduce that

vL

(
p
∑
s∈H

a(s)

)
= 0.

But this in turn implies that

0 ≥ vL(p) + vL(AL/F ) = epr + (1− pr) = pr(e− 1) + 1,

which is impossible because e ≥ 1. Hence, we must have (a | χ) ∈ O×F c for all χ ∈ Ĝ.

We are now ready to prove Proposition 5.1.7.

Proof. Let a ∈ Map(G,F c) be as in (5.1.4). We already know that Ah = OFG · a, and so

it remains to show that (5.1.3) also holds. If p = 2, then (a | χ) = (a | χ−1) for all χ ∈ Ĝ

because of (5.1.5). We then see from Lemma 5.1.8 that (5.1.3) indeed holds. If p is odd,

then either [F (ζ) : F ] = p − 1, which is even, or [F (ζ) : F ] < p − 1. We then see from

Propositions 5.1.9 and 5.1.10 that (5.1.3) holds in this case as well.

The next theorem is the key to the proof of Theorem 5.2.8.

Theorem 5.1.11 Let h ∈ Hom(ΩF , G) be wildly and weakly ramified. If Ah = OFG · a,

then

(a | χ) ∈ O×F c for all χ ∈ Ĝ.

Proof. By Proposition 4.1.2, there exists a factorization h = hnrhtot of h, with respect

to some chosen uniformizer in F say. Moreover, the extension F htot/F is also wildly and
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weakly ramified by Proposition 3.2.3 (a) and (b).

Now, there exists anr ∈ Ohnr such that Ohnr = OFG · anr and rG(anr) ∈ (OF cG)× by

Proposition 2.3.7 (b). In particular, we have

(anr | χ) ∈ O×F c for all χ ∈ Ĝ. (5.1.7)

On the other hand, there exists atot ∈ Ahtot such that Ahtot = OFG · atot and

(atot | χ) ∈ O×F c for all χ ∈ Ĝ (5.1.8)

by Proposition 5.1.7. Applying Proposition 3.2.3 (c), we then obtain an element a′ ∈ Ah

such that Ah = OFG · a′ and rG(a′) = rG(anr)rG(atot). Since Ah = OFG · a also, we have

a = β · a′ for some β ∈ (OFG)×. In particular, we have

(a | χ) = β(χ)(anr | χ)(atot | χ) for all χ ∈ Ĝ.

Clearly β(χ) ∈ O×F c for all Ĝ. It then follows from (5.1.7) and (5.1.8) that (a | χ) ∈ O×F c

for all χ ∈ Ĝ as well. This proves the theorem.

5.2 Decomposition of Local Wild Resolvends II

Let F be a finite extension of Qp. We will assume that G is abelian and of odd order

in this section. We will compute the reduced resolvends rG(a) for which Ah = OFG · a,

where h ∈ Hom(ΩF , G) is any wildly and weakly ramified homomorphism. It will be help-

ful to recall the notation set up in Definitions 5.0.3 and 5.0.4.

First of all, by modifying the proof of Proposition 4.5.2, we will prove the following

analogous result (recall (2.5.2)).
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Proposition 5.2.1 Let h ∈ Hom(ΩF , G) be wildly and weakly ramified such that F h/F

has degree p. Then, there exists a ∈ Fh such that Fh = FG · a and

(1) rG(a) = Θt
∗(g) for some g ∈ Λ(FG)×;

(2) (a | χ) ∈ O×F c for all χ ∈ Ĝ.

The proof of Proposition 5.2.1 will take up most of the rest of this section. In what

follows, let h ∈ Hom(ΩF , G) be as in Proposition 5.2.1. To simplify notation, set L := F h

and let ζ := ζp be the chosen primitive p-root of unity in F c. Since G has odd order, the

hypothesis that F h/F has degree p implies that p is odd. In addition, let α′ ∈ AL/F be

such that AL/F = OFGal(L/F ) · α′; such an element α′ exists by Lemma 5.1.6 (c).

Next, notice that Gal(F (ζ)/F ) ' Rn for some n ∈ N dividing p− 1 and let d denote

the image of (p− 1)/n in Fp. Moreover, there is a canonical isomorphism

Gal(L(ζ)/F ) ' Gal(L/F )×Gal(F (ζ)/F )

because [L : F ] and [F (ζ) : F ] are coprime. We will fix a generator τ of Gal(L/F ) and let

τ̃ ∈ Gal(L(ζ)/F (ζ)) be the element which is identified with τ . We summarize the set-up

in the following diagram, where the numbers indicate the degrees of the extensions.

F

F (ζ)

L

L(ζ)

L := F h

AL/F = OFGal(L/F ) · α′

Qp (p is odd)

d := (p− 1)/n (mod p)

p−1
n

p

p−1
n

p

Rn〈τ〉

〈τ̃〉
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Definition 5.2.2 For each i ∈ Fp, define

yi :=
∑
k∈Fp

τ k(α′)ζ−ik.

First, we will give some basic properties of these elements yi ∈ L(ζ).

Lemma 5.2.3 For all i ∈ Fp, we have

(1) yi ∈ O×L(ζ); and

(2) τ̃(yi) = ζ iyi; and

(3) ypi ∈ F (ζ).

Proof. The map a′ ∈ Map(G,F c) defined by

a′(s) :=


ω(α′) if s = h(ω) for ω ∈ ΩF

0 otherwise

is clearly well-defined and it satisfies Ah = OFG · a′ (cf. (5.1.4)). Let ωτ be a lift of τ in

ΩF and set t := h(ωτ ). Note that t has order p. If χ ∈ Ĝ is such that χ(t) = ζ i, then

(a′ | χ) =
∑

s∈h(ΩF )

a′(s)χ(s)−1 =
∑
k∈Fp

τ k(α′)χ(t)−k

(cf. (5.1.5)), which is equal to yi. We then deduce from Theorem 5.1.11 that (a) holds. As

for (b), it follows from a simple calculation. Using (b), we further deduce that

NL(ζ)/F (ζ)(yi) =
∏
k∈Fp

τ̃ k(yi) =
∏
k∈Fp

ζ ikyi = ypi .

Thus, indeed ypi ∈ F (ζ)×, and this proves the lemma.
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Next, consider the element (cf. (4.5.1))

α :=
1

p

∑
k∈Fp

∏
i∈Rn

y
c(i−1k)
i

 =
1

p

(
1 +

∏
i∈Rn

y
c(i−1)
i + · · ·+

∏
i∈Rn

y
c(i−1(p−1))
i

)
.

We will show that the element a ∈ Map(G,F c) defined by

a(s) :=


ω(α) if s = h(ω) for ω ∈ ΩF

0 otherwise

(5.2.1)

is well-defined and that it satisfies the conclusion of Proposition 5.2.1.

Definition 5.2.4 For each i ∈ Rn, define

ωi ∈ Gal(L(ζ)/L); ωi(ζ) := ζ i

(cf. Definition 4.5.5 and note that our notation here is different). Clearly, we have

ωi(yj) = yij for all j ∈ Fp. (5.2.2)

First of all, we will show that α ∈ L (cf. Lemma 4.5.7) and then compute the Galois

conjugates of α in L/F (cf. Proposition 4.5.10).

Lemma 5.2.5 We have α ∈ L.

Proof. By definition, we have yi ∈ L(ζ) for all i ∈ Fp. So, clearly α ∈ L(ζ) and we have

α ∈ L if and only if α is fixed by the action of Gal(L(ζ)/L). Now, notice that an element

in Gal(L(ζ)/L) is equal to ωj for some j ∈ Rn. For each k ∈ Fp, we have

ωj

(∏
i∈Rn

y
c(i−1k)
i

)
=
∏
i∈Rn

y
c(i−1k)
ij =

∏
i∈Rn

y
c(i−1jk)
i
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by (5.2.2). This implies that ωj permutes the summands

1,
∏
i∈Rn

y
c(i−1)
i , . . . ,

∏
i∈Rn

y
c(i−1(p−1))
i

in the definition of α and hence fixes α. Thus, indeed α ∈ L.

Proposition 5.2.6 For all j, k ∈ Fp, we have

τ̃ j

(∏
i∈Rn

y
c(i−1k)
i

)
= ζjkd ·

∏
i∈Rn

y
c(i−1k)
i .

In particular, this implies that for all j ∈ Fp, we have

τ j(α) =
1

p

∑
k∈Fp

(
ζjkd

∏
i∈Rn

y
c(i−1k)
i

)
.

Proof. Let j, k ∈ Fp be given. Since Gal(L(ζ)/F ) is abelian, for any i ∈ Rn, we have

τ̃ j(yi) = (τ̃ j ◦ ωi)(y1)

= (ωi ◦ τ̃ j)(y1)

= ωi(ζ
jy1)

= ζ ijyi.

by (5.2.2) and Lemma 5.2.3 (2). We then see that

τ̃ j

(∏
i∈Rn

y
c(i−1k)
i

)
=
∏
i∈Rn

ζ ijc(i
−1k)y

c(i−1k)
i

=
∏
i∈Rn

ζjky
c(i−1k)
i

= ζjk(p−1)/n ·
∏
i∈Rn

y
c(i−1k)
i .

