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ABSTRACT 

 

Modeling the Hydrologic Impacts of Vegetation and Channel Network Change for a Semi-

arid, Mountainous, Meso-scale Catchment: the Baviaanskloof, South Africa 

 

by 

 

Julia Ann Glenday 

 

This dissertation employs hydrologic modeling to assess probable impacts of changes in 

vegetation cover and in the channel network on streamflow and floodplain groundwater 

levels in the Baviaanskloof catchment, South Africa. The Baviaanskloof serves as a case 

study of a semi-arid, mountainous, meso-scale catchment that has been subject to 

agricultural land use and is regionally important for water supply. In this catchment 

livestock grazing has resulted in a loss of subtropical thicket cover on hillslopes and the 

channel network in the central valley has become increasingly connected and incised.  

 

  In order to build an appropriate model of the Baviaanskloof, streamflow, groundwater, 

surface runoff, and soil moisture data were analyzed for diagnostic patterns that revealed 

information about hydrologic connectivity at different spatial and temporal scales. Critical 

results of these analyses were that: a) the central valley alluvial aquifer is recharged by 

subsurface flows from surrounding mountain areas following two major pathways, a likely 

interflow contribution following large rainfall events and a more temporally consistent 
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contribution from the bedrock aquifer, and b) the dominant direction of exchange of water 

between the alluvial aquifer and the main floodplain channel regularly fluctuates between 

losing and gaining. To capture the observed patterns, the numeric model structure consisted 

of a coarse-scale sub-model of the mountain tributary subcatchments surrounding the central 

valley alluvial fill, and a higher resolution, coupled hydraulic-hydrologic sub-model of the 

central valley alluvial fans and floodplain. This model was calibrated in a multi-criteria 

calibration process using various observational datasets.  It was found that including 

multiple streamflow-based criteria and including criteria based on additional data types 

improved model performance and better constrained the model parameter space.   

 

Alternative scenarios of further degradation and of restoration of the hillslope 

vegetation, alluvial fan surfaces, and floodplain channel were modeled individually and in 

combination. Models were run using 38 years of local climate data and differences between 

model predictions for the current catchment state and each alternative scenario were 

assessed. Outputs suggested that, of the individual restoration intervention scenarios 

considered, hillslope thicket restoration would have the most significant impact on 

streamflow, driven by large reductions in storm event runoff and floodplain channel 

restoration would have the largest impact on the floodplain water table, driven by decreased 

drainage into the channel and increased recharge due to overbank flooding. Results 

indicated that restoring hillslopes could reduce flood peaks by 56-60% and annual average 

yield by 22-27%. Greater modeled water retention and evapotranspiration on vegetated 

hillslopes reduced runoff to the floodplain, resulting in a deepened water table and 

decreased baseflow in the model.  Restoring alluvial fans was predicted to reduce flood 
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peaks by 11-17% compared to the current scenario, but modeled impacts on average yield, 

baseflow, and floodplain aquifer levels were not statistically detectable. Comparing the 

alluvial fan restoration scenario to a more extreme channelized case did show small, but 

detectable, increases in baseflow and floodplain groundwater levels. Reducing floodplain 

channel incision was predicted to reduce peak flows by 14-20%. Modeled impacts on 

average yield and baseflow were not statistically detectable. Groundwater levels were 

predicted to rise with channel restoration, with average depth decreasing 17-21%.  

Simultaneous restoration at all three positions was predicted to reduce flood peaks more 

substantially than any individual intervention (69-71%) while also decreasing the average 

depth of the floodplain water table (8-11%).  Average annual yield was predicted to 

decrease by 32-37% as was baseflow, with a 20-40% decrease in average annual minimum 

monthly flow.   

 

These results highlight various potential tradeoffs that would need to be considered in 

restoration planning and catchment management.  Predictions made here would need further 

integration into reservoir and water supply system models, as well as sediment transport 

models to consider reservoir sedimentation, in order to better understand implications for 

local and downstream water supply availability.  Nevertheless a net decrease in annual 

average available supply appears likely.  

 

The catchment and climatic contexts of these changes were shown to be important in 

determining the magnitude and direction of the predicted impacts, with dispersive flow 

paths through central valley alluvium dampening impacts of hillslope vegetation changes 



 

 x 

and with the frequency and magnitude of storm events determining how often different 

thresholds of flow path connectivity were reached.  This highlighted the importance of 

including best available understanding of a landscape's hydrologic connectivity in modeling, 

even when focusing on a local scale change, and of modeling impacts over a long time 

period to include long-term weather patterns.          
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Chapter 1 : Development of a conceptual hydrologic 

model for a semi-arid, meso-scale catchment for water 

supply management using field data  
 

1.1  Introduction 

 

The development of hydrologic models to assist in catchment management entails 

balancing the purpose of the modeling exercise and the available data and level of 

knowledge about hydrologic processes in the catchment (Young et al., 1996; Wagener et al., 

2001; Vaché and McDonnell, 2006). Both concerns will affect the decisions and 

assumptions made in selecting a model structure. In the last decade, catchment model 

structure development research has focused on methods for making ‘best use’ of all 

available information (Gupta et al., 2008; McMillan et al., 2011; Clark et al., 2011; Gupta et 

al., 2012). Such methods include systematic assessments of data-based diagnostics: patterns 

in observed data that are indicative of the occurrence, dominance, and thresholds of 

occurrence of different processes or flow paths. These provide formal frameworks for the 

various decisions made in moving from conceptual to numeric models (as described by 

Gupta et al., 2012). Despite the development of such procedures, (Fenicia et al., 2014) note 

that in the majority of cases, the grounds for applying particular conceptual and numeric 

models are still not well documented, hindering model assessment and further development. 

In addition, much exploratory model structure research has focused on small, headwater 

catchments in relatively wet environments without express consideration of an applied use 

of model outputs for management. This study employed multiple data sources, streamflow, 
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groundwater, and other hydrometric data, to develop a conceptual and numeric catchment 

model of a semi-arid, meso-scale catchment: the Baviaanskloof catchment, South Africa.  

The desired use of model in this case was to assess local and regional water supply impacts 

of proposed vegetation cover and river channel restoration activities. This application was 

explicitly considered in the development of the model structure.  

 

Meso-scale catchments (10-10,000 km
2
) are of a size typically relevant for catchment 

and water supply management and modeling at this scale can entail a large set of model 

structure decisions (Tetzlaff et al., 2010; Uhlenbrook et al., 2004). Drier environments tend 

to have greater temporal and spatial variability in flow path connectivity and can need 

higher resolution models to achieve similar accuracies to coarser models of wetter regions 

(Clark et al., 2008; Maneta et al., 2008).  Data-based diagnostics can be used to guide the 

level of model complexity warranted by existing information (Gupta et al., 2008). The 

desired application of the model for management may require smaller-scale processes to be 

explicitly conceptualized, regardless of data available to resolve them, as outputs of internal 

catchment states and processes may be needed for decision making. Modeling possible 

future scenarios that differ from conditions for which historic data exists may also require 

more physics-based mechanistic process representations than the existing data supports.  

 

The process of balancing available information on catchment processes and model 

structure requirements for a particular management application was explored through the 

development of a model for the 1,234 km
2
 semi-arid watershed of the Baviaanskloof River 

in the Eastern Cape of South Africa. This catchment feeds a major regional water supply 
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reservoir. The loss of hillslope canopy cover due to livestock grazing (Mills et al., 2005; 

Sigwela et al., 2009) and channel modification and enhanced incision on alluvial fans and 

the main floodplain are thought to negatively influence water supply availability for users 

downstream of the reservoir and local users drawing from the alluvial aquifer (Jansen, 

2008).  The potential for vegetation and channel restoration interventions to impact local 

groundwater levels and downstream water yields are key management questions for the area 

and the motivation for modeling the catchment. This goal places constraints on the 

necessary model structure in terms of spatial and process discretization in order to 

differentiate scenario parameterizations and produce the desired outputs of both catchment 

water yield and floodplain groundwater levels. Within these constraints, field data were used 

to answer questions of flow path connectivity within and between landscape units.    

 

The goals of this study are to use information on catchment physical properties and 

diagnostics from available streamflow, groundwater, soil moisture and runoff data to guide 

the development of conceptual and numeric models, adding to the knowledge base for semi-

arid systems, and to ensure the model structure meets the needs of its application in terms of 

scales of process representation and outputs.  A second stage of this process, described in a 

separate chapter, is multi-criteria calibration of the resulting model, assessing it against 

performance thresholds that are relevant to its application. 
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1.1.1  Development of model structure 

 

Recent research in catchment model development emphasizes the need for targeted use 

of available data and information to inform model structure decisions as well as parameter 

value selection, as opposed to assuming applicability of a commonly used model structure 

and focusing on the use of observational data to parameterize this structure (Fenicia et al., 

2008a; Gupta et al., 2008, 2012; Seibert and McDonnell, 2002). ‘Top-down’ modeling 

approaches use data-based diagnostics to identify dominant processes at different scales and 

the level of complexity required or warranted in their model representation (Gupta et al., 

2008; Sivakumar, 2004; Sivapalan et al., 2003; Young, 2003). Streamflow, groundwater 

levels, soil moisture, and isotopic data have all been used to determine dominant processes 

and connectivity from the hillslope to the catchment scale based on diagnostic patterns 

(Clark et al., 2009, 2011; Karen, 2009; McMillan et al., 2011; Seibert and McDonnell, 2002; 

Tromp-van Meerveld and McDonnell, 2006; Vaché and McDonnell, 2006; Wittenberg, 

2003). For example, McMillan et al. (2011) used the timing of streamflow peaks after 

rainfall peaks compared to flow path length to infer relative dominance of sub-surface 

pathways in the quickflow response and used the speed at which soil moisture decreases 

after a wetting event to infer the importance of drainage versus retention and 

evapotranspiration (ET) on hillslopes.  Baseflow recession analyses have been used to 

indicate the degree to which water storage dictates outflow and whether or not a single linear 

reservoir is an appropriate representation of the process (Clark et al., 2009, 2011; McMillan 

et al., 2011). Seasonal variation in recession characteristics can indicate whether 

evapotranspiration (ET) has a dominant effect on the storages feeding baseflow (Wittenberg, 

2003).  Karen (2009) and Jencso et al. (2010) used relative elevations of groundwater and 
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river water surfaces to assess connectivity between river reaches and alluvial aquifers or 

riparian zones.   

 

Top-down model development can be done in a hierarchic, step-wise manner:  

identifying first-order controls on outputs, and the simplest applicable algorithmic 

representations of them (e.g., a linear reservoir), and then sequentially testing the additions 

of more refined representations of internal processes (e.g., outflow thresholds, non-linear 

outflow, multiple reservoirs) until there is no further significant improvement in model 

accuracy against the available data (Fenicia et al., 2008b; Sivakumar, 2004; Vaché and 

McDonnell, 2006). Ensemble model structure testing procedures have been developed in 

which many alternative model structures, with ranges of complexity and different options of 

process representations, are tested against one another (Clark et al., 2008, 2011; Fenicia et 

al., 2014). This approach aims to prevent initial selection of a basic model structure from 

first-order data patterns that could later become inappropriate when finer scale processes are 

sequentially added. Most comparative model structure assessments, particularly ensemble 

assessments, have been limited to lumped models or small catchments due to computational 

intensity. 

 

These methods contrast with ‘bottom-up’ model development in which catchment-scale 

models are built by combining physics-based, mechanistic, algorithmic descriptions of as 

many internal component processes as can be described given existing physical 

understanding.  Arguments against the applicability of this approach in many situations are 

that processes described at fine scales may not be relevant at the scale of analysis (Clark et 
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al., 2009; Savenije, 2010; Sivapalan et al., 2003). For example, modeling subsurface flow 

using the Darcy-Richards equations parameterized by soil sampling in cases where hillslope-

scale flows may be dominated by macro-pore flow or bedrock topography fill-and-spill 

effects, processes that are not detectable at the point scale and not well represented by 

Darcy-Richards equation based algorithms and parameters (Clark et al., 2009; Gupta et al., 

2012; Tromp-van Meerveld and McDonnell, 2006). Bottom-up approaches can lead to 

development and use of  highly parameterized, complex, and computationally intensive, 

models for areas where there is insufficient data to resolve the uncertainties in the many 

parameter values, leading to high levels of equifinality (Beven and Freer, 2001; Savenije, 

2010).  The resulting application of the model may then be stochastic, perhaps without 

reaching levels of output accuracy that could be achieved with simpler structures.    

 

There are cases where physics-based, bottom-up modeling approaches are needed and 

useful regardless of uncertainties and complexities they introduce. A downward model 

development approach cannot be directly applied to ungauged or data-poor catchments. 

Model structures and parameters developed through a downward approach in gauged 

catchments could, in principle, be regionalized to ungauged catchments if guiding catchment 

physical properties are reliably defined, but this has only been developed in a few select 

areas (Gupta et al 2012). Modeling scenarios of change that affect processes which are not 

modeled with physics-based algorithms can also be difficult.   
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1.1.2  Dominant processes, connectivity observations, and modeling 

experience in meso-scale, semi-arid, mountainous catchments and 

floodplain systems 

 

Semi-arid meso-scale catchments provide significant challenges to modeling with 

similar accuracy to humid, headwater catchments, due to both the relative scarcity of 

hydrometric data and the dominance of complex surface-subsurface flow pathways in 

contributing to streamflow (Clark et al., 2008; Maneta et al., 2008; Tetzlaff et al., 2008). 

Existing process and model research on meso-scale catchments and in semi-arid and 

mountainous locations have identified characteristic patterns in processes that can be 

brought to bear in model development decisions, such as the level of spatial and process 

discretization and landscape and process connectivity and its model representation.  

 

Meso-scale catchments can encompass both steep headwater areas and sizeable 

floodplains, including a range of geologic and topographic landscape features with different 

hydrologic response characteristics. As such different flow pathways may be dominant at 

different scales and times. It has been generally observed that for micro-scale (<1km
2
) 

headwater catchments, surface and shallow subsurface runoff generating processes are first-

order determinants of streamflow patterns, while for meso-scale catchments the spatial 

distribution of rainfall and channel routing of runoff become important (Uhlenbrook et al., 

2004). In addition, as catchment scales increase, there can be an increasing proportional 

contribution of bedrock groundwater to total catchment outflows (McGrane et al., 2014; 

Ophori and Tóth, 1990).  
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The importance of spatial variability at the meso-scale and in semi-arid environments 

makes lumped catchment models less appropriate and so decisions must be made about 

spatial scales for process representation.  Including spatially variable precipitation and 

spatial discretization of threshold-controlled surface and shallow sub-surface processes has 

been found to improve model performance in arid and semi-arid catchments (Fenicia et al., 

2008b; Maneta et al., 2008). However, a fully gridded approach does not necessarily provide 

improvement in runoff modeling over a semi-lumped model at the meso-scale (Das et al., 

2008; Winsemius et al., 2006). A common approach has been to identify landscape units 

thought to have distinctly different first-order dominant processes and to model surface and 

near surface processes of each of these units separately (Gao et al., 2014; McGlynn et al., 

2004; Savenije, 2010; Van den Bos et al., 2006). As an example of potential differences in 

processes between topographic units, Savenije 2010 observed that in many systems plateaus 

are dominated by water storage and/or vertical drainage to deep groundwater, hillslopes are 

dominated by storage excess subsurface flow, and lowland riparian areas more often have 

saturation excess surface flow as well as subsurface drainage. Data-diagnostics and top-

down modelling approaches have supported the physical process reasoning that lithology 

and topography differentiate areas of distinct runoff responses that are emergent in meso-

scale catchment runoff patterns (Clark et al., 2009; Fenicia et al., 2014; Gao et al., 2014; 

Uhlenbrook et al., 2004; Van den Bos et al., 2006). Sub-catchment hydrograph analyses 

(Van den Bos et al., 2006) and ensemble model testing (Fenicia et al., 2014) have also 

supported separating process representation by areas of different dominant lithology.  

Similarly, isotope water balance unmixing (Tromp-van Meerveld et al., 2007), flow 

recession analyses (Clark et al., 2009), hierarchical model development (Fenicia et al., 
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2008a) and ensemble model testing (Gao et al., 2014) studies have supported discretization 

at the level of topographic units, such as hillslopes and valley bottoms, in meso-scale 

catchments.  

 

Conceptualization of the surface and subsurface connectivity between separately 

modeled land units can significantly influence model performance at the meso-scale as 

dominant flow paths feeding streamflow are likely to include multiple units.  Model 

structure studies have used data-based diagnostics and physical process reasoning to 

determine whether to model hydrologic response units (HRUs) in parallel, each individual 

unit directly connected to a channel network, or as a cascading series of units, in which only 

the most downslope unit is directly connected to the channel. Van den Bos et al. (2006) used 

channelized sub-catchments as HRUs and so they could be reasonably modeled in parallel, 

using channel routing to account for each unit’s distance from the catchment outlet.  While 

theoretically, when using smaller-scale, less channelized HRUs, surface and shallow surface 

runoff from upslope areas would flow across and through a catena of topographic landscape 

units, in some cases data analyses have supported a simpler, parallel model structure. For 

example, in the Panola Experimental Watershed, Clark et al. (2009) supported modeling 

hillslopes and riparian zones as parallel reservoirs. In this case, field measurements found 

that precipitation thresholds to initiate hillslope surface and shallow-subsurface runoff were 

only met during infrequent extreme events, while the riparian areas consistently contributed 

to streamflow, being often saturated and slow draining (Clark et al., 2009; Tromp-van 

Meerveld and McDonnell, 2006). Hillslopes therefore rarely if ever contributed runoff to 

riparian zone storage, only producing runoff during large events in which the riparian zone 
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would already have been saturated through direct precipitation. As such, the threshold-

triggered outflow from the hillslope unit could reasonably be routed directly to the river 

channel, assuming quick passage across a saturated riparian area, without considering 

infiltration on the riparian zone and its antecedent storage.  

 

Based on physical reasoning, Savenije (2010) and Winsemius et al. (2009) suggest 

linking topographic units in series in a flow path catena in meso-scale systems that have 

areas of deep and permeable soils, capable of infiltrating the majority of the surface flows 

they receive, and in systems in which subsurface flows dominate and hillslope flows are a 

significant source feeding riparian zone storage.  Data-based approaches have also supported 

linking units in series in cases where subsurface lateral flow is dominant (Fenicia et al., 

2008a). In a multi-scale study, using isotope, groundwater level, and streamflow monitoring 

at different landscape positions in a mountainous catchment, McGlynn et al. (2004) found 

that in small headwater catchments, riparian areas were consistent sources of streamflow, 

while in larger catchments, the valley bottom areas only contributed to streamflow after high 

rainfall events or those occurring with wet-antecedent conditions.  This supports linking 

upslope hillslope units in series to valley bottom areas of large catchments, because 

floodplains would more often have storage space for flows originating upslope, particularly 

in arid areas. Field observations of relative groundwater and stream elevations, and 

correlations between groundwater levels and streamflow, have been used to describe the 

nature and thresholds of connectivity between floodplain areas and the channel network 

(Banks et al., 2011; Hammersmark et al., 2008; Jencso and McGlynn, 2011; Karen, 2009; 

Phillips et al., 2011).     
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The potentially dynamic connectivity between floodplain alluvial aquifers and channel 

flows is not typically explicitly modeled at the catchment scale, however observations have 

suggested that this can be an important factor in determining runoff peaks and recessions 

(Essaid and Hill, 2014; Hammersmark et al., 2008; Maneta et al., 2008; Smith et al., 2013).  

Particularly in more arid environments, channel flows originating higher up in the catchment 

can be a source of recharge to a low-land alluvial aquifer in dry periods, through infiltration 

of channel flow and of overbank flood water in extreme events. The direction of flow can 

reverse in wetter periods, when high aquifer groundwater levels contribute flows into the 

stream.  Observational and modeling studies have indicated that the dimensions of the 

floodplain channel, hence its capacity to contain flood flows and the level of incision 

relative to the groundwater table, influence streamflow magnitude and timing (Essaid and 

Hill, 2014; Hammersmark et al., 2008; Loheide and Booth, 2011; Loheide and Gorelick, 

2007; Ohara et al., 2014; Tague et al., 2008). Coupled hydraulic and hydrologic models 

(Hammersmark et al., 2008) and coupled coarse-scale catchment and fine-scale floodplain 

channel-groundwater models (Hipsey et al., 2011) have been used to better represent this 

interaction at the catchment scale.  

    

In large, mountainous catchments, in which the bedrock is porous or highly fractured 

and the soils are thin and/or fast draining, percolation into bedrock aquifers and 

contributions from bedrock aquifers to recharging alluvial aquifers and catchment outlet 

flows can be substantial, with estimated values of 10-70% of recharge or outflow coming via 

bedrock in various cases  (Katsuyama et al., 2010; Magruder et al., 2009; Tromp-van 
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Meerveld et al., 2007; Van den Bos et al., 2006; Welch and Allen, 2012). Conceptualization 

of mountain block recharge (MBR) of alluvial aquifers has received increased attention in 

models of mountainous catchments as it has been recognized as a significant contributor to 

alluvial groundwater levels and hence to streamflow (Kao et al., 2012; Magruder et al., 

2009).  Savenije et al (2010) suggest that, while representation of surface and shallow 

subsurface processes benefits from discretizing topographic units, the slower bedrock 

groundwater flows, about which there is generally less information and diagnostic data, are 

more reasonably modeled using single reservoirs receiving recharge from all the overlying 

land units.   

 

Flow recession analyses can be used to guide how groundwater storage and outflow 

should be represented in a model (Clark et al., 2009).  The relationship between the rate of 

flow decline to the flow volume, and hence to catchment storage, indicates whether or not a 

simple linear reservoir model can be an appropriate representation of outflow from the 

storages feeding catchment baseflow. Semi-arid and topographically complex catchments 

are unlikely to have simple storage-outflow relationships (Clark et al., 2009; Maneta et al., 

2008; Tetzlaff et al., 2008), however the effects of local complexities and spatial 

heterogeneities can be smoothed in the flow responses at large catchment scales (Sivapalan 

et al., 2003).  Non-linear recession patterns can be recreated with multiple linear reservoirs 

feeding catchment outflows in parallel or linked in series, and the degree of non-linearity 

indicates the number of reservoirs that may be needed, representing different storages and 

flow pathways through the catchment (Clark et al., 2009). Non-linear recessions with 

smooth curves can be recreated by combining high numbers of linear reservoirs. Recession 
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patterns that instead have different distinct slopes at different stages of the recession can be 

recreated by a smaller number of linear reservoirs with large differences in their drainage 

constants. Seasonal differences in recession patterns indicate the influence of factors other 

than catchment water stores, such as ET, on the flow paths supplying recession flows 

(Wittenberg, 2003).  

 

1.1.3  Model development 

 

A completely data-driven top-down approach to model development was not considered 

appropriate here given process representation requirements of the model’s intended 

application: to assess the impacts of changes in hillslope vegetation cover and in alluvial fan 

and floodplain channels on water supply. Therefore, the level spatial discretization and 

process representation needed to use the model to consider the effects of vegetation and 

channel change scenarios was identified, following a bottom-up approach. Diagnostic 

patterns in the available hydrologic data were then used to further determine where 

additional complexity was warranted, to infer connectivity between processes and flow 

paths, and to parameterize processes.  Due to the scale of the catchment, discretization at the 

scale of broad topographic units was assumed to be a reasonable starting level of complexity 

and data-diagnostics from catchment streamflow, floodplain groundwater, and hillslope 

runoff and soil moisture observations were used to infer dominant processes and 

connectivity between these units.  Where data was insufficient to specify the needed process 

representation, literature on similar cases was used to inform the model structure.  A priori 



 

 14 

parameter ranges were defined using inferences from the available data and relevant 

literature.  

 

1.2  Study site and model use 

1.2.1  Catchment description 

 

The study site is the 1,234 km
2
 catchment of the Baviaanskloof River, a semi-arid, 

mountainous watershed in the Eastern Cape Province of South Africa (Figure 1-1). Situated 

in the Cape Fold Mountain Belt, the catchment was shaped by geologic faulting and 

successive uplift events and has a half graben structure (Holmes, 2012).  The result is a 

trellis drainage pattern in which a central valley floodplain, running between parallel 

mountain ranges (Baviaans Mountains, the footwall side to the north, and Kouga Mountains, 

the hanging wall to the south), is fed by steep, deeply incised, tributary valleys oriented 

perpendicular to the main valley line (Figure 1-2).  Many of these tributary valleys terminate 

in alluvial fans at the floodplain margin. The central valley floodplain and fans make up 5% 

of the catchment area with a 0.6% average longitudinal slope (Powell, 2015), compared to 

the 38% average terrain slope over the entire catchment (calculated using a 30m resolution 

digital elevation model, DEM, from NASA satellite radar topography mission, SRTM, 

datasets). 

 

The lithology is primarily quartzitic sandstones of the Table Mountain Group (TMG) 

with interbedded shale layers.  An overlying Enon Conglomerate layer formed in the central 
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valley has largely eroded away; however, outcrops remain on some lower slopes and likely 

underlie parts of the current floodplain. TMG quartzitic sandstones are fractured, while the 

less permeable shales and conglomerates create aquicludes. Surface springs appear at 

interfaces between quartzitic sandstones and shales as well as at major fault zones. Studies 

of TMG fractured sandstone aquifers in other parts of the Cape Fold Belt indicate that there 

is generally a more highly fractured surface layer, and that fractures and faults become 

progressively cemented by mineral deposits at depth (Xu et al., 2003, 2009). Soils on the 

cliffs, hillslopes, and plateaus are thin (0-100 cm) and are generally loamy sands with high 

rock content (30-40% by volume). Research on the connection between surface and 

groundwater in areas with TMG lithologies has indicated that interflow in the highly 

fractured bedrock surface and/or at the soil-rock interface can make up significant portions 

of river and wetland annual hydrographs, over 50% in some cases, particularly in headwater 

streams and water bodies near TMG mountain footslopes (Midgley and Scott, 1994; Roets et 

al., 2008; Xu et al., 2002, 2003). These outflows can then feed lowland alluvial aquifers  

 

Differential uplift of fault blocks, and the differing hardnesses of the TMG layers 

exposed as a result, has meant that the main valley floodplain varies in width: wide sediment 

basins (1 km wide between hillslopes), carved from erodible lithologies, alternate with 

narrow valley reaches (100-300 m wide) crossing outcrops of harder layers. Resistivity 

measurements in the wide floodplain basins indicate that the alluvial deposit is 20-35 m 

thick (Soltau et al., 2011) and floodplain soil profiles have sand and cobble deposits overlain 

by 50-200 cm of sandy loam/loamy sand.     
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Based on daily gage data obtained from the South African Weather Services (SAWS) 

and the Agricultural Research Council (ARC), the average annual rainfall for the period 

1970-2013 was 270 mm and with annual average maximum and minimum temperatures of 

32 and 5
o
C. Average annual potential evapotranspiration (PET), estimated using the method 

of (Hargreaves and Samani, 1982), for the same period was 1335 mm.  Interannual variation 

in precipitation is high (recorded annual values range from 100 to 500mm) and there is no 

consistent seasonal pattern of large rainfall events.  Winter rainfall tends to be dominated by 

frontal systems while summer receives convective rainfall with short, intense events.  The 

outlet of the catchment is the confluence with the Kouga River, below which lies the Kouga 

water supply reservoir. The Baviaanskloof River flows perennially at its outlet and in 

upstream narrow valley reaches, but surface flow in the wide floodplain basins is ephemeral, 

flowing for months to years in wet periods.  Surface flows in tributary valley channels are 

ephemeral typically lasting hours to days following large storms.  Surface groundwater 

springs from the bedrock aquifer are evident at faults and interfaces between sandstone and 

significant shale layers.  

 

The distribution of indigenous vegetation generally follows the topography with fynbos 

(characterized by woody shrubs, grasses, and herbs) on the plateaus and upper slopes, 

subtropical thicket (characterized by large succulents and woody shrubs) on the cliffs and 

lower slopes, riparian forest in the narrow tributary gorges and narrow reaches of the main 

valley, and savannah woodland on the wide floodplains (Euston-Brown 2006). Small areas 

of reed dominated permanent wetland exist on the floodplain close to bedrock groundwater 

seeps.  Livestock farming with goats has been practiced for over a century in much of the 
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catchment, significantly reducing the thicket vegetation cover on the hillslopes, which would 

otherwise have had a closed canopy (Euston-Brown, 2006; Sigwela et al., 2009).  In 2012 

roughly 11% of the floodplain area was used for irrigated agriculture, down from 25% 1970. 

Direct channel modification, in the forms of ditching, straightening, and berm construction, 

occurred on many alluvial fans and reaches of the main channel to protect fields and 

infrastructure from floods.   

 

 

  

Figure 1-1 Location of the Baviaanskloof catchment area within South Africa  
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Figure 1-2 Map of rainfall, streamflow, and groundwater monitoring sites in the Baviaanskloof 

catchment (above) and higher resolution map of Gannaland (GN) tributary and Joachimskraal 

(JK) floodplain sites (below)  

Monitoring site name codes are written above each instrumented site. Two additional rainfall gauges 

used are off the map, shown in Figure 1-3. Delineated tributary valleys feeding the central valley 

floodplain based on the DEM shown, sourced from NASA's 30m SRTM data. Working for Wetlands 

proposed location for a permeable weir to trap sediment shown for Joachimskraal site.  

  



 

 19 

1.2.2  Model use and implications for structure and scale 

 

The purpose of developing a model of the Baviaanskloof catchment is to quantify 

potential impacts of various landscape and river channel restoration interventions on the 

river flow regime and water supply. The proposed restoration interventions are reduced 

grazing and replanting indigenous thicket vegetation on degraded hillslopes, restoring more 

dispersive surface flow paths across alluvial fans, and channel restoration measures on the 

trunk river to counteract incision and channel-floodplain disconnection. These activities 

have been advocated on the grounds of increasing biodiversity by restoring subtropical 

thicket and floodplain wetland habitats, improving carbon stocks, regaining lost agricultural 

potential, and for potential water supply benefits (Jansen, 2008; Mander et al., 2010; Mills 

and Cowling, 2006).  Baviaanskloof catchment residents obtain water from the floodplain 

aquifer, while the downstream reservoir supplies coastal urban areas and commercial 

agriculture outside the catchment. The flashy hydrology, reservoir storage capacity, and 

downstream water demand have meant that uncontrolled overtop spillage losses in wet 

periods and low reservoir levels in dry periods requiring water use restrictions have become 

regular occurrences (Jansen, 2008). The degree to which proposed restoration interventions 

could play a role in improving the reliability of water supply, by increasing the proportion of 

flow through the catchment coming via slower subsurface pathways compared to fast 

surface run-off, such that the reservoir is fed more evenly over time, is of interest for 

catchment management. As such, outputs that the catchment model needs to produce are 

groundwater levels in the floodplain aquifer, affecting local supply, and streamflow to the 

catchment outlet, feeding the Kouga reservoir.   
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Table 1-1 documents proximal processes that would be affected by the various 

restoration interventions and the implications this has for the model structure. The model 

will need to be discretized at the level of different landscape units in its conceptualization of 

surface processes.  Modeling sub-surface flows will need to differentiate processes in 

alluvial aquifer from the surrounding mountain areas.  Separate consideration of the alluvial 

aquifer is needed to assess impacts on groundwater levels relevant to irrigation.  If the 

exchange of water between the trunk channel and the floodplain aquifer changes direction 

and magnitude frequently, then assessment of the impacts of floodplain channel change will 

require that relative channel and groundwater elevations be calculated to estimate flows 

between these pools. Whereas saturated zone outflows could be represented by simple 

reservoirs for the other landscape units, a gridded groundwater model may be warranted for 

the alluvial aquifer such that the water level gradients in multiple directions can be 

considered. A monthly scale of assessment would be sufficient to look at water supply 

outcomes, however some relevant processes that impact supplies and are predicted to 

change, such as overbank flooding, occur at daily or sub-daily time-steps.  

 

There is no available streamflow and groundwater data from the time before hillslope 

vegetation cover was heavily impacted by livestock. Without this, a top-down model 

development approach cannot be used to infer parameterizations for restoration scenarios. 

As such the effected surface and shallow subsurface hillslope processes need to be 

considered in a bottom-up, mechanistic fashion with parameters related to measurable 

differences in canopy cover and soil properties that can be used to distinguish scenarios.    
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Table 1-1 Model structure implications of the intended model use in impact assessment for 

various restoration interventions 

Change due to 

restoration 

intervention 

Proximal hydrologic 

processes affected 
Model structure implications 

Hillslope 

vegetation cover 

and associated 

soil properties 

 Canopy interception 

 Evapotranspiration 

 Soil infiltration vs. surface 

runoff production 

 Soil water retention vs. 

lateral subsurface flow & 

percolation 

  

 Discretization separates hillslope surface 

processes from other topographic units 

 Canopy interception storage capacity and 

AET calculations based on vegetation 

cover properties 

 Soil water content thresholds for runoff 

and percolation linked to measurable soil 

properties 

 

Alluvial fan 

surface flow 

channelization 

 Partitioning of channelized 

vs. dispersed fan surface 

flow 

 Infiltration on the fan 

 

 

 Discretization separates alluvial fans 

 Separate surface and subsurface flows 

reaching the fan from tributary 

catchments 

 Partitioning of incoming surface flows 

between channel and fan surface based 

on channel characteristics 

 Overland flow on fan surface available 

for infiltration 

  

Floodplain 

channel 

dimensions 

 Overbank flooding and 

floodplain aquifer recharge 

 Water exchange between 

floodplain aquifer and 

channel 

 Discretization separates floodplain 

 Channel routing explicit 

 Channel flow exceeding channel capacity 

routed to floodplain surface  

 (If overbank flooding occurs when the 

floodplain is not saturated) Overbank 

flood water available for infiltration 

 (If the channel is regularly fed by the 

alluvial aquifer) Flow between channel 

and alluvial aquifer based on relative 

water surface elevations 

o Riparian area groundwater 

surface elevation and channel 

water surface elevation 

dynamically calculated  
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1.3  Methods 

1.3.1  Topographic analysis 

 

The application of the model requires discretization at the level of vegetation type and 

topographic land forms, at a minimum, in order to parameterize vegetation cover and 

channel connectivity scenarios. The catchment was classified into six topographic land 

units:  high plateaus, hillslopes, cliffs, canyon floors, alluvial fans, and floodplains.  These 

land units were assumed to have different dominant processes, warranting separate model 

conceptualization and parameterization based on previous literature  (Clark et al., 2009; 

Fenicia et al., 2008b; Gao et al., 2014; Savenije, 2010; Van den Bos et al., 2006). Local 

physical characteristics and observation data were used characterize the processes of, and 

connectivity between, delineated topographic units in the Baviaanskloof catchment, as 

described further below.       

 

Land unit mapping was done using a 30 m DEM based on slope and a topographic 

position index (TPI) as described by Jenness (2006), automated into Topography Tools 9.3 

(Dilts, 2010) for ArcGIS.  While other studies have used slope and elevation to delineate 

topographic land units (Gao et al., 2014), the west to east elevation decline along the 

Baviaanskloof’s 82 km longitudinal profile meant that elevation alone was not sufficient to 

differentiate flat areas into floodplains and plateaus over the entire catchment area. The TPI 

is the degree to which the elevation of cell is higher or lower than the average of the cells 

surrounding it within a user defined radius, or neighborhood window. TPI thresholds, based 

on the standard deviation of TPI values for the landscape considered, are then combined 
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with slope value thresholds to define slope-position classes. For example, a TPI value close 

to zero could occur either on a flat plain, in which case the slope would be close to zero, or 

at the middle of an even gradient hillslope, in which case the slope would be higher. A 

second level of classification into landforms was then done by combining two sets of slope-

position classes calculated using different neighborhood window sizes (Jenness, 2006). For 

example, an area classified as a flat plain using the smaller window and as a valley using the 

large window would be a floodplain, whereas a small window flat plain, large window 

mountain ridge would be a high plateau.  Cliffs were defined as any area in which the slope 

was greater than 60%. Alluvial fans were mapped separately by Bobbins (2011) using 

stereography.  

 

1.3.2  Data collection & available data 

 

Precipitation and temperature were measured hourly using tipping bucket rainfall gages 

and temperature sensors at two locations in the catchment from 2011-2013.  Daily rainfall 

and temperature from 1970 onward are also available for two gages within the catchment 

and five within 20 km from the South African Weather Services (SAWS) and the 

Agricultural Research Council (ARC).  Stream discharge was calculated over two years 

(2012-2013) at 6 locations in the catchment, using pressure transducers (Solinst Levelogger 

Junior Edge 5M, ± 5 mm accuracy) logging water depth hourly and channel surveys and 

manual flow measurements to derive rating curves. These locations were the catchment 

outlet (RH), two sites upstream on perennially flowing narrow valley reaches (ZH,TN), two 

on an ephemeral wide valley reach (JK), and one on an ephemeral tributary valley channel 
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(GN) upstream of the alluvial fan (Figure 1-2).  To obtain a longer-term record of albeit 

lower-resolution data, monthly flows at the catchment outlet were estimated for the period 

from 1972-2013 using the measured inflow to the Kouga reservoir and gage data on the 

Kouga River sourced from the South African Department of Water Services.  

 

To create rating curves for gauged sites on the main river, 14-16 manual flow 

measurements were taken at each site. To calculate flow at a gauged cross-section, water 

velocity readings were taken using a Marsh-McBirney Flo-Mate at 20%, 40%, and 80% of 

the water depth at 8-10 equally spaced points across the wetted channel width.  

Measurements were taken in flow conditions ranging from bankfull to low flows with depths 

close to 15 cm and water velocities close to instrument detection limits (0.015 m/s).  It was 

not feasible to take measurements during flood events when flow exceeded bankfull depths. 

Flow, slope, and wetted cross section measurements were used to determine Manning's n 

roughness values for the channels, while an n value of 0.1 was assumed for the floodplain 

(Hammersmark et al., 2008) to extend rating curves to peak flow values. At each gauged 

site, 100-200m wide floodplain and channel topography cross sections were surveyed using 

a differential GPS system (Thales ProMark 3 and base station), with widths extending 

beyond the active floodplain as discerned by vegetation and debris deposits.     

 

Groundwater levels in the floodplain alluvium were collected at two spatial and temporal 

scales.  Levels were manually read from staff gages in groundwater pits used for farm water 

supply at near monthly intervals at seven locations from 2011 to 2013 (Table 1-4). Some of 

these pits are located in the centers of wide floodplain basins while others are up against 
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mountain fronts. Test readings taken before and after irrigation pumping indicated that pit 

water levels recover within 6-10 hours and levels were recorded prior to pumping. In 

addition, eighteen 2 m piezometers were installed in three transects along a 1 km floodplain 

reach that is no longer actively farmed at a site called Joachimskraal (JK) (Figure 1-2). 

These were placed to examine the local groundwater impacts of a pilot floodplain channel 

restoration intervention: berm removal and construction of an in-channel sediment-trapping 

gabian weir.  Four piezometers were instrumented with hourly recording pressure 

transducers starting in July 2012, while the remaining fourteen were measured manually on 

a monthly basis. The site includes a small area of permanent wetland, and one of the 

instrumented piezometers was placed in the wetland. Both at the water supply pits and the 

piezometer transects, river stage at an adjacent cross section was measured at the same 

interval as the groundwater level. Topographic surveys done with a differential GPS system 

(Thales ProMark 3 and base station), allowed relative assessment of groundwater and 

surface water elevations at these sites.  Soil texture, bulk density, rock content, and 

conductivity were sampled from distinct soil layers during piezometer installation. 

Conductivity was measured in field using a double-ring infiltrometer. Rock content was 

measured using 10 L wet samples sieved and weighed in the field and wet-dry weight ratios 

of rock and soil calculated using 500g sub-samples dried in the lab.    

 

Soil moisture data from six 600 mm long capacitance probes (DFM), with sensors at 100 

mm intervals, installed on a hillslope are available for 2011-2013 from van Luijk et al. 

(2013) and continued data collection at this site. The soils on this hillslope were shallow, 

such that the bottoms of the probes were in regolith. Probes were installed along either side 
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of a fence-line separating an area of ongoing grazing (5% shrub canopy cover ) and an area 

that has had 30 years of vegetation recovery without grazing (45% cover). This study also 

included data collection on relative quantities of surface runoff and sediment transport in the 

different vegetation cover densities, assessed with Gerlach troughs, and estimation of 

canopy interception using tipping bucket gages in the open and under the canopy (van Luijk 

et al., 2013).  

 

1.3.3  Data diagnostics  

 

Available climate, streamflow, groundwater, soil moisture, and surface runoff time-

series were analyzed for diagnostic patterns indicative of different processes, flow paths, and 

landscape connectivity at the scales of the data (Table 1-2). Because surface flows in the 

tributaries are short lived and infrequent (e.g., only one flow event in the instrumented 

tributary in two years of observation), the majority of the available streamflow data 

represent large catchment areas (635-1,234 km
2
). This signal integrates what is likely to be a 

variety of different dominant processes at different scales as well as spatial variation of 

rainfall patterns. Data were not available at the appropriate scales to discern dominant 

processes for all the landscape units considered. Process studies and literature on catchments 

with similar characteristics were also assessed to suggest dominant processes at these scales, 

means of numerical representation, and parameter ranges.    
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Table 1-2 Hydrometric data diagnostics applied to guide model development 

Scale Data types Analysis Process interpretation 
Model structure 

decisions affected 

Catchment Streamflow, 

precipitation 

Average 

annual runoff 

ratio 

Low ratios indicate large ET 

withdrawals from dominant 

flow paths and/or significant 

storage in relatively inactive 

groundwater. 

ET influence on dominant 

model reservoirs and/or 

significant percolation to 

slow outflow groundwater 

Catchment Streamflow Quick vs. 

slow response 

flow 

proportions 

and output 

variability 

Relative dominance of surface 

and subsurface runoff 

pathways. Variability in slow-

flow output indicates 

variability in aquifer storage 

and/or sensitive storage-

outflow relationship. 

Balance of parameters 

driving partitioning 

between quick and slow 

flow paths and releases. 

Importance of modelling 

baseflow contributions 

dynamically.  

Catchment Streamflow, 

precipitation 

Storm event 

precipitation 

threshold for 

quick-flow 

runoff 

response  

Reflects cumulative surface 

and shallow subsurface 

processes of contributing 

landscape units. (Thresholds at 

smaller scales contribute.) 

Maximum combined 

storage of land unit surface 

and shallow sub-surface 

reservoirs.  Seasonal trend 

indicates ET influences 

antecedent storage in 

relevant reservoirs. 

Catchment Streamflow, 

precipitation 

Peak-forming 

storm event 

runoff ratio 

High ratios indicate 

dominance of quickflow paths 

vs. slower flow paths, storage, 

and/or ET.  Seasonal trends 

indicate ET effects on 

quickflow flow production.  

Balance of parameters 

driving production of 

quickflow vs. slow flow or 

storage, when above 

thresholds 

Catchment Streamflow, 

precipitation 

Shape of flow 

recession 

curve  

The degree of non-linearity 

and linear portions of curves 

can reflect the number of 

significantly different 

subsurface flow paths 

contributing to baseflow.  

Minimum number of linear 

or non-linear reservoirs 

needed to represent 

catchment storage-outflow 

relationship (non-linear 

will require more than one 

linear reservoir in the 

model).  ET influence on 

baseflow reservoirs. 

Hillslope Surface 

runoff 

presence / 

absence, 

precipitation 

Storm event 

precipitation 

threshold for 

surface runoff 

response  

Clear threshold indicates 

saturation excess surface 

runoff.   

 

Saturation excess surface 

runoff included.  

Hillslope Soil 

moisture, 

precipitation 

Time to 

decline post 

storm peak 

Fast declines (1-3 days) 

indicate dominant vertical 

drainage 

Parameterization of 

drainage from soil 

reservoir  

Hillslope Soil 

moisture, 

precipitation 

Peak timing & 

magnitude at 

different 

locations 

Delayed and higher peaks 

downslope compared to 

upslope indicate lateral 

subsurface flow.  

Inclusion of lateral flow or 

an interflow reservoir or 

pathway 
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Scale Data types Analysis Process interpretation 
Model structure 

decisions affected 

Tributary 

catchment 

Tributary 

streamflow, 

precipitation 

Precipitation 

threshold for 

streamflow 

initiation 

Reflects cumulative surface 

and shallow subsurface 

processes of land units in 

tributary catchments.  

Maximum combined 

storage of plateau, 

hillslope, and canyon floor 

surface and shallow sub-

surface reservoirs.   

  …vs. for 

hillslope 

surface runoff 

Less rain needed than for  

hillslope surface runoff 

indicates significant 

subsurface runoff. More 

indicates hillslope surface 

runoff detected below the 

tributary threshold must 

infiltrate.   

Connectivity and routing 

of hillslope surface and 

subsurface to tributary 

channel flow 

  …vs. for 

catchment 

streamflow 

peak 

Less rain needed than for 

catchment flow peaks 

indicates tributary surface 

outflows infiltrate on their 

flow path when below 

catchment response 

thresholds. More indicates 

subsurface flow from 

tributaries and/or that 

catchment peaks can come 

from the floodplain response 

alone 

Connectivity of tributary 

catchment catena surface 

and subsurface flows via 

alluvial fan and floodplain 

to the catchment outlet 

Alluvial 

aquifer 

Groundwater 

level, 

precipitation 

Groundwater 

level change 

following 

precipitation 

at different 

locations 

Responsiveness indicates 

notable recharge through 

direct infiltration/percolation 

and/or contributions from 

tributary catchments. No 

change indicates net recharge 

is not significant and/or 

another water source 

dominates. Seasonality 

indicates recharge is notably 

affected by ET.  

Connectivity between 

alluvial aquifer and 

tributary catchments 

and/or mountain block 

aquifer 

Alluvial 

aquifer  

Groundwater 

level, 

precipitation 

Groundwater 

rise post-

storm 

compared to 

maximum 

direct 

floodplain 

infiltration 

A rise greatly in excess of that 

predicted from only potential 

direct infiltration on the 

floodplain indicates influx 

from tributary catchments. 

Connectivity between 

alluvial aquifer and 

tributary catchments 
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Scale Data types Analysis Process interpretation 
Model structure 

decisions affected 

Alluvial 

aquifer 

Groundwater 

level, 

precipitation 

Peak timing 

post-storm at 

different 

locations  

Delayed peaks at downstream 

sites indicate subsurface flow 

connectivity. Similar peak 

timing indicates direct 

floodplain surface recharge 

and/or local tributary 

catchment sources dominate  

Connectivity between 

alluvial aquifer and 

tributary catchments 

Alluvial 

aquifer 

Groundwater 

level, 

precipitation, 

PET 

Groundwater 

level decline 

correlation 

with PET 

Responsiveness of the alluvial 

aquifer water table to PET 

demand indicates plant  roots 

are able to reach water table 

ET withdrawals from the 

alluvial aquifer 

River 

channel 

Streamflow Time periods 

when river 

reaches are 

gaining or 

losing flow 

A losing stream indicates 

streamflow infiltration into the 

alluvial aquifer. A gaining 

stream could be supplied by 

the alluvial aquifer, direct 

mountain bedrock outflow in 

narrow reaches, and tributary 

surface flows. 

Connectivity between 

alluvial aquifer and river 

channel. 

Alluvial 

aquifer -

river 

channel 

Groundwater 

level, river 

stage 

Relative 

elevation of 

groundwater 

and river 

water surface 

during 

baseflow 

Groundwater levels above the 

river surface indicate possible 

groundwater flow into the 

channel.  The reverse indicates 

possible channel infiltration. 

Lateral connectivity 

between alluvial aquifer 

and river channel. Need to 

explicitly calculate ground 

and river water elevations. 

Alluvial 

aquifer -

river 

channel 

Groundwater 

level, 

streamflow 

Streamflow 

correlation 

with 

groundwater 

level during 

baseflow  

Strong correlation indicates 

likely flow contribution from 

alluvial aquifer. Correlation 

only above a threshold 

indicates aquifer storage level 

not available to the channel. 

Lateral connectivity 

between alluvial aquifer 

and river channel. Dead 

storage in the alluvial 

aquifer reservoir and 

threshold of connectivity 

Alluvial 

aquifer 

Groundwater 

level 

Longitudinal 

vs. lateral 

water table 

slope 

Longitudinal slopes much 

greater than lateral ones 

indicates down-valley flows, 

with longer flow paths 

dominate.  

Travel time through 

alluvial aquifer to river 

channel. Need to 

dynamically calculate 

groundwater elevations. 
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Figure 1-3  Mean annual precipitation (MAP) surface from Lynch (2003) and the rainfall 

gauges used as daily timeseries for interpolation.  

Interpolation was done using mean monthly precipitation surfaces. The MAP surface is shown for 

demonstration. Rainfall gauges from SAWS and ARC.  
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1.3.3.1   Runoff production at catchment and sub-catchment scale  

 

Annual average runoff ratios, storm event quickflow runoff ratios, and thresholds of 

precipitation to initiate a streamflow peak were calculated from precipitation and streamflow 

data for the 1,234 km
2
 catchment (RH gauge, Figure 1-2) , the 635 km

2
 sub-catchment (ZH 

gauge), and the 9km
2
 tributary sub-catchment (GN gauge). Runoff ratios indicate the 

proportion of precipitation that is not either lost to ET or to groundwater storage not 

connected to the streamflow at this scale (Clark et al., 2011; McMillan et al., 2011). Storm 

event quickflow-runoff ratios and a separation of fast and slow changing portions of the 

hydrograph indicate the relative importance of quick versus slow flow pathways in feeding 

water to the catchment outlet. The catchment area is dominated by steep hillslopes and cliffs 

which would promote high runoff ratios during storms, despite the high PET, however 

vegetation cover, permeable soils and bedrock, and the buffering effects of the fans and 

floodplains would be expected to reduce these.   Large seasonal differences in storm runoff 

ratios indicate a notable effect of antecedent water storage, affected by ET, on quickflow 

production. Differences in thresholds and ratios between the catchment sizes could occur 

due to differences in land type distribution, vegetation cover, and/or scale dependent 

differences in connectivity thresholds. If less rainfall is needed to create runoff at a smaller 

scale than a larger one, this indicates infiltration and/or ET losses along flow paths that may 

need to be modeled if these smaller units are discretized.  

 

To estimate catchment and sub-catchment-wide precipitation, daily gage data from 6 

stations were interpolated to their closest topographic region using monthly rainfall 

distribution surfaces derived by Lynch, 2003 (Figure 1-3). Streamflow data were aggregated 
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to a daily time-step to correspond to rainfall.  Based on visual hydrograph analysis, a flow 

peak response was defined as starting when streamflow increased by 30% in a 24-hour 

period and ending when the daily decline in flow during the recession was less than 20%.  

The rain event quick-response runoff was defined as the sum of runoff during the event 

above the extrapolated pre and post event baseflows. Rainfall events were defined as starting 

when the catchment averaged daily rainfall was 1mm or more and ending when the average 

daily rainfall over the following three days declined below 1mm.   

 

1.3.3.2   Slow flow and flow recession analyses 

 

To estimate the proportion of the streamflow arriving via slower flow paths versus 

quicker surface and near-surface flow responses to storms, a simple signal processing 

recursive filter algorithm, described and applied by Hughes et al. (2004), Nathan and 

McMahon (1990), Smakhtin (2001), and Xu et al. (2009), was applied to the 2012-2013 

daily and 1973-2013 monthly flow time-series. This signal filtering technique has no 

inherent assumptions about hydrologic processes and the user must determine if the 

outcomes are meaningful. To address this, iterative separation outputs were compared to 

observed patterns of floodplain groundwater levels to select a separation in which the slow 

flow portion corresponds to flows passing through the alluvial aquifer.  At the Joachimskraal 

(JK) site, in the middle of a wide floodplain reach, the river water surface elevation and the 

groundwater table elevations in alluvial aquifer piezometers were both measured 

continuously at multiple sites using pressure transducers. It was assumed that the greater the 

elevation of the groundwater table above the river water surface, the more flow in the river 
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channel would be coming from lateral flows from the alluvial aquifer. Therefore the slow 

flow portions of different separation attempts for the 2012-2013 streamflow record were 

also compared to the time-series of height differentials between the groundwater and river 

water surface.   

 

Flow recession analyses, relating the rate of flow decline to the flow volume and hence 

to catchment storage, were used to determine if a simple linear reservoir model could be an 

appropriate representation of outflow from the storages feeding catchment baseflow.  Flow 

recession periods were defined when there were five or more consecutive days without 

rainfall.  For these periods, dQ/dt vs. Q curves (Q being streamflow and t being time) were 

created using variable length time-steps following the accumulated volume method 

described by Rupp and Selker (2006). This method smoothes data in low flow periods to 

account for flow variability approaching measurement accuracy when values are small.  A 

critical accumulated flow volume per time-step of 43,000 m
3
 was selected such that a daily 

average flow of 0.5 m
3
/s would give a one day time-step. This value was chosen based on 

the day to day flow variability in dry periods. Recession curves were plotted as log dQ/dt vs. 

log Q for recession periods that had with four or more time steps of consistently declining 

flows.  Linear regression of the log-log plots was used to determine the form and 

explanatory power of the best-fit exponential equation (dQ/dt = aQ
b
) to describe the 

recession. If the exponent, b, was found to be 1, the recession could be described by a linear 

reservoir for which the constant, a, was the recession constant.      
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1.3.3.3   Runoff production and soil moisture patterns at the hillslope scale 

 

Data from the instrumented hillslope were analyzed to determine the presence of 

precipitation thresholds to initiate surface runoff. The geology and vegetation type of the site 

are representative of the catchment’s hillslope area: quartzitic sandstone with moderately 

degraded thicket (Euston-Brown 2006). The site’s slope is 28%, somewhat lower than 

catchment average of 41% (range: 11-90%). Because the surface runoff volumes caught in 

the Gerlach troughs came from an undefined surface area, volumes were only used for 

presence-absence of surface flow and relative comparison between storm events.  Rainfall 

data for this assessment came from a weather station at the hillslope site itself. Because of 

the spatial variability in rainfall across the catchment, responses to specific events on the 

hillslope were not compared to the catchment event response.  However, if a precipitation 

threshold to initiate surface runoff on the hillslope is much lower than the catchment average 

precipitation needed to see a peak flow response at the catchment scale, this indicates that 

hillslope surface runoff is likely to infiltrate along its flow path. This would suggest that 

either a model structure that routes runoff across land units where it can infiltrate or one that 

directly estimates net runoff production at a larger scale would be appropriate. 

 

Data from soil moisture probes on the hillslope were examined for patterns that would 

indicate drainage speed and direction. Probes were positioned on three transects, upslope, 

midslope, and downslope, spaced roughly 200 m apart (van Luijk et al., 2013).  Peaks in soil 

moisture at different depths and hillslope positions, and the time taken for soil moisture to 

recede to a relatively constant level after rainfall events, were assessed to look at drainage 

versus soil moisture retention.  Sharp declines in soil moisture over one to two days after 
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rain events show fast drainage as a dominant process (McMillan et al., 2011). Consistently 

delayed and larger soil moisture peaks at lower hillslope positions following high rainfall 

events could indicate lateral subsurface flows moving downslope. Infiltration of surface 

runoff along its flow path could lead to higher soil moisture peaks at the downslope sites if 

they are sites of surface flow convergence, but if this was the cause of the higher downslope 

peak, then the delay in peak timing would be expected to be less than a day.   

  

1.3.3.4   Alluvial aquifer groundwater processes and connectivity 

 

The groundwater level in the floodplain alluvial aquifer and its relationship to rainfall 

and to water levels in the main river channel were assessed to understand the role of the 

alluvial aquifer in catchment processes.  The intention was to identify dominant pathways of 

recharge for the alluvial aquifer, when and to what extent the alluvial aquifer contributes to 

streamflow, and if ET withdrawal from the alluvial aquifer is significant and effects outflow 

into the river channel. The floodplain aquifer could receive recharge from direct infiltration 

and percolation of rainfall falling on the floodplain surface, from the surrounding mountain 

bedrock aquifer, from infiltration of incoming surface flows through river channel beds and 

overbank flooding, and/or from subsurface flows through alluvium in tributary catchments.  

 

The time-series of groundwater levels at the irrigation pits and piezometers at different 

locations were compared to rainfall events and PET. If the water table shows no response to 

a rainfall event, this indicates that direct infiltration and any surface or subsurface flow from 

tributary catchments were not a major net recharge source in that event. If the water table 
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does respond and the water table increase represents more water than fell on the floodplain 

surface, then there must be surface and/or subsurface contributions from the surrounding 

catchment. The irrigation pits are spread out over 48 km of the valley’s longitudinal profile, 

and so are fed by different sized catchment areas, with some located in the center of the 

floodplain and some up against the mountain front. Those at the mountain front are closer to 

both potential hillslope runoff and mountain bedrock subsurface flow sources. The delay in 

the groundwater level peak after a rainfall event was assessed to indicate the travel time and 

hence distance of subsurface flows of recharge water reaching the measured site.  The 

change in groundwater level over periods without rainfall was compared to the estimated 

PET demand for that period. Correlation between PET and the groundwater level decline 

would indicate ET withdrawals from the alluvial aquifer are notable at the water table depths 

observed. Much of the floodplain vegetation is dominated by Acacia karroo trees, a species 

known to have root depths of up to 40 m (Selaolo, 1998), so some correlation is expected. 

 

Streamflow and water elevation data indicators were used to look at the relationship 

between the alluvial aquifer and flow in the main river channel. Streamflow measurements 

from different points along the river indicated whether a reach was gaining or losing water.  

Frequent switching between gaining and losing suggests the need to model the aquifer-

channel connection dynamically rather than assuming a reach is constantly gaining or 

constantly losing. A losing reach could be feeding the alluvial aquifer and/or be losing water 

to evaporation. A gaining reach could be receiving water from the alluvial aquifer and/or 

channel flows from tributary catchments, however tributary channel flows are infrequent 

and typically only last days. The floodplain aquifer could feed channel flow if the water 
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table sits above the channel elevation. The water table slope, the distance over which the 

gradient exists, and the conductivity of the floodplain material influence the magnitude and 

timing of this contribution. In this case the material is dominated by sand and cobble 

deposits with high conductivities and so significant connectivity is expected when there is a 

gradient toward the channel. The difference between the groundwater and river channel 

water elevations was determined for different monitored points over time. Both the lateral 

slope across the floodplain to the adjacent river reach and down-valley longitudinal slopes 

were assessed. Periods in which the lateral water table slope exceeds the longitudinal slope 

would be expected to have faster passage of water out of the catchment because the 

subsurface flow path across the floodplain would be shorter: across, rather than down the 

floodplain. Groundwater levels were compared to streamflow to determine if any thresholds 

of connectivity to the alluvial aquifer were reached during the observation period. 
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1.4  Results 

1.4.1  Topographic unit discretization 

 

The topographic discretization showed that the landscape of the 1234 km
2
 catchment 

area is dominated by the hillslopes (40%) and plateaus (29%) while the central valley 

alluvial fill covers only 5% of the area (Table 1-3). Alluvial fans make up 21% of the 

alluvial fill area. Not all of the area described as floodplain may still be active floodplain, 

this area may include abandoned terraces that no longer receiving floods.  

 

 

Table 1-3 Cover of mapped topographic units in the Baviaanskloof catchment 

Landform Area (km
2
) 

Percent of 

catchment 

     

Tributary catchments 1,179 
 

95% 
 

  Plateau 

 

357 

 

29% 

  Hillslope 

 

494 

 

40% 

  Cliff 

 

209 

 

17% 

  Canyon floor 

 

118 

 

10% 

     

Central valley alluvial fill 56 
 

5% 
 

  Floodplain 

 

44 

 

4% 

  Alluvial fan 

 

12 

 

1% 

  

     
Catchment total 

 
1,234 

 
100% 
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1.4.2  Data diagnostics 

 

1.4.2.1   Quick vs. slow flow separation using signal filtering conditioned on 

groundwater patterns 

 

The pattern of peaks and troughs in the slower portion of the streamflow calculated 

using the signal filtering algorithm was compared to the pattern of groundwater table 

fluctuation in the floodplain and to the height difference between the floodplain water table 

and the river water surface. It was found that a single iteration of the filter algorithm 

separated a portion of the flow that roughly approximated flows entering the river through 

the alluvial aquifer. The single iteration appeared to produce a better approximation of the 

groundwater patterns than the flow separation produced by two or more iterations. It would 

be expected that peaks in this portion of the streamflow would be close in timing, or slightly 

delayed, compared to peaks in groundwater levels in the alluvial aquifer. This is seen to be 

the case both at the Joachimskraal piezometer transects, as shown in Figure 1-4 and Figure 

1-5, as well as further upstream where monthly groundwater data from Bookloof and 

Damsedrif irrigation pits was compared to flow separation at Zaaimanshoek, a site located 

between these two pits, seen in Figure 1-6.  In both cases the portion of flow separated by a 

single iteration of the filter algorithm better matched the patterns of groundwater levels and 

slopes toward the river than the portion separated by more iterations.  

 

Additional iterations of the filter algorithm produce a more constant, low flow portion 

without pronounced peaks which may represent the portion of flow being fed from the 

mountain bedrock aquifer via the alluvium to the river, rather than quicker flows from 
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mountain storm runoff infiltrating in the tributary catchments and alluvial fans. This is 

consistent with the unchanging groundwater levels seen at irrigation pits located right at the 

mountain front.  