Since d := (p− 1)/n (mod p), the proposition now follows.
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Next, we will define the desired element g ∈ Λ(FG)× (cf. Lemma 4.5.11). Below, we

will fix a lift ωτ of τ in ΩF and set t := h(ωτ ). Notice that t has order p. It will also be

helpful to recall Definition 2.5.3.

Lemma 5.2.7 The map g ∈ Map(G(−1), (F c)×) given by

g(s) :=


ypi if s = td

−1i−1
for i ∈ Rn

1 otherwise

is well-defined and preserves ΩF -actions. In particular, we have g ∈ Λ(FG)×.

Proof. Clearly g is well-defined since t has order p. To show that g preserves ΩF -actions,

let ω ∈ ΩF and s ∈ G(−1) be given.

If s = td
−1i−1

for some i ∈ Rn, then s has order p and ω ·s is determined by the action

of ω on ζ. Let j ∈ Rn be such that ω|F (ζ) = ωj|F (ζ). Then, we have ω−1(ζ) = ζj
−1

, which

in turn gives ω · s = sj
−1

= td
−1(ij)−1

. Recall further that ypi ∈ F (ζ) by Lemma 5.2.3 (3)

and that yij = ωj(yi) by (5.2.2). It follows that

g(ω · s) = ypij = ωj(y
p
i ) = ω(g(s)).

Now, if ω · s = td
−1i−1

for some i ∈ Rn, then the above implies s = ω−1 · (ω · s) = td
−1(ij)−1

for some j ∈ Rn as well. Hence, if s 6= td
−1i−1

for all i ∈ Rn, then the same holds for ω · s.

In this case, we have

g(ω · s) = 1 = ω(1) = ω(g(s)).

Hence, indeed g preserves ΩF -actions, and so g ∈ Λ(FG)× by definition.

We are now ready to prove Proposition 5.2.1.

Proof. Let a ∈ Map(G,F c) be as in (5.2.1) and let g ∈ Λ(FG)× be as in Lemma 5.2.7.

Since α ∈ L by Lemma 5.2.5 and L = F h, clearly a is well-defined and a ∈ Fh.
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First of all, we will use the identification H(FG) = HomΩF (SĜ, (F
c)×) in (2.4.12) to

show that rG(a) = Θt
∗(g). So, let χ ∈ Ĝ be given and let k ∈ Fp be such that χ(t) = ζk.

By Definitions 2.5.1 and 4.5.4, we have 〈χ, td−1i−1〉∗ = c(d−1i−1k)/p for all i ∈ Rn, and so

Θt
∗(g)(χ) = g

(∑
i∈Rn

〈χ, td−1i−1〉∗td
−1i−1

)
=
∏
i∈Rn

y
c(d−1i−1k)
i .

On the other hand, by the definition of a, we have

rG(a)(χ) =
∑
j∈Fp

τ j(α)(χ(t)j)−1 =
∑
j∈Fp

τ j(α)ζ−jk.

Then, using Proposition 5.2.6, we obtain

rG(a)(χ) =
1

p

∑
j∈Fp

∑
l∈Fp

(
ζjld

∏
i∈Rn

y
c(i−1l)
i

)
ζ−jk

=
1

p

∑
l∈Fp

∏
i∈Rn

y
c(i−1l)
i

∑
j∈Fp

ζj(dl−k)


=
∏
i∈Rn

y
c(i−1d−1k)
i .

So, indeed rG(a) = Θt
∗(g). Since yi ∈ O×L(ζ) for all i ∈ Fp by Lemma 5.2.3 (1), the above

computation also shows that (a | χ) ∈ O×L(ζ) for all χ ∈ Ĝ and that Fh = FG ·a by Prop-

osition 2.3.7 (a). Hence, the map a in (5.2.1) satisfies all of the desired properties.

The next theorem is analogous to Theorem 4.5.12.

Theorem 5.2.8 Let h ∈ Hom(ΩF , G) be wildly and weakly ramified. If Ah = OFG · a,

then there exists β ∈M(FG)× such that

rG(a) = rag(β)uΘt
∗(g)

for some u ∈ H(OFG) and g ∈ Λ(FG)×.
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Proof. By Proposition 4.1.2, there exists a factorization h = hnrhtot of h, with respect to

some chosen uniformizer of F say. From Proposition 3.2.3 (a) and (b), we know that htot

is also wildly and weakly ramified. Because F htot/F is totally ramified, Lemma 5.1.6 (a)

implies that Gal(F htot/F ) is elementary p-abelian.

Since htot(ΩF ) ' Gal(F htot/F ), we have

htot(ΩF ) = H1 ×H2 × · · · ×Hr (5.2.3)

for subgroups H1, H2, . . . , Hr each of order p. For each i = 1, 2, . . . , r, define

hi ∈ Hom(ΩF , G); hi(ω) := πi(h
tot(ω)),

where πi : htot(ΩF ) −→ Hi is the projection map given by (5.2.3). By definition, we have

htot = h1h2 · · ·hr. For each i = 1, 2, . . . , r, it is clear that F hi ⊂ F htot and [F hi : F ] = p.

Hence, Proposition 5.2.1 applies and there exists ai ∈ Fhi with Fhi = FG · ai such that

rG(ai) = Θt
∗(gi) for some gi ∈ Λ(FG)×

and (ai | χ) ∈ O×F c for all χ ∈ Ĝ. On the other hand, by Proposition 2.3.7 (b) and (2.4.4),

there exists anr ∈ Ohnr such that Ohnr = OFG · anr and

rG(anr) = u for some u ∈ H(OFG).

Let a′ ∈ Map(G,F c) be such that rG(a′) = rG(anr)rG(a1) · · · rG(ar); such an element a′

exists because rG is bijective. We have that a′ ∈ Fh by (2.3.3) and that Fh = FG · a′ by

Proposition 2.3.7 (a). But Fh = FG · a also, so a = β · a′ for some β ∈ (FG)×. It follows

that

rG(a) = rag(β)rG(a′) = rag(β)uΘt
∗(g),
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where g := g1g2 · · · gr ∈ Λ(FG)×. It remains to show that β ∈M(FG)×.

To that end, notice thatM(FG)× = MapΩF
(Ĝ,O×F c) via the identification in (2.4.8).

Moreover, for any χ ∈ Ĝ, we have

(a | χ) = β(χ)(anr | χ)(a1 | χ) · · · (ar | χ).

It is clear that (anr | χ) ∈ O×F c because rG(anr) ∈ (OF cG)×. We also have (a | χ) ∈ O×F c

by Theorem 5.1.11 and (a1 | χ), . . . , (ar | χ) ∈ O×F c by choice. It follows that β(χ) ∈ O×F c

and so indeed β ∈M(FG)×.

5.3 Proof of Theorem 1.2.8

Theorem 1.2.8 Let K be a number field and let G be a finite abelian group of odd order.

Then, we have Ψ(A(OKG)) = Ψ(At(OKG)).

Proof. Let h ∈ H1
w(ΩK , G) be given, with Kh = KG·b say. For each v ∈MK , let av ∈ Ahv

and cv ∈ (KvG)× be as in (3.1.1) and (3.1.3), respectively. As explained in Section 3.1,

we have c := (cv) ∈ J(KG) and cl(Ah) = j(c). We want to show that Ψ(j(c)) = Ψ(j(c′))

for some c′ ∈ J(KG) with j(c′) ∈ At(OKG).

Notice that for each v ∈MK , there exists βv ∈M(KvG)× such that

rag(βv)rG(av) ∈ H(OKvG)Θt
∗(Λ(KvG)×). (5.3.1)

Indeed, if hv is tame, then we may take βv = 1 by Theorem 4.2.3. If hv is wild, then such

a βv exists by Theorem 5.2.8. Let β := (βv) ∈ U(M(KG)) and define c′ := βc ∈ J(KG).

Observe that

ker(Ψ) = j(∂((KG)×)U(M(KG)))
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by Theorem 2.1.7 and so Ψ(j(c)) = Ψ(j(c′)). Moreover, for each v ∈MK , we have

rag(c′v) = rag(βv)rag(c) = rG(b)−1(rag(βv)rG(av))

from equation (3.1.5). Since rG(b) ∈ H(KG) by (2.4.3), we deduce from (5.3.1) that

rag(c′) ∈ η(H(KG))U(H(OKG))Θt
∗(J(Λ(KG))).