 

Applying this flow separation technique to the 2012-2013 daily data for the outlet of the 

Baviaanskloof monitored at Rooihoek indicated that as much as 55% of the outflow for this 

period likely passed through subsurface paths.  Because flow peaks are smoothed in monthly 

data, application of the filter to monthly data produced a separation with only 25% of the 

flow in the slow flow portion for the same time period. This portion is similar to applying 

multiple iterations of the filter to the daily data to achieve a relatively constant low flow 

(22% of total 2012-2013 outflow), the pattern of which may approximate the flow portion 

that has passed through the mountain block aquifer. Performing the separation on the long-

term monthly time-series for the Kouga Dam and that estimated for the Baviaanskloof 

catchment alone suggests that 20% and 10% of the total flow from these catchments is from 

this slower flow portion, which likely excludes some of quicker subsurface flows through 

the alluvium in the weeks following a large storm.  In the Baviaanskloof the annual 

contribution from this slower flow portion ranged from 4 to 44% of the total outflow for a 

given year.  
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1.4.2.2   Catchment runoff ratios and event quickflow runoff ratios 

 

The annual average precipitation in the Baviaanskloof was 270 mm for the period from 

1972 to 2013 and 350 mm for 2012-2013. The estimated average annual runoff ratio for the 

1,234 km
2
 catchment was 7% for 1972-2013 and 11% for 2012-2013. This indicates over 

90% of precipitation, on average, leaves as ET and/or enters groundwater stores not 

connected to the stream. There was a large inter-annual variation in annual runoff ratios:  

values ranged from 1-33%. High ratios occurred in years with wet winter and spring months 

in particular, suggesting that seasonal ET variation plays a significant role in determining 

overall runoff production.  This pattern was consistent in the 2012-2013 dataset: winter and 

spring flow responses to rainfall were greater than in summer and fall for events of similar 

precipitation, as described below.   

 

Application of the signal processing filter indicated that, of streamflow leaving the 

catchment in 2012-2013, 57% of the water came via slow flow pathways that had similar 

flow fluctuations to the patterns of fluctuation observed in the alluvial aquifer groundwater 

levels. Applying an 11% runoff ratio, roughly 6% of the precipitation received left the 

catchment via slow-flow runoff paths and 5% as faster flows. Daily average streamflow was 

highly variable, from 0.13 to 106 m
3
/s, with a mean of 1.8 m

3
/s.  Of this, the daily flow from 

the slow pathways ranged from 0.13 to 8.9 m
3
/s with a mean of 0.88 m

3
/s.  When applying 

the separation filter to monthly data, peaks in subsurface flows occurring at scales of weeks 

to months are lumped into the faster flow portion. The filter results from the 1972-2013 

monthly data therefore reflect even slower flow pathways, such as those sourced from 

mountain bedrock and/or more distant parts of the catchment. These flows represented 10% 
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of catchment outflows on average over the long term, with annual proportions ranging from 

4 to 44%. Annual average flow ranged from 0.06 to 3.3 m
3
/s over these 42 years, while 

annual average flow from the filtered slow flow pathways ranged from 0.01 to 0.42 m
3
/s. 

For 2012-2013 this even slower slow-flow portion was 25% of the total outflow with flows 

ranging from 0.13 to 0.76 m
3
/s.  These results show that baseflow contributions can be high 

and can vary significantly compared to the total annual average flow over relevant time-

scales.  

 

In 2012-2013, 41 rainfall events were recorded, 19 of which coincided with discernable 

flow peaks (Figure 1-7). Over 23% of the rainfall in these years fell in two major events in 

the winter and spring of 2012.  These events had 71 mm and 81 mm total rainfall, 52 mm 

and 40 mm occurring in a 24-hour period, and resulted in peaks in the daily average flow of 

79 m
3
/s and 106 m

3
/s, estimated to be 6 and 8-year return flood magnitudes. For 1-2 days 

during these events, river water surface elevations were 0.5-0.8 m above the surveyed banks 

at gauged sites, indicating overbank flooding can occur with at least a 6 year frequency. 

Event quickflow runoff ratios over 1% were only seen for six events: the two large flood 

events and smaller (8-24 mm) events occurring in weeks following them (Figure 1-7). 

During the large flood events, 16% and 21% of the precipitation appeared as quickflow 

runoff, meaning the remainder must have come as baseflow, been stored as groundwater, 

and/or been lost to ET. These events were followed by several months of elevated baseflow:  

in winter 2012, prior to the large storms, there was a relatively steady baseflow of 0.18-0.20 

m
3
/s, whereas in the winter of 2013, a year after the large floods, baseflows were 0.32-0.35 

m
3
/s.  



 

 46 

 

Thresholds of precipitation needed to produce a flow peak at the catchment outlet varied 

and effects of antecedent conditions, storm intensity, and season were evident. The smallest 

event associated with a runoff peak had 5 mm catchment averaged rainfall, whereas the 

largest event to not produce any peak was 23 mm. In the dry conditions preceding the 2012 

floods and in late 2013, a year after the floods, summer rainfall events of up to 20 mm in 24 

hours and winter events of up to 10 mm did not produce peaks. This indicates that in dry 

conditions interception, detention storage, and soil storage can hold up to 20 mm. Given 

wetter antecedent conditions, likely prolonged due to low winter ET, rainfall events of 5-20 

mm occurring within weeks of the major flood events did result in notable flow peaks with 

runoff ratios of 1-12%.  After this period, events with similar rainfall had much lower quick-

flow ratios. For roughly 6 months after the floods, discernible flow peaks were observed at 

the catchment outlet following rain events of under 10 mm per day, event sizes that did not 

produce peaks in the pre-flood period or later in the recession.  This indicates that storages 

that impact production of quickflow runoff can take weeks to months to drain.  

 

Increased streamflow responsiveness to small rainfall events in the post-flood period 

could have several explanations.  Retained soil moisture could mean storage thresholds for 

runoff production are met with less rainfall. High PET makes this unlikely to persist into 

warmer seasons. Significant recharge of groundwater stores during the floods could result in 

greater outflow responsiveness to any additional recharge, depending on storage-outflow 

relationships.  If alluvial aquifer groundwater elevations are close to river channel 

elevations, additional recharge bringing the water table above channel would be expected to 
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increase outflows.  It is also possible that some of the minor catchment outflow peaks in the 

post-flood period reflect decreases in ET being withdrawn from more continuous subsurface 

flow along its path to the catchment outlet. If the groundwater feeding the prolonged 

elevated baseflows in the post flood period is more accessible for ET than groundwater was 

prior to the 2012 floods, then the decline in PET demand around rainfall events could 

increase net outflows and cause flow peaks that would not occur for similar PET dips in 

lower baseflow periods.  Peaks were seen at the catchment outlet within 2 days of the rain 

event, so if this was the case, the ET affected pathway either has significant flows close to 

the outlet and/or has a high enough flow rate for this response timing.  There was also more 

continuous surface flow along the length of the main river channel in the post-flood elevated 

baseflow period, whereas prior to the floods more channel reaches were dry and alluvial 

aquifer levels low. In the post-flood period more of the rain falling directly on the channel 

would remain as channel surface flow rather than infiltrating through the channel bed in dry 

reaches and/or reaches where the alluvial aquifer water table lies below the river channel.  
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Figure 1-7 Rainfall, PET, runoff, and event quickflow runoff ratio for the Baviaanskloof 

catchment 2012-2013 
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1.4.2.3   Sub-catchment scale runoff ratios and event quickflow runoff ratios 

 

Runoff ratios differed somewhat between the 1234 km
2
 catchment and the 635 km

2
 sub-

catchment. The overall 2012-2013 runoff ratio of the sub-catchment was 12%, close to the 

11% in the larger catchment. The total runoff for both was roughly 80 mm, but total 

estimated precipitation was lower in the sub-catchment (664 mm vs. 710 mm). All rainfall 

events detected at the catchment scale met the event criteria in the sub-catchment; however, 

fewer events had associated streamflow peaks at this scale, eight as opposed to nineteen, due 

to lower responsiveness to small rainfall events in drier periods. For only five of the eleven 

events with flow peaks at the larger catchment but no peaks at the sub-catchment was the 

estimated event rainfall less in the sub-catchment; however, the low gauge density reduced 

the spatial rainfall estimate accuracy. The lowest rainfall event associated with a peak in 

sub-catchment flow was 8 mm whereas the largest event to produce no flow was 20 mm.  

 

Patterns of quickflow runoff production during the two major floods differed with 

catchment scale. During the first heavy rainfall event, 15/07/2012, more runoff and a higher 

quickflow runoff ratio was seen at the outlet of the 635 km
2
 sub-catchment compared to the 

1,234 km
2
 catchment: 16 mm of runoff, with a quickflow runoff ratio of 21%, in the sub-

catchment compared to 11 mm and 16% in the larger catchment. This pattern was reversed 

in the second large event, 20/10/2012, in which the larger catchment had more runoff and a 

higher ratio: 17mm and 21% quickflow runoff for the large catchment versus 11 mm and 

13% in the sub-catchment.  In the smaller rainfall events in weeks following the major 

floods, the sub-catchment had lower runoff ratio than the larger catchment.   
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Possible explanations for differences in runoff could be differences in rainfall between 

the two catchments, in the distribution of land units, and/or scale-related runoff connectivity 

thresholds. The proportion of different land units is  similar between the two catchments as 

was estimated event rainfall, although distribution data is limited. There was a significant 

difference in the antecedent groundwater level in the alluvial aquifer and surface flow 

connectivity between the two major storms. Prior to the first event, the main river channel 

through the wide floodplain reaches was dry and the alluvial aquifer groundwater level was 

low. When the second storm occurred, groundwater levels were higher and there was 

continuous surface flow along the main river channel.  In the first event, some runoff leaving 

the sub-catchment would have infiltrated downstream, feeding the alluvial aquifer in the 

larger catchment. In the second event, a greater proportion of runoff produced in the sub-

catchment would have been conveyed as surface flow to the larger catchment outlet. 

Between the storms, the upper sub-catchment would be expected to become drier earlier as 

surface and subsurface flows move down the catchment. This is consistent with earlier 

declines in water tables higher up in the catchment described below. Drier antecedent 

conditions in the alluvial aquifer could contribute to lower runoff ratios in the sub-catchment 

in the later storms.        

 

1.4.2.4   Streamflow recession analysis 

 

Recession analyses did not show a single linear relationship between flow and catchment 

storage at the 635 or the 1,234 km
2
 catchment scale (Figure 1-8).  Sixteen recession events 

meeting the criteria described were assessed. Flow-storage relationships differed with season 
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and with the change in antecedent catchment wetness seen before and after the 2012 flood 

events.  Relationships between dQ/dt and Q for events were generally non-linear: best-fit 

values for the exponent, b, were all greater than one. Recessions after winter high flow 

events were closer to being linear with b values of 1.1-1.5 (R
2
=0.9), while those in spring 

had a b value of 2 (R
2
=0.8). Low flow events in drier periods were non-linear, with 

exponents of 3 or above, and weak relationships between recession and flow (R
2
<0.5). The 

weak relationship during low flows indicates that factors other than storage, such as ET or 

thresholds of drainage in contributing reservoirs, play larger roles in determining recession 

rates in these conditions. If a linear fit was applied to the more linear sections of high flow 

recession periods, the values for the constant, a, indicated drainage constants in the range of 

3-4 days after the winter flood flows and 13-15 days for the tail end of the recession and 

those occurring in spring and summer.  This could indicate dominance of drainage from 

different storages, such as surface and near-surface and subsurface flows.  

 

The non-linear recession patterns indicate that a single linear reservoir would not be 

sufficient to reproduce baseflows. The seasonal variation in the storage-discharge 

relationships and their shapes, approaching linear at some flows with increasingly non-linear 

tails, also indicate a single non-linear reservoir would not be appropriate.  Clark et al. (2009, 

2011) and McMillan et al. (2011) succeeded in reproducing similar recession patterns using 

multiple linear and threshold-controlled reservoirs with different outflow rate constants.       
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Figure 1-8  Log-log plot of change in flow (dQ/dt) versus average time-step flow (Q) at the 

catchment outlet 2012-2013.  

Different symbols represent separate recessions following different high flow events. 
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1.4.2.5   Hillslope surface runoff 

 

The relationship between rainfall and the quantity of surface runoff caught in the troughs 

on the sampled hillslope of van Luijk et al. (2013) varied with event intensity and antecedent 

conditions. Surface runoff was only found following rainfall events with over 5 mm in 24 

hours. In hot, dry periods such as the summers of 2010 and 2011, events over 5 mm did not 

show evidence of surface runoff.  Surface runoff was always detected for events with over 

15 mm of rainfall (Figure 1-9).  If this hillslope is representative, the observed trends 

indicate that the model should include a maximum storage for hillslope interception and 

soils close to 15 mm, and/or the maximum infiltration rate should be in this range, and 

antecedent soil moisture needs to be considered in determining infiltration. Soil depths on 

the hillslopes ranged from 100-600 mm, with a capacity between wilting point and 

saturation of 20-30%, and estimated conductivities of 30-60 mm/hr, which would indicate 

that more than 15 mm of rainfall would be needed to initiate surface runoff in a dry period. 

These values take into account the volumetric rock content of the soils; however, the rock 

cover on the surface of the soil was 30% on average, meaning that the surface infiltration 

capacity at the scale of the hillslope may be far less than estimated from point soil pit sample 

properties.        

 

In dry summers, even rainfall events of 20 mm did not produce runoff peaks at the 

catchment scale, although this magnitude of event always produced surface runoff at the 

hillslope scale. Surface runoff produced on the hillslopes can re-infiltrate on the toeslope, 

the alluvial fan, the floodplain, such that thresholds of catchment quickflow runoff need not 

be the same as the hillslope. This suggests that modeled hillslope runoff should be routed 
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over other land units in series in the model rather than having land unit runoff connected to 

the channel in series and/or bed infiltration from channels should be considered in the 

model. 

 

 

  

Figure 1-9  Event rainfall and runoff collected in Gerlach troughs on sample hillslope  
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1.4.2.6   Hillslope soil moisture 

 

Similar to the surface runoff, peaks in soil moisture were always present in the top soil 

layer (0-300 mm) following rain events of over 15 mm, while peaks were sometimes present 

for smaller events depending on the season and antecedent conditions.  Increases in soil 

moisture by over 5% were only seen following rain events over 7 mm.  Soil moisture peaks 

in the top 300 mm did not start reaching saturation until total event rainfall reached 

approximately 60 mm. This is consistent with soil properties indicating differences between 

field capacity and saturation and between wilting point and saturation of 15-20% and 20-

25%.  

 

Soil moisture peaked within a day of the maximum event rainfall in the top layers, but 

soil moisture showed less variability and slower change in the lower layer (300-600 mm) 

which could peak multiple days after the event. In the top layer, the decline of moisture after 

wetting up generally occurred relatively fast: moisture decreasing by 5-8%, constituting 10-

30% of the peak, per day over the first two to three days after rain. This indicates a 

significant portion of the infiltrated water drains quickly. However, it could take up to two 

weeks to reach a relatively stable level at which moisture changed by 2% or less per day.  

Soil moisture was higher in the lower layer than in the upper except during post-storm 

peaks. That lower layer moisture declined much less than the upper during warm dry periods 

indicates that the lower layer is less accessible to ET.  

 

The multi-day delay in the moisture peak in the lower layer could indicate the time 

needed for vertical percolation, but could also indicate time to concentration of water 
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draining laterally downslope, potentially at the soil-rock interface. Estimated soil 

conductivity, 30-60 mm/hr based on texture and infiltrometer measurements, suggests that 

vertical drainage of water over field capacity though the thin soil profile could occur in less 

than a day. The hypothesis of lateral flow, which would accumulate vertical recharge 

moving downslope, feeding soil moisture peaks in the lower soil layer is supported by the 

observation that the lower layer of the downslope site showed bigger and more delayed 

peaks than the upslope sites (Figure 1-10).  The downslope site was at the toe of steeper 

slope, having a lower grade than the upper sites, and so could be expected to collect water. 

A bulge in soil moisture maintained in the lower layer of the downslope site over two weeks 

after the major storm on 20/10/2012 was not seen upslope. Soil moisture and peaks at the 

upslope site were lower than at the downslope. For the upper layer, this potentially indicates 

less infiltration and/or more drainage upslope and/or infiltration of surface runoff at the 

downslope site. For the lower regolith layer, this further supports hypothesized lateral 

interflow.  
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Figure 1-10  Soil moisture at different positions and soil depths and daily rainfall on the 

sample hillslope 



 

 58 

1.4.2.7   Tributary sub-catchment scale runoff 

 

At the instrumented 9 km
2
 tributary sub-catchment, channel flow only reached the 

canyon mouth during the second flood event of 2012. Flows started the same day as the 

maximum rainfall intensity (40 mm in 24hrs) and continued for 6 days. There is no rain 

gauge in the mountains of this sub-catchment and the interpolated quantity of rainfall 

received by this small area during a particular event is more uncertain than averages at the 

larger scales. However, the quickflow runoff ratio for the event was estimated to be 80-90%, 

making the overall surface runoff ratio for the 2012-2013 period 12-14%. The instrumented 

tributary is located in the Baviaanskloof Mountains north of the floodplain. Other tributaries 

coming from the Kouga Mountains to the south did have channel flows during the first flood 

event of 2012, presumably due to the spatial distribution of rainfall and potentially the size 

and landform properties of sub-catchments on the different sides. Tributary sub-catchments 

did not produce channel outflow in any of the smaller rain events in the observation period, 

with event totals of 4 to 43 mm with 4 to 23 mm in 24hrs, and catchment residents farming 

adjacent to these tributaries estimated local rainfall events in the range of 30-50 mm in 24 

hours are needed to initiate flows (Powell, 2015). These observations indicate that more 

precipitation is needed to produce surface flows at the tributary catchment outlet than was 

observed to produce hillslope surface runoff and a runoff peak response at the catchment 

outlet.  

 

The vast majority of the 1,234 km
2
 catchment area is comprised of tributary sub-

catchments. The fact that the larger catchment showed a runoff response to smaller events 

which produced no surface flow responses in the tributaries can indicate that the large 
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catchment flow responses to smaller events are a result of processes occurring on the 

floodplain alone and/or that subsurface flows leaving the tributary catchment areas feed 

surface runoff at the catchment outlet. Runoff from the hillslopes in the tributary catchments 

can infiltrate into the alluvium of the canyon floors and alluvial fans at the valley mouth. 

Some of this water may reach the floodplain aquifer and feed streamflow in the main river 

without production of surface flows from the tributaries. Evidence of this is seen in alluvial 

aquifer groundwater level rising in excess of maximum likely direct floodplain infiltration 

following smaller rainfall events, as described below. 

 

1.4.2.8   Alluvial aquifer water table fluctuation 

 

The alluvial aquifer response to rainfall varied with season, antecedent conditions, and 

location. Based on their water table fluctuation patterns, monitored sites were classed into 

three groups: highly responsive, slow responsive, and unresponsive (Figure 1-11). The two 

sites with groundwater pits in wide floodplain reaches (VR and DD), were ‘highly 

responsive’: water tables fluctuated by 4-6 m during 2011-2013, rising sharply following 

large rainfall events and falling significantly in dry periods (Table 1-4, Figure 1-11). 

Continuous data from instrumented piezometers in the wide JK floodplain showed a 

similarly responsive pattern with a smaller, 2 m, amplitude. Piezometers also showed small 

rises (5-10 cm) following smaller rainfall events (19-36 mm: 29/11/12, 10/2/2013, 

17/11/2013) that could not be detected at the resolution of the pit data. The BK site, located 

at the end of a wide valley at the mouth of a narrow reach, had a dampened responsive 

pattern, falling in between the highly and the slow responsive sites.  The ZH and TN sites, 
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located at mountain fronts further downstream in the catchment, were considered ‘slow 

responsive’. Water levels rose by 3-4 m during 2011 and by 1 m in 2012 at these locations, 

but the response was dampened, having a much slower decline in dry periods compared to 

the highly responsive sites.  The ‘unresponsive’ sites, JK and LG, were also located at 

mountain fronts, but water levels fluctuated by less than a meter over the observation period. 

The instrumented piezometer in the JK wetland similarly showed minimal response to 

rainfall.  Water at these two sites was tinted red by oxidized iron, not observed at the other 

sites, likely indicating they receive mountain bedrock groundwater from iron-rich lithologic 

layers common to TMG formations (Xu et al., 2009).  

 

Table 1-4 Monitored groundwater pit site descriptions 

Site name 

 

Location type 

 

Water 

color 

 

Catchment 

area 

(km
2
) 

 

Floodplain 

surface 

elevation 

(m.a.s.l) 

 

Pit 

depth 

(m) 

 

Pit 

depth 

below 

river 

thalweg 

(m) 

 

Distance 

to river 

channel 

(m) 

 

Veloren Rivier 

(VR) 

Floodplain,  

wide valley 
clear 362 670 7.6 4.8 135 

Bokloof  

(BK) 

Mountain front, 

narrow valley 
clear 450 620 10.8 4.3 42 

Damsedrif  

(DD) 

Floodplain,  

wide valley 
clear 692 475 9.4 7.6 529 

Joachimskraal 

(JK) 

Mountain front,  

wide valley 
red 866 411 3.7 0.03 425 

Zandflakte  

(ZF) 

Mountain front,  

wide valley 
clear 931 379 6.1 3.9 150 

Tuin  

(TN) 

Mountain front, 

narrow valley 
clear 988 362 3.2 1.6 82 

Landsegat 

 (LG) 

Mountain front, 

narrow valley 
red 1,023 336 4.2 2.7 177 
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The observation period was preceded by a prolonged dry period (2007-2010) during 

which high rainfall events fell primarily in warmer months resulting in little runoff and low 

groundwater levels. A series of closely timed rain events in the summer of 2011 (78 mm 

over 30 days, including a 40 mm event), was followed by a slow rise in the water table by 1-

2 m at the highly responsive sites, peaking 2-4 weeks after the rainy period (Figure 1-11). 

Two large multi-day storms (62 mm and 53 mm) in the winter of 2011 each resulted in 

additional rises of 1-2 m. These were followed by a steep recession in spring and summer. In 

contrast to the response to storms in wet and winter conditions, a 24 mm and a 40 mm storm 

over two weeks in mid-summer 2012 was followed by a minimal 0.2 m rise. Within nine 

months of the 2011 winter peak, the water tables at the highly responsive sites had receded 

back to the level seen at the beginning of the observation period.  The larger storms in the 

winter of 2012 resulted in a 4-6 m rise at the responsive sites which again receded back to 

pre-storm levels within 10-12 months. Water tables at the slow responding sites rose after 

the winter storms of 2011 and 2012, but declined more slowly afterwards and did not recede 

back to pre-storm levels during the observation period.  

 

The magnitudes of the water table responses indicate that the alluvial aquifer is 

recharged by flows originating elsewhere in the catchment in addition to any direct recharge 

from the floodplain surface. If the alluvial aquifer was only recharged by rainfall on its 

surface, to see a rise in the water table of 5 m following a 74 mm rainfall, seen at the VR site 

following the 14/7/2012 event, the specific yield of the alluvial material would have to be 

under 0.015. This maximum value was estimated assuming 100% of the precipitation goes 

into recharge, which would not be the case. For the1.3 m rise observed at the JK piezometer, 
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the value would have to be under 0.06. These values are well below what would be expected 

from a sand and cobble aquifer.  If it is assumed that the specific yield of the alluvial 

material is 0.1-0.2, then 10-40% of the 74 mm of rain falling on the catchment area of the 

site would need to recharge the alluvial aquifer to a result in a water table rise of 5 m over 

the floodplain area down to VR and a 1.3 m rise for the floodplain area down to JK.  This is 

also likely true for the smaller rainfall events observed to cause water tables to rise at the JK 

floodplain:  more than 19-36 mm of rain would be needed for a 50-100 mm rise in the water 

table from direct infiltration on the floodplain surface alone, once interception and soil 

storage are taken into account, although proportionately less additional subsurface flow from 

the tributary catchments would be needed to make up the difference.  

 

Water tables peaked days to weeks after major rainfall events. Due to the low temporal 

resolution of the pit gauge data, the date of a peak cannot be determined, nor can short lived 

responses to smaller events. If the peak is assumed to have occurred within the time interval 

surrounding the highest water level recorded, peaks generally occurred at the highly 

responsive pit sites at least two weeks after a major storm, potentially being delayed as 

much as four weeks.  The continuous data at the JK piezometers in 2012 indicated a faster 

initial rise in groundwater levels, peaking within two days of the first winter storm 

(14/7/2012) and immediately starting recede (Figure 1-11). This could be due to direct 

infiltration and infiltration of surface flow from the tributary catchments. However, without 

further rainfall, this initial peak was followed by a second, slower rise reaching a higher 

level and appearing to peak and plateau 17 days after this storm, more consistent with trends 

in the pit data. This is indicative of subsurface flows from the tributary catchments which 
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would be expected to have longer travel times. Water table peaks were then reached at this 

site within two to four days of the 7/8/2012 and 20/10/2012 storms, which occurred with 

higher antecedent groundwater and river level conditions facilitating more surface flow. If 

there was a greater time to peak at downvalley sites, it was not detectable at the resolution of 

the pit data except during winter 2011 in which site DD may have peaked 3 days to 3 weeks 

after site VR. The slower and less   

 

When water tables were receding, the decline in the water table at the JK piezometers 

over periods without rainfall showed medium correlation with the estimated PET for the 

time interval (slope=2 mm/mm, R
2
=0.5, Figure 1-12). This trend was also seen at the 

responsive groundwater pits with higher correlations and steeper declines with PET (slopes 

5-27 mm/mm, , R
2
 0.6-0.9), although there were too few time intervals with receding water 

tables and no rainfall for the trends to be significant. This indicates that the alluvial aquifer 

is affected by ET.  The range in declines per unit PET would reflect differences in local 

sediment properties and specific yield, vegetation cover root depth and density (AET vs. 

PET), and other water flows in and out of the site from downvalley alluvial aquifer flow and 

tributary catchment and mountain bedrock in puts.  
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Figure 1-12 Decline in water table compared to estimated PET at responsive pit 

and piezometer sites for time periods with receding water tables and no rainfall  

Linear regression best fit functions shown as dotted lines 
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1.4.2.9   Alluvial aquifer – floodplain channel connectivity 

 

Daily average flow at the 1,234 km
2
 catchment outlet (RH) ranged from 0.13 to 106 m

3
/s 

with a mean of 1.5 m
3
/s. At the most upstream gaged site (ZH), located in a perennially 

flowing narrow reach fed by a 635 km
2
 catchment, it ranged from 0.06 to 51 m

3
/s with a 

mean of 0.79 m
3
/s. At the JK site, an ephemeral site in the middle of a wide floodplain reach 

fed by an 865 km
2
 catchment area, it ranged from 0-58 m

3
/s having a mean of 0.77 m

3
/s. 

There was no flow at JK for a period in early winter 2012 (12/5/2012-14/7/2012) preceding 

the flood events described above. Other river channel sites were checked for presence of 

flow and river stage when groundwater observations were made at adjacent pit sites. 

Upstream floodplain sites (VR, BK, DD) dried out earlier in 2012 than JK and stopped 

flowing in the dry fall and winter of 2013.   Comparing streamflow at the most upstream and 

downstream gauged sites, ZH to RH, the 55 km reach was a gaining stream for the majority 

of 2012-2013, including periods when the intervening floodplain was dry and when 

streamflow was being fed by the slowest groundwater pathways (Figure 1-13). There were 

two periods in the summer and fall of 2013 (21 days in February and 18 days in March) 

during which flow at ZH exceeded the catchment outlet (RH) flow by 7-20%. These 

occurred during baseflow periods with no significant rainfall, but when groundwater and 

baseflows were elevated from the 2012 floods. The elevated water table could be more 

accessible to ET, causing the intervening net loss not seen in when groundwater tables were 

lower. Both times the reach reverted to a gaining stream after a rainfall event of over 30 mm 

and it remained so through the following winter and spring. 
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In contrast, the upstream ZH to JK sub-reach, 15 km completely located in wide 

floodplain, was most often a losing stream in 2012-2013, only gaining water along its length 

for days to weeks following heavy rainfall. The sub-reach became a gaining reach 

immediately following the large rainfall events of 2012. In the first two storms (14/7/2012 

and 7/8/2012) flows at JK receded more quickly than at ZH such that the reach became a 

losing stream again within four to six days. This is consistent with the time period of post-

storm surface flow in the instrumented tributary channel. A several week delayed secondary 

rise in flow occurred after these storms which was bigger at JK than upstream at ZH, making 

it a gaining reach again for two months in the winter and spring of 2012. This is consistent 

with the delay in the rise of the alluvial groundwater table. Following the spring 20/10/2012 

storm peak, there was again a fast recession, but the reach stayed a gaining reach for four 

weeks.   

 

Measured relative elevations of the alluvial aquifer water table and the river water 

surface showed groundwater gradients toward the stream at different time periods for 

different sites. Water tables over 1 m above the river water surface were observed, even at 

the upper catchment sites, following the winter storms of 2012. At the pit sites further down 

in the catchment (JK, ZF, TN, LG), the groundwater surface was higher than the local river 

water surface at all observation times (Table 1-5). This is consistent with the generally 

gaining downstream river reach. All observations were made during baseflow periods and it 

is possible river levels exceeded groundwater levels during storm peaks. Water tables at 

sites further up in the catchment (VR, BK) fell below the river channel both in the early 

winter of 2012 and by the middle of 2013, which coincided with the river drying out at these 
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sites (example, Figure 1-14).  At DD, the pit furthest from the river, the water table was only 

over the adjacent thalweg for four months during late 2012. The piezometer transects at the 

JK site revealed that the relationship between the aquifer and river can vary at spatial scales 

of hundreds of meters. Piezometers located in and close to the permanent wetlands on the 

south side of the floodplain, which had relatively little water level variability, showed water 

tables consistently higher than in the channel except during storm peaks. Groundwater levels 

along the most downstream transect and on the northern side of the floodplain were mostly 

slightly above the channel following the 2012 floods, but had receded below the channel by 

July 2013.     
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Figure 1-13 Gains and losses in daily average streamflow for different monitored river 

reaches, 2012-2013  

Calculated as: flow in downstream site – flow at upstream site 
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On average over the monitored period, local lateral groundwater gradients were similar 

to, or lower than, the longitudinal gradient; however at multiple pit sites the lateral gradients 

exceeded longitudinal for several months following the large rainfall events in 2012 (Table 

1-5). The average longitudinal slope of the water table over the 48 km
2
 length of floodplain 

spanned by the monitored groundwater pit sites was 0.7%, the same as the topographic slope 

over this reach. Despite the notable fluctuations in local groundwater levels at different sites, 

the large distances and elevation changes between sites meant that observed longitudinal 

groundwater gradients at this scale did not vary by more than 0.02% over time. Trends at the 

smaller scale at the JK site showed a 1% local longitudinal gradient and an almost flat lateral 

water table prior in the dry period prior to the 2012 floods, with the exception of the 

permanent wetland site which created a local gradient of 0.5% toward the channel. The 

flood recharge created gradients toward the stream at most locations, however these 

remained lower than the down-valley slope and a gradient toward the north floodplain 

developed at the middle transect (Figure 1-15) perhaps due to preferential flow paths such as 

old channel deposits in the alluvium, patterns of localized subsurface water sources feeding 

the alluvium, and/or draw-down from dense tree stands.   
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Table 1-5 Average longitudinal and lateral groundwater gradients observed at pit sites from 

2011-2013 and response to the winter 2012 flood events 

Pit site 

Average groundwater 

gradient Maximum 

slope 

toward 

river 

Days 

groundwater 

above river 

level post 

14/7/2012 flood 

Days lateral > 

longitudinal 

gradient post 

14/7/2012 flood 

Longitudinal 

(to next site 

down-valley) 

Lateral  

(to river 

water 

surface) 

 

Veloren Rivier (VR) 0.7% 0.48% 1.2% 240 - 270 150 - 180 

Bokloof (BK) 0.8% 0.96% 2.8% 365 - 395 180 - 210 

Damsedrif (DD) 0.7% -0.50% 0.04% 78 - 126 10 - 78 

Joachimskraal (JK) 0.6% 0.27% 0.32% always above always below 

Zandflakte (ZF) 0.4% 0.37% 0.49% always above 345 - 375 

Tuin (TN) 0.7% 0.81% 0.88% always above always above 

Landsegat (LG) -  0.25% 0.33% always above - 

  

Figure 1-14 Groundwater and river water surface elevations at site BK compared to 

rainfall 
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Figure 1-15 Water surface elevation gradients between all piezometers at selected dates  

Dotted lines between points and labels indicate measured water table slope between 

piezometers with no lines indicating dry piezometers. White lines are summed slope vectors 

of proportional length, slope vector lines were cut short and made thicker when intercepting 

a flowing channel. 

 

Dry period – no streamflow, winter 

(10/07/2012) 

Post flood, groundwater peak  

(12/11/2012) 

  

Post flood, winter  

(03/08/2012) 

Dry period, summer  

(07/12/2013) 
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Streamflow showed medium to high positive correlations (R
2
 values 0.5-0.8) with 

groundwater levels during baseflow periods at sites where water-tables were highly 

responsive to rainfall events. The increase in streamflow associated with a given rise in the 

water table was not constant over the range of water table depths observed: most sites 

showed a point of inflection above which much greater increases in flow were observed per 

unit water table rise (Figure 1-16).  This point of inflection occurred close to where the 

water table reached the level of the adjacent river channel thalweg at the more highly 

responsive sites, VR, BK, and DD. At the deepest water tables recorded these sites, 

streamflow correlation appeared weaker, perhaps indicating a threshold of interaction, 

however there were too few data points at these levels to be conclusive.  At JK, ZF, TN, and 

LG the water table was always above the channel, but some sites still showed evidence of 

inflection points. Correlations were weakest at the non-responsive sites, JK at the mountain 

front and piezometers in and around the wetland and at LG, but there appeared to be some 

relationship between water table and streamflow when only periods of very low flow are 

considered.  

 

The changing relationships at different flows and water tables may indicate different 

pathways contributing to baseflow at different water levels. One possible explanation for 

this would be a change in conductivity of the aquifer material with depth, reaching a less 

conductive layer as the water table declines. Another explanation is a transition from a state 

with a steeper groundwater table from the mountain front laterally across the floodplain to 

the channel into a state in which longitudinal gradient down the valley is dominant. This 
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could occur as inputs to the floodplain aquifer along the mountain fronts recede after a wet 

event. In the initial period more groundwater would flow along a shorter path length from a 

point in the floodplain to the adjacent channel, and streamflow would be highly responsive 

to a change in this gradient. In the later stage, water would flow longitudinally down the 

length of the floodplain, traveling much further before intersecting the channel further 

down-valley. This would take much longer and provide more opportunity for ET losses, 

such that streamflow is less sensitive to small changes in groundwater levels in this phase. It 

would also be expected that, as groundwater flows down valley, the water tables at more 

down-valley sites become stronger determinants of catchment outlet streamflow later in a 

flow recession period than they had been earlier on. Immediately after a large event the 

entire catchment would have been contributing flows via faster pathways whereas later on, 

only the more down valley sites are. This was seen at ZF and LG sites where correlations at 

high flows were very much weaker and showed large changes in flow with almost no change 

in groundwater level, but showed much clearer correlations at lower flows.  
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Figure 1-16 Streamflow and groundwater levels at pits and instrumented piezometers.  

Logging piezometers captured data over a larger range of flow conditions than manually read pit 

sites. For JM6 and JD2 piezometers two scales are shown for visual comparison with pit sites and to 

show the pattern over the full range of values observed 
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Table 1-6 Diagnostic patterns observed in the hydrometric data and resulting model structure 

Scale Data types Analysis Patterns observed Model structure 

Catchment Streamflow, 

precipitation 

Average annual 

runoff ratio 

Low average runoff ratio 

(7%).  

High variability with rainfall 

seasonality and intensity. 

High interception and 

infiltration rate relative to 

average storm size. 

ET withdrawals from 

significant reservoirs on 

flow path. 

Catchment Streamflow Quick vs. slow 

response flow 

proportions  

Slower, subsurface flow 

pathways can contribute 

significantly to overall flow 

(55%) and show high 

variability.  

Baseflow contributions 

dynamically modelled (as 

opposed to a temporally 

static quantity) 

Catchment Streamflow, 

precipitation 

Storm event 

precipitation 

threshold for 

quick-flow 

runoff response  

Dry period threshold of 

roughly 20mm to see a flow 

peak.   

Wet antecedent conditions 

allow for peaks after much 

smaller storms. 

Combined storage space 

of various land units in 

canopy interception, 

detention storage, and 

soils is roughly 20mm. 

Catchment Streamflow, 

precipitation 

Peak-forming 

storm event 

runoff ratio 

Low event quick-flow run-

off ratios even for intense 

storm events (max 21%).  

Ratios are influenced by 

antecedent conditions which 

last weeks to months.  

High interception and 

infiltration rates relative to 

storm events. 

Storages that effect 

quickflow runoff 

production drain over 

weeks to months.   

Catchment Streamflow, 

precipitation 

Shape of flow 

recession curve  

Non-linear recession patterns 

that vary with season and 

flow. Recessions at high 

winter flows are most linear.  

Low-flow and summer 

periods being highly non-

linear with weak 

relationships to storage.  

Baseflows modeled with 

multiple reservoirs with 

different drainage rates.  

ET withdrawls from 

baseflow reservoirs. 

Hillslope Surface 

runoff 

presence / 

absence, 

precipitation 

Storm event 

precipitation 

threshold for 

surface runoff 

response  

Dry period threshold of 

roughly 15mm to see surface 

runoff.   

Wet antecedent conditions 

allow for runoff from smaller 

storms. 

Hillslope maximum 

interception and soil 

storage close to 15mm 

(per storm) 

Hillslope Soil 

moisture, 

precipitation 

Time to decline 

post storm peak 

Fast decline (1-2 days) of 

soil moisture post-storm.  

Fast vertical soil drainage 

on hillslopes.  

Hillslope Soil 

moisture, 

precipitation 

Peak timing 

and magnitude 

at different 

locations 

Delayed peaks in lower layer 

(regolith) and greater peaks 

downslope. 

Lateral interflow on 

hillslopes 
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Scale Data types Analysis Patterns observed Model structure 

Tributary 

catchment 

Tributary 

streamflow, 

precipitation 

Precipitation 

threshold for 

streamflow 

initiation 

Rainfall over 30mm needed 

for channel flow 
  

   …vs. for 

hillslope surface 

runoff 

More rainfall needed to 

initiate tributary channel 

flow than needed for 

hillslope surface runoff.  

Hillslope runoff connected 

in series to canyon floor 

and alluvial fan such that 

infiltration can occur on the 

flow path 

    …vs. for 

catchment 

streamflow peak 

More rainfall needed to 

initiate tributary channel 

flow than needed for a 

streamflow peak at the 

catchment outlet (or for rise 

in alluvial aquifer 

groundwater in excess of 

direct infiltration).  

Subsurface flow 

connectivity between 

tributary catchment land 

units, the floodplain alluvial 

aquifer, and the catchment 

outlet. 

Alluvial 

aquifer 

Groundwater 

level, 

precipitation 

Groundwater 

level change 

following 

precipitation at 

different 

locations 

Large water table response 

to large rainfall events, and 

to those in wet and winter 

conditions at, sites higher 

up in the catchment and 

closer to the floodplain 

center.  

Smaller response and 

recession further down in 

the catchment. 

Very little fluctuation in at 

some mountain front 

locations.  

High conductivity 

floodplain sediment to 

allow significant 

percolation and downvalley 

flow. 

Mountain bedrock 

subsurface flow into 

alluvial aquifer that 

fluctuates little or very 

slowly in response to 

rainfall.  

Alluvial 

aquifer  

Groundwater 

level, 

precipitation 

Groundwater 

rise post-storm 

compared to 

maximum direct 

floodplain 

infiltration 

For large storms, water 

table rise was in great 

excess of that expected due 

to recharge from direct 

infiltration on the floodplain 

alone.  

Smaller storms showed a 

smaller proportional excess.   

Subsurface flow 

connectivity between 

tributary catchment land 

units and the floodplain 

alluvial aquifer 

Alluvial 

aquifer 

Groundwater 

level, 

precipitation 

Peak timing 

post-storm  

Post storm-event water table 

peaks were delayed days to 

weeks, with a greater delay 

with drier antecedent 

conditions.  

Subsurface flow from the 

tributary catchment to 

alluvial aquifer has a 

drainage time in the order 

of weeks 

Alluvial 

aquifer 

Groundwater 

level, 

precipitation, 

PET 

Groundwater 

level decline 

correlation with 

PET 

Water table declines were 

correlated with PET at all 

responsive sites 

ET withdrawal from the 

alluvial aquifer 
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Scale Data types Analysis Patterns observed Model structure 

River 

channel 

Streamflow Time periods 

when river 

reaches are 

gaining or losing 

flow 

At larger scales (55km) the 

stream was predominantly 

gaining, indicating consistent 

flow sources. 

Short periods of net flow loss 

during summer baseflow with 

elevated water tables indicate 

ET effects.  

Within the wide floodplain, 

the stream was generally 

losing, except during flood 

surface-flow periods and post-

flood periods with high 

alluvial aquifer water tables. 

River channel and alluvial 

aquifer dynamically 

coupled.  

Secondary slower draining 

groundwater reservoir 

(maintains gaining flows in 

dry periods). 

Alluvial 

aquifer 

-river 

channel 

Groundwater 

level, river 

stage 

Relative 

elevation of 

groundwater and 

river water 

surface during 

baseflow 

Up-valley and mid-floodplain 

site groundwater fluctuated 

above and below the river.  

Down-valley and mountain 

front sites were consistently 

above.  

River channel and alluvial 

aquifer dynamically 

coupled. 

Alluvial 

aquifer 

-river 

channel 

Groundwater 

level, 

streamflow 

Streamflow 

correlation with 

groundwater 

level during 

baseflow  

Medium to high correlations 

with water tables at responsive 

sites.  

Relationships change over the 

recession indicating different 

pathways of drainage 

dominate at different periods.  

No obvious threshold of 

interaction at levels observed 

(up to 5m depth) 

Alluvial aquifer represented 

by multiple baseflow 

reservoirs with different 

drainage rates or flow 

through the alluvial aquifer 

to the channel calculated 

dynamically in two 

dimensions.  

Dead storage in the alluvial 

aquifer must be more than 

5m deep. 

Alluvial 

aquifer 

Groundwater 

level 

Longitudinal vs. 

lateral water 

table slope 

Water table gradients across 

the floodplain to the river 

were smaller than the 

longitudinal slope on average, 

but exceeded it for weeks to 

months after major floods at 

multiple sites. During this 

period time travel through the 

aquifer material to the channel 

would be shorter and faster.    

Flow through the alluvial 

aquifer dynamically 

calculated in 2 dimensions.  
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1.4.3  Proposed conceptual model 

 

The implications of the diagnostic patterns in the hydrometric data for catchment 

modeling are summarized in Table 1-6 Diagnostic patterns observed in the hydrometric data 

and resulting model structure. Land units within the tributary catchments, such as hillslopes, 

are to be modeled separately to enable modeling of different scenarios of hillslope 

vegetation cover.  Data indicate that surface flows from the different land units should be 

connected in series along a flow path, rather than each unit connecting to the channel 

network in parallel. Hillslope surface flow was initiated by rainfall events below tributary 

catchment thresholds for channel flow (15 mm vs. 30 mm), indicating infiltration of 

hillslope runoff along the flow path. Patterns in streamflow data indicated that capturing 

variability in subsurface flow pathways is important for estimating streamflow quantity and 

timing. Even following storm events large enough to result in surface flow connectivity 

from the tributaries to the catchment outlet, subsurface flows made up substantial portions 

(roughly 50%) of the resulting runoff reaching the outlet. Baseflow quantities and their 

contribution to overall catchment water yield also had high inter-annual variation.  

 

Subsurface flows from the tributary catchments appeared to be significant in recharging 

the alluvial aquifer on a time scale of days to weeks after large rainfall events. Water 

infiltrated on hillslopes appeared to have relatively fast vertical drainage, however there was 

some evidence of interflow at the soil-rock interface. In addition, evidence of interflow in 

shallow, highly fractured surface layers, feeding springs and wetlands has been seen in other 

studies in TMG geology (Midgley and Scott, 1994; Roets et al., 2008; Xu et al., 2002, 

2003), and so interflow is a likely pathway for some of the subsurface recharge of the 
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alluvium. The effect of ET on the alluvial aquifer is consistent with the deep rooting nature 

of one of the dominant species, Acacia karroo. The mountain bedrock aquifer contributes to 

the alluvial aquifer, as shown by consistent water levels at some mountain fronts, water 

color indicative of iron-rich TMG-sourced groundwater, observed groundwater seeps and 

springs, and that the gain in flow with catchment scale was maintained at perennially 

flowing reaches even in dry periods.      

 

A dynamic relationship between streamflow and alluvial aquifer was observed that 

suggests the need for explicit consideration of fluctuating aquifer-channel exchange to 

predict baseflow responses. The alluvial aquifer feeds river baseflow in relation to its water 

table elevation. However, patterns of baseflow recession and the relationship between 

baseflow and the alluvial aquifer water table were variable, indicating contributions of flow 

pathways with different rates and which are affected by ET. This is consistent with the 

changes in the magnitude and dominant direction of water table gradients within the 

floodplain over the course of the recession and changes in surface flow connectivity across 

wide floodplain reaches. These observations support dynamic modeling of river water 

elevations and of floodplain groundwater elevation across a two dimensional grid to 

determine their interactions as dictated by relative elevation and dominant water table 

gradients. In addition, the coarse nature of the floodplain alluvium would facilitate aquifer 

recharge given significant floodplain inundation. Overbank flows were seen in the 

observation period during relatively high frequency (6-8 year) flood magnitudes. This 

suggests overbank flooding and infiltration be modeled when looking at multidecadal 

timescales, likely to include floods of greater magnitudes.   
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As a result of these observations, and literature for land units for which specific data 

were not available, as well as the model structure requirements laid out in Table 1-1, a 

conceptual model for each land unit and its connectivity to one another and to channel flow 

is proposed (Figure 1-17 to Figure 1-20). In this conceptualization, tributary catchments can 

contribute channelized surface flow to the head of an alluvial fan and subsurface flows to the 

margin of the alluvial aquifer (Figure 1-18). Depending on the channel properties of the 

alluvial fan, surface flows arriving at its head will be apportioned to either join the channel 

network or flow over the fan surface where it can infiltrate into the alluvium (Figure 1-20). 

The alluvial aquifer contributes water to the river channel in quantities and rates dependent 

on the level of the water table relative to the channel.  

 

Tributary catchments are comprised of plateau, hillslope, cliff, and canyon floor units 

(Figure 1-18). Plateau areas have fairly continuous fynbos vegetation cover, low slopes, and 

shallow soils overlying the fractured bedrock. Dominant processes are therefore expected to 

be interception, infiltration, and percolation into the fractured bedrock. Hillslopes by 

contrast produce more surface runoff because of their slope and more open canopy cover in 

their current state, but infiltration and percolation to the interflow interface are also 

significant. Cliffs produce even more surface runoff, being steeper with more bare-rock 

cover. Canyon floors are characterized by coarse alluvial fill and high infiltration. Surface 

runoff produced by these units flows in a catena from plateau to hillslope and cliff to canyon 

floor over which there is opportunity to infiltrate. Flow path infiltration would depend on 

relative runoff velocity across the slope length, determined by gradient and roughness, 
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compared to the infiltration rate of the unit, determined by its soil and antecedent wetness.  

In these units, infiltrated water in excess of some effective soil storage limit percolates into 

an interflow reservoir: the regolith at the soil-rock interface and the  fractured rock surface 

layer. Water in this layer drains into the fan and floodplain alluvial aquifer over multi-week 

timescales while some would also percolate vertically into the sparser fracture network of 

the mountain bedrock aquifer. The mountain bedrock aquifer also releases water to the fan 

and floodplain alluvial aquifer margin at a much slower rate.            

 

Channel flows crossing the combined fan and floodplain alluvial aquifer lose water 

through bed infiltration into the aquifer when and where the water table sits below the river 

channel elevation (Figure 1-20 C).  The channel receives water from the alluvial aquifer 

when and where the water table sits above the channel. Within the alluvial aquifer water will 

flow according to the dominant water table gradient direction and magnitude, which 

fluctuates with interflow inputs at the floodplain margin and infiltration of surface flows on 

alluvial fans following rainfall events. For a few weeks following a large rainfall event, 

these inflows create a dominant water table slope between the mountain fronts and the 

central floodplain resulting in a shorter subsurface flow path to the river network. As these 

contributions recede, leaving only slow mountain bedrock inputs from springs at the 

margins, the dominant gradient becomes more longitudinal such that the path length from a 

mountain front water source to a lower lying channel reach down-valley is much longer 

(Figure 1-20 C). Direct infiltration of precipitation on the floodplain surface also contributes 

to recharging the alluvial aquifer.  Water can be withdrawn from the alluvial aquifer to meet 

PET demand over the full range of water table depths.  Due to the high conductivity of the 
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floodplain material, high vegetation cover, and high PET, surface runoff due to saturation or 

infiltration excess is minimal on the floodplain surface. Overbank flooding occurs in 

extreme events, a portion of which will recharge the alluvial aquifer if it is not fully 

saturated.           

 

  Figure 1-17 Overview of flow paths and travel times in conceptual model of the 

Baviaanskloof catchment based on field data diagnostics  
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Figure 1-18  Conceptual model of 

surface and subsurface flows through a 

tributary subcatchment to the alluvial 

fan and floodplain.  

Topographic land unit discretization of an 

example subcatchment shown at left. 
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Figure 1-19  Model structure diagram for 

the numeric representation of a tributary 

catchment showing outputs to the alluvial 

fan and alluvial aquifer 
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A 

B 

C 

D 

Figure 1-20 Conceptual model of 

flows entering and flowing through 

the alluvial aquifer and floodplain 

trunk channel under different 

conditions.  

Grey arrows show the direction of 

alluvial aquifer groundwater flow.  

 
A) During a storm response period, 

surface flow and interflow come from 

the tributary subcatchment. The alluvial 

fan is channelized.    

B)  The alluvial fan is not channelized 

and surface inputs infiltrate.      

C) During a drying period the channel 

loses water to the alluvial aquifer.    

D) During a dry period with no surface 

flow, the mountain aquifer feds the 

alluvium and downvalley aquifer flow 

feeds the catchment outlet 
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1.4.4  Proposed numeric model structure 

 

The numeric representation proposed for this conceptual model was structured to meet 

the needs of the model application: the ability to parameterize both vegetation and channel 

change scenarios and output alluvial groundwater levels in addition to catchment outlet 

streamflow. To account for the different levels of information and output needs at different 

spatial scales, particularly regarding subsurface flows, the numeric model was built as two 

sub-models having different levels of spatial discretization and process representation: a 

coarser sub-model of the mountain areas coupled to a higher resolution model of the central 

valley alluvial fans, floodplain, and channel network.  To calculate flows between the 

alluvial aquifer and the floodplain channel based on relative water surface elevations, and to 

allow for overbank flows, the central valley model required a hydraulic model of the channel 

linked to a gridded surface and subsurface hydrologic model.   

 

Based on a review of existing catchment models and modeling software systems, the 

MIKE-SHE/MIKE-11 modeling system by DHI (Graham and Butts, 2005; Refsgaard and 

Storm, 1995) was selected to build the numeric model of the catchment. This platform 

allows for different levels of spatial and process representation to be applied to surface and 

subsurface processes and can integrate a 2-D hydraulic model (MIKE-11) with the 

hydrologic model's surface and groundwater routines. When processes are conceptualized at 

the level of hydrologic response units (HRUs), MIKE-SHE allows run-off to be routed 

across a catena of HRUs such that infiltration of surface flows along a flow path can be 

considered.  Many medium complexity models or modeling systems, such as SWAT 

(Arnold et al., 1998), WARMF (Herr and Chen, 2012), or ACRU (Schulze, 1995), route 
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HRU runoff directly to the channel network in parallel. Models such as RHESSyS (Tague 

and Band, 2004) and HSPF (Bicknell et al., 1993) do consider landscape routing across 

HRUs, but do not include channel routing and overbank flooding. Other potentially 

appropriate catchment models that allow for the surface-subsurface exchange of water 

required to capture floodplain processes include SWATMOD (SWAT linked to 

MODFLOW, (Sophocleous et al., 1999)), FHM (HSPF linked to MODFLOW, (Ross et al., 

1997)), HMS (Yu, 1997), and PAWS ((Shen and Phanikumar, 2010). It would have been 

possible to build the mountain and central valley submodels in two different modeling 

platforms, however for simplicity of processing it was decided to build both using MIKE-

SHE.    

 

In the mountain area sub-model, for each land unit in a tributary sub-catchment, the 

interception, infiltration, soil water storage, AET, and vertical percolation were calculated 

daily and the resulting surface runoff was then routed across the unit to the next unit in the 

catena (Figure 1-19). Canopy interception was calculated using a maximum interception 

storage quantity. If daily rainfall plus water remaining on the canopy from the previous day 

exceeds the maximum storage, the excess is allocated to the soil surface. Infiltration, soil 

water storage, and vertical percolation were calculated as functions of soil field capacity, 

wilting point, and conductivity. If the soil layer is not saturated, water on the soil surface is 

added to the soil layer with the quantity of infiltration in a day being limited by the 

infiltration rate, the quantity of water required to saturate the soil, and the quantity of water 

on the soil surface. Water on the soil surface not infiltrating in a day was subject to surface 

flow.  Soil moisture in excess of the field capacity was allocated to the interflow reservoir 
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with the quantity of daily percolation limited by soil conductivity and the quantity of free 

water. Lateral subsurface flow was assumed to be dominant only in the interflow zone and 

was not calculated for overlying soil layers.  

 

In the mountain area model, water on the soil surface of an HRU that did not infiltrate 

was routed to the next unit in the series based on Manning's equation, considering the HRU 

as a sloped plane. The depth of available surface water, surface roughness, slope, and slope 

length were to calculate flow across the edge of the unit in the time step. The resulting rate 

of flow could mean there was remaining surface water available for ET and for infiltration 

or overland flow in the subsequent timestep. This was operationalized in the simplified 

overland flow routing routine for MIKE-SHE (DHI, 2014a) and is the same method as 

applied in HSPF (Bicknell et al., 1993), WATBAL (Knudsen, 1985), and others descending 

from the Stanford watershed model.  Slope and slope length were assigned to subcatchment 

HRUs based on average slope and flow path length across delineated land cover units 

calculated from the DEM while roughness was a calibrated parameter.    

 

AET was calculated based on PET, available interception and surface stores, available 

soil water, and vegetation type ET rates. This allowed for parameterization of different 

vegetation cover scenarios in the model based on measured vegetation and soil properties in 

areas with different levels of canopy cover.  Within the mountain area sub-model, plant 

roots were assumed to fully penetrate the soil layer above bedrock and, being thin, soils 

were considered as a single layer. A vegetation type ET coefficient, or 'crop coefficient', was 

used to modify the atmospheric PET demand for the day. The resulting daily ET demand 
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was first addressed by removing water from the canopy storage, then removing water from 

the soil surface, and finally by removing water from the soil if there was further outstanding 

demand. When addressing ET demand from the soil, approximating transpiration removals 

and evaporation from the soil, the rate of removal was decreased linearly once the soil 

moisture reached field capacity to equal zero when soil moisture reaches wilting point.   

 

Percolation into and flow out of an assumed interflow reservoir represented the likely 

preferential subsurface flow pathway at the soil-rock interface and in the highly fractured 

top layer of bedrock (Figure 1-19). Little is known about the physical properties and spatial 

variability of this layer and it was not necessary to change its parameterization between 

scenarios. As such, it was modeled as a simple linear reservoir in which outflow (Q) is a 

linear function of storage (S) determined by a drainage constant (k) such that Q = (1/k)*S. 

The alluvial aquifer groundwater patterns gave an indication of the drainage rate of faster 

subsurface flows from tributary catchments after a storm event, suggesting this reservoir has 

a drainage constant for flow reaching the alluvial aquifer in the order of days to weeks. The 

interflow reservoir was assumed to be fed by all the land units in the tributary sub-catchment 

and to drain both laterally, into the alluvial aquifer, as well as vertically, into the mountain 

bedrock aquifer. Flows in these two directions leaving a subcatchment interflow reservoir in 

a day were calculated in MIKE-SHE using different drainage rate constants for vertical and 

horizontal outflow.  The linear reservoir equation for a reservoir with two outlets was 

combined with the continuity equation and the resulting differential equation was solved by 

assuming the rate of inflow to the reservoir is constant over the timestep (DHI, 2014a).    

 



 

 92 

The mountain bedrock aquifer was modeled in MIKE-SHE as a linear reservoir for each 

tributary subcatchment, receiving vertical inflow from the interflow reservoir and having a 

single outlet feeding water to the central valley alluvial aquifer. Based on the relatively 

constant water levels observed at mountain front sites away from alluvial fans it was 

assumed that the drainage constant was on the order of years. The interflow and mountain 

bedrock water stores were assumed not to be accessible for ET; however the alluvial aquifer 

is subject to ET withdrawals (Figure 1-20), accounting for the observed ET impact on 

baseflow recessions at the catchment outlet.  

 

The central valley sub-model received surface and subsurface flow from the mountain 

area sub-model.  Daily time-series of surface flows leaving tributary subcatchments were 

input as surface flow point sources at the heads of corresponding alluvial fans. Subsurface 

outflows from the interflow and mountain bedrock reservoirs were input as flow boundary 

conditions at the margin of the alluvial aquifer groundwater model. This linkage was 

operationalized using codes written in MATLAB 2012 (MathWorks, Inc) and the DHI 

MATLAB Toolbox.  

 

The major differences in the central valley and the mountain area sub-models were the 

spatial resolution of process calculations, the calculation of groundwater flow, and the 

integration of the channel hydraulic model. The central valley sub-model calculated surface 

and subsurface processes per grid cell over a regular 50 m resolution grid with explicit 

surface and aquifer bottom topography. This included calculation of canopy interception, 

infiltration, overland flow, percolation to the saturated zone, and AET.  Surface flow in the 
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channel network was handled by a coupled MIKE-11 hydraulic model. This also included 

flow on the floodplain surface during events in which the streamflow exceeded the channel 

capacity as the hydraulic model cross-sections spanned the floodplain.  Overland flow on 

alluvial fan and floodplain surfaces which was not sourced from the main floodplain channel 

was calculated between grid cells using the finite difference routine to solve the diffusive 

wave approximation of the St.Venant equations as specified in MIKE-SHE (DHI, 2014a).  

The spatial extent and depth of surface water on the floodplain surface in the MIKE-11 

hydraulic model during a time-step was calculated and this water was available for 

infiltration and ET in the hydrologic model. The quantity of flow in the hydraulic model 

would then be updated for the next timestep.     

 

Groundwater flow in the saturated zone of the central valley alluvium was modeled 

using Darcy’s Law to calculate flow between grid cells. This was operationalized using the 

finite element grid routine in MIKE-SHE (DHI, 2014a) which uses the same iterative 

solution method as MODFLOW (McDonald and Harbaugh, 1988). A single layer of sand 

and cobble alluvium was defined in the groundwater module so flow only needed to be 

calculated in two directions. The thickness of the unsaturated soil zone was determined by 

the height of the groundwater table. ET withdrawals from the soils were first made from the 

unsaturated zone, however the root depth of the floodplain vegetation was specified to reach 

typical water table depths and if ET demand could not be met by the unsaturated zone, water 

would be withdrawn from the saturated zone of the cell and the water table elevation 

adjusted.  
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Channel flow on the alluvial fans and floodplain were modeled in MIKE-11 using 

diffusive wave simplification of the dynamic wave approach to solving the St. Venant 

equations of continuity and momentum (DHI, 2014b).  The diffusive wave equations were 

solved using an implicit finite grid scheme over a grid of alternating flow and stage 

calculation points as described for MIKE-11 (DHI, 2014b).  River stages were calculated at 

nodes that coincided with groundwater grid cells. The direction and magnitude of flow 

between the channel and the groundwater was calculated using Darcy's Law based on the 

water surface elevation gradient between the river channel and the neighboring groundwater 

grid cells and the bed material conductivity (DHI, 2014b).   

 

1.4.4.1   Parameter values guided by data-diagnostics 

 

Parameters needed for this model and a range of a-priori values in given in Table 1-7 

and Table 1-8. These value ranges were informed by the flow and groundwater data 

diagnostics, local sampling and remote sensing of vegetation and soil properties (van Luijk 

et al., 2013; Mills and Cowling, 2006, 2010; Mills and Fey, 2004; Mills et al., 2005; Smit, 

2013), and review of parameter values estimated for similar vegetation types and 

geomorphological settings (Consoli et al., 2013; Ganguly et al., 2013; Hammersmark et al., 

2008; McMichael et al., 2006; Schulze, 1995; Steinwand et al., 2001; Tague et al., 2004).  

Parameters such as land unit slope and slope length and river channel and floodplain 

dimensions are obtained from available topographic data and are assumed to not require 

calibration. On plateaus, hillslopes, cliffs, and canyons, roots are assumed to penetrate the 

full depth of the relatively thin soils. This is based on cliff face, gully face, and road-cut 
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observations of the roots of woody shrubs penetrating into the regolith and bedrock 

fractures. If it is assumed that the effective vegetation type LAI is sufficiently known from 

remote sensing, only the canopy interception coefficient needs calibration. This gives 48 

parameters, which can be further reduced to 36 if internal relationships between soil 

properties, essentially a soil moisture retention curve shape, are assumed for each soil type.     