It then follows from (4.4.6) that j(c′) ∈ At(OKG), and this proves the theorem.
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Chapter 6

Commutativity of the Basic Diagram

Recall from Section 1.6 that K/k is a fixed Galois subextension of K and Σ := Gal(K/k).

Throughout this chapter, we will assume that G is abelian and fix a left Σ-module struc-

ture onG. Via the quotient map Gal(Kt/k) −→ Σ, this induces a natural left Gal(Kt/k)-

action on G. Via the natural action of Gal(Kt/k) on Kt, this extends to a left Gal(Kt/k)-

action on KtG. In view of Remark 2.3.5, we will identify Hom(Ωt
K , G) with the subgroup

of Hom(ΩK , G) consisting of the tame homomorphisms.

The goal of this chapter is to explain the construction of the basic diagram

H1(Gal(Kt/k), G) Hom(Ωt
K , G)Σ H2(Σ, G)

Cl(OKG)Σ H2(Σ, (OKG)×)

res tr

gal i∗

ξ

(6.0.1)

that we had in (1.4.1) (cf. Remark 1.4.2), where the top row is exact and all of the maps

except possibly gal (recall (1.1.1)) are homomorphisms. Here

i∗ : H2(Σ, G) −→ H2(Σ, (OKG)×) (6.0.2)
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denotes the homomorphism induced by the natural inclusion map G −→ (OKG)×. Then,

assuming that G has odd order, we will show that (6.0.1) still makes sense and commutes

when gal is replaced by galA (recall (1.2.2)). Essentially the same proof will also recover

the already known fact that (6.0.1) commutes, in which case the assumption that G has

odd order is not required.

Definition 6.0.2 For each γ ∈ Σ, we choose once and for all a lift γ of γ in Gal(Kt/k)

with 1 = 1

6.1 The Top Row: Hochschild-Serre Sequence

Recall that Ωt
K acts trivially on G on the left. From the Hochschild-Serre spectral se-

quence (see [21, Chapter I Section 2.6], for example) associated to the group extension

1 Ωt
K Gal(Kt/k) Σ 1,

we then obtain an exact sequence

H1(Gal(Kt/k), G) Hom(Ωt
K , G)Σ H2(Σ, G).res tr (6.1.1)

Here res is given by restriction and tr is the transgression map. We remark that (6.1.1)

is also part of the five-term inflation-restriction exact sequence in group cohomology (see

[17, Proposition 1.6.7], for example). Below, we will recall the definitions of the Σ-action

on Hom(Ωt
K , G) and the map tr in this particular setting.

Definition 6.1.1 The Σ-action on Hom(Ωt
K , G) is defined by

(h · γ)(ω) := γ−1 · h(γωγ−1) for all ω ∈ Ωt
K
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for h ∈ Hom(Ωt
K , G) and γ ∈ Σ. This definition is independent of the choice of the lift γ

because G is abelian. Next, define c : Σ × Σ −→ Ωt
K by setting c(γ, δ) := (γ)(δ)(γδ)−1.

The transgression map tr : Hom(Ωt
K , G)Σ −→ H2(Σ, G) (see [17, Proposition 1.6.6], for

example) is defined by

tr(h) := [h ◦ c],

where [−] denotes the cohomology class. This definition is also independent of the choice

of the lifts γ for γ ∈ Σ.

Next, we explain how the exact sequence (6.1.1) is related to the study of embedding

problems. To that end, first observe that each group extension

EΓ : 1 G Γ Σ 1ι

of Σ by G induces a left Σ-module structure on G via conjugation in Γ as follows. For

each γ ∈ Σ, choose a lift σ(γ) of γ in Γ. Then, for s ∈ G, we have

γ ∗ s = ι−1(σ(γ)ι(s)σ(γ)−1). (6.1.2)

This definition does not depend upon the choice of the lift σ(γ) because G is abelian. In

addition, define a map cEΓ
: Σ× Σ −→ G by

cEΓ
(γ, δ) := ι−1(σ(γ)σ(δ)σ(γδ)−1). (6.1.3)

Let E(K/k,G) denote the set of all equivalence classes of the group extensions of Σ by G

for which the induced left Σ-module structure on G coincides with the one that we have

fixed. It is well-known (see [17, Theorem 1.2.4] or [24, Theorem 6.6.3], for example) that

the map EΓ 7→ cEΓ
induces a bijection between E(K/k,G) and the group H2(Σ, G), and

93



Commutativity of the Basic Diagram Chapter 6

the map cEΓ
represents the trivial cohomology class if and only if EΓ splits.

Proposition 6.1.2 Let h ∈ Hom(Ωt
K , G)Σ be surjective. Then, the field L := (Kt)ker(h)

is a tame solution to the embedding problem (K/k,G,Eh) for some group extension Eh

of Σ by G whose equivalence class corresponds to tr(h).

Proof. First, we will show that L/k is Galois by showing that Gal(Kt/L), which is equal

to ker(h), is normal in Gal(Kt/k). So, let ωk ∈ Gal(Kt/k) be given and write ωk = γω0

for some γ ∈ Σ and ω0 ∈ Ωt
K . For any ω ∈ ker(h), we have

h(ωkωω
−1
k ) = h(γω0ωω

−1
0 γ−1)

= γ · (h · γ)(ω0ωω
−1
0 )

= γ · (h(ω0)h(ω)h(ω0)−1),

where the last equality follows because h is Σ-invariant and is a homomorphism on Ωt
K .

Since ω ∈ ker(h), we then deduce that h(ωkωω
−1
k ) = 1 and hence ωkωω

−1
k ∈ ker(h). This

shows that ker(h) is normal in Gal(Kt/k) and so L/k is Galois.

Next, note that since h is surjective, it induces an isomorphism h : Gal(L/K) −→ G.

Let Γh := Gal(L/k) and let ι : G −→ Gal(L/K) −→ Γh denote the homomorphism h
−1

followed by the natural inclusion Gal(L/K) −→ Gal(L/k). Then, the diagram

1 1

1 1

Gal(L/K) Gal(L/k) Gal(K/k)

G Γh Σ
ι

h

clearly commutes. Notice that L/K is clearly tame since L is contained in Kt. It follows

that L/K is a tame solution to the embedding problem (K/k,G,Eh), where Eh denotes

the group extension of Σ by G in the bottom row in the above diagram.
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Finally, for each γ ∈ Σ, choose σ(γ) := γ|L to be a lift of γ in Γh. The left Σ-module

structure on G via conjugation in Γh is then given as follows. Given any s ∈ G, since h

is surjective, we have h(ω) = s for some ω ∈ Ωt
K . Then, we have

γ ∗ s = ι−1(σ(γ)ι(s)σ(γ)−1),

= h((γ|L)(ω|L)(γ|L)−1)

= h(γωγ−1)

= γ · s,

where the last equality follows because h is Σ-invariant. This shows that the equivalence

class of Eh lies in E(K/k,G). Also, the map cEh : Σ× Σ −→ G in (6.1.3) is given by

cEh(γ, δ) = ι−1(σ(γ)σ(δ)σ(γδ)−1)

= h((γ|L)(δ|L)(γδ|L)−1)

= (h ◦ c)(γ, δ),

and so the equivalence class of Eh corresponds to tr(h). This proves the proposition.

6.2 The Bottom Row: Fröhlich-Wall Sequence

Notice that OKG equipped with the natural left Σ-action, namely that induced by

the given left Σ-action on G and OK (recall that Σ := Gal(K/k)), is a Σ-ring. That is, for

all γ ∈ Σ and β, β′ ∈ OKG, we have γ ·(β+β′) = γ ·β+γ ·β′ and γ ·(ββ′) = (γ ·β)(γ ·β′).

We obtain a homomorphism

ξ : Cl(OKG)Σ −→ H2(Σ, (OKG)×)
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from the Fröhlich-Wall sequence associated to OKG (see [3, Section 1], for example). We

will recall the definitions of the Σ-action on Cl(OKG) and the map ξ in the subsequent

subsections.

6.2.1 The Left Σ-Action on Cl(OKG)

Definition 6.2.1 Let X and X ′ be OKG-modules. A group isomorphism ϕ : X −→ X ′

is called a semilinear isomorphism if there exists a γ ∈ Σ such that

ϕ(β · x) = (γ · β) · ϕ(x) for all β ∈ OKG and x ∈ X.

Moreover, any such γ ∈ Σ is called a grading of ϕ.

Definition 6.2.2 Let [X] ∈ Cl(OKG). Given γ ∈ Σ, define γ · [X] := [Y ] if there exists

a semilinear isomorphism ϕ : X −→ Y having γ as a grading. Clearly the isomorphism

class [Y ] of Y (recall Remark 2.1.2) is uniquely determined by that of X. Moreover, note

that such a Y always exists, as we may take Y := Xγ to be the abelian group X equipped

with the structure

β ∗ x := (γ−1 · β) · x for all β ∈ (OKG)× and x ∈ Xγ (6.2.1)

as an OKG-module and take ϕ = idX to be the identity on X.