 

Model soil infiltration rate values were set significantly lower than values that would be 

estimated from soil texture. This is necessary in the case of a daily time-step model when 

information about sub-daily rainfall intensity is not available. The ‘infiltration rate’ 

parameter is not purely a property of the soil surface, but rather a combination of soil and 

average storm intensity characteristics to allow the calculation of infiltration in a 24 hour 

period given daily rainfall. In addition these landscape units have considerable rock cover on 

the soil and bare rock outcrops.  In dry conditions surface runoff was seen on hillslopes after 

storms of over 15mm, while 30-50mm was needed to initiate surface flow at the tributary 

catchment outlet. Using these values as guides for parameter value ranges, the model would 

produce hillslope surface runoff in dry conditions given 12-28mm of rain, while 35-180 mm 

would be needed to have surface outflow from the average tributary catchment based on an 

area weighted average for the component land units (Table 1-7). 

 

Patterns in the groundwater data gave indication of the magnitude of horizontal drainage 

time constants for the linear reservoir model components as described previously:  days to 

weeks for lateral outflow from the interflow reservoir and months to years for outflow from 

the mountain bedrock aquifer. Little is known about the rate of vertical percolation into the 
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mountain bedrock aquifer and as such a wider potential value range is given for this property 

(Table 1-8). Horizontal, or lateral, conductivity in the interflow zone is assumed to be faster 

than in the vertical direction into the bedrock, because of the higher fracture density and 

porosity along the lateral path. However, the average length of the lateral flow path to reach 

the outlet of the tributary catchment is much longer than the vertical distance water would 

need to travel to leave the interflow zone, on the order of kilometers versus meters. Water 

percolating downwards out of the interflow zone may then have to travel a significant 

distance to reach the effective mountain bedrock water table, however this additional lag 

should be captured in the drainage constant of the mountain bedrock aquifer rather than in 

the vertical outflow of the interflow reservoir. Otherwise there may be too much water 

estimated in the interflow reservoir for accurate estimation of the lateral outputs.   
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Table 1-7 A-priori vegetation and soil parameter ranges and resulting runoff thresholds 

F – floodplain, C – channel, T – topsoil, A – alluvium, infilt. - infiltration 

Parameter 
Landscape unit 

Plateau Hillslope Cliff Canyon Floodplain & fan 

Dominant 

vegetation 
fynbos thicket thicket forest savanna 

Fraction of 

subcatchment 
30% 42% 18% 10%   

Leaf area 

index, LAI 
1 - 3 0.4 - 1 0.2 - 0.6 3 - 5 1 - 3  

Manning's n 

(m1/3/s) 
0.1 - 0.8 0.1 - 0.8 

same as 

hillslope 
0.1 - 0.8 

0.05 - 0.7 F 

0.02 - 0.05 C 

ET 

coefficient 
0.4 - 0.6 0.3 - 0.5 0.2 - 0.4 0.7 - 0.9 0.8 - 1.0  

Root depth 

(mm) 
500 - 1,000 300 - 800 100 - 500 5,000 - 10,000 

10,000 - 35,000  

Soil depth 

(mm), SD 
600 - 1,000 T 

    

Saturated 

water 

content, SWC 

0.3 - 0.5 0.3 - 0.5 

same as 

hillslope 

0.4 - 0.6 
0.4 - 0.6 T 

0.3 - 0.5 A 

Field 

capacity, FC 
0.1 - 0.2 0.1 - 0.2 0.2 - 0.4 

0.2 - 0.4 T 

0.1 - 0.2 A 

Wilting 

point, WP 
0.07 - 0.1 0.07 - 0.1 0.08 - 0.1 

0.08 - 0.1 T 

0.06 - 0.1 A 

Maximum 

infiltration 

rate (mm/hr) 

1.0 - 3.5 1.0 - 2.0    35 - 350 

Ksat 50 - 300 T 

Ksat 10 - 1,700 A 

Estimation of average thresholds for model surface runoff using a one day time-step 

Max. 1 day 

interception 

(mm) 

0.3 - 3 0.3 - 4 0.3 - 4 2 - 10 0.7 - 6  

Max. soil 

storage 

(mm); 

SD*(SWC – 

WP) 

50 - 500 50 - 500 4.5 - 95 160 - 1650 228 - 450  

Max. infilt. 

rate 

(mm/day) 

12 - 72 12 - 24 12 - 240 240 - 1200 1200 - 7200  

Max. 1 day 

infilt. (mm); 
MIN(storage, 

rate) 

12 - 72 12 - 24 4.5 - 95 160 - 1200 228 - 450  
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Table 1-8 Time constants for linear reservoirs representing tributary catchment groundwater 

flow 

 

Parameter 
Linear reservoir 

Interflow Mountain bedrock 

Lateral outflow time constant (days) 5 - 50 100 - 30,000 

Vertical percolation time constant (days) 1 - 50       

 

 

1.5  Discussion 

 

This study employed a variety of diagnostic pattern analyses to streamflow, 

groundwater, soil moisture, and surface runoff data to guide the development of a 

conceptual and numeric hydrologic model for a semi-arid, meso-scale catchment.  Ideally 

the result of this method of model development should be a model with minimal structural 

error in its internal process representation for which calibration yields accurate outputs 

within a narrow range of parameter values. To assess the degree to which this was achieved, 

multi-criteria calibration of the resulting numeric model will be addressed in a subsequent 

paper. The scale of the catchment area, the need to design a model capable of being used for 

specific scenario analyses, and the available hydrometric data all influenced the choice of 

diagnostics and structure decisions.  Data collection is always limited by resources and time. 

The semi-arid environment further limits the locations and times when surface flows occur, 

while groundwater data can be costly to obtain where wells do not already exist. For most of 

the data, only a two year time-series was available. However, patterns evident across 

multiple different types of data and data from different locations, even over this relatively 
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short time span, provided significant guidance on the dominance of different flow paths, the 

connectivity between discretized land units, and reasonable parameter ranges.  

 

Unlike micro-scale catchments, for which spatially lumped, parsimonious, models of 

dominant processes can be identified through downward model development procedures and 

can sufficiently recreate streamflow patterns (Fenicia et al., 2008a; McMillan et al., 2011; 

Vaché and McDonnell, 2006; Young, 2003), a more spatially distributed approach at the 

level of landscape topographic units was assumed to be necessary for the meso-scale, 

supported by the experience of Clark et al. (2009), Fenicia et al. (2014), Gao et al. (2014), 

McGlynn et al. (2004), Savenije (2010), and Uhlenbrook et al. (2004). This discretization 

was also necessary to allow parameterization of the different land cover scenarios.  Given 

this, both the processes within each land unit as well as the nature of connectivity between 

them needed to be conceptualized to develop the model. To assist in these model decisions, 

patterns in hydrometric data that could yield information about surface and subsurface 

connectivity between land units were assessed, adding another layer of analyses compared to 

lumped model development for smaller catchments.   

 

Diagnostics of connectivity were mostly in the form of comparative runoff and 

groundwater response thresholds, magnitudes, and timing between different locations within 

the catchment, capturing inputs of different land units. For example, looking at both the 

magnitude of rainfall needed to initiate surface flows out of mountain tributary 

subcatchments and the magnitude and timing of the floodplain alluvial aquifer response to 

rainfall events below this threshold, it was concluded that there was significant subsurface 
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flow from the tributary subcatchments to the alluvial aquifer. As has been suggested by 

others for semi-arid catchments and those with low lying areas of high conductivity 

alluvium (Maneta et al., 2008; Savenije, 2010; Winsemius et al., 2006), data analyses 

showed evidence of dynamic, threshold controlled, surface and subsurface connectivity 

between land units, indicating that flows generated at the scale of each land unit should be 

connected in series along a flow path catena rather than in parallel. The relative importance 

of delayed subsurface flow to the total catchment yield and evidence of the dynamic 

connection between the alluvial aquifer and streamflow and the impact of ET on the alluvial 

aquifer levels and flow recessions, supported the decision to dynamically model flows 

between the alluvial aquifer and the river channel.  

 

Consideration of the desired end use of the model increased the complexity of process 

representation included for surface and near surface processes, perhaps leading to the use of 

more parameters than can be resolved with the available hydrometric data. To parameterize 

scenarios of vegetation change, lacking streamflow data under the changed conditions, it 

was decided to explicitly model interception, infiltration, percolation, AET, and surface 

runoff routing for each vegetation and soil type based on measurable vegetation and soil 

properties. A simpler alternative could have been to represent these surface processes 

through one or more reservoirs represented by fewer coefficients whose values could be 

found through calibration, the method chosen for the subsurface flows leaving the tributary 

catchments. Nevertheless, the resulting parameterization effectively has eight parameters for 

each land unit in the tributary catchment, not substantially more than the six parameter 

models (Savenije, 2010) proposed for similar topographic units based on their dominant 
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processes.  In an step-wise top-down model development exercise for a meso-scale 

catchment, calibrating and evaluating successively more complex model structures against 

streamflow data, Fenicia et al. (2008b) found that more accuracy was gained in spatial 

discretization of surface processes with fast runoff response times than for discretizing 

slower subsurface processes. This supports the structure applied here to the tributary 

catchments.   

 

Despite the high number of potential calibration parameters in the resulting structure, 

indications of dominant processes gained from the field data diagnostics, and from 

observations of similar topographic units elsewhere, can indicate which parameters are 

likely to be the most sensitive.  Parameters to which the desired outputs are not very 

sensitive can be assigned fixed values to reduce the dimensionality of the calibration 

problem. For example, surface runoff connectivity from the tributary catchment land units 

all the way to the catchment outlet was only seen extreme rainfall events during high flows 

and only persisted for a few days. The short, steep flow paths out of the tributary 

subcatchments would mean that surface runoff would reach their outlet within the day 

timestep in these cases. As such variations in Manning’s roughness values for these land 

units within the a-priori ranges are likely to have little effect on model outputs.   Similarly, 

lower slope plateau areas are Sensitive parameters for which there was little or no field data 

to constrain are those for which further field research is recommended. These will be 

explored further in the follow-up paper on model calibration and evaluation.  
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The suggested model structure for the Baviaanskloof catchment contains a mixture of 

different spatial and process resolutions, from a gridded groundwater and channel model of 

the floodplain to a simple linear reservoir representation of the mountain bedrock outflow.  

The highly fractured geologies and coarse alluvial floodplain fills of the catchment are likely 

to be characteristic of other meso-scale, semi-arid, mountainous catchments. These features 

appeared to buffer some of the high flows and prolong elevated baseflow periods through 

processes that are not typically explicitly considered in many pre-existing catchment scale 

hydrologic modelling programs, such as dynamic two-way interaction between floodplain 

channels and the floodplain aquifer, aquifer recharge during to overbank flooding, and both 

lateral and longitudinal flow in the floodplain aquifer (Hammersmark et al., 2008; Loheide 

and Booth, 2011). The MIKE-SHE/MIKE-11 (DHI) modeling system was found to be one 

of the few available platforms offering this range of process representation options and the 

capacity to model river channel and floodplain aquifer as a dynamically coupled hydraulic-

hydrologic system. In this program the described numeric model could be built as two 

coupled models:  a model of the tributary subcatchments and mountain block providing 

boundary condition outputs for a separate alluvial aquifer and channel network model.  The 

need for dual-scale modeling to look at floodplain-scale processes affected by the broader 

catchment context was similarly recognized by Hipsey et al. (2011) when modeling 

vegetation and channel change in a semi-arid catchment in Australia.   
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1.6  Conclusion 

 

This study demonstrates how hydrometric field data collected at different spatial scales 

can be used to inform the development of a conceptual and numeric catchment model for a 

complex, semi-arid, meso-scale catchment.  Catchments of this scale have been less subject 

to data-based downward model development approaches, particularly those in semi-arid 

regions.  As such, this study contributes to the ongoing effort to be able to link catchment 

form to appropriate model structure in order to better model data poor or ungauged 

catchment areas (Gupta et al 2008). To deal with the number of processes likely to be 

dominant at different scales and times in a large catchment, the area was discretized into 

topographic land units. Patterns in streamflow and groundwater responses at scales ranging 

from tributary subcatchments to the main valley floodplain to the catchment outlet were 

compared to indicate the nature of connectivity between units.  At more local scales, soil 

moisture data and the detection of surface runoff on a sample hillslope gave information on 

hillslope runoff processes and comparative water surface elevations between the alluvial 

aquifer and the river channel indicated the dynamic connectivity between channel flow and 

the aquifer. Despite the relatively short data series, the variety of data types and scales 

provided significant information about catchment processes with which to structure and 

parameterize the model. The resulting suggested model structure for the Baviaanskloof 

catchment included calculation of recharge and surface flow at the scale of broad 

topographic land units in the tributary subcatchments of the mountain block, simple linear 

reservoirs for subsurface flows out of the fractured bedrock reaching the central floodplain, 
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and a gridded groundwater and channel model for the alluvial fans and main valley 

floodplain allowing for dynamic exchange of water between the aquifer and channel.  

 

In practical contexts, hydrologic models are typically built with a desired end use in 

mind, requiring certain processes to be explicitly considered and outputs produced, 

regardless of the data available to inform them. In the model development process applied 

here, structural decisions were additionally guided and constrained by an explicit planned 

end use: to assess the impacts of hillslope vegetation and floodplain and alluvial fan channel 

property scenarios on floodplain groundwater and catchment outlet surface water supplies.  

In some cases this application required additional complexity in process conceptualization 

than may have been warranted by the available data against which process parameters can 

be calibrated. This will be evaluated further in a follow-up paper on the multi-criteria 

calibration of the resulting model structure.  Comparing the level of process representation 

in a model to that warranted by the information used to inform it through a process of 

downward model development can help indicate the levels and sources of uncertainty in the 

model structure and target further research.   
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Chapter 2 Multi-criteria calibration of a hydrologic 

model for a semi-arid, mountainous, meso-scale 

catchment 
 

2.1  Introduction 

 

Multi-criteria calibration procedures for hydrologic models provide means of making 

full use of available data and information about a catchment during calibration, and as a 

result can improve parameter identifiability and increase the resulting model's realism 

(Fenicia et al., 2008a, 2008b; Gupta et al., 2008; McMillan et al., 2011; Seibert and 

McDonnell, 2002; Vaché and McDonnell, 2006; Wöhling et al., 2013). In multi-criteria 

evaluation, model outputs are assessed against multiple performance measures, which can be 

derived from various types of data and can be chosen to target model's representation of 

different hydrologic processes.  Such methods provide a formalized way to include 'soft 

data', referring to less quantitative information about catchment behavior and/or data that is 

less directly commensurable with model outputs than a gaged streamflow time-series, for 

example, in model evaluation (Seibert and McDonnell, 2002).  

 

The use of multiple criteria and multiple data types in calibration becomes increasingly 

beneficial the more complex the model and the shorter or sparser the available time-series of 

hydrometric measurements.  Hence, the use of additional data sources should be helpful in 

constraining parameterization for large, arid catchments, which often require complex 
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models because of their  diverse and variable processes and flow paths (Maneta and 

Wallender, 2013; Maneta et al., 2008). The use of model performance criteria based on 

additional data types can assist model development and calibration for areas with relatively 

short or poor streamflow gage records. However the bulk of multi-criteria calibration studies 

have focused on demonstration and evaluation of the technique for small, well-instrumented 

catchments, focusing on the value of including particular data types or performance 

measures, often using a lumped model and two to three criteria (Efstratiadis and 

Koutsoyiannis, 2010).  

 

My study quantified the benefits of the multi-criteria calibration in terms of improving 

model performance and parameter identifiability when applied to a semi-distributed model 

of a semi-arid, meso-scale catchment, the Baviaanskloof, South Africa. The catchment 

model was developed for the purpose of aiding catchment management decisions about land 

management and river restoration. The model performance criteria applied in calibration 

were selected to account for the conceptual model of the catchment's dominant flow 

pathways and the level of accuracy needed for the desired uses of the model output.  It was 

hypothesized that the use of additional data types and criteria in calibration of the 

Baviaanskloof model would improve parameter identifiability and model performance 

compared to that which would be achieved using a single standard metric of model output fit 

to the short gaged streamflow record.   

 

The catchment of the Baviaanskloof River is data poor, particularly in relation to its 

large size, topographic complexity, and variability of climate and streamflow.  Accurate 
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catchment models would be a boon to catchment management efforts, particularly as this 

area supplies an important regional water supply reservoir.  In order to address local 

catchment management questions around the impacts of land cover change and river 

restoration interventions, models would need to be semi-distributed in their representation of 

internal catchment processes.  However, the catchment has only been gauged since 2012 and 

has a relatively short streamflow record against which a model could be assessed. Additional 

data sources, such as regional flow records, monthly groundwater records from farm 

irrigation systems, and surface flow presence-absence observations, do exist and could 

potentially be used to evaluate model accuracy. This study used all available data on 

streamflow and floodplain water table fluctuations, with multiple spatial and temporal 

scales, in the calibration of a semi-distributed model of the catchment. The utility of the 

additional information beyond the short-term gauged streamflow record was assessed in 

terms of additionally constraining model parameter values considered physically reasonable 

and improving calibrated model performance.  This was done by comparing calibrated 

model performance measures and parameter ranges when using different calibration 

methods: (a) using only the Nash-Sutcliffe efficiency (NSE) of daily streamflow outputs, (b) 

using multiple criteria based only on the daily streamflow record, and (c) using criteria 

based onstreamflow, groundwater, and surface runoff data to determine model acceptability. 

 

With highly parameterized, distributed models that use complex mechanistic algorithms 

to represent internal catchment processes, solely calibrating against a single goodness-of-fit 

measure, such as the root mean square error (RMSE) or the NSE of modeled catchment 

outlet streamflow, allows for potential acceptance of models that recreate catchment-scale 
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streamflow output for the calibration period reasonably well despite having physically 

inaccurate representations of internal processes (Gupta et al., 2008). For example, a model 

predicting high run-off production on hillslopes with high infiltration and evapotranspiration 

from a valley bottom, may predict similar catchment scale streamflow as a model in which 

there is little hillslope runoff but far less ET loss in the valley bottom.  This may become a 

problematic source of unquantified uncertainty when the model structure is applied further 

in scenario modeling and/or if model outputs of internal processes or states are to be used 

for decision-making.  Multi-criteria calibration can help to address this issue by including 

performance criteria that test realism of modeled internal processes to the degree that these 

are understood. The selection of criteria and thresholds of acceptability necessarily varies 

with the type of catchment and its dominant processes, the model structure being applied, 

data availability, and the purpose of the modeling exercise.  Previous studies have used 

multiple model performance measures based on derived streamflow indices, streamflow data 

from different sub-catchment scales, groundwater fluctuations, soil moisture patterns, and 

isotope-derived water residence times and/or runoff source information, often tailored to test 

the accuracy of different internal model process representations and different scales of 

interest (Fenicia et al., 2008b, 2008b; Seibert and McDonnell, 2002; Tekleab et al., 2011; 

Vaché and McDonnell, 2006; Wöhling et al., 2013).  

 

Employing multiple types of data to assess model performance should be particularly 

useful in constraining parameter values when modeling drier environments and larger 

catchment areas, both conditions that warrant more complex model structures (Maneta and 

Wallender, 2013; Maneta et al., 2008). In arid and semi-arid environments surface flows 
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may be discontinuous and runoff producing rainfall events have low frequencies. As such, 

the time-series of streamflow data required to characterize runoff responses to a range of 

weather events in a more arid environment, and to then test a model’s re-creation of this, 

would need to be longer than for wetter catchments that have more frequent runoff-causing 

events.  Other data types, such as groundwater and soil moisture fluctuation data, can 

compensate for this, yielding information about catchment processes in periods during 

which there is little measurable streamflow response.  Larger catchment areas are more 

likely to encompass a wider variety of topographic units with more distinct slope, soil, and 

vegetation properties than smaller catchments, and hence have more heterogeneity in 

dominant hydrologic processes. Further adding to model dimensionality for large 

catchments, deep groundwater outflows and channel routing also become more important 

determinants of streamflow with increasing catchment size, and their explicit inclusion in 

meso-scale catchment models can increase accuracy (McGrane et al., 2014; Ophori and 

Tóth, 1990; Uhlenbrook et al., 2004).  

 

As pointed out by Seibert and McDonnell (2002) and Freer et al. (2004), the relative 

uncertainty and commensurability of the available observational data and the model 

structure need to be considered to determine what kind of goodness-of-fit measures can be 

reasonably applied to the model’s outputs.  For example, observations such as localized 

point soil moisture or groundwater levels may be of different spatial or temporal scales than 

the model’s outputs. Data and/or model outputs may need to be aggregated and in some 

cases only trends and patterns can be reasonably compared to model output, as opposed to 

absolute values.  The relative uncertainty of different observational data can be considered 
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using wider thresholds of acceptability or lower weightings for certain criteria compared to 

those derived from data thought to be more accurate and directly commensurable.  When 

more subjective decision-making is required to establish the points for comparison, the data 

and derived criteria are considered ‘soft’ (Seibert and McDonnell, 2002).     

  

The choice of which and how many model performance criteria to use is often subjective 

(Seibert and McDonnell, 2002; Zheng and Keller, 2007a). Seibert and McDonnell (2002) 

used 27 criteria while Vaché and McDonnell (2006) used three to guide calibration of 

models of similar levels of complexity for the same micro-scale study catchment, albeit with 

different goals: the former to demonstrate usefulness of the available soft data in calibration, 

and the later the usefulness of isotope derived mean residence time data.  Even if only 

catchment-scale streamflow data are available, there are multiple streamflow diagnostics, 

such as model fit to seasonal flow distribution, dry period flow, or recession characteristics, 

that can help constrain parameters relevant to baseflow production processes and be used as 

additional criteria to those that favor good fits to high flows, such as NSE and RMSE (e.g. 

Fenicia et al., 2008b; Tekleab et al., 2011; Wöhling et al., 2013). Gupta et al. (2008) suggest 

that a model should be evaluated against a number of diagnostics equal to the number of 

degrees of freedom in the model structure, matching the number and complexity of 

processes being explicitly considered.  This would be the natural outcome of a model 

structure that has been derived from process diagnostics in the available data, under a 'top-

down' model development approach (Sivapalan et al., 2003). However, this method of 

model development is not generally adhered to or even feasible in many applied modelling 

exercises.  There is rarely sufficient data for this level of evaluation for semi-distributed and 
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distributed model structures.  In my study, a selection of performance measures based on the 

available data were chosen to assess model representation of processes thought to be 

dominant according to the conceptual model of the catchment and of those presumed to 

change under the vegetation and river channel scenarios of interest. Measures were also 

selected to assess model accuracy in reproducing outputs of interest for water supply 

management. 

 

Various techniques have been applied to select optimum or acceptable/behavioral models 

and parameter sets in a multi-criteria calibration procedure: accepting only parameter sets 

that lie on the Pareto optimum front for all the goodness-of-fit measures (Fenicia et al., 

2008a, 2008b), setting thresholds of acceptability for each of the goodness-of-fit measures 

(Seibert and McDonnell, 2002), and/or scaling and weighting measures for combination into 

one objective function in a GLUE-based method (Generalized Likelihood Uncertainty 

Estimation - Beven and Freer, 2000; Winsemius et al., 2009).  Thresholds of acceptability 

for performance measures or objective functions are generally arbitrarily chosen (Siebert & 

McDonnel 2002, Fenicia et al 2008). In my study the desired use of the model output was 

explicitly considered in the criteria and threshold selection, similar to the uncertainty 

assessment procedure suggested by Zheng and Keller (2007b). This was done by estimating 

a minimum level of accuracy needed for different model outputs to be of practical assistance 

to decision-making to determine if the model is ‘fit-for-purpose.’  Ideally this would be done 

through stakeholder engagement with formal risk and value assessment, but here thresholds 

were chosen by the researcher.   
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2.2  Methods 

2.2.1  Conceptual numeric model of the Baviaanskloof catchment 

 

Based on catchment characteristics, available data, and the desired use of the model to 

estimate the impacts of changes in vegetation and river channel change, a conceptual and 

numeric model structure was built for the Baviaanskloof catchment, as described in Chapter 

1.  This model uses different scales of representation for broad topographic units based on 

the information available about the process and the need to change its parameterization in 

scenario modeling.  The topographic units considered were plateaus, hillslopes, cliffs, 

canyon floors, alluvial fans, and the main valley floodplain. Surface and subsurface flows 

for mountain tributary subcatchments, made up of plateaus, hillslopes, cliffs, and canyon 

floors, were modeled more simply than for alluvial fans and floodplains. More is known 

about the dynamics and connectivity of the surface-subsurface flows and interactions in the 

floodplain than about the flow paths in the surrounding mountains and groundwater levels 

within the floodplain are of interest for local water supply. As such, the model was 

constructed in two parts. The first sub-model calculates the surface and subsurface flows 

leaving tributary subcatchments. The second sub-model routes these surface and subsurface 

inputs, plus direct rainfall inputs, across and through the alluvial fans and floodplain of the 

central valley, accounting for ET and channel-aquifer flow interaction (see Chapter 1, Figure 

1-18 to Figure 1-20).  
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The MIKE-SHE/MIKE 11 modeling system (Refsgaard and Storm, 1995) was chosen 

for model construction as it allows for the multiple levels and spatial scales of process 

representation called for in the conceptualization of the catchment and can include coupled 

hydraulic-hydrologic modeling needed in order to consider the floodplain aquifer-channel 

flow interaction. External code written in MATLAB was used to link the outputs of the 

mountain tributary sub-model to the floodplain sub-model.  Models were run at a daily time-

step. Precipitation and PET time-series for each land unit were estimated by scaling the 

time-series of the nearest station using monthly precipitation and PET surfaces derived by 

(Lynch, 2003) and (Schulze, 2007).        

 

A detailed description of the numeric model is given in Chapter 1 Section 1.1.4 and a 

more abridged account is given here. In the model of the mountain tributary subcatchments, 

canopy interception, infiltration, soil moisture storage, actual evapotranspiration (AET), 

vertical percolation, and surface runoff routing were calculated for each of the four land 

units in each tributary sub-catchment, while interflow and slow mountain bedrock 

groundwater flow were modeled as lumped linear reservoirs at the sub-catchment scale (see 

Chapter 1, Figure 1-19).  Canopy interception was calculated using a canopy storage 

threshold value determined based on vegetation type average leaf area index (LAI). 

Through-fall to the soil surface in excess of the maximum infiltration rate was assumed to 

become surface runoff. Infiltration was limited by the available soil storage space such that 

saturation excess surface runoff was also possible. Routing of available surface water across 

each unit was calculated based on Manning’s equation using the average slope and slope-

length of the land unit and a vegetation type roughness coefficient.   Surface runoff was 
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routed across land units in a catena from plateau through to canyon floor. Flow entering 

from an upslope unit was added to the surface pool available for infiltration and routing. ET 

withdrawal from soil was calculated based on the remaining PET demand after canopy 

interception limited by the vegetation type ET coefficient and available soil storage above 

wilting point, with ET rates being linearly curtailed below field capacity. Soil moisture in 

excess of field capacity percolates into the interflow reservoir.  Interflow, presumably 

occurring at the rock-soil interface and/or in the highly fractured surface layer of the 

bedrock, was modeled as a simple linear reservoir with two outlets representing lateral flow 

into the alluvial aquifer and vertical percolation into the deeper mountain bedrock 

groundwater store.  Slower outflow from the mountain bedrock aquifer to the alluvial 

aquifer was modeled using a linear reservoir with a single output constant.   

 

Flows across and through the central valley alluvial fill were modeled with a coupled 

hydraulic-hydrologic model system in which groundwater flow was modeled through a 50 m 

resolution finite element grid governed by Darcy’s Law, channel flow was modeled using a 

kinematic wave approximation, and exchange of flow between the river channel and the 

aquifer was calculated at riparian grid cells based on the difference in water surface 

elevation and the conductivity of the alluvium. Surface flow leaving the canyon floor units 

of tributary subcatchments was either input as a point source to the channel network or input 

as dispersed surface flow onto the alluvial fan surface, depending on whether or not the 

alluvial fan had been channelized. Interflow and mountain bedrock outflows were added as 

inputs to the alluvial aquifer boundary.  The floodplain material was generalized as a loamy 

sand topsoil layer overlying a sand and cobble layer. Canopy interception of precipitation, 
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infiltration or runoff of through-fall, soil moisture storage and percolation to the water table, 

and AET were calculated by grid cell, however parameterization was uniform across the 

floodplain. If withdrawal from the unsaturated zone cannot meet remaining PET demand, 

vegetation ET withdrawals were permitted from the saturated zone when the water table 

occurred within the rooting zone.  

 

In the diffusive wave hydraulic model, surface flows were routed through a channel 

network defined by cross-sections and channel slopes specified at 500m spacing. Model 

cross-sections span the floodplain such that overbank flows can be considered, with separate 

roughness values specified for the channel and the floodplain. Channel cross sections and 

slopes were obtained through topographic survey while a 30 m DEM (NASA Shuttle Radar 

Topography Mission data) was smoothed and aggregated to 50 m resolution to specify the 

floodplain topography. Measured channel cross sections were interpolated to stream network 

nodes matching the groundwater grid cells.  Average daily channel water surface elevations 

at these nodes in the hydraulic model were compared to the groundwater table elevation to 

calculate the direction and magnitude of the exchange of water between the two and both 

models were then updated. Overbank flows in the hydraulic model were made available for 

infiltration on the hydrologic model grid cells they would cover, after which the channel 

flow model volume was updated.     
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Table 2-1  A-priori and calibrated values ranges for vegetation and soil parameters (calibrated 

values italicized) 

Parameter 
Landscape unit 

Plateau Hillslope Cliff Canyon Floodplain and fan 

Dominant 

vegetation 

 

fynbos thicket thicket forest savanna 

Percent of 

catchment  
29% 40% 17% 10% 5%  

Leaf area 

index, LAI 
1 - 3 0.4 - 1 0.2 - 0.6 3 - 5 1 - 3  

1.3 - 3 0.44 - 0.68 0.2 - 0.53 3 - 4.8 1.5 - 2.8  

Manning's 

n  (m
1/3

/s) 
0.05 - 0.80 0.05 - 0.80 same as 

hillslope 
0.10 - 0.80 

0.050 - 0.70 F 

0.050 - 0.46 
 

0.07 - 0.80 0.07 - 0.80 0.35 - 0.80 
0.020 - 0.050 C 

0.026 - 0.038 
 

ET 

coefficient 
0.40 - 0.60 0.30 - 0.50 0.20 - 0.40 0.70 - 0.90 0.80 - 1.0  

0.43 - 0.59 0.34 - 0.47 0.22 - 0.36 0.71 - 0.90 0.90 - 1.0 
 

Root depth 

(mm) 
500 - 1,000 300 - 800 

200 
5,000 - 10,000 

10,000 - 35,000 R 

15,000 - 29,800 
 

Soil depth 

(mm) 

610 - 1,000 560 - 800 6,000 - 10,000 
600 - 1,000 T 

650 - 916 
 

Saturated 

water 

content 

0.30 - 0.50 0.30 - 0.50 

same as 

hillslope 
 

0.40 - 0.60 

0.40 - 0.55 T 

0.42 - 0.55 
 

0.35 - 0.49 0.31 - 0.49 0.41 - 0.50 
0.30 - 0.45 A 

0.30 - 0.37 
 

Field 

capacity 
0.14 - 0.24 0.14 - 0.24 0.24 - 0.36 

0.25 - 0.38 T 

0.28 - 0.36 
 

0.16 - 0.22 0.14 - 0.22 0.25 - 0.30 
0.12 - 0.18 A 

0.12 - 0.15 
 

Wilting 

point 
0.075 - 0.12 0.075 - 0.12 0.080 - 0.12 

0.085 - 0.12 T 

0.092 - 0.12 
 

0.087 - 0.12 0.078 - 0.12 0.082 - 0.10 
0.060 - 0.090 A 

0.060 - 0.073 
 

Maximum 

infiltration 

rate 

(mm/hr) 

1.0 - 3.5 1.0 - 1.6 35 - 350 

Ksat 50 - 300 T 

82 - 241 
 

2.9 - 3.4 1.4 - 1.6 175 - 342 
Ksat 10 - 1,700 A 

51 - 400  
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Table 2-2 A-priori and calibrated value ranges for the time constants of the linear reservoirs 

representing subcatchment groundwater flows (calibrated values italicized) 

Parameter 
Linear reservoir 

Interflow Mountain bedrock 

Lateral outflow time constant (days) 
10 - 150 10,000 - 150,000 

 
35 - 56 100,300 - 114,910 

Vertical percolation time constant (days) 
1 - 300   

 

  

 
61 - 188 

   

 
 

 

The resulting combined model for the entire catchment area had 42 calibration 

parameters and the a-priori ranges of these are listed in Table 2-1 and Table 2-2.  These 

value ranges were informed by the flow and groundwater data patterns (Chapter 1), local 

sampling and remote sensing of vegetation and soil properties (van Luijk et al., 2013; Mills 

and Cowling, 2006, 2010; Mills and Fey, 2004; Mills et al., 2005; Smit, 2013), and review 

of parameter values estimated for similar vegetation types and geomorphological settings 

(Consoli et al., 2013; Ganguly et al., 2013; Hammersmark et al., 2008; McMichael et al., 

2006; Schulze, 1995, 2007; Steinwand et al., 2001; Tague et al., 2004).  Several parameters 

(roughness, soil physical properties, excluding soil depth) for the cliff areas were assumed to 

be similar enough to those on the hillslopes to warrant assignment of the same parameter 

values in the model, thereby reducing dimensionality of the calibration.  Field observations 

of surface flows and groundwater levels in the Baviaanskloof suggested significant recharge 

of the alluvial aquifer via mountain slope interflow and sizable contributions of subsurface 

flow via the alluvial aquifer to the total water yield (20-50%), as in Chapter 1.  
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2.2.2  Model performance criteria and calibration procedure 

 

The parameter value ranges were constrained through the calibration process by 

selecting parameter sets for which model outputs were considered acceptable in terms of 

multiple 'goodness-of-fit' performance criteria (Table 2-3). Four hard data criteria were 

applied based on the gaged streamflow record, while six additional soft data criteria were 

considered based on other available information. Simple thresholds of acceptability were 

applied for each criterion, such that all parameter sets for which model output met all the 

criteria were considered equally acceptable.  Given likely uncertainties in the observational 

data, improved goodness-of-fit of model outputs to the observational dataset beyond a 

certain threshold may not actually represent a true improvement in model realism. The 

calibration criteria and their limits of acceptability were selected based on the available data, 

dominant processes in the catchment, and processes and model outputs of particular 

importance for the desired end use of the model, as described further below. The measured 

daily streamflow at the catchment outlet from 2012-2013 was considered hard data, being 

directly commensurable with model outputs. The estimated monthly long-term streamflow 

record (1991-2013) was based on combined reservoir inflow and regional gage data, rather 

than local measurement in the Baviaanskloof River, and was therefore considered soft data. 

Due to spatial and temporal commensurability and process representation simplifications in 

the model, the measured groundwater data and tributary outflow presence were also 

considered soft data.  Data regarding hillslope surface run-off presence was directly used to 

constrain the allowable value range for hillslope vegetation and soil parameters prior to 
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calibration (Chapter 1) and so was not used to evaluate model output as all parameter sets 

would necessarily meet this criterion.   

 

The groundwater linear reservoir time constants were predicted to have a large impact on 

model output in relation to the a-priori uncertainty in their values.  This was confirmed 

through initial exploratory model testing using the minimum and maximum parameter 

values of the a-priori ranges. As such, an initial set of 5,000 calibration model runs were 

performed in which only the three groundwater linear reservoir parameters (Table 2-2-2) 

were varied, while all other parameters were held at the mean values of their a-priori ranges. 

This was done to constrain the value ranges for these parameters to be used in the full 

calibration exercise in which all 42 parameters were varied, allowing for a more thorough 

exploration of the more constrained input parameter space with fewer model runs. Given 

that the other parameters were not varied in these runs, a generous streamflow NSE 

acceptability threshold of 0.5 was applied to do this initial reduction of value ranges for 

these three parameters.  

 

In the full calibration exercise, 10,000 parameter sets were tested over the revised a-

priori parameter space.  Parameter value probability distributions within the a-priori ranges 

were considered uniform and the trialed parameter sets were selected from the a-priori 

parameter space using Latin Hypercube sampling (McKay et al., 1979). Model outputs for 

each parameter set were compared to the limits of acceptability for each model performance 

measure to determine its inclusion or exclusion from the calibrated set. To assess the impact 

of the inclusion of the different types of data and criteria in the calibration, acceptable 
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parameter set selection was done separately for three different levels of calibration:  (a) 

using a single hard data criterion, the NSE of modeled streamflow; (b) using all four hard 

data criteria; and (c) using all ten hard and soft criteria. The resulting parameter value ranges 

and model output performance measures for accepted sets were compared between these 

three cases. 

 

The calibrated model of the Baviaanskloof catchment is to be used in assessing likely 

impacts of different management scenarios on both local and regional water supplies. Water 

users within the catchment rely on groundwater in the floodplain aquifer while downstream 

users rely on streamflow water yield reaching the catchment outlet which feeds a major 

water supply reservoir.  Model evaluation criteria were therefore selected to assess model 

performance in capturing fluctuations in both floodplain aquifer levels and catchment 

outflow.  As described below, modeled water levels in the floodplain aquifer were not 

expected to be directly commensurable to water table measurements at specific locations; 

however the magnitude of spatially average water table fluctuation in the model can be 

expected to fit the averaged fluctuation of the observed values.  Being able to predict the 

range of this fluctuation to within 0.5 m accuracy was assumed to be a reasonable threshold 

of acceptability to assess impacts on groundwater availability. Ideally this threshold value 

would be selected by stakeholders, based, for example, on the magnitude of fluctuation and 

duration of low levels that would cause a significant increase in pumping costs.   
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Table 2-3 Model performance criteria and limits of acceptability 

Type Data 
Time 

period 

Model performance 

measure 

Limit of 

acceptability 

Hard Streamflow (daily) 2012-2013 NSE of daily flow ≥0.7 

  Streamflow (daily) 2012-2013 NSE of log daily flow ≥0.6 

  Streamflow (daily) 2012-2013 
Absolute error in average 

daily flow (m
3
/s) 

≤0.5 

  Streamflow (daily) 2012-2013 

Absolute error in annual 

maximum monthly flow 

(m
3
/s) 

≤1 

Soft  Streamflow (monthly) 1991-2013 NSE of monthly flow ≥0.7 

  Streamflow (monthly) 1991-2013 
NSE of log flow monthly 

flow 
≥0.6 

  
Tributary catchment 

outflow presence 
2012-2013 

Absolute error in duration of 

flow per month (days) 
≤3 

 

Streamflow connectivity 

across wide floodplain 

reach 

2012-2013 

Absolute error in duration of 

channel flow connectivity 

(weeks) 

≤1 

  

Floodplain water table 

depth (monthly) 
2012-2013 R

2 
 ≥0.7 

  

Floodplain water table 

depth (monthly) 
2012-2013 

Error in min-max value range 

(m) 
≤0.5 

 

 

 

For downstream water users, the reservoir storage buffers supply availability against 

shorter-term streamflow fluctuation on the orders of days to months. However, prolonged 

dry periods of several months to years have resulted in shortages and water-use rationing in 

the past, and high flood flows during relatively wet periods have resulted in significant 

uncontrolled reservoir overflow volumes, which could be considered a loss of potential 

supply (Jansen, 2008).  Therefore, while the accuracy of daily streamflow inputs to the 
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reservoir is not critical to water supply management if longer term yields are accurate, 

estimating magnitudes of seasonal highs and long duration low flow periods is important for 

the model's applied use.  These were considered based on the accuracy of the monthly 

averaged flow for the highest flow month in the record and of the annual average flow.  A 1 

m
3
/s accuracy for peak month averaged flow was assumed acceptable based on the estimated 

order of magnitude of the monthly inflow likely to result in uncontrolled spillage. On 

average the Kouga Dam has 32 million m
3
 of available storage space. From this average 

starting state, a month with a mean inflow of 12 m
3
/s would completely fill the storage, 

accounting for average rates of controlled outflow and dam surface evaporation.  The 

Baviaanskloof River contributes roughly a third of the incoming flow to the dam on average 

during high flow events, meaning a 4 m
3
/s mean monthly flow rate in the Baviaanskloof is 

likely to be associated with overflow.  A 0.5 m
3
/s accuracy was assumed acceptable for 

annual averaged daily flow, being 10% of the maximum daily water demand from the 

reservoir, reflecting the need to ascertain whether long term average inflows are less than 

average water demand.  Again, these thresholds should ideally be selected by those 

managing the water supply systems and these values are proposed for demonstration.   

 

Other than model fit to observed outputs that are of direct interest to water users, 

additional indicators of accuracy and internal process realism were also applied. The NSE of 

catchment outlet streamflow and of logged flow values were used to assess overall model fit 

to both high and low flows.  While the accuracy of modeled daily streamflow may be of less 

direct importance for water supply management, the model is to be used to investigate 

scenarios with different floodplain channel properties, which can impact overbank flooding 
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during peak flows occurring at daily or sub-daily time-steps, and also impact groundwater-

channel interactions during low flows, observed to change notably over periods of weeks.   

Although the time-series of daily streamflow values for this assessment was relatively short, 

2 years, these measures were also applied to monthly estimated flows for the 22 year period 

from 1991-2013. Thresholds of acceptability for NSE were set at 0.7, based on commonly 

achieved NSE values for semi-distributed models in literature, and cognizant of likely 

uncertainties in the observational data to which model outputs are compared. The thresholds 

for the NSE of logged streamflow was set at 0.6 because of the greater difficulty in 

capturing low flows, which are controlled by less well described subsurface processes, and 

the lower need for daily accuracy in daily low flow estimation.  The estimated 22 year time-

series was considered to have greater uncertainty than the more directly measured 2 year 

series, however if possible errors in the longer term data were not consistently above or 

below the actual streamflow, monthly accumulated output can be expected to be more 

accurate than the daily values. Hence the same NSE thresholds were applied when 

comparing model outputs to the long-term, monthly estimated values as for the short-term 

daily observed data.  

 

A significant portion of the catchment outflow, as much as 50%, is likely to pass through 

subsurface pathways via the floodplain alluvial aquifer (Chapter 1).  As such, representation 

of processes affecting flow through the aquifer is predicted to be important to both capturing 

low flows and long-term yields.  In addition, to examine floodplain channel change 

scenarios that impact the alluvial aquifer-channel exchange, accuracy in modeling the water 

level fluctuations in the alluvial aquifer are important. However, the level of information on 
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the spatial variability and distribution of aquifer material properties is limited and the time-

series of groundwater level observations are too sparse to compare to detailed, spatially 

variable modeling of the floodplain aquifer.  Given a spatially uniform set of aquifer 

material properties applied in the model, assumed to represent the effective average, and a 

50 m grid size, comparison of point groundwater table observations to corresponding grid 

cell outputs would be inappropriate.  The pattern of fluctuation in the average groundwater 

depth over monitored sites in the central floodplain was therefore compared to that of the 

average floodplain groundwater level in the model using the R
2
 correlation coefficient.  This 

accounts for the fit of the pattern of fluctuation, allowing for differences in absolute value 

and amplitude. The need for accuracy in fluctuation amplitude was considered in a separate 

criterion.  The connectivity of the aquifer to the stream is captured in a criterion looking at 

the connectivity of flow across the gauged wide floodplain reach that has surface flow quasi-

seasonally. When streamflow ceases along this reach, the average groundwater table in the 

floodplain must sit below the channel depth.  Because of the simplified representation of the 

aquifer and the channel and the spatial variability of their connectivity, model accuracy of 

exceedance of a specified threshold aquifer depth for channel connectivity was not used as a 

criterion, rather a general match to the amount of time the channel was dry was used.            

 

Data on the presence of surface runoff at the scale of tributary catchments and the 

duration of streamflow connectivity across the floodplain were used as additional soft data 

checks on process representation.  The available data on these processes are limited in 

duration and spatial extent and so relatively generous limits of acceptability were applied. 

Capturing the frequency and magnitude of flows reaching alluvial fans from the tributary 
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catchments is important for assessing the impact of the fan channel property scenarios.  

Similarly capturing the general patterns of connectivity between the floodplain channel and 

the alluvial aquifer is important for assessing the impact of floodplain channel incision 

scenarios.  During 2012-2013 surface flow was detected for 5 days in a single event 

(October 2012) at an instrumented tributary catchment during the observation period, with 

no flow in the channel for the remainder.  Catchment residents observed 3-7 days of 

tributary surface flow at other locations during this event, and 2-5 days of flow during the 

July 2012 flood event.  The number of days per month with modeled surface outflow 

leaving any tributary catchment was compared to these observations, accepting a 3 day 

margin of error for the presence of surface flow in both months.  In the floodplain, 

streamflow was detected at all monitored points for 94 out of the 104 weeks in the 

monitoring period, with channel reaches in the middle of the wide floodplain areas being dry 

for 10 weeks prior to the July 2012 floods.  Given that model topography, bed infiltration 

rates, and spatial distributions of groundwater levels are generalized and small changes 

could make a difference between a low flow and zero flow, a one week margin of error was 

considered acceptable for model output of non-zero streamflow at nodes in the central 

floodplain. 

 

 

2.2.3  Parameter sensitivity and uncertainty analyses 

 

Model sensitivity to different parameters was assessed using an adjusted regional 

sensitivity analysis advocated by Fenicia et al. (2008a), in which the spread of parameter 
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values in the acceptably behavioral parameter sets (those for which model output met all 

criteria) is used as an indicator of sensitivity. Cumulative density plots were made for the 

values of each parameter in the accepted sets for visual analyses. Ranges of values having 

steeper slopes in the cumulative density plot are regions of identifiability, being the value 

ranges where the majority of behavioral model outputs were produced. In addition, two 

numeric sensitivities indices (SI) were calculated for each parameter. The first, referred to 

here as SI1, looked at the relative spread of values of a parameter within the accepted 

parameter sets, as in Seibert and McDonnell (2002): 

 

𝑆𝐼1𝑋  =
𝑋𝐴𝑝90 – 𝑋𝐴𝑝10

𝑋𝐴𝑚𝑒𝑑  
 

Equation 1 

 

SI1X is the sensitivity index 1 value for parameter X, XAp90 is the value of parameter X 

that is the ninetieth percentile of all values of X in the accepted parameter sets,  XAp10 is the 

tenth percentile value of X in the accepted sets, and  XAmed is the median value of X in the 

accepted sets.  Lower values of SI1 indicate a narrower range of acceptable values compared 

to the median, hence a greater sensitivity of model acceptability to a change in value of this 

parameter.   

 

SI1 does not include any consideration of the magnitude of a-priori uncertainty in the 

value of the parameter, which represents the understanding of the catchment properties and 

processes gleaned from initial field observations and literature. A second sensitivity index, 
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SI2, was also calculated for each parameter to take this into account.  This index compared 

the magnitude of the accepted range of values to the magnitude of the a-priori value range: 

 

𝑆𝐼2𝑋 =  
𝑋𝐴𝑚𝑖𝑛 – 𝑋𝐴𝑚𝑎𝑥

𝑋𝑚𝑖𝑛 – 𝑋𝑚𝑎𝑥
 

Equation 2 

 

SI2X is the sensitivity index 2 value for parameter X, Xmin is the minimum and Xmax is the 

maximum value of parameter X in the a-priori range of values of X tested in the calibration 

exercise, and XAmin is the minimum and XAmax is the maximum of all values of parameter X 

in the accepted parameter sets when the calibration criteria have been applied.  Lower values 

of SI2 therefore indicate a greater sensitivity of model acceptability to the choice of a 

parameter value within the range of values originally considered possible (the a-priori 

range).   

 

Sensitivity analyses were done for parameter sets selected in the different levels of 

calibration: applying only the threshold of acceptability for streamflow NSE, applying all 

hard data criteria, and applying all hard and soft data criteria. This allowed assessment of 

any increase in parameter identifiability gained by including additional criteria types in the 

calibration. This would be seen as a region of increased slope in the cumulative density plots 

and a decrease in SI1 and SI2 values.  The ranking of different parameters in terms of model 

sensitivity was compared between calibration levels. A change in sensitivity values and 

rankings of parameter can highlight catchment processes that are better evaluated by 

inclusion of the additional criteria. 
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If model performance is insensitive to the value of a parameter within the tested value 

range this can suggest that the model structure is too highly parameterized relative to the 

data being used to discern appropriate parameter values.  However, if the range of parameter 

values tested in the calibration exercise is relatively small, for example if values are well 

constrained a-priori by commensurable field data or other information, insensitivity over a 

small tested range of values for a parameter may not pose a significant problem for 

uncertainty and further application of the model.  This could be tested by subsequently 

widening the range of parameter values tested for those with little sensitivity over the initial 

range, in order to see if sensitivity does or does not increase over the widened range. There 

is also the possibility that more realistic values lie outside the tested range.  This was not 

explored here and it was assumed that the tested parameter value ranges were sufficiently 

wide.  

 

2.3  Results 

2.3.1  Model performance 

 

Calibration of the proposed Baviaanskloof catchment model was successful in that 

parameter sets were found within the a-priori parameter space which satisfied all the model 

performance criteria applied for various streamflow and groundwater patterns (criteria listed 

in Table 2-3).  Of the 10,000 parameter sets tested, 55% met the NSE threshold, 8% met all 

four hard criteria, and 7% met all hard and soft criteria. The ranges of model output 
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performance measures for the different calibrated sets, those accepted using the streamflow 

NSE threshold, those accepted using all the hard data criteria, and those accepted using all 

hard and soft data criteria, are shown in Figure 2-1.  Eight out of the ten calibration criteria 

applied constrained the accepted parameter space, while for two criteria, thresholds for error 

in duration of tributary catchment surface flow and the R
2
 of floodplain water table 

fluctuation, all of the tested parameter sets produced acceptable output. Therefore the 

inclusion of these two criteria had no bearing on the calibration within the a-priori parameter 

space. As Figure 2-1 illustrates, only applying a NSE threshold for 2012-2013 daily 

streamflow did not select for models with acceptable low flows (seen as below-threshold 

values for the NSE of logged streamflow, Figure 2-1 B), long-term monthly streamflows 

(Figure 2-1 E), floodplain channel connectivity (Figure 2-1 G),  or floodplain groundwater 

fluctuation patterns (Figure 2-1 H& I). Only models selected by directly applying all the 

effective hard and soft criteria ended up meeting all the performance measure criteria.  

 

In general, the inclusion of additional criteria in the calibration improved model 

performance across the indicators used for the various patterns and processes, improving the 

means and/or the ranges of performance measure values for the selected set. This indicates 

that the additional hard and soft criteria did not require major performance trade-offs in 

order for the model to achieve acceptable results for the additional scales and processes 

being assessed by the extra criteria.  If this had been the case, average calibrated model 

performance for some indicators would have decreased with the addition of extra calibration 

criteria. For example, the mean of streamflow NSE values for the calibrated set could have 

decreased when additionally selecting for models that recreated the groundwater level 
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fluctuation acceptably well. This did not occur (Figure 2-1).  Across most performance 

measures, the inclusion of the additional hard data criteria beyond the NSE threshold 

resulted in a bigger gain in performance than the subsequent performance gains from the 

additional inclusion of the soft criteria. Nevertheless, applying the four hard data criteria 

alone was not sufficient to achieve adequate performance on all measures considered, 

resulting in inclusion of some parameter sets producing unacceptable errors in modeled 

channel flow duration and range in groundwater fluctuation (Figure 2-1 G&I).    

 

The observed hydrographs, ranges of model streamflow output for the three different 

calibrated sets, and the mean of modeled flow for the hard and soft criteria calibrated set, are 

shown for 2012-2013 and 1991-2013 in Figure 2-2 and Figure 2-4. These figures illustrate 

the decreasing range in output values, or increase in model precision, as additional criteria 

were included into the calibration, particularly for peak flows. The variation in predicted 

mean 2012-2013 streamflows for all the models with acceptable NSEs spanned a range with 

a width that was 61% of the average value.  The range of modeled mean flows was reduced 

to 15% of the average when applying the other hard data criteria and 13% when adding the 

soft.   

 

Inspection of the 2012-2013 daily hydrographs showed that the additional hard and soft 

criteria served to improve both calibrated model accuracy and precision in prediction of the 

peak flows for the two major flood events in this period (July and October of 2012). This 

was also true for the recession of flow during the first few days after these peaks and for 

baseflow levels several months after each peak (i.e., September and December of 2012). 



 

 138 

However, all models over-predicted streamflow during a period of about two weeks 

immediately following the July 2012 flood event and under-predicted flows over three 

weeks following the October 2012 flood event, regardless of the calibration method (Figure 

2-2). This could indicate a failure of the model to adequately represent some storage of 

water, either in hillslope soils, the interflow zone at the bedrock surface, and/or the 

floodplain alluvium, which was replenished by the July 2012 rainfall, potentially persisting 

and creating antecedent conditions that resulted in a higher event runoff ratio in the October 

event and higher than modeled flows in its recession (Chapter 1).  Predicted streamflow in 

all models was too responsive to smaller rainfall events, showing several small spikes in 

daily flow when the observed data showed little change (Figure 2-2).  As would be expected, 

the effects of this were less pronounced when the data was aggregated monthly for 

comparison to the 1991-2013 estimated monthly time-series (Figure 2-4).  There was some 

over-prediction of smaller peaks in monthly flow (those with month average flows under 2 

m
3
/s) and under-prediction of the higher monthly peaks; however, notable exceptions, such 

as over-predicting the late 1996 and the 2011 high flow months, indicate the error is not 

completely systematic.  

 

The resulting mean NSE of modeled daily streamflow for 2012-2013 was 0.83 (range 

0.70-0.92) for calibrated models when using the single NSE criteria calibration. Additionally 

applying the three other hard data criteria based on the observed daily streamflow time-

series (NSE of logged streamflow, error in the mean, and error in maximum monthly flow) 

increased the mean NSE of calibrated models to 0.89 (range 0.76-0.92). Further applying the 

soft data criteria, which tested model capability to recreate monthly flows for 1991-2013, the 
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duration of tributary subcatchment surface flows, floodplain channel surface flow, and 

fluctuations in the floodplain aquifer water table, further constrained the accepted parameter 

sets such that the mean daily flow NSE of accepted models was 0.90 (range 0.87-0.92).  

 

Model NSE values for the 22-year (1991-2013) estimated monthly streamflow time-

series were generally lower than those for the short-term (2012-2013) daily gaged 

streamflow series (Figure 2-1 A vs E). The additional inclusion of the hard and soft criteria 

had a relatively small effect on the mean performance of calibrated sets for this indicator; 

however, they did constrain the range, excluding poorer performing sets. The mean 1991-

2013 monthly flow NSE value was 0.80 (range 0.63-0.85) for models calibrated with the 

NSE threshold for 2012-2013 daily flow, while the mean was 0.81 (range 0.74-0.85) for 

those meeting all of the hard data criteria and 0.81 (range 0.79-0.85) for those meeting all 

hard and soft criteria. Although the fit of the model output to the estimated long-term 

monthly flow time-series was considered a soft data criterion, all models selected in the hard 

criteria only calibration also met the threshold of acceptability for this soft data performance 

measure (NSE≥0.7). This was not true for the short-term NSE criteria selected set, which 

included models producing unacceptable 1991-2013 monthly modeled flow NSE values 

(Figure 2-1 E).   

 

As expected, values of model NSE for logged streamflow, in which low flow values 

have more weight in determining the NSE than they do in when using raw flow data, were 

lower than untransformed flow NSE values.  The mean logged daily streamflow NSE for 

2012-2013 was 0.58 (range 0.20-0.68) for the NSE criteria calibrated models, 0.64 (range 
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0.60-0.68) for the hard criteria calibrated models, and 0.62 (range 0.61-0.67) for the hard 

and soft criteria calibrated models. In this case, the addition of the soft data criteria slightly 

reduced model performance for the indicator.  Opposite to the trend seen for the 

untransformed streamflow NSE values, the NSE values for 1991-2013 logged monthly 

flows were greater than those for the 2012-2013 logged daily flows: mean model NSE of 

logged monthly streamflow for 1991-2013 was 0.67 (range 0.56-0.70) for the daily flow 

NSE criteria calibrated models, 0.68 (range 0.62-0.70) for the hard criteria calibrated 

models, and 0.68 (range 0.66-0.70) for the hard and soft criteria calibrated models.  Again 

all hard criteria calibrated models met the soft data criteria for long-term monthly logged 

flow NSE, which was not true for all the models selected using only the short-term daily 

NSE criteria.  

 

Thresholds of acceptable error in the mean flow and in maximum monthly flow for 

2012-2013 were used as additional hard data criteria and their inclusion improved the 

performance of the calibrated sets for these measures over that of the set selected only based 

on NSE of daily flow. The average error in mean flow for models selected based on NSE 

was 0.40 m
3
/s (range 0.01-1 m

3
/s), while it was reduced to 0.34 m

3
/s in both the hard criteria 

(range 0.18-0.47 m
3
/s) and hard and soft criteria (range 0.20-0.45 m

3
/s) selected sets.  The 

average error in maximum monthly flow was 1.54 m
3
/s (range 0.01-5.1 m

3
/s) in the NSE 

selected set, 0.49 m
3
/s (range 0.01-0.97 m

3
/s) in the hard criteria set, and 0.51 m

3
/s (range 

0.01-0.94 m
3
/s) in the hard and soft criteria set.  The addition of the soft data criteria did not 

improve the calibrated model set's performance on these measures, but did not reduce mean 

performance either.  Adding the soft criteria reduced the number of models accepted, 
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reducing the range in flow error values by exclusion of both models with worse and those 

with better performance on these measures.   

 

Figure 2-4 shows observed groundwater levels averaged across monitored sites in the 

central floodplain and the ranges of relative modeled groundwater elevations averaged over 

these locations in the model grid for the different calibrated sets.  Groundwater depth data 

was transformed into relative elevation compared to the level on the date of the first 

observation point (15/01/2012) to allow for averaging across sites and comparison of 

fluctuation patterns between observed and modeled data.  In general all models under-

predicted the fluctuation of the floodplain groundwater table, having lower and less delayed 

peaks and smaller water table recessions in dry periods than observed.  Model outputs from 

50 m resolution grid cells with uniform soil and aquifer properties were not expected to be 

directly commensurable to point observations from a heterogeneous environment and so 

acceptability thresholds were purposefully relatively loose.  However, all parameter sets 

tested had a floodplain groundwater fluctuation R
2
 correlation coefficient of over 0.7 (Figure 

2-1), therefore this soft data criteria did not constrain accepted parameter values within the 

a-priori parameter space.  Other criteria, such as the error in the range of water table depths, 

duration of floodplain channel flow, fit to the estimated long-term month streamflow series, 

did constrain the calibrated sets such that the range of the modeled groundwater depths did 

narrow when more criteria were added (Figure 2-4). However there was no improvement in 

sets' mean groundwater pattern correlation to the observed data when additionally applying 

the hard and soft criteria to the NSE threshold selected set: the mean R
2 

was 0.8 for all three 

calibrated sets.  Application of the other three hard criteria resulted in rejection of both 
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better and worse performing models for this measure, while the other five soft criteria 

generally resulted in rejection of sets with lower R
2
 values, such that the final range was 

0.79-0.81 (Figure 2-1 H).  Unlike the correlation threshold, the threshold of accepted error in 

the range of groundwater depth over the modeled period did restrict the parameter sets 

accepted. It reduced the range of outputs for this measure, rejecting poorer performing sets, 

but not making much change to the mean performance of the calibrated set (Figure 2-1 I). 

The mean error in the range of water table depths in the hard and soft criteria calibrated set 

was 0.35m (range 0.16-0.48m).  

 

There was a wide range in the number of weeks of predicted channel flow across the 

central floodplain in the uncalibrated model and all three calibration levels reduced the error 

in the flow duration of the accepted model set. The hard and soft criteria did much more to 

improve performance on this measure than applying the daily streamflow NSE criterion 

alone (Figure 2-1): mean error for the set selected using only the NSE was 1.3 weeks (range 

0.1-11.6 weeks), 0.2 weeks for the hard criteria set (range 0.1-1.4 weeks), and 0.1 for the 

hard and soft criteria selected set (range 0.13-0.14 weeks).   As with some of the other soft 

data based performance measures, the inclusion of the additional hard data based criteria in 

calibration served to improve the calibrated model set's performance on this measure 

without directly selecting for models based on the measure.  

 

Because the inclusion of the additional hard and soft data criteria resulted in an 

improved mean and reduced range of calibrated model NSE values, it appeared possible that 

simply increasing the stringency of the NSE acceptability threshold could produce similar 
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resulting performance of the calibration set as the application of the other hard and soft data 

criteria. This was tested by re-calibrating using a 2012-2013 daily streamflow NSE 

acceptability threshold of 0.87 instead of 0.70. The value 0.87 was selected because it was 

the minimum NSE value of models selected when using all the hard and soft data criteria.  

This higher NSE threshold reduced the percentage of accepted parameter sets from 55% to 

22%. The greater selection stringency did serve to improve mean performance for several of 

the measures when compared to the NSE≥0.70 set, however models selected with the 

NSE≥0.87 threshold still included parameter sets with unacceptable performance against 

both some of the hard and some of the soft criteria, namely the NSE of logged 2012-2013 

daily flow, maximum monthly flow, the NSE of raw and logged monthly 1991-2013 flow, 

and floodplain channel flow duration (Supplementary information, Figure 2-6).   
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Figure 2-1 Distribution of model performance measures used as calibration criteria for 

different sets of model runs: all parameter sets tested (All), those exceeding the NSE 

threshold (NSE), those meeting all hard criteria (H), and those meeting all hard and soft 

criteria (H&S).  

Dotted lines show the threshold applied for the criterion. Thresholds for measures shown in graphs A-D 

were hard-data based criteria while those in E-I were soft-data based. 'Error' values are absolute values. 

D

) 

E

) 

F

) 

G

) 

H

) 

I

) 



 

 145 

 

Figure 2-2 Observed and modelled daily streamflow for 2012-2013, showing the range of model 

output values for parameter sets selected using different performance measure criteria: NSE 

only, hard data criteria (H), and hard and soft data criteria (H&S) .  

The period from 1/7/2012 to 1/1/2013 is shown at higher resolution below, including the major flood 

events of the observation period.   
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Figure 2-3 Monthly average streamflow for 1991-2013 as estimated from regional gages and 

as modelled using parameter sets for which output met hard (H) or both hard and soft (H&S) 

criteria 
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Figure 2-4 Observed and modelled average groundwater level (relative to first 

observed water table depth, 24/01/2012) at central locations in the alluvial floodplain 

for 2012 – 2013. The range of model output is shown for parameter sets selected using 

different performance measure criteria: NSE only, hard data criteria (H), and hard 

and soft data criteria (H&S) 
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2.3.2  Parameter sensitivity and uncertainty 

 

The parameters for which model acceptability was most sensitive to changes in 

parameter value, as indicated by sensitivity index 1 (SI1, Equation 1), differed somewhat 

with the calibration criteria applied. However, sensitivity to the values of the hillslope and 

plateau infiltration rates, the mountain bedrock aquifer outflow constant, and the 

evapotranspiration coefficient (ETk) of the floodplain vegetation, were consistently high 

(Table 2-4 below and Table 2-7 in Supplementary Information). One or more of the 

floodplain material water retention properties (saturated soil moisture, field capacity, wilting 

point) were also consistently amongst the highest sensitivity parameters.  The average 

parameter SI1 value for the calibrated set decreased by 12% from 0.55 to 0.48 when 

additionally including the extra hard data criteria beyond just using NSE threshold, and 

decreased by another 13% (to 0.42) when including the soft data criteria, showing a 

progressive increase in overall ability to constrain acceptable parameter values.  The 0.42 

mean SI1 value for the hard and soft calibrated set, was still relatively high, meaning that the 

average width of the value range from the 10
th

 to 90
th

 percentile of accepted parameter 

values is 42% of the median; however, there was a wide range in sensitivities between 

parameters with SI1 values ranging from 0.02 to 2.6. The parameters with the lowest 

sensitivity as measured by SI1 were the surface roughness (Manning's n) values for all land 

units, hydrologic conductivities (Ksat) of floodplain topsoil and cobble aquifer, and plateau 

and cliff vegetation LAI (Table 2-7).  Low sensitivity to surface roughness was expected as 

much of the flow through the catchment was found to be subsurface and because the 

relatively high terrain slopes and use of a daily time-step would make roughness values less 
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significant in estimating the quantity and timing of surface runoff in the model when it did 

occur.  Floodplain Ksat values were notably constrained in calibration, as described further 

below, however acceptable values still had a relatively wide range compared to the median, 

hence the high SI1 values compared to other parameters.    

 

The additional hard criteria, which selected for model prediction of 2012-2013 low 

flows, high monthly flows, and the annual average, increased sensitivity to the values used 

for properties of the floodplain aquifer material, particularly the floodplain aquifer Ksat (SI1 

decreased 31% from 1.9 to 1.3 for this parameter), and the interflow reservoir outflow time 

constant (SI1 decreased 37% from 0.9 to 0.5). Subsequent inclusion of the soft criteria, 

which selected for better fit to long term monthly flow patterns, groundwater level patterns, 

and floodplain channel connectivity, notably increased sensitivity to floodplain aquifer Ksat, 

floodplain material water holding properties, interflow time constants, and river channel 

roughness (Table 2-7).  These criteria also resulted in  increased sensitivity to soil water 

holding properties of the canyon floors in tributary catchments such that these were amongst 

the highest ranked parameters in terms of SI1 (Table 2-4).  Although this a minor land unit 

in terms of area, all surface runoff from the plateau, hillslope, and cliff units passes through 

the canyons which have high infiltration capacities. Comparable to the role of the central 

valley floodplain at the scale of the entire meso-scale catchment, the canyons' capacity to 

hold water plays a role in determining the amount of surface and groundwater leaving the 

tributary sub-catchments, which appears to be notable in determining patterns of floodplain 

groundwater and/or long-term streamflow captured, as assessed by the soft data criteria.   
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Examining the change in range of accepted parameter values in the different calibration 

sets versus the parameters' a-priori ranges, as indicated by SI2 values (see Equation 2), 

highlighted several of the same key parameter sensitivities as SI1. SI2 additionally shows 

the calibration procedures' impact on constraining values of parameters for which relatively 

little prior information was available. The mountain bedrock outflow constant, the interflow 

constants, hillslope and plateau infiltration, and river channel roughness consistently were 

among the parameters with the lowest SI2 values, meaning that calibration most 

significantly limited the value ranges of these parameters compared to their a-priori ranges 

(see Table 2-5 and Table 2-8 in Supplementary Information). NSE threshold and hard data 

criteria calibration limited the ranges of parameter values related to hillslope and cliff thicket 

vegetation (ETk , LAI, and root depth) more so than for some of other parameters that were 

ranked as more sensitive using SI1 (Table 2-4, Table 2-5). These parameters were not 

considered highly sensitive when ranked using SI1 because, even when constrained, the 

accepted value range was wide relative to the median value.  

 

The change in SI2 values between calibration levels showed the effectiveness of the 

additional calibration criteria in constraining the parameter value ranges. The average SI2 

value for the NSE only calibrated set was 0.87, meaning that the range of accepted values 

was 87% of the a-priori value range for the average parameter.  Adding the hard criteria 

reduced the average SI2 by 13% to 0.76, while adding the soft criteria further reduced it by 

20% to 0.61. The parameters for which the additional hard data criteria had the biggest 

effect on constraining the value range compared to the initial set were floodplain aquifer Ksat 

and the infiltration rates of the hillslopes and plateaus. The additional hard criteria did little 
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to further constrain the mountain bedrock outflow constant, already highly constrained by 

the NSE criteria, and less sensitive parameters such as the surface roughness of plateaus, 

hillslopes, and canyon floors.  The subsequent inclusion of the soft data criteria had the 

biggest additional value-constraining effect on the interflow constant, the soil water 

retention properties of the canyon floors, and the floodplain aquifer Ksat (Table 2-5 and 

Table 2-8). This indicates that the values selected for these parameters influenced the long 

term flow patterns, groundwater fluctuations, and/or floodplain channel flow connectivity, 

and that these processes were not as well assessed using the calibration criteria for the hard 

data, meaning the short-term streamflow data, alone.  The parameters for which the 

calibration procedures were the least effective in constraining the acceptable value ranges 

beyond their a-priori limits were surface roughnesses for the various landscape units, 

excluding the river channel, and LAI and ETk parameters for the canyon floors and plateaus  

(Table 2-8, Supplementary Information).  

 

Cumulative density plots for the nine parameters with the greatest sensitivities, looking 

at both SI1 and SI2 across the different calibration trials, are presented in Figure 2-5. These 

plots illustrate the regions of greatest value likelihood out of the range of values tested (plot 

x-axes span the a-priori range), seen as ranges with high slopes, and illustrate the increase in 

identifiability when calibrating with the additional hard and soft criteria, seen as increases in 

slope in the plots between different calibration sets. For example, the mountain bedrock 

outflow constant was highly constrained at a value close to 100,000 days in the NSE 

threshold calibration and the additional criteria did relatively little to further constrain the 

acceptable value.  By comparison, values of the interflow reservoir vertical outflow 
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(percolation) time constant were noticeably more constrained to a region around 100-150 

days when the additional hard criteria were included compared to calibration with just the 

NSE criterion.  The calibrated values of infiltration rates for the hillslope and plateaus were 

concentrated close to the upper limit of the range of values tested, while the accepted 

floodplain aquifer Ksat values were clustered close to the lower end of the range. This could 

indicate that widening the ranges of values tested for these parameters may yield more 

models with improved performance. In both cases the value ranges for these parameters 

were limited a-priori by field observations, direct property measurements and plot scale 

surface runoff presence data, as described in Chapter 1.  For the other parameters, the value 

ranges more frequently producing acceptable model outputs were located further from the 

limits of the range tested.    
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Table 2-4 Top ten parameters to which model acceptability was most sensitive, as assessed by 

Sensitivity Index 1, using different sets of model performance acceptability criteria              

(PLT – plateau, HL – hillslope, CLF – cliff, CYN – canyon, FP – floodplain, MBR – mountain bedrock,     

SWC – saturated water content, SM – soil moisture, FC – field capacity, WP – wilting point, ETk  - 

evapotranspiration coefficient) 

 

Parameter 
NSE threshold Hard criteria Hard & soft 

SI 1 Rank SI 1 Rank SI 1 Rank 

Infilt. rate  - HL  (mm/hr) 0.04 1 0.03 1 0.02 1 

MBR outflow constant (days) 0.10 2 0.10 3 0.10 4 

ETk   -  FP savanna 0.10 3 0.10 4 0.08 3 

Infilt. rate  - PLT (mm/hr) 0.10 4 0.09 2 0.07 2 

ETk  -  CYN forest 0.20 5 0.19 5 0.19 11 

SM-FC - FP topsoil 0.23 6 0.23 11 0.22 18 

SWC - FP topsoil 0.24 7 0.23 12 0.21 16 

SM-WP - FP topsoil 0.24 8 0.24 14 0.20 12 

SWC - HL 0.26 9 0.21 6 0.21 13 

SM-FC - HL 0.26 10 0.21 7 0.21 14 

       
Parameter 

NSE threshold Hard criteria Hard & soft 

SI 1 Rank SI 1 Rank SI 1 Rank 

Infilt. rate  - HL  (mm/hr) 0.04 1 0.03 1 0.02 1 

Infilt. rate  - PLT (mm/hr) 0.10 4 0.09 2 0.07 2 

MBR outflow constant (days) 0.10 2 0.10 3 0.10 4 

ETk  -  FP savanna 0.10 3 0.10 4 0.08 3 

ETk  -  CYN forest 0.20 5 0.19 5 0.19 11 

SWC - HL 0.26 9 0.21 6 0.21 13 

SM-FC - HL 0.26 10 0.21 7 0.21 14 

SM-WP - HL 0.26 11 0.21 8 0.21 15 

SWC - FP cobble 0.29 18 0.22 9 0.14 8 

SM-WP - FP cobble 0.28 16 0.23 10 0.16 9 

       
Parameter 

NSE threshold Hard criteria Hard & soft 

SI 1 Rank SI 1 Rank SI 1 Rank 

Infilt. rate  - HL  (mm/hr) 0.04 1 0.03 1 0.02 1 

Infilt. rate  - PLT (mm/hr) 0.10 4 0.09 2 0.07 2 

ETk  -  FP savanna 0.10 3 0.10 4 0.08 3 

MBR outflow constant (days) 0.10 2 0.10 3 0.10 4 

SM-WP - CYN 0.27 12 0.24 15 0.12 5 

SWC - CYN 0.27 13 0.24 16 0.12 6 

SM-FC - CYN 0.27 14 0.24 17 0.12 7 

SWC - FP cobble 0.29 18 0.22 9 0.14 8 

SM-WP - FP cobble 0.28 16 0.23 10 0.16 9 

SM-FC - FP cobble 0.28 15 0.23 13 0.17 10 
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Table 2-5 Top ten parameters to which model acceptability was most sensitive compared to a-

priori value uncertainty, as assessed by Sensitivity Index 2, using different criteria sets 

(PLT – plateau, HL – hillslope, CLF – cliff, CYN – canyon, FP – floodplain, MBR – mountain bedrock,    

SWC – saturated water content, SM – soil moisture, FC – field capacity, WP – wilting point, ETk  - 

evapotranspiration coefficient) 

 

Parameter 
NSE threshold Hard criteria Hard & soft 

SI 2 Rank SI 2 Rank SI 2 Rank 

MBR outflow constant (days) 0.11 1 0.11 1 0.10 1 

Interflow horiz. constant (days) 0.49 2 0.37 4 0.15 3 

Infilt. rate  - HL  (mm/hr) 0.51 3 0.23 2 0.11 2 

LAI - HL thicket 0.53 4 0.49 6 0.45 14 

ETk  -  FP savanna 0.60 5 0.59 9 0.47 16 

Manning's n - FP river channel 0.66 6 0.56 7 0.40 6 

ETk  -  CLF thicket 0.70 7 0.69 15 0.67 24 

Infilt. rate  - PLT (mm/hr) 0.73 8 0.30 3 0.19 4 

Soil/root depth - HL thicket  (mm) 0.82 9 0.60 10 0.45 13 

SM-WP - FP cobble 0.87 10 0.66 13 0.45 12 

       
Parameter 

NSE threshold Hard criteria Hard & soft 

SI 2 Rank SI 2 Rank SI 2 Rank 

MBR outflow constant (days) 0.11 1 0.11 1 0.10 1 

Infilt. rate  - HL  (mm/hr) 0.51 3 0.23 2 0.11 2 

Infilt. rate  - PLT (mm/hr) 0.73 8 0.30 3 0.19 4 

Interflow horiz. constant (days) 0.49 2 0.37 4 0.15 3 

Ksat - FP cobble  (mm/hr) 1.00 41 0.44 5 0.20 5 

LAI - HL thicket 0.53 4 0.49 6 0.45 14 

Manning's n - FP river channel 0.66 6 0.56 7 0.40 6 

Interflow vert. constant (days) 0.88 14 0.57 8 0.42 7 

ETk  -  FP savanna 0.60 5 0.59 9 0.47 16 

Soil/root depth - HL thicket  (mm) 0.82 9 0.60 10 0.45 13 

       
Parameter 

NSE threshold Hard criteria Hard & soft 

SI 2 Rank SI 2 Rank SI 2 Rank 

MBR outflow constant (days) 0.11 1 0.11 1 0.10 1 

Infilt. rate  - HL  (mm/hr) 0.51 3 0.23 2 0.11 2 

Interflow horiz. constant (days) 0.49 2 0.37 4 0.15 3 

Infilt. rate  - PLT (mm/hr) 0.73 8 0.30 3 0.19 4 

Ksat - FP cobble  (mm/hr) 1.00 41 0.44 5 0.20 5 

Manning's n - FP river channel 0.66 6 0.56 7 0.40 6 

Interflow vert. constant (days) 0.88 14 0.57 8 0.42 7 

SWC - CYN 1.00 29 0.98 36 0.44 8 

SM-FC - CYN 1.00 28 0.98 38 0.44 9 

SM-WP - CYN 1.00 30 0.98 37 0.44 10 
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Figure 2-5 Cumulative density plots of parameter value occurrence in the sets selected as 

acceptable using different model performance criteria: streamflow NSE threshold (NSE), all 

hard data criteria (H), all hard and soft data criteria (HSE).  

Plots shown for parameters to which model acceptability was most sensitive within tested value ranges. 

Plot x-axes span the range of values tested. A density line slope of 1 indicates no sensitivity over the range.  

(PLT – plateau, HL – hillslope, CLF – cliff, CYN – canyon, FP – floodplain, MBR – mountain bedrock, 

SWC – saturated water content, ETk  - evapotranspiration coefficient)   
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2.4  Discussion 

 

Applying a high dimensionality model to a catchment with relatively little streamflow 

data is not unusual in practical catchment management contexts (Efstratiadis and 

Koutsoyiannis, 2010). Complex, physically-based hydrologic models are often advocated as 

decision making tools even in data poor areas. This case study demonstrated the value of 

using additional model performance criteria and data types to supplement the widely used 

streamflow NSE in the calibration of a relatively complex catchment model with a short 

streamflow record. Because of the size and topographic complexity of the catchment, and 

the desired use of the model to assess land and river management scenarios, the proposed 

model of the Baviaanskloof was necessarily highly dimensional, having 42 parameter values 

to be calibrated. In contrast, only two years of gaged streamflow data was available with 

which to evaluate the model. This is a very short time period given the semi-arid climate and 

highly variable rainfall patterns.  Fortunately the observation period included two major 

flood events and recessions which could shed light on catchment processes; however, the 

information in this record can still be considered limited in relation to the dimensionality of 

the model. It was found that attempting to calibrate this model using only the NSE to 

measure its goodness-of-fit to the short streamflow time-series resulted in large parameter 

uncertainty and hence low output precision, and acceptance of parameter values that 

produced unacceptably inaccurate groundwater level fluctuations and short and long-term 

streamflow pattern predictions.  Use of additional model performance measures based on 

this streamflow record as criteria in calibration increased both parameter identifiability and 

model accuracy for most measures applied. Further improvement was achieved when adding 
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criteria based on the available soft data: floodplain groundwater table fluctuations, channel 

flow presence, and estimated long term monthly flows, with notable gains in parameter 

identifiability, but more minor improvements in calibrated model performance and 

precision.  

 

A valuable outcome in this study for areas in which only streamflow data is available 

was the improvement in calibrated model performance achieved with the additional 

calibration criteria that were based only on the streamflow record.  The availability of 

supplementary groundwater and surface flow data for the Baviaanskloof catchment allowed 

for evaluation of the model against more targeted measures of the realism of its 

representation of internal catchment processes.  If this data had not been available there 

would have been no way to directly evaluate the short-comings of the NSE calibrated model 

in recreating patterns in floodplain groundwater levels or channel connectivity, and no way 

to directly select for parameter values that resulted in acceptable model performance on 

these fronts.  It was found that making more complete use of information in the available 

streamflow record through additional hard data indices can be of use in this situation. 

Particular patterns in the catchment-scale streamflow hydrograph can be used to assess 

selected aspects of the model's representation of catchment processes, such as the flow paths 

resulting in baseflow, for example. In this case, to the degree that baseflow is controlled by 

floodplain groundwater levels, both in reality and in the model structure, criteria selecting 

for models with more accurate low flow prediction can indirectly select for those that more 

accurately predict floodplain groundwater levels.  For the Baviaanskloof, it was seen that 

inclusion of additional hard data based calibration criteria, such as the NSE of logged 
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streamflow which increases the weight of low flow values, was able to exclude many 

parameter sets with unacceptable performance in capturing observed groundwater and 

floodplain channel patterns. 

   

It is possible that this improvement in performance with the additional streamflow-based 

criteria could be a coincidental result of reducing the number of acceptable parameter sets, 

but this was found not to be the case.  When a more stringent untransformed streamflow 

NSE threshold was applied in a single criteria calibration, the number of accepted parameter 

sets was reduced, but still included sets with unacceptable performance in capturing 

groundwater and surface flow patterns, sets which were excluded when instead applying the 

other hard data criteria. This demonstrated that maximizing streamflow NSE does not 

always optimize the realism achievable with a given model structure. Improved model 

realism in representing internal processes through the inclusion of additional streamflow 

indices has been observed in other studies (Freer et al., 2004; Seibert and McDonnell, 2002; 

Wöhling et al., 2013); however these were for smaller, less heterogeneous catchments with 

more data and wetter conditions.    

 

Multi-criteria calibration can also provide a means of highlighting limitations in the 

model structure and parameterization, and potentially the suitability of the observational 

data and criteria, through the identification of performance trade-offs between different 

criteria (Efstratiadis and Koutsoyiannis, 2010; Kollat et al., 2012). The proposed model 

structure of the Baviaanskloof catchment was validated in the sense that parameter sets were 

found, within the parameter value space deemed reasonable a-priori, which could produce 
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streamflow and groundwater outputs that were considered acceptably accurate when 

compared to available observational data.  In addition, the calibrated model average NSE 

values for raw and log-transformed catchment outlet streamflow improved with additional 

inclusion of criteria selecting for better representation of floodplain groundwater and 

channel flow patterns. This provides support for the model's linkages between the floodplain 

sub-surface and surface flows and the catchment scale outflow. Nevertheless, there were 

some trade-offs signaling potential areas for improvement. Some of the parameter sets with 

the best performance in the NSE of log transformed 2012-2013 daily flow and the R
2
 of 

floodplain groundwater table that were accepted against the hard criteria were rejected with 

the addition of the soft data criteria. In particular these models were rejected due to their 

higher level of error in predicting the magnitude of the range of groundwater depth 

fluctuation over the observation dates. This may be a function of the model's simplified 

representation of the floodplain aquifer material and processes and of issues of unaccounted 

for spatial heterogeneity of processes present in the observational data.   

 

The lower log-transformed streamflow NSE for the hard and soft criteria calibrated 

model set (mean 0.62, range 0.61-0.67) compared to the raw streamflow NSE (mean 0.90, 

range 0.87-0.92) indicated the calibrated model was better able to reproduce peak flows than 

low flows. This indicates greater relative inaccuracies in model representation of processes 

controlling low flows, such as percolation, groundwater flow, ET, and the channel-aquifer 

interaction. Greater uncertainties about these processes were acknowledged a-priori with 

wide parameter ranges. Because the daily fluctuation in low flows was considered less 
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important for water supply management in this context compared to long term averages, a 

looser threshold of acceptability was applied for the NSE of log-transformed flow.   

 

Further calibration of the applied model structure would be unlikely to improve the low 

flow prediction, as all the parameter sets considered over-predicted streamflow response to 

small rainfall events, over-predicted flow during the weeks immediately following the July 

2012 flood, and under-predicted flow during the weeks following the October 2012 flood. 

This may indicate misrepresentation of water storage in one or more landscape units, 

potentially addressable by increasing soil depth and/or water holding capacity, reducing root 

depth or ET, and/or changing interflow reservoir or floodplain aquifer properties. These 

errors could also be linked to unquantified inaccuracies in spatially distributed rainfall in the 

catchment, which was estimated based on relatively sparsely distributed gages and a 

regionally calibrated monthly precipitation surface (Lynch, 2003). Possible systematic errors 

in rainfall estimation would have been implicitly adjusted for in the selection of process 

parameter values resulting in outputs better fitting the observations. For example systematic 

over estimation of catchment scale precipitation could result in selection of higher 

infiltration and ET parameters to effectively remove this added water from the simulation. 

This is one possible explanation for calibrated hillslope infiltration parameters being at the 

upper extreme of the a-priori range and the alluvial aquifer conductivity values at the lower 

end (Figure 2-5).  Precipitation adjustment factors could have be included as additional 

calibration parameters, however that was not considered here as it was considered unlikely 

that there was enough observational data to additionally resolve these parameter values 

given that relatively similar effects could be achieved by changing other process parameters.  
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Precipitation estimation errors that are not systematic, varying between events or seasons, 

could limit the ability of the model to recreate the observations setting a limit to the 

improvements to be gained with further calibration attempts.       

 

The lower performance for the NSE of monthly streamflow for 1991-2013 (calibrated 

model mean 0.81, range 0.79-0.85) compared to that for daily streamflow for 2012-2013 

(mean 0.90 range 0.87-0.92) was somewhat surprising as monthly accumulation of flow was 

expected to absorb some process inaccuracies manifest at smaller timescales.  Model under 

and over-prediction of certain flow periods did not appear systematic in the long-term 

record, perhaps pointing to errors in observational data and climate input data. The long-

term data-set of monthly flows from the Baviaanskloof was estimated based on reservoir 

volume change in the Kouga Dam and gaged streamflow on the Kouga River and therefore 

assumed to have greater uncertainty than the 2012-2013 gaged record.  Use of this dataset in 

the soft data criteria did not actually change the calibration results as the hard data criteria 

had already indirectly selected only parameter sets that met the threshold of acceptability for 

goodness-of-fit to the long-term estimated monthly flows.  The acceptable fit of the model to 

this estimated long-term flow dataset acts as validation of the model's streamflow 

performance, given that the 2012-2013 gaged data record was deemed too short to 

reasonably divide into separate calibration and validation periods.  

  

Models cannot be perfect representations of reality and so the goal of the model building 

and calibration exercise is to arrive at a model that is fit-for-purpose to the degree possible 

given the limitations of available data, conceptual understanding of catchment processes, 
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time, and computing resources.  Calibration criteria used for acceptance of models are often 

arbitrary (Seibert and McDonnell, 2002) and can notably influence the resulting uncertainty 

in prediction of events of management concern (Zheng and Keller, 2007b). This study 

demonstrated the inclusion of calibration criteria that represent the level of accuracy needed 

for the model's application. In the Baviaanskloof, a catchment model is to be used to look at 

likely impacts of management scenarios on water supply, and so should achieve levels of 

accuracy in predicting change in floodplain groundwater levels that is meaningful to 

irrigating farmers and surface water yields to the downstream reservoir meaningful to 

downstream users. In this case study the performance measures and acceptable accuracy 

levels were chosen by the researcher using available basic information about water supply 

access and management, but should ideally be agreed upon by the group of end users of 

model output. Zheng and Keller (2007b) provide a method for calculating a model's 

uncertainty in predicting attainment of specific management objectives and using this for 

assessment and calibration. In this study both management objectives and indicators of 

internal catchment processes about which data exists were included.  

 

An effort was made to make full use of available information on catchment processes 

during calibration by using multiple measures to assess model fit to different patterns in the 

streamflow record and assessing model fit to observed patterns in surface flows at different 

landscape scales, floodplain groundwater levels, and estimated long-term streamflows.  

Acknowledgement was given to the limitations of the observational data in terms of 

uncertainty and commensurability to model output in order to prevent over-fitting the model 

to data which also contains inaccuracies. Selecting for models with better performance 
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against multiple types of data should help to offset the effects of inaccuracies in each 

individual data-set on the resulting realism of the calibrated model.  The same sets of 

observational data had already been used to inform the model structure and a-priori 

parameter ranges through identification of patterns indicative of the dominance of different 

processes and flow paths and their linkages (Chapter 1). The degree to which the 

information in a dataset had already been fully incorporated in the model in this initial step 

was demonstrated when all parameter sets tested during calibration met criteria based on this 

data. This was the case for the criteria regarding duration of surface flow from the tributary 

catchments in 2012-2013. Observations of the conditions needed to initiate surface flows on 

hillslopes and from tributary catchments had already been used in deciding upon flow path 

connectivity between land units in tributary subcatchments and the likely ranges of values 

for their soil properties in the model.       

 

The model of the Baviaanskloof resulting from the model development and calibration 

process applied can be considered an adequate representation of existing knowledge about 

the catchment and fit-for-purpose, to the degree to which the acceptability criteria applied 

measured this sufficiently. Further improvements in model realism, accuracy, and precision 

could be made given longer accurate hydrometric and climate datasets and/or land unit 

physical property data, when the latter is commensurable to model parameterization.  It is 

also possible that further improvements could be made using only the existing data, given 

additional time investment in model development. Additional attention could be given to the 

criteria derived from the data, for example better accounting for heterogeneity in the 

floodplain aquifer when finding measures to compare model outputs to observations.  A 
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wider range of criteria could be tested to further plumb the data for catchment process 

information, and more parameter sets could be tested within a parameter space that was 

refined based on the results of initial calibration work done in this study.  

 

The currently remaining uncertainties around the understanding of catchment processes 

and their model representation, given the complexity of the Baviaanskloof catchment and 

limitations of the available data, make it unreasonable to attempt to apply the present model 

structure further using a single best-fitting parameter set, hence the threshold of acceptability 

calibration approach used here. To use the resulting calibrated model for scenario 

assessment therefore entails that it be run over the range of accepted parameter values 

resulting in an output value range for each scenario.  The degree to which this results in a 

detectable difference in output between scenarios will also be a measure of whether or not 

the calibrated model is indeed fit-for-purpose to assist in decision making without further 

data collection or refinements in the calibration procedure. This will be explored through 

scenario modeling in a further study.    

 

2.5  Conclusion 

 

This study demonstrated that multi-criteria calibration can make notable improvement to 

the realism, accuracy, and precision of a complex model of a semi-arid catchment with a 

short streamflow record.  In the case of the Baviaanskloof catchment, additional to the short 

gaged streamflow record, soft data on floodplain groundwater levels and surface flows at 

different locations within the catchment were available and put to use in the calibration and 
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evaluation procedure.  Similar kinds of soft data are likely to be available in many other 

catchments, particularly in inhabited areas where residents make use of local ground and 

surface water resources, and could be consulted when developing and testing catchment 

models.  Calibration using only the NSE of the streamflow record would have resulted in 

acceptance of models with poor performance against several indicators considered relevant 

for catchment management, such as prediction of floodplain groundwater fluctuations. 

However, even had the additional soft data not been available, the use of additional hard 

data criteria, which selected for goodness-of-fit to different patterns in the streamflow record 

beyond the typically used NSE measure, was already seen to significantly improve 

performance on indicators of internal catchment process representation. Indeed, after these 

other streamflow indices were incorporated in the calibration, the subsequent further 

addition of the soft data criteria did relatively little to improve model performance and 

parameter identifiability. The number of selected parameter sets was reduced and 

performance was improved, but the difference was small compared to the differences 

between the NSE only selection and that using all four hard data criteria. This indicated 

correlation between the signals evident in the hard streamflow data, such as patterns in low 

flows, and the patterns being selected for by the soft data criteria, such as floodplain 

groundwater levels, showing that making more complete use of even limited streamflow 

data records can help enhance model realism.  

 

This study also aimed to demonstrate a calibration procedure aimed at producing a 

model that is fit-for-purpose – in this instance as catchment management decision support 

for those concerned about local and regional water supply.  In the case of the Baviaanskloof, 
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parameter sets producing acceptable model outputs against desired minimum accuracy 

levels for this application were found. Significant parameter uncertainty remained even after 

the calibration procedure due to high dimensionality of the model structure and the data 

available, however the likely ranges of several key variables such as those controlling 

mountain block aquifer and interflow zone outflows, were considerably constrained 

compared to the a-priori uncertainty in their values.  There will always be room for 

improvement, however applying a model development and testing procedure which 

attempted to make full use of all available data, with consideration for its uncertainty, means 

that the resulting model represents the existing knowledge and the uncertainties about 

catchment processes upon which to base decisions  
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2.7  Supplementary Information 

Table 2-6 Minimum and maximum parameter values for all parameter sets tested  

Parameter 
All sets NSE threshold Hard criteria Hard and soft 

Min Max Min Max Min Max Min Max 

MBR outflow constant (days) 10,000 150,000 100,010 115,730 100,130 115,700 100,290 114,910 

Interflow horiz. constant (days) 10 150 21 89 24 76 35 56 

Interflow vert. constant (days) 1 300 25 287 33 204 61 188 

LAI - PLT fynbos 1.0 3.0 1.1 3.0 1.2 3.0 1.3 3.0 

LAI - HL thicket 0.4 1.0 0.4 0.7 0.4 0.7 0.4 0.7 

LAI - CLF thicket 0.2 0.6 0.2 0.5 0.2 0.5 0.2 0.5 

LAI - CYN forest 3.0 5.0 3.0 5.0 3.0 5.0 3.0 4.8 

LAI - FP savanna 1.0 3.0 1.1 3.0 1.2 3.0 1.5 2.8 

Manning's n - HL & PLT 0.04 0.83 0.04 0.83 0.04 0.83 0.07 0.83 

Manning's n - CYN 0.08 0.83 0.08 0.83 0.08 0.82 0.35 0.82 

Manning's n - FP surface 0.05 0.70 0.05 0.70 0.05 0.46 0.05 0.46 

Manning's n - FP river channel 0.020 0.050 0.020 0.040 0.023 0.040 0.026 0.038 

ETk  -  PLT fynbos 0.40 0.60 0.42 0.60 0.42 0.60 0.43 0.59 

ETk  -  HL thicket 0.30 0.50 0.32 0.50 0.32 0.48 0.34 0.47 

ETk  -  CLF thicket 0.20 0.40 0.22 0.36 0.22 0.36 0.22 0.36 

ETk  -  CYN forest 0.70 0.90 0.70 0.90 0.70 0.90 0.71 0.90 

ETk  -  FP savanna 0.80 1.00 0.88 1.00 0.88 1.00 0.90 1.00 

Soil/root dpt - PLT fynbos (mm) 500 1,000 550 1,000 601 996 611 996 

Soil/root dpt - HL thicket  (mm) 300 800 390.1 799.8 500.0 799.4 573.4 799.0 

Soil/root dpt - CYN forest  (mm) 5,000 10,000 5,054 9,993 5,815 9,962 6,026 9,961 

Topsoil depth - FP  (mm) 600 1,000 640.3 999.9 642.2 947.5 650.3 916.2 

Root depth - FP savanna  (mm) 10,000 29,998 11,010 29,993 15,089 29,872 15,089 29,767 

SWC - PLT 0.30 0.50 0.30 0.50 0.31 0.50 0.35 0.49 

SWC - HL 0.30 0.50 0.30 0.50 0.31 0.50 0.31 0.49 

SWC - CYN 0.40 0.60 0.40 0.60 0.40 0.60 0.41 0.50 

SWC - FP topsoil 0.40 0.55 0.41 0.55 0.41 0.55 0.42 0.55 

SWC - FP cobble 0.30 0.45 0.30 0.43 0.31 0.41 0.30 0.37 

SM-FC - PLT 0.14 0.22 0.14 0.22 0.14 0.22 0.16 0.22 

SM-FC - HL 0.14 0.23 0.14 0.22 0.14 0.22 0.14 0.22 

SM-FC - CYN 0.24 0.36 0.24 0.36 0.24 0.36 0.25 0.30 

SM-FC - FP topsoil 0.27 0.37 0.27 0.37 0.27 0.37 0.28 0.36 

SM-FC - FP cobble 0.12 0.18 0.12 0.17 0.12 0.16 0.12 0.15 

SM-WP - PLT 0.075 0.125 0.075 0.125 0.076 0.125 0.087 0.123 

SM-WP - HL 0.075 0.125 0.075 0.125 0.078 0.125 0.078 0.123 

SM-WP - CYN 0.080 0.120 0.080 0.120 0.080 0.120 0.082 0.100 

SM-WP - FP topsoil 0.086 0.119 0.088 0.119 0.088 0.119 0.092 0.118 

SM-WP - FP cobble 0.060 0.090 0.060 0.086 0.062 0.082 0.060 0.073 

Infilt. rate  - PLT (mm/hr) 0.9 3.4 1.6 3.4 2.7 3.4 2.9 3.4 

Infilt. rate  - HL  (mm/hr) 0.9 1.5 1.2 1.5 1.4 1.5 1.46 1.53 

Infilt. rate - CYN  (mm/hr) 36 342 39 342 59 342 175 342 

Ksat - FP topsoil  (mm/hr) 50 300 60 280 78 255 83 241 

Ksat - FP cobble  (mm/hr) 9 1,746 9 1,746 51 824 51 400 



 

 172 

Table 2-7 Median, 10
th

 to 90
th

 percentile range (P.range), and the resulting sensitivity index (SI 

1) by parameter for sets selected by different criteria.  

(Parameters listed by declining sensitivity in the final hard and soft criteria selected set) 

 

Parameter 

NSE threshold Hard criteria Hard and soft criteria 

Med-

ian 
P.Rng SI 1 

Med-

ian 
P.Rng SI 1 

Med-

ian 
P.Rng SI 1 

Infilt. rate  - HL  

(mm/hr) 
1.51 0.06 0.04 1.51 0.05 0.03 1.51 0.03 0.02 

Infilt. rate  - PLT 

(mm/hr) 
3.28 0.34 0.10 3.25 0.30 0.09 3.28 0.23 0.07 

ETk  FP savanna 0.94 0.09 0.10 0.94 0.10 0.10 0.94 0.08 0.08 

MBR outflow 

constant (days) 
106,900 10,514 0.10 107,150 10,686 0.10 106,740 10,400 0.10 

SM-WP - CYN 0.099 0.027 0.27 0.099 0.024 0.24 0.093 0.011 0.12 

SWC - CYN 0.50 0.14 0.27 0.49 0.12 0.24 0.46 0.06 0.12 

SM-FC - CYN 0.30 0.08 0.27 0.30 0.07 0.24 0.28 0.03 0.12 

SWC - FP cobble 0.36 0.11 0.29 0.36 0.08 0.22 0.33 0.05 0.14 

SM-WP - FP cobble 0.073 0.020 0.28 0.071 0.016 0.23 0.068 0.011 0.16 

SM-FC - FP cobble 0.15 0.04 0.28 0.15 0.03 0.23 0.13 0.02 0.17 

ETk CYN forest 0.80 0.16 0.20 0.80 0.15 0.19 0.80 0.15 0.19 

SM-WP - FP topsoil 0.103 0.025 0.24 0.103 0.025 0.24 0.104 0.021 0.20 

SWC - HL 0.42 0.11 0.26 0.43 0.09 0.21 0.43 0.09 0.21 

SM-FC - HL 0.19 0.05 0.26 0.19 0.04 0.21 0.19 0.04 0.21 

SM-WP - HL 0.106 0.028 0.26 0.107 0.023 0.21 0.107 0.022 0.21 

SWC - FP topsoil 0.48 0.11 0.24 0.48 0.11 0.23 0.50 0.11 0.21 

ETk PLT fynbos 0.51 0.14 0.28 0.51 0.14 0.28 0.50 0.11 0.22 

SM-FC - FP topsoil 0.32 0.07 0.23 0.32 0.07 0.23 0.33 0.07 0.22 

SWC - PLT 0.42 0.12 0.30 0.40 0.12 0.29 0.43 0.11 0.25 

SM-FC - PLT 0.19 0.06 0.30 0.18 0.05 0.29 0.19 0.05 0.25 

SM-WP - PLT 0.104 0.031 0.30 0.100 0.029 0.29 0.108 0.027 0.25 
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Parameter 

NSE threshold Hard criteria Hard and soft criteria 

Med-

ian 
P.Rng SI 1 

Med-

ian 
P.Rng SI 1 

Med-

ian 
P.Rng SI 1 

ETk HL thicket 0.41 0.14 0.35 0.39 0.12 0.32 0.40 0.10 0.26 

Topsoil depth - FP  

(mm) 
823 289 0.35 804 244 0.30 796 209 0.26 

Soil & root depth - 

HL thicket  (mm) 
598 328 0.55 655 237 0.36 650 175 0.27 

Interflow horizontal 

constant (days) 
47 24 0.52 52 23 0.45 49 15 0.30 

Soil & root depth - 

PLT fynbos (mm) 
776 362 0.47 812 306 0.38 827 277 0.33 

Manning's n - FP 

river channel 
0.030 0.016 0.54 0.032 0.014 0.44 0.031 0.010 0.34 

Soil & root depth - 

CYN forest  (mm) 
7,567 4,023 0.53 8,130 3,439 0.42 8,476 2,889 0.34 

LAI CYN forest 4.03 1.62 0.40 4.12 1.68 0.41 4.03 1.49 0.37 

ETk CLF thicket 0.29 0.11 0.38 0.29 0.11 0.38 0.27 0.11 0.39 

LAI HL thicket 0.56 0.26 0.46 0.56 0.24 0.43 0.55 0.22 0.40 

LAI FP savanna 2.09 1.55 0.74 2.07 1.45 0.70 2.29 1.10 0.48 

Interflow vertical 

constant (days) 
151 129 0.85 132 71 0.54 135 68 0.50 

Infilt. rate - CYN  

(mm/hr) 
216 182 0.84 219 172 0.79 253 143 0.56 

Root depth - FP 

savanna  (mm) 
20,190 15,469 0.77 21,639 12,917 0.60 22,803 13,365 0.59 

Manning's n - CYN 0.52 0.47 0.90 0.50 0.45 0.89 0.55 0.33 0.61 

LAI CLF thicket 0.38 0.29 0.76 0.35 0.27 0.76 0.34 0.21 0.63 

Ksat - FP topsoil  

(mm/hr) 
168.6 173.0 1.03 163.1 142.6 0.87 172.7 119.7 0.69 

LAI PLT fynbos 2.05 1.51 0.74 2.09 1.48 0.71 2.22 1.55 0.70 

Ksat - FP cobble  

(mm/hr) 
329 622 1.89 313 406 1.30 263 265 1.01 

Manning's n - FP 

surface 
0.09 0.22 2.48 0.09 0.21 2.32 0.09 0.22 2.45 

Manning's n - HL & 

PLT 
0.18 0.45 2.57 0.15 0.36 2.37 0.14 0.37 2.60 
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Table 2-8 Value ranges by parameter for all parameter sets tests and for sets selected by 

different model performance criteria and the resulting range change sensitivity index (SI 2).  

(Parameters listed by declining sensitivity in the final hard and soft criteria selected set) 

 

Parameter 
All sets NSE threshold Hard criteria Hard and soft 

Range Range SI 2 Range SI 2 Range SI 2 

MBR outflow constant (days) 140,000 15,720 0.11 15,570 0.11 14,620 0.10 

Infilt. rate  - HL  (mm/hr) 0.63 0.32 0.51 0.14 0.23 0.07 0.11 

Interflow horiz. constant (days) 140 68 0.49 52 0.37 21 0.15 

Infilt. rate  - PLT (mm/hr) 2.52 1.84 0.73 0.77 0.30 0.47 0.19 

Ksat - FP cobble  (mm/hr) 1,737 1,737 1.00 773 0.44 348 0.20 

Manning's n - FP river channel 0.030 0.020 0.66 0.017 0.56 0.012 0.40 

Interflow vert. constant (days) 299 262 0.88 171 0.57 127 0.42 

SM-FC - CYN 0.12 0.12 1.00 0.12 0.98 0.05 0.44 

SM-WP - CYN 0.040 0.040 1.00 0.039 0.98 0.017 0.44 

SWC - CYN 0.20 0.20 1.00 0.20 0.98 0.09 0.44 

SM-FC - FP cobble 0.06 0.05 0.87 0.04 0.66 0.03 0.45 

SM-WP - FP cobble 0.030 0.026 0.87 0.020 0.66 0.013 0.45 

Soil/root depth - HL thicket  (mm) 500 409.7 0.82 299.4 0.60 225.6 0.45 

LAI - HL thicket 0.6 0.3 0.53 0.3 0.49 0.3 0.45 

SWC - FP cobble 0.15 0.13 0.87 0.10 0.67 0.07 0.45 

ETk -  FP savanna 0.20 0.12 0.60 0.12 0.59 0.09 0.47 

Infilt. rate - CYN  (mm/hr) 306 303 0.99 283 0.92 166 0.54 

LAI - FP savanna 2.0 1.9 0.95 1.8 0.89 1.2 0.62 

Manning's n - FP surface 0.65 0.65 1.00 0.41 0.63 0.41 0.62 

Ksat - FP topsoil  (mm/hr) 250 219.9 0.88 176.7 0.71 158.6 0.63 

Manning's n - CYN 0.75 0.75 1.00 0.74 0.99 0.48 0.64 

ETk  -  HL thicket 0.20 0.18 0.90 0.16 0.78 0.13 0.66 

Topsoil depth - FP  (mm) 400 359.5 0.90 305.3 0.76 266.0 0.66 

ETk  -  CLF thicket 0.20 0.14 0.70 0.14 0.69 0.13 0.67 

SM-FC - PLT 0.09 0.09 1.00 0.09 0.97 0.07 0.73 

SM-WP - PLT 0.050 0.050 1.00 0.048 0.97 0.036 0.73 

SWC - PLT 0.20 0.20 1.00 0.19 0.97 0.15 0.73 

Root depth - FP savanna  (mm) 19,997 18,983 0.95 14,783 0.74 14,678 0.73 

Soil/root dpt - PLT fynbos (mm) 500 450 0.90 395 0.79 386 0.77 

Soil/root dpt - CYN forest  (mm) 5,000 4,939 0.99 4,147 0.83 3,935 0.79 

ETk  -  PLT fynbos 0.20 0.18 0.90 0.18 0.90 0.16 0.80 

SM-FC - FP topsoil 0.10 0.09 0.94 0.09 0.93 0.08 0.81 

SM-WP - FP topsoil 0.033 0.031 0.94 0.031 0.93 0.027 0.81 

LAI - CLF thicket 0.4 0.3 0.87 0.3 0.82 0.3 0.81 

SWC - FP topsoil 0.15 0.14 0.93 0.14 0.92 0.12 0.83 

LAI - PLT fynbos 2.0 1.9 0.95 1.8 0.89 1.7 0.87 

SM-FC - HL 0.09 0.09 1.00 0.08 0.93 0.08 0.89 

SM-WP - HL 0.050 0.050 1.00 0.046 0.93 0.044 0.89 

SWC - HL 0.20 0.20 1.00 0.19 0.93 0.18 0.89 

LAI - CYN forest 2.0 2.0 1.00 2.0 0.99 1.8 0.91 

ETk  -  CYN forest 0.20 0.20 1.00 0.20 0.98 0.19 0.94 

Manning's n - HL & PLT 0.79 0.79 1.00 0.79 1.00 0.77 0.97 



 

 175 

 

A

) 

B

) 

C

) 

D

) 

E

) 

F

) 

G

) 

H

) 

I

) 

Figure 2-6 Distribution of model performance measures used as calibration criteria for 

different sets of model runs: all parameter sets tested (All), those exceeding an NSE threshold 

of 0.70 (N0.70), and those exceeding an NSE threshold of 0.87 (N0.87).  

Dotted lines in each plot show the threshold value applied for each criterion. Thresholds for measures shown 

in graphs A-D were hard-data based criteria while those in E-I were soft-data based. 'Error' values are 

absolute values. 
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Chapter 3 Impacts of subtropical thicket degradation and 

restoration on streamflow and groundwater in a semi-arid 

meso-scale catchment  
 

3.1  Introduction 

 

Understanding the impacts of changes in vegetative cover on streamflow and 

groundwater is a key part of catchment management in areas where large-scale changes are 

occurring. This is the case for catchment areas throughout the subtropical thicket biome in 

South Africa's Eastern and Western Cape Provinces, a water-stressed region with a fast 

growing human population. The subtropical thicket form that is dominated by the succulent 

Portulacaria afra is highly vulnerable to canopy cover loss when subjected to livestock 

grazing (Lechmere-Oertel et al., 2005a; Mills et al., 2005). This vegetation naturally occurs 

across an area of about 17,000 km
2
 and approximately half of this area, including significant 

portions of catchments providing regional water supplies, has been classified as significantly 

degraded due to high density livestock farming (Lloyd et al., 2002). In recent years, 

recognition of the loss of biodiversity, agricultural productivity, carbon storage, and 

watershed services resulting from severe thicket degradation has been motivation for large-

scale restoration proposals (Mills et al., 2007). The impacts of thicket canopy loss on rainfall 

interception, soil infiltration, and runoff production have been measured at the plot scale 

(Mills and Fey, 2004b, 2004a; Mills and Cowling, 2010; Cowling and Mills, 2011; van 

Luijk et al., 2013), but hydrologic impacts of subtropical thicket degradation and restoration 

at the catchment scale have not been well explored.  This study uses hydrologic modeling to 
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assess likely impacts of changes in thicket canopy cover on long-term streamflow and 

groundwater in a meso-scale catchment.  The catchment of the Baviaanskloof River was 

used as a case study, a 1,234 km
2
 area which feeds a major water supply reservoir and in 

which 32% of the vegetation cover is degraded thicket.  

 

Catchment scale impacts of vegetation cover changes on water yield, flood flows, and 

baseflows have been monitored and modeled for a variety of environments and scales 

globally, showing that trends can differ in direction and magnitude between different climate 

regimes, vegetation types, catchment geomorphologies, and the topographic location and 

extent of the change (Bosch and Hewlett, 1982; Brown et al., 2005; Price, 2011; Stednick, 

1996). A loss of vegetation cover will change local interception of rainfall, infiltration, and 

evapotranspiration (ET), impacting both surface runoff and percolation to groundwater.  The 

net impacts of these changes on resulting streamflow patterns will depend on the balance of 

the different processes affected, and this balance is location specific. Conversion of closed 

canopy vegetation to open canopies generally result in greater storm runoff and less 

infiltration due to decreased canopy interception, lower surface roughness, and potentially 

lower soil infiltration rates (Bhark and Small, 2003; Dunjó et al., 2004; Bautista et al., 2007; 

Turnbull et al., 2010; Peña-Arancibia et al., 2012). The magnitude of this impact is 

moderated by climate, soil type, slope, and landscape flow path context.  However, while 

vegetation cover loss increases storm event surface runoff, and hence streamflow peaks to 

varying degrees, impacts on low flows can be in either direction. Lower vegetation densities 

results in decreased transpiration, and often decreased total ET, but increases in evaporation 

from wind exposed and unshaded soils and/or snowpacks has also been observed to result in 
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increased total ET with vegetation losses in certain locations (Biederman et al., 2014).  Even 

if ET does decrease with vegetation loss, this may or may not be countered by simultaneous 

decreases in infiltration, reducing percolation, interflow, and/or groundwater flows that also 

impact baseflow (Price, 2011).   

 

Large-scale loss of vegetation cover, or conversion of one vegetation type to another 

having lower transpiration rates, can result in increased overall catchment water yield due to 

a decrease in ET (Bosch and Hewlett, 1982; Le Maitre et al., 2002; Brown et al., 2005; 

Stednick, 1996). However, in addition to the percent cover and species present, vegetation 

water use is moderated by the plants' access to water, often impacted by topographic 

position. Deep-rooted vegetation in riparian zones that can perennially access groundwater 

can have significantly greater annual total ET than stands of the same species located in 

uplands, with observed differences in the range of 30-100% (Dzikiti et al., 2013, 2014). 

Changes in riparian vegetation cover can be expected to produce greater ET-driven impacts 

on water yield than proportional changes in upland vegetation. There is potential for 

increased vegetation cover, particularly in uplands with shallow and/or well drained soils, to 

result in increased infiltration of rainfall and hence interflow and/or groundwater recharge, 

without significantly increasing ET withdrawals from subsurface pathways feeding 

baseflow. This can account for increased baseflow observed with increased vegetation cover 

in some cases (e.g. Bruijnzeel, 2004; Line and White, 2007; Ma et al., 2009; Price, 2011; 

Peña-Arancibia et al., 2012).        
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South African subtropical thicket occurs primarily on the semi-arid hillslopes of the 

coastal forelands of the Eastern Cape Province.  Intact, it is characterized by a closed, dense, 

low (<3 m) canopy of evergreen trees and shrubs, many of which are succulents.  Full 

thicket canopy cover can occur on steep slopes (close to 60%) with thin (100 mm) rocky 

soils. Drier forms of thicket (>450 mm mean annual precipitation) have canopies dominated 

by the succulent shrub P.afra, commonly known as 'spekboom', and this form will hereafter 

be referred to as 'spekboom thicket' (Vlok et al., 2003).  Spekboom is relatively resilient to 

the browsing patterns of large indigenous herbivores eating from the top of the canopy 

(Stuart-Hill, 1992), but can be completely removed when subjected to consistent grazing by 

domestic goats (Lechmere-Oertel et al., 2005a; Mills et al., 2005). The result is a 

transformation of closed canopy spekboom thicket into an open community with low 

densities of isolated small trees and remnant thicket clumps surrounded by ephemeral herbs 

and bare ground (Hoffman and Cowling, 1990; Stuart-Hill, 1992; Moolman and Cowling, 

1994; Lechmere-Oertel et al., 2005a, 2005b).  

 

When grazing pressure is removed, canopy regeneration on severely degraded areas is 

slow or non-existent over multi-decadal timescales, likely due to changes in soil and 

microclimate conditions, thicket species' reproductive strategies that limit recolonization to 

the margins of remnant clumps, sparse remnant clump source populations, and slow growth 

in semi-arid conditions (Kerley et al., 1995; Vlok et al., 2003; Lechmere-Oertel et al., 

2005a; van der Vyver et al., 2013). However, active restoration through planting spekboom 

truncheons and protection from herbivory has been met with success, with the planted 

spekboom establishing in open areas lacking organic topsoil and subsequently fostering 
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recolonization by the other thicket species (Mills and Cowling, 2006; van der Vyver et al., 

2013). Therefore the return of a full thicket canopy on currently degraded areas is not a 

physically unreasonable scenario for the long-term future (30-50 years).  

  

Effects of the loss of spekboom thicket canopy cover on rainfall interception, soil 

properties and soil moisture, and storm runoff and sheet erosion have been measured at 

different scales by previous studies (Mills and Fey, 2004b, 2004a; Mills and Cowling, 2010; 

Cowling and Mills, 2011; van Luijk et al., 2013).  Van Luijk et al (2013) and Cowling and 

Mills (2011) both measured canopy interception and throughfall  in spekboom thicket, 

recording interception rates of 31-46% of the net rainfall over a season and a halving of the 

maximum intensity measured in the throughfall compared to the rainfall. Mills and Fey, 

2004b sampled soils at paired grazed degraded and ungrazed intact thicket sites along 

fenceline contrasts and found degraded sites had less than half the laboratory infiltration rate 

of those with canopy cover and had greater capacity to crust.  Van Luijk et al. (2013) 

sampled soils along a fenceline contrast finding over a 100 fold decrease in field measured 

infiltration rates and a 20% decline in saturated soil moisture content. These results are 

consistent with observations of declining soil organic matter with thicket loss: a 90% 

decrease in litter input (Lechmere-Oertel and Kerley, 2008) and a 50-70% decrease in 

topsoil carbon (Mills and Cowling, 2010; Mills et al 2005). Using paired transects of 

Gerlach troughs, (van Luijk et al., 2013) observed a doubling in runoff and near six-fold 

increase in sediment transport on the grazed, open canopy side of the fence compared to the 

intact thicket side.  In the same study, despite higher canopy interception and potentially 

higher ET, the soil moisture under the spekboom canopy was seen to reach and maintain 
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higher levels than the open site, likely due to increased infiltration, soil water holding 

capacity, and shading and wind buffering effects (van Luijk et al., 2013).    

 

Given these observations it is expected that large scale loss of spekboom canopy cover 

would result in increased streamflow peaks following sizeable rainfall events. This is 

predicted to be evident in small headwater catchments lacking significant floodplain areas.  

It is hypothesized that at larger catchment scales, such as for the entire Baviaanskloof 

catchment, the effects of hillslope canopy cover loss on increasing flow peaks will be 

buffered by the presence of larger floodplains. In addition to the lower gradient generally 

slowing flow, floodplains in this region are characterized by transmissive coarse alluvial 

deposits and deep-rooted vegetation such as savannah or riparian forest.  Channel roughness, 

overbank flooding, and channel and floodplain infiltration would reduce the intensity of 

flood peaks, particularly those occurring in periods when the floodplain aquifer water table 

lies below the river channel allowing for high channel infiltration losses.  

 

In this context, the decrease in soil infiltration observed with the loss of thicket canopy 

cover could also reasonably be expected to result in a decrease in river baseflow. In the 

mountainous Baviaanskloof catchment, as seen elsewhere in the Table Mountain Group 

geologic region, interflow at the soil-rock interface and in the highly fractured surface rock 

layer of the hillslopes is a significant source of water feeding streams, wetlands, and 

floodplain aquifers (Midgley and Scott, 1994; Roets et al., 2008; Xu et al., 2002, 2003; 

Chapter 1).  Steep slopes and coarse grained thin soils may facilitate interflow even when 

the vegetation increases soil water holding capacity and ET. With less water infiltrating on 
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hillslopes after thicket degradation, less interflow is expected. Less recharge to deep 

groundwater is expected, potentially decreasing baseflow sourced from the mountain 

bedrock aquifer over longer timescales.  In a larger catchment area the impact of hillslope 

changes on catchment outlet flows will be buffered by the floodplain. Some of the additional 

surface runoff expected from degraded hillslopes, taking the place of interflow, could 

infiltrate into the floodplain and may still feed downvalley baseflow. In the case of intact 

thicket, it is also possible that additional hillslope interflow quantities expected to recharge 

floodplain alluvium may be lost to ET by deep rooted floodplain vegetation.     

 

Published field measurements of transpiration rates in spekboom thicket are not 

currently available; however, it can be assumed that transpiration from intact thicket will be 

higher than that of degraded open canopy communities. This means the loss of thicket could 

potentially result in an overall increase in catchment water yield through a decline in ET.  

Evergreen shrubs and trees typically use more water than seasonally dormant grasses 

(Calder and Dye, 2001). Actual evapotranspiration (AET) by spekboom thicket and other 

regional vegetation types was estimated by (Meijninger and Jarmain, 2014) at the scale of 

the entire Western Cape Province by applying the SEBAL model to satellite data for wet, 

dry, and average years. In this study, average annual thicket AET was similar to mountain 

fynbos (515 vs. 555 mm) and greater than escarpment renosterveld (95mm) and central 

mountain renosterveld (385mm), characterized by shorter vegetation and sparser cover in 

rocky soils (Meijninger and Jarmain, 2014).     
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Despite the plot-scale observations of large hydrologic impacts, the impacts of 

spekboom thicket loss on streamflow patterns at the meso-catchment scale will be the 

product of many affected processes, the flow path between hillslopes and the catchment 

outlet, and weather patterns. The observed decrease in hillslope interception, infiltration, 

transpiration, and potentially ET, and increase in surface runoff, will likely result in 

increased flood peaks from large events, when surface flows exceed the buffering capacity 

of downslope alluvial fans and floodplains. However, the effects on baseflow will be 

determined by the balance of changes in ET on the hillslopes, recharge to the interflow zone 

and the bedrock aquifer, and ET along flow paths through the central valley alluvial 

floodplain to reach the catchment outlet. The overall effects on average outflow will be 

influenced by the proportion and pattern of large and small rainfall events. A catchment 

model that realistically conceptualizes all of these linked processes and pathways is needed 

to predict catchment scale outputs.  

 

 A model of the Baviaanskloof catchment built using MIKE-SHE/MIKE-11 hydrologic 

modeling software (Refsgaard and Storm, 1995) was used to examine hydrologic impacts of 

thicket loss. The numeric model was structured to represent a conceptual model of surface 

and subsurface flow patterns in the catchment informed by streamflow and groundwater 

observations (Chapters 1 and 2).  This semi-distributed model allowed targeted analyses of 

the likely influence of thicket vegetation cover properties on surface flow, hillslope 

interflow, mountain bedrock groundwater flow, and floodplain alluvial aquifer flow. 

Different hillslope vegetation cover scenarios were modeled to explore impacts on total 
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water yield, flood peaks, and baseflows over 38 years of historic temperature and rainfall 

variability.   

  

Figure 3-1 Vegetation cover change in the Baviaanskloof catchment along a fence-line between a 

continuously grazed area and a recovering subtropical thicket area with 40 years of livestock 

exclusion 

As seen in 2009 aerial photography (left) (source: South Africa NGIS), and estimated canopy cover 

(right) as calculated from NDVI based on Landsat imagery for March 2013 (Smit 2013). (Site used for 

field sampling by van Luijk et al 2013 and is further described there.) 
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Figure 3-3 Vegetation type distribution and degradation class in the Baviaanskloof catchment 

based on Euston-Brown 2006 

Figure 3-2 Estimated canopy cover as calculated from NDVI based on Landsat imagery for 

March 2013 and field surveys (Smit 2013) – blank areas occur where shade precluded analyses 
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3.2  Methods 

3.2.1  Vegetation description 

 

The Baviaanskloof catchment is described in detail in Chapter 1, Section 1.2.1.  The 

hillslopes over much of the catchment have been used for goat grazing for well over a 

century. Favorable wool prices in the 1940s and 1970s led to particularly high stocking rates 

with Angora goats in these periods. This has significantly reduced vegetation cover in areas 

which would otherwise have had a dense spekboom thicket canopy, as supported by the 

location, climate, soil, remnant vegetation clumps, cover at comparable ungrazed sites, and 

cover contrasts along fencelines between differently managed properties (Euston-Brown, 

2006; Sigwela et al., 2009). Based on these observations, it has been suggested that 40% of 

the catchment area would support spekboom thicket, of which 82% has been classified as 

significantly degraded based on aerial photography and ground-truthing (Euston-Brown, 

2006). The fynbos vegetation found at higher elevations has far fewer palatable species and 

was largely not farmed.  

 

Current LAI and canopy cover have been estimated for the Baviaanskloof catchment at a 

30 m resolution (Figure 3-1 and Figure 3-2) based on Landsat derived NDVI for March 

2013 (Smit, 2013). Relationships between NDVI and canopy cover (R
2
=0.8-0.9) and LAI 

(R
2
=0.7-0.8) were derived based on sample site field canopy measurements and septometer 

readings in the main vegetation types (Gwate et al., 2015; Smit, 2013). Based on the 

resulting maps, hillslopes that would support spekboom thicket in the Baviaanskloof have an 

estimated average canopy cover of 20% and LAI of 0.6.  Areas classified as intact thicket 
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had an estimated average canopy cover of 65%, consistent with the 60% observed in intact 

thicket field plots in other regions (Lechmere-Oertel et al., 2005a), and an LAI of 2, similar 

to other semi-arid shrublands (Steinwand et al., 2001). The average estimated canopy cover 

for extremely degraded thicket sites was 8% with an LAI of 0.2. These values are only 

slightly lower than what would be predicted using a linear relationship between canopy 

cover and LAI found for semi-arid shrublands in California by (Steinwand et al., 2001) 

which would predict LAI of 2.6, 0.8, and 0.3 given the canopy cover values found for intact, 

current, and degraded thicket.   