It is clear that Definition 6.2.2 defines a left Σ-action on the group Cl(OKG). Below,

we will verify that Cl(OKG) is in fact a left Σ-module under this action and so Cl(OKG)Σ

is a subgroup of Cl(OKG).

Proposition 6.2.3 Let [X], [X ′] ∈ Cl(OKG). For all γ ∈ Σ, we have

γ · ([X][X ′]) = (γ · [X])(γ · [X ′]).
96



Commutativity of the Basic Diagram Chapter 6

Proof. Let [X ′′] ∈ Cl(OKG) be such that [X ′′] = [X][X ′]. By Definition 2.1.4, this means

that there exists an isomorphism

ϕ : X ⊕X ′ −→ OKG⊕X ′′

of OKG-modules. Let Xγ denote the abelian group X equipped with the OKG-structure

defined as in (6.2.1), and similarly for X ′γ and X ′′γ . Let ϕγ : OKG −→ OKG denote the

bijective map given by β 7→ γ · β. Then, the map

(ϕγ ⊕ idX′′) ◦ ϕ : Xγ ⊕X ′γ −→ OKG⊕X ′′γ

is an isomorphism of OKG-modules and so [X ′′γ ] = [Xγ][X
′
γ], as desired.

The next proposition ensures that diagram (1.4.2) is well-defined.

Proposition 6.2.4 Let h ∈ Hom(Ωt
K , G)Σ be such that Ah exists. For all γ ∈ Σ, the map

ϕγ : rG(Ah) −→ rG(Ah); ϕγ(rG(a)) := γ · rG(a) (6.2.2)

is well-defined and is a semilinear isomorphism having γ as a grading. In particular, we

have γ · [Ah] = [Ah] and so galA(Hom(Ωt
K , G)Σ) ⊂ Cl(OKG)Σ when G has odd order.

Proof. First, we will check that ϕγ(rG(Ah)) ⊂ rG(Ah) so that ϕγ is well-defined. To that

end, let a ∈ Ah be given and let a′ ∈ Map(G,Kc) be such that γ · rG(a) = rG(a′), which

exists since rG is bijective. We will use (2.3.3) to check that a′ ∈ Kh. So let ω ∈ Ωt
K be

given. Since a ∈ Kh, we have γ−1ωγ · rG(a) = rG(a)h(γ−1ωγ) and so

ω · rG(a′) = γ · (γ−1ωγ · rG(a)) = rG(a′)(h · γ−1)(ω).

Since h is Σ-invariant, we then see that ω · rG(a′) = rG(a′)h(ω) and so a′ ∈ Kh. To show
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that in fact a′ ∈ Ah, observe that Kh/k is Galois because h is Σ-invariant (cf. the proof

of Proposition 6.1.2). Let DKh/k denote the different ideal of Kh/k. Similarly for DKh/K

and DK/k. Then, we have DKh/k = DKh/KDK/k. But notice that γ(DKh/k) = DKh/k and

γ(DK/k) = DK/k. It follows that γ(DKh/K) = DKh/K and so γ(AKh/K) = AKh/K as well.

Since a ∈ Ah, we deduce that a′ ∈ Ah and so ϕγ(rG(a)) ∈ rG(Ah). This shows that ϕγ is

well-defined.

Once we see that ϕγ is well-defined, it is now clear that ϕγ is a semilinear isomorphism

having γ as a grading. Since the resolvend map restricts to an isomorphism Ah ' rG(Ah)

of OKG-modules, we have [Ah] = [rG(Ah)] and the above shows that γ · [Ah] = [Ah].

Remark 6.2.5 Let h ∈ Hom(Ωt
K , G)Σ. Essentially the same argument as in the proof of

Proposition 6.2.4 shows that for all γ ∈ Σ, the map

ϕγ : rG(Oh) −→ rG(Oh); ϕγ(rG(a)) := γ · rG(a)

is well-defined and is a semilinear isomorphism having γ as a grading. In particular, we

have γ · [Oh] = [Oh] and so gal(Hom(Ωt
K , G)Σ) ⊂ Cl(OKG)Σ.

6.2.2 The Homomorphism ξ

Definition 6.2.6 Given an OKG-module X, define Sem(X) to be the group consisting

of all pairs of the form (ϕ, γ), where ϕ : X −→ X is a semilinear isomorphism having γ

as a grading, and the group operation is defined by (ϕ, γ)(ϕ′, γ′) := (ϕϕ′, γγ′). Moreover,

let Aut(X) denote the group of OKG-automorphisms on X. The map

gX : Sem(X) −→ Σ; gX(ϕ, γ) := γ

is then a homomorphism with ker(gX) = Aut(X).
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Now, consider an element [X] ∈ Cl(OKG)Σ. The fact that [X] is Σ-invariant means

that gX is surjective. Moreover, since X is locally free over OKG (of rank one), an OKG-

automorphism of X is of the form ψβ : x 7→ β · x for some β ∈ (OKG)×. Hence, we may

identify Aut(X) with (OKG)×. We then obtain a group extension

EX : 1 (OKG)× Sem(X) Σ 1
iX gX

of Σ by (OKG)×, where iX(β) := (ψβ, 1). Notice that this group extension induces a left

Σ-module structure on (OKG)× via conjugation in Sem(X) as follows (cf. (6.1.2)). For

each γ ∈ Σ, choose a lift (ϕγ, γ) of γ in Sem(Σ). Then, for β ∈ (OKG)×, we have

γ ∗ β = ι−1
X ((ϕγ, γ)(ψβ, 1)(ϕ−1

γ , γ−1)) = ι−1
X ((ϕγψβϕ

−1
γ , 1)). (6.2.3)

But for any x ∈ (OKG)×, we have (ϕγψβϕ
−1
γ )(x) = ϕγ(β ·ϕ−1

γ (x)) = (γ · β) · x. It follows

that ϕγψβϕ
−1
γ = ψγ·β and so γ ∗ β = γ · β. In other words, the left Σ-module structure

on (OKG)× given by (6.2.3) coincides with the existing one.

Hence, analogously to the bijective correspondence between E(K/k,G) and H2(Σ, G)

described in Section 6.1, the group extension EX also defines a class in H2(Σ, (OKG)×).

In particular, it is represented by the 2-cocycle dX : Σ × Σ −→ (OKG)× determined by

the equations (cf. (6.1.3))

dX(γ, δ) · x = (ϕγϕδϕ
−1
γδ )(x) for all x ∈ X. (6.2.4)

Definition 6.2.7 Define ξ : Cl(OKG)Σ −→ H2(Σ, (OKG)×) by setting ξ([X]) := [dX ],

where [−] denotes the cohomology class. It is not hard to see that this definition depends

only on the isomorphism class [X] of X (recall Remark 2.1.2).
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Proposition 6.2.8 The map ξ is a homomorphism.

Proof. Let [X], [X ′] ∈ Cl(OKG)Σ be given and let X ′′ := X⊗OKGX ′. Since G is abelian,

[7, Theorem 55.16] implies that X ′′ is locally free over OKG (of rank one). Moreover, we

have [X][X ′] = [X ′′] (cf. the proof of [7, Theorem 55.26]).

For each γ ∈ Σ, let ϕγ and ϕ′γ be semilinear automorphisms on X and X ′, respectively,

having γ as a grading. Then, clearly ϕ′′γ := ϕγ ⊗ϕ′γ is a semilinear automorphism on X ′′

having γ as a grading. Let dX be defined as in (6.2.4). Similarly for dX′ and dX′′ . Then,

for all γ, δ ∈ Σ, x ∈ X, and x′ ∈ X ′, we have

dX′′(γ, δ) · (x⊗ x′) = (ϕ′′γϕ
′′
δϕ
′′−1
γδ )(x⊗ x′)

= (ϕγϕδϕ
−1
γδ )(x)⊗ (ϕ′γϕ

′
δϕ
′−1
γδ )(x′)

= (dX(γ, δ) · x)⊗ (dX′(γ, δ) · x′)

= (dX(γ, δ)dX′(γ, δ)) · (x⊗ x′).

This shows that dX′′ = dXdX′ and so ξ([X ′′]) = ξ([X])ξ([X ′]), as desired.

6.3 Proof of Theorem 1.4.4

Theorem 1.4.4 Let K/k be a Galois extension of number fields and set Σ := Gal(K/k).

Let G be a finite abelian group of odd order equipped with a fixed left Σ-module structure.

Then, there is a commutative diagram

H1(Gal(Kt/k), G) Hom(Ωt
K , G)Σ H2(Σ, G)

Cl(OKG)Σ H2(Σ, (OKG)×)

res tr

galA i∗

ξ

,
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where the top row is exact and all of the maps except possibly galA are homomorphisms.