 

3.2.2  Scenario modeling 

 

A daily time-step, semi-distributed model was constructed and calibrated for the 

Baviaanskloof catchment given its current land cover.  This model was built using the 

MIKE-SHE/MIKE-11 modeling system (Refsgaard and Storm, 1995) as described below 

and in Chapters 1 and 2, based on a conceptual model informed by field observations of 

surface and groundwater flows, soil and vegetation properties, and topography, and spatially 

discretized in order to give separate consideration to thicket areas in the landscape.  In this 

model, the catchment area was discretized into mountain tributary subcatchments and the 

main valley floodplain. The subcatchments were further discretized such that canopy 

interception, infiltration, soil moisture storage, actual evapotranspiration (AET), vertical 

percolation, and surface runoff routing were calculated at the level of topographically 

defined response units: plateaus, hillslopes, cliffs, and canyon floors. Surface runoff was 

routed across units in a catena to the subcatchment outlet with opportunity for infiltration 
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along the flow path. Hillslope interflow and mountain bedrock groundwater flows were 

modeled as lumped linear reservoirs at the sub-catchment scale, receiving percolated water 

from all topographic units and discharging to the floodplain alluvial aquifer. Groundwater 

flow through this alluvial aquifer was modeled using a 50 m finite element grid governed by 

Darcy’s Law, allowing a dynamic connection to the floodplain channel. Floodplain canopy 

interception of precipitation, infiltration or runoff of through-fall, soil moisture storage and 

percolation to the water table, and AET were also calculated by grid cell. The floodplain 

channel received subcatchment surface flow when a direct channel connection was present 

and channel flow was modeled using a diffusive wave approximation. Two-way exchange of 

water between the aquifer and channel was governed by relative elevation and bed 

conductivity. For a more detailed description of the model construction refer to Chapter 1 

and 2.  

 

The model was calibrated using a multi-criteria procedure against multiple datasets of 

surface flows and groundwater levels: gauged catchment outlet streamflow for 2012-2013, 

estimated monthly catchment outflow for 1991-2013, observed presence/absence of flow in 

tributary catchment channels and the central floodplain channel for 2012-2013, and 

observed floodplain groundwater depths for 2012-2013 (Chapter 2).  Given the high 

dimensionality of the model structure (42 calibration parameters), the relatively short gaged 

streamflow record, uncertainties in observational datasets, simplifications in process 

representation, and incomplete commensurability of observational data and model 

parameters and outputs, the calibration procedure did not attempt to produce a single 

optimized parameter set.  Instead, thresholds of acceptability were applied to various model 
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output goodness-of-fit measures to patterns in the datasets in order to constrain the range of 

model parameter values considered likely and used in further model application. The 

resulting model and accepted parameter space reproduced 2012-2013 daily streamflow with 

a Nash-Sutcliffe efficiency (NSE) of 0.87-0.92 and 1991-2013 monthly flows with an NSE 

of 0.79-0.85, predicted annual mean flow within 0.5 m
3
/s and maximum monthly averaged 

flows within 1 m
3
/s of the observed, and modeled floodplain groundwater fluctuations with 

an R
2
 of 0.79-0.81 and an accuracy in the range of depth fluctuation within 0.5 m against the 

observations (Chapter 2).  Accepted models had errors in average annual yield of 3-20%, 

with a mean of 12%. 

 

To assess potential impacts of changes in thicket canopy cover on streamflow and 

groundwater in the alluvial aquifer, the parameterization of the hillslope and cliff 

topographic units were changed to reflect intact versus degraded thicket scenarios. Three 

scenarios were considered: current conditions, complete thicket degradation, and fully intact 

thicket cover. In previous research described above, the loss of thicket canopy cover has 

been associated with reduced LAI, interception, soil infiltration and water holding capacity, 

surface roughness, and ET rates (Mills and Fey, 2004b; Lechmere-Oertel et al., 2005b; Mills 

and Cowling, 2010; Cowling and Mills, 2011; van Luijk et al., 2013; Meijninger and 

Jarmain, 2014). Based on these studies the parameter value ranges shown in Table 3-1 were 

applied for each scenario. In the model a daily canopy interception threshold for throughfall 

was calculated as a function of LAI. Data from (van Luijk et al., 2013) indicated an event 

average interception of 3 mm under a full canopy and this value was scaled based on the 

LAI differences between the cover scenarios. Soil properties sampled under spekboom 
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canopy and in open areas were spatially averaged using the estimated percent canopy cover 

to estimate hillslope averaged properties for each scenario.  The ratios between soil 

properties for canopy and bare sites in other studies were applied, however the values were 

adjust based on the model calibration values for the current cover scenario. Given the daily 

time-step, spatial scale of modeled units, and other simplifications of model process 

representation, model soil parameters do not have a one to one relationship with physical 

properties measured at point locations, however the order of magnitude of change between 

scenarios was assumed to be consistent. 

 

Model AET was calculated using a evapotranspiration coefficient (ETk) for each 

vegetation type. This coefficient was applied to the remaining PET demand after canopy 

storage evaporation, with the resulting AET being limited by available soil moisture and the 

decline in ET rate when soil moisture is below field capacity, approaching zero at the 

wilting point. ET coefficients for spekboom thicket were assumed to be in a similar ranges 

observed for mountain fynbos and greater than renosterveld based on the comparative 

regional AET values estimated from satellite data and energy balance modeling by 

Meijninger and Jarmain (2014). Scintillometry based measurements in mountain fynbos 

suggested ET coefficients ranging from 0.3 to 0.5 (Dzikiti et al., 2014). A ETk value of 0.2 

was estimated for a South African rangeland vegetation consisting of grasses and karroid 

shrubs on shallow rocky soils (Palmer and Yunusa, 2011), comparable to the cover in 

severely degraded former thicket.  
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To account for the uncertainty in the parameterization, the model was run 100 times for 

each scenario to represent the calibrated parameter space. Parameter sets were selected from 

the 720 sets in the calibration exercise with acceptable model performance in recreating 

observed surface runoff, streamflow, and groundwater patterns as described in Chapter 2. 

Sets of thicket area parameters for degradation and restoration scenarios were selected using 

Latin Hypercube sampling within ranges in Table 3-1. This resulted in an output distribution 

for each scenario, allowing for conservative change detection. The model for each scenario 

was run over 43 years of climate data, from 1970-2012, to assess the response to a range of 

climate conditions and storm events. The first 5 years (1970-1974) were considered a spin-

up period for groundwater levels and change analyses were done for model output for the 

1975-2012 water years. The water year was defined as April to March and water years were 

divided into two seasons, summer (April-September) and winter (October-March), for 

analyses.  To estimate catchment and subcatchment-wide precipitation and PET demand, 

daily gage data from 6 stations, two within the catchment and four within 20 km (South 

African Weather Services, South African Agricultural Research Council), was scaled using 

the monthly precipitation and temperature surfaces (2 km resolution) of Lynch (2003) and 

Schulze and Maharaj (2004). The estimated catchment mean annual precipitation (MAP) for 

this period was 270 mm while the PET was 1335 mm, giving an average aridity index 

(MAP/PET) of 0.2. Over this period annual total rainfall was highly variable, ranging from 

139 to 415 mm (Figure 3-4). Patterns and seasonal distribution also ranged widely with the 

number of days with over 5mm of rain in a year ranging from 9 to 32. Maximum day rainfall 

in a year ranged from 12 mm to 57 mm and the maximum month rainfall in a year ranged 

from 28 mm to 113 mm.  
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Table 3-1 Model parameter value ranges for thicket cover scenarios 

Parameter 
Intact thicket 

cover 

Current 

cover 

Complete thicket 

loss 

Vegetation properties 
   

Canopy cover (%) 
65 20 8 

(55-75) (15-25) (5-12) 

LAI 
2 0.6 0.2 

(1.6-2.4) (0.4-0.8) (0.1-0.3) 

Maximum canopy interception (mm) 
3 0.9 0.3 

(2.4-3.6) (0.6-1.2) (0.1-0.5) 

Evapotranspiration coefficient (ETk) 
0.45 0.35 0.2 

(0.4-0.5) (0.3-0.4) (0.1-0.3) 

Surface roughness (Manning's n) 
0.2 0.1 0.05 

(0.1-0.3) (0.06-0.14) (0.02-0.07) 

Soil properties 

   
Infiltration rate (mm/day) 

80 35 15 

(75-95) (30-40) (10-20) 

Saturated water content 
0.50 0.40 0.35 

(0.55-0.45) (0.42-0.38) (0.37-0.33) 

Field capacity water content 
0.18 0.15 0.13 

(0.20-0.16) (0.16-0.14) (0.14-0.12) 

Wilting point water content 
0.12 0.09 0.06 

(0.13-0.11) (0.10-0.08) (0.07-0.05) 
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Figure 3-4 (top) Daily rainfall and PET for the Baviaanskloof catchment area 1970-2013 

(below) annual total precipitation showing distribution between summer and winter 

months and the annual aridity index 



194 

 

3.2.3  Output analyses 

 

For the set of model runs for each vegetation cover scenario the mean and 95 percent 

confidence intervals of the following statistics were calculated: average annual water yield, 

average annual minimum monthly flow, average of the daily flows for the fourteen largest 

flow peaks in the period (annual excedence probability of 10%), average depth to 

groundwater in the alluvial aquifer (spatially averaged), average annual maximum depth to 

groundwater in the alluvial aquifer (spatially averaged).  These statistics were chosen to 

assess impacts relevant to water supply and flood management.  To assess changes in the 

flow path of water through the catchment the following were also calculated:  average 

annual AET in the catchment and in the thicket area and the proportion of which was due to 

canopy interception, average annual overland flow from the thicket area and leaving the 

tributary subcatchments, average annual interflow leaving the tributary subcatchments, and 

average annual mountain bedrock baseflow leaving the tributary subcatchments.  Changes 

were considered significant when p-values of paired t-tests between the scenario sets had p-

values of less than 0.05 and likely differences between scenarios are given as the minimum 

and maximum differences between the 95% confidence interval ranges of the means.   

 

Within the modeled time period, multi-year dry and wet periods were identified to 

compare the effects of vegetation cover change under different climatic conditions. It was 

observed previously that winter rainfall events typically resulted in higher runoff ratios 

compared to the response to similar events in summer, however antecedent wetness played a 

large role (Chapter 1). The periods of 1986-1988, 1990-1992, and 2007-2008 (using water 

years as defined above) were classified as dry due to having below average annual rainfall 
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values, annual aridity indices (P/PET), and relatively low proportions of winter rainfall 

(Figure 3-4). The periods of 1979-1981, 1993-1994, and 2011-2012 were classified as wet 

due to above average annual rainfall values, annual aridity indices, and winter rainfall 

fraction for the period. 

 

 

3.3  Results 

 

3.3.1  Effects on catchment scale water yield and streamflow 

 

When compared to modeled yields for the current condition, simulations of complete 

degradation of hillslope spekboom thicket cover predicted a 12-17 Mm
3
 (41-62%) increase 

in the catchment's long-term annual average water yield (Table 3-2, Figure 3-8).  This was 

the result of large increases in modeled surface runoff from the hillslopes and a reduction in 

AET.  Catchment-wide restoration of full thicket canopy cover was predicted to result in a 

5-8 Mm
3
 (22-27%) decrease in annual average streamflow yield compared to the current 

condition due to increased AET and small quantities of recharge to slow release 

groundwater stores.  Restoration of thicket canopy cover was predicted to increase average 

annual catchment AET by 5-8 Mm
3
 (2-3%) compared to the current state. Complete 

conversion of hillslope thicket vegetation to the degraded state, ephemeral grass with low 

densities of small trees, was predicted to decrease average annual catchment AET by 7-12 

Mm
3
 (2-4%).  Differences in mean values were all significant at an alpha of 0.05.    
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Table 3-2 Long term (1975-2012) average annual water balances for the Baviaanskloof 

catchment and internally modeled land units under different scenarios of hillslope thicket 

cover 

Location / 

spatial 

scale 

Flux 

Annual volume (Mm
3
/ year) 

Degraded thicket Current cover Intact thicket 

Mean 
95% 

CI 
Mean 

95% 

CI 
Mean 

95% 

CI 

    
      

Catchment Precipitation 323 
 

323 
 

323 
 

  AET 278 1.4 288 1.3 295 0.8 

  Streamflow 44 1.5 29 1.0 23 0.6 

         

         

Mountain 

tributary 

sub-

catchments 

 

 

 

 

Precipitation 307 
 

307 
 

307 
 

AET 249 1.5 260 1.2 267 0.6 

Overland flow to fan 

head 
22 1.0 4.8 0.1 1.9 0.3 

Interflow to floodplain 23 0.8 29 0.9 26 0.5 

Mountain bedrock 

outflow 
9.0 0.5 9.0 0.6 8.9 0.5 

       

Hillslope Precipitation 185 
 

185 
 

185 
 

  AET  130 1.1 141 0.9 150 0.4 

  Canopy interception 20 0.8 42 1.1 66 0.9 

  Overland flow 24 1.1 4 0.1 0.2 0.1 

  Infiltration 142 0.3 139 1.2 118 0.9 

  Percolation 32 0.1 39 0.8 35 0.4 

         

         

Central 

valley 

alluvial fill 

(fans and 

floodplain) 

 

Precipitation 16 
 

16 
 

16 
 

AET 29 0.3 28 0.2 28 0.2 

Alluvial aquifer input 

to channel (net) 
19 1.6 25 1.5 21 1.0 

Overland flow inputs 

to channel 
25 1.1 3.6 0.7 1.0 0.2 
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Figure 3-5 Long-term average water balance diagram for the Baviaanskloof catchment as 

modeled with degraded hillslope thicket.  

Quantities are in million cubic meters (Mm
3
) of water per year. Hillslope surface water fluxes 

are a subset of the tributary subcatchment fluxes.   
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Figure 3-6 Long-term average water balance diagram for the Baviaanskloof catchment as 

modeled with restored intact hillslope thicket. 

Quantities are in million cubic meters (Mm
3
) of water per year. Hillslope surface water fluxes are 

a subset of the tributary subcatchment fluxes.   
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An increase in annual water yield with a loss of hillslope canopy cover was predicted for 

all the years simulated (Figure 3-7), while magnitudes and proportional differences varied 

between wet and dry years (Figure 3-8).  When comparing scenario outputs over the set of 

dry years described above (mean annual precipitation 237 mm), the predicted increase in dry 

year annual average water yield between current and degraded thicket scenarios was 9-11 

Mm
3
 (77-100%), a larger proportional change than seen when comparing means of all years 

(41-62%).  The increase in predicted mean annual yield for wet years with the loss of thicket 

cover was 17-26 Mm
3
 (28-42%), a smaller proportional change.  The inter-annual 

fluctuation in water yield was greater in the degraded scenario than in the current and 

restored thicket scenarios. The lower interception, infiltration, and AET in the degraded case 

made the catchment much more responsive to rainfall events.  As such, the predicted 

differences between the current and restored thicket scenarios changed less between dry and 

wet years:  the predicted decrease in mean dry year water yield was 1.9-3.1 Mm
3
 (17-28%) 

and in mean wet year yield was 11-17 Mm
3
 (17-27%).  Due to decreased AET and increased 

runoff sensitivity to small rainfall events in the degraded case, the model predicted a greater 

increase in summer flows than in winter flows with the loss of thicket cover (Figure 3-8).  In 

this scenario, modeled yields were similar for summer and winter, whereas winter yields 

were predicted to be greater than summer yields given increased vegetation cover with high 

summer ET demand.    

 

With minor exceptions, daily modeled streamflow values were consistently higher in the 

low canopy cover scenario than the current and intact thicket scenarios in both wet and dry 

periods (Figure 3-7). In the driest periods, the differences between daily flow estimates for 
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the scenarios were negligible relative to model accuracy and not statistically significant (e.g. 

differences of 0.02-0.03 m
3
/s in flows between degraded and completely restored scenarios 

during the summer of 1990). However, the hypothesized potential increase in baseflow with 

increased canopy cover was not evident in the model results.  Modeled mean annual 

minimum monthly flows decreased from 0.10-0.13 m
3
/s in the current scenario to 0.07-0.09 

m
3
/s with intact thicket, while it increased to 0.16-0.18 m

3
/s in the degraded case.  The only 

times when modeled streamflow was higher for the current and restored scenarios than in 

the degraded case were during one to three day periods following a flow peak when flood 

flows from the degraded catchment were predicted to peak and recede more quickly than in 

the scenarios with more vegetation and soil retention (Figure 3-9).  Modeled peak flows 

(those with annual exceedance probabilities under 10%) were predicted to increase by 22-26 

m
3
/s (34-43%) with the loss of thicket canopy cover and decrease by 34-38 m

3
/s (56-60%) 

with thicket canopy restoration compared to the current scenario.   
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Figure 3-7 Modeled catchment water yield (total streamflow output) by water year for 1975-

2012 for scenarios of current, fully intact, and fully degraded thicket cover on hillslopes.  

Scenarios were represented by parameter ranges. Means and confidence intervals of the simulations 

sets run within these ranges are shown 
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Figure 3-8 Boxplots showing 

distributions of modeled mean annual 

and seasonal water yields for 

different thicket cover scenarios for: 

all simulated years (left), selected dry 

and wet years (center), and summer 

and winter months for all years 

(bottom) 
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Demonstration wet year: water year 2011 

Demonstration dry year: water year 1990 

  

Figure 3-9 Modeled daily flow hydrographs for demonstration dry (1990, top) and wet (2011, 

bottom) years showing differences in flow peaks and recessions between hillslope thicket cover 

scenarios 
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Figure 3-10 Modeled floodplain average groundwater depth in the central floodplain by water 

year for 1975-2012 for scenarios of current, fully intact, and fully degraded thicket cover on 

hillslopes.  

Scenarios were represented by parameter ranges. Means and confidence intervals of the simulations 

sets run within these ranges are shown 
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Figure 3-11 Boxplots showing the 

distributions of modeled mean 

annual and seasonal floodplain 

groundwater depth for different 

thicket cover scenarios for: all 

simulated years (left), selected dry 

and wet years (center), and summer 

and winter months for all years 

(bottom) 
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3.3.2  Effects on floodplain groundwater depth 

 

The modeled spatially and temporally averaged depth to groundwater in the central 

floodplain was 3.0-3.1 m in the degraded thicket scenario, shallower than results for the 

current cover (3.55-3.65 m) or intact thicket (3.87-3.94 m) scenarios (Figure 3-10, Figure 3-

11). The predicted water table depth differences between scenarios for average annual mean, 

minimum, maximum, seasonal, and wet and dry period depths were always less than a meter 

(Figure 3-11), relatively small compared to the observed seasonal fluctuations of 3-8 m at 

various sites. This trend of higher average floodplain groundwater levels in the degraded 

case was consistent for modeled average water depths for dry and wet years, although there 

was a greater difference between scenarios in wet years. As with catchment streamflow, 

there was greater inter-annual fluctuation in the modeled groundwater levels in the degraded 

thicket case than in the current or restored thicket cases (Figure 3-10).  Because of the 

predicted increased proportion of subsurface flow through the subcatchments with intact 

thicket, and fewer surface flow and interflow floodplain recharge events, as described 

further below, there was more delay in aquifer recharge in wet periods and a more slow and 

steady decline in prolonged dry periods due to ET.   

 

3.3.3  Effects on surface and subsurface flow paths 

 

The model structure allowed for analyses of water fluxes for different landscape units 

along the flow path to the catchment outlet (illustrated in Figure 3-5 and Figure 3-6). The 

predicted changes in catchment streamflow and floodplain groundwater levels were the 

result of various modelled changes in the surface and subsurface flows originating on the 
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hillslopes and passing through canyon floors, alluvial fans, the floodplain, and channel 

network. The scenario models, as parameterized, succeeded in recreating some of the 

patterns observed in field studies of spekboom thicket.  Modeled canopy interception in 

intact thicket made up 35-37% of precipitation on the hillslopes in the simulation period, 

similar to the 31-46% seen by Cowling and Mills (2011) and van Luijk et al. (2013). 

Modeled surface runoff on the hillslopes increased five times on average when the thicket 

cover was degraded. This was more than the doubling in runoff observed by van Luijk et al. 

(2013) between areas of 45% and 5% cover, but was in keeping with the 6 fold increase in 

sediment transport detected in that study.  Those field observations were made on a hillslope 

with a deeper soil profile and lower slope (28%) than much of the Baviaanskloof thicket 

area (40% average slope) and did not include storms of the magnitudes seen in the multi-

decadal modeled period, and so may reasonably be expected to be lower than the long-term, 

catchment-scale average.  

 

Loss of thicket canopy cover has been seen to reduce soil infiltration rates, conductivity, 

and water holding capacity (Mills and Fey, 2004b, 2004a; Mills and Cowling, 2010; van 

Luijk et al., 2013), and the degraded thicket model scenario was parameterized as such.  

This resulted in a significant increase in overland flow from the hillslopes; however, despite 

the lower infiltration rates, over the 38-year modeled period, greater volumes of water were 

predicted to infiltrate into hillslope soils in the degraded thicket scenario compared with 

intact thicket (141-142 Mm
3
/yr vs. 117-119 Mm

3
/yr , Table 3-2). Part of this can be 

explained by the 22-25 Mm
3
/yr greater average canopy interception evaporation losses 

predicted in the intact case. As expected given the soil parameterization, of the water 
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predicted to reach the soil surface as through-fall, there was greater proportional infiltration 

predicted in the intact thicket than in the degraded scenario: 97-99% of throughfall over the 

simulation period infiltrated under intact thicket and 85-87% in the degraded case. During 

rainfall events that significantly exceeded the thicket canopy's interception capacity, 

predicted daily infiltration volumes were greater in the intact thicket than in the degraded 

scenario, while the reverse was true for smaller events producing little or no through-fall in 

the intact thicket (Figure 3-12).  

 

The proportion of rainfall in large events played a large role in determining the 

differences in total infiltration and percolation between scenarios at different time scales. In 

the wettest years, such as 1981 and 2012, predicted total hillslope infiltration was greater in 

intact thicket than degraded (Figure 3-13).  During medium magnitude rainfall events the 

current, partially degraded, thicket cover scenario actually had the greatest infiltration of the 

three scenarios due to the balance of the canopy interception losses and soil infiltration rates. 

Due to the greater hydrologic conductivity of the soils under the intact thicket and greater 

infiltration in large events, model results suggested a greater volume of water can percolate 

into the fractured bedrock in wetter years given intact thicket cover compared to degraded 

(Figure 3-12). This occurred in years when there was more total infiltration in the degraded 

case (Figure 3-13 c vs. d).  Some of the predicted additional infiltrated volumes in the 

degraded thicket came from infiltration during smaller rainfall events, which did not exceed 

the estimated canopy interception thresholds in intact thicket and also did not result in soil 

moisture exceeding field capacity in the degraded thicket. As a result much of this infiltrated 

volume was predicted to be stored in the soil and to leave later as ET. The result was a 
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slightly higher predicted long term average percolation in the intact compared to degraded 

case (34-35 Mm
3
/yr vs. 31-32 Mm

3
/yr, Table 3-2). Of the three scenarios, the current cover 

scenario was actually predicted to have the greatest average volume of percolation (38-40 

Mm
3
/yr),  due to the medium interception losses, infiltration rates and conductivities, ET 

losses, and the event distribution of the rainfall.       

 

The changes in hillslope scale processes between scenarios influenced the quantity and 

pathway of water reaching the alluvial fans and floodplain from the tributary subcatchments. 

As hypothesized, there was a greater annual average surface flow predicted from the 

tributary subcatchments with the loss of hillslope thicket cover and this difference was 

proportionally greater than the change in streamflow at the catchment scale. While 

simulations predicted a 41-62% increase in average catchment outlet streamflow moving 

from the current to degraded scenario and a 83-98% from intact to degraded, modeled 

tributary sub-catchment surface outflows increased by five-fold from current to degraded 

and twenty-fold from intact to degraded  (Table 3-2). The higher percolation predicted for 

the current and intact thicket scenarios meant that there was greater average interflow 

predicted for these scenarios (28-30 Mm
3
/yr and 26-27 Mm

3
/yr) than in the degraded 

scenario (24-25 Mm
3
/yr), and made up larger proportions of the total subcatchment outflow 

to the floodplain (67-70% vs 42-44%). Due to the slow outflow estimated for the mountain 

bedrock aquifer, there was no significant difference in model average annual outflow from 

this source between the scenarios. The predicted 1-6 Mm
3
 increase in annual average 

interflow with increased thicket cover was smaller than the 16-20 Mm
3
 increase in overland 

flow and 8-20 Mm
3
 decrease in AET from the tributary subcatchments predicted for the 
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degraded thicket case. As such, the average mountain tributary subcatchment total surface 

and subsurface input to the central valley's alluvial fill was predicted to increase with the 

loss of thicket cover by 8-15 Mm
3 

(19-37%) compared to the current scenario and 15-21 

Mm
3 

(39-59%) compared to the intact thicket scenario.  Because the increase in interflow 

volume with increased thicket cover was only predicted to occur in wetter years, the same 

periods when the largest predicted increases in overland flow for the degraded case 

occurred, the trend of increased total subcatchment outflow with loss of thicket cover was 

consistent in the model for the entire simulation period.          
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Figure 3-12 Modeled fluxes in mountain subcatchments : (a) precipitation, (b) total overland 

flow (OLF) output, (c) total infiltration, (d) total percolation, (e) total interflow output 
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Figure 3-13 Modeled annual fluxes in mountain subcatchments : (a) precipitation, (b) total 

overland flow (OLF) output, (c) total infiltration, (d) total percolation, (e) total interflow output 
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The central valley alluvial fill did dampen the changes that occurred on the hillslopes. 

Even in the degraded thicket scenario during major flood events, infiltration on the fan and 

floodplain channels and surfaces, as well as decreased slope and roughness, reduced 

modeled flood flow peaks to the catchment outlet compared to the peaks in surface outflow 

from the mountain tributaries (Figure 3-14). In all cases a portion of the overland flow 

received from the subcatchments infiltrated into the alluvium. However, due to the greater 

total inputs in the degraded case creating shallower groundwater tables, there was more 

saturation overland flow on the floodplain in wet periods in this scenario, leading to a small 

predicted net increase in average annual overland flow inputs to the main channel beyond 

those received by the subcatchments (23-25 Mm
3
 vs. 20-22 Mm

3
). In the current and intact 

thicket scenario a net loss in overland flow crossing the floodplain was predicted (Table 

3-2).  

On average, a slightly larger volume, and a much larger proportion, of water entering the 

floodplain channel in the intact and current thicket scenarios was predicted to come from 

subsurface flows: 25-28 Mm
3
/yr (88-92%) in the current and 28-30 Mm

3
/yr (95-99%) in the 

intact, versus 18-21 Mm
3
/yr (43-47%) in the degraded scenario. The reason for the slightly 

lower net volume entering the channel from the aquifer in the degraded case on average was 

the generally higher streamflow modeled for this scenario. This reduced the groundwater 

gradient toward the channel in the alluvial aquifer in the model and led to more infiltration 

into the aquifer both from the channel and from overbank flows during high flow events 

than in the current and intact thicket scenarios. In all cases, annual AET modeled for the 

central valley was greater than the precipitation received by this land unit. The deep roots of 

the floodplain vegetation were able to access the alluvial aquifer which was recharged by the 
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(a) 

(b) 

mountain areas. There was little difference in central valley AET between the scenarios 

(Table 3-2) because the root depth used in the model was such that predicted differences in 

water tables between the scenarios were not large enough to significantly change the 

vegetation's average access to water between the different cases.  

  

Figure 3-14 Modeled daily average flow rates for (a) total overland flow (OLF) output (b) 

streamflow at Baviaanskloof catchment outlet  

Shown on same axis scale to demonstrate reduction in peak flows 



215 

 

3.4  Discussion 

 

The model results in this study indicated that further degradation of spekboom thicket 

cover in the Baviaanskloof catchment would likely increase catchment annual water yields, 

increase flood intensities, and raise floodplain groundwater levels, while restoration of 

thicket would do the opposite. These trends were consistent with the expected increased 

AET with increased vegetation and the increased runoff with vegetation losses seem in other 

observational and modeling studies in semi-arid areas (Bhark and Small, 2003; Dunjó et al., 

2004; Bautista et al., 2007; Turnbull et al., 2010; Peña-Arancibia et al., 2012). The overall 

magnitude of the predicted change was consistent with past paired catchment experiments 

summarized in meta-study by Brown et al. (2005) suggesting a 5-10 mm increase in annual 

yield for each 10% of catchment area cleared of bush/shrub cover and a 17-20 mm increase 

for deciduous forest clearance. Converting the estimated change in average outflow to depth 

over the Baviaanskloof catchment area, an average 15-19 mm decrease was predicted with 

thicket restoration which effectively amounted to an 18% increase in cover (45% increase in 

cover density over 40% of the catchment).  However, there were changes in modeled 

processes and patterns between the hillslope vegetation scenarios that were a particular 

function of the climate and landscape geomorphology of the Baviaanskloof catchment as a 

semi-arid, mountainous, meso-scale catchment, with steep slopes and relatively thin, high 

conductivity soils on hillslopes, and a high conductivity central valley alluvial fill. This 

setting accounts for the modeled degree of changes in flow and catchment scale dampening 

of hillslope scale changes, the lack of a predicted increase in baseflow with increased thicket 

cover, seasonal responses, and changes in proportions of surface and subsurface flows.  This 
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study highlights the importance of including as much understanding about the landscape 

flow paths as is available into the model structure for a meso-scale catchment.    

  

The change in assumed vegetation cover was greater between the current and fully intact 

thicket scenarios, going from 20% to 65% estimated average canopy cover, compared to that 

between the current and degraded thicket scenarios, going from 20% to 8%.  As such it 

could be expected that the decrease in water yield with restoration of thicket would be 

greater than the increase from full degradation if driven solely by a difference in canopy 

interception and transpiration demand. However, this was not the case in the model outputs. 

Complete degradation was predicted to increase average annual yield by greater quantities 

than the decrease predicted with complete restoration compared to the current scenario: the 

low-end, model estimate of the increase in the average annual yield for 1975-2012 with 

complete thicket degradation was 12 Mm
3
 or 41%, which was greater than the high-end 

estimate of the decrease in annual average yield with full thicket restoration (8 Mm
3
 or 

27%). This was partially a function of the parameterization of the hillslope soils and 

vegetation for the different scenarios, as informed by field observations.  A large decrease in 

infiltration capacity has been observed with the complete loss of thicket cover on hillslopes 

due to high erosion losses of topsoil without further litter replenishment leaving a rock 

covered surface and/or capped soils, and a loss of high infiltration pockets of thicket in the 

partially degraded case (Mills and Fey, 2004b, 2004a; Mills and Cowling, 2010; van Luijk et 

al., 2013; Lechmere-Oertel and Kerley, 2008; Lechmere-Oertel et al., 2005b; Mills et al., 

2005).  While soil water holding capacity and ET rates were assumed to increase with 

increased vegetation cover, high conductivity through the relatively thin soil profile led to 
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greater percolation to the interflow zone in the model, which in turn had a high flow rate out 

of the hillslopes.  This likely reduced the modeled increase in AET with the increase in 

thicket cover compared to what would be predicted with lower conductivity soils and a 

deeper soil profile. 

 

As predicted, routing of flows across and through the central valley alluvial fill and 

channel network did dampen the changes in peak surface flows observed at the catchment 

outlet between scenarios as compared to changes predicted in the mountain subcatchments.  

For example, during the largest peak flow event modeled in the simulation period 

(25/03/1981), the combined surface flow output from all mountain tributary subcatchments 

onto the central valley had a day average flow of 272-352 m
3
/s under the degraded thicket 

scenario, while the daily streamflow peak predicted for the catchment outlet was 130-170 

m
3
/s for this event. For this event, the predicted decrease in peak flow between the degraded 

and restored thicket scenarios was 241-327 m
3
/s (88-93%) for the summed surface outflow 

of the subcatchments and 60-120 m
3
/s (46-71%) for streamflow at the catchment outlet. This 

reduction of surface flow impact with catchment scale was both due to slowing and 

infiltration in parts of the floodplain reducing surface flow extremes, and due to flow 

contributions from the floodplain to the channel predicted to occur in both scenarios.  

Modeled interflow from the mountain subcatchments into the floodplain aquifer was greater 

in the current and intact thicket scenarios than in the degraded case, particularly during large 

rainfall events.  If there had less alluvial aquifer recharge from this subsurface pathway, 

there would have been less floodplain contribution to the channel outflows in these 
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scenarios, and the catchment scale differences between the degraded and intact thicket 

scenarios would have been larger.     

 

However, due in part to the geomorphology of the Baviaanskloof catchment and 

assumed nature of the floodplain vegetation, the central valley floodplain ended up having 

an insignificant impact in dampening long-term average flow changes between scenarios 

when comparing mountain subcatchment outflows to those at the catchment outlet. The 

difference in modeled average annual catchment water yield between the intact and 

degraded scenarios was similar to that of the annual average surface outflows summed 

across the subcatchments: an increase of 19-24 Mm
3
 versus one of 19-21 Mm

3
.  Because of 

the high conductivity of the alluvial fill material, some of the increased overland flow in the 

degraded scenario was predicted to recharge the floodplain aquifer and result in a shallower 

floodplain groundwater table. However, the floodplain and fans in the Baviaanskloof are 

relatively small compared to the mountain subcatchments feeding them, taking up only 5% 

of the catchment surface area, and are highly conductive, dominated by sand and cobble fill. 

This limits their capacity to buffer flows over longer time-scales.  The Baviaanskloof's 

central floodplain is long and relatively narrow. Water tables are consistently close to the 

surface in narrow valley reaches and also in more downstream sections of the floodplain, 

perennially feeding channel flows in these areas. The shallower groundwater table in the 

degraded scenario increased the production of overland flow in the wettest parts of the 

floodplain in extreme or prolonged wet events, compensating for subcatchment overland 

flow inputs that had been infiltrated elsewhere.  Had the floodplain been much larger in 

proportion to the mountainous area with a deeper water table, this may not have occurred.  
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In addition, the deep rooting floodplain vegetation in the model meant that there was little 

difference in predicted average floodplain AET between scenarios despite the predicted 

change in the groundwater table. If the vegetation had very short roots that did not reach the 

saturated zone in either case there would have been little difference between scenarios. 

However, if the roots lie close to the water table, increases in recharge could result in 

increases in AET and decreases could decrease AET. This would dampen the resulting 

effects on the groundwater table.    

 

The results of these simulations did not provide support for a hypothesized increase in 

baseflow or dry period flow with an increase in thicket cover.  At the hillslope and tributary 

subcatchment scale, some of the processes that could produce a net increase in delayed 

flows were evident in the model, however were not predicted to be of a sufficient 

magnitude, or result in a sufficient flow delay, to see an increase in low flows at the 

catchment outlet.  Both modeled annual average and large storm event percolation and 

interflow were greater for the current and intact thicket scenarios compared to the degraded 

scenario; however, the added volume was relatively small compared to the modeled surface 

flow increase in the degraded scenario.  It was small compared to the additional AET 

predicted with increased vegetation cover, which made percolation less frequent in drier 

periods. The significant increases in percolation and interflow with increased thicket cover 

occurred in the wettest events with relatively low frequency.  In an area with a more regular 

climate pattern with an annual wet season during which the canopy interception capacity is 

more regularly overwhelmed, a stronger signal of seasonally lagged flows due to the 

additional percolation would be more likely to immerge.  In the more erratic and arid 
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environment of the Baviaanskloof, succulent plants, capable of storing water for long 

periods between significant soil wetting rainfall events, dominate the hillslope thicket.      

 

In addition, the drainage of the interflow zone in the Baviaanskloof hillslopes was 

estimated to be relatively fast, modeled with a calibrated linear reservoir drainage constant 

of 35-56 days (Chapter 2). This meant that even in the largest storm events on record, when 

the interflow differences between the intact and degraded scenarios were predicted to be at 

their greatest, there was only a detectably greater streamflow predicted in the intact thicket 

case compared to the degraded case for a period 3 to 5 days occurring within a week of the 

flow peak.  In a case where the passage from the interflow zone to the floodplain and from 

the floodplain to the main river channel were slower, such as may be expected in a 

catchment with lower slopes and/or less conductive soil and sediment or less highly 

fractured rock and/or a larger floodplain with low ET losses, the predicted increase in 

infiltration and percolation to the interflow zone predicted at the hillslope scale here could 

have resulted in an increase in flows reaching the main channel months or seasons after the 

recharge event. In addition, in the model of the Baviaanskloof, drainage in the mountain 

bedrock aquifer was assumed to be extremely slow based on calibration results, on the order 

of thousands of years, meaning that any additional recharge to this aquifer was predicted to 

have a negligible impact on average annual outflows from this source, even when a 38 year 

period was considered.  If this aquifer were faster draining, increased hillslope wet event 

recharge with greater vegetation cover could also result in an increase in baseflow.  
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While attempts were made to incorporate modeling uncertainties into the change 

analyses by using outputs of ensembles of model runs in the parameter space for each 

scenario, there are unaccounted for uncertainties that should be noted. The predicted 

differences in flow patterns between the hillslope scenarios hinged on various thresholds in 

the catchment model, such as canopy infiltration and soil field capacity, and the frequency 

and extent to which they were exceeded in the climate record. Results of key interest, such 

as the occurrence of increased baseflow with increased thicket vegetation, were also 

determined by the drainage rates of the model's linear reservoirs representing interflow zone 

and mountain bedrock aquifer storage and outflow and the floodplain aquifer conductivity. 

The parameter values determining these groundwater flows were not predicted to change 

between scenarios and parameter ranges were estimated in a multi-criteria calibration 

procedure using multiple available data sources. However, the time-series of daily 

streamflow data for calibration was relatively short (2 years). Fortunately a 22-year 

estimated monthly flow time-series was available. As such model outputs for daily flows 

and peaks are likely to be less accurate than longer term averaged values. Parameter values 

for soil and vegetation were similarly calibrated for the current situation, however the ranges 

of these parameters for the degraded and intact thicket in the scenarios were scaled up and 

down based on literature values from field sampling to which model parameters may or may 

not be directly proportionally commensurate. Spatial patterns of vegetation cover densities 

across the hillslopes were also not considered in the model, assumed to be a secondary effect 

to a large scale change in average canopy cover. 
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The calibrated model for the current scenario over-estimated daily streamflow peak 

responses to small rainfall events (less than 15 mm).  Flow responses to larger events and 

longer term flows were more accurate, likely due to some commensurate under-estimation 

of low flows, and model NSEs of 0.87-0.92 against the short-term monitored daily flow 

record and 0.79-0.85 against the longer term estimated monthly record were achieved  The 

further increase in responsiveness to smaller rainfall events in the degraded scenario 

accounted for some of the differences in yield between the scenarios, so it is possible that 

this flow increase is over-estimated. The long time-scale of the simulated period, including 

many larger rainfall and streamflow events which are likely to be more accurately simulated, 

does increase confidence in the results for changes in long-term average flows and patterns 

between the model scenarios. Flow differences between scenarios in the driest periods 

simulated were not significant. However, while model inaccuracies in low flow prediction 

may have resulted in inaccurate predictions of changes in low flows between the scenarios, 

it can be said that given the existing understanding of catchment flow patterns based on 

available local data and literature which was incorporated into the model development 

(Chapters 1 and 2) that there is bit evidence to support a significant increase in baseflow 

given restoration of thicket on the hillslopes of the Baviaanskloof.  Further improvement of 

model low flow prediction could be achieved in the future, given longer-term daily flow 

data.        

 

The results of the simulations in this study do represent the current understanding of 

catchment processes and hydrologic responses to hillslope thicket cover change in the 

Baviaanskloof that is available for decision making, however further analyses are needed to 
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understand the full implications on realized water supply and other land and catchment 

management concerns to assess trade-offs. In considering large scale restoration of 

spekboom thicket cover on the hillslopes, simulations indicate that average annual 

catchment water yields would decrease and there was no evidence of an increase in low 

flows. Results of this study indicated that peak flood flows would substantially decrease 

with thicket restoration, which would have positive impacts for local communities in terms 

of reducing flood damages to farms, roads, and homes that are already experienced during 

high flow events. While further degradation of the thicket cover, which could occur if 

livestock grazing is maintained and/or increased, would increase catchment outflows across 

seasons, increased flows occurring in wet periods when the Kouga reservoir is already 

overflowing would need to be discounted to estimate the realized increase in supply and 

may cause increased flood damages both in the catchment and in areas downstream of the 

reservoir. In order understand actual increases in available supply for downstream users, the 

results of this study need to be further coupled with a reservoir model. Such an assessment 

would also need to account for sediment transport, as the significant increases in surface 

runoff on the hillslopes and flood peaks in the channel predicted in the degraded thicket 

scenario would increase sediment transport to the reservoir, reducing its storage capacity and 

life-span. Restoration of thicket cover, on the other hand, was predicted to increase the 

proportion of the catchment outflow passing through subsurface rather than surface flow 

paths, likely to have a positive impact on water quality.   

 

Model results also indicated a decline in the floodplain water table with complete thicket 

restoration. The decrease from the current scenario was never more than 1m which is not 
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substantial compared to inter-annual and seasonal variabilities already dealt with by local 

irrigators. Nevertheless, it could result in an increase pumping costs over long periods. It is 

also possible that the increased peak flows resulting from the degraded scenario could result 

in increased floodplain channel incision, potentially having a draining effect on the 

floodplain aquifer in periods of flow recession, a possibility explored further in Chapters 4, 

5, and 6.   

 

 

3.5  Conclusion 

 

South African subtropical thicket is highly sensitive to canopy cover loss with livestock 

grazing and has been extensively degraded by human land use over much of its range 

(Lechmere-Oertel et al., 2005a; Lloyd et al., 2002; Mills et al., 2005). This area includes 

large portions of region water supply catchment for the Eastern Cape Province. While plot-

scale observational studies have shown the impacts of thicket canopy loss on interception, 

soil infiltration and water holding capacity, storm runoff, and erosion (Mills and Fey, 2004b, 

2004a; Mills and Cowling, 2010; Cowling and Mills, 2011; van Luijk et al., 2013), these 

trends had not yet been incorporated into a catchment scale model to explore long-term 

hydrological effects at larger scales.  This study modelled the potential impacts of changes 

in thicket cover in a case study catchment, the Baviaanskloof River catchment, on 

streamflow, floodplain groundwater levels, and water fluxes at different landscape positions 

and spatial scales over a 38 year climate record. Model simulations predicted a 41-62% 

increase average annual catchment water yield for the simulation period given a decrease in 
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average thicket canopy cover on the catchments hillslopes from the 20% canopy cover, the 

estimated current state, to 8% canopy cover, predicted with full degradation.  The predicted 

increased yield, due to increased storm runoff and decreased AET on hillslopes, was 

accompanied by a predicted 34-43% increase flood peak magnitude for the largest flow 

events on record, likely to have implications for flood damages, erosion, and sedimentation 

of the water supply reservoir. Full restoration of hillslope thicket cover to estimated average 

65% canopy cover was predicted to decrease average annual water yields by 22-27% and 

decrease flood flow peaks by 56-60%. The modeled increase in yield with a decrease in 

canopy cover was consistent over wet and dry years and seasons. Despite a modeled 

increase in hillslope percolation to the interflow zone with restored thicket cover, there was 

no evidence that this would result in an increase in baseflow detectable at the catchment 

outlet.  

 

The Baviaanskloof is a semi-arid mountainous catchment in which steep mountain 

tributaries feed onto a central valley with a coarse alluvial fill. It was observed that routing 

surface and subsurface flows from the mountain areas across and through the central valley 

alluvial fill significantly reduced flood peaks compared to those predicted at the tributary 

catchment outlets. This also resulted in a reduction in the change in flow peaks between the 

different modelled scenarios. However, because of the relatively small size and high 

conductivity of the floodplain, it did not result in a significant reduction in the changes in 

long-term average catchment water yields between scenarios compared to those predicted 

for the mountain tributaries. The floodplain groundwater table was predicted to be shallower 

on average in the degraded thicket scenario due to increased recharge from overland flows in 
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storm events; however, the difference between scenarios was small relative to seasonal 

fluctuation. The results of this study demonstrated the importance of considering landscape 

flow paths routing when modelling large and topographically diverse catchments, 

particularly when examining flood intensities.   
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Chapter 4 Streamflow and groundwater impacts of 

channelization on alluvial fans in a meso-scale, semi-arid, 

mountainous catchment 
 

4.1 Introduction 

 

Alluvial fans are common topographic features in arid mountainous environments where 

they are sites of significant groundwater recharge (Blissenbach, 1954; Hooke, 1967; Bull, 

1977; Hendrickx et al., 1991; Munevar and Marino, 1999; Houston, 2002; Blainey and 

Pelletier, 2008). However, alterations due to human activities may change their form and 

function in the landscape. Fans develop at mountain fronts where steep mountain streams 

abruptly lose velocity upon reaching a relatively flat floodplain and so deposit much of their 

sediment load. Fans’ convex shape, ephemeral surface flows, and episodic sediment 

deposition generally result in shifting, disparate surface flow paths across the fan. This can 

be a flood risk when dwellings or infrastructure are located on or close to alluvial fans. In 

areas where settlements or agriculture have been established on or near fans, development is 

often accompanied by flood protection measures such as channelization and levee or berm 

construction (Phillips, 1998). Confining alluvial fan flood flows into single channels, which 

may otherwise have dispersed across the fan surface, reduces the opportunity for infiltration 

and recharge on the fan. It is therefore possible that local flood control on alluvial fans could 

increase streamflow peaks and decrease baseflows in downstream areas, a trade-off that may 

be important to consider in catchment management. This study uses coupled hydraulic and 

hydrologic modelling to explore the potential impacts of alluvial fan channelization on 
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catchment-scale water yield, flood peaks, low flows, and floodplain groundwater levels in a 

case-study catchment: the Baviaanskloof River catchment in the Eastern Cape of South 

Africa. It was hypothesized that widespread alluvial fan channelization in this catchment is 

likely to increase downstream flood peaks and decrease baseflow. 

 

Previous research on hydrologic processes on alluvial fans has primarily focused on 

detailed study or modelling of groundwater recharge and/or flood risks on individual large 

fans, looking at processes and water balances for the fan and the catchment area that feeds it 

(Munevar and Marino, 1999; Herron and Wilson, 2001; Houston, 2002; Mukhopadhyay et 

al., 2003; Niswonger et al., 2005; Blainey and Pelletier, 2008).  The impacts of infiltration 

on alluvial fans on the overall water balance and flow patterns of the larger catchments in 

which they occur have less often been quantitatively assessed. Potential larger catchment 

scale impacts of fan flow path alteration have not yet been explored in published literature. 

Such assessments would allow possible trade-offs between local flood protection and 

downstream flood and water supply impacts to be more quantitatively understood.  The 

purpose of this study is therefore to incorporate alluvial fan processes into a meso-scale 

catchment hydrologic model and use this model to estimate potential impacts of fan 

channelization on the magnitude and timing of flows through the catchment. The 1,234 km
2
 

Baviaanskloof catchment has 62 alluvial fans flanking its central valley floodplain, over half 

of which have been cultivated and at least 25 of which have been altered for flood 

protection.  This catchment supplies water to both local agricultural users within the 

catchment and to a regional reservoir serving downstream urban and agricultural areas. 
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Upstream activities affecting low flow period water supplies to downstream users have 

become a focus of catchment management in the area (Jansen, 2008).  

 

Having different sizes and forms, the effects of channelization on different individual 

fans will vary. It was hypothesized that widespread channelization across many fans in the 

Baviaanskloof would decrease average infiltration on the fans, increase streamflow peaks in 

the downstream floodplain channel, increase average depth to groundwater in the floodplain 

alluvial aquifer, and decrease baseflow in the floodplain channel. Infiltration and recharge 

on fans is controlled by many factors: surface and channel morphology, fan material 

permeability, vegetation, and the magnitude and timing of incoming flows.  On large fans 

comprised primarily of coarse material, it is common for high flows to completely infiltrate 

before reaching the fan toe (Hooke, 1967).  Smaller fans, even those composed of finer 

material, can also have significant impacts on surface-subsurface flow partitioning: (Herron 

and Wilson, 2001) found that, on a 0.4 ha fan at the base of a 26 ha mountain catchment, 20-

100% of event surface runoff received was infiltrated depending on storm intensity and 

antecedent moisture conditions.  Channel dimensions relative to the flow received have been 

found to be a significant factor determining total infiltration (Blainey and Pelletier, 2008). 

 

In the Baviaanskloof, surface flows across some of the catchments' fans following large 

rainfall events have been observed to reach the main river channel, contributing to the 

downstream flood peak (Chapter 1). The magnitude of storm required for surface flows from 

the mountains to reach the fans varies with antecedent conditions, but generally 30 mm in a 

day is needed for surface flows to reach the fan from the contributing catchment and 50 mm 
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for significant flows to cross the fans and reach the floodplain channel. However, when 

heavy storms occur in dry periods, significant infiltration is also observed along the main 

floodplain channel, additionally attenuating floods before they reach the catchment outlet. 

As such, the catchment-scale flood peak impact of alluvial fan channelization in the 

Baviaanskloof was predicted to be greater when antecedent conditions are sufficiently wet 

for the floodplain groundwater table to be close to the channel elevation over much of the 

floodplain. In this case there would be less loss of channel flow on the floodplain and so the 

infiltration on the fans would be more critical to determining the peak flow. Baseflow in the 

main floodplain channel is fed by the floodplain alluvial aquifer, which is continuous with 

the alluvial fan deposits (Chapter 1). Additional infiltration on fans could lead to additional 

recharge of the alluvial aquifer and hence increased baseflow. The magnitude of the impact 

of fan alteration on the floodplain baseflow will be mitigated by plant water use both on the 

fan, controlling net recharge, and on the floodplain, where deep rooted vegetation can access 

the alluvial aquifer, potentially using much of the additional recharge water.      

Modeling studies of fan hydrology have generally built purpose-specific models of the 

fan area alone, obtaining the incoming flows at the apex from field observations or separate 

models and not explicitly looking at processes beyond the fan toe. In these studies the 

consideration of fan surface flows has ranged in complexity and scale, from detailed grid 

cell level surface flow routing routines using a digital elevation map (DEM) of the fan 

surface topography and cell level calculations of infiltration (Blainey and Pelletier, 2008) to 

coarser consideration of the entire fan as a single divergent plane subject to kinematic flow 

routing based on estimated average slope and roughness (Mukhopadhyay et al., 2003).  

Generally the quantity of groundwater recharge on the fan during events has been calculated 
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without further explicit consideration of groundwater flow leaving the fan and its fate within 

a larger catchment. Exceptions have been Herron and Wilson (2001) who estimated a 

subsurface drainage rate from the fan based on piezometer data, and Munevar and Marino 

(1999) who added alluvial fan recharge to a finite element groundwater model the regional 

aquifer of the Salinas Valley.    

Widely used distributed and semi-distributed catchment model structures made available 

in software, such as HEC-HMS (USACE-HEC, 2010), SWAT (Arnold et al., 1998), 

WARMF (Herr and Chen, 2012), and MIKE-SHE (Refsgaard and Storm, 1995), among 

others, range in their capability to explicitly consider processes typical of alluvial fans. Until 

more recently many readily available model structures were based on observations of 

processes and linkages in small to medium scale temperate or wet catchments, with 

dominantly convergent topographies (Beven, 2001; Giertz and Diekkrüger, 2003; Herron 

and Wilson, 2001). In such environments it is reasonable to route surface runoff produced 

on different land units directly to channels, without landscape flow path infiltration, and to 

route channel flows directly to the catchment outlet, without overbank spillage. However, 

catchment-scale models which can include landscape surface flow infiltration, channel 

seepage losses, and allocation of overbank spillage water onto the surface of an alluvial fan 

land unit, such as the MIKE-SHE/MIKE 11 coupled hydrologic-hydraulic modeling system 

(Graham and Butts, 2005; Refsgaard and Storm, 1995), could be used to approximate fan 

surface processes within the catchment, similar to the methods used in fan-scale modeling 

by Niswonger et al. (2005) and Blainey and Pelletier (2008).  At the catchment scale, model 

representation of groundwater flow may also be important as groundwater recharge on 

alluvial fans can feed aquifers of concern (Munevar and Marino, 1999) and downstream 
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surface water bodies (Woods et al., 2006).  This could be included in catchment models in a 

variety of ways such as: coupling surface processes to a finite element groundwater model, 

using linear or non-linear reservoir drainage functions for a theoretical alluvial fan 

groundwater reservoirs connected in series to a floodplain aquifer model reservoir, or by 

adding fan recharge to a single combined fan-floodplain aquifer model reservoir.     

In this study, the scale of the Baviaanskloof catchment, and the available information on 

surface and subsurface properties and processes with which to parameterize a model, made a 

fully distributed gridded model of surface and subsurface flow for the entire catchment area 

inappropriate (Chapter 1). As such, a semi-distributed, hydrologic response unit (HRU) 

model based on topographic units for the mountain tributary subcatchments which feed the 

fans was coupled to a finer scale, gridded, surface and groundwater model of the central 

valley's alluvial fans, floodplain, and channel network. This was done using the MIKE-

SHE/MIKE 11 modeling system. In addition to overbank flooding, the fan and floodplain 

model also included dynamic two-way exchange of water between the alluvial aquifer and 

the channel network based on relative water heights and material conductivity. While the 

groundwater table in the alluvial fans is known to remain below the fan channel, this was not 

the case in the floodplain (Chapter 1). Consideration of the fluctuating surface-subsurface 

connection between the floodplain aquifer and main river channel was therefore considered 

necessary to directly model how baseflow may be affected by the amount of aquifer 

recharge in the valley alluvium, including recharge on the fans.      

Infrequent surface flows and deep groundwater tables make monitoring arid alluvial fan 

processes challenging, while high spatial variability of fan surface material permeability can 
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provide further challenges to characterization for modelling (Blainey and Pelletier, 2008).  

However, modelling the alluvial fans as an integrated part of a larger catchment model 

allowed information available from other spatial scales, such as catchment outlet streamflow 

and floodplain groundwater levels, to be brought to bear in the parameterization of the fan 

through model calibration. Due to the lack of information on each fan in the catchment, 

average soil and vegetation properties were estimated and applied uniformly to all the fans 

in the model. Values were guided by available data (Bobbins, 2011), aerial photography, and 

sampling on selected fans, but were then further constrained through catchment scale model 

calibration based on time-series of floodplain groundwater levels and streamflow at 

perennially flowing locations (Chapter 2).  As impacts are predicted to vary with climate 

conditions, fan channel scenarios were modelled over 38 years of observed weather to look 

at long-term average impacts across a range of conditions and specific event impacts. 

 

4.2 Methods 

4.2.1 Alluvial fan characteristics 

 

A detailed description of the Baviaanskloof catchment is provided in Chapter 1, Section 

1.2.1. A study of the form of the alluvial fans in the catchment was done by Bobbins (2011) 

and supplementary analyses of georeferenced aerial photography for 2009 (South African 

National Geospatial Information) and limited field sampling were done for this study. 

Bobbins (2011) used stereograph analyses to delineate 58 alluvial fans. An additional four 

were identified from the 2009 photography. In the very narrow main valley reaches there is 
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insufficient space on the valley floor away from the main river channel for the fan deposits 

to accumulate outward from the mountain front. During periodic high flood flows the main 

river has capacity to carry tributary sediment deposits away down-valley.  However, almost 

all tributary subcatchments feeding onto wide valley reaches terminate in alluvial fans, and 

subcatchments terminating in fans make up 43% of the total catchment area. Fan surface 

areas ranged from 0.03 to 1.4 km
2
 with an average of 0.2 km

2
. Fan area was linked to the 

size of the contributing catchment area and in some cases limited by toe trimming by the 

main river channel in the floodplain (Bobbins, 2011). Fan surface slopes ranged from 0.4% 

to 20% with an average of 5% (Bobbins, 2011), in contrast to the average 30% slope of the 

topography in the subcatchments and the lower floodplain longitudinal slope of 0.7%. 

 

The Baviaanskloof area has been used for livestock grazing and cultivated agriculture for 

over a century, and this has come with significant modification of many of the alluvial fans. 

Evidence of cultivation on the fan surface in the form of cleared fields was observed on 42 

of the 62 alluvial fans.  In response to widespread flood damages in the 1970s and 1980s, the 

South African government actively promoted and subsidized flood protection measures 

(Jansen, 2008). In the Baviaanskloof this took the form of earthworks to reorient channels 

and build berms, both on the fans and the main floodplain. In addition, significant loss of 

vegetation cover due high grazing pressure on the hillslopes of the tributary subcatchments 

is likely to have impacted channels on the alluvial fans by increasing storm runoff and hence 

increasing peak tributary surface flows reaching the fans.  Modeling of tributary 

subcatchment outflows under scenarios of fully intact hillslope thicket cover compared to 
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those predicted for the current open canopy condition suggested that the quantity of surface 

flow reaching the fans could have increased by 80-86% (Chapter 3).    

 

Continuous channels from the apex of a fan all the way to the main river channel in the 

floodplain were identified from aerial photography for over half of the fans, 39 out of 62, 

while the remainder showed evidence of more dispersive flows either on the fan surface or 

upon reaching the floodplain (Figure 4-1 to 4-3). The development of an entrenched channel 

on a fan is not always due to direct anthropogenic modification. It can occur with 

intensification of runoff events, declining sediment delivery to the fan, and/or a lowering of 

the local base level, as driven by larger landscape, climate, and/or tectonic factors (Blair and 

Mcpherson, 1994; Harvey, 2002; Clarke et al., 2010). Channel connectivity to the main river 

is more easily developed when the main floodplain channel is located at the fan the toe, 

effectively lowering the fan's local base level to the river channel thalweg, rather than the 

floodplain surface. (Bobbins, 2011) observed 'toe trimming' by current or historical courses 

of the floodplain channel for 33 fans, 23 of which are among those with currently visible 

channel connectivity to the main river. However, for 25 of the 39 fans with observed 

channel connectivity, alteration of the fan surface flow path due to human activity was also 

clearly evident in the form of cultivated fields across the majority of the fan surface 

confining the active flow area, obvious channel straightening or diversions away from 

infrastructure, and/or visible berms (examples shown in Figures 4-2 and 4-3). Additionally, 

for 14 of these fans, man-made, or man-entrenched and bermed, channels from the fan toe 

across the floodplain to the main river channel were observable, following paths that avoid 

agricultural fields (example shown in Figure 4-3).   
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Channel dimensions were measured in the field for 9 sample fans (Bobbins, 2011) and 

channel widths were estimated from georeferenced aerial photographs for the remaining 

fans.  Fan channel widths near the fan apex ranged from 5-23 m with a mean of 11 m. On 

fans without a completely entrenched channel, the channel often split into multiple flow 

paths growing progressively shallower and narrower moving toward the fan toe.  Channel 

depths on the field surveyed, entrenched, channel fans ranged from 0.4-3 m with depths 

fluctuating along the fan length. Channels were generally gravel and cobble bedded with 

loamy-sand and sandy-loam banks, but those that were less entrenched graded to sand and 

gravel bed deposits moving down the fan.  

 

Fan sediment deposits were found to be primarily sands, loamy sands, and sandy loams 

with high gravel and cobble content (20-80% by volume). Exposed sediment profiles in 

incised fan channels, toe trimmed fans, and excavated soil pits showed distinct layers with 

varying rock contents indicating channel shifting across the fan and/or wetter periods of 

higher coarse material transport capacity. In addition to surface samples taken on transects 

of two sample fans by Bobbins (2011), four 2 m deep soil profile pits were excavated on two 

sample fans (on the north and south side of the valley) with texture samples taken and 

double ring infiltrometer measurements made at each distinct layer encountered.  Saturated 

conductivities measured on the fan surface with a double ring infiltrometer ranged from 20-

500 mm/hr with a mean of 124 mm/hr, while those taken in cobble dominated layers during 

soil profile excavation were 80-1100 mm/hr with a mean of 333 mm/hr.   
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1986 2009 1960 

Figure 4-2 Aerial photo time-series showing manual channel re-routing and berm 

construction on an alluvial fan in the Baviaanskloof (Gannalandkloof fan) to protect a 

downstream field and dam from flooding and sediment deposition.  

The channel was shifted to the western side of the fan and a 2m high berm was constructed to keep 

it there. This new channel became entrenched and older flow paths became inactive and vegetated. 

 

Figure 4-1 Baviaanskloof catchment landform delineation showing tributary subcatchments, 

alluvial fans, and the central valley floodplain. Channel connectivity of tributary 

subcatchments is highlighted.  
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Figure 4-3 Aerial photo 

time-series showing 

channelization on an 

alluvial fan in the 

Baviaanskloof catchment 

(Tchandokloof fan running 

South to North) to make 

way for agricultural fields 

and construction of an 

entrenched channel 

connection with the main 

river (running West to 

East) 
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4.2.2 Scenario modelling 

 

The scale of likely streamflow and groundwater impacts from increased alluvial fan 

channelization in the Baviaanskloof was explored using a calibrated model of the catchment 

in its current condition and manipulating the model's channel network to represent different 

fan condition scenarios. Three scenarios of alluvial fan condition were considered: the 

current state with 39 of the 62 fans channelized; channelization on all 62 fans, hereafter 

referred to as the 'channelized scenario'; and assumed restoration of dispersive flow paths on 

25 apparently altered fans, leaving 14 channelized fans, hereafter referred to as the 'restored 

scenario.'  The 14 fans assumed to remain channelized in the restored scenario were those 

for which the aerial photography record did not show clear indication of human alteration 

and generally had the fan toe up against the main river channel, a natural driver of channel 

development on alluvial fans. A daily time-step, semi-distributed model was constructed for 

the current state and calibrated against available groundwater, surface runoff, and 

streamflow data (Chapter 2).  This model was built using the MIKE-SHE/MIKE-11 

modeling system (Refsgaard and Storm, 1995), based on a conceptual model informed by 

field observations of surface and groundwater flows, soil and vegetation properties, and 

topography (Chapter 1). A basic description of the model structure is given below, focusing 

on conceptualization of alluvial fan flows. For a more detailed description of the model 

construction and calibration refer to Chapter 2.  

 

The model was structured to explicitly consider alluvial fan processes within the 

catchment, with finer scale process representation on fans and the floodplain than for the 
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mountain tributaries. Using topographic data (30 m resolution NASA Shuttle Radar 

Topography Mission, SRTM, data), the catchment area was discretized into mountain 

tributary subcatchments and the central valley alluvial fill (the fans and main floodplain) as 

described in Chapter 1. Within the subcatchments, canopy interception, infiltration, soil 

moisture storage, actual evapotranspiration (AET), vertical percolation, and surface runoff 

routing were calculated at the level of topographically defined hydrologic response units 

(HRUs): plateaus, hillslopes, cliffs, and canyon floors. Surface runoff was routed across 

HRUs in a catena, with opportunity for infiltration along the flow path. Surface flow 

reaching the outlet of each subcatchment was added to the channel network at the head of 

the alluvial fan. Hillslope interflow and mountain bedrock groundwater flows were modeled 

as lumped linear reservoirs at the sub-catchment scale, receiving percolated water from all 

topographic units and discharging to the alluvial aquifer boundary. Groundwater flow 

through the alluvial aquifer was modeled using a finite element grid governed by Darcy’s 

Law, with a dynamic connection to the channel network. On the fans and floodplain, canopy 

interception, infiltration, surface runoff overland flow routing, soil moisture storage, AET, 

and percolation to the water table were also calculated by grid cell.   

 

The gridded surface and subsurface model of the fans and floodplain had a 50 m 

resolution using sink filled, smoothed SRTM data for the model surface topography. This 

ensured that basic alluvial fan forms were included in the surface flow routing. In the finite 

element groundwater model a smooth bottom depth profile was assumed with an average 

depth of 20 m under the central floodplain grading to 5 m at the mountain front, based on 

resistivity data by (Soltau et al., 2011). The topography of the bedrock below the alluvium 
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may not be regular and may be deeper than 20 m, however it was assumed that the 

floodplain groundwater table is relatively smooth, permanently above the bedrock interface, 

and remained above a 20 m depth throughout the simulated period.  This last assumption is 

supported by 15 m deep farm water supply boreholes in the alluvium that have never run dry 

in living memory (Chapter 1).         

 

Channel flow was modeled using a diffusive wave approximation. Two-way exchange of 

water between the aquifer and channel was governed by relative water surface elevation and 

bed material conductivity. Overbank flows, as calculated in the channel hydraulic model, 

were added into the gridded surface flow routing routine of the fan and floodplain surface. 

This water could infiltrate into the alluvium, evaporate, or flow downslope, potentially re-

entering the channel further down-valley. The channel network was mapped from 

georeferenced aerial photography and field survey. Channel cross sections for the floodplain 

were obtained from topographic survey (Powell, 2015). In the model, the surface flow from 

every tributary subcatchment was routed to a channel that connects to the main river channel 

in the floodplain.  For subcatchments feeding onto alluvial fans assumed to be channelized 

and connected to the main river, this connecting channel was given the average observed fan 

channel dimensions on modified fans in the catchment: 11 m width, 1 m depth, trapezoidal.  

For those with fans that were not channelized, the model fan channel dimensions decreased 

to a negligible size (2 m width, 0.2 m depth) by the toe of the fan such that the majority of 

the flood flow would exceed channel dimensions and be added to the model surface flow 

routing on the fan. Infiltration through the fan channel beds was also calculated based on the 

alluvial fill conductivity.        
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This model was calibrated using a multi-criteria procedure against multiple datasets of 

surface flows and groundwater levels: gauged catchment outlet streamflow for 2012-2013, 

estimated monthly catchment outflow for 1991-2013, observed presence/absence of flow in 

tributary catchment channels and the central floodplain channel for 2012-2013, and 

observed floodplain groundwater depths for 2012-2013 (Chapter 2). Given the high 

dimensionality of the model structure (42 calibration parameters), the relatively short gaged 

streamflow record, uncertainties in observational datasets, simplifications in process 

representation, and incomplete commensurability of observational data and model 

parameters and outputs, the calibration procedure did not attempt to produce a single 

optimized parameter set.  Instead, thresholds of acceptability were applied to various model 

output goodness-of-fit measures to patterns in the datasets in order to constrain the range of 

model parameter values considered likely. The resulting model and accepted parameter 

space reproduced 2012-2013 daily streamflow with a Nash-Sutcliffe efficiency (NSE) of 

0.87-0.92 and 1991-2013 monthly flows with an NSE of 0.79-0.85, predicted mean flow 

within 0.5 m
3
/s and maximum monthly flows within 1 m

3
/s of the observed, and modeled 

floodplain groundwater fluctuations with an R
2
 of 0.79-0.81 and an accuracy in the range of 

depth fluctuation within 0.5 m against the observations (Chapter 2).  Accepted models had 

errors in average annual yield of 3-20%, with a mean of 12%. 

 

To account for the uncertainty in the parameterization, the model was run 100 times for 

each scenario to represent the calibrated parameter space. Parameter sets were selected from 

the 720 sets in the calibration exercise with acceptable model performance in recreating 

observed surface runoff, streamflow, and groundwater patterns as described in Chapter 2. 
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The same 100 parameter sets were applied in each of the three alluvial fan channel 

scenarios, such that the channel network was the only factor differing between them. These 

sets of runs resulted in likely output distributions for each scenario, allowing for 

conservative change detection.  

 

In order to capture the response to a variety of storm sizes and antecedent conditions, the 

model of each scenario was run using 43 years of climate data from 1970-2012. The first 5 

years (1970-1974) were considered a spin-up period for groundwater levels and change 

analyses were done for model output for the 1975-2012 water years. The water year was 

defined as April to March. To estimate catchment and subcatchment-wide precipitation and 

PET demand, daily gage data from 6 stations, two within the catchment and four within 20 

km (South African Weather Services, South African Agricultural Research Council), was 

scaled using the monthly precipitation and temperature surfaces (2 km resolution) of (Lynch, 

2003) and (Schulze and Maharaj, 2004).   

  

4.2.3 Output analyses 

 

For the set of model runs for each alluvial fan channelization scenario the mean and 95 

percent confidence intervals of the following statistics were calculated: average annual water 

yield, average annual minimum monthly flow, average of the daily flows for the fourteen 

largest flow peaks in the period (annual exceedance probability of 10% or less), average 

depth to groundwater in the floodplain aquifer (spatially averaged), average annual 

maximum depth to groundwater in the floodplain aquifer (spatially averaged).  These 
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statistics were chosen to assess the scale of impacts relevant to water supply and flood 

management.  To assess changes in the flow path of water through the catchment due to 

alluvial fan channelization, modeled patterns of infiltration on alluvial fans, recharge to the 

alluvial aquifer, AET on the fan and floodplain area, flow from the alluvial aquifer into the 

main floodplain channel, and surface flow reaching the main floodplain channel from the 

tributary subcatchments were compared between the alluvial fan scenarios.   

 

Within the modeled time period, multi-year dry and wet periods were identified, as 

described in Chapter 3, Section 3.2.3, to compare the effects of fan channelization under 

different conditions. The statistics described above were also calculated separately for these 

periods and for winter and summer seasons. To test the hypothesis that the difference in 

flood flow response between channelized and restored scenarios would be larger when 

antecedent conditions were wetter, and the floodplain could absorb less of the additional 

flood peak from the channelized fans, flow responses to particular storm events were 

compared across a range of antecedent conditions. Storm events considered were those with 

over 30 mm of rainfall in a day and the antecedent conditions were explored by looking at 

modeled total effective rainfall (precipitation – AET) in antecedent periods of different 

lengths before the event (5 days, 1 month, 6 months, 1 year, and 2 years) and also by 

looking at the floodplain groundwater depth.  Effective rainfall was looked at in addition to 

groundwater depth because soil moisture on the fans and floodplain in the unsaturated zone 

above the alluvial aquifer water table would also play a role in the storm response.  
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4.3 Results 

4.3.1 Effects on catchment scale water yield and streamflow 

 

The modeling results in this study indicated that the alternative alluvial fan form 

scenarios considered, channelization on all fans or restoration of dispersive flow paths on 

altered fans, were not likely to have a large impact on the long-term average annual water 

yield of the Baviaanskloof catchment compared to predicted yield for the current state and 

compared to model uncertainties. However, restoration of fans' dispersive flow paths was 

predicted to decrease peak flows and increase low flows in certain conditions. The fully 

channelized scenario had a modeled annual average water yield of 30-32 Mm
3
 for the period 

from 1975-2012, compared to 28-31 Mm
3 

predicted for the current state, and 26-28 Mm
3
 for 

the restored fan scenario (Table 4-1). While the differences between the mean predicted 

yields of the alternative scenarios and that of the current state were not significant (p>0.05), 

the 2-6 Mm
3
 (7-21%) increase in average annual yield between the fully channelized and 

fully restored scenarios was statistically significant (p=0.02).  Differences in mean predicted 

yields for individual years were not statistically significant between scenarios, but means for 

the channelized scenario runs were consistently higher than those of the restored scenario for 

all modeled years (Figures 4-4 and 4-5). This change in average yield can be attributed to 

the predicted increased infiltration of surface flow on the alluvial fans in the restored 

scenario resulting in a small increase in predicted annual average AET in the central valley. 

In the channelized scenario a greater, though not statistically significantly so, quantity of 

water (3.1-5.3 Mm
3
) was predicted to reach the main river channel via surface flow paths 

compared to the restored scenario (2.5-3.5  Mm
3
) on average. Much of this water would 
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leave the catchment more quickly and not be available for AET.  As expected, given that 

surface flows on fans only occur in large rainfall events, the differences in water yields for 

individual years were more pronounced in wet years and insignificant in dry years (Figures 

4-4 and 4-5).    

 

The magnitudes of the largest modeled peak flows, considered as daily flow events with 

an annual exceedance probability of 10% or less, increased with widespread channelization 

on the alluvial fans.  Average flow rates for such events were predicted to be similar for the 

current and channelized scenarios (60-62 m
3
/s vs 62-64 m

3
/s), but significantly lower for the 

restored scenario (52-53 m
3
/s), decreasing by 11-17% from the current state and 15-24% 

from the channelized scenario.  Effects of event magnitude and antecedent conditions on the 

influence of channelization were evident in daily hydrographs (Figure 4-6).  When multiple 

small events occurred in succession, such as in 04/1990, soils became progressively more 

saturated and proportionally more flow was produced in the restored scenario, reducing the 

difference between this and the channelized scenario, compared to the first event in a 

sequence. However, as hypothesized, differences in large rainfall event (≥30 mm) flows 

between the channelized and restored fan scenarios were generally greater when antecedent 

conditions were wetter and floodplain groundwater tables were higher, with linear 

regression analyses suggesting this could explain 30-40% of the variation in peak 

differences between events (Figures 4-7 and 4-8). As would be expected given the relatively 

fast draining soils, antecedent conditions considered over progressively longer time periods 

prior to the event became less and less important explanatory factors (r
2
 values decreasing to 

0.12 when looking at the entire year preceding the event).  Interestingly, the effective 
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rainfall in the preceding two years had a greater correlation coefficient (r
2
 = 0.3) than that 

for 6 months or one year, perhaps an indication that longer term wet or dry conditions 

dictate larger changes in floodplain groundwater tables that influence the storm response.  

The flood response difference had a similar degree of correlation with the modeled average 

floodplain groundwater level (r
2
 = 0.3).   

 

Table 4-1 Long term (1975-2012) average annual water balances for the Baviaanskloof 

catchment and internally modeled land units under different scenarios of alluvial fan 

channelization 

Location / 

spatial scale 
Flux 

Annual volume (Mm
3
/ year) 

Channelized Current Restored 

Mean 95% CI Mean 95% CI Mean 95% CI 

    
      

Catchment Precipitation 323 
 

323 
 

323 
 

  AET 288 1.1 288 1.3 291 1.5 

  Streamflow 31 1.0 29 1.0 27 1.0 

  

       
  

       

Mountain 

tributary 

sub-

catchments 

 

 

 

 

Precipitation 307 
 

307 
 

307 
 

AET 260 1.2 260 1.2 260 1.2 

Overland flow to 

fan head 4.8 0.1 4.8 0.1 4.8 0.1 

Interflow to 

floodplain 29 0.9 29 0.9 29 0.9 

Mountain bedrock 

outflow 9.0 0.6 9.0 0.6 9.0 0.6 

       
  

       

Central 

valley 

alluvial fill 

(fans and 

floodplain) 

 

Precipitation 16 
 

16 
 

16 
 

AET 28 0.3 28 0.2 31 0.3 

Alluvial aquifer 

input to channel 

(net) 27 1.3 26 1.5 24 1.0 

Overland flow 

inputs to channel 4.2 1.1 3.6 0.7 3.0 0.5 
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Figure 4-4 Modeled catchment water yield (total streamflow output) by water year for 1975-

2012 for scenarios of the current state, restored, and channelized alluvial fans.  

Means and confidence intervals of the simulations sets run within the parameter ranges considered 

are shown 
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Figure 4-5 Boxplots 

showing the distributions of 

modeled mean annual and 

seasonal water yields for 

different alluvial fan 

scenarios for: all simulated 

years (left), selected dry 

and wet years (center), and 

summer and winter months 

for all years (bottom ) 
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Demonstration wet year: water year 2011 

Demonstration dry year: water year 

1990 

Demonstration dry year: water year 1990  

Figure 4-6 Modeled daily flow hydrographs for demonstration dry (1990, top) and wet (2011, 

bottom) years showing differences in flow peaks and recessions between alluvial fan scenarios  
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Figure 4-7 Variation in the differences in large storm event streamflow 

between the channelized and restored alluvial fan scenarios given different 

antecedent wetness conditions manifest as the mean floodplain groundwater 

depth.  

Large storm events were defined as ≥30mm/day. Event response flow was total  
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Figure 4-8  Variation in the 

differences in large storm 

event streamflow between the 

channelized and restored 

alluvial fan scenarios given 

different antecedent wetness 

conditions.  

Large storm events were defined 

as ≥30mm/day. Event response 

flow was total streamflow 

during the event and following 

day. Antecedent wetness was 

indicated by the total effective 

precipitation  
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Figure 4-9 Daily flow duration curve for different alluvial fan scenarios showing 

the distribution of daily flow values modeled for the period 1975-2012 
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The model results in this study did indicate that restoring dispersive flow paths on 

alluvial fans in the Baviaanskloof could increase average baseflows between storm peaks, 

however not in the driest and warmest months on record. This is evident in the flow duration 

curve (Figure 4-9) and  in wet and dry year hydrographs (Figure 4-6).  Daily differences 

between scenarios were not statistically significant, but differences were consistent enough 

that long term indices were discernably different.  The mean annual minimum monthly flow 

rate modeled for 1975-2012 was 10% (0.01 m
3
/s) higher in the restored than the channelized 

fan scenario (p=0.04).  This difference was driven by the wetter years, as the mean annual 

minimum monthly flows for the selected dry years were not significantly different between 

scenarios. Simulations predicted that additional infiltration on the restored alluvial fans 

would result in greater volumes of delayed, subsurface flows through the alluvial aquifer 

reaching the main river channel in weeks to months after a significant rainfall event, such 

that streamflows were highest in the restored scenario in these periods. This was seen in wet 

years and following small flow peaks in dry years. For example, the largest flow peaks in 

1990, a dry year, and in 2011, a wet year, occurred between May and August and while 

modeled peak flows were consistently larger in the channelized scenario, modeled 

streamflow in the baseflow periods following these peaks was greatest for the restored 

scenario until October in 1990 and December in 2011 (Figure 4-6).   

 

In summer months baseflows were similar amongst the scenarios and marginally greater 

in the channelized scenario in some years (Figure 4-6).  In these warmer periods ET 

demands were greater and the soils drier so that less of the extra infiltrated volume modeled 

on alluvial fans in the restored scenario was predicted to reach the groundwater table. The 
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occasionally greater summer baseflows predicted for the channelized fan scenario, such as in 

01/1991 (Figure 4-6), were the result of modeled flows from smaller storms crossing the 

absorbent alluvial fans more quickly, with less opportunity infiltration, such that greater 

volumes reached the floodplain. Being summer with drier soils, infiltration along the 

channel flow path was also predicted to occur in the channelized scenario.  Having more of 

the infiltration occur lower down in the landscape where the groundwater table is closer to 

the surface, as opposed to further up on the fans as in the restored scenario, meant that more 

of this infiltrated volume could percolate to the water table and later contribute to baseflow. 

Being a dry year, average depths to the water table on the alluvial fans were predicted to be 

relatively large (5-7 m) compared to those on the central floodplain (3-4 m). When 

compared to observed hydrographs, it was found that small flow peak responses to minor 

rainfall events are generally overestimated in this model (Chapter 2) and so it is likely that 

this effect of channelization on the dry period flow response is also overestimated.   

 

4.3.2 Effects on floodplain groundwater depth 

 

Model outputs indicated that channelization of alluvial fans in the Baviaanskloof could 

result in a slightly deeper floodplain groundwater table on average and conversely that 

restoration of dispersive flow paths on fans could raise the water table (Figures 4-10 and 4-

11).  While the difference in mean central floodplain groundwater depth for the modeled 

period between the restored and channelized scenario was statistically significant (p=0.02), 

the magnitude of the difference (0.1-0.2 m) was small compared to seasonal and interannual 

fluctuations.  This difference in groundwater table did result in more alluvial aquifer flow 
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into the main river channel creating the small, but detectable, increase in average modeled 

baseflow in the restored case over the channelized fan scenario.  Modeled differences 

between groundwater depths were larger for dry years that wet years (Figures 4-10 and 4-

11).  However, in the dry periods the greater depth of the groundwater table meant that there 

was less interaction between the groundwater table and the main floodplain channel and so 

the higher mean elevation of the groundwater table in the restored scenario had little impact 

on baseflow in the driest periods on record.     
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Figure 4-10 Modeled floodplain average groundwater depth in the central floodplain by 

water year for 1975-2012 for scenarios of the current state, restored, and channelized 

alluvial fans.  

Means and confidence intervals of the simulations sets run within the parameter ranges 

considered are shown 
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Figure 4-11 Boxplots 

showing the distributions of 

modeled mean annual and 

seasonal floodplain 

groundwater depth for 

different alluvial fan 

scenarios: all simulated 

years (left), selected dry and 

wet years (center), and 

summer and winter months 

for all years (bottom) 
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Various modeled patterns of infiltration and percolation in the central valley alluvial fill 

gave rise to the observed differences in the groundwater tables and baseflows between 

scenarios. These patterns illustrate the role of climate in determining the magnitude of flow 

and groundwater differences between scenarios.In large rainfall events infiltration and 

percolation to the alluvial aquifer were consistently predicted to be greater in the restored 

alluvial fan scenario (Figure 4-12 b& d), with most of this being attributable to differences 

in processes on the alluvial fans (Figure 4-12 c&e). In large flow events, due to the higher 

surface flow peaks predicted in the channelized scenario, more overbank flows and larger 

inundated areas were modeled in the floodplain in this case. This added to total infiltration 

and alluvial aquifer recharge predicted in these events in the channelized alluvial fan 

scenario, reducing the difference in net alluvial aquifer recharge and catchment scale flow 

between the channelized and restored fan scenarios compared to the differences in volumes 

seen on the fan areas alone.  

 

In smaller events the differences between scenarios were smaller and the trends more 

variable. Smaller rainfall events, under 30 mm, were not predicted to produce surface flows 

from many of the mountain tributary subcatchments feeding onto the fan heads. In such 

cases infiltration of rainfall falling directly on the fan and floodplain surface was generally 

predicted to be similar between the scenarios. In instances of wetter antecedent conditions 

on the restored alluvial fan soils from a recent surface flow event, infiltration of rainfall on 

the alluvial fan soils on the wetted restored fans was predicted to be lower than on the drier 

fan surfaces in the channelized case.  Nevertheless percolation was more often predicted to 

be greater in the restored scenario in these smaller events, even if infiltration was not (Figure 
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4-12 b&c vs. d&e), as soils were closer to field capacity soil moisture and groundwater 

tables were shallower in the restored case compared to the channelized scenario. In the case 

of relatively small surface flow events occurring in drier periods, bed infiltration on the 

alluvial fan channels and floodplain channels themselves was also significant. Because the 

water was concentrated in the channels in the channelized scenarios, localized saturation 

developed and percolation was predicted, while in the restored scenario, in which water 

dispersed across the fan surface, saturated conditions were not reached and there was less 

percolation, despite greater infiltration.  This indicated that if rainfall fell primarily in small 

events in the warmer summer months, it is possible for the channelized scenario to result in 

greater alluvial aquifer recharge than the restored case.      
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Figure 4-12  Precipitation and modeled scenario daily infiltration and recharge of the alluvial 

aquifer for the entire central valley (floodplain and fans) and fan area only: (a) precipitation, 

(b) total infiltration, (c) infiltration on fans, (d) total recharge, (e) recharge on fans   
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4.4 Discussion 

 

This modeling exercise supported the hypotheses that alterations to flow paths across 

alluvial fans in a catchment like the Baviaanskloof, a meso-scale semi-arid mountainous 

catchment, can discernably alter catchment-scale streamflow and groundwater patterns, 

despite fans only making up 1% of the catchment's surface area. Comparing a scenario in 

which all 62 fans had a channel connection with the central valley floodplain's trunk channel 

to one in which only 14 fans were channelized and the remaining 48 had dispersive surface 

flow paths, indicated that widespread channelization could result in higher flood peaks, 

lower average baseflows, greater average water yield to the catchment outlet, and a lower 

average water table in the floodplain. However, the differences in average yields and 

groundwater tables between the channelized and restored fan scenarios were small compared 

to the seasonal and interannual fluctuations experienced in this region, and also compared to 

the uncertainty in the model.  Long-term trends were statistically significant, but differences 

in daily flows were only discernable in extreme high flow events. The most notable effect 

was the change in catchment outlet peak flows, with fan channelization increasing the 

largest peaks by 15-24% (9-12 m
3
/s) compared to those predicted in the restored scenario.  

Modeled roughness and overbank flooding in the floodplain reduced peak flow intensities at 

the catchment outlet, so more extreme peak flow differences between channelized and 

restored scenarios would be experienced by catchment residents in floodplain areas further 

upstream. Increased flood impacts downstream of the alluvial fans should therefore be 

weighed up against the more local benefits of the flood protection engineering on the fans.    
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In general the processes modeled on the alluvial fans in the different scenarios followed 

expected patterns, with greater surface flows on channelized fans and greater infiltration on 

restored fans, the downstream impacts of which were influenced by antecedent conditions. 

However, the role of weather patterns and floodplain conditions in the net catchment 

response to fan channelization led to some unexpected results. For example it could be seen 

as somewhat counter-intuitive to find that modeled baseflows could be larger in some dry 

periods in the channelized case compared to the restored case. This was predicted by the 

model following rainfall events in certain dry summer periods which still had relatively high 

floodplain groundwater tables from previous wet periods. In such cases, infiltration of 

surface runoff was predicted to occur further down the flow path on the floodplain in the 

channelized case compared to occurring up on the drier alluvial fan surfaces in the restored 

fan scenario. More of the water infiltrating on the wetter floodplain was able to percolate 

and influence baseflow than water infiltrating on the dry fan. In addition, having infiltration 

more spatially concentrated in the channels in these dry periods also led to greater predicted 

percolation. Given the model's overprediction of the flow peak response to small rainfall 

events at the catchment outlet (Chapter 2), it is likely that the minor surface flows predicted 

for these events, and hence this effect on summer baseflows, were overestimated for the 

Baviaanskloof. Nevertheless this result does illustrate that this outcome is possible in certain 

conditions.  

 

The depth of the floodplain groundwater table was seen to have a noticeable role in 

determining the catchment scale response to alluvial fan channelization. The effects of 

alluvial fan channelization were most salient in the largest flood events, those occurring with 
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wet antecedent conditions. Flood peaks were more enhanced in the channelized case, and 

baseflows following large rainfall events were more notably increased in the restored case, 

when the floodplain groundwater table was shallower. In dry periods, when the water table 

was deeper, the floodplain acted as a buffer to surface flows in a similar fashion to the fans 

and so changes to fan form had less notable impacts. These results highlight the need to look 

at and model changes on alluvial fans in their dynamic landscape contexts in order to predict 

downstream impacts.  They also highlight the importance of assessing change over time 

periods that capture the interannual variation in floodplain groundwater levels in catchments 

like this.  

 

The magnitude and direction of the effects of alluvial fan channelization modeled were a 

function of geomorphology and climate of the Baviaanskloof. Being an arid environment 

with coarse, high conductivity, alluvial fills and having a relatively narrow floodplain, both 

the surface and subsurface flow paths between the mountain fronts and the catchment outlet 

are relatively short compared to what may be seen in catchments of similar size in wetter 

environments with finer sediments and wider floodplains.  In the case of the Baviaanskloof, 

the rate of drainage from the sites of infiltration on alluvial fans to the floodplain channel 

played a role in how much and how long the additional alluvial aquifer recharge on the fans 

in the restored scenario would continue to elevate baseflows compared to the more 

channelized cases.  Longer and slower flow paths could mean more prolonged effects on 

low flows, but could also result in less of an increase in baseflow, or even a decrease, if 

infiltrated water on restored fans does not percolate and/or is completely used by ET.  Well-

draining soils and sporadic rainfall in the Baviaanskloof case also meant that antecedent soil 
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moisture conditions on alluvial fan surfaces were not often close to saturation at the 

beginning of a rainfall event. If conditions were such that saturation or infiltration excess 

overland flow commonly occurred on fan surfaces, the impact of alluvial fan channelization 

on peak flows could be expected to be smaller in wet periods as significant surface flows 

may also be produced on the restored fan. Overbank flooding in the downstream floodplain 

channel had a dampening effect on the increase in flow peaks predicted at the Baviaanskloof 

catchment outlet in the channelized case. Flood peak increases due to fan channelization 

would likely be greater in catchments with less effective floodplains. The effects of alluvial 

fan channelization on both peak flows and baseflows in the Baviaanskloof were most 

notable during and following large rainfall events, particularly those in occurring in winter 

and/or in generally wet years.  If such events were less frequent, the impact of the alluvial 

fans on catchment flows would be reduced. This would also be the case if warmer 

temperatures resulted in increased AET in the floodplain lowering the groundwater table.     

 

This study was intended as an explorative case study into the potential impacts of the 

changes in alluvial fan geomorphology on catchment-scale hydrologic patterns of 

management interest in this kind of setting.  Change detection was limited by modeling 

uncertainties, which could be reduced with additional hydrometric data and field sampling.  

Nevertheless the model structure used was assumed to be adequately representative of the 

patterns of flow through a catchment with the general characteristics of the Baviaanskloof, 

based on its ability to recreate observed patterns of streamflow and floodplain groundwater 

levels (Chapter 2).   
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Due to the catchment scale and necessary modeling simplifications, the scenarios of 

change on the alluvial fans considered here were commensurably simple. Average channel 

dimensions and surface and subsurface properties were applied to all fans. Some of the 

heterogeneity among the fans was captured in terms of the different fans' sizes, shapes, 

distances from the main floodplain channel and catchment outlet, and the sizes, shapes, land 

unit distributions, and different rainfall quantities received by their contributing mountain 

subcatchments.  It is possible that consideration of heterogeneous channel, vegetation, and 

soil properties amongst the fans could produce different results than those predicted, 

however it was assumed that these would be second order differences compared to that 

between widespread fan channelization and widespread dispersive flow paths on fans. 

Applying currently observed fan channel dimensions to all fans was assumed to represent 

extension of current agricultural practices onto, and upcatchment of, the currently 

unchannelized fans, without additional large scale engineering or intensification. Further 

manual widening of alluvial channels is possible but the sustained depth of the channel on 

the alluvial fan will be limited by the local base level at its connection with the floodplain 

channel. It can be assumed that increasing the channel capacity used in the channelized 

scenario would have further increased the change in flow peaks and baseflows up to the 

point at which the maximum outflow from the subcatchments on record is accommodated.  

 

The effects of channelization or of restoration of alluvial fans on streamflow and 

groundwater levels in the Baviaanskloof catchment predicted in this study were small 

relative those predicted to accompany large scale changes in hillslope vegetation cover 

(Chapter 3).  The same model structure used here was applied previously to examine the 



271 

 

potential impacts of restoration or further degradation of the subtropical thicket vegetation 

that is endemic to the regions' hillslopes and highly vulnerable to livestock grazing.  

Covering 40% of the Baviaanskloof catchment surface area, restoration of thicket canopy 

cover from a current estimated average density of 20% to 65% was predicted to decrease 

peak flows by 56-60% and decrease average annual yields by 22-27% for the modeled 1975-

2012 period. Similar to alluvial fan restoration, more rainfall was predicted to infiltrate and 

recharge active groundwater pools in large rainfall events in the restored thicket scenario. 

However, the restoration of thicket was also assumed to come with large increases in canopy 

interception losses and ET demand, which was not the case for the restored alluvial fan 

scenario.  As such, unlike with the alluvial fan restoration scenario, over the long-term the 

AET losses and improved hillslope soil moisture retention in the restored thicket scenario 

were predicted to outweigh the additional subsurface flows and no increase in baseflow was 

predicted.   

 

The results from the vegetation change study highlight a potentially important 

simplification applied in this study to be addressed in further research.  While changes in 

forms of alluvial fans were explored in their broader landscape context, contexts that may 

have given rise to specific alluvial fan forms were not explicitly considered.  For example, 

the increased flow peaks predicted with the loss of hillslope thicket cover may have helped 

to create and maintain the observed channel dimensions on some of the currently 

channelized fans. These increased flows could have led to channel erosion and incision of 

the main floodplain channel, lowering the base level to which fan flow paths adjust over 

time. Similarly, if all the alluvial fans in the catchment were channelized, as modeled here, 
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the increased flow peaks this was predicted to cause could also lead further floodplain 

channel incision. In this study the floodplain channel dimensions were held constant 

between fan scenarios. It was assumed that most fans could have dispersive flow paths 

restored while maintaining the current vegetation cover in their contributing catchments and 

the current downstream floodplain channel morphology. This may be a short-term 

engineering reality, but it is possible some restored fan states could not be realistically 

maintained against larger-scale geomorphic processes in the long-term without substantial 

ongoing effort. Streamflow and groundwater impacts of combined vegetation and channel 

restoration and degradation scenarios, which may better represent sustainable landscape 

forms, will be explored in a subsequent study (Chapter 6). The results here highlight the 

impact of alluvial fan form alone on the flows through catchments with similar 

characteristics to the Baviaanskloof.        

 

4.5 Conclusions 

 

Alluvial fans are a common landform in relatively dry mountainous environments 

(Blissenbach, 1954; Hooke, 1967; Bull, 1977; Hendrickx et al., 1991; Munevar and Marino, 

1999; Houston, 2002; Blainey and Pelletier, 2008) and yet they have received little to no 

consideration in modelling of meso-scale catchments to date.  This study demonstrated how 

basic alluvial fan processes could be incorporated into a medium complexity catchment 

model. This model was then used to explore the impacts of altered alluvial fan morphologies 

on catchment-scale streamflow and floodplain groundwater levels for a case study 

catchment in which many fans have been channelized for local flood protection.  Although 
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alluvial fans only account for 1% of the surface area of the Baviaanskloof catchment, 43% 

of the mountainous tributary subcatchment area drains onto alluvial fans at the margins of 

the central valley floodplain. As such it was hypothesized that widespread channelization of 

the flow paths across these fans would detectably increase streamflow peaks and decrease 

alluvial aquifer groundwater recharge and hence baseflow.  Scenario modeling results using 

a calibrated, coupled hydraulic-hydrologic model of the catchment supported these 

hypotheses. Changes in alluvial fan form were predicted to have the most notable, and 

statistically detectable, catchment scale impacts during wetter periods and the largest flow 

events.  Results indicated that restoration of more dispersive flow paths across alluvial fans 

could reduce flood peaks by as much as 11-17% from the current condition and 15-24% 

compared to a scenario in which all fans were channelized.   

 

A small net decrease in the long term average yield was predicted for the restored fan 

scenario, due to additional AET from water infiltrating on fan surfaces; however, due to 

model uncertainties and variable climate, modeled changes in long term water yields 

compared to the current scenario were not statistically significant.  A small increase in 

average groundwater levels in the floodplain and a 10% increase in long-term annual 

minimum monthly flow were predicted in the restored scenario compared to the channelized 

scenario. Due to the fast draining nature of the coarse alluvial fill in the Baviaanskloof, 

increased baseflow was predicted for several months following large storm events in wet or 

winter periods, but not predicted in the driest summer months on record when AET was 

higher, fan soils drier, and the groundwater table lower.  The impacts of these small, but 

temporally consistent, changes in low flows on realized water supply availability requires 
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further assessment in the context of the local water supply systems. The occurrence of large 

rainfall events in winter months played a large role in the additional recharge on restored 

fans.  The role of alluvial fan form in determining streamflow and groundwater levels was 

sensitive to weather patterns and geomorphic context. This highlights the need for local 

modelling to understand the impacts of alluvial fan changes in other catchment contexts.  

 

Despite modeling uncertainties, the results of this study do make clear that the most 

notable change to be expected with restoration of alluvial fans is a decrease in flood 

intensity in downstream areas. Potential increases in water supply in dry periods appear 

likely to be relatively small, but results do not suggest a large loss in annual average water 

yield with restoration. Relative benefits of channelizing alluvial fan surfaces for local flood 

control compared to the impacts of predicted flood intensities downstream appears to be a 

more salient tradeoff to consider in the Baviaanskloof case, rather than a major tradeoff 

between flood control on fans and major impacts on downstream water supply.  This may 

play out differently in other areas with different geomorphologies and climates. This study 

demonstrates a method for considering alluvial fan processes in a meso-scale catchment 

model which could be replicated in other areas, to compare the roles of alluvial fans in 

catchment scale hydrologic responses in different climate and geologic regions and to 

inform catchment management.    
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Chapter 5 Streamflow and groundwater impacts of 

floodplain channel incision in a meso-scale, semi-arid 

catchment 
 

5.1  Introduction 

 

Geomorphological research has progressively improved understanding of how forms of 

river channels change in response to various human activities and land cover alterations 

(Gregory, 2006; James and Marcus, 2006). Recent developments in hydrologic and 

hydraulic modeling allow assessment of the potential repercussions of these changes on 

catchment-scale hydrology. This study applies such methods to look at potential streamflow 

and groundwater impacts of floodplain channel incision in a semi-arid, mountainous, water-

supply catchment in South Africa: the Baviaanskloof.  Anthropogenically enhanced river 

channel incision is common globally (Beechie et al., 2008; Bravard et al., 1997) and semi-

arid regions are particularly prone due to their more flashy hydrology and less cohesive river 

beds and banks (Finlayson and Brizga, 1993; Pollock et al., 2007; Simon and Collison, 

2002). In some contexts channel incision can significantly lower local groundwater levels 

and impact both local and downstream streamflow patterns, influencing riparian and riverine 

ecology, flood risk, and water supply (Loheide and Gorelick, 2007; Hammersmark et al., 

2008; Loheide and Booth, 2011; Ohara et al., 2014; Essaid and Hill, 2014; Hammersmark et 

al., 2010; Loheide and Gorelick, 2005; Booth and Loheide, 2010; Tomlinson et al., 2011).  
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Recognition of potential incision impacts has driven efforts to quantify local effects of 

incision, to actively restore channel forms to less incised states, and to quantify the 

effectiveness of restoration interventions. While local riparian zone habitat impacts have 

received significant attention (Booth and Loheide, 2010; Loheide and Booth, 2011; Loheide 

and Gorelick, 2005, 2007; Schilling et al., 2006; Steiger et al., 2005), more wide-ranging 

and downstream effects have been less often quantified and are of increasing interest for 

catchment management. This study therefore uses modeling to explore potential meso-

catchment scale impacts of floodplain channel incision and pre-incision, or restoration, 

scenarios in the Baviaanskloof case-study catchment. Streamflow from the Baviaanskloof 

supplies water to a regional reservoir that feeds downstream commercial agriculture and 

urban areas, while local irrigated agriculture primarily relies on the alluvial aquifer. The 

region is already water stressed and demand is growing, so factors that may impact 

streamflow and local groundwater are of interest for water supply management (Jansen, 

2008).     

 

Recently developed hydraulic and hydrologic modeling methods that include dynamic 

surface-subsurface flow coupling allow for simulation of the catchment-scale impacts of 

changing channel forms in their landscape and climatic contexts. To date such modeling 

methods have been applied to study channel incision impacts in montane meadow sites in 

snow-melt fed catchments of the western United States, illustrating that the magnitude and, 

in the case of baseflow, even the direction of change are sensitive to the local aquifer 

material conductivity, regional groundwater sources, riparian vegetation, and climate 
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patterns (Hammersmark et al., 2008; Ohara et al., 2014; Essaid and Hill, 2014). Comparable 

incision impact assessments have not yet been published in other settings. This study aims to 

further contribute to understanding of potential catchment-scale hydrologic impacts of 

floodplain incision in different contexts by using coupled surface-subsurface modeling to 

predict incision effects on a warmer, drier system, with more sporadic rain events, a 

floodplain dominated by high conductivity coarse material, and deep rooting floodplain 

vegetation.  

 

Observed channel incision in the Baviaanskloof floodplain, over a meter in the past two 

decades, is likely driven by direct channel modification for local flood protection, 

catchment-scale vegetation cover change, and extreme weather events (Powell, 2015, 

Chapter 3, Chapter 4).  River channels deepen when flow velocities through a reach 

frequently have sufficient energy to transport the bed material and bedload supplies from 

upstream are not sufficient to compensate (Harvey and Watson, 1986). While this can occur 

as part of landscape evolution due climate and tectonic shifts, human activities can also 

drive or hasten the process (Beechie et al., 2008; Comiti et al., 2011; Finlayson and Brizga, 

1993; Mark, 2001; Schumm and Hadley, 1957; Surian et al., 2009; Tucker et al., 2006). 

Changing land cover in ways that result in increased storm runoff intensity, such as 

increasing catchment impervious area, increasing flows through point sources and upland 

channelization, and direct channel modifications, such as berm building for flood protection, 

can all result in incising channels. The resulting channel incision depth will depend on the 

particle size distribution of the floodplain material compared to the shear stresses of the flow 
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regime, and deepening can be followed by widening and potentially aggradation, depending 

on bank cohesion and vegetation, climate patterns, and upstream or up-catchment sediment 

supplies (Beechie et al., 2008; Langendoen et al., 2009; Simon et al., 2000).  

 

Previous studies have demonstrated that channel incision can alter groundwater and 

streamflow patterns in various ways at different temporal and spatial scales. Increasing 

channel capacity in a floodplain can reduce the frequency and extent of overbank flooding, 

potentially reducing local alluvial aquifer recharge and increasing flood peaks reaching 

downstream areas (Lach and Wyzga, 2002; Sholtes and Doyle, 2011; Wyzga, 1996).  

Deepening a channel that receives seepage flow from a floodplain aquifer can result in 

drawdown of the surrounding water table, the depth and spatial extent of which is 

determined by the aquifer material and sources of aquifer recharge (Essaid and Hill, 2014; 

Loheide and Booth, 2011; Lowry et al., 2010; Schilling et al., 2004, 2006). Channel incision 

can result in increased baseflow (Essaid and Hill, 2014) or decreased baseflow (Ohara et al., 

2014) depending on the context. If it does not draw down the surrounding aquifer 

significantly relative to its recharge sources, channel incision can increase baseflow because 

of increased connectivity with the aquifer (Essaid and Hill, 2014).  However, if the aquifer is 

not adequately replenished relative to the increased drainage rates, the increased 

groundwater flow into the deepened channel could draw down the aquifer to a point at 

which it contributes less or no flow into the channel, eventually decreasing baseflow during 

prolonged dry periods (Essaid and Hill, 2014; Loheide and Booth, 2011). These results 

indicate that in some settings there could be potential trade-offs between local flood 
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protection measures and land management and water supply availability which are 

worthwhile exploring.   

     

Several observational and modeling studies have explored the magnitudes of these 

effects in specific locations. Schilling et al. (2004) installed piezometer transects across a 

silty floodplain with a 3 m incised channel in Walnut Creek, Iowa, finding 1-2 m 

fluctuations in the groundwater depth within 30 m of the channel related to changes in river 

water surface levels. Using a model of an archetypal loam alluvial floodplain, Loheide & 

Booth (2011) similarly predicted a 1 m decline in the average water table over a 100 m 

riparian area due to 2.4 m channel incision. Tague et al. (2008) observed streamflow and 

groundwater levels upstream and downstream before and after a restoration project on the 

Trout Creek, California. They detected an 11-24% increase in summer month baseflow and 

approximately 0.4 m higher groundwater levels once the channel bed had been raised and 

sinuousity restored. Hammersmark et al. (2008) calibrated a coupled hydraulic-hydrologic 

model of the Bear Creek Meadow, California, a montane meadow with a silt loam and sand 

and gravel aquifer, against observed streamflow and groundwater levels. Using this model to 

assess the impacts of pond and plug restoration along a channel previously incised by 

roughly 2 m, they estimated restoration raised the spring average meadow groundwater table 

by 1.2 m, decreased peak flows by 12-25%, and increased downstream baseflow. Ohara et 

al. (2014) modeled a similar case of pond and plug restoration for the Last Chance Creek of 

the Feather River basin, California. Modeling the meadow and inflows from the surrounding 
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catchment area over 10 year period, they estimated channel restoration can result in a 10-

20% increase in dry season baseflow and a 10-20% of decrease in flood peaks.  

 

Essaid and Hill, (2014) modeled impacts of channel incision scenarios on a snow-melt 

fed montane meadow within the Sagehen watershed, California, using a nine year period of 

observed climate data. The results for this area differed from the previous meadow studies, 

demonstrating the context specific nature of channel incision impacts. In the Sagehen model, 

channel incision was predicted to decrease wet season flow and increase baseflow (Essaid 

and Hill, 2014), the opposite direction of change to the predictions for Bear Creek 

(Hammersmark et al., 2008) and Last Chance Creek meadows (Ohara et al., 2014).  

Consistent with the other studies, Essaid and Hill (2014)'s model predicted that deepening 

channels by 4 m would draw down the meadow groundwater table by roughly 2 m. 

However, the extent of the lower groundwater table in the incised scenario for Sagehen 

allowed for much greater infiltration of incoming hillslope runoff and interflow reaching the 

meadow margins in the snowmelt season. Overbank flooding from the main channel, which 

would decrease flood peaks, was not predicted to occur even in the un-incised case. As a 

result, instead of reducing overbank flooding, the dominant predicted impact of channel 

incision on wet season patterns in Sagehen was the added infiltration of inputs from 

surrounding hillslopes on the drier meadow, decreasing both total and peak wet season flow 

(Essaid and Hill, 2014).  In the dry season, in contrast to intermittently flowing channels in 

Bear Creek meadow (Hammersmark et al., 2008), the modeled Sagehen meadow water table 

remained above the channel bed, contributing to channel flow, throughout the study period 
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in all scenarios (Essaid and Hill, 2014). This was due to relatively high and consistent 

predicted recharge from surrounding mountain bedrock and seasonal hillslope runoff. 

Modeled dry season baseflow increased with channel depth due to increased aquifer contact 

and increased water table slope from mountain front to channel. Overall, although predicted 

incision impacts on local meadow conditions and seasonal streamflow were notable, 

modeled changes in annual streamflow leaving the Sagehen catchment were relatively small 

because decreased wet season flow was roughly balanced by increased dry season flow. The 

maximum modeled change in total annual streamflow was a 3% increase during a dry year 

(Essaid and Hill, 2014).        

 

The Baviaanskloof floodplain and catchment differs in climate, aquifer properties, 

vegetation, and resulting flow regime to these meadow systems, and as such the impacts of 

channel incision on streamflow and groundwater patterns were expected to differ. The 

Baviaanskloof is a drier system (mean annual precipitation of 270 mm) with a variable 

rainfall pattern and little defined seasonality. The floodplain alluvium is dominated by sand 

and cobble layers with high conductivity. As with the montane meadows, observations 

indicate that the alluvial aquifer is fed by mountain bedrock groundwater and by hillslope 

surface and interflow (Chapter 1). Unlike the snowmelt fed meadows, there is not a regular 

seasonal pulse of significant recharge. While streamflow at the catchment outlet is perennial, 

the upstream floodplain varies in width and in parts of the wide valley reaches the water 

table falls below the channel during prolonged dry periods. Due to high conductivity 

alluvium and the variability in recharge events, the floodplain water table fluctuates on the 
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order of meters over months in response to weather events (Chapter 1), greater variability 

than seen in the siltier, more regularly and slowly recharged snow-melt meadow systems.   

 

It was hypothesized that a deepened channel would increase baseflow at the 

Baviaanskloof outlet early in groundwater recession periods following recharge events, due 

to increased connectivity to the aquifer, but decrease baseflow when a dry period persisted 

for months to years, due to insufficient recharge to compensate for the incision aquifer 

drawdown. Such a pattern was suggested for drier systems by Essaid and Hill (2014), based 

on running their Sagehen model with half of the observed precipitation. In this setting they 

noted that incision resulted in a gradual year upon year drawdown of the alluvial aquifer as 

extra channel drainage exceeded the recharge, and hypothesized it would eventually result in 

declining baseflow, although the nine-year simulation period was too short for this to 

manifest in the Sagehen catchment. It was hypothesized, given the drier conditions and 

highly responsive groundwater table, that this condition could develop during multi-year, 

below-average rainfall periods experienced in the Baviaanskloof.  

 

Channel incision was expected to increase flood peaks at the catchment outlet of the 

Baviaanskloof, as seen in several of the previous incision studies (Hammersmark et al., 

2008; Ohara et al., 2014; Tague et al., 2008). In this catchment, flows from hillslopes and 

tributaries generally infiltrate into the highly conductive alluvial fans and floodplain, only 

reaching the main floodplain channel as surface flow during major flood events. In such 

events, overbank flooding is observed even at current levels of incision. Unlike what can 
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occur in wet meadows in snowmelt season, periods in which the groundwater table is at the 

ground surface over large areas of the floodplain, preventing further infiltration of incoming 

hillslope flow, are rarely observed in the current condition of Baviaanskloof (Chapter 1).  

Therefore added infiltration of incoming surface flows on a floodplain made drier due to 

channel incision, predicted to dampen incised scenario peak flow in the Sagehen meadow 

(Essaid and Hill, 2014), was not predicted to be a significant differentiating factor in the 

Baviaanskloof given further incision. Instead it was hypothesized that decreased overbank 

flows due to increased channel capacity would result in an increase in peak flow reaching 

the catchment outlet.  

 

Channel incision can reduce floodplain evapotranspiration (ET) when the water table 

falls below the vegetation root depth (Essaid and Hill, 2014). However, it has been observed 

that over time deeper-rooted, more dryland adapted vegetation can come to dominate 

riparian areas around incised channels (Hammersmark et al., 2010; Loheide and Booth, 

2011; Loheide and Gorelick, 2005, 2007). In the Baviaanskloof, deep rooted Acacia karroo 

trees are currently the dominant canopy species in the savanna type vegetation of the 

floodplain. These trees can have root depths of up to 40 m (Selaolo, 1998) and it was 

assumed can consistently withdraw water from the alluvial aquifer in the Baviaanskloof. 

Incision would likely decrease ET from by ephemeral grasses and herbs, but it is expected 

the overall impact will be minor. There are small areas of reed dominated wetlands 

associated with groundwater springs at mountain fronts in the Baviaanskloof and soil 

profiles provide evidence these once had much greater coverage across the floodplain than at 
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present (Powell, 2015). It is possible that channel incision water table drawdown is partially 

responsible for reducing wetland extent and that channel restoration would increase their 

coverage.  It is not clear that ET withdrawals from groundwater-tapping A. karroo would be 

significantly different from herbaceous wetland ET, but would likely be somewhat less due 

to the greater depth from which water must be drawn in the dryland case. Nevertheless, 

because it was predicted that incision would reduce overbank flooding and increase peak 

flows, meaning that more water would leave the catchment more quickly during large 

events, it is hypothesized that there would be less total AET in the incised case.  

 

These hypotheses were tested by constructing and calibrating a model of the 

Baviaanskloof catchment area with explicit consideration of the interaction between the 

floodplain channel and alluvial aquifer (Chapter 1 & 2), and applying different floodplain 

channel scenarios. Unlike Hammersmark et al., 2008, sufficient observational data on 

incoming surface and subsurface flows into the floodplain was not available over a wide 

range of locally experienced climate conditions. As such, the entire contributing catchment 

was modeled, similar to the approach of Ohara et al., 2014 and Essaid and Hill, 2014. 

Because of the large scale of the Baviaanskloof catchment (1,234 km
2
) and more highly 

episodic aquifer recharge events, different spatial and temporal scales were employed than 

in these previous studies. To address the relative paucity of data with which to parameterize 

meso-scale catchment processes, a coarser spatial resolution model using topographically 

defined hydrologic response units (HRUs) was used for the mountain and hillslope areas 

feeding into a finer-resolution finite element gridded model of the floodplain. A similar 
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strategy was employed by Hipsey et al. (2011) to look at potential impacts of catchment-

scale changes on fine-scale processes in floodplain wetlands. Changes due to incision were 

then assessed using models run with 38 years of observed climate data to capture multiple 

wet and dry periods during which different response patterns were predicted.  

 

5.2  Methods 

5.2.1  Floodplain channel change description 

 

A detailed description of the Baviaanskloof catchment is provided in Chapter 1, Section 

1.2.1. The Baviaanskloof area has been used for livestock grazing and cultivated agriculture 

for over a century, resulting in changes to the both the vegetation cover and the channel 

network that are likely to have intensified peak flows through the floodplain. Livestock 

grazing on hillslope areas, which would otherwise support closed canopy subtropical thicket, 

has resulted in degraded, open canopy vegetation over more than a third of the catchment 

area (Euston-Brown, 2006; Lechmere-Oertel et al., 2005; Sigwela et al., 2009, Chapter 3). 

This vegetation cover change was found to decrease soil infiltration and double observed 

plot-scale storm runoff (van Luijk et al., 2013), and modeling suggests it may have increased 

floodplain channel peak flows by 56-60% compared to a scenario of intact thicket cover 

(Chapter 3).   
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In response to widespread flood damages in the 1970s and 1980s, the South African 

government actively promoted and subsidized flood protection measures (Jansen, 2008). In 

the Baviaanskloof this took the form of earthworks to reorient channels and build berms, 

both on the alluvial fans and the floodplain. The extent of channel alteration was assessed 

using aerial photography from 1954, 1972, 1986, and 2009 (Figure 5-1).  Evidence of 

agricultural land use was observed on 42 of the 62 alluvial fans and on 25 fans channel 

modification and a channel connection to the main floodplain channel were evident (Chapter 

4). Previous modeling suggested that this increased channel connectivity between mountain 

tributaries and the trunk stream could have increased peak flows in the range of 11-17% 

beyond flow expected given more dispersive flow paths on alluvial fans (Chapter 4). In 

addition, in several locations the main channel was straightened and berm building and 

infilling were used to confine flows from a braided multi-channel path into a single channel 

(Figure 5-1).  Across the catchments' largest wide floodplain reach (19.8 km long, 1 km 

wide), a multiple channel form was observed in 1954 imagery with 34 km of channel and 

what appeared to be multiple flood-outs. In 2009 a single 23.6 km channel was mapped 

crossing this reach.   

  

Channel incision of up to 2 m was observed in several floodplain reaches, likely as a 

result of extreme weather events and multiple human activities enhancing peak flows 

(Powell, 2015). Incision in the past 40 years was observable in abandonment of formerly 

river-fed furrows, active in the 1970s, which in 2012 had intakes a meter above the bankfull 

channel. Channel cross-sections surveyed in 2011-2012 along 25 km of a wide floodplain 
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reach generally showed an inset bankfull channel within a wider channel creating stepped 

terraces (Figure 5-2, (Powell, 2015)) typical of deepening and widening cycles during 

incision (Beechie et al., 2008; Schumm and Parker, 1973; Shepherd and Schumm, 1974; 

Simon and Rinaldi, 2006). Average dimensions of the inset channel were 21 m across and 

1.1 m deep, while the wider channel had an average top-width of 48 m and 0.5 m banks, 

giving a total average depth of 1.6 m below the floodplain surface. Soil pit transects and cut-

bank profiles showed a 0.5-1.5 m thick layer of loamy sand/sandy loam overlying a cobble 

dominated layer spanning the floodplain (Chapter 1).  The current channel has incised into 

this cobble layer and, given the cross section shape and more erodible bank material, has 

likely also widened compared to a pre-settlement condition.  Active headcuts observed in 

the cobble bed (Figure 5-3) indicate further incision may be possible through this more 

resistant material in the current flow regime.   
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Figure 5-1 Aerial photograph time series of a wide floodplain reach in the Baviaanskloof 

demonstrating change in the floodplain and river channel from 1954 to 2009 in response to floods 

events, agricultural field establishment, and berm building and direct channel modification.  
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Figure 5-2 Map of a wide floodplain reach in the Baviaanskloof catchment showing channel 

survey points were thalweg elevation and channel dimensions were measured and points where 

more detailed cross sections were surveyed (Powell 2015).  

Examples of surveyed floodplain topography cross sections (plotted north to south) are shown for marked 

locations A and B in figures below. These illustrate the incised inset channel within the active channel and 

abandoned former channels, irrigation furrows (often dug following former channels), and man-made berms on 

the floodplain.  
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Figure 5-3 Photographs taken during channel topographic surveys in a wide floodplain 

reach of the Baviaanskloof catchment during a dry period in 2011.  

The image on the left shows a cut bank with layers of loamy sand and sandy loam overlying a 

layer dominated by cobble into which the current channel has incised.  The image on the right 

shows an active head-cut inset within the larger channel reaching the floodplain water table. 
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5.2.2  Scenario modeling 

 

Potential impacts of floodplain channel incision on streamflow and floodplain aquifer 

levels in the Baviaanskloof were estimated using several generalized channel form scenarios 

applied within a calibrated model of the floodplain and contributing catchment. In addition 

to the observed current channel state, three alternative channel scenarios were considered: a 

hypothetical restoration scenario with a smaller, shallower channel; a 1 m further incision 

scenario; and an extreme 3 m further incision scenario. A basic description of the model 

structure and performance is given below while detailed descriptions of the model 

construction and calibration are given in Chapter 2.  

 

Defining an achievable and desirable restored channel form will require further 

geomorphic, hydraulic, and ecological analyses and stakeholder engagement beyond the 

scope of this exploratory modeling study. The restoration scenario applied here was used to 

look at the impacts of a shallower channel thalweg and smaller channel capacity, as is it 

appears such a condition once existed. The current average channel thalweg depth below the 

floodplain surface was 1.6 m. In the restored scenario, the dimensions of the current inset 

bankfull channel were applied such that thalweg depth was 1 m, which is similar to the 

average depth of the cobble-dominated layer in the floodplain. In the first further incision 

scenario it was assumed the channel could incise an additional meter from its current state, 

such that the average depth was 2.5 m. The second, more extreme incision scenario, an 

additional 3 m of incision was assumed producing a 4.5 m deep channel.  Given the coarse 

bed material and infrequent high flows, this depth of incision was considered unlikely in the 
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Baviaanskloof floodplain without major further changes to land cover, channel engineering, 

and/or climate; however it was applied to explore any potential change in patterns of the 

response to incision given more extreme drainage of the floodplain similar to the 4 m 

incision scenario of applied in the Sagehen meadow model of Essaid and Hill (2014).  These 

four scenarios will be further referred to by the depth of the channel thalweg below the 

floodplain surface: 1 m for the restored scenario, 1.5 m for the current state scenario, 2.5 m 

for the 1 m further incision scenario, and 4.5 m for the 3 m further incision scenario.    

 

A multi-scale, daily time-step model of the Baviaanskloof catchment was constructed 

and calibrated using the MIKE-SHE/MIKE-11 modeling system (Refsgaard and Storm, 

1995), based on a conceptual model informed by field observations of surface and 

groundwater flows, soil and vegetation properties, and topography (Chapter 1). In order to 

consider both the finer-scale floodplain processes governing the impacts channel incision 

would have on the aquifer-channel interaction as well as the processes occurring over the 

large catchment area that contribute variable surface and subsurface inflows to the 

floodplain, the floodplain and its contributing catchment were modeled at different scales. A 

coarser spatial scale and process conceptualization were applied in modeling the mountain 

areas to estimate time-series of incoming flows which were input into a higher resolution 

model of the floodplain.  Within the subcatchments, canopy interception, infiltration, soil 

moisture storage, actual evapotranspiration (AET), vertical percolation, and surface runoff 

routing were calculated at the level of topographically defined hydrologic response units 

(HRUs). Surface flow reaching the subcatchment outlet was input to the floodplain model at 
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the head of the alluvial fan. Hillslope interflow and mountain bedrock groundwater flows 

were modeled as lumped linear reservoirs at the sub-catchment scale, receiving percolated 

water from all topographic units and discharging to the floodplain aquifer boundary. 

Groundwater flow through the alluvial aquifer was modeled using a finite element grid 

governed by Darcy’s Law, with a dynamic connection to the channel network. On the fans 

and floodplain, canopy interception, infiltration, surface runoff routing, soil moisture 

storage, AET, and percolation to the water table were calculated by grid cell.   

 

The gridded surface and subsurface model of the fan and floodplain area had a 50 m 

resolution using sink filled, smoothed SRTM data for the model surface topography. In the 

finite element groundwater model a smooth bottom depth profile was assumed with an 

average depth of 20m under the central floodplain grading to 5m at the mountain front, 

based on resistivity data by (Soltau et al., 2011). The topography of the bedrock below the 

alluvium may not be regular and may be deeper than 20 m, however it was assumed that the 

floodplain groundwater table is relatively smooth, permanently above the bedrock interface, 

and remained above 20 m depth throughout the simulated period.  This last assumption is 

supported by 15 m deep farm water supply boreholes in the alluvium that have never run dry 

in living memory (Chapter 1).      

    

Channel flow was modeled in a coupled hydraulic model using a diffusive wave 

approximation. Two-way exchange of water between the aquifer and channel was governed 

by relative water surface elevation and bed material conductivity. Overbank flows were 
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added into the gridded surface flow routing routine such that this water could infiltrate into 

the alluvium, evaporate, or flow downslope, potentially re-entering the channel further 

downvalley. The channel network was mapped using aerial photography, while the channel 

cross sections for the different scenarios were based on field topographic survey (Powell, 

2015). Alluvial fan channel cross sections were generalized based on surveys of sample fans 

(Chapter 4, Bobbins, 2011). Surface flow from every tributary subcatchment was routed to a 

channel that connects to the main river channel in the floodplain.  For subcatchments 

feeding onto alluvial fans currently channelized and connected to the main river, this 

connecting channel was given the average observed fan channel dimensions on modified 

fans in the catchment: 11m width, 1m depth, trapezoidal.  For those with fans that were not 

obviously channelized, the model fan channel dimensions decreased to a negligible size (2m 

width, 0.2m depth) by the toe of the fan such that the majority of the flood flow would 

exceed channel dimensions and be added to the surface flow routing in the model.  

 

This model was calibrated using a multi-criteria procedure against multiple datasets of 

surface flows and groundwater levels (Chapter 2). The resulting model and accepted 

parameter space reproduced 2012-2013 daily streamflow with a Nash-Sutcliffe efficiency 

(NSE) of 0.87-0.92 and 1991-2013 monthly flows with an NSE of 0.79-0.85, predicted 

mean flow within 0.5 m
3
/s and maximum monthly flows within 1 m

3
/s of the observed, and 

modeled floodplain groundwater fluctuations with an R
2
 of 0.79-0.81 and an accuracy in the 

range of depth fluctuation within 0.5 m against the observations (Chapter 2). Accepted 

models had errors in average annual yield of 3-20%, with a mean of 12%.  
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To account for the uncertainty in the parameterization, the model was run 100 times for 

each scenario to represent the calibrated parameter space. Parameter sets were selected from 

the 720 sets in the calibration exercise with acceptable model performance in recreating 

observed surface runoff, streamflow, and groundwater patterns as described in Chapter 2. 

The same 100 parameter sets were applied in each channel scenario, such that the channel 

network was the only factor differing between them. These sets of runs resulted in likely 

output distributions for each scenario, allowing for conservative change detection.  In order 

to capture the response to a variety of storm sizes and antecedent conditions, the model of 

each scenario was run using 43 years of climate data from 1970-2012, using gauge data 

applied as described in Chapter 2, Section 2.2. The first 5 years (1970-1974) were 

considered a spin-up period for groundwater levels and change analyses were done for 

model output for the 1975-2012 water years. The water year was defined as April to March.  

 

5.2.3  Output analyses 

 

For the set of model runs for each channel scenario, the mean and 95 percent confidence 

intervals of the following statistics were calculated: average annual water yield, average 

annual minimum monthly flow, average daily flow for the fourteen largest flow peaks in the 

period (annual exceedance probability of 10%), and average depth to groundwater in the 

floodplain aquifer (spatially averaged).  These statistics were chosen to assess the scale of 

impacts relevant to water supply and flood management.  To assess changes in the flow path 
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of water through the floodplain due to channel incision, modeled patterns of infiltration on 

the floodplain, recharge to the alluvial aquifer, floodplain AET, flow from the alluvial 

aquifer into the main floodplain channel, and overbank flooding from the main channel were 

compared between the channel scenarios.  Within the modeled time period, multi-year dry 

and wet periods were identified, as described in Chapter 3, Section 3.2.3, to compare the 

effects of fan channelization under different conditions.  The statistics described above were 

also calculated separately for these periods.  