Proof. Notice that the diagram makes sense because galA(Hom(Ωt
K , G)Σ) ⊂ Cl(OKG)Σ

by Proposition 6.2.4. We already know that the top row is exact. The maps res, tr, and i∗

are also clearly homomorphisms, and ξ is a homomorphism by Proposition 6.2.8. Thus,

it remains to verify the equality i∗ ◦ tr = ξ ◦ galA.

To that end, let h ∈ Hom(Ωt
K , G)Σ be given. By Definition 6.1.1, the class (i∗ ◦ tr)(h)

is represented by the 2-cocycle d : Σ× Σ −→ (OKG)× defined by

d(γ, δ) := h((γ)(δ)(γδ)−1).

Next, let X := rG(Ah). Note that X ' Ah as OKG-modules and so galA(h) = [X]. For

each γ ∈ Σ, let ϕγ : X −→ X be defined as in (6.2.2), which is a semilinear isomorphism

having γ as a grading by Proposition 6.2.4. By Definition 6.2.7, the class (ξ ◦ galA)(h) is

then represented by the 2-cocycle dX : Σ× Σ −→ (OKG)× defined by the equations

dX(γ, δ) · x = ((γ)(δ)(γδ)−1) · x for all x ∈ X.

But (γ)(δ)(γδ)−1 ∈ Ωt
K . It then follows from (2.3.3) that

((γ)(δ)(γδ)−1) · x = h((γ)(δ)(γδ)−1)) · x for all x ∈ X.

This shows that dX = d, whence (i∗ ◦ tr)(h) = (ξ ◦ galA)(h), as desired.

Remark 6.3.2 Essentially the same proof as that of Theorem 1.4.4 (cf. Remark 6.2.5)

shows that (1.4.1) also makes sense, where the top row is exact and all of the maps except

possibly gal are homomorphims, and that (1.4.1) commutes (cf. Remark 1.4.2).
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Chapter 7

Characterization of the tame

Σ-A-Realizable Classes in Cl(OKG)

As in Chapter 6, recall that K/k is a fixed Galois subextension of K and Σ := Gal(K/k).

Throughout this chapter, we will assume that G is abelian and fix a left Σ-module struc-

ture of G. It will be helpful to recall from Remark 1.6.1 that we have chosen Kc = Qc = kc

as well as the same compatible set {ζn : n ∈ Z} of primitive roots of unity in Qc for both

k and K. We will also identify Hom(Ωt
K , G) with the subgroup of Hom(ΩK , G) consisting

of the tame homomorphisms (cf. Remark 2.3.5) as follows.

Definition 7.0.3 Let h ∈ Hom(Ωt
K , G). For ω ∈ ΩK , we will write h(ω) for h(ω|Kt). In

particular, we will sometimes regard h as a homomorphism ΩK −→ G.

Definition 7.0.4 Define Vk to be the set of primes in Mk which are ramified in K/k,

and define VK to be the set of primes in MK lying above the primes in Vk.

The goal of this chapter is to characterize, under the hypotheses of Theorem 1.4.5, the

tame Σ-A-realizable classes coming from the homomorphisms h ∈ Hom(Ωt
K , G)Σ

V (recall

(1.4.3)). We will do so by refining the characterization of At(OKG) given in (4.4.6). The
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crucial step is to make suitable choices for the embeddings iv : Qc −→ Kc
v and the uni-

formizers πv in Kv for v ∈MK . We will need the following notation (cf. Definition 6.0.2).

Definition 7.0.5 For each w ∈Mk, let iw : Qc −→ kcw be the chosen embedding extend-

ing the natural embedding k −→ kw. The prime vw ∈MK for which the vw-adic absolute

value on K is induced by iw is called the distinguished prime (in K) above w. Moreover,

for each v ∈ MK lying above w, choose an element γv ∈ Σ such that v = vw ◦ γ−1
v , and

choose γvw = 1. We choose once and for all a lift γv of γv in Ωk with γvw = 1.

7.1 Choices of Embeddings and Uniformizers

7.1.1 Choices of Embeddings

Definition 7.1.1 Given v ∈MK , let w ∈Mk be the prime lying below v and note that

the v-adic absolute value on K is induced by iw ◦ γv−1. Via restricting iw ◦ γv−1, we then

obtain an embedding K −→ kcw which extends to a continuous embedding Kv −→ kcw.

We will lift this to an isomorphism ε−1
v : Kc

v −→ kcw. We will then define iv : Qc −→ Kc
v

by setting iv := εv ◦ iw ◦ γv−1, which clearly extends the natural embedding K −→ Kv.

To summarize, for all v ∈ MK and w ∈ Mk such that w lies below v, the following

diagram commutes.

Kc
vw kcw Kc

v

Qc Qc Qc

γ̃v

εvw εv

ivw

γv

iw iv
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Here, we define γ̃v := εv ◦ ε−1
vw and notice that we have γ̃v = 1. Observe also that we have

the relation

iv = γ̃v ◦ ivw ◦ γv−1. (7.1.1)

Proposition 7.1.2 Let h ∈ Hom(Ωt
K , G)Σ. Then, for all v ∈MK and w ∈Mk such that

w lies below v, we have (recall Definition 7.0.3)

hv(γ̃v ◦ ω ◦ γ̃v−1) = γv · hvw(ω) for all ω ∈ ΩKvw .

Proof. Let v ∈MK and w ∈Mk be such that w lies below v. We have hv = h ◦ ĩv (recall

(1.6.1)) by definition. Using (7.1.1), we then deduce that

hv(γ̃v ◦ ω ◦ γ̃v−1) = h(i−1
v ◦ γ̃v ◦ ω ◦ γ̃v

−1 ◦ iv)

= h(γv ◦ i−1
vw ◦ ω ◦ ivw ◦ γv

−1)

= γv · (h · γv)(i−1
vw ◦ ω ◦ ivw)

= γv · hvw(ω),

where the last equality follows because h is Σ-invariant. This proves the claim.

7.1.2 Choices of Uniformizers and their Radicals

For each w ∈Mk, let πw be a chosen uniformizer in kw and let {π1/n
w : n ∈ Z+} denote

the chosen coherent set of radicals of πw in kcw (recall Section 4.1).

Definition 7.1.3 Given v ∈MK , let w ∈Mk be the prime lying below v. If v /∈ VK , we

will choose πv := εv(πw) to be the uniformizer in Kv, and π
1/n
v := εv(π

1/n
w ) for n ∈ Z+ to

the coherent radicals of πv in Kc
v. If v ∈ VK , then we will choose the uniformizer in Kv

and its radicals arbitrarily.
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Lemma 7.1.4 For all v ∈MK and w ∈Mk such that w lies below v, we have v /∈ VK if

and only if vw /∈ VK. In particular, we have π
1/n
v = γ̃v(π

1/n
vw ) for all n ∈ Z+ in this case.

Proof. Since K/k is Galois, clearly v /∈ VK if and only if vw /∈ VK . Since γ̃v = εv ◦ ε−1
vw , it

is also clear that π
1/n
v = εv(π

1/n
w ) = γ̃v(εvw(π

1/n
w )) = γ̃v(π

1/n
vw )) for all n ∈ Z+ in this case.

Next, observe that the choices made in Definitions 7.1.1 and 7.1.3 in turn determine

a distinguished topological generator σv = σKv of Gal(Kt
v/K

nr
v ) (recall (4.1.2)). In par-

ticular, because we chose {iv(ζn) : n ∈ Z+} to be the compatible set of primitive roots of

unity in Kc
v, we have

σv(π
1/n
v ) = iv(ζn)π1/n

v for (n, p) = 1, (7.1.2)

where p denotes the rational prime lying below v. As noted in Remark 4.1.3, by abuse of

notation, we will also use σv to denote some chosen lift of σv in ΩKv .

Proposition 7.1.5 Let h ∈ Hom(Ωt
K , G)Σ. Then, for all v ∈MK and w ∈Mk such that

w lies below v and v /∈ VK, we have

hv(σv) = γv · hvw(σvw)

provided that ζev is contained in k, where ev := |hv(σv)|.

Proof. Let v ∈MK and w ∈Mk be such that w lies below v and v /∈ VK . We already know

from Proposition 7.1.2 that hv(γ̃v ◦σvw ◦ γ̃v
−1) = γv ·hvw(σvw) (cf. Definition 7.0.3). Thus,

it suffices to show that hv(γ̃v ◦ σvw ◦ γ̃v
−1) = hv(σv), or equivalently, that γ̃v ◦ σvw ◦ γ̃v

−1

and σv have the same action on the fixed field L := Khv
v of ker(hv).

Let hv = hnrv h
tot
v be the factorization of hv with respect to σv (recall Definition 4.1.4).

Set Lnr := K
hnrv
v and Ltot := K

htotv
v . Clearly L ⊂ LnrLtot, and both γ̃v ◦ σvw ◦ γ̃v

−1 and σv
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act as the identity on Lnr because Lnr/Kv is unramified. We also have Ltot = Kv(π
1/ev
v )

by Proposition 4.2.2. Hence, it remains to show that

(γ̃v ◦ σvw ◦ γ̃v
−1)(π1/ev

v ) = σv(π
1/ev
v ).

But π
1/ev
v = γ̃v(π

1/ev
vw ) by Lemma 7.1.4 since v /∈ VK . Using (7.1.2), we then obtain

(γ̃v ◦ σvw ◦ γ̃v
−1)(π1/ev

v ) = γ̃v(ivw(ζev)π
1/ev
vw )

= (γ̃v ◦ ivw)(ζev)π
1/ev
v

= (γ̃v ◦ ivw ◦ γv−1)(ζev)π
1/ev
v

= iv(ζev)π
1/ev
v

= σv(π
1/ev
v ),

where γv
−1(ζev) = ζev because ζev ∈ k by hypothesis and iv = γ̃v ◦ ivw ◦ γv−1 by (7.1.1).

So, indeed γ̃v ◦ σvw ◦ γ̃v
−1 and σv have the same action on L. This proves the claim.

7.2 Embeddings of Groups of Ideles

In this section, assume that k contains all exp(G)-th roots of unity. In this case, we

have Λ(FG) = Map(G,F ) for F ∈ {k,K, kw, Kv}, where w ∈ Mk and v ∈ MK (recall

Definition 2.5.3 and (2.5.2); notice that their definitions do not require that G has odd

order). The isomorphisms εv for v ∈MK then induce the following embeddings of groups

of ideles. It will be helpful to recall Definitions 2.4.2 and 2.5.6.

Definition 7.2.1 Define ν : J(Λ(kG)) −→ J(Λ(KG)) by setting

ν(g)v := εv ◦ gw
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for each v ∈MK , where w ∈Mk is the prime lying below v.

Similarly, define µ : J(H(kG)) −→ J(H(KG)) by setting

µ((rG(a))v := rG(εv ◦ aw)

for each v ∈MK , where w ∈Mk is the prime lying below v and rG(a)w = rG(aw). Notice

that the definition of µ does not require that k contains all exp(G)-th roots of unity.

First, we will prove some basic properties concerning the map ν. To that end, recall

that the choices of uniformizers πw in kw for w ∈Mk determine a subset Fk of J(Λ(kG))

(recall Definitions 4.2.1 and 4.3.1; again their definitions do not require that G has odd

order). Similarly, the choices of uniformizers πv in Kv for v ∈MK made in Definition 7.1.3

determine a subset FK of J(Λ(KG)).

Proposition 7.2.2 Let f ∈ Fk and write fw = fkw,sw for each w ∈Mk. For all v ∈MK

and w ∈Mk such that w lies below v and v /∈ VK, we have ν(f)v = fKv ,sw . In particular,

if fw = 1 for all w ∈ Vk, then ν(f) ∈ FK.

Proof. Let v ∈ MK and w ∈ Mk be such that w lies below v and v /∈ VK . Also, let qv

and qw denote the orders of the residue fields of Kv and kw, respectively. The order of sw

divides qw−1 by definition and hence divides qv−1. Because v /∈ VK , we have πv = εv(πw)

by definition and it is clear that ν(f)v = fKv ,sw . We then see that ν(f)v ∈ FKv . If fw = 1

for all w ∈ Vk, then clearly ν(f)v = 1 lies in FKv for all v ∈ VK as well. We then deduce

that ν(f) ∈ FK in this case.

Proposition 7.2.3 Let f ∈ FK and write fv = fKv ,sv for each v ∈MK. If

(1) sv = 1 for all v ∈ VK; and

(2) sv = svw for all v ∈MK and w ∈Mk such that w lies below v,
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then we have f = ν(g) for some g ∈ J(Λ(kG)).

Proof. For each w ∈Mk, recall that Λ(kwG) = Map(G, kw) and define gw ∈ Λ(kwG)× by

gw(s) :=


πw if s = svw 6= 1

1 otherwise.

Note that g := (gw)w ∈ J(Λ(kG)) because f ∈ J(Λ(KG)) implies that sv = 1 for all but

finitely many v ∈ MK . To prove that f = ν(g), let v ∈ MK be given and let w ∈ Mk be

the prime lying below v. If svw 6= 1, then sv 6= 1 also by (2) and so v /∈ VK by (1). In

this case, we have πv = εv(πw) by definition. Because sv = svw by (2), we then deduce

that ν(g)v = fKv ,sv . If svw = 1, then sv = 1 by (2) and clearly ν(g)v = 1 = fKv ,sv . This

shows that f = ν(g) and so f ∈ ν(J(Λ(kG))), as claimed.

Next, we will show that certain diagrams involving ν and µ are commutative.

Proposition 7.2.4 The diagram

Λ(kG)× J(Λ(kG))

Λ(KG)× J(Λ(KG))

λk

λK

νιΛ

commutes, where ιΛ denotes the map induced by the natural inclusion k −→ K.

Proof. Recall that λk and λK denote the diagonal maps. Now, let g ∈ Λ(kG)× be given.

Also, let v ∈MK and let w ∈Mk be the prime lying below v. Then, we have

(ν ◦ λk)(g)v = εv ◦ iw ◦ g = iv ◦ γv ◦ g
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since εv ◦ iw = iv ◦ γv by Definition 7.1.1. Since g takes values in k, we have γv ◦ g = g

and so

(ν ◦ λk)(g)v = iv ◦ g = (λK ◦ ιΛ)(g)v.

Hence, we have ν ◦ λk = λK ◦ ιΛ and the diagram commutes.

Proposition 7.2.5 The diagram

J(Λ(kG)) J(Λ(KG))

J(H(kG)) J(H(KG))

ν

µ

Θt
∗,KΘt

∗,k

commutes, provided that G has odd order so that Θt
∗,k and Θt

∗,K are defined.

Proof. Let g ∈ J(Λ(kG)) be given. Also, let v ∈MK and let w ∈Mk be the prime lying

below v. On one hand, we have

(Θt
∗,K ◦ ν)(g)v = Θt

∗,K(εv ◦ gw). (7.2.1)

On the other hand, let rG(aw) ∈ H(kwG) be such that Θt
∗,k(gw) = rG(aw) so that

(µ ◦Θt
∗,k)(g)v = rG(εv ◦ aw). (7.2.2)

Moreover, recall from the identification H(kwG) = HomΩkw
(SĜw , (k

c
w)×) in (2.4.12) that

we have rG(aw)(ψ) = Θt
∗,k(g)(ψ) for all ψ ∈ SĜw . Here Ĝw denotes the group of irreducible

kcw-valued characters on G and recall that SĜw ⊂ ZĜw. Below, we will show that (7.2.1)

and (7.2.2) are equal using the identification H(KvG) = HomΩKv
(SĜv , (K

c
v)
×) in (2.4.12).

Here Ĝv denotes the groups of irreducible Kc
v-valued characters on G and SĜv ⊂ ZĜv.
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To that end, let ψ ∈ SĜv and write ψ =
∑

χ nχχ. Define ε−1
v ◦ ψ :=

∑
χ nχ(ε−1

v ◦ χ),

which clearly lies in SĜw (recall (2.4.6)). Since rG(aw) = Θt
∗,k(gw), we then deduce that

rG(εv ◦ aw)(ψ) = εv(rG(aw)(ε−1
v ◦ ψ)) (7.2.3)

= εv

(∏
s∈G

gw(s)〈ε
−1
v ◦ψ,s〉∗

)

=
∏
s∈G

(εv ◦ gw)(s)〈ψ,s〉∗

= Θt
∗,K(εv ◦ gw)(ψ).

The third equality above holds because 〈ε−1
v ◦ψ, s〉∗ = 〈ψ, s〉∗ for all s ∈ G, which we will

prove below. Observe that clearly it suffices to show that 〈ε−1
v ◦χ, s〉∗ = 〈χ, s〉∗ holds for

all χ ∈ Ĝv and s ∈ G. Recall that we chose the same compatible set {ζn : n ∈ Z+} of roots

of unity in Qc for both k and K. We also chose {iv(ζn) : n ∈ Z+} and {iw(ζn) : n ∈ Z+}

to be the compatible sets of roots of unity in Kc
v and kcw, respectively.