 

5.3  Results 

 

5.3.1  Effects on catchment scale water yield and streamflow 

 

Channel incision in the Baviaanskloof floodplain was predicted to increase the average 

annual catchment water yield for the modeled period. The 2.5 m channel scenario was 

estimated to increase the average annual yield by 3-7 Mm
3 

(8-24%, p=0.009), associated 

with a decrease in AET from the floodplain and an increase in net alluvial aquifer input to 

the river compared to with the current (1.5 m) channel (Table 5-1).  There was a trend of 

increasing predicted average annual yield with increasing incision over the scenarios 

considered, however differences in modeled average yields between the restored (1 m) 

channel (27-29 Mm
3
) and current (1.5 m) channel scenarios (28-31 Mm

3
) and between the 

two further incision scenarios, 2.5 m channel (33-35 Mm
3
) and 4.5 m channel (35-37 Mm

3
), 
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were not statistically significant. The predicted decrease in average central valley AET with 

increased channel incision, linked to the changes in average yield, was attributable to both 

the reduction in floodplain inundation, and hence surface water evaporation, and to the 

lowered water table, both described further in Sections 3.2 and 3.3 below. It had been 

assumed that the 20 m rooting depth of the floodplain and fan vegetation applied in the 

model would mean that rarely was vegetation highly water limited in any scenario. 

However, there were higher elevation areas on the alluvial fans and floodplain margins 

where the water table depth was close to the 20 m root depth and fell below this more 

frequently in the incised scenarios.      

 

Although the average annual streamflow for the 38-years modeled was predicted to 

increase with incision, there were periods during which the restored (1 m) channel scenario 

was predicted to have the highest streamflow of the four scenarios (Figures 5-4 to 5-7).  

Modeled streamflow peaks were consistently higher in the more incised scenarios, but 

results suggested recession period flows following large events could be higher in the 

restored scenario. The 2.5 m channel was predicted to increase flow for the largest peaks by 

22-32% (14-19 m
3
/s) compared to the current 1.5 m scenario, while restoration of a 

shallower channel with lower capacity was predicted to decrease peaks by 14-20% (9-13 

m
3
/s). During recession periods following major storm peaks, generally after events large 

enough to produce a daily mean flow of 20 m
3
/s or more, the model predicted higher 

streamflow values for the restored (1 m) channel scenario compared to those with more 

incised channels over periods of 10 days up to 3 weeks.  After this period, baseflow in the 
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restored channel scenario was predicted to fall below that predicted for the more incised 

scenarios. This pattern is evident in daily hydrographs of a typical dry and wet year (Figure 

5-4), and is reflected in the distribution of modeled daily flow values over the modeled 

period (Figure 5-5).  Because these larger flow events were relatively infrequent the restored 

scenario had higher modeled flows than the more incised scenarios for daily flows with 

exceedance probabilities of 1-3% (Figure 5-5) and annual yields were generally lower in the 

restored scenario.   

 

Differences in mean modeled yields for individual water years were not statistically 

significant; however, there were years for which the mean of the modeled annual yield for 

the restored scenario runs was slightly larger than means for the more incised scenarios 

(Figure 5-6). This occurred for the 1979, 1981, and 2012 water years. These were wet years 

for which the previous year also had above average rainfall (Figure 5-3). Higher restored 

scenario means were not predicted for high rainfall years with low rainfall in the preceding 

year, such as 1985, 1996, and 2006. The 1980 water year, which had above average rainfall 

and was preceded by wet years, also did not have a higher mean modeled yield for the 

restored scenario. Unlike 1979, 1981, and 2012, the 1980 water year had the majority of its 

rainfall occurring in summer months (Chapter 3, Figure 3-4), when event runoff ratios were 

typically low due to drier soils (Chapter 1). As described further in Section 5.3.3 below, in 

prolonged wet periods, the model predicted near surface saturation over more floodplain 

area in the restored scenario than with more incised channels, which increased the 

catchment's runoff ratio during storm events.   
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In dry periods models predicted greater flows in the more incised scenarios (Figures 5-4 

to 5-6). The average annual minimum monthly flow for the 38 year period was 0.05-0.07 

m
3
/s (47-71%) greater for the 2.5 m channel scenario compared to the 1.5 m scenario 

(p=0.001). The predicted average annual minimum monthly flow for the restored (1 m) 

channel scenario was also slightly larger than the current (1.5 m) channel scenario, greater 

by 0.01 m
3
/s (10%), although the difference was not statistically significant (p=0.06).  As 

shown in the daily flow distribution curve for the model output time series (Figure 5-5), the 

scenarios of further channel incision (2.5 m and 4.5 m channels) were predicted to have 

higher flows than the 1.5 m channel current scenario over most of the period, while the 

restored scenario showed less notable differences from the current scenario for daily flow 

ranges with a 30% or greater probability of exceedance.   
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Table 5-1 Long term (1975-2012) average annual water balances for the Baviaanskloof 

catchment and internally modeled land units under different floodplain channel scenarios 

Location / 

spatial 

scale 

Flux 

Annual volume (Mm
3
/ year) 

Incised 3m 

(average 

depth: 4.5m) 

Incised 1m 

(average depth: 

2.5m) 

Current 

(average depth: 

1.5m) 

Restored 

(average depth: 

1m) 

Mean 
95% 

CI Mean 
95% 

CI Mean 
95% 

CI Mean 
95% 

CI 

      
      

Catchment 
Precipitation 323  323 

 
323 

 
323 

 

  AET 283 1.2 286 1.1 289 1.4 292 1.3 

  
Streamflow 36 1.0 34 1.0 29 1.1 28 0.9 

   
  

      

Mountain 

tributary 

sub-

catchments 

 

 

 

 

Precipitation 307  307 
 

307 
 

307 
 

AET 260 1.2 260 1.2 260 1.2 260 1.2 

Overland 

flow to fan 

head 

5 0.1 5 0.1 5 0.1 5 0.1 

Interflow to 

floodplain 
29 0.9 29 0.9 29 0.9 29 0.9 

Mountain 

bedrock 

outflow 

9 0.6 9 0.6 9 0.6 9 0.6 

 
  

      

Central 

valley 

alluvial fill 

(fans and 

floodplain) 

 

Precipitation 16  16 
 

16 
 

16 
 

AET 23 0.1 26 0.2 29 0.2 32 0.2 

Alluvial 

aquifer 

input to 

channel 

(net) 

 

33 2.4 31 1.1 26 1.5 18 3.0 

Overland 

flow inputs 

to channel 

2.7 0.2 3.0 0.2 3.6 0.7 10 0.5 
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Demonstration dry year: water year 1990 

Demonstration wet year: water year 2011 

Figure 5-4 Modeled daily flow hydrographs for demonstration dry (1990, top) and wet (2011, 

bottom) years showing differences in flow peaks and recessions between floodplain channel 

scenarios  
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Figure 5-5 Daily flow duration curve for different floodplain channel scenarios showing the 

distribution of daily flow values modeled for the period 1975-2012  

Inset graph has expanded the x-axis for greater visibility of the low frequency, high flow value portion 

of the curve, values with an exceedance probability of 5% or less. 
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Figure 5-6 Modeled catchment water yield (total streamflow output) by water year for 1975-

2012 for floodplain channel scenarios of the current state, a restored shallow channel, and 

further incision by 1m (top) and by 3m (bottom).  
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Comparing the predicted streamflow patterns for the more extreme incision scenario, the 

4.5 m channel, to those predicted with a 2.5 m channel, higher baseflows were predicted 

with no significant increase in modeled peak flow given the greater incision (Figure 5-5).  

The mean annual minimum monthly flow at the catchment outlet was predicted to double 

with the 4.5 m channel compared to that of the current channel scenario, increasing by 0.11-

0.14 m
3
/s (99-134%). In the 2.5 m channel scenario there was no indication of a declining 

difference in baseflow between incised and less incised cases with drier conditions (Figure 

5-5). Such a decline would have been indicative of periods when additional aquifer drainage 

due to incision came close to, or exceeded, floodplain recharge, causing progressively 

increasing aquifer drawdown and decreasing connectivity between the aquifer and channel. 

This pattern was apparent with the 4.5 m deep channel, seen as a sharpened decline in low 

flow values at the tail end of the daily flow distribution (Figure 5-5). This was only 

predicted to occur in extreme dry periods that were relatively rare in the 38 years modeled, 

when daily flows were so low that there was a 97% probability of exceedance. Despite the 

increase in baseflow with the 4.5 m channel, there were still high rainfall years and recession 

periods following large flow peaks during which the restored (1 m) channel scenario had the 

highest mean modeled yields, although differences were smaller than with the 2.5 m channel 

(Figures 5-5 and 5-6). Mean yields for individual years were not statistically different 

between scenarios.    
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5.3.2  Effects on floodplain groundwater depth 

 

Increasing the depth of the main river channel compared to the current scenario was 

predicted to have a net draining effect on the floodplain alluvial aquifer: 1 m of further 

incision (2.5 m channel) resulted in a modeled 0.9-1.0 m increase in depth of the spatially 

and temporally averaged water table, and 3 m of further incision (4.5 m channel) resulted in 

a modeled 2.3-2.5 m increase (Figures 5-7 and 5-8).  Modeled ongoing alluvial aquifer 

recharge at the mountain front meant that the average water table was lowered by less than 

the incision depth despite the high conductivity of the aquifer material. In the restoration 

scenario, the shallower, lower capacity, 1 m deep channel was predicted to result in a 0.6-0.7 

m rise in the water table over the current scenario, slightly more than the 0.5 m rise in the 

thalweg.  

 

Differences in modeled average groundwater depths between scenarios were statistically 

significant for individual water years, and the ranking of depths between the scenarios 

remained consistent throughout the modeled period. However, greater incision resulted in 

less fluctuation in groundwater levels between wet and dry years (Figure 5-7), such that the 

differences between scenarios were greater in the selected wet years than in the selected dry 

years (Figure 5-8).  This is indicative of more modeled aquifer recharge during large rainfall 

events in the restored scenario when compared to the incised scenarios. This was accounted 

for by large increases in overbank flooding in the restored channel scenario, described 

further in Section 3.3 below. The estimated rates of subsurface recharge of the alluvial 

aquifer from the surrounding mountain areas in the model meant that a relatively constant, 
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albeit deeper, water table was maintained in the incision scenarios, despite the almost 

complete loss of overbank flooding as a periodic recharge source. Due to the interannual 

variability in rainfall and recharge, and the high conductivity of the alluvium, modeled 

floodplain average water table depths for different water years fluctuated by as much as 2 m 

over 1975-2012 in the current and restored channel scenarios.   

 

Modeled water table depths varied spatially over the floodplain. In all the channel 

scenarios the modeled water table remained high enough for the aquifer to consistently feed 

channel flow in certain locations throughout the 38 years. Constantly gaining river reaches 

in the models occurred particularly in more downstream areas and where the valley floor 

between mountain fronts narrowed, consistent with field observations of perennial 

streamflow at such locations (Chapter 1).  Because of the geomorphology and topography of 

the catchment, and estimated rates of aquifer recharge at mountain fronts, the additional 

drainage due to incision was not predicted to result in eventual dry period disconnection 

between the aquifer and channel in the considered scenarios and weather patterns.  As 

evident in the baseflow results described above, net aquifer to channel flow contribution was 

predicted to change both with channel depth and between wet and dry periods. The overall 

shallower groundwater table in the restored scenario also resulted in slightly higher 

floodplain AET and notable changes in surface flows on the floodplain as described further 

below.     
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Figure 5-7 Modeled floodplain average groundwater depth in 

the central floodplain by water year for 1975-2012 for 

scenarios of the current state, restored, and further incision of 

the floodplain channel.  

Means and confidence intervals of the simulations sets run within 

the parameter ranges considered are shown 
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Figure 5-8 Boxplots showing 

the distributions of modeled 

mean annual and seasonal 

floodplain groundwater depth 

for different floodplain 

channel scenarios, labelled by 

depth: all simulated years 

(left), selected dry and wet 

years (right) 
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5.3.3  Effects on surface and subsurface flow through the floodplain 

 

Modeling results indicated how floodplain channel incision in the Baviaanskloof is 

likely impacting various surface and subsurface flow paths in the floodplain, producing 

streamflow and groundwater changes described above. The channel scenarios applied in this 

study resulted in large differences in the extent and frequency of modeled overbank flooding 

(Figure 5-9 b&c). Given the current channel form scenario, overbank flooding was predicted 

to occur in 20 of the 38 years modeled. In these wetter years generally 20-40 ha of the 

floodplain would be inundated in two or three events per year, after which surface water 

would recede completely within 1-2 weeks. Following the largest flow event on record, 

25/03/1981, simulation results predicted 100-130 ha would have been inundated at the peak 

with 3 weeks needed for the surface water to recede completely. The modeled average 

flooded area for 1975-2012 with the current channel scenario was 0.50-0.55 ha. In contrast, 

for the restoration scenario, with a smaller channel that was 0.5 m shallower, floodplain 

inundation was predicted to occur to some degree in every year modeled. Events inundating 

20-60 ha were predicted to occur 5-10 times in most years and recession periods were 

longer, such that in wet years areas of 5-20 ha could remain inundated for months. As such, 

the average inundated area predicted in the restored channel scenario was 8.8-9.7 ha. The 

modeled inundation peak in March 1981 was 130-160 ha in this scenario and, due to 

multiple smaller events following, the floodplain surface was not predicted to dry out 

completely for 9 months. By comparison, the 2.5 m channel scenario was predicted to only 

have overbank flooding in 7 of the 38 years considered, in events typically inundating 1-2 ha 

for 2-3 days. The range of predicted inundated area for the 1981 maximum was 2-29 ha in 
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this scenario. With the 4.5 m channel model the maximum event inundated area was 

predicted to be 1-3 ha in 1981, while other major events were predicted to result in less than 

1 ha of inundation only lasting for a day.       

 

Both the differences in channel capacity and the differences in modeled floodplain 

groundwater levels between scenarios were responsible for the predicted differences in 

inundation with incision. The shallower groundwater table predicted in the current and 

restored scenarios resulted in larger areas of the floodplain where the water table was near 

the surface compared to the more incised scenarios. This resulted in larger areas of surface 

saturation developing at low points in the floodplain topography more frequently during 

high rainfall events. Even during events that did not result in overbank flooding, saturation 

excess surface flows were produced in riparian areas and low points in the floodplain in the 

restored scenario, some of which fed channel flows. This also meant that inundation in the 

restored scenario, both from saturation excess and from overbank flooding, was predicted to 

persist for longer as there was less capacity for infiltration compared to the drier floodplain 

soils modeled in the incised scenarios. Evaporation from surface water was partially 

responsible for the higher floodplain ET predicted in the restored scenario (Table 5-1).  

 

The decreases in peak flows and the short-term increases in recession period flows 

following large events that were predicted for the restored (1 m) channel scenario were 

attributable to this increased overbank flooding.  Overbank flooding meant that flow down 

the valley length was slowed due to greater roughness and more of the surface water was 
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lost to infiltration and ET compared to channelized flows. Overbank flows were negligible 

in both the 2.5 m and 4.5 m channel scenarios. These scenarios had similar peak flows to 

one another despite a large difference in channel size. The predicted increase in delayed 

flow in the restored channel scenario during the weeks following a major flow event 

occurred as infiltrated overbank flood water recharged the floodplain aquifer, increasing 

subsequent inputs from the aquifer to the river channel. This was not predicted to occur 

following smaller events and in drier periods when there was less substantial overbank 

flooding, less input from direct rainfall and from the mountain areas, a lower antecedent 

water table relative to the channel, and drier soils meaning less net recharge.   

      

Differences in predicted central valley infiltration and recharge between the scenarios 

varied over the range of wet and dry conditions modeled. The restored scenario had the 

highest annual recharge only in some of the wet years (Figure 5-9). This reflected different 

annual balances between the increased opportunity for infiltration and recharge in the 

restored scenario, due to increased overbank flooding, and the decreased capacity for 

infiltration in the restored scenario, due to the shallower water table and hence wetter 

floodplain.  Large rainfall events were predicted to result in alluvial aquifer recharge from 

multiple sources: direct subsurface inputs along the mountain fronts as well as infiltration 

and percolation of effective rainfall, channel flows, overbank flows, and incoming surface 

flows from the mountain areas. Channel incision did not affect the subsurface inputs from 

the mountain areas in the model. Incision did greatly reduce predicted overbank flooding 

(Figure 5-9 b&c). This resulted in less modeled total valley infiltration and recharge during 
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very large events (Figure 5-9d), accounting for lower predicted wet year totals with the 2.5 

m channel than with the 1 m channel (Figure 5-9e). In the restored (1 m) scenario, the higher 

average groundwater table resulted in more floodplain area more frequently developing 

saturated soils near the surface in the model. This limited infiltration of rainfall, of incoming 

surface flows, and of overbank flood water on lower lying areas when rainfall events 

occurred with wet antecedent conditions. In contrast, the drier floodplain predicted for the 

incised scenarios promoted infiltration and, in large enough events, percolation. As such, 

more total valley infiltration was predicted for the incised scenarios in periods when rainfall 

events were smaller and did not cause significant overbank flooding differences between 

scenarios. When multiple events or relatively wet years occurred in succession without very 

large overbank flood differences, the developing wet antecedent conditions could result in 

decreased overall alluvial aquifer recharge in the restored case compared to the incised case 

(e.g. 1993 vs. 1994 in Figure 5-9c). The overall pattern of rainfall events in 1975-2012 

meant that the long-term average recharge from surface sources in the restored (1 m) 

channel scenario and the further incision (2.5 m) scenario were predicted to be almost the 

same.  

 

Despite the shallower groundwater table in the restored scenario, baseflows, fed by the 

alluvial aquifer inputs to the channel, were predicted to be lower in the restored (1 m) 

channel scenario than in the further incision (2.5 m and 4.5 m) channel scenarios. The levels 

of incision considered did not result in sufficient aquifer drawdown to significantly decrease 

the catchment-scale connection between the alluvial aquifer and the channel in the model. 
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Estimated recharge of the alluvial aquifer in the incised scenarios was such that the 

increased average depth of the water table was predicted to be less than the increase in depth 

of the thalweg. Incision was predicted to lead to a greater total flow from the aquifer into the 

channel, even in dry periods, despite some up-valley reaches along the floodplain becoming 

disconnected from the aquifer. The deeper channels maintained aquifer connectivity in more 

areas down-valley, and inflow rates were greater due to increased groundwater gradients 

from the mountain fronts to the lowered channel. The shallower 1 m channel in the restored 

case had lower groundwater gradients and was disconnected from the aquifer over more of 

its length more often in dry periods. This lead to both more channel infiltration losses and 

less net incoming water from the alluvial aquifer to feed channel baseflow on average (Table 

5-1).  While the long-term average modeled increase in the water table elevation in this 1 m 

channel scenario was slightly greater than the rise in the thalweg level compared the current 

(1.5 m) channel, the water table elevation was much more variable in this scenario, showing 

a greater increase over the current scenario during wet periods than in dry times. Additional 

recharge from overbank flooding during wet periods in the restored scenario did lead to 

greater predicted inflows from the alluvial aquifer into the channel and higher streamflows 

in post peak recessions, but this did not persist into the dry periods due to the fast draining 

alluvium.  
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Figure 5-9 Precipitation and modeled daily and annual flooded area and floodplain aquifer 

recharge for alternative scenarios: (a) precipitation, (b) daily inundated floodplain area, (c) 

annual average inundated floodplain area, (d) daily recharge of alluvial aquifer from surface 

sources, (e) annual recharge of alluvial aquifer from surface sources 
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5.4  Discussion 

 

The simulations in this study supported some but not all of the hypotheses regarding the 

impacts of floodplain channel incision in Baviaanskloof catchment, and the results 

highlighted tradeoffs to consider in restoration planning as well as needs for further research 

in this and similar environments.  Model outputs were consistent with the hypotheses that 

channel incision in this setting would decrease overbank flooding, increase peak flows at the 

catchment outlet, lower the average floodplain aquifer groundwater level, and decrease 

annual average AET from the floodplain. However model results did not indicate that the 

degree of incision currently observed (1.5 m deep channel), or the further incision depths 

considered (2.5 m and 4.5 m channels), would be likely to result in decreased baseflow at 

the catchment outlet in dry periods or dry years given the weather patterns of the past 38 

years. In fact, further channel incision was predicted to increase baseflow across the 

simulation period, while modeled impacts of assumed channel restoration (establishing a 

lower capacity, 1 m deep channel) on baseflow were too small to be statistically significant. 

The most notable predicted downstream impact of channel restoration was the reduction in 

peak flows at the catchment outlet: a 14-20% modeled reduction in flows with a 10% or 

lower annual exceedance probability. Within the floodplain, channel restoration was 

predicted to result in a significant rise in the groundwater, as well as a large increase in 

overbank flooding and floodplain inundation, likely to have ecological and land use 

implications.   
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Compared to the case of a shallower floodplain channel, it was originally anticipated that 

increased floodplain aquifer drainage into a more deeply incised channel would initially 

increase streamflow following a large, aquifer-recharging, rainfall event, but that this faster 

initial outflow of the event recharge water could subsequently result in decreased baseflow 

later on in an extended dry period. For channel incision to result in a decrease in aquifer 

inputs into the channel, the slope of the water table in the direction of the channel would 

need to decrease, and/or the water table would need to drop below the channel, more so than 

with a less incised channel. This could occur if presumed initial faster drainage in the 

incised case exceeded the net aquifer recharge over time. Development of such conditions 

had been thought possible in the semi-arid Baviaanskloof due to the area's sporadic 

distribution of large rainfall events and prolonged dry periods, deep rooting floodplain 

vegetation that can access the aquifer to meet ET demands, and the likely reduction in 

floodplain aquifer event recharge in the incised channel case due to decreased overbank 

flooding.  

 

However, contrary to these hypotheses, when floodplain channel incision and restoration 

scenarios were applied in a calibrated model of the entire Baviaanskloof catchment with 

locally observed weather patterns over multiple decades, decreasing baseflow with increased 

incision was not predicted to occur, even during dry periods with multiple consecutive years 

of below-average annual rainfall. Instead, with the exception of the predicted change in peak 

flows, the differences in modeled streamflow between the scenarios were almost the 

opposite of what had been expected: modeled initial post-peak recession flows following 
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large rainfall events were highest with the shallowest channel and modeled baseflows later 

on in dry periods were highest in the most incised scenario. As described in Sections 3.1-3.3 

above, these predictions were the result of the combination of the estimated rates of alluvial 

aquifer recharge from the surrounding mountain areas, the rates of groundwater flow 

through the aquifer material into the channel, the distribution of rainfall events, and the 

shape of the central valley. Predicted floodplain aquifer recharge from the surrounding 

mountains was sufficient to maintain groundwater levels above the channel in downvalley 

and narrow floodplain reaches in all channel scenarios, even in dry periods. The 2.5 and 4.5 

m channels were predicted to result in more aquifer to channel flow in these areas than the 

1.5 m deep current scenario channel, leading to consistently higher baseflows. Models 

predicted significantly more overbank flooding in the 1 m restored case, leading to greater 

net aquifer recharge during large flow events; however, the high conductivity aquifer 

material meant that this added recharge was predicted to drain into the channel in a period of 

weeks and so did not affect much of the baseflow period. Because of the mountain front 

recharge rates, the recharge during overbank flooding was not critical in maintaining the 

water table above the channel later on in the dry periods. It should be noted however that 

restoration was not predicted to decrease baseflow from the current scenario in most 

conditions. 

 

There was some indication in the model outputs that if channel incision were more 

extreme and dry periods lasted for longer, a situation of incision drainage exceeding alluvial 

aquifer recharge rates could develop and curtail dry period baseflows in this type of 
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catchment. This was seen in the steep decline in the low-flow end of the flow distribution 

curve in the deepest channel scenario considered.  However, this was only predicted for the 

lowest 2% of daily flow values in a 38 year period with a scenario of 3 m of further channel 

incision beyond the current level, an extreme scenario considered for exploratory purposes 

rather than being probable in this geomorphic setting. As such this decline in baseflow 

seems unlikely to occur in the Baviaanskloof without substantial changes in conditions.   

 

This study used the model of the Baviaanksloof catchment as a demonstration case to 

assess likely responses of a semi-arid, mountainous, meso-scale catchment to floodplain 

channel incision and restoration. Some of the characteristics of the catchment found to drive 

the response patterns were the rate and temporal constancy of floodplain aquifer recharge 

from the surrounding mountains, the high conductivity of the floodplain alluvium, and the 

frequencies of high flow events resulting in overbank flooding in different channel 

conditions. Had recharge rates from the mountains been lower or more highly curtailed in 

dry periods, had the alluvium had a much lower conductivity, and had overbank flooding 

been more critical to maintaining a water table above the channel in subsequent dry periods, 

the pattern of streamflow change with incision could have been quite different. This was 

evident when comparing the results for the Baviaanskloof catchment to those predicted for 

snowmelt-fed montane meadows in the western United States in comparable channel 

scenario modeling studies (Essaid and Hill, 2014; Hammersmark et al., 2008; Ohara et al., 

2014). Some of the responses in Baviaanskloof model were similar, such as the lowered 

water table and reduced peak flows, but there were notable differences due to the different 
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catchment context, such as opposite direction of change in baseflow to some of the meadow 

responses.  

 

As expected, the higher conductivity of the sand and cobble alluvium of the 

Baviaanskloof floodplain led to greater predicted lowering of the water table relative to 

incision depth when compared to predictions for more loam dominated floodplains. 

(Hammersmark et al., 2008) predicted 1.2 m lower floodplain average water table with 2m 

of incision in Bear Creek meadow, the average drawdown being 60% of the incision depth, 

while average drawdowns predicted for the Baviaanskloof floodplain were 80-90% of the 

incision depths. Having similar floodplains widths, roughly 1 km, the spatially averaged 

water table depths were considered comparable between the two cases.   

 

Increases in predicted peak flows with incision in the Baviaanskloof was linked to the 

degree of predicted change in overbank flooding between scenarios, in keeping with the 

different patterns reported across the different meadow studies. In the Bear Creek and Last 

Chance Creek meadow models, restoration scenarios were specifically designed to recreate 

active floodplains and were predicted to decrease flow peaks on the order of 10-20% 

compared to pre-restoration, incised channel forms (Hammersmark et al., 2008; Ohara et al., 

2014).  A similar result was predicted for the Baviaanskloof, with a 14-20% decrease in 

downstream peak flows predicted with the assumed restored scenario. In Essaid and Hill 

(2014)'s model of the Sagehen meadow, overbank flooding was not predicted to occur in any 

scenario and incision was actually predicted to decrease wet season peak and average flows. 
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Similarly, when there was minimal change in predicted overbank flooding between 

scenarios in the Baviaanskloof, as when comparing the 2.5 m and 4.5 m channels, an 

increase in flow peaks with incision was not detected. However, unlike in the Sagehen 

model, there was no overall decrease in wet period flow predicted moving from the 2.5 m to 

the 4.5 m channel (Figures 5-5 and 5-6). This indicates that the drier, lower water table 

floodplain in the 4.5 m scenario did not buffer the streamflow from flows coming from the 

surrrounding catchment any more than the floodplain in the 2.5 m scenario. This was likely 

due to a combination of factors: several channelized connections between mountain tributary 

subcatchments and the main channel, limiting flow onto the fan and floodplain surfaces and 

potential for infiltration; more extreme runoff events, with less opportunity for infiltration 

before incoming surface flows reach the channel, dominating the overall wet period 

response compared to the balance of events in Sagehen; and wet event recharge from 

interflow and any infiltration that did occur in either case reaching the channel relatively 

quickly due to the high conductivity alluvium.    

 

Unlike the predictions for the Baviaanskloof catchment, some of the meadow studies 

predicted or observed an increase in summer baseflow with channel restoration to a less 

incised state (Hammersmark et al., 2008; Ohara et al., 2014; Tague et al., 2008). In these 

meadow systems, significant floodplain recharge events generally occurred seasonally, 

during the annual spring snowmelt. Large wet events were more episodic in the 

Baviaanskloof, occurring every few years without strong seasonality.  In the meadows, in 

the restored channel scenarios, additional recharge due to more overbank flooding and/or 
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slower drainage of mountain front recharge from snowmelt, a result of the lower water table 

slope between the mountain front and shallower channel, would lead to higher water tables 

developing of the course of the wet seasons compared to what would occur with a more 

incised channel. This was also seen in high rainfall events in the Baviaanskloof; however, 

lower conductivity soils in the meadows delayed subsequent flow from the aquifer into the 

channel by more than the few weeks predicted for the Baviaanskloof, extending the 

increased delayed flow into the dry summer period. In addition, aquifer recharge periods due 

to snow-melt would be more prolonged, months compared to the day to week long events in 

the Baviaanskloof, and the dry periods in the meadows are of shorter duration, often being 

just the summer months.  As such a delay in meadow outflow with channel restoration on 

the order of a month or two would result an increase in summer baseflow. In the 

Baviaanskloof, additional wet period recharge with the restored channel was also not critical 

to maintaining the water table above the channel in dry periods, due to the balance of other 

recharge sources.   

 

The quantification of channel incision and potential channel restoration impacts in the 

Baviaanskloof were limited by model uncertainties and simplifications in modeling and in 

channel scenarios. Some of the model uncertainty was considered here by using ensembles 

of behavioral parameter sets, those which produced acceptable streamflow and groundwater 

predictions against observed data (Chapter 2).  Parameter uncertainty limited change 

detection in streamflow between scenarios, resulting in overlapping ranges of predicted 

values, particularly for daily values. In some cases, as in comparing the restored and current 
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channel scenario, even long term average yields were not statistically detectably different. 

This indicates that real yield differences between these scenarios are likely to be relatively 

small. Comparing model outputs to observational datasets it was seen that the model 

overestimates the runoff response to small rainfall events. This could mean that small event 

overbank flooding was likely over-estimated in the current and restored channel scenarios. 

However floodplain recharge due to overbank flooding turned out not to be a significant 

determinant of dry period baseflow and relatively quick return flows into the channel meant 

that the effects of this on predictions of overall yields are likely to be small. The model 

structure and parameter values represent current understanding of catchment processes, but 

could be further evaluated and improved given more observational data.  

 

The scenarios of channel change considered here could also be further refined both by 

geomorphological predictions of likely further incision levels and of pre-incision conditions. 

The restoration scenario used here did not explicitly include the braided channel forms 

observed in historical aerial photographs. It was assumed that the additional predicted 

overbank flooding, resulting in downvalley floodplain surface flow, during large flow events 

in the restoration scenario would approximate the pattern of flow that would have been 

estimated had additional, shallow, rough, channel area been instead added to the hydraulic 

model. This could be evaluated in further study, but the given simplifications of broader 

catchment processes and floodplain characteristics in the model (Chapters 1 and 2), highly 

refined channel form scenarios would have been a mis-match in complexity. It is also 

possible that restoration of a shallower floodplain channel form is not practically feasible 
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without restoring the vegetation and tributary channelization conditions throughout the 

catchment that are likely to have increased flow peaks reaching the floodplain (Chapters 3 

and 4) and so such a state would not exist within the catchment conditions in which it was 

modeled here.       

 

Despite these uncertainties, the results of this study do indicate that the restoration of the 

floodplain channel in the Baviaanskloof to a shallower, lower capacity state, would likely 

have larger impacts on peak flows and local floodplain habitat conditions than on long-term 

water supply availability. There was a small predicted decrease in overall water yield in the 

restoration scenario which was not statistically robust, but could be assessed against 

downstream water supply systems. The reduced flood peaks in the restored scenario could 

improve water quality and reduce reservoir sedimentation downstream. The larger rainfall 

events that would result in more overbank flooding in the restored case are those which 

would cause the most overland flow and erosion in the hillslopes and erosion of channel bed 

and bank material. Some of this eroded material could be carried to the catchment outlet and 

downstream reservoir if these flows remain in a deep channel and are not slowed by flowing 

across the rougher floodplain surface. A coupled sediment transport model could be used to 

assess this in future.  

 

In considering active river channel restoration, positive and negative impacts on water 

supply would need to be weighed up with local impacts within the catchment. The predicted 

increase in groundwater levels with channel restoration was significant and could improve 
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supply availability for users within the catchment and restore wetlands, however attendant 

flooding implications would need to be assessed and tradeoffs made. Channel restoration 

was predicted to decrease flood peaks and potentially damages experienced downstream; 

however, the notable increase in predicted inundated area in the floodplain warrants further 

assessment of local impacts on inhabited and agricultural areas. The more regular and 

widespread predicted inundation with channel restoration is in keeping with the soil profile 

evidence of previously existing permanent and semi-permanent wetlands (mottled and 

gleyed layers in first 50 cm; Powell, 2015) over larger areas of the floodplain compared to 

the current state. This suggests restoration of the channel would likely be effective in 

restoring wetland habitat in the Baviaanskloof. The channel scenarios applied in this model 

assumed a change in average depth and channel capacity throughout the length of the 

channel. It may be possible to achieve changed channel forms in certain reaches in order to 

balance some of the potential benefits in terms of habitat and groundwater supply and 

potential flooding impacts over different areas of the catchment. The impacts of different 

spatial patterns of channel form change and the geomorphic stability of this would require 

further research and modeling.   

 

5.5  Conclusions 

 

This study used coupled surface-subsurface hydraulic and hydrologic modeling to assess 

the potential impacts of floodplain channel incision on a semi-arid meso-scale catchment: 

the Baviaanskloof, South Africa.  While it is understood that river channel form can impact 
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flooding, riparian habitat, groundwater levels, streamflow patterns, and water quality, the 

impacts of channel incision will vary with the catchment context, and relatively little 

research has been done on responses in semi-arid systems. Model simulations of different 

river channel form scenarios in the Baviaanskloof catchment indicated that further incision 

from the current state is likely to result in a lowered average water table in the floodplain as 

well as increased peak flows, increased baseflows, and a greater average annual water yield 

at the catchment outlet. Restoration of a shallower, lower capacity channel was predicted to 

notably increase overbank flooding and cause a rise in the water table in the floodplain while 

decreasing peak flows at the catchment outlet.  

 

Predicted changes in average annual yield and baseflow were small and not statisically 

significant at the level of certainty afforded by the model, but the means of ensemble runs 

for each scenario suggested a slight decrease in average annual yield and increase in average 

annual minimum monthly flow. While the predicted changes in the floodplain water table, 

overbank flooding, and downstream peak flows were consistent with responses predicted 

and observed in wetter environments (Essaid and Hill, 2014; Hammersmark et al., 2008; 

Loheide and Booth, 2011; Ohara et al., 2014; Schilling et al., 2004, 2006; Tague et al., 

2008), the predicted changes in baseflow were notably different. In the Baviaanskloof 

model, the combination of ongoing floodplain aquifer recharge from mountain area 

subsurface inputs, the highly irregular and episodic pattern of large, rainfall-driven recharge 

events, prolonged dry periods, the high conductivity of the floodplain alluvium, and the 

downstream narrowing of the floodplain all resulted in maintained greater flows from the 
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alluvial aquifer into the channel over the majority of the modeled period when channels 

were deepened by 1-3 m. This illustrates the need to model potential impacts of channel 

incision and restoration within the larger catchment context.  

 

Floodplain channel incision enhanced by human activities is common globally and is 

often a focus river restoration programmes and catchment management more generally.  

Modeling results for the Baviaanskloof catchment indicated that channel restoration in this 

context would likely come with both local and downstream benefits and drawbacks that 

would need to be considered. The channel restoration scenario considered here was not 

predicted to have a large impact on downstream average annual yields or baseflows 

compared to the current scenario. It was predicted to reduce flood peaks which could have 

downstream benefits in terms of reduced sedimentation of the downstream water supply 

reservoir and reduced flood damages in downstream areas.  Within the Baviaanskloof 

catchment, the predicted rise in the floodplain aquifer water table could result in increased 

water availability to catchment residents and an increase floodplain habitat, however the 

increased floodplain inundation may also have negative implications for agriculture, 

infrastructure, and inhabited areas on the floodplain. The predictions of this study, and 

predictions for additional alternative channel forms, could be further coupled with sediment 

transport models, water supply system models, flood impact assessments, and habitat 

restoration goals to better evaluate potential tradeoffs and inform future interventions.        
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Chapter 6 Modeling cumulative hydrologic impacts of 

both vegetation and channel restoration in a semi-arid, 

meso-scale catchment 
 

6.1  Introduction 

 

Large-scale changes in both land cover and river channels impact catchment-scale 

hydrologic processes, potentially altering water supply availability, flood intensities, and 

aquatic and riparian habitats (Bosch and Hewlett, 1982; Brown et al., 2005; Hammersmark 

et al., 2008, 2010; Loheide and Gorelick, 2007; Ohara et al., 2014; Price, 2011; Tague et al., 

2008). Land and water management can better achieve desired results if the hydrologic 

impacts of these changes are considered, and hydrologic modeling can assist (Mirchi et al., 

2010). However, while it is understood that diverse human activities in a catchment often 

directly alter multiple catchment properties simultaneously, and that land cover and channel 

changes can influence one another (Gregory, 2006; James and Marcus, 2006; Osterkamp 

and Hupp, 2010; Wheaton et al., 2011), the impacts of changes in vegetation and channel 

networks on catchment-scale hydrologic responses are not often modeled in concert. Loss of 

vegetation cover can result in increased flood peaks and increased sediment transport, the 

balance of which will result in either incising (Balling and Wells, 1990; Beechie et al., 2008; 

Booth, 1990) or aggrading river channels (Bravard et al., 1997; Gomez et al., 1998; Keesstra 

et al., 2005). Despite this, the effects of differing scenarios of vegetation cover on catchment 

hydrology are routinely modeled without explicit consideration of attendant changes in 
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channel network properties. Additionally in large-scale landscapes with multiple land 

managers and stakeholders, decisions about different kinds of activities in different locations 

can be made independently by different parties based on conceptions about individual 

impacts rather than cumulative ones.   

 

A few examples of scenarios of combined land cover and channel changes in hydrologic 

modeling have come from urbanization studies, assuming direct human channel 

modification (e.g. He and Hogue, 2012), and from reach-scale modeling of riparian 

vegetation-channel interactions (e.g. Loheide and Gorelick, 2007).  This study explores the 

potential importance of considering both vegetation and channel changes in concert in a 

mountainous, semi-arid, rural agricultural meso-scale catchment, using proposed restoration 

scenarios for the Baviaanskloof catchment, South Africa as a case study. It was 

hypothesized that the effects predicted for an individual type of change would be sensitive to 

the assumed catchment setting in terms of the upslope vegetation and/or channel network 

properties, and, due to multiple interacting thresholds of flow path connectivity in this 

catchment, that the impacts of multiple simultaneous changes would not be simply additive.  

 

Connected flow paths of water and sediment within a catchment mean that activities in 

one location can change form and function in another and the downstream, or 'down-

catchment', impacts of a change can be contingent on conditions along the surface and 

subsurface flow paths. For example, a change in hillslope vegetation can be expected to 

have a different level of impact on catchment outlet streamflow depending on how directly 
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flows from the hillslopes reach a defined channel network, the continuity and capacity of 

this network, the channel-floodplain interactions, and the channel-aquifer interactions 

between the hillslope and streamflow in the downstream channel. This poses a challenge to 

impact assessment in mountainous, semi-arid, meso-scale catchments. In such settings 

significant lowland alluvial fill deposits, in the form of fans and floodplains, are often 

composed of coarse, conductive material and are seldom saturated. These forms  frequently 

act as buffers to surface flow through the landscape and create settings where surface-

subsurface flow interactions have a dominant impacts on streamflow timing and magnitude 

(Ajami et al., 2011; Karen, 2009; Maneta et al., 2008).  In this kind of catchment, thresholds 

of surface flow connectivity throughout the catchment are only episodically met and large 

portions of the overall flow through the catchment may pass through more complex surface-

subsurface flow paths.  As such, changes in channels that would alter channel-floodplain and 

channel-aquifer interactions can be expected to  influence how much hillslope vegetation 

alterations can impact meso-catchment scale streamflow in such an environment.  

 

Many commonly used medium complexity hydrologic model structures do not explicitly 

consider aspects of landscape connectivity that are important in arid and semi-arid settings 

in their representations of catchment processes (Maneta et al., 2008).  Recent modelling 

tools that allow for land-unit flow path catenas, dynamic hydrologic/hydraulic model 

coupling, surface and groundwater model coupling can be used to better represent observed 

landscape connectivity at a catchment scale and allow for assessment of its importance 

(Arnold et al., 2010; Essaid and Hill, 2014; Hammersmark et al., 2008; Hipsey et al., 2011; 



 

 

337 

 

 

Loheide and Booth, 2011; Maneta et al., 2008; Ohara et al., 2014). In this study the coupled 

MIKE-SHE/MIKE 11 hydrologic/hydraulic modelling system (Refsgaard and Storm, 1995) 

was be used to build a model of the Baviaanskloof catchment that explicitly considers 

surface and subsurface connectivity between hillslopes, tributary channels, alluvial fans, the 

main valley floodplain and the main floodplain river channel as informed by field 

observations (Chapters 1 and 2).  

 

The Baviaanskloof catchment area was used as a case-study of a semi-arid, meso-scale 

catchment for which a conceptual model of landscape flow connectivity has been 

established (Chapters 1 and 2), and in which several changes in vegetation and channel 

network properties in different locations have been described ((Bobbins, 2011; Jansen, 2008; 

van Luijk et al., 2013a; Powell, 2015; Smit, 2013; Chapters 3-5). Settled agriculture has 

been ongoing in the catchment for over a century. Intensive livestock grazing on hillslopes 

that support sensitive, endemic subtropical thicket vegetation resulted in a reduction in 

canopy cover in many areas, to 5% from what would likely have been close to 70%, 

resulting in 30% average cover on the hillslopes overall (Euston-Brown, 2006; Lechmere-

Oertel et al., 2005a; Sigwela et al., 2009; Smit, 2013).  Direct channel modification though 

construction of earthen berms and dredging, filling, and reorientation of channels occurred 

on the alluvial fans and central valley floodplain to establish agricultural fields and provide 

flood protection (Jansen, 2008). This increased the channel network connectivity between 

mountain areas and the trunk river channel in the floodplain. The trunk channel shows 

evidence of incision and widening in recent decades (Chapter 5, Powell, 2015).   
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There is concern about the loss of both thicket and floodplain wetland habitats due to 

these changes, as well as loss of ecosystem services, such as sustained agricultural 

productivity, carbon storage, flood protection, prevention of siltation in the downstream 

water supply reservoir, local groundwater availability, and potentially flow regulation and 

water supply in dry periods (Jansen, 2008). Outflow from the Baviaanskloof catchment 

feeds a regionally important reservoir that supplies downstream commercial agriculture as 

well as growing domestic and industrial demands in the Nelson Mandela Bay Metropolitan 

area. These concerns have motivated catchment-scale restoration proposals for the area 

promoting active restoration of hillslope thicket cover, recreating dispersive flow paths on 

channelized alluvial fan surfaces, and restoring a less incised channel form on the 

floodplain. Understanding the potential streamflow and groundwater impacts of achieving 

these states, and how different changes would likely interact, would be helpful for catchment 

management and restoration planning.    

 

Prior modeling of single intervention restoration scenarios for the Baviaanskloof, in 

which one aspect of anthropogenic alteration in the catchment was presumed to be reversed 

while the rest of the landscape remained in its current condition, demonstrated individual 

impacts of hillslope vegetation cover change (Chapter 3), alluvial fan channelization 

(Chapter 4), and floodplain channel incision (Chapter 5) on streamflow output and 

floodplain groundwater.  Catchment-wide thicket restoration had the largest predicted 

impact on streamflow, driven by large differences in large storm event runoff, while 

floodplain channel restoration had the largest predicted impact on groundwater levels, 
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driven by decreased aquifer drainage into the shallower channel and recharge in overbank 

flooding events. Model results indicated that restoring hillslope thicket vegetation cover 

could reduce floodpeaks by 56-60% (34-43 m
3
/s) and the annual average water yield by 22-

27% (5-8 Mm
3
), if the channel network across the central valley alluvial fans and floodplain 

remained unchanged.  As a result of predicted greater water retention and ET on restored 

hillslopes reducing runoff to the floodplain, model results indicated a potentially deepened 

floodplain water table by 0.2-0.4 m on average. Baseflow was predicted to decrease, with a 

20-30% (0.03-0.04 m
3
/s) modeled reduction in mean annual minimum monthly flow. 

Recreating less channelized alluvial fan surfaces was predicted to reduce flood peaks by a 

much smaller amount, 11-17% (7-10 m
3
/s). Modeled fan restoration impacts on annual 

average yield, baseflow, and average floodplain groundwater levels were not statistically 

detectable. It is notable that the predicted mean water table was 0.14 m shallower with 

restored fans, the opposite direction of change to that predicted with thicket restoration. 

Reducing floodplain channel incision was similarly predicted to reduce peak flows, with a 

14-20% (9-13 m
3
/s) decrease modeled. The impact on average yield was not detectable in 

the model. Average floodplain groundwater levels were predicted to rise by 0.6-0.7 m; 

however a significant change in baseflow was not predicted.  Because the decreased depth of 

the channel resulted in less connectivity with the aquifer in dry periods, baseflows in the 

driest periods on record were predicted to decrease slightly. 
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6.1.1  Modeling both vegetation and channel change  

 

Single intervention studies quantify likely effects of individual types of changes which 

could be achieved in the Baviaanskloof catchment through active restoration and landscape 

engineering. Scenarios in which both vegetation cover and channel network properties 

change may be more realistic long-term states. Stakeholders may choose to engage in 

multiple active restoration interventions, but even if only a single type of active restoration 

is successfully implemented, connectivity between hillslopes, alluvial fans, and the 

floodplain river channel mean that a large upslope change could alter forms downstream.  

The increase in peak flows due to the loss of hillslope thicket cover in the Baviaanskloof 

was likely substantial (Chapter 3), and could have been partly responsible for the current 

levels of channel incision. Restoration of thicket cover could contribute to reversing these 

channel changes. Similarly, alluvial fan restoration would also affect flow peaks (Chapter 4), 

and hence erosion and deposition patterns in the floodplain. More 'down-catchment' 

restoration interventions on fans and floodplains could be implemented without altering the 

upslope vegetation, but this may prove impractical without intervening to reduce flood flow 

intensities coming from upslope. Vegetation cover change has not been the only factor 

driving channel incision: berm construction, dredging, and manual reorientation contributed. 

Removing berms and employing various active channel engineering techniques could re-

create more dispersive fan and floodplain flow paths. Such interventions would need to be 

more substantial to withstand the more extreme flood events and prevent re-incision if the 

hillslope thicket vegetation remains in its current state.  
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Scenarios of simultaneous vegetation and channel changes were modeled in this study to 

explore the potential importance of considering combined impacts and landscape 

connectivity and evolution, without claiming that the particular combinations of specific 

properties applied here are more realistic future states for the Baviaanskloof. This would 

require quantitative estimates of sediment transport beyond the scope of this study. The 

likelihood and timeline of channel infilling occurring as a result of up-catchment restoration 

interventions would depend upon the incoming sediment supply.  If hillslope thicket and/or 

fans are restored, peak flow event magnitudes would decrease. This could mean that flow 

events of sizes which would mobilize sediment in higher slope areas, but deposit it on the 

flatter surfaces in the central valley, may occur more frequently and represent a greater 

proportion of events than events large enough to mobilize bed material throughout the 

channel. This new flow regime could result in net aggradation over time. However, 

restoration would simultaneously reduce sediment quantities leaving hillslopes and fans 

during storm events. In the Baviaanskloof, large, relatively mobile, sediment supplies on 

fans and floodplain surfaces, the catchments' steep slopes, and periodic large flow events 

make it unlikely that the system would be sediment starved by upland restoration. Decreased 

sediment supply due to reforestation has been seen to result in channel incision in other 

semi-arid areas (Keesstra et al., 2005).  Even so, manual channel interventions could create a 

less incised floodplain channel form, subsequently maintained by reduced event flows from 

simultaneous up-catchment restoration. A state in which all three proposed types of 

restoration changes are maintained appears theoretically achievable, but quantitative 

estimation of likely resulting channel properties would entail further geomorphic study.   
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It was hypothesized that when both the hillslope vegetation and the valley channel 

network (fan and floodplain) properties were changed to their assumed restored states in the 

Baviaanskloof catchment model, predicted patterns of streamflow and groundwater 

responses would differ from those predicted for single intervention scenarios. Some 

predicted process changes for different interventions would reinforce one another, while 

others would counteract each other. Overall decreases in both predicted average water yield 

and peak flow were expected, due to the dominant decrease in runoff from the hillslopes 

predicted when thicket cover is restored.  In addition, reduced large event flows from 

restored thicket hillslopes then reaching restored, less channelized, alluvial fans would lead 

to a greater proportion of the incoming event flow being infiltrated on the fan. Previous 

modeling indicated that, in smaller events and dry antecedent conditions, directing water to 

infiltrate on the fan surfaces less frequently resulted in a rise in the alluvial aquifer, 

compared to infiltration occurring on the comparatively wetter floodplain, because of 

thicker, drier, unsaturated zones on the fans (Chapter 4). This pattern may occur more 

frequently when both thicket and fans are restored, further decreasing average yield.  

 

However, in wet periods, higher alluvial aquifer recharge was predicted both with 

alluvial fan restoration and with floodplain channel restoration (Chapter 4 and 5), and 

floodplain groundwater levels were also predicted to rise with channel restoration due to less 

drainage (Chapter 5).  Combining these effects could result in more floodplain saturation 

during extreme events in wet periods, reducing the floodplain's capacity to buffer flow peaks 

and potentially adding to peak flow through saturation surface runoff created on the 
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floodplain. However, this was not predicted to be a frequent or significant occurrence when 

the hillslope thicket was also restored, due to the overall reduction in runoff and floodplain 

recharge.  It was hypothesized that the average floodplain water table would be shallower 

than in the current state if all three restoration interventions were successfully implemented, 

but the increase would be less than if the river channel alone was restored, due to the 

decreased inflow from the surrounding hillslopes.         

 

6.1.2  Predicted sensitivity of restoration impacts to catchment setting 

 

Comparing model outputs using different combinations of vegetation and channel 

network properties allows for analyses of the sensitivity of predicted restoration effects to 

assumed baseline catchment condition or the conceptualization and/or parameterization of 

the broader catchment.  Differences in the predicted impacts of vegetation change given 

different channel network settings and differences in the predicted impacts on channels 

changes given different up-catchment vegetation cover highlight how sensitive these kinds 

of impact predictions may be to potential assumptions made about their settings in this type 

of catchment and model.  Large differences in effects with changes in setting may be of 

import for other cases in which vegetation changes are modeled in meso-scale catchments 

with little consideration or available information on channel network properties and 

processes.  
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It was hypothesized that the impact of vegetation cover change on flood peaks would be 

greater in a setting in which the channel network more efficiently drained the landscape. In 

the Baviaanskloof case this implies that hillslope thicket restoration would have larger 

impacts when the alluvial fans are more channelized and the floodplain channel is more 

incised.  If more dispersive flow paths were restored on alluvial fans and the floodplain 

channel was shallower with lower capacity, more of the incoming surface flows from 

hillslopes would be expected to infiltrate on the fan and floodplain surfaces, reducing flow 

peaks at the catchment outlet. Thicket restoration would reduce surface runoff to the central 

valley by the same amount in any channel network setting, but, in the less incised channel 

setting, a greater proportion of this reduction would be runoff that would have otherwise 

infiltrated on the valley alluvium and not contributed to the streamflow peak in any case. It 

was similarly hypothesized that the predicted impact of restoring thicket on average annual 

yield would be smaller given less channelization. However it was predicted that thicket 

restoration could result in a greater increase in the depth of the groundwater table when the 

channel network is in a restored state. A greater proportion of the hillslope runoff would be 

contributing to floodplain recharge in this setting. Therefore a reduction in incoming runoff 

could have a proportionally larger impact on groundwater levels, and potentially also on 

baseflow. 

 

In the case of restoring less incised and less connected channel network conditions in the 

central valley, it was hypothesized that these changes would result in greater reductions of 

peak flow in a setting with more incoming surface runoff from the contributing tributary 
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subcatchment areas than in a setting with less incoming runoff.  In the Baviaanskloof case 

study, the reduction in estimated flow peaks when using restored floodplain channel 

conditions in the model was predicted to be smaller if the hillslope thicket vegetation was 

assumed to be in an intact state than in its current state. During large rainfall events, 

overbank flooding was the mechanism by which the less incised floodplain channel was 

predicted to result in lower peak flows. In the case of intact thicket, peak flow values would 

be smaller and the threshold for overbank flooding would be less often met and the extent of 

the flooding would be smaller, resulting in less proportional flood attenuation.  This would 

also reduce alluvial aquifer recharge during flood events such that the difference in the 

groundwater table due to channel restoration may also be less when the hillslope thicket is 

intact.  

 

6.2  Methods 

6.2.1  Scenario modeling 

 

A detailed description of the Baviaanskloof catchment is given in Chapter 1, Section 

1.2.1. The potential streamflow and groundwater impacts of simultaneously restoring 

hillslope thicket cover, recreating dispersive flow paths on alluvial fan surfaces, and re-

establishing a shallower, lower capacity floodplain channel were estimated by changing 

vegetation and channel properties in a calibrated model of the Baviaanskloof catchment.  A 

multi-scale, daily time-step model of the Baviaanskloof catchment was constructed and 



 

 

346 

 

 

calibrated using the MIKE-SHE/MIKE-11 modeling system (Refsgaard and Storm, 1995), 

based on a conceptual model informed by field observations of surface and groundwater 

flows, soil and vegetation properties, and topography (Chapter 1).  A detailed description of 

the model structure and performance is given in Chapters 1 and 2.  

 

In the 'full restoration' scenario, thicket area vegetation and soil parameters in the model 

were changed from their calibrated value ranges for the current catchment state to those 

predicted for thicket areas unimpacted by grazing, based on available published field studies 

(Mills and Fey, 2004; Lechmere-Oertel et al., 2005b; Mills and Cowling, 2010; Cowling and 

Mills, 2011; van Luijk et al., 2013b; Meijninger and Jarmain, 2014). These parameter values 

are given in Chapter 3.  Channels crossing alluvial fans were assigned average dimensions 

from field and aerial photograph analyses (11 m wide, 1 m deep) in the current scenario. In 

the restoration scenario, channel dimensions on altered fans were decreased to 2 m width 

and 0.2 m depth at the fan toe such that most surface flow would disperse onto the fan 

surface.  In the model of the current scenario the floodplain river channel had the 

dimensions of field surveyed cross sections: an inset bankfull channel with an average width 

of 21 m and depth of 1.1 m within a wider incised channel with an average width of 48 m 

and 0.5 m banks such that the channel thalweg was a total of 1.6 m below the floodplain 

surface (Chapter 5).  In the restored scenario the dimensions of the inset bankfull channel 

were applied such that the average total channel width was 21 m and the thalweg 1.1 m 

below the floodplain surface.         
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As a comparative case, a 'full degradation scenario' was also modeled. In this scenario all 

three aspects of anthropogenic catchment alteration being assessed  - hillslope thicket loss, 

alluvial fan channelization, and floodplain channel incision – were assumed to be more 

enhanced than in the current scenario.  In this model set-up, vegetation and soil parameters 

assumed for completely degraded thicket, a state with ephemeral grasses, sparse small trees 

(5% canopy cover), and low infiltration capacity soils, based on available published field 

studies (Mills and Fey, 2004; Lechmere-Oertel et al., 2005b; Mills and Cowling, 2010; 

Cowling and Mills, 2011; van Luijk et al., 2013b; Meijninger and Jarmain, 2014) as 

described in Chapter 3, were applied to all hillslopes.  All alluvial fans, even those currently 

observed to be unchannelized, were assumed to have a direct channel connection to the 

trunk channel in the floodplain and the floodplain channel was assumed to be 2.5 m deep, 1 

m deeper than currently observed. Prior modeling did not indicate significant decreases in 

dry period baseflow when individual aspects of the catchment were assumed degraded 

beyond their current states (Chapters 3-5). This combined degradation scenario was modeled 

to test whether or not this would be likely if the landscape became even more fast-draining, 

through further losses of interception and infiltration capacity on the hillslopes and greater 

channel network efficiency in the central valley.    

 

To test the sensitivity of the predicted effects of individual changes, vegetation or 

channel restoration, to up-catchment or down-catchment conditions, various scenarios with 

different combinations of restored and current model parameterizations were run. To 

examinme the sensitivity of the effects predicted for thicket restoration to channel network 
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conditions, scenarios with current and restored thicket parameterization were simulated with 

the alluvial fans and floodplain channels with their current state scenario dimensions and 

with their restored scenario dimensions.  Similarly, to assess sensitivity of predicted channel 

restoration outcomes to the conditions of the up-slope areas, current and restored floodplain 

channel scenario dimensions were applied with current and restored hillslope thicket and 

alluvial fan parameterizations.  Schematic diagrams of the scenarios modeled are given in 

Figures 6-1 and 6-2.    
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Figure 6-1 Schematic of models used to estimate the impacts of combined vegetation and channel 

changes showing the combinations of landscape unit property sets applied for hillslopes, alluvial fans, 

and the floodplain channel 
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Figure 6-2 Schematics of models used to assess the sensitivity of predicted restoration intervention 

impacts to their catchment settings showing the combinations of landscape unit property sets 

applied to assess:  A) vegetation restoration impact sensitivity to the channel network properties,  

B) floodplain channel restoration impact sensitivity to upslope conditions  



 

 

350 

 

 

 To account for the uncertainty in the parameterization, the model was run 100 times for 

each scenario to represent the calibrated parameter space. Parameter sets were selected from 

the 720 sets in the calibration exercise with acceptable model performance in recreating 

observed surface runoff, streamflow, and groundwater patterns as described in Chapter 2. 

The same 100 base parameter sets were applied in each scenario, such that the channel 

network properties or vegetation parameters were the only factors differing between them.  

For alternate hillslope thicket cover scenarios different to the current calibrated values, new 

sets of hillslope vegetation and soil parameters were selected in the same way over the 

assumed changed value distributions and randomly combined with the sets of parameters for 

the remainder of the catchment to make 100 total sets per scenario.  These sets of runs 

resulted in likely output distributions for each scenario, allowing for conservative change 

detection.  

 

In order to capture the response to a variety of storm sizes and antecedent conditions, the 

models for each scenario were run using 43 years of climate data from 1970-2012. The first 

5 years (1970-1974) were considered a spin-up period for groundwater levels and change 

analyses were done for model output for the 1975-2012 water years. The water year was 

defined as April to March.  
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6.2.2  Output analyses 

 

For the set of model runs for each scenario, the mean and the 95 percent confidence 

interval of the following statistics were calculated: average annual water yield, average 

annual minimum monthly flow, average daily flow for the fourteen largest flow peaks in the 

period (annual flow exceedance probability of 10%), and average depth to groundwater in 

the floodplain aquifer (spatially averaged).  These statistics were chosen to assess the scale 

of impacts relevant to water supply and flood management.  To assess changes in the flow 

path of water onto the alluvial fans and through the floodplain, modeled patterns of 

incoming surface and subsurface flows reaching the central valley, infiltration on the fans 

and floodplain, recharge to the alluvial aquifer, floodplain AET, flow from the alluvial 

aquifer into the main floodplain channel, and overbank flooding from the main channel were 

compared between the scenarios.  Within the modeled time period, multi-year dry and wet 

periods were identified, as described in Chapter 3, Section 3.2.3, to compare the effects of 

fan channelization under different conditions.  The statistics described above were also 

calculated separately for these periods.  

 

To assess the sensitivities of predicted restoration effects to the catchment setting, time-

series of differences in the above-listed outputs were calculated for models with and without 

restoration in each catchment setting. These time-series of changes were used to estimate the 

same statistics as listed above for the predicted effects in a catchment setting, for example: 

the mean and 95 percent confidence interval of the average annual change in water yield due 

to thicket restoration given a fast draining valley channel network. These metrics were then 



 

 

352 

 

 

compared between the different catchment settings to determine if differences in restoration 

effects between two different settings were statistically significant, for example: detecting a 

significant difference between the mean change in annual water yield due to thicket 

restoration with a faster draining valley channel network and the mean change in annual 

yield due to thicket restoration with a slower draining valley. 