Now, let χ ∈ Ĝv and s ∈ G be given. Let υ = υ(χ, s) be as in Definition 2.5.1. Then,

we have χ(s) = iv(ζ|s|)
υ and 〈χ, s〉∗ = υ/|s|. Observe that

(ε−1
v ◦ χ)(s) = (ε−1

v ◦ iv)(ζ|s|)υ

= (iw ◦ γv−1)(ζ|s|)
υ

= iw(ζ|s|)
υ,

where ε−1
v ◦ iv = iw ◦ γv−1 by Definition 7.1.1 and γv

−1(ζ|s|) = ζ|s| because k contains all

exp(G)-th roots of unity. Again by Definition 2.5.1, this shows that 〈ε−1
v ◦ χ, s〉∗ = υ/|s|

as well. Hence, we have 〈χ, s〉∗ = 〈ε−1
v ◦ χ, s〉∗ and so the third equality in (7.2.3) indeed

holds. It follows that (7.2.1) and (7.2.2) are equal and so Θt
∗,K ◦ ν = µ ◦Θt

∗,k. This shows

that the diagram commutes.
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7.3 Preliminary Definitions

In this section, we will assume that the left Σ-action on G is trivial. Then, the Ωk-

action on G induced by the natural quotient map Ωk −→ Σ and the given Σ-action on G is

trivial, which agrees with the convention set up in Section 1.6. From the Hochschild-Serre

spectral sequence associated to the group extension

1 ΩK Ωk Σ 1,

we then obtain an exact sequence

Hom(Ωk, G) Hom(ΩK , G)Σ H2(Σ, G)res tr (7.3.1)

which is analogous to (6.1.1). Here res denotes restriction. The Σ-action on Hom(ΩK , G)

and the transgression map tr are defined in the exact same manner as in Definition 6.1.1.

More precisely, for each γ ∈ Σ, choose and fix a lift γ of γ in Ωk.

Definition 7.3.1 The Σ-action on Hom(ΩK , G) is defined by

(h · γ)(ω) := γ−1 · h(γωγ−1) for all ω ∈ ΩK

for h ∈ Hom(ΩK , G) and γ ∈ Σ. This definition is independent of the choice of the lift γ

because G is abelian. Next, define c : Σ × Σ −→ ΩK by setting c(γ, δ) := (γ)(δ)(γδ)−1.

The transgression map tr : Hom(ΩK , G)Σ −→ H2(Σ, G) is defined by

tr(h) := [h ◦ c],

where [−] denotes the cohomology class. This definition is also independent of the choice

of the lifts γ for γ ∈ Σ.
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Remark 7.3.2 If we regard Hom(Ωt
K , G) as a subset of Hom(ΩK , G) via Remark 7.0.3,

then the Σ-action Hom(Ωt
K , G) and the transgression map on Hom(Ωt

K , G)Σ induced by

Definition 7.3.1 agree with those in Definition 6.1.1. In particular, the identical notation

does not cause any confusion.

Definition 7.3.3 Define (recall Definition 2.4.1)

HΣ(KG) := {rG(a) ∈ H(KG) | ha ∈ Hom(ΩK , G)Σ};

Hs(KG) := {rG(a) ∈ H(KG) | ha ∈ Hom(ΩK , G)Σ) and tr(ha) = 1}.

It is clear that both of the sets above are subgroups of H(KG).

Proposition 7.3.4 Assume that k contains all exp(G)-th roots of unity. Then, we have

(Θt
∗,K ◦ ν)(λk(Λ(kG)×)) ⊂ η(Hs(KG)),

provided that G has odd order so that Θt
∗,K is defined.

Proof. Because k contains all exp(G)-th roots of unity, the map ν is defined and results

from Section 7.2 apply. Now, let g ∈ Λ(kG)× be given. We have

(Θt
∗,K ◦ ν)(λk(g)) = (Θt

∗,K ◦ λK)(ιΛ(g)) = (η ◦Θt
∗,K)(ιΛ(g)),

where ν ◦ λk = λK ◦ ιΛ by Proposition 7.2.4 and Θt
∗,K ◦ λK = η ◦ Θt

∗,K because diagram

(2.5.5) commutes. Recall that ιΛ : Λ(kG)× −→ λ(KG)× denotes the map induced by the

natural inclusion k −→ K. Thus, it suffices to show that Θt
∗,K(ιΛ(g)) ∈ Hs(KG).

To that end, first recall that H(kG) = ((QcG)×/G)Ωk and H(KG) = ((QcG)×/G)ΩK

by definition. Let ιH : H(kG) −→ H(KG) denote the natural inclusion induced by the
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inclusion ΩK ⊂ Ωk. From the identification (2.4.11), we see that there is a commutative

diagram

HomΩk(SĜ, (Qc)×) HomΩK (SĜ, (Qc)×)

H(kG) H(KG)
ιH

.

From this, it is clear that if Θt
∗,k(g) = rG(a), then Θt

∗,K(ιΛ(g)) = ιH(rG(a)). In particular,

the homomorphism h associated to Θt
∗,K(ιΛ(g)) is equal to res(ha). Since (7.3.1) is exact,

we then see that h ∈ Hom(ΩK , G)Σ and tr(h) = 1. Thus, indeed Θt
∗,K(ιΛ(g)) ∈ Hs(KG),

and this proves the claim.

7.4 Proof of Theorem 1.4.5 (a)

Theorem 1.4.5 Let K/k be a Galois extension of number fields and set Σ := Gal(K/k).

Let G be a finite abelian group of odd order on which Σ acts trivially on the left. Define

V = VK to the set of primes in OK which are ramified over k. Assume that k contains

all exp(G)-th roots of unity.

(a) The set AtΣ(OKG)V is a subgroup of Cl(OKG). Furthermore, given h ∈ Hom(Ωt
K , G)Σ

V

and a finite set T of primes in OK, there exists h′ ∈ Hom(Ωt
K , G)Σ

V such that

(1) Kh′/K is a field extension;

(2) Kh′/K is unramified at all v ∈ T ;

(3) cl(Ah′) = cl(Ah);

(4) tr(h′) = tr(h).

In particular, the set Ats(OKG)V is also a subgroup of Cl(OKG).
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Proof. Let ρΣ denote the composition of the homomorphism rag given in Definition 2.4.4

followed by the natural quotient map

J(H(KG)) −→ J(H(KG))

η(HΣ(KG))U(H(OKG))(Θt
∗,K ◦ ν)(J(Λ(kG)))

.

We will show that AtΣ(OKG)V is a subgroup of Cl(OKG) by showing that

j−1(AtΣ(OKG)V ) = ker(ρΣ), (7.4.1)

or equivalently, that for any c ∈ J(KG), we have j(c) ∈ AtΣ(OKG)V if and only if

rag(c) ∈ η(HΣ(KG))U(H(OKG))(Θt
∗,K ◦ ν)(J(Λ(kG))). (7.4.2)

To that end, let c ∈ J(KG) be given. First, assume that (7.4.2) holds, so

rag(c) = η(rG(b))−1u(Θt
∗,K ◦ ν)(g) (7.4.3)

for some rG(b) ∈ HΣ(KG), u ∈ U(H(OKG)), and g ∈ J(Λ(kG)). Let m be an ideal in Ok.

Then, by Theorem 4.3.7, there exists f ∈ Fk such that fw = 1 for all primes w ∈ Mk

which are ramified in K/k and

g ≡ f (mod λk(Λ(kG)×)U ′m(Λ(OkG))).

Choosing m to be divisible by |G| and exp(G)2, by Theorem 4.3.6 (b), the above yields

Θt
∗,k(g) ≡ Θt

∗,k(f) (mod Θt
∗,k(λk(Λ(kG)×))U(H(OkG))).

Since µ ◦ Θt
∗,k = Θt

∗,K ◦ ν by Proposition 7.2.5, by Proposition 7.3.4, applying µ to the
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above equation then yields

(Θt
∗,K ◦ ν)(g) ≡ (Θt

∗,K ◦ ν)(f) (mod η(Hs(KG))U(H(OKG))). (7.4.4)

Thus, by changing b and u in (7.4.3) if necessary, we may assume that g = f . Note that

ν(f)v = 1 for all v ∈ V and that ν(f) ∈ FK by Proposition 7.2.2. Hence, if h := hb is the

homomorphism associated to rG(b), then h is tame with hv unramified for all v ∈ V and

j(c) = cl(Ah) by Theorem 4.3.2. Since rG(b) ∈ HΣ(KG), we know that h is Σ-invariant,

and the above then shows that j(c) ∈ AtΣ(OKG)V .

Conversely, assume that j(c) = cl(Ah) for some h ∈ Hom(Ωt
K , G)Σ

V , with Kh = KG · b

say. Then, by Theorem 4.3.2, there exists c′ ∈ J(KG) such that j(c′) = cl(Ah) and

rag(c′) = η(rG(b))−1uΘt
∗,K(f ′) (7.4.5)

for some u ∈ U(H(OKG)) and f ′ ∈ FK . Moreover, for each v ∈MK , we have f ′v = f ′Kv ,sv

for sv = hv(σKv), and sv = 1 if v ∈ V . Since Σ acts trivially onG, by Proposition 7.1.5, we

have sv = svw for all v ∈MK and w ∈Mk with w lying below v (recall Definition 7.0.5).

Proposition 7.2.3 then implies that f ′ = ν(g) for some g ∈ J(Λ(kG)). Since j(c) = cl(Ah)

also, by Theorem 2.1.7, we have

c ≡ c′ (mod ∂((KG)×)U(OKG)).

Clearly rag((KG)×) ⊂ Hs(KG). We may then write (7.4.5) as

rag(c) = η(rG(b)rG(b′))−1uu′(Θt
∗,K ◦ ν)(g) (7.4.6)

for some rG(b′) ∈ Hs(KG) and u′ ∈ H(OKG). Note that rG(b) ∈ HΣ(KG) because h is Σ-
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invariant. It follows that (7.4.2) indeed holds. This proves (7.4.1), and it remains to show

the existence of h′ ∈ Hom(Ωt
K , G)Σ

V such that (1) to (4) are satisfied.

Let T be a finite set of primes in OK . First, notice that the same discussion following

(7.4.3) shows that there exists f ∈ Fk such that (7.4.4) holds. In particular, by changing

b′ and u′ in (7.4.6) if necessary, we may assume that g = f . By Theorem 4.3.7, we may

also assume that fw = 1 for all w ∈Mk lying below the primes in V ∪T , and that fs 6= 1

for all s ∈ G with s 6= 1 (notice that Ωk acts trivially on G(−1) because k contains all

exp(G)-th roots of unity). In particular, by Proposition 7.2.2, we have that ν(f)v = 1

for all v ∈ V ∪ T and ν(f) ∈ FK .

Now, let h′ be the homomorphism associated to rG(b)rG(b′). From (7.4.6) and The-

orem 4.3.2, we then deduce that h′ is tame with h′v unramified for all v ∈ V ∪ T and

that j(c) = cl(Ah), whence (2) and (3) hold. Because rG(b′) ∈ Hs(KG) and h = hb is Σ-

invariant, it is clear that h′ ∈ Hom(Ωt
K , G)Σ

V and we have tr(h′) = tr(h), and so (4) holds

as well. Finally, for each s ∈ G with s 6= 1, we have fs 6= 1 by choice so fw = fkw,s for

some w ∈Mk. Then, we have ν(f)v = fKv ,s by Proposition 7.2.2 and hence h′v(σKv) = s

by Theorem 4.3.2. This means that h′ is surjective so Kh′ is a field, as claimed in (1).

Because galA is weakly multiplicative (recall Theorem 1.2.2 (b)), what we have proved

above implies that Ats(OKG)V is closed under multiplication. Since Cl(OKG) is finite, it

follows that Ats(OKG)V is also a subgroup of Cl(OKG). This proves the theorem.

7.5 The Quotient AtΣ(OKG)V /Ats(OKG)V

In what follows, we will assume all of the hypotheses stated in Theorem 1.4.5. Then,

the sets AtΣ(OKG)V and Ats(OKG)V are both subgroups of Cl(OKG) by Theorem 1.4.5

(a). We are interested in the group structure of the quotient AtΣ(OKG)V /Ats(OKG)V

and its relation to that of tr(Hom(Ωt
K , G)Σ

V ).
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Proposition 7.5.1 Let h, h1, h2 ∈ Hom(Ωt
K , G)Σ

V .

(a) cl(Ah1)cl(Ah2) = cl(Ah1h2hs) for some hs ∈ Hom(Ωt
K , G)Σ

V with tr(hs) = 1.

(b) cl(Ah)cl(Ah−1) ≡ 1 (mod Ats(OKG)V ).

(c) If tr(h1) = tr(h2), then cl(Ah1) ≡ cl(Ah2) (mod Ats(OKG)V ).

Proof. By Theorem 1.4.5 (a), there exists h′2 ∈ Hom(Ωt
K , G)Σ

V such that cl(Ah′2) = cl(Ah2),

tr(h′2) = tr(h2), and d(h′2) ∩ d(h1) = ∅ (recall the notation introduced in (1.1.2)). From

Theorem 1.2.2 (b), we then deduce that

cl(Ah1)cl(Ah2) = cl(Ah1h′2
) = cl(Ah1h2hs),

where hs := h−1
2 h′2. It is clear that tr(hs) = 1, and so (a) holds. As for (b), simply note

that cl(Ah)cl(Ah−1) = 1 by Theorem 1.2.2 (a). Alternatively, notice that (b) follows from

(a) applied to h1 = h and h2 = h−1; this alternative argument is important because the

equality cl(Oh)cl(Oh−1) = 1 does not hold in general (cf. Remark 1.4.6).

Now, to prove (c), first observe that (a) and (b) together imply that

cl(Ah1)cl(Ah2)−1 ≡ cl(Ah1)cl(Ah−1
2

) ≡ cl(Ah1h
−1
2 hs

) (mod Ats(OKG)V )

for some hs ∈ Hom(Ωt
K , G)Σ

V with tr(hs) = 1. If tr(h1) = tr(h2), then tr(h1h
−1
2 hs) = 1

and we deduce that cl(Ah1) ≡ cl(Ah2) (mod Ats(OKG)V ), as desired.

7.6 Proof of Theorem 1.4.5 (b)

Theorem 1.4.5 Let K/k be a Galois extension of number fields and set Σ := Gal(K/k).

Let G be a finite abelian group of odd order on which Σ acts trivially on the left. Define
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V = VK to the set of primes in OK which are ramified over k. Assume that k contains

all exp(G)-th roots of unity.

(b) The natural surjective map

φA : tr(Hom(Ωt
K , G)Σ

V ) −→ A
t
Σ(OKG)V
Ats(OKG)V

; φA(tr(h)) := cl(Ah)Ats(OKG)V ,

where h ∈ Hom(Ωt
K , G)Σ

V , is well-defined and is a homomorphism. Furthermore, if i∗

is injective, then φA is an isomorphism.

Proof. The map φA is well-defined by Proposition 7.5.1 (c). To show that it is a homo-

morphism, let h1, h2 ∈ Hom(Ωt
K , G)Σ

V be given. Note that by Proposition 7.5.1 (a), there

exists hs ∈ Hom(Ωt
K , G)Σ

V such that tr(hs) = 1 and cl(Ah1)cl(Ah2) = cl(Ah1h2hs). Then,

we see that

φA(tr(h1))φA(tr(h2)) = φA(tr(h1h2hs)) = φA(tr(h1h2))

and so φA is indeed a homomorphism. This proves the first claim.

To prove the second claim, let h ∈ Hom(Ωt
K , G)Σ

V be such that φA(tr(h)) = 1. This

means that cl(Ah) ∈ Ats(OKG)V . Because Ats(OKG) is a subgroup of Cl(OKG) by Theo-

rem 1.4.5 (a), we have cl(Ah)
−1 = cl(Ahs) for some hs ∈ Hom(Ωt

K , G)Σ
V with tr(hs) = 1.

In particular, we may assume that d(hs)∩ d(h) = ∅ (recall (1.1.2)). Since galA is weakly

multiplicative by Theorem 1.2.2 (b), we deduce that

1 = cl(Ah)cl(Ahs) = cl(Ahhs).

Now, recall Theorem 1.4.4. Since ξ is a homomorphism, we obtain (ξ ◦galA)(hh−1
s h′s) = 1

and hence (i∗ ◦ tr)(hhs) = 1. If i∗ is injective, then this implies that tr(hhs) = 1 and so

tr(h) = 1. Hence, in this case the map φA is injective and so is an isomorphism.

118



Bibliography

[1] E. Bayer-Fluckiger and H. W. Lenstra, Forms in odd degree extensions and
self-dual normal bases, Amer. J. Math. 112(3) (1990) 359–373.

[2] J. Brinkhuis, Embedding problems and normal integral bases, Math. Ann. 264
(1983) 537–543.

[3] J. Brinkhuis, Galois modules and embedding problems, J. Reine Angew. Math. 346
(1984) 141–165.

[4] D. Burns, Adams operations and wild Galois structure invariants, Proc. London
Math. Soc. (3) 71 (1995) 241–262.

[5] N. P. Byott, Integral Galois module structure of some Lubin-Tate extensions, J.
Number Theory 77 (1999) 252–273.

[6] C. W. Curtis and I. Reiner, Methods of representation theory with applications to
finite groups and orders Vol. I. John Wiley & Sons Inc., New York, 1987.

[7] C. W. Curtis and I. Reiner, Methods of representation theory with applications to
finite groups and orders Vol. II. John Wiley & Sons Inc., New York, 1987.

[8] B. Erez, The Galois structure of the square root of the inverse different, Math. Z.
208(2) (1991) 239–255.

[9] B. Erez and J. Morales, The Hermitian structure of rings of integers in odd degree
abelian extensions, J. Number Theory 41 (1992) 92–104.
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