 

6.3  Results 

6.3.1  Combined impact of multiple restoration activities 

 

Model simulations predicted that simultaneously restoring hillslope thicket cover, 

alluvial fan surfaces, and the floodplain channel form would result in a decrease in the 

average annual water yield and in peak flows. The full restoration scenario was predicted to 

result in a rise in the average groundwater level in the floodplain compared to the current 

catchment state, however model outputs did not provide evidence for an associated increase 

in baseflow. The modeled average annual water balance for the full restoration scenario, 

current state scenario, and full degradation scenario for the 1975-2012 simulation period are 

shown in Table 6-1, Figure 6-3, and Figure 6-4. Predicted changes in key outputs given the 

assumed restoration changes are presented in Table 6-2. The modeled distribution of daily 

flow values for different scenarios are shown as flow duration curves in Figure 6-5 and 

compared to individual restoration scenarios in Figure 6-9.   
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The modeled average annual yield for the full restoration scenario was 19-20 Mm
3
, 32-

37% less than the 28-30 Mm
3
 predicted for the current state. An increase in AET was 

predicted both for the subcatchments and the central valley fans and floodplain. Restoring 

hillslope thicket was predicted to increase average annual AET on the hillslopes by 6-8 

Mm
3
. This meant that the annual volume of water predicted to reach the central valley 

alluvial fill decreased by approximately the same amount, which, although it was a small 

proportional increase in AET (2-3%), was a relatively substantial proportional decrease, 14-

18%, of the subcatchment outflow predicted in the current scenario. Decreased predicted 

hillslope surface runoff due to the greater modeled canopy interception and soil infiltration 

resulted in a 2.7-3.3 Mm
3
 (55-68%) decrease in annual average surface flow predicted from 

the subcatchments. Increased soil moisture retention and plant transpiration resulted in a 

further predicted 2.4-4.2 Mm
3 

(9-14%) decrease in average annual interflow reaching the 

central valley, while predicted mountain block aquifer outflows were not significantly 

changed. Central valley AET was predicted to increase by 4-5% (15-18%) in the restored 

case. Although a decrease in water received from the subcatchments was predicted, water 

was generally more available to vegetation in the central valley in the restoration scenario 

model as a result of: greater diffuse infiltration and soil moisture replenishment on restored 

alluvial fan surfaces during large events, a shallower average alluvial aquifer water table, 

and an increase in overbank flooding during large events due to the lower capacity 

floodplain channel (Table 6-2).    
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The predicted annual yields were consistently lower in the full restoration scenario 

compared to those modeled for the current catchment state over the 38 years modeled 

(Figure 6-6). Differences were smaller in dry years than wet years (Figure 6-7). Despite 

having less surface and interflow from the subcatchment areas, the full restoration scenario 

was predicted to have greater streamflow than in the current scenario for short periods, a few 

days to a week, during the recession following a large flow event (demonstrated in the 

hydrograph for 2011 in Figure 6-9). This was predicted because of additional overbank 

flooding and alluvial aquifer recharge modeled during the event resulting in more delayed 

flow into the channel in the restoration scenario. A similar pattern was predicted when only 

the floodplain channel was assumed to be restored to a less incised state (Chapter 5).  

However, when only the channel was restored, the floodplain received more inflows off the 

more degraded hillslopes, the modeled catchment outlet flow increase due to delayed flow 

into the channel was larger, occurred in more events, and lasted multiple weeks, resulting in 

an increase in flows with an exceedance probability of 1-3% in the restored channel case 

compared to the current state model (Chapter 5, Figure 6-9).                  
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Table 6-1 Long term (1975-2012) average annual water balances for the Baviaanskloof catchment, and 

internally modeled land units, under different scenarios of catchment restoration and degradation in 

terms of hillslope thicket cover, alluvial fan surface channelization, and floodplain channel incision.  

 

Location / 

spatial scale 
Flux 

Annual volume (Mm
3
/ year) 

Full degradation Current Full restoration 

Mean 95% CI Mean 95% CI Mean 95% CI 

    
      

Catchment Precipitation 323 
 

323 
 

323 
 

  AET 273 1.5 288 1.3 300 1.8 

  Streamflow 48 1.4 29 1.0 19 0.6 

  

       
  

       

Mountain 

tributary 

sub-

catchments 

 

 

 

 

Precipitation 307 
 

307 
 

307 
 

AET 249 1.5 260 1.2 267 0.6 

Overland flow to 

fan head 22 1 4.8 0.1 1.9 0.3 

Interflow to 

floodplain 23 0.3 29 0.9 26 0.5 

Mountain bedrock 

outflow 9.0 0.5 9.0 0.6 8.9 0.5 

       
  

       

Central 

valley 

alluvial fill 

(fans and 

floodplain) 

 

Precipitation 16 
 

16 
 

16 
 

AET 24 0.3 28 0.2 33 0.4 

Alluvial aquifer 

input to channel 

(net) 38 1.5 26 1.5 16 1.0 

Overland flow 

inputs to channel 9.9 0.5 3.6 0.7 3.0 0.5 
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Figure 6-3 Long-term average water balance diagram for the Baviaanskloof catchment 

modeled with degraded hillslope thicket, channelized alluvial fans, and an incised river 

channel.  

Quantities are in million cubic meters (Mm
3
) of water per year.  
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Figure 6-4 Long-term average water balance diagram for the Baviaanskloof catchment 

modeled with restored hillslope thicket, dispersive alluvial fans, and a less incised river 

channel.  

Quantities are in million cubic meters (Mm
3
) of water per year.  
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  Figure 6-5 Daily flow duration curves for the full restoration, full degradation, and 

current condition scenarios showing the distribution of daily flow values modeled for the 

Baviaanskloof catchment outlet for the period 1975-2012.  
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Figure 6-6 Modeled catchment water yield (total streamflow output) by water year for 1975-2012 

for scenarios of current conditions, full restoration, and full degradation of hillslope thicket, alluvial 

fan surfaces, and floodplain channels.  

Scenarios were represented by parameter ranges. Means and confidence intervals of the 

simulations sets run within these ranges are shown 
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Figure 6-7 Boxplots showing the 

distributions of modeled mean 

annual and seasonal water for 

current, full restoration, and full 

degradation scenarios for: all 

simulated years (left), selected dry 

and wet years (center), and 

summer and winter months for all 

years (bottom) 
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Demonstration dry year: water year 1990 

Demonstration wet year: water year 2011 

Figure 6-8 Modeled daily flow hydrographs for demonstration dry (1990, top) and wet (2011, bottom) years 

showing differences in flow peaks and recessions between full restoration, full degradation, and current state 

scenarios  
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Figure 6-9 Daily flow duration curves for different individual restoration type scenarios and the full 

restoration scenario showing the distribution of daily flow values modeled for the Baviaanskloof 

catchment outlet for the period 1975-2012.  

Inset graph has expanded the x-axis for greater visibility of the low frequency, high flow value 

portion of the curve, values with an exceedence probability of 5% or less. 
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Peak flows for events with an annual exceedance probability of 10% or less were 

predicted to decrease by 41-44 m
3
/s (69-71%) from current state predictions when given all 

three restoration changes in concert. Baseflow was also predicted to decrease, with the mean 

minimum monthly streamflow in a year decreasing by 0.03-0.05 m
3
/s (20-40%). The 

average depth to groundwater in the floodplain was predicted to decrease by 0.3-0.4 m. 

Because the channel thalweg was 0.5 m higher in the full restoration scenario than the 

current, this rise in the groundwater level did not result in a modeled increase in overall flow 

from the aquifer into the channel, which would have resulted in an increase in baseflow.  

 

The modeled groundwater table was consistently higher in the fully restored scenario 

over the modeled period. This was primarily due to the balance between constant subsurface 

recharge of the alluvial aquifer from the mountain bedrock, roughly the same across the 

scenarios, and less drainage of the floodplain in the full restoration scenario with a 

shallower, lower capacity channel. The full restoration scenario actually had lower predicted 

average alluvial aquifer recharge from surface flow sources for 1975-2012 than the current 

and full degradation cases. This was due to the rainfall distribution and different responses 

predicted for different sized rainfall events in wet and dry periods. Even though there was 

less inflow from the subcatchments in the full restoration scenario, large rainfall events 

resulted in significantly more recharge of the alluvial aquifer in this scenario than the current 

state. This was in keeping with the patterns described for individually restoring the alluvial 

fans or the floodplain channel, due to greater opportunity for infiltration on the fan and the 

floodplain surfaces from overbank flooding (Chapters 4 and 5). However, in drier periods, 
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there was more alluvial aquifer recharge modeled in the current state than the fully restored. 

This was both due to more small-event runoff from more degraded hillslopes flowing on to 

the central valley and because these incoming surface flows were able to more directly reach 

the floodplain channel and infiltrate there, rather than being dispersed across drier fan 

surfaces where infiltrating water was more subject to retention in unsaturated soils rather 

than percolation.   

 

The change in modeled daily streamflow distribution with all three proposed restoration 

interventions together compared to changes predicted when only one intervention was 

considered is demonstrated in the flow duration curves in Figure 6-9. Effect sizes for 

different impacts of interest are given in Table 6-2.  The decrease in average yield (8-11 

Mm
3
) was significantly greater than that predicted for individual interventions (Table 6-2). 

The predicted decrease in peak flow (41-44 m
3
/s) was also larger than for the individual 

restoration interventions, though not statistically significantly larger than for thicket 

restoration alone (34-43 m
3
/s). The predicted decrease in average annual minimum monthly 

flow with full restoration was similar and not significantly different from thicket restoration 

(0.03-0.05 m
3
/s vs 0.03-0.04 m

3
/s). Unlike with thicket restoration alone, the average 

groundwater table was predicted to rise with simultaneous restoration at all three landscape 

positions, but by less than the rise predicted when the floodplain channel alone was restored 

(0.3-0.4 m vs 0.6 -0 .8 m).  
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It was initially hypothesized that changes predicted when all three restoration activities 

were modeled together would not simply be the sum of the predicted impacts of the different 

restoration activities modeled individually. The modeled 8-11 Mm
3
 decrease in annual 

average yield with full restoration was roughly the sum of the decreases in yields predicted 

for each intervention, but the flow duration curve and other statistics indicated more 

complex interactions. For example, the highest flows decreased less and lowest flows 

decreased more than would be expected if individual intervention impacts were additive. 

The predicted decrease in peak flows with full restoration smaller than the sum of predicted 

individual intervention responses. During large rainfall events occurring in already wet 

periods, the combined impact of both restored alluvial fans and floodplain led more surface 

saturation runoff in the central valley. This counter-acted some of the reduction in large 

event runoff from the restored hillslopes and the slowing of central valley surface flows on 

fan and floodplain surfaces instead of channels. The decrease in catchment outlet baseflow 

with full restoration during some of the driest periods, flows with 70-95% daily exceedance 

probabilities in the flow duration curve (Figure 6-9), was greater than the decrease predicted 

due to the thicket restoration alone. Models had predicted increases in streamflow with 

alluvial fan restoration and insignificant change with floodplain channel restoration over 

flows of this frequency (Figure 6-9), so if changes were additive, streamflow should be 

slightly greater than in the thicket restoration scenario. The increased drop in low flows seen 

instead was due to combined effects of dispersed infiltration on dry fan surfaces and lowered 

aquifer to channel connectivity due to the raised channel thalweg relative to the water table 

which had been lowered by decreased mountain subcatchment area runoff.          
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Figure 6-10 Modeled floodplain average groundwater depth in the central floodplain by water year for 

1975-2012 scenarios of current conditions, full restoration, and full degradation of hillslope thicket, 

alluvial fan surfaces, and floodplain channels.  

Scenarios were represented by parameter ranges. Means and confidence intervals of the simulations 

sets run within these ranges are shown 

 



 

 

367 

 

 

  

Figure 6-11 Boxplots showing the 

distributions of modeled mean 

annual and seasonal floodplain 

groundwater depth for current, full 

restoration, and full degradation 

scenarios for: all simulated years 

(left), selected dry and wet years 

center), and summer and winter 

months for all years (bottom) 
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The full degradation scenario was considered to test whether or not this could result in 

lower baseflow in dry periods than predicted in the current scenario. Model results did not 

give evidence that this would be the case. Even though the predicted groundwater table in 

the floodplain was significantly lowered (1-1.1 m on average, Figures 6-10 & 6-11), channel 

connectivity with the aquifer remained, particularly in narrow downstream parts floodplain, 

feeding flows into the deepened channel. There was a steep decrease in baseflow predicted 

for the driest periods on record, shown in the sharp decline in the tail end of the flow 

duration curve (Figure 6-5). This indicates an increasing rate of decline in the alluvial 

aquifer supply to the channel, likely when drawdown exceeds aquifer recharge (Essaid and 

Hill, 2014). A similar steep decline in baseflow was also predicted in a modeled scenario 

with a 4.5 m deep floodplain channel with the catchment otherwise in its current condition 

(Chapter 5). This decline was not predicted with 2.5 m deep channel applied in the current 

catchment (Chapter 5); however, in the full degradation scenario applied here, in which a 2.5 

m deep channel was coupled with the decrease in recharge predicted with more alluvial fan 

channelization and the decrease in interflow predicted with increased thicket degradation 

(Table 6-1). However, model results suggest that more extreme and/or prolonged dry 

periods than those experienced in 1975-2012 would be needed for baseflow in the fully 

degraded case to reach or decline below those predicted for current or restored scenarios. 

Predicted annual flows and baseflows remained highest in the fully degraded scenario 

throughout the modeled period.  
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In the full degradation scenario landscape, modeled summer water yields were greater 

than winter water yields (Figure 6-7). In the current state of the catchment this was not 

observed (Chapter 1), nor modeled for the current state scenario, because although rainfall 

seasonality is low and some of the largest rainfall events do occur in the summer, runoff 

ratios in this season are generally low due to dry antecedent conditions, infiltration, and 

higher ET along the flow paths (Chapter 1). In the high runoff, fast draining, full 

degradation scenario little water was accessible for AET and summer and winter rainfall 

responses were predicted to be more similar. 

 

6.3.2  Restoration impact sensitivity to catchment setting 

 

Thicket restoration impact sensitivity to channel network properties 

 

It had been hypothesized that hillslope thicket cover restoration would have a bigger 

impact on peak flows when the channel network through the central valley was more 

efficient in carrying flows to the catchment outlet compared to when the alluvial fans and 

floodplain channel were restored and hence more effective at buffering the catchment outlet 

from storm flows through dispersive flow paths and overbank flooding. This was supported 

by the model output: hillslope thicket restoration was predicted to result in a significantly 

greater magnitude decrease in catchment peak flows when the channel network was faster 

draining than when it was restored: 34-43 m
3
/s in the fast draining case vs. 23-26 m

3
/s in the 

slower draining case (Table 6-2). Because of decreased predicted outflows when the central 
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valley is slower draining, the proportional decrease in peaks due to thicket restoration was 

the same (56-60%) for the two settings. The buffering effect of the restored floodplain was 

evident in the much larger change in average overbank flooded area due to thicket 

restoration in the restored channel setting (2-3 ha decrease) compared to the faster draining 

setting (0.1-0.2 ha). This shows that, in the restored channel network setting, much of the 

reduced hillslope runoff volumes when thicket is restored were from flows that would have 

otherwise caused overbank flooding. This water would have been more subject to infiltration 

and ET in this setting and less likely to have influenced catchment outlet flow compared to 

the faster draining channel network setting. Hillslope thicket restoration was also predicted 

to have a larger impact on the average annual water yield of the catchment when the channel 

network was assumed to be faster draining, but the difference was not statistically 

significant.  

 

It had been anticipated that the floodplain groundwater levels could be more sensitive to 

hillslope thicket restoration in the restored channel setting. This was presumed due to a 

likely larger change in alluvial aquifer recharge from overbank flooding water with the 

change in incoming mountain area runoff in the restored channel setting than in the faster 

draining one. A larger change in overbank flooding due to thicket restoration was modeled 

in the restored channel setting. However, the model results did not indicate that this was a 

dominant process in determining the longer-term average groundwater table elevation. The 

relatively fast predicted return flow of event recharge water into the channel in wet periods 

(on the order of weeks, Chapter 5), reduced duration of the influence of large overbank 
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flooding events on the alluvial aquifer. The predicted change in the average groundwater 

table due to thicket restoration was actually smaller when channels were less incised: water 

table declines of 0.1-0.2 m vs. 0.2-0.4 m. The greater aquifer drainage into the deeper 

channel made groundwater levels in the more incised channel setting more vulnerable to the 

reduction in runoff from the hillslopes. Even though the water table was lowered more by 

thicket restoration in the faster draining setting, the predicted decrease in average minimum 

monthly flows due to thicket restoration was not discernably different between the channel 

settings. The differences in water tables were less than the 0.5 m difference in the channel 

depth between the scenarios.     

     

Floodplain channel restoration impact sensitivity to hillslope vegetation and alluvial 

fan properties 

 

As hypothesized, the magnitude of change in peak flows resulting from floodplain 

channel restoration was predicted to be smaller in a setting with less incoming surface 

runoff: a 3-5 m
3
/s predicted decrease in a lower runoff setting compared to 9-13 m

3
/s given 

higher runoff from degraded hillslopes and channelized fans (Table 6-2). The proportional 

predicted decrease was similar for the two settings (15-22% and 14-20%). The magnitude 

increase in the modeled average overbank flooding area due to channel restoration was 

smaller in the lower runoff setting (7 ha vs. 9-10 ha), but represented a larger proportional 

increase than the change in higher runoff setting, increasing the proportional impact on 

reducing flood peaks. The predicted decrease in average floodplain groundwater depth with 

channel restoration was similar in the two runoff settings and the changes in average 
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minimum monthly flow due to channel restoration were not statistically significant in either 

upslope runoff setting.  

 

Channel restoration appeared to have a larger impact on average annual yield when the 

floodplain received less runoff: in the low runoff setting a 1-3 Mm
3
 decrease in average 

annual yield was predicted as a result of channel restoration, while in the high runoff setting 

the predicted change was not statistically significant. Restoring the channel increased 

overbank flows in both runoff settings, but in the high runoff setting much of the overbank 

flow in larger events later entered the channel as return flow, reducing the impact of 

overbank flooding on annual yields. In the lower runoff case there was less proportionate 

return flow due to less saturation. This pattern is evident in the average flow duration curves 

of the model output (Figure 6-12), which show higher 1-3% exceedance probability flows 

with channel restoration than without it in the high runoff setting due to the delayed flow out 

of the restored floodplain after a large flood event, but consistently lower flow with channel 

restoration in the lower runoff setting.  
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Table 6-2 Modeled restoration impact summary for different intervention scenarios in different 

assumed catchment settings, simulated for 1975-2013  

* indicates that the change due to the restoration intervention in the given setting was statistically significant, 
  

#  
indicates that the difference in restoration effect size between the two settings was statistically significant, 

+
 indicates that the difference in restoration effect size between full restoration and the vegetation restoration in 

the current catchment was statistically significant, 

 significance threshold of p≤0.05   

 

Intervention   
Full 

restoration 

Restore hillslope thicket 

cover 
  

Restore floodplain channel 

form 

Setting   

  

Fast 

draining 

valley 

Slow 

draining 

valley 

  

High 

incoming 

runoff 

Low 

incoming 

runoff 

  

(vs. current 

state) 

(Current 

fan & 

floodplain 

channels) 

(Restored 

fan & 

floodplain 

channels) 

  

(Current 

hillslope 

cover & fan 

surfaces)  

(Restored 

hillslope 

cover & fan 

surfaces) 

  

Impact measure  
  

 
  

  
  

    
 

  
 

  
  

  

Change in 

annual 

average yield 

Mm
3
 - 8-11 *

+
 - 5-8 * - 4-7 * 

 
-3  +1 - 1-3 * 

 
% - 32-37% - 22-27% - 16-25%  -8  +5% - 4-13% 

  

    
 

  
 

  
  

  

Change in 

average peak 

flow 

magnitude 

m
3
/s - 41-44 * -  34-43 * -  23-26 * #

 -  9-13 * - 3-5 * #
 

% - 69-71% - 56-60% - 56-60%  - 14-20% - 15-22% 
  

    
 

  
 

  
  

  

Change in 

average 

annual 

minimum 

monthly 

flow  

m
3
/s - 0.03-0.05 * - 0.03-0.04 * - 0.03-0.04 * 

 
 + 0.008-0.01 -0.002  +0.003   

% - 20-40% - 20-30% - 27-35%  +10% -2 +5% 

  

    
 

  
 

  
  

  

Change in 

average 

depth to 

floodplain 

groundwater 

m - 0.3-0.4 *
+
 + 0.2-0.4* + 0.1-0.2 * #

 - 0.6-0.8 * - 0.7-0.8 *  
 

% - 8-11% + 6-10% + 3-7%  - 17-21% - 19-21% 

  

         

Change in 

average 

annual area 

of overbank 

flooding  

ha + 6-7 *
+
 - 0.1-0.2* - 2-3 * #

 + 9-10 * + 6.8-7.3 * #
 

% + 1120-

1330% 

- 30-40% - 23-33%  + 1660-

2020% 

- 2020-

2340% 
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Figure 6-12 Daily flow duration curves for modeled scenarios showing predicted flow distributions for 

1975-2012, demonstrating predicted impacts of floodplain channel restoration given different upslope 

settings.  

High runoff: hillslope thicket is in its current degraded state and fans have current levels of channelization, 

Low runoff: thicket and fan surfaces are assumed to be in intact, unchannelized states.  

Inset graph has expanded the x-axis for greater visibility of the low frequency, high flow value portion of the 

curve, values with an exceedence probability of 5% or less. 
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6.4  Discussion 

 

The results of this study illustrate the potential importance of considering linked changes 

in vegetation and channel properties in hydrologic modeling of semi-arid, meso-scale 

catchments. Model outputs for the Baviaanskloof case study indicate that a failure to do so 

could result in significant over and under estimation of changes to peak flows, average water 

yields, floodplain inundation, and floodplain groundwater water levels, all of which are of 

concern for catchment management. Land cover change scenarios are often modeled by 

altering model land cover properties without considering changes in channel properties that 

may arise due to altered geomorphic processes. In smaller and/or wetter catchments in 

which channel-floodplain and/or channel-aquifer interactions are likely less significant, this 

may be less of a concern. Channel properties become more important with increasing 

catchment scales (Uhlenbrook et al., 2004) and fluctuating channel-aquifer interactions can 

be significant drivers of streamflow patterns in semi-arid areas (Essaid and Hill, 2014; 

Karen, 2009; Maneta et al., 2008). In the model of the Baviaanskloof catchment, which was 

structured to explicitly include observed patterns of surface and subsurface landscape and 

channel connectivity, the predicted impacts of hillslope vegetation restoration on floodplain 

groundwater levels and catchment outlet streamflow patterns were found to be significantly 

sensitive to the connectivity and capacity of the channel network.     

  

When it was assumed that hillslope thicket vegetation could be restored in the 

Baviaanskloof without any change to the current alluvial fan and floodplain channel network 
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properties, the predicted impacts on total water yield and the average floodplain 

groundwater table were significantly different than when it was assumed that restoration of 

thicket cover could eventually result in less channelized alluvial fans and a less incised 

floodplain channel. When concurrent changes in the central valley channel network were 

applied in the model (full restoration scenario), the predicted decrease in average annual 

water yield was 38-60% greater due to additional water retention and ET in the central 

valley.  The predicted reduction in flood peaks was also greater for the full restoration 

scenario than for thicket restoration alone, although the difference was not statistically 

significant.  The floodplain water table was predicted to rise by 8-11% when all three factors 

changed, the opposite direction of change to the 6-10% deepening predicted when thicket 

restoration alone was considered. 

 

Some of the differences in modeled outputs between scenarios did not show the patterns 

initially expected. This was the result of multiple interacting thresholds of connectivity 

along surface and subsurface flow paths and the flashy local rainfall pattern, demonstrating 

the usefulness of quantitative models in integrating many complex and dynamic processes. 

For example, it was originally hypothesized that restoring both the hillslope vegetation and 

the valley channel network in the Baviaanskloof catchment would result in a larger decrease 

in flood peaks than the sum of the impacts predicted for individually implemented changes. 

Model outputs instead suggested that the reduction in peak flows with full restoration would 

be less than the sum of the individual intervention responses.  
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The reasoning behind the initial assumption of a greater decrease in flood peaks had 

been that reduced event surface runoff from mountain subcatchments due to thicket 

restoration would then have a higher proportional loss to infiltration on the restored alluvial 

fans and floodplain. Antecedent conditions on the central valley were initially expected to 

also be somewhat drier in this scenario, further promoting infiltration, because of less 

surface flow and interflow from the restored subcatchments in prior events. However, it was 

found that, due to the estimated rate of relatively consistent subsurface flow from the 

mountain bedrock aquifer into the floodplain alluvial aquifer in the calibrated Baviaanskloof 

model, the restoration of a shallower, lower capacity channel in the floodplain, less capable 

of draining the aquifer, could still result in a rise in the groundwater table level, despite 

receiving less surface flow and interflow from restored hillslopes. The large peak flow 

events considered, those with annual exceedance probabilities of 10% or less, occurred 

during generally wet periods and were sufficiently extreme that they still resulted in 

development of surface and near surface saturation on the restored floodplain even with 

lowered inputs from restored hillslopes. Infiltration and alluvial aquifer recharge on restored 

alluvial fans predicted during wet periods further contributed to antecedent wetness, 

amplifying the effect. Areas of near surface saturation reduced the capacity of the floodplain 

to reduce the flood peak reaching the catchment outlet by resulting in saturation excess and 

infiltration excess surface runoff on the floodplain during the large rainfall event and 

reducing infiltration losses of overbank flows crossing the floodplain surface.  
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Modeling uncertainties in this study reduced the ability for change detection, particularly 

in baseflow responses, and could be addressed with further local sampling to reduce model 

parameter uncertainty.  Scenario comparisons highlighted the sensitivity of the modeled 

impacts of restoration to the estimated rate of mountain bedrock recharge of the alluvial 

aquifer.  If this recharge source were much smaller than estimated, it is possible that the 

floodplain aquifer levels, channel connectivity, and baseflow would have been more 

sensitive to changes in alluvial aquifer recharge from overbank flooding.  This would have 

meant that the impacts of channel restoration would have been more sensitive to changes in 

runoff due to hillslope vegetation. It also may have resulted in changes in baseflow response 

patterns between scenarios. The water table would have declined more in dry periods in the 

absence of overbank flows and channel infiltration recharge and rates of drainage due to 

channel depth may have been more important to determining the degree of aquifer-channel 

connectivity.  These subsurface recharge rates are difficult to estimate from aquifer physical 

properties because of the irregular fracture network of the TMG quartzitic sandstones and 

cemented faults and layering of aquicludes creating springs and potentially unconnected 

aquifers (Xu et al., 2009).  In model development for the Baviaanskloof, this was conceived 

of as a simple linear reservoir with outflow rates parameterized through calibration against 

floodplain groundwater level and streamflow data. Multicriteria calibration against multiple 

data sources was used to improve likely accuracy and ensemble modeling within the 

resulting accepted range of parameter values was used to carry forward model uncertainty 

into scenario modeling predictions, however further field data could be used in future to 

further test and improve model representation of this key process.           
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Further geomorphic study in the Baviaanskloof and similar catchments would be needed 

to better determine likely future states. Given the current levels of uncertainty and process 

simplifications in the model, the scenarios of restoration considered were extreme in their 

spatial extent to increase the likelihood of change detection. Actual restoration interventions 

implemented may be smaller and occur more slowly. There was also no consideration of the 

temporal dimension of the proposed changes. Different modeled scenarios of individual and 

combined changes could represent different stages in the future of the catchment due to both 

phased implementation of active restoration interventions and geomorphic landscape 

evolution occurring over time in response different activities. In addition, potential 

vegetation change on the floodplain, which may occur given the shallower water table in the 

restored channel scenario. It was assumed that while the type of vegetation present would 

likely change, this may not result in a very significant change in floodplain AET to that 

predicted here as the floodplain vegetation was already assumed to have a high ET demand 

and access to the water table. However this assumption could be tested in further studies. 

  

Regardless of its accuracy in quantifying specific outcomes for the Baviaanskloof 

catchment, it can be reasonably assumed that the model used here represents a likely set of 

processes and combinations of connectivity thresholds for a semi-arid, mountainous 

catchment. The results of this study are therefore useful as a demonstration of the sensitivity 

of catchment hydrology in this type of area to the types of changes and combinations of 

changes considered. In this setting the dominant impact of large scale vegetation change on 

the overall yield of the catchment stood out above the other changes. The channel form 
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played a significant role in determining the long-term average floodplain groundwater depth, 

which was less sensitive to the vegetation change than might have been expected because of 

the less vulnerable, long-term floodplain aquifer recharge from the mountain block aquifer.  

Daily peak flow responses were vulnerable to interacting thresholds dictated by both the 

vegetation and channel network properties, determining surface runoff production from the 

hillslopes, initiation and extent of overbank flooding, wetness and infiltration capacity of the 

fans and floodplain during the event. 

 

Part of the motivation for exploring the combination of hillslope, fan, and floodplain 

restoration interventions for the Baviaanskloof was because it represents full implementation 

of recently proposed activities for the area motivated by concerns about the loss of 

biodiversity and multiple ecosystem services in the region and concerns about regional 

water supply security in particular (Jansen, 2008; Mander et al., 2010).  While the modeling 

results in this study suggest that full restoration would likely result in a decrease in the long-

term annual average yield at the catchment outlet, predicting the quantitative impacts on 

realized downstream water supply availability will require further integration of these 

predictions into models of the water supply systems, as well as consideration of sediment 

transport to the downstream reservoir. The actual decrease in available supply with 

restoration would likely be smaller than the predicted decreases in average annual 

streamflow yield for several reasons. Firstly, predicted decreases in streamflow were greater 

for wet years and large flow events than for dry periods. Currently the downstream Kouga 

Dam reservoir routinely overflows in wet years and so decreased flows during these periods 
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may not result in an actual decrease in available supply. In addition, the large decrease in 

peak flows (56-60%) with restoration would likely result in a reduction in sediment transport 

to the reservoir, which would otherwise cause a loss in storage capacity over time.  

Nevertheless, model results representing the current understanding of catchment processes 

in the Baviaanskloof given available data, indicate a decrease and not an increase in yield 

available to downstream users given the catchment-wide full restoration scenario modeled 

here.  

 

Results did indicate that restoration could improve water access for those living within 

the catchment who rely on pumping from floodplain aquifer and recreate floodplain wetland 

habitat, however local catchment residents would also likely be more subject to impacts of 

floodplain inundation. Again the modeling results of this study would need further 

comparison against local pumping requirements and costs and infrastructure, agriculture, 

and community flood vulnerabilities to be able assess tradeoffs of local wetland habitat 

benefits, local water supply benefits, local flood impacts, downstream water supply losses, 

and downstream flood impact reductions. In this case it is notable that thicket restoration 

alone was predicted to result in a deepening of the floodplain aquifer and reduction in 

inundation, while the combined restoration scenario results indicated a net rise in the water 

table and increase inundation.  If further geomorphic studies indicate that active thicket 

restoration alone would not result in floodplain channel aggradation and that increasing 

groundwater access and wetland habitat were priorities, actively establishing a less incised 

river channel would be beneficial. Restoring the floodplain channel alone was predicted to 
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increase groundwater tables more than when hillslope thicket was also restored, however 

inundation impacts would be greater if thicket was not simultaneously restored. Tradeoffs 

are inevitable; however, this modeling exercise demonstrated that exploration of combined 

impacts of different restoration activities could yield an overall preferred scenario and more 

accurate prediction of impacts than considering different interventions in isolation.  Further 

work could be done modeling different degrees and spatial configurations of hillslope, 

alluvial fan, and floodplain channel restoration deemed geomorphologically feasible to 

identify scenarios best meeting multiple catchment management objectives.   

 

6.5  Conclusion 

 

This modeling study of various restoration scenarios in the Baviaanskloof, a 

mountainous, semi-arid, meso-scale catchment, showed the importance of modeling changes 

to both vegetation and to channel properties together in this type of setting when these 

changes are likely to coincide due to geomorphological processes and/or diverse human 

activities. It was found that the modeled impacts of restoring hillslope thicket vegetation on 

water yields, flood peaks, and floodplain groundwater levels were significantly different 

depending on whether or not the channel network crossing the central valley alluvial fans 

and floodplain was predicted to change concurrently. Downslope geomorphologic effects of 

upslope changes, such as the impact land cover change on stream channels, are becoming 

increasingly well understood, however this is not yet being routinely incorporated into 

hydrologic modeling. While dynamically coupled eco-hydro-geomorphological models may 
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still be a long way off, conceptual models of local geomorphological responses can be 

incorporated through multiple static scenarios, as done here, to at least consider the potential 

impacts of combined changes or the level of prediction uncertainty introduced due to 

uncertain future geomorphic trajectories.  This understanding may critically impact 

catchment management decisions. For example, in the Baviaanskloof, if widespread 

hillslope thicket restoration could result in aggradation in the floodplain channel over time 

due to reduced peak flow intensities, the average floodplain groundwater table would likely 

rise from its current state, increasing wetland habitat, local groundwater supply access, and 

local inundation impacts.  If the channel is not predicted to change, and/or is predicted to 

incise further due to reduced sediment load, the groundwater table would be predicted drop 

with thicket restoration, having the opposite impact on conditions in the floodplain.     

 

It is also not uncommon for different types of active anthropogenic interventions in 

different parts of a landscape to be planned independently by separate actors in a large 

catchment based on conceptual understandings of the independent effects of the activity.  

This study demonstrated the importance of modeling combined impacts of multiple planned 

interventions together. A cascade of surface and subsurface flow connectivity thresholds 

was observed and modeled for the Baviaanskloof, and the high variability rainfall pattern 

meant that these thresholds are only episodically met. As a result the combined impacts of 

different interventions at different locations were sometimes more complex than the sums of 

their parts. For example, in a scenario in which hillslope thicket, alluvial fans, and the 

floodplain channel were all restored in the Baviaanskloof, the predicted flood peak reduction 
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was less than the sum of predicted reductions from each intervention assumed to occur alone 

within the current catchment context. The combined effect of alluvial fan recharge and 

decreased aquifer drainage with the smaller floodplain channel resulted in near saturated 

conditions over more of the floodplain during very large flow events, reducing its capacity 

to buffer flood peaks even though it received less flow from surrounding restored hillslopes. 

This also highlighted the importance of developing locally appropriate conceptual models of 

these connections and thresholds when modeling change in a semi-arid meso-scale 

catchment setting.       

 

This study demonstrated likely tradeoffs that would need to be considered when 

holistically planning restoration in the Baviaanskloof. It was predicted that restoring the 

hillslopes, fans, and floodplain together would result in a decrease in average annual water 

yield, peak flow, and baseflow with more AET predicted on both the hillslopes and 

floodplain. This could decrease water supply to downstream users although potentially 

increase quality and reduce downstream flood impacts. The groundwater table in the 

floodplain and floodplain inundation were also predicted to rise in this scenario, likely 

making groundwater supplies more accessible within the catchment and likely increasing 

floodplain wetland habitat, but also increasing local flooding impacts.  This study 

demonstrated how different combinations of interventions could result in significantly 

different impacts. Further modeling of combinations and spatial extents of interventions 

could assist in balancing different catchment management objectives.  
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Chapter 7 Conclusions and recommendations for further 

research 
 

 

This dissertation comprised multiple studies through which a hydrologic model was 

developed for the Baviaanskloof, a semi-arid, mountainous, meso-scale catchment area 

(Chapters 1 and 2), and this model was further used to estimate the hydrologic impacts of 

degradation and restoration of three different components of the landscape: hillslope 

vegetation, alluvial fans, and the floodplain channel. Potential impacts on catchment outlet 

streamflow and floodplain groundwater levels were modeled for each change individually 

(Chapters 3-5) and for all three in combination (Chapter 6). The model development and the 

findings presented in this dissertation contribute to the field of hydrologic modeling, 

particularly for semi-arid areas and meso-scale catchments, and have import for catchment 

management and restoration planning in this type of environment. Particular contributions 

and ideas for further research based on this work are described below.    

 

7.1  Hydrologic modeling of semi-arid meso-scale catchments 

 

Through the process of developing of a model appropriate for assessing targeted 

restoration impacts in the Baviaanskloof catchment, this research contributes to ongoing 

development of modeling strategies suited to semi-arid mountainous meso-scale catchments. 
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Semi-arid catchments have generally proven more challenging to model accurately 

compared to more humid areas (Ackerman et al., 2005; Clark et al., 2008; He and Hogue, 

2012; Maneta et al., 2008) and modeling meso-scale catchments (10-1,000 km
2
) can also 

require greater model complexity than smaller catchments to achieve similar performance 

(Tetzlaff et al., 2008, 2010; Uhlenbrook et al., 2004). Many commonly used hydrologic 

model structures were developed and tested in smaller more humid catchments, while 

development of model structures better able to represent processes typical of semi-arid 

catchments has been more recent and more work and testing are needed. Modeling the 

Baviaanskloof required application of several novel approaches including use of a multi-

scale model, to address the need for different levels of process representation in different 

parts of the catchment, and explicit consideration of alluvial fan processes in the model, a 

landform that is not specifically catered for in most medium complexity catchment models. 

 

7.1.1  Multi-scale model development 

 

The model development method applied in the Baviaanskloof case-study and the 

resulting multi-scale modeling approach have rarely been documented for this type of 

catchment and successful model calibration suggests that they could be beneficial in future 

research on semi-arid meso-scale catchments. In more arid areas, thresholds of surface flow 

connectivity throughout a catchment are only episodically met and large portions of flows 

reaching the catchment outlet may pass through complex surface-subsurface flow paths. In 

larger semi-arid catchments with sizeable lowland alluvial fill deposits, such as fans and 
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floodplains, these deposits are seldom saturated. They therefore act as buffers to surface 

flow such that surface-subsurface interactions between alluvial aquifers and channel 

networks play a large role in streamflow magnitude and timing (Ajami et al., 2011; Karen, 

2009; Maneta et al., 2008). The challenges of capturing the complex flow paths and patterns 

of more arid catchments have often been addressed by modeling processes at higher spatial 

resolutions using gridded models (Clark et al., 2008; Maneta et al., 2008). Gridded models 

allow for more sophisticated, spatially explicit, consideration of infiltration along surface 

flow paths and local development of saturation in the landscape. They also allow for 

coupling of surface, groundwater, and hydraulic flow models that can capture temporally 

dynamic groundwater-channel interactions as well as overbank flooding. These elements can 

be critical to capturing semi-arid meso-scale catchment responses with desired accuracy 

levels. However, distributed gridded models can prove computationally intensive when 

modeling large catchment areas over long time periods. In addition, at larger catchment 

scales with more diverse landforms, geology, soils, and vegetation, sufficient data with 

which to calibrate a distributed model are often not available.  

 

To develop a conceptual and numeric model of the 1,234 km
2
 Baviaanskloof catchment, 

a partially data-driven 'downward' or 'top-down' approach (Chirico et al., 2003; Sivapalan et 

al., 2003; Young, 2003) was applied to determine levels of spatial and process discretization 

warranted by available data and characterize connectivity between discretized units, while 

also incorporating model structure requirements for detecting impacts of vegetation and 

channel changes (Chapter 1). Available climate, hillslope soil moisture and surface runoff, 
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floodplain groundwater, and streamflow data were assessed for patterns that would indicate 

when and how surface and subsurface flow paths between land units were active. It was 

found that, in the Baviaanskloof, interflow and bedrock aquifer outflow from mountainous 

areas surrounding the central valley floodplain were all important in recharging the 

floodplain aquifer, the level of which was important in determining catchment outlet 

streamflow. The importance of reasonably accurate characterization of this pattern of surface 

and subsurface flows reaching the floodplain was highlighted when the model was further 

used to look at change scenarios.  For example, modeled antecedent floodplain groundwater 

depth proved to be an important factor in determining predicted catchment scale runoff in 

large flood events and the sensitivity of catchment flows not only to changes in the 

floodplain channel, but also to changes in hillslope vegetation and alluvial fans (Chapters 3-

6).   

 

A multi-scale model was proposed to address the need for higher resolution 

consideration of processes occurring in the floodplain, and the comparative data scarcity 

regarding processes occurring within the contributing mountain areas. Due to the size of the 

catchment and limited data on processes over much of the mountainous area, a relatively 

coarse scale hydrologic response unit (HRU) sub-model was applied to the mountain 

tributary subcatchments, using simple linear reservoirs to represent interflow and bedrock 

aquifer flow lumped by subcatchment. In this sub-model surface flow was routed across a 

catena of topographically defined HRUs. Surface and subsurface outflows from the 

subcatchments were then input into a higher resolution, gridded model of the central valley 
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alluvial fans and floodplain which allowed for temporally dynamic estimation of flow 

exchange between the alluvial aquifer and the floodplain channel based on relative water 

surface elevations and alluvial aquifer conductivity.  

 

This multi-scale model reduced computational and calibration demands while still 

allowing for consideration of the finer scale floodplain processes expected to change in the 

alluvial fan and floodplain channel scenarios to be assessed. To the author's knowledge only 

(Hipsey et al., 2011) have published work on development of a similar multi-scale model of 

a semi-arid meso-scale catchment, however their study did not include a quantitative 

assessment of model output against observed data. After multi-criteria calibration of the 

parameter space against observed patterns in the streamflow and groundwater data (Chapter 

2), the Baviaanskloof model was able to reproduce 2012-2013 observed daily streamflow 

with a Nash-Sutcliffe efficiency (NSE) of 0.87-0.92 and 1991-2013 monthly streamflow 

with an NSE of 0.79-0.85, predict mean flow within 0.5 m
3
/s and maximum monthly flows 

within 1 m
3
/s of the observed, and estimate floodplain groundwater fluctuations with an R

2
 

of 0.79-0.81 and an accuracy in the range of depth fluctuation within 0.5 m of the 

observations. Daily streamflow responses to minor rainfall events were over-estimated, but 

monthly flow errors did not show a systematic bias. During the multi-criteria calibration, 

additionally selecting for parameters sets that improved model representation of low flows 

and floodplain groundwater levels also served to improve average model performance 

against indicators of peak flows and overall flow patterns, rather than creating a significant 

performance tradeoff. The lack of major performance tradeoffs between different criteria 
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provided further support for the model's representation of different processes in the 

Baviaanskloof. 

 

While there was room for improvement, these results indicated that this model structure 

was capable of recreating the catchment's streamflow and floodplain groundwater level 

responses to weather patterns to a degree considered useful for further application in 

estimating potential impacts of large scale changes. Remaining uncertainties in parameter 

values, which also represent potential structural inaccuracies, were brought into the scenario 

modeling assessment through application of ensembles of parameter sets for each scenario. 

Regardless of the model's local streamflow accuracy, it can be considered representative of a 

likely set of patterns of processes and flow path connectivities for a semi-arid, mountainous, 

meso-scale catchment with which to explore potential patterns of change in response to 

different types of degradation and restoration in this kind of environment.      

 

Further research could be done to more fully assess the benefits and drawbacks of this 

model structure in the Baviaanskloof and other catchments. Different means of representing 

processes and landscape connectivity in the Baviaanskloof were considered in the model 

development process and selections made based on patterns in the available observation data 

as described in Chapter 1; however, alternative model structures were not quantitatively 

tested.  Comparing the performance of a fully gridded model, in which surface and 

subsurface processes in the mountain subcatchments were also calculated at the grid cell 

level, and an entirely HRU-scale model, in which processes on alluvial fans and floodplains 
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and their channel interactions were also calculated at the level of the entire land unit, with 

the model structure used here would quantitatively test the capabilities of different structures 

in this kind of catchment setting. Computational requirements could also be compared. Each 

model type would need to be calibrated using the same procedure and surface and 

groundwater prediction performance requirements, allowing comparison of the resulting 

performance and parameter uncertainties given the level of data available with which to 

assess the model. Comparisons of changes in relative performance amongst model structures 

when using different types and amounts of data in the calibration would also be of use in 

demonstrating and providing guidance on model structure suitability given different levels 

of data availability. Ensemble model structure testing studies have been done for smaller and 

more data-rich catchments using simpler model structures (e.g. (Clark et al., 2008)); 

however are less apparent for meso-scale catchments or for assessments of model fit to data 

availability.        

 

7.1.2  Alluvial fan modeling      

 

Another contribution of this research towards modeling semi-arid mountainous 

catchments was the development of a model structure that included surface and subsurface 

processes of alluvial fans. Models of alluvial fans and their contributing catchment areas 

have been developed with different levels of complexity (Blainey and Pelletier, 2008; 

Herron and Wilson, 2001; Houston, 2002, 2002; Mukhopadhyay et al., 2003; Munevar and 

Marino, 1999; Niswonger et al., 2005), but to the author's knowledge there are no published 
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studies in which alluvial fans have been explicitly modeled as landscape elements within 

their larger catchment contexts. In the Baviaanskloof model, alluvial fans were a continuous 

part of the gridded surface and groundwater flow sub-model of the central valley alluvial 

fill. Using a gridded model with explicit topography for surface flow handling allowed for 

the convex shapes of the fans to result in dispersive flow and infiltration across the fan 

surfaces if and when flows exceeded defined channel capacities. Negligible channel 

capacities were applied to simulate unchannelized fans, such that there was no channelized 

connection of surface flow between the mountain tributary subcatchment outlet and the main 

trunk channel in the floodplain.  

 

Scenarios with different alluvial fan channel properties were modeled to estimate 

impacts of human alteration and potential restoration of these forms on streamflow and 

groundwater in the Baviaanskloof (Chapter 4). The changes detected between scenarios also 

give an indication of the importance of the explicit consideration of alluvial fans in the 

model. The scenario in which all alluvial fans were given channelized connections to the 

main floodplain channel can be considered similar to a model in which alluvial fans were 

not included and landscape topography was assumed convergent because flows were rarely 

predicted to exceed the assumed channel capacity and disperse across the fan surface in this 

scenario. Comparing this scenario to one in which the majority of fans in the Baviaanskloof 

were assumed to have generally dispersive flow paths across their surfaces, showed that 

failure to consider the buffering impact of alluvial fans on surface flows could significantly 

alter model predictions of key hydrologic outcomes. Results indicated that, in a catchment 
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with similar characteristics, not including alluvial fan processes in a model could result in an 

overestimation of average annual catchment water yield in the range of 7-21%, 

overestimation of flood peaks on the order of 15-24%, underestimation of minimum 

monthly flows by close to 10%, and overestimating the depth the average floodplain water 

table depth by 3-6%. Such inaccuracies could arise when modeling ungauged catchments for 

which calibration is not possible. If a model that did not include alluvial fans were calibrated 

against sufficient observational data, such inaccuracies could be avoided in as much as the 

impacts of the fans could be implicitly considered through adjustment of parameters for 

processes of other landscape elements dictating infiltration and recharge of the floodplain 

aquifer. However, important prediction inaccuracies could still arise should this model be 

further applied outside of the conditions under which it was calibrated.        

 

The accuracy of model handling of alluvial fan processes was not explicitly tested in this 

study and could the focus of future research. In the case of the Baviaanskloof catchment, 

ability to determine the realism in the representation of the fans was limited by limited data 

on fan surface flow and groundwater levels. Obtaining useful quantities of data on flows on 

alluvial fans in this setting provides a challenge because surface flows were infrequent and 

groundwater levels were relatively deep. However by modeling fans as part of a larger 

catchment model, data on floodplain groundwater and streamflow downstream of the fans 

can assist in constraining fan parameterization in a calibration exercise.  Longer time-series 

and more spatially distributed data would better allow for this compared to what was 
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available for the Baviaanskloof, which was why alluvial fan and floodplain soils and 

vegetation were considered together in this study with only the topography differing.   

 

7.1.3  Multi-criteria model calibration and sources of uncertainty 

 

Multi-criteria calibration techniques have typically been applied to smaller and more 

data-rich catchments (Efstratiadis and Koutsoyiannis, 2010), despite the potential for these 

procedures to be particularly beneficial for complex models needed for semi-arid meso-scale 

catchments and in cases with limited available streamflow data. Application to the 

Baviaanskloof catchment demonstrated benefits of multi-criteria model calibration with 

multiple data types in reducing parameter uncertainty and increasing model performance, 

particularly in better capturing observed patterns of low flows and water table depths 

(Chapter 2). Only a relatively short two year dataset of gauged daily streamflow was 

available for the catchment; however, other available data at other spatial and temporal 

scales were used to both test and improve model performance. Parameter ranges were 

calibrated for the Baviaanskloof model using thresholds of accepted model performance for 

recreating observed patterns in catchment outlet streamflow data, channel flow connectivity 

through the floodplain, floodplain groundwater levels, and subcatchment surface flow 

occurrence.   

 

A notable output of this process was the significant increase in model performance 

across the various measures that resulted when additional criteria based only on the short 
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gauged streamflow record were included in the calibration, as opposed to using a single 

measure of overall fit. When thresholds of Nash-Sutcliffe efficiency (NSE) for logged daily 

streamflow, absolute error in daily flow, and absolute error in maximum monthly flow were 

also included in the calibration procedure, in addition to the NSE of untransformed daily 

streamflow, the performance of the accepted model set improved not only in terms of these 

additional measures, but also in terms of recreating patterns of groundwater table 

fluctuations in the floodplain aquifer. This was in part due to the linkage between floodplain 

aquifer levels and baseflow observed in the catchment and included in the model structure. 

The accuracy of low flow values has more weight in determining the NSE of logged 

streamflow compared to using untransformed flow. Inclusion of this criterion selected for 

models better representing low flows, hence better representing groundwater patterns.  

 

Additional inclusion of criteria directly based on groundwater level observations and 

other data types did result in further improvements in performance and narrowing of the 

accepted parameter space for the Baviaanskloof model, but the improvement was small after 

the additional streamflow based criteria had been applied. This suggests that, in cases when 

only catchment outlet streamflow exists with which to calibrate a model, inclusion of 

multiple criteria selecting for models that recreating a variety of patterns in the streamflow 

data has the potential to  improve model representation of internal processes, within the 

limitations of the model structure. In the Baviaanskloof case this was observed even when 

the available gauged streamflow data was relatively short.   
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Remaining inaccuracies in the Baviaanskloof model could be addressed through further 

research and data collection.  There was a ceiling of performance seen in the distribution of 

the performance measures of all the parameter sets tried in the calibration exercise. In 

addition, minor trade-offs in performance between criteria occurred, such as exclusion of 

some better performing models in terms of recreating groundwater level patterns, although 

mean accepted set performance remained unchanged or improved  (Chapter 2).  

Performance limitations could represent inaccuracies in the model structure, the parameter 

values applied, and the observational data to which the models were compared.  A likely 

major source of unquantified uncertainty was the assumed catchment scale precipitation, 

derived from extrapolation of station data to subcatchment areas using monthly regional 

multi-factor regression based precipitation surfaces (Lynch, 2003).  Some models include 

precipitation adjustment factors as calibration parameters, which was not done in this study. 

As such potential inaccuracies in precipitation would be incorporated into adjustments in the 

other parameter values, such as infiltration and evaporation rates, in as much as adjustments 

to these processes would account for over or underprediction of rainfall.  A potentially 

fruitful area of further research for this and other semi-arid meso-scale catchments, in which 

the spatial distribution of rainfall is particularly important,  would be comparing 

precipitation estimates of satellite based products such as NASA's TRMM (Tropical Rainfall 

Measuring Mission) data-set to station data and model calibration and performance using 

different sets.  
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Some of the criteria and thresholds of acceptability used in the calibration procedure for 

the Baviaanskloof were selected to represent the need for accuracy in certain model outputs 

to be of use in a management context. In this case the assumed focus was on water supply 

management  for those living within the Baviaanskloof catchment area, relying on 

floodplain groundwater, and those living downstream, relying on streamflow at the 

catchment outlet which contributes to a regional supply reservoir. Published multi-criteria 

model calibration studies have tended to select model performance measures based on 

available data types with goals of optimizing model realism in representation of certain 

catchment processes, but without a specific applied use of the model outputs being 

considered.  As such model selection criteria have been somewhat arbitrary (Seibert and 

McDonnell, 2002). An exception is the Management-Objectives-Constrained Analysis of 

Uncertainty (MOCAU) approach proposed in (Zheng and Keller, 2007a, 2007b), in which 

models are assessed specifically based on their accuracy in prediction of selected outcomes 

that directly lead to management decisions. In their example models were assessed for 

accuracy in prediction of exceedance of legal water quality thresholds against an observed 

dataset, an outcome triggering activities to reduce point and non-point pollutant sources.   

 

Methods for considering management objectives in model calibration and assessment of 

suitability warrant further development and application. This was touched upon in this 

study, but further work could be done in the Baviaanskloof case to define model 

performance criteria that would assess whether or a not the model was fit-for-purpose to 

inform decisions pertinent to a range of potential catchment management objectives, such as 
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ensuring water supply for human use locally and regionally as well as ensuring 

environmental flows, managing flood risks, and protecting and restoring floodplain wetland 

habitat. Further refining the Baviaanskloof model structure and parameterization to improve 

performance against an array of criteria would likely require further field data on different 

catchment processes. An assessment of model performance sensitivities to different 

parameters using management based criteria would highlight what kinds of field sampling 

would be most directly beneficial to management, which could help secure support for the 

work.  

  

7.2  Catchment management and restoration planning 

 

Modeling studies in this dissertation demonstrated the sensitivity of long-term average 

catchment scale water yield, flood peaks, low flows, and floodplain groundwater levels to 

changes in hillslope vegetation cover, alluvial fan surfaces, and the form of the central 

floodplain channel in the Baviaanskloof catchment.  In general, restoration in all of these 

landscape elements to assumed pre-agricultural use states was predicted to result in greater 

retention of water within the landscape, greater vegetation water use, and reduced flood 

peaks and average yields at the catchment outlet. Restoration of hillslope vegetation cover 

was predicted to have the largest impact in reducing flood peaks (56-60%) and yields (22-

27%), and when implemented alone, was also predicted to result in a decline in groundwater 

levels (6-10%, Chapter 3).  Floodplain channel restoration had the largest impact on the 

floodplain groundwater level, resulting in a significant rise in the average water table (17-
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21%), without resulting in a large decrease in overall yield (Chapter 5 and 6).  When both 

hillslope vegetation and fan and floodplain channel network restoration were assumed to 

occur together a rise in the average floodplain groundwater table (8-11%) was predicted, 

despite the decrease in water yield from the surrounding hillslopes (Chapter 6).  A notable 

increase in baseflow was not predicted in any restoration scenario (Chapters 3-6). 

 

These results have implications for land use, restoration, and water supply management 

in the Baviaanskloof, and demonstrate likely patterns of response for similar semi-arid, 

mountainous, meso-scale catchments.  These studies make a contribution to understanding 

of the catchment impacts of human induced changes in vegetation cover and channel 

networks, particularly needed in more vulnerable semi-arid settings. Novel contributions 

were catchment-scale assessment of the impacts of alluvial fan alterations and of the loss 

and restoration of Southern African subtropical thicket. This research demonstrated the 

importance of considering catchment connectivity of hydrologic and sediment flow paths, in 

terms of linked changes in vegetation and channel properties, when predicting impacts of 

future scenarios.  The semi-distributed nature of the model structure allowed for an 

assessment of hydrologic impacts at different locations within the catchment, rather than 

only the catchment outlet, which highlighted tradeoffs to be considered between local and 

downstream benefits and drawbacks of proposed restoration changes.   

 

The effects of both changes in vegetation cover change and floodplain channel form on 

streamflow, particularly on baseflow, have previously been observed to be context specific, 
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dependent on climate, geology, geomorphology, vegetation types, and the extent of the 

change.  Increases in vegetation cover generally reduce flow peaks, but can either increase 

or decrease baseflow (Bosch and Hewlett, 1982; Brown et al., 2005; Price, 2011). Similarly, 

restoration of shallower floodplain channels from anthropogenically incised states has been 

predicted to increase or decrease baseflow in different settings (Essaid and Hill, 2014; 

Hammersmark et al., 2008; Ohara et al., 2014; Tague et al., 2008).  Results for the 

Baviaanskloof demonstrate likely responses for semi-arid, mountainous, meso-scale 

catchments with sporadic rainfall, high conductivity soils, and significant subsurface 

recharge of the floodplain from surrounding mountains.  

 

In the case of the Baviaanskloof, it had been initially hypothesized that hillslope thicket 

restoration could increase baseflow due to the significant increase in soil infiltration and 

conductivity seen under intact thicket compared with degraded areas (Lechmere-Oertel and 

Kerley, 2008; Lechmere-Oertel et al., 2005; van Luijk et al., 2013; Mills and Cowling, 2010; 

Mills and Fey, 2004a, 2004b; Mills et al., 2005) and the detected large contribution of 

hillslope interflow to floodplain aquifer recharge which in turn feeds baseflow (Chapters 1-

3).  However, although modeling did indicate an increase long-term average interflow with 

more intact thicket compared to a fully degraded case, and an increase in delayed flow at the 

catchment outlet following very large peak flow events, these increases were small, of short-

duration, and infrequent due to the steep slopes, high conductivity soils, and rarity of heavy 

rainfall. The increase in canopy interception and ET demand dominated the response such 

that average baseflows were predicted to decrease with thicket restoration. The geomorphic 
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setting of the vegetation change was also seen to have an impact, as fans and floodplain 

were seen to dampen the impacts on flood peaks and yields (Chapters 3 and 6).     

 

Given the large predicted change in water yield with thicket restoration, the assumed 

change in canopy interception, soil properties, and thicket vegetation water use deserve 

further exploration. Canopy interception reported for intact thicket in previous studies, and 

which was applied here, is high relative to observations in other semi-arid vegetation types, 

as noted by (Cowling and Mills, 2011), point soil sampling would not account for potential 

macro-porosity that may develop in restored thicket due to root networks, and no direct 

measurements of AET in spekboom thicket have been reported. Field studies and model 

calibration against longer datasets could be used to improve the accuracy of the model 

representation of thicket and changes in thicket cover. 

 

For the Baviaanskloof, restoring more dispersive flow paths across the central valley 

alluvial fill, through restoration of fans and floodplain channels to less channelized and 

incised states, was predicted to decrease flood peaks while having minor impacts on overall 

yields. The low impact on yield was partially due to the high rate of drainage of recharge 

through the alluvium following large flood events meaning it was not long available for ET. 

Because the additional alluvial aquifer recharge during wet periods entered the channel 

relatively quickly, increases in baseflow were only predicted in weeks following a large 

event and were not maintained into prolonged drier periods. In the Baviaanskloof model, the 

relatively consistent recharge of the alluvial aquifer from the mountain bedrock compared to 
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the rate of channel drainage, and shallower water table at downstream narrow valley 

reaches, meant that the channel was predicted to intersect the water table at some locations 

throughout the modeled period. This included prolonged dry periods without overbank 

flooding recharge events. As a result, increasing floodplain channel incision was predicted 

increase baseflows, even though incision decreased alluvial aquifer recharge by reducing 

overbank flooding. Subsurface recharge from the mountains was sufficient to sustain 

increased aquifer-channel connectivity.   

 

There have been relatively few studies of catchment-scale impacts of floodplain channel 

incision impacts and none of alluvial fans channelization. Further research on the impacts of 

these changes in a variety of catchment and climate settings would assist in highlighting 

different response patterns likely in different environments that could help inform 

restoration planning. The predicted response to restoring the incised floodplain channel in 

the Baviaanskloof  differed from channel incision studies in snow-melt fed meadows 

(Hammersmark et al., 2008; Ohara et al., 2014; Tague et al., 2008). In the meadows, 

prolonged seasonal floodplain recharge periods, shorter seasonal dry periods, and slower 

draining aquifer material, resulted in a greater build-up of additional recharge in the restored 

case and a slower subsequent delayed outflow, which also did not need to last as long to 

result in increased baseflows over the relatively dry summer. Even in catchment settings 

with similar climates to the Baviaanskloof, the response to channel changes could be 

different given much lower rates of floodplain recharge from surrounding mountains and/or 
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a different floodplain shape such that recharge from overbank flooding was more critical to 

maintaining the aquifer-channel connection and baseflow.    

 

This dissertation also demonstrated the importance of considering the combined impacts 

of coinciding restoration activities or changes in downslope catchment properties that may 

occur as a result of activities upslope due to geomorphic processes. For example large scale 

changes in vegetation cover have been observed to influence channel form (Booth, 1990; 

James and Marcus, 2006; Keesstra et al., 2005; Osterkamp and Hupp, 2010). In the 

Baviaanskloof case the predicted impact of vegetation restoration was different if it was 

assumed that this would not influence central valley channel network properties compared to 

if it was assumed channels would also return to their restored state. For example the 

floodplain groundwater table was predicted to decline by 6-10% with hillslope thicket 

restoration alone, but if channel restoration also occurred the water table was predicted to 

rise by 8-11%.  Further geomorphic research would be needed to determine which scenario 

is more likely and over what time period.  

 

These studies indicated the nature of some of the trade-offs that would need to be 

considered in restoration planning and catchment management in the Baviaanskloof. Further 

integration of the Baviaanskloof hydraulic-hydrologic model with sediment transport 

modeling, water quality modeling, reservoir water balance modeling for the downstream 

supply reservoir, groundwater withdrawal patterns in the floodplain, flooding impact 

assessments in the catchment and in downstream areas, and wetland and riparian habitat 
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models would be needed to fully understand the impacts of the modeled changes on realized 

water supply, flood impacts, and habitat. Nevertheless, the hydraulic-hydrologic model 

results alone indicate that full catchment restoration is likely to result in an increase in 

groundwater supply accessibility for local catchment residents, an increase in floodplain 

inundation impacts, an increase in wetland habitat, a decrease in water supply for 

downstream users, but an increase in quality, and a decrease in flood impacts downstream. It 

is likely that the water yield decrease would be less than the modeled change In catchment 

outlet water yield as reservoir evaporation and sedimentation have not been taken into 

account and the largest changes in yield were predicted during wet periods when the 

reservoir is often overflowing.  Trade-offs between different local and regional benefits and 

drawbacks were evident in the predicted hydrologic outcomes. There would also be other 

ecosystem services and biodiversity outcomes that would need to be considered when 

planning restoration and land management, such as agricultural productivity, habitat 

provision, and carbon storage. Catchment management goals need to be set collectively to 

holistically assess potential future scenarios and determine what activities are desirable on 

balance.  The model development and scenario assessments done here form one part of this 

larger analysis.   
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